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ABSTRACT 
Obstetric antiphospholipid syndrome (APS) is a systemic autoimmune disorder 

characterized by circulating antiphospholipid antibodies (aPL) and an increased risk of 

recurrent pregnancy loss and preeclampsia. Current treatments, such as low molecular 

weight heparin (LMWH) may maintain pregnancy but do not reduce the risk of these late 

gestational complications. aPL trigger placental inflammation by activating trophoblast 

Toll-like receptor 4 (TLR4), leading to cytokine production. Since some microRNAs 

(miRs) regulate TLR responses, this study sought to determine the functional role of 

aPL-induced miR expression in regulating trophoblast inflammation. Since vitamin D 

deficiency is common in APS patients, the effect of vitamin D on trophoblast function in 

the setting of aPL and LMWH was also evaluated. Thus, the human first trimester 

trophoblast cell line (HTR8) and primary trophoblast cultures were incubated with or 

without aPL in the presence or absence of vitamin D and/or LMWH. miR expression was 

profiled using RT-qPCR, and cytokine secretion was measured by ELISA. miR function 

was assessed by transfection of specific miR mimics or inhibitors. Indeed, treatment of 

trophoblast cells with aPL significantly upregulated expression of miR-146a-5p, miR-

146a-3p, miR-155, and miR-210 when compared to controls. Furthermore, miR-146a-5p 

and miR-146a-3p upregulation by aPL was TLR4 dependent. Functional studies 

demonstrated that miR-146a-3p directly promoted trophoblast IL-8 secretion by 

activating the RNA sensing receptor, TLR8. Vitamin D reduced aPL-induced miR-146a-

5p, IL-8 and LMWH-induced sFlt-1 release, but did not reduce aPL-induced miR-146a-

3p. These findings suggest that aPL induce trophoblast IL-8 production through 

upregulation of miR-146a-3p and subsequent activation of TLR8. Our findings also 

suggest that that vitamin D can dampen this inflammatory response downstream of miR-

146a-3p. Thus, further study of trophoblast miR function in the context of aPL and the 

therapeutic potential of vitamin D for obstetric APS is warranted. 
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INTRODUCTION 
 
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by a 

pro-thrombotic state and significant pregnancy morbidity. The disease is more common 

in women than men, and can present in isolation as primary systemic APS, or as 

secondary systemic APS in the context of another autoimmune disease such as 

systemic lupus erythematosus (SLE) (1). It is also the most common cause of acquired 

thrombophilia in the general population (2). Pregnant patients may develop obstetric 

APS, which increases the risk of both recurrent pregnancy loss (RPL) and late 

gestational complications such as preeclampsia, placental insufficiency and fetal growth 

restriction (1,3). Indeed, between 7 and 25% of RPL is attributable to APS (4), and 

nearly 50% of fetuses born to patients with APS are premature (5). Although the exact 

prevalence of APS is unknown, it is estimated to be between 40-50 cases per 100,000 

persons (6). Diagnosis of obstetric APS requires one or more of the following: 

unexplained death of a morphologically normal fetus beyond 10 weeks; preeclampsia 

necessitating delivery before the 34th week; or three or more consecutive abortions 

before the tenth week of gestation (7).  

 

Antiphospholipid antibodies and β2-glycoprotein I 

In addition to these clinical manifestations, the diagnosis of APS requires detection of 

persistently high titers of antiphospholipid autoantibodies (aPL) in the circulation (7). aPL 

are a heterogeneous population of autoantibodies that recognize anionic phospholipid-

binding proteins rather than phospholipids themselves (8,9). The prevalence of aPL has 

been difficult to assess due to heterogeneous patient populations and inconsistent 

laboratory protocols, however it is estimated that aPL are present in 1-4% of normal 

controls (10), 15.5% of women with RPL, and as high as 30% of women with fetal losses 

after 20 weeks (4). While anti-cardiolipin and lupus anticoagulant antibodies are included 
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in the diagnostic criteria, antibodies that target β2-glycoprotein I (β2GPI) are considered 

to be the most pathologic in obstetric APS (11-14).  

 

β2-glycoprotein I, also known as apolipoprotein H, is a highly abundant, highly 

glycosylated single chain polypeptide that circulates at a plasma concentration of 

200µg/mL (15). The protein consists of five sushi domains of approximately 60 amino 

acids, and aPL that react with domains I and V are of particular interest in obstetric APS 

(8,16,17). In vivo, β2GPI exists in two distinct conformations with different 

immunogenicities (18). The circular, or unbound form of β2GPI is not recognized by 

autoantibodies due to folding that hides the epitopes recognized by aPL. However, when 

bound to anionic surfaces, such as phospholipids, cardiolipin or phosphatidyl serine, 

β2GPI undergoes a conformational change that exposes critical regions, thereby 

allowing anti-β2GPI antibodies to bind (18). 

 

Anionic phospholipids are rarely physiologically exposed on the outer surface of the cell 

membrane, and β2GPI-autoantibodies do not bind free β2GPI in serum (18). However, 

because the placenta undergoes extensive proliferation and remodeling, anionic 

phospholipids become exposed on the trophoblast surface, allowing exogenous β2GPI to 

bind the trophoblast under physiologic conditions (9,19,20). Furthermore, the trophoblast 

constitutively express β2GPI, independently making the placenta a target of aPL (21). 

However, the direct implication of β2GPI in aPL-mediated pregnancy loss was 

highlighted by Roberston et al. using a mouse model; by passively immunizing both 

wildtype and β2GPI-null pregnant mice with human aPL, it was demonstrated that 

functioning β2GPI is not required for the maintenance of pregnancy, but is necessary for 

the development of aPL-induced pregnancy loss (14). Thus, β2GPI plays a critical role in 

the pathophysiology of obstetric APS.  
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Antiphospholipid antibodies, inflammation and trophoblast function 

Given that systemic APS is a pro-thrombotic disease, adverse pregnancy outcomes 

associated with APS were initially attributed to clotting at the maternal-fetal interface. 

This notion was initially supported by the apparent beneficial effect of heparin in 

reducing fetal loss in APS patients (22-24). However, evidence of placental thrombosis 

on histologic examination of APS miscarriage samples is uncommon (25). More 

frequently, disruptions in placentation are identified, such as reduced endovascular 

trophoblast invasion and impaired maternal spiral artery transformation (25,26). 

Evidence of inflammation is also common in these samples, and numerous groups have 

identified inflammatory processes as mediators of aPL-induced pregnancy loss (27-31). 

Thus, pregnancy complications associated with APS may due to placental dysfunction 

and inflammation, rather than intravascular thrombosis. Indeed, this hypothesis has 

been supported by both in vitro and animal studies using aPL. For example, in mice 

exposed to high levels of human aPL, elevated pro-inflammatory TNFα levels are found 

both systemically and in decidual tissue where aPL localize, resulting in increased fetal 

resorption (28). Importantly, blockade of this TNFα response reduces fetal resorption to 

baseline levels. Furthermore, in concurrence with histologic findings (25), both 

monoclonal and patient-derived aPL have been shown to reduce trophoblast migration 

and invasion in vitro (32,33). Taken together, these data suggest that inflammation and 

altered trophoblast function due to aPL are instrumental in APS pathogenesis.  

 

Antiphospholipid antibodies and Toll-like receptors 

While the mechanisms underlying these processes were initially unclear, the observation 

made by Raschi et al. identifying similarities between endothelial cell responses to aPL 

and bacterial lipopolysaccharide (LPS) suggested interactions between β2GPI and the 

prototypical innate immune receptor, Toll-like receptor 4 (TLR4) (34). Toll-like receptors 
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are a group of highly conserved pattern recognition receptors that recognize a wide 

variety of ligands associated with pathogens, known as pathogen-associated molecular 

patterns (PAMPs), as well as some host-derived danger signals, known as damage-

associated molecular patterns (DAMPs). PAMPs, such as LPS, are not expressed by 

humans, which allows for rapid and specific identification of microbes by immune cells. 

DAMPs are endogenous molecules that, following tissue injury, are released from their 

physiologic compartments and become exposed to and recognized by the immune 

system. TLRs recognizing either PAMPs or DAMPs subsequently trigger innate immune 

responses critical to both immediate defense against pathogens and development of 

adaptive immunity. The 10 known human TLRs share the same type I transmembrane 

glycoprotein structure, each consisting of extracellular and transmembrane domains and 

an intracellular signaling domain. Physiologically, TLR4 is responsible for sensing LPS 

expressed on the surface of gram-negative bacteria. When bound to LPS, TLR4 

homodimerizes, allowing recruitment of the adapter protein myeloid differentiation factor 

88 (MyD88) and subsequent activation of downstream signaling proteins interleukin-1 

receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated 

factor 6 (TRAF6), ultimately triggering nuclear factor κB (NF-κB) -dependent 

transcription of inflammatory genes (35).  

 

In recent years, the ability of TLR4 to interact with endogenous ligands such as β2GPI in 

a pathological context has been explored. In endothelial cells, which do not produce 

β2GPI, serum-derived β2GPI binds to cell surface receptors ApoER2, allowing 

autoantibodies to interact with β2GPI. This results in endothelial cell activation and 

increased cell adhesion (36-38). Moreover, these aPL-mediated effects are dependent 

on TLR4/MyD88-dependent signaling (34,39,40). Similar results have been found in 

monocytes, where anti-β2GPI antibodies induce co-localization of TLR4 and β2GPI to 
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lipid rafts, leading to TLR4 activation and subsequent NF-κB-dependent gene 

transcription (41). This ability to activate TLR4 signaling is thought to be due to shared 

epitopes between β2GPI and LPS. To that end, Blank et al. illustrated that mice 

immunized with bacterial products produce anti-β2GPI antibodies capable of inducing 

fetal loss, suggesting that molecular mimicry results in production of anti-β2GPI-

antibodies that recognize epitopes common to β2GPI and LPS (42). Since the 

trophoblast constitutively express β2GPI, and are likely targeted by circulating aPL in the 

earliest stages of placentation, our group has worked to address the mechanisms by 

which aPL alter human first trimester trophoblast function. 

 

Similar to the observations made in endothelial cell and monocyte systems, we 

described the ability of anti-β2GPI antibodies to induce human first trimester trophoblast 

responses through both TLR4/MyD88 -dependent and -independent pathways (30). 

Specifically, it was demonstrated that anti-β2GPI antibodies elicit TLR4/MyD88-

dependent trophoblast secretion of inflammatory cytokines: interleukin-8 (IL-8), growth 

related oncogene-α, monocyte chemoattractant-1 and interleukin-1β (IL-1β)(30). Recent 

work by our lab has further shown that the IL-1β response in the trophoblast is 

dependent on TLR4-mediated uric acid production, which in turn activates the 

Nalp3/ASC inflammasome, leading to IL-1β processing and release (43). However, the 

IL-8 response was shown to be independent of the inflammasome, and the mechanisms 

by which the other cytokines are regulated remain unclear. Nonetheless, the observed 

upregulation of IL-8 and IL-1β by aPL provides a potential mechanism for the recruitment 

of neutrophils to the placenta observed in APS miscarriage samples (27). Furthermore, 

in parallel to these inflammatory responses, anti-β2GPI antibodies modulate human first 

trimester trophoblast secretion of angiogenic factors, including upregulation of the pro-

angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor 
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(PlGF), and the anti-angiogenic factor soluble endoglin (sENG) (44-47). Interestingly, 

this occurs via both MyD88-dependent (PlGF) and independent processes (VEGF, 

sENG). In addition, anti-β2GPI antibody induces the downregulation of basal interleukin-

6 (IL-6) production, which subsequently inhibits STAT3 activity resulting in decreased 

trophoblast migration in vitro. Furthermore, aPL upregulate trophoblast expression of the 

matrix metalloproteinase inhibitor TIMP-2, which further contributes to this inhibition of 

cell migration (45). Since precise regulation of cytokines, chemokines, and angiogenic 

factors is required for development of a functional maternal-fetal interface, even minor 

changes in the milieu may result in damaging inflammation and impaired invasion and 

vascular remodeling that lead to the pathological sequelae observed in APS.  

