
1

Hardware Penetration Testing
Knocks Your SoCs Off

Mark Fischer, Fabian Langer, Johannes Mono, Clemens Nasenberg, Nils Albartus
Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany

{first.last@rub.de}

Abstract—Today’s society depends on interconnected electronic devices, which handle various sensitive information. Due to the
knowledge needed to develop these devices and the economic advantage of reusable solutions, most of these systems contain
Third-Party Intellectual Property (3PIP) cores that might not be trustworthy. If one of these 3PIP cores is vulnerable, the security of the
entire device is potentially affected. As a result, sensitive data that is processed by the device can be leaked to an attacker.
Competitions like Hack@DAC serve as a playground to develop and examine novel approaches and computer-aided tools that identify
security vulnerabilities in System-on-Chip (SoC) Register-Transfer-Level (RTL) designs. In this paper, we present a successful divide
and conquer approach to test SoC security which is illustrated by exemplary RTL vulnerabilities in the competition’s SoC design.
Additionally, we craft real-world software attacks that exploit these vulnerabilities.

Index Terms—Hack@DAC 2019, Hardware Penetration Testing, RTL Bugs, SoC Design, Hardware Security, RISC-V CPU

F

1 INTRODUCTION

E LECTRONIC DEVICES are ubiquitous today and build the
foundation of our interconnected world. They process

sensitive information and are therefore a highly valuable
target for attackers. Thus, securing these devices is an
important challenge for researchers as well as for other
stakeholders such as the electronics industry.

Recently found security flaws such as Spectre and Melt-
down highlight the severe consequences security bugs in
hardware can have, especially considering the lifetime of
hardware. Implementing these protective measures can be
a challenging task: Third-Party Intellectual Property (3PIP)
cores are used that might not be correctly verified in terms of
security as current verification methods mostly focus on the
functionality of the design. As a consequence, security ver-
ification methods are a very relevant and ongoing research
topic. A framework for security verification was proposed
by Wang et al. [1] in 2012. They combined formal and
functional security verification in order to improve the de-
tection rate of security issues. In a different approach, Zhang
et al. [2] extended Verilog with security-focused language
constructs to aid developers in creating more secure designs.
Ferraiuolo et al. [3] enhanced this approach and were able
to verify a complex ARM Trustzone implementation.

To encourage further SoC security research Hack@DAC
is a hardware Capture The Flag (CTF) competition dur-
ing which teams are investigating System-on-Chip (SoC)
designs to find security vulnerabilities. We participated in
the Hack@DAC 2019 competition. In this paper, we present
our methods as well as our thoughts on the current state of
hardware security.

This paper is structured as follows: Section 2 intro-
duces the reader to hardware security in general, the
Hack@DAC 2019 competition and the Ariane SoC. In Sec-
tion 3, we explain our approach, which divides the de-
sign into different domains: system architecture, Intellectual
Property (IP) core architecture & implementation, and Cen-

tral Processing Unit (CPU). For each domain, we provide
examples of security vulnerabilities discovered during the
competition. Finally, in Section 4, we discuss techniques
to prevent bugs for each domain and conclude with a
summary of the approach’s effectiveness and our learnings
and takeaways from the competition.

2 BACKGROUND

This section establishes testing concepts and puts them into
context for SoC security testing. Afterward, we introduce
the Hack@DAC 2019 competition and utilized hardware
setups as well as tools.

2.1 General Approaches for Testing Hardware Security

In general, there are three models to investigate the security
of an underlying system: black box, white box and grey box
testing.

In black box testing, test cases are derived from the spec-
ification. Testing the system is mostly limited to providing
a set of inputs and comparing the output of the system to
a known good result. As a consequence, it is possible that
the system is working correctly in the given test scenario
but still has untested functionality in its internals due to
insufficient test coverage [4].

