
Python
Continuous
Integration
and Delivery

A Concise Guide with Examples
—
Moritz Lenz

Python Continuous
Integration and

Delivery
A Concise Guide with Examples

Moritz Lenz

Python Continuous Integration and Delivery: A Concise Guide with

Examples

ISBN-13 (pbk): 978-1-4842-4280-3 ISBN-13 (electronic): 978-1-4842-4281-0
https://doi.org/10.1007/978-1-4842-4281-0

Library of Congress Control Number: 2018967720

Copyright © 2019 by Moritz Lenz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484242803. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Moritz Lenz
Fürth, Bayern, Germany

https://doi.org/10.1007/978-1-4842-4281-0

iii

Table of Contents

Chapter 1: Automated Testing ��1

1.1 What Do We Want from a Test? ..1

Fast Feedback ...1

Confidence ...2

Debugging Aid ...3

Design Help ...3

Specification of the Product ..4

1.2 Downsides of Tests ..5

Effort ..5

Extra Code to Maintain ..5

Brittleness ...6

False Sense of Security ...6

1.3 Characteristics of a Good Test ...7

1.4 Kinds of Tests ...7

Unit Tests ...7

Integration Tests ..8

System Tests ...9

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

iv

Smoke Tests ..10

Performance Tests ...10

1.5 Summary ...12

Chapter 2: Unit Testing in Python ���13

2.1 Digression: Virtualenvs...14

2.2 Getting Started with Unit Tests ..15

The First Test ...16

Writing More Tests ...17

Testing the Unhappy Path ..19

2.3 Dealing with Dependencies ...20

Separating Logic from External Dependencies ...21

Dependency Injection for Testing ..24

Mock Objects ...27

Patching...28

2.4 Separating Code and Tests ..30

Tweaking the Python Path ...31

2.5 More on Unit Testing and Pytest ..32

2.6 Running Unit Tests in Fresh Environments ..32

2.7 Another Sample Project: matheval ...34

Application Logic ...34

2.8 Summary ...38

Chapter 3: Continuous Integration with Jenkins ��������������������������������39

3.1 Continuous Integration Servers ...40

3.2 Getting Started with Jenkins ...41

Run Jenkins in Docker ...41

Configure a Source Code Repository ...43

Creating the First Jenkins Job ...43

Table of ConTenTsTable of ConTenTs

v

3.3 Exporting More Test Details to Jenkins ..47

3.4 Patterns for Working with Jenkins ...48

Responsibilities ...49

Notifications ..49

Feature Branches and Pull Requests ...50

3.5 Other Metrics in Jenkins ..50

Code Coverage...51

Complexity ...51

Coding Style ..51

Architectural Constraint Checking ...52

3.6 Summary ...52

Chapter 4: Continuous Delivery ��53

4.1 Reasons for CD and Automated Deployments ...54

Time Savings ...54

Shorter Release Cycles ..55

Shorter Feedback Cycles ...55

Reliability of Releases ...56

Smaller Increments Make Triaging Easier ...57

More Architectural Freedom ..57

Advanced Quality Assurance Techniques ..58

4.2 A Plan for CD ..59

The Pipeline Architecture ..59

Anti-Pattern: Separate Builds per Environment ...61

Everything Hinges on the Packaging Format ..62

Technology for Managing Debian Repositories ...63

Tooling for Installing Packages ..64

Controlling the Pipeline ...65

4.3 Summary ...66

Table of ConTenTsTable of ConTenTs

vi

Chapter 5: Building Packages ���67

5.1 Creating a Python Source Tarball ...67

5.2 Debian Packaging with dh-virtualenv ..68

Getting Started with Packaging ...69

5.3 The control File ..70

Directing the Build Process ...70

Declaring Python Dependencies ..71

Building the Package ...72

Creating the python-matheval Package ..72

Tradeoffs of dh-virtualenv ...74

5.4 Summary ...75

Chapter 6: Distributing Debian Packages ���77

6.1 Signatures ..77

6.2 Preparing the Repository ...78

6.3 Automating Repository Creation and Package Addition80

6.4 Serving the Repositories ..82

Configuring a Machine to Use the Repository ...84

6.5 Summary ...85

Chapter 7: Package Deployment ���87

7.1 Ansible: A Primer ..87

Connections and Inventory ..88

Modules ...90

The shell Module ...90

The copy Module ...91

The template Module ...92

The file Module ..93

The apt Module ..93

Table of ConTenTsTable of ConTenTs

vii

The yum and zypper Modules ...94

The package Module ...94

Application-Specific Modules ..95

Playbooks ..95

Variables ..99

Roles ..101

7.2 Deploying with Ansible ...104

7.3 Summary ...106

Chapter 8: A Virtual Playground for Automating Deployments ��������107

8.1 Requirements and Resource Usage ...107

8.2 Introducing Vagrant ..108

Network and Vagrant Setup ...110

8.3 Configuring the Machines ..113

8.4 Summary ...121

Chapter 9: Building in the Pipeline with Go Continuous Delivery �����123

9.1 About Go Continuous Delivery ..123

Pipeline Organization ...124

Matching of Jobs to Agents ...125

A Word on Environments ...126

Materials ..126

Artifacts ...127

9.2 Installation ...127

Installing the GoCD Server on Debian ..127

Installing a GoCD Agent on Debian ..129

First Contact with GoCD’s XML Configuration ..130

Creating an SSH Key ..132

Table of ConTenTsTable of ConTenTs

viii

9.3 Building in the Pipeline ..132

Directory Layout ..134

Stages, Jobs, Tasks, and Artifacts ...134

The Pipeline in Action ..136

Version Recycling Considered Harmful ...137

Constructing Unique Version Numbers ..137

Other Bits and Pieces Around the Build ...139

Plugging It into GoCD ...139

9.4 Summary ...141

Chapter 10: Distributing and Deploying Packages in the Pipeline ������143

10.1 Uploading in the Pipeline ...143

User Accounts and Security ...146

10.2 Deploying in the Pipeline ...147

10.3 Results ...149

10.4 Going All the Way to Production ...150

10.5 Achievement Unlocked: Basic Continuous Delivery152

Chapter 11: Pipeline Improvements ���153

11.1 Rollbacks and Installing Specific Versions ...153

Implementation ...154

Try It! ...156

11.2 Running Smoke Tests in the Pipeline ...157

When to Smoke? ...157

White Box Smoke Testing ..158

Sample Black Box Smoke Test ..158

Adding Smoke Tests to the Pipeline and Rolling Releases159

Table of ConTenTsTable of ConTenTs

ix

11.3 Configuration Templates ..161

11.4 Avoiding the Rebuild Stampede ...164

11.5 Summary ...166

Chapter 12: Security ���167

12.1 The Dangers of Centralization ..167

12.2 Time to Market for Security Fixes ..169

12.3 Audits and Software Bill of Materials ...169

12.4 Summary ...170

Chapter 13: State Management ��171

13.1 Synchronization Between Code and Database Versions172

13.2 Decoupling Application and Database Versions173

Example of a Schema Change ...174

Prerequisites ...179

Tooling ...180

Structure ..180

No Silver Bullet ..181

13.3 Summary ...181

Chapter 14: Conclusions and Outlook ���183

14.1 What’s Next? ..183

Improved Quality Assurance ..183

Metrics ..184

Infrastructure Automation..185

14.2 Conclusions ..187

Index ���189

Table of ConTenTsTable of ConTenTs

xi

About the Author

Moritz Lenz is a prolific blogger, author, and

contributor to Open Source projects.

He works as software architect and

principal software engineer for a midsize IT

outsourcing company, where he has created a

Continuous Integration and Delivery system

for over 50 software libraries and applications.

xiii

About the Technical Reviewer

Michael Thomas has worked in software

development for over 20 years as an individual

contributor, team lead, program manager,

and vice president of engineering. Michael

has more than 10 years of experience working

with mobile devices. His current focus is in

the medical sector, using mobile devices

to accelerate information transfer between

patients and health- care providers.

xv

Acknowledgments

Writing a book is not a solitary endeavor and is only possible with help

from many individuals and organizations. I would like to thank all of my

beta readers who provided feedback. These include, in no particular order,

Karl Vogel, Mikhail Itkin, Carl Mäsak, Martin Thurn, Shlomi Fish, Richard

Lippmann, Richard Foley, and Roman Filippov. Paul Cochrane deserves

special thanks for reviewing and providing feedback on the blog posts

and manuscript and for being available to discuss content, ideas, and

organization matters.

I also want to thank my publishing team at Apress: Steve Anglin, Mark

Powers, and Matthew Moodie, as well as everybody doing awesome work

in the background, such as cover design, typesetting, and marketing.

Finally, thanks go to my parents, for kindling both my love for books

and engineering. And most important, to my family: to Signe, my wife, for

constant support; and to my daughters, Ida and Ronja, for keeping me

grounded in the real world and bringing joy to my life.

xvii

Introduction

One of the keys to successful software development is getting fast

feedback. This helps developers avoid going down blind alleys, and in the

case of a bug that is revealed quickly, it can be fixed while the code is still

fresh in the developer’s mind.

On the business side, fast feedback also helps the stakeholders and

the product manager not to build features that turn out not to be useful,

thus avoiding wasted effort. Achieving a mutual understanding about

the desired product is a very difficult problem in any software project.

Showing a working (if partial) product early on often helps to eliminate

misunderstandings between stakeholders and developers.

There are many ways to add feedback loops on different levels, from

adding linting and other code checks in the IDE to agile processes that

emphasize incremental value delivery. The first part of this book focuses

on software tests and their automatic execution, a practice known as

continuous integration (CI).

When implementing CI, you set up a server that automatically tests

every change to the source code, potentially in multiple environments,

such as on combinations of operating system and programming language

versions.

The next logical step, and the topic of the second part of this book, is

continuous delivery (CD). After building and testing code, you add more

steps to the automated process: automated deployment to one or more test

environments, more tests in the installed state, and, finally, deployment to

a production environment. The last step is typically guarded by a manual

approval gate.

xviii

CD extends the automation and, thus, the possibility for quick iteration

cycles, all the way into the production environment, where the software

can deliver value for you. With such a mechanism in place, you can quickly

obtain feedback or usage data from real customers and assess whether

expanding on a feature is useful or discover bugs while the developers still

remember the code that they wrote.

The code examples in this book use Python. Owing to its dynamic

nature, Python is well-suited to small experiments and fast feedback. The

well-stocked standard library and vast ecosystem of available libraries and

frameworks, as well as Python’s clean syntax, make it a good choice, even

for larger applications. Python is commonly used in many domains, for

example, web development, data science and machine learning, Internet

of things (IoT), and system automation. It is becoming the lingua franca of

professional programmers and those who just touch a subject to automate

some part of their job or hobby.

Python comes in two major language versions, 2 and 3. Because

Python 2 support is scheduled to end in 2020, and nearly all major libraries

now support Python 3, new projects should be started in Python 3, and

legacy applications should be ported to that language version as well,

if possible. Hence, this book assumes that “Python” refers to Python 3,

unless explicitly stated otherwise. If you only know Python 2, rest assured

that you will easily understand the source code contained in this book, and

transferring the knowledge to Python 3 is very easy.

 I. 1 Intended Audience
This book is targeted at technical people involved in the software-delivery

process: software developers, architects, release engineers, and DevOps

engineers.

InTroduCTIonInTroduCTIon

xix

The chapters that use source code examples assume basic familiarity

with the Python programming language. If you are familiar with other

programming languages, spending a few hours reading introductory

material on Python will likely bring you to a level at which you can easily

follow the code examples in this book.

The sample infrastructure uses Debian GNU/Linux, so familiarity with

that operating system is helpful, though not required.

 I. 2 Code Examples
Code examples used in this book are available on GitHub under the

python-ci-cd organization at https://github.com/python-ci- cd or via

the Download Source Code link located at www.apress.com/9781484242803.

Because some examples rely on automatically fetching code from

certain Git repositories, a split into several repositories is necessary.

Several chapters reference individual repositories under this namespace.

InTroduCTIonInTroduCTIon

https://github.com/python-ci-cd
http://www.apress.com/9781484242803

1© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_1

CHAPTER 1

Automated Testing
Before diving into examples of how to test Python code, the nature of tests

must be discussed in more detail. Why do we want to have tests? What do

we gain from them? What are the downsides? What makes a good test;

what’s a bad test? How can we classify tests? And how many of which kinds

of tests should we write?

 1.1 What Do We Want from a Test?
Why bother with writing tests at all? There are a number of reasons why we

want to write or, at least, have tests.

It is not uncommon to have several tests in a test suite, written in

response to different needs.

 Fast Feedback
Every change to code comes with the risk of introducing bugs. Research

shows that somewhere in the range of 7% to 20% of all bug fixes introduce

new bugs.1

1 Jim Bird, “Bugs and Numbers: How Many Bugs Do You Have in Your Code?”
Building Real Software: Developing and Maintaining Secure and Reliable
Software in the Real World, http://swreflections.blogspot.de/2011/08/
bugs-and-numbers-how-many-bugs-do-you.html, August 23, 2011.

http://swreflections.blogspot.de/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
http://swreflections.blogspot.de/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
http://swreflections.blogspot.de/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
http://swreflections.blogspot.de/2011/08/bugs-and-numbers-how-many-bugs-do-you.html

2

Wouldn’t it be great if we could find those bugs before they find their

way to the customer? Or even before your colleagues see them? This is

not just a question of vanity. If you receive quick feedback that you have

introduced a bug, you are more likely to remember all the details of the

part of the code base you just worked on, so fixing the bug tends to be

much faster when you get fast feedback.

Many test cases are written to give this kind of fast feedback loop.

You can often run them before you ever commit your changes to the

source control system, and they make your work more efficient and keep

your source control history clear.

 Confidence
Related to the previous point, but worth mentioning separately, is the

confidence boost you can get from knowing that the test suite will catch

simple mistakes for you. In most software-based businesses, there are

critical areas where serious bugs could endanger the whole business.

Just imagine you, as a developer, accidentally mess up the login system

of a health-care data management product, and now people see others’

diagnoses. Or imagine that automatic billing charges the wrong amount to

customers’ credit cards.

Even non-software businesses have had catastrophic failures from

software errors. Both the Mars climate orbiter2 and the first launch of

the Ariane 5 rocket3 suffered the loss of the respective vehicle, owing to

software issues.

2 Wikipedia, “Mars Climate Orbiter,” https://en.wikipedia.org/wiki/Mars_
Climate_Orbiter, 2018.

3 J. L. Lions, “Ariane 5: Flight 501 Failure. Report by the Inquiry Board,”
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html, July 1996.

Chapter 1 automated testing

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

3

The criticality of their work puts emotional stress on software

developers. Automated tests and good development methodology can

help alleviate this stress.

Even if the software that people are developing is not mission-critical,

risk adversity can cause developers or maintainers to make the smallest

change possible and put off necessary refactoring that would keep the

code maintainable. The confidence that a good test suite provides can

enable developers to do what is necessary to keep the code base from

becoming the proverbial big ball of mud.4

 Debugging Aid
When developers change code, which in turn causes a test to fail, they want

the test to be helpful in finding the bug. If a test simply says “something is

wrong,” this knowledge is better than not knowing about the bug. It would be

even more helpful if the test could provide a hint to start debugging.

If, for example, a test failure indicates that the function find_

shortest_path raised an exception, rather than returning a path, as

expected, we know that either that function (or one it called) broke, or it

received wrong input. That’s a much better debugging aid.

 Design Help
The Extreme Programming (XP)5 movement advocates that you should

practice test-driven development (TDD). That is, before you write any code

that solves a problem, you first write a failing test. Then you write just

enough code to pass the test. Either you are done, or you write the next

test. Rinse and repeat.

4 Wikipedia, “Big ball of mud,” https://en.wikipedia.org/wiki/Big_ball_of_
mud, 2018.

5 Wikipedia, “Extreme programming,” https://en.wikipedia.org/wiki/Extreme_
programming, 2018.

Chapter 1 automated testing

https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming

4

This has obvious advantages: you make sure that all code you write

has test coverage and that you don’t write unnecessary or unreachable

code. However, TDD practitioners have also reported that the test-first

approach helped them write better code. One aspect is that writing a test

forces you to think about the application programming interface (API) that

the implementation will have, and so you start implementing with a better

plan in mind. Another reason is that pure functions (functions whose

return value depends only on the input and that don’t produce side effects

or read data from databases, etc.) are very simple to test. Thus, the test-first

approach guides the developer toward a better separation of algorithms

or business logic from supporting logic. This separation of concerns is an

aspect of good software design.

It should be noted that not everybody agrees with these observations,

with counterpoints from experience or arguments that some code is much

harder to test than write, leading to a waste of effort, by requiring tests

for everything. Still, the design help that tests can provide is a reason why

developers write code and so should not be missing here.

 Specification of the Product
The days of big, unified specification documents for software projects are

mostly over. Most projects follow some iterative development model, and

even if there is a detailed specification document, it is often outdated.

When there is no detailed and up-to-date prose specification, the

test suite can take the role of specification. When people are unsure how

a program should behave in a certain situation, a test might provide the

answer. For programming languages, data formats, protocols, and other

things, it might even make sense to offer a test suite that can be used for

validating more than one implementation.

Chapter 1 automated testing

5

 1.2 Downsides of Tests
It would be disingenuous to keep quiet about the downsides that tests can

have. These downsides should not detract you from writing tests, but being

aware of them will help you decide what to test, how to write the tests, and,

maybe, how many tests to write.

 Effort
It takes time and effort to write tests. So, when you are tasked with

implementing a feature, you not only have to implement the feature but

also write tests for it, resulting in more work and less time do other things

that might provide direct benefit to the business. Unless, of course, the

tests provide enough time savings (for example, through not having to fix

bugs in the production environment and clean up data that was corrupted

through a bug) to amortize the time spent on writing the tests.

 Extra Code to Maintain
Tests are code themselves and must be maintained, just like the code that

is being tested. In general, you want the least amount of code possible that

solves your problem, because the less code you have, the less code must

be maintained. Think of code (including test code) as a liability rather than

an asset.

If you write tests along with your features and bug fixes, you have

to change those tests when requirements change. Some of the tests

also require changing when refactoring, making the code base harder

to change.

Chapter 1 automated testing

6

 Brittleness
Some tests can be brittle, that is, they occasionally give the wrong result.

A test that fails even though the code in question is correct is called a false

positive. Such a test failure takes time to debug, without providing any value.

A false negative is a test that does not fail when the code under test is broken.

A false negative test provides no value either but tends to be much harder to

spot than false positives, because most tools draw attention to failed tests.

Brittle tests undermine the trust in the test suite. If deployment of a

product with failing tests becomes the norm because everybody assumes

those failed tests are false positives, the signaling value of the test suite

has dropped to zero. You might still use it to track which of the tests failed

in comparison to the last run, but this tends to degenerate into a lot of

manual work that nobody wants to do.

Unfortunately, some kinds of tests are very hard to do robustly.

Graphical user interface (GUI) tests tend to be very sensitive to layout or

technology changes. Tests that rely on components outside your control

can also be a source of brittleness.

 False Sense of Security
A flawless run of a test suite can give you a false sense of security. This can

be due either to false negatives (tests that should fail but do not) or missing

test scenarios. Even if a test suite achieves 100% statement coverage of the

tested code, it might miss some code paths or scenarios. Thus, you see a

passing test run and take that as an indication that your software works

correctly, only to be flooded with error reports once real customers get in

contact with the product.

There is no direct solution for the overconfidence that a test suite can

provide. Only through experience with a code base and its tests will you

get a feeling for realistic confidence levels that a green (i.e., passing) test

run provides.

Chapter 1 automated testing

7

 1.3 Characteristics of a Good Test
A good test is one that combines several of the reasons for writing tests,

while avoiding the downsides as much as possible. This means the test

should be fast to run, simple to understand and maintain, give good and

specific feedback when it fails, and be robust.

Maybe somewhat surprisingly, it should also fail occasionally, albeit

when one expects the test to fail. A test that never fails also never gives

you feedback and can’t help you with debugging. That doesn’t mean you

should delete a test for which you never recorded a failure. Maybe it failed

on a developer’s machine, and he or she fixed the bug before checking

changes.

Not all tests can fit all of the criteria for good tests, so let’s look at some

of the different kinds of tests and the trade-offs that are inherent to them.

 1.4 Kinds of Tests
There is a traditional model of how to categorize tests, based on their scope

(how much code they cover) and their purpose. This model divides code

that tests for correctness into unit, integration, and system tests. It also

adds smoke tests, performance tests, and others for different purposes.

 Unit Tests
A unit test exercises—in isolation—the smallest unit of a program

that makes sense to cover. In a procedural or functional programming

language, that tends to be a subroutine or function. In an object-oriented

language such as Python, it could be a method. Depending on how strictly

you interpret the definition, it could also be a class or a module.

Chapter 1 automated testing

8

A unit test should avoid running code outside the tested unit. So, if you

are testing a database-heavy business application, your unit test should

still not perform calls to the database (access the network for API calls) or

the file system. There are ways to substitute such external dependencies

for testing purposes that I will discuss later, though if you can structure

your code to avoid such calls, at least in most units, all the better.

Because access to external dependencies is what makes most code

slow, unit tests are usually blazingly fast. This makes them a good fit for

testing algorithms or core business logic.

For example, if your application is a navigation assistant, there is at

least one algorithmically challenging piece of code in there: the router,

which, given a map, a starting point, and a target, produces a route or,

maybe, a list of possible routes, with metrics such as length and expected

time of arrival attached. This router, or even parts of it, is something that

you want to cover with unit tests as thoroughly as you can, including

strange edge cases that might cause infinite loops, or check that a journey

from Berlin to Munich doesn’t send you via Rome.

The sheer volume of test cases that you want for such a unit makes

other kinds of tests impractical. Also, you don’t want such tests to fail,

owing to unrelated components, so keeping them focused on a unit

improves their specificity.

 Integration Tests
If you assembled a complex system such as a car or a spacecraft from

individual components, and each component works fine in isolation, what

are the chances the thing as a whole works? There are so many ways things

could go wrong: some wiring might be faulty, components want to talk

through incompatible protocols, or maybe the joints can’t withstand the

vibration during operation.

Chapter 1 automated testing

9

It’s no different in software, so one writes integration tests. An

integration test exercises several units at once. This makes mismatches

at the boundaries between units obvious (via test failures), enabling such

mistakes to be corrected early.

 System Tests
A system test puts a piece of software into an environment and tests it

there. For a classical three-tiered architecture, a system test starts from

input through the user interface and tests all layers down to the database.

Where unit tests and integration tests are white box tests (tests

that require and make use of the knowledge of how the software is

implemented), system tests tend to be black box tests. They take the user’s

perspective and don’t care about the guts of the system.

This makes system tests the most realistic, in terms of how the software

is put under test, but they come with several downsides.

First, managing dependencies for system tests can be really hard. For

example, if you are testing a web application, you typically first need an

account that you can use for login, and then each test case requires a fixed

set of data it can work with.

Second, system tests often exercise so many components at once

that a test failure doesn’t give good clues as to what is actually wrong and

requires that a developer look at each test failure, often to find out that

changes are unrelated to the test failures.

Third, system tests expose failures in components that you did not

intend to test. A system test might fail owing to a misconfigured Transport

Layer Security (TLS) certificate in an API that the software uses, and that

might be completely outside of your control.

Last, system tests are usually much slower than unit and integration

tests. White box tests allow you to test just the components you want, so

you can avoid running code that is not interesting. In a system test for a

web application, you might have to perform a login, navigate to the page

Chapter 1 automated testing

10

that you want to test, enter some data, and then finally do the test you

actually want to do. System tests often require much more setup than unit

or integration tests, increasing their runtime and lengthening the time

until one can receive feedback about the code.

 Smoke Tests
A smoke test is similar to a system test, in that it tests each layer in your

technology stack, though it is not a thorough test for each. It is usually not

written to test the correctness of some part of your application but, rather,

that the application works at all in its current context.

A smoke test for a web application could be as simple as a login,

followed by a call to the user’s profile page, verifying that the user’s name

appears somewhere on this page. This does not validate any logic but will

detect things like a misconfigured web server or database server or invalid

configuration files or credentials.

To get more out of a smoke test, you can add a status page or API end

point to your application that performs additional checks, such as for the

presence of all necessary tables in a database, the availability of dependent

services, and so on. Only if all those runtime dependencies are met will

the status be “OK,” which a smoke test can easily determine. Typically, you

write only one or two smoke tests for each deployable component but run

them for each instance you deploy.

 Performance Tests
The tests discussed so far focus on correctness, but nonfunctional qualities,

such as performance and security, can be equally important. In principle, it

is quite easy to run a performance test: record the current time, run a certain

action, record the current time again. The difference between the two time

recordings is the runtime of that action. If necessary, repeat and calculate

some statistics (e.g., median, mean, standard deviation) from these values.

Chapter 1 automated testing

11

As usual, the devil is in the details. The main challenges are the

creation of a realistic and reliable test environment, realistic test data, and

realistic test scenarios.

Many business applications rely heavily on databases. So, your

performance test environment also requires a database. Replicating a

big production database instance for a testing environment can be quite

expensive, both in terms of hardware and licensing costs. So, there is

temptation to use a scaled-down testing database, which comes with the

risk of invalidating the results. If something is slow in the performance

tests, developers tend to say “that’s just the weaker database; prod could

handle that easily”—and they might be right. Or not. There is no way

to know.

Another insidious aspect of environment setup is the many moving

parts when it comes to performance. On a virtual machine (VM),

you typically don’t know how many CPU cycles the VM got from the

hypervisor, or if the virtualization environment played funny tricks with

the VM memory (such as swapping out part of the VM’s memory to disk),

causing unpredictable performance.

On physical machines (which underlie every VM as well), you run into

modern power-management systems that control clock speed, based on

thermal considerations, and in some cases, even based on the specific

instructions used in the CPU.6

All of these factors lead to performance measurements being

much more indeterministic than you might naively expect from such a

deterministic system as a computer.

6 Vlad Krasnov, “On the Dangers of Intel’s Frequency Scaling,” Cloudflare,
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/,
November 10, 2017.

Chapter 1 automated testing

https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

12

 1.5 Summary
As software developers, we want automated tests to give us fast feedback

on changes, catch regressions before they reach the customer, and provide

us enough confidence in a change that we can refactor code. A good test is

fast, reliable, and has high diagnostic value when it fails.

Unit tests tend to be fast and have high diagnostic value but only cover

small pieces of code. The more code a test covers, the slower and more

brittle it tends to be become, and its diagnostic value decreases.

In the next chapter, we will look at how to write and run unit tests

in Python. Then we will investigate how to run them automatically for

each commit.

Chapter 1 automated testing

13© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_2

CHAPTER 2

Unit Testing in Python
Many programmers manually test the code they are writing by calling the

piece of code they are developing, printing the result to the console, and

visually scanning the output for correctness. This works for simple tasks

but suffers from some problems:

• When the output gets large, it becomes harder to spot

errors.

• When the programmer tires, it is easy to miss subtly

incorrect output.

• When the implemented feature becomes larger, one

tends to miss regressions in parts that were “tested”

earlier.

• Because the informal test scripts are generally only

useful for the programmer who wrote them, their utility

is lost to other developers.

Thus, unit testing was invented, in which one writes sample calls to

pieces of code and compares the return value to the expected value.

This comparison is typically done in a way that produces little or no

output when the test passes and very obvious output otherwise. A test

harness can be used to run tests from several test scripts and only report

the errors and a statistical summary of the passed tests.

