

Practical Security Automation
and Testing

Tools and techniques for automated security scanning and
testing in DevSecOps

Tony Hsiang-Chih Hsu

BIRMINGHAM - MUMBAI

Practical Security Automation and Testing
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Karan Sadawana
Acquisition Editor: Heramb Bhavsar
Content Development Editor: Roshan Kumar
Technical Editor: Shweta Jadhav
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: January 2019

Production reference: 2310119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-202-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Tony Hsiang-Chih Hsu is a senior security architect, software development manager, and
project manager with more than 20 years' experience in security services technology. He
has extensive experience of the Secure Software Development Lifecycle (SSDLC) in
relation to activities including secure architecture/design review, secure code review, threat
modeling, automated security testing, and cloud service inspection. He is also an in-house
SDL trainer, having offered hands-on courses totaling in more than 300 hours. He is also
the author of Hands-on Security in DevOps, and a co-author of several Open Web
Application Security Project (OWASP) projects, including the OWASP testing guide, a
proactive control guide, deserialization, cryptographic, and the XXE prevention cheatsheet.

About the reviewers
Anand Tiwari is an information security professional with nearly 5 years' experience in
offensive security, with expertise in mobile, web application, and infrastructure security.
He has authored an open source tool called Archery, and has presented at BlackHat,
DEFCON, HITB, and ITEM conferences. His research primarily focuses on Android and
iOS mobile applications. In his spare time, he writes code and experiments with open
source information security tools.

Lawrence Liang serves as a cybersecurity solutions lead in a large public corporation. Prior
to his current role, Lawrence assumed a variety of technical and managerial roles in several
Fortune 500 companies focusing on IT infrastructure and security management for global
clients. Lawrence earned his MBA from the University of Calgary, Canada, and his
Bachelor of Software Engineering from Jinan University, China.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: The Scope and Challenges of Security Automation 9
The purposes and myths of security automation 10

Myth 1 – doesn't security testing require highly experienced pentesters? 11
Myth 2 – isn't it time-consuming to build an automation framework? 11
Myth 3 – there are no automation frameworks that are really feasible for
security testing 12

The required skills and suggestions for security automation 13
General environment setup for coming labs 14
Summary 15
Questions 15
Further reading 16

Chapter 2: Integrating Security and Automation 17
The domains of automation testing and security testing 17
Automation frameworks and techniques 18

UI functional testing for web, mobile, and windows 19
HTTP API testing 19
HTTP mock server 20
White-box search with GREP-like tools 21
Behavior-driven development testing frameworks 21
Testing data generators 22

Automating existing security testing 23
Security testing with an existing automation framework 23
Summary 25
Questions 25
Further reading 26

Chapter 3: Secure Code Inspection 28
Case study – automating a secure code review 28

Secure coding scanning service – SWAMP 28
Step 1 – adding a new package 29
Step 2 – running the assessment 31
Step 3 – viewing the results 32

Secure coding patterns for inspection 33
Quick and simple secure code scanning tools 35

Automatic secure code inspection script in Linux 35
Step 1 – downloading the CRASS 36
Step 2 – executing the code review audit scan 36

Table of Contents

[ii]

Step 3 – reviewing the results 36
Automatic secure code inspection tools for Windows 37

Step – downloading VCG (Visual Code Grepper) 37
Step 2: Executing VCG 37
Step 3: Reviewing the VCG scanning results 37

Case study – XXE security 38
Case study – deserialization security issue 39
Summary 40
 Questions 41
Further reading 42

Chapter 4: Sensitive Information and Privacy Testing 43
The objective of sensitive information testing 43

PII discovery 44
Sensitive information discovery 45
Privacy search tools 46

Case study – weak encryption search 47
Step 1 – installing The Silver Searcher 47
Step 2 – executing the tool (using Windows as an example) 47
Step 3 – reviewing the results (using Windows as an example) 47

Case study – searching for a private key 48
Step 1 – calculating the entropy 48
Step 2 – Searching for high-entropy strings 48
Step 3 – Reviewing the results 48

Case study – website privacy inspection 49
Step 1 – visiting PrivacyScore or setting it up locally 50
Step 2 – reviewing the results 51

Summary 51
Questions 52
Further reading 52

Chapter 5: Security API and Fuzz Testing 53
Automated security testing for every API release 53
Building your security API testing framework 55

Case study 1 – basic – web service testing with ZAP CLI 56
Step 1 – OWASP ZAP download and launch with port 8090 57
Step 2 – install the ZAP-CLI 58
Step 3 – execute the testing under ZAP-CLI 58
Step 4 – review the results 59

Case study 2 – intermediate – API testing with ZAP and JMeter 59
Step 1 – download JMeter 60
Step 2 – define HTTP request for the login 60
Step 4 – execute the JMeter script 62
Step 3 – review the results in ZAP 62

Case study 3 – advanced – parameterized security payload with fuzz 62
Step 1 – download the SQL injection data 63
Step 2 – define the CSV dataset in JMeter 64

Table of Contents

[iii]

Step 3 – apply the variable name 65
Step 4 – specify the loop 66
Step 5 – execute JMeter and review the security assessment results 66

Case study 4 – security testing with ZAP Open/SOAP API 68
Step 1 – install the OpenAPI and SOAP API add-ons 68
Step 2 – import the API definition 68
Step 3 – execute the active security scanning 69
Step 4 – present the security assessments 70

Summary 70
Questions 71
Further reading 72

Chapter 6: Web Application Security Testing 73
Case study – online shopping site for automated security inspection 74
Case 1 – web security testing using the ZAP REST API 74

Step 1 – spider scanning the website 74
Step 2 – active scanning the website 76
Step 3 – reviewing the status of the active scan 77
Step 4 – reviewing the security assessments 77

Case 2 – full automation with CURL and the ZAP daemon 78
Step 1 – executing ZAP in daemon (headless) mode 78
Step 2 – checking the status of the ZAP daemon 79
Step 3 – fully automating the ZAP API 79

Case 3 – automated security testing for the user registration flow
with Selenium 80

Step 1 – installation of SeleniumBase 82
Step 2 – launching ZAP with proxy 8090 82
Step 3 – executing the user registration flow automation 83
Step 4 – active scanning the identified URLs 83
Step 5 – reviewing the security assessments 84

Summary 85
Questions 85
Further reading 86

Chapter 7: Android Security Testing 87
Android security review best practices 87
Secure source code review patterns for Android 88
Privacy and sensitive information review 89

Privacy scanning with Androwarn 90
Step 1 – scanning of an APK 91
Step 2 – review the report 91

General process of APK security analysis 92
Step 1 – use APKTool to reverse the APK to Manifest.xml, Smali and
resources 93
Step 2 – use JADX to reverse the APK into Java source code 93
Step 3 – use Fireline to scan all the Java source files 93

Table of Contents

[iv]

Step 4 – review the scanning results 94
Static secure code scanning with QARK 94

Step 1 – install QARK 94
Step 2 – APK scanning with QARK 94
Step 3 – review the results 95

Automated security scanning with MobSF 95
Step 1 – set up the MobSF 95
Step 2 – upload the APK by REST API 96
Step 3 – scan the APK 96
Step 4 – download the report 96

Summary 97
Questions 98
Further reading 99

Chapter 8: Infrastructure Security 100
The scope of infrastructure security 101
Secure configuration best practices 101

CIS (Center for Internet Security) benchmarks 102
Security technical implementation guides (STIGs) 102
OpenSCAP security guide 103

Step 1 – installation of SCAP workbench 104
Step 2 – OpenSCAP security guide 104

Network security assessments with Nmap 105
Nmap usage tips 106

CVE vulnerability scanning 107
Known vulnerable components scan by VulScan 108

Step 1 – installation of VulScan 108
Step 2 – NMAP scanning with VulScan 108

Known vulnerable components scan by OWASP dependency check 108
Step 1 – installation of OWASP dependency check 108
Step 2 – CVE scanning with OWASP dependency check 109

HTTPS security check with SSLyze 110
Behavior-driven security automation – Gauntlt 112

Step 1 – Gauntlt installation 112
Step 2 – BDD security testing script 113
Step 3 – execution and results 113

Summary 115
Questions 115
Further reading 116

Chapter 9: BDD Acceptance Security Testing 117
Security testing communication 117
What is BDD security testing? 118
Adoption of Robot Framework with sqlmap 119

Step 1 – Robot Framework setup and preparation 120
Step 2 – sqlmap with Robot Framework 120

Table of Contents

[v]

Testing framework – Robot Framework with ZAP 121
Step 1 – environment setup and preparation 122
Step 2 – the Robot Framework script for the ZAP spider scan 122
Step 3 – robot script execution 125

Summary 125
Questions 126
Further reading 127

Chapter 10: Project Background and Automation Approach 128
Case study – introduction and security objective 128
Selecting security and automation testing tools 129
Automated security testing frameworks 130
Environment and tool setup 131
Summary 132
Questions 132
Further reading 133

Chapter 11: Automated Testing for Web Applications 134
Case 1 – web security scanning with ZAP-CLI 134

Step 1 – installation of ZAP-CLI 135
Step 2 – ZAP quick scan using the ZAP-CLI 135
Step 3 – generate a report 135

Case 2 – web security testing with ZAP & Selenium 136
Step 1 – Selenium Python script 136
Step 2 – running ZAP as a proxy 138

Approach 1 – configure the system proxy 138
Approach 2 – Selenium Profile 138
Approach 3 – using SeleniumBASE 139

Step 3 – generate ZAP report 139
Case 3 – fuzz XSS and SQLi testing with JMeter 140

Testing scenarios 140
Step 1 – prepare environment 140
Step 2 – define the JMeter scripts 141
Step 3 – prepare security payloads 143
Step 4 – launch JMeter in CLI with ZAP proxy 145
Step 5 – generate a ZAP report 145

Summary 146
Questions 146
Further reading 147

Chapter 12: Automated Fuzz API Security Testing 148
Fuzz testing and data 148

Step 1 – installing Radamsa 149
Step 2 – generating the Security Random Payloads 149

API fuzz testing with Automation Frameworks 151
Approach 1 – security fuzz testing with Wfuzz 153

Table of Contents

[vi]

Step 1 – installing Wfuzz 153
Step 2– fuzz testing with sign-in 153
Step 3 – reviewing the Wfuzz report 154

Approach 2 – security fuzz testing with 0d1n 156
Step 1 – installation of 0d1n 156
Step 2 – execution of 0d1n with OWASP ZAP 157
Step 3 – review the ZAP report (optional) 157

Approach 3 – Selenium DDT (data-driven testing) 157
Step 1: Selenium script with DDT 158
Step 2 – executing the Selenium script 159
Step 3 – review the ZAP report 159

Approach 4 – Robot Framework DDT testing 159
Step 1– Robot Framework environment setup 160
Step 3 – Robot Framework script 160
Step 4 – review the ZAP report 162

Summary 162
Questions 163
Further reading 164

Chapter 13: Automated Infrastructure Security 165
Scan For known JavaScript vulnerabilities 165

Step 1 – install RetireJS 166
Step 2 – scan with RetireJS 166
Step 3 – review the retireJS results 166

WebGoat with OWASP dependency check 167
Step 1 – prepare WebGoat environment 167
Step 2 – dependency check scan 167
Step 3 – review the OWASP dependency-check report 168

Secure communication scan with SSLScan 168
Step 1 – SSLScan setup 168
Step 2 – SSLScan scan 169
Step 3 – review the SSLScan results 169
Step 4 – fix the HTTPS secure configurations 170

NMAP security scan with BDD framework 170
NMAP For web security testing 170
NMAP BDD testing with Gauntlt 171
NMAP BDD with Robot Framework 174

Step 1 – define the Robot Framework steps 174
Step 2 – execute and review the results 175

Summary 176
Questions 177
Further reading 178

Chapter 14: Managing and Presenting Test Results 179
Managing and presenting test results 179
Approach 1 – integrate the tools with RapidScan 182

Step 1 – get the RapidScan Python script 182

Table of Contents

[vii]

Step 2 – review scanning results 184
Approach 2 – generate a professional pentest report with Serpico 185

Step 1 – installation of Serpico 186
Step 2 – create a Report based on Templates 186
Step 3 – Add Finding from Templates 188
Step 4 – generate a report 188

Approach 3 – security findings management DefectDojo 189
Step 1 – setup the OWASP DefectDojo 189
Step 2 – run security tools to output XMLs 190
Step 3 – import ZAP findings 191

Summary 192
Questions 193
Further reading 194

Chapter 15: Summary of Automation Security Testing Tips 195
Automation testing framework 195

What are the automation frameworks for UI functional testing? 196
BDD (behavior-driven development) testing framework? 196
What are common automation frameworks that apply to security testing? 197

Secure code review 197
What are common secure code review patterns and risky APIs? 197
Suggestions with Grep-like search tool for source code or configurations
search? 198

API security testing 199
What are API security testing approaches? 199
What are the suggested resources for FuzzDB security payloads? 201
What testing tools are suggested for web fuzz testing? 201

Web security testing 203
How can JMeter be used for the web security testing? 203
Examples of OWASP ZAP by ZAP-CLI usages 203
Examples of OWASP ZAP automation by RESTful API 204

Android security testing 204
Suggested Android security testing tools and approach 204
Common Android security risky APIs 205

Infrastructure security 206
What's the scope of infrastructure security testing? 206
Typical use of Nmap for security testing 207

BDD security testing by Robot Framework 208
How to do web security scan with ZAP and Robot Framework? 208
How to achieve DDT testing in Robot Framework? 209
How to do network scan with Nmap and Robot Framework? 210
How to do an SQLmap scan with Robot Framework? 210
How to do BDD security testing with Nmap and Gauntlt? 211

Summary 211

Table of Contents

[viii]

Appendix A: List of Scripts and Tools 213
List of sample scripts 213
List of installed tools in virtual image 213

Appendix B: Solutions 216
Chapter 1: The Scope and Challenges of Security Automation 216
Chapter 2: Integrating Security and Automation 216
Chapter 3: Secure Code Inspection 216
Chapter 4: Sensitive Information and Privacy Testing 216
Chapter 5: Security API and Fuzz Testing 217
Chapter 6: Web Application Security Testing 217
Chapter 7: Android Security Testing 217
Chapter 8: Infrastructure Security 218
Chapter 9: BDD Acceptance Security Testing 218
Chapter 10: Project Background and Automation Approach 218
Chapter 11: Automated Testing for Web Applications 219
Chapter 12: Automated Fuzz API Security Testing 219
Chapter 13: Automated Infrastructure Security 219
Chapter 14: Managing and Presenting Test Results 220

Other Books You May Enjoy 221

Index 224

Preface
This book is aimed at software developers, architects, testers, and QA engineers looking to
build automated security testing frameworks alongside their existing Continuous
Integration (CI) frameworks to achieve security quality in the software development and
testing cycle.

It will teach you how to adopt security automation techniques to continuously improve
your entire software development and security testing cycle. This book aims to combine
security and automation to protect web and cloud services. This practical guide will teach
you how to use open source tools and techniques to integrate security testing tools directly
into your CI/Continuous Delivery (CD) framework. It will also show you how to
implement security inspection at every layer, such as secure code inspection, fuzz testing,
REST API testing, privacy testing, infrastructure security testing, and fuzz testing. With the
help of practical examples, it will also teach you how to implement a combination of
automation and security in DevOps. Furthermore, it will cover topics on the integration of
security testing results so that you can gain an overview of the overall security status of
your projects.

This book best fits those in the following roles and scenarios:

Developers who are not familiar with secure coding rules, but need effective and
automated secure code inspection with existing CI/CD integration.
Development and QA teams who would like to perform security automation at
different levels, such as the API, fuzz, functional, and infrastructure levels, but
may have a gap to bridge in order to achieve automated security testing.
Security team members who are finding that the testing output of their various
security testing tools is not easily understood by non-security testing teams. In
such cases, a universally recognizable security testing report is needed so that
everyone can understand the overall security status of a project. (For these cases,
behavior-driven and acceptance testing frameworks will be introduced.)

By the end of this book, you will be well versed in implementing automation security at all
stages of your software development cycle, and will also have learned how to build your
own in-house security automation platform for your cloud releases.

Preface

[2]

Who this book is for
 This book is for anyone in any of the following positions:

Software or operations managers who may need a security automation
framework to apply to existing engineering practices
Software developers who are looking for effective security tools, for automated
code inspection for C/C++, Java, Python, and JavaScript
Software testers who need security testing cases to be automated with both
white-box/black-box tools such as API, fuzz, web, infrastructure and privacy
security testing, with open source tools and script templates
Software operations teams who need to perform automated software security
scanning and an infrastructure configuration inspection before deployment to
production.

What this book covers
Chapter 1, The Scope and Challenges of Security Automation, discusses the challenges of
security automation and gives an overview of security automation tools and frameworks.
The required skills, security tools, and automation frameworks will be introduced. This will
help you to gain the foundational knowledge required for you to build security automation
measures in the coming chapters. Finally, we will also set up some sample vulnerable
source code, as well as an application, for practicing security scanning in the
coming chapters. This will include an illustration of dynamic security testing techniques
(OWASP ZAP, Nmap, and Fuzz) and static code inspection with automation frameworks
(such as Selenium, Robot Framework, JMeter, and behavior-driven development (BDD)),
as well as a detailed look at mobile security testing framework integration in several hands-
on case studies.

Chapter 2, Integrating Security and Automation, introduces how security and automation can
be integrated. Since both security testing and automation testing require domain expertise
and very particular tools, this chapter will introduce how to bake automation into existing
security testing frameworks to improve testing coverage and efficiency. We will also
discuss how security testing practices and tools can be integrated into your in-house
automation testing framework.

Preface

[3]

Chapter 3, Secure Code Inspection, discusses white-box testing techniques for the secure
reviewing of code. For an in-house software development team, it's a challenge to review
all the source code for every software release. This is not only due to the pressure of release
cycles, but also due to the impracticality of requiring every developer to be familiar with all
the secure coding best practices for all different programming languages, such as Java,
C/C++, and Python. Therefore, we will demonstrate how to build your own automated
secure coding platform with open source solutions for every release.

Chapter 4, Sensitive information and Privacy Testing, discusses how to use automated
scanning to prevent the disclosure of sensitive information in every software release. There
are three typical scenarios where this kind of thing can be applied. The first is where
sensitive information is included in the source code, such as an include key, a hardcoded
password, a hidden hotkey, an email address, or an IP or URL. Secondly, sensitive
information can also be stored in cookies, since cookies can collect the browsing behaviors
of users. Finally, large projects handling massive amounts of data require effective ways of
identifying and protecting any Personal Identifiable Information (PII) stored in the
database.

Chapter 5, Security API and Fuzz Testing, explores API and fuzz testing. As cloud software
releases can be on an API-level basis, there can be hundreds of APIs released at a time. The
software development team will definitely need an effective way to automate security
testing for every API release. In this chapter, we use an online pet store case study to see
how you can build your automated API security testing framework with various tools. API
security testing focuses more on data injection and abnormal payloads. Therefore, fuzz
testing will also be introduced as random data input and security injection for automated
API security testing.

Chapter 6, Web Application Security Testing, is where we will use an online shopping site,
Hackazon, to demonstrate how to achieve automated web security testing. The key
challenge in automating web application testing is walking through the UI business flow
while doing security inspection. Doing so requires not only security scanning capabilities
but also web UI automation. We will be using security tools such as ZAP and web UI
automation frameworks such as Selenium and Robot Framework. Using these tools can
effectively improve your security testing coverage. We will share some tips and tools for
making web automation easier.

Preface

[4]

Chapter 7, Android Security Testing, focuses on Android. It's a common practice to do a
security check before an Android application release. However, doing so when releases can
be so frequent and so many can be a real challenge. The automated security testing process
for an Android mobile application requires submissions for APK binaries, reversing the
APK for secure source code inspection, manifest configuration checks, and generating
testing results – we'll be looking at all of this in this chapter. Besides that, we will also
introduce mobile security-related practices, such as OWASP mobile security testing and
Android secure coding practices.

Chapter 8, Infrastructure Security, will focus on infrastructure and platform security. For a
Platform-as-a-Service (PaaS) or even for Software-as-a-Service (SaaS) providers, it's vital
to ensure that the infrastructure is secure. Therefore, the security operations team will need
to do regular scanning of the infrastructure to ensure security configurations for security
compliance. Infrastructure security includes secure configuration with web services,
security of databases and OSes, secure communication protocols such as TLS v1.2, and the
use of secure versions of third-party components and dependencies. We will illustrate how
to set up your own automated scanning framework to run these regular secure
configuration inspections.

Chapter 9, BDD Acceptance Security Testing, will discuss the challenges of cross-team
communication within large software development teams. For instance, the team who
executed the security testing may understand the tests carried out and their results, but
other non-technical teams such as product management and marketing may not gain the
same understanding just from reading the testing reports. Therefore, we will introduce
BDD acceptance testing with automated security testing. We will use security testing tools
on top of BDD security automation testing frameworks and hook into the testing process.

Chapter 10, Project Background and Automation Approach, will introduce a project and the
security objectives necessary for proceeding with automated security in the ensuing
chapters. We will also explore what considerations need to be made when it comes to
automation framework selection. For instance, some tools are good for specific security
testing but may have shortcomings when it comes to automation framework integration.
Finally, we will set up all the necessary environmental conditions for the coming security
automation practices.

Chapter 11, Automated Testing for a Web Application, will use three case studies to teach you
about different security automation techniques against the vulnerable NodeGoat site. The
first case study looks at automating the OWASP ZAP by using the ZAP-CLI, which will
help to identify initial security issues in a website before authentication. In the second case
study, we will be using Selenium to identify security issues concerning user sign-in. In the
final case, we will use JMeter for sign-in with external CSV data to detect potential
command injection security issues.

Preface

[5]

Chapter 12, Automated Fuzz API Security Testing, looks at API Fuzz testing, which can be
one of the most effective and efficient means of security and automation testing. API fuzz
testing involves generating fuzz data as data input, sending HTTP requests with fuzz data,
and analyzing the HTTP response for security issues. We will demonstrate several API fuzz
automation tools (including Wfuzz and 0d1n), fuzz techniques, and integration with
automation testing frameworks (such as Selenium and Robot Framework data-driven
testing).

Chapter 13, Automated Infrastructure Security, will demonstrate how to automate
infrastructure security testing against the NodeGoat website. The infrastructure security
testing will include testing for known vulnerable JavaScript libraries, insecure SSL
configurations, and advanced Nmap NSE script testing techniques for web security. At the
end, we will also illustrate how to apply BDD automation frameworks to SSLScan and
Nmap.

Chapter 14, Managing and Presenting Testing Results, covers how we consolidate and
present security testing findings as a whole to stakeholders. Executing and managing
several security testing projects at a time can be a challenge. The security team, the project
team, and management would like to know the security status of each project. This requires
the consolidation of the results from some previously mentioned security testing tools into
one portal or summary document. We will need to not only manage all the security testing
tools execution results, but also present them in a security dashboard that clearly displays
the overall security posture of a project. We will introduce some approaches and tools to
achieve this goal.

Chapter 15, Summary of Automation Security Testing Tips, summarizes the key security
automation techniques and tips from all the previous chapters. This chapter can be used as
a quick reference guide or as an overall review of security automation.

Appendix A, List of Scripts and Tools, summarizes the tools and commands used throughout
all the chapters.

Appendix B, Solutions, includes all the answers, to the questions provided within the
chapters.

To get the most out of this book
To get the most out of this book, you will need the sample code from the Packt Publishing
GitHub repository. You will also need an Ubuntu virtual image, and you'll need to
download the security testing tools and frameworks mentioned in the book.

Preface

[6]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Practical- ​Security- ​Automation- ​and- ​Testing. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789802023_ ​ColorImages. ​pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789802023_ColorImages.pdf

Preface

[7]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

saxReader.setFeature("http://apache.org/xml/features/disallow-doctype-
decl", true);
saxReader.setFeature("http://xml.org/sax/features/external-general-entities
", false);
saxReader.setFeature("http://xml.org/sax/features/external-parameter-entiti
es", false);

Any command-line input or output is written as follows:

$ ag –w md5 d:\<targetPath>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[8]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
The Scope and Challenges of

Security Automation
This first chapter will discuss the challenges of security automation and take an overview of
security automation tools and frameworks. The required skills, security tools, and
automation frameworks will also be introduced. This will help you to gain the foundational
knowledge required to build security automation measures in the coming chapters. Finally,
we will also set up some sample vulnerable source code, as well as an application, for
practicing security scanning in the coming chapters. This will include an illustration of
dynamic security testing techniques (OWASP ZAP, NMAP, and fuzz) and static code
inspection with automation frameworks (such as Selenium, Robot Framework, JMeter, and
behavior-driven development (BDD)), as well as a look at mobile security testing
framework integration in several hands-on case studies. In the later chapters, we will be
using a project to apply all the security testing tools and automation frameworks discussed
in this book.

We will explore the following topics in this chapter:

The purposes and myths of security automation
The required skills and suggestions for security automation
General environment setup for coming labs

The Scope and Challenges of Security Automation Chapter 1

[10]

The purposes and myths of security
automation
The purpose of security automation is to discover all potential security defects before any
software release by applying both open source security tools and automation testing
frameworks. However, security automation doesn't mean to completely replace manual
security testing. Security automation aims to reduce the amount of repeated manual testing
and increase testing coverage in an efficient manner. Potential security flaws can exist
anywhere, from the source code and third-party components to an insecure configuration
or vulnerable infrastructure. As the release cycles of cloud services and software
development are getting shorter, the development team needs not only functional testing
but also automated security testing. If your team is planning on implementing security
automation, it's suggested that you begin with the following resources:

Resource on common
security issues How it could help

OWASP (Open Web
Application Security
Project)
Top 10 Application
Security Risks

This lists general web application security risks, such as
injection, authentication, XML external entity (XXE) attacks, and
misconfiguration. The OWASP also suggests related testing
tools and prevention controls for each security issue.

CWE Top 25 Software
Errors

This lists the most common software coding errors, such as SQL
injection, Cross-site request forgery (CSRF), and buffer
overflow. It can be a good checklist for a code-security review.

Security testing can be a tedious and repetitive process. The functional testing may only
need to ensure the functionality, but the security testing needs to cover various kinds of the
testing scenarios, such as authentication, authorization, XXE, injection, deserialization, and
more (see the OWASP resource mentioned in the previous table). Therefore, a certain level
of automation would be helpful, considering security testing's repetitive nature, scope, and
importance. Be reminded that our goal is not to automate 100% of security testing cases, but
to focus on those testing cases that are manually executed and repeated, and so can be done
more efficiently by automation. By automating those repeated security testing cases,
penetration testers can take time to exploit in-depth weaknesses and logic flaws or review
security requirements (all of which can't be done by automation).

When it comes to security automation, there are some challenges and some myths. A lack of
proper security or automation knowledge leads to some misunderstanding of security
automation. Here are some general suggestions and clarification. We will explore more
through the different hands-on case studies in the coming chapters.

The Scope and Challenges of Security Automation Chapter 1

[11]

Myth 1 – doesn't security testing require highly
experienced pentesters?
Our first myth is that security testing requires highly experienced penetration testers and
automation testing can't find serious issues.

If we can guide the automation properly, serious security issues can be identified. On the
other hand, automated security testing can also result in false-positive issues that need
further manual verification. However, there are certain kinds of security testing scenarios
that would be ideal for automation; some of those are listed here:

Detecting the use of banned functions, risky APIs, or weak encryption
algorithms. Automated systems can do a good job of scanning code for security
issues if we properly define the patterns we are looking for.
Weak RESTful API authentication and authorization behaviors, such as
bypassing authorization vulnerabilities.
Data input validation may require massive amounts of random testing data
input. This kinds of data input testing technique is also called fuzz testing which
the prepared data and payload are dynamically generated for the test subject in
an attempt to make it crash.
Repeated UI walk-through, sign-in, sign-out, and form fill are good examples of
where web UI automation is required.
Insecure misconfiguration of software components, databases, or web services.
Known third-party vulnerabilities.

Myth 2 – isn't it time-consuming to build an
automation framework?
Our second myth is that it takes too much time to build an automation framework and that
daily development changes may break the automation.

For a development team with mature security testing practices, the adoption of an
automation framework such as BDD, data-driven testing (DDT), or Selenium can help with
seamless security integration and improve security testing coverage. Adding security
testing cases based on these existing automation frameworks won't necessarily take lots of
effort and time, so long as the right tools and integration approaches are selected.

The Scope and Challenges of Security Automation Chapter 1

[12]

For security automation relating to UI flow, daily development changes may or may not
break certain UI automation testing cases. It depends on how the UI components are
located by the automation testing program. As a general rule of thumb, so long as the UI
components are located by the automation testing framework, UI layout changes won't
impact the automation.

Myth 3 – there are no automation frameworks that
are really feasible for security testing
Our third myth is that there is no single automation framework that can cover the variety of
security testing cases.

Now, due to the variety of security testing scenarios, it's true that there is no one single
automation framework that can cover all security testing cases. Depending on the security
testing scenario, however, we can plan related automation approaches with proper
integration of security testing tools and an automation framework. The following table
shows examples of security testing scenarios with different automation approaches:

Automation
approaches

Mapping to security testing
scenarios Automation tools/frameworks

White box • Secure code inspection
• Secure configuration inspection

• Secure code analysis with Visual Code
Grepper (VCG)

API testing
• Web/RESTful API security testing
• Data Input testing (also called
parameterized testing or data-driven
testing)

• Robot Framework's requests library
• JMeter
• FuzzDB
• OWASP ZAP

The Scope and Challenges of Security Automation Chapter 1

[13]

Web UI automation

• Logging in with different users or wrong
accounts
• Logging users out for session
management testing
• Creating a new user account
• Brute-forcing a user account login

• Robot Framework
• Selenium
• OWASP ZAP

Automating web UI operations doesn't necessarily take lots of implementation effort or
require you to be an expert in Selenium scripts. The Selenium IDE extension will help you
to generate automated scripts when you operate UI flows:

Kantu Selenium IDE: This generates HTML-format scripts. It supports
parameterized testing by CSV, takes screenshots of each step for visual review,
and can be executed from the command line.
Katalon Recorder (Selenium IDE for Chrome/Firefox): The key advantage of
Katalon is being able to generate various kinds of automation scripts, including
Java, Python, Robot Framework, C#, and Ruby scripts. This makes Katalon very
flexible for further integration with other tools. It can also support screenshots
and DDT by importing CSV files.

The required skills and suggestions for
security automation
Security team developers and automation testing developers require different skill sets.
Naturally, the core skills of automation testing developers and pentesters are different.
However, achieving security testing automation won't be too difficult for anyone, so long
as the appropriate tools and frameworks are adopted to reduce the learning curve and
ensure consistent delivery quality. For example, the adoption of web UI automation will
help security testing to explore the blind side of the user flows. However, web UI
automation and the adoption of the Selenium automation framework can be a big challenge
for the security testing team. This issue can be solved with the help of proper automation
testing tools, which will be introduced in the coming chapters.

The Scope and Challenges of Security Automation Chapter 1

[14]

The skills that penetration testers and automation testing developers have in common are
as follows:

Familiar with a programming language, such as Python, PHP, Java, or C/C++
Familiar with Windows, Linux and TCP/IP (Transmission Control
Protocol/Internet Protocol), and HTTP networking

Those were some similar skills; the following table lists some key differences:

Penetration testers Automation testing developers

• Ability to identify software vulnerabilities by OWASP
Top 10 security issues and practices
• Familiar with Secure Software Development Life
cycle (SSLDC) and security frameworks such as Spring
Security and Shiro
• Familiar with the use of OWASP ZAP, SQLmap,
Nmap, Wireshark, and SSLtest

• Familiar with unit testing, APIs, and web UI automation
testing frameworks such as Robot Framework, Selenium,
WebDriver, and JMeter
• Familiar with the defect cycle, issue tracking, and
continuous integration/continuous delivery (CI/CD)
frameworks
• Familiar with BDD frameworks
• Familiar with DDT frameworks

General environment setup for coming labs
For coming hands-on practices, it's suggested that you prepare the following tools for the
system environment. Please also refer to the official website for the installation or quick
start guide of every tool:

Git: https:/ ​/​git- ​scm. ​com/ ​downloads

Python 2.7 (Python 3.4 may also work): https:/ ​/​www. ​python. ​org/ ​downloads/ ​

PyCharm: https:/ ​/​www. ​jetbrains. ​com/ ​pycharm/ ​download/ ​

Vulnerable C/C++ and Java source code: https:/ ​/​samate. ​nist. ​gov/ ​SRD/
testsuite. ​php#standalone

Insecure Bank APK: https:/ ​/​github. ​com/​dineshshetty/ ​Android-
InsecureBankv2/ ​tree/ ​master/ ​InsecureBankv2/ ​app

GoatDroid APK: https:/ ​/ ​github. ​com/ ​linkedin/ ​qark/ ​blob/ ​master/ ​qark/
sampleApps/ ​goatdroid/ ​goatdroid. ​apk

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://samate.nist.gov/SRD/testsuite.php#standalone
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/dineshshetty/Android-InsecureBankv2/blob/master/InsecureBankv2.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk
https://github.com/linkedin/qark/blob/master/qark/sampleApps/goatdroid/goatdroid.apk

The Scope and Challenges of Security Automation Chapter 1

[15]

Summary
In this chapter, we discussed the objective of security automation: to reduce repeated
manual testing and increase testing coverage in an efficient manner. The OWASP Top 10
list for web application security issues and the CWE Top 25 list for secure coding issues
were suggested as resources.

We also discussed some misunderstandings of security automation, such as the need for
highly skilled penetration testers, the time it takes to build automation frameworks, and the
perceived limitations of automation testing's effectiveness. Security automation testing can
even identify serious security defects, and won't require lots of implementation efforts, so
long as the right security tools and automation frameworks are integrated properly.

Last but not least, we also discussed the skills of security developers and automation
testing developers. The common ground required between these two roles includes only
knowledge of networking, HTTP/HTTPS protocols, an operating system, and at least one
programming language. The automation test developer may focus more on automation
testing frameworks such as BDD, DDT, Selenium, unit testing, and so on. On the other
hand, the security tester may focus on using security tools and techniques to identify
security issues. In the coming chapters, we will demonstrate how security and automation
can integrate properly to identify security issues in a more effective manner.

Questions
Which of the following provides a list of the most common software coding1.
errors and can be a good checklist for the team to do code-security reviews?

OWASP Top 10 Application Security risks1.
 CWE Top 25 Software Errors2.
SDL3.

 Which one of the following statements is true? 2.
Security automation testing can't identify serious security issues1.
Elements of the UI flow, such as sign-in and sign-out, can't be done by2.
automation security testing
Web UI automation can be done by using Selenium IDE (Kantu or3.
Katalon) to reduce implementation effort

The Scope and Challenges of Security Automation Chapter 1

[16]

Which of the following automation frameworks does not do web UI automation?3.
Robot Framework1.
Selenium2.
 VCG3.

Which of the following is not a required skill for an automation testing4.
developer?

Familiar with OWASP Top 101.
Familiar with Python and Java2.
Understanding of Windows and Linux3.

Which one of the following is not an automation testing framework?5.
Robot Framework1.
Selenium2.
SQLMap3.

Further reading
CWE Top 25: https:/ ​/​cwe. ​mitre. ​org/ ​data/ ​index. ​html

OWASP Top 10: https:/ ​/ ​www. ​owasp. ​org/ ​index. ​php/ ​Category:OWASP_ ​Top_ ​Ten_
Project

Robot Framework: http:/ ​/ ​robotframework. ​org/ ​

Kantu Selenium IDE user manual: https:/ ​/​a9t9. ​com/ ​kantu/ ​docs

Katalon Recorder: https:/ ​/​www. ​katalong. ​com/​resources- ​center/ ​blog/
katalong- ​automation- ​recorder/ ​

https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://a9t9.com/kantu/docs
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/
https://www.katalong.com/resources-center/blog/katalong-automation-recorder/

2
Integrating Security and

Automation
We looked at the scope and challenges of security automation in Chapter 1, The Scope and
Challenges of Security Automation. In this chapter, we will introduce how security and
automation can be integrated. Since both security testing and automation testing require
domain expertise and very particular tools, this chapter will introduce how to bake
automation into existing security testing frameworks to improve testing coverage and
efficiency. We will also discuss how security testing practices and tools can be integrated
into your in-house automation testing framework.

The following topics will briefly be discussed in this chapter:

The domains of automation testing and security testing
Automation frameworks and techniques
Automating existing security testing
Security testing with an existing automation framework

The domains of automation testing and
security testing
The domain of automation includes white-box code inspection, unit testing, acceptance
testing, integration testing, API testing, and end-to-end UI testing. In terms of
implementation effort, unit testing and white-box inspection usually take the least effort,
while UI testing often takes the most effort, particularly in order to understand the UI
business flow.

Integrating Security and Automation Chapter 2

[18]

Therefore, most automated testing cases are done with unit testing or API-level testing.
Automated UI testing may only cover the scenarios from a user perspective while the API
testing may cover more business logic or exception handling use cases. The following
diagram illustrates the different levels of automation testing and how much effort they
take.

Levels of Automation Testing

On the other hand, the domain of security testing can be much broader. The following table
lists the practices that come under the general umbrella of security testing. In this book, we
will have some case studies to cover some of the topics in bold:

• Information gathering
• Vulnerability analysis
• Wireless attacks
• Web application exploitation tools
• Forensics tools
• Stress testing
• Sniffing and spoofing
• Password attacks
• Maintaining access

• Reverse engineering
• Reporting tools
• Hardware hacking
• Authentication
• Authorization
• Configuration management
• Cryptography
• Data validation

• Denial of service
• Encryption
• Error handling
• Information disclosure
• Race conditions
• Session management
• Secure transmission

Automation frameworks and techniques
In this section, we will introduce some common automation testing frameworks, covering
API, functional, UI, and mobile testing. Understanding the key characteristics of each
automation framework will help the security team know how to integrate security testing
and figure out what can be improved by automation.

