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LIMITATIONS OF ADMINISTRATIVE DATABASES IN ORTHOPAEDIC 
SURGERY RESEARCH: A STUDY IN OBESITY AND ANEMIA. 

Nicholas S. Golinvaux, Daniel D. Bohl, Bryce A. Basques, Michael C. Fu, Elizabeth C. 
Gardner, and Jonathan N. Grauer. Department of Orthopaedics and Rehabilitation, Yale 

University, School of Medicine, New Haven, CT. 
 
Abstract 

The use of national inpatient databases for orthopaedic surgery research has been 

increasing. However, large databases that rely on administrative data, such as 

International Classification of Diseases Ninth Revision (ICD-9) codes, may misrepresent 

patient information, thus affecting the results of studies using this data.  

The present study uses easily quantified and objective variables of obesity and 

anemia as example comorbidities to assess the accuracy of ICD-9 codes in the setting of 

their continued use in orthopaedic surgery database studies. 

For each study arm, a large inpatient population was obtained from the Yale-New 

Haven hospital. Each patient’s medical record was reviewed, and the presence of ICD-9 

discharge codes for obesity and anemia was directly compared to documented body mass 

index (BMI) and preoperative hematocrit, respectively. 

ICD-9 discharge codes for both non-morbid obesity and anemia had a sensitivity 

of just 0.19. The sensitivity of the ICD-9 code for morbid obesity was 0.48.  

Using obesity and anemia as examples, this study highlights the potential errors 

inherent to ICD-9 codes. This calls into serious question the utility of administrative 

databases for research purposes. Moreover, it is likely that these inaccuracies apply to 

additional variables as well. As database research continues to increase within 

orthopaedic surgery, it is important to realize that study outcomes can be skewed by data 

accuracy, and thus should not be blindly accepted simply by virtue of large sample sizes. 
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Introduction 
 

Recently, the use of large national inpatient databases for orthopaedic surgery 

research has increased significantly. While databases differ in their methods of data 

collection and verification, many such databases are constructed upon hospital 

reimbursement claims data such as the International Classification of Diseases, Ninth 

Revision (ICD-9) codes. Unfortunately, due to the wide variety of styles, without a 

working knowledge of each major database, it can be difficult for the practicing physician 

to discern whether a given study presents valid results to the specific questions being 

asked.   

 Many ICD-9-coded databases are currently available, including the Nationwide 

Inpatient Sample (NIS), the Nationwide Emergency Department Sample (NEDS), the 

National Hospital Discharge Survey (NHDS), and several additional private insurance 

databases available through for-profit distributors. Several have reached tremendous size. 

The NIS reports that each year of data consists of approximately 8 million hospital stays 

from over 1,000 hospitals.1 Similarly, the NEDS contains approximately 130 million total 

emergency department visits.2  

Other databases, including the National Surgical Quality Improvement Program 

database maintained by the American College of Surgeons (ACS-NSQIP), are instead 

built from direct chart data acquisition rather than from administrative ICD-9 coding; 

however, this method is currently used less often for assembling national databases due to 

increased costs and logistical barriers. In such patient data registry databases, patient 

information is abstracted in real time by trained clinical staff from the patient chart 

directly into the database. In the case of the ACS-NSQIP database, this process is 
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carefully regulated and continually monitored with an Inter-Rater Reliability (IRR) Audit 

of randomly selected sites. These IRR Audits exist to ensure high quality data that 

consistently exhibits an inter-rater disagreement of less than 2%, with an absolute upper 

limit of 5% disagreement.3  

 The relatively recent widespread availability of databases has generated a new 

avenue by which to address a multitude of research questions in medicine, and more 

specifically, in orthopaedic surgery. The large sample sizes dwarf what could otherwise 

be obtained by any single hospital system or study group, creating an attractive resource 

for estimating disease prevalence, healthcare utilization, and outcomes from across the 

nation. Additionally, these tremendous sample sizes permit, for the first time, a method 

by which to evaluate rare conditions, uncommon treatments, and subset populations at a 

large scale.1 

 However, it is important to understand the many established limitations to using 

patient databases in medical research. First, the majority of these databases are assembled 

solely from inpatient data. This method samples an inherently sicker proportion of the 

population, which puts substantial limits on the applicability of any findings to the 

general population. Moreover, and crucial to the understanding of administrative database 

limitations, is the fact that ICD-9 data is generally abstracted from medical provider notes 

for reimbursement purposes. Because this relies on both the input of the provider and the 

careful extraction of data by the coding professional, this system is prone to omission of 

details and thus may not accurately represent the entire patient.4,5 Furthermore, it has 

been demonstrated previously that significant heterogeneity can exist among large 

databases due to variations in unknown patient variables. A recent meta-analysis found 
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that because of this heterogeneity, 20-40% of all observational database studies could 

swing from being statistically significant in one direction to being statistically significant 

in the opposite direction, purely based on choice of database.6 This finding highlights the 

particular importance of carefully choosing a database most suitable for the research 

question at hand. 

To follow up on these past results, our research group conducted two studies 

comparing the NIS, an administratively-coded database, with the ACS-NSQIP, a patient 

registry database. In the first study, we extracted an analogous group of lumbar fusion 

patients during the years 2009-2011 from each of the two databases.7 We then proceeded 

to compare the demographics, length of stay, comorbidities, and inpatient adverse events 

between these two groups. The purpose was to get a sense of the overall relationship 

between ICD-9 codes and clinical reality. 