14

 2.1 Digression: Virtualenvs
To run the unit tests we are going to write, we require some additional

tools that are available as Python packages. To install them, you should

use a tool called a virtualenv. This is a Python directory that contains a

Python interpreter, package management programs such as pip, as well

as symbolic links to the base Python packages, thus giving you a pristine

Python environment on which to build a customized, isolated virtual

environment containing exactly the libraries you need. A virtualenv

enables you to install any Python package you want; you don’t need root

privileges in order to install a dependency for your application. You can

activate one virtualenv within a given shell session and simply delete the

directory when you don’t need it anymore.

Virtualenvs are used to isolate separate development environments

from each other and from the system Python installation. To create one,

you need the virtualenv tool, which typically comes with your Python

installation or, on Linux distributions, can be installed through the package

manager. On Debian-based systems, you can install it like so:

$ sudo apt-get install virtualenv

To create a virtualenv called venv, run

$ virtualenv -p python3 venv

This prepares a directory called venv with the necessary files. Your next

step should be to activate it, as follows:

$ source venv/bin/activate

Once you have activated it, you can install packages into it, using pip,

e.g.:

$ pip install pytest

When you are done, disable it with the command deactivate.

Chapter 2 Unit testing in python

15

 2.2 Getting Started with Unit Tests
To illustrate unit testing, let’s start with a single function and how to test it.

The function I want to implement here is a binary search. Given a sorted

list of numbers (we call it the haystack), search for another number (the

needle) in it. If it’s present, return the index at which it was found. If not,

raise an exception of type ValueError. You can find the code and tests for

this example at https://github.com/python-ci-cd/binary-search.

We start by looking at the middle element of the haystack. If it happens

to be equal to the needle, we are done. If it is smaller than the needle, we

can repeat the search in the left half of the haystack. If it’s larger, we can

continue the search in the right half of the haystack.

To keep track of the area inside the haystack that we need to search, we

keep two indices, left and right, and in each iteration, move one of them

closer to the other, cutting the space to be searched in half in each step.

This is what the first attempt at implementing this function looks like:

def search(needle, haystack):

 left = 0

 right = len(haystack) - 1

 while left <= right:

 middle = left + (right - left) // 2

 middle_element = haystack[middle]

 if middle_element == needle:

 return middle

 elif middle_element < needle:

 left = middle

 else:

 right = middle

 raise ValueError("Value not in haystack")

Chapter 2 Unit testing in python

https://github.com/python-ci-cd/binary-search
https://github.com/python-ci-cd/binary-search

16

 The First Test
Does it work? Who knows? Let’s find out by writing a test.

def test_search():

 assert search(2, [1, 2, 3, 4]) == 1, \

 'found needle somewhere in the haystack'

This is a simple function that exercises the search function with

sample inputs and uses assert to raise an exception if the expectation

was not met. Instead of calling this test function directly, we use pytest, a

command-line tool supplied by a Python package of the same name. If it is

not available in your development environment, you can install it with the

following command (remember to run it inside a virtualenv):

pip install pytest

When pytest is available, you can run it on the file containing both the

search function and the test function, as follows:

$ pytest binary-search.py

==================== test session starts =====================

platform linux -- Python 3.5.2, pytest-3.3.2, py-1.5.2

rootdir: /home/moritz/examples, inifile:

collected 1 item

binary-search.py . [100%]

================== 1 passed in 0.01 seconds ==================

The test run prints various pieces of information: These include details

about the platform and version of the software involved, the working

directory, and what pytest configuration file was used (none in this

example).

Chapter 2 Unit testing in python

17

The line collected 1 item then shows that pytest found one test

function. The dot behind the file name in the next line shows the progress,

with one dot for each test that has been executed.

In a terminal, the last line is shown in green, to indicate a passed test

run. If we made a mistake, say, used 0 instead of 1, as the expected result,

we’d get some diagnostic output, like the following:

========================== FAILURES ==========================

_________________________test_search__________________________

 def test_search():

> assert search(2, [1, 2, 3, 4]) == 0, \

 'found needle somewhere in the haystack'

E AssertionError: found needle somewhere in the haystack

E assert 1 == 0

E + where 1 = search(2, [1, 2, 3, 4])

binary-search.py:17: AssertionError

================== 1 failed in 0.03 seconds ==================

This shows the test function that fails, both as source code and with

values substituted in on both sides of the == operator in the assert call,

showing exactly what went wrong. In a terminal with color support, the

failed test and the status line at the bottom are shown in red, to make failed

tests obvious.

 Writing More Tests
Many bugs in code manifest themselves in edge cases, with empty lists or

strings as inputs, numbers being zero, accessing the first and last element

of lists, and so on. It is a good idea to think of these cases when writing

tests and cover them. Let’s start with searching for the first and the

last element.

Chapter 2 Unit testing in python

18

def test_search_first_element():

 assert search(1, [1, 2, 3, 4]) == 0, \

 'search first element'

def test_search_last_element():

 assert search(4, [1, 2, 3, 4]) == 3, \

 'search last element'

The test for finding the first element passes, but the test for the last

element hangs, that is, it runs indefinitely without terminating. You can

abort the Python process by pressing the Ctrl and C keys simultaneously.

If function search can find the first but not the last element, there must

be some kind of asymmetry in it. Indeed there is: determining the middle

element uses the integer division operator //, which rounds positive

numbers toward zero. For example, 1 // 2 == 0. This explains why the

loop can get stuck: when right is equal to left + 1, the code sets middle

to the value of left. If the branch left = middle is executed, the area of

the haystack in which the function searches does not decrease in size, and

the loop gets stuck.

There is an easy fix. Because the code has already determined that

the element at index middle is not the needle, it can be excluded from

the search.

def search(needle, haystack):

 left = 0

 right = len(haystack) - 1

 while left <= right:

 middle = left + (right - left) // 2

 middle_element = haystack[middle]

 if middle_element == needle:

 return middle

 elif middle_element < needle:

 left = middle + 1

Chapter 2 Unit testing in python

19

 else:

 right = middle - 1

 raise ValueError("Value not in haystack")

With this fix in place, all three tests pass.

 Testing the Unhappy Path
The tests so far focused on the “happy path,” the path in which an element

was found and no error encountered. Because exceptions are not the

exception (excuse the pun) in normal control flow, they should be tested too.

pytest has some tooling that helps you verify that an exception is

raised by a piece of code and that it is of the correct type.

def test_exception_not_found():

 from pytest import raises

 with raises(ValueError):

 search(-1, [1, 2, 3, 4])

 with raises(ValueError):

 search(5, [1, 2, 3, 4])

 with raises(ValueError):

 search(2, [1, 3, 4])

Here, we test three scenarios: that a value was smaller than the first

element in the haystack, larger than the last, and, finally, that it is between

the first and the last element in size but simply not inside the haystack.

The pytest.raises routine returns a context manager. Context

managers are, among other things, a neat way to wrap code (inside the

with ... block) in some other code. In this case, the context manager

catches the exception from the with block, and the test passes if it is of the

right type. Conversely, the test fails if either no exception was raised or one

of a wrong type, such as a KeyError, was.

Chapter 2 Unit testing in python

20

As with the assert statements before, you can give the tests labels.

These are useful both for debugging test failures and for documenting the

tests. With the raises function, you can pass in the test label as a named

argument called message.

def test_exception_not_found():

 from pytest import raises

 with raises(ValueError, message="left out of bounds"):

 search(-1, [1, 2, 3, 4])

 with raises(ValueError, message="right out of bounds"):

 search(5, [1, 2, 3, 4])

 with raises(ValueError, message="not found in middle"):

 search(2, [1, 3, 4])

 2.3 Dealing with Dependencies
Not all code is as simple to test, as with the search function from the

previous sections. Some functions call external libraries or interact with

databases, APIs, or the Internet.

In unit tests, you should avoid doing those external actions, for several

reasons.

• The actions might have unwanted side effects, such

as sending e-mails to customers or colleagues and

confusing them or even causing harm.

• You typically do not have control over external

services, which means you do not have control over

consistent responses, which makes writing reliable

tests much harder.

Chapter 2 Unit testing in python

21

• Performing external actions, such as writing or deleting

files, leaves the environment in a different state, which

potentially leads to test results that cannot be reproduced.

• Performance suffers, which negatively impacts the

development feedback cycle.

• Often, external services, such as databases or APIs,

require credentials, which are a hassle to manage and

pose a serious barrier to setting up a development

environment and running tests.

How do you, then, avoid these external dependencies in your unit

tests? Let’s explore some options.

 Separating Logic from External Dependencies
Many applications get data from somewhere, often different sources, then

do some logic with it, and maybe print out the result in the end.

Let’s consider the example of the application that counts keywords in a

web site. The code for this could be the following (which uses the requests

library; you can install it with pip install requests in your virtualenv):

import requests

def most_common_word_in_web_page(words, url):

 """

 finds the most common word from a list of words

 in a web page, identified by its URL

 """

 response = requests.get(url)

 text = response.text

 word_frequency = {w: text.count(w) for w in words}

 return sorted(words, key=word_frequency.get)[-1]

Chapter 2 Unit testing in python

22

if __name__ == '__main__':

 most_common = most_common_word_in_web_page(

 ['python', 'Python', 'programming'],

 'https://python.org/',

)

 print(most_common)

At the time of writing, this code prints Python as the answer,

though this might change in future, at the discretion of the python.org

maintainers.

You can find the sample code and tests at https://github.com/

python-ci-cd/python-webcount.

This code uses the requests library to fetch the contents of a web page

and accesses the resulting text (which is really HTML). The function then

iterates over the search words, counts how often each occurs in the text

(using the string.count method), and constructs a dictionary with these

counts. It then sorts the lists of words by their frequency and returns the

most commonly occurring one, which is the last element of the sorted list.

Testing most_common_word_in_web_page becomes tedious, owing to

its use of the HTTP client requests. The first thing we can do is to split off

the logic of counting and sorting from the mechanics of fetching a web site.

Not only does this make the logic part easier to test, it also improves the

quality of the code, by separating things that don’t really belong together,

thus increasing cohesion.

import requests

def most_common_word_in_web_page(words, url):

 """

 finds the most common word from a list of words

 in a web page, identified by its URL

 """

Chapter 2 Unit testing in python

https://github.com/python-ci-cd/python-webcount
https://github.com/python-ci-cd/python-webcount

23

 response = requests.get(url)

 return most_common_word(words, response.text)

def most_common_word(words, text):

 """

 finds the most common word from a list of words

 in a piece of text

 """

 word_frequency = {w: text.count(w) for w in words}

 return sorted(words, key=word_frequency.get)[-1]

if __name__ == '__main__':

 most_common = most_common_word_in_web_page(

 ['python', 'Python', 'programming'],

 'https://python.org/',

)

 print(most_common)

The function that does the logic, most_common_word, is now a pure

function, that is, the return value only depends on the arguments passed to

it, and it doesn’t have any interactions with the outside world. Such a pure

function is easy enough to test (again, tests go into test/functions.py).

def test_most_common_word():

 assert most_common_word(['a', 'b', 'c'], 'abbbcc') \

 == 'b', 'most_common_word with unique answer'

def test_most_common_word_empty_candidate():

 from pytest import raises

 with raises(Exception, message="empty word raises"):

 most_common_word([], 'abc')

def test_most_common_ambiguous_result():

 assert most_common_word(['a', 'b', 'c'], 'ab') \

 in ('a', 'b'), "there might be a tie"

Chapter 2 Unit testing in python

24

These tests are more examples for unit testing, and they also raise

some points that might not have been obvious from simply reading the

function’s source code.

• most_common_word does not actually look for word

boundaries, so it will happily count the “word” b three

times in the string abbbcc.

• The function will raise an exception when called with

an empty list of keywords, but we haven’t bothered to

specify what kind of error.1

• We haven’t specified which value to return if two or

more words have the same occurrence count, hence

the last test using in with a list of two valid answers.

Depending on your situation, you might want to leave such tests as

documentation of known edge cases or refine both the specification and

the implementation.

Returning to the topic of testing functions with external dependencies,

we have reached partial success. The interesting logic is now a separate,

pure function and can be tested easily. The original function, most_

common_word_in_web_page, is now simpler but still untested.

We have, implicitly, established the principle that it is acceptable to

change code to make it easier to test, but it is worth mentioning explicitly.

We will use it more in the future.

 Dependency Injection for Testing
If we think more about what makes the function most_common_word_in_

web_page hard to test, we can come to the conclusion that it’s not just the

interaction with the outside world through the HTTP user agent requests

1 It actually raises an IndexError, from trying to access the last element of the
sorted list, which is empty.

Chapter 2 Unit testing in python

25

but also the use of the global symbol requests. If we made it possible to

substitute it for another class, it would be easier to test. We can achieve this

through a simple change to the function under test. (Comments have been

stripped from the example for brevity.)

def most_common_word_in_web_page(words, url,

 user_agent=requests):

 response = user_agent.get(url)

 return most_common_word(words, response.text)

Instead of using requests directly, the function now accepts an

optional argument, user_agent, which defaults to requests. Inside the

function, the sole use of requests has been replaced by user_agent.

For the caller, who calls the function with just two arguments, nothing

changed. But the developer who writes the tests can now supply his/her

own test double, a substitute implementation for a user agent that behaves

in a deterministic way.

def test_with_test_double():

 class TestResponse():

 text = 'aa bbb c'

 class TestUserAgent():

 def get(self, url):

 return TestResponse()

 result = most_common_word_in_web_page(

 ['a', 'b', 'c'],

 'https://python.org/',

 user_agent=TestUserAgent()

)

 assert result == 'b', \

 'most_common_word_in_web_page tested with test double'

Chapter 2 Unit testing in python

26

This test mimics just the parts of the requests API that the tested

function uses. It ignores the url argument to the get method, so purely

from this test, we can’t be sure that the tested function uses the user agent

class correctly. We could extend the test double to record the value of the

argument that was passed in and check it later.

def test_with_test_double():

 class TestResponse():

 text = 'aa bbb c'

 class TestUserAgent():

 def get(self, url):

 self.url = url

 return TestResponse()

 test_ua = TestUserAgent()

 result = most_common_word_in_web_page(

 ['a', 'b', 'c'],

 'https://python.org/',

 user_agent=test_ua

)

 assert result == 'b', \

 'most_common_word_in_web_page tested with test double'

 assert test_ua.url == 'https://python.org/'

The technique demonstrated in this section is a simple form of

dependency injection.2 The caller has the option to inject an object or class

on which a function depends.

Dependency injection is useful not just for testing but also for making

software more pluggable. For example, you might want your software to be

able to use different storage engines in different contexts, or different XML

2 Wikipedia, “Dependency injection,”
https://en.wikipedia.org/wiki/Dependency_injection, 2018.

Chapter 2 Unit testing in python

https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection

27

parsers, or any number of other pieces of software infrastructure for which

multiple implementations exist.

 Mock Objects
Writing test double classes can become tedious pretty quickly, because

you often require one class per method called in the test, and all of

these classes must be set up to correctly chain their responses. If you

write multiple test scenarios, you either have to make the test doubles

generic enough to cover several scenarios or repeat nearly the same

code all over again.

Mock objects offer a more convenient solution. These are objects that

you can easily configure to respond in predefined ways.

def test_with_test_mock():

 from unittest.mock import Mock

 mock_requests = Mock()

 mock_requests.get.return_value.text = 'aa bbb c'

 result = most_common_word_in_web_page(

 ['a', 'b', 'c'],

 'https://python.org/',

 user_agent=mock_requests

)

 assert result == 'b', \

 'most_common_word_in_web_page tested with test double'

 assert mock_requests.get.call_count == 1

 assert mock_requests.get.call_args[0][0] \

 == 'https://python.org/', 'called with right URL'

The first two lines of this test function import the class Mock and create

an instance from it. Then the real magic happens.

mock_requests.get.return_value.text = 'aa bbb c'

Chapter 2 Unit testing in python

28

This installs an attribute, get, in object mock_requests, which, when it

is called, returns another mock object. The attribute text on that second

mock object has an attribute text, which holds the string 'aa bb c'.

Let’s start with some simpler examples. If you have a Mock object

m, then m.a = 1 installs an attribute a with value 1. On the other hand,

m.b.return_value = 2 configures m, so that m.b() returns 2.

You can continue to chain, so m.c.return_value.d.e.return_value = 3

makes m.c().d.e() return 3. In essence, each return_value in the

assignment corresponds to a pair of parentheses in the call chain.

In addition to setting up these prepared return values, mock objects also

record calls. The previous example checked the call_count of a mock object,

which simply records how often that mock has been called as a function.

The call_args property contains a tuple of arguments passed to its

last call. The first element of this tuple is a list of positional arguments, the

second a dict of named arguments.

If you want to check multiple invocations of a mock object, call_args_

list contains a list of such tuples.

The Mock class has more useful methods. Please refer to the official

documentation3 for a comprehensive list.

 Patching
Sometimes, dependency injection is not practical, or you don’t want to

risk changing existing code to get it under test. Then, you can exploit the

dynamic nature of Python to temporarily override symbols in the tested

code and replace them with test doubles—typically, mock objects.

3 Python Software Foundation, “unittest.mock—mock object library,”
https://docs.python.org/3/library/unittest.mock.html, 2018.

Chapter 2 Unit testing in python

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html

29

from unittest.mock import Mock, patch

def test_with_patch():

 mock_requests = Mock()

 mock_requests.get.return_value.text = 'aa bbb c'

 with patch('webcount.functions.requests', mock_requests):

 result = most_common_word_in_web_page(

 ['a', 'b', 'c'],

 'https://python.org/',

)

 assert result == 'b', \

 'most_common_word_in_web_page tested with test double'

 assert mock_requests.get.call_count == 1

 assert mock_requests.get.call_args[0][0] \

 == 'https://python.org/', 'called with right URL'

The call to the patch function (imported from unittest.mock, a

standard library shipped with Python) specifies both the symbol to be

patched (temporarily replaced) and the test double by which it is replaced.

The patch function returns a context manager. So, after execution leaves

the with block that the call occurs in, the temporary replacement is

undone automatically.

When patching an imported symbol, it is important to patch the

symbol in the namespace that it was imported in, not in the source

library. In our example, we patched webcount.functions.requests, not

requests.get.

Patching removes interactions with other code, typically libraries.

This is good for testing code in isolation, but it also means that patched

tests cannot detect misuse of libraries that have been patched out. Thus,

it is important to write broader scoped tests, such as integration tests or

acceptance tests, to cover correct usage of such libraries.

Chapter 2 Unit testing in python

30

 2.4 Separating Code and Tests
So far, we’ve put code and tests into the same file, just for the sake of

convenience. However, code and tests serve different purposes, so as they

grow in size, it is common to split them into different files and, typically,

even into different directories. Our test code now also loads a module on

its own (pytest), a burden that you don’t want to put on production code.

Finally, some testing tools assume different files for test and code, so we

will follow this convention.

When developing a Python application, you typically have a package

name for the project and a top-level directory of the same name. Tests go

into a second top-level directory called tests. For example, the Django

web framework has the directories django and test, as well as a

README.rst as the entry point for beginners, and setup.py for installing

the project.

Each directory that serves as a Python module must contain a file

called __init__.py, which can be empty or contain some code. Typically,

this code just imports other symbols, so that users of the module can

import them from the top-level module name.

Let’s consider a small application that, given a URL and a list of

keywords, prints which of these keywords appears most often on web

pages that the URL points to. We might call it webcount and put the logic

into the file webcount/functions.py. Then, the file webcount/ __init__ .py

would look like this:

from .functions import most_common_word_in_web_page

In each test file, we explicitly import the functions that we test, for

instance:

from webcount import most_common_word_in_web_page

Chapter 2 Unit testing in python

31

We can put test functions into any file in the test/ directory. In this

instance, we put them into the file test/test_functions.py, to mirror the

location of the implementation. The test_ prefix tells pytest that this is a

file that contains tests.

 Tweaking the Python Path
When you run this test with pytest test/test_functions.py, you will

likely get an error like this:

test/functions.py:3: in <module>

 from webcount import most_common_word_in_web_page

E ImportError: No module named 'webcount'

Python cannot find the module under test, webcount, because it is not

located in Python’s default module loading path.

You can fix this by adding the absolute path of your project’s root

directory to a file with the extension .pth into your virtualenv’s site-

packages directory. For example, if you use Python 3.5, and your virtualenv

is in the directory venv/, you could put the absolute path into the file

venv/lib/python3.5/site-packages/webcount.pth. Other methods

of manipulating the “Python path” are discussed in the official Python

documentation.4

A pytest-specific approach is to add an empty file, conftest.py, to your

project’s root directory. Pytest looks for files of that name and, on detecting

their presence, marks the containing directory as a project to be tested and

adds the directory to the Python path during the test run.

You don’t have to specify the test file when invoking pytest. If you

leave it out, pytest searches for all test files and runs them. The pytest

documentation on integration practices5 has more information on how

this search works.

4 https://docs.python.org/3/install/index.html#inst-search-path.
5 https://docs.pytest.org/en/latest/goodpractices.html.

Chapter 2 Unit testing in python

https://docs.pytest.org/en/latest/goodpractices.html
https://docs.pytest.org/en/latest/goodpractices.html
https://docs.pytest.org/en/latest/goodpractices.html
https://docs.python.org/3/install/index.html#inst-search-path
https://docs.pytest.org/en/latest/goodpractices.html

32

 2.5 More on Unit Testing and Pytest
There are many more topics that you might encounter while trying to write

tests for your code. For example, you might have to manage fixtures, pieces

of data that serve as the baseline of your tests. Or you may have to patch

functions from code that is loaded at runtime or do a number of other

things that nobody prepared you for.

For such cases, the pytest documentation6 is a good starting point.

If you want a more thorough introduction, the book Python Testing with

pytest by Brian Okken (The Pragmatic Bookshelf, 2017) is worth reading.

 2.6 Running Unit Tests in Fresh Environments
Developers typically have a development environment in which they

implement their changes, run the automatic and sometimes manual

tests, commit their changes, and push them to a central repository. Such

a development environment tends to accumulate Python packages that

are not explicit dependencies of the software under development, and

they tend to use just one Python version. These two factors also tend to

make test suites not quite reproducible, which can lead to a “works on my

machine” mentality.

To avoid that, you need a mechanism to easily execute a test suite in a

reproducible manner and on several Python versions. The tox automation

project7 provides a solution: you supply it with a short configuration

file, tox.ini, that lists Python versions and a standard setup.py file for

installing the module. Then, you can just run the tox command.

6 Pytest, “pytest: helps you write better programs,” https://docs.pytest.org/en/
latest/, 2018.

7 tox, “Welcome to the tox Automation Project,” https://tox.readthedocs.io/en/
latest/, 2018.

Chapter 2 Unit testing in python

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/

33

The tox command creates a new virtualenv for each Python version,

runs the tests in each environment, and reports the test status. First, we

need a file setup.py.

file setup.py

from setuptools import setup

setup(

 name = "webcount",

 version = "0.1",

 license = "BSD",

 packages=['webcount', 'test'],

 install_requires=['requests'],

)

This uses Python’s library setuptools to make the code under

development installable. Usually, you’d include more metadata, such as

author, e-mail address, a more verbose description, etc.

Then, the file tox.ini tells tox how to run the tests, and in which

environments.

[tox]

envlist = py35

[testenv]

deps = pytest

 requests

commands = pytest

The envlist in this example contains just py35 for Python 3.5. If you

also want to run the tests on Python 3.6, you could write envlist = py35,

py36. The key pypy35 would refer to the alternative pypy implementation

of Python in version 3.5.

Chapter 2 Unit testing in python

34

Now, calling tox runs the tests in all environments (here, just one), and

at the end, reports on the status.

py35 runtests: PYTHONHASHSEED='3580365323'

py35 runtests: commands[0] | pytest

================== test session starts ==================

platform linux -- Python 3.5.2, pytest-3.6.3, py-1.5.4,

 pluggy-0.6.0

rootdir: /home/[...]/02-webcount-patched, inifile:

collected 1 item

test/test_functions.py . [100%]

=============== 1 passed in 0.08 seconds ================

_________________________summary_________________________

py35: commands succeeded

congratulations :)

 2.7 Another Sample Project: matheval
Many projects these days are implemented as web services, so they can be

used through HTTP—either as an API or through an actual web site. Let’s

consider a tiny web service that evaluates mathematical expressions that

are encoded as trees in a JSON data structure. (You can find the full source

code for this project at https://github.com/python-ci-cd/python-

matheval/.) As an example, the expression 5 * (4 - 2) would be encoded as

the JSON tree ["*", 5, ["+", 4, 2]] and evaluate to 10.

 Application Logic
The actual evaluation logic is quite compact (see Listing 2-1).

Chapter 2 Unit testing in python

https://github.com/python-ci-cd/python-matheval/
https://github.com/python-ci-cd/python-matheval/
https://github.com/python-ci-cd/python-matheval/

35

Listing 2-1. File matheval/evaluator.py: Evaluation Logic

from functools import reduce

import operator

ops = {

 '+': operator.add,

 '-': operator.add,

 '*': operator.mul,

 '/': operator.truediv,

}

def math_eval(tree):

 if not isinstance(tree, list):

 return tree

 op = ops[tree.pop(0)]

 return reduce(op, map(math_eval, tree))

Exposing it to the Web isn’t much effort either, using the Flask

framework (see Listing 2-2).

Listing 2-2. File matheval/frontend.py: Web Service Binding

#!/usr/bin/python3

from flask import Flask, request

from matheval.evaluator import math_eval

app = Flask(__name__)

@app.route('/', methods=['GET', 'POST'])

def index():

 tree = request.get_json(force=True)

 result = math_eval(tree);

 return str(result) + "\n"

if __name__ == '__main__':

 app.run(debug=True)

Chapter 2 Unit testing in python

36

Once you have added the project’s root directory to a .pth file of your

current virtualenv and installed the flask prerequisite, you can start a

development server, like this:

$ python matheval/frontend.py

 * Serving Flask app "frontend" (lazy loading)

 * Environment: production

 WARNING: Do not use the development server in a production

environment.

 Use a production WSGI server instead.

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

For production usage, it is better to install gunicorn and then start the

application as

$ gunicorn matheval.frontend:app

Unit testing the application logic is pretty straightforward, because it is

a pure function (see Listing 2-3).

Listing 2-3. File test/test_evaluator.py: Unit Tests for Evaluating

Expression Trees

from matheval.evaluator import math_eval

def test_identity():

 assert math_eval(5) == 5, 'identity'

def test_single_element():

 assert math_eval(['+', 5]) == 5, 'single element'

def test_addition():

 assert math_eval(['+', 5, 7]) == 12, 'adding two numbers'

def test_nested():

 assert math_eval(['*', ['+', 5, 4], 2]) == 18

Chapter 2 Unit testing in python

37

The index route is not complicated enough to warrant a unit test on its

own, but in a later chapter, we will write a smoke test that exercises it once

the application is installed.

We need a small setup.py file to be able to run the tests through

pytest (see Listing 2-4).

Listing 2-4. File setup.py for matheval

#!/usr/bin/env python

from setuptools import setup

setup(name='matheval',

 version='0.1',

 description='Evaluation of expression trees',

 author='Moritz Lenz',

 author_email='moritz.lenz@gmail.com',

 url='https://deploybook.com/',

 requires=['flask', 'pytest', 'gunicorn'],

 setup_requires=['pytest-runner'],

 packages=['matheval']

)

Finally, we need an empty file conftest.py again and can now run

the test.