In white box testing, the internal functioning of the sys-
tem is checked. This includes thorough testing and analysis
of the internal logic of the system, in particular harder to
prove properties. One white box technique used is manual
code inspection [4]. It is an effective, reading-based mech-
anism for detecting flaws in the source code. The main
idea is that a trained professional is the most powerful
bug detector because determining whether source code
contains imperfections or not is in general not decidable by
a machine [5]. However, this professional needs in-depth

2

knowledge of the system which is inspected. Therefore,
manual code inspection is not scalable for complex systems.

The combination of white and black box testing is known
as grey box testing. One example of grey box testing is
formal verification which is a method to prove correctness
or falsity of a system by mathematically analyzing the space
of possible behaviors. The system’s intended behavior is
defined by a formal specification but also incorporates im-
plementation details of the internal functioning. Correctness
or falsity is proved with the aid of formal mathematical
methods. A prevalent tool used for the formal verification
of hardware designs is Coq. Coupet-Grimal et al. [6] present
a use case for the verification of a left-to-right comparator.
The authors demonstrate how to define specifications, how
to perform the proof of correctness and how to synthesize
a certified circuit from its specification. Even though formal
verification is a powerful technique the verification of large
SoCs is an extensive task and requires significant computa-
tional resources, therefore rendering it practically infeasible
for many designs.

2.2 Hack@DAC 2019
Within the Hack@DAC 2019 hardware CTF competition1,
teams of researchers identify hardware bugs in real-world
open-source SoC Register-Transfer-Level (RTL) designs. The
provided SoC designs have been modified by the organizers
in a collaboration with industry partners, who injected bugs
and added security features for this competition. A variety
of these modifications is shown in a case study presenting
the results for Hack@DAC 2018 [7].

The competition consisted of two phases, an alpha phase
that served as a qualification round, and the final beta phase.
Both phases featured a RISC-V Ariane SoC design, which is
provided as Verilog code.

Teams score by submitting reports on security bugs,
which allow to bypass security features or to compromise
protected SoC assets. Points are awarded based on different
factors, such as a correct test description and a correct
mitigation proposal.

For this purpose, the participants took the role of differ-
ent adversaries who:

• Execute software with user-level privileges to esca-
late the privilege-level by exploiting a bug.

• Possess the device and are therefore able to tamper
with it.

• Are authorized to debug the production device.

2.2.1 Ariane Core / SoC
The Hack@DAC organizers provided two different setups,
one for the alpha phase and one for the beta phase.

The SoC of the alpha phase (Fig. 1) consists of a modified
Ariane CPU and connected peripherals. The Ariane CPU is
a Linux-capable 64-bit core and has 3 different privilege lev-
els: user, supervisor and machine level. It utilizes a 6-stage
pipeline and implements the 64-bit RISC-V instruction set.
Furthermore, branch prediction with speculative execution
is used. The peripherals represent Third-Party Intellectual
Property (3PIP) cores and are connected via an Advanced

1. https://hack-dac19.trust-sysec.com

SPI JTAG Boot ROM AES

AXI 2 APBAXI 2 MemDebugSIZE Conv

AXI 4 - Crossbar

AXI 2 APB

PLICUART

AXI 2 APB

Ariane

I$ D$

CLINT

RTC

timer interruptexternal interrupt

Fig. 1. Alpha phase SoC setup of the Hack@DAC competition.

Extensible Interface (AXI) 4 crossbar. The Advanced En-
cryption Standard (AES) crypto module is implemented
in Counter (CTR)-mode. For each encryption, the initial
vector is calculated through a nonce and a counter variable,
which increases after every encryption. The Joint Test Action
Group (JTAG) interface provides opportunities for debug-
ging and emulation. The Core Local Interrupt Controller
(CLINT) and Platform Level Interrupt Controller (PLIC)
modules handle the system’s interrupts. CLINT deals with
local interrupts, while PLIC manages the global interrupts.
Finally, there is a Serial Peripheral Interface (SPI) module
used for small peripherals and a Universal Asynchronous
Receiver/Transmitter (UART) module used for serial com-
munication.