 With regards to patient demographics and length of stay, we found that these 

factors were quite similar between the two databases.7 However, with regards to adverse 

events, we found that the rates of sepsis and cardiac arrest in lumbar fusion patients were 

more than two-fold higher in the ACS-NSQIP compared to the NIS, while conversely, 

the rates of acute kidney injury (AKI) and urinary tract infection (UTI) were more than 

two-fold higher in the NIS compared to the ACS-NSQIP. Furthermore, in terms of the 

comorbidity variables examined, obesity was more than twice as common in NSQIP 

patients than it was in NIS patients, with the reverse holding true for the incidence of 

peripheral vascular disease. 

This study was then performed again, only this time comparing two analogous 

populations of patients undergoing operative stabilization of transcervical and 
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intertrochanteric hip fractures from the NSQIP and NIS databases.8 We again found that 

demographics and length of stay were similar between groups. Additional findings 

continued to be strikingly similar to our previous study in lumbar fusion patients, as the 

incidences of AKI and UTI were again two-fold higher in NIS compared to NSQIP. 

Similarly, the rate of obesity was more than two-fold higher in NSQIP compared to NIS, 

only this time obesity was accompanied by anemia and coagulopathy in this finding. 

By comparing one national database constructed purely on ICD-9 codes to a 

different national database built from direct chart data, these studies shed important light 

on the overall landscape of ICD-9 coding accuracy. While the populations were found to 

be nearly demographically identical, it is worrisome to note how divergent many of the 

rates of inpatient adverse events and comorbidities were between groups. From this 

advantageous vantage point generated by these initial studies, we endeavor to direct our 

focus to a more granular examination of the specifics of ICD-9 coding and its potential 

flaws. 

 Several previous studies have noted the inaccuracies of ICD-9 discharge codes in 

various different medical and surgical populations.9-19 One such study sought to evaluate 

the ability of ICD-9 codes to identify cardiovascular and stroke risk factors in Medicare 

patients with atrial fibrillation, such as arterial peripheral embolus, heart failure, 

stroke/TIA, coronary heart disease, diabetes, and hypertension.14 Of the nine conditions 

evaluated, no condition had a sensitivity of greater than 76%, with the lowest sensitivity 

at 20%, and a mean sensitivity of 54%. A similar study evaluated ICD-9 codes related to 

stroke and stroke risk factors, finding sensitivities ranging from 7% for tobacco use, to 

28% for history of cerebrovascular accident, to 91% for diabetes.16 Finally, a third 
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previous study looked at the ability of ICD-9 codes to accurately identify thirty-two 

different conditions. These results varied from a sensitivity of just 1% for postural 

hypotension, to 27.6% for peptic ulcers, to 68.7% for hypertension.19 While these prior 

investigations cover a wide breadth of subject matter, a common thread among these 

studies is the tremendous variability in ICD-9 coding accuracies, as well as the 

unpredictable nature of which conditions will be well coded versus those that will be 

poorly coded. 

More specifically, some previous studies have examined the relationship between 

ICD-9 codes and obesity. A 2012 study in obstetric patients compared multiple ICD-9 

codes to patient chart data and found widely variable coding accuracies among 

comorbidities such as hemorrhage, infection, and obesity.20 For obesity, ICD-9 codes 

correctly identified just 15% of obese patients. Similarly, three studies have examined the 

difficulties of diagnosing obesity in a pediatric population that include, but are not limited 

to, body mass index (BMI) cutoffs that change both with age and gender.21-23 These 

studies found ICD-9 codes for pediatric obesity to be only 7.0-8.3% accurate.  

 While these prior works provide much thought-provoking groundwork about the 

potentially poor sensitivity of various ICD-9 codes, the current study endeavors to build 

upon this foundation and further delineate how ICD-9 codes reflect clinical reality for a 

given diagnosis in orthopaedic surgery patients. Prior investigations were conducted in 

specialized patient populations that may have their own inherent considerations not 

readily generalizable to adult orthopaedic surgery populations. Moreover, ICD-9 coding 

issues were largely examined either as secondary outcomes or as one of many other 

questions being addressed.  
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 With previous investigations as a valuable foundation, there remains a clear need 

to directly analyze how ICD-9 codes relate to clinical reality. The current study uses the 

variables of obesity and anemia to present individual illustrative examples that we 

anticipate will be widely applicable to many further comorbidities and patient factors that 

are commonly documented in national administrative inpatient databases. Obesity and 

anemia were chosen because they are easily quantifiable, continuous variables with well-

established BMI and hematocrit designations, respectively. Moreover, each of these 

variables was recently found to be undercoded in the ICD-9-coded NIS database 

compared to the specifically abstracted patient registry ACS-NSQIP database.7,8 Finally, 

obesity and anemia are used ubiquitously in large orthopaedic surgery database research, 

both as comorbidities in multivariable analyses and predictors of clinical outcomes.24-27 

The current study consists of two separate, but related, arms. In each case, we 

employed a large inpatient population to explore the accuracy of ICD-9 coding. This was 

done by comparing the chart documentation of a specific patient entity to whether or not 

that variable was captured via the ICD-9 codes assigned to the patient upon discharge. 

For obesity, the specific patient entity used in this study was BMI, while for anemia the 

specific patient entity was preoperative hematocrit. These are the very codes that are used 

to construct large national administrative databases, such as the NIS and NEDS. We 

hypothesize that ICD-9 codes underestimate true rates of obesity and anemia, potentially 

to such a degree that they may sway the results of studies using ICD-9 coded databases 

for research purposes.   
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Methods 

 In each arm of this investigation, we conducted a cross-sectional study comparing 

each patient’s ICD-9 discharge codes to chart-documented patient variables. This 

variable was obesity (based on BMI) in the first arm and anemia (based on hematocrit) in 

the second arm. All chart data acquisition and analysis was performed by myself. 