$ pytest

==================== test session starts =====================

platform linux -- Python 3.6.5, pytest-3.8.0, py-1.6.0

rootdir: /home/moritz/src/matheval, inifile:

collected 4 items

test/test_evaluator.py [100%]

================== 4 passed in 0.02 seconds ==================

Chapter 2 Unit testing in python

38

 2.8 Summary
Unit tests exercise a piece of code in isolation, by calling it with sample

inputs and verifying that it returns the expected result or throws the

expected exception. With pytest, a test is a function whose name starts

with test_ and contains assert statements that verify return values. You

run these test files with pytest path/to/file.py, and it finds and runs

the tests for you. It makes test failures very obvious and tries to provide as

much context as possible to debug them.

Mock objects provide a quick way to create test doubles, and the

patching mechanism provides a convenient way to inject them into the

tested code.

The tox command and project create isolated test environments that

make test suites reproducible and more convenient to test on multiple

Python versions and implementations.

Chapter 2 Unit testing in python

39© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_3

CHAPTER 3

Continuous
Integration
with Jenkins
Once you have automated tests for your software, you must take care to

keep those tests passing. With changes to the code or to infrastructure, or

with new library versions, tests can start failing.

If you let them fail and don’t do anything against this creeping entropy,

the diagnostic value of the tests starts to drop, and new regressions tend

to be covered up by the general noise. Keeping your tests passing, and

continuously checking in new features and bug fixes, is a practice that

must be part of the engineering culture of a software development team.

There are tools that can help the team. Continuous integration (CI)

servers monitor version control repository and automatically run test suites

on each new commit, possibly on a wide variety of platforms. They can

notify developers when they’ve caused some tests to fail, give an overview

of the history of a test job, and visualize trend data, such as test coverage.

When you use such a tool, it helps you to discover when tests start to

fail, triage the failure to certain commits or platforms, and render the “it

works on my machine” mantra obsolete, by providing an independent

assessment. The engineers working on the software, however, still require

the discipline to fix the test failures that a CI tool discovers.

40

 3.1 Continuous Integration Servers
There are two kinds of CI servers, based on their deployment model. You

install and run on-premise software on your own infrastructure, while

cloud-based or software as a service (SaaS) software is typically run by the

vendor that creates the CI server.

In enterprise settings, on-premise software tends to be the preferred

solution, because it means the source code that is being tested doesn’t

have to leave the organization’s network.

The most popular open source, on-premise CI server software is

Jenkins,1 a Java-based project under the MIT license, which we will use

later in this chapter. Other examples in this category include Buildbot2

(written in Python) and CruiseControl.3 Popular closed source, on-premise

CI software includes TeamCity4 by JetBrains and Atlassian’s Bamboo.5

In the realm of hosted CI services, Travis CI6 is very popular, owing to

its excellent integration with GitHub. Travis is also open source and can

be self-hosted. AppVeyor7 is frequently used for Windows-based CI. Both

Travis and AppVeyor offer free plans for open source projects.

Most CI software has a central server component that can poll source

code repositories for changes and that can also be triggered by hooks.

If a change in the source code repository is detected, this triggers a job.

The job can either be configured centrally in the server or in the source

code repository. For example, Travis expects a file called .travis.yml,

in the root of the repository that instructs Travis on how to prepare the

environment and which commands to execute, to trigger the build and test.

1 https://jenkins.io/.
2 http://buildbot.net/.
3 http://cruisecontrol.sourceforge.net/.
4 www.jetbrains.com/teamcity/.
5 www.atlassian.com/software/bamboo.
6 https://travis-ci.org/.
7 www.appveyor.com/.

Chapter 3 Continuous integration with Jenkins

https://jenkins.io/
http://buildbot.net/
http://cruisecontrol.sourceforge.net/
https://www.jetbrains.com/teamcity/
https://www.atlassian.com/software/bamboo
https://travis-ci.org/
https://www.appveyor.com/
https://jenkins.io/
http://buildbot.net/
http://cruisecontrol.sourceforge.net/
http://www.jetbrains.com/teamcity/
http://www.atlassian.com/software/bamboo
https://travis-ci.org/
http://www.appveyor.com/

41

Once the CI server knows which tests to execute, and in which

environments, it typically delegates the actual test runs to worker nodes.

The worker nodes then report their results back to the server, which takes

care of sending notifications and making the outputs and results available

for inspection through a web interface.

 3.2 Getting Started with Jenkins
First, you need a working Jenkins installation. The official web site8

contains instructions on how to install and set up Jenkins on all common

operating systems. Following, you can also find quick instructions to get a

Docker-based Jenkins playground running.

 Run Jenkins in Docker
Usually, in a production environment, you’d run the Jenkins server on one

machine and have several build workers on different (virtual) machines.

For the sake of easy setup, we’ll forego this sensible distinction and run

the server and all build jobs within the same Docker container, just to have

fewer docker containers to manage.

To do this, we use the official Docker image from Jenkins but add

the tox Python module (which we will use to create reproducible build

environments), as well as the Python version we want to test under.

This customization is done through a custom Dockerfile, which looks

like this:

FROM jenkins/jenkins:lts

USER root

RUN apt-get update \

 && apt-get install -y python-pip python3.5 \

 && rm -rf /var/lib/apt/lists/*

RUN pip install tox

8 https://jenkins.io/download/.

Chapter 3 Continuous integration with Jenkins

https://jenkins.io/download/
https://jenkins.io/download/

42

To build the custom image, you must have Docker installed, and your

user must have access to the Docker daemon, which on UNIX-based

systems works by adding the user to the docker group and logging in anew.

The build looks like this:

$ docker build -t jenkins-python .

This first downloads the image jenkins/jenkins:lts from

Dockerhub, which might take a few minutes. Then it runs the commands

from the RUN lines of the Dockerfile, which installs pip and then tox. The

resulting image gets the name jenkins-python.

Next, start this custom image by running

$ docker run --rm -p 8080:8080 -p 50000:50000 \

 -v jenkins_home:/var/jenkins_home jenkins-python

The -v ... argument attaches a volume, which makes the Jenkins

server not lose state when the container is killed and restarted.

During startup, the container produces output like this on the console:

Please use the following password to proceed to installation:

b1792b6c4c324f358a2173bd698c35cd

Copy the password, then point your browser to http://127.0.0.1:8080/

and follow the setup instructions (which require the password as the

first step). When it comes to plug-ins, add the Python Plugin to the list of

plug-ins to be installed.

The plug-in installation process can again take a few minutes. After

that, you have a working Jenkins server.

Chapter 3 Continuous integration with Jenkins

43

 Configure a Source Code Repository
Jenkins runs jobs based on source code in a source control repository.

For a proper software development project, you likely already have a

place where you store the code. If not, you can use one of the many cloud

hosting services, such as GitHub,9 GitLab,10 or Atlassian’s Bitbucket.11 You

can also install GitLab, Gitea,12 Gogs,13 or other Git management projects

on your own infrastructure.

In either case, you end up with a Git repository that is reachable

through the network, which is exactly what Jenkins needs. For the

sake of demonstration, I’ve created a public GitHub repository at

https://github.com/python-ci-cd/python-webcount.

In the case of private repositories, you also need either an SSH key pair

or a combination of username and password, to access the repository.

 Creating the First Jenkins Job
We want Jenkins to regularly run the tests of our project. To this end, we

need to create a job, which configures all of the details on where and how

Jenkins gets the source code and runs the tests.

To create a job, click the New Item link in the left column of the Jenkins

starting page. Then, you have to enter a name, for example, the name of

the repository, python-webcount, and a job type, here Multi-configuration

project. Then click OK to proceed.

9 https://github.com/.
10 https://about.gitlab.com/.
11 https://bitbucket.org/.
12 https://gitea.io/en-us/.
13 https://gogs.io/.

Chapter 3 Continuous integration with Jenkins

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://gitea.io/en-us/
https://gogs.io/
https://github.com/python-ci-cd/python-webcount
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://gitea.io/en-us/
https://gogs.io/

44

The next screen offers a plethora of configuration options. The

following are essential to get our sample job running:

• Select Git in the section Source Code Management,

and enter the repository URL (for example, https://

github.com/python-ci-cd/python-webcount.git).

For private repositories, you must also enter valid

credentials below the URL (Figure 3-1).

• In the Build Trigger section, select Poll SCM and enter

the string H/5 * * * * as the schedule, which means

polling every five minutes.

• Under Configuration Matrix, add a User-defined Axis

with name TOXENV and value py35. If you have more

Python versions installed in Jenkins and defined in

the project’s tox.ini file, you can add them here,

separated by spaces (Figure 3-2).

• In the Build section, select Execute Python script and

paste the following short Python script into the script

area (Figure 3-3).

import os, tox

os.chdir(os.getenv("WORKSPACE"))

tox.cmdline()

Chapter 3 Continuous integration with Jenkins

https://github.com/python-ci-cd/python-webcount.git
https://github.com/python-ci-cd/python-webcount.git

45

Figure 3-1. Jenkins configuration: Source Code Management

Chapter 3 Continuous integration with Jenkins

46

Figure 3-2. Jenkins configuration: Build Triggers and Configuration
Matrix

Chapter 3 Continuous integration with Jenkins

47

When you’ve added these pieces of information, you can save the page

and have a first working CI job.

Every five minutes, Jenkins will now check the Git repository for new

commits, and if there are any, it will fetch them, run the tests through tox,

and make the status available in the front end.

When you define more tox environments, Jenkins shows you whether

the test passes or fails per environment and gives you a history for each

environment.

 3.3 Exporting More Test Details to Jenkins
In its current state, Jenkins detects test status purely based on the exit code

of the script that runs, which doesn’t provide good granularity. We can

improve the granularity by instructing tox to write a machine-readable

summary and getting Jenkins to read this data.

To that end, change the commands = pytest line in the tox.ini file in

the project’s Git repository to

commands = pytest --junitxml=junit-{envname}.xml

Figure 3-3. Jenkins configuration: Build configuration

Chapter 3 Continuous integration with Jenkins

48

For the environment py35, pytest then creates a file junit-py35.xml

that describes the test run in more detail.

In Jenkins’s job configuration, click Post-build actions and add one of

type Publish JUnit test result report. In the field Test report XMLs, enter the

pattern **/junit-*.xml. (See Figure 3-4.)

Figure 3-4. Post-build action: Publish JUnit test result report

When the job runs again, Jenkins picks up the status of individual test

functions and even reports runtimes for each function. This allows a much

better diagnostic directly from the Jenkins web interface.

 3.4 Patterns for Working with Jenkins
Now that the basics for testing with Jenkins are in place, it’s time to think

about how you would actually work with it on a day-to-day basis. Most

of that is centered on keeping the tests green, that is, all the tests passing.

Experience shows that if you don’t focus on keeping your jobs green,

developers get used to having failing tests and then slip from just 1% failing

tests to the test runs becoming pure noise, hence losing their value.

Chapter 3 Continuous integration with Jenkins

49

In addition, you should make a review of the tests part of your

development workflow, to ensure that tests accurately reflect the

requirements, even when a new feature changed the requirements.

 Responsibilities
If several developers work on the same code base, it is essential to define

clear responsibilities for passing the test suite. Typically, the one who

breaks the test suite, as measured by going from green to red in Jenkins, is

responsible for fixing it again.

In a team that works like a well-oiled machine, that one rule might be

enough. If that’s not the case, it can make sense to appoint a build master

who takes on the primary responsibility for a green test suite.

This doesn’t mean that the build master has to clean up all the failing

tests. It is more of a managerial role of talking to those who broke the test

suite and making sure they clean up after themselves. If that doesn’t turn

out to be practical, revert the commits that caused trouble and schedule it

for re-inclusion when it passes all tests.

The build master role can also rotate between different developers, if

nobody feels the calling of always doing it.

 Notifications
Notifications can help a development team to keep the tests green, simply

by informing the members about broken tests, thus letting them know that

an action is required. The notification can be by e-mail, to a chat system

that the developers use, or even to a monitor that is physically present in

the developer’s office. Jenkins’s rich ecosystem of plug-ins cover nearly all

notification technologies commonly in use.

If you configure Jenkins to send notifications when test suites break,

also configure it to send notifications when it passes again. Otherwise,

everybody involved will learn to hate notifications from Jenkins giving only

negative feedback, which is not a good position for a successful CI process.

Chapter 3 Continuous integration with Jenkins

50

 Feature Branches and Pull Requests
If your development workflow is based on feature branches and, possibly,

merge requests or pull requests (wherein a second person reviews and

merges the changes), it makes sense to cover those branches in your CI

system as well. The developer who is in charge of merging the branch can

then do so in the knowledge that all tests still pass on the feature branch.

In the case of formal merge requests or pull requests, Git hosting

solutions such as GitHub and GitLab even support a mode in which the

request can only be merged if all tests are passing. In such a scenario, it

makes sense to test not just the feature branch but the result of a merge

between the feature branch and the development branch. This avoids the

situation in which all tests pass both in the development branch and in the

feature branch, but the merge breaks some tests.

Such integrations are available for Jenkins as plug-ins.14

 3.5 Other Metrics in Jenkins
Once a team works smoothly with a CI system, you can use it to gather

other metrics about the software and steer it into a desirable direction. Be

careful to introduce such metrics only in limited experiments and expand

them to larger projects only if you find that they provide tangible value to

the development process. They all come with the cost of maintenance and

of reducing the developer’s autonomy.

14 https://github.com/jenkinsci/gitlab-plugin/wiki/Setup-Example.

Chapter 3 Continuous integration with Jenkins

https://github.com/jenkinsci/gitlab-plugin/wiki/Setup-Example
https://github.com/jenkinsci/gitlab-plugin/wiki/Setup-Example

51

 Code Coverage
Code coverage measures the percentage of statements or expressions in

a piece of source code that is executed during test runs, compared to the

total number of expressions. Code coverage serves as a simple proxy for

how thorough a test suite exercises the code, though it should be taken

with a grain of salt, because combinatoric explosion of path numbers

through a piece of code can lead to undetected bugs, even in tested code.

The pytest-cov15 project gathers such data, and you can even use it to

make your CI jobs fail, if the test coverage falls below a certain threshold.

 Complexity
There are various attempts at measuring the complexity of a code base, for

example, cyclomatic complexity and maintainability index, which a tool

called radon16 can calculate for Python code. While those numbers aren’t

too reliable, observing their trend can give you some insight into the health

of a code base.

 Coding Style
When a project defines a coding style, it can use a tool like pylint17 or

Flake818 to check that the code in the repository actually adheres to the

guidelines and even fail the build if violations are detected. These two tools

come with a set of default rules but can be customized to your own rules.

15 https://pytest-cov.readthedocs.io/en/latest/.
16 https://radon.readthedocs.io/en/latest/intro.html.
17 https://pypi.org/project/pylint/.
18 http://flake8.pycqa.org/en/latest/.

Chapter 3 Continuous integration with Jenkins

https://pytest-cov.readthedocs.io/en/latest/
https://radon.readthedocs.io/en/latest/intro.html
https://pypi.org/project/pylint/
http://flake8.pycqa.org/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://radon.readthedocs.io/en/latest/intro.html
https://pypi.org/project/pylint/
http://flake8.pycqa.org/en/latest/

52

 Architectural Constraint Checking
If a project follows a well-defined architecture, there might be rules for the

code that can be checked programmatically. For example, a closed three-

layer system consisting of user interface (UI), business logic, and storage

back end might have rules such as the following:

• UI may not use the storage back end directly, only

business logic.

• The storage back end may not use the UI directly.

If those layers are handled as modules in Python code, you can write

a small script that analyzes the import statements in all source files and

checks if any of them violate these rules. A static import analyzer such as

snakefood19 can make this easier.

Such a tool should make the CI step fail when a violation is detected.

This allows you to track whether the ideas of an architecture are actually

implemented in the code and prevent the code from slowly weakening the

underlying architecture principles.

 3.6 Summary
Jenkins is a CI server that automatically runs test suites for you, usually

for every new commit in a source repository. This gives you an objective

view of the state of your test suite, possibly on multiple Python versions or

platforms.

Once you have this view, you can have a process whereby the test suite

is always kept passing, and you can derive value from the test suite.

When a mature team works well with a CI process, you can introduce

other metrics, such as code coverage or adherence to architectural rules,

into the CI process.

19 http://furius.ca/snakefood/.

Chapter 3 Continuous integration with Jenkins

http://furius.ca/snakefood/
http://furius.ca/snakefood/

53© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_4

CHAPTER 4

Continuous Delivery
Continuous integration (CI) is a cornerstone of robust, modern software

development, but it is not the pinnacle of the software development

methodology. Rather, it is an enabler for more advanced techniques.

When a CI job shows all tests passing, you can be reasonably certain

that the software works on its own. But does it work well with other

software? How do we get it in front of the end users? This is where

continuous delivery (CD) comes in.

When you practice CD, you automate the deployment process of your

software and repeat it in several environments. You can use some of these

environments for automated tests, such as full-system integration tests,

automated acceptance tests, and even performance and penetration tests.

Of course, this does not preclude manual Q&A, which can still discover a

class of defects that automated tests tend not to catch. Finally, you use the

same automation to deploy the software in your production environment,

where it reaches its end users.

Setting up a CD system certainly sounds like a daunting task, and it can

be. The benefits, however, are numerous, but maybe not all of them are

obvious at once.

The rest of this chapter discusses the benefits of CD and provides

a rough roadmap to implement it. The rest of the book is dedicated to

showing simple approaches to CD and examples that implement it.

54

 4.1 Reasons for CD and Automated
Deployments
Because implementing CD can be a lot of work, it is good to be clear

about the reasons and potential benefits of doing so. You can also use the

arguments made in this section to convince your management to invest in

this approach.

 Time Savings
In medium to large organizations, applications and their infrastructure

are typically developed and operated by separate teams. Each deployment

must be coordinated between these teams. A change request must be filed,

a date must be found that suits both teams, information about the new

version must be propagated (such as what new configuration is available

or required), the development team must make the binaries available

for installation, and so on. All of this can easily consume hours or

days of time for each release, both in the development team and in the

operations team.

Then the actual deployment process also takes its time, often

accompanied by downtimes. And since downtimes are often to be avoided

during business hours, the deployments must occur during the night

or weekend, making the operations team less eager to perform the task.

Precious goodwill is also used up by manual deployments.

Automating deployments can save much time and goodwill. For

example, Etsy1 introduced continuous (and, thus, automated) delivery,

reducing the deployment time costs from 6–14 hours by a “deployment

army” to a 15-minute effort by a single person.2

1 www.etsy.com/.
2 Mike Britain, “Principles and Practices in Continuous Deployment at Etsy,”
SlideShare, www.slideshare.net/mikebrittain/principles-and-practices-
in-continuous-deployment-at-etsy, April 2, 2014.

Chapter 4 Continuous Delivery

https://www.etsy.com/
https://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
https://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
https://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
https://www.etsy.com/
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy

55

 Shorter Release Cycles
It is a truism that tasks that take a lot of effort are done much less

frequently than those that require virtually no effort. The same is true of

risky endeavors: we tend to avoid doing them often.

Companies that do manual releases and deployments often do

releases weekly or even less frequently. Some do monthly or even quarterly

releases. In more conservative industries, even doing releases every 6 or 12

months is not unheard of.

Infrequent releases invariably lead to drawn-out development

processes and slow time-to-market. If software is deployed once

every quarter, the time from specification to deployment can easily be

dominated by the slow release cycle, at least for small features.

This can mean, for example, that an online business with a bad user

experience in the checkout process must wait about three months to

improve the user experience, which can cost real money. Automating the

deployment makes it easier to release more frequently, alleviating this pain.

 Shorter Feedback Cycles
The best way to get feedback for software is to deploy it to the production

environment. There, people will actually use it, and you can then listen

to what they have to say or even continuously measure their engagement

with different parts of the system.

If you are developing tools for internal use in a company, you might

get a few people to try them out in a staging environment, but that’s not

easy. It takes time from their actual work; the staging environment must

be set up with all the necessary data (customer data, inventory, …) even

to be usable; and then all the changes there will be lost eventually. In my

experience, getting users to test in a non-production environment is hard

work and only worth it for major changes.

Chapter 4 Continuous Delivery

56

With manual and, thus, infrequent releases, the feedback cycle is slow,

which goes against the whole idea of an “agile” or “lean” development

process.

 lean software development is a development paradigm
inspired by toyota’s lean manufacturing process, which focuses on
reducing unnecessary work, delivering software fast, learning, and
related principles.

Because human communication is prone to misunderstandings, the

first implementation of a feature seldom fulfills the original expectations.

Feedback cycles are inevitable. Slow release cycles thus lead to slow

development, frustrating both the stakeholders and the developers.

But there are secondary effects too. When improvement cycles take a

long time, many users won’t even bother to request small improvements at

all. This is a real pity, because a good user interface is made of hundreds of

small conveniences and sharp edges that must be rounded. So, in the long

run, slow release cycles lead to worse usability and quality.

 Reliability of Releases
There is a vicious cycle with manual releases. They tend to be infrequent,

which means that many changes go into a single release. This increases

the risk of something going wrong. When a big release causes too much

trouble, managers and engineers look for ways to improve the reliability of

the next release, by adding more verification steps, more process.

But more process means more effort, and more effort leads to even

slower cycles, leading to even more changes per release. You can see where

this is going.

Chapter 4 Continuous Delivery

57

Automating steps of the release process, or even the whole process, is

a way to break this vicious cycle. Computers are much better than humans

at following instructions to the letter, and their concentration doesn’t slip

at the end of a long night of deploying software.

Once the release process has become more reliable and quicker

to execute, it’s easy to push for more frequent releases, each of which

introduces fewer changes. The time saved by automation frees resources to

further improve the automated release process.

With doing more deployments also comes more experience, which

puts you into a good position to improve the process and tools even

further.

 Smaller Increments Make Triaging Easier
When a deployment introduces a bug, and that deployment introduced

only one or two features or bug fixes, it is usually pretty easy to figure out

which change caused the bug (triaging). In contrast, when many changes

are part of the same deployment, it is much harder to triage new bugs,

which means more time wasted, but this also leads to a longer time until

defects can be repaired.

 More Architectural Freedom
Current trends in the software industry are moving away from huge,

monolithic applications toward distributed systems of more and smaller

components. This is what the microservice pattern is all about. Smaller

applications or services tend to be easier to maintain, and scalability

requirements demand that they must each be able to run on different

machines, and often on several machines per service.

Chapter 4 Continuous Delivery

58

But if deploying one application or service is already a pain, deploying

ten or even a hundred smaller applications promises to be a much bigger

pain and makes it downright irresponsible to mix microservices with

manual deployment.

Automatic deployments thus open up the space of possible software

architectures that you can utilize to solve a business problem.

 Advanced Quality Assurance Techniques
Once you have the necessary infrastructure, you can employ amazing

strategies for QA. For example, GitHub uses live, parallel execution of new

and old implementations3 to avoid regressions, both on the result and

performance parameters.

Imagine you develop a travel search engine, and you want to improve

the search algorithm. You could deploy both the old and new version of

the engine at the same time and run the incoming queries (or a fraction of

them) against both and define some metrics by which to evaluate them.

For example, fast travel and low costs make a good flight connection. You

can use this to find cases in which the new engine performs worse than

the old one and use this data to improve it. You can also use this data to

demonstrate the superiority of the new search engine, thus justifying the

efforts spent developing it.

But such experiments are not practical if each new version must be

deployed manually and deploying each version is a major effort. Automatic

deployment does not give you these benefits automatically, but it is a

prerequisite for employing such advanced QA techniques.

3 Vicent Martí, “Move Fast and Fix Things,” GitHub Engineering,
http://githubengineering.com/move-fast/, December 15, 2015.

Chapter 4 Continuous Delivery

http://githubengineering.com/move-fast/

59

 4.2 A Plan for CD
I hope that by now you are convinced that CD is a good idea. When I

arrived at that stage, the prospect of actually implementing it seemed quite

daunting.

The process of CD can be broken down into a few steps, each of them

manageable on its own. Even better, the automation of each step provides

benefits, even if the whole process isn’t automated yet.

Let’s take a look at a typical CD system and the steps involved.

 The Pipeline Architecture
A CD system is structured as a pipeline. A new commit or branch in a

version control system triggers the instantiation of the pipeline and starts

executing the first of a series of stages. When a stage runs successfully, it

triggers the next stage. If it fails, the entire pipeline instance stops.

Then manual intervention is necessary, typically by adding a new

commit that fixes code or tests or by fixing the environment or the pipeline

configuration. A new instance of the pipeline, or a rerun of the failed stage,

can then have a chance to succeed.

Deviations from the strict pipeline model are possible. Branches,

potentially executed in parallel, for example, allow running different

tests in different environments and waiting with the next step until both

are completed successfully. Branching into multiple pipelines, and thus

parallel execution, is called fan out; joining the pipelines into a single

branch is called fan in (Figure 4-1).

Chapter 4 Continuous Delivery

60

The typical stages are building, running the unit tests, deployment

to a first test environment, running integration tests there, potentially

deployment to and tests in various test environments, and, finally,

deployment to production (Figure 4-2).

Sometimes, these stages blur a bit. For example, a typical build of

Debian packages also runs the unit tests, which alleviates the need for a

separate unit-testing stage. Likewise, if the deployment to an environment

runs smoke tests for each host it deploys to, there is no need for a separate

smoke test stage (Figure 4-3).

fan out fan in

Figure 4-1. Fan out branches pipelines; fan in joins them

build unit tests
deployment
to test env

deployment
to production

integration
tests

acceptance
tests

Figure 4-2. Typical recommended stages for a deployment pipeline

build and
unit tests

upload to
testing repo

deployment to
testing, smoke tests

deployment to
production, smoke tests

acceptance
tests

Figure 4-3. In an actual pipeline, it can be convenient to combine
multiple recommended stages into one and possibly have extra stages
that the theory glosses over

Chapter 4 Continuous Delivery

61

Typically, there is a piece of software that controls the flow of the

whole pipeline. It prepares the necessary files for a stage, runs the code

associated with the stage, collects its output and artifacts (that is, files that

the stage produces and that are worth keeping, such as binaries or test

output), determines whether the stage was successful, and then proceeds

to the next stage.

From an architectural standpoint, this relieves the stages from having

to know what stage comes next and even how to reach the machine

on which it runs. It decouples the stages and maintains separation of

concerns.

 Anti-Pattern: Separate Builds per Environment
If you use a branch model such as GitFlow4 for your source code, it is

tempting to automatically deploy the develop branch to the testing

environment. When the time comes for a release, you merge the

development branch into the master branch (possibly through the

indirection of separate release branches), and then you automatically

build the master branch and deploy the result to the production

environment.

It is tempting, because it is a straightforward extension of an existing,

proven workflow. Don’t do it.

The big problem with this approach is that you don’t actually test

what’s going to be deployed, and on the flip side, you deploy something

untested to production. Even if you have a staging environment before

deploying to production, you are invalidating all the testing you did, if

you don’t actually ship the binary or package that you tested in previous

environments.

4 Vincent Driessen, “A Successful Git Branching Model,” nvie.com, http://nvie.
com/posts/a-successful-git-branching-model/, January 5, 2010.

Chapter 4 Continuous Delivery

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

62

If you build “testing” and “release” packages from different sources

(such as different branches), the resulting binaries will differ. Even if you

use the exact same source, building twice is still a bad idea, because many

builds aren’t reproducible. Nondeterministic compiler behavior and

differences in environments and dependencies all can lead to packages

that worked fine in one build and failed in another. It is best to avoid such

potential differences and errors by deploying to production exactly the

same build that you tested in the testing environments.

Differences in behavior between the environments, where they are

desirable, should be implemented by configuration that is not part of the

build. It should also be self-evident that the configuration must be under

version control and deployed automatically. There are tools that specialize

in deploying configuration, such as Puppet, Chef, and Ansible, and later

chapters discuss how to integrate them into the deployment process.