Access to the IP cores over the bus is protected with
access control. The access control configuration bits, as well
as the JTAG and AES key, are stored in a secure Read-Only
Memory (ROM) which itself is connected to the bus.

The SoC of the beta phase is also based on the Ariane
core. Additionally to the peripherals of the alpha SoC, a
Secure Hash Algorithm (SHA) module performing crypto-
graphic hash functions and a Direct Memory Access (DMA)
module offering faster data throughput over the AXI bus
system have been added.

2.2.2 Tooling
During both phases, the teams are free to use tools and
techniques of their choice. However, the teams are advised
to use a Hardware Description Language (HDL) simulation
environment, because it is more accessible than formal veri-
fication.

Within the simulation environment, the participants de-
velop C code to test the features of the SoC design and to
exploit vulnerabilities.

The SoC was provided in the form of HDL sources and
the environment supplied a ready-to-run testbench. This
environment was prepared to be executed in the QuestaSim
cycle-accurate simulator environment from Mentor Graph-
ics. This enabled us to directly inspect logic transitions in
suspicious regions. By compiling software tests, we could
inspect the resulting effects in the digital logic. For every
instruction, the complete SoC is simulated, which facilitated
the investigation of propagating signals. On the downside,
the simulation is computationally expensive and needs a
long time to execute even simple software.

https://hack-dac19.trust-sysec.com

3

For faster execution of exploiting code, the open-source
tool Verilator can be used. Verilator compiles synthesizable
Verilog code into a C++\SystemC model to gain a speed
advantage compared to other cycle-accurate simulators. A
C++ wrapper, instantiating the top module of the design and
defining the testbench, is linked with the converted Verilog
files. The resulting executable performs the simulation.

For all developed exploits, the code had first to be
compiled in order to be simulated on the SoC. Therefore, the
RISC-V C and C++ cross-compilers are provided generating
a RISC-V compatible Executable and Linkable Format (ELF)
file from C or C++ code. Subsequently, the resulting ELF
file can be committed to the simulation environment which
runs the code on the provided SoC.

Spike, an Instruction Set Architecture (ISA) simulator,
can be used to provide simulation of the compiled C code. It
uses an underlying model of the RISC-V specification to run
assembler directly in the software and thus is faster than
cycle-accurate simulation. Although Spike cannot be used
directly to find bugs in the SoC but quickly testing software
execution greatly reduced exploitation development time.

Besides simulation, other techniques are conceivable.
One example is to emulate the SoC design on a supported
Field Programmable Gate Array (FPGA) with the advantage
of running code much faster than in the simulation environ-
ment. For well-defined tests, this helps to drastically reduce
the time to run test cases, but it complicates the investigation
of the cause as probing many signals of an FPGA with logic
analyzers is resource-intensive. However, such an FPGA is
not provided during the competition.

3 REAL-WORLD EXAMPLES

This chapter introduces our bug detection approach by
presenting different kinds of real-world vulnerabilities
which are placed in the competition’s SoC design.

Our general approach is based on the principle of divide
and conquer. Hence, we divide the SoC into its system archi-
tecture, its IP cores, and its CPU. Subsequently, we analyzed
which security features each of these parts offer and which
security properties are supposedly provided. Based on these
security properties and our experience in software vulnera-
bilities, we defined hypotheses on vulnerabilities that might
be present in each part. Afterward, we performed manual
code inspection to find indicators which might confirm
the hypotheses. When a potential vulnerability has been
identified, we developed an exploit in C/C++ that leverages
the vulnerability to break the security properties of the SoC.

The cycle-accurate simulation with QuestaSim was our
preferred way of executing software on the SoC. This al-
lowed us to see the effects in the digital logic and to adapt
the exploits to target the identified vulnerabilities. It offers
an easy way for a quick overview of all internals at every
point in time.