 

Obesity 

For the portion of this work that focused on obesity, we obtained a sixteen-day 

inpatient cohort from the Yale-New Haven Hospital. This included all patients over 18 

years of age who spent at least one night in the hospital between April 1 and April 16, 

2013. Patients from Obstetrics & Gynecology, Psychiatry, and Pediatrics were excluded, 

as it was reasoned that these patients can be subject to irregular or inaccurate weights, 

whether due to physiology or pharmaceuticals.  

 Following approval from the Yale University Human Investigations Committee, 

patient data was collected from the electronic medical record. Beyond demographic data, 

the patients’ discharge height (inches) and weight (pounds) were collected, along with all 

assigned primary and secondary ICD-9 diagnosis codes. For patients without a recorded 

discharge height and weight, the values recorded closest to discharge were used.    

 BMI was calculated using the formula BMI = 703 x (weight (lb) / [height 

(in)*height (in)]).28 Standard BMI classifications were used, with a BMI of less than 30 

kg/m2 as non-obese, a BMI of 30-39.9 kg/m2 as obese, and a BMI of 40 kg/m2 and above 

as morbidly obese.29 For ease of terminology, the rest of the paper refers to a BMI of 30-
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39.9 kg/m2 as “non-morbid obesity” and a BMI at or above 40 kg/m2 as “morbid 

obesity.” 

 ICD-9 codes were then evaluated, with the code of 278.00 designated for 

“Obesity, unspecified” and the code of 278.01 for “Morbid obesity.”30 The presence of 

ICD-9 code 278.00 was compared to patients with a calculated BMI between 30 and 

39.9, while 278.01 was compared to patients with a BMI that was greater than 40. These 

comparisons are consistent with prior studies utilizing ICD-9-based databases. On 

occasion, comorbidities such as obesity are captured using secondary ICD-9 codes. The 

secondary ICD-9 codes of V85.3 (BMI 30-39.9) and V85.4 (BMI 40 and above) exist to 

attempt to capture a patient’s specific BMI, rather than a BMI range. These secondary 

codes were included in a separate analysis.   

 

Anemia  

In the portion of this research investigating anemia, we used a large population of 

patients who had undergone cervical or lumbar fusion surgery. This population was 

chosen because these patients are universally required to obtain a preoperative 

hemoglobin and hematocrit level due to the risk of blood loss associated with spine 

surgery. This population was retrospectively collected from Yale-New Haven Hospital 

and included all patients who underwent either cervical or lumbar fusion between 

February 1, 2013 and December 31, 2013. Patients either without a documented 

preoperative complete blood count (CBC) or who underwent fusion as a result of trauma 

were excluded. 
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 This anemia arm of the study was also approved by the Yale University Human 

Investigations Committee. Patient data was abstracted from the electronic medical record 

and included demographics, preoperative hematocrit, and all assigned primary and 

secondary ICD-9 diagnosis codes. Standard classifications of anemia were used to 

determine the prevalence of preoperative anemia in the current study population: anemia 

in a female was defined as a hematocrit of less than 36.0%, and anemia in a male was 

defined as a hematocrit of less than 41.0%.31 

ICD-9 codes were then evaluated based on the batch of ICD-9 codes that are 

grouped together to be used for the NIS database definition of the comorbidity 

“deficiency anemia.” These codes, determined by the NIS, are as follows: 280.1 (Iron 

Deficiency Anemia Secondary to Inadequate Dietary Iron Intake), 280.8 (Other Specified 

Iron Deficiency Anemias), 280.9 (Iron Deficiency Anemia Unspecified), 281.0 

(Pernicious Anemia), 281.1 (Other Vitamin B12 Deficiency Anemia), 281.2 (Folate-

Deficiency Anemia), 281.3 (Other Specified Megaloblastic Anemias Not Elsewhere 

Classified), 281.4 (Protein-Deficiency Anemia), 281.8 (Anemia Associated with Other 

Specified Nutritional Deficiency, 281.8 (Anemia Associated with Other Specified 

Nutritional Deficiency), 281.9 (Unspecified Deficiency Anemia), 285.21 (Anemia in 

Chronic Kidney Disease), 285.22 (Anemia in Neoplastic Disease), 285.29 (Anemia of 

Other Chronic Disease), and 285.9 (Anemia Unspecified).32,33  

Because this NIS variable is designed to capture anemia as a comorbidity upon 

entry to the hospital, this designation excludes patients who experienced any sort of acute 

blood loss as a result of their surgery or hospital stay. For similar reasons, we compared 

the presence of these codes to a given patient’s preoperative hematocrit, rather than a 
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hematocrit taken during the hospital stay, so as to most closely approximate the anemia 

status of the patient upon entry to the hospital. This is consistent with the manner in 

which current studies investigating the relationship between spinal pathologies and 

anemia in the NIS use the “deficiency anemia” variable.34-42 

 

 

Statistical Methods 

Data analyses and organization were performed by the study authors using Stata® 

version 13.0 (StataCorp, LP, College Station, Texas, USA).  

 

 

Results 
 

Obesity 

During the sixteen-day study period, there were 2,115 adult patients identified 

who spent at least one inpatient night in the hospital. 40 (1.9%) were excluded for 

missing either a height or weight in the medical record, leaving 2,075 patients for 

analysis. 

 Patient demographics can be found in Table 1. The average patient age was 59.6 ± 

18.5 years (mean ± standard deviation [SD]) and 50.2% of patients in this cohort were 

female. 
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The calculated BMI distribution is shown by BMI decile in Table 1 and by total 

column height in Figure 1a. The average calculated BMI was 28.9 ± 7.9 kg/m2. Overall, 

1,328 patients (64.0%) had a BMI less than 30 (non-obese), 573 patients (27.6%) had a 

BMI between 30 and 39.9 (non-morbid obesity), and 174 patients (8.4%) had a BMI of 

40 or above (morbid obesity). When non-morbid and morbid obesity patients were 

combined, a total of 747 (36.0%) were categorized as being obese in some fashion (BMI 

≥ 30).  

