

Continuous Integration

www.awprofessional.com

Continuous Integration

Improving Software Quality
and Reducing Risk

Paul M. Duvall

with

Steve Matyas and Andrew Glover

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Duvall, Paul M.
Continuous integration : improving software quality and reducing risk

/ Paul M. Duvall, with Steve Matyas and Andrew Glover.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-33638-5 (pbk. : alk. paper) 1. Computer

software—Quality control. 2. Computer software—Testing. 3. Computer
software—Reliability. I. Matyas, Steve, 1979- II. Glover, Andrew,
1976- III. Title.

QA76.76.Q35D89 2007
005—dc22

2007012001

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 13: 978-0-321-33638-5
ISBN 10: 0-321-33638-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2007

http://www.awprofessional.com/safarienabled
www.awprofessional.com

I have been blessed with a wonderful family.
To my parents, Paul and Nona, and to my

brothers and sisters, Sue, Joan, John, Mary,
Sally, Tim, Pauline, and Evie.

—P.M.D.

This page intentionally left blank

vii

Contents

Foreword by Martin Fowler xiii
Foreword by Paul Julius xv
Preface xix
About the Authors xxxi
About the Contributors xxxiii

Part I A Background on CI: Principles and Practices 1

Chapter 1 Getting Started 3
Build Software at Every Change 4

Developer 6
Version Control Repository 7
CI Server 8
Build Script 10
Feedback Mechanism 10
Integration Build Machine 12

Features of CI 12
Source Code Compilation 12
Database Integration 14
Testing 15
Inspection 17
Deployment 18
Documentation and Feedback 20

Summary 20
Questions 20

Chapter 2 Introducing Continuous Integration 23
A Day in the Life of CI 25
What Is the Value of CI? 29

Reduce Risks 29
Reduce Repetitive Processes 30
Generate Deployable Software 31

viii Contents

Enable Better Project Visibility 31
Establish Greater Product Confidence 32

What Prevents Teams from Using CI? 32
How Do I Get to “Continuous” Integration? 33
When and How Should a Project Implement CI? 35
The Evolution of Integration 36
How Does CI Complement Other Development Practices? 37
How Long Does CI Take to Set Up? 38
CI and You 39
Commit Code Frequently 39
Don’t Commit Broken Code 41
Fix Broken Builds Immediately 41
Write Automated Developer Tests 41
All Tests and Inspections Must Pass 42
Run Private Builds 42
Avoid Getting Broken Code 43
Summary 44
Questions 44

Chapter 3 Reducing Risks Using CI 47
Risk: Lack of Deployable Software 49

Scenario: “It Works on My Machine” 50
Scenario: Synching with the Database 50
Scenario: The Missing Click 52

Risk: Late Discovery of Defects 53
Scenario: Regression Testing 53
Scenario: Test Coverage 54

Risk: Lack of Project Visibility 55
Scenario: “Did You Get the Memo?” 56
Scenario: Inability to Visualize Software 56

Risk: Low-Quality Software 57
Scenario: Coding Standard Adherence 58
Scenario: Architectural Adherence 59
Scenario: Duplicate Code 60

Summary 62
Questions 62

Chapter 4 Building Software at Every Change 65
Automate Builds 67
Perform Single Command Builds 69
Separate Build Scripts from Your IDE 73
Centralize Software Assets 74
Create a Consistent Directory Structure 75
Fail Builds Fast 76

Contents ix

Build for Any Environment 77
Build Types and Mechanisms 78

Build Types 78
Build Mechanisms 80
Triggering Builds 81

Use a Dedicated Integration Build Machine 81
Use a CI Server 85
Run Manual Integration Builds 86
Run Fast Builds 87

Gather Build Metrics 88
Analyze Build Metrics 89
Choose and Implement Improvements 89

Stage Builds 92
Reevaluate 96

How Will This Work for You? 96
Summary 101
Questions 102

Part II Creating a Full-Featured CI System 105

Chapter 5 Continuous Database Integration 107
Automate Database Integration 110

Creating Your Database 112
Manipulating Your Database 115
Creating a Build Database Orchestration Script 116

Use a Local Database Sandbox 117
Use a Version Control Repository to Share Database Assets 119
Continuous Database Integration 121
Give Developers the Capability to Modify the Database 123
The Team Focuses Together on Fixing Broken Builds 124
Make the DBA Part of the Development Team 124
Database Integration and the Integrate Button 125