3.1 System Architecture

SoCs consist of multiple IP cores, which have to be carefully
integrated to avoid security weaknesses. The alpha version
of the SoC has — amongst other modules — a secure

ROM module. The secure ROM module contains two access
control bits, the JTAG key and the AES key and is connected
to the AXI bus. The AXI bus has access control to prevent
unauthenticated access to the secure ROM.

Due to a misconfiguration of the access control, the se-
cure ROM is readable by an unauthenticated user. Therefore,
limited by the AXI bus width, an attacker in the possession
of the device can read the lowest 64 bit of the access control
bits, the JTAG key and the AES key.

The keys are particularly interesting to an attacker. For
the JTAG key, only 32 bits are used and therefore an attacker
is able to access the device over JTAG with privileges. For
the AES key, the knowledge of the key severely weakens the
encryption. Additionally, the complete AES key is readable
in the AES module by an unauthenticated user and therefore
the AES does not provide any confidentiality, one of the key
concepts of information security.

SoCs can also have firmware which has to be carefully
designed to avoid security weaknesses. The beta version
of the SoC has — unlike the alpha version — a firmware.
One of the firmware’s tasks is to check (in form of a self-
test) whether the cryptography engines (AES and SHA) are
working correctly.

Due to an incorrectly implemented self-test for the SHA
engine, its function is not verified correctly. Therefore, an
attacker who is in the possession of the device can manip-
ulate the SHA engine of the core without being detected by
the firmware. A manipulated SHA engine does not provide
integrity, another key concept of information security. It can
also be disabled and thus does not provide availability, the
third key concept of information security.

3.2 IP Core Architecture

Besides security vulnerabilities arising from the integration
of multiple IP cores, there might be architectural weaknesses
in the IP core architectures itself. Thus, all core architectures
which are relevant for the security features have to be tested.
These tests include the basic functionality of the core as well
as every possible corner case that might occur. One example
of this kind of vulnerability is described in the following.

The provided SoC design contains an AES-192 cryp-
tography module which is specified to implement an AES
engine. Based on the provided specification list, the AES
engine takes a 192-bit key, a 128-bit input data, and a
128-bit initialization vector and produces a 128-bit output.
The encryption/decryption itself is implemented in Counter
(CTR) block cipher mode.

The CTR-mode uses a block cipher as a stream cipher.
The input to the block cipher is an initialization vector IV
concatenated with a counter CTR, which is increased after
every block. The output of the block cipher is XORed
with the plaintext/ciphertext. Figure 2 and the following
equations show that principle.

Encryption: Ci = AESk(IV ||CTRi)⊕ Pi

Decryption: Pi = AESk(IV ||CTRi)⊕ Ci

While analyzing the AES engine, we did not find any
code which implements a counter as described above.
Hence, we suspected that there might be a bug or a missing
line of code, which should increase the CTR. To confirm

4

ENC

(IV ||CTRi)

k

CiPi

Fig. 2. Block Cipher Counter (CTR) Mode Encryption

our hypothesis, we implemented a short C program, which
encrypts an arbitrary block twice in a row, and simulated
it on the SoC design. If the CTR had been implemented
correctly, the corresponding ciphertexts would differ and
the hypothesis would be wrong. However, the correspond-
ing ciphertexts were equal, therefore the outputs of the
AES cipher were equal. This concludes that the AES inputs
(IV ||CTRi) and especially CTRi were equal for both en-
cryptions.

This bug results in a downgrade of the encryption to a
stream cipher with a fixed key K . The principle is shown in
the following equations.

Encryption: Ci = K ⊕ Pi

Decryption: Pi = K ⊕ Ci

Such encryption can be easily broken by the following
exploit we developed:

The exploit takes a pair of plaintext P0 and correspond-
ing ciphertext C0, XORs them, and outputs a fixed key K .