Integrating Security and Automation Chapter 2

[19]

UI functional testing for web, mobile, and
windows
UI functional testing looks at the end user's perspective. It walks through the UI flow and
verifies the response from the GUI. There are three testing target platforms: web services,
mobile applications, and Windows applications. The following table lists some common
open source/free automation frameworks:

Automation
framework Macaca AutoIT Selenium Appium Sikuli

Target
Mobile (iOS and

Android)
Web UI

Windows
applications Web UI Mobile (iOS

and Android)
Image-based

Visual Testing

Programming
language

Java, Python,
and Node.js

BASIC-like
script

Java, Python,
C#, and Ruby Java and Python

Visual images
and BASIC-
like script

Record and replay UI Recorder AutoIT
Recorder Selenium IDE Desktop

Inspector Yes

HTTP API testing
UI testing may be prone to errors due to the instability of GUI responses. Another approach
to functional testing that avoids the GUI is API-level testing. Since most web services
provide RESTful APIs, API testing can be one of the most effective and efficient ways of
automation testing.

Here are some common approaches to API testing techniques:

API testing tools Java
Rest-Assured

Python
Requests JMeter Fiddler Postman

Programming
language Java Python No JavaScript-like

Syntax No

Record and replay No No Yes Yes Yes
Verification
(Assertation)

Java TestNG or
JUnit PyUnit Yes Yes Yes

Proxy mode No No Yes Yes Yes

Integrating Security and Automation Chapter 2

[20]

For HTTP testing, the support of proxy mode gives the following benefit:

Monitor HTTP request/response history
Record and replay or modify specific HTTP requests
Mock certain HTTP responses to reduce web server dependencies
Simulate HTTP-based API testing as a mock web service.

HTTP mock server
The mock server works as a proxy between the testing client and target web services. For
HTTP service testing, the mock server proxy can help test API interfaces to reduce the
dependency or the readiness of the whole backend web services. It allows us to prepare
client-side automation without the need to have the whole backend web services. When it
comes to security testing, proxy mode helps to monitor HTTP traffic, send security
payloads with HTTP requests, and analyze HTTP responses for potential security issues.
Most web security scanners can run in proxy mode, including OWASP ZAP and Arachni.

Here are some of common free/open source mock server frameworks:

HTTP mock
server Key characteristics

Moco

If you just want to have a simple HTTP mock server with a few defined HTTP
responses, Moco is highly recommended due to the ease of deployment and
use. Moco is a standalone JAR and the HTTP response behaviors can be
defined by one JSON configuration file.
https:/ ​/ ​github. ​com/ ​dreamhead/ ​moco

mitmproxy

For an open source HTTPS proxy solution, mitmproxy is also highly
recommended. The web interface makes it easy to use, just like Chrome
Developer Tools. mitmproxy is a free and open source interactive HTTPS
proxy. It provides a command line, web interface, and Python API to
intercept, inspect, modify, and replay web traffic for both HTTP and HTTPS.
https:/ ​/ ​mitmproxy. ​org/ ​#mitmweb

GoReplay
GoReplay can capture and replay web traffic like TCPDump. It simply
captures web traffic based on a given communication port.
https:/ ​/ ​goreplay. ​org/ ​

Most of the web security testing tools are running as a web proxy. It's also
called as MITM (Man in The Middle). The Web Proxy will monitor the
web traffic, and analyze the every responses to identify potential web
security issues.

https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://github.com/dreamhead/moco
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://mitmproxy.org/#mitmweb
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/
https://goreplay.org/

Integrating Security and Automation Chapter 2

[21]

White-box search with GREP-like tools
There may be scenarios where we need to search specific patterns or keywords to identify
potential issues. The GREP tool in Linux is a common search tool for source code or plain
text configurations. For code-security reviews, here are some security scanning tools that
provide GREP-like search functionality:

Search tools Key characteristics

Code Review Audit Script
Scanner

This is a one-shell script that includes all common code
security issue patterns. No other dependency is required
to run the script.
https:/ ​/​github. ​com/​floyd- ​fuh/​crass/ ​blob/ ​master/
grep- ​it. ​sh

Grep Rough Audit
This is a shell script that will read signatures for potential
security issues in source code
https:/ ​/​github. ​com/​wireghoul/ ​graudit/ ​

GrepBugs
This scans security issues based on defined regular
expression patterns
https:/ ​/​grepbugs. ​com/ ​browse

VisualCodeGrepper
This is a Windows scanner tool with defined
regular expression security patterns
https:/ ​/​github. ​com/​nccgroup/ ​VCG

Flawfinder This is a simple C/C++ security source code scanner
http:/ ​/​www. ​dwheeler. ​com/​flawfinder/ ​

ripgrep recursively searches This is a powerful regular expression searcher
https:/ ​/​github. ​com/​BurntSushi/ ​ripgrep

Behavior-driven development testing frameworks
Behavior-driven development (BDD) testing frameworks define the testing script in the
format of "Given...When...Then." Here is a typical example.

Given NMAP is installed
When I launch an NMAP network scan "nmap -F host"
Then the output should match "25 tcp open"

https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep

Integrating Security and Automation Chapter 2

[22]

Here are some common BDD frameworks:

BDD framework Usage and scenarios

Robot Framework

This is a common keyword-driven testing acceptance automation
framework. Robot Framework is programming language
independent, though Robot Framework itself was built by Python.
http:/ ​/​robotframework. ​org

Behave This is a Python-based BDD framework
https:/ ​/ ​github. ​com/​behave/ ​behave

Jgiven This is a Java-based BDD framework
http:/ ​/​jgiven. ​org/ ​

Gauntlt It's a security testing BDD Framework.
http:/ ​/​gauntlt. ​org/​

In the comping chapters, we will demostrate the uses of Robot Framework and Gauntlt to
achieve the security automation testing.

Testing data generators
For some testing scenarios, we may need to update the SQL database with testing data
(such as names, phone numbers, IPs, email addresses, city names, and filenames), or to
allow the web service to respond with basic sample data. Here are some tools that can
generate testing data based on the user-defined data type or format such as (date, address,
ID, numeric data or strings):

Tools Usage and scenarios

Mockaroo
This provides an online data generator service that provides test data
in CSV, JSON, and SQL formats, based on your defined data type
https:/ ​/​mockaroo. ​com/ ​

JSON Schema
Faker

This generates JSON data based on a defined JSON schema
http:/ ​/​json- ​schema- ​faker. ​js.​org/ ​

JS Faker

This provides a command-line interface (CLI) to generate the data
type based on your options, such as system, name, address, and
phone. It can also output based on the specified locale language.
https:/ ​/​github. ​com/ ​lestoni/ ​faker- ​cli

http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
https://mockaroo.com/%E2%80%8B
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
http://json-schema-faker.js.org/
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli

Integrating Security and Automation Chapter 2

[23]

Automating existing security testing
If the team already have certain security testing measures in place and would like to apply
an automation testing framework to improve efficiency or reduce manual execution efforts,
there are some recommended automation frameworks the team may consider. The
following table details the automation frameworks that may help in various kinds of
security testing scenarios:

Types of automation
frameworks The scenarios where the automation framework can help

Web UI automation
(Selenium or Robot
Framework)

• User registration flow
• Authentication/authorization flow
• Shopping cart and order payment flow
• Forget password flow
• PII (Personally identifiable information) -sensitive operations, such as profile
update

API testing (JMeter) • RESTful API testing with injection payloads

BDD testing
Robot Framework
or gauntlt

• When a BDD framework is applied to security testing, the purpose is to
enhance cross-team communication and enable a non-security team to understand
how security is tested

Fuzz Testing • Security payload testing with various injection and buffer overflow testing

Data-driven testing (DDT)
• DDT testing is normally done with fuzz testing
• DDT is normally included in the unit testing framework of the programming
language

Security testing with an existing automation
framework
If the team has done some automation testing, security testing can be built on top of it. For
security testing to be integrated with automation frameworks, we need to consider the
input data for the tool, the support of the API or CLI to trigger the execution, and the
preferred testing report format, such as JSON, XML, or CSV. In addition, in order to
consolidate all the testing reports generated by various security testing tools, we will
introduce OWASP DefectDojo to import all the security findings and the security
dashboard presentation. Therefore, the output format of the security testing tools is also
part of the security testing tool selection criteria.

Integrating Security and Automation Chapter 2

[24]

The following table lists some recommended security testing tools that provide flexible
interfaces for automation framework integration, and the output formats can be imported
into OWASP DefectDojo:

Type of security
testing Recommended tools for automation and rationale

Web security

Arachni and OWASP ZAP: Arachni provides both a CLI and a
Ruby library that can help to achieve automation integration.
OWASP ZAP provides a CLI, REST API, and other programming
libraries for further integration.

Known vulnerable
components

OWASP Dependency Check: This mainly scans for Java and .NET
known vulnerable components
OpenVAS: This scans for all known CVEs (Common Vulnerabilities
and Exposures) for all system components
RetireJS: This scans for vulnerable JavaScript libraries

Fuzz testing

Radamsa: This can dynamically generate fuzz data based on a given
sample
SecLists and FuzzDB: These are fuzz data sources that define
common payloads for security testing

Networking
Nmap: The tool can be used to network communication ports, to
identify the OS and services, and also to do vulnerability scan the
whole infrastructure.

SSL (Secure Sockets
Layer)

SSLLabs-Scan and SSLyze: These are common security scanners
for misconfiguration of SSL/TLS (Transport Layer Security)

Secure code review

Visual Code Grepper (VCG): It's a Windows based secure code
scan tool for general programming languages.
Grep Rough Audit: It searches secure code issues based on regular
expression patterns.
Bandit: It's Python secure code scan tool.

Secure configuration OpenSCAP Workbench provides GUI and security profiles for
scanning common Linux OS configurations

Integrating Security and Automation Chapter 2

[25]

Summary
This chapter introduces the integration of security and automation. The domain of
automation testing covers white-box code inspection, unit testing, API testing, integration
testing, and end-to-end UI integration testing. The automation technique being used may
depend on the effort required and the automation rate. The security testing domain was
also explored in this chapter. We will primarily be focused on common security issues for
web applications and mobile applications, such as password attacks, data validation,
information disclosure, session management, and secure transmission.

We also illustrated some security testing scenarios where automation frameworks can help.
For example, the Selenium Web UI framework is used to walk through the UI flow for
security tools to inspect security issues. JMeter can be used with security payloads to do
RESTful API security testing. Robot Framework can integrate with ZAP to introduce BDD
testing into the security testing cycle.

We also recommended some common open source security tools that provide either a CLI
or a RESTful API interface for automation framework integration. These dealt with web
security (Arachni and OWASP ZAP), known vulnerable components (RetireJS and
OpenVAS), fuzz testing (SecLists and FuzzDB), networking (Nmap), SSL (SSLyze), secure
code review (VCG), and OpenSCAP for OS secure configuration checks.

In the coming chapter, we will introduce white-box secure code review techniques and
tools for common programming languages.

Questions
Which one of these is not part of security testing domain?1.

BDD1.
Information gathering2.
Data validation3.
Cryptography4.

Which one of the following is not used for UI functional testing?2.
AutoIT1.
Selenium2.
Appium3.
ZAP4.

Integrating Security and Automation Chapter 2

[26]

Which of the following is used for HTTP API testing?3.
JMeter1.
Fiddler2.
Python requests3.
All of the above4.

Which of these is not the purpose of using a mock server?4.
Reducing the dependencies of the backend web services1.
Defining standard HTTP responses2.
Doing UI functional testing3.
Responding to the HTTP requests4.

Which of these is used for known vulnerabilities scanning?5.
OpenVAS1.
OWASP Dependency Check2.
RetireJS3.
All of above4.

Further reading
Arachni Scanner: http:/ ​/ ​www. ​arachni- ​scanner. ​com/ ​

OWASP ZAP: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​OWASP_ ​Zed_ ​Attack_ ​Proxy_
Project

OWASP Dependency Check: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​OWASP_
Dependency_ ​Check

OpenVAS: http:/ ​/ ​www. ​openvas. ​org/ ​

RetireJS: https:/ ​/​retirejs. ​github. ​io/​retire. ​js/​

SecLists: https:/ ​/​github. ​com/ ​danielmiessler/ ​SecLists

Nmap: https:/ ​/ ​nmap. ​org/ ​

ssllabs-scan: https:/ ​/​github. ​com/ ​ssllabs/ ​ssllabs- ​scan

VCG: https:/ ​/ ​github. ​com/ ​nccgroup/ ​VCG/ ​tree/ ​master/ ​VCG- ​Setup/ ​Release

Automated security testing for REST APIs: https:/ ​/​github. ​com/ ​flipkart-
incubator/ ​Astra

WireMock: http:/ ​/​wiremock. ​org/​

MockJS: http:/ ​/ ​mockjs. ​com/ ​examples. ​html

MockBin: https:/ ​/​github. ​com/ ​Kong/ ​mockbin

PACT Python: https:/ ​/ ​github. ​com/​pact- ​foundation/ ​pact- ​python/ ​

http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
http://www.openvas.org/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
https://github.com/flipkart-incubator/Astra
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://wiremock.org/
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
http://mockjs.com/examples.html
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/Kong/mockbin
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/
https://github.com/pact-foundation/pact-python/

Integrating Security and Automation Chapter 2

[27]

Power Mock: https:/ ​/ ​github. ​com/ ​powermock/ ​powermock

Mock-Server: http:/ ​/​www. ​mock- ​server. ​com/ ​#why- ​use- ​mockserver

WireMock: https:/ ​/ ​github. ​com/ ​tomakehurst/ ​wiremock

Faker JS documentation: http:/ ​/​marak. ​github. ​io/​faker. ​js/​

Faker JS source: https:/ ​/​github. ​com/ ​marak/ ​faker. ​js/​

Faker-CLI: https:/ ​/​github. ​com/ ​lestoni/ ​faker- ​cli

JSON Schema Faker Source: https:/ ​/​github. ​com/ ​json- ​schema- ​faker/ ​json-
schema-​faker

https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
https://github.com/powermock/powermock
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
http://www.mock-server.com/#why-use-mockserver
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
https://github.com/tomakehurst/wiremock
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
http://marak.github.io/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/marak/faker.js/
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/lestoni/faker-cli
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker

3
Secure Code Inspection

In this chapter, we will discuss white-box testing techniques for secure code review. For an
in-house software development team, it's a challenge to review all the source code for every
software release. This is not only because of the pressure of release cycles, but because of
the impracticality of requiring every developer to be familiar with all the secure coding best
practices for all different programming languages, such as Java, C/C++, and Python.
Therefore, we will demonstrate how to build your own automated secure coding platform
with open source solutions for every release.

This chapter will cover the following topics:

Case study—automating a secure code review
Secure coding best practices and methodology
Vulnerable code patterns for every programming language
Automating secure code scanning tools with Jenkins (using C/C++, Java, Python,
JavaScript, and PHP)

Case study – automating a secure code
review
Software Company-X releases cloud services. The Android development team in company-
X is using IDE developer tools to do secure code review for released Android applications.
However, the uses of the IDE developer tools may have less visibility of the whole project
security status. The development manager is also looking for a secure coding inspection
service that can establish consistent secure coding quality across projects. Therefore, a
secure coding scanning service will be in a need.

Secure Code Inspection Chapter 3

[29]

Secure coding scanning service – SWAMP
The following diagram shows an ideal secure coding inspection service. It provides users or
developers with interfaces to submit the source code or package. The interface for the
operations could be a GUI, a RESTful API, command-line interface (CLI), or a Jenkins
plugin. The programming language that is supported varies from project to project, but
common programming languages include Java, Android app, C/C++, and also web script
languages such as PHP, Python, JavaScript, and Ruby. Once the coding scanning is done,
the service is expected to deliver a comprehensive inspection report that identifies the
vulnerability and offers remedial suggestions:

Secure code inspection framework

The Software Assurance Marketplace (SWAMP) provides a standalone software
application called SWAMP in a Box (SiB), which allows you to build your in-house secure
code inspection services with the support of various scanning tools. SiB can be downloaded
from here: https:/ ​/​github. ​com/ ​mirswamp/ ​deployment.

To demonstrate how the SWAMP works, we may clone or download the vulnerable Python
API project as a ZIP package here: https:/ ​/​github. ​com/ ​rahulunair/ ​vulnerable- ​api. The
SWAMP also provides the cloud service for the scanning service; just sign into the SWAMP
portal by using your GitHub or Google accounts: https:/ ​/​www. ​mir- ​swamp. ​org/ ​.

https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/
https://www.mir-swamp.org/

Secure Code Inspection Chapter 3

[30]

Step 1 – adding a new package
Once you have logged in to the SWAMP portal, create a new package by clicking
Packages and then Add New Packages. Fill in the information as in the following
screenshot. The package must be compressed into a ZIP archive to be uploaded to the
SWAMP. In our example, we give Bad Python in the Name field, and select the previously
downloaded ZAP, vulnerable-api-mater.zip:

Project import in SWAMP

If it's uploaded correctly, the next step will require certain project information, such as
source code and build information. We may keep the Python version as Python2 and click
Next for the next page to Save New Package at the end of the step.

Secure Code Inspection Chapter 3

[31]

Step 2 – running the assessment
Once the package is created, click the Run New Assessment button, then click Save and
Run on the next page:

Assessments in SWAMP

Secure Code Inspection Chapter 3

[32]

Step 3 – viewing the results
When the assessment is done, you will be able to see the assessment results here: https:/ ​/
www.​mir-​swamp.​org/ ​#results. Or, you can navigate to Home then Results:

Assessments results in SWAMP

https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results
https://www.mir-swamp.org/#results

Secure Code Inspection Chapter 3

[33]

Take the vulnerable Python as an example: the SWAMP applies three scanning tools,
Bandit, Flake8, and Pylint, for the scanning. We may review one of the scanning results by
selecting the checkbox in front of the package name and clicking View Assessment
Results button. This brings us to the options of Native or Code Dx view. The Native view
provides a summary table of the identified security code issues, and the Code Dx view is an
interactive interface with the original source code.

The following diagram shows a sample of the Native view:

Message of results in SWAMP

Secure coding patterns for inspection
To perform a secure code scan, we must define the scanning rules based on common
security issues and the programming language in question. It's fundamental to use
keyword-driven expressions, regular expressions, or string operations for the scanning
rules. The following table shows common risky APIs which may introduce security
vulnerabilities and secure coding patterns which are indicators for potential security
issues for various programming languages.

Secure Code Inspection Chapter 3

[34]

The false positive column indicates whether the search result requires further manual
verification. For example, Low means that once the keyword is matched in the source code,
the security issue can be confirmed without the need for further verification. Med means the
identified patterns still require further verification:

Programming
language Risky API or insecure code patterns False

positive

General

Weak
encryption

Blowfish | DES | 3DES | RC4 | MD5 | SHA1 | XOR | ARC4
| IDEA | ECB | CBC | TLS 1.0 | SSL 2.0 | Base64 |
RIPEMD | base64

Low

Insecure
protocol

SSL | HTTP | FTP | Telnet Low

Hardcoded
information

Password | IP address | Email | Special Hotkey | URL |
Mobile Number | Name

High

C/C++

Command
injection

execl|execlp|execle|system|popen|WinExec|ShellExecute
| execv|execvp|

Med

Buffer
overflow

fscanf|sscanf|vsscanf|vfscanf|scanf|vscanf|wscanf|
sprintf|vsprintf|swprintf|vswprintf|snprintf|vsnprintf
getchar|read|_gettc|fgetc|getc|
memcpy|CopyMemory|bcopy|memmove
lstrcpy|wcscpy|lstrcpyn|wcsncpy|_tcscpy|_mbscpy
|strncat|strncpy

Med

Java

Injection Runtime | ProcessBuilder | CommandLine |
zookeeper.Shell | System.out.printf | createStatement

Low

Path traversal getAbsolutePath Low

Deserialization XMLDecoder | xstream | readObject | readResolve |
InvocationHandle | ObjectInputStream

Med

Weak random Java.util.Random Low

URL injection url= | href= Low

XML external
entity (XXE)

DocumentBuilder | XMLInputFactory | SAXReader |
SAXParser | SAXBuilder | XMLReader | DocumentHelper |
XMLInputFactory | XMLStreamReader

Med

URL
authorization
bypass

.getRequestURL(| .getRequestURI Med

File-handling
validation

ZipiInputStream | .endsWith(Med

ZIP of Death ZipFile | ZipInputStream Med

Information
leakage

FileNotFoundException | JARException |
MissingResourceException | acl.NotOwnerException |
ConcurrentException | ModificaitonException |
InsufficientResourceException | BindException |
OutOfMemoryError | StackOverflowException |
SQLException

Med

Python
Injection execfile | input | commands | subprocess Med

Risky API pickle.load | eval Med

Secure Code Inspection Chapter 3

[35]

PHP Injection
shell_exec | system | exec | popen | passthru |
proc_open | pcntl_exec | eval | assert | preg_replace
| create_function | preg_match | str_replace

Low

JavaScript Risky API eval | execScript | sessionStorage | localStorage Low

This table uses the keywords and regular expression patterns approach to identifying
security vulnerabilities in the source code. However, this kind of approach may have
certain limitations. Some of the security issues may require further source code correlations
to be identified. For advanced searches that go beyond the use of a regular expressions
search in the source code, the open source ReBulk Python library can be considered. The
ReBulk library allows developers to build more complex match rules to search for specific
coding issues.

Quick and simple secure code scanning
tools
We may identify secure code vulnerabilities by using the keywords, secure code patterns
and risky APIs listed in the table in the previous section. This can be a simple and quick
solution to apply to any partial source code. However, the biggest problem of this approach
is the false-positive rate, which needs to be optimized by defining proper secure code
regular expression match patterns. We will introduce two tools that can do a quick scan of
the source code, based on key secure code patterns.

Automatic secure code inspection script in Linux
For this approach, we recommend an all-in-one shell script, the Code Review Audit Script
Scanner (CRASS). This one script includes everything needed for secure code scanning,
and it defines the secure code scanning patterns for Java, JSP, Flex Flash, .NET, PHP,
HTML, Android, iOS, Python, Ruby, and C. It can easily be extended by editing the grep-
it.sh file. We may use the same vulnerable Python project from before as our example for
the following steps.

Secure Code Inspection Chapter 3

[36]

Step 1 – downloading the CRASS
Download the grep-it.sh script from
here: https://github.com/floyd-fuh/crass/blob/master/grep-it.sh , under the target
project folder. For example, we may download it under the /vulpython folder.

Alternatively, if you are using Git, execute the following command to download the script:

git clone https://github.com/floyd-fuh/crass/blob/master/grep-it.sh

Step 2 – executing the code review audit scan
Execute the command with a parameter to specify the target project folder. The following
command will scan the vulnerable source code under the /vulpython folder:

$ bash grep-it.sh ./vulpython

Step 3 – reviewing the results
Once the scanning is done, the scanning results will be output under the \grep-
output folder of the target scanning project.

The scanning results will be generated into files separated by security topic, as shown in the
following diagram:

Code scan results

https://github.com/floyd-fuh/crass/blob/master/grep-it.sh

Secure Code Inspection Chapter 3

[37]

Automatic secure code inspection tools for
Windows
This approach is very easy to deploy without the need to install other dependencies, and it
doesn't require a whole buildable source code package to do the code scanning. For some
cases, to identify security code issues, it requires not only to identify the risky API but also
to review the context of the usage, which will be explained more in the next section.

For Windows users, the secure code scanning tool Visual Code Grepper (VCG) is
recommended. It provides not only GUI but also CLI mode. It supports multiple
programming languages, including C/C++, Java, PHP, VB, and C#. The default installation
comes with details on the predefined banned and risky functions of each programming
language in the configuration files (*.conf), and the rules can also be easily customized by
editing the configuration files. Here are the steps to scan the project.

Step – downloading VCG (Visual Code Grepper)
Download the setup package and run the setup to install VCG on Windows. The installer is
available here: https:/ ​/ ​github. ​com/ ​nccgroup/ ​VCG/ ​tree/ ​master/ ​VCG-​Setup/ ​Release.

Step 2: Executing VCG
Executing VisualCodeGrepper.exe will directly launch VCG in GUI mode.

If you would like to execute in console mode, use the following command:

$ VisualCodeGrepper -c -v -t <DirectoryName>

For other options, please refer to the Readme.txt file in the URL below.

https:/​/​github.​com/ ​nccgroup/ ​VCG/ ​blob/ ​master/ ​VCG- ​Setup/ ​Release/ ​README. ​txt

Step 3: Reviewing the VCG scanning results
By default, the scanning results will be generated as test1.csv under the installed path.
Alternatively, you may also use the VCG GUI | File | Import Results from CSV File |
test1.csv to review the results with highlighted colors.

https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/tree/master/VCG-Setup/Release
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt
https://github.com/nccgroup/VCG/blob/master/VCG-Setup/Release/README.txt

Secure Code Inspection Chapter 3

[38]

Case study – XXE security
The XXE security issue is one of the OWASP Top 10 security issues. The solution to the XXE
issue is to disable XXE and DTD (Document Type Definition) processing. Therefore, when
we are doing source code review, we are looking for whether the configuration of DTD is
missing in the source code, as shown in the following example:

Factory.setFeature(“http://apache.org/xml/features/disallow-doctype-decl”,
true);

White-box review is still the most efficient approach to identifying XXE issues. The easiest
thing to do is to discover whether one of the following XML libraries is being used to parse
XML. We may use one of the tools such as CRASS or VCG mentioned in previous section to
do such a search with the keywords listed here:

Programming
language Source code patterns for potential XXE issues

Java

SAXParser | SAXParserFactory | DocumentBuilderFactory |
TransformerFactory | XMLReader | DOMParser | SAXBuilder
| SAXReader | XMLInputFactory | SchemaFactory |
DocumentBuilderFactoryImpl | DocumentBuilderImpl |
SAXParserFactoryImpl | SAXParserImpl

C/C++
xmlCtxtRead | xmlCtxtUseOptions | xmlParseInNodeContext
| xmlReadDoc | xmlReadFd | xmlReadFile | xmlReadIO |
xmlReadMemory

Once these XML parser APIs are found in the source code, we will do a further manual
review to check if the DTD resolution is explicitly disabled in the source code. Just be aware
that to disable the DTD, it needs to be defined explicitly in the source. Take SAXreader as
an example, to prevent XXE effectively, the following three lines are necessary.

saxReader.setFeature("http://apache.org/xml/features/disallow-doctype-
decl", true);
saxReader.setFeature("http://xml.org/sax/features/external-general-entities
", false);
saxReader.setFeature("http://xml.org/sax/features/external-parameter-entiti
es", false);

Secure Code Inspection Chapter 3

[39]

Although source code scanning can't do a perfect job in identifying the XXE issue, we still
can use the techniques to narrow the scope in identifying the XXE issue.

Please also refer to OWASP XML Prevent CheatSheet for details. https:/ ​/​www. ​owasp. ​org/
index.​php/​XML_​External_ ​Entity_ ​(XXE)_ ​Prevention_ ​Cheat_ ​Sheet

Case study – deserialization security issue
The deserialization security issue is commonly seen in Java, and is a Remote Code
Execution (RCE) attack. Serialization is the process in Java of converting the state of an
object into a byte stream (serialized object), which can be stored in files, memory, or a
database. Deserialization is the reverse process, creating an object based on the byte stream.

For the deserialization attack, the serialized object becomes one of untrusted data input for
the receiver to do the deserialization. The attack may tamper with or replace the serialized
object with malicious code. This can be referred to in CWE-502: Deserialization of untrusted
data http:/​/​cwe.​mitre. ​org/ ​data/ ​definitions/ ​502.​html

Process of deserialization

Deserialization attack

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html

Secure Code Inspection Chapter 3

[40]

The serialized object can be stored or transmitted by memory, files, and networks. The
hacker may tamper with the serialized object or inject malicious code so that the
reader/receiver of the serialized object will be vulnerable to injection attacks:

To discern whether our Java project is vulnerable to the deserialization security issue, we
can look for specific deserialization behaviors with API keywords. Although we can't
completely automate code scanning here, we can at least narrow the scope of the review
area:

Programming
language Source code patterns for potential deserialization security issues

Java

XMLDecoder | XStream | readResolve | readExternal |
ObjectInputSteam | readObject | readObjectNoData |
java.lang.reflect.InvocationHandler |
MethodHandler.invoke | Object.finalize |

If none of the APIs listed here have been used, we don't need to worry much about the
deserialization security issue. However, if one of APIs has been used in the source code,
then it warrants further investigation; one of the following mitigations can be implemented:

Whitelisting or blacklisting the deserialized class
Adoption of any look-ahead Java deserialization library, such as SerialKiller

To identify the security risks for injection attacks, it is suggested to clearly
define what kinds of injection we are focused on. For example, the
injection attacks may be categoritzed as SQL injection, Command
injection, XSS, XXE, and so on. For a large scale project, try to focus on one
type of injection at a time. This approach not only narrows the scope of
the scan but also help to reduce false positives.

Summary
In this chapter, we introduced how to build your own secure code inspection system with
the SWAMP. The SWAMP allows developers to submit their source code or package for
automatic secure code review, helping them to identify critical security issues at the source-
code level. The SWAMP provides cloud and on-premises versions. We demonstrated the
steps for submitting a vulnerable Python project for a security review on SWAMP.

Secure Code Inspection Chapter 3

[41]

As we continue to look at secure code review, there are key security issues that we will
focus on, such as weak encryption algorithms, insecure protocol, hardcoded sensitive
information, and risky APIs that may result in command injection or buffer overflow. The
list of risky APIs can be a reference to use when implementing a secure code review tool. In
a case study of this chapter, we demonstrated the use of CRASS to scan vulnerable Python
APIs. Furthermore, we also introduced another generic general secure coding inspection
tool, VCG.

We discussed two security cases, the XXE and deserialization security issues. Once we are
familiar with the security code patterns for identifying such security issues, we may use
code inspection tools, such as CRASS and VCG, to identify the vulnerability in the source
code.

In the coming chapter, we will apply similar code inspection techniques to look for
sensitive information leakage and privacy security issues.

 Questions
MD5 | SHA1 | XOR | ARC4—these are the insecure code indicators for which1.
one of the following?

Weak Encryption1.
Insecure protocol2.
Hardcoded information3.
Command injection4.

What kind of source code security issue can be identified with low false positive?2.
Weak encryption1.
Insecure protocol2.
Weak random3.
All of the above4.

What APIs are risky to command injection?3.
system1.
execl2.
ShellExecute3.
All of the above4.

What can lead to XXE injection?4.
Failing to disable the external DTD configuration1.

Secure Code Inspection Chapter 3

[42]

No prepared statement2.
The use of eval3.
No output encoding4.

What APIs are related to XXE handling?5.
SAXParser1.
SchemaFactory2.
DocumentBuilderFactoryImpl3.
All of the above4.

Which of these is a correct statement about the deserialization security issue?6.
Serialization is the process in Java of converting the state of an object1.
into a byte stream (serialized object), which can be stored in files,
memory, or a database. Deserialization is the reverse process,
involving the creation of an object based on the byte stream.
readObject is the API that may be vulnerable to a deserialization2.
security issue.
The deserialization security issue may result in an RCE attack.3.
All of the above.4.

Further reading
SEI CERT coding standards: https:/ ​/​www. ​securecoding. ​cert. ​org/
confluence/ ​display/ ​seccode/ ​SEI+CERT+Coding+Standards

ReBulk advanced search tool: https:/ ​/​github. ​com/ ​Toilal/ ​rebulk

Security Development Life cycle (SDLC) banned function calls: https:/ ​/​msdn.
microsoft. ​com/ ​en- ​us/ ​library/ ​bb288454. ​aspx

Sensitive information data type: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
Exchange/ ​policy- ​and- ​compliance/ ​data- ​loss- ​prevention/ ​sensitive-
information- ​types? ​view= ​exchserver- ​2019#Taiwan%20National%20ID

Vulnerable API sample project: https:/ ​/ ​github. ​com/ ​rahulunair/ ​vulnerable-
api

SWAMP: https:/ ​/ ​www. ​mir- ​swamp. ​org

Sensitive data discovery tool: https:/ ​/​github. ​com/ ​redglue/ ​redsense

Secrets Search: https:/ ​/​github. ​com/ ​securing/ ​DumpsterDiver

OWASP deserialization cheat sheet: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/
Deserialization_ ​Cheat_ ​Sheet

https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://github.com/Toilal/rebulk
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://docs.microsoft.com/en-us/Exchange/policy-and-compliance/data-loss-prevention/sensitive-information-types?view=exchserver-2019#Taiwan%20National%20ID
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://github.com/rahulunair/vulnerable-api
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://www.mir-swamp.org
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet

4
Sensitive Information and

Privacy Testing
After discussing how to review the security of your code, we will now discuss how to use
automated scanning to prevent the disclosure of sensitive information for every software
release. There are three typical scenarios related to data privacy handling. The first is where
sensitive information is included in the source code, such as an API key, a hardcoded
password, a hidden hotkey, an email address, or an IP or URL. Secondly, sensitive
information can also be stored in cookies, since cookies can collect the browsing behaviors
of users. Finally, large projects handling massive amounts of data require effective ways of
identifying and protecting any Personal Identifiable Information (PII) stored in the
database.

The following is what we will be covering in this chapter:

The objective of sensitive information testing
Automated sensitive information scanning in the source code
Automated sensitive information scanning for the application and database

The objective of sensitive information
testing
In addition to secure code patterns, we also need to pay attention to the potential disclosure
of sensitive information in our software releases. The identification of any PII helps us to
investigate how the system is handling this sensitive data and see whether there is any
violation of legislation, such as the General Data Protection Regulation (GDPR).
Furthermore, the purpose of scanning for system-related sensitive information leakage is to
review any system vulnerability exposure, such as that of a password or API key.

Sensitive Information and Privacy Testing Chapter 4

[44]

The following table shows details about scanning for sensitive information, PII, and the
source code:

Area of white-box
scanning Objective The primary scope

of the scan

Sensitive information
scanning for system
information

To ensure no leaking of sensitive
information, such as an API key, a
password, or hardcoded administrator
account credentials

Settings
Installed components
Scripts

Privacy scanning for
handling PII

To review how PII is stored, handled,
presented, and removed

Database
Storage
Configuration

Secure code scanning
To ensure the source code complies with
secure coding rules, and to mitigate
OWASP Top 10 security issues

Source code

PII discovery
Understanding where and how PII is stored is the first step for the proper protection of
private data. To proceed with PII data discovery, we will discuss some simple methods of
searching for any PII that may be stored on the system. Generally, PII can be stored
anywhere in an application or system. PII may even be found in the recycle bin.
Discovering and protecting PII requires constant effort and due diligence. The purpose of
PII data discovery is to find answers to the following questions:

What types of PII are present (such as names, emails, or other personal
information)?
Where is the PII stored (could be a database, files, or configuration)?
How is the PII classified?
What access permissions are there to the PII?

Sensitive Information and Privacy Testing Chapter 4

[45]

One common and simple approach to PII discovery is using regular expressions. The
following table lists examples of regular expression patterns we may use to search the
source code, configuration, and log files:

PII-related information Examples of regular expression patterns

Credit card number
\d{4}[-]?\d{4}[-]?\d{4}[-]?\d{4}|\d{4}[-]?\d{6}[-
]?\d{4}\d?

Email address /([a-z0-9_\-.+]+)@\w+(\.\w+)*

IP address \b(?:\d{1,3}\.){3}\d{1,3}\b

Credentials 1234 | admin | password | pass | creds | login

Phone number
(\(?\+?[0-9]{1,2}\)?[-.]?)?(\(?[0-9]{3}\)?|
[0-9]{3})[-.]?([0-9]{3}[-.]?[0-9]{4}|\b[A-
Z0-9]{7}\b)

Address
(street|st|road|rd|avenue|ave|drive|dr|loop|court|
ct|circle|cir|lane|ln|boulevard|blvd|way)\.?\b

Social security number \b\d{3}[-.]?\d{2}[-.]?\d{4}\b

ZIP code \b\d{5}\b(-\d{4})?\b

URL
([^\s:/?#]+):\/\/([^/?#\s]*)([^?#\s]*)
(\?([^#\s]*))?(#([^\s]*))?

Dates (MM/DD/YYYY)
^([1][12]|[0]?[1-9])[\/-]([3][01]|
[12]\d|[0]?[1-9])[\/-](\d{4}|\d{2})$

Sensitive information discovery
In addition to PII, there is also other sensitive information related to the system and
applications that needs to be discovered and secured. The purpose of identifying these is to
avoid such information, which may be hardcoded in the source code or within the
configuration files, being exposed to debug logs:

System-related sensitive/vulnerable information Examples of regular expression patterns

Password Passw(d|ord)?|secret | username |
key

Private key (private|api|secret|aws)[_-]?key

Hardcoded URL (http | https | ftp | ftps)

MD5 hash ^[a-f0-9]{32}$

SHA1 hash \b([a-f0-9]{40})\b

Sensitive Information and Privacy Testing Chapter 4

[46]

Base64 encoding

^(?:[A-Za-z0-9+/]{4})*
(?:[A-Za-z0-9+/]{2}==|
[A-Za-z0-9+/]{3}=|
[A-Za-z0-9+/]{4})$

SQL statements

(SELECT\s[\w*\)\
(\,\s]+\sFROM\s[\w]+)|
(UPDATE\s[\w]+\sSET\s[\w\,\'\=]+)|
(INSERT\sINTO\s[\d\w]+[\s\w\d\)\
(\,]*\sVALUES\s\([\d\w\'\,\)]+)

Private IP
(^127\.)|(^10\.)|(^172\.1[6-9]\.)|
(^172\.2[0-9]\.)|
(^172\.3[0-1]\.)|(^192\.168\.)

Here are just some more details about what we'll be searching for and why:

A hardcoded URL in the source code or a private IP defined in the source code
can potentially become a backdoor.
MD5, SHA1, and Base64 are weak encryption/encoding algorithms. Any
passwords encoded by Base64 or hashed by MD5 and SHA1, will be at high risk.
For SQL statements, we will be looking for whether there are any missing
prepare statements and any sensitive information queries.

