

Burp	Suite	Cookbook

	

	

	

	

	

	

	

Practical	recipes	to	help	you	master	web	penetration	testing	with	Burp	Suite

	

	

	

	

	

	

	

	

	

	

	

Sunny	Wear

	

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Burp	Suite	Cookbook
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Pavan	Ramchandani
Acquisition	Editor:	Akshay	Jethani
Content	Development	Editor:	Abhishek	Jadhav
Technical	Editor:	Aditya	Khadye
Copy	Editor:	Safis	Editing
Project	Coordinator:	Jagdish	Prabhu
Proofreader:	Safis	Editing
Indexer:	Aishwarya	Gangawane
Graphics:	Jisha	Chirayil
Production	Coordinator:	Nilesh	Mohite

First	published:	September	2018

Production	reference:	1250918

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78953-173-2

www.packtpub.com

http://www.packtpub.com

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at
www.packt.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on
the	eBook	copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more
details.

At	www.packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

http://www.packt.com
http://www.packt.com

Contributors

About	the	author
Sunny	Wear,	CISSP,	GWAPT,	GSSP-JAVA,	GSSP-.NET,	CSSLP,	CEH	is	an
Information	Security	Architect,	Web	App	Penetration	Tester	and	Developer.	Her
experience	includes	network,	data,	application	and	security	architecture	as	well
as	programming	across	multiple	languages	and	platforms.	She	has	participated	in
the	design	and	creation	of	many	enterprise	applications	as	well	as	the	security
testing	aspects	of	platforms	and	services.	She	is	the	author	of	several	security-
related	books	which	assists	programmers	in	more	easily	finding	mitigations	to
commonly-identified	vulnerabilities	within	applications.	She	conducts	security
talks	and	classes	at	conferences	like	BSides	Tampa,	AtlSecCon,	Hackfest,	CA,
and	BSides	Springfield.

About	the	reviewer
Sachin	Wagh	is	a	young	information	security	researcher	from	India.	His	core
area	of
expertise	includes	penetration	testing,	vulnerability	analysis,	and	exploit
development.	He
has	found	security	vulnerabilities	in	Google,	Tesla	Motors,	LastPass,	Microsoft,
F-Secure,
and	other	companies.	Due	to	the	severity	of	many	bugs	discovered,	he	has
received
numerous	awards	for	his	findings.	He	has	participated	in	several	security
conferences	as	a
speaker,	such	as	Hack	In	Paris,	Infosecurity	Europe,	and	HAKON.

	

	

	

	

	

What	this	book	covers
Chapter	1,	Getting	Started	with	Burp	Suite,	provides	setup	instructions	necessary
to	proceed	through	the	material	of	the	book.

Chapter	2,	Getting	to	Know	the	Burp	Suite	of	Tools,	begins	with	establishing	the
Target	scope	and	provides	overviews	to	the	most	commonly	used	tools	within
Burp	Suite.

Chapter	3,	Configuring,	Spidering,	Scanning,	and	Reporting	with	Burp,	helps
testers	to	calibrate	Burp	settings	to	be	less	abusive	towards	the	target	application.

Chapter	4,	Assessing	Authentication	Schemes,	covers	the	basics	of
Authentication,	including	an	explanation	that	this	is	the	act	of	verifying	a	person
or	object	claim	is	true.

Chapter	5,	Assessing	Authorization	Checks,	helps	you	understand	the	basics	of
Authorization,	including	an	explanation	that	this	how	an	application	uses	roles	to
determine	user	functions.

Chapter	6,	Assessing	Session	Management	Mechanisms,	dives	into	the	basics	of
Session	Management,	including	an	explanation	that	this	how	an	application
keeps	track	of	user	activity	on	a	website.

Chapter	7,	Assessing	Business	Logic,	covers	the	basics	of	Business	Logic
Testing,	including	an	explanation	of	some	of	the	more	common	tests	performed
in	this	area.

Chapter	8,	Evaluating	Input	Validation	Checks,	delves	into	the	basics	of	Data
Validation	Testing,	including	an	explanation	of	some	of	the	more	common	tests
performed	in	this	area.

Chapter	9,	Attacking	the	Client,	helps	you	understand	how	Client-Side	testing	is
concerned	with	the	execution	of	code	on	the	client,	typically	natively	within	a
web	browser	or	browser	plugin.	Learn	how	to	use	Burp	to	test	the	execution	of
code	on	the	client-side	to	determine	the	presence	of	Cross-site	Scripting	(XSS).

Chapter	10,	Working	with	Burp	Macros	and	Extensions,	teaches	you	how	Burp
macros	enable	penetration	testers	to	automate	events	such	as	logins	or	response
parameter	reads	to	overcome	potential	error	situations.	We	will	also	learn	about
Extensions	as	an	additional	functionality	to	Burp.

Chapter	11,	Implementing	Advanced	Topic	Attacks,	provides	a	brief	explanation
of	XXE	as	a	vulnerability	class	targeting	applications	which	parse	XML	and
SSRF	as	a	vulnerability	class	allowing	an	attacker	to	force	applications	to	make
unauthorized	requests	on	the	attacker’s	behalf.

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit
authors.packtpub.com	and	apply	today.	We	have	worked	with	thousands	of
developers	and	tech	professionals,	just	like	you,	to	help	them	share	their	insight
with	the	global	tech	community.	You	can	make	a	general	application,	apply	for	a
specific	hot	topic	that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page
Copyright	and	Credits

Burp	Suite	Cookbook
Packt	Upsell

Why	subscribe?
Packt.com

Contributors
About	the	author
About	the	reviewer
Packt	is	searching	for	authors	like	you

Preface
Who	this	book	is	for
What	this	book	covers
To	get	the	most	out	of	this	book

Conventions	used
Sections

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Get	in	touch
Reviews

Disclaimer
Targeting	legal	vulnerable	web	applications

1.	 Getting	Started	with	Burp	Suite
Introduction
Downloading	Burp	(Community,	Professional)

Getting	ready
Software	tool	requirements

How	to	do	it...
Setting	up	a	web	app	pentesting	lab

Getting	ready
Software	tool	requirements

How	to	do	it...
How	it	works

Starting	Burp	at	a	command	line	or	as	an	executable
How	to	do	it...
How	it	works...

Listening	for	HTTP	traffic,	using	Burp
Getting	ready
How	to	do	it...
How	it	works...

2.	 Getting	to	Know	the	Burp	Suite	of	Tools
Introduction
Software	tool	requirements
Setting	the	Target	Site	Map

Getting	ready
How	to	do	it...
How	it	works...

Understanding	the	Message	Editor
Getting	ready
How	to	do	it...

Repeating	with	Repeater
Getting	ready
How	to	do	it...

Decoding	with	Decoder
Getting	ready
How	to	do	it...

Intruding	with	Intruder
Getting	ready
How	to	do	it...

Target
Positions
Payloads

Payload	Sets
Payload	Options
Payload	Processing
Payload	Encoding

Options
Request	Headers
Request	Engine
Attack	Results

Grep	-	Match
Grep	-	Extract
Grep	-	Payloads
Redirections

Start	attack	button
3.	 Configuring,	Spidering,	Scanning,	and	Reporting	with	Burp

Introduction
Software	tool	requirements
Establishing	trust	over	HTTPS

Getting	ready
How	to	do	it...

Setting	Project	options
How	to	do	it...

The	Connections	tab
The	HTTP	tab
The	SSL	tab
The	Sessions	tab
The	Misc	tab

Setting	user	options
How	to	do	it...

The	SSL	tab
The	Display	tab
The	Misc	tab

Spidering	with	Spider
Getting	ready

The	Control	tab
The	Options	tab

How	to	do	it...
Scanning	with	Scanner

Getting	ready
How	to	do	it...

Reporting	issues
Getting	ready
How	to	do	it...

4.	 Assessing	Authentication	Schemes
Introduction
Software	tool	requirements
Testing	for	account	enumeration	and	guessable	accounts

Getting	ready

How	to	do	it...
Testing	for	weak	lock-out	mechanisms

Getting	ready
How	to	do	it...

Testing	for	bypassing	authentication	schemes
Getting	ready
How	to	do	it...
How	it	works

Testing	for	browser	cache	weaknesses
Getting	ready
How	to	do	it...

Testing	the	account	provisioning	process	via	the REST	API
Getting	ready
How	to	do	it...

5.	 Assessing	Authorization	Checks
Introduction
Software	requirements
Testing	for	directory	traversal

Getting	ready
How	to	do	it...
How	it	works...

Testing	for	Local	File	Include	(LFI)
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	Remote	File	Inclusion	(RFI)
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	privilege	escalation
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	Insecure	Direct	Object	Reference	(IDOR)
Getting	ready
How	to	do	it...
How	it	works...

6.	 Assessing	Session	Management	Mechanisms
Introduction

Software	tool	requirements
Testing	session	token	strength	using	Sequencer

Getting	ready
How	to	do	it...
How	it	works...

Testing	for	cookie	attributes
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	session	fixation
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	exposed	session	variables
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	Cross-Site	Request	Forgery
Getting	ready
How	to	do	it...
How	it	works...

7.	 Assessing	Business	Logic
Introduction
Software	tool	requirements
Testing	business	logic	data	validation

Getting	ready
How	to	do	it...
How	it	works...

Unrestricted	file	upload	–	bypassing	weak	validation
Getting	ready
How	to	do	it...
How	it	works...

Performing	process-timing	attacks
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	the	circumvention	of	work	flows
Getting	ready
How	to	do	it...

How	it	works...
Uploading	malicious	files	–	polyglots

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

8.	 Evaluating	Input	Validation	Checks
Introduction
Software	tool	requirements
Testing	for	reflected	cross-site	scripting

Getting	ready
How	to	do	it...
How	it	works...

Testing	for	stored	cross-site	scripting
Getting	ready
How	to	do	it...
How	it	works...

Testing	for HTTP	verb	tampering
Getting	ready
How	to	do	it...
How	it	works...

Testing	for HTTP	Parameter	Pollution
Getting	ready
How	to	do	it...
How	it	works...

Testing	for SQL	injection
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Testing	for command	injection
Getting	ready
How	to	do	it...
How	it	works...

9.	 Attacking	the	Client
Introduction
Software	tool	requirements
Testing	for	Clickjacking

Getting	ready

How	to	do	it...
How	it	works...

Testing	for	DOM-based	cross-site	scripting
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	JavaScript	execution
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	HTML	injection
Getting	ready
How	to	do	it...
How	it	works...

Testing	for	client-side	resource	manipulation
Getting	ready
How	to	do	it...
How	it	works...

10.	 Working	with	Burp	Macros	and	Extensions
Introduction
Software	tool	requirements
Creating	session-handling	macros

Getting	ready
How	to	do	it...
How	it	works...

Getting	caught	in	the	cookie	jar
Getting	ready
How	to	do	it...
How	it	works...

Adding	great	pentester	plugins
Getting	ready
How	to	do	it...
How	it	works...

Creating	new	issues	via	the	Manual-Scan	Issues	Extension
Getting	ready
How	to	do	it...
How	it	works...
See	also

Working	with	the	Active	Scan++	Extension

Getting	ready
How	to	do	it...
How	it	works...

11.	 Implementing	Advanced	Topic	Attacks
Introduction
Software	tool	requirements
Performing	XXE	attacks

Getting	ready
How	to	do	it...
How	it	works...

Working	with	JWT
Getting	ready
How	to	do	it...
How	it	works...

Using	Burp	Collaborator	to	determine	SSRF
Getting	ready
How	to	do	it...
How	it	works...
See	also

Testing	CORS
Getting	ready
How	to	do	it...
How	it	works...
See	also

Performing	Java	deserialization	attacks
Getting	Ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Other	Books	You	May	Enjoy
Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Burp	Suite	is	a	Java-based	platform	for	testing	the	security	of	your	web
applications,	and	has	been	adopted	widely	by	professional	enterprise	testers.
The	Burp	Suite	Cookbook	contains	recipes	to	tackle	challenges	in	determining
and	exploring	vulnerabilities	in	web	applications.	You	will	learn	how	to	uncover
security	flaws	with	various	test	cases	for	complex	environments.	After	you	have
configured	Burp	for	your	environment,	you	will	use	Burp	tools	such	as	Spider,
Scanner,	Intruder,	Repeater,	and	Decoder,	among	others,	to	resolve	specific
problems	faced	by	pentesters.	You	will	also	explore	working	with	various	modes
of	Burp	and	then	perform	operations	on	the	web	using	the	Burp	CLI.	Toward	the
end,	you	will	cover	recipes	that	target	specific	test	scenarios	and	resolve	them
using	best	practices.
By	the	end	of	the	book,	you	will	be	up	and	running	with	deploying	Burp	for
securing	web	applications.

Who	this	book	is	for
If	you	are	a	security	professional,	web	pentester,	or	software	developer	who
wants	to	adopt	Burp	Suite	for	applications	security,	this	book	is	for	you.

To	get	the	most	out	of	this	book
All	the	requirements	are	updated	in	the	Technical	requirements	section	for	each
of	the	chapter.	

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Allow	the	attack	to	continue	until	you	reach
payload	50."

A	block	of	code	is	set	as	follows:

	<script>try{var	m	=	"";var	l	=	window.localStorage;	var	s	=

window.sessionStorage;for(i=0;i<l.length;i++){var	lKey	=	l.key(i);m

+=	lKey	+	"="	+	l.getItem(lKey)	+

";\n";};for(i=0;i<s.length;i++){var	lKey	=	s.key(i);m	+=	lKey	+	"="

+	s.getItem(lKey)	+

";\n";};alert(m);}catch(e){alert(e.message);}</script>	

Any	command-line	input	or	output	is	written	as	follows:

	user'+union+select+concat('The+password+for+',username,'+is+',+pas

s

word),mysignature+from+accounts+--+	

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	a	tool	from	the	drop-down	listing	and	click	the	Lookup	Tool
button."

Warnings	or	important	notes	appear	like	this.
Tips	and	tricks	appear	like	this.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections	as
follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-
errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and
entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

http://www.packt.com/

Disclaimer
The	information	within	this	book	is	intended	to	be	used	only	in	an	ethical
manner.	Do	not	use	any	information	from	the	book	if	you	do	not	have	written
permission	from	the	owner	of	the	equipment.	If	you	perform	illegal	actions,	you
are	likely	to	be	arrested	and	prosecuted	to	the	full	extent	of	the	law.	Packt
Publishing	does	not	take	any	responsibility	if	you	misuse	any	of	the	information
contained	within	the	book.	The	information	herein	must	only	be	used	while
testing	environments	with	proper	written	authorizations	from	appropriate
persons	responsible.

Targeting	legal	vulnerable	web
applications
In	order	for	us	to	properly	showcase	the	functions	of	Burp	Suite,	we	need	a
target	web	application.	We	need	to	have	a	target	which	we	are	legally	allowed	to
attack.	

“Know	Your	Enemy”	is	a	saying	derived	from	Sun	Tzu's	The	Art	of	War.	The
application	of	this	principle	in	penetration	testing	is	the	act	of	attacking	a	target.
The	purpose	of	the	attack	is	to	uncover	weaknesses	in	a	target	which	can	then	be
exploited.	Commonly	referred	to	as	ethical	hacking,	attacking	legal	targets
assists	companies	to	assess	the	level	of	risk	in	their	web	applications.

More	importantly,	any	penetration	testing	must	be	done	with	express,	written
permission.	Attacking	any	website	without	this	permission	can	result	in	litigation
and	possible	incarceration.	Thankfully,	the	information	security	community
provides	many	purposefully	vulnerable	web	applications	to	allow	students	to
learn	how	to	hack	in	a	legal	way.

A	consortium	group,	Open	Web	Application	Security	Project,	commonly
referred	to	as	OWASP,	provides	a	plethora	of	resources	related	to	web	security.
OWASP	is	considered	the	de	facto	standard	in	the	industry	for	all	things	web
security-related.	Every	three	years	or	so,	the	group	creates	a	listing	of	the	Top	10
most	common	vulnerabilities	found	in	web	applications.

See	here	for	more	information
(https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project).

Throughout	this	book,	we	will	use	purposefully	vulnerable	web	applications
compiled	into	one	virtual	machine	by	OWASP.		This	setup	enables	us	to	legally
attack	the	targets	contained	within	the	virtual	machine.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Getting	Started	with	Burp	Suite
In	this	chapter,	we	will	cover	the	following	recipes:

Downloading	Burp	(Community,	Professional)
Setting	up	a	web	app	pentesting	lab
Starting	Burp	at	a	command	line	or	an	executable
Listening	for	HTTP	traffic,	using	Burp

Introduction
This	chapter	provides	the	setup	instructions	necessary	to	proceed	through	the
material	in	this	book.	Starting	with	downloading	Burp,	the	details	include	the
two	main	Burp	editions	available	and	their	distinguishing	characteristics.	

To	use	the	Burp	suite,	a	penetration	tester	requires	a	target	application.	This
chapter	includes	instructions	on	downloading	and	installing	OWASP
applications	contained	within	a	virtual	machine	(VM).	Such	applications	will
be	used	throughout	the	book	as	targeted	vulnerable	web	applications.		

Also	included	in	this	chapter	is	configuring	a	web	browser	to	use	the	Burp
Proxy	Listener.	This	listener	is	required	to	capture	HTTP	traffic	between	the
Burp	and	the	target	web	application.	Default	settings	for	the	listener	include
an	Internet	Protocol	(IP)	address,	127.0.0.1,	and	port	number	8080.

Finally,	this	chapter	concludes	with	the	options	for	starting	Burp.	This	includes
how	to	start	Burp	at	the	command	line,	also	with	an	optional	headless	mode,	and
using	the	executable.

Downloading	Burp	(Community,
Professional)
The	first	step	in	learning	the	techniques	contained	within	this	book	is	to
download	the	Burp	suite.	The	download	page	is	available	here
(https://portswigger.net/burp/).	You	will	need	to	decide	which	edition	of	the	Burp
suite	you	would	like	to	download	from	the	following:

Professional
Community
Enterprise	(not	covered)

What	is	now	termed	Community	was	once	labeled	Free	Edition.	You	may	see
both	referenced	on	the	internet,	but	they	are	one	and	the	same.	At	the	time	of	this
writing,	the	Professional	edition	costs	$399.

To	help	you	make	your	decision,	let's	compare	the	two.	The	Community	version
offers	many	of	the	functions	used	in	this	book,	but	not	all.	For	example,
Community	does	not	include	any	scanning	functionality.	In	addition,	the
Community	version	contains	some	forced	throttling	of	threads	when	using	the
Intruder	functionality.	There	are	no	built-in	payloads	in	the	Community	version,
though	you	can	load	your	own	custom	ones.	And,	finally,	several	Burp
extensions	that	require	Professional	will,	obviously,	not	work	in	the	Community
edition.

The	Professional	version	has	all	functionality	enabled	including	passive	and
active	scanners.	There	is	no	forced	throttled.	PortSwigger	(that	is,	the	name	of
the	company	that	writes	and	maintains	the	Burp	suite)	provides	several	built-in
payloads	for	fuzzing	and	brute-forcing.	Burp	extensions	using	scanner-related
API	calls	are	workable	in	the	Professional	version	as	well.

In	this	book,	we	will	be	using	the	Professional	version,	which	means	much	of	the
functionality	is	available	in	the	Community	edition.	However,	when	a	feature	is
used	in	this	book	specific	to	the	Professional	edition,	a	special	icon	will	indicate
this.	The	icon	used	is	the	following:

https://portswigger.net/burp/

Getting	ready
To	begin	our	adventure	together,	go	to	https://portswigger.net/burp	and
download	the	edition	of	the	Burp	suite	you	wish	to	use.	The	page	provides	a
slider,	as	following,	which	highlights	the	features	of	Professional	and
Community,	allowing	you	to	compare	them:

Many	readers	may	choose	the	Community	edition	to	gain	familiarity	with	the
product	prior	to	purchasing.

Should	you	choose	to	purchase	or	trial	the	Professional	edition,	you	will	need	to
complete	forms	or	payments	and	subsequent	email	confirmations	will	be	sent	to
you.	Once	your	account	is	created,	you	may	login	and	perform	the	download
from	the	links	provided	in	our	account.

https://portswigger.net/burp

Software	tool	requirements
To	complete	this	recipe,	you	will	need	the	following:

Oracle	Java	(https://www.java.com/en/download/)
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
Firefox	Browser	(https://www.mozilla.org/en-US/firefox/new/)

https://www.java.com/en/download/
https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/

How	to	do	it...
After	deciding	on	the	edition	you	need,	you	have	two	installation	options,
including	an	executable	or	a	plain	JAR	file.	The	executable	is	only	available	in
Windows	and	is	offered	in	both	32-bit	or	64-bit.	The	plain	JAR	file	is	available
for	Windows,	macOS,	and	Linux.

The	Windows	executable	is	self-contained	and	will	create	icons	in	your	program
listing.	However,	the	plain	JAR	file	requires	your	platform	to	have	Java
(https://www.java.com/en/download/)	pre-installed.	You	may	choose	the	current
version	of	Java	(JRE	or	JDK)	so	feel	free	to	choose	the	latest	version:

https://www.java.com/en/download/

Setting	up	a	web	app	pentesting	lab
The	Broken	Web	Application	(BWA)	is	an	OWASP	project	that	provides	a	self-
contained	VM	complete	with	a	variety	of	applications	with	known
vulnerabilities.	The	applications	within	this	VM	enable	students	to	learn	about
web	application	security,	practice	and	observe	web	attacks,	and	make	use	of
penetration	tools	such	as	Burp.

To	follow	the	recipes	shown	in	this	book,	we	will	utilize	OWASP's	BWA	VM.	At
the	time	of	this	writing,	the	OWASP	BWA	VM	can	be	downloaded	from
https://sourceforge.net/projects/owaspbwa/files/.

https://sourceforge.net/projects/owaspbwa/files/

Getting	ready
We	will	download	the	OWASP	BWA	VM	along	with	supportive	tools	to	create
our	web	app	pentesting	lab.

Software	tool	requirements
To	complete	this	recipe,	you	will	need	the	following:

Oracle	VirtualBox	(https://www.virtualbox.org/wiki/Downloads)
Choose	an	executable	specific	to	your	platform

Mozilla	Firefox	Browser	(https://www.mozilla.org/en-US/firefox/new/)
7-Zip	file	archiver	(https://www.7-zip.org/download.html)
OWASP	BWA	VM	(https://sourceforge.net/projects/owaspbwa/files/)
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
Oracle	Java	(https://www.java.com/en/download/)

https://www.virtualbox.org/wiki/Downloads
https://www.mozilla.org/en-US/firefox/new/
https://www.7-zip.org/download.html
https://sourceforge.net/projects/owaspbwa/files/
https://portswigger.net/burp/
https://www.java.com/en/download/

How	to	do	it...
For	this	recipe,	you	will	need	to	download	the	OWASP	BWA	VM	and	install	it
by	performing	the	following	steps:

1.	 Click	Download	Latest	Version	from	the	OWASP	BWA	VM	link	provided
earlier	and	unzip	the	file	OWASP_Broken_Web_Apps_VM_1.2.7z.

2.	 You	will	be	presented	with	a	listing	of	several	files,	as	follows:

3.	 All	file	extensions	shown	indicate	the	VM	can	be	imported	into	Oracle
VirtualBox	or	VMware	Player/Workstation.	For	purposes	of	setting	up	the
web	application	pentesting	lab	for	this	book,	we	will	use	Oracle	VirtualBox.

4.	 Make	a	note	of	the	OWASP	Broken	Web	Apps-cl1.vmdk	file.	Open	the
VirtualBox	Manager	(that	is,	the	Oracle	VM	VirtualBox	program).	

5.	 Within	the	VirtualBox	Manager	screen,	select	Machine	|	New	from	the	top
menu	and	type	a	name	for	the	machine,	OWASP	BWA.

6.	 Set	the	type	to	Linux	and	version	to	Ubuntu	(64-bit),	and	then	click	Next,	as
follows:

7.	 The	next	screen	allows	you	to	adjust	the	RAM	or	leave	as	suggested.	Click
Next.

8.	 On	the	next	screen,	choose	Use	an	existing	virtual	hard	disk	file.
9.	 Use	the	folder	icon	on	the	right	to	select	OWASP	Broken	Web	Apps-

cl1.vmdk	file	from	the	extracted	list	and	click	Create,	as	follows:

10.	 Your	VM	is	now	loaded	in	the	VirtualBox	Manager.	Let's	make	some	minor
adjustments.	Highlight	the	OWASP	BWA	entry	and	select	Settings	from
the	top	menu.

11.	 Select	the	Network	section	in	the	left-hand	pane	and	change	to	Host-only
Adapter.	Click	OK.

12.	 Now	let's	start	the	virtual	machine.	Right-click	then	choose	Start	|	Normal
Start.

13.	 Wait	until	the	Linux	system	is	fully	booted,	which	may	take	a	few	minutes.
After	the	booting	process	is	complete,	you	should	see	the	following	screen.
However,	the	IP	address	shown	will	be	different	for	your	machine:

14.	 The	information	presented	on	this	screen	identifies	the	URL	where	you	can
access	vulnerable	web	applications	running	on	the	VM.	For	example,	in	the
previous	screenshot,	the	URL	is	http://192.168.56.101/.		You	are	given
a	prompt	for	administering	the	VM,	but	it	is	not	necessary	to	log	in	at	this

time.
15.	 Open	the	Firefox	browser	on	your	host	system,	not	in	the	VM.	Using	the

Firefox	Browser	on	your	host	machine,	enter	the	URL	provided	(for
example,	http://192.168.56.101/),	where	the	IP	address	is	specific	to
your	machine.

16.	 In	your	browser,	you	are	presented	with	an	index	page	containing	links	to
vulnerable	web	applications.	These	applications	will	be	used	as	targets
throughout	this	book:

How	it	works
Leveraging	a	customized	virtual	machine	created	by	OWASP,	we	can	quickly	set
up	a	web	app	pentesting	lab	containing	purposefully	vulnerable	applications,
which	we	can	use	as	legal	targets	for	our	exercises	throughout	this	book.

Starting	Burp	at	a	command	line	or
as	an	executable
For	non-Windows	users	or	those	Windows	users	who	chose	the	plain	JAR	file
option,	you	will	start	Burp	at	a	command	line	each	time	they	wish	to	run	it.	As
such,	you	will	require	a	particular	Java	command	to	do	so.

In	some	circumstances,	such	as	automated	scripting,	you	may	wish	to	invoke
Burp	at	the	command	line	as	a	line	item	in	your	shell	script.	Additionally,	you
may	wish	to	run	Burp	without	a	graphical	user	interface	(GUI),	referred	to	as
headless	mode.	This	section	describes	how	to	perform	these	tasks.

How	to	do	it...
We	will	review	the	commands	and	actions	required	to	start	the	Burp	Suite
product:

1.	 Start	Burp	in	Windows,	after	running	the	installer	from	the	downloaded
.exe	file,	by	double-clicking	the	icon	on	desktop	or	select	it	from	the
programs	listing:

When	using	the	plain	JAR	file,	the	executable	java	is	followed	by	the
option	of	–jar,	followed	by	the	name	of	the	download	JAR	file.

2.	 Start	Burp	at	the	command	line	(minimal)	with	the	plain	JAR	file	(Java
must	be	installed	first):

If	you	prefer	more	control	over	the	heap	size	settings	(that	is,	the	amount
of	memory	allocated	for	the	program)	you	may	modify	the	java
command.

3.	 The	java	executable	is	followed	by	the	–jar,	followed	by	the	memory
allocation.	In	this	case,	2	GB	(that	is,	2g)	is	allocated	for	read	access
memory	(RAM),	followed	by	the	name	of	the	JAR	file.	If	you	get	an	error
to	the	effect	that	you	cannot	allocate	that	much	memory,	just	drop	the
amount	down	to	something	like	1,024	MB	(that	is,	1024m)	instead.

4.	 Start	Burp	at	command	line	(optimize)	with	the	plain	JAR	file	(Java	must
be	installed	first):

5.	 It	is	possible	to	start	Burp	at	the	command	line	and	to	run	it	in	headless
mode.	Headless	mode	means	running	Burp	without	the	GUI.

For	the	purposes	of	this	book,	we	will	not	be	running	Burp	in	headless
mode,	since	we	are	learning	through	the	GUI.	However,	you	may	require
this	information	in	the	future,	which	is	why	it	is	presented	here.

6.	 Start	Burp	at	the	command	line	to	run	in	headless	mode	with	the	plain	JAR
file	(Java	must	be	installed	first):

Note	the	placement	of	the	parameter	-Djava.awt.headless=true
immediately	following	the	-jar	option	and	before	the	name	of	the	JAR
file.	

7.	 If	successful,	you	should	see	the	following:

Press	Ctrl	+	C	or	Ctrl	+	Z	to	stop	the	process.

8.	 It	is	possible	to	provide	a	configuration	file	to	the	headless	mode	command
for	customizing	the	port	number	and	IP	address	where	the	proxy	listener	is
located.