C0 ⊕ P0 = AESk(IV ||CTR0) = K

Afterward, we can use K to decrypt an unknown ciphertext
C1 to get the corresponding plaintext P1:

K ⊕ C1 = AESk(IV ||CTR0)⊕AESk(IV ||CTR1)⊕ P1

As we know from our observations, CTR1 = CTR0. There-
fore, the equation above can be written as:

K ⊕ C1 = AESk(IV ||CTR0)⊕AESk(IV ||CTR0)⊕ P1

Which is equal to:

K ⊕ C1 = P1

In conclusion, one misconception about the cipher mode
resulted in a downgrade to a weak stream cipher, which can
be easily broken by one pair of plaintext and ciphertext. As
a result, we developed an exploit, which allows an attacker
to read all data that is encrypted by the system.

3.3 IP Core Implementation
Apart from architectural errors in IP cores as seen in Sec-
tion 3.2, implementation errors can impair the functionality
and the security of the system. These implementation errors
are coding errors, for example, related to syntax, logical
flaws or human failure.

A bug, related to the implementation of an IP core,
can be found in the SoC’s JTAG module. According to the
competition’s remarks, the JTAG is protected by a key and
is only enabled when the correct key is provided. In fact, the
JTAG Read function is only executed when the correct key is

given, while the Write function can be utilized regardless of
the key.

110 i f ((dm : : dtm op t ’ (dmi . op) ==
dm : : DTM READ) && (pass chk == 1 ’ b1))
begin

111 s t a t e d = Read ;
112 end else i f ((dm : : dtm op t ’ (dmi . op) ==

dm : : DTM WRITE)) begin
113 s t a t e d = Write ;

Listing 1. If-/ else if -construct for Read and Write function from the JTAG
module (dmi jtag.sv).

In the module’s code (Listing 1) the pass chk variable is
set through the correct key. However, it is only checked in
the if -construct for the Read function (line 110), but not in the
following else if -condition (line 112), which is responsible
for the execution of the Write function. So the Write function
is independent of the key and therefore it is not secured
against unauthorized usage.

3.4 CPU
A big part of most SoC designs is a 3PIP CPU core. Often de-
velopers license other CPUs like the ARM product families
to use these as part of their design. CPUs are large projects
and therefore hard to understand. Hence, the developer has
to trust and use the verification methods of the CPU vendor
and thus has to adapt to the vendor’s verification ecosystem.
Open-source CPU designs with open-source ISAs provide
new opportunities and enable the developer to use its own
verification framework [8]. It is hard to check for problems
that emerge from architectural concepts which is evident by
the large number of CPU vendors that were affected by the
Meltdown and Spectre vulnerabilities.

Although verification, especially functional verification,
already has very high standards, multiple security chal-
lenges arise during the design of CPUs. This is also observ-
able for the provided beta SoC. The Ariane RISC-V proces-
sor has multiple privilege levels: user level, supervisor level
and machine mode. Each privilege level has different access
control rights to the memory regions of the peripherals.
With machine privilege level, a program would be able to
change the access rights to get access to every peripheral
and therefore an attacker is interested in escalating their
privilege.

During the finals of the competition, we were able to
overwrite memory regions of peripherals with an unau-
thenticated user. The reason for this is, to the best of our
knowledge, that the core privilege level and the fabric access
control are not properly synchronized. This renders the
security mechanism of protected calls useless and enables
us to change secure registers like the AES key.

4 COUNTERMEASURES

During the Hack@DAC 2019 competition, we discovered
multiple bugs in the provided SoC. For each bug, we
submitted possible countermeasures that would have pre-
vented the specific security vulnerability. In the following,
we discuss generalized approaches to prevent the types
of security vulnerabilities like the ones identified during
competition.

5

4.1 System Architecture Discussion
As shown in Section 3.1, security bugs in the system archi-
tecture can have a severe impact on the key concepts of in-
formation security: confidentiality, integrity, and availability.
Although testing can minimize the amount of security bugs,
a multitude of corner cases are created when combining
components into a complex system. Therefore, testing for
system architecture bugs is a hard task. In general, more
research has to be done to provide developers with the
tools to combine IP cores and software components such
as firmware into a secure system.