Testing 125
Inspection 125
Deployment 126
Feedback and Documentation 126

Summary 126
Questions 128

Chapter 6 Continuous Testing 129
Automate Unit Tests 132
Automate Component Tests 134

x Contents

Automate System Tests 136
Automate Functional Tests 137
Categorize Developer Tests 138
Run Faster Tests First 141

Unit Tests 141
Component Tests 141
System Tests 143

Write Tests for Defects 143
Make Component Tests Repeatable 148
Limit Test Cases to One Assert 156
Summary 158
Questions 159

Chapter 7 Continuous Inspection 161
What Is the Difference between Inspection and Testing? 164
How Often Should You Run Inspectors? 165
Code Metrics: A History 166
Reduce Code Complexity 167
Perform Design Reviews Continuously 170
Maintain Organizational Standards with Code Audits 173
Reduce Duplicate Code 176

Using PMD-CPD 177
Using Simian 178

Assess Code Coverage 180
Evaluate Code Quality Continuously 182

Coverage Frequency 183
Coverage and Performance 184

Summary 185
Questions 186

Chapter 8 Continuous Deployment 189
Release Working Software Any Time, Any Place 191
Label a Repository’s Assets 191
Produce a Clean Environment 194
Label Each Build 195
Run All Tests 196
Create Build Feedback Reports 196
Possess Capability to Roll Back Release 199
Summary 199
Questions 200

Chapter 9 Continuous Feedback 203
All the Right Stuff 205

The Right Information 205

Contents xi

The Right People 207
The Right Time 208
The Right Way 209

Use Continuous Feedback Mechanisms 209
E-mail 210
SMS (Text Messages) 212
Ambient Orb and X10 Devices 214
Windows Taskbar 217
Sounds 218
Wide-Screen Monitors 220

Summary 222
Questions 222

Epilogue The Future of CI 223

Appendix A CI Resources 227
Continuous Integration Web Sites/Articles 227
CI Tools/Product Resources 229
Build Scripting Resources 232
Version Control Resources 233
Database Resources 234
Testing Resources 236
Automated Inspection Resources 239
Deployment Resources 241
Feedback Resources 241
Documentation Resources 243

Appendix B Evaluating CI Tools 245
Considerations When Evaluating Tools 247

Functionality 248
Compatibility with Your Environment 253
Reliability 254
Longevity 254
Usability 255

Automated Build Tools 255
Build Scheduler Tools 263
Conclusion 272

Bibliography 273
Index 275

This page intentionally left blank

xiii

Foreword by Martin Fowler*

In my early days in the software industry, one of the most awkward
and tense moments of a software project was integration. Modules that
worked individually were put together and the whole usually failed in
ways that were infuriatingly difficult to find. Yet in the last few years,
integration has largely vanished as a source of pain for projects, dimin-
ishing to a nonevent.

The essence of this transformation is the practice of integrating
more frequently. At one point a daily build was considered to be an
ambitious target. Most projects I talk to now integrate many times a
day. Oddly enough, it seems that when you run into a painful activity, a
good tip is to do it more often.

One of the interesting things about Continuous Integration is how
often people are surprised by the impact that it has. We often find peo-
ple dismiss it as a marginal benefit, yet it can bring an entirely differ-
ent feel to a project. There is a much greater sense of visibility because
problems are detected faster. Since there is less time between introduc-
ing a fault and discovering you have it, the fault is easier to find
because you can easily look at what’s changed to help you find the
source. Coupled with a determined testing program, this can lead to a
drastic reduction in bugs. As a result, developers spend less time
debugging and more time adding features, confident they are building
on a solid foundation.

Of course, it isn’t enough simply to say that you should integrate
more frequently. Behind that simple catch phrase are a bunch of princi-
ples and practices that can make Continuous Integration a reality. You
can find much of this advice scattered in books and on the Internet

*Martin Fowler is series editor and chief scientist at ThoughtWorks.

xiv Foreword

(and I’m proud to have helped add to this content myself), but you
have to do the digging yourself.