 

Current APS therapies and the trophoblast 

Currently, pregnant women with APS are treated with low molecular weight heparin 

(LMWH), either alone or in combination with aspirin (22,23,48). While this treatment 

approach might reduce the risk of RPL, the occurrence of late-term obstetrical 

complications such as preeclampsia remains high (22,23,48). To date, clinical and 

experimental studies have produced contradictory results regarding the effectiveness of 

LMWH and aspirin in preventing aPL-associated adverse pregnancy outcomes (48-54), 

and in being able to reverse the detrimental effects of aPL on trophoblast function in vitro 

(30,55-58). Studies from our group have shown that aspirin has no beneficial effects on 

aPL-modulation of trophoblast function (59).  While successfully reducing aPL-mediated 

upregulation of IL-8 and IL-1β, LMWH has no beneficial effect on aPL-reduced 

trophoblast migration or altered angiogenic factor secretion. Moreover, LMHW induces a 

robust elevation of trophoblast sFlt-1 release, even in the absence of aPL (30,32,44,46). 

Similar elevations of sFlt-1 have been observed in placental villus explants (60-62) and 

in pregnant women treated with LMWH (61,62). Since sFlt-1 is a potent anti-angiogenic 
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factor that is thought to be a mediator of end-organ damage in preeclampsia (63,64), it is 

clear that LMWH may have both beneficial and deleterious effects on the trophoblast. 

This may explain the inability of LMWH to reverse the late gestational complications 

associated with APS, such as preeclampsia, despite its relative success in prolonging 

pregnancy. Undoubtedly, the mixed effects of LMWH highlight the need to identify 

alternative therapeutic targets and treatments for the management of obstetric APS. 

 

Vitamin D, the immune system and the trophoblast 

In recent years, the biologically active form of vitamin D, 1,25-dihydroxyvitamin D 

(vitamin D), has been found to have numerous immunomodulatory effects in addition to 

its classical role in calcium homeostasis. Vitamin D is a steroid hormone produced from 

endogenous and dietary precursors that controls gene regulation through interaction with 

the vitamin D receptor (VDR) (65). When vitamin D binds the VDR in the nucleus, the 

resulting dimer acts as a transcription factor to upregulate genes controlled by the 

vitamin D response element (65). Interestingly, the first evidence of vitamin D’s ties to 

the immune system came from observations in patients with sarcoidosis, whose 

elevated vitamin D levels were attributed to increased synthesis in disease-associated 

macrophages (66,67). Since then, VDR expression has been identified in both immune 

and non-immune cells alike, including the trophoblast (68-70), and the placenta has 

been identified as a major site of vitamin D activation (71). Although conflicting data 

exist, it has been suggested that vitamin D broadly influences T-cell maturation and 

function, preferentially shifting T-cell cytokine responses away from cell-mediated 

immunity (Th1) towards humoral immunity (Th2), therefore potentially limiting tissue 

damage caused by inflammation (72). Furthermore, vitamin D deficiency has been 

directly implicated in the pathogenesis of APS since Vitamin D can inhibit anti-β2GPI 

antibody-mediated tissue factor expression in endothelial cells (73). Recently, 
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interactions between TLRs and vitamin D have been demonstrated, including the 

upregulation of CYP27B1, the enzyme responsible for activating vitamin D, by TLR4 

signaling (68,74). Moreover, treatment of murine placental explants with vitamin D 

results in attenuation of inflammatory cytokines induced by the TLR4 ligand LPS (71). 

Interestingly, population studies suggest vitamin D deficiency may be associated with 

APS and SLE (75,76), and also with adverse pregnancy outcomes such as 

preeclampsia (77-79) and recurrent pregnancy loss (80). Thus, vitamin D 

supplementation represents a promising adjunct for treating pregnant women with APS 

(73), particularly since aPL induced placental inflammation is TLR4-mediated (11,81). 

 

Toll-like receptors and microRNAs 

In the physiologic state, TLRs and their respective downstream signaling pathways must 

be tightly regulated to allow for a robust inflammatory response while ensuring 

appropriate attenuation in order to prevent subsequent tissue injury. One proposed 

mechanism of such precise regulation is through microRNAs (miRs). miRs are small, 

noncoding RNAs that regulate protein expression through post-transcriptional interaction 

with mRNA, either by suppressing translation, or reducing levels of target mRNA (82,83). 

miRs are highly conserved among mammalian species and can target hundreds of 

distinct mRNAs, thus expression of most genes is likely under some degree of control by 

miRs. Indeed, many miRs have been identified that both regulate and are induced by 

TLR signaling (82).  Therefore, miRs are well poised to act in a negative feedback 

mechanism of control over TLR genes. Indeed, recent studies have revealed a number 

of miRs that specifically target elements of the TLR4 signaling pathway; these include 

miR-9, which targets NF-κB (84); miR-146a-5p (formerly designated miR-146a), which 

targets IRAK1 and TRAF6 (85); and miR-155, which targets MyD88 (86). While these 

studies were conducted in other cell types, altered miR expression has been identified in 
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trophoblast exposed to hypoxia, environmental toxins or LPS, and in placentas from 

pathological pregnancies (87-89). Interestingly, vitamin D has been shown to alter levels 

of miR-146a-5p and miR-155 in the serum (90), and thus likely modulates intracellular 

levels as well. To date, little is known about the role of miRs in trophoblast function, and 

no information exists on whether aPL-induced responses may be regulated by miRs. 

Thus, aPL may indeed be exerting its effects on trophoblast function through modulation 

of miR expression, leading to changes in the TLR4/MyD88 signaling pathway. 

Therefore, my central hypothesis is that aPL decrease trophoblast miR 

expression, allowing activation of the TLR4/MyD88 pathway and the subsequent 

alteration of trophoblast function, and that vitamin D reverses these effects. The 

mechanisms by which aPL affect trophoblast function still remain largely unclear, and 

current therapies do not reduce the risk of severe late gestational pregnancy 

complications. Therefore, a better understanding of the pathophysiology of obstetric APS 

is needed to identify novel targets for pharmacotherapy. The overall goals of this study 

were to: 1) characterize the effects of aPL on trophoblast miR expression and function; 

and to 2) investigate the effects of vitamin D on trophoblast function and miR expression 

in the setting of aPL and LMWH. Thus, the specific objectives of this project were: 

1. To determine the effects of aPL on miR expression in first trimester trophoblast 

cells. 

2. To determine the functional role of miRs in the regulation of trophoblast 

responses to aPL. 

3. To determine the potential of therapeutic vitamin D to reverse aPL-mediated 

effects on trophoblast function and miR expression.  
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MATERIALS AND METHODS 
 

Reagents 

The low molecular weight heparin (LMWH) preparation, Lovenox (Enoxaparin), was 

obtained from Aventis Pharmaceuticals Inc. (Bridgewater, NJ, USA). Active vitamin D 

(1,25-Dihydroxyvitamin D3) was obtained from Sigma-Aldrich, (St Louis, MO, USA), 

reconstituted in ethanol and filter sterilized prior to use. The TLR4 antagonist, LPS from 

R. sphaeroides (LPS-RS) was purchased from Invivogen (San Diego, CA). 

 

Antiphospholipid antibodies 

The current study utilized two mouse IgG1 anti-human β2GP1 monoclonal antibodies 

(aPL), designated ID2 and IIC5, which were produced by one of our collaborators (L.W. 

Chamley), under sterile conditions and filter sterilized prior to use. The antibodies were 

cloned from mice immunized with purified human β2GPI, and have been previously 

characterized (91). Like patient-derived polyclonal aPL, ID2 and IIC5 bind β2GPI when it 

is immobilized on a negatively charged surface such as phospholipids, cardiolipin, 

phosphatidyl serine or irradiated polystyrene (92). Moreover, ID2 and IIC5 react 

specifically with epitopes within domain V of β2GPI (45), and have been shown to bind to 

human first trimester trophoblast cells and alter their function in a similar fashion to 

patient-derived polyclonal aPL (30,43,44). A mouse IgG1 monoclonal antibody (BD 

Biosciences, San Jose, CA) was used as an isotype control.  

 
 
Isolation of primary trophoblast cells from first trimester placenta 

First trimester placentas (7-12 weeks gestation) were obtained from elective 

terminations of normal pregnancies performed at Yale-New Haven Hospital. The use of 

patient samples was approved by Yale University’s Human Research Protection 
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Program. Tissue specimens were washed with cold Hanks Balanced Salt Solution 

(Gibco) to remove excess blood, minced, transferred to trypsin-EDTA (Invitrogen, 

Carlsbad, CA, USA) digestion buffer and incubated at 37°C for 40 min with shaking. The 

mixture was then passed through a nylon strainer and then layered over Lymphocyte 

Separation Media (ICN Biomedicals, Inc., Aurora, OH, USA) and centrifuged at 400 × g 

for 25 min. The cellular interface containing the trophoblast cells was collected and 

resuspended in D-MEM with D-valine (Caisson Labs, North Logan, UT, USA) 

supplemented with 10% normal human serum (Gemini Bio-Products, Woodland, CA, 

USA) and cultured at 37°C/5% CO2 as previously described (30,44,47).  

 

Human first trimester trophoblast cell lines 

The human first trimester extravillous trophoblast cell line, HTR8, was used in these 

studies. The HTR8 cells were immortalized by SV40 (93) and were a kind gift from Dr. 

Charles Graham (Queens University, Kingston, ON, Canada). HTR8 cells were cultured 

in RPMI 1640 (Gibco, Carlsbad, CA, USA), which was supplemented with 10% fetal 

bovine serum (Hyclone, South Logan, UT, USA), 10 mm Hepes, 0.1 mm MEM non-

essential amino acids, 1 mm sodium pyruvate, and 1000U/ml/1000ug/ml 

penicillin/streptomycin (Gibco). Cells were maintained at 37°C⁄5% CO2 and passaged 

between 80%-100% confluency by trypsinization, centrifugation and resuspension. The 

TLR8 dominant negative (TLR8-DN) trophoblast cells were previously produced from 

HTR8 cells stably transfected with the pZERO plasmid containing the TLR8-ΔTIR gene 

(Invivogen). Without the TIR domain, the TLR8 protein maintains ligand affinity but is 

unable to induce signaling cascades. Briefly, cells were transfected overnight with 2µg of 

DNA using Fugene 6 (Roche Diagnostics, Indianapolis, IN). Following transfection, cells 

were allowed to recover in growth media for 24hrs, after which selection for stable 
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expression was performed using 250µg/mL of puromycin (Invivogen). The TLR8-DN 

trophoblast cell-line has been previously characterized (94). 

 

Trophoblast cell treatment experiments and transfections 

For all experiments, confluent cells were trypsinized, plated into 60mm dishes at 2.0 × 

105 cells/mL and allowed to adhere overnight. Cells were then treated with or without the 

aPL ID2, IIC5 or an IgG1 isotype control (20µg/mL) in serum-free Opti-MEM media 

(Gibco). For vitamin D and LPS-RS experiments, cells were pre-treated with either 10nM 

active vitamin D or 10µg/mL LPS-RS 1 hour prior to treatment with aPL. Isolated primary 

trophoblast cells were treated with no treatment (NT) or with the aPL, ID2 (20µg/ml) in 

the presence or absence of LMWH (100µg/ml), vitamin D (10nM), or a combination of 

both LMWH and vitamin D. Dosages of vitamin D and LMWH were determined from 

previous studies (30,44,46,58,69), and assessed for toxicity using the Celltiter 96™ 

viability assay prior to use. Neither the treatments nor the ethanol control had any effect 

on cell viability (data not shown).  

 

To assess miR function, cells were transfected with 100nM of either an anti-miR 

scramble sequence control or specific inhibitors of miR-146a-5p, miR-146a-3p, miR-155, 

or miR-210 (Anti-miR, Life Technologies, Grand Island, NY), using siPORT NeoFX 

transfection reagent (Invitrogen, Grand Island, NY). Similarly, cells were transfected with 

a specific miR-146a-5p precursor, miR-146a-3p precursor, or a scramble sequence 

control at 200nM (Pre-miR, Life Technologies, Grand Island, NY). Transfection efficiency 

in excess of 99% was assured using Cy-3 labeled anti-miR scramble sequence control 

and direct visualization under fluorescence microscopy.  
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Migration studies 

Trophoblast migration was assessed using the two-chamber QCM Colorimetric Cell 

Migration Assay (EMD Millipore, Billerica, MA) as previously described (32). Briefly, 

HTR8 trophoblast cells were transfected using specific inhibitors of miR-155, or miR-210 

or a scramble control as above. After 24h, transfected cells were trypsinized and 1 × 105 

cells in 200µL were placed into cell culture inserts with 8µm pores in the presence or 

absence of aPL (20µg/mL). The inserts were then placed into 24-well culture plates, with 

each well containing 800µL of either OptiMEM (NT), or aPL (20µg/mL). 1 × 105  cells in 

1mL were also placed directly into the 24-well plate to serve as a 100% migration 

control. After 48h of treatment, migrated cells were stained and lysed according to the 

manufacturer’s protocol. Stained lysates were then transferred to a 96-well plate in 

triplicate and optical densities were measured using the iMArk Microplate Absorbance 

Reader  (BioRad, Hercules, CA) and compared to the 100% migration control. 