One possible solution would be to create standardized
communication protocols for security-relevant IP cores that
can formally be proven secure. This reduces the problem to
test for the correct functioning of the protocol. A disadvan-
tage of this approach is that a protocol has to be developed
for each unique scenario.

Another possible solution is to prevent unwanted data-
flow at design time with additional language constructs. An
example is SecVerilog [2], a HDL in which wires can be
assigned security levels and data is only allowed to flow
towards an equal or higher security level. Although this
might improve the security of data-flow in general, it does
not completely eliminate the possibility of security bugs
as it is still the responsibility of the developer to use the
additional language constructs correctly.

4.2 IP Core Discussion
As shown in Section 3.2 and Section 3.3, the architecture
and the implementation of security-relevant IP cores may
introduce weaknesses, that either occur due to a lack of
knowledge or by mistake. Therefore, SoC vendors have
to test the 3PIP core architectures extensively. These tests
should be implemented by a team of security experts and
SoC designers, which are familiar with all corner cases of
the security features and with hardware penetration testing
in general.

Customized IP core tests should be complemented by
automated testing methods. Tests can be provided by the IP
core developers but should be reviewed by another party.
Furthermore, testing should be applied before integration in
form of stand-alone testing of modules and after integration
to verify functionality and security when interacting with
the other components of the SoC as discussed in Section 4.1.

Ideally, tests are combined into an independent security
verification framework, that provides reliable tests for all es-
tablished security features. As a result, SoC vendors would
have a dependable tool to test 3PIP cores.

Guo et al. [9] developed a similar approach, a Proof-
Carrying Hardware (PCH) Framework, to ensure the trust-
worthiness of IP cores. The framework validates the cores
using theorem proving and equivalence checking to provide
high-level protection of IP cores. Thus, the PCH framework
ensures that the hardware implementation of the 3PIP core
is equivalent to its design specification. One year later, Guo
et al. [10] extended their approach by combining the method
of formal verification with the technique of model checking.

4.3 CPU Discussion
As shown in Section 3.4, the CPU introduced leakage vul-
nerabilities which are inflicted by a faulty privilege level

switch. Bugs that originate from the interaction of the ex-
ternal bus infrastructure are hard to test for the developer.
The verification alone requires more effort than designing
the entire system. Therefore, to verify the ISA, the de-
signers base their verification efforts on test suites by the
CPU supplier. Incorrect interactions with other peripherals
increase the simulation effort and require a better testing
strategy than random testing. Functional verification can
offer an improved approach but is still an ongoing topic
in research [11]. The needed test methodologies are closely
coupled to the system architecture implications discussed
in Section 3.1. The formal verification of information flow
as shown by Subramanyan et al. [12] could also prevent
leakage of secure data.

5 CONCLUSION

In this paper, we present our vulnerability detection
method and share our experience from participating in
the Hack@DAC 2019 competition. During the competition,
we developed a divide and conquer approach to detect
vulnerabilities in SoC designs. This approach splits the
system into different domains and divides it into its com-
ponents. Consequently, security-relevant components are
analyzed separately and vulnerabilities can be detected in
a structured manner. To illustrate our approach, we provide
examples of different vulnerabilities in diverse components
and show how these can be leveraged to break the security
properties of the SoC design.

The approach proved itself to be successful. The effectiv-
ity of prepared test cases for specific 3PIP cores, such as the
AES engine, is shown. However, it is based on manual code
inspection and therefore not scalable for complex systems.
Nevertheless, in addition to automatic tests, critical compo-
nents should be tested manually to achieve the best cov-
erage possible. Hence, a security framework offering such
tests for all kinds of IP cores could assist SoC vendors, to
verify the security of 3PIP cores. Such a framework could be
developed using the approach we presented. Additionally,
other systematic methods, e.g. formal verification, should
be considered to verify the security of 3PIP cores and the
system architecture itself.

Our key takeaway is that full test coverage is hardly
possible with just manual code analysis, especially with
the rising complexity of IP cores. However, a good testing
concept with various different test cases can detect a large
number of (security) critical bugs.