So I’m glad to see that Paul has gathered this information together
into a cohesive book, a handbook for those who want to put together
this best practice. Like any simple practice, there’s lots of devil in the
details. Over the last few years we’ve learned a lot about those details
and how to deal with them. This book collects these lessons to provide
as solid a foundation for Continuous Integration as Continuous Inte-
gration does for software development.

xv

Foreword by Paul Julius

I have been hoping someone would get around to writing this book—
sooner rather than later. Secretly, I always hoped it would be me. But
I’m glad that Paul, Steve, and Andy finally pulled it all together into a
cohesive, thoughtful treatise.

I have been knee-deep in Continuous Integration for what seems
like forever. In March 2001, I cofounded and began serving as admin-
istrator for the CruiseControl open source project. At my day job, I
consult at ThoughtWorks, helping clients structure, build, and deploy
testing solutions using CI principles and tools.

Activity on the CruiseControl mailing lists really took off in 2003.
I had the opportunity to read descriptions of thousands of different CI
scenarios. The problems encountered by software developers are var-
ied and complex. The reason developers go to all this work has
become clearer and clearer to me. CI advantages—like rapid feedback,
rapid deployment, and repeatable automated testing—far outweigh the
complication. Yet, it is easy to miss the mark when creating these
types of environments. And I never would have guessed when we first
released CruiseControl some of the exciting ways that people would
use CI to improve their software development processes.

In 2000, I was working on a large J2EE application development
project using all the features offered in the specification. The applica-
tion was amazing in its own right, but a bear to build. By build, I mean
compile, test, archive, and conduct functional testing. Ant was still in
its infancy and had yet to become the de facto standard for Java appli-
cations. We used a finely orchestrated series of shell scripts to compile
everything and run unit tests. We used another series of shell scripts to
turn everything into deployable archives. Finally, we jumped through
some manual hoops to deploy the JARs and run our functional test
suite. Needless to say, this process became laborious and tedious, and
it was fraught with mistakes.

xvi Foreword

So started my quest to create a reproducible “build” that required
pressing “one button” (one of Martin Fowler’s hot topics back then).
Ant solved the problem of making a cross-platform build script. The
remaining piece I wanted was something that would handle the tedious
steps: deployment, functional testing, and reporting of the results. At
the time, I investigated the existing solutions, but to no avail. I never
quite got everything working the way I wanted on that project. The
application made it successfully through development and into pro-
duction, but I knew that things could be better.

Between the end of that project and the start of the next, I found
the answer. Martin Fowler and Matt Foemmel had just published their
seminal article on CI. Fortuitously, I paired up with some other
ThoughtWorkers who where working on making the Fowler/Foemmel
system a reusable solution. I was excited, to say the least! I knew it
was the answer to my prayers lingering from the previous project.
Within a few weeks, we had everything ready to go and started using it
on several existing projects. I even visited a willing Beta test site to
install CruiseControl’s precursor in a full-scale objective enterprise.
Shortly after that, we went open source. For me, there has been no
looking back.

As a consultant at ThoughtWorks, I run into some of the most
complicated enterprise deployment architectures out there. Our clients
are frequently looking for a quick fix based on a high-level under-
standing of the advantages promised by the industry literature. As with
any technology, there exists a fair bit of misinformation about how
easy it will be to transform your enterprise. If years of consulting have
taught me anything, it is that nothing is as easy as it looks.

I like to talk to clients about practically applying CI principles. I
like to stress the importance of shifting the development “cadence” to
truly leverage the advantages. If developers only check in once a
month, lack focus around automated testing, or have no social impera-
tive to fix broken builds, there are big issues that must be addressed to
reap the full benefits of CI.

Does that mean that IT managers should forget about CI until these
practices have been shifted? No. In fact, using CI practices can be one
of the fastest motivators for change. I find that installing a CI tool like
CruiseControl prompts software teams to be proactive instead of reac-

Foreword xvii

tive. The change does not happen overnight and you have to set your
expectations appropriately—including those of the IT managers
involved. With persistence and a good understanding of the underlying
principles, even the most complicated environments can be made sim-
pler to understand, simpler to test, and simpler to get into production
quickly.

The authors have leveled the playing field with this book. I find
this book to be both comprehensive and far-reaching. The book’s in-
depth coverage of the most important aspects of CI will help readers
make well-informed decisions. The broad range of topics covers the
vast array of approaches that dominate the CI landscape today and
helps readers weigh the tradeoffs they will have to make. Finally, I
love seeing the work that so many have strived to achieve in the CI
community become formalized as the basis for further innovation.
Because of this, I highly recommend this book as a vital resource for
making sense of complicated geography presented by enterprise appli-
cations by using some CI magic.