 Everything Hinges on the Packaging Format
Building a deployable artifact is an early stage in a CD pipeline: build,

repository management, installation, and operation all depend on the

choice of package format. Python software is usually packaged as a source

tarball, in a format determined by the setuptools package, and sometimes

as a binary wheel package, specified by the Python Enhancement Proposal

(PEP) 427.5

Neither source tarballs nor wheels are particularly suitable for

deploying a running application. They lack hooks during installation

time for creating necessary system resources (such as user accounts),

for starting or restarting applications, and other operating system–

specific tasks. They also don’t have support for managing non-Python

dependencies, such as a database’s client libraries written in C.

5 Python Software Foundation, “PEP 427—The Wheel Binary Package Format 1.0,”
www.python.org/dev/peps/pep-0427/, 2018.

Chapter 4 Continuous Delivery

https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
http://www.python.org/dev/peps/pep-0427/

63

Python packages are installed by the pip package manager, which

defaults to a system-wide, global installation, which sometimes interacts

poorly with Python packages installed by the operating system’s

package manager. Workarounds exist, for example, in the form of virtual

environment, but managing these requires extra care and effort.

Finally, in the case of separate development and operating

responsibilities, the operating team usually is much more familiar with

native operating system packages. Nonetheless, source tarballs serve a

very useful role as the starting point for creating packages in formats that

are more suitable for direct deployment.

In this book, we deploy to Debian GNU/Linux machines, and so we

build Debian packages, using a two-step process. First, we create a source

tarball using a setup.py file powered by setuptools. Then the tool dh-

virtualenv creates a Debian package that contains a virtualenv, into

which the software and all of its Python dependencies are installed.

 Technology for Managing Debian Repositories
Deploying Debian (and most other) packages works by uploading them

into a repository. Target machines are then configured with the URL of

this repository. From the perspective of the target machines, this is a

pull-based model, which allows them to fetch dependencies that aren’t

installed yet. These repositories consist of a certain directory layout, in

which files of predefined names and formats contain metadata and link to

the actual package files.

These files and directories can be exposed by transport mechanisms,

such as local file access (and possibly mounted through a networked file

system), HTTP, and FTP. HTTP is good choice, because it is simple to set

up, easy to debug, and isn’t usually a performance bottleneck, because it’s

a standard system component.

Chapter 4 Continuous Delivery

64

Various software exists to manage Debian repositories, much of

which is poorly documented or barely maintained. Some solutions, such

as debarchiver, or dak, offer remote upload through SSH but don’t give

immediate feedback as to whether the upload was successful. Debarchiver

also processes uploaded files in batches, triggered by a cron job, which

leads to a delay that makes automation much less fun.

I settled on Aptly,6 which is a command-line toolset for managing

repositories. When you add a new package to the repository, Aptly gives

immediate feedback in the form of an exit code. It does not provide a

convenient way to upload the files onto the server in which the repositories

lie, but that is something that the pipeline manager can do.

Finally, Aptly can keep multiple versions of the same package in a

repository, which makes it much easier to do a rollback to a previous

version.

 Tooling for Installing Packages
Once you have built a Debian package, uploaded it into a repository, and

have the target machine configured to use this repository, interactive

package installation looks like this:

$ apt-get update && apt-get install $package

There are some subtleties to be aware of in automated installations.

You must switch off all forms of interactivity, possibly control the verbosity

of the output, configure whether downgrades are acceptable, and so on.

6 www.aptly.info/.

Chapter 4 Continuous Delivery

https://www.aptly.info/
http://www.aptly.info/

65

Instead of trying to figure out all these details, it is a good idea to

reuse an existing tool whose authors have already done the hard work.

Configuration-management tools such as Ansible,7 Chef,8 Puppet,9 Salt,10

and Rex11 have modules for installing packages, so they can be a good

choice.

Not all configuration management systems are suitable for automating

deployments, however. Puppet is usually used in a pull-based model, in

which each Puppet-managed machine periodically contacts a server and

asks for its target configuration. That is great for scalability but makes

integration into a workflow a major pain. Push-based models, in which the

manager contacts the managed machine—for example, through SSH—

and then executes a command, are much better suited for deployment

tasks (and typically offer a simpler and more pleasant development and

debugging experience).

For this book, I’ve chosen Ansible. This is mostly because I like its

declarative syntax, its simple model, and that a bit of googling has found

good solutions to all practical problems so far.

 Controlling the Pipeline
Even if you think of a deployment pipeline in terms of building, testing,

distributing, and installing software, much of the work done is actually

“glue,” that is, small tasks that make the whole thing run smoothly. These

include polling the version control system, preparing the directories for the

7 https://ansible.com.
8 www.chef.io/.
9 https://puppet.com/.
10 www.saltstack.com/.
11 www.rexify.org/.

Chapter 4 Continuous Delivery

https://ansible.com/
https://www.chef.io/
https://puppet.com/
https://www.saltstack.com/
https://www.rexify.org/
https://ansible.com
http://www.chef.io/
https://puppet.com/
http://www.saltstack.com/
http://www.rexify.org/

66

build jobs, collecting the built packages (or aborting the current pipeline

instance on failure), and distributing the work to the machines that are

most appropriate for the task.

Of course, there are tools for these tasks as well. General CI and build

servers such as Jenkins typically can do the job. But there are also tools

specialized in CD pipelines, such as Go continuous delivery (GoCD)12 and

Concourse.13

While Jenkins is a great CI tool, its job-centric worldview makes it less

optimal for the pipeline model of CD. Here, we will explore GoCD, which is

open source software by ThoughtWorks, Inc. It is written primarily in Java

and is available for most operating systems. Conveniently for the Debian-

based development environment, it offers pre-built Debian packages.

In the examples in the upcoming chapters, we’ll package a build that

also runs the unit tests. In a production setting, you’d likely include a post-

build action in the Jenkins pipeline that uses the GoCD API to trigger the

CD steps, if all the tests in Jenkins have passed.

 4.3 Summary
CD enables deployment of software in small increments. This reduces time

to market, shortens feedback cycles, and makes it easier to triage newly

introduced bugs.

The steps involved in CD include unit testing, package building,

package distribution, installation, and testing of the installed packages. It is

controlled by a pipeline system, for which we will use GoCD.

12 www.gocd.org/.
13 https://concourse-ci.org/.

Chapter 4 Continuous Delivery

https://www.gocd.org/
https://concourse-ci.org/
http://www.gocd.org/
https://concourse-ci.org/

67© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_5

CHAPTER 5

Building Packages
We will first explore the basics of creating Python source tarballs and then

the creation of Debian packages from those tarballs.

 5.1 Creating a Python Source Tarball
To create a Python source tarball, you have to write a setup.py script that

uses distutils or setuptools. Then python setup.py sdist creates the

tarball in the right format.

distutils is part of the Python standard library but lacks some

commonly used features. setuptools adds these features by extending

distutils. Which of these tools you use is mostly a matter of taste and

context.

Here is a pretty minimal setup.py file using setuptools for the

webcount example from Chapter 2.

from setuptools import setup

setup(

 name = "webcount",

 version = "0.1",

 packages=['webcount', 'test'],

 install_requires=['requests'],

)

68

This imports the setup function from setuptools and calls it with

metadata about the package—name, version, the list of Python packages to

include, and a list of dependencies.

The setuptools documentation1 lists other arguments you can pass to

the setup function. The ones used most often include

• Author: Used for the maintainer’s names. author_

email is for a contact’s e-mail address.

• url: This should be a link to the project’s web site.

• package_data: Used for adding non-Python files to the

tarball.

• description: This is for a one-paragraph description of

the package’s purpose.

• python_requires: Used to specify what Python

versions your package supports.

• scripts: This can hold a list of Python files that are

installed as runnable scripts, not just Python packages.

When the setup.py file is in place, you can run python setup.py

sdist, and it creates a tarball in the dist directory. The file is named like

the name in setup.py, followed by a dash, the version number, and then the

suffix .tar.gz. In our example, it’s dist/webcount-0.1.tar.gz.

 5.2 Debian Packaging with dh-virtualenv
The official Debian repositories come with more than 40,000 software

packages and include software written in all common programming

languages. To support this scale and diversity, tooling has been developed

1 https://setuptools.readthedocs.io/en/latest/setuptools.html#basic-use.

Chapter 5 Building paCkages

https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html#basic-use

69

to make it easy to get started with packaging but also supports many hooks

for customization.

This tooling, which mostly lives in the devscripts package, reads files

from the debian directory for metadata and build instructions.

While a complete description of the debhelper tooling would be a big

enough topic for a separate book, I want to provide enough information

here to get you started.

 Getting Started with Packaging
The dh-make package provides a tool for creating a skeleton debian

directory, with some metadata already filled in and sample files to base

your own versions on. The rest of the tooling then utilizes the files inside

the debian packages, to build a binary archive from your source code.

If you are following this example in your own development

environment, ensure that the dh-make package is installed before

continuing.

The starting point for a Debian developer is typically a tar archive with

source code that another project released, which the Debian community

calls upstream. With the sample project from the previous chapter, we are

our own upstream and use a Git repository instead of a tarball, so we must

instruct dh_make to build its own “original” tarball, as follows:

$ dh_make --packageclass=s –yes --createorig \

 -p python-webcount_0.1

Maintainer Name : Moritz Lenz

Email-Address : moritz@unknown

Date : Tue, 04 Sep 2018 15:04:35 +0200

Package Name : python-webcount

Version : 0.1

License : blank

Package Type : single

Chapter 5 Building paCkages

70

Currently there is not top level Makefile. This may require

additional tuning Done. Please edit the files in the debian/

subdirectory now.

 5.3 The control File
debian/control has metadata about the source package and potentially

multiple binary packages built from this source package. For the python-

webcount project, after a few small edits, it looks like Listing 5-1.

Listing 5-1. File debian/control: Metadata for the Debian Package

Source: python-webcount

Section: unknown

Priority: optional

Maintainer: Moritz Lenz <moritz@unknown>

Build-Depends: debhelper (>= 10), dh-virtualenv

Standards-Version: 4.1.2

Package: python-webcount

Architecture: any

Depends: python3

Description: Count occurrences of words in a web page

This declares the build dependency dh-virtualenv, which you need to

install, in order to build the Debian package.

 Directing the Build Process
The Debian maintainers use the command dpkg-buildpackage or debuild

to build the Debian package. Among other things, these tools invoke the

debian/rules script with the current action as the argument. The action

can be such things as configure, build, test, or install.

Chapter 5 Building paCkages

71

Typically, debian/rules is a makefile, with a catchall target % that

invokes dh, the debhelper. The minimal debian/rules script looks like

this:

#!/usr/bin/make -f

%:

 dh $@

We must extend this to invoke dh-virtualenv and to tell

dh- virtualenv to use Python 3 as the basis for its installation.

%:

 dh $@ --with python-virtualenv

override_dh_virtualenv:

 dh_virtualenv --python=/usr/bin/python3

Being a makefile, the indentation here must be actual tabulator

characters, not a series of spaces.

 Declaring Python Dependencies
dh-virtualenv expects a file called requirements.txt, which lists the

Python dependencies, each one on a separate line (Listing 5-2).

Listing 5-2. File requirements.txt

flask

pytest

gunicorn

These lines will be passed to pip on the command line, so specifying

version numbers works just as in pip, for example, pytest==3.8.0. You can

use a line like

--index-url=https://...

Chapter 5 Building paCkages

72

to specify a URL to your own pypi mirror, which dh-virtualenv then uses

to fetch the packages.

 Building the Package
Once these files are in place, you can trigger the build using this command:

$ dpkg-buildpackage -b -us -uc

The -b option instructs dpkg-buildpackage to only build the binary

package (which is the deployable unit we want), and -us and -uc skip the

signing process that Debian developers use to upload their packages to the

Debian mirrors.

The command must be invoked in the root directory of the project (so,

the directory that contains the debian directory), and when successful, it

puts the generated .deb file into the parent directory of the root directory.

 Creating the python-matheval Package
Packaging matheval as the Debian package python-matheval works

similarly to webcount. The main difference is that matheval is a service that

should be running all the time.

We use systemd,2 the init system used by Debian, Ubuntu, and many

other Linux distributions, to control the service process. This is done by

writing a unit file, stored as debian/python-matheval.service.

[Unit]

Description=Evaluates mathematical expressions

Requires=network.target

After=network.target

[Service]

2 Wikipedia, “systemd,” https://en.wikipedia.org/wiki/Systemd, 2018.

Chapter 5 Building paCkages

https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd

73

Type=simple

SyslogIdentifier=python-matheval

User=nobody

ExecStart=/usr/share/python-custom/python-matheval/bin/\

gunicorn --bind 0.0.0.0:8800 matheval.frontend:app

PrivateTmp=yes

InaccessibleDirectories=/home

ReadOnlyDirectories=/bin /sbin /usr /lib /etc

[Install]

WantedBy=multi-user.target

Managing systemd unit files is a standard task for Debian packages, and

so a helper tool exists that does it for us: dh-systemd. We must have it installed

and declare it as a build dependency in the control file (Listing 5-3).

Listing 5-3. debian/control File for the python-matheval Package

Source: python-matheval

Section: main

Priority: optional

Maintainer: Moritz Lenz <moritz.lenz@gmail.com>

Build-Depends: debhelper (>=9), dh-virtualenv,

 dh-systemd, python-setuptools

Standards-Version: 3.9.6

Package: python-matheval

Architecture: any

Depends: python3 (>= 3.4)

Description: Web service that evaluates math expressions.

Chapter 5 Building paCkages

74

The debian/rules file similarly requires a --with systemd argument.

#!/usr/bin/make -f

export DH_VIRTUALENV_INSTALL_ROOT=/usr/share/python-custom

%:

 dh $@ --with python-virtualenv --with systemd

override_dh_virtualenv:

 dh_virtualenv --python=/usr/bin/python3 --setuptools- test

Together, the familiar dpkg-buildpackage invocation creates a Debian

package that, on installation, automatically starts the web service and

restarts it when a new version of the package is installed.

 Tradeoffs of dh-virtualenv
The dh-virtualenv tool makes it pretty easy to create Debian packages

with all Python dependencies packaged into them. This is very convenient

for the developer, because it means he/she can start using Python

packages without having to create separate Debian packages from them.

It also means that you can depend on several different versions of

Python packages in multiple applications installed on the same machine—

something you cannot easily do if you use the system-wide Python

packages.

On the other hand, this “fat packaging” means that if one of the Python

packages contains a security flaw, or an otherwise critical bug, you must

rebuild and deploy all Debian packages that contain a copy of the flawed code.

Finally, dh-virtualenv packages are tied to the Python version that

was used on the build server. So, if a package is built for Python 3.5, for

example, it won’t work with Python 3.6. If you are transitioning from one

Python version to the next, you have to build packages for both in parallel.

Chapter 5 Building paCkages

75

 5.4 Summary
We build packages in two steps: first, a Python source tarball based

on Python setuptools, then a binary Debian package through dh-

virtualenv. Both steps use a few files, mostly based on declarative syntax.

The end result is a mostly self-contained Debian package that just needs a

matching Python version installed on the target machine.

Chapter 5 Building paCkages

77© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_6

CHAPTER 6

Distributing Debian
Packages
Once a Debian package is built, it must be distributed to the servers it is

to be installed on. Debian, as well as basically all other operating systems,

uses a pull model for that. The package and its metadata are stored on a

server that the client can communicate with and request the metadata and

the package.

The sum of metadata and packages is called a repository. In order to

distribute packages to the servers that need them, we must set up and

maintain such a repository.

 6.1 Signatures
In Debian land, packages are cryptographically signed, to ensure they

aren’t tampered with on the repository server or during transmission.

Thus, the first step is to create a key pair that is used to sign this particular

repository. (If you already have a PGP key for signing packages, you can

skip this step.)

The following assumes that you are working with a pristine system

user that does not have a GnuPG key ring yet and will be used to maintain

the Debian repository. It also assumes that you have the gnupg package

installed in version 2 or later versions.

78

First, create a file called key-control-file-gpg2, with the following

contents:

%no-protection

Key-Type: RSA

Key-Length: 1024

Subkey-Type: RSA

Name-Real: Aptly Signing Key

Name-Email: nobody@example.com

Expire-Date: 0

%commit

%echo done

Substitute nobody@example.com with your own e-mail address or an

e-mail address for the project you are working for, then run the following

command:

$ gpg --gen-key --batch key-control-file-gpg2

The output of this command contains a line like the following:

gpg: key D163C61A6C25A6B7 marked as ultimately trusted

The string of hex digits D163C... is the key ID, and this differs for every

run. Use it to export the public key, which we’ll need later on.

$ gpg --export --armor D163C61A6C25A6B7 > pubkey.asc

 6.2 Preparing the Repository
I use Aptly1 for creating and managing the repository. It is a command-line

application with no server component.

1 www.aptly.info/.

Chapter 6 Distributing Debian paCkages

https://www.aptly.info/
http://www.aptly.info/

79

To initialize a repository, I first have to come up with a name. Here, I

call it myrepo.

$ aptly repo create -distribution=stretch \

 -architectures=amd64,i386,all -component=main myrepo

Local repo [myrepo] successfully added.

You can run 'aptly repo add myrepo ...' to add packages

to repository.

$ aptly publish repo -architectures=amd64,i386,all myrepo

Warning: publishing from empty source, architectures list

should be complete, it can't be changed after publishing

(use -architectures flag)

Loading packages...

Generating metadata files and linking package files...

Finalizing metadata files...

Signing file 'Release' with gpg, please enter your

passphrase when prompted:

Clearsigning file 'Release' with gpg, please enter your

passphrase when prompted:

Local repo myrepo has been successfully published.

Please set up your webserver to serve directory

'/home/aptly/.aptly/public' with autoindexing.

Now you can add following line to apt sources:

 deb http://your-server/ stretch main

Don't forget to add your GPG key to apt with apt-key.

You can also use `aptly serve` to publish your repositories

over HTTP quickly.

Chapter 6 Distributing Debian paCkages

80

Now that the repository has been created, you can add a package by

running

$ aptly repo add myrepo python_webcount_0.1-1_all.deb

$ aptly publish update myrepo

This updates the files in .aptly/public to be a valid Debian repository

that includes the newly added package.

 6.3 Automating Repository Creation
and Package Addition
For use inside the deployment pipeline, it is handy to have the repositories,

and the addition of packages to these repositories, created with a single

command. It also makes sense to have separate repositories for the

different environments. Hence, we need a repository each for the testing,

staging, and production environments. A second dimension is the

distribution for which a package is built.

Here is a small program (Listing 6-1) that, given an environment,

a distribution, and a list of file names of Debian packages, creates the

repository in the path $HOME/aptly/$environment/$distribution, adds

the packages, and then updates the public files of the repositories:

Listing 6-1. add-package, a Tool for Creating and Populating

Debian Repositories

#!/usr/bin/env python3

import json

import os

import os.path

import subprocess

import sys

Chapter 6 Distributing Debian paCkages

81

assert len(sys.argv) >= 4, \

 'Usage: add-package <env> <distribution> <.deb-file>+'

env, distribution = sys.argv[1:3]

packages = sys.argv[3:]

base_path = os.path.expanduser('~') + '/aptly'

repo_path = '/'.join((base_path, env, distribution))

config_file = '{}/{}-{}.conf'.format(base_path, env,

 distribution)

def run_aptly(*args):

 aptly_cmd = ['aptly', '-config=' + config_file]

 subprocess.call(aptly_cmd + list(args))

def init_config():

 os.makedirs(base_path, exist_ok=True)

 contents = {

 'rootDir': repo_path,

 'architectures': ['amd64', 'all'],

 }

 with open(config_file, 'w') as conf:

 json.dump(contents, conf)

def init_repo():

 if os.path.exists(repo_path + '/db'):

 return

 os.makedirs(repo_path, exist_ok=True)

 run_aptly('repo', 'create',

 '-distribution=' + distribution, 'myrepo')

 run_aptly('publish', 'repo', 'myrepo')

Chapter 6 Distributing Debian paCkages

82

def add_packages():

 for pkg in packages:

 run_aptly('repo', 'add', 'myrepo', pkg)

 run_aptly('publish', 'update', distribution)

if __name__ == '__main__':

 init_config();

 init_repo();

 add_packages();

It can be used as

$./add-package testing stretch python-matheval_0.1-1_all.deb

to add the python-matheval_0.1-1_all.deb file to the Stretch repository

for environment testing, and it automatically creates that repository, if it

does not yet exist.

 6.4 Serving the Repositories
As is, the repositories are only available on one machine. The easiest way

to make them available to more machines is to serve the public directory

as static files through HTTP.

If you use Apache as the web server, the virtual host configuration to

serve these files could look like Listing 6-2.

Listing 6-2. Apache 2 Configuration for Serving Debian

Repositories

ServerName apt.example.com

ServerAdmin moritz@example.com

DocumentRoot /home/aptly/aptly/

Alias /debian/testing/stretch/ \

Chapter 6 Distributing Debian paCkages

83

 /home/aptly/aptly/testing/stretch/public/

Alias /debian/production/stretch/ \

 /home/aptly/aptly/production/stretch/public/

more repositories go here

Options +Indexes +FollowSymLinks

Require all granted

LogLevel notice

CustomLog /var/log/apache2/apt/access.log combined

ErrorLog /var/log/apache2/apt/error.log

ServerSignature On

After creating the logging directory (mkdir -p /var/log/apache2/

apt/), enabling the virtual host (a2ensite apt.conf), and restarting

Apache, the Debian repository is ready.

If, instead, you prefer lighttpd,2 you could use a configuration snippet

such as that in Listing 6-3.

Listing 6-3. lighttpd Configuration for Serving Debian Repositories

dir-listing.encoding = "utf-8"

server.dir-listing = "enable"

alias.url = (

 "/debian/testing/stretch/" =>

 "/home/aptly/aptly/testing/stretch/public/",

 "/debian/production/stretch/" =>

 "/home/aptly/aptly/production/stretch/public/",

 # more repositories go here

)

2 www.lighttpd.net/.

Chapter 6 Distributing Debian paCkages

http://www.lighttpd.net/
http://www.lighttpd.net/

84

 Configuring a Machine to Use the Repository
When a machine uses one of the new repositories, it first has to trust the

cryptographic key with which the repositories are signed.

Copy the PGP public key (pubkey.asc) to the machine that will use the

repository and import it.

$ apt-key add pubkey.asc

Then add the actual package source.

$ echo "deb http://apt.example.com/ stretch main" \

 > /etc/apt/source.list.d/myrepo.list

After an apt-get update, the contents of the repository are available,

and an apt-cache policy python-matheval shows the repository as a

possible source for this package.

$ apt-cache policy python-webcount

python-webcount:

 Installed: (none)

 Candidate: 0.1-1

 Version table:

*** 0.1-1 0

 990 http://apt.example.com/ stretch/main amd64 Packages

 100 /var/lib/dpkg/status

This concludes the whirlwind tour through Debian repository

management and, thus, package distribution.

Chapter 6 Distributing Debian paCkages

85

 6.5 Summary
Debian package installers such as apt-get and aptitude from the APT

software suite read metadata and download packages from repositories.

Software such as Aptly manages these repositories.

Cryptographic signatures authenticate packages and catch man-in-

the-middle attacks and transport errors that modify software packages.

You must to create a GPG key and supply it to Aptly and configure the

target machines to trust this key.

Chapter 6 Distributing Debian paCkages

87© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_7

CHAPTER 7

Package Deployment
In the previous chapters, you have seen how Debian packages are built,

inserted into a repository, and how this repository can be configured as

a package source on a target machine. With these preparations in mind,

interactively installing the actual package becomes easy.

To install the python-matheval sample project, run

$ apt-get update

$ apt-get install python-matheval

on the target machine.

If several machines are required to provide a service, it can be

beneficial to coordinate the update, for example, only updating one or

two hosts at a time or doing a small integration test on each after moving

on to the next. A nice tool for doing that is Ansible,1 an open source IT

automation and configuration management system.

 7.1 Ansible: A Primer
Ansible is a very pragmatic and powerful configuration management

system that is easy to get started with. If you already know your way around

Ansible (or choose to use a different configuration management and

deployment system), you can safely skip this section.

1 www.ansible.com/.

http://www.ansible.com/
http://www.ansible.com/

88

 Connections and Inventory
Ansible is typically used to connect to one or more remote machines via

Secure Shell (SSH) and bring them into a desired state. The connection

method is pluggable. Other methods include local, which simply invokes

the commands on the local machine instead, and docker, which connects

through the Docker daemon to configure a running container. Ansible calls

these remote machines hosts.

To tell Ansible where and how to connect, you write an inventory or

hosts file. In the inventory file, you can define hosts and groups of hosts,

and also set variables that control how to connect to them (Listing 7-1).

Listing 7-1. File myinventory: an Ansible Hosts File

example inventory file

[all:vars]

variables set here apply to all hosts

ansible_ssh_user=root

[web]

a group of webservers

www01.example.com

www02.example.com

[app]

a group of 5 application servers,

all following the same naming scheme:

app[01:05].example.com

[frontend:children]

a group that combines the two previous groups

app

web

Chapter 7 paCkage Deployment

89

[database]

here we override ansible_ssh_user for just one host

db01.example.com ansible_ssh_user=postgres

See the introduction to inventory files2 for more information.

To test the connection, you can use the ping module on the

command line.

$ ansible -i myinventory web -m ping

www01.example.com | success >> {

 "changed": false,

 "ping": "pong"

}

www02.example.com | success >> {

 "changed": false,

 "ping": "pong"

}

Let’s break the command line down into its components. -i

myinventory tells Ansible to use the myinventory file as inventory. web

tells Ansible which hosts to work on. It can be a group, as in this example,

a single host, or several such things, separated by a colon. For example,

www01.example.com:database would select one of the web servers and all

the database servers.

Finally, -m ping tells Ansible which module to execute. ping is

probably the simplest module. It just sends the response "pong" without

conducting any changes on the remote machine, and it is mostly used for

debugging the inventory file and credentials.

2 http://docs.ansible.com/ansible/intro_inventory.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html

90

These commands run in parallel on the different hosts, so the order

in which the responses are printed can vary. If a problem occurs when

connecting to a host, add the option -vvvv to the command line, to get

more output, including any error messages from SSH.

Ansible implicitly gives you the group all, which—you guessed it—

contains all the hosts configured in the inventory file.

 Modules
Whenever you want to do something on a host through Ansible, you invoke

a module to do it. Modules usually take arguments that specify exactly

what should happen. On the command line, you can add those arguments

with ansible -m module –a 'arguments'. For example:

$ ansible -i myinventory database -m shell -a 'echo "hi there"'

db01.example.com | success | rc=0 >>

hi there

Ansible comes with a wealth of built-in modules and an ecosystem of

third-party modules as well. Most modules are idempotent, which means

that repeated execution with the same arguments conducts no changes

after the first run. For example, instead of instructing Ansible to create a

directory, you instruct it to ensure the directory exists. Running such an

instruction the first time creates the directory, and running it the second

time does nothing, while still reporting success.

Here, I want to present just a few commonly used modules.

 The shell Module
The shell module3 executes a shell command on the host and accepts

some options, such as chdir, to change into another working directory,

before running the command.

3 http://docs.ansible.com/ansible/shell_module.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/shell_module.html
http://docs.ansible.com/ansible/shell_module.html

91

$ ansible -i myinventory database -m shell -e 'pwd chdir=/tmp'

db01.example.com | success | rc=0 >>

/tmp

This is fairly generic, but it is also an option of last resort. If there is

a more specific module for the task at hand, you should prefer the more

specific module. For example, you could ensure that system users exist

using the shell module, but the more specialized user module4 is much

easier to use for that and likely does a better job than an improvised

shell script.