ACKNOWLEDGMENTS

This work was supported through ERC grant 695022.

6

REFERENCES

[1] W. Wang, Q. Zeng, and A. P. Mathur, “A Security Assurance
Framework Combining Formal Verification and Security
Functional Testing,” in 2012 12th International Conference on
Quality Software, Xi’an, Shaanxi, China, August 27-29, 2012, A. Tang
and H. Muccini, Eds. IEEE, 2012, pp. 136–139. [Online].
Available: https://doi.org/10.1109/QSIC.2012.34

[2] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A
Hardware Design Language for Timing-Sensitive Information-
Flow Security,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March
14-18, 2015, Ö. Özturk, K. Ebcioglu, and S. Dwarkadas,
Eds. ACM, 2015, pp. 503–516. [Online]. Available: https:
//doi.org/10.1145/2694344.2694372

[3] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E.
Suh, “Verification of a Practical Hardware Security Architecture
Through Static Information Flow Analysis,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8-12, 2017, Y. Chen, O. Temam, and
J. Carter, Eds. ACM, 2017, pp. 555–568. [Online]. Available:
https://doi.org/10.1145/3037697.3037739

[4] M. Ehmer and F. Khan, “A Comparative Study of White Box,
Black Box and Grey Box Testing Techniques,” International Journal
of Advanced Computer Science and Applications, vol. 3, 06 2012.

[5] T. Nakamura, L. Hochstein, and V. R. Basili, “Identifying
Domain-Specific Defect Classes Using Inspections and Change
History,” in 2006 International Symposium on Empirical Software
Engineering (ISESE 2006), September 21-22, 2006, Rio de Janeiro,
Brazil, G. H. Travassos, J. C. Maldonado, and C. Wohlin,
Eds. ACM, 2006, pp. 346–355. [Online]. Available: https:
//doi.org/10.1145/1159733.1159785

[6] S. Coupet-Grimal and L. Jakubiec, “Coq and Hardware
Verification: A Case Study,” in Theorem Proving in Higher Order
Logics, 9th International Conference, TPHOLs’96, Turku, Finland,
August 26-30, 1996, Proceedings, ser. Lecture Notes in Computer
Science, J. von Wright, J. Grundy, and J. Harrison, Eds.,
vol. 1125. Springer, 1996, pp. 125–139. [Online]. Available:
https://doi.org/10.1007/BFb0105401

[7] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. K. Kanuparthi,
H. Khattri, J. M. Fung, A. Sadeghi, and J. Rajendran, “When a
Patch is Not Enough - HardFails: Software-Exploitable Hardware
Bugs,” CoRR, vol. abs/1812.00197, 2018. [Online]. Available:
http://arxiv.org/abs/1812.00197

[8] P. D. Schiavone, E. Sánchez, A. Ruospo, F. Minervini,
F. Zaruba, G. Haugou, and L. Benini, “An Open-Source
Verification Framework for Open-Source Cores: A RISC-V
Case Study,” in IFIP/IEEE International Conference on Very
Large Scale Integration, VLSI-SoC 2018, Verona, Italy, October
8-10, 2018. IEEE, 2018, pp. 43–48. [Online]. Available:
https://doi.org/10.1109/VLSI-SoC.2018.8644818

[9] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra,
“Pre-Silicon Security Verification and Validation: A Formal
Perspective,” in Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015. ACM, 2015,
pp. 145:1–145:6. [Online]. Available: https://doi.org/10.1145/
2744769.2747939

[10] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Scalable SoC
Trust Verification using Integrated Theorem Proving and Model
Checking,” in 2016 IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2016, McLean, VA, USA, May
3-5, 2016, W. H. Robinson, S. Bhunia, and R. Kastner, Eds.
IEEE Computer Society, 2016, pp. 124–129. [Online]. Available:
https://doi.org/10.1109/HST.2016.7495569