This page intentionally left blank

xix

Preface

Early in my career, I saw a full-page advertisement in a magazine that
showed one keyboard key, similar to the Enter key, labeled with the
word “Integrate” (see Figure P-1). The text below the key read, “If
only it were this easy.” I am not sure who or what this ad was for, but it
struck a chord with me. In considering software development, I
thought, surely that would never be achievable because, on my project,
we spent several days in “integration hell” attempting to cobble
together the myriad software components at the end of most project
milestones. But I liked the concept, so I cut out the ad and hung it on
my wall. To me, it represented one of my chief goals in being an effi-
cient software developer: to automate repetitive and error-prone pro-
cesses. Furthermore, it embodied my belief in making software
integration a “nonevent” (as Martin Fowler has called this) on a
project—something that just happens as a matter of course. Continu-
ous Integration (CI) can help make integration a nonevent on your
project.

FIGURE P-1 Integrate!

P {
[}

] |
\

“
‘ Integrate

?
/

Shift

xx Preface

What Is This Book About?

Consider some of the more typical development processes on a soft-
ware project: Code is compiled, and data is defined and manipulated
via a database; testing occurs, code is reviewed, and ultimately, soft-
ware is deployed. In addition, teams almost certainly need to commu-
nicate with one another regarding the status of the software. Imagine if
you could perform these processes at the press of a single button.

This book demonstrates how to create a virtual Integrate button to
automate many software development processes. What’s more, we
describe how this Integrate button can be pressed continuously to
reduce the risks that prevent you from creating deployable applica-
tions, such as the late discovery of defects and low-quality code. In
creating a CI system, many of these processes are automated, and they
run every time the software under development is changed.

What Is Continuous Integration?

The process of integrating software is not a new problem. Software
integration may not be as much of an issue on a one-person project
with few external system dependencies, but as the complexity of a
project increases (even just adding one more person), there is a greater
need to integrate and ensure that software components work
together—early and often. Waiting until the end of a project to inte-
grate leads to all sorts of software quality problems, which are costly
and often lead to project delays. CI addresses these risks faster and in
smaller increments.

In his popular “Continuous Integration” article,1 Martin Fowler
describes CI as:

. . . a software development practice where members of a team inte-
grate their work frequently, usually each person integrates at least
daily—leading to multiple integrations per day. Each integration is

1. See www.martinfowler.com/articles/continuousIntegration.html.

www.martinfowler.com/articles/continuousIntegration.html

Preface xxi

verified by an automated build (including test) to detect integration
errors as quickly as possible. Many teams find that this approach
leads to significantly reduced integration problems and allows a team
to develop cohesive software more rapidly.

In my experience, this means that:

• All developers run private builds2 on their own workstations
before committing their code to the version control repository to
ensure that their changes don’t break the integration build.

• Developers commit their code to a version control repository at
least once a day.

• Integration builds occur several times a day on a separate build
machine.

• 100% of tests must pass for every build.

• A product is generated (e.g., WAR, assembly, executable, etc.)
that can be functionally tested.

• Fixing broken builds is of the highest priority.

• Some developers review reports generated by the build, such as
coding standards and dependency analysis reports, to seek areas
for improvement.

This book discusses the automated aspects of CI because of the
many benefits you receive from automating repetitive and error-prone
processes; however, as Fowler identifies, CI is the process of integrat-
ing work frequently—and this need not be an automated process to
qualify. We clearly believe that since there are many great tools that
support CI as an automated process, using a CI server to automate
your CI practices is an effective approach. Nevertheless, a manual
approach to integration (using an automated build) may work well
with your team.

2. The Private (System) Build and Integration Build patterns are covered in
Software Configuration Management Patterns by Stephen P. Berczuk and Brad
Appleton.

xxii Preface

Rapid Feedback
Continuous Integration increases your opportunities for feed-
back. Through it, you learn the state of the project several times
a day. CI can be used to reduce the time between when a defect
is introduced and when it is fixed, thus improving overall software
quality.