Please	consult	PortSwigger's	support	pages	for	more	information	on	this
topic:	https://support.portswigger.net/customer/portal/questions/16805563-burp-
command-line.

9.	 In	each	startup	scenario	described,	you	should	be	presented	with	a	splash
screen.	The	splash	screen	label	will	match		whichever	edition	you	decided
to	download,	either	Professional	or	Community.

10.	 You	may	be	prompted	to	update	the	version;	feel	free	to	do	this,	if	you	like.
New	features	are	constantly	added	into	Burp	to	help	you	find
vulnerabilities,	so	upgrading	the	application	is	a	good	idea.	Choose	Update
Now,	if	applicable.

https://support.portswigger.net/customer/portal/questions/16805563-burp-command-line

11.	 Next,	you	are	presented	with	a	dialog	box	asking	about	project	files	and
configurations:

12.	 If	you	are	using	the	Community	edition,	you	will	only	be	able	to	create	a
temporary	project.	If	you	are	using	the	Professional	edition,	create	a	new
project	on	disk,	saving	it	in	an	appropriate	location	for	you	to	find.	Click
Next.

13.	 The	subsequent	splash	screen	asks	you	about	the	configurations	you	would
like	to	use.	At	this	point,	we	don't	have	any	yet,	so	choose	Use	Burp
defaults.	As	you	progress	through	this	book,	you	may	wish	to	save
configuration	settings	and	load	them	from	this	splash	screen	in	the	future,
as	follows:

14.	 Finally,	we	are	ready	to	click	Start	Burp.

How	it	works...
Using	either	the	plain	JAR	file	or	the	Windows	executable,	you	can	launch	Burp
to	start	the	Proxy	listener	to	capture	HTTP	traffic.	Burp	offers	temporary	or
permanent	Project	files	to	save	activities	performed	in	the	suite.

Listening	for	HTTP	traffic,	using
Burp
Burp	is	described	as	an	intercepting	proxy.	This	means	Burp	sits	between	the
user's	web	browser	and	the	application's	web	server	and	intercepts	or	captures	all
of	the	traffic	flowing	between	them.	This	type	of	behavior	is	commonly	referred
to	as	a	Proxy	service.

Penetration	testers	use	intercepting	proxies	to	capture	traffic	flowing	between	a
web	browser	and	a	web	application	for	the	purposes	of	analysis	and
manipulation.	For	example,	a	tester	can	pause	any	HTTP	request,	thus	allowing
parameter	tampering	prior	to	sending	the	request	to	the	web	server.

Intercepting	proxies,	such	as	Burp,	allow	testers	to	intercept	both	HTTP	requests
and	HTTP	responses.	This	allows	a	tester	to	observe	the	behavior	of	the	web
application	under	different	conditions.	And,	as	we	shall	see,	sometimes,	the
behaviors	are	unintended	from	what	the	original	developer	expected.

To	see	the	Burp	suite	in	action,	we	need	to	configure	our	Firefox	browser's
Network	Settings	to	point	to	our	running	instance	of	Burp.	This	enables	Burp	to
capture	all	HTTP	traffic	that	is	flowing	between	your	browser	and	the	target	web
application.	

Getting	ready
We	will	configure	Firefox	browser	to	allow	Burp	to	listen	to	all	HTTP	traffic
flowing	between	the	browser	and	the	OWASP	BWA	VM.	This	will	allow	the
proxy	service	within	Burp	to	capture	traffic	for	testing	purposes.			

Instructions	are	available	on	PortSwigger	at
(https://support.portswigger.net/customer/portal/articles/1783066-configuring-
firefox-to-work-with-burp)	and	we	will	also	step	through	the	process	in	the
following	recipe.

https://support.portswigger.net/customer/portal/articles/1783066-configuring-firefox-to-work-with-burp

How	to	do	it...
The	following	are	the	steps	you	can	go	through	to	listen	to	all	HTTP	traffic
using	Burp:

1.	 Open	the	Firefox	browser	and	go	to	Options.
2.	 In	the	General	tab,	scroll	down	to	the	Network	Proxy	section	and	then	click

Settings.
3.	 In	the	Connection	Settings,	select	Manual	proxy	configuration	and	type	in

the	IP	address	of	127.0.0.1	with	port	8080.	Select	the	Use	this	proxy	server
for	all	protocols	checkbox:

4.	 Make	sure	the	No	proxy	for	the	textbox	is	blank,	as	shown	in	the	following
screenshot,	and	then	click	OK:

5.	 With	the	OWASP	BWA	VM	running	in	the	background	and	using	Firefox	to
browse	to	the	URL	specific	to	your	machine	(that	is,	the	IP	address	shown

on	the	Linux	VM	in	VirtualBox),	click	the	reload	button	(the	arrow	in	a
circle)	to	see	the	traffic	captured	in	Burp.

6.	 If	you	don't	happen	to	see	any	traffic,	check	whether	Proxy	Intercept	is
holding	up	the	request.	If	the	button	labeled	Intercept	is	on	is	depressed,	as
shown	in	the	following	screenshot,	then	click	the	button	again	to	disable	the
interception.	After	doing	so,	the	traffic	should	flow	freely	into	Burp,	as
follows:

In	the	following,	Proxy	|	Intercept	button	is	disabled:

7.	 If	everything	is	working	properly,	you	will	see	traffic	on	your	Target	|	Site
map	tab	similar	to	what	is	shown	in	the	following	screenshot.	Your	IP
address	will	be	different,	of	course,	and	you	may	have	more	items	shown
within	your	Site	map.	Congratulations!	You	now	have	Burp	listening	to	all
of	your	browser	traffic!

How	it	works...
The	Burp	Proxy	service	is	listening	on	127.0.0.1	port	8080.	Either	of	these
settings	can	be	changed	to	listen	on	an	alternative	IP	address	or	port	number.
However,	for	the	purpose	of	learning,	we	will	use	the	default	settings.

Getting	to	Know	the	Burp	Suite	of
Tools
In	this	chapter,	we	will	cover	the	following	recipes:

Setting	the	Target	Site	Map
Understanding	Message	Editor
Repeating	with	Repeater
Decoding	with	Decoder
Intruding	with	Intruder

Introduction
This	chapter	provides	overviews	of	the	most	commonly	used	tools	within	Burp
Suite.	The	chapter	begins	by	establishing	the	Target	scope	within	the	Target	Site
Map.	This	is	followed	by	an	introduction	to	the	Message	Editor.	Then,	there	will
be	some	hands-on	recipes	using	OWASP	Mutillidae	II	to	get	acquainted	with
Proxy,	Repeater,	Decoder,	and	Intruder.		

Software	tool	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
The	Firefox	browser	configured	to	allow	Burp	to	proxy	traffic
(https://www.mozilla.org/en-US/firefox/new/)

https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/

Setting	the	Target	Site	Map
Now	that	we	have	traffic	flowing	between	your	browser,	Burp,	and	the	OWASP
BWA	virtual	machine,	we	can	begin	setting	the	scope	of	our	test.	For	this	recipe,
we	will	use	the	OWASP	Mutillidae	II	link
(http://<Your_VM_Assigned_IP_Address>/mutillidae/)	available	in	the
OWASP	BWA	VM	as	our	target	application.

Looking	more	closely	at	the	Target	tab,	you	will	notice	there	are	two	subtabs
available:	Site	map	and	Scope.	From	the	initial	proxy	setup	between	your
browser,	Burp,	and	the	web	server,	you	should	now	have	some	URLs,	folders,
and	files	shown	in	the	Target	|	Site	map	tab.	You	may	find	the	amount	of
information	overwhelming,	but	setting	the	scope	for	our	project	will	help	to
focus	our	attention	better.

Getting	ready
Using	the	Target	|	Site	map	and	Target	|	Scope	tab,	we	will	assign	the	URL	for
mutillidae	(http://<Your_VM_Assigned_IP_Address>/mutillidae/)	as
the	scope.

How	to	do	it...
Execute	the	following	steps	to	set	the	Target	Site	Map:

1.	 Search	for	the	folder	mutillidae	and	right-click	on	Add	to	scope.	Notice
the	brief	highlighting	of	the	Target	|	Scope	subtab,	as	follows:	

2.	 Upon	adding	the	folder	mutillidae	to	your	scope,	you	may	be	presented
with	a	Proxy	history	logging	dialog	box,	as	follows.	You	may	choose	to
avoid	collecting	messages	out	of	your	cope	by	clicking	Yes.	Or	you	may
choose	to	continue	to	have	the	Proxy	HTTP	History	table	collect	any
messages	passing	through	Burp,	even	if	those	messages	fall	outside	the
scope	you've	identified.	For	our	purposes,	we	will	select	Yes:

3.	 Flipping	over	the	Target	|	Scope	tab,	you	should	now	see	the	full	URL	for
the	OWASP	Mutillidae	II,	shown	in	the	Include	in	scope	table,	as	follows:

How	it	works...
The	Message	Editor	displays	detailed	information	any	HTTP	message	flowing
through	the	Proxy	listener.	After	setting	up	Proxy	to	capture	HTTP	traffic,	as
seen	in	your	Target	|	Site	map	and	Burp	Proxy	|	HTTP	history	tab,	you	are	able
to	select	any	single	message	to	reveal	the	Message	Editor.	Each	editor	contains
the	request	and	response	sides	of	the	message,	so	long	as	the	message	is	properly
proxied	through	Burp.

Understanding	the	Message	Editor
On	almost	every	tool	and	tab	within	Burp	Suite	that	display	an	HTTP	message,
you	will	see	an	editor	identifying	the	request	and	response.	This	is	commonly
referred	to	as	the	Message	Editor.	The	Message	Editor	allows	viewing	and
editing	HTTP	requests	and	responses	with	specialties.	

Within	the	Message	Editor	are	multiple	subtabs.	The	subtabs	for	a	request
message,	at	a	minimum,	include	the	following:

Raw
Headers
Hex

The	subtabs	for	a	response	message	include	the	following:

Raw
Headers
Hex
HTML	(sometimes)
Render	(sometimes)

The	Raw	tab	gives	you	the	message	in	its	raw	HTTP	form.	The	Headers	tab
displays	HTTP	header	parameters	in	tabular	format.	The	parameters	are	editable,
and	columns	can	be	added,	removed,	or	modified	in	the	table	within	tools	such
as	Proxy	and	Repeater.

For	requests	containing	parameters	or	cookies,	the	Params	tab	is	present.
Parameters	are	editable,	and	columns	can	be	added,	removed,	or	modified	in	the
table	within	tools	such	as	Proxy	and	Repeater.

Finally,	there's	the	Hex	tab,	which	presents	the	message	in	hexadecimal	format;
it	is,	in	essence,	a	hex	editor.	You	are	permitted	to	edit	individual	bytes	within
tools	such	as	Proxy	and	Repeater,	but	those	values	must	be	given	in	two-digit
hexadecimal	form,	from	00	through	FF.

Getting	ready
Let's	explore	the	multiple	tabs	available	in	the	Message	Editor	for	each	request
and	response	captured	in	Burp.

How	to	do	it...
Ensure	you	have	traffic	flowing	between	your	browser,	Burp,	and	the	OWASP
BWA	virtual	machine.

1.	 Looking	at	the	Target	|	Site	map	tab,	notice	the	Message	Editor	section:

2.	 When	viewing	a	request,	note	that	the	subtabs	available	include	Raw,
Headers,	and	Hex,	at	a	minimum.	However,	in	the	case	of	a	request
containing	parameters	or	cookies,	the	Params	subtab	is	also	available:

3.	 The	other	side	of	the	message	is	the	Response	tab,	containing	the	Raw,
Headers,	Hex	subtabs,	and	sometimes	HTML	and	Render.	These	are	the
various	formats	provided	for	the	HTTP	response	to	the	request.	If	the
content	is	HTML,	then	the	tab	will	appear.	Likewise,	the	Render	tab
enables	HTML	display	as	it	would	be	presented	in	a	browser	but	without
any	JavaScript	executed:

Repeating	with	Repeater
Repeater	allows	for	slight	changes	or	tweaks	to	the	request,	and	it	is	displayed	in
the	left-hand	window.	A	Go	button	allows	the	request	to	be	reissued,	and	the
response	is	displayed	in	the	right-hand	window.

Details	related	to	your	HTTP	request	include	standard	Message	Editor	details
such	as	Raw,	Params	(for	requests	with	parameters	or	cookies),	Headers,	and
Hex.

Details	related	to	the	HTTP	Response	include	standard	Message	Editor	details
including	Raw,	Headers,	Hex,	and,	sometimes,	HTML	and	Render.

At	the	bottom	of	each	panel	is	a	search-text	box,	allowing	the	tester	to	quickly
find	a	value	present	in	a	message.

Getting	ready
Repeater	allows	you	to	manually	modify	and	then	re-issue	an	individual	HTTP
request,	analyzing	the	response	that	you	receive.

How	to	do	it...
1.	 From	the	Target	|	Site	map	or	from	Proxy	|	HTTP	history	tabs	(shown	in

the	following	screenshot),	right-click	a	message	and	select	Send	to
Repeater:

2.	 Switch	over	to	the	Repeater	tab.	Note	the	HTTP	Request	is	ready	for	the
tester	to	tweak	parameters,	and	then	send	the	request	to	the	application	via
the	Go	button.

Note	the	search	boxes	at	the	bottom	of	each	panel:

We	will	use	Repeater	quite	a	bit	throughout	this	book.	This	chapter	is	just
an	introduction	to	the	Repeater	and	to	understand	its	purpose.

Decoding	with	Decoder
Burp	Decoder	is	a	tool	that	allows	the	tester	to	convert	raw	data	into	encoded
data	or	to	take	encoded	data	and	convert	it	back	to	plain	text.	Decoder	supports
several	formats	including	URL	encoding,	HTML	encoding,	Base64	encoding,
binary	code,	hashed	data,	and	others.	Decoder	also	includes	a	built-in	hex	editor.

Getting	ready
As	a	web	penetration	test	progresses,	a	tester	might	happen	upon	an	encoded
value.	Burp	eases	the	decoding	process	by	allowing	the	tester	to	send	the
encoded	value	to	Decoder	and	try	the	various	decoding	functions	available.

How	to	do	it...
Let's	try	to	decode	the	value	of	the	session	token	PHPSESSID	found	in	the
OWASP	Mutillidae	II	application.	When	a	user	initially	browses	to	the	URL
(http://<Your_VM_Assigned_IP_Address>/mutillidae/),	that	user	will	be
assigned	a	PHPSESSID	cookie.	The	PHPSESSID	value	appears	to	be	encrypted
and	then	wrapped	in	base	64	encoding.	Using	Decoder,	we	can	unwrap	the	value.

1.	 Browse	to	the	http://<Your_VM_Assigned_IP_Address>/mutillidae/
application.	

2.	 Find	the	HTTP	request	you	just	generated	from	your	browse	within	the
Proxy	|	HTTP	history	tab	(shown	in	the	next	screenshot).	Highlight	the
PHPSESSID	value,	not	the	parameter	name,	right-click,	and	select	Send	to
Decoder:

3.	 In	the	Decoder	tab,	in	the	Decode	as…	drop-down	as	follows,	select	Base
64.	Note	the	results	are	viewed	in	the	Hex	editor	and	are	encrypted:

In	this	example,	we	cannot	proceed	any	further.	We	can	confirm	the
value	was,	indeed,	wrapped	in	Base	64.	However,	the	value	that	is
unwrapped	is	encrypted.	The	purpose	of	this	recipe	is	to	show	you	how
you	can	use	Decoder	to	manipulate	encoded	values.		

Intruding	with	Intruder
The	Burp	Intruder	allows	a	tester	to	brute-force	or	fuzz	specific	portions	of	an
HTTP	message,	using	customized	payloads.

To	properly	set	up	customized	attacks	in	Intruder,	a	tester	will	need	to	use	the
settings	available	in	the	four	subtabs	of	Intruder:

		

Getting	ready
A	tester	may	wish	to	fuzz	or	brute-force	parameter	values	within	a	message.
Burp	Intruder	eases	this	process	by	providing	various	intruder	attack	styles,
payloads,	and	options.

How	to	do	it...
1.	 Browse	to	the	login	screen	of	Mutillidae	and	attempt	to	log	into	the

application.	For	example,	type	a	username	of	admin	and	a	password	of
adminpass.

2.	 Find	the	login	attempt	in	the	Proxy	|	HTTP	history	tab.	Your	request
number	(that	is,	the	#	sign	on	the	left-hand	side)	will	be	different	from	the
one	shown	next.		Select	the	message	that	captured	your	attempt	to	log	in.

3.	 As	the	login	attempt	message	is	highlighted	in	the	HTTP	history	table,
right-click	the	Request	tab,	and	select	Send	to	Intruder:

Target
The	Intruder	Target	tab	defines	your	targeted	web	application.	These	settings	are
pre-populated	for	you	by	Burp:	

Positions
The	Positions	tab	identifies	where	the	payload	markers	are	to	be	defined	within
the	Payload	|	Positions	section.	For	our	purposes,	click	the	Clear	§	(that	is,
payload	markers)	from	the	right-hand	side	menu.	Manually	select	the	password
field	by	highlighting	it	with	your	cursor.	Now	click	the	Add	§	button	on	the
right-hand	side	menu.	You	should	have	the	payload	markers	wrapping	around
the	password	field	as	follows:

Payloads
After	the	Positions	tab	is	the	Payloads	tab.	The	Payloads	tab	identifies	wordlist
values	or	numbers	you	wish	to	be	inserted	into	the	positions	you	identified	on
the	previous	tab.	There	are	several	sections	within	the	Payloads	tab,	including
Payload	Sets,	Payload	Options,	Payload	Processing,	and	Payload	Encoding.

Payload	Sets
Payload	Sets	allows	for	the	setting	of	the	number	of	payloads	as	well	as	the
type.	For	our	purposes,	we	will	use	the	default	settings	for	Sniper,	allowing	us	to
use	one	payload	with	a	Payload	type	of	Simple	list:

Payload	Options
In	the	Payload	Options	section,	a	tester	can	configure	a	custom	payload	or	load
a	preconfigured	one	from	a	file.

For	our	purposes,	we	will	add	one	value	to	our	payload.	In	the	text	box,	type
admin,	and	then	click	the	Add	button	to	create	our	custom	payload:

Payload	Processing
Payload	Processing	is	useful	when	configuring	special	rules	to	be	used	while
Intruder	substitutes	payloads	into	payload	marker	positions.	For	this	recipe,	we
do	not	need	any	special	payload-processing	rules:

Payload	Encoding
Payload	Encoding	is	applied	to	the	payload	value	prior	to	sending	the	request	to
the	web	server.	Many	web	servers	may	block	offensive	payloads	(for	example,
<script>	tags),	so	the	encoding	feature	is	a	means	to	circumvent	any	blacklist
blocking.

For	the	purpose	of	this	recipe,	leave	the	default	box	checked:

Options
Finally,	the	Intruder	|	Options	tab	provides	attack	table	customizations,
particularly	related	to	responses	captured	such	as	specific	error	messages.	There
are	several	sections	within	the	Intruder	|	Options	tab,	including	Request
Headers,	Request	Engine,	Attack	Results,	Grep-Match,	Grep-Extract,	Grep
-	Payloads,	and	Redirections:

Request	Headers
Request	Headers	offers	configurations	specific	to	header	parameters	while
Intruder	is	running	attacks.	For	the	purpose	of	this	recipe,	leave	the	default	boxes
checked:

Request	Engine
Request	Engine	should	be	modified	if	a	tester	wishes	to	create	less	noise	on	the
network	while	running	Intruder.	For	example,	a	tester	can	throttle	attack	requests
using	variable	timings	so	they	seem	more	random	to	network	devices.	This	is
also	the	location	for	lowering	the	number	of	threads	Intruder	will	run	against	the
target	application.

For	purpose	of	this	recipe,	leave	the	default	setting	as-is:

Attack	Results
After	starting	the	attack,	Intruder	creates	an	attack	table.	The	Attack	Results
section	offers	some	settings	around	what	is	captured	within	that	table.

For	the	purpose	of	this	recipe,	leave	the	default	settings	as-is:

Grep	-	Match
Grep	-	Match	is	a	highly	useful	feature	that,	when	enabled,	creates	additional
columns	in	the	attack	table	results	to	quickly	identify	errors,	exceptions,	or	even
a	custom	string	within	the	response.

For	the	purpose	of	this	recipe,	leave	the	default	settings	as-is:

		

Grep	-	Extract
Grep	-	Extract,	when	enabled,	is	another	option	for	adding	a	column	in	the
attack	table	whose	label	is	specific	to	a	string	found	in	the	response.	This	option
differs	from	Grep	-	Match,	since	Grep	-	Extract	values	are	taken	from	an	actual	
HTTP	response,	as	opposed	to	an	arbitrary	string.

For	the	purpose	of	this	recipe,	leave	the	default	settings	as-is:

Grep	-	Payloads
Grep	-	Payloads	provides	a	tester	the	ability	to	add	columns	in	the	attack	table
in	which	responses	contain	reflections	of	payloads.

For	the	purpose	of	this	recipe,	leave	the	default	settings	as-is:

Redirections
Redirections	instructs	Intruder	to	never,	conditionally,	or	always	follow
redirections.	This	feature	is	very	useful,	particularly	when	brute-forcing	logins,
since	a	302	redirect	is	generally	an	indication	of	entry.	

For	the	purpose	of	this	recipe,	leave	the	default	settings	as-is:

Start	attack	button
Finally,	we	are	ready	to	start	Intruder.	On	either	the	Payloads	or	the	Options
tabs,	click	the	Start	attack	button	to	begin:

When	the	attack	has	started,	an	attack	results	table	will	appear.	This	allows	the
tester	to	review	all	requests	using	the	payloads	within	the	payload	marker
positions.	It	also	allows	us	to	review	of	all	responses	and	columns	showing
Status,	Error,	Timeout,	Length,	and	Comment.

For	the	purpose	of	this	recipe,	we	note	that	the	payload	of	admin	in	the	password
parameter	produced	a	status	code	of	302,	which	is	a	redirect.	This	means	we
logged	into	the	Mutillidae	application	successfully:

Looking	at	Response	|	Render	within	the	attack	table	allows	us	to	see	how	the
web	application	responded	to	our	payload.	As	you	can	see,	we	are	successfully
logged	in	as	an	admin:

																																											

Configuring,	Spidering,	Scanning,
and	Reporting	with	Burp
In	this	chapter,	we	will	cover	the	following	recipes:

Establishing	trust	over	HTTPS
Setting	project	options
Setting	user	options
Spidering	with	Spider
Scanning	with	Scanner
Reporting	issues

Introduction	
This	chapter	helps	testers	to	calibrate	Burp	settings	so	they're	less	abusive
toward	the	target	application.	Tweaks	within	Spider	and	Scanner	options	can
assist	with	this	issue.	Likewise,	penetration	testers	can	find	themselves	in
interesting	network	situations	when	trying	to	reach	a	target.	Thus,	several	tips
are	included	for	testing	sites	running	over	HTTPS,	or	sites	only	accessible
through	a	SOCKS	Proxy	or	a	port	forward.	Such	settings	are	available	within
project	and	user	options.	Finally,	Burp	provides	the	functionality	to	generate
reports	for	issues.

Software	tool	requirements
In	order	to	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
Firefox	browser	configured	to	allow	Burp	to	proxy	traffic
(https://www.mozilla.org/en-US/firefox/new/)
The	proxy	configuration	steps	are	covered	in	chapter

https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/

Establishing	trust	over	HTTPS
Since	most	websites	implement	Hypertext	Transport	Protocol	Secure
(HTTPS),	it	is	beneficial	to	know	how	to	enable	Burp	to	communicate	with	such
sites.	HTTPS	is	an	encrypted	tunnel	running	over	Hypertext	Transport
Protocol	(HTTP).

The	purpose	of	HTTPS	is	to	encrypt	traffic	between	the	client	browser	and	the
web	application	to	prevent	eavesdropping.	However,	as	testers,	we	wish	to	allow
Burp	to	eavesdrop,	since	that	is	the	point	of	using	an	intercepting	proxy.	Burp
provides	a	root,	Certificate	Authority	(CA)	signed	certificate.	This	certificate
can	be	used	to	establish	trust	between	Burp	and	the	target	web	application.

By	default,	Burp's	Proxy	can	generate	a	per-target	CA	certificate	when
establishing	an	encrypted	handshake	with	a	target	running	over	HTTPS.	That
takes	care	of	the	Burp-to-web-application	portion	of	the	tunnel.	We	also	need	to
address	the	Browser-to-Burp	portion.

In	order	to	create	a	complete	HTTPS	tunnel	connection	between	the	client
browser,	Burp,	and	the	target	application,	the	client	will	need	to	trust	the
PortSwigger	certificate	as	a	trusted	authority	within	the	browser.

Getting	ready
In	situations	requiring	penetration	testing	with	a	website	running	over	HTTPS,	a
tester	must	import	the	PortSwigger	CA	certificate	as	a	trusted	authority	within
their	browser.

How	to	do	it...
Ensure	Burp	is	started	and	running	and	then	execute	the	following	steps:

1.	 Open	the	Firefox	browser	to	the		http://burp	URL.	You	must	type	the	URL
exactly	as	shown	to	reach	this	page.	You	should	see	the	following	screen	in
your	browser.	Note	the	link	on	the	right-hand	side	labeled	CA	Certificate.
Click	the	link	to	download	the	PortSwigger	CA	certificate:

2.	 You	will	be	presented	with	a	dialog	box	prompting	you	to	download	the
PortSwigger	CA	certificate.	The	file	is	labeled	cacert.der.	Download	the
file	to	a	location	on	your	hard	drive.

3.	 In	Firefox,	open	the	Firefox	menu.	Click	on	Options.

4.	 Click	Privacy	&	Security	on	the	left-hand	side,	scroll	down	to
Certificates	section.	Click	the	View	Certificates…	button:

http://burp

5.	 Select	the	Authorities	tab.	Click	Import,	select	the	Burp	CA	certificate	file
that	you	previously	saved,	and	click	Open:

6.	 In	the	dialog	box	that	pops	up,	check	the	Trust	this	CA	to	identify
websites	box,	and	click	OK.	Click	OK	on	the	Certificate	Manager	dialog	as
well:

Close	all	dialog	boxes	and	restart	Firefox.	If	installation	was	successful,	you
should	now	be	able	to	visit	any	HTTPS	URL	in	your	browser	while	proxying	the
traffic	through	Burp	without	any	security	warnings.

Setting	Project	options
Project	options	allow	a	tester	to	save	or	set	configurations	specific	to	a	project	or
scoped	target.		There	are	multiple	subtabs	available	under	the	Project	options
tab,	which	include	Connections,	HTTP,	SSL,	Sessions,	and	Misc.	Many	of	these
options	are	required	for	penetration	testers	when	assessing	specific	targets,
which	is	why	they	are	covered	here.

How	to	do	it...
	In	this	book,	we	will	not	be	using	many	of	these	features	but	it	is	still	important
to	know	of	their	existence	and	understand	their	purpose:

The	Connections	tab
Under	the	Connections	tab,	a	tester	has	the	following	options:

Platform	Authentication:	This	provides	an	override	button	in	the	event	the
tester	wants	the	Project	options	related	to	the	type	of	authentication	used
against	the	target	application	to	supersede	any	authentication	settings	within
the	user	options.

After	clicking	the	checkbox	to	override	the	user's	options,	the	tester	is
presented	with	a	table	enabling	authentication	options	(for	example,
Basic,	NTLMv2,	NTLMv1,	and	Digest)	specific	to	the	target	application.
The	destination	host	is	commonly	set	to	wildcard	*	should	a	tester	find
the	need	to	ever	use	this	option:

Upstream	proxy	servers:	It	provides	an	override	button	in	the	event	the
tester	wants	the	Project	options	related	to	upstream	proxy	servers	used
against	the	target	application	to	supersede	any	proxy	settings	contained
within	the	user	options.

After	clicking	the	checkbox	to	override	the	user's	options,	the	tester	is
presented	with	a	table	enabling	upstream	proxy	options	specific	to	this

project.	Clicking	the	Add	button	displays	a	pop-up	box	called	Add
upstream	proxy	rule.	This	rule	is	specific	to	the	target	application's
environment.	This	feature	is	very	helpful	if	the	target	application's
environment	is	fronted	with	a	web	proxy	requiring	a	different	set	of
credentials	than	the	application	login:

SOCKS	Proxy:	It	provides	an	override	button	in	the	event	the	tester	wishes

for	Project	options	related	to	the	SOCKS	Proxy	configuration	used	against
the	target	application	to	supersede	any	SOCKS	Proxy	settings	within	the
user	options.