 

Cytokine and angiogenic factor studies 

After 72hrs in treatment, trophoblast cell-free culture supernatants were collected by 

centrifugation at 1500 × g for 10 min at 4°C stored at -80°C. The pro-inflammatory 

cytokines, IL-8, IL-6 and IL-1β; the pro-angiogenic factors, VEGF and PlGF; and the anti-

angiogenic factors, sENG and sFlt-1 were measured in the supernatants by ELISA 

(Enzo Life Sciences, Farmingdale, NY, USA or R&D Systems, Minneapolis, MN, USA) 

following the manufacturers’ protocols directly.  

 

RNA isolation and quantitative real-time qPCR 
 
After 6-48h in culture, trophoblast cellular RNA was extracted using TRIzol (Life 

Technologies). Briefly, supernatants were removed and 1 mL of TRIzol was added to 

adherent cells for 5 min on ice. Cells were then scraped and transferred to 1.5 mL tubes, 
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vortexed, and combined with 200µL chloroform. Samples were vortexed, incubated at 

RT for 5 min and then centrifuged at 13000 × g for 15 min at 4°C. The aqueous phase 

was then collected, combined with 500 µL isopropanol and allowed to precipitate 

overnight at -20°C. RNA was then pelleted by centrifugation at 13000 × g for 10 min at 

4°C and resuspended in RNAse free water. Total RNA concentration was then 

measured using the NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, 

MA). The expression of miR-9, miR-146a-5p, miR-146a-3p, miR-155, miR-210, and let-

7c were assessed using the Taqman MicroRNA Assay (Life Technologies) and 

normalized to the endogenous control snU6. Briefly, 10ng of total RNA was reverse 

transcribed using Taqman reverse transcriptase kit in a reaction volume of 15µL 

containing 3µl of primers specific for miR-9, miR-146a-5p, miR-155, miR-210, and let-7c 

using the following thermal cycling conditions: 16°C for 30min, 42°C for 30min, 85°C for 

5min. For miR-146a-3p, 250ng of total RNA were reverse transcribed as above, and 

then pre-amplified using Taqman PreAmp master mix kit (Life Technologies) for 10 

cycles according to the manufacturer’s protocol. The resulting cDNA was then amplified 

using Taqman Universal PCR Master Mix II with UNG (Life Technologies) and specific 

primers for target miRs under the following conditions: 50°C for 2min, 95°C for 10min, 

95°C for 15sec and 60°C for 60sec. Data were analyzed using the Δ-Δ CT method and 

plotted as fold change (FC) in the expression of gene of interest normalized to the 

endogenous control.  

 
 
Statistical analysis 

Experiments were performed a minimum of three times and assayed in duplicate. Data 

were then pooled and are expressed as mean ± SEM. Statistical significance (p<0.05) 

was determined by Student’s t-test or analysis of variance (ANOVA) where appropriate 

using Prism software (Graphpad Software inc, La Jolla, CA). 
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RESULTS 
 
aPL upregulate trophoblast expression of miR-146a-5p, miR-155, and miR-210 
 
Since the effects of aPL on trophoblast expression of miRs have yet to be studied, the 

first objective of this study was to characterize first trimester trophoblast expression of 

miRs in response to aPL. To accomplish this, we utilized a well-characterized in vitro 

system consisting of a human first trimester trophoblast cell line (HTR8) and the mouse 

anti-human β2GPI monoclonal antibody, IIC5 (aPL). Previous work from our lab has 

shown that aPL induce a pro-inflammatory response in the trophoblast by binding β2GPI 

and activating the TLR4/MyD88 pathway (30). Therefore, a panel of five miRs known to 

be involved in TLR signaling was selected for initial analysis; miR-146a-5p, miR-155, 

and miR-9 are known to target IRAK/TRAF6, TAB2 and NF-κB/p50 of the TLR4 

signaling pathway, respectively (82). The panel also included two miRs known to affect 

trophoblast function; miR-210, which inhibits trophoblast migration and is induced by 

TLR3, and Let-7c, which inhibits trophoblast IL-6 secretion and is induced by TLR2 (95-

98). Given that these miRs are also known to be induced by TLR signaling and inhibit 

migration, we postulated that treatment with aPL would alter their expression in the 

trophoblast. First, we conducted a preliminary time course study evaluating miR 

expression in the HTR8 trophoblast cell line in response to aPL between 6-48h. As 

shown in Figure 1A, miR-146a-5p was significantly elevated at 48h (p<0.05). miR-155 

and miR-210 exhibited a similar trend, but were not significantly elevated (Figure 1A). 

Having established that 48h was the optimal time point, further experiments were 

performed using full controls. As shown in Figure 1B, after 48h of treatment, aPL 

induced a significant upregulation of trophoblast miR-146a-5p, miR-155 and miR-210, 

when compared to the no treatment (NT) control. In contrast, no significant changes in 

expression of miR-9 or let-7c in response to aPL were identified. No significant alteration 

in miR-146a-5p, miR-155, miR210, miR-9 or Let-7c expression levels was observed in 
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response to the mouse IgG1 isotype control, suggesting that the responses observed 

were specific to aPL (Figure 1B).  

 

 

Figure 1. aPL induce cellular expression of miR-146a-5p, miR-155 and miR-210, but not 
miR-9 or Let 7c.  
Trophoblast cells (HTR8) were treated with either no treatment (NT), aPL (20µg/mL) or 
IgG isotype control (20µg/mL). After 6-48h (A) or 48h (B), cellular RNA was isolated 
and analyzed for miR-146a-5p, miR-155, miR210, miR-9 and Let-7c expression by 
qPCR using snU6 as an internal control. Data were analyzed by ANOVA and 
expressed as fold change (FC) relative to the NT control. A: n=1-4, B: n=10. *p<0.05. 
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aPL-induced trophoblast expression of miR-146a-5p, but not miR-155 or miR-210, 
is TLR4 dependent 
 
Since aPL induce a pro-inflammatory response in the trophoblast through TLR4 (30) and 

a number of miRs can be induced after TLR activation (82), the next objective of this 

study was to determine the role of TLR4 in the observed induction of trophoblast miR 

expression by aPL. To test this, trophoblast cells were treated with aPL in the presence 

or absence of the TLR4 competitive antagonist LPS-RS. As shown in Figure 2, addition 

of LPS-RS to the culture resulted in a significant attenuation of aPL-induced miR-146a-

5p expression from a 1.9 fold to 1.4 fold increase (p<0.05), suggesting that this response 

is TLR4 mediated. aPL-induced expression of miR-155 and miR-210 was not 

significantly altered by LPS-RS (Figure 2).  

 

Figure 2. aPL-induced miR-146a-5p expression is inhibited by LPS-RS 
Trophoblast cells (HTR8) were treated with either media or LPS-RS (10µg/mL) and 
then incubated with or without aPL (20µg/mL) for 48h. Cellular RNA was isolated and 
analyzed for miR-146a-5p, miR-155 and miR210 by qPCR using snU6 as an internal 
control. Data were analyzed by student’s t-test and expressed as fold change (FC) 
relative to the untreated control. n=4, *p<0.05. 
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aPL upregulate trophoblast expression of miR-146a-3p in a TLR4 dependent 
manner 
 
Given that only miR-146a-5p expression was found to be TLR4-mediated, we decided to 

focus the remainder of our studies on miR-146a expression and function. In this regard, 

we evaluated both the dominant miR-146a-5p form, as well as its isomiR, miR-146a-3p 

(formerly miR-146a*). Initially thought to be responsible solely for ensuring accurate 

processing of the dominant miR, isomiRs, or miR*s, have been reexamined in a 

functional context after being found to be evolutionarily conserved and to have 

regulatory activity (99,100). Recent studies suggests that despite expression levels often 

20-200 fold lower than their miR counterparts, isomiRs can associate with the RNA-

induced silencing complex and interact with mRNA, further suggesting that they may 

serve a functional role (100,101). Thus, we next examined the effects of aPL on 

trophoblast miR-146a-3p expression. Similarly to miR-146a-5p (Figure 1B), miR-146a-3p 

expression was significantly upregulated 7.5 fold in response to aPL (p<0.05) compared 

to the no treatment (NT) control (Figure 3A). The mouse IgG1 isotype control had no 

effect on miR-146a-3p expression. Furthermore, aPL-induced miR-146a-3p expression 

was significantly reduced from 12.3 to 6.8 fold in the presence of LPS-RS (Figure 3B; 

p<0.05), suggesting that miR-146a-3p is regulated by TLR4, similar to miR-146a-5p. 
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Figure 3. miR-146a-3p expression is induced by aPL and this is inhibited by LPS-
RS. (A) Trophoblast cells (HTR8) were treated with either no treatment (NT), aPL 
(20µg/mL) or IgG isotype control (20µg/mL). (B) Trophoblast cells (HTR8) were treated 
with or without aPL (20µg/mL) in the presence of media or LPS-RS (10ug/ml). After 
48h, cellular RNA was isolated and analyzed for miR-146a-3p by qPCR using snU6 as 
an internal control. Data are expressed as fold change (FC) relative to the NT control. 
(A) n=8; *p<0.05 as determined by ANOVA; (B) n=7; *p<0.05 as determined by 
Student’s t test. 
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TLR signaling. Since miR-146a-5p is known to inhibit IRAK1/TRAF6 of the TLR4 
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in the trophoblast would result in unrestrained TLR4 signaling and a further increase in 
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8 secretion, well-established by our lab as a marker of aPL-mediated TLR4 signaling 

(30). Interestingly, transfection of trophoblast cells with a miR-146a-3p inhibitor resulted 

in a significant reduction in aPL-induced trophoblast IL-8 secretion from 3.6 fold to 2.1 

fold, as compared to the miR scramble control (p<0.05) (Figure 4A). However, there was 

no significant effect of miR-146a-5p inhibition on aPL-induced trophoblast IL-8 secretion 

(Figure 4B).  

 

Figure 4. Inhibition of miR-146a-3p decreases aPL-mediated trophoblast IL-8 
secretion. Trophoblast cells (HTR8) were transfected with a miR scramble control and 
either (A) a miR-146a-3p inhibitor (α-miR-146a-3p; 100nM) (n=10), or (B) a miR-146a-
5p inhibitor (α-miR-146a-5p; 100nM) (n=4). Following transfection, cells were treated 
with or without aPL (20µg/mL). After 72h, cell-free supernatants were collected and 
measured for IL-8 secretion by ELISA. Data were analyzed by Student’s t-test and 
expressed as fold change (FC) relative to the untreated control; *p<0.05. 
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hypothesis suggesting that certain miRs may act in a non-classical fashion by binding 

and activating protein receptors. One protein receptor capable of binding small single-

stranded RNAs (ssRNA) like miRs is TLR8. TLR8 is an endosomal TLR expressed by 

both immune cells (107) and first trimester trophoblast (108), and is typically responsible 

for the detection of ssRNA derived from viruses such as influenza and human 

immunodeficiency virus (107). Similar to TLR4, TLR8 recruits MyD88 upon activation 

and initiates a signaling cascade carried by IRAK1 and TRAF6, ending in transcription of 

NF-κB dependent genes (35). Thus, TLR8 is capable of inducing robust inflammatory 

responses. Indeed, others have recently identified the ability of miR-21 and miR-29a to 

bind and activate TLR8, resulting in NF-κB induction (109). Moreover, let-7 has been 

associated with activation of TLR7, a predominantly murine RNA-sensing TLR closely 

related to human TLR8 (110). Given our observation that miR-146a-3p inhibition reduces 

trophoblast IL-8 in response to aPL, we postulated that aPL trigger this inflammatory 

response through the upregulation of miR-146a-3p and subsequent activation of TLR8 

within the same cells. To test this, we compared the IL-8 secretory responses of wildtype 

and TLR8-DN trophoblast cells to both aPL and exogenous miR-146a-3p. As shown in 

Figure 5A, treatment of wildtype trophoblast cells with aPL resulted in a 2.1 fold increase 

in IL-8 secretion (p<0.05) and this was significantly and almost completely inhibited by 

the presence of the TLR8-DN. Similarly, in the absence of aPL, transfection of wildtype 

trophoblast cells with the miR-146a-3p mimic resulted in a significant 1.6 fold increase in 

IL-8 secretion compared to the miR scramble control (p<0.05) (Figure 5B), and this 

response was completely eliminated in the presence of the TLR8-DN (Figure 5B). These 

results suggest that aPL may induce IL-8 secretion through miR-146a-3p-dependent 

activation of TLR8.   