Privacy search tools
Using regular expression patterns is the first step in building your own secure code
scanning service. It's easy to use GREP to quickly search for specified patterns. In the next
sections, we will introduce three tools that can make these search jobs easier:

Tool name Key characteristics

The Silver Searcher
This works similarly to Linux GREP for full-text searches in files, but
it's much faster. It can support multiple platforms and is easy to
use: https:/ ​/​github. ​com/ ​ggreer/ ​the_ ​silver_ ​searcher.

ReDataSense

This is useful for searching for PII in a MySQL database or in files. It
can also define flexible search patterns/rules. It's a Java program but
can also support multiple platforms: https:/ ​/​github. ​com/ ​redglue/
redsense.

DumpsterDiver

This is used to search for secrets, API keys, and encrypted passwords
by using entropy. It can search logs, files, and compressed archives,
and can also customize scanning rules: https:/ ​/​github. ​com/
securing/ ​DumpsterDiver.

https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/redglue/redsense
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver
https://github.com/securing/DumpsterDiver

Sensitive Information and Privacy Testing Chapter 4

[47]

Case study – weak encryption search
Let's still use the same project, the Python Vulnerable API, to search for weak encryption
used in the source code. In this case, we will be looking for the uses of the vulnerable MD5
algorithm in the source code. The tool we introduce here is The Silver Searcher, which can
do a fast recursive search based on a given keyword for all file contents, and indicate the
results.

Step 1 – installing The Silver Searcher
The Silver Searcher providers installation details for different platforms: https:/ ​/​github.
com/​ggreer/​the_​silver_ ​searcher.

For Windows releases, the tool can be downloaded here: https:/ ​/​github. ​com/ ​k- ​takata/
the_​silver_​searcher- ​win32/ ​releases.

Step 2 – executing the tool (using Windows as an
example)
Use ag -h to display all the options and usage in the console. In this case, we will use -w to
match the keyword, md5. The AG tool can be executed as follows:

$ ag –w md5 d:\<targetPath>

Step 3 – reviewing the results (using Windows as
an example)
The following screenshot shows the output of the tool. It shows that the vAPI.py file
contains the md5 keyword in three lines.

There are also other options to support various kinds of search. Just type ag to see the
output in the console:

https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases
https://github.com/k-takata/the_silver_searcher-win32/releases

Sensitive Information and Privacy Testing Chapter 4

[48]

Case study – searching for a private key
Let's take another case to look at searching for the compromise of API key information. An
API key being hardcoded in the source code or a password being weakly encrypted in the
source code are both common security vulnerabilities. To search for a private encryption
key or hardcoded password requires the calculation of entropy which is a number to
represent the level of randomness. A string with a high entropy value is normally an
indicator of a potential API key, hash value, or encrypted message. In the following
demonstration, we will also use the vulnerable Python API project to search for vulnerable
API keys in the source code. The tools we will be using are entropy.py and
DumpsterDiver. To download the script, execute the following command:

$ git clone https://github.com/securing/DumpsterDiver

Step 1 – calculating the entropy
This step of entropy calculation is optional. However, an entropy value will help to
improve the accuracy of the search result. For example, say we know of one other API key
in the source code. Knowing the entropy value of that known API key will help to identify
another unknown key with higher accuracy. In this case, we're assuming the known API
key is ZeXvRCRZ3LF:

$ python entropy.py ZeXvRCRZ3LF

The output of the entropy calculation will be done by DumpsterDiver. The entropy value of
the known API key string is 3.095795255 bits. Once we have the exact entropy value of
the known API key, we can search for the same entropy value of other API Keys.

Step 2 – Searching for high-entropy strings
Based on the entropy value, we can search all the projects for similar entropy values of
3.095. Again, this is optional; it just helps us to locate what we are looking for more
accurately. If the entropy value is not specified, DumpsterDiver will just list all the high-
entropy value strings:

$ python DumpsterDiver.py --entropy 3.095 -p <TargetProjectPath>

Sensitive Information and Privacy Testing Chapter 4

[49]

Step 3 – Reviewing the results
DumpsterDiver will list all the identified entropy strings. Then, it may need to check
whether any of them indicate private API key leakage. For example, the following
screenshot shows three strings with the same entropy value having been identified. We can
further review whether these are exposed API keys:

Case study – website privacy inspection
Here we will look at how to identify vulnerabilities in private information when a web
service goes live.

The insecure design of a website may result in the leaking or interception of private
information. One of the most common ways in which information leakage can occur is by
the use of insecure communication protocols, such as HTTP, Telnet, or FTP. These protocols
are communicating messages without any encryption. The web administrator will need an
automatic privacy scanning tool to do see whether this is an issue affecting them.

Here we introduce the use of PrivacyScore. It provides the following privacy inspections:

Privacy scan scenarios Examples
No Track:
No Browsing histories tracked
by websites and third parties

• Checks whether third-party embeds are being used
• Checks whether Google Analytics is being used
• Checks whether the web server geo-location is based on DNS IP lookup

EncWeb:
Encryption of web traffic

• Checks whether the server is running with HTTPS
• Checks for automatic redirection to HTTPS

Attacks:
Protection against various
attacks

• Checks for HTTP security headers, such as X-Frame-Options, Content
Security Policy (CSP), Cross-site scripting (XSS) protection, X-
Content-Type-Options, and referrer-policy

EncMail:
Encryption of mail traffic

• Checks for the DNS if the domain also includes an email server

Sensitive Information and Privacy Testing Chapter 4

[50]

For a quick demo of how to use PrivacyScore, you can use the online
version to scan a vulnerable website. If the web service you are
developing can't be reached over the internet, PrivacyScore also provides
a standalone version that you can set up in house.

Step 1 – visiting PrivacyScore or setting it up
locally
For the online version of PrivacyScore, please visit https:/ ​/​privacyscore. ​org/​.

To set up PrivacyScore locally, refer to https:/ ​/​github. ​com/​PrivacyScore/ ​PrivacyScore/ ​.

Input the target vulnerable website, http://hackazon.webscantest.com/, and click
SCAN, as shown in the following screenshot. The scanning will be triggered and will run
on the cloud:

https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://privacyscore.org/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/
https://github.com/PrivacyScore/PrivacyScore/

Sensitive Information and Privacy Testing Chapter 4

[51]

Step 2 – reviewing the results
After the scanning is done, you will see the scanning results as follows. In our example, the
website shows potential risks for the NoTrack and Attacks categories. It suggests that the
web administrator take further actions to review the third-party embeds, the uses of HTTPS
everywhere, and also the secure configuration of HTTP security headers:

Summary
We discussed the objective of testing for sensitive information in this chapter. In terms of
privacy testing, the GDPR is the primary baseline we will comply with. Privacy testing is
focused on how PII is handled, and it's important to identify any risks of system-related
sensitive information, such as passwords, API keys, or private IPs, being leaked. We looked
at some patterns that help in searching for PII as well as sensitive system-related
information.

We then looked at three case studies. The first case study was about searching for weak
encryption using The Silver Searcher. The second case was about identifying potential API
key leakage in the source code by using DumpsterDiver. The final case was about
examining website privacy, looking specifically at the use of PrivacyScore to scan the target
website.

We have practiced various kinds of white-box source code review techniques for sensitive
information. In Chapter 5, Security API and Fuzz Testing, we will explore API security
testing with fuzzing.

Sensitive Information and Privacy Testing Chapter 4

[52]

Questions
Which one of the following does not apply to white-box scanning?1.

Web UI testing
Privacy scanning PII
Secure code scanning

What is the objective of PII discovery?2.
To discern the types of PII
To see how the PII is classified
All of above

What is the regular expression for IP address?3.
/([a-z0-9_\-.+]+)@\w+(\.\w+)*

\d{4}[-]?\d{4}[-]?\d{4}[-]?\d{4}|\d{4}[-]?\d{6}[-
]?\d{4}\d?

\b(?:\d{1,3}\.){3}\d{1,3}\b

Why are we looking for Base64 encoding?4.
Any password encoded with Base64 is very vulnerable and can be
easily reversed
To ensure there is no possibility of injection attack
To avoid backdoor connection behavior

Further reading
The Silver Searcher: https:/ ​/​github. ​com/ ​ggreer/ ​the_ ​silver_ ​searcher

A web privacy measurement framework: https:/ ​/ ​github. ​com/ ​citp/ ​OpenWPM

PrivacyScore project: https:/ ​/​github. ​com/ ​PrivacyScore/ ​PrivacyScore

Common Regex: https:/ ​/​github. ​com/ ​madisonmay/ ​CommonRegex

De-identification: https:/ ​/​github. ​com/ ​vmenger/ ​deduce

PII search: https:/ ​/ ​technet. ​microsoft. ​com/ ​en-​us/ ​library/ ​2008. ​04.
securitywatch. ​aspx

Python Vulnerable API: https:/ ​/​github. ​com/ ​rahulunair/ ​vulnerable- ​api/ ​

StaCoAn cross-platform static code analysis: https:/ ​/​github. ​com/​vincentcox/
StaCoAn

https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/citp/OpenWPM
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/PrivacyScore/PrivacyScore
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/madisonmay/CommonRegex
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://github.com/vmenger/deduce
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://technet.microsoft.com/en-us/library/2008.04.securitywatch.aspx
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/rahulunair/vulnerable-api/
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn

5
Security API and Fuzz Testing

n After the privacy and sensitive information security inspection, we will now explore API
and fuzz testing. As the cloud software release can be on an API-level basis, there can be
hundreds of APIs released at a time. The software development team will definitely need
an effective way to automate the security testing for every API release. In this chapter, we
will elaborate further with the help of an example by using an online pet store for how to
build your automated API security testing framework with various tools. The API security
testing focuses mainly on the data injection and abnormal payload. Therefore, the Fuzz
testing will also be introduced as random data input and security injection for the
automated API security testing.

The following topics will be discussed in this chapter:

Automated security testing for every API release
How to build your security API and fuzz testing framework with ZAP, JMeter,
and FuzzDB

Automated security testing for every API
release
Some of the web services are released with standard REST or SOAP APIs. The key
difference between web and API security testing is the browser UI dependency. In API
testing, we will only focus on the request and response instead of the UI layout or
presentation.

Security API and Fuzz Testing Chapter 5

[54]

It is always recommended to use the API testing approach because web UI testing can
provide unreliable testing results. General API security testing may cover authentication,
authorization, input validation, error handling, data protection, secure transmission, and
HTTP header security.

The case we will discuss here concerns a development manager who would like to build an
API security testing framework for every release. However, he may encounter the
following challenges when he is trying to build the API security testing framework,
especially for a development team without experienced security expertise. In the following
sections, we will demonstrate some open source tools and approaches to solving these
issues.

Data input: API security testing requires purpose-built random security testing
data (payload)
Process request: This requires a proper framework to process the data input,
to send the requests to web server, and process the responses
Process response: To identify if any security vulnerabilities exist based on the
responses. For the web API, the typical standard responses are JSON or XML
instead of HTML, JavaScript, or CSS

For Fuzz data input as security payloads, refer to the following resources:

FuzzDB: https:/ ​/​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb

SecLists: https:/ ​/​github. ​com/ ​danielmiessler/ ​SecLists

Radamsa: https:/ ​/ ​github. ​com/​vah13/ ​radamsa/ ​releases

Radamsa is a fuzz data payloads generator based on a specified format or data sample. It
can help if you expect to generate a lot of random and unexpected data payloads:

https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases

Security API and Fuzz Testing Chapter 5

[55]

Fuzz Testing Tools

To process the HTTP requests and responses, we will use JMeter and ZAP in our
demonstration cases.

Building your security API testing
framework
There are several approaches and open source tools that can help to build your API security
testing framework. The key challenge for security testing is the processing responses
part. For example, to be able to identify the SQL injection vulnerability, the security testing
requires not only proper designed injection payloads, but also the ability to identify the
responses for SQL injection patterns. Therefore, when we build the security testing for
restful or SOAP APIs, it's recommended that you apply the web security testing framework
to help with the response detection.

Security API and Fuzz Testing Chapter 5

[56]

To build the security API testing framework, we will introduce three levels of approaches
as summarized in the following table:

Level Recommended
toolkits Pros and cons

Basic ZAP

ZAP can provide a general web security baseline scan.
However, ZAP can't do specific REST or SOAP API
security testing without proper guidance. For example,
the HTTP POST request testing can't be done here, and
that's why we introduce JMeter for the next level.

Intermediate ZAP + JMeter

The rationale we introduce JMeter is to send specific REST
or SOAP APIs and message body through ZAP. In this
approach, ZAP will be running in proxy mode to monitor
and detect the request/response for security issues.

Advanced ZAP + JMeter +
fuzz data

We will use JMeter with parameterized testing (data-
driven testing). The fuzz data is a dictionary list of specific
security issues, such as XSS, SQL injection, or common
vulnerable passwords. Although ZAP itself also includes
the fuzz testing that can replace the specified parameters
with fuzz data, ZAP fuzz testing can only be done by GUI
mode at this moment. By using ZAP and JMeter, we can
execute the automation in command console mode for the
integration with other CI frameworks.

Advanced ZAP + OpenAPI In this case, ZAP will import the API definition files, and
do the initial security assessment based on the API lists.

Case study 1 – basic – web service testing with
ZAP CLI
In this case, we will demonstrate how to execute ZAP using the command line
interface (CLI), which provides a simple way to trigger the security testing and can be
easily integrated with other frameworks. The key steps of the web security scanning
include spider scan, active scan, and review the scan results.

Security API and Fuzz Testing Chapter 5

[57]

Step 1 – OWASP ZAP download and launch with port
8090
The OWASP ZAP installer can be downloaded at https:/ ​/​github. ​com/​zaproxy/ ​zaproxy/
wiki/​Downloads depending on the platform. Once the installation is done, launch ZAP in
GUI mode. Although ZAP can also be executed in daemon mode, the GUI mode will help
us to review the security assessment results. By default, the ZAP CLI is using the default
port 8090 with ZAP. The proxy settings for ZAP can be configured using the menu under
the Tools | Options | Local Proxies | Port | 8090, as shown in the following screenshot:

OWASP ZAP proxy configuration

https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads
https://github.com/zaproxy/zaproxy/wiki/Downloads

Security API and Fuzz Testing Chapter 5

[58]

Step 2 – install the ZAP-CLI
ZAP provides several non-GUI interfaces for integration, such as Java API, REST API, and
CLI. You may choose one of them for the integration. We will use ZAP-CLI here because it's
easy to set up, and is also suitable for engineers who have a little programming
background. Please ensure Python and PIP are installed on the system. The ZAP-CLI can be
installed by one command line, as follows:

$ pip install --upgrade zapcli

To access ZAP using ZAP-CLI or ZAP, restful API will require an API Key. The API key of
ZAP can be found or disabled under Tools | Options | API. To simplify the ZAP-CLI
operations, we will disable the API key.

Step 3 – execute the testing under ZAP-CLI
Once ZAP and the ZAP-CLI setup are done, we may trigger a few security assessments.
Please be reminded that a spider scan is a must before running an active scan. Here are the
differences between spider, quick, and active scans:

Spider Scan: It will explore and search all possible resources and URLs of the
website. No security attacks will be performed.
Active Scan: It will do security checks based on URLs or web resources available
in the ZAP site tree. Therefore, a spider scan to explore web resources is a must
before an active scan.
Quick Scan: It's an all-in-one command that can do a spider scan, active scan and
generate a testing report.

To trigger the security scanning with the ZAP-CLI, execute the commands in the following
order:

$ zap-cli spider http://demo.testfire.net
$ zap-cli quick-scan http://demo.testfire.net
$ zap-cli active-scan http://demo.testfire.net

Security API and Fuzz Testing Chapter 5

[59]

If it works well, you should be able to see the list of scanned URLs and alters in the ZAP
GUI.

For other command options, the --help can be used, as follows:

$ zap-cli --help

For example, the following command will help you to know how to use of active-scan:

$ zap-cli active-scan --help

Refer to the following link for the detailed usage of the ZAP-CLI:

https:/​/​github.​com/ ​Grunny/ ​zap- ​cli

Step 4 – review the results
You can the security assessment results in the ZAP GUI console or generate a report.
Alternatively, you can also output the security findings by using the ZAP-CLI. The
following command will output the alerts at the medium level:

$ zap-cli alerts -l Medium

For the usage of alerts options, try the following command:

$ zap-cli alerts --help

Case study 2 – intermediate – API testing with
ZAP and JMeter
In this case, we will do the login testing scenario to demonstrate the uses of JMeter with
ZAP. If the team has done the automation testing by JMeter, the ZAP can work well with
JMeter. In this scenario, JMeter will be used to send HTTP POST with username and
password parameters to the target vulnerable website, and ZAP will be monitoring security
issue through the HTTP requests and responses in proxy mode. Based on the previously
installed ZAP environment, we will set up JMeter for the testing.

https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli

Security API and Fuzz Testing Chapter 5

[60]

The following diagram shows the frameworks relationship between JMeter and ZAP:

JMeter and ZAP security testing

To proceed with the testing, follow these steps.

Step 1 – download JMeter
JMeter can be downloaded from Https:/ ​/​jmeter. ​apache. ​org/ ​download_ ​jmeter. ​cgi. Java
8 runtime is required to execute JMeter. It's a compressed package. Once it's downloaded,
unzip the package. To launch JMeter, run the jmeter.bat (Windows) or jmeter.sh
(Linux), which can be found under \bin folder.

Step 2 – define HTTP request for the login
In this step, we will define the HTTP POST request for login to the vulnerable website. Here
is key information of the HTTP POST request for the login. It's assumed that the username
is user1 and the password is pass1 in this example. The information can be acquired by
using browser network inspector (F12), as follows:

Request URL: http://demo.testfire.net/bank/login.aspx
Request Method: POST
Request Data: uid=user1&passw=pass1&btnSubmit=Login

https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi

Security API and Fuzz Testing Chapter 5

[61]

To configure JMeter to send the HTTP POST login request, we need to create a Threat
Group and the HTTP Request for the test plan. Under the HTTP request, define the values
as shown in the following screenshot:

HTTP request configuration in JMeter

In addition, we would like to send the HTTP request through the ZAP proxy. Define the
JMeter proxy in the Advanced tab. In our environment, we are running ZAP listening port
8090:

HTTP request proxy configuration in JMeter

Security API and Fuzz Testing Chapter 5

[62]

Step 4 – execute the JMeter script
There are two ways to run the JMeter script. One involves using the menu, and the other
involves using the command console. Once the information is properly defined, send the
request by Run | Start or Ctrl + R. The HTTP POST request will be sent through the ZAP
proxy and ZAP will intercept the request and response for security assessments. Once we
have done the automation scripts with JMeter, it's suggested to execute the JMeter in non-
GUI mode for further automation integration. In our case, the following command will
apply to our JMeter script. Use JMeter –help to see further information of each command
options:

Jmeter -n -t MyRequest.jmx -l testResult.jtl -H 127.0.0.1 -P 8090

Step 3 – review the results in ZAP
We can review the initial security assessments done by the OWASP ZAP under Alerts tab.
Alternatively, execute one of the following command in the console. It will list the security
assessments results in JSON or HTML format, as follows:

$ CURL "http://localhost:8090/JSON/core/view/alerts"

The following command will generate the ZAP alerts report in HTML format:

$ CURL "http://localhost:8090/HTML/core/view/alerts"

Case study 3 – advanced – parameterized
security payload with fuzz
In this testing scenario, we are going to replace the username and password with security
payloads, such as XXE, XSS, or SQL injection attacks. To test if the login is vulnerable to
SQL injection, JMeter will be reading the external fuzz SQL injection data to replace the
username and password parameters to send the login request.

Security API and Fuzz Testing Chapter 5

[63]

To generate a list of security payloads, here are some of the recommended resources:

Fuzz
database Description

FuzzDB

FuzzDB compressive application security testing dictionary for attack
patterns (injection, XSS, directory traversals), discovery (admin directories
or sensitive files), response analysis (regular expression patterns), web
backdoor samples, and user/pwd list.
https:/ ​/ ​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb

Naughty
Strings

The Naughty Strings provides a very long list of strings. There are two
formats provided, blns.txt and blns.json.
https:/ ​/ ​github. ​com/ ​minimaxir/ ​big-​list- ​of- ​naughty- ​strings

SecList

This is similar to FuzzDB, which provides various kinds of fuzz data such as
command injections, JSON, LDAP, user agents, XSS, char, numeric, Unicode
data, and so on
https:/ ​/ ​github. ​com/ ​danielmiessler/ ​SecLists

Radamsa
Unlike previous FuzzDB that provides a list of word dictionary, it's a tool
that can dynamically generate format-specific based on a given sample
https:/ ​/ ​github. ​com/ ​vah13/ ​radamsa

Follow the following instructions to apply the SQL injection data with JMeter.

Step 1 – download the SQL injection data
To replace the parameter password with the SQL injection payloads, we can use the
FuzzDB or SecList resources in the previous list. For example, SecLists provides a list of
SQL injection payloads we can use. The following table lists common SQL injection security
payloads that can be obtained from the following URL:

https:/​/​github.​com/ ​danielmiessler/ ​SecLists/ ​blob/ ​master/ ​Fuzzing/ ​Generic- ​SQLi.
txt.

https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Generic-SQLi.txt

Security API and Fuzz Testing Chapter 5

[64]

In this case, we will create the sqli.csv with the SQL injection security payloads, as
follows:

SQL injection payloads samples
UNION ALL SELECT
) or sleep(__TIME__)='
)) or benchmark(10000000,MD5(1))#
hi' or 'a'='a
0
21 %
limit
or 1=1
or 2 > 1

Step 2 – define the CSV dataset in JMeter
To add a CSV dataset, right-click the Test Plan | Add | Config Element | CSV Data Set
Config. In the CSV Data Set Config, we can define the data input source from the
sqli.csv files and variable names.

The following screenshot shows the CSV Data Set Config in JMeter that is used to read the
values from the sqli.csv:

CSV Data Set Config in JMeter

Security API and Fuzz Testing Chapter 5

[65]

Step 3 – apply the variable name
In our original JMeter script, we will replace the value of password to the defined variable
name ${password} as mentioned in the previous step:

Defined variables in HTTP request in JMeter

Security API and Fuzz Testing Chapter 5

[66]

Step 4 – specify the loop
Finally, we define the number of loops we would like to send to the HTTP requests with
the parameterized data. In our example, we define loop count as 10:

Thread group in JMeter

Step 5 – execute JMeter and review the security
assessment results
Follow the following command to execute the JMeter script with ZAP proxy
1270.0.1:8090:

$ Jmeter -n -t MyRequest.jmx -l testResult.jtl -H 127.0.0.1 -P 8090

Security API and Fuzz Testing Chapter 5

[67]

Under the OWAZP GUI console, the security assessment will be listed in the Alerts tab. In
this case, the SQL injection vulnerability was identified. If we review the Alerts in the ZAP,
we can see the Application Error Disclosure, which is also an indicator of error-based SQL
injection vulnerability. To view the alerts, we can also use the following commands to
output to the console or specified files:

CURL "http://localhost:8090/JSON/core/view/alerts" > LoginTesting.JSON

CURL "http://localhost:8090/HTML/core/view/alerts" > LoginTesting.HTML

The following diagram shows the Alerts after sending the SQL injection payloads to the
login API, especially the Application Error Disclosure parts:

Error disclosure in ZAP

In this case, we target the login API for the testing of SQL injection vulnerability. We apply
JMeter to read external FuzzDB resources for the SQL injection data input and define the
CSV data in JMeter for the parameterized testing of the password variable. Once the
various SQL injection data payloads were sent by JMeter through the ZAP proxy, we
review the security assessments in ZAP. Other security payloads, such as XSS, XXE, or
command injection, can also apply to the same login API for further testing. On the other
hand, we can use similar approaches to test other APIs.

Security API and Fuzz Testing Chapter 5

[68]

Case study 4 – security testing with ZAP
Open/SOAP API
Some web services may provide a list of REST or SOAP API interfaces. These API interfaces
are built for other application to do further integration or customization. The standard
response of the REST or SOAP APIs can be JSON or XML. ZAP can be installed with the
OpenAPI and SOAP API add-ons for the web API security testing. Take the PetStore API as
an example: https:/ ​/​petstore. ​swagger. ​io/ ​. In this case, ZAP can import the API
definition files and assess security issue for every API. This is the most effective way to
ensure that all the APIs are included in the ZAP scanning. Simply doing the spider
scanning in ZAP won't enable you to list all the API interfaces.

Step 1 – install the OpenAPI and SOAP API add-ons
To enable the API definition import features, ZAP will need to additionally install two add-
ons. Execute the following command in the console:

Zap -addoninstall soap -addoninstall openapi

If the installation is successful, the following command will be able to output the HTML
message in the console:

CURL "http://localhost:8090/UI/openapi/"

Step 2 – import the API definition
ZAP can import the API definition by a local file or URL Taking the PetStore API as an
example, we provide the URL for swagger.json in the CURL importUrl command
options. Please be aware that the following command should be in one line without any
line break, although it may look like two lines due to the layout formatting:

CURL
"http://localhost:8090/JSON/openapi/action/importUrl/?zapapiformat=JSON&for
mMethod=GET&url=https://petstore.swagger.io/v2/swagger.json&hostOverride="

https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/
https://petstore.swagger.io/

Security API and Fuzz Testing Chapter 5

[69]

It may take a while to import the APIs. Once it's done, you will see the API list in the ZAP
console as shown in the following diagram:

API security in ZAP

Alternatively, you can also import the API by browser using the following URL:

http://localhost:8090/UI/openapi/action/importUrl/

Step 3 – execute the active security scanning
 We can use ascan to do the active scanning for the PetStore website. Refer to the following
command:

CURL
“http://localhost:8090/JSON/ascan/action/scan/?zapapiformat=JSON&formMethod=
GET&url=https://petstore.swagger.io/&recurse=&inScopeOnly=&scanPolicyName=&
method=&postData=&contextId=”

Security API and Fuzz Testing Chapter 5

[70]

Step 4 – present the security assessments
Once the active scanning is done, view the alerts for the assessments results. It can be in
either JSON or HTML formats, as follows:

$ CURL "http://localhost:8090/JSON/core/view/alerts"
$ CURL "http://localhost:8090/HTML/core/view/alerts"

For the advanced user who would like to filter the output with specific URL, refer to the
following command:

$ CURL
"http://localhost:8090/JSON/core/view/alerts/?zapapiformat=JSON&formMethod=
GET&baseurl=https://petstore.swagger.io&start=&count=&riskId="

The following command will generate HTML format results:

$ CURL
"http://localhost:8090/HTML/core/view/alerts/?zapapiformat=HTML&formMethod=
GET&baseurl=https://petstore.swagger.io&start=&count=&riskId="

Summary
In this chapter, we discussed the security testing for API release. The API security testing
involved the data input, the requests, and the analysis of the responses. For the data input
parts, we suggested using FuzzDB and SecList. To send the API requests, we applied the
OWASP ZAP and JMeter in our case studies. For the security analysis of API responses, we
used OWASP ZAP.

Four hands-on case studies were demonstrated. They applied different techniques for the
API security testing scenarios. In addition, we also demonstrated how the testing tool
JMeter can be integrated with the security scanning tool ZAP to achieve the API security
testing:

Basic—web service testing with ZAP CLI
Intermediate—API testing with ZAP and JMeter
Advanced—parameterized security payload with fuzz
Security testing with ZAP OpenAPI/SOAP API

After having discussed API-level security testing, we will move on to the integrated
security testing of web applications in the next chapter.

Security API and Fuzz Testing Chapter 5

[71]

Questions
Which one of the followings is not used for security data payloads source?1.

FuzzDB1.
SecLists2.
CURL3.
Naughty Strings4.

Which one can be used to send HTTP requests?2.
JMeter1.
Python Requests2.
CURL3.
All of above4.

Which one of the ZAP-CLI commands can be used to trigger the security3.
assessments?

ZAP-CLI spider1.
ZAP-CLI quick-scan2.
ZAP-CLI active-scan3.
All of above4.

In JMeter, what element is used to read the CSV values?4.
CSV Data Set Config1.
HTTP Request2.
View Results Tree3.
Thread Group4.

What will the ZAP API do? 5.
View the testing results?1.
Trigger a testing2.
Spider a website3.

Security API and Fuzz Testing Chapter 5

[72]

Further reading
ASTRA API Security Testing: https:/ ​/​www. ​astra- ​security. ​info

API Security Checklist: https:/ ​/​github. ​com/ ​shieldfy/ ​API- ​Security-
Checklist

Python API Security testing by OpenStack Security: https:/ ​/ ​github. ​com/
openstack/ ​syntribos

Testing your API for Security in Python: https:/ ​/​github. ​com/ ​BBVA/ ​apitest

Online Vulnerable Web: http:/ ​/​website zero. ​webappsecurity. ​com

FuzzDB: https:/ ​/​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb

SecList: https:/ ​/ ​github. ​com/ ​danielmiessler/ ​SecLists

Web Security Fuzz Testing 0d1n: https:/ ​/​github. ​com/ ​CoolerVoid/ ​0d1n

https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://www.astra-security.info
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/shieldfy/API-Security-Checklist
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
https://github.com/BBVA/apitest
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
http://website%20zero.webappsecurity.com
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n
https://github.com/CoolerVoid/0d1n

6
Web Application Security

Testing
In this chapter, we will use an online shopping site, Hackazon, to demonstrate how to
achieve automated web security testing. The key challenge in automating web application
testing is walking through the UI business flow while doing a security inspection; for
example, using automated testing to look at user sign-in/sign-out, or to add items to
shopping carts while scanning for potential cross-site scripting (XSS) injection
vulnerabilities for every data input. Tackling this challenge requires not only security
scanning but also web UI automation. We will be using security tools, such as ZAP, and
also web UI automation frameworks, such as Selenium and Robot Framework. Using both
of these tools can effectively improve your security testing coverage. We will share some
tips and tools to make web automation easier.

In this chapter, we will cover the following topics:

Online shopping site for automated security inspection
Case 1—web security testing using the ZAP REST API
Case 2—full automation with CURL and the ZAP daemon
Case 3—automated security testing for the user registration flow using Selenium

Web Application Security Testing Chapter 6

[74]

Case study – online shopping site for
automated security inspection
We will be using the vulnerable website Hackazon to demonstrate automation security
testing techniques: http:/ ​/ ​hackazon. ​webscantest. ​com/ ​. We will be using three cases to
explore the testing scenario and automation techniques, which are listed in the following
table:

Case scenario Security testing objective Security automation
techniques

Case 1—web security testing using the ZAP
REST API General web security assessments

• ZAP active scanning mode
• Use of the ZAP REST API

Case 2—full automation with CURL and the
ZAP daemon

• Running ZAP in daemon mode
• Automating the ZAP REST API and
CURL

—

Case 3—automated security testing for the
user registration flow

Security assessments for the user
registration flow

• ZAP security assessments
with proxy mode
• Selenium web UI automation
• ZAP with CURL REST API
operations

Case 1 – web security testing using the ZAP
REST API
In this case, ZAP will be running in proxy mode with port 8090. Once ZAP is running, the
ZAP web console can be reached at http://localhost:8090/UI. The demo website is
the target website to be inspected by ZAP. We will use CURL to trigger the ZAP RESTful
API to operate ZAP to do spider scans, active scans, review alerts, and shut down ZAP:

ZAP API testing in proxy mode

http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/

Web Application Security Testing Chapter 6

[75]

Step 1 – spider scanning the website
The purpose of the spider scan is to discover all resources and URLs for the target website.
The spider visits these URLs and will try to identify all the hyperlinks in the responses. The
scanning process continues recursively whenever new URLs are identified. All identified
URLs can be used for further security inspection and active scans in the next step.

Sending the REST API request to ZAP will require the API key. To simplify the
implementation, we will disable the API key in our demonstration. The API key can be
disabled under the ZAP console menu, via Tools | Options | API | Disable the API Key
checkbox.

Here is the command to execute the spider scan by CURL:

$ curl
"http://localhost:8090/JSON/spider/action/scan/?zapapiformat=JSON&formMetho
d=GET&url=http://hackazon.webscantest.com&maxChildren=&recurse=&contextName
=&subtreeOnly="

To get further information for the HTTP GET request for the spider scan, we can use the
browser to visit the ZAP URL: http://localhost:8090/UI/. This provides an
explanatory API document and operations. For example, we can trigger the spider scan by
clicking on spider and scan (url maxChildren recurse contextName subtreeOnly).
This will navigate us to http://localhost:8090/UI/spider/view/scans/ (as
shown in the following diagram), where we can define some parameters and trigger the
scan. After the spider scan is triggered, the URL we get is the final URL (the HTTP GET
request) we need for the CURL automation.

Web Application Security Testing Chapter 6

[76]

The following diagram shows the spider scan UI operations in ZAP:

ZAP spider API

For Windows users, CURL can be downloaded here: https:/ ​/ ​curl. ​haxx. ​se/​windows/ ​.

The spider scan may take a long time since it will extensively and
recursively search for any potential web URLs and resources. Besides, the
time it takes also depends on the number of web pages, parameters, and
the number of threads. When it takes too long to complete, you may also
configure the spider scan options under Tools | Options | Spider, where
you may configure Maximum depth to crawl or Number of threads used.

Step 2 – active scanning the website
Once we have done the spider scan, the active scan will find the security vulnerabilities by
sending malicious requests, such as XSS or SQL injection, based on the scanning policies.

https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/

Web Application Security Testing Chapter 6

[77]

Here is the command to trigger the active scan with CURL:

$ curl
"http://localhost:8090/JSON/ascan/action/scan/?zapapiformat=JSON&formMethod
=GET&url=http://hackazon.webscantest.com&recurse=&inScopeOnly=&scanPolicyNa
me=&method=&postData=&contextId="

The URL of the active scan is http://localhost:8090/UI/ascan/action/scan/.

The key difference between the spider scan and the active scan is that the spider scan
involves passive scanning, which entails monitoring security issues such as missing
security headers, cross-site request forgery (CSRF) tokens and so on. On the other hand,
the active scan will send malicious requests such as XSS or SQL injection to attack the target
website. The spider scan will extensively search for web resources, and the active scan can
do specific security testing based on the scan policy. During execution, using the spider
scan to extensively explore the URLs and resources is the first step before triggering the
active scan, since it will help the active scan with known URLs to do the security scanning:

 Spider scan Active scan
Handling of
requests and
responses

It's a passive scan, which means it
monitors requests and responses for
the security issues.

As it's an active scan, it will send
malicious requests, such as XSS or
SQL injection.

Purpose
Explores the whole site and monitors
security issues. It's a preliminary step
for any further security scanning.

Sends malicious requests and
evaluates specific security issues
based on the identified URLs.

Step 3 – reviewing the status of the active scan
To review the status of the active scan, try one of the following commands. It will output
the percentage of completeness as a status value. Depending on the output format you
need, you may change JSON to HTML:

$ curl "http://localhost:8090/JSON/ascan/view/status/"

The following command will generate the active scan status in JSON format:

$ curl
"http://localhost:8090/JSON/ascan/view/status/?zapapiformat=JSON&formMethod
=GET&scanId="

Web Application Security Testing Chapter 6

[78]

Step 4 – reviewing the security assessments
To review the security assessments made by OWASP ZAP, we may use one of the REST
APIs, as follows:

$ CURL http://localhost:8090/HTML/core/view/alerts/

Alternatively, the HTML report can be generated by exporting to ZAP_Report.HTML via
the REST API, as follows:

$ curl
"http://127.0.0.1:8090/OTHER/core/other/htmlreport/?formMethod=GET" >
ZAP_Report.HTML

Case 2 – full automation with CURL and the
ZAP daemon
In this case study, we will further extend the case to execute ZAP in daemon (headless)
mode. We will automate the web security tests with OWASP ZAP in the following order for
a complete testing cycle:

Launch ZAP in daemon mode1.
Spider scan the whole website2.
Active scan all the scanned URLs3.
Check status and wait for the active scan to finish4.
Shut down the ZAP daemon5.

Step 1 – executing ZAP in daemon (headless)
mode
To launch ZAP in daemon mode, execute the following commands in the console.

For Windows, execute the following:

$ ZAP.bat -daemon

Web Application Security Testing Chapter 6

[79]

For Linux, execute the following:

$ ZAP.sh -daemon

For ZAP command-line options and usage, refer to https:/ ​/​github. ​com/​zaproxy/ ​zap-
core-​help/​wiki/​HelpCmdline.

Step 2 – checking the status of the ZAP daemon
In our testing environment, our ZAP proxy is configured using port 8090. The proxy port
can be configured from the ZAP GUI menu under Tools | Options | Local Proxies. Use the
following commands to check if it's running normally:

$ Curl http://localhost:8090/

Step 3 – fully automating the ZAP API
The whole scanning process can be fully automated in one script file. Here, we use the
Windows BAT script as an example. The fully automated ZAP security testing script for the
Hackazon website is named AutoZAP.BAT:

echo start the ZAP in daemon mode

ZAP.exe -daemon

echo the status of ZAP

CURL http://localhsot:8090

echo spider scan for the web site

CURL
"http://localhost:8090/JSON/spider/action/scan/?zapapiformat=JSON&formMetho
d=GET&url=http://hackazon.webscantest.com"

echo Active Scan for the website

CURL

https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline
https://github.com/zaproxy/zap-core-help/wiki/HelpCmdline

Web Application Security Testing Chapter 6

[80]

"http://localhost:8090/JSON/ascan/action/scan/?zapapiformat=JSON&formMethod
=GET&url=http://hackazon.webscantest.com&recurse=&inScopeOnly=&scanPolicyNa
me=&method=&postData=&contextId="

echo Wait for 20 sec to complete the ActiveScan before generating the
testing report

echo The timeout is for Windows command. For running in Linux, please
change it to sleep.

timeout 20

echo List the security assessments results (alerts), and output the report
to ZAP_Report.HTML

CURL "http://localhost:8090/JSON/ascan/view/status/"

CURL "http://localhost:8090/HTML/core/view/alerts/"

CURL "http://127.0.0.1:8090/OTHER/core/other/htmlreport/?formMethod=GET" >
ZAP_Report.HTML

echo shutdown the ZAP

CURL
“http://localhost:8090/JSON/core/action/shutdown/?zapapiformat=JSON&formMet
hod=GET”

Case 3 – automated security testing for the
user registration flow with Selenium
In the previous demo, we used ZAP to do a spider scan and an active scan. The purpose of
the spider scan is to explore all potential URLs and web resources. However, there are
some web resources that will require manual guidance, such as authenticated resources,
user registration, or the shopping business flows.