After	clicking	the	checkbox	to	override	user	options,	the	tester	is
presented	with	a	form	to	configure	a	SOCKS	Proxy	specific	to	this
project.	In	some	circumstances,	web	applications	must	be	accessed	over
an	additional	protocol	that	uses	socket	connections	and	authentication,
commonly	referred	to	as	SOCKS:

Timeouts:	It	allows	for	timeout	settings	for	different	network	scenarios,
such	as	failing	to	resolve	a	domain	name:

Hostname	Resolution:	It	allows	entries	similar	to	a	host	file	on	a	local
machine	to	override	the	Domain	Name	System	(DNS)	resolution:

Out-of-Scope	Requests:	It	provides	rules	to	Burp	regarding	Out-of-Scope
Requests.	Usually,	the	default	setting	of	Use	suite	scope	[defined	in	Target
tab]	is	most	commonly	used:

The	HTTP	tab
Under	the	HTTP	tab,	a	tester	has	the	following	options:

Redirections:	It	provides	rules	for	Burp	to	follow	when	redirections	are
configured.	Most	commonly,	the	default	settings	are	used	here:

Streaming	Responses:	It	provides	configurations	related	to	responses	that
stream	indefinitely.	Mostly,	the	default	settings	are	used	here:

Status	100	Responses:	It	provides	a	setting	for	Burp	to	handle	HTTP	status
code	100	responses.	Most	commonly,	the	default	settings	are	used	here:

The	SSL	tab
Under	the	SSL	tab,	a	tester	has	the	following	options:

SSL	Negotiations:	When	Burp	communicates	with	a	target	application	over
SSL,	this	option	provides	the	ability	to	use	preconfigured	SSL	ciphers	or	to
specify	different	ones:

If	a	tester	wishes	to	customize	the	ciphers,	they	will	click	the	Use	custom
protocols	and	ciphers	radio	button.	A	table	appears	allowing	selection	of
protocols	and	ciphers	that	Burp	can	use	in	the	communication	with	the
target	application:

Client	SSL	Certificates:	It	provides	an	override	button	in	the	event	the
tester	must	use	a	client-side	certificate	against	the	target	application.	This
option	will	supersede	any	client-side	certificate	configured	within	the	user
options.

After	clicking	the	checkbox	to	override	user	options,	the	tester	is
presented	with	a	table	to	configure	a	client-side	certificate	specific	to	this
project.	You	must	have	the	private	key	to	your	client-side	certificate	in
order	to	successfully	import	it	into	Burp:

Server	SSL	Certificates:	It	provides	a	listing	of	server-side	certificates.	A
tester	can	double-click	any	of	these	line	items	to	view	the	details	of	each
certificate:

The	Sessions	tab
This	book	will	cover	recipes	on	all	functionality	contained	within	the	Sessions
tab	in	Chapter	10,	Working	with	Burp	Macros	and	Extensions.	A	review	of	each
of	these	sections	within	the	Sessions	tab	is	provided	here	for	completeness.

Under	the	Sessions	tab,	a	tester	has	the	following	options:

Session	Handling	Rules:	It	provides	the	ability	to	configure	customized
session-handling	rules	while	assessing	a	web	application:

Cookie	Jar:	It	provides	a	listing	of	cookies,	domains,	paths,	and
name/value	pairs	captured	by	Burp	Proxy	(by	default):

Macros:	It	provides	the	ability	of	a	tester	to	script	tasks	previously
performed	in	order	to	automate	activities	while	interacting	with	the	target
application:

The	Misc	tab
Under	the	Misc	tab,	a	tester	has	the	following	options:

Scheduled	Tasks:	It	provides	the	ability	to	schedule	an	activity	at	specific
times:

When	the	Add	button	is	clicked,	a	pop-up	reveals	the	types	of	activities
available	for	scheduling:

Burp	Collaborator	Server:	It	provides	the	ability	to	use	a	service	external
to	the	target	application	for	the	purposes	of	discovering	vulnerabilities	in
the	target	application.	This	book	will	cover	recipes	related	to	Burp
Collaborator	in	Chapter	11,	Implementing	Advanced	Topic	Attacks.	A
review	of	this	section	is	provided	here	for	completeness:

Logging:	It	provides	the	ability	to	log	all	requests	and	responses	or	filter
the	logging	based	on	a	particular	tool.	If	selected,	the	user	is	prompted	for	a
file	name	and	location	to	save	the	log	file	on	the	local	machine:

Setting	user	options
	User	options	allow	a	tester	to	save	or	set	configurations	specific	to	how	they
want	Burp	to	be	configured	upon	startup.	There	are	multiple	sub-tabs	available
under	the	user	options	tab,	which	include	Connections,	SSL,	Display,	and	Misc.
For	recipes	in	this	book,	we	will	not	be	using	any	user	options.	However,	the
information	is	reviewed	here	for	completeness.

How	to	do	it...
Using	Burp	user	options,	let's	configure	your	Burp	UI	in	a	manner	best	suited	to
your	penetration-testing	needs.	Each	of	the	items	under	the	Connections	tab	is
already	covered	in	the	Project	options	section	of	this	chapter,	hence,	we	will
directly	start	with	the	SSL	tab.

The	SSL	tab
Under	the	SSL	tab,	a	tester	has	the	following	options:

Java	SSL	Options:	It	provides	the	ability	the	configure	Java	security
libraries	used	by	Burp	for	SSL	connections.	The	default	values	are	most
commonly	used:

Client	SSL	Certificate:	This	section	is	already	covered	in	the	Project
options	section	of	this	chapter.

The	Display	tab
Under	the	Display	tab,	a	tester	has	the	following	options:

User	Interface:	It	provides	the	ability	to	modify	the	default	font	and	size	of
the	Burp	UI	itself:

HTTP	Message	Display:	It	provides	the	ability	to	modify	the	default	font
and	size	used	for	all	HTTP	messages	shown	within	the	message	editor:

Character	Sets:	It	provides	the	ability	to	change	the	character	sets
determined	by	Burp	to	use	a	specific	set	or	to	display	as	raw	bytes:

HTML	Rendering:	It	controls	how	HTML	pages	will	display	from	the
Render	tab	available	on	an	HTTP	response:

The	Misc	tab
Under	the	Misc	tab,	a	tester	has	the	following	options:

Hotkeys:	It	lets	a	user	configure	hotkeys	for	commonly-executed
commands:

Automatic	Project	Backup	[disk	projects	only]:	It	provides	the	ability	to
determine	how	often	backup	copies	of	project	files	are	made.	By	default,
when	using	Burp	Professional,	backups	are	set	to	occur	every	30	minutes:

Temporary	Files	Location:	It	provides	the	ability	to	change	the	location
where	temporary	files	are	stored	while	running	Burp:

Proxy	Interception:	It	provides	the	ability	to	always	enable	or	always
disable	proxy	intercept	upon	initially	starting	Burp:

Proxy	History	Logging:	It	provides	the	ability	to	customize	prompting	of
out-of-scope	items	when	the	target	scope	changes:

Performance	Feedback:	It	provides	anonymous	data	to	PortSwigger
regarding	Burp	performance:

Spidering	with	Spider
Spidering	is	another	term	for	mapping	out	or	crawling	a	web	application.	This
mapping	exercise	is	necessary	to	uncover	links,	folders,	and	files	present	within
the	target	application.	

In	addition	to	crawling,	Burp	Spider	can	also	submit	forms	in	an	automated
fashion.	Spidering	should	occur	prior	to	scanning,	since	pentesters	wish	to
identify	all	possible	paths	and	functionality	prior	to	looking	for	vulnerabilities.

Burp	provides	an	on-going	spidering	capability.	This	means	that	as	a	pentester
discovers	new	content,	Spider	will	automatically	run	in	the	background	looking
for	forms,	files,	and	folders	to	add	to	Target	|	Site	map.	

There	are	two	tabs	available	in	the	Spider	module	of	Burp	Suite.	The	tabs
include	control	and	options,	which	we	will	study	in	the	Getting	ready	section	of
this	recipe.

Getting	ready	
Using	the	OWASP	Mutillidae	II	application	found	within	the	OWASP	BWA	VM,
we	will	configure	and	use	Burp	Spider	to	crawl	through	the	application.

The	Control	tab
Under	the	Control	tab,	a	tester	has	the	following	options:

Spider	Status:	It	provides	the	ability	to	turn	the	spidering	functionality	on
or	off	(paused).	It	also	allows	us	to	monitor	queued-up	Spider	requests
along	with	bytes	transferred,	and	so	on.	This	section	allows	any	forms
queued	to	be	cleared	by	clicking	the	Clear	queues	button:

Spider	Scope:	It	provides	the	ability	to	set	the	Spider	Scope,	either	based
on	the	Target	|	Site	map	tab	or	a	customized	scope:

If	the	Use	custom	scope	radio	button	is	clicked,	two	tables	appear,
allowing	the	tester	to	define	URLs	to	be	included	and	excluded	from
scope:

The	Options	tab
Under	the	Options	tab,	a	tester	has	the	following	options:

Crawler	Settings:	It	provides	the	ability	to	regulate	the	number	of	links
deep	Spider	will	follow;	also	identifies	basic	web	content	to	Spider	for	on	a
website	such	as	the	robots.txt	file:

Passive	Spidering:	Spiders	newly-discovered	content	in	the	background
and	is	turned	on	by	default:	

Form	Submission:	It	provides	the	ability	to	determine	how	Spider	interacts
with	forms.	Several	options	are	available	including	ignore,	prompt	for
guidance,	submit	with	default	values	found	in	the	table	provided,	or	use	an
arbitrary	value	(for	example,	555-555-0199@example.com):

Application	Login:	It	provides	the	ability	to	determine	how	Spider
interacts	with	login	forms.	Several	options	are	available,	including	ignore,
prompt	for	guidance,	submit	as	standard	form	submission,	or	use
credentials	provided	in	text	boxes:

Spider	Engine:	It	provides	the	ability	to	edit	the	number	of	threads	used
along	with	retry	attempt	settings	due	to	network	failures.	Use	the	number	of
threads	judiciously	as	too	many	thread	requests	could	choke	an	application
and	affect	its	performance:

Request	Headers:	It	provides	the	ability	to	modify	the	way	the	HTTP
requests	look	originating	from	Burp	Spider.	For	example,	a	tester	can
modify	the	user	agent	to	have	Spider	look	like	a	mobile	phone:

How	to	do	it...
1.	 Ensure	Burp	and	OWASP	BWA	VM	are	running,	and	Burp	is	configured	in

the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

	

2.	 From	the	OWASP	BWA	landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application:

3.	 Go	to	the	Burp	Spider	tab,	then	go	to	the	Options	sub-tab,	scroll	down	to
the	Application	Login	section.	Select	the	Automatically	submit	these
credentials	radio	button.	Type	into	the	username	textbox	the	word	admin;
type	into	the	password	textbox	the	word	admin:

4.	 Return	to	Target	|	Site	map	and	ensure	the	mutillidae	folder	is	added	to
scope	by	right-clicking	the	mutillidae	folder	and	selecting	Add	to	scope:

5.	 Optionally,	you	can	clean	up	the	Site	map	to	only	show	in-scope	items	by
clicking	Filter:	Hiding	out	of	scope	and	not	found	items;	hiding
CSS,	image	and	general	binary	content;	hiding	4xx	responses;

hiding	empty	folders:

6.	 After	clicking	Filter:	….,	You	will	see	a	drop-down	menu	appear.	In	this
drop-down	menu,	check	the	Show	only	in-scope	items	box.	Now,	click
anywhere	in	Burp	outside	of	the	drop-down	menu	to	have	the	filter
disappear	again:

7.	 You	should	now	have	a	clean	Site	map.	Right-click	the	mutillidae	folder
and	select	Spider	this	branch.

If	prompted	to	allow	out-of-scope	items,	click	Yes.

8.	 You	should	immediately	see	the	Spider	tab	turn	orange:

9.	 Go	to	the	Spider	|	Control	tab	to	see	the	number	of	requests,	bytes
transferred,	and	forms	in	queue:

Let	Spider	finish	running.

10.	 Notice	that	Spider	logged	into	the	application	using	the	credentials	you
provided	in	the	Options	tab.	On	Target	|	Site	map,	look	for
the	/mutillidae/index.php/	folder	structure:

11.	 Search	for	an	envelope	icon	that	contains	password=admin&login-php-
submit-button=Login&username=admin:

This	evidences	the	information	Spider	used	the	information	you	provided	in	the
Spider	|	Options	|	Application	Login	section.

Scanning	with	Scanner
Scanner	capabilities	are	only	available	in	Burp	Professional	edition.

	Burp	Scanner	is	a	tool	that	automates	the	search	for	weaknesses	within	the
runtime	version	of	an	application.	Scanner	attempts	to	find	security
vulnerabilities	based	on	the	behavior	of	the	application.

Scanner	will	identify	indicators	that	may	lead	to	the	identification	of	a	security
vulnerability.	Burp	Scanner	is	extremely	reliable,	however,	it	is	the	responsibility
of	the	pentester	to	validate	any	findings	prior	to	reporting.	

There	are	two	scanning	modes	available	in	Burp	Scanner:	

Passive	scanner:	Analyzes	traffic	passing	through	the	proxy	listener.	This
is	why	its	so	important	to	properly	configure	your	target	scope	so	that	you
aren't	scanning	more	than	is	necessary.
Active	scanner:	Sends	numerous	requests	that	are	tweaked	from	their
original	form.		These	request	modifications	are	designed	to	trigger	behavior
that	may	indicate	the	presence	of	vulnerabilities
(https://portswigger.net/kb/issues).	Active	scanner	is	focused	on	input-based
bugs	that	may	be	present	on	the	client	and	server	side	of	the	application.

Scanning	tasks	should	occur	after	spidering	is	complete.	Previously,	we	learned
how	Spider	continues	to	crawl	as	new	content	is	discovered.	Similarly,	passive
scanning	continues	to	identify	vulnerabilities	as	the	application	is	crawled.

Under	the	Options	tab,	a	tester	has	the	following	options:	Issue	activity,	Scan
queue,	Live	scanning,	Issue	definitions,	and	Options:

Issue	Activity:	It	displays	all	scanner	findings	in	a	tabular	format;	includes
both	passive	and	active	scanner	issues.:

https://portswigger.net/kb/issues

By	selecting	an	issue	in	the	table,	the	message	details	are	displayed,
including	an	advisory	specific	to	the	finding	as	well	as	message-editor
details	related	to	the	request	and	response:

Scan	queue:	Displays	the	status	of	active	scanner	running;	provides	a
percentage	of	completion	per	number	of	threads	running	as	well	as	number
of	requests	sent,	insertion	points	tested,	start	time,	end	time,	targeted	host,
and	URL	attacked.

Scanner	can	be	paused	from	the	table	by	right-clicking	and	selecting
Pause	scanner;	likewise,	scanner	can	be	resumed	by	right-clicking	and
selecting	Resume	Scanner.	Items	waiting	in	the	scan	queue	can	be
cancelled	as	well:

Live	Active	Scanning:	It	allows	customization	when	active	scanner	will
perform	scanning	activities:

Live	Passive	Scanning:	It	allows	customization	when	passive	scanner	will
perform	scanning	activities.	By	default,	passive	scanner	is	always	on	and
scanning	everything:

Issue	definitions:	It	displays	definitions	for	all	vulnerabilities	known	to
Burp	scanners	(active	and	passive).	The	list	can	be	expanded	through
extenders	but,	using	Burp	core,	this	is	the	exhaustive	listing,	which	includes
title,	description	text,	remediation	verbiage,	references,	and	severity	level:

Options:	Several	sections	are	available,	including	Attack	Insertion	Points,
Active	Scanning	Engine,	Attack	Scanning	Optimization,	and	Static	code
analysis.

Attack	Insertion	Points:	It	allows	customization	for	Burp	insertion
points;	an	insertion	point	is	a	placeholder	for	payloads	within	different
locations	of	a	request.		This	is	similar	to	the	Intruder	payload	marker
concept	discussed	in	Chapter	2,	Getting	to	Know	the	Burp	Suite	of
Tools:

Recommendations	here	include	adding	the	URL-to-body,	Body-
to-URL,	cookie-to-URL,	URL-to-cookie,	body-to-cookie,	and
cookie-to-body	insertion	points	when	performing	an	assessment.
This	allows	Burp	to	fuzz	almost,	if	not	all,	available	parameters	in
any	given	request.

Active	Scanning	Engine:	It	provides	the	ability	to	configure	the
number	of	threads	(for	example,	Concurrent	request	limit)	scanner	will
run	against	the	target	application.	This	thread	count,	compounded	with
the	permutations	of	insertion	points,	can	create	noise	on	the	network
and	a	possible	DOS	attack,	depending	upon	the	stability	of	the	target
application.		Use	caution	and	consider	lowering	the	Concurrent	request
limit.	The	throttling	of	threads	is	available	at	this	configuration	section
as	well:

Attack	Scanning	Optimization:	It	provides	three	settings	for	scan
speed	and	scan	accuracy.

Available	Scan	speed	settings	include	Normal,	Fast,	and
Thorough.	Fast	makes	fewer	requests	and	checks	derivations	of
issues.	Thorough	makes	more	requests	and	checks	for	derivations

of	issues.	Normal	is	the	medium	setting	between	the	other	two
choices.	The	recommendation	for	Scan	speed	is	Thorough.
Available	Scan	accuracy	settings	include	Normal,	Minimize	false
negatives,	and	Minimize	false	positives.	Scan	accuracy	relates	to
the	amount	of	evidence	scanner	requires	before	reporting	an
issue.	The	recommendation	for	Scan	accuracy	is	Normal:

Static	Code	Analysis:	It	provides	the	ability	to	perform	static	analysis
of	binary	code.	By	default,	this	check	is	performed	in	active	scanner:

Scan	Issues:	It	provides	the	ability	to	set	which	vulnerabilities	are	tested
and	for	which	scanner	(that	is,	passive	or	active).	By	default,	all
vulnerability	checks	are	enabled:

Getting	ready	
Using	the	OWASP	Mutillidae	II	application	found	within	the	OWASP	BWA	VM,
we	will	begin	our	scanning	process	and	monitor	our	progress	using	the	Scan
queue	tab.

How	to	do	it...
Ensure	Burp	and	OWASP	BWA	VM	is	running	while	Burp	is	configured	in	the
Firefox	browser	used	to	view	the	OWASP	BWA	applications.

From	the	OWASP	BWA	landing	page,	click	the	link	to	the	OWASP	Mutillidae	II
application:

1.	 From	the	Target	|	Site	map	tab,	right-click	the	mutillidae	folder	and	select
Passively	scan	this	branch.	The	passive	scanner	will	hunt	for	vulnerabilities,
which	will	appear	in	the	Issues	window:

2.	 From	the	Target	|	Site	map	tab,	right-click	the	mutillidae	folder	and	select
Actively	scan	this	branch:

3.	 Upon	initiating	the	active	scanner,	a	pop-up	dialog	box	appears	prompting
for	removal	of	duplicate	items,	items	without	parameters,	items	with	media
response,	or	items	of	certain	file	types.	This	pop-up	is	the	Active	scanning
wizard.	For	this	recipe,	use	the	default	settings	and	click	Next:

4.	 Verify	all	paths	shown	are	desired	for	scanning.	Any	undesired	file	types	or
paths	can	be	removed	with	the	Remove	button.	Once	complete,	click	OK:

You	may	be	prompted	regarding	the	out-of-scope	items.	If	so,	click	Yes
to	include	those	items.	Scanner	will	begin.

5.	 Check	the	status	of	scanner	by	looking	at	the	Scanner	queue	tab:

6.	 As	scanner	finds	issues,	they	are	displayed	on	the	Target	tab,	in	the	Issues
panel.	This	panel	is	only	available	in	the	Professional	edition	since	it

complements	the	scanner's	functionality:

Reporting	issues
Reporting	capabilities	are	only	available	in	Burp	Professional	edition.

In	Burp	Professional,	as	scanner	discovers	a	vulnerability,	it	will	be	added	to	a
list	of	issues	found	on	the	Target	tab,	in	the	right-hand	side	of	the	UI.	Issues	are
color-coded	to	indicate	the	severity	and	confidence	level.	An	issue	with	a	red
exclamation	point	means	it	is	a	high	severity	and	the	confidence	level	is	certain.
For	example,	the	SQL	Injection	issue	shown	here	contains	both	of	these
attributes.

Items	with	a	lower	severity	or	confidence	level	will	be	low,	informational,	and
yellow,	gray,	or	black	in	color.	These	items	require	manual	penetration	testing	to
validate	whether	the	vulnerability	is	present.	For	example,	Input	returned	in
response	is	a	potential	vulnerability	identified	by	scanner	and	shown	in	the
following	screenshot.	This	could	be	an	attack	vector	for	cross-site	scripting
(XSS)	or	it	could	be	a	false	positive.	It	is	up	to	the	penetration	tester	and	their
level	of	experience	to	validate	such	an	issue:

Severity	levels:	The	severity	levels	available	include	high,	medium,	low,
information,	and	false	positive.	Any	findings	marked	as	false	positive	will
not	appear	on	the	generated	report.	False	positive	is	a	severity	level	that
must	be	manually	set	by	the	penetration	tester	on	an	issue.
Confidence	levels:	The	confidence	levels	available	include	certain,	firm,
and	tentative.

Getting	ready	
After	the	scanning	process	completes,	we	need	to	validate	our	findings,	adjust
severities	accordingly,	and	generate	our	report.

How	to	do	it...
1.	 For	this	recipe,	select	Cookie	without	HttpOnly	flag	set	under	the	Issues

heading:

2.	 Look	at	the	Response	tab	of	that	message	to	validate	the	finding.	We	can
clearly	see	the	PHPSESSID	cookie	does	not	have	the	HttpOnly	flag	set.
Therefore,	we	can	change	the	severity	from	Low	to	High	and	the
confidence	level	from	Firm	to	Certain:

3.	 Right-click	the	issue	and	change	the	severity	to	High	by	selecting	Set
severity	|	High:

4.	 Right-click	the	issue	and	change	the	severity	to	Certain	by	selecting	Set
confidence	|	Certain:

5.	 For	this	recipe,	select	the	issues	with	the	highest	confidence	and	severity
levels	to	be	included	in	the	report.	After	selecting	(highlighting	+	Shift	key)
the	items	shown	here,	right-click	and	select	Report	selected	issues:

Upon	clicking	Report	selected	issues,	a	pop-up	box	appears	prompting	us
for	the	format	of	the	report.	This	pop-up	is	the	Burp	Scanner	reporting
wizard.	

6.	 For	this	recipe,	allow	the	default	setting	of	HTML.	Click	Next.
7.	 This	screen	prompts	for	the	types	of	details	to	be	included	in	the	report.	For

this	recipe,	allow	the	default	settings.	Click	Next.

8.	 This	screen	prompts	for	how	messages	should	be	displayed	within	the
report.	For	this	recipe,	allow	the	default	settings.	Click	Next.

9.	 This	screen	prompts	for	which	types	of	issues	should	be	included	in	the
report.	For	this	recipe,	allow	the	default	settings.	Click	Next.

10.	 This	screen	prompts	for	the	location	of	where	to	save	the	report.	For	this
recipe,	click	Select	file…,	select	a	location,	and	provide	a	file	name
followed	by	the	.html	extension;	allow	all	other	default	settings.	Click
Next:

11.	 This	screen	reflects	the	completion	of	the	report	generation.	Click	Close

and	browse	to	the	saved	location	of	the	file.	

12.	 Double-click	the	file	name	to	load	the	report	into	a	browser:

Congratulations!	You've	created	your	first	Burp	report!

Assessing	Authentication	Schemes
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	for	account	enumeration	and	guessable	accounts
Testing	for	weak	lock-out	mechanisms
Testing	for	bypassing	authentication	schemes
Testing	for	browser	cache	weaknesses
Testing	the	account	provisioning	process	via	REST	API

Introduction
This	chapter	covers	the	basic	penetration	testing	of	authentication	schemes.
Authentication	is	the	act	of	verifying	whether	a	person	or	object	claim	is	true.
Web	penetration	testers	must	make	key	assessments	to	determine	the	strength	of
a	target	application's	authentication	scheme.	Such	tests	include	launching
attacks,	to	determine	the	presence	of	account	enumeration	and	guessable
accounts,	the	presence	of	weak	lock-out	mechanisms,	whether	the	application
scheme	can	be	bypassed,	whether	the	application	contains	browser-caching
weaknesses,	and	whether	accounts	can	be	provisioned	without	authentication	via
a	REST	API	call.	You	will	learn	how	to	use	Burp	to	perform	such	tests.

Software	tool	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link

GetBoo	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
The	Firefox	browser	configured	to	allow	Burp	to	proxy	traffic
(https://www.mozilla.org/en-US/firefox/new/)

https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/

Testing	for	account	enumeration	and
guessable	accounts
By	interacting	with	an	authentication	mechanism,	a	tester	may	find	it	possible	to
collect	a	set	of	valid	usernames.	Once	the	valid	accounts	are	identified,	it	may	be
possible	to	brute-force	passwords.	This	recipe	explains	how	Burp	Intruder	can	be
used	to	collect	a	list	of	valid	usernames.

Getting	ready
Perform	username	enumeration	against	a	target	application.

How	to	do	it...
Ensure	Burp	and	the	OWASP	BWA	VM	are	running	and	that	Burp	is	configured
in	the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	GetBoo
application:

2.	 Click	the	Log	In	button,	and	at	the	login	screen,	attempt	to	log	in	with	an
account	username	of	admin	and	a	password	of	aaaaa:

3.	 Note	the	message	returned	is	The	password	is	invalid.	From	this
information,	we	know	admin	is	a	valid	account.	Let's	use	Burp	Intruder	to
find	more	accounts.

4.	 In	Burp's	Proxy	|	HTTP	history	tab,	find	the	failed	login	attempt	message.
View	the	Response	|	Raw	tab	to	find	the	same	overly	verbose	error
message,	The	password	is	invalid:

5.	 Flip	back	to	the	Request	|	Raw	tab	and	right-click	to	send	this	request	to
Intruder:

6.	 Go	to	Burp's	Intruder	tab	and	leave	the	Intruder	|	Target	tab	settings	as	it
is.	Continue	to	the	Intruder	|	Positions	tab.	Notice	how	Burp	places
payload	markers	around	each	parameter	value	found.	However,	we	only
need	a	payload	marker	around	the	password	value.	Click	the	Clear	§	button
to	remove	the	payload	markers	placed	by	Burp:

7.	 Then,	highlight	the	name	value	of	admin	with	your	cursor	and	click	the
Add	§	button:

8.	 Continue	to	the	Intruder	|	Payloads	tab.	Many	testers	use	word	lists	to
enumerate	commonly	used	usernames	within	the	payload	marker
placeholder.	For	this	recipe,	we	will	type	in	some	common	usernames,	to
create	a	custom	payload	list.

9.	 In	the	Payload	Options	[Simple	list]	section,	type	the	string	user	and	click
the	Add	button:

10.	 Add	a	few	more	strings	such	as	john,	tom,	demo,	and,	finally,	admin	to	the
payload-listing	box:

11.	 Go	to	the	Intruder	|	Options	tab	and	scroll	down	to	the	Grep	–	Match
section.	Click	the	checkbox	Flag	result	items	with	responses	matching
these	expressions.	Click	the	Clear	button	to	remove	the	items	currently	in
the	list:

12.	 Click	Yes	to	confirm	you	wish	to	clear	the	list.
13.	 Type	the	string	The	password	is	invalid	within	the	textbox	and	click	the

Add	button.	Your	Grep	–	Match	section	should	look	as	shown	in	the
following	screenshot:

14.	 Click	the	Start	attack	button	located	at	the	top	of	the	Options	page.	A	pop-
up	dialog	box	appears	displaying	the	payloads	defined,	as	well	as	the	new
column	we	added	under	the	Grep	–	Match	section.	This	pop-up	window	is
the	attack	results	table.

15.	 The	attack	results	table	shows	each	request	with	the	given	payload	resulted
in	a	status	code	of	200	and	that	two	of	the	payloads,	john	and	tom,	did	not
produce	the	message	The	password	is	invalid	within	the	responses.
Instead,	those	two	payloads	returned	a	message	of	The	user	does	not	exist:

16.	 The	result	of	this	attack	results	table	provide	a	username	enumeration
vulnerability	based	upon	the	overly	verbose	error	message	The	password	is
invalid,	which	confirms	the	user	account	exists	on	the	system:

This	means	we	are	able	to	confirm	that	accounts	already	exist	in	the	system	for
the	users	user,	demo,	and	admin.

Testing	for	weak	lock-out
mechanisms
Account	lockout	mechanisms	should	be	present	within	an	application	to	mitigate
brute-force	login	attacks.	Typically,	applications	set	a	threshold	between	three	to
five	attempts.	Many	applications	lock	for	a	period	of	time	before	a	re-attempt	is
allowed.

Penetration	testers	must	test	all	aspects	of	login	protections,	including	challenge
questions	and	response,	if	present.