 Patients were then subdivided based on ICD-9 coding data. They are shown 

matched to chart-documented BMI calculations as sections of columns for each BMI 

decile in Figure 1a and subsequently by percent of patients for a given BMI decile in 

Figure 1b.    

Table 1: Demographics of the patient population for the obesity arm of the present study 
 
 Number Percent 
Overall 2,075 100% 
Sex   
  Female 1,043 50.3% 
  Male 1,032 49.7% 
Age   
  18-39 297 14.3% 
  40-49 295 14.2% 
  50-59 415 20.0% 
  60-69 407 19.6% 
  70-79 340 16.4% 
  80+ 321 15.5% 
Body Mass Index   
  10-19.9 [Not Obese] 169 8.1% 
  20-29.9 [Not Obese] 1,159 55.9% 
  30-39.9 [Non-Morbid Obesity] 573 27.6% 
  40-49.9 [Morbid Obesity] 130 6.3% 
  50-59.9 [Morbid Obesity] 29 1.4% 
  60-69.9 [Morbid Obesity] 11 0.5% 
  70-80.0 [Morbid Obesity] 4 0.2% 
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 From 156 patients who received the “obesity” ICD-9 code of 278.00, 109 had a 

true BMI between 30 and 39.9, while 47 had miscoded BMIs outside of this range 

(Figure 1). 15 miscoded patients had a BMI below 30, and 32 had a BMI above 40. Thus, 

only 109 of the 573 patients (19.0%) with BMIs between 30 and 39.9 received the correct 

“obesity” designation by ICD-9 code (Figure 2). This equates to an ICD-9 code 

sensitivity of 0.19, with specificity and positive and negative predictive values of 0.97, 

0.70, and 0.76, respectively (Figure 3). Only 14 patients were assigned the more specific 

ICD-9 code V85.3 without code 278.00. When V85.3 was included with 278.00, 

sensitivity, specificity, and positive and negative predictive values were 0.21, 0.97, 0.72, 

and 0.76, respectively. 
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Figure 1: Bar graph depicting patients by BMI decile, based on calculated BMI. These bars are broken 

down to indicate the coding associated with the patients in each bar (no obesity ICD-9 code, “obesity” 

ICD-9 code (278.00), or “morbid obesity” ICD-9 code (278.01)). Figure 1a uses percent of the population 

studied as the y axis. Figure 1b uses percent of patients for a given BMI decile as the y axis (to allow better 

visualization of the components of the smaller bars in figure 1a).   
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Figure 2: Bar graph depicting the percent of all patients by specific BMI decile, based on calculated BMI. 

Included within each bar is the portion of patients who received a correct obesity-related ICD-9 code (no 

code for those with a BMI < 30; 278.00 for those with a BMI of 30-40; 278.01 for those with a BMI >40) 

or an incorrect or missing obesity-related ICD-9 code.  

 

 Of the 104 patients who received ICD-9 code 278.01 (“morbid obesity”), 84 had a 

true BMI of 40 or greater, while 20 of these patients had miscoded BMIs outside of this 

range (Figure 1). 4 miscoded patients had a BMI below 30, and 16 had a BMI between 

30-39.9. Thus, only 84 of the 174 patients (48.2%) with BMIs over 40 received the 

correct “morbid obesity” designation by ICD-9 code (Figure 2). This equates to ICD-9 

code sensitivity, specificity, and positive and negative predictive values of 0.48, 0.99, 

0.81, and 0.96, respectively (Figure 4). Only 11 patients were assigned the more specific 

ICD-9 code V85.4 without code 278.01. When V85.4 was included with 278.01, 
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sensitivity, specificity, and positive and negative predictive values were 0.54, 0.99, 0.82, 

and 0.96, respectively.  

 

 

Figure 3: Chart showing the sensitivity, specificity, positive predictive value, and negative predictive value 

of ICD-9 Code 278.00 (“Obesity, unspecified”) compared to calculated BMI. 
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Figure 4: Chart showing the sensitivity, specificity, positive predictive value, and negative predictive value 

of ICD-9 Code 278.01 (“Morbid Obesity”) compared to calculated BMI. 

 

Anemia 

In total, 286 patients were initially identified as part of this cohort. Of these, 24 

(8.3%) were excluded due to trauma, and 2 (0.7%) were excluded for lack of a 

preoperative CBC. This left 260 spine surgery patients, of which 151 (58.1%) were 

female and 109 (41.9%) were male. The cohort included 120 (46.2%) cervical fusion 

patients and 140 (53.8%) lumbar fusion patients. Patient demographics can be found in 

Table 2. 
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The average hematocrit of all patients was 41.6 ± 4.2%. Overall, 37 patients 

(14.2%) were anemic by definition. That is, 16 female patients (6.2% of the study 

population) had a preoperative hematocrit that was lower than 36.0%, and 21 male 

patients (8.1% of the study population) had a preoperative hematocrit that was lower than 

41.0%. 