A development team should not believe that because their CI sys-
tem is automated, they are safe from integration problems. It is even
less true if the group is using an automated tool for nothing more than
compiling source code; some refer to this as a “build,” which it is not
(see Chapter 1). The effective practice of CI involves much more than
a tool. It includes the practices we outline in the book, such as frequent
commits to a version control repository, fixing broken builds immedi-
ately, and using a separate integration build machine.

The practice of CI enables faster feedback. When using effective
CI practices, you’ll know the overall health of software under develop-
ment several times a day. What’s more, CI works well with practices
like refactoring and test-driven development, because these practices
are centered on the notion of making small changes. CI, in essence,
provides a safety net to ensure that changes work with the rest of the
software. At a higher level, CI increases the collective confidence of
teams and lessens the amount of human activity needed on projects,
because it’s often a hands-off process that runs whenever your soft-
ware changes.

A Note on the Word “Continuous”
We use the term “continuous” in this book, but the usage is tech-
nically incorrect. “Continuous” implies that something kicks off
once and never stops. This suggests that the process is con-
stantly integrating, which is not the case in even the most intense
CI environment. So, what we are describing in this book is more
like “continual integration.”

Preface xxiii

Who Should Read This Book?

In our experience, there is a distinct difference between someone who
treats software development as a job and someone who treats it as a
profession. This book is for those who work at their profession and
find themselves performing repetitive processes on a project (or we
will help you realize just how often you are doing so). We describe the
practices and benefits of CI and give you the knowledge to apply these
practices so that you can direct your time and expertise to more impor-
tant, challenging issues.

This book covers the major topics relating to CI, including how to
implement CI using continuous feedback, testing, deployment, inspec-
tion, and database integration. No matter what your role in software
development, you can incorporate CI into your own software develop-
ment processes. If you are a software professional who wants to
become increasingly effective—getting more done with your time and
with more dependable results—you will gain much from this book.

Developers
If you have noticed that you’d rather be developing software for users
than fiddling with software integration issues, this book will help you
get there without much of the “pain” you thought would be involved.
This book doesn’t ask you to spend more time integrating; it’s about
making much of software integration a nonevent, leaving you to focus
on doing what you love the most: developing software. The many
practices and examples in this book demonstrate how to implement an
effective CI system.

Build/Configuration/Release Management
If your job is to get working software out the door, you’ll find this
book particularly interesting as we demonstrate that by running pro-
cesses every time a change is applied to a version control repository,
you can generate cohesive, working software. Many of you are

xxiv Preface

managing builds while filling other roles on your project, such as
development. CI will do some of the “thinking” for you, and instead of
waiting until the end of the development lifecycle, it creates deploy-
able and testable software several times a day.

Testers
CI offers a rapid feedback approach to software development, all but
eliminating the traditional pain of reoccurring defects even after
“fixes” were applied. Testers usually gain increased satisfaction and
interest in their roles on a project using CI, since software to test is
available more often and with smaller scopes. With a CI system in
your development lifecycle, you test all along the way, rather than the
typical feast or famine scenario where testers are either testing into the
late hours or not testing at all.

Managers
This book can have great impact for you if you seek a higher level of
confidence in your team’s capability to consistently and repeatedly
deliver working software. You can manage scopes of time, cost, and
quality much more effectively because you are basing your decisions
on working software with actual feedback and metrics, not just task
items on a project schedule.

Organization of This Book

This book is divided into two parts. Part I is an introduction to CI and
examines the concept and its practices from the ground up. Part I is
geared toward those readers not familiar with the core practices of CI.
We do not feel the practice of CI is complete, however, without a Part
II that naturally expands the core concepts into other effective pro-
cesses performed by CI systems, such as testing, inspection, deploy-
ment, and feedback.

Preface xxv

Part I: A Background on CI—Principles and Practices
Chapter 1, Getting Started, gets you right into things with a high-level
example of using a CI server to continuously build your software.

Chapter 2, Introducing Continuous Integration, familiarizes you
with the common practices and how we got to CI.

Chapter 3, Reducing Risks Using CI, identifies the key risks CI
can mitigate using scenario-based examples.

Chapter 4, Building Software at Every Change, explores the prac-
tice of integrating your software for every change by leveraging the
automated build.