Getting	ready
Determine	whether	an	application	contains	proper	lock-out	mechanisms	in	place.
If	they	are	not	present,	attempt	to	brute-force	credentials	against	the	login	page
to	achieve	unauthorized	access	to	the	application.	Using	the	OWASP	Mutillidae
II	application,	attempt	to	log	in	five	times	with	a	valid	username	but	an	invalid
password.	

How	to	do	it...
Ensure	Burp	and	the	OWASP	BWA	VM	are	running	and	that	Burp	is	configured
in	the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	to	the	login	screen	of	OWASP	Mutillidae	II.
From	the	top	menu,	click	Login.

3.	 At	the	login	screen,	attempt	to	login	five	times	with	username	admin	and
the	wrong	password	of	aaaaaa.	Notice	the	application	does	not	react	any
differently	during	the	five	attempts.	The	application	does	not	change	the
error	message	shown,	and	the	admin	account	is	not	locked	out.	This	means
the	login	is	probably	susceptible	to	brute-force	password-guessing	attacks:

Let's	continue	the	testing,	to	brute-force	the	login	page	and	gain
unauthorized	access	to	the	application.

4.	 Go	to	the	Proxy	|	HTTP	history	tab,	and	look	for	the	failed	login	attempts.
Right-click	one	of	the	five	requests	and	send	it	to	Intruder:

5.	 Go	to	Burp's	Intruder	tab,	and	leave	the	Intruder	|	Target	tab	settings	as	it
is.	Continue	to	the	Intruder	|	Positions	tab	and	notice	how	Burp	places
payload	markers	around	each	parameter	value	found.	However,	we	only
need	a	payload	marker	around	the	password's	value.	Click	the	Clear
§	button	to	remove	the	payload	markers	placed	by	Burp:

6.	 Then,	highlight	the	password	value	of	aaaaaa	and	click	the	Add	§	button.
7.	 Continue	to	the	Intruder	|	Payloads	tab.		Many	testers	use	word	lists	to

brute-force	commonly	used	passwords	within	the	payload	marker
placeholder.	For	this	recipe,	we	will	type	in	some	common	passwords	to
create	our	own	unique	list	of	payloads.

8.	 In	the	Payload	Options	[Simple	list]	section,	type	the	string	admin123	and
click	the	Add	button:	

9.	 Add	a	few	more	strings,	such	as	adminpass,	welcome1,	and,	finally,	admin
to	the	payload-listing	box:

10.	 Go	to	the	Intruder	|	Options	tab	and	scroll	down	to	the	Grep	–	Extract
section:

11.	 Click	the	checkbox	Extract	the	following	items	from	responses	and	then
click	the	Add	button.	A	pop-up	box	appears,	displaying	the	response	of	the
unsuccessful	login	attempt	you	made	with	the	admin/aaaaaa	request.

12.	 In	the	search	box	at	the	bottom,	search	for	the	words	Not	Logged	In.	After
finding	the	match,	you	must	highlight	the	words	Not	Logged	In,	to	assign
the	grep	match	correctly:

13.	 If	you	do	not	highlight	the	words	properly,	after	you	click	OK,	you	will	see
[INVALID]	inside	the	Grep	–	Extract	box.	If	this	happens,	remove	the
entry	by	clicking	the	Remove	button	and	try	again	by	clicking	the	Add
button,	perform	the	search,	and	highlight	the	words.

14.	 If	you	highlight	the	words	properly,	you	should	see	the	following	in	the
Grep	–	Extract	box:

15.	 Now,	click	the	Start	attack	button	at	the	top	right-hand	side	of	the	Options
page.

16.	 A	pop-up	attack	results	table	appears,	displaying	the	request	with	the
payloads	you	defined	placed	into	the	payload	marker	positions.	Notice	the
attack	table	produced	shows	an	extra	column	entitled
ReflectedXSSExecution.	This	column	is	a	result	of	the	Grep	–	Extract
Option	set	previously.	

17.	 From	this	attack	table,	viewing	the	additional	column,	a	tester	can	easily
identify	which	request	number	successfully	brute-forced	the	login	screen.	In
this	case,	Request	4,	using	credentials	of	the	username	admin	and	the
password	admin	logged	us	into	the	application:

18.	 Select	Request	4	within	the	attack	table,	and	view	the	Response	|	Render
tab.	You	should	see	the	message	Logged	In	Admin:	admin	(g0t	r00t?)	on
the	top	right-hand	side:

19.	 Close	the	attack	table	by	clicking	the	X	in	the	top	right-hand	corner.

You	successfully	brute-forced	the	password	of	a	valid	account	on	the	system,
due	to	the	application	having	a	weak	lock-out	mechanism.

Testing	for	bypassing	authentication
schemes
Applications	may	contain	flaws,	allowing	unauthorized	access	by	means	of
bypassing	the	authentication	measures	in	place.	Bypassing	techniques	include	a
direct	page	request	(that	is,	forced	browsing),	parameter	modification,
session	ID	prediction,	and	SQL	Injection.

For	the	purposes	of	this	recipe,	we	will	use	parameter	modification.

Getting	ready
Add	and	edit	parameters	in	an	unauthenticated	request	to	match	a	previously
captured	authenticated	request.	Replay	the	modified,	unauthenticated	request	to
gain	access	to	the	application	through	bypassing	the	login	mechanism.

How	to	do	it...
1.	 Open	the	Firefox	browser	to	the	home	page	of	OWASP	Mutillidae	II,	using

the	Home	button	from	the	top	menu,	on	the	left-hand	side.	Make	sure	you
are	not	logged	into	the	application.	If	you	are	logged	in,	select	Logout	from
the	menu:

2.	 In	Burp,	go	to	the	Proxy	|	HTTP	history	tab	and	select	the	request	you	just
made,	browsing	to	the	home	page	as	unauthenticated.	Right-click,	and	then
select	Send	to	Repeater:

3.	 Using	this	same	request	and	location,	right-click	again,	and	then	select
Send	to	Comparer	(request):

4.	 Return	to	the	home	page	of	your	browser	and	click	the	Login/Register
button.	At	the	login	page,	log	in	with	the	username	of	admin	and	the
password	of	admin.	Click	Login.

5.	 After	you	log	in,	go	ahead	and	log	out.	Make	sure	you	press	the	Logout
button	and	are	logged	out	of	the	admin	account.

6.	 In	Burp,	go	to	the	Proxy	|	HTTP	history	tab	and	select	the	request	you	just
made,	logging	in	as	admin.	Select	GET	request	immediately	following	the
POST	302	redirect.	Right-click	and	then	select	Send	to	Repeater	(request):

7.	 Using	this	same	request	and	location,	right-click	again	and	Send	to
Comparer	(request):

8.	 Go	to	Burp's	Comparer	tab.	Notice	the	two	requests	you	sent	are
highlighted.	Press	the	Words	button	on	the	bottom	right-hand	side,	to
compare	the	two	requests	at	the	same	time:

9.	 A	dialog	pop-up	displays	the	two	requests	with	color-coded	highlights	to
draw	your	eyes	to	the	differences.	Note	the	changes	in	the	Referer	header
and	the	additional	name/value	pair	placed	in	the	admin	account	cookie.
Close	the	pop-up	box	with	the	X	on	the	right-hand	side:

10.	 Return	to	Repeater,	which	contains	your	first	GET	request	you	performed	as

unauthenticated.	Prior	to	performing	this	attack,	make	sure	you	are
completely	logged	out	of	the	application.

11.	 You	can	verify	you	are	logged	out	by	clicking	the	Go	button	in	Repeater
associated	to	your	unauthenticated	request:

12.	 Now	flip	over	to	the	Repeater	tab,	which	contains	your	second	GET	request
as	authenticated	user	admin.	Copy	the	values	for	Referer	header	and
Cookie	from	the	authenticated	request.	This	attack	is	parameter
modification	for	the	purpose	of	bypassing	authentication:

13.	 Copy	the	highlighted	headers	(Referer	and	Cookie)	from	the	authenticated
GET	request.	You	are	going	to	paste	those	values	into	the	unauthenticated
GET	request.

14.	 Replace	the	same	headers	in	the	unauthenticated	GET	request	by
highlighting	and	right-clicking,	and	select	Paste.

15.	 Right-click	and	select	Paste	in	the	Repeater	|	Raw	tab	of	the	first	GET
request	you	performed	as	unauthenticated.

16.	 Click	the	Go	button	to	send	your	modified	GET	request.	Remember,	this	is

the	first	GET	request	you	performed	as	unauthenticated.
17.	 Verify	that	you	are	now	logged	in	as	admin	in	the	Response	|	Render	tab.

We	were	able	to	bypass	the	authentication	mechanism	(that	is,	the	log	in
page)	by	performing	parameter	manipulation:

How	it	works
By	replaying	both	the	token	found	in	the	cookie	and	the	referer	value	of	the
authenticated	request	into	the	unauthenticated	request,	we	are	able	to	bypass	the
authentication	scheme	and	gain	unauthorized	access	to	the	application.

Testing	for	browser	cache	weaknesses
Browser	caching	is	provided	for	improved	performance	and	better	end-user
experience.	However,	when	sensitive	data	is	typed	into	a	browser	by	the	user,
such	data	can	also	be	cached	in	the	browser	history.	This	cached	data	is	visible
by	examining	the	browser's	cache	or	simply	by	pressing	the	browser's	back
button.

Getting	ready
Using	the	browser's	back	button,	determine	whether	login	credentials	are	cached,
allowing	for	unauthorized	access.	Examine	these	steps	in	Burp,	to	understand	the
vulnerability.

How	to	do	it...
1.	 Log	into	the	Mutillidae	application	as	admin	with	the	password	admin.
2.	 Now	log	out	of	the	application	by	clicking	the	Logout	button	from	the	top

menu.
3.	 Verify	you	are	logged	out	by	noting	the	Not	Logged	In	message.
4.	 View	these	steps	as	messages	in	Burp's	Proxy	|	History	as	well.	Note	the

logout	performs	a	302	redirect	in	an	effort	to	not	cache	cookies	or
credentials	in	the	browser:

5.	 From	the	Firefox	browser,	click	the	back	button	and	notice	that	you	are	now
logged	in	as	admin	even	though	you	did	not	log	in!	This	is	possible	because
of	cached	credentials	stored	in	the	browser	and	the	lack	of	any	cache-
control	protections	set	in	the	application.

6.	 Now	refresh/reload	the	page	in	the	browser,	and	you	will	see	you	are	logged
out	again.

7.	 Examine	the	steps	within	the	Proxy	|	HTTP	history	tab.	Review	the	steps
you	did	through	the	browser	against	the	messages	captured	in	the	Proxy	|
HTTP	history	table:

Request	1	in	the	following	screenshot	is	unauthenticate
Request	35	is	the	successful	login	(302)	as	admin
Request	37	is	the	logout	of	the	admin	account
Requests	38	and	39	are	the	refresh	or	reload	of	the	browser	page,
logging	us	out	again

8.	 There	is	no	request	captured	when	you	press	the	browser's	back	button.
This	is	because	the	back	button	action	is	contained	in	the	browser.	No
message	was	sent	through	Burp	to	the	web	server	to	perform	this	action.

This	is	an	important	distinction	to	note.	Nonetheless,	we	found	a
vulnerability	associated	with	weak	browser-caching	protection.	In	cases
such	as	this,	penetration	testers	will	take	a	screenshot	of	the	logged-in
cached	page,	seen	after	clicking	the	back	button:

Testing	the	account	provisioning
process	via	the	REST	API
Account	provisioning	is	the	process	of	establishing	and	maintaining	user
accounts	within	an	application.	Provisioning	capabilities	are	usually	restricted	to
administrator	accounts.	Penetration	testers	must	validate	account-provisioning
functions	are	done	by	users	providing	proper	identification	and	authorization.	A
common	venue	for	account	provisioning	is	through	Representational	State
Transfer	(REST)	API	calls.	Many	times,	developers	may	not	put	the	same
authorization	checks	in	place	for	API	calls	that	are	used	in	the	UI	portion	of	an
application.

Getting	ready
Using	REST	API	calls	available	in	the	OWASP	Mutillidae	II	application,
determine	whether	an	unauthenticated	API	call	can	provision	or	modify	users.

How	to	do	it...
Make	sure	you	are	not	logged	into	the	application.	If	you	are,	click	the	Logout
button	from	the	top	menu.	

1.	 Within	Mutillidae,	browse	to	the	User	Lookup	(SQL)	Page	and	select
OWASP	2013	|	A1	Injection	(SQL)	|	SQLi	–	Extract	Data	|	User	Info
(SQL):

2.	 Type	user	for	Name	and	user	for	Password,	and	click	View	Account
Details.	You	should	see	the	results	shown	in	the	next	screenshot.	This	is	the
account	we	will	test	provisioning	functions	against,	using	REST	calls:

Through	Spidering,	Burp	can	find	/api	or	/rest	folders.	Such	folders	are
clues	that	an	application	is	REST	API	enabled.	A	tester	needs	to

determine	which	functions	are	available	through	these	API	calls.

3.	 For	Mutillidae,	the	/webservices/rest/	folder	structure	offers	account
provisioning	through	REST	API	calls.

4.	 To	go	directly	to	this	structure	within	Mutillidae,	select	Web	Services	|
REST	|	SQL	Injection	|	User	Account	Management:

You	are	presented	with	a	screen	describing	the	supported	REST	calls	and
parameters	required	for	each	call:

5.	 Let's	try	to	invoke	one	of	the	REST	calls.	Go	to	the	Proxy	|	HTTP	history
table	and	select	the	latest	request	you	sent	from	the	menu,	to	get	to	the	User
Account	Management	page.	Right-click	and	send	this	request	to
Repeater:

6.	 In	Burp's	Repeater,	add	the	?,	followed	by	a	parameter	name/value	pair	of
username=user	to	the	URL.	The	new	URL	should	be	as	follows:

/mutillidae/webservices/rest/ws-user-account.php?

username=user

7.	 Click	the	Go	button	and	notice	we	are	able	to	retrieve	data	as	an
unauthenticated	user!	No	authentication	token	is	required	to	perform	such
actions:

8.	 Let's	see	what	else	we	can	do.	Using	the	SQL	Injection	string	given	on	the
User	Account	Management	page,	let's	attempt	to	dump	the	entire	user
table.

9.	 Append	the	following	value	after	username=:

user'+union+select+concat('The+password+for+',username,'+is+'

,+password),mysignature+from+accounts+--+

The	new	URL	should	be	the	following	one:

/mutillidae/webservices/rest/ws-user-account.php?

username=user'+union+select+concat('The+password+for+',userna

me,'+is+',+password),mysignature+from+accounts+--+

10.	 Click	the	Go	button	after	making	the	change	to	the	username	parameter.
Your	request	should	look	as	shown	in	the	following	screenshot:

11.	 Notice	we	dumped	all	of	the	accounts	in	the	database,	displaying	all
usernames,	passwords,	and	signatures:

12.	 Armed	with	this	information,	return	to	Proxy	|	HTTP	History,	select	the
request	you	made	to	see	the	User	Account	Management	page,	right-click,
and	send	to	Repeater.

13.	 In	Repeater,	modify	the	GET	verb	and	replace	it	with	DELETE	within	the
Raw	tab	of	the	Request:

14.	 Move	to	the	Params	tab,	click	the	Add	button,	and	add	two	Body	type
parameters:	first,	a	username	with	the	value	set	to	user,	and	second,	a
password	with	the	value	set	to	user,	and	then	click	the	Go	button:

15.	 Notice	we	deleted	the	account!	We	were	able	to	retrieve	information	and
even	modify	(delete)	rows	within	the	database	without	ever	showing	an	API
key	or	authentication	token!

Note:	If	you	wish	to	re-create	the	user	account,	repeat	the	previous	steps,
replacing	delete	with	put.	A	signature	is	optional.	Click	the	Go	button.	The	user
account	is	re-created	again.

Assessing	Authorization	Checks
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	for	directory	traversal
Testing	for	Local	File	Include	(LFI)
Testing	for	Remote	File	Include	(RFI)
Testing	for	privilege	escalation
Testing	for	insecure	direct	object	reference

Introduction
This	chapter	covers	the	basics	of	authorization,	including	an	explanation	of	how
an	application	uses	roles	to	determine	user	functions.	Web	penetration	testing
involves	key	assessments	to	determine	how	well	the	application	validates
functions	assigned	to	a	given	role,	and	we	will	learn	how	to	use	Burp	to	perform
such	tests.

Software	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	broken	web	applications	(VM)
OWASP	mutillidae	link

Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

Firefox	browser	configured	to	allow	Burp	to	proxy	traffic
(https://www.mozilla.org/en-US/firefox/new/)
The	wfuzz	wordlist	repository	from	GitHub
(https://github.com/xmendez/wfuzz)

https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/
https://github.com/xmendez/wfuzz

Testing	for	directory	traversal
Directory	traversal	attacks	are	attempts	to	discover	or	forced	browse	to
unauthorized	web	pages	usually	designed	for	administrators	of	the	application.	If
an	application	does	not	configure	the	web	document	root	properly	and	does	not
include	proper	authorization	checks	for	each	page	accessed,	a	directory	traversal
vulnerability	could	exist.	In	particular	situations,	such	a	weakness	could	lead	to
system	command	injection	attacks	or	the	ability	of	an	attacker	to	perform
arbitrary	code	execution.

Getting	ready
Using	OWASP	Mutillidae	II	as	our	target	application,	let's	determine	whether	it
contains	any	directory	traversal	vulnerabilities.

How	to	do	it...
Ensure	Burp	and	the	OWASP	BWA	VM	are	running	and	that	Burp	is	configured
in	the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	on	the	login	screen	of	OWASP	Mutillidae	II.
From	the	top	menu,	click	Login.

3.	 Find	the	request	you	just	performed	within	the	Proxy	|	HTTP	history	table.
Look	for	the	call	to	the	login.php	page.	Highlight	the	message,	move	your
cursor	into	the	Raw	tab	of	the	Request	tab,	right-click,	and	click	on	Send
to	Intruder:

4.	 Switch	over	to	the	Intruder	|	Positions	tab,	and	clear	all	Burp-defined
payload	markers	by	clicking	the	Clear	$	button	on	the	right-hand	side.

5.	 Highlight	the	value	currently	stored	in	the	page	parameter	(login.php),	and
place	a	payload	marker	around	it	using	the	Add		§	button:

6.	 Continue	to	the	Intruder	|	Payloads	tab,	and	select	the	following	wordlist
from	the	wfuzz	repository:	admin-panels.txt.	The	location	of	the	wordlist
from	the	GitHub	repository	follows	this	folder	structure:
wfuzz/wordlist/general/admin-panels.txt.

7.	 Click	the	Load	button	within	the	Payload	Options	[Simple	list]	section	of
the	Intruder	|	Payloads,	tab	and	a	popup	will	display,	prompting	for	the
location	of	your	wordlist.

8.	 Browse	to	the	location	where	you	downloaded	the	wfuzz	repository	from
GitHub.	Continue	to	search	through	the	wfuzz	folder	structure
(wfuzz/wordlist/general/)	until	you	reach	the	admin-panels.txt	file,	and
then	select	the	file	by	clicking	Open:

9.	 Scroll	to	the	bottom	and	uncheck	(by	default,	it	is	checked)	the	option
URL-encode	these	characters:

10.	 You	are	now	ready	to	begin	the	attack.	Click	the	Start	attack	button	at	the
top	right-hand	corner	of	the	Intruder	|	Positions	page:

The	attack	results	table	will	appear.	Allow	the	attacks	to	complete.	There
are	137	payloads	in	the	admin-panels.txt	wordlist.	Sort	on	the	Length
column	from	ascending	to	descending	order,	to	see	which	of	the	payloads
hit	a	web	page.

11.	 Notice	the	payloads	that	have	larger	response	lengths.	This	looks
promising!		Perhaps	we	have	stumbled	upon	some	administration	pages	that

may	contain	fingerprinting	information	or	unauthorized	access:

12.	 Select	the	first	page	in	the	list	with	the	largest	length,	administrator.php.
From	the	attack	results	table,	look	at	the	Response	|	Render	tab,	and	notice
the	page	displays	the	PHP	version	and	the	system	information:

How	it	works...
Without	even	being	logged	in,	we	were	able	to	force	browse	to	an	area	of	the
web	application	that	was	unmapped.	The	term	unmapped	means	the	application
itself	had	no	direct	link	to	this	secret	configuration	page.	However,	using	Burp
Intruder	and	a	wordlist	containing	commonly	known	administration	file	names,
we	were	able	to	discover	the	page	using	the	directory	traversal	attack.

Testing	for	Local	File	Include	(LFI)
Web	servers	control	access	to	privileged	files	and	resources	through
configuration	settings.	Privileged	files	include	files	that	should	only	be
accessible	by	system	administrators.	For	example,	the	/etc/passwd	file	on
UNIX-like	platforms	or	the	boot.ini	file	on	Windows	systems.

A	LFI	attack	is	an	attempt	to	access	privileged	files	using	directory	traversal
attacks.	LFI	attacks	include	different	styles	including	the	dot-dot-slash	attack
(../),	directory	brute-forcing,	directory	climbing,	or	backtracking.

Getting	ready
Using	OWASP	Mutillidae	II	as	our	target	application,	let's	determine	whether	it
contains	any	LFI	vulnerabilities.

How	to	do	it...
Ensure	Burp	and	OWASP	BWA	VM	are	running	and	that	Burp	is	configured	in
the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	to	the	login	screen	of	OWASP	Mutillidae	II.
From	the	top	menu,	click	Login.

3.	 Find	the	request	you	just	performed	within	the	Proxy	|	HTTP	history	table.
Look	for	the	call	to	the	login.php	page.	Highlight	the	message,	move	your
cursor	into	the	Raw	tab	of	the	Request	tab,	right-click,	and	Send	to
Intruder.

4.	 Switch	over	to	the	Intruder	|	Positions	tab,	and	clear	all	Burp-defined
payload	markers	by	clicking	the	Clear	§	button	on	the	right-hand	side.

5.	 Highlight	the	value	currently	stored	in	the	page	parameter	(login.php),	and
place	a	payload	marker	around	it	using	the	Add		§	button	on	the	right-hand
side.

6.	 Continue	to	the	Intruder	|	Payloads	tab.		Select	the	following	wordlist
from	the	wfuzz	repository:	Traversal.txt.	The	location	of	the	wordlist
from	the	GitHub	repository	follows	this	folder	structure:
wfuzz/wordlist/injections/Traversal.txt.

7.	 Click	the	Load	button	within	the	Payload	Options	[Simple	list]	section	of
the	Intruder	|	Payloads	tab.	A	popup	will	display,	prompting	for	the
location	of	your	wordlist.

8.	 Browse	to	the	location	where	you	downloaded	the	wfuzz	repository	from
GitHub.	Continue	to	search	through	wfuzz	folder	structure	until	you	reach
the	admin-panels.txt	file.	Select	the	file	and	click	Open:

9.	 Scroll	to	the	bottom	and	uncheck	(by	default,	it	is	checked)	the	option
URL-encode	these	characters.

10.	 You	are	now	ready	to	begin	the	attack.		Click	the	Start	attack	button	at	the
top-right-hand	corner	of	the	Intruder	|	Positions	page.

11.	 The	attack	results	table	will	appear.	Allow	the	attacks	to	complete.	Sort	on
the	Length	column	from	ascending	to	descending	order,	to	see	which	of	the
payloads	hit	a	web	page.	Notice	the	payloads	with	larger	lengths;	perhaps
we	gained	unauthorized	access	to	the	system	configuration	files!

12.	 Select	the	Request	#2	in	the	list.	From	the	attack	results	table,	look	at
the	Response	|	Render	tab	and	notice	the	page	displays	the	host	file	from
the	system!

13.	 Continue	scrolling	down	the	list	of	requests	in	the	attack	results	table.	Look
at	request	#6,	and	then	look	at	the	Response	|	Render	tab	and	notice	the
page	displays	the	/etc/passwd	file	from	the	system!

How	it	works...
Due	to	poorly	protected	file	permissions	and	lack	of	application	authorization
checks,	attackers	are	able	to	read	privileged	local	files	on	a	system	containing
sensitive	information.

Testing	for	Remote	File	Inclusion
(RFI)
Remote	File	Inclusion	(RFI)	is	an	attack	attempting	to	access	external	URLs
and	remotely	located	files.	The	attack	is	possible	due	to	parameter	manipulation
and	lack	of	server-side	checks.	These	oversights	allow	parameter	changes	to
redirect	the	user	to	locations	that	are	not	whitelisted	or	sanitized	with	proper	data
validation.

Getting	ready
Using	OWASP	Mutillidae	II	as	our	target	application,	let's	determine	whether	it
contains	any	RFI	vulnerabilities.

How	to	do	it...
Ensure	Burp	and	OWASP	BWA	VM	are	running	and	that	Burp	is	configured	in
the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	to	the	login	screen	of	OWASP	Mutillidae	II.
From	the	top	menu,	click	Login.

3.	 Find	the	request	you	just	performed	within	the	Proxy	|	HTTP	history	table.
Look	for	the	call	to	the	login.php	page:

4.	 Make	a	note	of	the	page	parameter	that	determines	the	page	to	load:

Let's	see	if	we	can	exploit	this	parameter	by	providing	a	URL	that	is
outside	the	application.	For	demonstration	purposes,	we	will	use	a	URL
that	we	control	in	the	OWASP	BWA	VM.	However,	in	the	wild,	this	URL
would	be	attacker-controlled	instead.

5.	 Switch	to	the	Proxy	|	Intercept	tab,	and	press	the	Intercept	is	on	button.
6.	 Return	to	the	Firefox	browser,	and	reload	the	login	page.	The	request	is

paused	and	contained	within	the	Proxy	|	Intercept	tab:

7.	 Now	let's	manipulate	the	value	of	the	page	parameter	from	login.php	to	a
URL	that	is	external	to	the	application.	Let's	use	the	login	page	to	the
GetBoo	application.	Your	URL	will	be	specific	to	your	machine's	IP
address,	so	adjust	accordingly.	The	new	URL	will	be
http://<your_IP_address>/getboo/

8.	 Replace	the	login.php	value	with	http://<your_IP_address>/getboo/
and	click	the	Forward	button:	

9.	 Now	press	the	Intercept	is	on	again	to	toggle	the	intercept	button	to	OFF
(Intercept	is	off).

10.	 Return	to	the	Firefox	browser,	and	notice	the	page	loaded	is	the	GetBoo
index	page	within	the	context	of	the	Mutillidae	application!

How	it	works...
The	page	parameter	does	not	include	proper	data	validation	to	ensure	the	values
provided	to	it	are	whitelisted	or	contained	to	a	prescribed	list	of	acceptable
values.	By	exploiting	this	weakness,	we	are	able	to	dictate	values	to	this
parameter,	which	should	not	be	allowed.

Testing	for	privilege	escalation
Developer	code	in	an	application	must	include	authorization	checks	on	assigned
roles	to	ensure	an	authorized	user	is	not	able	to	elevate	their	role	to	a	higher
privilege.	Such	privilege	escalation	attacks	occur	by	modifying	the	value	of	the
assigned	role	and	replacing	the	value	with	another.	In	the	event	that	the	attack	is
successful,	the	user	gains	unauthorized	access	to	resources	or	functionality
normally	restricted	to	administrators	or	more-powerful	accounts.

Getting	ready
Using	OWASP	Mutillidae	II	as	our	target	application,	let's	log	in	as	a	regular
user,	John,	and	determine	whether	we	can	escalate	our	role	to	admin.

How	to	do	it...
Ensure	Burp	and	OWASP	BWA	VM	are	running	and	that	Burp	is	configured	in
the	Firefox	browser	used	to	view	the	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	to	the	login	screen	of	OWASP	Mutillidae	II.
From	the	top	menu,	click	Login.

3.	 At	the	login	screen,	log	in	with	these	credentials—username:	john
and	password:	monkey.

4.	 Switch	to	Burp's	Proxy	|	HTTP	history	tab.	Find	the	POST	and	subsequent
GET	requests	you	just	made	by	logging	in	as	john:

5.	 Look	at	the	GET	request	from	the	listing;	notice	the	cookie	name/value	pairs
shown	on	the	Cookie:	line.

The	name/value	pairs	of	most	interest	include	username=john	and	uid=3.
What	if	we	attempt	to	manipulate	these	values	to	a	different	role?

6.	 Let's	attempt	to	manipulate	the	parameters	username	and	the	uid	stored	in
the	cookie	to	a	different	role.	We	will	use	Burp's	Proxy	|	Intercept	to	help
us	perform	this	attack.

7.	 Switch	to	the	Proxy	|	Intercept	tab,	and	press	the	Intercept	is	on	button.
Return	to	the	Firefox	browser	and	reload	the	login	page.

8.	 The	request	is	paused	within	the	Proxy	|	Intercept	tab.	While	it	is	paused,
change	the	value	assigned	to	the	username	from	john	to	admin.	Also,
change	the	value	assigned	to	the	uid	from	3	to	1:

9.	 Click	the	Forward	button,	and	press	the	Intercept	is	on	again	to	toggle	the
intercept	button	to	OFF	(Intercept	is	off).