 23 

	
   
Figure 5. aPL and miR-146a-3p induce trophoblast IL-8 secretion in a TLR8 
dependent manner. Wildtype and TLR8-dominant negative (TLR8-DN)-expressing 
trophoblast (HTR-8) were (A) treated with or without aPL (20µg/mL) (n=3); or (B) 
transfected with either a miR scramble control or miR-146a-3p precursor (200nM) 
(n=4). After 72h cell-free supernatants were measured for IL-8 by ELISA. Data were 
analyzed (A) by student’s t test and expressed as fold change (FC) compared to the 
untreated control *p<0.05; or (B) by ANOVA; *p<0.05 vs. the scramble control unless 
otherwise indicated. 

 
 

 
aPL-mediated inhibition of trophoblast migration is independent of miR-155 and 

miR-210 

aPL are known to reduce trophoblast migration (32), which is thought to contribute to the 

pathogenesis of APS (32,81). Indeed, recent studies by our group showed that aPL 

reduce trophoblast invasion and interactions with endothelial cells using a model of 

spiral artery transformation (111). Moreover, this aPL-mediated reduction in trophoblast 

migration is TLR4-independent (32). Recently, miR-155 and miR-210 have been shown 

to be dysregulated in placentae from pathologic pregnancies (112,113), and 

overexpression of trophoblast miR-155 and miR-210 reduces cell migration (89,96). 

Since we found that aPL upregulate expression of both miR-155 and miR-210 

independent of TLR4, we hypothesized that aPL may regulate trophoblast migration 

through these miRs. Thus, we investigated the effects of miR-155 and miR-210 inhibition 

on trophoblast migration in the presence of aPL using a two-chamber colorimetric 

migration assay. As previously reported (32), exposure to aPL significantly reduced 
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trophoblast migration by 70.0% (Figure 6A) and 60.0% (B) as compared to the untreated 

scramble control (p<0.05). However, transfection of specific inhibitors of miR-155 or 

miR-210 had no effect on this aPL-mediated inhibition of migration (Figure 6).  

 

 

Figure 6. aPL-inhibited trophoblast migration is independent of miR-155 and miR-
210 . Trophoblast cells  (HTR8) were transfected with a miR scramble control or either 
(A) a miR-155 inhibitor (α-miR-155; 100nM) (n=3), or (B) a miR-210 inhibitor (α-miR-
210; 100nM) (n=4). Cells were then placed in the upper chamber of a two chamber 
migration assay and were treated with either no treatment (NT) or aPL (20µg/mL). After 
48h in culture, migration across an 8µm pore was determined. Data are expressed as 
% migration normalized to the NT control, which was then set to 100%. *p<0.05 as 
determined by ANOVA. 

 

Vitamin D reduces aPL-induced trophoblast IL-8 secretion  

Since LMWH, the current therapy for pregnant APS patients, does not reduce the risk of 

late gestational complications, there remains a serious need for discovery of new 

therapeutic targets and treatments for obstetric APS. Vitamin D, an immunomodulatory 

hormone, has been implicated in the pathogenesis of APS and is commonly deficient in 

APS patients (73), and thus represents a possible candidate for treating or preventing 

APS. Therefore, in the translational arm of this study, we sought to examine the effects 

of vitamin D exposure on human first trimester trophoblast responses to aPL. As 

previously reported (30,45,46), exposure of HTR8 cells to aPL for 72h resulted in a 

significant increase in IL-8 and IL-1β secretion (Figure 7). The presence of vitamin D 

0 

20 

40 

60 

80 

100 

NT aPL 

%
 M

ig
ra

tio
n 

 

A Scramble 
α-miR-155 

0 

20 

40 

60 

80 

100 

NT aPL 
%

 M
ig

ra
tio

n 
 

B Scramble 
α-miR-210 

* 
* * 

* 



 25 

significantly reduced aPL-induced IL-8 secretion by 24.9 ± 4.6% (Figure 7A; p<0.05). In 

contrast, vitamin D had no significant effect on the ability of the aPL to upregulate 

trophoblast HTR8 secretion of IL-1β (Figure 7B). Neither vitamin D alone (Figure 7), nor 

the ethanol control (data not shown) had any effect on HTR8 IL-8 or IL-1β secretion. 

 

  

Figure 7. Effect of aPL and vitamin D on a trophoblast cell line secretion of IL-8 
and IL-1β. HTR8 trophoblast cells were incubated with no treatment (NT), active 
vitamin D (Vit D), aPL or both aPL + Vit D. Supernatants were measured for IL-8 and 
IL-1β by ELISA. *p<0.05 relative to the NT control unless otherwise indicated as 
determined by ANOVA. 

 

In previous studies we have found that the aPL, ID2, also modulates HTR8 angiogenic 

factor production. Specifically, ID2 increases HTR8 secretion of the pro-angiogenic 

factor PlGF and the anti-angiogenic factor sEndoglin, while either decreasing or having 

no effect on anti-angiogenic sFlt-1. This aPL (ID2) also had either no effect or a mild 

stimulatory impact on HTR8 secretion of the VEGF (44-46). As shown in Figure 8, the 

presence of vitamin D had no significant effect on the secretion of (A) sEndoglin, (B) 

sFlt-1, (C) PlGF or (D) VEGF in the presence of the aPL. Vitamin D did, however, 

significantly reduce basal HTR8 secretion of sFlt-1 by 26.7±7.8% (Figure 8B). 
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Figure 8. Effect of aPL and vitamin D on a trophoblast cell line secretion of 
angiogenic factors. HTR8 trophoblast cells were incubated with no treatment (NT), Vit 
D, aPL or aPL + Vit D. Supernatants were analyzed for the anti-angiogenic factors, 
sEndoglin and sFlt-1 and the pro-angiogenic factors, PlGF and VEGF by ELISA. 
*p<0.05 relative to the NT control as determined by ANOVA. 

 

Vitamin D inhibits trophoblast aPL-induced miR-146a-5p expression 
 
Vitamin D has recently been found to have numerous immunomodulatory effects, and 

the trophoblast express the vitamin D receptor and key enzymes required for activating 

and deactivating vitamin D (69). Since miR-146a-3p drives trophoblast IL-8 secretion in 

response to aPL (Figure 5), we postulated that vitamin D may inhibit trophoblast IL-8 

secretion through regulation of miR-146a-3p and miR-146a-5p. As shown in Figure 9A, 

vitamin D significantly reduced aPL-induced miR-146a-5p expression from 2.15 fold to 

1.23 fold (p<0.05). While a similar trend was observed with respect to miR-146a-3p, the 

effect of vitamin D did not reach significance. Vitamin D alone did not affect miR-146a-5p 

or miR-146a-3p expression (Figure 9).  
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Figure 9. Vitamin D reduces aPL-mediated miR-146a-5p expression. Trophoblast 
cells were treated with either no treatment (NT) or aPL (20µg/mL) in the presence or 
absence of Vitamin D (10nM). After 48h in culture, RNA was isolated and analyzed for 
(A) miR-146a-5p and (B) miR-146a-3p via qPCR using snU6 as an internal control. 
Data were analyzed by ANOVA and expressed as fold change (FC) compared to the 
NT control. n=4, p*<0.05. 

 

Vitamin D and LMWH inhibit aPL-induced inflammation in primary trophoblast 

cells 

While LMWH is the standard of care for pregnant APS patients, it has been shown to 

have both beneficial and deleterious effects on human trophoblast responses to aPL 

(44,46,58). Thus, we next sought to examine the effects of LMWH and vitamin D, alone 

or in combination, on aPL-mediated trophoblast responses. We previously reported that 

pravastatin exerts different effects on trophoblast responses to aPL when using either 

the HTR8 cell line or primary first trimester trophoblast cells (47). Based on this, and 

since we had only tested the effects of aPL in the presence of LMWH using the HTR8 

cell line (44,46,58), we moved to a primary human first trimester trophoblast culture 

system. As shown in Figure 10A, and consistent with previous reports, aPL significantly 

increased primary trophoblast IL-8 secretion (30). In contrast, in the presence of vitamin 

D and/or LMWH, aPL did not significantly increase IL-8 secretion when compared to the 
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no treatment (NT) control (Figure 10A). Furthermore, neither treatment alone or in 

combination significantly reduced IL-8 secretion compared to aPL alone (Figure 10A). 

Thus, combination of vitamin D and LMWH did appear to reduce aPL-induced IL-8 

secretion to near baseline levels (Figure 10A). The levels of IL-1β secreted from primary 

trophoblast cell in the presence of aPL were significantly reduced by LMWH and vitamin 

D both alone and in combination by 77.3±7.1%, 99.8±0.2% and 95.3±4.2%, respectively 

(Figure 10B). 

 

Figure 10. Effect of LMWH and Vitamin D on aPL-induced secretion of IL-8 and IL-
1β by primary trophoblast cells. Primary human first trimester trophoblast cells were 
incubated with no treatment (NT), aPL, or aPL with LMWH, Vit D, or a combination of 
LMWH + Vit D. Supernatants were analyzed for IL-8 and IL-1β by ELISA. *p<0.05 
relative to the NT control unless otherwise indicated, as determined by ANOVA. 

 

Vitamin D reduces LMWH-induced sFlt-1 release from primary first trimester 

trophoblast cells 

We next sought to evaluate the impact of LMWH and vitamin D, alone and in 

combination on primary trophoblast angiogenic factor production in the presence of aPL. 

Shown in Figure 11A aPL had no effect on sEndoglin secretion by primary trophoblast 

(44), and this was not altered by the presence of LMWH, vitamin D or both compounds. 

Similarly, aPL had no effect on VEGF secretion when compared to the NT control 
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(Figure 11D). However, aPL in the presence of vitamin D, either alone or in combination 

with LMWH, did significantly elevate VEGF secretion when compared to the NT control 

and when compared to cell treated with aPL and LMWH (Figure 11D). aPL significantly 

increased primary trophoblast PlGF secretion and this was not altered by LMWH or 

vitamin D (Figure 11C). Lastly, aPL in the presence of LMWH elevated sFlt-1 release by 

2.4±0.4 fold when compared to aPL alone, and this was significantly reduced to near 

baseline levels when vitamin D was also present (Figure 11B).  

 

 

Figure 11. Effect of LMWH and Vitamin D on aPL-induced modulation of 
angiogenic factors by primary trophoblast cells. Primary human first trimester 
trophoblast cells were incubated with no treatment (NT), aPL, or aPL with LMWH, Vit 
D, or a combination of LMWH + Vit D. Supernatants were analyzed for the anti-
angiogenic factors, sEndoglin and sFlt-1 and the pro-angiogenic factors, PlGF and 
VEGF by ELISA. *p<0.05 relative to the NT control unless otherwise indicated as 
determined by ANOVA. 
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DISCUSSION  
 
Women with obstetric APS are at increased risk of both early pregnancy loss and late 

gestational pregnancy complications such as preeclampsia and fetal growth restriction, 

in addition to the risk of vascular thrombosis (1,3). It is now well established from both 

clinical and experimental observations that these complications are caused by 

inflammatory processes and altered trophoblast function at the maternal-fetal interface 

(27-30,32,43,114). While the mechanisms underlying aPL-mediated trophoblast 

dysfunction have come to light in recent years, much remains unclear and current 

therapies remain unable to prevent dangerous complications related to APS. Therefore, 

further elucidation of the mechanisms by which aPL cause placental dysfunction is 

needed in order to develop therapeutic strategies to prevent both fetal and maternal 

complications of APS.  

 

Since aPL are present in the circulation before conception, it is likely that alteration of 

trophoblast function occurs at the earliest stages of pregnancy. For this reason, we 

focused our study on the effects of aPL on first trimester trophoblast, using both primary 

cultures and a human trophoblast cell line that has been well-characterized by our lab 

and others (30,44,115). The anti-β2GPI monoclonal antibodies (aPL) used in these 

studies have also been shown to behave similarly to patient-derived polyclonal IgG with 

anti-β2GPI activity (30,32,43,44), therefore providing a valid and robust experimental 

system in which to analyze both mechanism and function.  