Part II: Creating a Full-Featured CI System
Chapter 5, Continuous Database Integration, moves into more
advanced concepts involving the process of rebuilding databases and
applying test data as part of every integration build.

Chapter 6, Continuous Testing, covers the concepts and strategies
of testing software with every integration build.

Chapter 7, Continuous Inspection, takes you through some auto-
mated and continuous inspections (static and dynamic analysis) using
different tools and techniques.

Chapter 8, Continuous Deployment, explores the process of
deploying software using a CI system so that it can be functionally
tested.

Chapter 9, Continuous Feedback, describes and demonstrates the
use of continuous feedback devices (such as e-mail, RSS, X10, and the
Ambient Orb) so that you are notified on build success or failure as it
happens.

The Epilogue explores the future possibilities of CI.

Appendixes
Appendix A, CI Resources, includes a list of URLs, tools, and papers
related to CI.

Appendix B, Evaluating CI Tools, assesses the different CI servers
and related tools on the market, discusses their applicability to the
practices described in the book, identifies the advantages and disad-
vantages of each, and explains how to use some of their more interest-
ing features.

xxvi Preface

Other Features
The book includes features that help you to better learn and apply what
we describe in the text.

• Practices—We cover more than forty CI-related practices in this
book. Many chapter subheadings are practices. A figure at the
beginning of most chapters illustrates the practices covered and
lets you scan for areas that interest you. for example, use a dedi-
cated integration build machine and commit code frequently are
both examples of practices discussed in this book.

• Examples—We demonstrate how to apply these practices by
using various examples in different languages and platforms.

• Questions—Each chapter concludes with a list of questions to
help you evaluate the application of CI practices on your project.

• Web site—The book’s companion Web site,
www.integratebutton.com, provides book updates, code
examples, and other material.

What You Will Learn

By reading this book, you will learn concepts and practices that enable
you to create cohesive, working software many times a day. We have
taken care to focus on the practices first, followed by the application of
these practices, with examples included as demonstration wherever
possible. The examples use different development platforms, such as Java,
Microsoft .NET, and even some Ruby. CruiseControl (Java and .NET
versions) is the primary CI server used throughout the book; however,
we have created similar examples using other servers and tools on the
companion Web site (www.integratebutton.com) and in Appendix B.

As you work your way through the book, you gain these insights:

• How implementing CI produces deployable software at every
step in your development lifecycle.

• How CI can reduce the time between when a defect is introduced
and when that defect is detected, thereby lowering the cost to fix it.

• How you can build quality into your software by building software
often rather than waiting to the latter stages of development.

www.integratebutton.com
www.integratebutton.com

Preface xxvii

What This Book Does Not Cover

This book does not cover every tool—build scheduling, programming
environment, version control, and so on—that makes up your CI sys-
tem. It focuses on the implementation of CI practices to develop an
effective CI system. CI practices are discussed first; if a particular tool
demonstrated is no longer in use or doesn’t meet your particular needs,
simply apply the practice using another tool to achieve the same effect.

It is also not possible, or useful, to cover every type of test, feed-
back mechanism, automated inspector, and type of deployment used
by a CI system. We hope that a greater goal is met by focusing on the
range of key practices, using examples of techniques and tools for
database integration, testing, inspection, and feedback that may inspire
applications as different as the projects and teams that learn about
them. As mentioned throughout the book, the book’s companion Web
site, www.integratebutton.com, contains examples using other tools
and languages that may not be covered in the book.

Authorship

This book has three coauthors and one contributor. I wrote most of the
chapters. Steve Matyas contributed to Chapters 4, 5, 7, 8, and Appen-
dix A, and constructed some of the book’s examples. Andy Glover
wrote Chapters 6, 7, and 8, provided examples, and made contributions
elsewhere in the book. Eric Tavela wrote Appendix B. So when sen-
tences use first-person pronouns, this should provide clarity as to who
is saying what.

About the Cover

I was excited when I learned that our book was to be a part of the
renowned Martin Fowler Signature Series. I knew this meant that I
would get to choose a bridge for the cover of the book. My coauthors
and I are part of a rare breed who grew up in the Washington, D.C.,

www.integratebutton.com

xxviii Preface

area. For those of you not from the region, it’s a very transient area.
More specifically, we are from Northern Virginia and figured it would
be a fitting tribute to choose the Natural Bridge in Virginia for the
cover. I had never visited the bridge until early 2007—after I had cho-
sen it for the book cover. It has a very interesting history and I found it
incredible that it’s a functioning bridge that automobiles travel on
every day. (Of course, I had to drive my car over it a couple of times.)
I’d like to think that after reading this book, you will make CI a natural
part of your next software development project.