10.	 Return	to	the	Firefox	browser,	and	notice	we	are	now	logged	in	as	an
admin!	We	were	able	to	escalate	our	privileges	from	a	regular	user	to	an
admin,	since	the	developer	did	not	perform	any	authorization	checks	on	the
assigned	role:

How	it	works...
There	are	several	application	issues	associated	with	the	privilege	escalation
attack	shown	in	this	recipe.	Any	actions	related	to	account	provisioning	(that	is,
role	assignments)	should	only	be	allowed	by	administrators.	Without	proper
checks	in	place,	users	can	attempt	to	escalate	their	provisioned	roles.	Another
issue	exemplified	in	this	recipe	is	the	sequential	user	ID	number	(for	example,
uid=3).	Since	this	number	is	easily	guessable	and	because	most	applications	start
with	administrator	accounts,	changing	the	digit	from	3	to	1	seemed	a	probable
guess	for	association	with	the	admin	account.

Testing	for	Insecure	Direct	Object
Reference	(IDOR)
Allowing	unauthorized	direct	access	to	files	or	resources	on	a	system	based	on
user-supplied	input	is	known	as	Insecure	Direct	Object	Reference	(IDOR).
This	vulnerability	allows	the	bypassing	of	authorization	checks	placed	on	such
files	or	resources.	IDOR	is	a	result	of	unchecked	user	supplied	input	to	retrieve
an	object	without	performing	authorization	checks	in	the	application	code.

Getting	ready
Using	OWASP	Mutillidae	II	as	our	target	application,	let's	manipulate	the	value
of	the	phpfile	parameter	to	determine	whether	we	can	make	a	call	to	a	direct
object	reference	on	the	system,	such	as	/etc/passwd	file.

How	to	do	it...
1.	 From	the	Mutillidae	menu,	select	OWASP	2013	|	A4	–	Insecure	Direct

Object	References	|	Source	Viewer:

2.	 From	the	Source	Viewer	page,	using	the	default	file	selected	in	the	drop-
down	box	(upload-file.php),	click	the	View	File	button	to	see	the
contents	of	the	file	displayed	below	the	button:

3.	 Switch	to	Burp's	Proxy	|	HTTP	history	tab.	Find	the	POST	request	you	just
made	while	viewing	the	upload-file.php	file.	Note	the	phpfile	parameter
with	the	value	of	the	file	to	display.	What	would	happen	if	we	change	the
value	of	this	parameter	to	something	else?

4.	 Let's	perform	an	IDOR	attack	by	manipulating	the	value	provided	to	the
phpfile	parameter	to	reference	a	file	on	the	system	instead.	For	example,
let's	try	changing	the	upload-file.php	value	to	../../../../etc/passwd
via	Burp's	Proxy	|	Intercept	functionality.

5.	 To	perform	this	attack,	follow	these	steps.
1.	 Switch	to	the	Proxy	|Intercept	tab,	and	press	the	Intercept	is	on

button.
2.	 Return	to	the	Firefox	browser	and	reload	the	login	page.	The	request	is

paused	and	contained	within	the	Proxy	|	Intercept	tab.

3.	 As	the	request	is	paused,	change	the	value	assigned	to	the	phpfile
parameter	to	the	value	../../../../etc/passwd	instead:

6.	 Click	the	Forward	button.	Now	press	the	Intercept	is	on	button	again	to
toggle	the	intercept	button	to	OFF	(Intercept	is	off).

7.	 Return	to	the	Firefox	browser.	Notice	we	can	now	see	the	contents	of	the
/etc/passwd	file!

How	it	works...
Due	to	lack	of	proper	authorization	checks	on	the	phpfile	parameter	within	the
application	code,	we	are	able	to	view	a	privileged	file	on	the	system.	Developers
and	system	administrators	provide	access	controls	and	checks	prior	to	the
revealing	of	sensitive	files	and	resources.	When	these	access	controls	are
missing,	IDOR	vulnerabilities	may	be	present.

Assessing	Session	Management
Mechanisms
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	session	token	strength	using	Sequencer
Testing	for	cookie	attributes
Testing	for	session	fixation
Testing	for	exposed	session	variables
Testing	for	Cross-Site	Request	Forgery

Introduction
This	chapter	covers	techniques	used	to	bypass	and	assess	session	management
schemes.	Session	management	schemes	are	used	by	applications	to	keep	track	of
user	activity,	usually	by	means	of	session	tokens.	Web	assessments	of	session
management	also	involve	determining	the	strength	of	session	tokens	used	and
whether	those	tokens	are	properly	protected.	We	will	learn	how	to	use	Burp	to
perform	such	tests.

Software	tool	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)
A	Firefox	browser	configured	to	allow	Burp	to	proxy	traffic
(https://www.mozilla.org/en-US/firefox/new/)

https://portswigger.net/burp/
https://www.mozilla.org/en-US/firefox/new/

Testing	session	token	strength	using
Sequencer
To	track	user	activity	from	page	to	page	within	an	application,	developers	create
and	assign	unique	session	token	values	to	each	user.	Most	session	token
mechanisms	include	session	IDs,	hidden	form	fields,	or	cookies.	Cookies	are
placed	within	the	user's	browser	on	the	client-side.

These	session	tokens	should	be	examined	by	a	penetration	tester	to	ensure	their
uniqueness,	randomness,	and	cryptographic	strength,	to	prevent	information
leakage.

If	a	session	token	value	is	easily	guessable	or	remains	unchanged	after	login,	an
attacker	could	apply	(or	fixate)	a	pre-known	token	value	to	a	user.	This	is	known
as	a	session	fixation	attack.	Generally	speaking,	the	purpose	of	the	attack	is	to
harvest	sensitive	data	in	the	user's	account,	since	the	session	token	is	known	to
the	attacker.

Getting	ready
We'll	check	the	session	tokens	used	in	OWASP	Mutillidae	II	to	ensure	they	are
created	in	a	secure	and	an	unpredictable	way.	An	attacker	who	is	able	to	predict
and	forge	a	weak	session	token	can	perform	session	fixation	attacks.

How	to	do	it...
Ensure	Burp	and	the	OWASP	BWA	VM	are	running	and	that	Burp	is	configured
in	the	Firefox	browser	used	to	view	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	browser	to	access	the	home	page	of	OWASP	Mutillidae	II
(URL:		http://<your_VM_assigned_IP_address>/mutillidae/).	Make
sure	you	are	starting	a	fresh	session	of	the	Mutillidae	application	and	not
logged	into	it	already:

3.	 Switch	to	the	Proxy	|	HTTP	History	tab	and	select	the	request	showing	your
initial	browse	to	the	Mutillidae	home	page.

4.	 Look	for	the	GET	request	and	the	associated	response	containing	the	Set-
Cookie:	assignments.	Whenever	you	see	this	assignment,	you	can	ensure
you	are	getting	a	freshly	created	cookie	for	your	session.	Specifically,	we
are	interested	in	the	PHPSESSID	cookie	value:

5.	 Highlight	the	value	of	the	of	the	PHPSESSID	cookie,	right-click,	and
select	Send	to	Sequencer:

Sequencer	is	a	tool	within	Burp	designed	to	determine	the	strength	or	the
quality	of	the	randomness	created	within	a	session	token.

6.	 After	sending	the	value	of	the	PHPSESSID	parameter	over	to	Sequencer,	you
will	see	the	value	loaded	in	the	Select	Live	Capture	Request	table.

7.	 Before	pressing	the	Start	live	capture	button,	scroll	down	to	the	Token
Location	Within	Response	section.	In	the	Cookie	dropdown	list,	select
PHPSESSID=<captured	session	token	value>:

8.	 Since	we	have	the	correct	cookie	value	selected,	we	can	begin	the	live
capture	process.	Click	the	Start	live	capture	button,	and	Burp	will	send
multiple	requests,	extracting	the	PHPSESSID	cookie	out	of	each	response.

After	each	capture,	Sequencer	performs	a	statistical	analysis	of	the	level	of
randomness	in	each	token.

9.	 Allow	the	capture	to	gather	and	analyze	at	least	200	tokens,	but	feel	free	to
let	it	run	longer	if	you	like:	

10.	 Once	you	have	at	least	200	samples,	click	the	Analyze	now	button.
Whenever	you	are	ready	to	stop	the	capturing	process,	press	the	Stop	button
and	confirm	Yes:

11.	 After	the	analysis	is	complete,	the	output	of	Sequencer	provides	an	overall
result.	In	this	case,	the	quality	of	randomness	for	the	PHPSESSID	session
token	is	excellent.	The	amount	of	effective	entropy	is	estimated	to	be	112

bits.	From	a	web	pentester	perspective,	these	session	tokens	are	very	strong,
so	there	is	no	vulnerability	to	report	here.	However,	though	there	is	no
vulnerability	present,	it	is	good	practice	to	perform	such	checks	on	session
tokens:

How	it	works...
To	better	understand	the	math	and	hypothesis	behind	Sequencer,	consult
Portswigger's	documentation	on	the	topic	here:
https://portswigger.net/burp/documentation/desktop/tools/sequencer/tests.

https://portswigger.net/burp/documentation/desktop/tools/sequencer/tests

Testing	for	cookie	attributes
Important	user-specific	information,	such	as	session	tokens,	is	often	stored	in
cookies	within	the	client	browser.	Due	to	their	importance,	cookies	need	to	be
protected	from	malicious	attacks.	This	protection	usually	comes	in	the	form	of
two	flags—secure	and	HttpOnly.

The	secure	flag	informs	the	browser	to	only	send	the	cookie	to	the	web	server	if
the	protocol	is	encrypted	(for	example,	HTTPS,	TLS).	This	flag	protects	the
cookie	from	eavesdropping	over	unencrypted	channels.

The	HttpOnly	flag	instructs	the	browser	to	not	allow	access	or	manipulation	of
the	cookie	via	JavaScript.	This	flag	protects	the	cookie	from	cross-site	scripting
attacks.		

Getting	ready
Check	the	cookies	used	in	the	OWASP	Mutillidae	II	application,	to	ensure	the
presence	of	protective	flags.	Since	the	Mutillidae	application	runs	over	an
unencrypted	channel	(for	example,	HTTP),	we	can	only	check	for	the	presence
of	the	HttpOnly	flag.	Therefore,	the	secure	flag	is	out	of	scope	for	this	recipe.

How	to	do	it...
Ensure	Burp	and	OWASP	BWA	VM	are	running	and	that	Burp	is	configured	in
the	Firefox	browser	used	to	view	OWASP	BWA	applications.

1.	 From	the	OWASP	BWA	Landing	page,	click	the	link	to	the	OWASP
Mutillidae	II	application.

2.	 Open	the	Firefox	Browser,	to	access	the	home	page	of	OWASP	Mutillidae
II	(URL:		http://<your_VM_assigned_IP_address>/mutillidae/).	Make
sure	you	are	starting	a	fresh	session	and	you	are	not	logged	in	to	the
Mutillidae	application:

3.	 Switch	to	the	Proxy	|	HTTP	history	tab,	and	select	the	request	showing	your
initial	browse	to	the	Mutillidae	home	page.	Look	for	the	GET	request	and	its
associated	response	containing	Set-Cookie:	assignments.	Whenever	you
see	this	assignment,	you	can	ensure	you	are	getting	a	freshly	created	cookie
for	your	session.	Specifically,	we	are	interested	in	the	PHPSESSID	cookie
value.

4.	 Examine	the	end	of	the	Set-Cookie:	assignments	lines.	Notice	the	absence
of	the	HttpOnly	flag	for	both	lines.	This	means	the	PHPSESSID	and

showhints	cookie	values	are	not	protected	from	JavaScript	manipulation.
This	is	a	security	finding	that	you	would	include	in	your	report:

How	it	works...
If	the	two	cookies	had	HttpOnly	flags	set,	the	flags	would	appear	at	the	end	of
the	Set-Cookie	assignment	lines.	When	present,	the	flag	would	immediately
follow	a	semicolon	ending	the	path	scope	of	the	cookie,	followed	by	the	string
HttpOnly.	The	display	is	similar	for	the	Secure	flag	as	well:

Set-Cookie:	PHPSESSID=<session	token	value>;path=/;Secure;HttpOnly;

Testing	for	session	fixation
Session	tokens	are	assigned	to	users	for	tracking	purposes.	This	means	that	when
browsing	an	application	as	unauthenticated,	a	user	is	assigned	a	unique	session
ID,	which	is	usually	stored	in	a	cookie.	Application	developers	should	always
create	a	new	session	token	after	the	user	logs	into	the	website.	If	this	session
token	does	not	change,	the	application	could	be	susceptible	to	a	session	fixation
attack.	It	is	the	responsibility	of	web	penetration	testers	to	determine	whether
this	token	changes	values	from	an	unauthenticated	state	to	an	authenticated	state.

Session	fixation	is	present	when	application	developers	do	not	invalidate	the
unauthenticated	session	token,	allowing	the	user	to	use	the	same	one	after
authentication.	This	scenario	allows	an	attacker	with	a	stolen	session	token	to
masquerade	as	the	user.	

Getting	ready
Using	the	OWASP	Mutillidae	II	application	and	Burp's	Proxy	HTTP	History	and
Comparer,	we	will	examine	unauthenticated	PHPSESSID	session	token	value.
Then,	we	will	log	in	to	the	application	and	compare	the	unauthenticated	value
against	the	authenticated	value	to	determine	the	presence	of	the	session	fixation
vulnerability.

How	to	do	it...
1.	 Navigate	to	the	login	screen	(click	Login/Register	from	the	top	menu),	but

do	not	log	in	yet.
2.	 Switch	to	Burp's	Proxy	HTTP	history	tab,	and	look	for	the	GET	request

showing	when	you	browsed	to	the	login	screen.	Make	a	note	of	the	value
assigned	to	the	PHPSESSID	parameter	placed	within	a	cookie:

3.	 Right-click	the	PHPSESSID	parameter	and	send	the	request	to	Comparer:

4.	 Return	to	the	login	screen	(click	Login/Register	from	the	top	menu),	and,
this	time,	log	in	under	the	username	ed	and	the	password	pentest.

5.	 After	logging	in,	switch	to	Burp's	Proxy	HTTP	history	tab.	Look	for	the
POST	request	showing	your	login	(for	example,	the	302	HTTP	status	code)
as	well	as	the	immediate	GET	request	following	the	POST.	Note	the
PHPSESSID	assigned	after	login.	Right-click	and	send	this	request	to

Comparer.
6.	 Switch	to	Burp's	Comparer.	The	appropriate	requests	should	already	be

highlighted	for	you.	Click	the	Words	button	in	the	bottom	right-hand
corner:

A	popup	shows	a	detailed	comparison	of	the	differences	between	the	two
requests.	Note	the	value	of	PHPSESSID	does	not	change	between	the
unauthenticated	session	(on	the	left)	and	the	authenticated	session	(on	the
right).	This	means	the	application	has	a	session	fixation	vulnerability:

How	it	works...
In	this	recipe,	we	examined	how	the	PHPSESSID	value	assigned	to	an
unauthenticated	user	remained	constant	even	after	authentication.	This	is	a
security	vulnerability	allowing	for	the	session	fixation	attack.

Testing	for	exposed	session	variables
Session	variables	such	as	tokens,	cookies,	or	hidden	form	fields	are	used	by
application	developers	to	send	data	between	the	client	and	the	server.	Since	these
variables	are	exposed	on	the	client-side,	an	attacker	can	manipulate	them	in	an
attempt	to	gain	access	to	unauthorized	data	or	to	capture	sensitive	information.

Burp's	Proxy	option	provides	a	feature	to	enhance	the	visibility	of	so-called
hidden	form	fields.	This	feature	allows	web	application	penetration	testers	to
determine	the	level	of	the	sensitivity	of	data	held	in	these	variables.	Likewise,	a
pentester	can	determine	whether	the	manipulation	of	these	values	produces	a
different	behavior	in	the	application.

Getting	ready
Using	the	OWASP	Mutillidae	II	application	and	Burp's	Proxy's	Unhide	hidden
form	fields	feature,	we'll	determine	whether	manipulation	of	a	hidden	form	field
value	results	in	gaining	access	to	unauthorized	data.

How	to	do	it...
1.	 Switch	to	Burp's	Proxy	tab,	scroll	down	to	the	Response	Modification

section,	and	check	the	boxes	for	Unhide	hidden	form	fields	and
Prominently	highlight	unhidden	fields:

2.	 Navigate	to	the	User	Info	page.	OWASP	2013	|	A1	–	Injection	(SQL)	|
SQLi	–	Extract	Data	|	User	Info	(SQL):

3.	 Note	the	hidden	form	fields	now	prominently	displayed	on	the	page:

4.	 Let's	try	to	manipulate	the	value	shown,	user-info.php,	by	changing	it	to
admin.php	and	see	how	the	application	reacts.	Modify	the	user-info.php
to	admin.php	within	the	Hidden	field	[page]	textbox:

5.	 Hit	the	Enter	key	after	making	the	change.	You	should	now	see	a	new	page
loaded	showing	PHP	Server	Configuration	information:	

How	it	works...
As	seen	in	this	recipe,	there	isn't	anything	hidden	about	hidden	form	fields.	As
penetration	testers,	we	should	examine	and	manipulate	these	values,	to
determine	whether	sensitive	information	is,	inadvertently,	exposed	or	whether
we	can	change	the	behavior	of	the	application	from	what	is	expected,	based	on
our	role	and	authentication	status.	In	the	case	of	this	recipe,	we	were	not	even
logged	into	the	application.	We	manipulated	the	hidden	form	field	labeled	page
to	access	a	page	containing	fingerprinting	information.	Access	to	such
information	should	be	protected	from	unauthenticated	users.

Testing	for	Cross-Site	Request
Forgery
Cross-Site	Request	Forgery	(CSRF)	is	an	attack	that	rides	on	an	authenticated
user's	session	to	allow	an	attacker	to	force	the	user	to	execute	unwanted	actions
on	the	attacker's	behalf.	The	initial	lure	for	this	attack	can	be	a	phishing	email	or
a	malicious	link	executing	through	a	cross-site	scripting	vulnerability	found	on
the	victim's	website.	CSRF	exploitation	may	lead	to	a	data	breach	or	even	a	full
compromise	of	the	web	application.	

Getting	ready
Using	the	OWASP	Mutillidae	II	application	registration	form,	determine	whether
a	CSRF	attack	is	possible	within	the	same	browser	(a	different	tab)	while	an
authenticated	user	is	logged	into	the	application.

How	to	do	it...
To	level	set	this	recipe,	let's	first	baseline	the	current	number	of	records	in	the
account	table	and	perform	SQL	Injection	to	see	this:

1.	 Navigate	to	the	User	Info	page:	OWASP	2013	|	A1	–	Injection	(SQL)	|
SQLi	–	Extract	Data	|	User	Info	(SQL).

2.	 At	the	username	prompt,	type	in	a	SQL	Injection	payload	to	dump	the	entire
account	table	contents.		The	payload	is	'	or	1=1--	<space>		(tick	or	1
equals	1	dash	dash	space).	Then	press	the	View	Account	Details	button.

3.	 Remember	to	include	the	space	after	the	two	dashes,	since	this	is	a	MySQL
database;	otherwise,	the	payload	will	not	work:

4.	 When	performed	correctly,	a	message	displays	that	there	are	24	records
found	in	the	database	for	users.	The	data	shown	following	the	message
reveals	the	usernames,	passwords,	and	signature	strings	of	all	24	accounts.
Only	two	account	details	are	shown	here	as	a	sample:

We	confirmed	24	records	currently	exist	in	the	accounts	table	of	the
database.

5.	 Now,	return	to	the	login	screen	(click	Login/Register	from	the	top	menu)
and	select	the	link	Please	register	here.

6.	 After	clicking	the	Please	register	here	link,	you	are	presented	with	a
registration	form.

7.	 Fill	out	the	form	to	create	a	tester	account.	Type	in	the	Username	as	tester,
the	Password	as	tester,	and	the	Signature	as	This	is	a	tester	account:

8.	 After	clicking	the	Create	Account	button,	you	should	receive	a	green
banner	confirming	the	account	was	created:

9.	 Return	to	the	User	Info	page:	OWASP	2013|	A1	–	Injection	(SQL)	|	SQLi

–	Extract	Data	|	User	Info	(SQL).
10.	 Perform	the	SQL	Injection	attack	again	and	verify	that	you	can	now	see	25

rows	in	the	account	table,	instead	of	the	previous	count	of	24:

11.	 Switch	to	Burp's	Proxy	HTTP	history	tab	and	view	the	POST	request	that
created	the	account	for	the	tester.

12.	 Studying	this	POST	request	shows	the	POST	action	(register.php)	and	the
body	data	required	to	perform	the	action,	in	this	case,	username,	password,
confirm_password,	and	my_signature.	Also	notice	there	is	no	CSRF-token
used.	CSRF-tokens	are	placed	within	web	forms	to	protect	against	the	very
attack	we	are	about	to	perform.	Let's	proceed.

13.	 Right-click	the	POST	request	and	click	on	Send	to	Repeater:

14.	 If	you're	using	Burp	Professional,	right-click	select	Engagement	tools	|
Generate	CSRF	PoC:

15.	 Upon	clicking	this	feature,	a	pop-up	box	generates	the	same	form	used	on
the	registration	page	but	without	any	CSRF	token	protection:

16.	 If	you	are	using	Burp	Community,	you	can	easily	recreate	the	CSRF	PoC
form	by	viewing	the	source	code	of	the	registration	page:

17.	 While	viewing	the	page	source,	scroll	down	to	the	<form>	tag	section.	For
brevity,	the	form	is	recreated	next.	Insert	attacker	as	a	value	for	the
username,	password,	and	the	signature.	Copy	the	following	HTML	code
and	save	it	in	a	file	entitled	csrf.html:

<html>

		<body>

		<script>history.pushState('',	'',	'/')</script>

				<form	action="http://192.168.56.101/mutillidae/index.php?

page=register.php"	method="POST">

						<input	type="hidden"	name="csrf-token"	value=""	/>

						<input	type="hidden"	name="username"	value="attacker"	

/>

						<input	type="hidden"	name="password"	value="attacker"	

/>

						<input	type="hidden"	name="confirm_password"	

value="attacker"	

/>						<input	type="hidden"	name="my_signature"	

value="attacker	account"	/>

						<input	type="hidden"	name="register-php-submit-button"	

value="Create	Account"	/>

						<input	type="submit"	value="Submit	request"	/>

				</form>

		</body>

</html>

18.	 Now,	return	to	the	login	screen	(click	Login/Register	from	the	top	menu),
and	log	in	to	the	application,	using	the	username	ed	and	the	password
pentest.

19.	 Open	the	location	on	your	machine	where	you	saved	the	csrf.html	file.
Drag	the	file	into	the	browser	where	ed	is	authenticated.	After	you	drag	the
file	to	this	browser,	csrf.html	will	appear	as	a	separate	tab	in	the	same
browser:

20.	 For	demonstration	purposes,	there	is	a	Submit	request	button.	However,	in
the	wild,	a	JavaScript	function	would	automatically	execute	the	action	of
creating	an	account	for	the	attacker.	Click	the	Submit	request	button:

You	should	receive	a	confirmation	that	the	attacker	account	is	created:

21.	 Switch	to	Burp's	Proxy	|	HTTP	history	tab	and	find	the	maliciously
executed	POST	used	to	create	the	account	for	the	attacker,	while	riding	on
the	authenticated	session	of	ed's:

22.	 Return	to	the	User	Info	page:	OWASP	2013	|	A1	–	Injection	(SQL)	|	SQLi
–	Extract	Data	|	User	Info	(SQL),	and	perform	the	SQL	Injection	attack
again.	You	will	now	see	26	rows	in	the	account	table	instead	of	the	previous
count	of	25:

How	it	works...
CSRF	attacks	require	an	authenticated	user	session	to	surreptitiously	perform
actions	within	the	application	on	behalf	of	the	attacker.	In	this	case,	an	attacker
rides	on	ed's	session	to	re-run	the	registration	form,	to	create	an	account	for	the
attacker.	If	ed	had	been	an	admin,	this	could	have	allowed	the	account	role	to	be
elevated	as	well.

Assessing	Business	Logic
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	business	logic	data	validation
Unrestricted	file	upload	–	bypassing	weak	validation
Performing	process-timing	attacks
Testing	for	the	circumvention	of	workflows
Uploading	malicious	files	–	polyglots

Introduction
This	chapter	covers	the	basics	of	business	logic	testing,	including	an
explanation	of	some	of	the	more	common	tests	performed	in	this	area.	Web
penetration	testing	involves	key	assessments	of	business	logic	to	determine	how
well	the	design	of	an	application	performs	integrity	checks,	especially	within
sequential	application	function	steps,	and	we	will	be	learning	how	to	use	Burp	to
perform	such	tests.

Software	tool	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

https://portswigger.net/burp/

Testing	business	logic	data	validation
Business	logic	data	validation	errors	occur	due	to	a	lack	of	server-side	checks,
especially	in	a	sequence	of	events	such	as	shopping	cart	checkouts.	If	design
flaws,	such	as	thread	issues,	are	present,	those	flaws	may	allow	an	attacker	to
modify	or	change	their	shopping	cart	contents	or	prices,	prior	to	purchasing
them,	to	lower	the	price	paid.	

Getting	ready
Using	the	OWASP	WebGoat	application	and	Burp,	we	will	exploit	a	business
logic	design	flaw,	to	purchase	many	large	ticket	items	for	a	very	cheap	price.

How	to	do	it...
1.	 Ensure	the	owaspbwa	VM	is	running.	Select	the	OWASP	WebGoat

application	from	the	initial	landing	page	of	the	VM.	The	landing	page	will
be	configured	to	an	IP	address	specific	to	your	machine:

2.	 After	you	click	the	OWASP	WebGoat	link,	you	will	be	prompted	for	some

login	credentials.	Use	these	credentials:	User	Name:	guest	Password:
guest.

3.	 After	authentication,	click	the	Start	WebGoat	button	to	access	the
application	exercises:

4.	 Click	Concurrency	|	Shopping	Cart	Concurrency	Flaw	from	the	left-
hand	menu:

The	exercise	explains	there	is	a	thread	issue	in	the	design	of	the	shopping
cart	that	will	allow	us	to	purchase	items	at	a	lower	price.	Let's	exploit	the
design	flaw!

5.	 Add	1	to	the	Quantity	box	for	the	Sony	-	Vaio	with	Intel	Centrino
item.	Click	the	Update	Cart	button:	

6.	 Switch	to	Burp	Proxy	|	HTTP	history	tab.	Find	the	cart	request,	right-click,
and	click	Send	to	Repeater:

7.	 Inside	Burp's	Repeater	tab,	change	theQTY3	parameter	from	1	to	10:

8.	 Stay	in	Burp	Repeater,	and	in	the	request	pane,	right-click	and	select
Request	in	browser	|	In	current	browser	session:

9.	 A	pop-up	displays	the	modified	request.	Click	the	Copy	button:

10.	 Using	the	same	Firefox	browser	containing	the	shopping	cart,	open	a	new
tab	and	paste	in	the	URL	that	you	copied	into	the	clipboard	in	the	previous
step:

11.	 Press	the	Enter	key	to	see	the	request	resubmitted	with	a	modified	quantity
of	10:

12.	 Switch	to	the	original	tab	containing	your	shopping	cart	(the	cart	with	the
original	quantity	of	1).	Click	the	Purchase	button:

13.	 At	the	next	screen,	before	clicking	the	Confirm	button,	switch	to	the	second
tab,	and	update	the	cart	again,	but	this	time	with	our	new	quantity	of	10,	and
click	on	Update	Cart:

14.	 Return	to	the	first	tab,	and	click	the	Confirm	button:

Notice	we	were	able	to	purchase	10	Sony	Vaio	laptops	for	the	price	of

one!

How	it	works...
Thread-safety	issues	can	produce	unintended	results.	For	many	languages,	the
developer's	knowledge	of	how	to	declare	variables	and	methods	as	thread-safe	is
imperative.	Threads	that	are	not	isolated,	such	as	the	cart	contents	shown	in	this
recipe,	can	result	in	users	gaining	unintended	discounts	on	products.

Unrestricted	file	upload	–	bypassing
weak	validation
Many	applications	allow	for	files	to	be	uploaded	for	various	reasons.	Business
logic	on	the	server-side	must	include	checking	for	acceptable	files;	this	is	known
as	whitelisting.	If	such	checks	are	weak	or	only	address	one	aspect	of	file
attributes	(for	example,	file	extensions	only),	attackers	can	exploit	these
weaknesses	and	upload	unexpected	file	types	that	may	be	executable	on	the
server.			

Getting	ready
Using	the	Damn	Vulnerable	Web	Application	(DVWA)application	and	Burp,
we	will	exploit	a	business	logic	design	flaw	in	the	file	upload	page.