 

It is now known that anti-β2GPI antibodies are capable of binding the trophoblast and 

inducing functional changes through TLR4 and their downstream signaling pathways 

(30). Classically, the end result of TLR activation is the production of inflammatory 

cytokines that function to recruit immune cells responsible for fighting infection (35). 
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Indeed, trophoblast cells have been shown to produce cytokine and chemokine 

responses capable of recruiting immune cells (116) and evidence of neutrophil infiltrate 

has been seen in APS miscarriage samples (27,116), as well as in a mouse model of 

aPL-induced pregnancy loss (29). Thus, it appears the trophoblast plays a key role in 

both placental innate immune-like responses and communication with the maternal 

immune system. Moreover, aberrant activation of the trophoblast may give rise to an 

altered immune microenvironment at the maternal-fetal interface, resulting in pregnancy 

complications. Since excessive inflammation can damage tissues, tight regulation of 

immune responses is critical to prevent infection, while maintaining placental and 

immune function that is capable of supporting pregnancy.  

 

Since their discovery, miRs have emerged as important regulators of gene expression. 

Indeed, individual miRs can target hundreds of genes, and many miRs that target TLR 

signaling elements have been discovered (82). Moreover, their dynamic, highly 

regulated nature makes them well suited to a level of control over the intensity, timing 

and duration of intracellular signaling that is required for mounting an immune response. 

It is now known that miRs both target and are induced by TLR signaling, and many miRs 

have been directly implicated in trophoblast function (89,96,112). To date, however, little 

is known about how exposure to aPL impacts miR expression and function, and no 

information exists as to whether miRs regulate responses to aPL in the trophoblast. 

Herein, we describe for the first time that aPL, through TLR4, induce the expression of 

trophoblast miR-146a-3p, which in turn drives IL-8 secretion through a novel, TLR8-

dependent mechanism. Notably, we add to a small, yet growing body of literature that 

supports the existence of biologically functional isomiRs.  
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Since aPL induce trophoblast inflammation through activation of the TLR4/MyD88 

signaling pathway (30), we began our studies by examining a small panel of miRs known 

to be involved in the regulation of TLR signaling. Indeed, we found that miR-146a-5p, 

miR-155, and miR-210 were all significantly upregulated by exposure to aPL. We also 

found that miR-146a-3p, the less abundant and thus understudied isomiR of miR-146a, 

was also upregulated in response to aPL. The response was specific to these miRs, as 

aPL did not significantly alter expression of miR-9 or let-7c. Furthermore, the most 

significant upregulation of these miRs occurred at the 48h time point. While this is late in 

comparison to miR responses in other systems, trophoblast responses to aPL are 

typically slow, with end function changes being seen at 72h (30,114). By treating 

trophoblast cells in the presence of aPL with the TLR4 competitive antagonist LPS-RS, 

we observed a significant partial inhibition of aPL-induced miR-146a-5p and miR-146a-

3p, suggesting that aPL-induced expression of both miR-146a isomiRs is TLR4-

mediated. Similar trends were observed with respect to miR-155 and miR-210, however 

these did not reach statistical significance. These observations are in keeping with 

current literature, with miR-146a-5p and miR-155 being two of the most commonly 

induced miRs by TLRs and also the best characterized (82,117).  Moreover, in other 

systems, induction of miR-146a-5p and miR-155 has been shown to be dependent on 

NF-κB activation, the final step in TLR4 signaling (117). In a landmark study, Taganov et 

al. were the first to describe TLR-induced miRs and showed that miR-146a-5p 

expression is regulated by NF-κB and induced by a number of TLR-stimulating microbial 

components such as Poly(I:C), LPS and peptidoglycans, as well as by pro-inflammatory 

cytokines (85). Importantly, through in silico and reporter gene studies, they illustrated 

that miR-146a-5p targets IRAK1 and TRAF6, two adapter proteins critical to TLR and 

cytokine signaling. Taken together, these data support a role for TLR-induced miRs as 

part of a feedback loop that controls TLR-dependent signaling.  
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In an effort to better understand the functional role of aPL-induced miR expression, we 

utilized a transfection system to introduce specific miR inhibitors and mimics into HTR8 

cells. Since miR-146a-5p and miR-146a-3p upregulation illustrated TLR4 dependence, 

we initially focused our functional studies on these miRs. End function changes were 

then analyzed by measurement of IL-8 secretion, a well-characterized product of TLR4 

signaling in response to aPL (30,32). With respect to miR-146a-5p, transfection of a 

specific inhibitor did not result in a change in aPL-induced IL-8 secretion, whereas the 

addition of a miR-146a-3p inhibitor resulted in a significant decrease in aPL-mediated IL-

8 secretion compared to the scramble control. Taken together, these experimental data 

suggest that miR-146a isomiRs are not functioning classically in the trophoblast in the 

context of aPL exposure, since the inhibition of miR-146a-5p would be expected to result 

in unrestrained TLR4 signaling activity and thus increased IL-8 secretion. An alternative 

explanation suggests that aPL-induced TLR4 activation exceeds the ability of 

endogenous miR-146a-5p to negatively regulate the pathway, such that further, 

experimental inhibition of miR-146a-5p activity is not detectable. However, the reduction 

in IL-8 secretion by miR-146a-3p inhibition provides strong evidence that miR-146a-3p is 

functionally active in the trophoblast as part of a pro-inflammatory mechanism, clearly 

distinct from the canonical role of miR-146a-5p in the negative feedback of TLR4 

signaling (85,118). It is well-known that miR expression and function can be highly 

tissue-specific (119), and recent data suggests that miRs, such as miR-155, and their 

respective isomiRs can have opposing effects on TLR-induced inflammation, with one 

isomiR promoting inflammatory signaling and the other dampening it (105). While miRs 

serving as positive regulatory molecules is a relatively novel concept, a number of 

groups have identified miRs that induce inflammation through a novel mechanism by 

binding to and activating TLRs themselves. First described by Fabbri et al., the 

endosomal, single-stranded RNA-sensing receptor TLR8 can bind miR-21 and miR-29a, 
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resulting in activation of inflammatory signaling (109). They illustrated for the first time 

that miRs can reach TLR-containing endosomes and associate with TLR8 in monocytes 

and dendritic cells, resulting in functional activation of the receptor (109).  

 

Thus, we decided to test the hypothesis that aPL-induced miR-146a-3p aberrantly 

activates TLR8 in the trophoblast. To accomplish this, we compared the IL-8 secretion of 

wildtype and TLR8-DN HTR8 cells treated with aPL or a miR-146a mimic. Indeed, our 

results demonstrate that both aPL-mediated and miR-146a-3p-mediated trophoblast IL-8 

secretion is dependent on TLR8, as the presence of the TLR8-DN (94) resulted in 

complete inhibition of the IL-8 response. This suggests that aPL may induce 

inflammation in the trophoblast by upregulating expression of miR-146a-3p through 

TLR4, which subsequently binds and activates TLR8, leading to increased secretion of 

IL-8. This finding is in keeping with recent studies reporting that miR-146a promotes 

TNFα and TGF-β1 production in endothelial cells (120), and that aPL-induced 

inflammation in monocytes is dependent on TLR8 (121). Furthermore, Printz et al. have 

shown that aPL-mediated induction of inflammatory cytokines in monocytes is 

dependent on RNAs, as introduction of RNAses into the culture medium abolishes all 

inflammatory effects of aPL (122). Interestingly, these reports also noted that aPL 

upregulates both expression of TLR8 as well as its translocation to the endosome, 

where it becomes functional. Indeed, this sensitization effect in combination with 

increased miR-146a-3p expression may synergistically facilitate miR-146a-3p-mediated 

TLR8 activation. Taken together, these results suggest a novel mechanism of aPL-

induced trophoblast inflammation, and further supports the concept that miRs may 

induce functional change through endogenous activation of ssRNA-sensing TLRs, like 

TLR8. To our knowledge, we demonstrate for the first time a functional role of the isomiR 
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miR-146a-3p, reinforcing the need to address both mature forms of a miR, regardless of 

abundance, when studying miRs in a physiological context.  

 

Since decidual invasion and migration are impaired in APS pregnancies (27), and aPL 

are known to reduce trophoblast migration independently of TLR4 (30), we sought to 

evaluate whether aPL-mediated regulation of TLR4-independent miRs were responsible 

for these effects. Since we demonstrated that miR-155 and miR-210 were upregulated in 

response to aPL independently of TLR4, and these miRs have been independently 

shown to negatively regulate trophoblast migration (95,96), we transfected trophoblast 

cells with inhibitors to miR-155 and miR-210 and observed the effects on migration in the 

context of aPL. In our study, there was no rescue of migration by inhibition of either miR-

155 or miR-210 alone (Figure 6) or in combination (data not shown), suggesting that aPL 

impair trophoblast migration independently of these miRs. However, work in HTR8 cells 

by another group has shown that miR-155 targets cyclin D1, a protein involved for 

controlling proliferation and migration (95). In their study, overexpression of miR-155 

resulted in decreased expression levels of cyclin D1 and an associated inhibition of 

migration. miR-210 has been shown by others to be upregulated by LPS and 

subsequently downregulate iron-sulfur cluster scaffold homologue, leading to decreased 

trophoblast invasion (123). Thus, while it remains plausible that miR-155 and miR-210 

play a role in regulating trophoblast migration and invasion, aPL-mediated inhibition of 

these functions likely occur through alternate mechanisms.  

 

Without treatment, women with APS are at high risk of pregnancy loss and late 

gestational obstetric complications, including preeclampsia. Despite conflicting data from 

clinical trials, pregnant women with APS are routinely treated with LMWH (51,54,124). 

While this therapy might be successful in maintaining a viable pregnancy, it does not 
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appear to reduce the risk of associated late gestational complications (22,23,48). 

Heparin therapy was introduced under the assumption that recurrent pregnancy loss in 

APS patients was due to thrombosis, however, it has become clear that aPL-associated 

adverse pregnancy outcomes are primarily pro-inflammatory rather than pro-thrombotic 

(27-30,125), and that heparin might be acting through mechanisms other than 

anticoagulation (30,46,52). Indeed, these extended actions of LMWH may even have 

detrimental effects by significantly increasing placental and circulating levels of sFlt-1 

(44,46,60-62), a potent anti-angiogenic factor that is elevated in preeclampsia (63) and 

promotes preeclamptic symptoms in animal models of pregnancy (64,126). Thus, there 

remains a need for the development and/or identification of therapeutics that can reduce 

both the recurrent pregnancy loss and the late gestational complications associated with 

APS, either alone or in combination with the current therapeutic approaches. 

 

Vitamin D, a steroid hormone now recognized for its immunomodulatory properties, has 

been shown to be deficient in APS patients compared to controls (73). Vitamin D 

deficiency may also be associated with adverse pregnancy outcomes such as 

preeclampsia and recurrent pregnancy loss (77-80). Indeed, the placenta is a major site 

for conversion of vitamin D into its active form, 1,25-Dihydroxyvitamin D3 (71). 

Furthermore, vitamin D has been directly implicated in the pathogenesis of APS by its 

ability to inhibit anti-β2GPI antibody-mediated tissue factor expression (73). Taken 

together, these data support a role for vitamin D in the treatment of pregnant APS 

patients. In the translational arm of this study, we show for the first time that active 

vitamin D is able to both regulate aPL-mediated inflammation and mitigate LMWH-

induced sFlt-1 release in human first trimester trophoblast.  
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For this part of the study, both the HTR8 trophoblast cell line and primary human first 

trimester trophoblast cultures were utilized. Previous work from our group has revealed a 

number of effects of aPL on human first trimester trophoblast function using both cellular 

models; in particular the increased secretion of the pro-inflammatory 

cytokines/chemokines, IL-8 and IL-1β; and altered angiogenic factor production (30,43-

47). Thus, we first sought to assess the effects of vitamin D alone on aPL-mediated 

trophoblast responses using HTR8 cells. Since we previously reported that pravastatin 

exerts different effects on trophoblast responses to aPL when using either the HTR8 cell 

line or primary trophoblast cells (47), we also investigated the impact of vitamin D both 

alone and in combination with LMWH on aPL-mediated effects using primary cultures. 