 The copy Module
With copy,5 you can copy files verbatim from the local to the remote

machine.

$ ansible -i myinventory database -m copy \

 -a 'src=README.md dest=/etc/motd mode=644 db01.example.com'

| success >> {

 "changed": true,

 "dest": "/etc/motd",

 "gid": 0,

 "group": "root",

 "md5sum": "d41d8cd98f00b204e9800998ecf8427e",

 "mode": "0644",

 "owner": "root",

 "size": 0,

 "state": "file",

 "uid": 0

}

4 http://docs.ansible.com/ansible/user_module.html.
5 http://docs.ansible.com/ansible/copy_module.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/user_module.html
http://docs.ansible.com/ansible/copy_module.html
http://docs.ansible.com/ansible/user_module.html
http://docs.ansible.com/ansible/copy_module.html

92

 The template Module
template6 mostly works like copy, but it interprets the source file as a Jinja2

template,7 before transferring it to the remote host. This is commonly used

to create configuration files and incorporate information from variables

(more on that later).

Templates cannot be used directly from the command line but, rather,

in playbooks, so here is an example of a simple playbook.

file motd.j2

This machine is managed by {{team}}.

file template-example.yml

- hosts: all

 vars:

 team: Slackers

 tasks:

 - template: src=motd.j2 dest=/etc/motd mode=0644

More on playbooks later, but what you can see is that this defines a

variable team, sets it to the value Slackers, and the template interpolates

this variable.

Running the playbook with

$ ansible-playbook -i myinventory \

 --limit database template-example.yml

creates a file /etc/motd on the database server with the contents

This machine is managed by Slackers.

6 http://docs.ansible.com/ansible/template_module.html.
7 http://jinja.pocoo.org/docs/dev/.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/template_module.html
http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/
http://docs.ansible.com/ansible/template_module.html
http://jinja.pocoo.org/docs/dev/

93

 The file Module
The file module8 manages attributes of file names, such as permissions,

but also allows you to create directories and soft and hard links.

$ ansible -i myinventory database -m file \

 -a 'path=/etc/apt/sources.list.d

 state=directory mode=0755'

db01.example.com | success >> {

 "changed": false,

 "gid": 0,

 "group": "root",

 "mode": "0755",

 "owner": "root",

 "path": "/etc/apt/sources.list.d",

 "size": 4096,

 "state": "directory",

 "uid": 0

}

 The apt Module
On Debian and derived distributions, such as Ubuntu, installing and

removing packages is generally done with package managers from the apt

family, such as apt-get, aptitude, and, in newer versions, the apt binary

directly.

The apt module9 manages this from within Ansible.

$ ansible -i myinventory database -m apt \

 -a 'name=screen state=present update_cache=yes'

8 http://docs.ansible.com/ansible/file_module.html.
9 http://docs.ansible.com/ansible/apt_module.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/file_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/file_module.html
http://docs.ansible.com/ansible/apt_module.html

94

db01.example.com | success >> {

 "changed": false

}

Here, the screen package was already installed, so the module didn’t

change the state of the system.

Separate modules are available for managing apt-keys10 with

which repositories are cryptographically verified and for managing the

repositories themselves.11

 The yum and zypper Modules
For RPM-based Linux distributions, the yum12 and zypper modules13

(at the time of writing, in preview state) are available. They manage

package installation via the package managers of the same name.

 The package Module
The package module14 uses whatever package manager it detects. It is,

thus, more generic than the apt and yum modules but supports far fewer

features. For example, in the case of apt, it does not provide any control

over whether to run apt-get update before doing anything else.

10 http://docs.ansible.com/ansible/apt_key_module.html.
11 http://docs.ansible.com/ansible/apt_repository_module.html.
12 http://docs.ansible.com/ansible/yum_module.html.
13 http://docs.ansible.com/ansible/zypper_module.html.
14 http://docs.ansible.com/ansible/package_module.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/apt_key_module.html
http://docs.ansible.com/ansible/apt_repository_module.html
http://docs.ansible.com/ansible/apt_repository_module.html
http://docs.ansible.com/ansible/yum_module.html
http://docs.ansible.com/ansible/zypper_module.html
http://docs.ansible.com/ansible/package_module.html
http://docs.ansible.com/ansible/apt_key_module.html
http://docs.ansible.com/ansible/apt_repository_module.html
http://docs.ansible.com/ansible/yum_module.html
http://docs.ansible.com/ansible/zypper_module.html
http://docs.ansible.com/ansible/package_module.html

95

 Application-Specific Modules
The modules presented so far are fairly close to the system, but there

are also modules for achieving common application-specific tasks.

Examples include dealing with databases,15 network-related things

such as proxies,16 version control systems,17 clustering solutions such as

Kubernetes,18 and so on.

 Playbooks
Playbooks can contain multiple calls to modules in a defined order and

limit their execution to individual hosts or group of hosts. They are written

in the YAML file format19, a data serialization file format that is optimized

for human readability.

Here is a sample playbook (Listing 7-2) that installs the newest version

of the go-agent Debian package, the worker for Go Continuous Delivery

(GoCD).20

Listing 7-2. An Ansible Playbook for Installing a GoCD Agent on a

Debian-Based System

 - hosts: go-agent

 vars:

 go_server: go-server.example.com

 tasks:

15 http://docs.ansible.com/ansible/list_of_database_modules.html.
16 http://docs.ansible.com/ansible/list_of_network_modules.html.
17 http://docs.ansible.com/ansible/list_of_source_control_modules.html.
18 http://docs.ansible.com/ansible/kubernetes_module.html.
19 http://yaml.org/.
20 www.gocd.org/.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/list_of_database_modules.html
http://docs.ansible.com/ansible/list_of_database_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_source_control_modules.html
http://docs.ansible.com/ansible/kubernetes_module.html
http://docs.ansible.com/ansible/kubernetes_module.html
http://yaml.org/
https://www.gocd.org/
http://docs.ansible.com/ansible/list_of_database_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_source_control_modules.html
http://docs.ansible.com/ansible/kubernetes_module.html
http://yaml.org/
http://www.gocd.org/

96

 - apt: package=apt-transport-https state=present

 - apt_key:

 url: https://download.gocd.org/GOCD-GPG-KEY.asc

 state: present

 validate_certs: no

 - apt_repository:

 repo: 'deb https://download.gocd.org /'

 state: present

 - apt: update_cache=yes package={{item}} state=present

 with_items:

 - go-agent

 - git

 - build-essential

 - lineinfile:

 dest: /etc/default/go-agent

 regexp: ^GO_SERVER=

 line: GO_SERVER={{ go_server }}

 - copy:

 src: files/guid.txt

 dest: /var/lib/go-agent/config/guid.txt

 user: go

 group: go

 - service: name=go-agent enabled=yes state=started

The top-level element in this file is a one-element list. The single

element starts with hosts: go-agent, which limits execution to hosts

in the group go-agent. This is the relevant part of the inventory file that

goes with it:

[go-agent]

go-worker01.p6c.org

go-worker02.p6c.org

Chapter 7 paCkage Deployment

97

Then it sets the variable go_server to a string, here the hostname

where a GoCD server runs.

Finally comes the meat of the playbook: the list of tasks to execute.

Each task is a call to a module, some of which have already been discussed.

Following is a quick overview.

• First, apt installs the Debian package apt-transport-

https, to make sure that the system can fetch metadata

and files from Debian repositories through HTTPS.

• The next two tasks use the apt_repository21 and apt_

key22 modules to configure the repository from which

the actual go-agent package will be installed.

• Another call to apt installs the desired package.

Also, some more packages are installed with a loop

construct.23

• The lineinfile module24 searches by regex (regular

expression) for a line in a text file and replaces the line

it finds with predefined content. Here, we use that to

configure the GoCD server that the agent connects to.

• Finally, the service25 module starts the agent, if it’s

not yet running (state=started), and ensures that it is

automatically started on reboot (enabled=yes).

Playbooks are invoked with the ansible-playbook command, for

example, ansible-playbook -i inventory go-agent.yml.

21 http://docs.ansible.com/ansible/apt_repository_module.html.
22 http://docs.ansible.com/ansible/apt_key_module.html.
23 http://docs.ansible.com/ansible/playbooks_loops.html.
24 http://docs.ansible.com/ansible/lineinfile_module.html.
25 http://docs.ansible.com/ansible/service_module.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/apt_repository_module.html
http://docs.ansible.com/ansible/apt_key_module.html
http://docs.ansible.com/ansible/apt_key_module.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/service_module.html
http://docs.ansible.com/ansible/apt_repository_module.html
http://docs.ansible.com/ansible/apt_key_module.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/service_module.html

98

There can be more than one list of tasks in a playbook, which is a

common use case when they affect different groups of hosts.

- hosts: go-agent:go-server

 tasks:

 - apt: package=apt-transport-https state=present

 - apt_key:

 url: https://download.gocd.org/GOCD-GPG-KEY.asc

 state: present

 validate_certs: no

 - apt_repository:

 repo: 'deb https://download.gocd.org /'

 state: present

- hosts: go-agent

 tasks:

 - apt: update_cache=yes package={{item}} state=present

 with_items:

 - go-agent

 - git

 - build-essential

 - ...

- hosts: go-server

 tasks:

 - apt: update_cache=yes package={{item}} state=present

 - apt: update_cache=yes package=go-server state=present

 - ...

Chapter 7 paCkage Deployment

99

 Variables
Variables are useful both for controlling flow inside a playbook and for filling

out spots in templates to generate configuration files. There are several ways

to set variables. One way is to set them directly in playbooks, via vars: ...,

as seen previously. Another is to specify them at the command line.

ansible-playbook --extra-vars=variable=value theplaybook.yml

A third, very flexible way is to use the group_vars feature. For each

group that a host is in, Ansible looks for a file group_vars/thegroup.

yml and for files matching group_vars/thegroup/*.yml. A host can be in

several groups at once, which gives you extra flexibility.

For example, you can put each host into two groups, one for the role

the host is playing (such as web server, database server, DNS server, etc.),

and one for the environment it is in (test, staging, prod). Here is a small

example that uses this layout.

environments

[prod]

www[01:02].example.com

db01.example.com

[test]

db01.test.example.com

www01.test.example.com

functional roles

[web]

www[01:02].example.com

www01.test.example.com

[db]

db01.example.com

db01.test.example.com

Chapter 7 paCkage Deployment

100

To configure only the test hosts, you can run

ansible-playbook --limit test theplaybook.yml

and put environment-specific variables in group_vars/test.yml and

group_vars/prod.yml and web server–specific variables in group_vars/

web.yml, etc.

You can use nested data structures in your variables, and if you do, you

can configure Ansible to merge those data structures for you, if they are

specified in several sources. You can configure this by creating a file called

ansible.cfg, with this content:

[defaults]

hash_behavior=merge

That way, you can have a file group_vars/all.yml that sets the default

values

file group_vars/all.yml

myapp:

 domain: example.com

 db:

 host: db.example.com

 username: myappuser

 instance. myapp

and then override individual elements of that nested data structure, for

example, in group_vars/test.yml, as follows:

file group_vars/test.yml

myapp:

 domain: test.example.com

 db:

 hostname: db.test.example.com

Chapter 7 paCkage Deployment

101

The keys that the test group vars file didn’t touch, for example, myapp.

db.username, are inherited from the file all.yml.

 Roles
Roles are a way to encapsulate parts of a playbook into a reusable

component. Let’s consider a real-world example that leads to a simple role

definition.

For deploying software, you typically want to deploy the exact version

just built, so the relevant part of the playbook is

- apt:

 name: thepackage={{package_version}}

 state: present

 update_cache: yes

 force: yes

But this requires you to supply the package_version variable

whenever you run the playbook. This will not be practical when you’re not

running a deployment of a freshly built software, but instead you configure

a new machine and have to install several software packages, each with its

own playbook.

Hence, we generalize the code to deal with a case in which the version

number is absent.

- apt:

 name: thepackage={{package_version}}

 state: present

 update_cache: yes

 force: yes

 when: package_version is defined

- apt: name=thepackage state=present update_cache=yes

 when: package_version is undefined

Chapter 7 paCkage Deployment

102

If you include several such playbooks in one and run them on the same

host, you’ll likely notice that it spends most of its time running apt-get

update for each included playbook.

Updating the apt cache is necessary the first time, because you might

have just uploaded a new package on your local Debian mirror prior to the

deployment, but subsequent runs are unnecessary. So, you can store the

information that a host has already updated for its cache in a fact,26 which

is a kind of per-host variable in Ansible.

- apt: update_cache=yes

 when: apt_cache_updated is undefined

- set_fact:

 apt_cache_updated: true

As you can see, the code base for sensibly installing a package has

grown a bit, and it’s time to factor it out into a role.

Roles are collections of YAML files with predefined names. The

commands

$ mkdir roles

$ cd roles

$ ansible-galaxy init custom_package_installation

create an empty skeleton for a role named custom_package_

installation. The tasks that previously went into all the playbooks

now go into the file tasks/main.yml, below the role’s main directory

(Listing 7-3).

26 https://docs.ansible.com/ansible/set_fact_module.html.

Chapter 7 paCkage Deployment

https://docs.ansible.com/ansible/set_fact_module.html
https://docs.ansible.com/ansible/set_fact_module.html

103

Listing 7-3. File roles/custom_package_installation/tasks/

main.yml

- apt: update_cache=yes

 when: apt_cache_updated is undefined

- set_fact:

 apt_cache_updated: true

- apt:

 name: {{package}={{package_version}}

 state: present

 update_cache: yes

 force: yes

 when: package_version is defined

- apt: name={{package} state=present update_cache=yes

 when: package_version is undefined

To use the role, include it in a playbook like this:

- hosts: web

 pre_tasks:

 - # tasks that are executed before the role(s)

 roles:

 role: custom_package_installation

 package: python-matheval

 tasks:

 - # tasks that are executed after the role(s)

pre_tasks and tasks are optional. A playbook consisting only of roles

being included is just fine.

Chapter 7 paCkage Deployment

104

Ansible has many more features, such as handlers, that allow you

to restart services only once after any changes, dynamic inventories for

more flexible server landscapes, Vault for encrypting variables,27 and a

rich ecosystem of existing roles for managing common applications and

middleware.

For more about Ansible, I highly recommend the excellent book Up

and Running, 2nd ed., by Lorin Hochstein (O’Reilly Media, 2017).

 7.2 Deploying with Ansible
Armed with knowledge of Ansible from the previous section, deployment

becomes a simple task. We start with separate inventory files for the

environments (Listing 7-4).

Listing 7-4. Ansible Inventory File production

[web]

www01.yourorg.com

www02.yourorg.com

[database]

db01.yourorg.com

[all:vars]

ansible_ssh_user=root

Perhaps the testing environment requires only a single web server

(Listing 7-5).

27 http://docs.ansible.com/ansible/playbooks_vault.html.

Chapter 7 paCkage Deployment

http://docs.ansible.com/ansible/playbooks_vault.html
https://www.amazon.com/dp/1491979801/
http://docs.ansible.com/ansible/playbooks_vault.html

105

Listing 7-5. Ansible Inventory File testing

[web]

www01.testing.yourorg.com

[database]

db01.stagingyourorg.com

[all:vars]

ansible_ssh_user=root

Installing the package python-matheval on the web servers in the

testing environment is now a one-liner.

$ ansible -i testing web -m apt -a 'name=python-matheval

update_cache=yes state=latest'

Once you start deploying with Ansible, it’s likely you’ll want to do other

configuration management tasks with it as well, so it makes sense to write

a playbook for each package you want to deploy. Here is one (Listing 7-6)

using the package installation role from the “Roles” section earlier in this

chapter.

Listing 7-6. File deploy-python-matheval.yml: Deployment

Playbook for Package python-matheval

- hosts: web

 roles:

 role: custom_package_installation

 package: python-matheval

You can then invoke it as

$ ansible-playbook -i testing deploy-python-matheval.yml

Chapter 7 paCkage Deployment

106

 7.3 Summary
Ansible can install packages for you, but it can also do much more. It can

configure both the operating system and application and even orchestrate

processes across several machines.

By writing an inventory file, you tell Ansible which machines it

controls. Playbooks specify what to do, using modules to achieve

individual tasks, such as creating users or installing software.

Chapter 7 paCkage Deployment

107© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_8

CHAPTER 8

A Virtual Playground
for Automating
Deployments
In the following chapters, we will explore the tool Go continuous delivery

(GoCD) and how to package, distribute, and deploy software with it. If you

want to follow along and experiment with the things described in these

chapters, you will require some machines on which you can do that.

If you don’t have the luxury of a public or private cloud in which you

can run virtual machines (VMs) and try out the examples, you can use

the tools introduced in this chapter to create a playground of VMs on

your laptop or workstation. Even if you do have access to a cloud solution,

you might want to use some of the scripts presented here, to set up and

configure these machines.

 8.1 Requirements and Resource Usage
The things we want to do in a virtual playground are

• Build Debian packages.

• Upload them to a local Debian repository.

• Install the packages on one or more servers.

108

• Run some lean and simple web services.

• Run deployment and configuration scripts with

Ansible.

• Control everything via a GoCD server and agent.

Except for the last task, all of these tasks require very few resources.

The GoCD server requires the most resources, with 1GB of RAM minimally

and 2GB recommended. The Go server is also the one system that keeps

persistent state (such as configuration and pipeline history) that you

typically don’t want to lose.

So, the easiest approach, and the one I’m taking here, is to install the

Go server on the host machine, which is the laptop or workstation that I

typically work with.

Then there is one VM for running the Go agent, on which the Debian

packages will be built. Two more VMs serve as the target machines on

which the freshly built packages will be installed and tested. One of them

serves as a testing environment, the second as a production environment.

For those three VMs, the defaults of a half GB of RAM that the tooling

provides is quite sufficient. If you use this playground and don’t have

enough RAM on the host machine, you can try to halve the RAM usage of

those VMs. For the target machines, even 200MB might be enough to

get started.

 8.2 Introducing Vagrant
Vagrant is an abstraction layer over classical virtualization solutions,

such as KVM and VirtualBox. It offers base images (called boxes) for your

VM, manages the VMs for you, and offers a unified API for the initial

configuration. It also creates a virtual private network that allows the host

machines to talk to the VMs and vice versa.

Chapter 8 a Virtual playground for automating deployments

109

To install Vagrant, you can download the installer from

www.vagrantup.com/downloads.html, or if you use an operating system

with a package manager, such as Debian or RedHat, you can install

it through the package manager. On Debian and Ubuntu, you would

install it with apt-get install vagrant (though avoid the 2.0 series

and install 2.1 or newer versions from Vagrant’s web site, if only 2.0 is

available through the package manger).

You should also install virtualbox in the same way, which acts as a

back end for Vagrant. After you have installed Vagrant, run the following

command:

$ vagrant plugin install vagrant-vbguest

This installs a Vagrant plug-in that automatically installs guest tools

inside Vagrant boxes, which improves configurability and reliability.

To use Vagrant, you write a small Ruby script called Vagrantfile,

which instantiates one or more boxes as VMs. You can configure port

forwarding, private or bridged networks, and share directories between the

host and guest VMs.

The vagrant command-line tool allows you to create and provision the

VMs with the vagrant up command, connect to a VM with vagrant ssh,

obtain a status summary with vagrant status, and stop and delete the

VMs again with vagrant destroy. Calling vagrant without any arguments

gives you a summary of the options available.

 you might wonder why we use Vagrant Vms instead of docker
containers. the reason is that docker is optimized to run a single
process or process group. But for our use case, we have to run at
least three processes: the goCd agent and the application that we
actually want to run there; aptly, to manage a debian repository; and
an http server, to allow remote access to the repository.

Chapter 8 a Virtual playground for automating deployments

http://www.vagrantup.com/downloads.html

110

 Network and Vagrant Setup
We’ll use Vagrant with a virtual private IP network with addresses from

172.28.128.1 to 172.28.128.254. When you assign one or more addresses

of this range to a VM, Vagrant automatically assigns the host machine the

address 172.28.128.1.

I’ve added these lines to my /etc/hosts file. This isn’t strictly

necessary, but it makes it easier to talk to the VMs.

Vagrant

172.28.128.1 go-server.local

172.28.128.3 testing.local

172.28.128.4 production.local

172.28.128.5 go-agent.local

I’ve also added a few lines to my ∼/.ssh/config file.

Host 172.28.128.* *.local

 User root

 StrictHostKeyChecking no

 IdentityFile /dev/null

 LogLevel ERROR

 Do not do this for production machines. this is only safe
on a virtual network on a single machine, with which you can be sure
that no attacker is present, unless they have already compromised
your machine.

Creating and destroying VMs is common in Vagrant land, and each

time you create them anew, they will have new host keys. Without such a

configuration, you’d spend a lot of time updating SSH key fingerprints.

Chapter 8 a Virtual playground for automating deployments

111

 the Vagrantfile and ansible playbook introduced here can
be found in the deployment-utils repository on github in the
playground folder. to follow along, you can use it like this:

$ git clone https://github.com/python-ci-cd/
deployment-utils.git

$ cd deployment-utils/playground

$ vagrant up

$ ansible-playbook setup.yml

Listing 8-1 shows the Vagrantfile that creates the boxes for the virtual

playground.

Listing 8-1. Vagrantfile for the Playground

Vagrant.configure(2) do |config|

 config.vm.box = "debian/stretch"

 {

 'testing' => "172.28.128.3",

 'production' => "172.28.128.4",

 'go-agent' => "172.28.128.5",

 }.each do |name, ip|

 config.vm.define name do |instance|

 instance.vm.network "private_network", ip: ip,

 auto_config: false

 instance.vm.hostname = name + '.local'

 end

 end

 config.vm.provision "shell" do |s|

Chapter 8 a Virtual playground for automating deployments

112

 ssh_pub_key = File.readlines("#{Dir.home}/.ssh/id_rsa.pub")

 .first.strip

 s.inline = <<-SHELL

 mkdir -p /root/.ssh

 echo #{ssh_pub_key} >> /root/.ssh/authorized_keys

 SHELL

 end

end

This Vagrantfile assumes that you have an SSH key pair, and the

public key is inside the .ssh/id_rsa.pub path below your home directory,

which is the default location for RSA SSH keys on Linux. It uses Vagrant’s

shell provisioner to add the public key to the authorized_keys file of

the root user inside the VMs, so that you can log in via SSH on the guest

machines. (Vagrant offers a vagrant ssh command for connecting without

this extra step, but I find it easier to use the system ssh command directly,

mostly because it is not tied to the presence of the Vagrantfile inside the

current working directory.)

In the directory with the Vagrantfile you can then run

$ vagrant up

to spin up and provision the three VMs. It takes a few minutes when you do

it the first time, because Vagrant has to download the base box first.

If everything went fine, you can check that the three VMs are running,

by calling vagrant status, as follows:

$ vagrant status

Current machine states:

testing running (virtualbox)

production running (virtualbox)

go-agent running (virtualbox)

Chapter 8 a Virtual playground for automating deployments

113

This environment represents multiple VMs. The VMs are all

listed above with their current state. For more information

about a specific VM, run `vagrant status NAME`.

And (on Debian-based Linux systems) you should be able to see the

newly created, private network.

$ ip route | grep vboxnet

172.28.128.0/24 dev vboxnet1 proto kernel scope link

 src 172.28.128.1

Now you can log in to the VMs with ssh root@go-agent.local and

with testing.local and production.local as host names.

 8.3 Configuring the Machines
For configuring the VMs, we start with a small ansible.cfg file (Listing 8-2).

Listing 8-2. ansible.cfg: A Configuration File for the Playground

[defaults]

host_key_checking = False

inventory = hosts

pipelining=True

 disabling host key checking should only be done in trusted
virtual networks for development systems and never in a production
setting.

The VMs and their IPs are listed in the inventory file (Listing 8-3).

Chapter 8 a Virtual playground for automating deployments

114

Listing 8-3. hosts Inventory File for the Playground

[all:vars]

ansible_ssh_user=root

[go-agent]

agent.local ansible_ssh_host=172.28.128.5

[aptly]

go-agent.local

[target]

testing.local ansible_ssh_host=172.28.128.3

production.local ansible_ssh_host=172.28.128.4

[testing]

testing.local

[production]

production.local

Then comes the playbook (Listing 8-4), which does all the

configuration necessary to run a GoCD agent, an Aptly repository, and SSH

access from the go-agent VM to the target VMs.

Listing 8-4. File setup.yml: An Ansible Playbook for Configuring

the Three VMs

 - hosts: go-agent

 vars:

 go_server: 172.28.128.1

 tasks:

 - group: name=go system=yes

 - name: Make sure the go user has an SSH key

Chapter 8 a Virtual playground for automating deployments

115

 user: >

 name=go system=yes group=go generate_ssh_key=yes

 home=/var/go

 - name: Fetch the ssh public key, so we can distribute it.

 fetch:

 src: /var/go/.ssh/id_rsa.pub

 dest: go-rsa.pub

 fail_on_missing: yes

 flat: yes

 - apt: >

 package=apt-transport-https state=present

 update_cache=yes

 - apt_key:

 url: https://download.gocd.org/GOCD-GPG-KEY.asc

 state: present

 validate_certs: no

 - apt_repository:

 repo: 'deb https://download.gocd.org /'

 state: present

 - apt: package={{item}} state=present force=yes

 with_items:

 - openjdk-8-jre-headless

 - go-agent

 - git

 - file:

 path: /var/lib/go-agent/config

 state: directory

 owner: go

 group: go

 - copy:

 src: files/guid.txt

Chapter 8 a Virtual playground for automating deployments

116

 dest: /var/lib/go-agent/config/guid.txt

 owner: go

 group: go

 - name: Go agent configuration for versions 16.8 and above

 lineinfile:

 dest: /etc/default/go-agent

 regexp: ^GO_SERVER_URL=

 line: GO_SERVER_URL=https://{{ go_server }}:8154/go

 - service: name=go-agent enabled=yes state=started

- hosts: aptly

 tasks:

 - apt: package={{item}} state=present

 with_items:

 - ansible

 - aptly

 - build-essential

 - curl

 - devscripts

 - dh-systemd

 - dh-virtualenv

 - gnupg2

 - libjson-perl

 - python-setuptools

 - lighttpd

 - rng-tools

 - copy:

 src: files/key-control-file-gpg2

 dest: /var/go/key-control-file

 - command: killall rngd

 ignore_errors: yes

 changed_when: False

Chapter 8 a Virtual playground for automating deployments

117

 - command: rngd -r /dev/urandom

 changed_when: False

 - command: gpg --gen-key --batch /var/go/key-control-file

 args:

 creates: /var/go/.gnupg/pubring.gpg

 become_user: go

 become: true

 changed_when: False

 - shell: gpg --export --armor > /var/go/pubring.asc

 args:

 creates: /var/go/pubring.asc

 become_user: go

 become: true

 - fetch:

 src: /var/go/pubring.asc

 dest: deb-key.asc

 fail_on_missing: yes

 flat: yes

 - name: Bootstrap aptly repos on the `target` machines

 copy:

 src: ../add-package

 dest: /usr/local/bin/add-package

 mode: 0755

 - name: Download an example package to fill the repo with

 get_url:

 url: https://perlgeek.de/static/dummy.deb

 dest: /tmp/dummy.deb

 - command: >

 /usr/local/bin/add-package {{item}}

 stretch /tmp/dummy.deb

 with_items:

Chapter 8 a Virtual playground for automating deployments

118

 - testing

 - production

 become_user: go

 become: true

 - user: name=www-data groups=go

 - name: Configure lighttpd to serve the aptly directories

 copy:

 src: files/lighttpd.conf

 dest: /etc/lighttpd/conf-enabled/30-aptly.conf

 - service: name=lighttpd state=restarted enabled=yes

- hosts: target

 tasks:

 - authorized_key:

 user: root

 key: "{{ lookup('file', 'go-rsa.pub') }}"

 - apt_key:

 data: "{{ lookup('file', 'deb-key.asc') }}"

 state: present

- hosts: production

 tasks:

 - apt_repository:

 repo: >

 deb http://172.28.128.5/debian/production/stretch

 stretch main

 state: present

- hosts: testing

 tasks:

 - apt_repository:

 repo:

 deb http://172.28.128.5/debian/testing/stretch

Chapter 8 a Virtual playground for automating deployments

119

 stretch main

 state: present

- hosts: go-agent

 tasks:

 - name: 'Checking SSH connectivity to {{item}}'

 become: True

 become_user: go

 command: >

 ssh -o StrictHostkeyChecking=No

 root@"{{ hostvars[item]['ansible_ssh_host'] }}" true

 changed_when: false

 with_items:

 - testing.local

 - production.local

This does a lot of stuff. It

• Installs and configures the GoCD agent

• It copies a file with a fixed UID to the configuration

directory of the Go agent, so that when you tear

down the machine and create it anew, the Go

server will identify it as the same agent as before.