How	to	do	it...
1.	 Ensure	the	owaspbwa	VM	is	running.	Select	DVWA	from	the	initial

landing	page	of	the	VM.	The	landing	page	will	be	configured	to	an	IP
address	specific	to	your	machine.

2.	 At	the	login	page,	use	these	credentials:	Username:	user;	Password:	user.
3.	 Select	the	DVWA	Security	option	from	the	menu	on	the	left.	Change	the

default	setting	of	low	to	medium	and	then	click	Submit:

4.	 Select	the	Upload	page	from	the	menu	on	the	left:	

5.	 Note	the	page	instructs	users	to	only	upload	images.	If	we	try	another	type
of	file	other	than	a	JPG	image,	we	receive	an	error	message	in	the	upper
left-hand	corner:

6.	 On	your	local	machine,	create	a	file	of	any	type,	other	than	JPG.	For
example,	create	a	Microsoft	Excel	file	called
malicious_spreadsheet.xlsx.	It	does	not	need	to	have	any	content	for	the
purpose	of	this	recipe.

7.	 Switch	to	Burp's	Proxy	|	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

8.	 Return	to	Firefox,	and	use	the	Browse	button	to	find	the
malicious_spreadsheet.xlsx	file	on	your	system	and	click	the	Upload
button:

9.	 With	the	request	paused	in	Burp's	Proxy	|	Interceptor,	change	the	Content-
type	from	application/vnd.openxmlformats-
officedocument.spreadsheet.sheet	to	image/jpeg	instead.

Here	is	the	original:

Here	is	the	modified	version:

10.	 Click	the	Forward	button.	Now	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

11.	 Note	the	file	uploaded	successfully!		We	were	able	to	bypass	the	weak	data
validation	checks	and	upload	a	file	other	than	an	image:

How	it	works...
Due	to	weak	server-side	checks,	we	are	able	to	easily	circumvent	the	image-
only	restriction	and	upload	a	file	type	of	our	choice.	The	application	code	only
checks	for	content	types	matching	image/jpeg,	which	is	easily	modified	with	an
intercepting	proxy	such	as	Burp.	Developers	need	to	simultaneously	whitelist
both	content-type	as	well	as	file	extensions	in	the	application	code	to	prevent
this	type	of	exploit	from	occurring.	

Performing	process-timing	attacks
By	monitoring	the	time	an	application	takes	to	complete	a	task,	it	is	possible	for
attackers	to	gather	or	infer	information	about	how	an	application	is	coded.	For
example,	a	login	process	using	valid	credentials	receives	a	response	quicker	than
the	same	login	process	given	invalid	credentials.	This	delay	in	response	time
leaks	information	related	to	system	processes.	An	attacker	could	use	a	response
time	to	perform	account	enumeration	and	determine	valid	usernames	based	upon
the	time	of	the	response.

Getting	ready
For	this	recipe,	you	will	need	the	common_pass.txt	wordlist	from	wfuzz:

https://github.com/xmendez/wfuzz
Path:	wordlists	|	other	|	common_pass.txt

Using	OWASP	Mutillidae	II,	we	will	determine	whether	the	application	provides
information	leakage	based	on	the	response	time	from	forced	logins.

https://github.com/xmendez/wfuzz

How	to	do	it...
Ensure	Burp	is	running,	and	also	ensure	that	the	owaspbwa	VM	is	running	and
that	Burp	is	configured	in	the	Firefox	browser	used	to	view	owaspbwa
applications.

1.	 From	the	owaspbwa	landing	page,	click	the	link	to	OWASP	Mutillidae	II
application.

2.	 Open	Firefox	browser	to	the	home	of	OWASP	Mutillidae	II	(URL:
http://<your_VM_assigned_IP_address>/mutillidae/).

3.	 Go	to	the	login	page	and	log	in	using	the	username	ed	and	the	password
pentest.

4.	 Switch	to	Burp's	Proxy	|	HTTP	history	tab,	find	the	login	you	just
performed,	right-click,	and	select	Send	to	Intruder:

5.	 Go	to	the	Intruder	|	Positions	tab,	and	clear	all	the	payload	markers,	using
the	Clear	§	button	on	the	right-hand	side:

6.	 Select	the	password	field	and	click	the	Add	§	button	to	wrap	a	payload
marker	around	that	field:

7.	 Also,	remove	the	PHPSESSID	token.	Delete	the	value	present	in	this	token
(the	content	following	the	equals	sign)	and	leave	it	blank.	This	step	is	very
important,	because	if	you	happen	to	leave	this	token	in	the	requests,	you
will	be	unable	to	see	the	difference	in	the	timings,	since	the	application	will
think	you	are	already	logged	in:

8.	 Go	to	the	Intruder	|	Payloads	tab.	Within	the	Payload	Options	[Simple	list],
we	will	add	some	invalid	values	by	using	a	wordlist	from	wfuzz
containing	common	passwords:	wfuzz	|	wordlists	|	other	|
common_pass.txt:

9.	 Scroll	to	the	bottom	and	uncheck	the	checkbox	for	Payload	Encoding:

10.	 Click	the	Start	attack	button.	An	attack	results	table	appears.	Let	the	attacks
complete.	From	the	attack	results	table,	select	Columns	and	check	Response
received.	Check	Response	completed	to	add	these	columns	to	the	attack
results	table:

11.	 Analyze	the	results	provided.	Though	not	obvious	on	every	response,	note
the	delay	when	an	invalid	password	is	used	such	as	administrator.	The
Response	received	timing	is	156,	but	the	Response	completed	timing	is
166.	However,	the	valid	password	of	pentest	(only	302)	receives	an
immediate	response:	50	(received),	and	50	(completed):

How	it	works...
Information	leakage	can	occur	when	processing	error	messages	or	invalid	coding
paths	takes	longer	than	valid	code	paths.	Developers	must	ensure	the	business
logic	does	not	give	away	such	clues	to	attackers.

Testing	for	the	circumvention	of	work
flows
Shopping	cart	to	payment	gateway	interactions	must	be	tested	by	web	app
penetration	testers	to	ensure	the	workflow	cannot	be	performed	out	of	sequence.
A	payment	should	never	be	made	unless	a	verification	of	the	cart	contents	is
checked	on	the	server-side	first.	In	the	event	this	check	is	missing,	an	attacker
can	change	the	price,	quantity,	or	both,	prior	to	the	actual	purchase.

Getting	ready
Using	the	OWASP	WebGoat	application	and	Burp,	we	will	exploit	a	business
logic	design	flaw	in	which	there	is	no	server-side	validation	prior	to	a	purchase.

How	to	do	it...
1.	 Ensure	the	owaspbwa	VM	is	running.	Select	the	OWASP	WebGoat

application	from	the	initial	landing	page	of	the	VM.	The	landing	page	will
be	configured	to	an	IP	address	specific	to	your	machine.

2.	 After	you	click	the	OWASP	WebGoat	link,	you	will	be	prompted	for	login
credentials.	Use	these	credentials:	User	Name:	guest;	password:	guest.

3.	 After	authentication,	click	the	Start	WebGoat	button	to	access	the
application	exercises.

4.	 Click	AJAX	Security	|	Insecure	Client	Storage	from	the	left-hand	menu.
You	are	presented	with	a	shopping	cart:

5.	 Switch	to	Burp's	Proxy	|	HTTP	history	tab,	Click	the	Filter	button,	and
ensure	your	Filter	by	MIME	type	section	includes	Script.	If	Script	is	not
checked,	be	sure	to	check	it	now:

6.	 Return	to	the	Firefox	browser	with	WebGoat	and	specify	a	quantity	of	2	for
the	Hewlett-Packard	-	Pavilion	Notebook	with	Intel	Centrino	item:

7.	 Switch	back	to	Burp's	Proxy	|	HTTP	history	tab	and	notice	the	JavaScript
(*.js)	files	associated	with	the	change	you	made	to	the	quantity.	Note	a
script	called	clientSideValiation.js.	Make	sure	the	status	code	is	200
and	not	304	(not	modified).	Only	the	200	status	code	will	show	you	the
source	code	of	the	script:

8.	 Select	the	clientSideValidation.js	file	and	view	its	source	code	in	the
Response	tab.

9.	 Note	that	coupon	codes	are	hard-coded	within	the	JavaScript	file.	However,
used	literally	as	they	are,	they	will	not	work:

10.	 Keep	looking	at	the	source	code	and	notice	there	is	a	decrypt	function
found	in	the	JavaScript	file.	We	can	test	one	of	the	coupon	codes	by	sending
it	through	this	function.	Let’s	try	this	test	back	in	the	Firefox	browser:

11.	 In	the	browser,	bring	up	the	developer	tools	(F12)	and	go	to	the	Console
tab.	Paste	into	the	console	(look	for	the	>>	prompt)	the	following	command:

decrypt('emph');

12.	 You	may	use	this	command	to	call	the	decrypt	function	on	any	of	the
coupon	codes	declared	within	the	array:

13.	 After	pressing	Enter,	you	will	see	the	coupon	code	is	decrypted	to	the	word
GOLD:

14.	 Place	the	word	GOLD	within	the	Enter	your	coupon	code	box.	Notice	the
amount	is	now	much	less.	Next,	click	the	Purchase	button:

15.	 We	receive	confirmation	regarding	stage	1	completion.	Let's	now	try	to	get
the	purchase	for	free:

16.	 Switch	to	Burp's	Proxy	|	Intercept	tab	and	turn	Interceptor	on	with	the
button	Intercept	is	on.

17.	 Return	to	Firefox	and	press	the	Purchase	button.	While	the	request	is
paused,	modify	the	$1,599.99	amount	to	$0.00.	Look	for	the	GRANDTOT
parameter	to	help	you	find	the	grand	total	to	change:

18.	 Click	the	Forward	button.	Now	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

19.	 You	should	receive	a	success	message.	Note	the	total	charged	is	now	$0.00:

How	it	works...
Due	to	a	lack	of	server-side	checking	for	both	the	coupon	code	as	well	as	the
grand	total	amount	prior	to	charging	the	credit	card,	we	are	able	to	circumvent
the	prices	assigned	and	set	our	own	prices	instead.

Uploading	malicious	files	–	polyglots
Polyglot	is	a	term	defined	as	something	that	uses	several	languages.	If	we	carry
this	concept	into	hacking,	it	means	the	creation	of	a	cross-site	scripting	(XSS)
attack	vector	by	using	different	languages	as	execution	points.	For	example,
attackers	can	construct	valid	images	and	embed	JavaScript	with	them.	The
placement	of	the	JavaScript	payload	is	usually	in	the	comments	section	of	an
image.	Once	the	image	is	loaded	in	a	browser,	the	XSS	content	may	execute,
depending	upon	the	strictness	of	the	content-type	declared	by	the	web	server	and
the	interpretation	of	the	content-type	by	the	browser.				

Getting	ready
Download	a	JPG	file	containing	a	cross-site	scripting	vulnerability	from	the
PortSwigger	blog	page:	https://portswigger.net/blog/bypassing-csp-using-
polyglot-jpegs

Here	is	a	direct	link	to	the	polyglot	image:	http://portswigger-
labs.net/polyglot/jpeg/xss.jpg

Using	the	OWASP	WebGoat	file	upload	functionality,	we	will	plant	an
image	into	the	application	that	contains	an	XSS	payload.

https://portswigger.net/blog/bypassing-csp-using-polyglot-jpegs
http://portswigger-labs.net/polyglot/jpeg/xss.jpg

How	to	do	it...
1.	 Ensure	the	owaspbwa	VM	is	running.	Select	the	OWASP	WebGoat

application	from	the	initial	landing	page	of	the	VM.	The	landing	page	will
be	configured	to	an	IP	address	specific	to	your	machine.

2.	 After	you	click	the	OWASP	WebGoat	link,	you	will	be	prompted	for	login
credentials.	Use	these	credentials:	username:	guest;	password:	guest.

3.	 After	authentication,	click	the	Start	WebGoat	button	to	access	the
application	exercises.

4.	 Click	Malicious	Execution	|	Malicious	File	Execution	from	the	left-hand
menu.	You	are	presented	with	a	file	upload	functionality	page.	The
instructions	state	that	only	images	are	allowed	for	upload:

5.	 Browse	to	the	location	where	you	saved	the	xss.jpg	image	that	you
downloaded	from	the	PortSwigger	blog	page	mentioned	at	the	beginning	of
this	recipe.

6.	 The	following	screenshot	how	the	image	looks.	As	you	can	see,	it	is
difficult	to	detect	any	XSS	vulnerability	contained	within	the	image.	It	is
hidden	from	plain	view.

7.	 Click	the	Browse	button	to	select	the	xss.jpg	file:

8.	 Switch	to	Burp's	Proxy	|	Options.	Make	sure	you	are	capturing	Client
responses	and	have	the	following	settings	enabled.	This	will	allow	us	to
capture	HTTP	responses	modified	or	intercepted:

9.	 Switch	to	Burp's	Proxy	|	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

10.	 Return	to	the	Firefox	browser,	and	click	the	Start	Upload	button.	The
message	should	be	paused	within	Burp's	Interceptor.	

11.	 Within	the	Intercept	window	while	the	request	is	paused,	type	Burp	rocks
into	the	search	box	at	the	bottom.	You	should	see	a	match	in	the	middle	of
the	image.	This	is	our	polyglot	payload.	It	is	an	image,	but	it	contains	a
hidden	XSS	script	within	the	comments	of	the	image:

12.	 Click	the	Forward	button.	Now	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

13.	 Using	Notepad	or	your	favorite	text	editor,	create	a	new	file	called
poly.jsp,	and	write	the	following	code	within	the	file:

14.	 Return	to	the	Malicious	File	Execution	page,	and	browse	to	the	poly.jsp
file	you	created,	and	then	click	the	Start	Upload	button.	The	poly.jsp	is	a
Java	Server	Pages	file	that	is	executable	on	this	web	server.	Following	the
instructions,	we	must	create	a	guest.txt	file	in	the	path	provided.	This
code	creates	that	file	in	JSP	scriptlet	tag	code:

15.	 Right-click	the	unrecognized	image,	and	select	Copy	Image	Location.
16.	 Open	a	new	tab	within	the	same	Firefox	browser	as	WebGoat,	and	paste	the

image	location	in	the	new	tab.	Press	Enter	to	execute	the	script,	and	give
the	script	a	few	seconds	to	run	in	the	background	before	moving	to	the	next
step.

17.	 Flip	back	to	the	first	tab,	F5,	to	refresh	the	page,	and	you	should	receive	the
successfully	completed	message.	If	your	script	is	running	slowly,	try
uploading	the	poly.jsp	on	the	upload	page	again.	The	success	message
should	appear:

How	it	works...
Due	to	unrestricted	file	upload	vulnerability,	we	can	upload	a	malicious	file	such
as	a	polyglot	without	detection	from	the	web	server.	Many	sites	allow	images	to
be	uploaded,	so	developers	must	ensure	such	images	do	not	carry	XSS	payloads
within	them.	Protection	in	this	area	can	be	in	the	form	of	magic	number	checks
or	special	proxy	servers	screening	all	uploads.

There's	more...
To	read	more	about	polyglots,	please	refer	to	the	Portswigger
blog:	https://portswigger.net/blog/bypassing-csp-using-polyglot-jpegs.	

https://portswigger.net/blog/bypassing-csp-using-polyglot-jpegs

Evaluating	Input	Validation	Checks
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	for	reflected	cross-site	scripting
Testing	for	stored	cross-site	scripting
Testing	for	HTTP	verb	tampering
Testing	for	HTTP	Parameter	Pollution
Testing	for	SQL	injection
Testing	for	command	injection

Introduction
Failure	to	validate	any	input	received	from	the	client	before	using	it	in	the
application	code	is	one	of	the	most	common	security	vulnerabilities	found	in
web	applications.	This	flaw	is	the	source	for	major	security	issues,	such	as	SQL
injection	and	cross-site	scripting	(XSS).	Web-penetration	testers	must	evaluate
and	determine	whether	any	input	is	reflected	back	or	executed	upon	by	the
application.	We'll	learn	how	to	use	Burp	to	perform	such	tests.

Software	tool	requirements
In	order	to	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

https://portswigger.net/burp/

Testing	for	reflected	cross-site
scripting
Reflected	cross-site	scripting	occurs	when	malicious	JavaScript	is	injected	into
an	input	field,	parameter,	or	header	and,	after	returning	from	the	web	server,	is
executed	within	the	browser.	Reflected	XSS	occurs	when	the	execution	of	the
JavaScript	reflects	in	the	browser	only	and	is	not	a	permanent	part	of	the	web
page.	Penetration	testers	need	to	test	all	client	values	sent	to	the	web	server	to
determine	whether	XSS	is	possible.	

Getting	ready
Using	OWASP	Mutillidae	II,	let's	determine	whether	the	application	protects
against	reflected	cross-site	scripting	(XSS).

How	to	do	it...
1.	 From	the	OWASP	Mutilliae	II	menu,	select	Login	by	navigating	to	OWASP

2013	|	A3	-	Cross	Site	Scripting	(XSS)	|	Reflected	(First	Order)	|	Pen	Test
Tool	Lookup:

2.	 Select	a	tool	from	the	drop-down	listing	and	click	the	Lookup	Tool	button.
Any	value	from	the	drop-down	list	will	work	for	this	recipe:

3.	 Switch	to	Burp	Proxy	|	HTTP	history	and	find	the	HTTP	message	you	just
created	by	selecting	the	lookup	tool.	Note	that	in	the	request	is	a	parameter
called	ToolID.	In	the	following	example,	the	value	is	16:

4.	 Flip	over	to	the	Response	tab	and	note	the	JSON	returned	from	the	request.
You	can	find	the	JavaScript	function	in	the	response	more	easily	by	typing
PenTest	in	the	search	box	at	the	bottom.	Note	that	the	tool_id	is	reflected
in	a	response	parameter	called	toolIDRequested.	This	may	be	an	attack
vector	for	XSS:

5.	 Send	the	request	over	to	Repeater.	Add	an	XSS	payload	within	the	ToolID
parameter	immediately	following	the	number.	Use	a	simple	payload	such
as	<script>alert(1);</script>:

6.	 Click	Go	and	examine	the	returned	JSON	response,	searching	for	PenTest.
Notice	our	payload	is	returned	exactly	as	inputted.	It	looks	like	the
developer	is	not	sanitizing	any	of	the	input	data	before	using	it.	Let's	exploit
the	flaw:

7.	 Since	we	are	working	with	JSON	instead	of	HTML,	we	will	need	to	adjust
the	payload	to	match	the	structure	of	the	JSON	returned.	We	will	fool	the
JSON	into	thinking	the	payload	is	legitimate.	We	will	modify	the	original
<script>alert(1);</script>	payload	to	"}})%3balert(1)%3b//
instead.

8.	 Switch	to	the	Burp	Proxy	|	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

9.	 Return	to	Firefox,	select	another	tool	from	the	drop-down	list,	and	click	the
Lookup	Tool	button.

10.	 While	Proxy	|	Interceptor	has	the	request	paused,	insert	the	new	payload
of	"}})%3balert(1)%3b//	immediately	after	the	Tool	ID	number:

11.	 Click	the	Forward	button.	Turn	Interceptor	off	by	toggling	to	Intercept	is
off.

12.	 Return	to	the	Firefox	browser	and	see	the	pop-up	alert	box	displayed.
You've	successfully	shown	a	proof	of	concept	(PoC)	for	the	reflected	XSS
vulnerability:

How	it	works...
Due	to	inadequate	input	cleansing	prior	to	using	data	received	from	the	client.	In
this	case,	the	penetration	testing	tools	identifier	is	reflected	in	the	response	as	it
is	received	from	the	client,	allowing	an	attack	vector	for	an	XSS	attack.

Testing	for	stored	cross-site	scripting
Stored	cross-site	scripting	occurs	when	malicious	JavaScript	is	injected	into	an
input	field,	parameter,	or	header	and,	after	returning	from	the	web	server,	is
executed	within	the	browser	and	becomes	a	permanent	part	of	the	page.	Stored
XSS	occurs	when	the	malicious	JavaScript	is	stored	in	the	database	and	is	used
later	to	populate	the	display	of	a	web	page.	Penetration	testers	need	to	test	all
client	values	sent	to	the	web	server	to	determine	whether	XSS	is	possible.

Getting	ready
Using	OWASP	Mutillidae	II,	let's	determine	whether	the	application	protects
against	stored	cross-site	scripting.

How	to	do	it...
1.	 From	the	OWASP	Mutilliae	II	menu,	select	Login	by	navigating	to	OWASP

2013	|	A3	-	Cross	Site	Scripting	(XSS)	|	Persistent	(First	Order)	|	Add	to
your	blog:

2.	 Place	some	verbiage	into	the	text	area.	Before	clicking	the	Save	Blog	Entry
button,	let's	try	a	payload	with	the	entry:

3.	 Switch	to	the	Burp	Proxy	|	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

4.	 While	Proxy	|	Interceptor	has	the	request	paused,	insert	the	new	payload	of
<script>alert(1);</script>	immediately	following	the	verbiage	you
added	to	the	blog:

5.	 Click	the	Forward	button.	Turn	Interceptor	off	by	toggling	to	Intercept	is
off.

6.	 Return	to	the	Firefox	browser	and	see	the	pop-up	alert	box	displayed:

7.	 Click	the	OK	button	to	close	the	pop-ups.	Reload	the	page	and	you	will	see
the	alert	pop-up	again.	This	is	because	your	malicious	script	has	become	a
permanent	part	of	the	page.	You've	successfully	shown	a	proof	of	concept
(PoC)	for	the	stored	XSS	vulnerability!

How	it	works...
Stored	or	persistent	XSS	occurs	because	the	application	not	only	neglects	to
sanitize	the	input	but	also	stores	the	input	within	the	database.	Therefore,	when	a
page	is	reloaded	and	populated	with	database	data,	the	malicious	script	is
executed	along	with	that	data.

Testing	for	HTTP	verb	tampering
HTTP	requests	can	include	methods	beyond	GET	and	POST.	As	a	penetration
tester,	it	is	important	to	determine	which	other	HTTP	verbs	(that	is,	methods)	the
web	server	allows.	Support	for	other	verbs	may	disclose	sensitive	information
(for	example,	TRACE)	or	allow	for	a	dangerous	invocation	of	application	code
(for	example,	DELETE).	Let's	see	how	Burp	can	help	test	for	HTTP	verb
tampering.

Getting	ready
Using	OWASP	Mutillidae	II,	let's	determine	whether	the	application	allows
HTTP	verbs	beyond	GET	and	POST.

How	to	do	it...
1.	 Navigate	to	the	homepage	of	OWASP	Mutillidae	II.
2.	 Switch	to	Burp	Proxy	|	HTTP	history	and	look	for	the	HTTP	request	you

just	created	while	browsing	to	the	homepage	of	Mutillidae.	Note	the
method	used	is	GET.	Right-click	and	send	the	request	to	Intruder:

3.	 In	the	Intruder	|	Positions	tab,	clear	all	suggested	payload	markers.
Highlight	the	GET	verb,	and	click	the	Add	$	button	to	place	payload	markers
around	the	verb:

4.	 In	the	Intruder	|	Payloads	tab,	add	the	following	values	to	the	Payload
Options	[Simple	list]	text	box:

OPTIONS
HEAD
POST

PUT
DELETE
TRACE
TRACK
CONNECT
PROPFIND
PROPPATCH
MKCOL
COPY

5.	 Uncheck	the	Payload	Encoding	box	at	the	bottom	of	the	Payloads	page	and
then	click	the	Start	attack	button.

6.	 When	the	attack	results	table	appears,	and	the	attack	is	complete,	note	all	of
the	verbs	returning	a	status	code	of	200.	This	is	worrisome	as	most	web
servers	should	not	be	supporting	so	many	verbs.	In	particular,	the	support
for	TRACE	and	TRACK	would	be	included	in	the	findings	and	final	report
as	vulnerabilities:

How	it	works...
Testing	for	HTTP	verb	tampering	includes	sending	requests	against	the
application	using	different	HTTP	methods	and	analyzing	the	response	received.
Testers	need	to	determine	whether	a	status	code	of	200	is	returned	for	any	of	the
verbs	tested,	indicating	the	web	server	allows	requests	of	this	verb	type.

Testing	for	HTTP	Parameter
Pollution
HTTP	Parameter	Pollution	(HPP)	is	an	attack	in	which	multiple	HTTP
parameters	are	sent	to	the	web	server	with	the	same	name.	The	intention	is	to
determine	whether	the	application	responds	in	an	unanticipated	manner,	allowing
exploitation.	For	example,	in	a	GET	request,	additional	parameters	can	be	added
to	the	query	string—in	this	fashion:	“&name=value”—where	name	is	a	duplicate
parameter	name	already	known	by	the	application	code.	Likewise,	HPP	attacks
can	be	performed	on	POST	requests	by	duplicating	a	parameter	name	in	the
POST	body	data.

Getting	ready
Using	OWASP	Mutillidae	II,	let's	determine	whether	the	application	allows	HPP
attacks.

How	to	do	it...
1.	 From	the	OWASP	Mutilliae	II	menu,	select	Login	by	navigating	to	OWASP

2013	|	A1	-	Injection	(Other)	|	HTTP	Parameter	Pollution	|	Poll	Question:

2.	 Select	a	tool	from	one	of	the	radio	buttons,	add	your	initials,	and	click	the
Submit	Vote	button:

3.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab,	and	find	the	request	you	just
performed	from	the	User	Poll	page.	Note	the	parameter	named	choice.	The
value	of	this	parameter	is	Nmap.	Right-click	and	send	this	request	to
Repeater:

4.	 Switch	to	the	Burp	Repeater	and	add	another	parameter	with	the	same	name
to	the	query	string.	Let's	pick	another	tool	from	the	User	Poll	list	and
append	it	to	the	query	string,	for	example,	“&choice=tcpdump”.	Click	Go	to
send	the	request:

5.	 Examine	the	response.	Which	choice	did	the	application	code	accept?	This
is	easy	to	find	by	searching	for	the	Your	choice	was	string.	Clearly,	the
duplicate	choice	parameter	value	is	the	one	the	application	code	accepted	to
count	in	the	User	Poll	vote:

How	it	works...
The	application	code	fails	to	check	against	multiple	parameters	with	the	same
name	when	passed	into	a	function.	The	result	is	that	the	application	usually	acts
upon	the	last	parameter	match	provided.	This	can	result	in	odd	behavior	and
unexpected	results.

Testing	for	SQL	injection
A	SQL	injection	attack	involves	an	attacker	providing	input	to	the	database,
which	is	received	and	used	without	any	validation	or	sanitization.	The	result	is
divulging	sensitive	data,	modifying	data,	or	even	bypassing	authentication
mechanisms.

Getting	ready
Using	the	OWASP	Mutillidae	II	Login	page,	let's	determine	whether	the
application	is	vulnerable	to	SQL	injection	(SQLi)	attacks.

How	to	do	it...
1.	 From	the	OWASP	Mutilliae	II	menu,	select	Login	by	navigating	to	OWASP

2013	|	A1-Injection	(SQL)	|	SQLi	–	Bypass	Authentication	|	Login:

2.	 At	the	Login	screen,	place	invalid	credentials	into	the	username	and
password	text	boxes.	For	example,	username	is	tester	and	password
is	tester.	Before	clicking	the	Login	button,	let's	turn	on	Proxy	|
Interceptor.

3.	 Switch	to	the	Burp	Proxy	|	Intercept	tab.	Turn	the	Interceptor	on	by	toggling
to	Intercept	is	on.

4.	 While	Proxy	|	Interceptor	has	the	request	paused,	insert	the	new	payload	of
'	or	1=1--<space>	within	the	username	parameter	and	click	the	Login
button:

5.	 Click	the	Forward	button.	Turn	Interceptor	off	by	toggling	to	Intercept	is
off.

6.	 Return	to	the	Firefox	browser	and	note	you	are	now	logged	in	as	admin!

How	it	works...
The	tester	account	did	not	exist	in	the	database;	however,	the	'	or	1=1--
<space>	payload	resulted	in	bypass	the	authentication	mechanism	because	the
SQL	code	constructed	the	query	based	on	unsanitized	user	input.	The	account	of
admin	is	the	first	account	created	in	the	database,	so	the	database	defaulted	to
that	account.

There's	more...
We	used	a	SQLi	wordlist	from	wfuzz	within	Burp	Intruder	to	test	many	different
payloads	within	the	same	username	field.	Examine	the	response	for	each	attack
in	the	results	table	to	determine	whether	the	payload	successfully	performed	a
SQL	injection.

The	construction	of	SQL	injection	payloads	requires	some	knowledge	of	the
backend	database	and	the	particular	syntax	required.