 

Indeed, we found that treatment of HTR8 cells with vitamin D alone attenuated aPL-

mediated IL-8 secretion. In the primary cultures, LMWH inhibited aPL-induced IL-1β 

secretion, confirming previous studies in the HTR8 cell line (46). Moreover, vitamin D 

either alone, or in combination with LMWH, completely inhibited the aPL-induced IL-1β 

response, while combination LMWH and vitamin D appeared to attenuate the IL-8 

response. This suggests that vitamin D both alone and in combination with LMWH may 

be acting to regulate aPL-induced inflammatory signals in the trophoblast. Studies in 

human lymphocytes and a melanoma cell line have demonstrated the ability of vitamin D 

to downregulate IL-8 release by repressing NF-κB signaling (127,128) and active vitamin 

D has been shown to suppress decidual natural killer cell cytokine production (129). 

Moreover, studies in mice have shown that vitamin D, through activation of the vitamin 

D-activating enzyme 1α-hydroxylase (CYP27B1), can reduce LPS-induced placental 

inflammation. This suggests that vitamin D can regulate TLR4-mediated inflammatory 

responses (71). Since aPL induce human trophoblast IL-8 and IL-1β production through 
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activation of the TLR4 signaling pathway (30,43), vitamin D may be acting to suppress 

trophoblast inflammation induced by aPL in this manner.  

 

It is also possible that vitamin D exerts its anti-inflammatory activity through the 

regulation of miRs. Indeed, the vitamin D receptor is regulated by miRs and vitamin D 

has been shown to alter miR expression in numerous cell types (130-132), although the 

effects of vitamin D on trophoblast miR expression have yet to be studied. Since aPL-

mediated miR-146a-3p expression promotes trophoblast IL-8 secretion, we postulated 

that vitamin D reduces the aPL-induced IL-8 response through downregulation of miR-

146a-3p. To that end, we investigated the effects of vitamin D on trophoblast expression 

of both miR-146a isomiRs, and found that treatment with vitamin D reduces aPL-induced 

miR-146a-5p expression. While a similar trend was observed, miR-146a-3p expression 

was not significantly inhibited by vitamin D. Thus, our results do not support the 

hypothesis that vitamin D decreases trophoblast inflammation through downregulation of 

miR-146a-3p. Rather, our data suggests that vitamin D may reduce aPL-mediated IL-8 

secretion and miR-146a-5p expression. Thus, vitamin D may inhibit TLR8 function and 

miR-146a-5p may have an as yet undetermined function in the trophoblast. Indeed, a 

recent study in monocytes showed that vitamin D suppresses TLR8-mediated IL-1β and 

TNFα expression in response to the TLR8 ligands, ssRNA and CL075 (133). While 

further study is warranted, these data provide further support for a role of vitamin D in 

regulating responses to aPL, and that vitamin D may have a direct impact on trophoblast 

TLR4 and TLR8 pathways.   

 

In addition to inflammatory factors, we also examined the ability of vitamin D to modulate 

aPL-mediated changes in angiogenic factor secretion. Proper placentation depends on 

appropriate vascular development and remodeling, which is controlled by both maternal- 
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and placental-derived angiogenic factors (134). These factors are tightly regulated in 

normal pregnancy, and thus aberrant expression of angiogenic factors may negatively 

impact placentation and subsequent pregnancy outcomes. Indeed, pro- and anti-

angiogenic factors are dysregulated in APS patients (135-137), as well as locally and 

systemically in pregnant women with preeclampsia (63,138-141). Furthermore, the 

combination of low vitamin D levels with sFlt-1/PlGF ratios has been shown to provide 

better prediction of severe preeclampsia than either marker alone (142). Herein, we 

show that aPL significantly upregulated secretion of sEndoglin and PlGF in the HTR8 

cell line, and PlGF in the primary trophoblast cells as previously reported (44), 

reinforcing the potential of aPL to dysregulate placental angiogenic factor secretion. 

While vitamin D did not have any overt impact on aPL-mediated modulation of 

angiogenic factors in the trophoblast cell line, we noted that it significantly reduced sFlt-1 

release.  

 

In order to assess the potential of vitamin D to be used as an adjuvant therapeutic for 

pregnant APS patients, we tested the effects of vitamin D both alone and in combination 

with standard of care treatment, LMWH, on primary trophoblast function in the presence 

of aPL. Again, vitamin D either alone or in combination with LMWH did not have any 

overt impact on aPL-mediated modulation of angiogenic factors in the primary 

trophoblast. However, vitamin D did appear to promote trophoblast VEGF secretion, and 

recent studies in endothelial progenitor cells have shown that vitamin D can promote 

VEGF expression (143). In this study, we reconfirmed previous findings that LMWH 

significantly promotes sFlt-1 release from the trophoblast (44,46), as well as from 

placental villus explants (60-62). Moreover, the presence of vitamin D significantly 

inhibited this LMWH-induced sFlt-1 release to near-baseline levels. Since studies have 

implicated sFlt-1 in the pathogenesis of preeclampsia (63,64,126), this finding supports 
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the potential of vitamin D to be used in addition to LMWH to help prevent negative 

effects of LMWH administration.  

 

The mechanism by which LWMH affects sFlt-1 release and how vitamin D regulates this 

process remains unclear. There is evidence that sFlt-1 is induced by EGFR1 pathway 

transactivation in endothelial cells (144), while others suggest that circulating sFlt-1 

levels are controlled by regulated release from extracellular stores (62). Thus, vitamin D 

may be counteracting the effects of LMWH through multiple mechanisms. One possible 

mechanism is through parallel antagonism of pro-angiogenic pathways, evidenced by 

the ability of vitamin D to upregulate VEGF production through vitamin D-mediated 

VEGF gene promotion (145). Alternatively, vitamin D may work through regulation of 

extracellular enzymes responsible for sFlt-1 release.  

 

Thus, our findings suggest a beneficial role for vitamin D supplementation in pregnant 

patients with APS, as its effects both alone and in combination with LMWH counteract 

the inflammatory effects of aPL on the trophoblast. While vitamin D alone reduces aPL-

mediated functional changes, the capacity to reduce LMWH-mediated sFlt-1 release is 

even more promising, given the direct implications of elevated sFlt-1 in the pathogenesis 

of preeclampsia. Altogether, this work supports further investigation into the role that 

vitamin D plays in both trophoblast function, and in the development and treatment of 

obstetric APS.  

 

The primary limitation affecting the generalizability of this study is the use of the HTR8 

trophoblast cell line and monoclonal anti-β2GPI antibodies, without support from primary 

cultures and/or patient-derived aPL. While the use of this experimental system provides 

a clean platform for functional analysis, the results cannot be readily applied to an in vivo 
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setting. It is now known that the immortalization technology used to produce the HTR8 

cell line can introduce mutations that may cause untoward, non-physiologic effects, 

calling into question data gained from experiments using these cells. However, our lab 

has directly compared the aPL-mediated responses between HTR8 cells and primary 

cultures in previous work, finding them to behave similarly (30,114). Thus, while 

experiments using an alternative first trimester trophoblast cell line, such as Sw.71 or 

3A, as well as primary cultures and patient-derived aPL would reinforce the data 

described here, we believe that our experimental system provides an excellent 

foundation for the study of signaling pathways in the trophoblast and that our findings 

warrant further study in more extensive explant or murine models of APS. Furthermore, 

while illustrated in other trophoblast cell lines (69), we recognize that the presence of the 

vitamin D receptor and associated activating enzymes in HTR8 cells has not yet been 

confirmed. While our observations suggest that the vitamin D machinery is functional 

within this cell line, confirmation of VDR and CYP27B1 expression as well as functional 

studies using either siRNA knockdown or dominant negative signaling elements will 

further strengthen our results. Another limitation to this work is the reliance on synthetic 

miR mimics and inhibitors to assess miR function. The commercial mimics and inhibitors 

used in this study are broadly used and provide excellent evidence of the functional roles 

of miRs in a given system, however it is difficult to establish the biological relevance of a 

miR in vivo as they are naturally highly dynamic regulators of expression and have the 

capacity to affect multiple targets within a single cell. Thus, while our data strongly 

suggests a functional role of miR-146a, further work is warranted in determining its exact 

relevance in the trophoblast and the development of APS.    

 

In summary, we present here new insights into the mechanisms by which aPL induce 

inflammation and altered function in the trophoblast, and also the ability of vitamin D to 
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partially reverse these negative effects. We also describe further evidence of a novel 

mechanism by which TLR8 is activated by an endogenous miR, miR-136a-3p, and that 

in our system this is induced by aPL. More broadly, we contribute to the growing 

literature on miR and isomiR function, especially within the trophoblast. This work 

provides the foundation for further study into the concept of miRs as ligands of TLRs and 

protein receptors, and the biochemical evaluation of how this process occurs, so that 

other miRs with similar functions may be discovered more efficiently through in silico 

analysis. Finally, this study provides insight into the pathophysiology of APS and further 

confirms the inflammatory and autoimmune nature of the disease. Imminent work from 

our lab will seek to examine miR-146a levels within the serum and placentae of patients 

with APS, which may serve both clinically as a potential diagnostic or prognostic 

biomarker for APS and associated gestational complications, as well as 

pathophysiologically, providing further implication of miR-146a in the development of 

APS. Indeed, miR-146a is only the first of many miRs to be involved in the 

pathophysiology of APS and the placenta, and future study into the function of miRs is 

bound to lead to a better understanding of APS, the immune system and human 

physiology.  

 

  



 43 

REFERENCES 
1. D'Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet 
2007;369:587-96. 
2. Giannakopoulos B, Passam F, Ioannou Y, Krilis SA. How we diagnose the 
antiphospholipid syndrome. Blood 2009;113:985-94. 
3. Valesini G, Alessandri C. New facet of antiphospholipid antibodies. Ann N Y 
Acad Sci 2005;1051:487-97. 
4. Galarza-Maldonado C, Kourilovitch MR, Perez-Fernandez OM, et al. Obstetric 
antiphospholipid syndrome. Autoimmun Rev 2012;11:288-95. 
5. Cervera R, Serrano R, Pons-Estel GJ, et al. Morbidity and mortality in the 
antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 
1000 patients. Ann Rheum Dis 2014;0:1-8. 
6. Gomez-Puerta JA, Cervera R. Diagnosis and classification of the 
antiphospholipid syndrome. J Autoimmun 2014;48-49:20-5. 
7. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on 
an update of the classification criteria for definite antiphospholipid syndrome (APS). 
Journal of thrombosis and haemostasis : JTH 2006;4:295-306. 
8. de Laat B, Mertens K, de Groot PG. Mechanisms of disease: antiphospholipid 
antibodies-from clinical association to pathologic mechanism. Nat Clin Pract Rheumatol 
2008;4:192-9. 
9. Di Simone N, Luigi MP, Marco D, et al. Pregnancies complicated with 
antiphospholipid syndrome: the pathogenic mechanism of antiphospholipid antibodies: a 
review of the literature. Ann N Y Acad Sci 2007;1108:505-14. 
10. Petri M. Epidemiology of the antiphospholipid antibody syndrome. J Autoimmun 
2000;15:145-51. 
11. Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid 
syndrome: understanding the antibodies. Nat Rev Rheumatol 2011;7:330-9. 
12. Oku K, Amengual O, Atsumi T. Pathophysiology of thrombosis and pregnancy 
morbidity in the antiphospholipid syndrome. European journal of clinical investigation 
2012;42:1126-35. 
13. Meroni PL, Raschi E, Grossi C, et al. Obstetric and vascular APS: same 
autoantibodies but different diseases? Lupus 2012;21:708-10. 
14. Robertson SA, Roberts CT, van Beijering E, et al. Effect of beta2-glycoprotein I 
null mutation on reproductive outcome and antiphospholipid antibody-mediated 
pregnancy pathology in mice. Mol Hum Reprod 2004;10:409-16. 
15. Blank M, Shoenfeld Y. Beta-2-glycoprotein-I, infections, antiphospholipid 
syndrome and therapeutic considerations. Clin Immunol 2004;112:190-9. 
16. Atsumi T, Amengual O, Yasuda S, Matsuura E, Koike T. Research around beta 
2-glycoprotein I: A major target for antiphospholipid antibodies. Autoimmunity 
2005;38:377-81. 
17. Pelkmans L, de Laat B. Antibodies against domain I of beta2-glycoprotein I: the 
one and only? Lupus 2012;21:769-72. 
18. Agar Ç, van Os GM, Mörgelin M, et al. β2-Glycoprotein I can exist in two 
conformations: implications for our understanding of the antiphospholipid syndrome. 
Blood 2010;116:1336-43. 
19. Chamley LW. Antiphospholipid antibodies: biological basis and prospects for 
treatment. J Reprod Immunol 2002;57:185-202. 
20. Di Simone N, Raschi E, Testoni C, et al. Pathogenic role of anti-beta 2-
glycoprotein I antibodies in antiphospholipid associated fetal loss: characterisation of 
beta 2-glycoprotein I binding to trophoblast cells and functional effects of anti-beta 2-
glycoprotein I antibodies in vitro. Ann Rheum Dis 2005;64:462-7. 