Ten of the 260 total patients (3.8%) received an “anemia” ICD-9 code. Figures 5 

and 6 show the distribution of preoperative hematocrits in the coded versus not-coded 

groups, relative to the normal hematocrit range for each gender. Of patients receiving an 

“anemia” ICD-9 code, 7 patients truly had anemia by definition, while 3 had normal 

hematocrits, and thus were miscoded. Thus, only 7 of the 37 patients (18.9%) with true 

anemia received the correct “anemic” designation by ICD-9 code. This equates to an 

ICD-9 code sensitivity of 19% (95% confidence interval [CI] = 6.3% to 31.5%), with 

specificity and positive and negative predictive values of 99% (95% CI = 97.1% to 

Table 2: Demographics of the patient population for the anemia arm of the present study 
 
 Number Percent 
Overall 260 100% 
Sex   
  Female 151 58.1% 
  Male 109 41.9% 
Age (years)   
  < 39 38 14.6% 
  40-49 55 21.5% 
  50-59 69 27.0% 
  60-69 62 24.2% 
  70-79 26 10.2% 
  > 80 10 3.9% 
Spine Fusion   
  Cervical 120 46.2% 
  Lumbar 140 53.9% 
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100.0%), 70% (95% CI = 41.6% to 98.4%), and 88% (95% CI = 84.0% to 92.0%), 

respectively (Figure 7). 

 

 

Figure 5: Box and whisker plot depicting the preoperative hematocrits of female patients. The x-axis 

shows female patients who were not assigned an anemia ICD-9 code upon discharge versus those who were 

assigned an anemia ICD-9 code. The three horizontal lines of the box represent the first quartile, median, 

and third quartile, respectively, while the whiskers of the plot extend to the minimum and maximum values 

of the cohort. 
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Figure 6: Box and whisker plot depicting the preoperative hematocrits of male patients. The x-axis shows 

male patients who were not assigned an anemia ICD-9 code upon discharge versus those who were 

assigned an anemia ICD-9 code. The three horizontal lines of the box represent the first quartile, median, 

and third quartile, respectively, while the whiskers of the plot extend to the minimum and maximum values 

of the cohort. 
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Figure 7: The sensitivity, specificity, positive predictive value, and negative predictive value of anemia 

ICD-9 coding compared to chart-documented hematocrit. 

 
 
 
 

Discussion 
 

The use of administratively coded national databases for orthopaedic surgery 

research continues to increase. Though database use has many advantages, each dataset 

carries its own unique set of benefits and limitations. One pressing concern in particular 

is in regards to the clinical accuracy of the administrative ICD-9 diagnosis codes from 

which many databases are assembled.9,10,12,13,20,21,23 Unfortunately, without close 

knowledge of each major database and data element, it can be difficult for the reader to 

determine whether a given study presents valid results to the questions being 

investigated. This study uses the easily quantifiable example comorbidities of obesity and 

anemia to clarify the relationship between administrative ICD-9 discharge codes and 

clinical reality, as well as to examine the ensuing possible consequences on research 
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studies in medicine and orthopaedic surgery that employ administrative databases as a 

data source. 

 

  

Obesity 

The results of the first segment of this study indicate that administratively coded 

ICD-9 diagnosis codes do not accurately represent whether a patient is obese. For patients 

with “non-morbid obesity” (BMI 30-39.9) just 19% of patients were correctly deemed 

obese by ICD-9 code. While patients with “morbid obesity” (BMI > 40) were more 

accurately coded, still just 48% of patients received the correct ICD-9 code. These results 

align with the remarkably low obesity-related coding accuracy found by the 

aforementioned published studies in specialized cohorts of obstetric and pediatric 

patients.20-23 Though ICD-9 codes in the present study were very specific for both the 

non-morbid obesity and morbid obesity categories at 0.97 and 0.99, respectively, they 

exhibited low sensitivities of 0.19 and 0.48. 

 We are concerned by these results. By using obesity as an example, this study 

exposes a significant limitation of conducting research with national databases built upon 

ICD-9 coding data. While ICD-9 codes are of reasonable utility, they are coded for 

administrative and billing purposes and may not capture the quality of data desired for 

research purposes. 

 Numerous prior studies from the orthopaedic surgery literature have used ICD-9-

coded databases like the NIS to draw conclusions about obesity and patient pathology, 

approximate national obesity rates, and adjust for obesity in multivariable analyses.27,43-46 
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However, the reported obesity rates in these investigational cohorts were 1.6%,44 3.2%,45 

3.7%,45 and 7%,46 to list a few. In fact, the highest reported obesity rate we were able to 

find in a study using the NIS database was 15%.47 This sharply contrasts with both the 

current estimate of adult obesity rates in the United States of 35.7% established by the 

Centers for Disease Control and Prevention (CDC),48 as well as the 36.0% obesity rate 

identified by direct calculation in our study population. While many of the quoted studies 

analyzed specific patient subsets that could conceivably have somewhat different obesity 

rates compared to the general population or a hospital census, we find it unlikely that 

these populations would have obesity rates that so dramatically differ from national 

estimates.  

Equally troubling, this trend of severely undercoding obesity rates with ICD-9 

codes persists outside of the field of orthopaedic surgery. We discovered several 

published studies documenting obesity rates of 3.1%,49 3.8%,25 6.8%,26 and 7.6%50 in 

various medical fields such as cardiology, general surgery, and nephrology. While these 

are all specialized populations, (e.g., patients with nephrolithiasis or coronary artery 

disease), we believe it to be unlikely that the above-stated NIS cohorts carry obesity rates 

that so dramatically differ from the national average.  