• Gives the go user on the go-agent machine SSH access

on the target hosts by

• First making sure the Go user has an SSH key

• Copying the public SSH key to the host machine

• Later distributing it to the target machines using

the authorized_key module

Chapter 8 a Virtual playground for automating deployments

120

• Creates a GPG key pair for the go user

• Because GPG key creation uses lots of entropy for

random numbers, and VMs typically don’t have

that much entropy, it first installs rng-tools and

uses that to convince the system to use lower-

quality randomness. Again, this is something you

should never do in a production setting.

• Copies the public key of said GPG key pair to the host

machine and distributes it to the target machines using

the apt_key module

• Creates some Aptly-based Debian repositories on the

go-agent machine by

• Copying the add-package script from the same

repository to the go-agent machine

• Running it with a dummy package to actually create

the repositories

• Installing and configuring lighttpd to serve these

packages over HTTP

• Configuring the target machines to use these

repositories as a package source

• Checks that the Go user on the go-agent machine can

indeed reach the other VMs via SSH

After running the playbook with ansible-playbook setup.yml, you

have a GoCD agent waiting to connect to a server. Installing a GoCD server

is covered in the next chapter. After installing the GoCD server, you have

to activate the agent in the web configuration and assign the appropriate

resources (debian-stretch, build, and aptly, if you follow the examples

from this book).

Chapter 8 a Virtual playground for automating deployments

121

 8.4 Summary
Vagrant helps you to set up a virtual playground for CD by managing VMs

and a private network. We have seen an Ansible playbook that configures

these machines to provide all the infrastructure you need to run a GoCD

server on the host machine.

Chapter 8 a Virtual playground for automating deployments

123© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_9

CHAPTER 9

Building in the
Pipeline with Go
Continuous Delivery
The previous chapters have demonstrated the automation of the

essential steps from source code to deployment: build, distribution, and

deployment. What’s missing now is the glue that holds them all together:

polling the source code repositories, getting packages from the build server

to the repository server and generally controlling the flow, aborting the

pipeline instance when one step has failed, and so on.

We will use Go Continuous Delivery1 (GoCD or Go) by ThoughtWorks

as glue.

 9.1 About Go Continuous Delivery
GoCD is an open source project written in Java, with components of its

web interface in Ruby on Rails. It started out as proprietary software in

2010 and was open sourced in 2014.

1 www.gocd.org/.

https://www.gocd.org/
http://www.gocd.org/

124

You can download GoCD for Windows, OSX, Debian and RPM-based

Linux distributions, and Solaris. Commercial support for GoCD is available

from ThoughtWorks.

It consists of a server component that holds the pipeline configuration,

polls source code repositories for changes, schedules and distributes work,

collects artifacts, presents a web interface to visualize and control it all,

and offers a mechanism for manual approval of steps.

One or more agents connect to the server and carry out the actual jobs

in the build pipeline.

 Pipeline Organization
Every build, deployment, or test job that GoCD executes must be part of

a pipeline. A pipeline consists of one or more linearly arranged stages.

Within a stage, one or more jobs run potentially in parallel and are

individually distributed to agents. Tasks are serially executed within a job.

In a task, you can rely on files that previous tasks in the same job

produced, whereas between jobs and stages, you have to explicitly capture

and later retrieve them as artifacts. More on that follows.

The most general task is the execution of an external program. Other

tasks include the retrieval of artifacts or language-specific things such as

running Ant or Rake builds.2

Pipelines can trigger other pipelines, allowing you to form an acyclic,

directed graph of pipelines (Figure 9-1).

2 The <ant> and <rake> tasks execute the specialized builders of the same name
and allow you to specify targets and build files. See https://docs.gocd.org/
current/configuration/configuration_reference.html#ant for more
information.

Chapter 9 Building in the pipeline with go Continuous delivery

https://docs.gocd.org/current/configuration/configuration_reference.html#ant
https://docs.gocd.org/current/configuration/configuration_reference.html#ant

125

 Matching of Jobs to Agents
When an agent is idle, it polls the server for work. If the server has jobs to

run, it uses two criteria to decide if the agent is fit for carrying out the job:

environments and resources.

Each job is part of a pipeline, and if you choose to use environments,

a pipeline is part of an environment. On the other hand, each agent is

configured to be part of one or more environments. An agent only accepts

jobs from pipelines from one of its environments.

Resources are user-defined labels that describe what an agent has to

offer, and inside a pipeline configuration, you can specify what resources

a job requires. For example, if you define that a job requires the phantomjs

resource to test a web application, only agents that you assign this resource

to will execute that job. It is a good idea to add the operating system and

version as resources. In the preceding example, the agent might have

the phantomjs, debian, and debian-stretch resources, offering the

author of the job some choice of granularity for specifying the required

operating system.

Pipeline
Stages

Jobs

Tasks

Passed

Failed

In progress

Not yet run

Figure 9-1. GoCD pipelines can form a graph. Pipelines consist of
sequential stages in which several jobs can run in parallel. Tasks are
serially executed inside a job.

Chapter 9 Building in the pipeline with go Continuous delivery

126

 A Word on Environments
GoCD makes it possible to run agents in specific environments. As an

example, one can run a Go agent on each testing and on each production

machine and match pipelines to agent environments, to ensure that an

installation step occurs on the right machine in the right environment. If

you go with this model, you can also use GoCD to copy the build artifacts

to the machines for which they are needed.

I chose not to do this, because I didn’t want to have to install a GoCD

agent on each machine that I want to deploy to. Instead, I use Ansible,

executed on a GoCD agent, to control all machines in an environment.

This requires managing the SSH keys that Ansible uses and distributing

packages through a Debian repository. But because Debian requires a

repository anyway, to be able to resolve dependencies, this is not much of

an extra burden.

 Materials
A material in GoCD serves two purposes: it triggers a pipeline, and it

provides files that the tasks in the pipeline can work with.

I tend to use Git repositories as materials, and GoCD can poll these

repositories, triggering the pipeline when a new version becomes

available. The GoCD agent also clones the repositories into the file system

in which the agent executes its jobs.

There are material plug-ins for various source control systems, such as

Subversion (svn) and mercurial, and plug-ins for treating Debian and RPM

package repositories as materials.

Finally, a pipeline can serve as a material for other pipelines. Using this

feature, you can build graphs of pipelines.

Chapter 9 Building in the pipeline with go Continuous delivery

127

 Artifacts
GoCD can collect artifacts, which are files or directories generated by a

job. Later parts of the same pipeline, or even of other, connected pipelines,

can retrieve those artifacts. Retrieval of artifacts is not limited to artifacts

created on the same agent machine.

You can also retrieve artifacts from the web interface and from a REST

API that the GoCD server provides.3

The artifact repository can be configured to discard older versions

when disk space becomes scarce.

 9.2 Installation
In order to use GoCD, you have to install the GoCD server on one machine

and a GoCD agent on at least one machine. This can be on the same

machine as the server or on a different one, as long as it can connect to the

GoCD server with ports 8153 and 8154.

When your infrastructure and the number of pipelines grow, it is likely

that you will be running several Go agents.

 Installing the GoCD Server on Debian
To install the GoCD server on a Debian-based operating system, first you

have to make sure you can download Debian packages via HTTPS.

$ apt-get install -y apt-transport-https

3 https://api.gocd.org/current/.

Chapter 9 Building in the pipeline with go Continuous delivery

https://api.gocd.org/current/
https://api.gocd.org/current/
https://api.gocd.org/current/
https://api.gocd.org/current/

128

Then you have to configure the package sources.

$ echo 'deb https://download.gocd.org /' \

 > /etc/apt/sources.list.d/gocd.list

$ curl https://download.gocd.org/GOCD-GPG-KEY.asc \

 | apt-key add -

And finally install it.

$ apt-get update && apt-get install -y go-server

On Debian 9, codename Stretch, Java 8 is available out of the box.

In older versions of Debian, you might have to install Java 8 from other

sources, such as Debian Backports.4

When you now point your browser at port 8154 of the Go server for

HTTPS (ignore the SSL security warnings), or port 8153 for HTTP, you

should see the GoCD server’s web interface (Figure 9-2).

4 https://backports.debian.org/.

Figure 9-2. GoCD’s initial web interface

Chapter 9 Building in the pipeline with go Continuous delivery

https://backports.debian.org/
https://backports.debian.org/

129

If you get a connection refused error, check the files under /var/log/

go-server/ for hints of what went wrong.

To prevent unauthenticated access, you can install authentication

plug-ins, for example, password file-based authentication5 or LDAP or

Active Directory–based authentication.6

 Installing a GoCD Agent on Debian
On one or more machines on which you want to execute the automated

build and deployment steps, you must install a Go agent, which will

connect to the server and poll it for work.

See Chapter 8 for an example of automatic installation of a GoCD

agent. If you want to do it manually instead, you must perform the same

first three steps as when installing the GoCD server, to ensure that you can

install packages from the GoCD package repository. Then, of course, you

install the Go agent. On a Debian-based system, this is the following:

$ apt-get install -y apt-transport-https

$ echo 'deb https://download.gocd.org /' >

 /etc/apt/sources.list.d/gocd.list

$ curl https://download.gocd.org/GOCD-GPG-KEY.asc \

 | apt-key add -

$ apt-get update && apt-get install -y go-agent

Then edit the file /etd/default/go-agent. The first line should read

GO_SERVER_URL=https://127.0.0.1:8154/go

5 https://github.com/gocd/gocd-filebased-authentication-plugin.
6 https://github.com/gocd/gocd-ldap-authentication-plugin.

Chapter 9 Building in the pipeline with go Continuous delivery

https://github.com/gocd/gocd-filebased-authentication-plugin
https://github.com/gocd/gocd-ldap-authentication-plugin
https://github.com/gocd/gocd-filebased-authentication-plugin
https://github.com/gocd/gocd-ldap-authentication-plugin

130

Change the variable to point to your GoCD server machine, then start

the agent.

$ service go-agent start

After a few seconds, the agent will have contacted the server. When you

click the Agents menu in the GoCD server’s web interface, you should see

the agent (Figure 9-3).

 First Contact with GoCD’s XML Configuration
There are two ways to configure your GoCD server: through the web

interface and through a configuration file in XML. You can also edit the

XML config through the web interface.7

While the web interface is a good way to explore GoCD’s capabilities,

it quickly becomes annoying to use, due to too much clicking. Using an

editor with good XML support gets things done much faster, and it lends

itself better to compact explanation, so that’s the route I’m taking here. You

can also use both approaches on the same GoCD server instance.

7 Starting from GoCD version 16.7, pipeline configurations can be swapped out to
external version control repositories and, through plug-ins, can even be written
in different formats, such as YAML. While this seems like a very promising
approach, introducing it is outside the scope of this book.

Figure 9-3. Screenshot of GoCD’s agent management interface. (lara
is the host name of the agent here.)

Chapter 9 Building in the pipeline with go Continuous delivery

131

In the Admin menu, the Config XML item lets you see and edit the

server config. Listing 9-1 is what a pristine XML configuration looks like,

with one agent already registered.

Listing 9-1. Baseline GoCD XML Configuration, with One Agent

Registered

<?xml version="1.0" encoding="utf-8"?>

<cruise

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="cruise-config.xsd"

 schemaVersion="77">

<server artifactsdir="artifacts"

 commandRepositoryLocation="default"

 serverId="b2ce4653-b333-4b74-8ee6-8670be479df9">

</server>

<agents>

 <agent hostname="lara" ipaddress="192.168.2.43"

 uuid="19e70088-927f-49cc-980f-2b1002048e09" />

</agents>

</cruise>

The serverId and the data of the agent will differ in your installation,

even if you followed the same steps.

To give the agent some resources, you can change the <agent .../>

tag in the <agents> section to read as shown in Listing 9-2.

Listing 9-2. GoCD XML Configuration for an Agent with Resources

<agent hostname="lara" ipaddress="192.168.2.43"

 uuid="19e70088-927f-49cc-980f-2b1002048e09">

 <resources>

 <resource>debian-stretch</resource>

Chapter 9 Building in the pipeline with go Continuous delivery

132

 <resource>build</resource>

 <resource>aptly</resource>

 </resources>

</agent>

 Creating an SSH Key
It is convenient for GoCD to have an SSH key without a password, to be

able to clone Git repositories via SSH, for example. To create one, run the

following commands on the server:

$ su - go

$ ssh-keygen -t rsa -b 2048 -N " -f ~/.ssh/id_rsa

Either copy the resulting .ssh directory and the files therein onto

each agent into the /var/go directory (and remember to set owner and

permissions as they were created originally) or create a new key pair on

each agent.

 9.3 Building in the Pipeline
Triggering the build of a Debian package requires fetching the source code

from a Git repository, by configuring it as a GoCD material, then invoking

the dpkg-buildpackage command with some options, and, finally,

collecting the resulting files.

Here (Listing 9-3) is the first shot at building the python-matheval

package, expressed in GoCD’s XML configuration.

Chapter 9 Building in the pipeline with go Continuous delivery

133

Listing 9-3. Simple Approach to Building a Debian Package in GoCD

<pipelines group="deployment">

 <pipeline name="python-matheval">

 <materials>

 <git

url="https://github.com/python-ci-cd/python-matheval.git"

 dest="source" />

 </materials>

 <stage name="build" cleanWorkingDir="true">

 <jobs>

 <job name="build-deb" timeout="5">

 <tasks>

 <exec command="/bin/bash" workingdir="source">

 <arg>-c</arg>

 <arg>dpkg-buildpackage -b -us -uc</arg>

 </exec>

 </tasks>

 <artifacts>

 <artifact src="*.deb" dest="debian-packages/"

 type="build" />

 </artifacts>

 <resources>

 <resource>debian-stretch</resource>

 <resource>build</resource>

 </resources>

 </job>

 </jobs>

 </stage>

 </pipeline>

</pipelines>

Chapter 9 Building in the pipeline with go Continuous delivery

134

You can find this and all following XML configurations in the gocd

directory of the deployment-utils8 repository.

The outermost tag is a pipeline group, which has a name. It can be

used to categorize available pipelines and also to manage permissions.

The second level is the <pipeline> with a name, and it contains a list

of materials and one or more stages.

 Directory Layout
Each time a job within a stage is run, the GoCD agent that is assigned to

the job prepares a directory in which it makes the materials available.

On Linux, this directory defaults to /var/lib/go-agent/pipelines/,

followed by the pipeline name. Paths in the GoCD configuration are

relative to this path.

For example, the preceding material definition contains the attribute

dest="source", so the absolute path to this Git repository’s working copy

is /var/lib/go-agent/pipelines/python-matheval/source. Leaving out

the dest="..." would work and give one less directory level, but it would

also prevent us from using a second material in the future.

See the config references9 for a list of available material types and

options. Plug-ins are available10 that add further material types.

 Stages, Jobs, Tasks, and Artifacts
All the stages in a pipeline run serially, and each one runs only if the

previous stage succeeded. Each stage has a name, which is used both in

the front end and for fetching artifacts produced in that stage.

8 https://github.com/python-ci-cd/deployment-utils.
9 https://docs.gocd.org/current/configuration/configuration_reference.
html#materials.

10 www.gocd.org/plugins/.

Chapter 9 Building in the pipeline with go Continuous delivery

https://github.com/python-ci-cd/deployment-utils
https://docs.gocd.org/current/configuration/configuration_reference.html#materials
http://www.gocd.org/plugins/
https://github.com/python-ci-cd/deployment-utils
https://docs.gocd.org/current/configuration/configuration_reference.html#materials
https://docs.gocd.org/current/configuration/configuration_reference.html#materials
http://www.gocd.org/plugins/

135

In the preceding example, I gave the stage the attribute

cleanWorkingDir="true", which makes GoCD delete files created during

the previous build and discard changes to files under version control. This

tends to be a good option to use; otherwise, you might unknowingly slide

into a situation in which a previous build affects the current build, which

can be really painful to debug.

Jobs are potentially executed in parallel within a stage and have names

for the same reasons that stages do. The jobs only run in parallel if several

agents are available to run them.

The GoCD agent serially executes the tasks within a job. I tend to

mostly use <exec> tasks (and <fetchartifact>, which you will see in the

next chapter), which invoke system commands. They follow the UNIX

convention of treating an exit status of zero as success and everything else

as a failure.

For more complex commands, I create shell, Perl, or Python scripts

inside a Git repository and add the repository as a material to the pipeline,

which makes them available during the build process, with no extra effort.

The <exec> task in our example invokes /bin/bash -c 'dpkg-

buildpackage -b -us -uc'. This is a case of Cargo Cult Programming,11

because invoking dpkg-buildpackage directly works just as well. Ah well,

we can revise this later…

dpkg-buildpackage -b -us -uc builds the Debian package and is

executed inside the Git checkout of the source. It produces a .deb file,

a .changes file, and possibly a few other files with metadata. They are

created one level above the Git checkout, in the root directory of the

pipeline.

11 Wikipedia, “Cargo cult programming,” https://en.wikipedia.org/wiki/
Cargo_cult_programming, 2018.

Chapter 9 Building in the pipeline with go Continuous delivery

https://en.wikipedia.org/wiki/Cargo_cult_programming
https://en.wikipedia.org/wiki/Cargo_cult_programming
https://en.wikipedia.org/wiki/Cargo_cult_programming

136

Because these are the files that we want to work with later on, at least

the .deb file, we let GoCD store them in an internal database called the

artifact repository. That’s what the <artifact> tag in the configuration

instructs GoCD to do.

The name of the generated package files depend on the version

number of the built Debian package (which comes from the debian/

changelog file in the Git repository), so it’s not easy to reference them by

name later on. That’s where the dest="debian-packages/" comes into

play: it makes GoCD store the artifacts in a directory with a fixed name.

Later stages then can retrieve all artifact files from this directory by the

fixed directory name.

 The Pipeline in Action
If nothing goes wrong (and nothing ever does, right?), Figure 9-4 shows

roughly what the web interface looks like after running the new pipeline.

Figure 9-4. Pipeline overview after a successful run of the build stage

Chapter 9 Building in the pipeline with go Continuous delivery

137

Whenever there is a new commit in the Git repository, GoCD

happily builds a Debian package and stores it for further use.

Automated builds, yay!

 Version Recycling Considered Harmful
When building a Debian package, the tooling determines the version

number of the resulting package, by looking at the top of the debian/

changelog file. This means that whenever somebody pushes code or

documentation changes without a new changelog entry, the resulting

Debian package has the same version number as the previous one.

Most Debian tooling assumes that the tuple of package name, version,

and architecture uniquely identifies a revision of a package. Stuffing a new

version of a package with an old version number into a repository is bound

to cause trouble. Most repository-management software simply refuses to

accept a copy of a package that recycles a version. On the target machine

on which the package is to be installed, upgrading the package won’t do

anything, if the version number stays the same.

 Constructing Unique Version Numbers
There are several sources that you can tap to generate unique version

numbers.

• Randomness (for example, in the form of UUIDs)

• The current date and time

• The Git repository itself

• Several environment variables12 that GoCD exposes

that can be of use

12 https://docs.gocd.org/current/faq/dev_use_current_revision_in_build.
html.

Chapter 9 Building in the pipeline with go Continuous delivery

https://docs.gocd.org/current/faq/dev_use_current_revision_in_build.html
https://docs.gocd.org/current/faq/dev_use_current_revision_in_build.html
https://docs.gocd.org/current/faq/dev_use_current_revision_in_build.html

138

The latter is promising. GO_PIPELINE_COUNTER is a monotonic counter

that increases each time GoCD runs the pipeline, so a good source for a

version number. GoCD allows manual rerunning of stages, so it’s best to

combine it with GO_STAGE_COUNTER. In terms of shell scripting, using $GO_

PIPELINE_COUNTER.$GO_STAGE_COUNTER as a version string sounds like a

decent approach.

But, there’s more. GoCD allows you to trigger a pipeline with a specific

version of a material, so you can have a new pipeline run to build an old

version of the software. If you do that, using GO_PIPELINE_COUNTER as the

first part of the version string doesn’t reflect the use of the old code base.

git describe is an established way to count commits. By default,

it prints the last tag in the repository, and if HEAD does not resolve to the

same commit as the tag, it adds the number of commits since that tag

and the abbreviated SHA1 hash prefixed by g, so, for example, 2016.

04- 32- g4232204 for the commit 4232204, which is 32 commits after the

tag 2016.04. The option --long forces it to always print the number of

commits and the hash, even when HEAD points to a tag.

We don’t need the commit hash for the version number, so a shell

script to construct a suitable version number looks like this.

#!/bin/bash

set -e

set -o pipefail

v=$(git describe --long |sed 's/-g[A-Fa-f0-9]*$//')

version="$v.${GO_PIPELINE_COUNTER:-0}.${GO_STAGE_COUNTER:-0}"

Bash’s ${VARIABLE:-default} syntax is a good way to make the script

work outside a GoCD agent environment. This script requires a tag to be

set in the Git repository. If there is none, it fails with this message from git

describe:

fatal: No names found, cannot describe anything.

Chapter 9 Building in the pipeline with go Continuous delivery

139

 Other Bits and Pieces Around the Build
Now that we have a unique version string, we must instruct the build

system to use this version string. This works by writing a new entry in

debian/changelog with the desired version number. The debchange tool

automates this for us. A few options are necessary to make it work reliably.

export DEBFULLNAME='Go Debian Build Agent'

export DEBEMAIL='go-noreply@example.com'

debchange --newversion=$version --force-distribution -b \

 --distribution="${DISTRIBUTION:-stretch}" 'New Version'

When we want to reference this version number in later stages in the

pipeline (yes, there will be more), it’s handy to have it available in a file.

It is also handy to have it in the output, so we need two more lines in the

script.

echo $version

echo $version > ../version

and ,of course, must trigger the actual build, as follows:

dpkg-buildpackage -b -us -uc

 Plugging It into GoCD
To make the script accessible to GoCD, and also have it under version

control, I put the script into a Git repository, under the name debian-

autobuild, and added the repository as a material to the pipeline

(Listing 9-4).

Chapter 9 Building in the pipeline with go Continuous delivery

140

Listing 9-4. GoCD Configuration for Building Packages with

Distinct Version Numbers

<pipeline name="python-matheval">

 <materials>

 <git

url="https://github.com/python-ci-cd/python-matheval.git"

 dest="source" materialName="python-matheval" />

 <git

url="https://github.com/python-ci-cd/deployment-utils.git"

 dest="deployment-utils" materialName="deployment-utils" />

 </materials>

 <stage name="build" cleanWorkingDir="true">

 <jobs>

 <job name="build-deb" timeout="5">

 <tasks>

 <exec command="../deployment-utils/debian-autobuild"

 workingdir="source" />

 </tasks>

 <artifacts>

 <artifact src="version" type="build"/>

 <artifact src="*.deb" dest="debian-packages/"

 type="build" />

 </artifacts>

 <resources>

 <resource>debian-stretch</resource>

 <resource>build</resource>

 </resources>

 </job>

 </jobs>

 </stage>

</pipeline>

Chapter 9 Building in the pipeline with go Continuous delivery

141

Now, GoCD automatically builds Debian packages on each commit to

the Git repository and gives each a distinct version string.

 9.4 Summary
GoCD is an open source tool that can poll your Git repositories and

trigger the build through dedicated agents. It is configured through a

web interface, either by clicking through assistants or providing an XML

configuration.

Care must be taken to construct meaningful version numbers for each

build. Git tags, the number of commits since the last tag, and counters

exposed by GoCD are useful components with which to construct such

version numbers.

Chapter 9 Building in the pipeline with go Continuous delivery

143© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_10

CHAPTER 10

Distributing and
Deploying Packages
in the Pipeline
The previous chapter has left us with the beginning of a GoCD pipeline. It

automatically builds a Debian package each time new commits are pushed

to Git and generates a unique version number for each build. Finally, it

captures as artifacts the built package and a file called version containing

the version number. The next tasks are to upload it into a Debian

repository and deploy it on the target machines.

 10.1 Uploading in the Pipeline
Chapter 6, on distributing packages, already introduced a small program

for creating and filling Debian repositories managed with Aptly. If you

add it to the deployment-utils Git repository from that chapter, you can

automatically upload the newly built packages with this additional GoCD

configuration (Listing 10-1), to be inserted after the build stage.

144

Listing 10-1. GoCD Configuration for Uploading a Freshly Built

Package to the testing Repository

<stage name="upload-testing">

 <jobs>

 <job name="upload-testing">

 <tasks>

 <fetchartifact pipeline="" stage="build"

 job="build-deb" srcdir="debian-packages"

 artifactOrigin="gocd">

 <runif status="passed" />

 </fetchartifact>

 <exec command="/bin/bash">

 <arg>-c</arg>

 <arg>deployment-utils/add-package testing stretch *.deb</arg>

 </exec>

 </tasks>

 <resources>

 <resource>aptly</resource>

 </resources>

 </job>

 </jobs>

</stage>

The fetchartifact task fetches, you guessed it, an artifact that

is stored in the GoCD server’s artifact repository. Here, it fetches the

directory python-matheval, into which the previous stage uploaded the

Debian package. The empty string for the pipeline name instructs GoCD to

use the current pipeline.

In the invocation of the add-package script, testing refers to the

name of the environment (which you can choose freely, as long as you are

consistent), not the testing distribution of the Debian project.

Chapter 10 Distributing anD Deploying paCkages in the pipeline

145

Finally, the aptly resource selects a GoCD agent with the same

resource to run the job on (see Figure 10-1). If you anticipate that your

setup will grow a bit, you should have a separate machine for serving these

repositories. Install a GoCD agent on it and assign it this resource. You can

even have separate machines for the testing and production repositories

and give them more specific resources (such as aptly-testing and aptly-

production).

Figure 10-1. The machine on which the Aptly repository resides has
a GoCD agent that retrieves the Debian packages as artifacts from the
GoCD server. Target machines configure the repository as a package
source.

Chapter 10 Distributing anD Deploying paCkages in the pipeline

146

 User Accounts and Security
In the previous sample configuration, the add-package script runs as the

go system user, whose home directory on Linux-based systems is /var/

go by default. This will create repositories in a directory such as /var/go/

aptly/testing/stretch/.

In Chapter 6, the assumption was that Aptly runs under its own system

user account. You still have to give the go user permissions to add packages

to the repository, but you can prevent the go user from modifying existing

repositories and, more important, from getting access from the GPG key

with which the packages are signed.