 44 

21. Chamley LW, Allen JL, Johnson PM. Synthesis of beta2 glycoprotein 1 by the 
human placenta. Placenta 1997;18:403-10. 
22. Backos M, Rai R, Baxter N, Chilcott IT, Cohen H, Regan L. Pregnancy 
complications in women with recurrent miscarriage associated with antiphospholipid 
antibodies treated with low dose aspirin and heparin. Br J Obstet Gynaecol 
1999;106:102-7. 
23. Branch DW, Khamashta MA. Antiphospholipid syndrome: obstetric diagnosis, 
management, and controversies. Obstet Gynecol 2003;101:1333-44. 
24. de Jesús GR, Rodrigues G, de Jesús NR, Levy RA. Pregnancy morbidity in 
antiphospholipid syndrome: what is the impact of treatment? Current rheumatology 
reports 2014;16:1-9. 
25. Sebire NJ, Fox H, Backos M, Rai R, Paterson C, Regan L. Defective 
endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-
associated early pregnancy failure. Hum Reprod 2002;17:1067-71. 
26. Bose P, Kadyrov M, Goldin R, et al. Aberrations of early trophoblast 
differentiation predispose to pregnancy failure: lessons from the anti-phospholipid 
syndrome. Placenta 2006;27:869-75. 
27. Van Horn JT, Craven C, Ward K, Branch DW, Silver RM. Histologic features of 
placentas and abortion specimens from women with antiphospholipid and 
antiphospholipid-like syndromes. Placenta 2004;25:642-8. 
28. Berman J, Girardi G, Salmon JE. TNF-alpha is a critical effector and a target for 
therapy in antiphospholipid antibody-induced pregnancy loss. J Immunol 2005;174:485-
90. 
29. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and 
neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 
2003;112:1644-54. 
30. Mulla MJ, Brosens JJ, Chamley LW, et al. Antiphospholipid antibodies induce a 
pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. 
Am J Reprod Immunol 2009;62:96-111. 
31. Redecha P, Tilley R, Tencati M, et al. Tissue factor: a link between C5a and 
neutrophil activation in antiphospholipid antibody–induced fetal injury. Blood 
2007;110:2423-31. 
32. Mulla MJ, Myrtolli K, Brosens JJ, et al. Antiphospholipid antibodies limit 
trophoblast migration by reducing IL-6 production and STAT3 activity. Am J Reprod 
Immunol 2010;63:339-48. 
33. Poulton K, Ripoll VM, Pericleous C, et al. Purified IgG from Patients with 
Obstetric but not IgG from Non-obstetric Antiphospholipid Syndrome Inhibit Trophoblast 
Invasion. Am J Reprod Immunol 2014:[Epub ahead of Print]. 
34. Raschi E, Testoni C, Bosisio D, et al. Role of the MyD88 transduction signaling 
pathway in endothelial activation by antiphospholipid antibodies. Blood 2003;101:3495-
500. 
35. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 
2003;300:1524-5. 
36. Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by 
antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood 2005;105:1964-9. 
37. Del Papa N, Guidali L, Sala A, et al. Endothelial cells as target for 
antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I 
antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and 
induce endothelial activation. Arthritis Rheum 1997;40:551-61. 



 45 

38. Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote 
leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via 
beta2GPI and apoER2. J Clin Invest 2011;121:120-31. 
39. Borghi MO, Raschi E, Grossi C, Chighizola CB, Meroni PL. Toll-like receptor 4 
and beta2 glycoprotein I interaction on endothelial cells. Lupus 2014;23:1302-4. 
40. Allen KL, Fonseca FV, Betapudi V, Willard B, Zhang J, McCrae KR. A novel 
pathway for human endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein 
I antibodies. Blood 2012;119:884-93. 
41. Sorice M, Longo A, Capozzi A, et al. Anti-beta2-glycoprotein I antibodies induce 
monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction 
pathways involving lipid rafts. Arthritis Rheum 2007;56:2687-97. 
42. Blank M, Krause I, Fridkin M, et al. Bacterial induction of autoantibodies to beta2-
glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin 
Invest 2002;109:797-804. 
43. Mulla MJ, Salmon JE, Chamley LW, et al. A role for uric acid and the Nalp3 
inflammasome in antiphospholipid antibody-induced IL-1beta production by human first 
trimester trophoblast. PLoS One 2013;8:e65237. 
44. Carroll TY, Mulla MJ, Han CS, et al. Modulation of trophoblast angiogenic factor 
secretion by antiphospholipid antibodies is not reversed by heparin. Am J Reprod 
Immunol 2011;66:286-96. 
45. Albert CR, Schlesinger WJ, Viall CA, et al. Effect of hydroxychloroquine on 
antiphospholipid antibody-induced changes in first trimester trophoblast function. Am J 
Reprod Immunol 2014;71:154-64. 
46. Han CS, Mulla MJ, Brosens JJ, et al. Aspirin and heparin effect on basal and 
antiphospholipid antibody modulation of trophoblast function. Obstet Gynecol 
2011;118:1021-8. 
47. Odiari EA, Mulla MJ, Sfakianaki AK, et al. Pravastatin does not prevent 
antiphospholipid antibody-mediated changes in human first trimester trophoblast 
function. Hum Reprod 2012;27:2933-40. 
48. de Jesus GR, Rodrigues G, de Jesus NR, Levy RA. Pregnancy morbidity in 
antiphospholipid syndrome: what is the impact of treatment? Curr Rheumatol Rep 
2014;16:403. 
49. Cohn DM, Goddijn M, Middeldorp S, Korevaar JC, Dawood F, Farquharson RG. 
Recurrent miscarriage and antiphospholipid antibodies: prognosis of subsequent 
pregnancy. J Thromb Haemost 2010;Aug 5. [Epub ahead of print]. 
50. Stephenson MD, Ballem PJ, Tsang P, et al. Treatment of antiphospholipid 
antibody syndrome (APS) in pregnancy: a randomized pilot trial comparing low 
molecular weight heparin to unfractionated heparin. J Obstet Gynaecol Can 
2004;26:729-34. 
51. Farquharson RG, Quenby S, Greaves M. Antiphospholipid syndrome in 
pregnancy: a randomized, controlled trial of treatment. Obstet Gynecol 2002;100:408-13. 
52. Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-
induced fetal loss by inhibiting complement activation. Nat Med 2004;10:1222-6. 
53. Inbar O, Blank M, Faden D, Tincani A, Lorber M, Shoenfeld Y. Prevention of fetal 
loss in experimental antiphospholipid syndrome by low-molecular-weight heparin. Am J 
Obstet Gynecol 1993;169:423-6. 
54. Laskin CA, Spitzer KA, Clark CA, et al. Low molecular weight heparin and aspirin 
for recurrent pregnancy loss: results from the randomized, controlled HepASA Trial. J 
Rheumatol 2009;36:279-87. 
55. Di Simone N, Caliandro D, Castellani R, Ferrazzani S, De Carolis S, Caruso A. 
Low-molecular weight heparin restores in-vitro trophoblast invasiveness and 



 46 

differentiation in presence of immunoglobulin G fractions obtained from patients with 
antiphospholipid syndrome. Hum Reprod 1999;14:489-95. 
56. Di Simone N, Ferrazzani S, Castellani R, De Carolis S, Mancuso S, Caruso A. 
Heparin and low-dose aspirin restore placental human chorionic gonadotrophin secretion 
abolished by antiphospholipid antibody-containing sera. Hum Reprod 1997;12:2061-5. 
57. Bose P, Black S, Kadyrov M, et al. Heparin and aspirin attenuate placental 
apoptosis in vitro: implications for early pregnancy failure. Am J Obstet Gynecol 
2005;192:23-30. 
58. Mulla MJ, Myrtolli K, Brosens JJ, et al. Antiphospholipid Antibodies Limit 
Trophoblast Migration by Reducing IL-6 Production and STAT3 Activity. Am J Reprod 
Immunol 2010;63:339-48. 
59. Han CS, Mulla MJ, Brosens JJ, et al. Effects of Aspirin and Heparin on Basal and 
Antiphospholipid Antibody-Mediated Modulation of First-Trimester Trophoblast Function. 
Under Review. 
60. Drewlo S, Levytska K, Sobel M, Baczyk D, Lye SJ, Kingdom JC. Heparin 
promotes soluble VEGF receptor expression in human placental villi to impair endothelial 
VEGF signaling. J Thromb Haemost 2011;9:2486-97. 
61. Rosenberg VA, Buhimschi IA, Lockwood CJ, et al. Heparin elevates circulating 
soluble fms-like tyrosine kinase-1 immunoreactivity in pregnant women receiving 
anticoagulation therapy. Circulation 2011;124:2543-53. 
62. Sela S, Natanson-Yaron S, Zcharia E, Vlodavsky I, Yagel S, Keshet E. Local 
retention versus systemic release of soluble VEGF receptor-1 are mediated by heparin-
binding and regulated by heparanase. Circ Res 2011;108:1063-70. 
63. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine 
kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria 
in preeclampsia. J Clin Invest 2003;111:649-58. 
64. Karumanchi SA, Stillman IE. In vivo rat model of preeclampsia. Methods Mol 
Med 2006;122:393-9. 
65. Schauber J, Dorschner RA, Coda AB, et al. Injury enhances TLR2 function and 
antimicrobial peptide expression through a vitamin D–dependent mechanism. Journal of 
Clinical Investigation 2007;117:803. 
66. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia 
in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-
dihydroxyvitamin D. N Engl J Med 1981;305:440-3. 
67. Adams JS, Gacad MA. Characterization of 1 alpha-hydroxylation of vitamin D3 
sterols by cultured alveolar macrophages from patients with sarcoidosis. J Exp Med 
1985;161:755-65. 
68. White JH. Vitamin D signaling, infectious diseases, and regulation of innate 
immunity. Infect Immun 2008;76:3837-43. 
69. Liu N, Kaplan AT, Low J, et al. Vitamin D induces innate antibacterial responses 
in human trophoblasts via an intracrine pathway. Biol Reprod 2009;80:398-406. 
70. Pospechova K, Rozehnal V, Stejskalova L, et al. Expression and activity of 
vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell 
lines. Molecular and cellular endocrinology 2009;299:178-87. 
71. Liu NQ, Kaplan AT, Lagishetty V, et al. Vitamin D and the regulation of placental 
inflammation. J Immunol 2011;186:5968-74. 
72. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α, 25-
Dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the 
development of Th2 cells. The Journal of Immunology 2001;167:4974-80. 



 47 

73. Agmon-Levin N, Blank M, Zandman-Goddard G, et al. Vitamin D: an instrumental 
factor in the anti-phospholipid syndrome by inhibition of tissue factor expression. Ann 
Rheum Dis 2011;70:145-50. 
74. Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune 
regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone 
Miner Res 2006;21:37-47. 
75. Andreoli L, Piantoni S, Dall'Ara F, Allegri F, Meroni PL, Tincani A. Vitamin D and 
antiphospholipid syndrome. Lupus 2012;21:736-40. 
76. Mok CC. Vitamin D and systemic lupus erythematosus: an update. Expert review 
of clinical immunology 2013;9:453-63. 
77. Aghajafari F, Nagulesapillai T, Ronksley PE, Tough SC, O'Beirne M, Rabi DM. 
Association between maternal serum 25-hydroxyvitamin D level and pregnancy and 
neonatal outcomes: systematic review and meta-analysis of observational studies. Bmj 
2013;346:f1169. 
78. Tabesh M, Salehi-Abargouei A, Tabesh M, Esmaillzadeh A. Maternal vitamin D 
status and risk of pre-eclampsia: a systematic review and meta-analysis. J Clin 
Endocrinol Metab 2013;98:3165-73. 
79. Wei SQ, Qi HP, Luo ZC, Fraser WD. Maternal vitamin D status and adverse 
pregnancy outcomes: a systematic review and meta-analysis. J Matern Fetal Neonatal 
Med 2013;26:889-99. 
80. Ota K, Dambaeva S, Han AR, Beaman K, Gilman-Sachs A, Kwak-Kim J. Vitamin 
D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular 
immunity and autoimmunity. Hum Reprod 2014;29:208-19. 
81. Abrahams VM. Mechanisms of antiphospholipid antibody-associated pregnancy 
complications. Thromb Res 2009;124:521-5. 
82. O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like 
receptor signalling. Nature reviews Immunology 2011;11:163-75. 
83. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs 
predominantly act to decrease target mRNA levels. Nature 2010;466:835-40. 
84. Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 
in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings 
of the National Academy of Sciences of the United States of America 2009;106:5282-7. 
85. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent 
induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate 
immune responses. Proceedings of the National Academy of Sciences of the United 
States of America 2006;103:12481-6. 
86. Tang B, Xiao B, Liu Z, et al. Identification of MyD88 as a novel target of miR-155, 
involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS letters 
2010;584:1481-6. 
87. Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of Argonaute2 
and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum 
Reprod 2007;13:273-9. 
88. Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are 
expressed differentially in the human placentas of patients with preeclampsia. Am J 
Obstet Gynecol 2007;196:261 e1-6. 
89. Dai YM, Diao ZY, Sun HX, Li RT, Qiu ZH, Hu YL. MicroRNA-155 is involved in 
the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by 
lipopolysaccharides. Human Reproduction 2011;26:1882-91. 
90. Wang G, Tam LS, Li EK, et al. Serum and urinary cell-free MiR-146a and MiR-
155 in patients with systemic lupus erythematosus. J Rheumatol 2010;37:2516-22. 