Is it acceptable to believe that just 12% of patients undergoing total knee 

arthroplasty (TKA) are obese,51 particularly when obesity is a known contributor to early 

knee arthritis?52-55 Or, similarly, that only 7.6%50 of patients undergoing coronary artery 

bypass grafting are obese, again when it is well known that obesity is a risk factor for the 

development of coronary artery disease?56-58 If we intend to draw meaningful clinical 

conclusions from database research, these significant disparities must first be taken into 
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account. Perhaps even more worrisome, the majority of these previous studies rarely 

mention their considerably discordant obesity rates and, if they do, only briefly note 

possible coding inaccuracies in their limitations sections. While this tremendous 

limitation is perhaps unknown to study authors, ongoing database publications are at risk 

of drawing conclusions based on fundamentally flawed source data. This is particularly 

concerning given the high rate at which database studies are currently being published in 

the literature.  

 Take the example of non-morbid obesity in our present analysis. In this case, any 

ICD-9-based conclusions would be drawn from a mere 19% of the intended obese 

population, with remaining obese patients incorrectly grouped into non-obese cohorts. 

This means that for every five obese patients an investigator expects to include, only one 

actually enters the analysis, an exclusion rate that would be unacceptable in any other 

study design. This raises serious concerns regarding the validity of studies conducted in 

this fashion.   

 Furthermore, there is a potential selection bias to this ICD-9 coding inaccuracy, as 

there may be additional unknown factors causing this 19% of obese patients to be coded 

as such while omitting the rest. For example, it is possible that this 19% is the sickest 

fraction of obese patients, whose care was so complicated by body habitus that the 

patient’s obesity was unmistakable to those providing patient care, as well as to those 

assigning codes upon discharge. This is supported by the higher sensitivity of ICD-9 

codes for morbidly obese patients (48%), as their morbid obesity was likely more prone 

to influence their hospitalization, perhaps leading to the increased accuracy of coding 

compared to non-morbid obesity. In light of this, researchers using ICD-9-coded 
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databases may be drawing conclusions about the most extreme effects of obesity, rather 

than developing the intended and more useful collective representation of this important 

cohort.  

 

Anemia 

 The results of the second arm of the current study demonstrate the inability of 

administrative ICD-9 discharge diagnosis codes to accurately document whether a patient 

is anemic prior to surgery. Only 10 of the 260 patients received an ICD-9 code indicating 

anemia, 7 of whom were truly anemic based on preoperative hematocrit, and 3 of whom 

had normal hematocrits. However, 37 patients were deemed to be truly anemic based on 

preoperative hematocrit, meaning just 19% of anemic patients were correctly identified 

by ICD-9 code.  

These results mirror those of the previously mentioned studies that examined the 

ICD-9 coding accuracy of other comorbidities,8,20 as well as the obesity arm of the 

present study. Although the ICD-9 codes in the current study were very specific at 99%, 

the sensitivity was quite low at 19%, with a positive and negative predictive value of 70% 

and 88%, respectively. 

 These results are troubling, as they further demonstrate an important limitation of 

using ICD-9-coded databases for scientific research. Many published studies from the 

orthopaedic surgery literature have used ICD-9-coded databases, such as the NIS, to 

examine relationships between preoperative anemia and various surgical spinal 

disorders.34-42 For example, preoperative anemia has been stated to be correlated with 

reintubation following anterior cervical fusion, perioperative visual loss following spinal 



 

 

25 

fusion, and a significantly increased risk of deep vein thrombosis and pulmonary 

embolism following lumbar spine surgery.38,40,41 However, the current study indicates 

that these anemia codes, originally developed for the purposes of reimbursement and 

billing, may not capture the quality of data necessary for making such clinical 

conclusions. 

As a field, orthopaedic surgery is entering an era in which it must become more 

aware of the limitations of administratively coded database research. As further studies 

continue to delineate the substantial inaccuracies of ICD-9 codes, it is becoming clear 

that ongoing database studies are at risk of using a flawed data source. Many publications 

only briefly mention this considerable limitation, an understatement that is especially 

concerning given the high usage of administrative databases in the field of orthopaedic 

surgery research. 

 Through the example of preoperative anemia in our present analysis, we show 

that any conclusions about anemia based on ICD-9 data from this single medical center 

would be drawn from a mere 19% of the intended anemic population, with remaining 

anemic patients incorrectly grouped into normal cohorts. This is similar to the 19% ICD-

9 coding accuracy found previously for the comorbidity of obesity. In both examples, this 

would equate to an exclusion rate of 81% of patients, a percentage that would be 

unacceptable in any other study design. An exclusion rate of 81% subjects the remaining 

study cohort to tremendous bias, as there are most certainly additional unidentified 

characteristics causing the 19% of correctly identified anemic patients to be coded 

accurately. 



 

 

26 

In an attempt to determine a unifying characteristic of this cohort, the hematocrit 

range for those who were coded versus those who were not was plotted in both males and 

females (Figures 5 and 6). These figures demonstrate a slight trend indicating those with 

the lowest hematocrits were more frequently coded for anemia, however this trend cannot 

be definitively stated. 

 

Future considerations 

 As introduced previously, both obesity and anemia were chosen as variables for 

this analysis because of their readily quantifiable and continuous nature. However, 

because this study suggests ICD-9 codes are unable to adequately identify obesity and 

anemia in hospitalized patients, we must question if other comorbidities (e.g., 

hypertension, diabetes, coagulopathy) fall subject, at least in part, to similar coding 

issues. 

Additional comorbidities were not presently evaluated primarily because they 

lack a consistently quantifiable gold standard for comparison to ICD-9 coding data. As an 

example, would it be most appropriate to compare an ICD-9 discharge code for a patient 

with diabetes to that patient’s hemoglobin A1c? Or would a better comparison be 

between the ICD-9 code and a fasting glucose on the day of discharge? Furthermore, how 

would researchers best account for any medications a patient may be taking and the way 

that might affect such measurements? Similar questions can be raised for comorbidities 

such as hypertension and hyperlipidemia.  