Web Application Security Testing Chapter 6

[81]

Therefore, we will need a web UI automation framework, such as Selenium, to guide ZAP
through some of the web pages. A testing team who may previously finish the functional
automation testing, it's suggested to apply the web security scanner, OWASP ZAP, in proxy
mode to reuse the existing automation testing.

In this case study, we use the user registration flow as an example to demonstrate how to
apply a Selenium automation framework and ZAP for web security automation testing.

We inspect security issues for the new user registration flow for the vulnerable shopping
site at http:/​/​hackazon. ​webscantest. ​com/ ​. The sign-up flow, Sign Up | New User, is as
follows. The Selenium automation framework will do the following steps:

Visit the home page1.
Click Sign Up | New User2.
Input the First Name, Last Name, Username, Email Address, Password, and3.
Confirm Password values, and then click Register

During the automated user registration execution by Selenium, we will launch ZAP as a
proxy to monitor the security issues:

Sign Up in NodeGoat

http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/

Web Application Security Testing Chapter 6

[82]

To complete the automated security testing scenario, we will use SeleniumBase to launch
the browser and simulate user behavior to guide ZAP through the registration flow, as
shown in the following diagram:

Selenium and ZAP security testing

Step 1 – installation of SeleniumBase
Prepare the environment, to have the Python and pip setup tools ready. Refer to Http:/ ​/
seleniumbase.​com for the installation of SeleniumBase, which is a wrapper of Selenium to
make the implementation much easier:

$ git clone https://github.com/seleniumbase/SeleniumBase.git
$ pip install -U -r requirements.txt
$ python setup.py install

In addition, Selenium will require the related browser driver to be installed, as follows:

$ seleniumbase install chromedriver

Step 2 – launching ZAP with proxy 8090
Execute the following command to launch the ZAP on port 8090:

$ ZAP -port 8090

http://seleniumbase.com
http://seleniumbase.com
http://seleniumbase.com
http://seleniumbase.com
http://seleniumbase.com
http://seleniumbase.com

Web Application Security Testing Chapter 6

[83]

Step 3 – executing the user registration flow
automation
The following command will help us to execute the SeleniumBase script and launch the
Chrome browser with the local proxy to the running ZAP:

$ pytest userregistration_SB.py --browser=chrome --
proxy=127.0.0.1:8090

Here is the script for userregistration_SB.py. Please be reminded that the script can
only be executed by SeleniumBase, instead of Selenium.

For readers who may not be familiar with Selenium scripts, it's suggested to use the
Katalon/Selenium IDE, which is a tool that allows you to record website operations and
generate the script automatically. It can be installed as a Chrome or Firefox extension. In
our case, we use the Katalon/Selenium IDE for the user registration flow and export in the
Python 2 (WebDriver + unittest) format. Then, we use the seleniumbase covert
UserRegistration.py command to get the following script:

-*- coding: utf-8 -*-

from seleniumbase import BaseCase
class UserRegistration(BaseCase):

 def test_user_registration(self):
 self.open('http://hackazon.webscantest.com/')
 self.click("link=Sign In / Sign Up")
 self.click('#username')
 self.click("link=New user?")
 self.click('#first_name')
 self.update_text('#first_name', 'FirstName')
 self.update_text('#last_name', 'LastName')
 self.update_text('#username', 'UserName1')
 self.update_text('#email', 'abc@a.com')
 self.update_text('#password', 'pass1234')
 self.update_text('#password_confirmation', 'pass1234')
 self.click("//input[@value='Register']")

Step 4 – active scanning the identified URLs
After the user registration UI flow walkthrough, ZAP will be able to identify more URLs.

Web Application Security Testing Chapter 6

[84]

The active scan will be able to explore more security based on the newly identified URLs, as
follows:

$ CURL
"http://localhost:8090/JSON/ascan/action/scan/?zapapiformat=JSON&formMethod
=GET&url=http://hackazon.webscantest.com&recurse=&inScopeOnly=&scanPolicyNa
me=&method=&postData=&contextId="

Step 5 – reviewing the security assessments
Once the automation execution is done, we may execute the following command to review
the security assessments made by ZAP. The following RESTful API will generate the report
in JSON format:

$ CURL "http://localhost:8090/JSON/core/view/alerts"

The following RESTful API will generate the report in HTML format:

$ CURL "http://localhost:8090/HTML/core/view/alerts"

If all these steps work, we may integrate all the commands into one script for further
automation execution. Here is the summary of all the automation commands in one BAT
script file, "Auto_ZAP_UserRegistration.BAT". Be reminded that we add a Windows
timeout command to wait for the finish of the UI automation; UserRegisterResult.html
will be the final security testing results.

Execute the BAT script, "Auto_ZAP_UserRegistration.BAT" on Windows:

$ ZAP -port 8090

$ pytest UserRegistration.py --browser=chrome --proxy=127.0.0.1:8090

$ timeout /T 30

$ CURL
"http://localhost:8090/JSON/ascan/action/scan/?zapapiformat=JSON&formMethod
=GET&url=http://hackazon.webscantest.com&recurse=&inScopeOnly=&scanPolicyNa
me=&method=&postData=&contextId="

$ timeout /T 30

$ Curl “http://localhost:8090/HTML/core/view/alerts” >
UserRegisterResult.html

Web Application Security Testing Chapter 6

[85]

Summary
In this chapter, we used an online shopping platform to perform web security testing using
ZAP. Two main approaches were introduced. The first was using ZAP for web security
scanning, which was automated by a REST API or CLI. The other approach was the
integration of ZAP and Selenium to review security issues during the user registration
flow. Let's review the key learning objectives of each case.

The purpose of case 1 was to demonstrate how to automate the ZAP spider scan by using a
REST API and CURL.

The objective of case 2 was to run ZAP in daemon mode and to execute a full security scan
cycle in one script. The automation steps of ZAP scanning include the following:

Launch ZAP in daemon mode1.
Spider scan the whole website2.
Active scan all the scanned URLs3.
Check status and wait for the active scan to finish4.
Shut down the ZAP daemon5.

Case 3 looked at automated security testing for the user registration flow, showing how
ZAP and Selenium can be integrated. We used Selenium to guide ZAP for the registration
UI flow.

These three cases demonstrated different automation approaches to web security
scanning. In the next chapter, we will discuss different automation approaches to Android
security testing.

Questions
What's the typical order of a ZAP scan?1.

Spider scan → Active scan → Alerts → Shutdown1.
Active Scan → Spider Scan → Alerts → Shutdown2.
Active scan → Alerts → Shutdown3.

In ZAP, what's the key difference between a spider scan and an active scan?2.
A spider scan involves monitoring security issues in passive mode1.
An active scan will send malicious requests2.
An active scan does specific security testing based on the scan policy3.
All of the above4.

Web Application Security Testing Chapter 6

[86]

Which automation framework cannot be used to automate the user registration3.
flow?

Selenium1.
SeleniumBase2.
All of the above3.

What can be required to execute the user registration flow automation?4.
Selenium1.
Selenium ChromeDriver2.
All of the above3.

Further reading
ZAPping the Top 10: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​ZAPpingTheTop10

SeleniumBase: https:/ ​/​github. ​com/ ​seleniumbase/ ​SeleniumBase

Katalon Automation Recorder: https:/ ​/​www. ​katalon. ​com/ ​resources- ​center/
blog/​katalon- ​automation- ​recorder/ ​

ZAP Blog: http:/ ​/​zaproxy. ​blogspot. ​com/ ​

ZAP Proxy: https:/ ​/ ​github. ​com/ ​zaproxy

https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://www.owasp.org/index.php/ZAPpingTheTop10
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
http://zaproxy.blogspot.com/
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/zaproxy

7
Android Security Testing

It's common practice to perform security checks before every Android application release.
However, it can be a challenge for frequent and an increasing number of releases. The
automated security testing process for an Android mobile application requires the
submission of APK (Android Application Package) binaries, reversing the APK for secure
source code inspection, manifesting a configuration check, and generating a testing result.
We will also introduce mobile security-related practices, such as OWASP (Open Web
Application Security Project) mobile security testing, and Android secure coding practices.

The following topics will be covered in this chapter:

Android security review best practices
Secure source code review patterns for Android
Privacy and sensitive information review
General process of APK security analysis
Static secure code scanning with QARK
Automated security scanning with MobSF

Android security review best practices
Android application development is primarily based on Java. The MITRE Java secure
coding rules still apply to the Android security review. In addition, the Android application
includes some unique building components that may introduce new security issues, such as
Android manifest configurations, intents, activity, broadcast, content provider, and
services:

Android application secure design / secure coding guidebook by JSSEC
Android developers documentation—app security best practices
OWASP mobile security testing guide

Android Security Testing Chapter 7

[88]

For common security issues of APK, the App Security Improvement program of the Google
Android developers provides the most recent security issues and the remediation advice,
such as path traversal, insecure hostname verification, and fragment injection. It's also a
good reference when the APK is submitted to Google Play.

In the coming sections, we will mainly demonstrate four kinds of security and privacy
scanning of a mobile application, which are listed in the following table:

Scanning approach Automated tools Description

Secure code
scanning Fireline

Static Java source code scanning. It's a light-weight
secure code scanning tools, but it may require the
Java source and the reverse of APK.

Privacy and
sensitive
information scan

Androwarn

It's focused on privacy and sensitive information
scanning of any given APK. Static analysis of the
application's Dalvik bytecode, represented as Smali
for PII and sensitive information leakage or
exfiltration such as telephony identifiers,
geolocation information leakage, audio/video flow
interception, and so on.

Light-weight all in
one APK security
scanning

QARK
(Quick android
review kit)

It's a Python program that can do automatic
security scanning of any given APK.

All in one security
scanning

Mobile Security
Framework
(MobSF)

The MobSF is similar to QARK (Quick Android
Review Kit). In addition, MobSF supports Android,
Windows, and iOS applications. It not only does
the static security analysis, but also the dynamic
runtime behavior analysis.

Secure source code review patterns for
Android
The Java secure code review techniques and tools in the previous chapters still apply to the
Android application. The secure Java coding is fundamental to the Android security
review. On top of that, there are specific secure code review techniques for the Android
application.

Android Security Testing Chapter 7

[89]

The following table summarizes the keywords and patterns for potential security issues we
need to focus on:

Security inspection
focuses Related high-risk APIs and keywords

SQL injection rawQuery | execSQL | database | .sqlite | SQLiteDatabase

Insecure SSL
handling

ALLOW_ALL_HOST_VERIFIER | NullHostnameVerifier
SSLCertificateSocketFactory | SSLSocketFactory
setDefaultHostnameVerifier
WebViewClient.onReceivedSsLError

Command injection getRuntime | ClassLoader

WebView for XSS

Android.webkit | setJavaScriptEnabled |
addJavascriptInterface |
setWebContentsDebuggingEnabled(true)

loadData | postURL

Insecure files I/O
access

MODE_WORLD_READABLE | MODE_WORLD_WRITTABLE
OpenFileOutput | openORCreateDatabase
file:// | getSharedPreferences | getExternal

Insecure
communication

.netURL | openSteam | netJarURL |
HttpURL |HttpRqeuest | HttpsURL

The 'OWASP Mobile App security Testing' guide provides a good
reference for both static and dynamic security anlaysis techniques and
tools. It includes both Android and iOS security testing guide.

Privacy and sensitive information review
The mobile app is installed on the personal phone, therefore, it's more sensitive if the
application will can personal information on the phone or abuse the phone services.
Whenever the privacy information is handled, we will have to review the purpose and the
needs.

Android Security Testing Chapter 7

[90]

The following table summarizes the techniques of identifying the privacy information
access behaviors:

Category of
privacy check Example of Android API calls

Telephony
identifiers

Uses of APIs under the TelephonyManager will allow the application to
read telephony services and state which may leak sensitive information,
such as IMEI, SIM serial number, and cell ID. The examples of APIs
(methods) under the TelephonyManager are getCellLocation(),
getDeviceId(), getLine1Number(), getNeworkOperator(),
getSimSerialNumber().

Audio/video
interception

There are two primary APIs used to do the audio and video recordings,
which are all under the MediaRecorder class. The
setAudioSource defines the audio sources for recording, and the
SetVideoSource configures the source for video recording.

Suspicious
backdoor
connection

The class ConnectivityManager can be used to query the state of
network connectivity. In addition, the uses of
WifiConfiguration.toString can be an indicator of reading WiFi
credentials.
The use of Socket can be a potential backdoor connection to a remote IP
address and port:
• ServerSocket
• Connect
• DatagramSocket

Abuses of
phone calls and
SMS

The following may be an indicator of making phone call or SMS:
• Android.provider.Telephony.SMS_RECEIVED (defined in
AndroidManifest.xml)
• SmsManager.sendTextMessage
• android.intent.action.CALL
• android.intent.action.DIAL

Data leakage

The privacy data on the phone can be contacts and SMS. The following
APIs are indicators of reading the data:
• ContactsContract.CommonDataKinds
• "content://sms/inbox"

Root behaviors

The application is detecting the rooted device or super user privilege:
• superuser, supersu, noshufou
• isDeviceRooted
• /system/bin/su, /system/xbin/su
• RootTools.isAccessGiven

Android Security Testing Chapter 7

[91]

Privacy scanning with Androwarn
To automate the privacy scanning with APK, we can use the tool Androwarn which is a
Python script to do the privacy information scanning.

Step 1 – scanning of an APK
The execution of Androwarn takes some parameters, such as the APK, the report format,
the level of verbosity, and the lookup to Google Play. The Google Play lookup is
recommended to be disabled if the testing environment can't connect to the internet, as
follows:

$ python androwarn.py -i ./SampleApplication/bin/SampleApplication.apk -r
html -v 3 -n

For detailed usage of Androwarn, refer to python androwarn.py -h

Step 2 – review the report
If you have specified the HTML report output in the previous step, then the report will be
generated under the /androwarn/Report, as follows:

Information Leakage in Androwarn report

Android Security Testing Chapter 7

[92]

General process of APK security analysis
The security analysis of an Android application normally requires a certain reverse
engineering process. The APK is a compressed file. The first step would be to get the APK
uncompressed and reverse it into DEX bytecode or Smali resource files. These can be seen
as Android intermediate resource files. Then, the DEX can further be reversed into Java
class in order to get the Java source code. The following diagram shows the process and
related tools we will demonstrate in the coming section:

Reverse engineering of an APK

This is a list of the tools for the reverse engineering of APK and security analysis:

Tools Usage in security testing

apktool_2.1.0.jar
The APKTool is used to reverse the APK file into Smali, resource
files and also extract the manifest.xml

JADX It's used to reverse the APK file into Java source code

fireline_1.5.6.jar
It's used to do static secure code scanning based on resource, and
Java source codes

goatdroid.apk It's the vulnerable sample APK

Android Security Testing Chapter 7

[93]

Here is how we place these tools in the folder for the purposes of the coming
demonstration:

Folder structure of the testing environment
\jadx
\APKscan
+------ apktool_2.1.0.jar
+------- fireline_1.5.6.jar
+------- goatdroid.apk
+-------\JavaSource1
+-------\JavaSource2
+-------\Output

Step 1 – use APKTool to reverse the APK to
Manifest.xml, Smali and resources
The purpose of this step is to generate the Smali, resource files, and manifest.xml for
initial security analysis. There are some security issues that can be identified by these file
types, such as sensitive information exposure and incorrect permission settings, as follows:

$ Java –jar apktool_2.1.0.jar d goatdroid.apk -o JavaSource1 -f

Step 2 – use JADX to reverse the APK into Java
source code
This will reverse the APK into Java source code. Then, we can do static secure code
scanning in the next setup, as follows:

$ Jadx goatdroid.apk -d d:\JavaSource2

Step 3 – use Fireline to scan all the Java source
files
Finally, we use Fireline to scan all the resource files, manifest and Java source code for
security issue, as follows:

$ Java -jar fireline_1.5.6.jar -s d:\JavaSource –r d:\Output

Android Security Testing Chapter 7

[94]

Step 4 – review the scanning results
The scanning report of the Fireline will be generated under the d:\Output:

Fireline scanning report

Static secure code scanning with QARK
QARK (Quick Android Review Kit) is a Python security scanner to identify Android
application vulnerabilities. QARK can take APK or Java as source input, and do the reverse
engineering automatically for further security analysis. It's easy to install and use. We will
be using the QARK to analyze the goatdroid.apk in the following steps.

Step 1 – install QARK
The installation can be easily done by python PIP, as follows:

$ pip install qark

Step 2 – APK scanning with QARK
To scan the APK, execute the python script qarkMain.py with parameters, as follows:

$ python qarkMain.py -p qark/sampleApp/goatdroid/goatdroid.apk --source=1

For detailed usage of the qarkMain, refer to the python qarkMain.py -h.

Android Security Testing Chapter 7

[95]

Step 3 – review the results
The report will be generated under the /qark/report/report.html. The following
screenshot shows the scanning report of the goatdroid.apk:

QARK scanning report

Automated security scanning with MobSF
The mobile Security Framework (MobSF) provides security analysis for the iOS,
Windows, and Android applications. It can also do dynamic analysis based on runtime
behaviors of the application. The MobSF provides an easy to use UI for users to drag and
drop the mobile applications for analysis and also includes rest API interface to do further
CI/CD integration with your automation framework. In our demonstration, we will show
how to use MobSF API to analyze a sample vulnerable Android application,
goatdroid.apk.

Step 1 – set up the MobSF
The easiest way to set up the MobSF is by using docker. The following setup will enable the
MobSF running with 8000 port. Once the setup is ready, the MobSF management console
can be visited by using a browser with the URL, http://127.0.0.1:8000/, as follows:

$ docker pull opensecurity/mobile-security-framework-mobsfdocker run -it -p
8000:8000 opensecurity/mobile-security-framework-mobsf:latest

Android Security Testing Chapter 7

[96]

Step 2 – upload the APK by REST API
In this step, we will use the REST API /api/v1/upload to upload the APK to the MobSF.
For the value of the API Key, and usage of each rest API, refer to
http://localhost:8000/api_docs. In our MobSF, the API key is
563d64fc5054d3b239ac0419f1d6b2378465f5c80e1778c283eb1e3265bdd7ae:

$ curl -F 'file=@goatdroid.apk' http://localhost:8000/api/v1/upload -H
"Authorization:563d64fc5054d3b239ac0419f1d6b2378465f5c80e1778c283eb1e3265bd
d7ae"

To review if the upload is successful, you may use the browser to view the URL,
http://127.0.0.1:8000/recent_scans.

Step 3 – scan the APK
To scan the APK, use the API /api/v1/scan. It needs to provide the following parameters,
file_name, MD5 hash value of the APK, and the API key:

$ curl -X POST --url http://localhost:8000/api/v1/scan --data
"scan_type=apk&file_name= goatdroid.apk&hash=
969bac4cb8392ceb79b5e60f310e480b" -H
"Authorization:563d64fc5054d3b239ac0419f1d6b2378465f5c80e1778c283eb1e3265bd
d7ae"

Step 4 – download the report
The API api/v1/download_pdf is used to generate a PDF file of the scanning results. It
requires the MD5 hash value of the APK, and API key. We also specify the filename as
MobSFTest.pdf in our example:

$ curl -X POST --url http://localhost:8000/api/v1/download_pdf --data
"hash=969bac4cb8392ceb79b5e60f310e480b&scan_type=apk" -H
"Authorization:563d64fc5054d3b239ac0419f1d6b2378465f5c80e1778c283eb1e3265bd
d7ae" > MobSFTest.pdf

Android Security Testing Chapter 7

[97]

The following screenshot shows parts of the scanning report in MobSFTest.pdf:

Scanning report of MobSF

Summary
In this chapter, we introduced secure Android development practices, such as secure
coding guidebook, security best practices, and the OWASP mobile security testing guide.
Based on these secure implementation and testing practices, we also illustrated some
automated scanning tools. The Fireline is used to scan the Java source code for security
issues. The Androwarn is specific for privacy and sensitive information scan. The QARK
and MobSF are the integrated Android security scan frameworks that can do the reverse of
APK and secure code scanning.

We also illustrated the secure code review patterns for Android applications. There are
some high-risk APIs that may result in serious security issues. We categorized the security
issues into SQL injection, insecure SSL handling, command injection, webview XSS,
insecure files I/O, and the insecure communication. In addition, we also listed the API calls
that related to privacy, such as telephony identifiers, audio interception, potential backdoor
connection, abuse of phone call, data leakage, and root behaviors.

Android Security Testing Chapter 7

[98]

To automate these security and privacy security reviews, we apply different tools based on
the scenario. We use Fireline for the secure code scanning, but it will require the Java source
code. Androwarn is used to do privacy scanning for any APK files. We used QARK to do
the automated APK static security scanning. Finally, the MobSF is introduced for Windows,
iOS, and Android applications security review. MobSF can also do the dynamic security
scanning. The operations of MobSF can be automated by restful API was also
demonstrated.

In the next chapter, we will discuss the infrastructure security for system hardening, secure
communication and configurations.

Questions
Which one of the following is not for Android security?1.

Fireline1.
Androwarn2.
QARK3.
NMAP4.

Which of the following is not for the review of potential SQL injection?2.
execSQL1.
NullHostnameVerifier2.
sqlite3.
database4.

Which of the following is related for the SSL secure communication3.
setDefaultHostnameVerifier1.
SSLCertificateSocketFactory2.
ALLOW_ALL_HOST_VERIFIER3.
All of above4.

For the review of privacy information access, which Android API is not related to4.
telephony identifiers?

getDeviceId1.
getNeworkOperator2.
setAudioSource3.
getSimSerialNumber4.

Android Security Testing Chapter 7

[99]

Which one of the tools can not do Android reverse engineering?5.
APKTool1.
JADX2.
Fireline3.
QARK4.

Further reading
Fireline Android static analysis: http:/ ​/​magic. ​360. ​cn/ ​en/​index. ​html

Android privacy scan (Androwarn): https:/ ​/ ​github. ​com/ ​maaaaz/ ​androwarn/ ​

Mobile Security Framework (MobSF): https:/ ​/​github. ​com/ ​MobSF/ ​Mobile-
Security- ​Framework- ​MobSF/ ​wiki/ ​1. ​-​documentation

Quick Android review kit: https:/ ​/​github. ​com/ ​linkedin/ ​qark/ ​

AndroBugs framework: https:/ ​/​github. ​com/ ​AndroBugs/ ​AndroBugs_ ​Framework

OWASP mobile testing guide: https:/ ​/​legacy. ​gitbook. ​com/ ​book/ ​sushi2k/
the-​owasp- ​mobile- ​security- ​testing- ​guide

JADX: https:/ ​/​github. ​com/ ​skylot/ ​jadx

DEX2JAR: https:/ ​/​github. ​com/ ​pxb1988/ ​dex2jar

Android Cuckoo Sandbox: http:/ ​/​cuckoo- ​droid. ​readthedocs. ​io/ ​en/​latest/ ​

Vulnerable APK—GoatDroid.APK: https:/ ​/​github. ​com/ ​linkedin/ ​qark/ ​blob/
master/​tests/ ​goatdroid. ​apk

Vulnerable APK—InSecureBankv2.APK: https:/ ​/​github. ​com/​dineshshetty/
Android- ​InsecureBankv2

Android APK Scan: https:/ ​/​github. ​com/ ​itsmenaga/ ​apkscan/ ​blob/ ​master/
apkscan. ​py

Android Static Code Analyzer: https:/ ​/​github. ​com/ ​vincentcox/ ​StaCoAn

Android Security 2017 Year in Review: https:/ ​/​source. ​android. ​com/
security/ ​reports/ ​Google_ ​Android_ ​Security_ ​2017_ ​Report_ ​Final. ​pdf

Google App security improvement program: https:/ ​/ ​developer. ​android. ​com/
google/​play/ ​asi

Mobile Security Framework API docs: https:/ ​/​github. ​com/​MobSF/ ​Mobile-
Security- ​Framework- ​MobSF/ ​wiki/ ​3. ​-​REST- ​API- ​Documentation

http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
http://magic.360.cn/en/index.html
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-documentation
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://legacy.gitbook.com/book/sushi2k/the-owasp-mobile-security-testing-guide
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
http://cuckoo-droid.readthedocs.io/en/latest/
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/linkedin/qark/blob/master/tests/goatdroid.apk
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/itsmenaga/apkscan/blob/master/apkscan.py
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://github.com/vincentcox/StaCoAn
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/3.-REST-API-Documentation

8
Infrastructure Security

The Android security was discussed in the previous chapter, and this chapter will focus on
the infrastructure and platform security. For a PaaS platform or even SaaS service
providers, the fundamental security requirement is to ensure that the infrastructure is
secure. Therefore, the security operations team will need to do regular scanning on the
infrastructure to ensure security configurations for security compliance. The infrastructure
security includes the secure configuration with web services, database and OS, the secure
communication protocol such as TLS v1.2, and the uses of secure versions of third-party
components and dependencies. We will illustrate how to set up your own automated
scanning framework to run these regular secure configuration inspections.

The topics to be covered in this chapter are as follows:

The scope of infrastructure security
Secure configuration best practices
Network security assessments with Nmap
CVE vulnerability scanning
HTTPS security check with SSLyze
Behavior driven security automation—Gauntlt

Infrastructure Security Chapter 8

[101]

The scope of infrastructure security
The scope of infrastructure or platform security covers the operating system, virtualization,
docker, web services, database, and secure communication.

The review of infrastructure security includes identifying the known vulnerable
components, secure configurations, and secure communication protocols:

Infrastructure/platform
security Description Open source tools and resources

Known vulnerable
components

The known vulnerable CVE component is
one of OWASP top 10 threats. If a
component is exploited, the application
can be vulnerable for remote injection or
data leakage security risks.

• OpenVAS
• NMAP
• OWASP Dependency Check
• RetireJS

Secure configuration

The secure configuration is to ensure the
OS, Web, virtualization, and
databases are configured securely such as
password complexity, removal of default
settings, or disable unnecessary services.

• OpenSCAP
• CIS benchmarks
• STIG

Insecure network
communication

The followings secure
communication protocol versions
should be used:
• SFTP instead of FTP
• TLS 1.2 instead of HTTP, SSL, and TLS 1.1
• SNMP V3 instead of v1/v2
• SSH v2 instead of SSH v1 or Telnet

• NMAP
• SSLyze

Secure configuration best practices
There are some industry security practices we can refer to for the secure configuration of
the infrastructure. Here we will introduce three practices: the Center for Internet Security
benchmarks, Security Technical Implementation Guides (STIGs), and the OpenSCAP
Security Guide.

Infrastructure Security Chapter 8

[102]

CIS (Center for Internet Security) benchmarks
The Center for Internet Security (CIS) benchmarks provides a wide range of secure
configuration recommendations. It covers the following areas:

Desktops and web browsers
Mobile devices
Network devices
Security metrics
Servers—operating systems
Servers—other
Virtualization platforms and cloud

In addition to providing secure configuration, the CIS also provides some tools for secure
configuration scanning.

For information, refer to https:/ ​/ ​learn. ​cisecurity. ​org/ ​benchmarks.

Security technical implementation guides (STIGs)
The STIGs provide more application-specific secure configuration suggestions. However,
the STIG security guides are in XML format. To view the STIGs, you needs to download a
STIG Viewer, which is a Java JAR. Follow the following steps to view the Ubuntu STIG:

Download the STIG Viewer from the URL. https:/ ​/​iase. ​disa. ​mil/ ​stigs/1.
pages/​stig- ​viewing- ​guidance. ​aspx

Unzip the file and click the STIGViewer-2.8.jar to open the viewer2.
Download the Ubuntu STIG from the https:/ ​/​iase. ​disa. ​mil/ ​stigs/ ​os/​unix-3.
linux/​Pages/ ​index. ​aspx

Unzip to get the file, U_Canonical_Ubuntu_16-04_LTS_STIG_V1R1_Manual-4.
xccdf.xml

Use the STIG Viewer to load the XML by the menu File | Import STIG5.

https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://learn.cisecurity.org/benchmarks
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/pages/stig-viewing-guidance.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
https://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx

Infrastructure Security Chapter 8

[103]

The following screenshot shows the results of importing the Ubuntu profile in the STIG
Viewer:

STIG viewer

OpenSCAP security guide
The OpenSCAP is mainly focused on OS secure configuration guides that can be found
at https:/​/​static. ​open- ​scap. ​org/ ​. In addition, OpenSCAP also provides several kinds of
scanning tools to check the configurations, such as OpenSCAP Base, SCAP Workbench, and
OpenSCAP Daemon. We will demonstrate the uses of SCAP Workbench in the following
section:

https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/
https://static.open-scap.org/

Infrastructure Security Chapter 8

[104]

SCAP security guides

Step 1 – installation of SCAP workbench
SCAP Workbench is one of secure configuration scanning tool that provides the GUI to do
remote scanning. The SCAP Workbench tool can be downloaded here https:/ ​/​github.
com/​OpenSCAP/​scap- ​workbench/ ​releases.

In our demonstration, we download the Windows version MSI installer for remote SSH to
scan target Linux secure configurations.

Step 2 – OpenSCAP security guide
Once the package MSI installer scap-workbench-1.1.5-1.msi is downloaded and
installed, launch the scap-workbench.exe. It will ask you to load a security profile. We
selected RHEL7 in our example. You may specify the SSH host to do the scanning.

https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases
https://github.com/OpenSCAP/scap-workbench/releases

Infrastructure Security Chapter 8

[105]

The following screenshot shows how SCAP works:

SCAP Workbench

Network security assessments with Nmap
Network Mapper (Nmap) is an open source network security scanning tool. It's widely
used to do host, services, port system security audits, and also the SSL vulnerability.
Identifying all the hosts, services, protocols, and communication ports on the network is the
first step for network security assessment.

The installation of Nmap will depend on the OS.

Infrastructure Security Chapter 8

[106]

The common network security assessment scenario and Nmap commands are listed in the
following table:

Common network security assessments
scenarios Nmap command

Fast scan for listening ports nmap -F --open -Pn

Scan for any missing HTTP security
headers such as XSS-Protection

nmap -p80 --script
http-security-headers -Pn

DOS attack with HTTPS Slowloris
nmap -p80,443 --script
http-slowloris --max-parallelism 500 -
Pn

Scanning for all TCP listening ports nmap -p1-65535 --open-Pn

Scanning for all UDP listening ports nmap -p1-65535 -sU --open-Pn

Scanning for common ports
Nmap -p21, 23,80, 137,138,
443, 445, 1433, 3306, 1521, 3389 --
open pPn

Nmap usage tips
Nmap usage tips. To improve the scanning accuracy, here are some of the
recommendations for the Nmap command execution:

When the result is no-response, it may happen under the heavy load or high-
delay network environment. If you are sure a specific port is listening but the
result returns no-response. It's suggested to add the delay time by using -
scan_delay <time>.
If the scanning result is open|filtered, it can be concluded that the port is
open or closed. It only means there may be proxy or firewall in between the
target scan port.
Nmap can be extended by using Nmap Scripting Engine (NSE) to do other
security testing, such as SSL checks, XXS, and even SQL injection scans.

Nmap can also be extended to do CVE vulnerability scanning. For example, we can use the
Vulscan module that enables Nmap to query offline vulnerability database after the
service identification scanning.

In addition to Nmap, MASScan and ZMAP are alternative tools to consider. In terms of
network port scanning, scanning with MASScan can have a quick result in a short time.

Infrastructure Security Chapter 8

[107]

CVE vulnerability scanning
The known vulnerability scan is to identify the known CVE of the modules, libraries,
source code, add-ons, services, and applications used in the infrastructure. To archive these
kinds of scanning, we will introduce two main different approaches. The OWASP
dependency check is a local scan of files to identify the vulnerabilities. This type of
scan approach can be more accurate than a network scan. However, if the local scan of files
is not feasible, we will use the network scan Nmap instead. Here is the summary of these
two scan approaches:

OWASP dependency check NMAP-VulScan

Approaches Package properties, such
as libraries, filename

Network communications, such as port
and protocol versions

Vulnerability database
query CVE, NVD Data Feeds CVE, OSVDB, ExploitDB, and so on

Local/remote scan A local scan of files and packages Remote scan over the network

The following diagram shows two different scan approaches to identify known
vulnerabilities. The NMAP-VulScan is using network scan approach and the OWASP
dependency check is to scan local files properties:

NMAP-VulScan and OWASP dependency check for vulnerabilities scan

Infrastructure Security Chapter 8

[108]

Known vulnerable components scan by VulScan
Follow the following steps to install the NMAP VulScan and do the scanning.

Step 1 – installation of VulScan
The installation of VulScan is mainly the NMAP script file vulscan.nse and also other
known vulnerable database CSV files. We may use git clone command to download all we
need. Once these files are downloaded, copy those files to the installed Nmap folders,
Nmap\scripts\vulscan*:

git clone https://github.com/scipag/vulscan.git

Step 2 – NMAP scanning with VulScan
To do the NMAP scanning with the vulscan.nse script on the target
zero.webappsecurity.com, we may execute the following command line:

$ nmap -sV --script==vulscan.nse zero.webappsecurity.com

Known vulnerable components scan by OWASP
dependency check
Here we demonstrate the uses of the command line version of OWASP dependency check
for local files scanning.

Step 1 – installation of OWASP dependency check
The OWASP dependency check provides JAR, which can be executed under command line.
It also provides Marven, Gradle, and Jenkins plugins. In our example, to reduce any
required dependencies, we will use the command-line version for the demonstration.
Download the ZIP file and unzip it, as follows:

https:/​/​www.​owasp. ​org/ ​index. ​php/ ​OWASP_ ​Dependency_ ​Check.

http://zero.webappsecurity.com
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check

Infrastructure Security Chapter 8

[109]

Step 2 – CVE scanning with OWASP dependency check
After unzipping the command line version, the BAT or SH to execute the dependency check
will be under the following folder:

\dependency-check\bin\dependency-check.bat

\dependency-check\bin\dependency-check.sh

In our demonstration, we specify to scan the d:\tools\Jmeter5, and output the testing
report under existing folder which will be \dependency-check\bin, as follows:

> dependency-check.bat --project Testing --out . --scan
d:\tools\Jmeter5

 For other uses of the command line, refer to https:/ ​/​github. ​com/ ​jeremylong/
DependencyCheck.

The following screenshot shows the execution results of executing the listed command:

Dependency check execution

Once the scanning is done, you may find the dependency-check-report.html under
the \dependency-check\bin.

https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck

Infrastructure Security Chapter 8

[110]

Here is the sample of dependency check output HTML report:

Dependency Check Report

In addition to security vulnerabilities issues, the uses of open source also
need to pay attention to the license types and restrictions such as GPL or
LGPL. The suggested open source tools that can do the license scanning
are: Askalono, Licensee, LiD, and ScanCode.

HTTPS security check with SSLyze
It's common to apply HTTPS for web service security. The HTTPS requires proper security
configuration to ensure secure communication. The common security issues can be weak
cipher suites, insecure renegotiation, Heartbleed attack, invalid certificates, and insecure
protocols, such as SSL v3, TLS 1.1. (TLS v1.3 is the latest secure communication protocol at
the time of the writing.)

Infrastructure Security Chapter 8

[111]

The following table lists common HTTPS security testing scenario and the uses of SSLyze:

HTTPS security testing scenarios SSLyze command options
Check for Heartbleed vulnerability Sslyze --heartbleed

Check for certificate validation Sslyze --certinfo=basic

Check compression for CRIME attack Sslyze --compression

Check for renegotiation issues Ssylze --reneg

The SSLyze can be installed by Python PIP or there is also a Windows .exe version, which
can be found at https:/ ​/​github. ​com/ ​nabla- ​c0d3/ ​sslyze/ ​releases:

$ pip install --upgrade sslyze

To execute the SSLyze .exe under Windows, refer to the following command:

$ sslyze --regular demo.testfire.net

The sslyze --help will list the detailed usage of each command option:

Sslyze scanning report

https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases
https://github.com/nabla-c0d3/sslyze/releases

Infrastructure Security Chapter 8

[112]

In addition to SSyze, the Mozilla TLS Observatory also provides a suite of tools to scan the
TLS services. For an online version of TLS check, refer to https:/ ​/​observatory. ​mozilla.
org.

Behavior-driven security automation –
Gauntlt
The Gauntlt is a behavior-driven security testing framework. Behavior-driven means all the
testing scripts are written in the following format. The purpose of the behavior-driven
framework is to make the testing steps easier to understand. For a non-security team, the
testing scripts and testing reports can be easily communicated for what and how security is
tested:

Feature: Description for all scenarios in this file
 Scenario: Description of this scenario
 Given...
 When...
 Then...
 Scenario:...

Here is the Gauntlt testing scrip to trigger the NMAP scanning. In this scenario, we use
NMAP to ensure the port 80 is listening:

Scenario: NMAP Scanning for website

 When I launch a nmap attack
 Then the output should contain:
 """
 80/tcp
 """

Step 1 – Gauntlt installation
The Gauntlt provides several ways of installation including Docker and Vagrant. You may
also download the Gauntlt installation shell script to install the Gauntlt.

https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org
https://observatory.mozilla.org

Infrastructure Security Chapter 8

[113]

Follow the following steps to install the gauntlt:

$ git clone https://github.com/gauntlt/gauntlt
$ cd gauntlt
$ source ./install_gauntlt_deps.sh
$ bash ./ready_to_rumble.sh
$ gauntlt

Be reminded that the Gauntlt installation only includes the security tools adopters. The
security tools such as Arachni, CURL, Nmap, sqlmap, and SSLyze will require additional
installation respectively.