 48 

91. Chamley LW, Konarkowska B, Duncalf AM, Mitchell MD, Johnson PM. Is 
interleukin-3 important in antiphospholipid antibody-mediated pregnancy failure? Fertil 
Steril 2001;76:700-6. 
92. Chamley LW, Duncalf AM, Konarkowska B, Mitchell MD, Johnson PM. 
Conformationally altered beta 2-glycoprotein I is the antigen for anti-cardiolipin 
autoantibodies. Clin Exp Immunol 1999;115:571-6. 
93. Graham CH, Hawley TS, Hawley RG, et al. Establishment and characterization 
of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 
1993;206:204-11. 
94. Potter JA, Garg M, Girard S, Abrahams VM. Viral single stranded RNA induces a 
trophoblast pro-inflammatory and antiviral response in a TLR8-dependent and -
independent manner. Biol Reprod 2015;92:17. 
95. Dai Y, Qiu Z, Diao Z, et al. MicroRNA-155 inhibits proliferation and migration of 
human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin 
D1. Placenta 2012;33:824-9. 
96. Anton L, Olarerin-George AO, Schwartz N, et al. miR-210 inhibits trophoblast 
invasion and is a serum biomarker for preeclampsia. The American journal of pathology 
2013;183:1437-45. 
97. Garg M, Potter JA, Abrahams VM. Identification of microRNAs That Regulate 
TLR2-Mediated Trophoblast Apoptosis and Inhibition of IL-6 mRNA. Plos One 
2013;8:e77249. 
98. Kopriva SE, Chiasson VL, Mitchell BM, Chatterjee P. TLR3-induced placental 
miR-210 down-regulates the STAT6/interleukin-4 pathway. PLoS One 2013;8:e67760. 
99. Okamura K, Phillips MD, Tyler DM, Duan H, Chou Y-t, Lai EC. The regulatory 
activity of microRNA* species has substantial influence on microRNA and 3′ UTR 
evolution. Nature structural & molecular biology 2008;15:354-63. 
100. Elton TS, Sansom SE, Martin MM. Cardiovascular Disease, Single Nucleotide 
Polymorphisms; and the Renin Angiotensin System: Is There a MicroRNA Connection? 
Int J Hypertens 2010;2010. 
101. Cloonan N, Wani S, Xu QY, et al. MicroRNAs and their isomiRs function 
cooperatively to target common biological pathways. Genome Biology 2011;12:R126. 
102. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M. Multiple control of 
interleukin-8 gene expression. J Leukoc Biol 2002;72:847-55. 
103. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase 
II. EMBO J 2004;23:4051-60. 
104. Jazdzewski K, Liyanarachchi S, Swierniak M, et al. Polymorphic mature 
microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. 
Proceedings of the National Academy of Sciences of the United States of America 
2009;106:1502-5. 
105. Zhou H, Huang X, Cui H, et al. miR-155 and its star-form partner miR-155* 
cooperatively regulate type I interferon production by human plasmacytoid dendritic 
cells. Blood 2010;116:5885-94. 
106. Eiring AM, Harb JG, Neviani P, et al. miR-328 Functions as an RNA Decoy to 
Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell 
2010;140:652-65. 
107. Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-
stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526-9. 
108. Aldo PB, Mulla MJ, Romero R, Mor G, Abrahams VM. Viral ssRNA induces first 
trimester trophoblast apoptosis through an inflammatory mechanism. Am J Reprod 
Immunol 2010;64:27-37. 



 49 

109. Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to 
induce prometastatic inflammatory response. Proceedings of the National Academy of 
Sciences of the United States of America 2012;109:E2110-6. 
110. Lehmann SM, Rosenberger K, Kruger C, et al. Extracellularly delivered single-
stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol 
2012;189:1448-58. 
111. Alvarez AM, Mulla MJ, Chamley LW, Cadavid AP, Abrahams VM. Aspirin‐
triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast 
migration and endothelial interactions. Arthritis & Rheumatology 2014. 
112. Zhang Y, Diao Z, Su L, et al. MicroRNA-155 contributes to preeclampsia by 
down-regulating CYR61. Am J Obstet Gynecol 2010;202:466 e1-7. 
113. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression profile of 
microRNAs and mRNAs in human placentas from pregnancies complicated by 
preeclampsia and preterm labor. Reprod Sci 2011;18:46-56. 
114. Carroll TY, Mulla MJ, Han CS, et al. Modulation Of Human Trophoblast 
Angiogenic Factor Secretion By Antiphospholipid Antibodies Is Not Reversed By 
Heparin. Am J Reprod Immunol 2011;66:286. 
115. Jovanovic M, Bozic M, Kovacevic T, Radojcic L, Petronijevic M, Vicovac L. 
Effects of anti-phospholipid antibodies on a human trophoblast cell line (HTR-8/SVneo). 
Acta Histochem 2010;112:34-41. 
116. Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G. A role for TLRs in 
the regulation of immune cell migration by first trimester trophoblast cells. J Immunol 
2005;175:8096-104. 
117. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host 
gene in physiological and pathological processes. Gene 2013;532:1-12. 
118. Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA. Role of 
miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc 
Trans 2008;36:1211-5. 
119. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA 
biogenesis, function and decay. Nat Rev Genet 2010;11:597-610. 
120. Huang Y, Liu Y, Li L, et al. Involvement of inflammation-related miR-155 and 
miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC 
Nephrol 2014;15:142. 
121. Doring Y, Hurst J, Lorenz M, et al. Human antiphospholipid antibodies induce 
TNFalpha in monocytes via Toll-like receptor 8. Immunobiology 2010;215:230-41. 
122. Prinz N, Clemens N, Strand D, et al. Antiphospholipid antibodies induce 
translocation of TLR7 and TLR8 to the endosome in human monocytes and 
plasmacytoid dendritic cells. Blood 2011;118:2322-32. 
123. Lee DC, Romero R, Kim JS, et al. miR-210 Targets Iron-Sulfur Cluster Scaffold 
Homologue in Human Trophoblast Cell Lines Siderosis of Interstitial Trophoblasts as a 
Novel Pathology of Preterm Preeclampsia and Small-for-Gestational-Age Pregnancies. 
American Journal of Pathology 2011;179:590-602. 
124. Empson M, Lassere M, Craig JC, Scott JR. Recurrent pregnancy loss with 
antiphospholipid antibody: a systematic review of therapeutic trials. Obstet Gynecol 
2002;99:135-44. 
125. Redecha P, Tilley R, Tencati M, et al. Tissue factor: a link between C5a and 
neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 
2007;110:2423-31. 
126. Lu F, Longo M, Tamayo E, et al. The effect of over-expression of sFlt-1 on blood 
pressure and the occurrence of other manifestations of preeclampsia in unrestrained 
conscious pregnant mice. Am J Obstet Gynecol 2007;196:396 e1-7; discussion  e7. 



 50 

127. Harant H, Andrew PJ, Reddy GS, Foglar E, Lindley IJ. 1alpha,25-
dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress 
nuclear-factor-kappaB-mediated interleukin-8 gene expression. Eur J Biochem 
1997;250:63-71. 
128. Yu XP, Bellido T, Manolagas SC. Down-regulation of NF-kappa B protein levels 
in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A 
1995;92:10990-4. 
129. Evans KN, Nguyen L, Chan J, et al. Effects of 25-hydroxyvitamin D3 and 1,25-
dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 
2006;75:816-22. 
130. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates 
human vitamin D receptor. International journal of cancer Journal international du cancer 
2009;125:1328-33. 
131. Liu PT, Wheelwright M, Teles R, et al. MicroRNA-21 targets the vitamin D-
dependent antimicrobial pathway in leprosy. Nature medicine 2012;18:267-73. 
132. Alvarez-Diaz S, Valle N, Ferrer-Mayorga G, et al. MicroRNA-22 is induced by 
vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory 
effects in colon cancer cells. Human molecular genetics 2012;21:2157-65. 
133. Li B, Baylink DJ, Deb C, et al. 1,25-Dihydroxyvitamin D3 suppresses TLR8 
expression and TLR8-mediated inflammatory responses in monocytes in vitro and 
experimental autoimmune encephalomyelitis in vivo. PLoS One 2013;8:e58808. 
134. Torry DS, Leavenworth J, Chang M, et al. Angiogenesis in implantation. Journal 
of assisted reproduction and genetics 2007;24:303-15. 
135. Cuadrado MJ, Buendia P, Velasco F, et al. Vascular endothelial growth factor 
expression in monocytes from patients with primary antiphospholipid syndrome. J 
Thromb Haemost 2006;4:2461-9. 
136. Williams FM, Parmar K, Hughes GR, Hunt BJ. Systemic endothelial cell markers 
in primary antiphospholipid syndrome. Thromb Haemost 2000;84:742-6. 
137. Smadja D, Gaussem P, Roncal C, Fischer AM, Emmerich J, Darnige L. Arterial 
and venous thrombosis is associated with different angiogenic cytokine patterns in 
patients with antiphospholipid syndrome. Lupus 2010;19:837-43. 
138. Hladunewich M, Karumanchi SA, Lafayette R. Pathophysiology of the clinical 
manifestations of preeclampsia. Clin J Am Soc Nephrol 2007;2:543-9. 
139. Vaisbuch E, Whitty JE, Hassan SS, et al. Circulating angiogenic and 
antiangiogenic factors in women with eclampsia. Am J Obstet Gynecol 2011;204:152 e1-
9. 
140. Tsatsaris V, Goffin F, Munaut C, et al. Overexpression of the soluble vascular 
endothelial growth factor receptor in preeclamptic patients: pathophysiological 
consequences. J Clin Endocrinol Metab 2003;88:5555-63. 
141. Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the 
pathogenesis of preeclampsia. Nat Med 2006;12:642-9. 
142. Woodham PC, Brittain JE, Baker AM, et al. Midgestation maternal serum 25-
hydroxyvitamin D level and soluble fms-like tyrosine kinase 1/placental growth factor 
ratio as predictors of severe preeclampsia. Hypertension 2011;58:1120-5. 
143. Grundmann M, Haidar M, Placzko S, et al. Vitamin D improves the angiogenic 
properties of endothelial progenitor cells. American journal of physiology Cell physiology 
2012;303:C954-62. 
144. Al-Ani B, Hewett PW, Cudmore MJ, et al. Activation of proteinase-activated 
receptor 2 stimulates soluble vascular endothelial growth factor receptor 1 release via 
epidermal growth factor receptor transactivation in endothelial cells. Hypertension 
2010;55:689-97. 



 51 

145. Cardus A, Panizo S, Encinas M, et al. 1,25-dihydroxyvitamin D3 regulates VEGF 
production through a vitamin D response element in the VEGF promoter. Atherosclerosis 
2009;204:85-9. 
 


	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	January 2015

	Novel Mechanisms Of Trophoblast Responses To Antiphospholipid Antibodies And Therapeutics In Obstetric Antiphospholipid Syndrome
	Stefan Mathias Gysler
	Recommended Citation


	Microsoft Word - GyslerThesis Final Draft-ref2.docx