Acknowledgments

I can’t tell you how many times I’ve read acknowledgments in a book
and authors wrote how they “couldn’t have done it by (themselves)”
and other such things. I always thought to myself, “They’re just being
falsely modest.” Well, I was dead wrong. This book was a massive
undertaking to which I am grateful to the people listed herein.

I’d like to thank my publisher, Addison-Wesley. In particular, I’d
like to express my appreciation to my executive editor, Chris Guz-
ikowski, for working with me during this exhaustive process. His
experience, insight, and encouragement were tremendous. Further-
more, my development editor, Chris Zahn, provided solid recommen-
dations throughout multiple versions and editing cycles. I’d also like to
thank Karen Gettman, Michelle Housley, Jessica D’Amico, Julie
Nahil, Rebecca Greenberg, and last but definitely not least, my first
executive editor, Mary O’Brien.

Rich Mills hosted the CVS server for the book and offered excel-
lent ideas during brainstorming sessions. I’d also like to thank my
mentor and friend, Rob Daly, for getting me into professional writing
in 2002 and for providing exceptionally detailed reviews throughout
the writing process. John Steven was instrumental in helping me start
this book’s writing process.

I’d like to express my gratitude to my coauthors, editor, and con-
tributing author. Steve Matyas and I endured many sleepless nights to
create what you are reading today. Andy Glover was our clutch writer,
providing his considerable developer testing experience to the project.

Preface xxix

Lisa Porter, our contributing editor, tirelessly combed through every
major revision to provide edits and recommendations which helped
increase the quality of the book. A thank you to Eric Tavela, who
wrote the CI tools appendix, and to Levent Gurses for providing his
experiences with Maven 2 in Appendix B.

We had an eclectic cadre of personal technical reviewers who pro-
vided excellent feedback throughout this project. They include Tom
Copeland, Rob Daly, Sally Duvall, Casper Hornstrup, Joe Hunt, Erin
Jackson, Joe Konior, Rich Mills, Leslie Power, David Sisk, Carl Tallis,
Eric Tavela, Dan Taylor, and Sajit Vasudevan.

I’d also like to thank Charles Murray and Cristalle Belonia for
their assistance, and Maciej Zawadzki and Eric Minick from Urban-
code for their help.

I am grateful for the support of many great people who inspire me
every day at Stelligent, including Burke Cox, Mandy Owens, David
Wood, and Ron Wright. There are many others who have inspired my
work over the years, including Rich Campbell, David Fado, Mike
Fraser, Brent Gendleman, Jon Hughes, Jeff Hwang, Sherry Hwang,
Sandi Kyle, Brian Lyons, Susan Mason, Brian Messer, Sandy Miller,
John Newman, Marcus Owen, Chris Painter, Paulette Rogers, Mark
Simonik, Joe Stusnick, and Mike Trail.

I also appreciate the thorough feedback from the Addison-Wesley
technical review team, including Scott Ambler, Brad Appleton, Jon
Eaves, Martin Fowler, Paul Holser, Paul Julius, Kirk Knoernschild,
Mike Melia, Julian Simpson, Andy Trigg, Bas Vodde, Michael Ward,
and Jason Yip.

I want to thank the attendees of CITCON Chicago 2006 for shar-
ing their experiences on CI and testing with all of us. In particular, I’d
like to acknowledge Paul Julius and Jeffrey Frederick for organizing
the conference, and everyone else who attended the event.

Finally, I’d like to thank Jenn for her unrelenting support and for
being there through the ups and downs of making this book.

Paul M. Duvall
Fairfax, Virginia
March 2007

This page intentionally left blank

xxxi

About the Authors

Paul M. Duvall is the CTO of Stelligent Incorporated, a consulting
firm and thought leader in helping development teams reliably and
rapidly produce better software by optimizing software production. He
has worked in virtually every role on a software development project,
from developer and tester to architect and project manager. Paul has
consulted for clients in various industries including finance, housing,
government, health care, and large independent software vendors. He
is a featured speaker at many leading software conferences. He authors
a series for IBM developerWorks called Automation for the People, is
a coauthor of the NFJS 2007 Anthology (Pragmatic Programmers,
2007), and is a contributing author of UML 2 Toolkit (Wiley, 2003). He
is a co-inventor of a clinical research data management system and
method that is patent pending. He actively blogs on www.testearly.com
and www.integratebutton.com.