Step 2 – BDD security testing script
We will create a script file named nmap.attack. The key purpose of the script is to use
NMAP to validate if the target website, ScanMe, is listening with the expected ports, such
as 22, 25, 80, and 443. As you can see, the BDD-style script makes it easier for readers to
understand the testing steps, the testing scenario, and the expected results:

Feature: nmap attacks for scanme.nmap.org
Background: It's used to check ScanMe website port listening status 22, 25, 80, and 443

Given nmap is installed
And the following profile:

name	value
hostname	scanme.nmap.org
host	scanme.nmap.org
tcp_ping_ports	22,25,80,443

Scenario: Verify server is open on the expected set of ports using the nmap-fast attack
step
 When I launch a nmap-fast attack
 Then the output should match /80.tcp\s+open/

Step 3 – execution and results
Use the following command to execute the NMAP attack script:

$ gauntlt nmap.attack

http://scanme.nmap.org

Infrastructure Security Chapter 8

[114]

The following screenshot shows the execution result of the Gauntlt with NMAP script:

Gauntlt scanning results

In addition, there are also other examples of the execution of security tools. You may find
the scripts under the /gauntlt/examples/ folder. Taking SSLyze testing as an example,
the script can be found under /gauntlt/examples/sslyze/ssylze.attack or
at: https:/​/​github. ​com/ ​gauntlt/ ​gauntlt/ ​blob/ ​master/ ​examples/ ​sslyze/ ​sslyze.
attack:

$ gauntlt sslyze.attack

If Gauntlt identifies the specified security tool, SSLyze, is not installed, it will also prompt
proper guidance for the installation steps as the following screenshot shows:

Gauntlt missing tools

https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack
https://github.com/gauntlt/gauntlt/blob/master/examples/sslyze/sslyze.attack

Infrastructure Security Chapter 8

[115]

Summary
In this chapter, we discussed the infrastructure security, which includes security scanning
for known vulnerable components, secure configuration, and secure communication. For
the secure configuration, the CIS benchmarks, STIGs, and the OpenSCAP security guide are
the guidelines we can follow. For the vulnerable components scanning, we demonstrated
two technical approaches. One is CVE scanning with NMAP network scanning and the
other is file scanning with OWASP dependency check. For the secure communication, we
introduced SSLyze for the HTTPS commutation settings. Finally, we also demonstrated one
BDD automation framework Gauntlt to do the NMAP scanning.

In the next chapter, we will introduce more BDD automation frameworks to apply to
security testing.

Questions
Which of the following is not used for known vulnerable components scanning?1.

OpenVAS1.
NMAP2.
RetireJS3.
SQLMap4.

Which of the following is not security guidelines for configurations?2.
OpenSCAP1.
STIG2.
CVE3.
CIS Benchmarks4.

If I'm looking for a specific product secure configuration, which of the following3.
references are suggested?

STIG1.
OpenSCAP2.
CIS Benchmarks3.
NIST4.

What security assessment does NMAP do?4.
Fast Scan for listening ports1.
DOS attack with HTTPS Slowloris2.
Scanning for all TCP listening ports3.
All of above4.

Infrastructure Security Chapter 8

[116]

Which of the following is a vulnerability database?5.
CVE1.
ExploitDB2.
OSVDBE3.
All of the above4.

Which of the following does SSLyze not do?6.
Check for Heartbleed vulnerability1.
Check for certificate validation2.
Check for known CVE3.
Check compression for CRIME attack4.

Further reading
Automate the secure configuration scanning with OpenSCAP: https:/ ​/​www.
open-​scap. ​org/ ​tools/ ​openscap- ​base/ ​

System Configuration Audit Tools
(system, kernel, permissions, services, network, distro, and external): https:/ ​/
github.​com/ ​trimstray/ ​otseca

RapidScan: https:/ ​/ ​github. ​com/​skavngr/ ​rapidscan/ ​

Nmap Reference Guide: https:/ ​/​nmap. ​org/ ​book/ ​man- ​briefoptions. ​html

Mozilla SSL Configuration Generator: https:/ ​/​mozilla. ​github. ​io/ ​server-
side-​tls/ ​ssl- ​config- ​generator/ ​

OpenSCAP for security configuration scanning: https:/ ​/​www. ​open- ​scap. ​org/ ​

ZMAP network scanner: https:/ ​/​zmap. ​io/ ​

MASScan for quick port scanning: https:/ ​/ ​github. ​com/ ​robertdavidgraham/
masscan

Advanced vulnerability scanning with Nmap NSE: https:/ ​/​github. ​com/
scipag/​vulscan

Gauntlt BDD Security Testing Framework: https:/ ​/​github. ​com/​gauntlt/
gauntlt

OWASP Dependency Track: https:/ ​/​dependencytrack. ​org/ ​

NMAP NSE (Nmap Scripting Engine): https:/ ​/​nmap. ​org/ ​nsedoc/ ​

Askalono License Texts Scan: https:/ ​/​github. ​com/ ​amzn/ ​askalono

https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/openscap-base/
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/trimstray/otseca
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://github.com/skavngr/rapidscan/
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://zmap.io/
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/scipag/vulscan
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://github.com/gauntlt/gauntlt
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://dependencytrack.org/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://nmap.org/nsedoc/
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono
https://github.com/amzn/askalono

9
BDD Acceptance Security

Testing
In this chapter, we will discuss the challenges of cross-team communication within a large
software development team. The team who executed the security testing may understand
what has been tested and how, but other non-technical teams such as product management,
marketing, or even customers may not understand the context just from reading the testing
reports. Therefore, we will introduce behavior-driven development (BDD) acceptance
testing with automation security testing. BDD security testing is introduced to improve the
communication of the nature of security testing to all functional teams involved. We will
use security testing tools on top of the BDD security automation testing framework and
hook into the testing process.

The following topics are to be covered in this chapter:

Security testing communication
Overview of BDD security testing
BDD testing framework

Security testing communication
Being able to articulate the security testing plan, execution, and results in a way that non-
security team members can understand is critical to the project. This will help stakeholders
understand what security testing is performed and how. Too many technical and security
domain-specific terms may result in the security testing being too difficult to understand.

BDD Acceptance Security Testing Chapter 9

[118]

For example, the business objective of security is to protect the application against injection
attacks. However, in the domain of security testing, 'injection attacks' may be specifically
described as XML External Entity (XXE) attacks, Cross-Site Scripting (XSS) attacks,
command injection, and SQL injection. Use of this terminology may cause communication
gaps and misunderstanding between security and non-security stakeholders.

The following table lists the security business objectives for general stakeholders and the
corresponding security testing techniques for dealing with them:

Security business objective and scenario Security testing techniques

Web scanning—Executing automated web
application-level security testing to identify
vulnerabilities in the web application

OWASP Top 10 security testing includes 10 common
security issues such as injection, broken authentication,
sensitive data exposure, XXE, broken access control,
security misconfiguration, XSS, insecure deserialization,
known vulnerabilities, and insufficient logging and
monitoring.

Verifying that the TLS/SSL (Transport Layer
Security/Secure Sockets Layer) configuration
of the web server is secure

The testing of the SSL configuration does not
only include the uses of secure protocols and a
secure cipher suite, but also the following:
• Tests for CCS injection vulnerability
• Tests for renegotiation vulnerabilities
• Tests for CRIME vulnerability
• Tests for BREACH vulnerability
• Tests for POODLE (SSL) vulnerability
• Tests for FREAK vulnerability
• Tests for BEAST vulnerability
• Tests for LOGJAM vulnerability
• Tests for DROWN vulnerability

Verifying that sensitive information is
transmitted in a secure manner

• Secure communication with TLS v1.2
• Secure remote connection with SSH v2 instead of Telnet

What is BDD security testing?
ATDD stands for Acceptance Test-Driven Development, and BDD means behavior-driven
development. In some scenarios, these two terms can be interchangeable. The purpose of
adopting ATDD or BDD is to make security testing more transparent for all project
members. The security testing results can provide quick feedback on the meeting of
business objectives, for instance. The other purpose of BDD adoption is the provision of
dynamic documentation for the whole project cycle, since BDD is done with an English-like
language that follows the Given, When, Then (GWT) format.

BDD Acceptance Security Testing Chapter 9

[119]

In this book, we introduce the use of Robot Framework and Gauntlt to achieve BDD
security automation testing. Here is a comparison of these two BDD testing frameworks:

Robot Framework Gauntlt
Type ATDD BDD

Script
format

Keyword-driven script:
• Execute command
• Create session
• Should not contain

Scenario-driven script:
• Given...
• When...
• Then the output should...

Integration
with
security
tools

No additional security adapters
are needed. Robot Framework
uses one of the following
approaches to communicate with
security tools:
• command-line interface (CLI): Execute
command
• REST API: Requests library

Gauntlt requires security adapters, although it
provides a generic command-line adapter that
can be used for most CLI security tools

Popularity
Robot Framework is a widely used
automation testing framework,
perhaps due to ease of use

Gauntlt may be new to both the
automation and security testing teams

Adoption of Robot Framework with sqlmap
Let's take SQL injection testing as a simple example to see the effects of Robot Framework
adoption. As the business objective, we would like to avoid any SQL injection attacks,
which may result in authentication bypasses, information leakage, authorization bypasses,
and command injection. Before integration with Robot Framework, SQL injection execution
by sqlmap will be as follows:

$ python sqlmap.py -u "http://demo.testfire.net/" -- batch --
banner

The following is an excerpt from the sqlmap testing results. If these results were just
delivered to stakeholders with no context, few stakeholders would be able to understand
the report:

[xx:xx:39] [INFO] heuristic (basic) test shows that GET parameter 'id'
might be
injectable (possible DBMS: 'MySQL')
[xx:xx:39] [INFO] testing for SQL injection on GET parameter 'id'
[xx:xx:39] [INFO] testing 'MySQL >= 4.1 AND error-based - WHERE or HAVING
clause '
[xx:xx:39] [INFO] GET parameter 'id' is 'MySQL >= 4.1 AND error-based -

BDD Acceptance Security Testing Chapter 9

[120]

WHERE or
HAVING clause' injectable
GET parameter 'id' is vulnerable.

The following steps show how this is done.On the other hand, if we apply Robot
Framework to execute sqlmap, the Robot Framework execution script would be much
more understandable, as certain keywords are used to define the testing steps.

Step 1 – Robot Framework setup and preparation
Robot Framework is implemented with Python, and supported on both Python 2 and
Python 3. The easiest way to install Robot Framework is by the Python PIP package:

$ python -m pip install robotframework

In addition, it's suggested to install the Robot Framework IDE, called RIDE, which will help
to edit the testing script easier. RIDE can be installed by using PIP. Once the installation is
done, RIDE can be started by running ride.py:

$ pip install robotframework-ride

Once the installation of RIDE is done, execute ride.py to launch it.

Once installation of Robot Framework is done, we may install sqlmap as follows:

$ git clone --depth 1 https://github.com/sqlmapproject/sqlmap.git sqlmap-
dev

Step 2 – sqlmap with Robot Framework
The Robot Framework script for executing sqlmap is as follows:

*** Settings ***
Library SSHLibrary
*** Variables ***
${HOST_URL} http://demo.testfire.net
*** Test Cases ***
SQL Injection Testing
[Documentation] Use SQLmap to do the SQL injection testing on target host
${output}= Execute Command python sqlmap.py -u ${HOST_URL} -- batch --
banner
Should Not Contain ${output} vulnerable

BDD Acceptance Security Testing Chapter 9

[121]

In this case, we use Execute Command, and Should Not Contain to define the sqlmap
execution steps and the expected testing results. Here you can see the difference that the
adoption of Robot Framework makes. Robot Framework is a keyword-driven acceptance
testing framework that is able to describe the testing steps with well-defined expected
results.

Furthermore, Robot Framework is also flexible enough to define other user-defined
keywords and variables, to make its output more understandable.

Testing framework – Robot Framework with
ZAP
In Chapter 8, Infrastructure Security, we introduced the uses of Gauntlt, the BDD security
framework. Here we will introduce another BDD automation testing framework, Robot
Framework. The reason that we also introduce Robot Framework is that it's widely used in
automation testing and also supports various kinds of testing frameworks, such as
Selenium for web UI testing, and Requests for REST API testing. Its flexibility and simple
keyword-driven script make Robot Framework a good fit for security testing
automation. Robot Framework is a generic automation framework for acceptance testing
and ATDD. We will use Robot Framework to manage the execution steps of ZAP. The
typical web security scanning steps with ZAP are listed here:

Start a headless ZAP1.
Create a new ZAP session2.
Perform a spider scan3.
Perform an active scan4.
Review the scanning results and ZAP alerts5.

In the following steps, we will demonstrate one simple ZAP spider scan to understand how
Robot Framework can be used to do security testing with OWASP ZAP.

BDD Acceptance Security Testing Chapter 9

[122]

Step 1 – environment setup and preparation
In this case, we will launch ZAP as proxy mode with the listening port 8090. We will
perform ZAP execution by using Robot Framework to send the REST API to ZAP. Refer to
the previous section for the installation of Robot Framework.

In addition, we will also need the requests library to enable Robot Framework to send the
HTTP requests to ZAP. The requests library can be installed as follows:

$ pip install -U requests
$ pip install -U robotframework-requests

Step 2 – the Robot Framework script for the ZAP
spider scan
In this Robot Framework script, we will trigger ZAP to do the spider scan for the website.
The following steps will be performed:

ZAP spider scan for the target website1.
Get the ZAP scanning response; the response status code should be 200 success2.

There are two main approaches to using Robot Framework for ZAP web scanning. The first
one is using the OWASP ZAP CLI, which allows us to send commands to control ZAP
executions. The other way is using the ZAP REST API. Since we have demonstrated how to
execute via the command line in the previous sqlmap example, we will demonstrate how to
use the ZAP REST API with Robot Framework. To achieve this, Robot Framework will
need to install the Requests library to send the RESTful API requests to ZAP.

Here is the full Robot Framework testing script in plain text with the filename ZAP
RequestsSample.robot:

*** Settings ***
Suite Teardown Delete All Sessions
Library Collections
Library String
Library RequestsLibrary
Library OperatingSystem
*** Variables ***
${url} http://demo.testfire.net
${SpiderScan}
http://localhost:8090/JSON/spider/action/scan/?zapapiformat=JSON&formMethod
=GET&url=${url}&maxChildren=&recurse=&contextName=&subtreeOnly=
*** Test Cases ***

BDD Acceptance Security Testing Chapter 9

[123]

ZAP Spider Scan
[Tags] get skip
Create Session ZAP
${SpiderScan}
${resp}= Get Request ZAP
/
Should Be Equal As Strings ${resp.status_code} 200

If you are using RIDE (Robot Framework Test Data Editor), here is the script in text mode:

Text view of a ZAP spider scan in Robot Framework

Here is the table view of the script in RIDE:

Table view of a ZAP spider scan in Robot Framework

BDD Acceptance Security Testing Chapter 9

[124]

Here are the required settings in RIDE:

ZAP settings in Robot Framework

Once the spider scan is done, the web security scanning results will be found at the
following URL:

$
http://localhost:8090/HTML/core/view/alertsSummary/?zapapiformat=HTML&formM
ethod=GET

Alternatively, use the ZAP CLI to output the report in HTML as follows. Be reminded that
the ZAP CLI will need to be installed with pip install zapcli:

$ zap-cli report -o ZAP_Report.html -f html

It's always recommended to use RIDE to edit the Robot Framework script
although the script can also be edited by using notepad. In RIDE, you may
mouse move over the keyword and press CTRL to present the detailed
usage.

BDD Acceptance Security Testing Chapter 9

[125]

Step 3 – robot script execution
Execute the following commands under the CLI console:

$ robot "ZAP RequestsSample.robot"

Once the execution is done, the Robot Framework testing report will be generated under
the same folder of the robot script. output.xml, log.html, and report.html will be
generated.

Summary
In this chapter, we mainly discussed how to apply a BDD framework to security testing.
The security testing process and results can be difficult to understand for a non-security
team; the adoption of a BDD security framework can reduce the communication gap. For
example, a security team may test for POODLE vulnerability; in business language, that
would be the verification of the secure communication of TLS.

We introduced two automation frameworks, Robot Framework and Gauntlt. Robot
Framework uses a keyword-driven approach to define the testing steps and Gauntlt uses a
GWT approach to define the testing scripts. We demonstrated the testing of SQL injection
by using sqlmap, and illustrated how Robot Framework can be used to execute sqlmap . In
the Robot Framework script, we use Execute Command to execute sqlmap, and we define
the expected results by using Should Not Contain.

We also illustrated how to integrate Robot Framework with ZAP. We mainly use the Robot
Framework Requests library to send restful APIs to OWASP ZAP. In the Robot Framework
script, we defined a custom variable, SpiderScan, to execute the spider scan restful API in
OWASP ZAP.

After learning about Robot Framework integration with sqlmap and ZAP, we will begin a
project to practice all previously mentioned techniques and tools in the coming chapters.

BDD Acceptance Security Testing Chapter 9

[126]

Questions
Which one of these is not the main purpose of BDD framework adoption?1.

Communication with non-security stakeholders1.
Defining testing script in business language2.
Using the GWT structure to define script3.
Reducing testing script development time4.

What is used in Robot Framework to execute sqlmap?2.
SSHLibrary1.
Execute Command2.
Should Not Contain3.
All of the above4.

What's the correct order of ZAP execution?3.
Active Scan → Spider Scan → Review results1.
Spider scan → Active Scan → Review Results2.
Active Scan → Quick Scan → Review Alerts3.
Quick Scan → Active Scan → Spider Scan4.

What Robot Framework library do we use to execute a ZAP RESTful API?4.
Collections1.
The Requests library2.
String3.
Operating system4.

Where we can define a custom variable in Robot Framework?5.
Settings1.
Variables2.
Test cases3.
None of above4.

BDD Acceptance Security Testing Chapter 9

[127]

Further reading
Robot Framework user guide: http:/ ​/​robotframework. ​org/ ​robotframework/
latest/​RobotFrameworkUserGuide. ​html

OWASP ZAP web security testing: https:/ ​/​github. ​com/ ​zaproxy/ ​zaproxy

Robot Framework ZAP library: https:/ ​/​github. ​com/ ​airesv/ ​robotframework-
zaplibrary

Robot Framework Requests library: https:/ ​/​github. ​com/​bulkan/
robotframework- ​requests/ ​#readme

Robot Framework Security Testing Modules: https:/ ​/​github. ​com/ ​we45

OWASP ZAP CLI: https:/ ​/​github. ​com/ ​Grunny/ ​zap- ​cli

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/airesv/robotframework-zaplibrary
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/bulkan/robotframework-requests/#readme
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/we45
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli

10
Project Background and

Automation Approach
In this chapter, we will introduce a project and security objective to do with automated
security to work on in the coming chapters. We will also further explore the considerations
that need to be made when it comes to security and automation framework selection. Some
tools are good for specific security testing but may have shortcomings when it comes to
automation framework integration. Finally, we will set up all the necessary environments
for the coming security automation practices.

This chapter will mainly focus on the following:

Considerations for security and automation framework selection
Setup of a security and automation environment

Case study – introduction and security
objective
In this case study, we will discuss a software service delivery team. The team regularly
releases web services and mobile applications. The security objective is to ensure that there
are no major security vulnerability issues before each service or mobile application goes
live. We will use the following vulnerable demo projects:

For web services: OWASP NodeGoat and OWASP WebGoat
For mobile services: Vulnerable APK by MobSF

Project Background and Automation Approach Chapter 10

[129]

The NodeGoat project comprises an online RetireEasy Employee Retirement Savings
Management service. The website includes several major OWASP Top 10 vulnerabilities,
and we will apply several automation testing tools and techniques to identify those security
issues in the coming chapters. In this book, we focus on how to build an entire security
automation testing framework, rather than just identifying security issues and exploring
the details of each security issue.

For the OWASP NodeGoat web service, you may use the online version (http:/ ​/​nodegoat.
herokuapp.​com/​) or install it from the NodeGoat source on GitHub.

Selecting security and automation testing
tools
There are some key considerations to bear in mind when selecting security automation
tools. The tools you select may depend on the integration of your existing automation
testing framework. In our case, the testing framework and tools we will use are Python,
Selenium, Robot Framework, and Jenkins. We also plan to use DefectDojo to present the
results of those tools. In summary, the key considerations that we should bear in mind
when selecting our security and automation frameworks are as follows:

Is it open source? If so, that would provide the flexibility to extend or customize
the frameworks.
Is it cross-platform? The frameworks must be able to work in Windows or
Linux.
What interfaces are there? The GUI interface may easy to use but it can be a
barrier to automation. We will also look for tools that support command-line
interfaces (CLIs) or RESTful API interfaces for further integration.
What is the report format? This will depend on how we integrate and
consolidate testing reports. The XML and JSON report formats are widely used;
we may consider whether the tool can generate such report formats.

The security tools listed in the following table meet these criteria and will also be used in
coming chapters through case studies.

http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/

Project Background and Automation Approach Chapter 10

[130]

Please refer to the Further reading section for references to each security tool:

Open source security testing tools Details

Arachni Scanner
• Web security scanner
• CLI integration
• JSON report format to import into DefectDojo

Dependency check • CLI for vulnerable dependency components
• XML format

Nmap • CLI for network security scanning
• XML output

Retire.js
• CLI for vulnerable JavaScript scanning
• JSON format

Visual Code Grepper (VCG) • Secure code scanning based on patterns
• CSV or XML formats

SSLLabs-Scan • CLI to scan the vulnerability of the SSL configuration

ZAP • CLI for web security scanning
• XML format

Mobile Security Framework or Quick Android
Review Kit (QARK)

• Python scripts for static Android security analysis

Automated security testing frameworks
A typical automated security testing framework may include the following key
components:

Key components Usage scenarios

Security testing tools
Security testing tools are in charge of testing for specific security
vulnerabilities, such as cross-site scripting (XSS) and SQL injection, and also
analyze HTTP responses for security issues

Target web service In our example, we will use NodeGoat and WebGoat for the target testing
website

Testing results analysis
Security testing tools may provide initial testing reports. Testing results can be
further integrated by either a testing framework, such as Robot Framework, or
a testing management tool, such as ArcherySec or OWASP DefectDojo

Robot Framework This is a popular automation testing framework that we can use to integrate an
automation process

Automation scripts These scripts can be Python, Java, shell, or Robot Framework scripts for
executing, handling data, or interpreting results

Security payloads
It's used as data input for the security testing. For example, the HTTP requests
can be sent with the security payloads to test XSS or SQL injection attacks.
FuzzDB and SecList are common sources of security payloads.

Project Background and Automation Approach Chapter 10

[131]

The following diagram shows an example of what a security automation testing framework
might look like:

Example of a security automation testing framework

Environment and tool setup
The following table lists tools, environments, and their descriptions. Please also refer to the
Further reading section for the relevant references:

Environment and
tools Usage and references

Vulnerable website

This will be the OWASP NodeGoat project, which is a vulnerable web
project written in Node.js
For the online version, go here: http:/ ​/​nodegoat. ​herokuapp. ​com/ ​
For the offline version. go here: https:/ ​/ ​github. ​com/ ​OWASP/ ​NodeGoat

WebGoat This is an OWASP vulnerable project in Java
ZAP-CLI This is used to operate OWASP ZAP in console mode
ZAP This is an OWASP web security scanner

OWASP DefectDojo
DefectDojo is a security tool that automates application security vulnerability
management and provides security findings and metrics in a web-based
dashboard

Robot Framework This is an Acceptance Test-Driven Development (ATDD) automation testing
framework

Selenium This is a web UI testing framework

http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
http://nodegoat.herokuapp.com/
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat

Project Background and Automation Approach Chapter 10

[132]

SeleniumBase This is a wrapper of Selenium. It's written in Python and makes Selenium scripts
simpler

Gauntlt This is a behavior-driven development (BDD) testing framework for security
testing

Nmap This is a network scanner
JMeter This is used to send HTTP requests and monitor HTTP responses in this book
Serpico https:/ ​/​github. ​com/ ​SerpicoProject/ ​Serpico/ ​releases

RapidScan This is used to trigger several security testing tools and output the results in the
console

sslScan This is used to scan vulnerable protocols of SSL communication
wfuzz This is for the fuzz testing of HTTP requests
FuzzDB This is the security payloads fuzz database
Retire.js This is used to scan the vulnerable libraries for JavaScript

Summary
In this chapter, we introduced our security testing project, NodeGoat. We also discussed
the security tool selection criteria we should consider when building a security automation
framework. A security automation framework typically includes security testing tools, a
web service, testing results, an automation framework (such as Robot Framework),
automation scripts, and security payloads. In coming chapters, we will learn how to
complete the testing automation framework and demonstrate automated testing for the
NodeGoat website, fuzz API security testing, and infrastructure security testing.

Questions
For automation, what kinds of interface can suffice?1.

CLI1.
RESTful API2.
Python library3.
All of the above4.

Which one of these is not a key component of the typical security automation2.
framework?

Automation scripts1.
Security payloads2.
Security testing tools3.
Virtualization4.

https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases

Project Background and Automation Approach Chapter 10

[133]

What is QARK used for?3.
Android security analysis1.
Web security scanning2.
SSL vulnerabilities scanning3.
Known CVE scanning4.

Which one of these is used for a known vulnerability scan?4.
Dependency check1.
Retire.js2.
Nmap3.
All of the above4.

Which one of these is a key consideration of the automation framework?5.
Report format1.
Cross platform2.
Integration interface3.
All of the above4.

Further reading
NodeGoat: https:/ ​/​github. ​com/​OWASP/ ​NodeGoat

NodeGoat tutorials: https:/ ​/ ​nodegoat. ​herokuapp. ​com/ ​tutorial

Arachni Scanner: http:/ ​/ ​www. ​arachni- ​scanner. ​com/ ​

Dependency check: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​OWASP_ ​Dependency_
Check

Nmap: https:/ ​/ ​nmap. ​org/ ​

Retire.js: https:/ ​/ ​retirejs. ​github. ​io/ ​retire. ​js/ ​

VCG: https:/ ​/ ​github. ​com/ ​nccgroup/ ​VCG

SSLLabs-Scan: https:/ ​/​github. ​com/ ​ssllabs/ ​ssllabs- ​scan

ZAP: https:/ ​/​github. ​com/ ​zaproxy/ ​zaproxy

Mobile Security Framework: https:/ ​/​github. ​com/ ​MobSF/ ​Mobile- ​Security-
Framework- ​MobSF

QARK: https:/ ​/​github. ​com/ ​linkedin/ ​qark/ ​

OWASP DefectDojo: https:/ ​/​defectdojo. ​readthedocs. ​io

Robot Framework: http:/ ​/ ​robotframework. ​org/ ​

https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/ssllabs/ssllabs-scan
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
https://defectdojo.readthedocs.io
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/
http://robotframework.org/

11
Automated Testing for Web

Applications
In this chapter, we will use three case studies to learn different security automation
techniques for use against the vulnerable NodeGoat site. The first case is to automate
OWASP ZAP by using the ZAP-CLI, which will help identify any initial security issues on
the website before authentication. In the second case, we will be using selenium to do the
user sign-in, in order to access some authenticated pages and identify more potential
security issues. In the final case, we will use JMeter to do the sign-in with external CSV data
and detect potential command injection security issues.

The topics that will be covered in this chapter are as follows:

Web security automation testing with OWASP ZAP using the CLI
Web security automation testing with ZAP and Selenium
Web security testing with ZAP, JMeter, and DDT with FuzzDB

Case 1 – web security scanning with ZAP-
CLI
In this small NodeGoat web security testing scenario, we will automate OWASP ZAP by
using the ZAP-CLI for security smoke testing. The ZAP-CLI provides a quick scan, which is
handy because it achieves the following in one command:

Open a URL to the target website
Spider scan to discover web resources (URLs) extensively on the target website
Active scan to identify more potential security issues by using known attacks

Automated Testing for Web Applications Chapter 11

[135]

We will perform the following steps to execute the ZAP-CLI and review the security results
by

Step 1 – installation of ZAP-CLI
Assuming you have installed OWASP ZAP, the installation of the ZAP-CLI can be easily
done with this command:

$ pip install --upgrade zapcli

To ensure the success of the ZAP-CLI installation, you may try this command with help
options:

$ zap-cli quick-scan --help

Step 2 – ZAP quick scan using the ZAP-CLI
To do a ZAP-CLI quick scan with specified XSS and SQL injection security policies, the
following command can be used. The ZAP-CLI may require the API Key of ZAP. To access
or disable the API Key, configure the Disable the API Key checkbox under the OWASP UI
menu, Tools | Options... | API:

$ zap-cli quick-scan -s xss,sqli --spider -r http://nodegoat.herokuapp.com/

It will take a while for ZAP to finish the spider and active scan.

Step 3 – generate a report
There are a few ways we can generate an OWASP ZAP report. The first is to use alerts to
show a summary list of the security issues:

$ zap-cli alerts

Furthermore, we can also use report to generate a detailed HTML or XML report. The
XML report can be used to import into other security reporting tools, which we will
introduce in Chapter 15, Summary of Automation Security Testing Tips:

$ zap-cli report -o ZAP_Report.html -f html

To generate the XML format report, execute this command:

$ zap-cli report -o ZAP_Report.xml -f xml

Automated Testing for Web Applications Chapter 11

[136]

Uses of ZAP-CLI or ZAP RESTful API to automate the OWASP ZAP scan?
The ZAP RESTful API is provided by default in ZAP, while the ZAP-CLI
will require to install zapcli. If you only need basic web scan operations,
the ZAP-CLI may fit your needs. However, if you need more control over
ZAP, the ZAP RESTful API will be recommended.

Case 2 – web security testing with ZAP &
Selenium
In this case for the security testing of NodeSign signin, we will be using a Selenium script to
automate the following UI steps and OWASP ZAP will be running as a proxy mode to
monitor and analyze all security issues based on HTTP requests/responses. We will do the
sign-in with a valid username and password, then visit every authenticated page without
further data input and updates. The purpose of this testing is to do a security smoke test of
every authenticated page.

Here are the UI steps automated by Selenium:

Visit the sign-in page: http:/ ​/ ​nodegoat. ​herokuapp. ​com/ ​login

Sign in with username = user1 and password = User1_123
Visit the contributions page after sign-in
Visit the allocation page
Visit the memos page
Visit the profile

Follow the following instructions to proceed the testing.

Step 1 – Selenium Python script
We will create the Selenium Python script NodeGoat_SigIn.py. For those who are not
familiar with Python, the script can be automatically generated by using Selenium IDE
recorders such as Kantu or the Katalon recorder. These are browser extensions and can be
downloaded from the web store. The Selenium script will launch the Firefox browser.
Please ensure the Firefox web driver (geckodriver) is installed, which can be found
here: https:/​/​github. ​com/ ​mozilla/ ​geckodriver/ ​releases.

http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
http://nodegoat.herokuapp.com/login
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

Automated Testing for Web Applications Chapter 11

[137]

Please also refer to Chapter 13, Automated Infrastructure Security, for how to apply data-
driven testing (DDT) in a Selenium script.

This sample code shows a Selenium/Python script used to log in to NodeGoat with
user1/user1_123 credentials:

-*- coding: utf-8 -*-
NodeGoat_SignIn.py
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import Select
from selenium.common.exceptions import NoSuchElementException
from selenium.common.exceptions import NoAlertPresentException
import unittest, time, re

class SignIn(unittest.TestCase):
 def setUp(self):
 self.driver = webdriver.Firefox()
 self.driver.implicitly_wait(30)
 def test_sign_in(self):
 driver = self.driver
 driver.get("http://nodegoat.herokuapp.com/login")
 driver.find_element_by_id("userName").clear()
 driver.find_element_by_id("userName").send_keys("user1")
 driver.find_element_by_id("password").clear()
 driver.find_element_by_id("password").send_keys("User1_123")
 driver.find_element_by_xpath("//button[@type='submit']").click()
 driver.get("http://nodegoat.herokuapp.com/contributions")
 driver.find_element_by_xpath("//button[@type='submit']").click()
 driver.get("http://nodegoat.herokuapp.com/contributions")
 driver.get("http://nodegoat.herokuapp.com/allocations/2")
 driver.get("http://nodegoat.herokuapp.com/memos")
 driver.get("http://nodegoat.herokuapp.com/profile")
 def tearDown(self):
 self.driver.quit()

if __name__ == "__main__":
 unittest.main()

Automated Testing for Web Applications Chapter 11

[138]

Step 2 – running ZAP as a proxy
In Chapter 5, Security API and Fuzz Testing, and Chapter 6, Web Application Security Testing,
we introduced the installation and use of ZAP. Here, we will only discuss how to launch
the browser with the Selenium script and the specified ZAP proxy, which is
127.0.0.1:8090 in our case.

Approach 1 – configure the system proxy
This approach may be the easiest way to achieve the result we want. If it's Windows, the
system configuration can be done by IE proxy setting. If it's Linux, refer to the Linux
network configuration to configure the proxy as 127.0.0.1:8090.

Approach 2 – Selenium Profile
In this approach, we define the selenium script to use the specified proxy as
127.0.0.1:8090. This will require a certain modification of the selenium script. Here is
the sample script, which shows how to define the browser proxy. The self.driver =
webdriver.Firefox() will need additional profile preference settings, as shown in this
example:

"Selenium Proxy Sample.py"
from selenium import webdriver

Replace the 'self.driver = webdriver.Firefox()' with the following
profile = webdriver.FirefoxProfile()
profile.set_preference('network.proxy_type',1)
profile.set_preference('network.proxy.http',"127.0.0.1")
profile.set_preference('network.proxy.http_port',"8090")
driver=webdriver.Firefox(profile)
End of Replacement

driver.get('http://nodegoat.herokuapp.com/login')
driver.close()

Automated Testing for Web Applications Chapter 11

[139]

Approach 3 – using SeleniumBASE
If the script is done by using SeleniumBASE, the browser proxy can be specified with proxy
command options. Please be aware that our example, NodeGoat_SignIn.py, cannot be
executed directly by using SeleniumBASE. Here are the steps to convert our original
selenium script into SeleniumBASE style. The steps work under the assumption that
SeleniumBASE is installed, which can be done with pip install seleniumbase:

seleniumbase convert NodeGoat_SignIn.py

Then, we may execute the command with the proxy 127.0.0.1:8090: The previous
command will generate NodeGoat_SignIn_SB.py:

pytest "NodeGoat_SignIn_SB.py" --proxy=127.0.0.1:8090

When the testing is stable, it's suggested to execute the selenium testing
script in headless mode. It means the testing will proceed without
launching a real browser. It will simulate the execution in memory. This
will improve the testing stability and cycle. For the uses of SeleniumBASE,
specify the headless option, for example, pytest my_test.py --
headless --browser=chrome.

Step 3 – generate ZAP report
The ZAP security testing report can be generated by one of the followings:

$ CURL "http://127.0.0.1:8090/OTHER/core/other/htmlreport/?formMethod=GET"
> ZAP_Report.HTML

Alternatively, if the ZAP-CLI is installed, the HTML report can be generated with this
command:

$ zap-cli report -o ZAP_Report.html -f html

Automated Testing for Web Applications Chapter 11

[140]

Case 3 – fuzz XSS and SQLi testing with
JMeter
In Case 3, we will demonstrate the same user flows as in Case 2. The key difference in Case 3
is that we will have the data input with SQL injection payloads. This will be done by using
Jmeter with FuzzDB and CSV Config elements. In Chapter 13, Automated Infrastructure
Security, we will also demonstrate how to do fuzz SQLi testing with selenium and Robot
Framework.

Testing scenarios
After user sign-in, particularly in step 6, we will be using JMeter to send HTTP requests
with FuzzDB security loads through the OWASP ZAP proxy to the target testing website,
NodeGoat.

The testing steps are as follows:

Sign in to NodeGoat with the username User1 and password User1_1231.
Visit the contributions page2.
Visit the allocations page3.
Visit the memos page4.
Visit the profile page5.
Input the security payloads for SQL and command injection testing on the6.
profile update page
Log out7.
Generate the security reports in OWASP ZAP8.

During these steps, OWASP ZAP will be used to analyze the HTTP request/response traffic
to identify potential security issues. The general steps to complete the automation testing
will be as follows:

Set up the ZAP Proxy on port 8090 and JMeter1.
Define the JMeter scripts2.
Launch JMeter in the CLI with ZAP Proxy3.
Generate the ZAP report with the CLI4.
Shut down ZAP5.

Automated Testing for Web Applications Chapter 11

[141]

Step 1 – prepare environment
To prepare the environment for this security testing scenario, we will mainly need JMeter,
ZAP, and FuzzDB. This table lists the tools with the usage scenario in this security testing:

Tools Usage scenario in security testing
JMeter JMeter will be used to send HTTP requests with injection security payloads.

ZAP ZAP will be running in proxy mode on port 8090, and will analyze security issues with
the HTTP traffic.

FuzzDB
We will use the FuzzDB command injection payloads for the JMeter. Refer to
this for the attack payloads: https:/ ​/​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb/
tree/ ​master/ ​attack.

Step 2 – define the JMeter scripts
Using JMeter can be very complex. In our case, we will only use parts of the necessary
elements to complete the testing scenario. This table lists the use of JMeter elements in our
case and also the configuration needed in each element:

JMeter elements Usage and scenarios
HTTP Cookie Manager It's used to maintain the authenticated cookie session after sign-in.

HTTP Header Manager It's used to simulate browser behaviors with HTTP headers. We
will apply the Chrome HTTP header in our case.

View Results It's to review every HTTP request and response.

Response Assertion The Response Assertion is included in every HTTP request to
validate the HTTP request gets the expected HTTP response.

HTTP Request It's used to send HTTP GET/POST requests to the target website.
CSV Data Set Config It's used to read values from a CSV file.