If you keep the repository under a separate user, you need a way

to cross the user account barrier, and the traditional way to do that for

command-line applications is to allow the go user to call add-package

through the sudo command. But to get an actual security benefit, you have

to copy the add-package command to a location where the go user has

no write permissions. Otherwise, an attacker with access to the go user

account could just modify this command to do whatever he/she sees fit.

Assuming you intend to copy it to /usr/local/bin, you can add this line:

/etc/sudoers

to the file (Listing 10-2).

Listing 10-2. /etc/sudoers Line That Allows the go User to Execute

add-package As User aptly

go ALL=(aptly) NOPASSWD: /usr/local/bin/add-package

Then, instead of calling add-package <environment> <distribution>

<deb package>, you change it to

$ sudo -u aptly --set-home /usr/local/bin/add-package \

 <environment> <distribution> <deb package>

Chapter 10 Distributing anD Deploying paCkages in the pipeline

147

The --set-home flags tells sudo to set the HOME environment variable to

the home directory of the target user, here aptly.

If you choose not to go the sudo route, you have to adapt the web server

configuration to serve files from /var/go/aptly/ instead of /home/aptly/aptly.

 10.2 Deploying in the Pipeline
In Chapter 7, we saw how to upgrade (or install, if it’s not yet installed) a

package through Ansible (see Figure 10-2), as follows:

$ ansible -i testing web -m apt \

 -a 'name=python-matheval state=latest update_cache=yes'

where testing is the inventory file of the same name as the environment,

web is the group of hosts to deploy to, and python-matheval is the name of

the package.

Figure 10-2. The GoCD agent runs Ansible to connect to the target
machines via SSH, to install the desired package

Chapter 10 Distributing anD Deploying paCkages in the pipeline

148

You can do this in GoCD as a separate stage, after the upload-testing

stage (Listing 10-3).

Listing 10-3. GoCD Configuration for Automatically Installing a

Package

<stage name="deploy-testing">

 <jobs>

 <job name="deploy-testing">

 <tasks>

 <exec command="ansible" workingdir="deployment-utils/

ansible/">

 <arg>--inventory-file=testing</arg>

 <arg>web</arg>

 <arg>-m</arg>

 <arg>apt</arg>

 <arg>-a</arg>

 <arg>name=python-matheval state=latest update_

cache=yes</arg>

 <runif status="passed" />

 </exec>

 </tasks>

 </job>

 </jobs>

</stage>

This assumes that you add the inventory files in the ansible directory

of the deployment-utils Git repository, and that the Debian repository is

already configured on the target machine, as discussed in Chapter 7.

Chapter 10 Distributing anD Deploying paCkages in the pipeline

149

 10.3 Results
To run the new stage, either trigger a complete run of the pipeline by

hitting the “play” triangle in the pipeline overview on the web front end or

do a manual trigger of that one stage in the pipe history view. You can log

in on the target machine, to check if the package was successfully installed.

$ dpkg -l python-matheval

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/

|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)

||/ Name Version Architecture Description

+++-==============-============-============-==============

ii python-matheval 0.1-0.7.1 all Web service

and verify that the service is running

$ systemctl status python-matheval

 python-matheval.service - Package installation informati

 Loaded: loaded (/lib/systemd/system/python-matheval.ser

 Active: active (running) since Sun 2016-03-27 13:15:41

 Process: 4439 ExecStop=/usr/bin/hypnotoad -s /usr/lib/py

 Main PID: 4442 (/usr/lib/packag)

 CGroup: /system.slice/python-matheval.service

 ├─4442 /usr/lib/python-matheval/python-matheval
 ├─4445 /usr/lib/python-matheval/python-matheval
 ├─4446 /usr/lib/python-matheval/python-matheval
 ├─4447 /usr/lib/python-matheval/python-matheval
 └─4448 /usr/lib/python-matheval/python-matheval

You can also check from the host machine that the service responds on

port 8080, as it’s supposed to.

$ curl --data '["+", 5]' -XPOST http://172.28.128.3:8800

5

Chapter 10 Distributing anD Deploying paCkages in the pipeline

150

 10.4 Going All the Way to Production
Uploading and deploying to production works the same as with the testing

environment. So, all that’s required is to duplicate the configuration of the

last two pipelines, replace every occurrence of testing with production,

and add a manual approval button, so that production deployment

remains a conscious decision (Listing 10-4).

Listing 10-4. GoCD Configuration for Distributing in, and

Deploying to, the Production Environment

<stage name="upload-production">

 <approval type="manual" />

 <jobs>

 <job name="upload-production">

 <tasks>

 <fetchartifact pipeline="" stage="build" job="build-

deb" srcdir="debian-packages" artifactOrigin="gocd">

 <runif status="passed" />

 </fetchartifact>

 <exec command="/bin/bash">

 <arg>-c</arg>

 <arg> deployment-utils/add-package production \

stretch *.deb</arg>

 </exec>

 </tasks>

 <resources>

 <resource>aptly</resource>

 </resources>

 </job>

 </jobs>

</stage>

Chapter 10 Distributing anD Deploying paCkages in the pipeline

151

<stage name="deploy-production">

 <jobs>

 <job name="deploy-production">

 <tasks>

 <exec command=" ansible" workingdir="deployment-utils/

ansible/">

 <arg>--inventory-file=production</arg>

 <arg>web</arg>

 <arg>-m</arg>

 <arg>apt</arg>

 <arg>-a</arg>

 <arg>name=python-matheval state=latest update_cache=yes</arg>

 <runif status="passed" />

 </exec>

 </tasks>

 </job>

 </jobs>

</stage>

The only real news here is the second line

<approval type="manual" />

which makes GoCD proceed to this stage only when someone clicks the

approval arrow in the web interface.

You also must fill out the inventory file called production with the list

of your server or servers.

Chapter 10 Distributing anD Deploying paCkages in the pipeline

152

 10.5 Achievement Unlocked: Basic
Continuous Delivery
To recapitulate, the pipeline

• Is triggered automatically from commits in the source

code

• Automatically builds a Debian package from each

commit

• Uploads it to a repository for the testing environment

• Automatically installs it in the testing environment

• Uploads it, upon manual approval, to a repository for

the production environment

• Automatically installs the new version in production

The basic framework for automated deployments from a Git commit in

the sources to software running in production is now in place.

Chapter 10 Distributing anD Deploying paCkages in the pipeline

153© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_11

CHAPTER 11

Pipeline
Improvements
The pipeline from the previous chapter is already quite usable and vastly

preferable to manual builds, distribution, and installation. That said, there

is room for improvement. I will discuss how to change it to always deploy

the exact version that was built in the same instance of the pipeline, how

to run smoke tests after installation, and how to extract a template from

the Go continuous delivery (GoCD) configuration, so that it becomes

easily reusable.

 11.1 Rollbacks and Installing Specific Versions
The deployment pipeline developed in the previous chapters always

installs the latest version of a package. Because the logic for constructing

version numbers usually produces monotonously increasing version

numbers, this is usually the package that was built previously in the same

pipeline instance.

However, we really want the pipeline to deploy the exact version that

was built inside the same instance of the pipeline. The obvious benefit is

that it allows you to rerun older versions of the pipeline, to install older

versions, effectively giving you a rollback.

154

Alternatively, you can build a second pipeline for hotfixes, based on

the same Git repository but a different branch. When you want a hotfix,

you simply pause the regular pipeline and trigger the hotfix pipeline. In

this scenario, if you always installed the newest version, finding a proper

version string for the hotfix would be nearly impossible, because it must be

higher than the currently installed one but also lower than the next regular

build. Oh, and all of that automatically, please.

A less obvious benefit to installing a very specific version is that it

detects errors in the package source configuration of the target machines.

If the deployment script only installs the newest version that’s available,

and through an error the repository isn’t configured on the target machine,

the installation process becomes a silent no-op, if the package is already

installed in an older version.

 Implementation
There are two things to do: figure out which version of the package to

install, and then do it. How to install a specific version of a package with

Ansible (Listing 11-1) has already been explained in Chapter 7.

Listing 11-1. Ansible Playbook Fragment for Installing Version 1.00

of Package foo

- apt: name=foo=1.00 state=present force=yes

The more generic way is to use the role custom_package_installation

covered in the same chapter.

- hosts: web roles:

 role: custom_package_installation

 package: python-matheval

You can invoke this with ansible-playbook --extra-vars=package_

version=1.00....

Chapter 11 pipeline improvements

155

Add this playbook to the deployment-utils Git repository as file

ansible/deploy-python-matheval.yml. Finding the version number to

install also has a simple, though perhaps not obvious, solution: write the

version number to a file; collect this file as an artifact in GoCD; and then,

when it’s time to install, fetch the artifact and read the version number

from it. At the time of writing, GoCD does not have a more direct way to

propagate metadata through pipelines.

The GoCD configuration for passing the version to the Ansible

playbook looks like Listing 11-2.

Listing 11-2. GoCD Configuration for Installing the Version from

the version File

<job name="deploy-testing">

 <tasks>

 <fetch artifact pipeline="" stage="build" job="build-deb"

srcfile="version" artifactOrigin="gocd" />

 <exec command="/bin/bash" workingdir="deployment-utils/

ansible/">

 <arg>-c</arg>

 <arg>ansible-playbook --inventory-file=testing

--extra-va rs="package_version=$(< ../../version)" deploy-

python- matheval.yml</arg>

 </exec>

 </tasks>

</job>

(The <arg>...</arg> XML tag must be on one line, so that Bash

interprets it as a single command. It is shown here on multiple lines merely

for readability.)

Bash’s $(...) opens a subprocess, which, again, is a Bash process, and

inserts the output from that subprocess into the command line. < ../../

version is a short way of reading the file, and this being XML, the less-than

sign needs to be escaped.

Chapter 11 pipeline improvements

156

The production deployment configuration looks pretty much the same,

just with --inventory-file=production.

 Try It!
To test the version-specific package installation, you must have at least two

runs of the pipeline that captured the version artifact. If you don’t have

that yet, you can push commits to the source repository, and GoCD picks

them up automatically.

You can query the installed version on the target machine with

dpkg -l python-matheval. After the last run, the version built in that

pipeline instance should be installed.

Then you can rerun the deployment stage from a previous pipeline, for

example, in the history view of the pipeline, by hovering with the mouse

over the stage and then clicking the circle with the arrow on it that triggers

the rerun (Figure 11-1).

Figure 11-1. In the history view of a pipeline, hovering over a
complete stage (passed or failed) gives you an icon for rerunning the
stage

Chapter 11 pipeline improvements

157

When the stage has finished running, you can again check the installed

version of the package on the target machine, to verify that the older

version has indeed been deployed.

 11.2 Running Smoke Tests in the Pipeline
When deploying an application, it is important to test that the new version

of the application actually works. Typically, this is done through a smoke

test—a pretty simple test that nonetheless tests many aspects of the

application: that the application process runs, that it binds to the port it is

supposed to, and that it can answer requests. Often, this implies that both

the configuration and database connection are sane as well.

 When to Smoke?
Smoke tests cover a lot of ground at once. A single test might require a

working network, correctly configured firewall, web server, application

server, database, and so on to work. This is an advantage, because it means

that it can detect many classes of errors, but it is also a disadvantage,

because it means the diagnostic capabilities are low. When it fails, you

don’t know which component is to blame and have to investigate each

failure anew.

Smoke tests are also much more expensive than unit tests. They tend

to take more time to write, take longer to execute, and are more fragile in

the face of configuration or data changes. So, typical advice is to have a low

number of smoke tests, maybe one to 20, or maybe about 1% of the unit

tests you have.

As an example, if you were to develop a flight search and

recommendation engine for the Web, your unit tests would cover different

scenarios that the user might encounter and that the engine produces the

best possible suggestions. In smoke tests, you would just check that you

Chapter 11 pipeline improvements

158

can enter the starting point, destination, and date of travel, and that you

get a list of flight suggestions at all. If there is a membership area on that

web site, you would test that you cannot access it without credentials and

that you can access it after logging in. So, three smoke tests, give or take.

 White Box Smoke Testing
The examples mentioned above are basically black box smoke testing, in

that they don’t care about the internals of the application and approach

the application just like a user. This is very valuable, because, ultimately,

you care about your user’s experience.

Sometimes, there are aspects of the application that aren’t easy to

smoke test yet break often enough to warrant automated smoke tests. As

an example, the application might cache responses from external services,

so simply using a certain functionality is not guaranteed to exercise this

particular communication channel.

A practical solution is for the application to offer some kind of self-

diagnosis, such as a web page from which the application tests its own

configuration for consistency, checks that all the necessary database tables

exist, and that external services are reachable. A single smoke test can then

call the status page and raise an error whenever the status page either is

not reachable or reports an error. This is a white box smoke test.

Status pages for white box smoke tests can be reused in monitoring

checks, but it is still a good idea to explicitly check them as part of the

deployment process. White box smoke testing should not replace black

box smoke testing, but, rather, complement it.

 Sample Black Box Smoke Test
The python-matheval application offers a simple HTTP end point, so any

HTTP client will do for smoke testing. Using the curl command line HTTP

client, a request can look like this:

Chapter 11 pipeline improvements

159

$ curl --silent -H "Accept: application/json" \

 --data '["+", 37, 5]' \

 -XPOST http://127.0.0.1:8800/

42

An easy way to check that the output matches expectations is by piping

it through grep.

$ curl --silent -H "Accept: application/json" \

 --data '["+", 37, 5]' \

 -XPOST http://127.0.0.1:8800/ | grep ^42$

42

The output is the same as before, but the exit status is non-zero, if the

output deviates from the expectation.

 Adding Smoke Tests to the Pipeline and Rolling
Releases
A naive integration of smoke tests in a delivery pipeline is to add a

smoke test stage after each deployment stage (that is, one after the test

deployment and one after the production deployment). This setup

prevents a version of your application from reaching the production

environment if it failed smoke tests in the testing environment. Because

the smoke test is just a shell command that indicates failure with a

non- zero exit status, adding it as a command in your deployment system

is trivial.

If you have just one instance of your application running, this is the

best you can do. However, if you have a farm of machines, and several

instances of the application running behind some kind of load balancer, it

is possible to smoke test each instance separately during an upgrade and

abort the upgrade if too many instances fail the smoke test.

Chapter 11 pipeline improvements

160

All big, successful tech companies guard their production systems with

such partial upgrades guarded by checks, or even more elaborate versions

thereof.

A simple approach to such a rolling upgrade is to extend the Ansible

playbook for the deployment of each package and have it run the smoke

tests for each machine before moving to the next (Listings 11-3 and 11-4).

Listing 11-3. File smoke-tests/python-matheval: A Simple HTTP-

Based Smoke Test

#!/bin/bash

curl --silent -H "Accept: application/json" \

 --data '["+", 37, 5]' –XPOST http://$1:8800/ \

 | grep ^42$

Listing 11-4. File ansible/deploy-python-matheval.yml: A Rolling

Deployment Playbook with Integrated Smoke Test

- hosts: web

 serial: 1

 max_fail_percentage: 1

 tasks:

 - apt:

 update_cache: yes

 package: python-matheval={{package_version}}

 state: present

 force: yes

 - local_action: >

 command ../smoke-tests/python-matheval

 "{{ansible_host}}"

 changed_when: False

Chapter 11 pipeline improvements

161

As the number of smoke tests grows over time, it is not practical

to cram them all into the Ansible playbook, and doing that also limits

reusability. Here, they are instead in a separate file in the deployments utils

repository.1 Another option would be to build a package from the smoke

tests and install them on the machine that Ansible runs on.

While it would be easy to execute the smoke tests command on the

machine on which the service is installed, running it as a local action (that

is, on the control host on which the Ansible playbook is started) also tests

the network and firewall part and, thus, more realistically mimics the

actual usage scenario.

 11.3 Configuration Templates
When you have more than one software package to deploy, you build a

pipeline for each one. As long as the deployment pipelines are similar

enough in structure—mostly using the same packaging format and

the same technology for installation—you can reuse the structure, by

extracting a template from the first pipeline and instantiating it several

times to create separate pipelines of the same structure.

If you look carefully over the pipeline XML configuration developed

before, you might notice that it is not very specific to the python-

matheval project. Apart from the Debian distribution and the name of the

deployment playbook, everything in here can be reused for any software

that’s been Debian-packaged.

To make the pipeline more generic, you can define parameters

(params for short) as the first thing inside your pipelines, before the

<materials> section (Listing 11-5).

1 https://github.com/python-ci-cd/deployment-utils.

Chapter 11 pipeline improvements

https://github.com/python-ci-cd/deployment-utils
https://github.com/python-ci-cd/deployment-utils
https://github.com/python-ci-cd/deployment-utils

162

Listing 11-5. Parameter Block for the python-matheval Pipeline, to

Be Inserted Before the Materials

<params>

 <param name="distribution">stretch</param>

 <param name="deployment_playbook">deploy-python-matheval.yml

</param>

</params>

Then replace all occurrences of stretch inside each stage’s definition

with the placeholder #{distribution} and deploy-python-matheval.

yml with #{deployment_playbook}, which leaves you with XML snippets

such as

<exec command="/bin/bash">

 <arg>-c</arg>

 <arg>deployment-utils/add-package \

 testing #{distribution} *.deb</arg>

</exec>

and

<exec command="/bin/bash" workingdir="deployment-utils/

ansible/">

 <arg>-c</arg>

 <arg>ansible-playbook --inventory-file=testing

 --extra-vars="package_version=$(< ../../version)"

 #{deployment_playbook}</arg>

</exec>

The next step toward generalization is to move the stages to a template.

This can either be done, again, by editing the XML config or in the web

interface with Admin ➤ Pipelines and then clicking the Extract Template

link next to the pipeline called python-matheval.

Chapter 11 pipeline improvements

163

The result in the XML looks like Listing 11-6, if you chose debian-base

as the template name.

Listing 11-6. GoCD Configuration for Pipeline matheval Using a

Template

<pipelines group="deployment">

 <pipeline name="python-matheval" template="debian-base">

 <materials>

 <git url=

 "https://github.com/python-ci-cd/python-matheval.git"

 dest="source" materialName="python-matheval" />

 <git url=

 "https://github.com/python-ci-cd/deployment-utils.git"

 dest="deployment-utils"

 materialName="deployment-utils" />

 </materials>

 <params>

 <param name="distribution">stretch</param>

 <param name=" deployment_playbook">deploy-python-matheval.

yml</param>

 </params>

</pipelines>

<templates>

 <pipeline name="debian-base">

 <!-- stages definitions go here -->

 </pipeline>

</templates>

Chapter 11 pipeline improvements

164

Everything that’s specific to this one software package is now in the pipeline

definition, and the reusable parts are in the template. The sole exception is

the deployment-utils repository, which must be added to each pipeline

separately, because GoCD has no way to move a material to a template.

Adding a deployment pipeline for another application is now just a matter

of specifying the URL, target (that is, name of a group in the Ansible inventory

file), and distribution. You will see an example of that in the next chapter. This

amounts to fewer than five minutes of work, once you’re used to the tooling.

 11.4 Avoiding the Rebuild Stampede
When you have a sizable number of pipelines, you’ll notice an unfortunate

pattern. Whenever you push a commit to the deployment-utils

repository, it triggers the rebuild of all pipelines. That’s a waste of resources

and keeps the build agent or agents occupied, so building of packages

based on actual source code changes gets delayed until after all the build

jobs have finished.

GoCD’s materials have an ignore filter that is meant to avoid costly

rebuilds when only documentation has changed (Listing 11-7). You can

use this to ignore changes to all files in the repository, thus avoiding a

rebuild stampede.

Listing 11-7. GoCD Material Definition That Avoids Triggering the

Pipeline

<git url="https://github.com/python-ci-cd/deployment-utils.git"

 dest="deployment-utils" materialName="deployment-utils">

 <filter>

 <ignore pattern="*" />

 <ignore pattern="**/*" />

 </filter>

</git>

Chapter 11 pipeline improvements

165

The * filter matches all files in the top-level directory, and **/* all files

in subdirectories.

When you change the material configuration of the deployment-utils

material in all pipelines to have these ignore filters, a new commit to the

deployment-utils repository does not trigger any pipelines. GoCD still

polls the material and uses the newest version when starting a pipeline. As

with all pipelines, the version of the material is the same at all stages.

Ignoring all the files in a repository is a blunt tool and requires you

to manually trigger the pipeline for a project, to exercise changes to the

deployment playbooks. So, starting from GoCD version 16.6, you can

invert the filter conditions with invertFilter="true", to create white lists

(Listing 11-8).

Listing 11-8. Using White Lists in GoCD Materials to Selectively

Trigger on Changes to Certain Files

<git url="https://github.com/python-ci-cd/deployment-utils.git"

 invertFilter="true" dest="deployment-utils"

 materialName="deployment-utils">

 <filter>

 <ignore pattern="ansible/deploy-python-matheval.yml" />

 </filter>

/git>

Such a white list configuration per pipeline causes commits to the

deployment-utils repository to trigger only the pipelines that the changes

are relevant for.

Chapter 11 pipeline improvements

166

 11.5 Summary
When you configure your pipelines to deploy exactly the same version

that has been built in the same instance of the pipeline, you can use this to

install old versions or conduct rollbacks.

Pipeline templates allow you to extract the commonalities between

pipelines and maintain those only once. Parameters bring in the variety

needed to support diverse software packages.

Chapter 11 pipeline improvements

167© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_12

CHAPTER 12

Security
What’s the impact of automated deployment on the security of your

applications and infrastructure? It turns out there are both security

advantages and things to be wary of.

 12.1 The Dangers of Centralization
In a deployment pipeline, the machine that controls the deployment must

have access to the target machines where the software is deployed. In the

simplest case, there is a private SSH key on the deployment machine, and

the target machines grant access to the owner of that key.

This is an obvious risk, because an attacker gaining access to the

deployment machine (the GoCD agent or the GoCD server controlling the

agent) can use this key to connect to all the target machines, gaining full

control over them.

Some possible mitigations include the following:

• Implement a hardened setup of the deployment

machine (for example, with SELinux or grsecurity).

• Password-protect the SSH key and supply the password

through the same channel that triggers the deployment,

such as through an encrypted variable from the GoCD

server.

168

• Use a hardware token for storing SSH deployments

keys. Hardware tokens can be safe against software-

based key extraction.

• Have separate deployment and build hosts. Build hosts

tend to require far more software installed, which

exposes a bigger attack surface.

• You can also have separate deployment machines for

each environment, with separate credentials.

• On the target machines, allow only unprivileged access

through said SSH key and use something like sudo, to

allow only certain privileged operations.

Each of these mitigations has its own costs and weaknesses. To

illustrate this point, note that password-protecting SSH keys helps if the

attacker only manages to obtain a copy of the file system, but not if the

attacker gains root privileges on the machine and, thus, can obtain a

memory dump that includes the decrypted SSH key.

A hardware-based storage of secrets provides good protection

against keys’ theft, but it makes use of virtual systems harder and must be

purchased and configured.

The sudo approach is very effective at limiting the spread of an attack,

but it requires extensive configuration on the target machine, and you

need a secure way to deploy that. So, you run into a chicken-and-egg

problem that involves some extra effort.

On the flip side, if you don’t have a delivery pipeline, deployments

have to occur manually. So, now you have the same problem of having to

give humans access to the target machines. Most organizations offer some

kind of secured machine on which the operator’s SSH keys are stored, and

you face the same risk with that machine as the deployment machine.

Chapter 12 SeCurity

169

 12.2 Time to Market for Security Fixes
Compared to manual deployments, even a relatively slow deployment

pipeline is still quite fast. When a vulnerability is identified, this quick and

automated rollout process can make a big difference in reducing the time

until the fix is deployed.

Equally important is the fact that a clunky manual release process

seduces the operators into taking shortcuts around security fixes, thus

skipping some steps of the quality-assurance process. When that process is

automated and fast, it is easier to adhere to the process than to skip it, so it

will actually be carried out even in stressful situations.

 12.3 Audits and Software Bill of Materials
A good deployment pipeline tracks when which version of a software

package was built and deployed. This allows one to answer questions such

as “How long did we have this security hole?”, “How soon after the issue

was reported was the vulnerability patched in production?”, and maybe

even “Who approved the change that introduced the vulnerability?”

If you also use configuration management based on files that are

stored in a version control system, you can answer these questions even for

configuration, not just for software versions.

In short, the deployment pipeline provides enough data for an audit.

Some legislation requires you to record a software bill of materials1 in

some contexts, for example, for medical device software. This is a record

of the components contained in your software, such as a list of libraries

and their versions. While this is important for assessing the impact of a

1 Wikipedia, “Software bill of materials,” https://en.wikipedia.org/wiki/
Software_bill_of_materials, 2018.

Chapter 12 SeCurity

https://en.wikipedia.org/wiki/Software_Bill_of_Materials
https://en.wikipedia.org/wiki/Software_bill_of_materials
https://en.wikipedia.org/wiki/Software_bill_of_materials

170

license violation, it is also important for figuring out which applications are

affected by a vulnerability in a particular version of a library.

A 2015 report by HP Security found that 44% of the investigated

breaches were made possible by vulnerabilities that have been known

(and presumably patched) for at least two years. This, in turn, means that

you can nearly halve your security risk by tracking which software version

you use where, subscribe to a newsletter or feed of known vulnerabilities,

and rebuild and redeploy your software with patched versions on a

regular basis.

A continuous delivery system doesn’t automatically create such a

software bill of materials for you, but it gives you a place where you can

plug in a system that does.

 12.4 Summary
Continuous delivery provides the ability to react quickly and predictably

to newly discovered vulnerabilities. At the same time, the deployment

pipeline itself is an attack surface, which, if not properly secured, can be an

attractive target for an intruder.

Finally, the deployment pipeline can help you to collect data that can

offer insight into the use of software with known vulnerabilities, allowing

you to be thorough when patching these security holes.

Chapter 12 SeCurity

171© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_13

CHAPTER 13

State Management
Continuous delivery (CD) is nice and easy for a stateless application, that

is, for an application that does not have data persistently stored. Installing

a new application version is a simple task, which just requires the

installation of the new binaries (or sources, in case of a language that’s not

compiled), stopping the old instance, and starting a new instance.

As soon as there is persistent state to consider, things become more

complicated. Here, I will consider traditional relational databases with

schemas. You can avoid some problems by using a schema-less “noSQL”

database, but you don’t always have that luxury. If you do go schema-less,

you have to deal with older data structures inside the application code, not

through the deployment process.

Along with the schema changes, you might have to consider data

migrations, which might involve such things as filling out missing values

with a default or importing data from a different data source. In general,

such data migrations fit the same pattern as schema migrations, which is

to execute either a piece of SQL and data definition language (DDL)1 or

run an external command that directly talks to the database.

1 Wikipedia, “Data definition language,” https://en.wikipedia.org/wiki/
Data_definition_language, 2018.

https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language

172

 13.1 Synchronization Between Code
and Database Versions
State management is difficult, because code is usually tied to a version

of the database schema. There are several cases in which this can cause

problems.

• Database changes are often slower than application

updates. If version 1 of your application can only

deal with version 1 of the schema, and version 2 of

the application can only deal with version 2 of the

schema, you have to stop version 1 of the application,

do the database upgrade, and start up version 2 of

the application only after the database migration has

finished.

• Rollbacks to a previous version of an application, and

thus its database schema version, become painful.

Typically, either a database change or its rollback can

lose data, so you cannot easily do an automated release

and rollback over these boundaries.

To elaborate on the last point, consider the case in which a column is

added to a table in the database. In this case, the rollback of the change

(deleting the column again) loses data. Conversely, if the original change is

to delete a column, that step usually cannot be reversed. You can re-create

a column of the same type, but the data is lost. Even if you archive the

deleted column data, new rows might have been added to the table, and

there is no archived data for these new rows.