However, a study that develops a standardized method for scrutinizing additional 

variables would be a logical next step for investigation. Though some previous analyses 
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have been conducted on additional comorbidities,10,13 these were done retrospectively and 

thus rely on the same medical record review as ICD-9 data. In contrast, obesity and 

anemia have readily available gold standard BMI and hematocrit data that is routinely 

entered for each patient, allowing a retrospective review without the corresponding bias. 

Validation of other comorbidities that lack such an objective gold standard may require 

prospective studies in the future. 

 

ICD-10 

Another important consideration related to this study is the approaching 

nationwide implementation of the International Classification of Diseases Tenth Revision 

(ICD-10). In the coming months and years, hospital systems across the United States will 

be required to begin implementing the ICD-10 system of codes as a replacement for the 

ICD-9 codes. ICD-10 has already been in use across the world for several years, giving 

us an idea of the benefits and pitfalls that might accompany this transition in the United 

States. 

ICD-10 is being implemented with the idea of shifting healthcare across the globe 

to a coding system that is both universal and more precise than previous methods. ICD-

10 is far more granular and specific than its predecessor, a characteristic that is intended 

to decrease medical errors, enhance healthcare delivery, and improve the reporting of 

healthcare data. However, these lofty goals do not come without difficulties. Several 

forecasted barriers to the new implementation include the immense amount of required 

planning, the monetary cost of conversion, a temporary shortage of coders qualified to 
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assign the new ICD-10 codes, and the initial loss of productivity and efficiency 

associated with the re-training of coders, physicians, and staff. 

Because ICD-10 has been in widespread use for several years in many areas 

outside of the United States, many studies have already been conducted analyzing the 

relative successes and failures of the new system. With regards to the early benefits that 

have been investigated, a recent study out of Denmark evaluated the accuracy of ICD-10 

diagnosis codes for each of the nineteen comorbidities that make up the Charlson 

comorbidity index (CCI).59 The Charlson comorbidity index is a predictive scoring 

system of ten-year mortality that is made up of nineteen comorbidities, each assigned a 

designated number of points.60 It is often considered to be similar to, but more precise 

than, the American Society of Anesthesiologists (ASA) score. The study authors used 

950 patients from the Danish National Registry of Patients to evaluate the sensitivity and 

positive predictive values of ICD-10 codes for all nineteen Charlson comorbidities. The 

least accurate ICD-10 codes were 82.0% accurate, while the best were 100%. The 

average for all conditions was 98% sensitivity, with eighteen of the nineteen conditions 

greater than 90%. This study was conducted four years after the implementation of ICD-

10 in Denmark, indicating that there is great potential for high quality data capture with 

ICD-10, once the system has been established and functioning for several years. 

Further studies evaluating the accuracy of ICD-10 codes around the world haven’t 

been quite as clear-cut. As an example, a different study out of Denmark investigated the 

accuracy of the ICD-10 code for syncope in inpatient and emergency department visits. 

In this study, they found that this code was only sensitive to 62.7%.61 While this is not 

nearly as strong as the ICD-10 codes for Charlson comorbidities addressed above by a 
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different Danish study in which most comorbidities were greater than 90% sensitive, this 

still represents a sensitivity that is far better than the ICD-9 code sensitivities discovered 

in the present study for non-morbid obesity, morbid obesity, and anemia. Similarly, a 

study by Henderson et al. out of Australia evaluated the quality of data collection by 

ICD-10 codes for a number of comorbidities. This analysis produced a range of 

sensitivities, varying from 62% (peripheral vascular disease) to 94% (metastatic 

neoplasms).62 Again, while these vary in quality, they all far exceed the ICD-9 code 

sensitivities found in the present study. 

Finally, various emerging studies indicate that for some data elements, ICD-10 

coding still falls victim to significant inaccuracies. In a recent study from Australia, 

investigators looked at the ability of ICD-10 codes to accurately document such variables 

as sepsis, cholecystitis, viscous perforation, peritonitis, and pneumonia. For these 

elements, ICD-10 sensitivities were as low as 7.1%, 4.3%, 10.6%, 2.0%, and 13.8%, 

respectively in one hospital system, and 16.5%, 2.4%, 13.0%, 0.4%, and 11.8%, 

respectively in a separate hospital system.63 These are alarmingly low sensitivities and 

perhaps indicate specific variables for which ICD-10 coding is not well suited. While it 

was not indicated in the study how long the hospital systems had been using ICD-10 

coding, the study period spanned six years, suggesting these low sensitivities were likely 

not a result of the “learning curve” that would be associated with the early stages of the 

transition from ICD-9 to ICD-10. 

With regards to this so-called “learning curve,” a prior study looked to see if this 

truly exists and whether ICD-10 coding quality changes over time.64 This was a study 

performed in Switzerland and was conducted by randomly selecting 3,500 patients from 
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three different hospitals at two year intervals (1999, 2001, 2003). In these patients, the 

study authors evaluated the accuracy of ICD-10 coding for seventeen Charlson index 

comorbidities and twenty-nine Elixhauser index comorbidities. As a whole, ICD-10 

coding sensitivity for the Charlson comorbidities steadily increased from 36.5% to 42.5% 

to 42.8%. In the Elixhauser group, coding sensitivity increased from 34.2% to 38.6% to 

41.6%. On an individual scale, ICD-10 coding sensitivity increased for thirty of thirty-six 

total comorbidities and decreased for ten of thirty-six comorbidities. While overall, we 

make the case that these sensitivities would be considered rather poor, particularly for 

research use as part of a national database, it is encouraging that ICD-10 coding 

sensitivities showed the capacity in this study to improve in quality over time.  