We will create a JMeter Script with the following configurations, and save the script as
NodeGoat.jmx:

JMeter elements Configuration
HTTP Cookie Manager No need to do any configuration.

HTTP Header Manager

View Results Tree No need to do any configuration.

https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack

Automated Testing for Web Applications Chapter 11

[142]

HTTP Request - NodeGoat
Sign

Response Assertion Fields to test: Text response
Patterns to test: Employee retirement savings management

HTTP Request –
contributions

Response Assertion Field to test: Text response
Patterns to test: Employee pre-tax

HTTP Request - Allocations

Response Assertion Field to test: Text response
Patterns to test: Stock performance

HTTP Request - Memos

Response Assertion Field to test: Text response
Patterns to test: Send a memo

HTTP Request - Profile

Response Assertion Field to test: Text response
Patterns to test: My profile

Automated Testing for Web Applications Chapter 11

[143]

HTTP Request - Profile
Update

Response Assertion Field to test: Text response
Patterns to test: Profile updated successfully

HTTP Request – Logout

Response Assertion Field to test: Text response
Patterns to test: New user?

Step 3 – prepare security payloads
From the sources of FuzzDB, we will prepare two files cmdi.csv for the data input of
profile update. In the JMeter script, CSV Data Set Config will be added with the following
configuration:

Filename: cmdi.csv
Variable Names (comma-delimited): cmdi

Automated Testing for Web Applications Chapter 11

[144]

This screenshot shows the JMeter script with CSV Data Set Config:

CSV Data Set Config for Command Injection in JMeter

Then, we can use the ${cmdi} variable in HTTP Request - Profile Update. For example,
we replace the value of firstName and lastName with ${cmdi} to do command injection
testing:

HTTP Request for Command Injection Testing in JMeter

Automated Testing for Web Applications Chapter 11

[145]

To do the loop and read all the variables in cmdi.csv, we still need to change the Loop
Count settings in Thread Group. For example, we will do the loop 10 times with each value
in the cmdi.csv:

Loop Count: 10

Step 4 – launch JMeter in CLI with ZAP proxy
To launch JMeter in console mode, we will specify the proxy to OWASP ZAP by using the -
H:

$ jmeter -n -H localhost -P 8090 -t NodeGoat.jmx -l
NodeGoat_result.jtl -j NodeGoat_result.log

In addition, the proxy settings of JMeter can also be configured by using HTTP Request
Defaults under the Advanced tab.

Step 5 – generate a ZAP report
The ZAP security testing report can be generated by one of the followings:

$ CURL "http://127.0.0.1:8090/OTHER/core/other/htmlreport/?formMethod=GET"
> ZAP_Report.HTML

Should I select Selenium or JMeter as our security automation framework?
Both tools can achieve similar testing results. Selenium simulates user
behaviors in a real browser, but it may produce unexpected errors during
UI testing. On the other hand, JMeter only sends HTTP requests and
verifies HTTP responses, without rendering the UI in a browser. In
addition, for the selection of tools, we may also consider integration with
existing security or automation frameworks. For example, if the team has
built all the automation based on JMeter, then JMeter may be a better
choice for security automation.

Automated Testing for Web Applications Chapter 11

[146]

Summary
In this chapter, we have demonstrated three technical approaches to NodeGoat security
automation testing. The first approach is to use the ZAP-CLI to do a quick scan of the target
website. This kind of testing can be used as a smoke test for every release. It helps us to
identify potentially serious security issues. We also applied Selenium and JMeter to guide
ZAP for authenticated pages and other web UI flows. Selenium can launch the browser to
simulate a user's web operation behavior. JMeter sends the HTTP requests and asserts the
HTTP responses for the API-level user sign-in flow.

For the selenium approach, it's suggested to use the Selenium IDE to record the sign-in
operations and export to a Python unit test script. Once the script is generated, we execute
the Selenium script with the OWASP ZAP proxy to identify the security issues.

For the adoption of JMeter, CSV Data Set Config is used to read all the values from a CSV
file. HTTP Cookie Manager is applied to manage the authenticated session. HTTP Request
is used to send HTTP POST/GET requests to the website. Then, the JMeter script is executed
in CLI mode with specified the proxy to OWASP ZAP.

In Chapter 12, Automated Fuzz API Security Testing, we will focus on fuzz API automation
testing.

Questions
What does Quick Scan do in OWASP ZAP?1.

Opens a URL to the target website1.
Spider scan2.
Active scan3.
All of the above4.

What element is used in JMeter to read a CSV file?2.
CSV Data Set Config1.
HTTP Cookie Manager2.
HTTP Header Manager3.
None of the above4.

Automated Testing for Web Applications Chapter 11

[147]

Which element is used to maintain the sign-in session in Jmeter?3.
HTTP Cookie Manager1.
HTTP Header Manager2.
HTTP Request3.
Response Assertion4.

What are the benefits of integration ZAP with JMeter and selenium?4.
To allow ZAP to scan authenticated web resources1.
To control the security payloads with FuzzDB2.
To simulate a normal user web operation3.
All of the above4.

Which one is not correct about Selenium?5.
Selenium will launch a browser for testing1.
A Selenium script can also be executed without a browser in headless2.
mode
Selenium testing will require the specific web driver for the target3.
browser
All of the above are correct4.

Further reading
SeleniumBase: https:/ ​/​github. ​com/ ​seleniumbase/ ​SeleniumBase

JMeter: https:/ ​/​jmeter. ​apache. ​org

Selenium: https:/ ​/​www. ​seleniumhq. ​org

Robot Framework: http:/ ​/ ​robotframework. ​org

https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://github.com/seleniumbase/SeleniumBase
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://jmeter.apache.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org

12
Automated Fuzz API Security

Testing
API fuzz testing can be one of the most effective and efficient methods for both security and
automation testing. API fuzz testing involves generating fuzz data as data input, sending
HTTP requests with fuzz data, and analyzing the HTTP response for security issues. We
will demonstrate several API fuzz automation tools (Wfuzz and 0d1n), fuzz techniques,
and integration with automation testing frameworks (Selenium and Robot Framework
DDT) in this chapter.

The topics that will be covered here are as follows:

Fuzz testing and data
API fuzz testing with automation frameworks (Wfuzz, 0d1n Selenium DDT, and
Robot Framework DDT)

Fuzz testing and data
FuzzDB, Seclist, and Big List of Naughty Strings are data input sources for security fuzz
testing. Here, we will introduce how to dynamically generate your own security payloads
for fuzz testing based on needs. Fuzz testing is a testing technique used to explore
unexpected data input that can cause potential security issues such as buffer overflows,
unhandled exceptions, or data injection attacks. Fuzz testing requires a massive systematic
random data input, called a fuzz, to test the target application in an attempt to make it
crash or go out of service.

Automated Fuzz API Security Testing Chapter 12

[149]

The following diagram shows the relationship between the fuzz data, testing tools, and
ZAP in web security. We will demonstrate the uses of Radamsa to generate testing data,
and illustrate how to apply data-driven testing (DDT) techniques and testing tools to send
fuzz data for web security testing. OWASP ZAP plays the HTTP traffic security analysis
proxy role between the testing tools and the web:

Fuzz Data, Testing Tools and ZAP

We will introduce open-source Radamsa, which generates fuzz data based on a user-
defined data format. Follow these steps to learn how to use Radamsa.

Step 1 – installing Radamsa
For the Windows version, the tool can be downloaded here: https:/ ​/ ​github. ​com/ ​vah13/
radamsa/​releases.

For the Linux version, refer to the following:

$ git clone https://gitlab.com/akihe/radamsa
$ cd radamsa
$ make
$ sudo make install
$ radamsa --help

https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases
https://github.com/vah13/radamsa/releases

Automated Fuzz API Security Testing Chapter 12

[150]

Step 2 – generating the Security Random
Payloads
Here are some examples of data generation based on a given data sample:

Generating email-format fuzz data:

 $ echo "abc@test.com" | radamsa -n 5 --patterns od

Generating SQL injection-related fuzz data:

 $ echo "' or 1=1" | radamsa -n 5 --patterns od

Generating JavaScript injection data:

 $ echo "<script>alert(1)</script>" | radamsa -n 5 --patterns od

Generating the XXX-XXX-XXXX format-based fuzz data:

 $ echo "154-541-3214" | radamsa -n 5 --patterns od

Generating date-format fuzz data:

 $ echo "1977-12-01" | radamsa -n 5 --patterns od

The use of Radamsa enables us to dynamically generate fuzz data based on a sample input.
Then, we can use that generated fuzz data as data input sources for further security testing.

Should I use FuzzDB or Radamsa? FuzzDB provides security data
payloads for various kinds of security testing, such as SQL injection, XXE,
XSS, and command injection. It's recommended you use FuzzDB for
security testing. On the other hand, we use Radamsa to generate
formatted data to test unexpected behaviors such as username, ID,
telephone number, address, and date.

Automated Fuzz API Security Testing Chapter 12

[151]

API fuzz testing with Automation
Frameworks
In Chapter 5, Security API and Fuzz Testing, we demonstrated how to use JMeter to do fuzz
testing with OWASP ZAP. In this chapter, we will demonstrate other techniques using
Selenium/ data-driven testing (DDT) and the 0d1n. There is no one solution that fits all
testing scenarios. It may depend on the skill-sets of the team, existing testing frameworks,
and integration flexibility.

Some key considerations and applied scenarios are listed in this table:

Considerations Applied scenarios and suggested technical approaches

Launch a
browser

There are pros and cons to launching a browser for Web UI E2E automation.
The key advantage is that it simulates the human behavior for complete E2E
testing. However, this kind of testing execution cycle can be time-
consuming and prone to error due to Web UI interactions.
Both Selenium and Robot Framework support Web UI E2E automation.
These two are very common automation testing frameworks.

Programming

Selenium supports a wide range of programming languages such as Java,
Python, C#, and Ruby. During implementation, we suggest using the
Selenium IDE to generate the related code and do further customization.
The Robot Framework is keyword-driven. Although it doesn't require much
programming skill, the team has to know how to use keywords and related
libraries correctly.
JMeter doesn't require programming, but it will require you to understand
the HTTP GET/POST API requests of the target website. This can be done by
using browser F12 to monitor the http traffic. Then, we will define the
HTTP requests in JMeter based on this information.
0d1n is a CLI tool. It doesn't require any programming, but you will need to
understand the HTTP GET/POST API and the parameters of the target
website.

Quick testing

0d1n and Wfuzz are standalone tools that can do a quick fuzz test on the
target website without any dependencies.
Although ZAP can also do fuzz testing, it currently can only be executed in
GUI mode.

API-based
testing

Jmeter, 0d1n, and Wfuzz are good candidates for HTTP API-level testing due to their
simplicity of deployment and execution.

Authenticated
pages

If the testing scenario requires authenticated pages to walk through, it's recommended to
use JMeter, Selenium, and Robot Framework since these testing frameworks can do web
UI testing very well.

Automated Fuzz API Security Testing Chapter 12

[152]

The following table lists the key characteristics of various technical approaches to
implementing fuzz testing:

OWASP ZAP JMeter Selenium
DDT

Robot
Framework

DDT
0d1n Wfuzz

Dependency No OWASP ZAP OWASP ZAP CSVLibrary OWASP ZAP No

Coding No No

Yes, but the
Selenium IDE

can help to
generate the

script

No No No

Fuzz data handing ZAP UI mode
only

CSV Config in
JMeter

DDT library in
Python

CSV
Library
for Loop

Λ in the
command line

FUZZ or FUZ2Z
keyword

Testing report Refer to
OWASP ZAP

Refer to
OWASP ZAP

Refer to
OWASP ZAP

Refer to
OWASP ZAP

Refer to
OWASP ZAP

Output to the console or
file

Fuzz multiple
parameters Yes Yes Yes Yes

Yes, but other
values may be
filled as empty

Yes
FUZZ, FUZ2Z, FUZ3Z..

Integration
interface No

RESTful
APIs

JMeter
scripts

Selenium scripts
Robot

Framework
scripts

command-line
interface (CLI) CLI

Testing framewor
k popularity

The API and
CLI don't

support fuzz
testing at this

point

High
JMeter is

common in
REST API

and
performance

testing

High
Common web
UI framewor

k

High
Common

acceptance
testing

framework

Low
0d1n is

specifically
built for fuzz
testing in the

CLI

MED

Launch browser
during testing No No Yes Yes No No

In the following sections, we will demonstrate how these techniques and tools can be
applied to security fuzz testing with the NodeGoat sign-in API.

Which is the best solution? If your team has created the automation
frameworks you're using or you are familiar with specific tools such as
JMeter, Selenium, or Robot Framwork, it's suggested you build on top of it
instead of introducing a new one.

Automated Fuzz API Security Testing Chapter 12

[153]

Approach 1 – security fuzz testing with Wfuzz
In this demonstration, we will use Wfuzz to do username and password fuzz testing with
the sign-in page. The values of the username and password will be provided with
cmdi.csv and sqli.csv .

Step 1 – installing Wfuzz
It's suggested you install Wfuzz on Linux. Follow these commands to install Wfuzz:

$ git clone https://github.com/xmendez/wfuzz
$ cd wfuzz/
$ sudo python setup.py install

Step 2– fuzz testing with sign-in
The basic use of Wfuzz testing with sign-in is shown as follows:

wfuzz -c -z file,name.csv -z file,pass.csv -f Wfuzz_report.html,html -d
"userName=FUZZ&password=FUZ2Z&_csrf=" http://nodegoat.herokuapp.com/login

Here is the explanation of how each option is used in our case:

Options Explanation of use
-c Color output on the console

-z file,<filename>
Read the values from a file to replace FUZZ, FUZ2Z...FUZnZ.
In our example, we have two parameters to be replaced with
fuzz data.

-f
<Output_filename>,html

Output the result to an HTML file named Wfuzz_report.html

-d "name=FUZZ"
It defines the POST message body. The FUZZ keyword and FUZ2Z will
be replaced with the file input, which was defined by using -z file
previously.

Automated Fuzz API Security Testing Chapter 12

[154]

Although it's not a must, it's also suggested to configure OWASP ZAP as a system proxy.
This will allow OWASP ZAP to analyze the HTTP requests/responses for potential security
issues. After all, OWASP ZAP includes a more powerful security detection engine while
Wfuzz can only do basic results analysis.

Step 3 – reviewing the Wfuzz report
Wfuzz will output a summary report to the console and also in HTML. In the console, the
response column shows the response code. It also shows the number of lines, words, and
chars of the HTTP response, based on each specified Payload. Here are some tips for
reading the HTTP response, based on this kind of fuzz testing:

HTTP response
code What it means in security testing

200 It means the target resource is available. It's useful for directory traversal to identify
whether the resources, URL, or path are available.

302

If it's for sign-in testing, it can be an indicator of login success. If we are doing brute-
force sign-in testing, we will be looking for the major variation responses among all the
HTTP responses. For example, all other requests return 200, but a few requests return
302.

404 Page or resource not found. It's used to identify that the target resource is available.

401 or 403 This can be an indicator that the resource is available but the request is
unauthorized.

50x

This can be a serious security issue; one of the following needs further
investigation:
• Excessive system information exposure
• Symptoms of SQL injection due to error exposure
• Denial of service

Automated Fuzz API Security Testing Chapter 12

[155]

Here is a screenshot of the Wfuzz console output. Look for any variations in the responses.
In this case, all of the responses are 200. If any requests return non-200 responses, they will
need further investigation. For lines, words, and chars, we are also looking for a major
variation of the request, which can be an indicator of potential security issue:

In addition, Wfuzz also provides a HTML report. If you found any request suspicious, click
send POST to trigger the HTTP request again:

Wfuzz testing report

Automated Fuzz API Security Testing Chapter 12

[156]

Approach 2 – security fuzz testing with 0d1n
In this demonstration, we will be using another fuzz tool, 0d1n, to do fuzz testing with
NodGoat sign-in.

Step 1 – installation of 0d1n
The installation of 0d1n requires it to be compiled from the source code and
libcurl installed. Follow these commands shown as follows:

$ git clone https://github.com/CoolerVoid/0d1n/
$ sudo apt-get install libcurl-dev

$ sudo yum install libcurl-devel

$ make

$./0d1n

If the installation is successful, the ./0d1n command should be able to list the detailed
usage of the tool.

This screenshot shows the execution of ./0d1n for the usage examples:

0d10 usage

Automated Fuzz API Security Testing Chapter 12

[157]

Step 2 – execution of 0d1n with OWASP ZAP
The following command will trigger fuzz testing against the NodeGoat login page. In
addition, 0d1n can also easily define the proxy which we will specify OWASP ZAP here.
Although running ZAP can be optional, it will be a supplement to 0d1n to detect security
issue based on HTTP requests/responses:

$./0d1n --host 'http://nodegoat.herokuapp.com/login' --post
'userName=user1&password=^&_csrf=' --payloads ./payloads/user.txt --log
log001 --threads 3 --timeout 5 --proxy 127.0.0.1:8090 --find_string_list
./payloads/response.txt --save_response --tamper randcase

Following are the list of commands used in execution of 0d1n:

Command options Explanation of use
--host '<target Host>' Define the target website
--post '<Post Message
body>'

Define the POST message body. The ∧ symbol will be replaced
with fuzz data, which is defined by payloads.

--payloads <filename> Define the source of the payloads for fuzz data input
--log <logName> The log name
--proxy <host:port> In our case, we still use ZAP as a proxy to monitor security issues
--find_string_list
<response.txt>

0d1n allows us to search for some suspicious strings in the HTTP
response

--save_response Enable the save response highlights view when you click on a
HTTP status code in data tables

--tamper randcase Use lowercase and uppercase random position in a string

Step 3 – review the ZAP report (optional)
To review the security issues identified by OWASP ZAP, execute this command:

$ zap-cli report -o ZAP_Report.html -f html

Approach 3 – Selenium DDT (data-driven testing)
In this approach, we will be using selenium to do the sign-in and the DDT techniques to
read all the fuzz data from the file (sqli.csv).

Automated Fuzz API Security Testing Chapter 12

[158]

Step 1: Selenium script with DDT
Here is the fuzz data we prepared for the username and password input. The
sqli.csv file defined two columns of data, which are username and password:

username,password
a,a
)%20or%20('x'='x,''
%20or%201=1,' 1=1

The key highlight of the SignIn_DDT_NodeGoat.py Selenium Python script is the
adoption of the DDT module. The code in bold is mostly related how to read each value
from sqli.csv and replace them with the username and password parameters for every
HTTP request:

-*- coding: utf-8 -*-
SignIn_DDT_NodeGoat.py
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import Select
from ddt import ddt, data, unpack
import csv
import unittest, time, re

@ddt
class NodeGoatSignIn(unittest.TestCase):
 # the method is used to read the "sqli.csv" file.
 def get_csv_data(csv_path):
 rows = []
 csv_data = open(str(csv_path), "rb")
 content = csv.reader(csv_data)
 next(content, None)
 for row in content:
 rows.append(row)
 return rows
 @classmethod
 def setUp(self):
 self.driver = webdriver.Firefox()
 self.driver.implicitly_wait(30)

 # The @data and @unpack will help to read all the data in the 'sqli.csv'
for the testing loop of the test_sign_in method
 @data(*get_csv_data("sqli.csv"))
 @unpack
 def test_sign_in(self, username, password):
 driver = self.driver

Automated Fuzz API Security Testing Chapter 12

[159]

 # The following steps may be changed based on your web UI
operations senarios.
 # Selenium IDE is suggested to generate the following scripts.
 driver.get("http://nodegoat.herokuapp.com/login")
 driver.find_element_by_id("userName").click()
 driver.find_element_by_id("userName").clear()
 driver.find_element_by_id("userName").send_keys(username)
 driver.find_element_by_id("password").click()
 driver.find_element_by_id("password").clear()
 driver.find_element_by_id("password").send_keys(password)
 driver.find_element_by_xpath("//button[@type='submit']").click()
 @classmethod
 def tearDown(self):
 self.driver.quit()
if __name__ == "__main__":
 unittest.main()

The Selenium/Python script can be automatically generated by using the
Katalon Recorder browser extension. Once the script is generated, add the
DDT parts of the code shown in bold.

Step 2 – executing the Selenium script
If the SeleniumBASE framework is installed, we can use the following command to trigger
test execution. The 127.0.0.1:8090 proxy is the OWASP ZAP proxy. By executing the
command, it will launch Firefox for sign-in with every value defined in sqli.csv. It may
take a while, since it will launch and close Firefox for every request:

$ pytest SignIn_DDT_NodeGoat.py --proxy=127.0.0.1:8090

Step 3 – review the ZAP report
Once the testing is done, refer to the OWASP ZAP report:

$ zap-cli report -o ZAP_Report.html -f html

Approach 4 – Robot Framework DDT testing
In this case, we will be doing the same scenario. However, instead of using Selenium and
Python, we will use Robot Framework to perform the DDT testing for the NodeGoat sign-
in. We will still read the sqli.csv file to do the username and password fuzz testing.

Automated Fuzz API Security Testing Chapter 12

[160]

Step 1– Robot Framework environment setup
The Robot Framework environment setup may refer to Chapter 9, BDD Acceptance Security
Testing. In this testing scenario, in addition to Robot Framework, we will also require the
following external libraries:

Robot Framework
library How to install Usage scenarios in this case

CSVLibrary
pip install -U robotframework-
csvlibrary

Read values from the CSV file

SeleniumLibrary
pip install --upgrade
 robotframework-seleniumlibrary

Launch the browser and execute the
defined web UI operations

In addition, the selenium web drivers also need to be installed on the testing machine. This
approach assumes that ZAP is running and the system proxy is configured to the ZAP
proxy properly.

Step 3 – Robot Framework script
To complete the testing scenario, here are some major robot framework keywords used in
this case:

Keyword commands Use of the keyword
read .csv file to list Read the sqli.csv CSV file to the list
Open Browser Open the browser
Log Print the value to the log
FORIN This is a loop to read all the values of the CSV files

Input Text Locate the NodeGoat sign-in username and password, and input the text
with the values from sqli.csv

Click button Click the Submit button on the NodeGoat website
Close Browser Close the browser for every test

The Robot Framework RF_DDT.robot script will be defined as follows:

*** Settings ***
Library Collections
Library CSVLibrary
Library SeleniumLibrary
Library OperatingSystem
Library String
Library Collections

*** Test Cases ***

Automated Fuzz API Security Testing Chapter 12

[161]

SignIn_DDT
 Open Browser http://nodegoat.herokuapp.com/login
 @{data}= read csv file to list sqli.csv
 Log ${data}
 :FOR ${x} IN @{data}
 \ Log ${x}
 \ Input Text id=userName ${x[${0}]}
 \ Input Text id=password ${x[${1}]}
 \ Click Button xpath=//button[@type='submit']
 \ Log ${x[${0}]}
 \ Log ${x[${1}]}
 Close Browser

In the Robot Framework RIDE, the script will look like this. This screenshot shows the
Settings section of the script:

Robot Framework settings

The screenshot shows the steps definition of the Robot Framework in the RIDE editor:

DDT Testing Script in Robot Framework

Automated Fuzz API Security Testing Chapter 12

[162]

To execute the robot Framework execute the following command:

$ robot RF_DDT.robot

The Robot Framework itself has limited capability to analyze security issues in HTTP
responses. Therefore, it's suggested to configure OWASP ZAP as the system proxy.

Step 4 – review the ZAP report
Use this command to generate the ZAP report:

$ zap-cli report -o ZAP_Report.html -f html

Summary
In this chapter, we discussed various kinds of techniques to achieve API fuzz security
testing. We have introduced the use of FuzzDB and seclist for the sources of data input. In
addition, we also demonstrated the use of Radamsa, which allows us to dynamically
generate fuzz data based on a specified data sample.

For the API fuzz testing, we also demonstrated some automation frameworks and tools
such as JMeter, Selenium/DDT, Robot Framework DDT, 0d1n, Wfuzz, and integration with
ZAP. During API fuzz testing, it's recommended to apply ZAP as a proxy to identify
security issues. We demonstrated four different technical approaches.

Approach 1 is to do the testing using Wfuzz. It can do the fuzz testing with multiple
parameters, and output a summary of response codes and the number of lines, words, and
chars of every HTTP response. Wfuzz testing is a good candidate for login brute-force,
directory traversal, and RESTful API testing.

In Approach 2, we use 0d1n for fuzz testing, which is similar to Wfuzz. During testing, we
specified find_string_list and executed OWASP ZAP to identify security issues based
on HTTP responses.

Selenium with DDT is demonstrated in Approach 3. The behavior is mostly close to human
behaviors due to the launch of browser and Web UI interaction behaviors. In the selenium
script, we apply a DDT module to read the FuzzDB files for the input of username and
password. OWASP ZAP is used to identify security issues.

Automated Fuzz API Security Testing Chapter 12

[163]

In the final approach, Robot Framework DDT is used. This is similar to the Selenium/DDT
approach. However, the Robot Framework script is defined by keyword driven instead of
programming languages. It makes the Robot Framework script more readable. In Robot
Framework, CSVLibrary is used to read the CSV files for FuzzDB data input.

In the next chapter, we will introduce infrastructure security testing.

Questions
Which one is not used for fuzz testing a data source?1.

FuzzDB1.
Seclist2.
Radamsa3.
None of the above4.

Which automation framework cannot simulate human behaviors for web UI2.
operations?

Selenium1.
Robot Framework2.
ZAP3.
All of the above4.

What is the keyword used for Wfuzz to replace with fuzz data in the command?3.
FUZZ1.
@2.
∧3.
DATA4.

Which one best describes the HTTP response code 401/403?4.
URL or path is available1.
An indicator of login success2.
An indicator that the resource is available but the request is3.
unauthorized
Symptoms of SQL injection due to error exposure4.

Automated Fuzz API Security Testing Chapter 12

[164]

What is not the key characteristics to use Robot Framework?5.
Keyword-driven script1.
SeleniumLibrary can be used to launch a browser and simulate human2.
web operations
Fast execution cycle3.
CSVLibrary is used to read fuzz data files4.

Further reading
Naughty Strings: https:/ ​/​github. ​com/​minimaxir/ ​big- ​list- ​of- ​naughty-
strings/ ​blob/ ​master/ ​blns. ​tx

FuzzDB: https:/ ​/​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb

Data Production System: https:/ ​/​code. ​google. ​com/ ​archive/ ​p/​ouspg/ ​wikis/
Blab.​wiki

Robot Framework Selenium Library: http:/ ​/​robotframework. ​org/
SeleniumLibrary/ ​

Robot Framework CSV Library: http:/ ​/​github. ​com/ ​s4int/ ​robotframework-
CSVLibrary

Wfuzz: http:/ ​/​wfuzz. ​readthedocs. ​io/ ​en/​latest/ ​

0d1n fuzz testing: http:/ ​/ ​github. ​com/ ​CoolerVoid/ ​0d1n

https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/minimaxir/big-list-of-naughty-strings/blob/master/blns.txt
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
https://code.google.com/archive/p/ouspg/wikis/Blab.wiki
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://robotframework.org/SeleniumLibrary/
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://github.com/s4int/robotframework-CSVLibrary
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://wfuzz.readthedocs.io/en/latest/
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n
http://github.com/CoolerVoid/0d1n

13
Automated Infrastructure

Security
In this chapter, we will demonstrate how to automate infrastructure security testing against
the NodeGoat website. The infrastructure security testing will include known vulnerable
JavaScript libraries, insecure SSL configurations, and the advanced NMAP NSE script
testing technique for web security. At the end, we will also illustrate how to apply the BDD
automation framework to SSLScan and NMAP.

The topics that will be covered in this chapter are as follows:

Scan For known JavaScript vulnerabilities
Scanning with OWASP dependency check
Secure communication scan with SSLScan
NMAP security scan with the BDD framework

Scan For known JavaScript vulnerabilities
JavaScript libraries are widely used in any website, and are also considered the most
vulnerable components. As Using Components with Known Vulnerabilities is one of the
OWASP Top 10 security issues, we will need to constantly monitor any major known
vulnerable components on the web. In this demonstration, we will introduce how to scan
for known vulnerabilities in JavaScript libraries.

We will be using RetireJS because it's simple to use and provides several ways of scanning,
such as a command-line scanner, Grunt plugin, browser (Chrome/Firefox) extension, and
also the Burp and OWASP Zap plugins. In our demonstration, we will be using the
command-line scanner in the following steps.

Automated Infrastructure Security Chapter 13

[166]

Step 1 – install RetireJS
The installation of RetireJS requires us to use npm:

$ npm install -g retire

Step 2 – scan with RetireJS
Once it's installed, we may specify the target project to be scanned. In our example, we will
scan the whole project under the /NodeGoat/ path:

$ retire --path ~/NodeGoat/ --colors

Step 3 – review the retireJS results
The RetireJS scanning results show critical issues in red. There are two major known
vulnerabilities with these JavaScript libraries:

Component Severity CVE
jquery 1.10.2 Medium CVE-2015-9251
bootstrap 3.0.0 Medium CVE-2018-14041

The following screenshot shows the retireJS scanning results for the NodeGoat project:

RetireJS scanning report

Automated Infrastructure Security Chapter 13

[167]

WebGoat with OWASP dependency check
In addition to RetireJS, we will also the OWASP dependency check to scan all the files of
the NodeGoat project for known vulnerable libraries. Follow these steps for the OWASP
dependency check scan.

Step 1 – prepare WebGoat environment
To better demonstrate the scanning results of the OWASP dependency check, we will use
the WebGoat project instead of NodeGoat. The WebGoat project can be downloaded from
Git. WebGoat is a purpose-built vulnerable web project used to practice security testing:

$ git clone https://github.com/WebGoat/WebGoat

We will also use the latest version of OWASP dependency-check, which can be
downloaded here: https:/ ​/ ​bintray. ​com/ ​jeremy- ​long/ ​owasp/ ​dependency- ​check.

Step 2 – dependency check scan
To execute the dependency-check, locate the \dependency-check\bin\ path. Execute the
BAT under Windows or the SH under Linux. Refer to the following command for the
WebGoat project scan:

$ dependency-check --project WebGoat --format XML --scan d:\tools\WebGoat

$ dependency-check --project WebGoat --format HTML --scan d:\tools\WebGoat

The XML report format can be useful to import into other security management tools.

It will take a while to download the NVD CVE. If you would like to do the scan without
downloading the NVD CVE, you may specify the --noupdate option.

https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check
https://bintray.com/jeremy-long/owasp/dependency-check

Automated Infrastructure Security Chapter 13

[168]

Step 3 – review the OWASP dependency-check
report
After the scan, the report will be generated under the \dependency-
check\bin\ execution path. The filenames are dependency-check-report.html and the
dependency-check-report.xml:

Dependency check report

Secure communication scan with SSLScan
In this demonstration, we will inspect vulnerable security configurations with HTTPS. The
tool we will be using is SSLScan. Follow these steps to perform the scan.

Step 1 – SSLScan setup
SSLSCan is a C program that can be downloaded with git clone:

$ git clone https://github.com/rbsec/sslscan

Once it's downloaded on Linux, use make static to build the SSLSCan tool:

$ make static

Automated Infrastructure Security Chapter 13

[169]

Step 2 – SSLScan scan
To execute sslscan, we will specify the output as XML, and also specify the target website's
URL:

$ sslscan --no-failed --xml=nodegoat_SSLscan.xml nodegoat.kerokuapp.com

--no-failed means only accepted connections will be listed in the test results. When
reviewing the SSLSCan test results, we will only focus on those connections with accepted.

Step 3 – review the SSLScan results
Here are the SSLScan results without the options of --no-failed. Please focus on
connections with accepted only. When reading the SSLScan test results, we will focus on
weak HTTPS protocols and encryption algorithms such as SSL v3, TLS v1.0, TLS v1.1, and
NULL. Generally, the following will be considered as vulnerable:

SSLv2 and SSLv3
Symmetric encryption algorithms smaller than 112 bits
X509 certificates with RSA or DSA keys smaller than 2048 bits
Weak hash algorithms such as MD5

This screenshot shows the sslScan results for the NodeGoat website:

SSLScan report

Automated Infrastructure Security Chapter 13

[170]

In addition to SSLScan, we can also use SSLTest, SSLyze, or NAMP for SSL configuration
inspection.

To read the SSLScan test results, focus on the connections with accepted or
specify --no-failed to reduce unnecessary information.

Step 4 – fix the HTTPS secure configurations
The secure HTTPS configuration of a website can be very tedious and prone to mistakes. It's
suggested to use the Mozilla SSL configuration generator. It will help to generate secure
SSL configurations based on the web server. Refer to https:/ ​/​mozilla. ​github. ​io/​server-
side-​tls/​ssl-​config- ​generator/ ​ for details.

NMAP security scan with BDD framework
The test results for NMAP may be difficult to understand and take time to interpret for
non-security professionals. The purpose of integration with BDD and NMAP allows us to
define the NMAP execution in plain English. In this example, we will use NAMP to execute
some common web security tests with an NMAP NSE (NMAP Scripting Engine) script.
Due to the execution of NMAP and the scanning results can be difficult to interpret, we will
apply the Gauntlt framework to execute NMAP. Please be reminded that NAMP web
security testing cannot replace a web scanner such as ZAP, due to the limitations of the
security payloads and detection engine of NMAP.

NMAP For web security testing
We will be using the NMAP NSE for the following security testing: security header check,
HTTP slow DOS check, SSL cipher check, XSSed history check, SQL injection check, and
stored XSS check.

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/

Automated Infrastructure Security Chapter 13

[171]

This table lists the NMAP security testing scenario, the NSE script we will need, and the
expected results:

NMAP
security testing NMAP NSE script and scan Expected results

Security header check
nmap -p80 --script http-
security-headers <host>

"X-Frame-Options: DENY"

HTTP slow DOS
check

nmap -p80,443 --script
http-slowloris-check
<host>

Should not contain "LIKELY VULNERABLE"

SSL ciphers check
nmap --script=ssl-enum-
ciphers <host>

Should not contain "SSL"

XSSed history check
nmap -p80 --script http-
xssed.nse <host>

Should return "No previously reported XSS vuln"

SQL injection check
nmap -sV --script=http-sql-
injection <host>

Should not return "Possible sqli for"

Stored XSS check
nmap -p80 --script http-
stored-xss.nse <host>

Should return "Couldn't find any stored XSS vulnerabilities"

NMAP NSE scripts can be downloaded here:
https://svn.nmap.org/nmaps/scripts/<NSE script name>. For example, the
security header check NSE is at https:/ ​/ ​svn.​nmap. ​org/ ​nmap/ ​scripts/ ​http- ​security-
headers.​nse.

The -oX option can be used to generate the output in an XML-format file:

$ nmap -p80 --script http-security-headers nodegoat.kerokuapp.com -oX
nodeGoat_NmapScan_HTTPheaders.xml

We will be using these NMAP security testing commands and expected results to integrate
with the BDD framework Gauntlt in the following demonstrations.

NMAP BDD testing with Gauntlt
In this lab, we will be using NMAP with the Gauntlt BDD testing framework to test the
NodeGoat website. The key structure of the Gauntlt includes scenario, When, and Then.
The scenario is used to describe the testing case. The When I launch a ...attack with... is used
to define the tools and command options to execute the testing. Finally, the Then the
output should is to define the expected results. It will make the whole script and the testing
results. In this demonstration, we will have the following security testing scenarios:

Scenario: Verify the security header using http-security-headers
Scenario: Verify the server is vulnerable to a HTTP slow DOS attack
Scenario: Verify the use of insecure SSL
Scenario: Was there any reported XSS history for the website
Scenario: Verify any potential SQL injection into the website
Scenario: Verify any potential Stored XSS

https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse
https://svn.nmap.org/nmap/scripts/http-security-headers.nse

Automated Infrastructure Security Chapter 13

[172]

The NMAP Guantlt script will be defined as follows, with the filename
nmap_NodeGoat_gauntlt.attack:

@slow

Feature: nmap attacks for website. It will cover the following tesitng
security header check, HTTP Slow DOS check, SSL cipher check, XSSed History
Check, SQL Injection and the Stored XSS.

 Background:
 Given "nmap" is installed
 And the following profile:
 | name | value |
 | host | nodegoat.kerokuapp.com |

 Scenario: Verify the security header using the http-security-headers
 When I launch a "nmap" attack with:
 """
 nmap -p80 --script http-security-headers <host>
 """
 Then the output should contain "X-Frame-Options: DENY"

 Scenario: Verify if the server is vulnerable to HTTP SLOW DOS attack
 When I launch an "nmap" attack with:
 """
 nmap -p80,443 --script http-slowloris-check <host>
 """
 Then the output should not contain:
 """
 LIKELY VULNERABLE
 """

 Scenario: Verify the uses of insecure SSL
 When I launch an "nmap" attack with:
 """
 nmap --script=ssl-enum-ciphers <host>
 """
 Then the output should not contain:
 """
 SSL
 """

 Scenario: Was there any reported XSS history of the website?
 When I launch an "nmap" attack with:
 """
 nmap -p80 --script http-xssed.nse <host>

Automated Infrastructure Security Chapter 13

[173]

 """
 Then the output should contain:
 """
 No previously reported XSS vuln
 """

 Scenario: Verify any potential SQL injection of the website.
 When I launch an "nmap" attack with:
 """
 nmap -sV --script=http-sql-injection <host>
 """
 Then the output should not contain:
 """
 Possible sqli for
 """

 Scenario: Verify any potential Stored XSS
 When I launch an "nmap" attack with:
 """
 nmap -p80 --script http-stored-xss.nse <host>
 """
 Then the output should contain:
 """
 Couldn't find any stored XSS vulnerabilities.
 """

To execute the script, run the following command:

$ gauntlt nmap_NodeGoat_gauntlt.attack

The following screenshot shows one of the testing results for Gauntlt. As you can see, the
testing results will be much easier to read and understand, even for non-security
professionals:

Gauntlt results

Automated Infrastructure Security Chapter 13

[174]

For more examples of Gauntlt, please refer to https:/ ​/​github. ​com/
gauntlt/ ​gauntlt/ ​tree/ ​master/ ​examples.