Chapter 13 State ManageMent

173

 13.2 Decoupling Application and Database
Versions
There is tooling that can help you get your database schema into a defined

state reproducibly, but it does not solve the problem of potential data

loss through rollbacks for you. The only practical approach is to establish

collaboration between the application developers and the database

administrators and break up problematic changes into multiple steps.

Suppose your desired change is to drop a column that has a NOT NULL

constraint. Simply dropping the column in one step comes with the

problems outlined in the previous section. Instead, you might be able to do

the following steps:

 1. Deploy an application version that can deal with

reading NULL values from the column, even though

NULL values are not yet allowed.

 2. Wait until you’re sure you don’t want to roll back

to an application value that cannot deal with NULL

values.

 3. Deploy a database change that makes the column

nullable (or give it a default value).

 4. Wait until you’re sure you don’t want to roll back to

a schema version where this column is NOT NULL.

 5. Deploy a new version of the application that doesn’t

use the column anymore.

 6. Wait until you’re sure you don’t want to roll back to

a version of your application that uses this column.

 7. Deploy a database change that drops the column

entirely.

Chapter 13 State ManageMent

174

Some scenarios allow you to skip some of these steps or fold multiple

steps into one. Adding a column to a table is a similar process, as follows:

 1. Deploy a database change that adds the new

column with a default value (or allows NULL values).

 2. Deploy a version of the application that writes to the

new column.

 3. Optionally run some migrations that fill the column

for old rows.

 4. Optionally deploy a database change that adds constraints

(like NOT NULL) that weren’t possible at the start.

… with the appropriate waits between the steps.

 Example of a Schema Change
Suppose you have a web application backed by a PostgreSQL database

and, currently, the application logs login attempts into the database. So,

the schema looks like this:

CREATE TABLE users (

 id SERIAL,

 email VARCHAR NOT NULL,

 PRIMARY KEY(id)

);

CREATE TABLE login_attempts (

 id SERIAL,

 user_id INTEGER NOT NULL REFERENCES users (id),

 success BOOLEAN NOT NULL,

 timestamp TIMESTAMP NOT NULL DEFAULT NOW(),

 source_ip VARCHAR NOT NULL,

 PRIMARY KEY(id)

);

Chapter 13 State ManageMent

175

As the load on the web application increases, you realize that you are

creating unnecessary write load for the database and start logging to an

external log service. The only thing you really require in the database is

the date and time of the last successful login (which your CEO insists you

show on each login, because an auditor was convinced it would improve

security).

So, the schema you want to end up with is this:

CREATE TABLE users (

 id SERIAL,

 email VARCHAR NOT NULL,

 last_login TIMESTAMP NOT NULL,

 PRIMARY KEY(id)

);

A direct database change script to get there would be

DROP TABLE login_attempts;

ALTER TABLE users

 ADD COLUMN last_login TIMESTAMP NOT NULL;

but that suffers from the problem previously outlined that it ties the

schema version to the application version, but also that you cannot

introduce a NOT NULL column without a default and without supplying

values for it.

Let’s break it down into separate steps that don’t suffer from these

problems.

 Creating the New Column, NULLable

The first step is to add the new column, users.last_login, as optional (by

allowing NULL values). If the starting point was version 1 of the schema, this

is version 2:

Chapter 13 State ManageMent

176

CREATE TABLE users (

 id SERIAL,

 email VARCHAR NOT NULL,

 last_login TIMESTAMP,

 PRIMARY KEY(id)

);

-- table login_attempts omitted, because it's unchanged.

Running apgdiff, Another PostgreSQL Diff Tool,2 against the two

scheme files gives us:

$ apgdiff schma-1.sql schema-2.sql

ALTER TABLE users

 ADD COLUMN last_login TIMESTAMP;

which is the forward migration script from schema 1 to schema 2. Note

that we don’t necessarily need a rollback script, because every application

version that can deal with version 1 of the schema can also deal with

schema version 2 (unless the application does something stupid like

SELECT * FROM users and expects a certain number or order of results. I’ll

assume the application isn’t that stupid).

This migration script can be applied to the database while the web

application is running, without any downtime.

 MySQL has the unfortunate property that schema changes
are not transactional and they lock the whole table during the schema
changes, which negates some advantages you gain from incremental
database updates.

2 www.apgdiff.com/.

Chapter 13 State ManageMent

http://www.apgdiff.com/
http://www.apgdiff.com/

177

to mitigate this, there are some external tools that work around this
by creating a modified copy of the table, gradually copying the data
from the old to the new table, then finally doing a rename to replace
the old table. One such tool is gh-ost3 by github.

these tools typically come with only limited support for foreign key
constraints, so evaluate them carefully before using them.

When the schema change has finished, you can deploy a new version

of the web application that writes to users.last_login whenever a

successful login occurs. Note that this application version must be able

to deal with reading NULL values from this column, for example, by falling

back to table login_attempts, to determine the last login attempt.

This application version can also stop inserting new entries into table

login_attempts. A more conservative approach is to defer that step for a

while, so that you can safely roll back to an older application version.

 Data Migration

In the end, users.last_login is meant to be NOT NULL, so you have to

generate values for where it’s NULL. Here, table last_login is a source for

such data.

UPDATE users

 SET last_login = (

 SELECT login_attempts.timestamp

 FROM login_attempts

 WHERE login_attempts.user_id = users.id

3 https://github.com/github/gh-ost/.

Chapter 13 State ManageMent

https://github.com/github/gh-ost/
https://github.com/github/gh-ost/

178

 AND login_attempts.success

 ORDER BY login_attempts.timestamp DESC

 LIMIT 1

)

 WHERE users.last_login IS NULL;

If NULL values remain, say, because a user never logged in successfully,

or because table last_login doesn’t go back far enough, you must have

some fallback, which could be a fixed value. Here, I’m taking the easy road

and simply using NOW() as the fallback.

UPDATE users SET last_login = NOW() WHERE last_login IS NULL;

These two updates can again run in the background, while the

application is running. After this update, no further NULL values should

show up in users.last_login. After waiting a few days, and verifying that

this is indeed the case, it’s time to apply the necessary constraint.

 Applying Constraints, Cleaning Up

Once you are confident that there are no rows that miss values in

the column last_login, and that you aren’t going to roll back to an

application version that introduces missing values, you can deploy an

application version that stops using table login_attempts, dispose of the

table login_attempts, and then apply the NOT NULL constraint (see also

Figure 13-1).

DROP TABLE login_attempts;

ALTER TABLE users

 ALTER COLUMN last_login SET NOT NULL;

Chapter 13 State ManageMent

179

In summary, a single logical database change has been spread over

three database updates (two schema updates and one data migration) and

two application updates.

This makes application development a bit more of an effort, but you

gain operational advantages. One of these advantages is keeping the

application releasable to production at all times.

 Prerequisites
If you deploy a single logical database change in several steps, you must do

several deployments, instead of one big deployment that introduces both

code and schema changes at once. That’s only practical if the deployments

are (at least mostly) automated, and if the organization offers enough

continuity that you can actually finish the change process.

If the developers are constantly putting out fires, chances are they

never get around to adding that final desired NOT NULL constraint,

and some undiscovered bug will lead to missing information later

down the road.

Time

Create column
users.last_login

as NULLable

Set users.last_login
where it’s NULL
(data migration)

Set users.last_login
on each login attempt

and user creation
Stop using table
login_attempts

Add NOT NULL
Constraint to

users.last_login.
DROP TABLE

login_attemptsDa
ta

ba
se

Ap
pl

ic
at

io
n

Figure 13-1. Sequence of application and database update steps.
Each database version is compatible with the application versions
before and after it, and vice versa.

Chapter 13 State ManageMent

180

You should also set up some kind of issue tracker with which you can

trace the path of schema migrations, to make sure that none remains

unfinished, for example, in the case of a developer leaving the company.

 Tooling
Unfortunately, I know of no tooling that fully supports the intertwined

database and application release cycle that I outlined. There are tools that

manage schema changes in general. For example, Sqitch4 and Flyway5 are

rather general frameworks for managing database changes and rollbacks.

On the lower level, there are tools such as apgdiff that compare the old

and new schemas and use that comparison to generate DDL statements

that bring you from one version to the next. Such automatically generated

DDLs can form the basis of the upgrade scripts that Sqitch or Flyway then

manage.

Some ORMs also come with frameworks that promise to manage

schema migrations for you. Carefully evaluate whether they allow rollbacks

without losing data.

 Structure
If you decouple application deployments from schema deployments, it

follows that you must have at least two separately deployable packages:

one for the application and one for the database schema and schema

migration scripts. If you want or have to support rollbacks of database

schemas, you must remember that you need the metadata associated with

the new schema to be able to roll back to the old version.

4 https://sqitch.org/.
5 https://flywaydb.org/.

Chapter 13 State ManageMent

https://sqitch.org/
https://flywaydb.org/

181

The database description for version 5 of the schema doesn’t know

how to roll back from version 6 to version 5, because it knows nothing

about version 6. So, you should always keep the newest version of the

schema file package installed and separate the installed version from the

currently active database version. The tooling that controls the schema

migrations can be independent of the application and its schema, and so

should live in a third software package.

 No Silver Bullet
There is no single solution that manages all your data migrations

automatically for you during your deployments. You have to carefully

engineer the application and database changes to decouple and

deploy them separately. This is typically more work on the application

development side, but it buys you the ability to deploy and roll back

without being blocked by database changes.

Tooling is available for some pieces but typically not for the big picture.

Someone has to keep track of the application and schema versions—or

automate them.

13.3 Summary
State held in a database can complicate application upgrades.

Incompatible data structure and schema changes can be broken up into

several smaller steps, each of which is compatible with the previous one.

This allows application upgrades without downtime, at the cost of

having to do several application and schema deployments.

Chapter 13 State ManageMent

183© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0_14

CHAPTER 14

Conclusions
and Outlook
After reading this book, you should have a solid understanding of how

and why to implement continuous integration (CI) and continuous

delivery (CD) for a Python project. It is not a small undertaking, but

the many examples should get you started pretty quickly, and even

an implementation of only some aspects can give you benefits. In a

collaborative environment, showing these benefits makes it easier to

convince others that it’s worth spending your time on toolchain and

process improvements.

 14.1 What’s Next?
In this final chapter, let’s look at some concepts that can help you grow an

even more mature software development process that ties into CI and CD.

 Improved Quality Assurance
Improving the quality of your software can be as simple as increasing the

unit test coverage of your application. However, not all classes of errors

can be caught that way, for example, performance regressions or errors for

cases you didn’t think of before.

184

To catch performance regressions, you can create a separate

performance testing environment and run a predefined set of load and

performance tests in this environment. You can add this as another stage

to your deployment pipeline.

Handling unexpected cases is harder, because, by definition, they

catch you by surprise. For certain types of applications, automatic fuzzing

can find inputs that make your application crash and provide these inputs

as examples to the developers.

There are architectural approaches to make your applications robust

against unexpected user input and error scenarios, but from a tooling

perspective, the best you can do is to make the application’s reactions to

such errors more robust.

Specialized error trackers can help you to identify such errors. They

give developers more insight into how to reproduce and diagnose those

errors. For example, Sentry1 is an open source, centralized error tracker

with a hosted solution available.

 Metrics
In bigger systems and organizations, gathering and aggregating metrics is

a requirement for keeping the system manageable. There is even a trend to

base monitoring on time-series data.

In the context of a deployment system, some data points you can

collect include the start date and duration of each stage or task, which

version it built, and the characteristics of that particular version, including

performance data, usage data such as engagement rates, size of the

generated artifacts, defects and vulnerabilities discovered, and so on.

1 https://getsentry.com/welcome/.

Chapter 14 ConClusions and outlook

https://getsentry.com/welcome/
https://getsentry.com/welcome/

185

Making sense of the gathered data is not always easy, and entire books

have been written about it. Nonetheless, it’s a good idea to establish a way

to collect metrics of all kinds and to create dashboards that help interpret

them.

 Infrastructure Automation
Configuration management is essential for scaling your infrastructure, but

a tool such as Ansible alone isn’t enough for all needs and scales.

 Configuration in a Database, Secrets Management

As the amount of configuration data grows, keeping it in plain text files

becomes impractical. Therefore, you will have to maintain a database of

the configuration and use Ansible’s dynamic inventory mechanism2 to

propagate the data into the configuration management system.

However, storing passwords, private keys, and other secrets in a

database is always a delicate business. You need an application on top of

the database, to avoid leaking such secrets to users who shouldn’t have

access to them.

Such applications already exist. Dedicated secret management

systems store secrets in encrypted form and carefully control access to

them. Examples of such applications are Keywhiz,3 by Square, or Vault,4 by

HashiCorp, the authors of Vagrant.

Secret management systems typically offer plug-ins to create service

accounts, such as MySQL or PostgreSQL database accounts, and rotate

their passwords without human involvement. Crucially, it also means that

no human has to ever see the randomly generated passwords.

2 http://docs.ansible.com/ansible/developing_inventory.html.
3 https://square.github.io/keywhiz/.
4 www.hashicorp.com/blog/vault.html.

Chapter 14 ConClusions and outlook

http://docs.ansible.com/ansible/developing_inventory.html
https://square.github.io/keywhiz/
https://www.hashicorp.com/blog/vault.html
http://docs.ansible.com/ansible/developing_inventory.html
https://square.github.io/keywhiz/
http://www.hashicorp.com/blog/vault.html

186

Instead of pushing application configuration into the machines

or containers where the application runs, you can also build your

applications to fetch the configuration from a central location. Such a

central location is typically called a service discovery system. Tools such

as etcd,5 from the CoreOS project, and Consul,6 from HashiCorp, make

it easier to manage large amounts of configuration. They also provide

additional features, such as basic monitoring for services and exposing

only working instances of a service end point to consumers.

To illustrate, consider that an application requiring large amounts

of configuration data could be supplied with just a secret key for

authentication against the service discovery system and the information

about which environment it runs in. The application then reads all

of its other configuration from the central service. If the application

needs access to a storage service, and there are multiple instances that

can provide this service, the monitoring service makes sure that the

application gets the address of a working instance.

Such a service discovery approach allows a pattern called

immutable infrastructure. This means you build a container (such

as a Docker container or even a virtual machine image) once, then,

instead of propagating just your application through the various testing

environments, you propagate the whole container through them. The

cluster management system provides the credentials for connecting to the

service discovery system; otherwise, the containers remain unchanged.

 Infrastructure As Code

A traditional CD system, as described in the earlier chapters, is usually

limited to one branch in a source control system, because there is only one

testing environment for deploying the code.

5 https://github.com/coreos/etcd.
6 www.consul.io/.

Chapter 14 ConClusions and outlook

https://github.com/coreos/etcd
https://www.consul.io/
https://github.com/coreos/etcd
http://www.consul.io/

187

Cloud infrastructure changes the game. It allows declarative

descriptions of whole environments, consisting of several databases,

services, and virtual servers. Instantiating a new environment then

becomes a matter of executing a single command, allowing you to deploy

each branch into a new, separate environment.

Leading tools for creating new environments are Terraform7 and

CloudFormation.8

 14.2 Conclusions
Automating deployments makes both software development and

operation more efficient and more pleasant. I’ve shown you a gentle and

practical introduction to it, and, in turn, enabled you to introduce CD to

your organization.

This is a big step for an organization that develops software, but it is

also a small part of automating your infrastructure and a small part of the

journey to an efficient and resilient software development process.

7 www.terraform.io/.
8 https://aws.amazon.com/cloudformation/.

Chapter 14 ConClusions and outlook

https://www.terraform.io/
https://aws.amazon.com/cloudformation/
http://www.terraform.io/
https://aws.amazon.com/cloudformation/

189© Moritz Lenz 2019
M. Lenz, Python Continuous Integration and Delivery,
https://doi.org/10.1007/978-1-4842-4281-0

Index

A
Ansible, 87

application-specific module, 95
apt module, 93
apt_repository and

apt_key modules, 97
connections and

inventory, 88–90
copy module, 91
deployment, 104–105
file module, 93
modules, 90
package module, 94
playbooks, 95–98
shell module, 90
template module, 92
yum and zypper module, 94

Ansible playbook fragment, 154
Ansible playbook,

GoCD configuration, 155
Ant/Rake builds, 124
apgdiff tool, 180
Application programming

interface (API), 4
Application-specific module, 95
Apt module, 93–94
Automated testing

catastrophic failures, 2

debugging aid, 3
design aid, 3–4
downsides, characteristics, 7
feedback, 1–2
product specification, 4

B
Building packages

debian repositories (see Debian
packaging, dh-virtualenv)

Python source tarball, 67–68

C
Config references, 134
Connection method, 88–90
Continuous delivery (CD),

171, 183, 186
Debian package,

installation, 64–65
debian repositories, 63–64
GoCD, 66
pipeline architecture, 59–61
testing environment, 61–62

Continuous integration (CI),
39, 40, 53, 183

Copy module, 91

https://doi.org/10.1007/978-1-4842-4281-0

190

D
Data definition language (DDL), 171
Data migrations, 171
Debian Backports, 128
Debian repository

configuration, 84
creation, 80, 82
preparing, 78, 80
serving, 82–83
signatures, 77–78

Debian packaging, dh-virtualenv
creation, 72–74
metadata, 70
python dependencies, 71
tradeoffs, 74

Decoupling application
column adding, 174
column dropping, 173
data migrations, 181
deployable packages, 180
metadata, 180
schema change, example

(see Schema change)
schema migrations, 181

Dependency injection
technique, 24–26

Deployment system, metrics, 184
deployment-utils repository, 164–165
Downsides, test

brittleness, 6
effort, 5
maintenance, 5
security, 6

E
Error trackers, 184
Extreme Programming (XP), 3

F
File module, Ansible, 93
Flyway, 180

G
gh-ost tool, 177
Go continuous delivery (GoCD),

66, 107, 123–124, 153, 155,
156, 164–165

agent environments, 126
artifact repository, 127
debian

agent, installation, 129–130
server, installation, 127, 129

Git repositories, 126
materials, 126
pipeline organization, 124–125
resources, 125
server component, 124
SSH Key, 132
XML configuration, 130–132

GPG key pair, 120
Graphical user interface (GUI), 6

H
Hotfix pipeline, 154

Index

191

I
Immutable infrastructure, 186
Infrastructure automation

code, 186
database, 185–186
immutable infrastructure, 186

Integrated smoke test, 160
Integration tests, 8
Inventory/host file, 88–90

J, K
Jenkins

architectural constraint
checking, 52

code coverage, 51
coding style, 51
complexity, 51
configuration, 44–47
Docker, 41–42
job creation, 43
notifications, 49
post-build actions, 48
responsibilities, 49
source control repository,

configuration, 43

L
last_login table, 177
LDAP/Active Directory–based

authentication, 129
Lineinfile module, Ansible, 97

M
Matheval project

application logic, 35–37
flask framework, 35–36
JSon data tree, 34

Mock objects, 27
Modules, 90
MySQL, 176

N, O
NOT NULL constraint, 173, 179

P
Package module, 94
Password file-based

authentication, 129
Patching, 28–29, 31
Performance tests, 10–11
ping module, 89
Pipeline

build stage, 136
debian package, 132–133, 144
deployment

mitigations, 167–168
risk, 167
security fix, 169
software bill, 169–170

directory layout, 134
GoCD, 139–141
GoCD configuration, 150–151
history view, 156

Index

192

overview, 149
package deployment

ansible, 147
GoCD configuration, 148

package uploading in
GoCD configuration, 143–145
user accounts

and security, 146–147
stages, jobs, tasks

and artifacts, 134–136
triggering, 165
unique version

numbers, 137–138
unique version string, 139
version recycling, 137

Pipeline improvements
installing, 154
rollbacks, 153–154
running smoke

(see Running smoke tests)
Playbooks, 95–98

apt cache, 102
roles, 101–104
variables, 99–101

Plug-ins, 134
PostgreSQL database, 174
Puppet-managed machine, 65
Python-matheval pipeline, 161–162

Q
Quality assurance, 183–184

R
Reasons/automated

deployments, CD
feedback cycles, 55–56
quality assurance techniques, 58
release cycles, 55
release process, 56–57
microservice pattern, 57
time savings, 54

Running smoke tests
adding smoke tests, 159–161
black box, 158–159
smoke description, 157
white box, 158

S
Schema change

application version, 178
database change script, 175, 179
data migration, 177–178
load, 175
login attempts,

application logs, 174, 178
new column

apgdiff tool, 176
login_attempts, 177
migration script, 176
NULL values, 177
users.last_login, 175, 177

NOT NULL constraint, 178
web application, 175

Pipeline (cont.)

Index

193

Schema version, 175
Secret management

systems, 185
Secure Shell (SSH), 88, 90
Service discovery system, 186
Service module, 97
Shell module, 90–91
Smoke tests, 10, 160
Software as a service (SaaS), 40
Sqitch, 180
SSH key, 167–168
State management

database changes, 172
database schema, 172
rollbacks, 172

Subversion (svn), 126
sudo approach, 168
System tests, 9

T
Template module, 92
Test-driven development (TDD), 3
tox command, 33
Transport Layer Security (TLS), 9
Travis CI, 40

U
Unit testing, 7–8

binary search, 15, 17–18
context manager, 19–20

dependency injection
technique, 24–26

exception, code, 19
external actions, 20–21
external dependencies, 21–24
function, implementing, 15
Mock objects, 27–28
patching, 28–29
pytest, 16–17, 30–31
python path, 31
tox command, 33, 34

User module, 91

V
Vagrant, 108

command-line tool, 109
installation, 109
IP network, 110–113
vagrantfile, 109
VMs, 110, 112–113

Vagrantfile, 109
Variables, 99–100
Virtualenv, 14
Virtual machines

(VMs), 11, 107, 115
ansible playbook, 114
configuration, 113–116, 118–119
GoCD server, 120
GPG key pair, 120
inventory/host file, 114
SSH key, 119

Index

194

Virtual playground,
requirements and
resource usage, 107–108

W, X
Web interface, 130

Y
YUM module, 94

Z
Zypper module, 94

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Automated Testing
	1.1 What Do We Want from a Test?
	Fast Feedback
	Confidence
	Debugging Aid
	Design Help
	Specification of the Product

	1.2 Downsides of Tests
	Effort
	Extra Code to Maintain
	Brittleness
	False Sense of Security

	1.3 Characteristics of a Good Test
	1.4 Kinds of Tests
	Unit Tests
	Integration Tests
	System Tests
	Smoke Tests
	Performance Tests

	1.5 Summary

	Chapter 2: Unit Testing in Python
	2.1 Digression: Virtualenvs
	2.2 Getting Started with Unit Tests
	The First Test
	Writing More Tests
	Testing the Unhappy Path

	2.3 Dealing with Dependencies
	Separating Logic from External Dependencies
	Dependency Injection for Testing
	Mock Objects
	Patching

	2.4 Separating Code and Tests
	Tweaking the Python Path

	2.5 More on Unit Testing and Pytest
	2.6 Running Unit Tests in Fresh Environments
	2.7 Another Sample Project: matheval
	Application Logic

	2.8 Summary

	Chapter 3: Continuous Integration with Jenkins
	3.1 Continuous Integration Servers
	3.2 Getting Started with Jenkins
	Run Jenkins in Docker
	Configure a Source Code Repository
	Creating the First Jenkins Job

	3.3 Exporting More Test Details to Jenkins
	3.4 Patterns for Working with Jenkins
	Responsibilities
	Notifications
	Feature Branches and Pull Requests

	3.5 Other Metrics in Jenkins
	Code Coverage
	Complexity
	Coding Style
	Architectural Constraint Checking

	3.6 Summary

	Chapter 4: Continuous Delivery
	4.1 Reasons for CD and Automated Deployments
	Time Savings
	Shorter Release Cycles
	Shorter Feedback Cycles
	Reliability of Releases
	Smaller Increments Make Triaging Easier
	More Architectural Freedom
	Advanced Quality Assurance Techniques

	4.2 A Plan for CD
	The Pipeline Architecture
	Anti-Pattern: Separate Builds per Environment
	Everything Hinges on the Packaging Format
	Technology for Managing Debian Repositories
	Tooling for Installing Packages
	Controlling the Pipeline

	4.3 Summary

	Chapter 5: Building Packages
	5.1 Creating a Python Source Tarball
	5.2 Debian Packaging with dh-virtualenv
	Getting Started with Packaging

	5.3 The control File
	Directing the Build Process
	Declaring Python Dependencies
	Building the Package
	Creating the python-matheval Package
	Tradeoffs of dh-virtualenv

	5.4 Summary

	Chapter 6: Distributing Debian Packages
	6.1 Signatures
	6.2 Preparing the Repository
	6.3 Automating Repository Creation and Package Addition
	6.4 Serving the Repositories
	Configuring a Machine to Use the Repository

	6.5 Summary

	Chapter 7: Package Deployment
	7.1 Ansible: A Primer
	Connections and Inventory
	Modules
	The shell Module
	The copy Module
	The template Module
	The file Module
	The apt Module
	The yum and zypper Modules
	The package Module
	Application-Specific Modules
	Playbooks
	Variables
	Roles

	7.2 Deploying with Ansible
	7.3 Summary

	Chapter 8: A Virtual Playground for Automating Deployments
	8.1 Requirements and Resource Usage
	8.2 Introducing Vagrant
	Network and Vagrant Setup

	8.3 Configuring the Machines
	8.4 Summary

	Chapter 9: Building in the Pipeline with Go Continuous Delivery
	9.1 About Go Continuous Delivery
	Pipeline Organization
	Matching of Jobs to Agents
	A Word on Environments
	Materials
	Artifacts

	9.2 Installation
	Installing the GoCD Server on Debian
	Installing a GoCD Agent on Debian
	First Contact with GoCD’s XML Configuration
	Creating an SSH Key

	9.3 Building in the Pipeline
	Directory Layout
	Stages, Jobs, Tasks, and Artifacts
	The Pipeline in Action
	Version Recycling Considered Harmful
	Constructing Unique Version Numbers
	Other Bits and Pieces Around the Build
	Plugging It into GoCD

	9.4 Summary

	Chapter 10: Distributing and Deploying Packages in the Pipeline
	10.1 Uploading in the Pipeline
	User Accounts and Security

	10.2 Deploying in the Pipeline
	10.3 Results
	10.4 Going All the Way to Production
	10.5 Achievement Unlocked: Basic Continuous Delivery

	Chapter 11: Pipeline Improvements
	11.1 Rollbacks and Installing Specific Versions
	Implementation
	Try It!

	11.2 Running Smoke Tests in the Pipeline
	When to Smoke?
	White Box Smoke Testing
	Sample Black Box Smoke Test
	Adding Smoke Tests to the Pipeline and Rolling Releases

	11.3 Configuration Templates
	11.4 Avoiding the Rebuild Stampede
	11.5 Summary

	Chapter 12: Security
	12.1 The Dangers of Centralization
	12.2 Time to Market for Security Fixes
	12.3 Audits and Software Bill of Materials
	12.4 Summary

	Chapter 13: State Management
	13.1 Synchronization Between Code and Database Versions
	13.2 Decoupling Application and Database Versions
	Example of a Schema Change
	Creating the New Column, NULLable
	Data Migration
	Applying Constraints, Cleaning Up

	Prerequisites
	Tooling
	Structure
	No Silver Bullet

	13.3 Summary

	Chapter 14: Conclusions and Outlook
	14.1 What’s Next?
	Improved Quality Assurance
	Metrics
	Infrastructure Automation
	Configuration in a Database, Secrets Management
	Infrastructure As Code

	14.2 Conclusions

	Index