Though it is still unclear exactly how ICD-10 will work out compared to ICD-9, it 

is already showing promising signs of establishing itself as an upgrade to the previous 

system. A main goal of ICD-10 was to increase the accuracy of coding, coming in the 

form of thousands of new codes able to capture diagnoses and procedures at a more 

granular level than ever before. While it in fact does appear in the early stages that ICD-

10 is accomplishing its goal of increased coding accuracy, it is yet unclear whether this 

accuracy will be high enough to make the data suitable for research purposes. In the 

coming years as ICD-10 is implemented in the United States, it will be of paramount 

importance to evaluate the coding accuracies of the new system, much in the same way as 

the present study. Studies such as these will aid in determining whether national 

databases constructed from new ICD-10 discharge codes are appropriate for research 

usage. 
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Administrative considerations 

 A final implication of the findings in the current study is the effect such 

inaccuracies in ICD-9 coding have on the administrative and billing aspects of healthcare 

in the United States. This has not been previously discussed in this paper, as this study 

was conducted to evaluate ICD-9 codes as they pertain to research purposes, rather than 

billing purposes. However, a brief discussion of this separate but similarly important 

aspect of ICD-9 coding is appropriate. 

 With the rollout of ICD-10 as a replacement for ICD-9 codes, one of the principal 

purposes of this implementation was to increase the accuracy of payment data, decrease 

the number of unpaid claims, and decrease payment fraud within the healthcare system.65-

67 Beginning with the advent of diagnosis related groups (DRGs) in the 1980s, hospitals 

now bill based on the complexity of a given patient’s hospital stay. As would be 

expected, comorbidities such as obesity and anemia contribute to a patient’s hospital visit 

complexity and associated hospital charges. One can imagine, if a hospital is only 

identifying 19% of non-morbidly obese patients, 48% of morbidly obese patients, and 

19% of anemic patients, there is a tremendous amount of ‘waste’ in the system for which 

the hospital is not charging for inpatient stays. This generally translates into higher profit 

margins for insurance companies and decreased payment to healthcare providers.65,66 Not 

only that, but with such inaccurate coding, it presents a significant challenge to those 

examining methods by which to control healthcare costs.65 How can cost control 

measures truly be implemented without an accurate knowledge of where costs originate 

in the first place? Poor ICD-9 coding obscures national trends in healthcare requirements 

and delivery. A final consideration regarding the ICD-9 code findings of the current study 
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is the void that remains for fraud within the system. With such inaccurate coding of 

comorbidities, there is no clear idea of the true cost of a given hospital visit, thus 

increasing the potential for fraudulent billing practices.67 Each of these elements 

concerning the administrative and billing components of the United States healthcare 

system further strengthen the case that the current inaccuracies of ICD-9 discharge codes 

are cause for great concern. 

 

Limitations 

This investigation has its limitations. The study was performed at one hospital 

system, so the findings may not apply to all hospitals in a given database. However, 

because the Yale-New Haven hospital system contributes data to many national 

databases, we believe it to be a clinically relevant sample. Moreover, as an example, our 

hospital population had an obesity rate of 36.0% compared to reported CDC rates of 

35.7%.  

 Another limitation specific to the obesity arm relates to the argument that 

assigning the ICD-9 code 278.00 (“Obesity, unspecified”) to patients with a BMI over 40 

is not necessarily incorrect, as occurred in 32 (1.5%) patients. That being said, previous 

studies that used administrative databases to examine both obesity and morbid obesity as 

separate variables have consistently used the “Obesity, unspecified” code to identify 

patients with BMIs of 30-39.9, reserving the “Morbid obesity” code for those with a BMI 

over 40.27,43 Because of this historical pattern, we attempted to be consistent with prior 

studies in our evaluation of these ICD-9 discharge codes. Similarly, we acknowledge that 

the ICD-9 codes V85.3 and V85.4 also exist as a secondary method to document a 
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patient’s specific BMI, though these are rarely used in the existing literature.12,51 

Nevertheless, including V85.3 for non-morbid obesity and V85.4 for morbid obesity in 

the overall analysis only marginally increased the ICD-9 code sensitivities, to 0.21 and 

0.54, respectively. 

 Similarly, a limitation specific to the anemia arm relates to the ICD-9 codes that 

were used for comparison. The authors attempted to compare preoperative hematocrit 

values with the same ICD-9 discharge codes that would be used to generate the 

comorbidity variable of “anemia,” based on what has been outlined previously by the 

NIS. We realized that it is certainly possible that other administratively coded databases 

use alternative combinations of ICD-9 discharge codes in order to determine a diagnosis 

of anemia. The NIS was chosen because of its current prolific use in medical and 

orthopaedic surgery research. 

 

 

Conclusion 

In light of the orthopaedic surgery community’s increasing reliance on large 

national databases, it is important to consider the data source.  As demonstrated by this 

study of obesity and anemia, ICD-9 coding is prone to significant inaccuracies that we 

argue are too great to be acceptable for research-quality data. These disparities have the 

potential to sway patient management, alter treatment decisions, and propagate 

potentially inaccurate conclusions in the literature.  

Though not the primary focus of the current study, these findings also have 

significant implications for billing and administrative entities within the United States 
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healthcare system. As we look to the coming years and the impending implementation of 

the ICD-10 coding system, there is emerging evidence that the quality of ICD-10 coding 

will be an improvement over the current ICD-9 system. However, it remains to be seen 

whether the data will be of sufficient quality for research purposes. Until then, though 

database research is a powerful tool, we must be careful to fully understand the quality of 

the data elements we use in order to reach meaningful conclusions. In this way, we will 

better capitalize on the power of database research to improve our knowledge and 

practice of orthopaedic surgery. 
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