NMAP BDD with Robot Framework
In addition to Gauntlt, we will apply Robot Framework with NMAP in this demonstration.
Here are some of the key components to be used in this testing scenario:

Robot Framework key
component Use in security testing scenario

Run Process
We will use Run Process to execute the security testing tools. Please be
aware that the command options will require double spaces in the robot
Framework scripts.

${result.stdout}
Run Process will store all the output into this variable, which can be
used to verify the test results.

Should Contain

We should use 'Should Contain' to verify the expected test results. In
addition, Robot Framework provides other verification methods, such as
'Should Match', 'Should be Equal', 'Should End With', and 'Should be
Equal As Strings'. Refer to the Robot Framework user guide 'BuiltIn'
libraries for details.

Log
Log is optional. We use 'Log' to print the command execution results in
the report. In our demonstration, this will be the NMAP console output
results.

Step 1 – define the Robot Framework steps
If you use 'Run Process' to execute NMAP, please be aware that it will require double
spaces between each parameter in the command options. Otherwise, the Robot Framework
will return a file not found error even if NMAP is installed. In our example, the command
options are -p80 --script http-xssed nodegoat.kerokuapp.com:

*** Settings ***
Library Process

*** Test Cases ***
Testing if the website was previously reported XSS
 ${result} = Run Process nmap -p80 --script http-xssed
nodegoat.kerokuapp.com
 Log ${result.stdout}
 Should Contain ${result.stdout} No previously reported

https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples
https://github.com/gauntlt/gauntlt/tree/master/examples

Automated Infrastructure Security Chapter 13

[175]

Robot Framework has several verification keywords built in, such as
'Should Be Equal', 'Should Start With', 'Should End With' 'Should Not
Match', 'Should Match Regexp', and so on. Refer to http:/ ​/
robotframework. ​org/ ​robotframework/ ​latest/ ​libraries/ ​BuiltIn.
html#Should%20Be for more details.

Step 2 – execute and review the results
To execute the robot Framework script, use the following command:

$ robot nmap_NodeGoat.robot

The following screenshot shows the test results for robot framework. It also generates
HTML reports:

Robot framework script execution

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be

Automated Infrastructure Security Chapter 13

[176]

Here is one of the Robot framework HTML reports, log.html:

Robot framework report

Summary
In this chapter, we demonstrated infrastructure security testing against the NodeGoat
website using RetireJS, OWASP dependency check, SSL communication configuration, and
integration with BDD frameworks. These security testing scenarios cover the known
vulnerable libraries check, secure SSL configuration check, and basic web security check.

The RetireJS and OWASP dependency check can identify the known CVE of libraries, based
on a scan of their project source files. SSLScan is used to inspect any vulnerable HTTPS
configurations such as SSL, short encryption keys, and weak HSA or encryption
algorithms.

We also illustrated how NMAP NSE can be used to do basic web security inspections such
as XSS and SQL injection. An NMAP security scan with the integration of Gauntlt and
Robot Framework was also demonstrated. BDD testing techniques can help to make
infrastructure security testing easier to understand and can even be maintained by a non-
security team.

Automated Infrastructure Security Chapter 13

[177]

Questions
Which one best describes the purpose of RetireJS?1.

Detect known vulnerable JavaScript libraries1.
Scan for XSS2.
Scan for SQL injection issues3.
Scan for JavaScript security coding issues4.

To interpret the SSLScan results, what kind of connection should we focus on2.
Accepted1.
Rejected2.
Failed3.
Disconnected4.

Which of the following is an indicator of a weak HTTPS configuration?3.
The use of SSL v2 or v31.
The use of MD5 hashing2.
The RSA key is smaller than 1024 bits3.
All of the above4.

What can an NMAP NSE script do for web security testing?4.
Security header check1.
HTTP slow DoS check2.
SQL injection3.
All of the above4.

What keywords are used to integrate NMAP with Robot Framework?5.
Run process1.
Should contain2.
{result.stdout}3.
All of the above4.

Automated Infrastructure Security Chapter 13

[178]

Further reading
RetireJS: https:/ ​/​retirejs. ​github. ​io/​retire. ​js/​

Security/Server Side TLS: https:/ ​/ ​wiki. ​mozilla. ​org/ ​Security/ ​Server_ ​Side_
TLS

NMAP NSE Index: https:/ ​/ ​nmap.​org/ ​nsedoc/ ​index. ​html

Robot Framework User Guide: http:/ ​/​robotframework. ​org/ ​robotframework/
latest/​libraries/ ​BuiltIn. ​html#Should%20Be

WebMAP for NMAP reporting: https:/ ​/​github. ​com/ ​Rev3rseSecurity/ ​WebMap

https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Should%20Be%20Equal
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap
https://github.com/Rev3rseSecurity/WebMap

14
Managing and Presenting Test

Results
In the previous chapters, we have introduced lots of security automation frameworks and
techniques. However, how do we consolidate and present all the security findings as a
whole to stakeholders? For a security team to execute and manage several security testing
projects at a time can be a challenge. The security team, the project team, and the
management would like to know the security status of each project. This requires us to
consolidate some previously mentioned security testing tools' results into one portal or
summary document. We will need to not only manage all the security testing tools'
execution results, but also present a security dashboard for the overall security posture of a
project. We will introduce some approaches and tools to achieve this goal.

In this chapter, we will cover the following topics:

Managing and presenting test results
Approach 1 – integrating the tools with RapidScan
Approach 2 – generating a professional pentest report with Serpico
Approach 3 – security findings management with DefectDojo

Managing and presenting test results
We have learned several security testing techniques and automation frameworks. After all
the security testing is done, we will need to consolidate the security testing findings to
present into a dashboard or a document to share with stakeholders. In addition to Robot
Framework, which we have demonstrated, there are also other tools that can help us to do
the reporting consolidation.

Managing and Presenting Test Results Chapter 14

[180]

The screenshot shows the integration of security findings from different testing tools:

Security Testing Reporting Framework

Managing and Presenting Test Results Chapter 14

[181]

We will introduce three typical tools to achieve consolidation of security findings:

Tools RapidScan OWASP DefectDojo Serpico

Characteristics

It's a Python
script that will
execute several
security testing
tools and
present the
results.

It can import several open
source and commercial
security testing tools'
reports, and present
security issues in one
dashboard.
It can also generate a
testing report document
based on selected
information.
• Multiple team co-work
• Manage several projects
• Defect management dashboard

It provides a list of security
findings templates (security
issues and mitigation
suggestions). You may apply
the security findings to generate
a professional document.

Generate a
document

No, output to
console only Yes, PDF or ASCII Yes, DOC

Execution
Python script:
$ python
rapidscan.py

Web service:
http://localhost:8000

Web service:
https://localhost:8443/

Import testing
results from
tools

No Yes No

Managing and Presenting Test Results Chapter 14

[182]

Manage
multiple
projects

No Yes Yes

License GNU General
Public License v2.0 BSD 3-Clause BSD 3-Clause

In addition to OWASP Defect Dojo, the following penetration testing reporting tools may
also be considered. These reporting tools allow penetration testers to import the security
testing output (XML) from various security testing tools:

FaradaySEC
Jackhammer
Dradis Framework
ArcherySec
Dradis Framework

Approach 1 – integrate the tools with
RapidScan
RapidScan can execute several security testing tools and output key security findings.

Step 1 – get the RapidScan Python script
To get the RapidScan script, follow these commands:

$ wget -O rapidscan.py
https://raw.githubusercontent.com/skavngr/rapidscan/master/rapidscan.py &&
chmod +x rapidscan.py
$ python rapidscan.py nodegoat.herokuapp.com

Managing and Presenting Test Results Chapter 14

[183]

The script will not install related security tools, but it will show a warning message for any
missing security tools. It's recommended to run the RapidScan script under Kali Linux to
reduce the installation of the security testing tools. The table lists the security testing tools
that will be executed by the RapidScan script:

 Tools Security Testing Scenario
wapiti It checks for SQLi, RCE, XSS, and Other Vulnerabilities
whatweb It's used to check for X-XSS Protection security Header
nmap In RapidScan, it's used to check listening ports, and also SSL vulnerabilities.

golismero It's a web security scanner that can check whether the domain is spoofed, brute force
attack on the target domain, and perform SSL vulnerabilities scans

host It's used to check the existence of an IPV6 address in the RadpiScan
wget It's used to check administrator web interfaces such as /wp-admin

uniscan Uniscan can perform attacks such as Remote File Include, Local File Include, and Remote
Command Execution. It can also do brute force for filenames and directories

wafw00f It checks for the existence of an application firewall
dirb Brute forces the directory traverse
davtest Checks whether WEBDAV is enabled on the Home directory
theharvester It uses Google to search if any email address related to the target domain
xsser It scans for XSS (cross-site scripting) security issues
dnsrecon It can check all NS Records for Zone Transfers
fierce Fierce is a DNS reconnaissance tool used to scan for any zone transfers
dnswalk DNSWalk is also used to check any zone transfer
whois It's used to check the administrator contact information of the registered domain
sslyze It checks for SSL vulnerabilities
lbd It checks for DNS/HTTP Load Balancers
dnsenum It checks for DNS zone transfer
dmitry It searches for email information from the domain
davtest It scans for enabled WebDAV enabled servers by uploading test executable files

nikto
nikto is used to scan for several web security issues such as XSS headers, subdomain
traversal, internal IP disclosure, SSL vulnerabilities, sensitive files, injectable paths, and so
on

dnsmap It can brute force scan for subdomains of the target website

To execute the RapidScan, it's suggested to run it directly in Kali Linux. It
will save lots of time to do the security tools installation. For detailed
information on how to use each tool executed by RapidScan, refer to the
Kali Tool list: https:/ ​/​tools. ​kali. ​org/ ​tools- ​listing.

https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing

Managing and Presenting Test Results Chapter 14

[184]

This screenshot shows the use of the RapidScan:

RapidScan usage

Step 2 – review scanning results
The RapidScan detects the following major security vulnerabilities:

Nmap [STUXNET] Critical Vulnerable to STUXNET
Nmap: Checks for Remote Desktop SErvice over TCP : High RDP Server
Detected over TCP
Uniscan detected possible XSS, SQLi, BSQLi
Nmap [FTP] FTP Service Detected

For detailed information of report, please also refer to RS-Debug-ScanLog and RS-
Vulnerability-Report.

Managing and Presenting Test Results Chapter 14

[185]

This screenshot shows parts of the NodeGoat scanning results of the RapidScan:

RapidScan Scan Results

Approach 2 – generate a professional
pentest report with Serpico
A summary of the security testing documentation will help you to communicate with
stakeholders. The report should not only list the security findings but also how they were
identified, the testing scope, the methodology, and also mitigation suggestions. It's a
common practice for an independent security testing firm to produce such documentation.
The PCI DSS Penetration Test Guidance suggests a Penetration Test Report Outline as
follows:

Executive summary
Statement of Scope

Managing and Presenting Test Results Chapter 14

[186]

Statement of methodology
Segmentation test results
Findings
Tools used

Serpico is a penetration testing report generator, which can help to produce such a
document. Although Serpico doesn't import the security testing results from tools, it allows
users to select security findings/mitigation's based on templates. Follow the steps in the
next sectionto generate your own penetration testing document.

Step 1 – installation of Serpico
Depending on the platform, download one of the installation packages here:

https:/​/​github.​com/ ​SerpicoProject/ ​Serpico/ ​releases

For example, we can download serpico_1.3.0_x86.msi for installation on Windows.
Once the installation is done, Serpico can be launched with the start_serpico.bat script:

$ cd Serpico
$ start_serpico.bat

Then, use a browser to visit https://localhost:8443/.

By the time of the writing, you may ecnouter report generation error after
adding images in the findings. When it occurs, try to comment out the
following lines in server.rb to workaround the issue:

 #elsif png?(img_data)
 #width = IO.read(image.filename_location)[0x10..0x18].unpack('NN')[0]
 #height =
IO.read(image.filename_location)[0x10..0x18].unpack('NN')[1]

Step 2 – create a Report based on Templates
To create a report, click New Report from the menu at the top. There are some report
templates you may select, such as assessment type, and also report types such as DREAD,
CVSS, and NIST 800. The key differences between these report types are the risk scoring
categories.

https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases

Managing and Presenting Test Results Chapter 14

[187]

For example, NIST 800-30 defines risk rating as shown in the following table:

Impact of threat

Informational Low Moderate High Critical

Threat likelihood

High Informational Low Moderate High Critical

Moderate Informational Low Moderate Moderate High

Low Informational Low Low Moderate Moderate

This screenshot shows Create Report in Serpico:

Serpico Report

Managing and Presenting Test Results Chapter 14

[188]

Step 3 – Add Finding from Templates
After creating a report with basic project information, it's suggested to Add Finding From
Templates instead of add every finding from scratch. The finding templates include some
common attacks and mitigation information. We may edit the security findings based on
these templates and project testing results.

This screenshot shows Add Finding from Templates:

Serpico Report Templates

Step 4 – generate a report
To generate a report, click Generate Report on the left menu. One Word document will be
automatically generated based on your selected information and security findings.

Managing and Presenting Test Results Chapter 14

[189]

This screenshot shows a sample of a generated report in Word format:

Serpico Report Sample

Approach 3 – security findings management
DefectDojo
In this approach, we use several security testing tools to do security testing with XML
outputs. These XML outputs will be imported into a defect management service, OWASP
DefectDojo in our demonstration. The security defect management web service will help to
consolidate all the testing results in one security dashboard, or even generate a summary
report. Follow the steps to learn how to apply OWASP DefectDojo to manage your security
findings.

Step 1 – setup the OWASP DefectDojo
To set up the OWASP DefectDojo, running the Docker image is suggested. Follow these
commands to run OWASP DefectDojo. It will run a web service on port 8000:

$ docker run -it -p 8000:8000 appsecpipeline/django-defectdojo bash -c
"export LOAD_SAMPLE_DATA=True && bash /opt/django-DefectDojo/docker/docker-
startup.bash"

Managing and Presenting Test Results Chapter 14

[190]

Once the OWASP defectDojo docker is running, use your browser to navigate
to http://localhost:8000 with the default credentials (user: admin, password: admin).

In addition, OWASP DefectDojo also provides an online demo. Refer to https:/ ​/
defectdojo.​herokuapp. ​com with the default credentials listed here:

Username Password
admin defectdojo@demo#appsec

product_manager defectdojo@demo#product

Step 2 – run security tools to output XMLs
Generally, most security testing tools can output testing results in XML or JSON format. In
our demonstration, we generate most of the results in XML files and import them into
OWASP DefectDojo.

This table shows some common security testing tools for how to execute the security testing
with XML output:

Tools Security testing, output format and command options

OWASP ZAP

Web Security testing with XML output format:
$ zap-cli quick-scan -s xss,sqli --spider -r
http://nodegoat.herokuapp.com/
$ zap-cli report -o ZAP_Report.xml -f xml

Dependency
Check

Scan for known vulnerabilities with XML output format:
$ dependency-check.bat --format XML --project
 NodeGoat -s d:\NodeGoat

NMAP

Network security scanning with XML output format:
$ nmap -sV -sC nodegoat.herokuapp.com -oX
/tmp/webmap/NodeGoat_NMAP.xml
$ nmap -p80 --script http-stored-xss.nse
nodegoat.herokuapp.com
$ nmap -p80,443 --script http-slowloris --max-parallelism
500 -Pn nodegoat.herokuapp.com
$ nmap -p21, 23,80, 137,138, 443, 445, 1433, 3306, 1521,
3389 --open -Pn n odegoat.herokuapp.com

Retire
Scan for known vulnerabilities of JavaScript libraries:
$ retire --path \nodegoat --outputformat json --
colors

https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com

Managing and Presenting Test Results Chapter 14

[191]

Step 3 – import ZAP findings
Once we have done the web security testing by using OWASP ZAP, the
ZAP_Report.xml file can be imported into OWASP DefectDojo. Before we can import the
security findings XML file, we need to create a product and engagement:

Add Product: OWASP DefectDojo can manage several products (projects). For
example, NodeGoat is our product in this case.
Add New Engagement: Engagement can be every planned security testing cycle.
There may be several engagements due to different kinds of security testing tools
or several periods of testing.

We will use Add New Engagement | Import Scan results to import the ZAP XML testing
results ZAP_Report.xml:

DefectDojo with ZAP Import

Managing and Presenting Test Results Chapter 14

[192]

Once the XML import is done, you may review the security findings in the web console. If
there are several projects or engagements for security testing, you will find such a
dashboard helpful for the communication and presentation of the security status:

Findings in DefectDojo

In addition, OWASP defectDojo also includes Report Builder to generate a PDF document.

Summary
A well-documented report can not only help you to communicate with stakeholders, but
also demonstrate the value of security testing. A professional penetration testing report
should include an agenda such as executive summary, statement of scope, statement of
methodology, test results, findings, mitigations, and tools used.

In this chapter, we have introduced three approaches to managing the testing results. First,
we can use the script to integrate all the testing results. We demonstrated the uses of a
Python script, RapidScan, which executes several security testing tools and presents the
security findings in a console with highlighted colors. Secondly, we also introduced the
document generator Serpico, which can help to generate professional penetration testing
documentation, which includes the summary, security findings, risk ratings, and
mitigations. Finally, we applied a reporting management service, which can import all the
XML testing results and present the findings in one dashboard. We have illustrated this by
using OWASP DefectDojo.

Managing and Presenting Test Results Chapter 14

[193]

Questions
What should be included in a penetration testing report?1.

Executive summary1.
Statement of methodology2.
Findings3.
All of above4.

How does NIST 800-30 categorize risk rating?2.
Impact of Threat vs Threat Likelihood1.
Severity vs Impact2.
Impact vs Mitigation efforts3.
Severity vs Asset Value4.

What is the common report format that can be imported into the reporting3.
service?

HTML1.
XML2.
CSV3.
DOC4.

Which one of these is not used for web security testing?4.
nmap1.
uniscan2.
dirb3.
IDA4.

Which one is not used for network scanning?5.
nmap1.
xsser2.
dnsenum3.
dnsmap4.

Managing and Presenting Test Results Chapter 14

[194]

Further reading
Web security scanner Arachni: https:/ ​/ ​github. ​com/ ​Arachni/ ​arachni

Arachni: https:/ ​/ ​github. ​com/ ​Arachni/ ​arachni/ ​wiki/ ​Installation

Archerysec: https:/ ​/​github. ​com/​archerysec/ ​archerysec

DefectDojo Demo Site: https:/ ​/ ​defectdojo. ​herokuapp. ​com (admin /
defectdojo@demo#appsec)
Archerysec Demo Site: https:/ ​/​archerysec- ​test. ​herokuapp. ​com/
webscanners (Username: archerysec, Password: archerysec@archerysec)
Serpico Report templates: https:/ ​/​github. ​com/​SerpicoProject/ ​Serpico/
tree/​master/ ​templates

PCI Penetration Testing Guidance: https:/ ​/​www. ​pcisecuritystandards. ​org/
documents/ ​Penetration_ ​Testing_ ​Guidance_ ​March_ ​2015. ​pdf

OWASP DefectDojo: https:/ ​/​github. ​com/​DefectDojo/ ​django- ​DefectDojo

https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/Arachni/arachni/wiki/Installation
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://github.com/archerysec/archerysec
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://defectdojo.herokuapp.com
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://archerysec-test.herokuapp.com/webscanners
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://github.com/SerpicoProject/Serpico/tree/master/templates
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo

15
Summary of Automation

Security Testing Tips
This chapter summarizes key security automation techniques and tips of all previously
discussed chapters. This chapter can be used as a quick reference guide or as an overall
review for the following security automation topics:

Automation testing framework
Secure code review
API security testing
Web security testing
Android security testing
Infrastructure security
BDD security testing by Robot Framework

Automation testing framework
We have introduced the automation framework for the functional web, mobile, and
Windows UI testing. We also introduced the adoption of BDD framework with security
testing. In terms of the layers of automation approaches, white-box testing, API testing, and
Web UI automation are also demonstrated. We will list key questions and answers
regarding tips concerning security automation techniques.

Summary of Automation Security Testing Tips Chapter 15

[196]

What are the automation frameworks for UI
functional testing?
The following table lists common automation frameworks for Web UI functional testing:

Automation
frameworks Macaca AutoIT Selenium Appium Sikuli

Testing target
Mobile (iOS

and Android)
Web UI

Windows
applications Web UI Mobile

(iOS/Android)
Visual
image

Programming
languages

Java, Python,
NodeJS

BASIC-like
script

Java, Python,
C#, Ruby Java, Python

Image and
BASIC-like

script
Record and
replay UI recorder AutoIT

recorder
Selenium

IDE Desktop inspector Yes

BDD (behavior-driven development) testing
framework?
The following table lists the key usages and scenarios of BDD testing frameworks:

BDD framework Usage and scenarios

Robot Framework

It's a common keyword driven testing acceptance automation
framework. The Robot Framework is programming language
independent though the Robot Framework itself was built by Python.
http:/ ​/​robotframework. ​org

Behave It's a Python BDD framework
https:/ ​/​github. ​com/​behave/ ​behave

JGiven It's a Java BDD framework
http:/ ​/​jgiven. ​org/ ​

Gauntlt It's a purpose-built for security BDD framework in Ruby
http:/ ​/​gauntlt. ​org/​

http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
http://robotframework.org
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/behave/behave
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://jgiven.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/
http://gauntlt.org/

Summary of Automation Security Testing Tips Chapter 15

[197]

What are common automation frameworks that
apply to security testing?
The following table lists the common automation testing tools and applied scenarios:

Automation
approaches

Mapping to security testing
scenarios

Example of automation
tools/framework

White Box • Secure code inspection
• Secure configuration inspection

• Secure code analysis such as VCG (Visual
code Grepper)

API testing
• Web/RESTful API security testing
• Parameterized (data-driven) with Fuzz
testing

• Robot Framework requests library
• JMeter
• FuzzDB
• OWASP ZAP

Web UI automation

• Login with different users or wrong
accounts.
• Logout users for session management
testing.
• Create a new user account.
• Brute force user account login.

• Robot Framework
• Selenium
• OWASP ZAP

Secure code review
For the source code security review, we listed common source code patterns of critical
security issues and also risky APIs. Based on these security source patterns, we also
introduced some open source tools to search these security issues.

What are common secure code review patterns
and risky APIs?
The following table lists common keywords and patterns for secure code review:

Programming
language Risky API or the insecure code patterns False

positive

General

Weak
encryption

Blowfish | DES | 3DES | RC4 | MD5 | SHA1 | XOR | ARC4
| IDEA | ECB | CBC | TLS 1.0 | SSL 2.0 | Base64 |
RIPEMD

Low

Insecure
protocol

SSL | HTTP | FTP | Telnet Low

Hard-coded
info.

Password | IP address | Email | Special Hotkey | URL
| Mobile Number | Name

High

Summary of Automation Security Testing Tips Chapter 15

[198]

C/C++

Command
injection

execl|execlp|execle|system|popen|WinExec|ShellExecute
| execv|execvp|

Med

Buffer
overflow

fscanf|sscanf|vsscanf|vfscanf | scanf|vscanf|wscanf|
sprintf|vsprintf|swprintf|vswprintf|
getchar| read|_gettc | fgetc|getc|
memcpy|CopyMemory|bcopy
lstrcpy|wcscpy| lstrcpyn|wcsncpy | _tcscpy|_mbscpy

Low

Java

Injection Runtime | ProcessBuilder | CommandLine |
zookeeper.Shell | System.out.printf | createStatement

Low

Path traversal getAbsolutePath Low

Deserialization XMLDecoder | xstream | readObject | readResolve |
InvocationHandle

Med

Weak random Java.util.Random Low

XXE
DocumentBuilder | XMLInputFactory | SAXReader |
SAXParser | SAXBuilder | XMLReader | DocumentHelper |
XMLInputFactory | XMLStreamReader

Med

ZIP of Death ZipFile | ZipInputStream Med

Python
Injection execfile | input | commands | subprocess Med

Risky API pickle.load | eval Med

PHP Injection
shell_exec | system | exec | popen | passthru |
proc_open | pcntl_exec | eval | assert | preg_replace
| create_function

Low

JavaScript Risky API eval | execScript | sessionStorage | localStorage Low

Suggestions with Grep-like search tool for source
code or configurations search?
The following table lists the suggested tools for source code search:

Search tools Key characteristics

Code review audit script
scanner

It's one shell script that includes all common secure code
issue patterns. No other dependency is required to run the
script.
https:/ ​/​github. ​com/​floyd- ​fuh/​crass/ ​blob/ ​master/
grep- ​it. ​sh

Grep rough audit
It's also a shell script that will read the signatures for a
potential security issue in the source code.
https:/ ​/​github. ​com/​wireghoul/ ​graudit/ ​

GrepBugs
It scans security issues based on defined regular
expression patterns.
https:/ ​/​grepbugs. ​com/ ​browse

https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/floyd-fuh/crass/blob/master/grep-it.sh
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://github.com/wireghoul/graudit/
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse
https://grepbugs.com/browse

Summary of Automation Security Testing Tips Chapter 15

[199]

VisualCodeGrepper
It's a Windows scanner tool with defined
regular expression security patterns.
https:/ ​/​github. ​com/​nccgroup/ ​VCG

Flawfinder It's a simple C/C++ security source code scanner.
http:/ ​/ ​www. ​dwheeler. ​com/​flawfinder/ ​

ripgrep recursively searches It's a powerful regular expression searcher.
https:/ ​/​github. ​com/​BurntSushi/ ​ripgrep

API security testing
For API testing, we applied ZAP and JMeter with the FuzzDB security payloads. The ZAP
itself can be used to send malicious APIs and also analyze the HTTP responses for the
security issues. On the other hand, JMeter is mainly used to send the HTTP requests with
FuzzDB security payloads by using CSV Config Element. Furthermore, there are also other
approaches to do the fuzzing testing, such as Selenium with data-driven testing (DDT)
module, Robot Framework with DDT, as well as Od1n and Wfuzz.

What are API security testing approaches?
The following table lists the API security testing tools and approaches:

Level Recommended
toolkits Pros and cons

Basic ZAP

ZAP can provide a general web security baseline scan.
However, ZAP can’t do specific REST or SOAP API
security testing without proper guidance. For example,
the HTTP POST request testing can’t be done here, and
that’s why we introduce JMeter for the next level.

https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
https://github.com/nccgroup/VCG
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep

Summary of Automation Security Testing Tips Chapter 15

[200]

Intermediate ZAP + JMeter

The rationale we introduce JMeter is to send specific REST
or SOAP APIs and message body through ZAP. In this
approach, the ZAP will be running in proxy mode to
monitor and detect the request/response for security
issues.

Advanced ZAP + JMeter +
Fuzz data

We will use JMeter with parameterized testing (data
driven testing). The Fuzz data is a dictionary list of
specific security issues, such as XSS, SQL injection, or
common vulnerable password. Although ZAP itself also
includes the Fuzz testing that can replace the specified
parameters with Fuzz data, ZAP Fuzz testing can only be
done by GUI mode at this moment. By using the ZAP and
JMeter, we can execute the automation in command
console mode for the integration with other CI
frameworks.

Advanced ZAP + OpenAPI
In this case, the ZAP will import the API definition files,
and do the initial security assessment based on the API
lists.

Summary of Automation Security Testing Tips Chapter 15

[201]

What are the suggested resources for FuzzDB
security payloads?
The following table lists of sources of FuzzDB for security testing payloads:

Fuzz
database Description

FuzzDB

FuzzDB compressive application security testing dictionary for attack
patterns (injection, XSS, directory traversals), Discovery (admin directories
or sensitive files), response analysis (regular expression patterns), web
backdoors samples and user/pwd list.
https:/ ​/​github. ​com/ ​fuzzdb- ​project/ ​fuzzdb

Naughty
Strings

The Naughty Strings provides a very long list of strings. There are two
formats provided, blns.txt and blns.json.
https:/ ​/​github. ​com/ ​minimaxir/ ​big- ​list- ​of- ​naughty- ​strings

Seclists

This is similar to FuzzDB which provides various kinds of Fuzz data, such
as command injections, JSON, LDAP, User agents, XSS, char, numeric,
Unicode data and so on.
https:/ ​/​github. ​com/ ​danielmiessler/ ​SecLists

Radamsa
Unlike previous FuzzDB providing a list of word dictionary, it's a tool that
can dynamically generate format-specific based on a given sample.
https:/ ​/​github. ​com/ ​vah13/ ​radamsa

What testing tools are suggested for web fuzz
testing?
The following table lists the key characteristics of various technical approaches to
implement fuzz testing:

OWASP
ZAP JMeter Selenium

DDT

Robot
framework

DDT
0d1n Wfuzz

Dependency No OWASP ZAP OWASP ZAP CSVLibrary OWASP
ZAP No

Coding No No
Yes but Selenium IDE
can help to generate

the script.
No No No

Fuzz data
handing

ZAP UI
mode only

CSV Config in
Jmeter DDT library in Python CSV library

For Loop

∧ in the
command

line

FUZZ or FUZ2Z
keyword

https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa
https://github.com/vah13/radamsa

Summary of Automation Security Testing Tips Chapter 15

[202]

Testing report
Refer to
OWASP

ZAP

Refer to OWASP
ZAP Refer to OWASP ZAP Refer to

OWASP ZAP

Refer to
OWASP

ZAP

Output to the console or
file

Fuzz multiple
parameters Yes Yes Yes Yes

Yes, but
other value

may be filled
as empty.

Yes
FUZZ, FUZ2Z,
FUZ3Z...

Integration
interface No RESTful APIs

JMeter script Selenium scripts
Robot

Framework
scripts

Command
line (CLI) CLI

Testing
framework
popularity

The API and
CLI don't

support fuzz
testing at

this moment.

High
JMeter is

common in
REST API and
performance

testing.

High
Common

Web UI framework.

High
Common

acceptance
testing

framework.

Low
0d1n is

specifically
built for

fuzz
testing in

CLI.

MED

Launch browser
during the testing No No Yes Yes No No

Please also refer to the following diagram to understand the role of the tools used in web
security testing:

API Fuzz testing framework

Summary of Automation Security Testing Tips Chapter 15

[203]

Web security testing
To automate the web security testing, we have learned to operate the ZAP by using
RESTful API and also the ZAP-CLI.

How can JMeter be used for the web security
testing?
The following diagram shows that the JMeter is used to send the HTTP request with the
security payloads from FuzzDB. The ZAP is running as the web proxy to assess the HTTP
requests/responses to identify potential security issues:

Security testing with JMeter and ZAP

Examples of OWASP ZAP by ZAP-CLI usages
The following command will trigger the web Spider scan, xss, and SQL injection security
scan toward the nodeGoat website:

$ zap-cli quick-scan -s xss,sqli --spider -r http://nodegoat.herokuapp.com/

The following command will generate a report in HTML format:

$ zap-cli report -o ZAP_Report.html -f html

Summary of Automation Security Testing Tips Chapter 15

[204]

Examples of OWASP ZAP automation by RESTful
API
The following table lists the ZAP operations:

ZAP
operations Restful API usage example

Spider
scan of
hackazon
website

CURL http://localhost:8090/JSON/spider/action/scan
/?zapapiformat=JSON&formMethod=GET&url
=http://hackazon.webscantest.com

Active
scan of the
hackazon
site

CURL http://localhost:8090/JSON/ascan/action/scan/?zapapiformat
=JSON&formMethod=GET&url=
http://hackazon.webscantest.com&recurse=&inScopeOnly
=&scanPolicyName=&method=&postData=&contextId=

Generate
testing
report in
HTML

CURL
http://127.0.0.1:8090/OTHER/core/other/htmlreport/?formMethod=GET"
> ZAP_Report.HTML

Shutdown
the ZAP

CURL http://localhost:8090/JSON/core/action/shutdown/
?zapapiformat=JSON&formMethod=GET

Android security testing
Then Android application security testing techniques include the source code scan, privacy
information inspection, reverse engineering of an APK, and the adoption of automated
security testing frameworks, such as QARK and MobSF.

Suggested Android security testing tools and
approach
The following table lists the Android security scanning and tools:

Scanning approach Automated tools Description

Secure code
scanning Fireline

Static Java source code scanning. It's a light-weight
secure code scanning tools, but it may require the
Java source and the reverse of APK.

Summary of Automation Security Testing Tips Chapter 15

[205]

Privacy and
sensitive
information scan

Androwarn

It's focused on privacy and sensitive information
scanning of any given APK. Static analysis of the
application's Dalvik bytecode, represented as Smali
for PII and sensitive information leakage or
exfiltration such as telephony identifiers,
geolocation information leakage, audio/video flow
interception, and so on.

Light-weight all in
one APK security
scanning

QARK
(Quick Android
Review Kit)

It's a Python program that can do automatically
security scanning of any given APK.

All in one security
scanning

Mobile Security
Framework
(MobSF)

The MobSF is similar to QARK. In addition, MobSF
supports Android, Windows, and iOS applications.
It not only does the static security analysis, but also
does dynamic runtime behavior analysis.

Common Android security risky APIs
The following table lists down the high risk APIs:

Security inspection
focuses Related high-risk APIs and keywords

SQL injection rawQuery | execSQL | database | .sqlite |
SQLiteDatabase

Insecure SSL handling

ALLOW_ALL_HOST_VERIFIER | NullHostnameVerifier
SSLCertificateSocketFactory | SSLSocketFactory
setDefaultHostnameVerifier
WebViewClient.onReceivedSsLError

Command injection getRuntime | ClassLoader

WebView for XSS

Android.webkit | setJavaScriptEnabled
| addJavascriptInterface |
setWebContentsDebuggingEnabled(true)
loadData | postURL

Insecure files I/O access
MODE_WORLD_READABLE | MODE_WORLD_WRITTABLE
OpenFileOutput | openORCreateDatabase
file:// | getSharedPreferences | getExternal

Insecure
communication

.netURL | openSteam | netJarURL | HttpURL
| HttpRqeuest | HttpsURL

Summary of Automation Security Testing Tips Chapter 15

[206]

Infrastructure security
The scope of infrastructure security testing covers the known vulnerable components
inspection, secure configurations, and secure communication protocols. In addition to the
uses of tools, the industry organization best practices, including CIS benchmarks, STIG, and
OpenSCAP are also introduced.

What's the scope of infrastructure security
testing?
The following describes the scope of infrastructure security testing:

Infrastructure/platform
security Description Open source tools and resources

Known vulnerable
components

The known vulnerable (CVE)
component is one of OWASP top 10
threats. If one component is exploited,
the application can be vulnerable to
remote injection or data leakage
security risks.

• OpenVAS
• Nmap
• OWASP Dependency Check
• RetireJS

Secure configuration

The secure configuration is to ensure
the OS, Web, virtualization, and
databases are configured securely,
such as password complexity, removal
of default settings, or disable
unnecessary services.

• OpenSCAP
• CIS benchmarks
• STIG

Insecure network
communication

The followings secure
communication protocols version
should be used:
• SFTP instead of FTP
• TLS 1.2 instead of HTTP, SSL, and TLS
1.1
• SNMP V3 instead of v1/v2
• SSH v2 instead of SSH v1 or Telnet

• Nmap
• SSLyze

Summary of Automation Security Testing Tips Chapter 15

[207]

Typical use of Nmap for security testing
The following table shows typical uses of Nmap for security testing:

Common network security
assessments scenarios NMap command

Fast scan for listening ports nmap -F --open -Pn

Scan for any missing http security
headers such as XSS-Protection

nmap -p80 --script http-security-headers
 -Pn

DOS attack with HTTPS Slowloris nmap -p80,443 --script http-slowloris --
max-parallelism 500 -Pn

Scanning for all TCP listening ports nmap -p1-65535 --open -Pn

Scanning for all UDP listening ports nmap -p1-65535 -sU --open -Pn

Scanning for common ports Nmap -p21, 23,80, 137,138, 443, 445,
1433, 3306, 1521, 3389 --open -Pn

The following table shows Nmap security testing with its expected results:

Nmap security
tesitng Nmap NSE script and scan Expected results

Security
header check

nmap -p80 --script http-security-headers
<host> X-Frame-Options: DENY

HTTP SLOW
DOS check

nmap -p80,443 --script http-slowloris-
check <host>

Should not contain
LIKELY VULNERABLE

SSL ciphers
check

nmap --script=ssl-enum-ciphers <host>
Should not contain
SSL

XSSed history
check

nmap -p80 --script http-xssed.nse <host>

Should return
No previously reported
XSS vuln

SQL injection
nmap -sV --script=http-sql-injection
<host>

Should not return
Possible sqli for

Stored XSS
nmap -p80 --script http-stored-xss.nse
<host>

Should return
Couldn't find any stored
XSS vulnerabilities

Summary of Automation Security Testing Tips Chapter 15

[208]

BDD security testing by Robot Framework
The adoption of BDD security testing defines the testing steps into Given, When,
Then English language structure. We demonstrated the uses of Robot Framework and the
Gauntlt BDD framework.