Testing	for	command	injection
Command	injection	involves	an	attacker	attempting	to	invoke	a	system
command,	normally	performed	at	a	terminal	session,	within	an	HTTP	request
instead.	Many	web	applications	allow	system	commands	through	the	UI	for
troubleshooting	purposes.	A	web-penetration	tester	must	test	whether	the	web
page	allows	further	commands	on	the	system	that	should	normally	be	restricted.

Getting	ready
For	this	recipe,	you	will	need	the	SecLists	Payload	for	Unix	commands:

SecLists-master	|	Fuzzing	|	FUZZDB_UnixAttacks.txt
Download	from	GitHub:	https://github.com/danielmiessler/SecLists

Using	the	OWASP	Mutillidae	II	DNS	Lookup	page,	let's	determine	whether	the
application	is	vulnerable	to	command	injection	attacks.

https://github.com/danielmiessler/SecLists

How	to	do	it...
1.	 From	the	OWASP	Mutilliae	II	menu,	select	DNS	Lookup	by	navigating	to

OWASP	2013	|	A1-Injection	(Other)	|	Command	Injection	|	DNS	Lookup:

2.	 On	the	DNS	Lookup	page,	type	the	IP	address	127.0.0.1	in	the	text	box
and	click	the	Lookup	DNS	button:

3.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab	and	look	for	the	request	you
just	performed.	Right-click	on	Send	to	Intruder:

4.	 In	the	Intruder	|	Positions	tab,	clear	all	suggested	payload	markers	with	the
Clear	$	button.	In	the	target_host	parameter,	place	a	pipe	symbol	(|)
immediately	following	the	127.0.0.1	IP	address.	After	the	pipe	symbol,
place	an	X.	Highlight	the	X	and	click	the	Add	$	button	to	wrap	the	X	with
payload	markers:

5.	 In	the	Intruder	|	Payloads	tab,	click	the	Load	button.	Browse	to	the	location
where	you	downloaded	the	SecLists-master	wordlists	from	GitHub.
Navigate	to	the	location	of	the	FUZZDB_UnixAttacks.txt	wordlist	and	use
the	following	to	populate	the	Payload	Options	[Simple	list]	box:	SecLists-
master	|Fuzzing	|		FUZZDB_UnixAttacks.txt

6.	 Uncheck	the	Payload	Encoding	box	at	the	bottom	of	the	Payloads	tab	page
and	then	click	the	Start	Attack	button.

7.	 Allow	the	attack	to	continue	until	you	reach	payload	50.	Notice	the
responses	through	the	Render	tab	around	payload	45	or	so.	We	are	able	to
perform	commands,	such	as	id,	on	the	operating	system,	which	displays	the
results	of	the	commands	on	the	web	page:

How	it	works...
Failure	to	define	and	validate	user	input	against	an	acceptable	list	of	system
commands	can	lead	to	command	injection	vulnerabilities.	In	this	case,	the
application	code	does	not	confine	system	commands	available	through	the	UI,
allowing	visibility	and	execution	of	commands	on	the	operating	system	that
should	be	restricted.

Attacking	the	Client
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	for	Clickjacking
Testing	for	DOM-based	cross-site	scripting
Testing	for	JavaScript	execution
Testing	for	HTML	injection
Testing	for	client-side	resource	manipulation

Introduction
Code	available	on	the	client	that	is	executed	in	the	browser	requires	testing	to
determine	any	presence	of	sensitive	information	or	the	allowance	of	user	input
without	server-side	validation.	Learn	how	to	perform	these	tests	using	Burp.	

Software	tool	requirements
To	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

https://portswigger.net/burp/

Testing	for	Clickjacking
Clickjacking	is	also	known	as	the	UI	redress	attack.	This	attack	is	a	deceptive
technique	that	tricks	a	user	into	interacting	with	a	transparent	iframe	and,
potentially,	send	unauthorized	commands	or	sensitive	information	to	an	attacker-
controlled	website.	Let's	see	how	to	use	the	Burp	Clickbandit	to	test	whether	a
site	is	vulnerable	to	Clickjacking.

Getting	ready
Using	the	OWASP	Mutillidae	II	application	and	the	Burp	Clickbandit,	let's
determine	whether	the	application	protects	against	Clickjacking	attacks.

How	to	do	it...
1.	 Navigate	to	the	Home	page	of	the	OWASP	Mutillidae	II.
2.	 Switch	to	Burp,	and	from	the	top-level	menu,	select	Burp	Clickbandit:

3.	 A	pop-up	box	explains	the	tool.	Click	the	button	entitled	Copy	Clickbandit
to	clipboard:

4.	 Return	to	the	Firefox	browser,	and	press	F12	to	bring	up	the	developer
tools.	From	the	developer	tools	menu,	select	Console,	and	look	for	the
prompt	at	the	bottom:

5.	 At	the	Console	prompt	(for	example,	>>),	paste	into	the	prompt	the
Clickbandit	script	you	copied	to	your	clipboard:

6.	 After	pasting	in	the	script	into	the	prompt,	press	the	Enter	key.	You	should
see	the	Burp	Clickbandit	Record	mode.	Click	the	Start	button	to	begin:

7.	 Start	clicking	around	on	the	application	after	it	appears.	Click	available
links	at	the	top	Mutillidae	menu,	click	available	links	on	the	side	menu,	or
browse	to	pages	within	Mutillidae.	Once	you've	clicked	around,	press	the
Finish	button	on	the	Burp	Clickbandit	menu.

8.	 You	should	notice	big	red	blocks	appear	transparently	on	top	of	the
Mutillidae	web	pages.	Each	red	block	indicates	a	place	where	a	malicious
iframe	can	appear.	Feel	free	to	click	each	red	block	to	see	the	next	red	block
appear,	and	so	on:

9.	 Once	you	wish	to	stop	and	save	your	results,	click	the	Save	button.	This
will	save	the	Clickjacking	PoC	in	an	HTML	file	for	you	to	place	inside	your
penetration	test	report.

How	it	works...
Since	the	Mutillidae	application	does	not	make	use	of	the	X-FRAME-OPTIONS
header	set	to	DENY,	it	is	possible	to	inject	a	malicious	iframe	in	to	the	Mutillidae
web	pages.	The	Clickbandit	increases	the	level	of	opaqueness	of	the	iframe	for
visibility	and	creates	a	proof	of	concept	(PoC)	to	illustrate	how	the	vulnerability
can	be	exploited.

Testing	for	DOM-based	cross-site
scripting
The	Document	Object	Model	(DOM)	is	a	tree-like	structural	representation	of
all	HTML	web	pages	captured	in	a	browser.	Developers	use	the	DOM	to	store
information	inside	the	browser	for	convenience.	As	a	web	penetration	tester,	it	is
important	to	determine	the	presence	of	DOM-based	cross-site	scripting	(XSS)
vulnerabilities.

Getting	ready
Using	OWASP	Mutillidae	II	HTML5	web	storage	exercise,	let’s	determine
whether	the	application	is	susceptible	to	DOM-based	XSS	attacks.

How	to	do	it...
1.	 Navigate	to	OWASP	2013	|	HTML5	Web	Storage	|	HTML5	Storage:

2.	 Note	the	name/value	pairs	stored	in	the	DOM	using	HTML5	Web	Storage
locations.	Web	storage	includes	Session	and	Local	variables.	Developers
use	these	storage	locations	to	conveniently	store	information	inside	a	user's
browser:

3.	 Switch	to	the	Burp	Proxy	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

4.	 Reload	the	HTML	5	Web	Storage	page	in	Firefox	browser	by	pressing	F5
or	clicking	the	reload	button.

5.	 Switch	to	the	Burp	Proxy	HTTP	history	tab.	Find	the	paused	request	created
by	the	reload	you	just	performed.	Note	that	the	User-Agent	string	is
highlighted,	as	shown	in	the	following	screenshot:

6.	 Replace	the	preceding	highlighted	User-Agent	with	the	following	script:

<script>try{var	m	=	"";var	l	=	window.localStorage;	var	s	=	

window.sessionStorage;for(i=0;i<l.length;i++){var	lKey	=	

l.key(i);m	+=	lKey	+	"="	+	l.getItem(lKey)	+	

";\n";};for(i=0;i<s.length;i++){var	lKey	=	s.key(i);m	+=	lKey	

+	"="	+	s.getItem(lKey)	+	";\n";};alert(m);}catch(e)

{alert(e.message);}</script>

7.	 Click	the	Forward	button.	Now,	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

8.	 Note	the	alert	popup	showing	the	contents	of	the	DOM	storage:

How	it	works...
The	injected	script	illustrates	how	the	presence	of	a	cross-site	scripting
vulnerability	combined	with	sensitive	information	stored	in	the	DOM	can	allow
an	attacker	to	steal	sensitive	data.	

Testing	for	JavaScript	execution
JavaScript	injection	is	a	subtype	of	cross-site	scripting	attacks	specific	to	the
arbitrary	injection	of	JavaScript.	Vulnerabilities	in	this	area	can	affect	sensitive
information	held	in	the	browser,	such	as	user	session	cookies,	or	it	can	lead	to
the	modification	of	page	content,	allowing	script	execution	from	attacker-
controlled	sites.	

Getting	ready
Using	the	OWASP	Mutillidae	II	Password	Generator	exercise,	let’s	determine
whether	the	application	is	susceptible	to	JavaScript	XSS	attacks.

How	to	do	it...
1.	 Navigate	to	OWASP	2013	|	A1	–	Injection	(Other)	|	JavaScript	Injection	|

Password	Generator:

2.	 Note	after	clicking	the	Generate	Password	button,	a	password	is	shown.
Also,	note	the	username	value	provided	in	the	URL	is	reflected	back	as
is	on	the	web	page:	http://192.168.56.101/mutillidae/index.php?
page=password-generator.php&username=anonymous.	This	means	a
potential	XSS	vulnerability	may	exist	on	the	page:

3.	 Switch	to	the	Burp	Proxy	HTTP	history	tab	and	find	the	HTTP	message
associated	with	the	Password	Generator	page.	Flip	to	the	Response	tab	in
the	message	editor,	and	perform	a	search	on	the	string	catch.	Note	that	the
JavaScript	returned	has	a	catch	block	where	error	messages	display	to	the
user.	We	will	use	this	position	for	the	placement	of	a	carefully	crafted
JavaScript	injection	attack:

4.	 Switch	to	the	Burp	Proxy	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

5.	 Reload	the	Password	Generator	page	in	Firefox	browser	by	pressing	F5	or
clicking	the	reload	button.

6.	 Switch	to	the	Burp	Proxy	Interceptor	tab.	While	the	request	is	paused,	note
the	username	parameter	value	highlighted	as	follows:

7.	 Replace	the	preceding	highlighted	value	of	anonymous	with	the	following

carefully	crafted	JavaScript	injection	script:

canary";}catch(e){}alert(1);try{a="

8.	 Click	the	Forward	button.	Now,	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

9.	 Note	the	alert	popup.	You’ve	successfully	demonstrated	the	presence	of	a
JavaScript	injection	XSS	vulnerability!

How	it	works...
The	JavaScript	snippet	injected	into	the	web	page	matched	the	structure	of	the
original	catch	statement.	By	creating	a	fake	name	of	canary	and	ending	the
statement	with	a	semicolon,	a	specially	crafted	new	catch	block	was	created,
which	contained	the	malicious	JavaScript	payload.

Testing	for	HTML	injection
HTML	injection	is	the	insertion	of	arbitrary	HTML	code	into	a	vulnerable	web
page.	Vulnerabilities	in	this	area	may	lead	to	the	disclosure	of	sensitive
information	or	the	modification	of	page	content	for	the	purposes	of	socially
engineering	the	user.

Getting	ready
Using	the	OWASP	Mutillidae	II	Capture	Data	Page,	let's	determine	whether	the
application	is	susceptible	to	HTML	injection	attacks.

How	to	do	it...
1.	 Navigate	to	OWASP	2013	|	A1	–	Injection	(Other)	|	HTMLi	Via	Cookie

Injection	|	Capture	Data	Page:

2.	 Note	how	the	page	looks	before	the	attack:

3.	 Switch	to	the	Burp	Proxy	Intercept	tab,	and	turn	Interceptor	on	with	the
button	Intercept	is	on.

4.	 While	the	request	is	paused,	make	note	of	the	last	cookie,
acgroupswitchpersist=nada:

5.	 While	the	request	is	paused,	replace	the	value	of	the	last	cookie,	with	this
HTML	injection	script:

<h1>Sorry,	please	login	again</h1>
Username<input	

type="text">
Password<input	type="text">
<input	

type="submit"	value="Submit"><h1> </h1>

6.	 Click	the	Forward	button.	Now	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

7.	 Note	how	the	HTML	is	now	included	inside	the	page!

How	it	works...
Due	to	the	lack	of	input	validation	and	output	encoding,	an	HTML	injection
vulnerability	can	exist.	The	result	of	exploiting	this	vulnerability	is	the	insertion
of	arbitrary	HTML	code,	which	can	lead	to	XSS	attacks	or	social	engineering
schemes	such	as	the	one	seen	in	the	preceding	recipe.

Testing	for	client-side	resource
manipulation
If	an	application	performs	actions	based	on	client-side	URL	information	or
pathing	to	a	resource	(that	is,	AJAX	call,	external	JavaScript,	iframe	source),	the
result	can	lead	to	a	client-side	resource	manipulation	vulnerability.	This
vulnerability	relates	to	attacker-controlled	URLs	in,	for	example,	the	JavaScript
location	attribute,	the	location	header	found	in	an	HTTP	response,	or	a	POST
body	parameter,	which	controls	redirection.	The	impact	of	this	vulnerability
could	lead	to	a	cross-site	scripting	attack.	

Getting	ready
Using	the	OWASP	Mutillidae	II	application,	determine	whether	it	is	possible	to
manipulate	any	URL	parameters	that	are	exposed	on	the	client	side	and	whether
the	manipulation	of	those	values	causes	the	application	to	behave	differently.

How	to	do	it...
1.	 Navigate	to	OWASP	2013	|	A10	–	Unvalidated	Redirects	and	Forwards	|

Credits:

2.	 Click	the	ISSA	Kentuckiana	link	available	on	the	Credits	page:

3.	 Switch	to	the	Burp	Proxy	HTTP	history	tab,	and	find	your	request	to	the
Credits	page.	Note	that	there	are	two	query	string
parameters:	page	and	forwardurl.	What	would	happen	if	we	manipulated
the	URL	where	the	user	is	sent?

4.	 Switch	to	the	Burp	Proxy	Intercept	tab.	Turn	Interceptor	on	with	the	button
Intercept	is	on.

5.	 While	the	request	is	paused,	note	the	current	value	of	the	fowardurl
parameter:

6.	 Replace	the	value	of	the	forwardurl	parameter	to	be
https://www.owasp.org	instead	of	the	original	choice	of
http://www.issa-kentuckiana.org:

7.	 Click	the	Forward	button.	Now	turn	Interceptor	off	by	clicking	the	toggle
button	to	Intercept	is	off.

8.	 Note	how	we	were	redirected	to	a	site	other	than	the	one	originally	clicked!

How	it	works...
Application	code	decisions,	such	as	where	to	redirect	a	user,	should	never	rely
on	client-side	available	values.	Such	values	can	be	tampered	with	and	modified,
to	redirect	users	to	attacker-controlled	websites	or	to	execute	attacker-controlled
scripts.

Working	with	Burp	Macros	and
Extensions
In	this	chapter,	we	will	cover	the	following	recipes:

Creating	session-handling	macros
Getting	caught	in	the	cookie	jar
Adding	great	pentester	plugins
Creating	new	issues	via	Manual-Scan	Issue	Extension
Working	with	Active	Scan++	Extension

Introduction
This	chapter	covers	two	separate	topics	that	can	also	be	blended	together:
macros	and	extensions.	Burp	macros	enable	penetration	testers	to	automate
events,	such	as	logins	or	parameter	reads,	to	overcome	potential	error	situations.
Extensions,	also	known	as	plugins,	extend	the	core	functionality	found	in	Burp.

Software	tool	requirements
In	order	to	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(VM)
OWASP	Mutillidae
(http://<Your_VM_Assigned_IP_Address>/mutillidae)
GetBoo	(http://<Your_VM_Assigned_IP_Address>/getboo)
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

https://portswigger.net/burp/

Creating	session-handling	macros
In	Burp,	the	Project	options	tab	allows	testers	to	set	up	session-handling	rules.	A
session-handling	rule	allows	a	tester	to	specify	a	set	of	actions	Burp	will	take	in
relation	to	session	tokens	or	CSRF	tokens	while	making	HTTP	Requests.	There
is	a	default	session-handling	rule	in	scope	for	Spider	and	Scanner.	However,	in
this	recipe,	we	will	create	a	new	session-handling	rule	and	use	a	macro	to	help	us
create	an	authenticated	session	from	an	unauthenticated	one	while	using
Repeater.

Getting	ready
Using	the	OWASP	Mutilliae	II	application,	we	will	create	a	new	Burp	Session-
Handling	rule,	with	an	associated	macro,	to	create	an	authenticated	session	from
an	unauthenticated	one	while	using	Repeater.

How	to	do	it...
1.	 Navigate	to	the	Login	page	in	Mutillidae.	Log	into	the	application	as

username	ed	with	password	pentest.
2.	 Immediately	log	out	of	the	application	by	clicking	the	Logout	button	and

make	sure	the	application	confirms	you	are	logged	out.
3.	 Switch	to	the	Burp	Proxy	HTTP	history	tab.	Look	for	the	logout	request

you	just	made	along	with	the	subsequent,	unauthenticated	GET	request.
Select	the	unauthenticated	request,	which	is	the	second	GET.	Right-click	and
send	that	request	to	Repeater,	as	follows:

4.	 Switch	to	Burp	Repeater,	then	click	the	Go	button.	On	the	Render	tab	of	the
response,	ensure	you	receive	the	Not	Logged	In	message.	We	will	use	this
scenario	to	build	a	session-handling	rule	to	address	the	unauthenticated
session	and	make	it	an	authenticated	one,	as	follows:

5.	 Switch	to	the	Burp	Project	options	tab,	then	the	Sessions	tab,	and	click	the
Add	button	under	the	Session	Handling	Rules	section,	as	follows:

6.	 After	clicking	the	Add	button,	a	pop-up	box	appears.	Give	your	new	rule	a
name,	such	as	LogInSessionRule,	and,	under	Rule	Actions,	select	Run	a
macro,	as	follows:

7.	 Another	pop-up	box	appears,	which	is	the	Session	handling	action	editor.	In
the	first	section,	under	Select	macro,	click	the	Add	button,	as	follows:

8.	 After	clicking	the	Add	button,	the	macro	editor	appears	along	with	another
pop-up	of	the	Macro	Recorder,	as	follows:

Note:	A	bug	exists	in	1.7.35	that	disables	Macro	Recorder.	Therefore,	after
clicking	the	Add	button,	if	the	recorder	does	not	appear,	upgrade	the	Burp
version	to	1.7.36	or	higher.

9.	 Inside	the	Macro	Recorder,	look	for	the	POST	request	where	you	logged	in
as	Ed	as	well	as	the	following	GET	request.	Highlight	both	of	those	requests
within	the	Macro	Recorder	window	and	click	OK,	as	follows:

10.	 Those	two	highlighted	requests	in	the	previous	dialog	box	now	appear

inside	the	Macro	Editor	window.	Give	the	macro	a	description,	such	as
LogInMacro,	as	follows:

11.	 Click	the	Configure	item	button	to	validate	that	the	username	and	password
values	are	correct.	Click	OK	when	done,	as	follows:

12.	 Click	OK	to	close	the	Macro	Editor.	You	should	see	the	newly-created
macro	in	the	Session	handling	action	editor.	Click	OK	to	close	this	dialog
window,	as	follows:

13.	 After	closing	the	Session	handling	action	editor,	you	are	returned	to	the
Session	handling	rule	editor	where	you	now	see	the	Rule	Actions	section
populated	with	the	name	of	your	macro.	Click	the	Scope	tab	of	this	window
to	define	which	tool	will	use	this	rule:

14.	 On	the	Scope	tab	of	the	Session	handling	rule	editor,	uncheck	the	other

boxes,	leaving	only	the	Repeater	checked.	Under	URL	Scope,	click	the
Include	all	URLs	radio	button.	Click	OK	to	close	this	editor,	as	follows:

15.	 You	should	now	see	the	new	session-handling	rule	listed	in	the	Session
Handling	Rules	window,	as	follows:

16.	 Return	to	the	Repeater	tab	where	you,	previously,	were	not	logged	in	to	the
application.	Click	the	Go	button	to	reveal	that	you	are	now	logged	in	as	Ed!
This	means	your	session-handling	rule	and	associated	macro	worked:

How	it	works...
In	this	recipe,	we	saw	how	an	unauthenticated	session	can	be	changed	to	an
authenticated	one	by	replaying	the	login	process.	The	creation	of	macros	allows
manual	steps	to	be	scripted	and	assigned	to	various	tools	within	the	Burp	suite.

Burp	allows	testers	to	configure	session-handling	rules	to	address	various
conditions	that	the	suite	of	tools	may	encounter.	The	rules	provide	additional
actions	to	be	taken	when	those	conditions	are	met.	In	this	recipe,	we	addressed
an	unauthenticated	session	by	creating	a	new	session-handling	rule,	which	called
a	macro.	We	confined	the	scope	for	this	rule	to	Repeater	only	for	demonstration
purposes.

Getting	caught	in	the	cookie	jar
While	targeting	an	application,	Burp	captures	all	of	the	cookies	it	encounters
while	proxying	and	spidering	HTTP	traffic	against	a	target	site.	Burp	stores	these
cookies	in	a	cache	called	the	cookie	jar.	This	cookie	jar	is	used	within	the
default	session-handling	rule	and	can	be	shared	among	the	suite	of	Burp	tools,
such	as	Proxy,	Intruder,	and	Spider.	Inside	the	cookie	jar,	there	is	a	historical
table	of	requests.	The	table	details	each	cookie	domain	and	path.	It	is	possible	to
edit	or	remove	cookies	from	the	cookie	jar.

Getting	ready
We	will	open	the	Burp	Cookie	Jar	and	look	inside.	Then,	using	the	OWASP
GetBoo	application,	we'll	identify	new	cookies	added	to	the	Burp	Cookie	Jar.

How	to	do	it...
1.	 Shut	down	and	restart	Burp	so	it	is	clean	of	any	history.	Switch	to	the	Burp

Project	options	tab,	then	the	Sessions	tab.	In	the	Cookie	Jar	section,	click
the	Open	cookie	jar	button,	as	follows:

2.	 A	new	pop-up	box	appears.	Since	we	have	no	proxied	traffic	yet,	the	cookie
jar	is	empty.	Let's	target	an	application	and	get	some	cookies	captured,	as
follows:

3.	 From	the	OWASP	Landing	page,	click	the	link	to	access	the	GetBoo
application,	as	follows:

4.	 Click	the	Login	button.	At	the	login	screen,	type	both	the	username	and
password	as	demo,	and	then	click	the	Log	In	button.

	

5.	 Return	to	the	Burp	Cookie	Jar.	You	now	have	three	cookies	available.	Each
cookie	has	a	Domain,	Path,	Name,	and	Value	identified,	as	follows:

6.	 Select	the	last	cookie	in	the	list	and	click	the	Edit	cookie	button.	Modify	the
value	from	nada	to	thisIsMyCookie	and	then	click	OK,	as	follows:

7.	 The	value	is	now	changed,	as	follows:

8.	 The	default	scope	for	the	Burp	Cookie	Jar	is	Proxy	and	Spider.	However,
you	may	expand	the	scope	to	include	other	tools.	Click	the	checkbox	for
Repeater,	as	follows:

Now,	if	you	create	a	new	session-handling	rule	and	use	the	default	Burp	Cookie
Jar,	you	will	see	the	new	value	for	that	cookie	used	in	the	requests.

How	it	works...
The	Burp	Cookie	Jar	is	used	by	session-handling	rules	for	cookie-handling	when
automating	requests	against	a	target	application.	In	this	recipe,	we	looked	into
the	Cookie	Jar,	understood	its	contents,	and	even	modified	one	of	the	values	of	a
captured	cookie.	Any	subsequent	session-handling	rules	that	use	the	default
Burp	Cookie	Jar	will	see	the	modified	value	in	the	request.

Adding	great	pentester	plugins
As	web-application	testers,	you	will	find	handy	tools	to	add	to	your	repertoire	to
make	your	assessments	more	efficient.	The	Burp	community	offers	many
wonderful	extensions.	In	this	recipe,	we	will	add	a	couple	of	them	and	explain
how	they	can	make	your	assessments	better.	Retire.js	and	Software	Vulnerability
Scanner	are	the	two	plugins,	these	two	plugins	are	used	with	the	passive	scanner.

Note:	Both	of	these	plugins	require	the	Burp	Professional	version.

Getting	ready
Using	the	OWASP	Mutilliae	II	application,	we	will	add	two	handy	extensions
that	will	help	us	find	more	vulnerabilities	in	our	target.

How	to	do	it...
1.	 Switch	to	the	Burp	Extender	tab.	Go	to	the	BApp	Store	and	find	two

plugins—Retire.js	and	Software	Vulnerability	Scanner.	Click	the
Install	button	for	each	plugin,	as	follows:

2.	 After	installing	the	two	plugins,	go	to	the	Extender	tab,	then	Extensions,
and	then	the	Burp	Extensions	section.	Make	sure	both	plugins	are	enabled
with	check	marks	inside	the	check	boxes.	Also,	notice	the	Software
Vulnerability	Scanner	has	a	new	tab,	as	follows:

3.	 Return	to	the	Firefox	browser	and	browse	to	the	Mutillidae	homepage.
Perform	a	lightweight,	less-invasive	passive	scan	by	right-clicking	and
selecting	Passively	scan	this	branch,	as	follows:

4.	 Note	the	additional	findings	created	from	the	two	plugins.	The	Vulners
plugin,	which	is	the	Software	Vulnerability	Scanner,	found	numerous	CVE
issues,	and	Retire.js	identified	five	instances	of	a	vulnerable	version	of
jQuery,	as	follows:

How	it	works...
Burp	functionality	can	be	extended	through	a	PortSwigger	API	to	create	custom
extensions,	also	known	as	plugins.	In	this	recipe,	we	installed	two	plugins	that
assist	with	identifying	older	versions	of	software	contained	in	the	application
with	known	vulnerabilities.

Creating	new	issues	via	the	Manual-
Scan	Issues	Extension
Though	Burp	provides	a	listing	of	many	security	vulnerabilities	commonly
found	in	web	applications,	occasionally	you	will	identify	an	issue	and	need	to
create	a	custom	scan	finding.	This	can	be	done	using	the	Manual-Scan
Issues	Extension.

Note:	This	plugin	requires	the	Burp	Professional	edition.

Getting	ready
Using	the	OWASP	Mutillidae	II	application,	we	will	add	the	Manual	Scan	Issues
Extension,	create	steps	revealing	a	finding,	then	use	the	extension	to	create	a
custom	issue.	

How	to	do	it...
1.	 Switch	to	the	Burp	Extender	tab.	Go	to	the	BApp	Store	and	find	the	plugin

labeled	Manual	Scan	Issues.	Click	the	Install	button:

2.	 Return	to	the	Firefox	browser	and	browse	to	the	Mutillidae	homepage.
3.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab	and	find	the	request	you	just

made	browsing	to	the	homepage.	Click	the	Response	tab.	Note	the	overly
verbose	Server	header	indicating	the	web	server	type	and	version	along
with	the	operating	system	and	programming	language	used.	This
information	can	be	used	by	an	attacker	to	fingerprint	the	technology	stack
and	identify	vulnerabilities	that	can	be	exploited:

4.	 Since	this	is	a	finding,	we	need	to	create	a	new	issue	manually	to	capture	it
for	our	report.	While	viewing	the	Request,	right-click	and	select	Add	Issue,
as	follows:

5.	 A	pop-up	dialog	box	appears.	Within	the	General	tab,	we	can	create	a	new
issue	name	of	Information	Leakage	in	Server	Response.	Obviously,
you	may	add	more	verbiage	around	the	issue	detail,	background,	and
remediation	areas,	as	follows:

6.	 If	we	flip	to	the	HTTP	Request	tab,	we	can	copy	and	paste	into	the	text	area
the	contents	of	the	Request	tab	found	within	the	message	editor,	as	follows:

7.	 If	we	flip	to	the	HTTP	Response	tab,	we	can	copy	and	paste	into	the	text
area	the	contents	of	the	Response	tab	found	within	the	message	editor.

8.	 Once	completed,	flip	back	to	the	General	tab	and	click	the	Import	Finding
button.	You	should	see	the	newly-created	scan	issue	added	to	the	Issues
window,	as	follows:

How	it	works...
In	cases	where	an	issue	is	not	available	within	the	Burp	core	issue	list,	a	tester
can	create	their	own	issue	using	the	Manual-Scan	Issue	Extension.	In	this	recipe,
we	created	an	issue	for	Information	Leakage	in	Server	Responses.