[11] M. Jenihhin, X. Lai, T. Ghasempouri, and J. Raik, “Towards
Multidimensional Verification: Where Functional Meets Non-
Functional,” in 2018 IEEE Nordic Circuits and Systems Conference,
NORCAS 2018: NORCHIP and International Symposium of System-
on-Chip (SoC), Tallinn, Estonia, October 30-31, 2018, J. Nurmi,
P. Ellervee, J. Mihhailov, M. Jenihhin, and K. Tammemäe, Eds.
IEEE, 2018, pp. 1–7. [Online]. Available: https://doi.org/10.1109/
NORCHIP.2018.8573495

[12] P. Subramanyan and D. Arora, “Formal Verification of
Taint-propagation Security Properties in a Commercial SoC
Design,” in Design, Automation & Test in Europe Conference &
Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014,

G. P. Fettweis and W. Nebel, Eds. European Design and
Automation Association, 2014, pp. 1–2. [Online]. Available:
https://doi.org/10.7873/DATE.2014.326

Mark Fischer received his B.Sc. degree in Computer Science from
RWTH Aachen University, Germany, in 2018. He is currently working
towards his M.Sc. degree in IT Security at Ruhr University Bochum,
Germany. He participated in the Hack@DAC 2019 competition as a
member of NotATrojan.

Fabian Langer received the B.Sc. degree in IT Security from Ruhr
University Bochum, Germany, in 2015, and the M.Sc. degree in 2019.
After participation in the Hack@DAC 2019 competition as a member
of NotATrojan, he started working as an IT Security expert at TÜV
Informationstechnik GmbH, TÜV NORD GROUP. His field of activity
includes artificial intelligence and hardware evaluation.

Johannes Mono received his B.Sc. degree in IT Security from Ruhr
University Bochum, Germany, in 2019 and is currently working towards
his M.Sc. degree in IT Security. In his freetime, he likes to participate in
Capture The Flag competitions with the team FluxFingers and partici-
pated in the Hack@DAC 2019 competition as a member of NotATrojan.

Clemens Nasenberg received his B.Eng. degree in Communications
Engineering from Ulm University of Applied Sciences, Germany, in 2015,
worked as an FPGA Engineer and is currently working towards his
M.Sc. in Electrical Engineering at Ruhr University Bochum, Germany.
He participated in the Hack@DAC 2019 competition as a member of
NotATrojan.

Nils Albartus received the B.Sc. degree in IT Security from Ruhr Uni-
versity Bochum, Germany, in 2016, and the M.Sc. degree in IT Security
from Ruhr University Bochum, Germany, in 2018. He is currently working
towards the Ph.D. degree in the group for Embedded Security, under the
supervision of C. Paar. His research interests include reverse engineer-
ing of hardware and embedded software systems. He supervised the
NotATrojan team during the Hack@DAC 2019 competition.

https://doi.org/10.1109/QSIC.2012.34
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1145/1159733.1159785
https://doi.org/10.1145/1159733.1159785
https://doi.org/10.1007/BFb0105401
http://arxiv.org/abs/1812.00197
https://doi.org/10.1109/VLSI-SoC.2018.8644818
https://doi.org/10.1145/2744769.2747939
https://doi.org/10.1145/2744769.2747939
https://doi.org/10.1109/HST.2016.7495569
https://doi.org/10.1109/NORCHIP.2018.8573495
https://doi.org/10.1109/NORCHIP.2018.8573495
https://doi.org/10.7873/DATE.2014.326

	Introduction
	Background
	General Approaches for Testing Hardware Security
	Hack@DAC 2019
	Ariane Core / SoC
	Tooling

	Real-World Examples
	System Architecture
	IP Core Architecture
	IP Core Implementation
	CPU

	Countermeasures
	System Architecture Discussion
	IP Core Discussion
	CPU Discussion

	Conclusion
	References
	Biographies
	Mark Fischer
	Fabian Langer
	Johannes Mono
	Clemens Nasenberg
	Nils Albartus