How to do web security scan with ZAP and Robot
Framework?
The following script will do a OWASP ZAP Spider Scan on demo.testfire.net to
explore all the potential Web URLs and resources:

*** Settings ***
 Suite Teardown Delete All Sessions
 Library Collections
 Library String
 Library RequestsLibrary
 Library OperatingSystem

*** Variables ***
 ${url} http://demo.testfire.net
 ${SpiderScan}
http://localhost:8090/JSON/spider/action/scan/?zapapiformat=JSON&formMethod
=GET&url=${url}&maxChildren=&recurse=&contextName=&subtreeOnly=

*** Test Cases ***
 ZAP Spider Scan
 [Tags] get skip
 Create Session ZAP ${SpiderScan}
 ${resp}= Get Request ZAP /
 Should Be Equal As Strings ${resp.status_code} 200

Summary of Automation Security Testing Tips Chapter 15

[209]

How to achieve DDT testing in Robot
Framework?
The following is a Robot Framework sample script to do DDT testing that reads the data
from sqli.csv and tests against userName and password parameters of the NodeGoat
website. Please be reminded that the Robot Framework itself can't do sophisticated security
analysis based on the HTTP response. Therefore, it's suggested to run OWASP ZAP as a
proxy between the Robot Framework and the target testing website. The sample script is as
follows:

*** Settings ***
Library Collections
Library CSVLibrary
Library SeleniumLibrary
Library OperatingSystem
Library String
Library Collections

*** Test Cases ***
SignIn_DDT
 Open Browser http://nodegoat.herokuapp.com/login
 @{data}= read csv file to list sqli.csv
 Log ${data}
 :FOR ${x} IN @{data}
 \ Log ${x}
 \ Input Text id=userName ${x[${0}]}
 \ Input Text id=password ${x[${1}]}
 \ Click Button xpath=//button[@type='submit']
 \ Log ${x[${0}]}
 \ Log ${x[${1}]}
 Close Browser

The preceding Robot Framework script is based on the CSV sqli.csv as follows:

username,password
a,pass1
b,pass2
c,''
d,' or 1=1

Summary of Automation Security Testing Tips Chapter 15

[210]

How to do network scan with Nmap and Robot
Framework?
The following sample Robot Framework script will execute the Nmap testing with expected
results verification:

*** Settings ***
Library Process

*** Test Cases ***
Testing if the website was previously reported XSS
 ${result} = Run Process nmap -p80 --script http-xssed
nodegoat.kerokuapp.com
 Log ${result.stdout}
 Should Contain ${result.stdout} No previously reported

How to do an SQLmap scan with Robot
Framework?
The following sample Robot Framework script will execute the SQLmap (SQL injection)
testing with expected results verification:

*** Settings ***
Library SSHLibrary
*** Variables ***
${HOST_URL} http://demo.testfire.net

*** Test Cases ***
SQL Injection Testing
[Documentation] Use SQLmap to do the SQL injection testing on target host
${output}= Execute Command python sqlmap.py -u ${HOST_URL} -- batch --
banner
Should Not Contain ${output} vulnerable

Summary of Automation Security Testing Tips Chapter 15

[211]

How to do BDD security testing with Nmap and
Gauntlt?
The following is a Gauntlt, BDD testing framework sample script to do Nmap security
testing:

@slow

Feature: nmap attacks for website. It will cover the following tesitng
security header check, HTTP Slow DOS check, SSL cipher check, XSSed History
Check, SQL Injection and the Stored XSS.

 Background:
 Given "nmap" is installed
 And the following profile:
 | name | value |
 | host | nodegoat.kerokuapp.com |

 Scenario: Verify the security header using the http-security-headers
 When I launch a "nmap" attack with:
 """
 nmap -p80 --script http-security-headers <host>
 """
 Then the output should contain "X-Frame-Options: DENY"

Summary
This chapter summarizes some of key security automation tips and techniques.

In the automation testing framework, we compared the common UI automation
frameworks, such as Macaca, AutoIT, Selenium, Appium, and Sikuli. We demonstrated
most of the cases in Selenium in this book. For BDD frameworks, there is Robot
Framework, Behave, Jgiven, and Gauntlt. Robot Framework and Gauntlt are mostly
illustrated with case studies in the previous chapters.

For secure code review, we listed the code patterns that related to common security issues,
such as insecure protocol, weak encryption, and hard-coded information. Some source code
search tools are also introduced, such as GREP rough Audit and GrepBugs.

Summary of Automation Security Testing Tips Chapter 15

[212]

For API security testing, the testing tools, ZAP, JMeter, FuzzDB, and ZAP OpenAPI are
demonstrated. We also discussed some sources of FuzzDB and how to generate your
custom security payloads for testing. In addition, the techniques of Fuzz Testing are also
demonstrated by using ZAP, JMeter, Selenium DTT, Robot Framework DDT, 0d1n, and
Wfuzz.

As regards web security testing, we introduced how to automate the web scanner, ZAP, by
using ZAP-CLI and RESTful API. The common security scan operations are Spider scan,
active scan, and generate a report.

For Android security testing, we introduced some tools to do secure code scan, privacy
scan, reverse engineering, and automated security scan. We also introduced the white box
review tips, secure code patterns, and risky APIs.

For the infrastructure security, there are three key areas: known vulnerable components
scan, secure configuration inspection, and secure communication. We introduced the tools
for these security inspections. In addition, we also demonstrated the uses of Nmap for
various kinds of security scanning.

For the BDD security testing, we introduced how to automate the ZAP Spider scan in Robot
Framework. We also demonstrated the uses of Robot Framework to sign in the NodeGoat
with SQL injection security payloads. The Nmap and SQLmap security scans are also
demonstrated by using Robot Framework. Besides, we also demonstrated the uses of
another BDD security testing framework, Gauntlt, for the Nmap scan.

We learned how to implement automation security in all layers of software frameworks
and also how to build an in-house security automation platform throughout software
releases.

List of Scripts and Tools
You may get related demo scripts from the GitHub link: https:/ ​/ ​github. ​com/
PacktPublishing/​Practical- ​Security- ​Automation- ​and- ​Testing. In addition, there is a
Virtual Box Ubuntu installed with all the tools mentioned in this book. The credentials of
the Ubuntu are listed here:

Username: osbox
Password: osbox.org

List of sample scripts
The following table gives the description of files/scripts used:

Name of files/scripts Description
nmap_NodeGoat.robot This demonstrates how to apply Robot Framework with NMAP.

nmap_NodeGoat_gauntlt.attack This is the BDD framework Gauntlt testing script that defines
NMAP scan against NodeGoat.

NodeGoat_SignIn.py Selenium Python script to do the sign-in of the NodeGoat
website.

NodeGoat.jmx
JMeter data-driven testing to sign in the NodeGoat website with
the sqli.csv payloads.

MyRequest.jmx
JMeter data-driven testing to sign in the
demo.testfire.net with the sqli.csv payloads.

RF_DDT.robot
Robot Framework data-driven testing to sign in to the
NodeGoat with the sqli.csv payloads.

Selenium Proxy Sample.py Selenium Python script to demonstrate how to define proxy in
the browser profile.

SignIn_DDT.py
Selenium Python data-driven testing scrip to sign in testfire
with sqli.csv data.

SignIn_DDT_NodeGoat.py
Selenium Python data-driven testing scrip to sign in to
NodeGoat with sqli.csv data.

sqli.csv
cmdi.csv

Sample security data payloads from the FuzzDB.

UserRegistration.py
The Selenium Python script demonstrates user registration with
predefined data on the website: http:/ ​/ ​hackazon.
webscantest. ​com/ ​.

https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
https://github.com/PacktPublishing/Practical-Security-Automation-and-Testing
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/

List of Scripts and Tools

[214]

List of installed tools in virtual image
The password of the root is osboxes.org. Here are some of the tools installed in the VM
and their usage:

Installed Tools Description and Usage
NodeGoat Vulnerable source code of NodeGoat project.

0d1n
This is used for fuzz testing. Use the keyword ^ for the fuzz testing
data.
$./0d1n

androwarn
It's a static code analyzer for malicious Android applications.
$ python androwarn.py --help

archerysec

This is an Open Source Vulnerability Assessment and Management
that helps developers and pentesters perform scans and manage
vulnerabilities.
$ docker pull archerysec/archerysec
$ docker run -it -p 8000:8000
archerysec/archerysec:latest

qark
This is a Python tool to look for several security-related Android
application vulnerabilities.
$python qarkMain.py

radamsa
This is a dynamic fuzz data generator.
$echo "Sample Data" | radamsa

RetireJS
This scans the JavaScript libraries for known vulnerable
components.
$ retire

gauntlt
This is the BDD security testing framework.
$ gauntlt

DumpsterDiver
This searches the password, key, or hash by using entropy values.
$ python DumpsterDiver.py

robotframework
This is an acceptance testing framework.
$ robot --help

sslscan
This is used to inspect the secure configurations of the SSL.
$ sslscan

wfuzz

This is a web fuzz testing tool. Use the keyword FUZZ to apply the
fuzz testing data.
$ wfuzz -w xss.csv --hc 404
http://<target_host>/FUZZ

zap-cli
This can operate and automate the ZAP scanning under CLI mode.
$ zap-cli --help

List of Scripts and Tools

[215]

vulscan
This scans known vulnerabilities.
$ nmap --script vulscan.nse <host>

grep-it.sh
This searches for security issues in source code by using GREP.
$ grep-it.sh

goatdroid.apk
InsecureBankv2.apk

These are Vulnerable APKs, which we demonstrated in case studies.

Mobile Security
Framework

This is Mobile
$docker pull opensecurity/mobile-security-framework-
mobsf
$docker run -it -p 8000:8000 opensecurity/mobile-
security-framework-mobsf:latest

Launch browser with http://127.0.0.1:8000/ to access
the MobSF Web interface.

ZAP
OWASP ZAP Web security scanner.
$ owasp-zap

NMAP
Network security scanner.
$ namp

DejectDojo

OWASP DejectDojo To manage testing findings and reports.
$ docker run -it -p 8000:8000 appsecpipeline/django-
defectdojo bash -c "export LOAD_SAMPLE_DATA=True &&
bash /opt/django-DefectDojo/docker/docker-
startup.bash"

RapidScan
Python script to execute several security testing tools.
$ python rapidscan.py

Solutions

Chapter 1: The Scope and Challenges of
Security Automation
Questions Answers
Q1 2
Q2 3
Q3 3
Q4 1
Q5 3

Chapter 2: Integrating Security and
Automation
Questions Answers
Q1 1
Q2 4
Q3 4
Q4 3
Q5 4

Chapter 3: Secure Code Inspection
Questions Answers
Q1 1
Q2 4
Q3 4
Q4 1
Q5 4

Solutions

[217]

Chapter 4: Sensitive Information and Privacy
Testing
Questions Answers
Q1 1
Q2 4
Q3 3
Q4 1

Chapter 5: Security API and Fuzz Testing
Questions Answers
Q1 3
Q2 4
Q3 4
Q4 1
Q5 1

Chapter 6: Web Application Security Testing
Questions Answers
Q1 1
Q2 4
Q3 3
Q4 3

Chapter 7: Android Security Testing
Questions Answers
Q1 4
Q2 2
Q3 4
Q4 3
Q5 3

Solutions

[218]

Chapter 8: Infrastructure Security
Questions Answers
Q1 4
Q2 3
Q3 1
Q4 4
Q5 4
Q6 3

Chapter 9: BDD Acceptance Security
Testing
Questions Answers
Q1 4
Q2 4
Q3 2
Q4 2
Q5 2

Chapter 10: Project Background and
Automation Approach
Questions Answers
Q1 4
Q2 4
Q3 1
Q4 4
Q5 4

Solutions

[219]

Chapter 11: Automated Testing for Web
Applications
Questions Answers
Q1 4
Q2 1
Q3 1
Q4 4
Q5 4

Chapter 12: Automated Fuzz API Security
Testing
Questions Answers
Q1 4
Q2 3
Q3 1
Q4 3
Q5 3

Chapter 13: Automated Infrastructure
Security
Questions Answers
Q1 1
Q2 1
Q3 4
Q4 4
Q5 4

Solutions

[220]

Chapter 14: Managing and Presenting Test
Results
Questions Answers
Q1 4
Q2 1
Q3 2
Q4 4
Q5 4

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Cloud Security Automation
Prashant Priyam

ISBN: 978-1-78862-786-3

Define security for public and private cloud services
Address the security concerns of your cloud
Understand Identity and Access Management
Get acquainted with cloud storage and network security
Improve and optimize public and private cloud security
Automate cloud security
Understand the security compliance requirements of your cloud

https://www.packtpub.com/networking-and-servers/cloud-security-automation

Other Books You May Enjoy

[222]

Security Automation with Ansible 2
Madhu Akula, Akash Mahajan

ISBN: 978-1-78839-451-2

Use Ansible playbooks, roles, modules, and templating to build generic, testable
playbooks
Manage Linux and Windows hosts remotely in a repeatable and predictable
manner
See how to perform security patch management, and security hardening with
scheduling and automation
Set up AWS Lambda for a serverless automated defense
Run continuous security scans against your hosts and automatically fix and
harden the gaps
Extend Ansible to write your custom modules and use them as part of your
already existing security automation programs
Perform automation security audit checks for applications using Ansible
Manage secrets in Ansible using Ansible Vault

https://www.packtpub.com/virtualization-and-cloud/security-automation-ansible-2

Other Books You May Enjoy

[223]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Acceptance Test-Driven Development (ATDD)

118, 131
Active Scan 58
Android security review
 best practices 87
Android security risky APIs 205
Android security testing
 about 204
 approach 204
 tools 204
Androwarn
 used, for privacy scanning 91
API fuzz, Robot Framework environment
 script 160
 setting up 160
 ZAP report, reviewing 162
API fuzz, security testing
 0d1n, executing with OWASP ZAP 157
 0d1n, installing 156
 Wfuzz report, reviewing 154, 155
 Wfuzz, installing 153
 with sign-in 153
 ZAP report, reviewing 157
API fuzz
 data 148
 Radamsa, installing 149
 Robot Framework DDT, testing 159
 Security Random Payloads, generating 150
 security testing, with 0d1n 156
 security testing, with Wfuzz 153
 Selenium DDT (data-driven testing) 157
 Selenium script, executing 159
 Selenium script, with DDT 158
 testing 148
 testing, with Automation Frameworks 151, 152

 ZAP report, reviewing 159
API release
 automated security testing, for 53, 55
API security testing
 about 199
 approaches 199, 200
 tools 199, 200
API testing, with JMeter
 JMeter script, executing 62
 JMeter, downloading 60
API testing, with ZAP
 HTTP request, defining for login 60
 results, reviewing 62
API testing
 with JMeter 59
 with ZAP 59
APK security analysis
 general process 92, 93, 94
 process 93
Arachni 24
automated security inspection
 online shopping site 74
automated security scanning, with MobSF
 APK, scanning 96
 APK, uploading by REST API 96
 MobSF, setting up 95
 report, downloading 96
automated security scanning
 with MobSF 95
automated security testing, with Selenium for user

registration flow
 identified URLs, active scanning 83
 security assessments, reviewing 84
 SeleniumBase, installing 82
 user registration flow automation, executing 83
 ZAP, launching with proxy 8090 82
automated security testing

[225]

 about 130
 example 131
 for API release 53, 55
 used, for user registration flow with Selenium 80,

82

automatic secure code inspection script, Linux
 code review audit scan, executing 36
 CRASS, downloading 36
 results, reviewing 36
automatic secure code inspection script
 in Linux 35
automatic secure code inspection tools
 for Windows 37
automation frameworks
 for security testing 197
 for UI functional testing 196
 used, for security testing 23
automation testing tools
 selecting, considerations 129, 130
automation testing
 about 195
 domains 17, 18
 frameworks 18
 techniques 18

B
Bandit 24
BDD security testing
 about 118
 by Robot Framework 208
 with Gauntlt 211
 with Nmap 211
behavior-driven development (BDD)
 about 9, 21, 117, 132
 Gauntlt 112
 scenarios 196
best practices, secure configuration
 Center for Internet Security (CIS) benchmarks

102

 OpenSCAP security guide 103
 security technical implementation guides (STIGs)

102

C
case study, sensitive information testing
 private key, searching for 48
 weak encryption search 47
 website privacy inspection 49
case study, weak encryption search
 Silver Searcher result, reviewing 47
Center for Internet Security (CIS) benchmarks
 about 102
 reference 102
Code Review Audit Script Scanner (CRASS) 35
command line interface (CLI) 22, 29, 56, 119,

129, 152
Content Security Policy (CSP) 49
continuous integration/continuous delivery (CI/CD)

14

cross-site request forgery (CSRF) 10, 77
cross-site scripting (XSS) 49, 73, 118, 130
CURL
 reference 76
 used, for full automation 78
CVE vulnerability scanning, with OWASP

dependency check
 OWASP dependency check, installing 108
CVE vulnerability scanning, with VulScan
 NMAP scanning, with VulScan 108
 VulScan, installing 108
CVE vulnerability scanning
 about 107
 with OWASP dependency check 108, 109, 110
 with VulScan 108

D
data generators
 testing 22
data-driven testing (DDT) 11, 23, 149, 151, 199
DDT testing
 achieving, in Robot Framework 209
deserialization security issue
 about 39
 case study 39, 40
DumpsterDiver
 reference 46

[226]

E
entropy
 calculating 48
environment setup
 tools installation link 14

F
Flawfinder
 reference 199
full automation, with ZAP daemon
 ZAP daemon status, checking 79
 ZAP, executing in daemon (headless) mode 78
full automation
 with CURL 78
 with ZAP daemon 78
fuzz XSS and SQLi testing, with JMeter
 about 140
 environment preparation 141
 JMeter scripts, defining 141, 142
 JMeter, launching in CLI 145
 security payloads preparation 143
 testing scenarios 140
 ZAP report generation 145
fuzz
 used, for parameterized security payload 62
FuzzDB security payloads
 resources 201
FuzzDB
 about 24, 132
 reference 54, 63, 201

G
Gauntlt
 about 112, 132
 BDD security testing script, creating 113
 installing 112
 NMAP attack script, executing 113, 114
 NMAP attack script, results 113, 114
 used, for BDD security testing 211
General Data Protection Regulation (GDPR) 43
Given, When, Then (GWT) 118
Grep Rough Audit 24
Grep-like search tool suggestions
 configurations search 198

 for source code 198
GrepBugs
 reference 198

H
high-entropy strings
 searching 48
HTTP API testing 19, 20
HTTP mock server 20
HTTPS security check
 with SSLyze 110

I
infrastructure security
 about 206
 scope 101, 206

J
JavaScript vulnerabilities, scanning
 about 165
 with RetireJS 166
JMeter
 about 132
 downloading link 60
 used, for API testing 59
 used, for web security testing 203

K
Kali Tool list
 reference 183
Kantu Selenium IDE 13
Katalon Recorder 13

L
Linux
 automatic secure code inspection script 35

M
Man in The Middle (MITM) 20
Mobile Security Framework (MobSF)
 about 88, 205
 used, for automated security scanning 95
Mozilla TLS Observatory 112

[227]

N
Naughty Strings
 reference 63, 201
Network Mapper (Nmap)
 about 132
 usage tips 106
 used, for BDD security testing 211
 used, for network scan 210
 used, for network security assessments 105
 using, for security testing 207
network scan
 with Nmap 210
 with Robot Framework 210
network security assessments
 with Nmap 105
NMAP BDD testing
 with Gauntlt 171, 173
 with Robot Framework 174
NMAP NSE (NMAP Scripting Engine) 170
Nmap Scripting Engine (NSE) 106
NMAP security scan, with BDD framework 170
NMAP-VulScan 107
NMAP
 for web security testing 170

O
OpenSCAP Base 103
OpenSCAP Daemon 103
OpenSCAP security guide
 about 103, 104
 SCAP Workbench, installing 104
OpenVAS 24
OWASP DefectDojo
 about 131, 181
 setting up 189
OWASP Dependency Check
 about 24
 reference 108
 used, for CVE vulnerability scanning 108
OWASP NodeGoat project
 about 129
 vulnerable website 131
OWASP NodeGoat
 reference link 129

OWASP ZAP automation
 about 24
 example, by ZAP-CLI usages 203
 examples, by RESTful API 204

P
parameterized security payload, with fuzz
 CSV dataset, defining in JMeter 64
 JMeter, executing 66
 loop, specifying 66
 security assessment results, reviewing 66
 SQL injection data, downloading 63
 variable name, applying 65
parameterized security payload
 with fuzz 62
Personal Identifiable Information (PII) 43
PetStore API
 reference 68
PII discovery 44, 45
privacy information review 89, 90
privacy scanning, with Androwarn
 about 91
 APK, scanning 91
 report, reviewing 91
privacy search tools
 about 46
 DumpsterDiver 46
 ReDataSense 46
 Silver Searcher 46
PrivacyScore
 setting up, reference 50
private key
 entropy strings result, reviewing 49
 entropy, calculating 48
 high-entropy strings, searching 48
 searching for 48
professional pentest report
 Add Finding from Templates section 188
 creating, based on templates 186
 generating 188
 generating, with Serpico 185

Q
Quick Android Review Kit (QARK)
 about 88, 130, 205

[228]

 use, for static secure code scanning 94
Quick Scan 58

R
Radamsa
 about 24, 149
 reference 54, 63, 201
RapidScan Python script
 about 132, 181
 obtaining 182, 184
 scanning results review 184
 tools, integrating with 182
ReDataSense
 reference 46
Remote Code Execution (RCE) 39
Retire,js 132
RetireJS scanning results
 reviewing 166
RetireJS
 about 24
 installing 166
Robot Framework adoption, with sqlmap
 about 119
 preparation 120
 setup 120
Robot Framework script
 used, for ZAP spider scan 122, 124
Robot Framework, with ZAP
 about 121
 environment setup 122
 preparation 122
 robot script execution 125
Robot Framework
 about 131
 BDD security testing 208
 DDT testing, achieving 209
 results, executing 175
 results, reviewing 175
 steps, defining 174
 used, for network scan 210
 used, for SQLmap scan 210
 used, for web security scan 208

S
SCAP workbench
 about 103
 installing link 104
SecLists
 about 24
 reference 54, 63, 201
secure code review automation
 case study 28
secure code review
 about 197
 automating 28
 patterns 197
 risky APIs 197
secure code scanning
 tools 35
secure coding patterns
 used, for inspection 33, 35
secure coding scanning service
 Software Assurance Marketplace (SWAMP) 29
secure communication scan, with SSLScan
 about 168
 HTTPS secure configurations, fixing 170
 SSLScan results review 169
 SSLScan scan 169
 SSLScan setup 168
secure configuration
 best practices 101
Secure Software Development Life cycle (SSLDC)

14

security API testing framework
 building 55
security automation
 myths 10, 11, 12, 13
 purposes 10
 skills 13
 suggestions 13
security findings management
 security tools, running to output XMLs 190
 with DefectDojo 189
 ZAP findings, importing 191, 192
Security Technical Implementation Guides (STIGs)

101, 102
security testing communication 117, 118
security testing tools

[229]

 selecting, considerations 129
security testing, with ZAP Open/SOAP API
 active security scanning, executing 69
 API definition, importing 68, 69
 OpenAPI and SOAP API add-ons, installing 68
 security assessments, presenting 70
security testing
 automating 23
 automation frameworks 197
 domains 17
 with automation framework 23
 with ZAP Open/SOAP API 68
Selenium
 about 131
 used, for automated security testing of user

registration flow 80, 82
SeleniumBase
 about 132
 installing link 82
sensitive information discovery 45, 46
sensitive information review 89, 90
sensitive information testing
 objective 43
 PII discovery 44, 45
 privacy search tools 46
Serpico
 about 132, 181
 installing 186
 professional pentest report, generating 185
Silver Searcher
 downloading link 47
 installing 47
 reference 46
Software Assurance Marketplace (SWAMP)
 about 29
 assessment results, viewing 32, 33
 assessment, running 31
 package, adding 30
software service delivery team
 case study 128
 security objective 128
source code review patterns
 securing, for Android 88
Spider Scan 58
SQL injection security payloads

 reference 63
SQLmap scan
 with Robot Framework 210
sqlmap
 used, for Robot Framework adoption 119
 with Robot Framework 120
SSLLabs-Scan 24
SSLScan 132
SSLyze
 about 24
 used, for HTTPS security check 110
static secure code scanning, with QARK
 APK, scanning with QARK 94
 QARK, installing 94
 results, reviewing 95
static secure code scanning
 with QARK 94
SWAMP in a Box (SiB) 29

T
techniques, automation testing
 behavior-driven development (BDD) 21
 data generators, testing 22
 HTTP API testing 19, 20
 HTTP mock server 20
 UI functional testing 19
 white-box search, with GREP-like tools 21
test results
 managing 179
 presenting 179

U
UI functional testing
 about 19
 automation frameworks 196
 for mobile 19
 for web 19
 for windows 19

V
Visual Code Grepper (VCG)
 about 24, 37, 130, 197
 reference 199
VulScan
 used, for CVE vulnerability scanning 108

[230]

 used, for NMAP scanning 108

W
weak encryption search
 about 47
 Silver Searcher, executing 47
 Silver Searcher, installing 47
web fuzz testing
 testing tools 201, 202
web security scanning, with ZAP-CLI
 about 134
 report generation 135
 ZAP-CLI installation 135
 ZAP-CLI, using for ZAP quick scan 135
web security testing, with ZAP REST API
 active scan, reviewing 77
 security assessments, reviewing 78
 status, reviewing 77
 website, active scanning 76
 website, spider scanning 75, 76
web security testing, with ZAP/Selenium
 about 136
 Selenium Python script 136
 ZAP report generation 139
 ZAP, as proxy 138
web security testing
 about 203
 JMeter, using 203
 ZAP REST API, using 74
web security
 scanning, with Robot Framework 208
 scanning, with ZAP 208
web service testing, with ZAP CLI
 OWASP ZAP, downloading 57
 OWASP ZAP, launching with port 8090 57
 results, reviewing 59
 testing execution 58
 ZAP-CLI, installing 58
web service testing
 with ZAP CLI 56
WebGoat 131
WebGoat, with OWASP dependency check
 about 167
 dependency check scan 167
 OWASP dependency-check report review 168

 WebGoat environment preparation 167
website privacy inspection
 about 49
 PrivacyScore result, reviewing 51
 PrivacyScore, setting up 50
 PrivacyScore, visiting 50
wfuzz 132
white-box search
 with GREP-like tools 21
Windows, automatic secure code inspection tools
 VCG scanning results, reviewing 37
 VCG, downloading 37
 VCG, executing 37
Windows
 automatic secure code inspection tools 37

X
XML External Entity (XXE) 10, 118
XXE Security
 about 38
 case study 38
XXE, Cheat Sheet
 reference 39

Z
ZAP API
 fully automating 79
ZAP CLI
 used, for web service testing 56
ZAP command-line
 reference 79
ZAP daemon
 used, for full automation 78
ZAP Open/SOAP API
 used, for security testing 68
ZAP REST API
 using, for web security testing 74
ZAP spider scan
 with Robot Framework script 122, 124
ZAP, as proxy
 Selenium Profile 138
 SeleniumBASE, using 139
 system proxy, configuring 138
ZAP-CLI 131
ZAP

 about 131
 used, for API testing 59

 used, for Robot Framework 121
 used, for web security scan 208

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Scope and Challenges of Security Automation
	The purposes and myths of security automation
	Myth 1 – doesn't security testing require highly experienced pentesters?
	Myth 2 – isn't it time-consuming to build an automation framework?
	Myth 3 – there are no automation frameworks that are really feasible for security testing

	The required skills and suggestions for security automation
	General environment setup for coming labs
	Summary
	Questions
	Further reading

	Chapter 2: Integrating Security and Automation
	The domains of automation testing and security testing
	Automation frameworks and techniques
	UI functional testing for web, mobile, and windows
	HTTP API testing
	HTTP mock server
	White-box search with GREP-like tools
	Behavior-driven development testing frameworks
	Testing data generators

	Automating existing security testing
	Security testing with an existing automation framework
	Summary
	Questions
	Further reading

	Chapter 3: Secure Code Inspection
	Case study – automating a secure code review
	Secure coding scanning service – SWAMP
	Step 1 – adding a new package
	Step 2 – running the assessment
	Step 3 – viewing the results

	Secure coding patterns for inspection
	Quick and simple secure code scanning tools
	Automatic secure code inspection script in Linux
	Step 1 – downloading the CRASS
	Step 2 – executing the code review audit scan
	Step 3 – reviewing the results

	Automatic secure code inspection tools for Windows
	Step – downloading VCG (Visual Code Grepper)
	Step 2: Executing VCG
	Step 3: Reviewing the VCG scanning results

	Case study – XXE security
	Case study – deserialization security issue
	Summary
	 Questions
	Further reading

	Chapter 4: Sensitive Information and Privacy Testing
	The objective of sensitive information testing
	PII discovery
	Sensitive information discovery
	Privacy search tools

	Case study – weak encryption search
	Step 1 – installing The Silver Searcher
	Step 2 – executing the tool (using Windows as an example)
	Step 3 – reviewing the results (using Windows as an example)

	Case study – searching for a private key
	Step 1 – calculating the entropy
	Step 2 – Searching for high-entropy strings
	Step 3 – Reviewing the results

	Case study – website privacy inspection
	Step 1 – visiting PrivacyScore or setting it up locally
	Step 2 – reviewing the results

	Summary
	Questions
	Further reading

	Chapter 5: Security API and Fuzz Testing
	Automated security testing for every API release
	Building your security API testing framework
	Case study 1 – basic – web service testing with ZAP CLI
	Step 1 – OWASP ZAP download and launch with port 8090
	Step 2 – install the ZAP-CLI
	Step 3 – execute the testing under ZAP-CLI
	Step 4 – review the results

	Case study 2 – intermediate – API testing with ZAP and JMeter
	Step 1 – download JMeter
	Step 2 – define HTTP request for the login
	Step 4 – execute the JMeter script
	Step 3 – review the results in ZAP

	Case study 3 – advanced – parameterized security payload with fuzz
	Step 1 – download the SQL injection data
	Step 2 – define the CSV dataset in JMeter
	Step 3 – apply the variable name
	Step 4 – specify the loop
	Step 5 – execute JMeter and review the security assessment results

	Case study 4 – security testing with ZAP Open/SOAP API
	Step 1 – install the OpenAPI and SOAP API add-ons
	Step 2 – import the API definition
	Step 3 – execute the active security scanning
	Step 4 – present the security assessments

	Summary
	Questions
	Further reading

	Chapter 6: Web Application Security Testing
	Case study – online shopping site for automated security inspection
	Case 1 – web security testing using the ZAP REST API
	Step 1 – spider scanning the website
	Step 2 – active scanning the website
	Step 3 – reviewing the status of the active scan
	Step 4 – reviewing the security assessments

	Case 2 – full automation with CURL and the ZAP daemon
	Step 1 – executing ZAP in daemon (headless) mode
	Step 2 – checking the status of the ZAP daemon
	Step 3 – fully automating the ZAP API

	Case 3 – automated security testing for the user registration flow with Selenium
	Step 1 – installation of SeleniumBase
	Step 2 – launching ZAP with proxy 8090
	Step 3 – executing the user registration flow automation
	Step 4 – active scanning the identified URLs
	Step 5 – reviewing the security assessments

	Summary
	Questions
	Further reading

	Chapter 7: Android Security Testing
	Android security review best practices
	Secure source code review patterns for Android
	Privacy and sensitive information review
	Privacy scanning with Androwarn
	Step 1 – scanning of an APK
	Step 2 – review the report

	General process of APK security analysis
	Step 1 – use APKTool to reverse the APK to Manifest.xml, Smali and resources
	Step 2 – use JADX to reverse the APK into Java source code
	Step 3 – use Fireline to scan all the Java source files
	Step 4 – review the scanning results

	Static secure code scanning with QARK
	Step 1 – install QARK
	Step 2 – APK scanning with QARK
	Step 3 – review the results

	Automated security scanning with MobSF
	Step 1 – set up the MobSF
	Step 2 – upload the APK by REST API
	Step 3 – scan the APK
	Step 4 – download the report

	Summary
	Questions
	Further reading

	Chapter 8: Infrastructure Security
	The scope of infrastructure security
	Secure configuration best practices
	CIS (Center for Internet Security) benchmarks
	Security technical implementation guides (STIGs)
	OpenSCAP security guide
	Step 1 – installation of SCAP workbench
	Step 2 – OpenSCAP security guide

	Network security assessments with Nmap
	Nmap usage tips

	CVE vulnerability scanning
	Known vulnerable components scan by VulScan
	Step 1 – installation of VulScan
	Step 2 – NMAP scanning with VulScan

	Known vulnerable components scan by OWASP dependency check
	Step 1 – installation of OWASP dependency check
	Step 2 – CVE scanning with OWASP dependency check

	HTTPS security check with SSLyze
	Behavior-driven security automation – Gauntlt
	Step 1 – Gauntlt installation
	Step 2 – BDD security testing script
	Step 3 – execution and results

	Summary
	Questions
	Further reading

	Chapter 9: BDD Acceptance Security Testing
	Security testing communication
	What is BDD security testing?
	Adoption of Robot Framework with sqlmap
	Step 1 – Robot Framework setup and preparation
	Step 2 – sqlmap with Robot Framework

	Testing framework – Robot Framework with ZAP
	Step 1 – environment setup and preparation
	Step 2 – the Robot Framework script for the ZAP spider scan
	Step 3 – robot script execution

	Summary
	Questions
	Further reading

	Chapter 10: Project Background and Automation Approach
	Case study – introduction and security objective
	Selecting security and automation testing tools
	Automated security testing frameworks
	Environment and tool setup
	Summary
	Questions
	Further reading

	Chapter 11: Automated Testing for Web Applications
	Case 1 – web security scanning with ZAP-CLI
	Step 1 – installation of ZAP-CLI
	Step 2 – ZAP quick scan using the ZAP-CLI
	Step 3 – generate a report

	Case 2 – web security testing with ZAP & Selenium
	Step 1 – Selenium Python script
	Step 2 – running ZAP as a proxy
	Approach 1 – configure the system proxy
	Approach 2 – Selenium Profile
	Approach 3 – using SeleniumBASE

	Step 3 – generate ZAP report

	Case 3 – fuzz XSS and SQLi testing with JMeter
	Testing scenarios
	Step 1 – prepare environment
	Step 2 – define the JMeter scripts
	Step 3 – prepare security payloads
	Step 4 – launch JMeter in CLI with ZAP proxy
	Step 5 – generate a ZAP report

	Summary
	Questions
	Further reading

	Chapter 12: Automated Fuzz API Security Testing
	Fuzz testing and data
	Step 1 – installing Radamsa
	Step 2 – generating the Security Random Payloads

	API fuzz testing with Automation Frameworks
	Approach 1 – security fuzz testing with Wfuzz
	Step 1 – installing Wfuzz
	Step 2– fuzz testing with sign-in
	Step 3 – reviewing the Wfuzz report

	Approach 2 – security fuzz testing with 0d1n
	Step 1 – installation of 0d1n
	Step 2 – execution of 0d1n with OWASP ZAP
	Step 3 – review the ZAP report (optional)

	Approach 3 – Selenium DDT (data-driven testing)
	Step 1: Selenium script with DDT
	Step 2 – executing the Selenium script
	Step 3 – review the ZAP report

	Approach 4 – Robot Framework DDT testing
	Step 1– Robot Framework environment setup
	Step 3 – Robot Framework script
	Step 4 – review the ZAP report

	Summary
	Questions
	Further reading

	Chapter 13: Automated Infrastructure Security
	Scan For known JavaScript vulnerabilities
	Step 1 – install RetireJS
	Step 2 – scan with RetireJS
	Step 3 – review the retireJS results

	WebGoat with OWASP dependency check
	Step 1 – prepare WebGoat environment
	Step 2 – dependency check scan
	Step 3 – review the OWASP dependency-check report

	Secure communication scan with SSLScan
	Step 1 – SSLScan setup
	Step 2 – SSLScan scan
	Step 3 – review the SSLScan results
	Step 4 – fix the HTTPS secure configurations

	NMAP security scan with BDD framework
	NMAP For web security testing
	NMAP BDD testing with Gauntlt
	NMAP BDD with Robot Framework
	Step 1 – define the Robot Framework steps
	Step 2 – execute and review the results

	Summary
	Questions
	Further reading

	Chapter 14: Managing and Presenting Test Results
	Managing and presenting test results
	Approach 1 – integrate the tools with RapidScan
	Step 1 – get the RapidScan Python script
	Step 2 – review scanning results

	Approach 2 – generate a professional pentest report with Serpico
	Step 1 – installation of Serpico
	Step 2 – create a Report based on Templates
	Step 3 – Add Finding from Templates
	Step 4 – generate a report

	Approach 3 – security findings management DefectDojo
	Step 1 – setup the OWASP DefectDojo
	Step 2 – run security tools to output XMLs
	Step 3 – import ZAP findings

	Summary
	Questions
	Further reading

	Chapter 15: Summary of Automation Security Testing Tips
	Automation testing framework
	What are the automation frameworks for UI functional testing?
	BDD (behavior-driven development) testing framework?
	What are common automation frameworks that apply to security testing?

	Secure code review
	What are common secure code review patterns and risky APIs?
	Suggestions with Grep-like search tool for source code or configurations search?

	API security testing
	What are API security testing approaches?
	What are the suggested resources for FuzzDB security payloads?
	What testing tools are suggested for web fuzz testing?

	Web security testing
	How can JMeter be used for the web security testing?
	Examples of OWASP ZAP by ZAP-CLI usages
	Examples of OWASP ZAP automation by RESTful API

	Android security testing
	Suggested Android security testing tools and approach
	Common Android security risky APIs

	Infrastructure security
	What's the scope of infrastructure security testing?
	Typical use of Nmap for security testing

	BDD security testing by Robot Framework
	How to do web security scan with ZAP and Robot Framework?
	How to achieve DDT testing in Robot Framework?
	How to do network scan with Nmap and Robot Framework?
	How to do an SQLmap scan with Robot Framework?
	How to do BDD security testing with Nmap and Gauntlt?

	Summary

	Appendix A: List of Scripts and Tools
	List of sample scripts
	List of installed tools in virtual image

	Appendix B: Solutions
	Chapter 1: The Scope and Challenges of Security Automation
	Chapter 2: Integrating Security and Automation
	Chapter 3: Secure Code Inspection
	Chapter 4: Sensitive Information and Privacy Testing
	Chapter 5: Security API and Fuzz Testing
	Chapter 6: Web Application Security Testing
	Chapter 7: Android Security Testing
	Chapter 8: Infrastructure Security
	Chapter 9: BDD Acceptance Security Testing
	Chapter 10: Project Background and Automation Approach
	Chapter 11: Automated Testing for Web Applications
	Chapter 12: Automated Fuzz API Security Testing
	Chapter 13: Automated Infrastructure Security
	Chapter 14: Managing and Presenting Test Results

	Other Books You May Enjoy
	Index