See	also
For	a	listing	of	all	issue	definitions	identified	by	Burp,	go
to	https://portswigger.net/kb/issues.

https://portswigger.net/kb/issues

Working	with	the	Active	Scan++
Extension
Some	extensions	assist	in	finding	vulnerabilities	with	specific	payloads,	such	as
XML,	or	help	to	find	hidden	issues,	such	as	cache	poisoning	and	DNS	rebinding.
In	this	recipe,	we	will	add	an	active	scanner	extension	called	Active	Scan++,
which	assists	with	identifying	these	more	specialized	vulnerabilities.

Note:	This	plugin	requires	the	Burp	Professional	edition.

Getting	ready
Using	the	OWASP	Mutillidae	II	application,	we	will	add	the	Active	Scan++
extension,	and	then	run	an	active	scan	against	the	target.	

How	to	do	it...
1.	 Switch	to	the	Burp	Extender	|	BApp	Store	and	select	the	Active	Scan++

extension.	Click	the	Install	button	to	install	the	extension,	as	follows:

2.	 Return	to	the	Firefox	browser	and	browse	to	the	Mutillidae	homepage.

3.	 Switch	to	the	Burp	Target	tab,	then	the	Site	map	tab,	right-click	on	the
mutillidae	folder,	and	select	Actively	scan	this	branch,	as	follows:

4.	 When	the	Active	scanning	wizard	appears,	you	may	leave	the	default
settings	and	click	the	Next	button,	as	follows:

Follow	the	prompts	and	click	OK	to	begin	the	scanning	process.	

5.	 After	the	active	scanner	completes,	browse	to	the	Issues	window.	Make
note	of	any	additional	issues	found	by	the	newly-added	extension.	You	can
always	tell	which	ones	the	extension	found	by	looking	for	the	This	issue
was	generated	by	the	Burp	extension:	Active	Scan++	message,	as	follows:

How	it	works...
Burp	functionality	can	be	extended	beyond	core	findings	with	the	use	of
extensions.	In	this	recipe,	we	installed	a	plugin	that	extends	the	Active	Scanner
functionality	to	assist	with	identifying	additional	issues	such	as	Arbitrary	Header
Injection,	as	seen	in	this	recipe.

Implementing	Advanced	Topic
Attacks
In	this	chapter,	we	will	cover	the	following	recipes:

Performing	XML	External	Entity	(XXE)	attacks
Working	with	JSON	Web	Token	(JWT)
Using	Burp	Collaborator	to	determine	Server-Side	Request	Forgery
(SSRF)
Testing	Cross-Origin	Resource	Sharing	(CORS)
Performing	Java	deserialization	attacks

Introduction
This	chapter	covers	intermediate	to	advanced	topics	such	as	working	with	JWT,
XXE,	and	Java	deserialization	attacks,	and	how	to	use	Burp	to	assist	with	such
assessments.	With	some	advanced	attacks,	Burp	plugins	provide	tremendous
help	in	easing	the	task	required	by	the	tester.

Software	tool	requirements
In	order	to	complete	the	recipes	in	this	chapter,	you	will	need	the	following:

OWASP	Broken	Web	Applications	(BWA)
OWASP	Mutillidae	link
Burp	Proxy	Community	or	Professional	(https://portswigger.net/burp/)

https://portswigger.net/burp/

Performing	XXE	attacks
XXE	is	a	vulnerability	that	targets	applications	parsing	XML.	Attackers	can
manipulate	the	XML	input	with	arbitrary	commands	and	send	those	commands
as	external	entity	references	within	the	XML	structure.	The	XML	is	then
executed	by	a	weakly-configured	parser,	giving	the	attacker	the	requested
resource.

Getting	ready
Using	the	OWASP	Mutillidae	II	XML	validator	page,	determine	whether	the
application	is	susceptible	to	XXE	attacks.

How	to	do	it...
1.	 Navigate	to	the	XML	External	Entity	Injection	page,	that	is,	through	Others

|	XML	External	Entity	Injection	|	XML	Validator:

2.	 While	on	the	XML	Validator	page,	perform	the	example	XML	that	is
provided	on	the	page.	Click	on	the	Validate	XML	button:

3.	 Switch	to	Burp	Proxy|	HTTP	history	tab	and	look	for	the	request	you	just
submitted	to	validate	the	XML.	Right-click	and	send	the	request	to	the

repeater:

4.	 Note	the	value	provided	in	the	xml	parameter:

5.	 Use	Burp	Proxy	Interceptor	to	replace	this	XML	parameter	value	with	the
following	payload.	This	new	payload	will	make	a	request	to	a	file	on	the
operating	system	that	should	be	restricted	from	view,	namely,	the
/etc/passwd	file:

<?xml	version="1.0"?>

				<!DOCTYPE	change-log[

								<!ENTITY	systemEntity	SYSTEM	

"../../../../etc/passwd">

]>

				<change-log>

								<text>&systemEntity;</text>

				</change-log>

Since	there	are	odd	characters	and	spaces	in	the	new	XML	message,	let's
type	this	payload	into	the	Decoder	section	and	URL-encode	it	before	we
paste	it	into	the	xml	parameter.	

6.	 Switch	to	the	Decoder	section,	type	or	paste	the	new	payload	into	the	text
area.	Click	the	Encode	as…	button	and	select	the	URL	option	from	the
drop-down	listing.	Then,	copy	the	URL-encoded	payload	using	Ctrl	+	C.
Make	sure	you	copy	all	of	the	payload	by	scrolling	to	the	right:

7.	 Switch	to	the	Burp	Proxy	Intercept	tab.	Turn	the	interceptor	on	with

the	Intercept	is	on	button.
8.	 Return	to	the	Firefox	browser	and	reload	the	page.	As	the	request	is	paused,

replace	the	current	value	of	the	xml	parameter	with	the	new	URL-encoded
payload:

9.	 Click	the	Forward	button.	Turn	interceptor	off	by	toggling	the	button	to
Intercept	is	off.

10.	 Note	that	the	returned	XML	now	shows	the	contents	of	the	/etc/passwd
file!	The	XML	parser	granted	us	access	to	the	/etc/passwd	file	on	the
operating	system:

How	it	works...
In	this	recipe,	the	insecure	XML	parser	receives	the	request	within	the	XML	for
the	/etc/passwd	file	residing	on	the	server.	Since	there	is	no	validation
performed	on	the	XML	request	due	to	a	weakly-configured	parser,	the	resource
is	freely	provided	to	the	attacker.

Working	with	JWT
As	more	sites	provide	client	API	access,	JWT	are	commonly	used	for
authentication.	These	tokens	hold	identity	and	claims	information	tied	to	the
resources	the	user	is	granted	access	to	on	the	target	site.	Web-penetration	testers
need	to	read	these	tokens	and	determine	their	strength.	Fortunately,	there	are
some	handy	plugins	that	make	working	with	JWT	tokens	inside	of	Burp	much
easier.	We	will	learn	about	these	plugins	in	this	recipe.		

Getting	ready
In	this	recipe,	we	need	to	generate	JWT	tokens.	Therefore,	we	will	use	the
OneLogin	software	to	assist	with	this	task.	In	order	to	complete	this	recipe,
browse	to	the	OneLogin	website:	https://www.onelogin.com/.	Click	the
Developers	link	at	the	top	and	then	click	the	GET	A	DEVELOPER	ACCOUNT
link	(https://www.onelogin.com/developer-signup).

After	you	sign	up,	you	will	be	asked	to	verify	your	account	and	create	a
password.	Please	perform	these	account	setup	tasks	prior	to	starting	this	recipe.

Using	the	OneLogin	SSO	account,	we	will	use	two	Burp	extensions	to	examine
the	JWT	tokens	assigned	as	authentication	by	the	site.

https://www.onelogin.com/
https://www.onelogin.com/developer-signup

How	to	do	it...
1.	 Switch	to	Burp	BApp	Store	and	install	two	plugins—JSON	Beautifier	and

JSON	Web	Tokens:

2.	 In	the	Firefox	browser,	go	to	your	OneLogin	page.	The	URL	will	be
specific	to	the	developer	account	you	created.	Log	in	to	the	account	using
the	credentials	you	established	when	you	set	up	the	account	before
beginning	this	recipe:

3.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab.	Find	the	POST	request	with
the	URL	/access/auth.	Right-click	and	click	the	Send	to	Repeater	option.

4.	 Your	host	value	will	be	specific	to	the	OneLogin	account	you	set	up:

5.	 Switch	to	the	Repeater	tab	and	notice	that	you	have	two	additional	tabs
relating	to	the	two	extensions	you	installed:

6.	 Click	the	JSON	Beautifier	tab	to	view	the	JSON	structure	in	a	more
readable	manner:

7.	 Click	the	JSON	Web	Tokens	tab	to	reveal	a	debugger	very	similar	to	the
one	available	at	https://jwt.io.	This	plugin	allows	you	to	read	the	claims
content	and	manipulate	the	encryption	algorithm	for	various	brute-force
tests.	For	example,	in	the	following	screenshot,	notice	how	you	can	change
the	algorithm	to	nOnE	in	order	to	attempt	to	create	a	new	JWT	token	to
place	into	the	request:

https://jwt.io

How	it	works...
Two	extensions,	JSON	Beautifier	and	JSON	Web	Tokens,	help	testers	to	work
with	JWT	tokens	in	an	easier	way	by	providing	debugger	tools	conveniently
available	with	the	Burp	UI.

Using	Burp	Collaborator	to
determine	SSRF
SSRF	is	a	vulnerability	that	allows	an	attacker	to	force	applications	to	make
unauthorized	requests	on	the	attacker's	behalf.	These	requests	can	be	as	simple
as	DNS	queries	or	as	maniacal	as	commands	from	an	attacker-controlled	server.	

In	this	recipe,	we	will	use	Burp	Collaborator	to	check	open	ports	available	for
SSRF	requests,	and	then	use	Intruder	to	determine	whether		the	application	will
perform	DNS	queries	to	the	public	Burp	Collaborator	server	through	an	SSRF
vulnerability.

Getting	ready
Using	the	OWASP	Mutillidae	II	DNS	lookup	page,	let's	determine	whether	the
application	has	an	SSRF	vulnerability.

How	to	do	it...
1.	 Switch	to	the	Burp	Project	options	|	Misc	tab.	Note	the	Burp	Collaborator

Server	section.	You	have	options	available	for	using	a	private	Burp
Collaborator	server,	which	you	would	set	up,	or	you	may	use	the	publicly
internet-accessible	one	made	available	by	PortSwigger.	For	this	recipe,	we
will	use	the	public	one:

2.	 Check	the	box	labeled	Poll	over	unencrypted	HTTP	and	click	the	Run

health	check…	button:

3.	 A	pop-up	box	appears	to	test	various	protocols	to	see	whether	they	will
connect	to	the	public	Burp	Collaborator	server	available	on	the	internet.

4.	 Check	the	messages	for	each	protocol	to	see	which	are	successful.	Click	the
Close		button	when	you	are	done:

5.	 From	the	top-level	menu,	select	Burp	|	Burp	Collaborator	client:

6.	 A	pop-up	box	appears.	In	the	section	labeled	Generate	Collaborator
payloads,	change	the	1	to	10:

7.	 Click	the	Copy	to	clipboard	button.		Leave	all	other	defaults	as	they	are.	Do
not	close	the	Collaborator	client	window.	If	you	close	the	window,	you	will
lose	the	client	session:

8.	 Return	to	the	Firefox	browser	and	navigate	to	OWASP	2013	|	A1	–
Injection	(Other)	|	HTML	Injection	(HTMLi)	|	DNS	Lookup:

9.	 On	the	DNS	Lookup	page,	type	an	IP	address	and	click	the	Lookup	DNS
button:

10.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab	and	find	the	request	you	just
created	on	the	DNS	Lookup	page.	Right-click	and	select	the	Send	to
Intruder	option:

11.	 Switch	to	the	Burp	Intruder	|	Positions	tab.	Clear	all	suggested	payload
markers	and	highlight	the	IP	address,	click	the	Add	§	button	to	place
payload	markers	around	the	IP	address	value	of	the	target_host	parameter:

12.	 Switch	to	the	Burp	Intruder	|	Payloads	tab	and	paste	the	10	payloads	you
copied	to	the	clipboard	from	the	Burp	Collaborator	client	into	the	Payload
Options	[Simple	list]	textbox	using	the	Paste	button:

Make	sure	you	uncheck	the	Payload	Encoding	checkbox.

13.	 Click	the	Start	attack	button.	The	attack	results	table	will	pop	up	as	your
payloads	are	processing.	Allow	the	attacks	to	complete.	Note	the
burpcollaborator.net	URL	is	placed	in	the	payload	marker	position	of
the	target_host	parameter:

14.	 Return	to	the	Burp	Collaborator	client	and	click	the	Poll	now	button	to	see
whether	any	SSRF	attacks	were	successful	over	any	of	the	protocols.	If	any
requests	leaked	outside	of	the	network,	those	requests	will	appear	in	this

table	along	with	the	specific	protocol	used.	If	any	requests	are	shown	in	this
table,	you	will	need	to	report	the	SSRF	vulnerability	as	a	finding.	As	you
can	see	from	the	results	shown	here,	numerous	DNS	queries	were	made	by
the	application	on	behalf	of	the	attacker-provided	payloads:

How	it	works...
Network	leaks	and	overly-generous	application	parameters	can	allow	an	attacker
to	have	an	application	make	unauthorized	calls	via	various	protocols	on	the
attacker's	behalf.	In	the	case	of	this	recipe,	the	application	allows	DNS	queries	to
leak	outside	of	the	local	machine	and	connect	to	the	internet.	

See	also
For	more	information	on	SSRF	attacks,	see	this	PortSwigger	blog	entry
at	https://portswigger.net/blog/cracking-the-lens-targeting-https-hidden-attack-
surface.

https://portswigger.net/blog/cracking-the-lens-targeting-https-hidden-attack-surface

Testing	CORS
An	application	that	implements	HTML5	CORS	means	the	application	will	share
browser	information	with	another	domain	that	resides	at	a	different	origin.	By
design,	browser	protections	prevent	external	scripts	from	accessing	information
in	the	browser.	This	protection	is	known	as	Same-Origin	Policy	(SOP).
However,	CORS	is	a	means	of	bypassing	SOP,	permissively.	If	an	application
wants	to	share	browser	information	with	a	completely	different	domain,	it	may
do	so	with	properly-configured	CORS	headers.

Web-penetration	testers	must	ensure	applications	that	handle	AJAX	calls	(for
example,	HTML5)	do	not	have	misconfigured	CORS	headers.	Let's	see	how
Burp	can	help	us	identify	such	misconfigurations.

Getting	ready
Using	the	OWASP	Mutillidae	II	AJAX	version	of	the	Pen	Test	Tool	Lookup
page,	determine	whether	the	application	contains	misconfigured	CORS	headers.

How	to	do	it...
1.	 Navigate	to	HTML5	|	Asynchronous	JavaScript	and	XML	|	Pen	Test	Tool

Lookup	(AJAX):

2.	 Select	a	tool	from	the	listing	and	click	the	Lookup	Tool	button:

3.	 Switch	to	the	Burp	Proxy	|	HTTP	history	tab	and	find	the	request	you	just
made	from	the	AJAX	Version	Pen	Test	Tool	Lookup	page.	Flip	to	the
Response	tab:

4.	 Let's	examine	the	headers	more	closely	by	selecting	the	Headers	tab	of	the
same	Response	tab.	Though	this	is	an	AJAX	request,	the	call	is	local	to	the
application	instead	of	being	made	to	a	cross-origin	domain.	Thus,	no	CORS
headers	are	present	since	it	is	not	required.	However,	if	a	call	to	an	external
domain	were	made	(for	example,	Google	APIs),	then	CORS	headers	would
be	required:

5.	 In	an	AJAX	request,	there	is	a	call	out	to	an	external	URL	(for	example,	a
cross-domain).	In	order	to	permit	the	external	domain	to	receive	DOM
information	from	the	user's	browser	session,	CORS	headers	must	be
present,	including	Access-Control-Allow-Origin:	<name	of	cross
domain>.

6.	 In	the	event	the	CORS	header	does	not	specify	the	name	of	the	external
domain	and,	instead,	uses	a	wild	card	(*),	this	is	a	vulnerability.	Web
pentesters	should	include	this	in	their	report	as	a	misconfigured	CORS
headers	vulnerability.	

How	it	works...
Since	the	AJAX	call	used	in	this	recipe	originated	from	the	same	place,	there	is
no	need	for	CORS	headers.	However,	in	many	cases,	AJAX	calls	are	made	to
external	domains	and	require	explicit	permission	through	the	HTTP	response
Access-Control-Allow-Origin	header.

See	also
For	more	information	on	misconfigured	CORS	headers,	see	this	PortSwigger
blog	entry	at	https://portswigger.net/blog/exploiting-cors-misconfigurations-for-
bitcoins-and-bounties.

https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

Performing	Java	deserialization
attacks
Serialization	is	a	mechanism	provided	in	various	languages	that	allows	the
saving	of	an	object's	state	in	binary	format.	It	is	used	for	speed	and	obfuscation.
The	turning	of	an	object	back	from	binary	into	an	object	is	deserialization.	In
cases	where	user	input	is	used	within	an	object	and	that	object	is	later	serialized,
it	creates	an	attack	vector	for	arbitrary	code-injection	and	possible	remote	code-
execution.	We	will	look	at	a	Burp	extension	that	will	assist	web-penetration
testers	in	assessing	applications	for	Java	Deserialization	vulnerabilities.

Getting	Ready
Using	OWASP	Mutillidae	II	and	a	hand-crafted	serialized	code	snippet,	we	will
demonstrate	how	to	use	the	Java	Serial	Killer	Burp	extension	to	assist	in
performing	Java	deserialization	attacks.

How	to	do	it...
1.	 Switch	to	Burp	BApp	Store	and	install	the	Java	Serial	Killer	plugin:

In	order	to	create	a	scenario	using	a	serialized	object,	we	will	take	a
standard	request	and	add	a	serialized	object	to	it	for	the	purposes	of
demonstrating	how	you	can	use	the	extension	to	add	attacker-controlled
commands	to	serialized	objects.

2.	 Note	the	new	tab	added	to	your	Burp	UI	menu	at	the	top	dedicated	to	the
newly-installed	plugin.

3.	 Navigate	to	the	Mutillidae	homepage.

4.	 Switch	to	the	Burp	Proxy|	HTTP	history	tab	and	look	for	the	request	you
just	created	by	browsing	to	the	Mutillidae	homepage:

Unfortunately,	there	aren't	any	serialized	objects	in	Mutillidae	so	we	will
have	to	create	one	ourselves.	

5.	 Switch	to	the	Decoder	tab	and	copy	the	following	snippet	of	a	serialized
object:

AC	ED	00	05	73	72	00	0A	53	65	72	69	61	6C	54	65

6.	 Paste	the	hexadecimal	numbers	into	the	Decoder	tab,	click	the	Encode	as...
button,	and	select	base	64:

7.	 Copy	the	base-64	encoded	value	from	the	Decoder	tab	and	paste	it	into	the
bottom	of	the	request	you	sent	to	the	Java	Serial	Killer	tab.	Use	Ctrl	+	C	to

copy	out	of	Decoder	and	Ctrl	+	V	to	paste	it	anywhere	in	the	white	space
area	of	the	request:

8.	 Within	the	Java	Serial	Killer	tab,	pick	a	Java	library	from	the	drop-down
list.	For	this	recipe,	we	will	use	CommonsCollections1.	Check	the	Base64
Encode	box.	Add	a	command	to	embed	into	the	serialized	object.	In	this
example,	we	will	use	the	nslookup	127.0.0.1	command.	Highlight	the
payload	and	click	the	Serialize	button:

9.	 After	clicking	the	Serialize	button,	notice	the	payload	has	changed	and	now
contains	your	arbitrary	command	and	is	base-64	encoded:

10.	 Click	the	Go	button	within	the	Java	Serial	Killer	tab	to	execute	the	payload.
Even	though	you	may	receive	an	error	in	the	response,	ideally,	you	would
have	a	listener,	such	as	tcpdump,	listening	for	any	DNS	lookups	on	port	53.
From	the	listener,	you	would	see	the	DNS	query	to	the	IP	address	you
specified	in	the	nslookup	command.		

How	it	works...
In	cases	where	application	code	receives	user	input	directly	into	an	object
without	performing	sanitization	on	such	input,	an	attacker	has	the	opportunity	to
provide	arbitrary	commands.	The	input	is	then	serialized	and	run	on	the
operating	system	where	the	application	resides,	creating	a	possible	attack	vector
for	remote	code	execution.

There's	more...
Since	this	recipe	scenario	is	a	bit	contrived,	you	may	not	receive	a	response	on
your	network	listener	for	the	nslookup	command.	Try	the	recipe	again	after
downloading	a	vulnerable	version	of	an	application	with	known	Java
deserialization	vulnerabilities	(that	is,	Jenkins,	JBoss).		Reuse	the	same	steps
shown	here,	only	change	the	target	application.

See	also
For	more	information	about	real-world	Java	deserialization	attacks,	check
out	these	links:

Symantec:
https://www.symantec.com/security_response/attacksignatures/detail.js
p?asid=30326
Foxglove	Security:	https://foxglovesecurity.com/2015/11/06/what-do-
weblogic-websphere-jboss-jenkins-opennms-and-your-application-
have-in-common-this-vulnerability/

To	read	more	about	this	Burp	plugin,	check
out	https://blog.netspi.com/java-deserialization-attacks-burp/

https://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=30326
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
https://blog.netspi.com/java-deserialization-attacks-burp/

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Web	Penetration	Testing	with	Kali	Linux	-	Third	Edition
Gilberto	Najera-Gutierrez

ISBN:	978-1-78862-337-7

Learn	how	to	set	up	your	lab	with	Kali	Linux
Understand	the	core	concepts	of	web	penetration	testing
Get	to	know	the	tools	and	techniques	you	need	to	use	with	Kali	Linux
Identify	the	difference	between	hacking	a	web	application	and	network
hacking
Expose	vulnerabilities	present	in	web	servers	and	their	applications	using
server-side	attacks
Understand	the	different	techniques	used	to	identify	the	flavor	of	web
applications
See	standard	attacks	such	as	exploiting	cross-site	request	forgery	and	cross-
site	scripting	flaws
Get	an	overview	of	the	art	of	client-side	attacks
Explore	automated	attacks	such	as	fuzzing	web	applications

https://www.packtpub.com/networking-and-servers/web-penetration-testing-kali-linux-third-edition

Advanced	Infrastructure	Penetration	Testing
Chiheb	Chebbi

ISBN:	978-1-78862-448-0

Exposure	to	advanced	infrastructure	penetration	testing	techniques	and
methodologies
Gain	hands-on	experience	of	penetration	testing	in	Linux	system
vulnerabilities	and	memory	exploitation
Understand	what	it	takes	to	break	into	enterprise	networks
Learn	to	secure	the	configuration	management	environment	and	continuous
delivery	pipeline
Gain	an	understanding	of	how	to	exploit	networks	and	IoT	devices
Discover	real-world,	post-exploitation	techniques	and	countermeasures

https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Burp Suite Cookbook

	Packt Upsell
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Conventions used

	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Get in touch
	Reviews

	Disclaimer
	Targeting legal vulnerable web applications

	Getting Started with Burp Suite
	Introduction
	Downloading Burp (Community, Professional)
	Getting ready
	Software tool requirements

	How to do it...

	Setting up a web app pentesting lab
	Getting ready
	Software tool requirements

	How to do it...
	How it works

	Starting Burp at a command line or as an executable
	How to do it...
	How it works...

	Listening for HTTP traffic, using Burp
	Getting ready
	How to do it...
	How it works...

	Getting to Know the Burp Suite of Tools
	Introduction
	Software tool requirements
	Setting the Target Site Map
	Getting ready
	How to do it...
	How it works...

	Understanding the Message Editor
	Getting ready
	How to do it...

	Repeating with Repeater
	Getting ready
	How to do it...

	Decoding with Decoder
	Getting ready
	How to do it...

	Intruding with Intruder
	Getting ready
	How to do it...
	Target
	Positions
	Payloads
	Payload Sets
	Payload Options
	Payload Processing
	Payload Encoding

	Options
	Request Headers
	Request Engine
	Attack Results
	Grep - Match
	Grep - Extract
	Grep - Payloads
	Redirections

	Start attack button

	Configuring, Spidering, Scanning, and Reporting with Burp
	Introduction
	Software tool requirements
	Establishing trust over HTTPS
	Getting ready
	How to do it...

	Setting Project options
	How to do it...
	The Connections tab
	The HTTP tab
	The SSL tab
	The Sessions tab
	The Misc tab

	Setting user options
	How to do it...
	The SSL tab
	The Display tab
	The Misc tab

	Spidering with Spider
	Getting ready
	The Control tab
	The Options tab

	How to do it...

	Scanning with Scanner
	Getting ready
	How to do it...

	Reporting issues
	Getting ready
	How to do it...

	Assessing Authentication Schemes
	Introduction
	Software tool requirements
	Testing for account enumeration and guessable accounts
	Getting ready
	How to do it...

	Testing for weak lock-out mechanisms
	Getting ready
	How to do it...

	Testing for bypassing authentication schemes
	Getting ready
	How to do it...
	How it works

	Testing for browser cache weaknesses
	Getting ready
	How to do it...

	Testing the account provisioning process via the REST API
	Getting ready
	How to do it...

	Assessing Authorization Checks
	Introduction
	Software requirements
	Testing for directory traversal
	Getting ready
	How to do it...
	How it works...

	Testing for Local File Include (LFI)
	Getting ready
	How to do it...
	How it works...

	Testing for Remote File Inclusion (RFI)
	Getting ready
	How to do it...
	How it works...

	Testing for privilege escalation
	Getting ready
	How to do it...
	How it works...

	Testing for Insecure Direct Object Reference (IDOR)
	Getting ready
	How to do it...
	How it works...

	Assessing Session Management Mechanisms
	Introduction
	Software tool requirements
	Testing session token strength using Sequencer
	Getting ready
	How to do it...
	How it works...

	Testing for cookie attributes
	Getting ready
	How to do it...
	How it works...

	Testing for session fixation
	Getting ready
	How to do it...
	How it works...

	Testing for exposed session variables
	Getting ready
	How to do it...
	How it works...

	Testing for Cross-Site Request Forgery
	Getting ready
	How to do it...
	How it works...

	Assessing Business Logic
	Introduction
	Software tool requirements
	Testing business logic data validation
	Getting ready
	How to do it...
	How it works...

	Unrestricted file upload – bypassing weak validation
	Getting ready
	How to do it...
	How it works...

	Performing process-timing attacks
	Getting ready
	How to do it...
	How it works...

	Testing for the circumvention of work flows
	Getting ready
	How to do it...
	How it works...

	Uploading malicious files – polyglots
	Getting ready
	How to do it...
	How it works...
	There's more...

	Evaluating Input Validation Checks
	Introduction
	Software tool requirements
	Testing for reflected cross-site scripting
	Getting ready
	How to do it...
	How it works...

	Testing for stored cross-site scripting
	Getting ready
	How to do it...
	How it works...

	Testing for HTTP verb tampering
	Getting ready
	How to do it...
	How it works...

	Testing for HTTP Parameter Pollution
	Getting ready
	How to do it...
	How it works...

	Testing for SQL injection
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing for command injection
	Getting ready
	How to do it...
	How it works...

	Attacking the Client
	Introduction
	Software tool requirements
	Testing for Clickjacking
	Getting ready
	How to do it...
	How it works...

	Testing for DOM-based cross-site scripting
	Getting ready
	How to do it...
	How it works...

	Testing for JavaScript execution
	Getting ready
	How to do it...
	How it works...

	Testing for HTML injection
	Getting ready
	How to do it...
	How it works...

	Testing for client-side resource manipulation
	Getting ready
	How to do it...
	How it works...

	Working with Burp Macros and Extensions
	Introduction
	Software tool requirements
	Creating session-handling macros
	Getting ready
	How to do it...
	How it works...

	Getting caught in the cookie jar
	Getting ready
	How to do it...
	How it works...

	Adding great pentester plugins
	Getting ready
	How to do it...
	How it works...

	Creating new issues via the Manual-Scan Issues Extension
	Getting ready
	How to do it...
	How it works...
	See also

	Working with the Active Scan++ Extension
	Getting ready
	How to do it...
	How it works...

	Implementing Advanced Topic Attacks
	Introduction
	Software tool requirements
	Performing XXE attacks
	Getting ready
	How to do it...
	How it works...

	Working with JWT
	Getting ready
	How to do it...
	How it works...

	Using Burp Collaborator to determine SSRF
	Getting ready
	How to do it...
	How it works...
	See also

	Testing CORS
	Getting ready
	How to do it...
	How it works...
	See also

	Performing Java deserialization attacks
	Getting Ready
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