Stephen M. Matyas III is the vice president of AutomateIT, a service
branch of 5AM Solutions, Inc., which helps organizations improve
software development through automation. Steve has a varied back-
ground in applied software engineering, including experience with
both commercial and government clients. Steve has performed a wide
variety of roles, from business analyst and project manager to devel-
oper, designer, and architect. He is a contributing author of UML 2
Toolkit (Wiley, 2003). He is a practitioner of many iterative and incre-
mental methodologies including Agile and Rational Unified Process
(RUP). Much of his professional, hands-on experience has been in the
Java/J2EE custom software development and services industry with a
specialization in methodologies, software quality, and process improve-
ment. He holds a bachelor of science degree in computer science from
Virginia Polytechnic Institute and State University (Virginia Tech).

www.testearly.com
www.integratebutton.com

xxxii About the Authors

Andrew Glover is the president of Stelligent Incorporated, a consult-
ing firm and thought leader in helping development teams reliably and
rapidly produce better software by optimizing software production.
Andy is a frequent speaker at various conferences throughout North
America as well as a speaker for the No Fluff Just Stuff Software Sym-
posium group; moreover, he is the coauthor of Groovy in Action (Man-
ning, 2007), Java Testing Patterns (Wiley, 2004), and the NFJS 2006
Anthology (Pragmatic Programmers, 2006). He also is the author of
multiple online publications including IBM’s developerWorks and
O’Reilly’s ONJava, ONLamp, and Dev2Dev portals. He actively blogs
about software quality at www.thediscoblog.com and www.testearly.com.

www.thediscoblog.com
www.testearly.com

xxxiii

About the Contributors

Lisa Porter is the senior technical writer for a consulting team provid-
ing network security solutions to the U.S. government. Lisa provided
technical editing prior to the production of this book. Her early years
were spent supporting a large software development project with mul-
tiple applications, where she gained a great appreciation for require-
ments determination and project maturity/capability activities. She has
also applied the principles of technical writing in the world of foreign
language translation and the architectural/engineering industry. Lisa
has been editing books and online publications since 2002.

Eric Tavela is the chief architect for 5AM Solutions, Inc., a software
development company that focuses on applying software engineering
best practices to serve the life sciences research community. Eric’s
principal background is in designing and implementing Java/J2EE
applications and in mentoring developers in object-oriented software
development and UML modeling.

This page intentionally left blank

1

Part I

A Background on CI:
Principles and Practices

This page intentionally left blank

3

Chapter 1

Getting Started

First, master the fundamentals.

—LARRY BIRD (AMERICAN PROFESSIONAL BASKETBALL PLAYER)

The founder of javaranch.com, Kathy Sierra, said in her blog, “There’s
a big difference between saying, ‘Eat an apple a day’ and actually eat-
ing the apple.”1 The same goes for following fundamental practices on
a software project. Seldom will you hear people say that “Testing is
ineffective” or “Code reviews are a waste of time” or that frequent
software builds is a bad practice to follow. But these seemingly funda-
mental practices must be tougher to practice than to preach, because
the frequency of these practices on projects is miserably low.

If you would like to run frequent integration builds so that it
becomes a nonevent on your project—including compilation, rebuild-
ing your database, executing automated tests and inspections, deploy-
ing software, and receiving feedback—Continuous Integration (CI)
can help. In this chapter, we show you the common features available
to CI systems that build upon these fundamental software practices.

Build Software
at Every Change

1. From http://headrush.typepad.com/.

http://headrush.typepad.com/

4 Chapter 1 ❑ Getting Started

Understanding the fundamentals of CI is quite easy, and in no time
you’ll be integrating these fundamental practices of software develop-
ment into your builds.

Build Software at Every Change

When reading books, I like to see an example first and then learn the
“why” behind the example afterward, as I find that an example pro-
vides a context for learning the “why.” We describe a CI scenario
based on a typical implementation. You’ll find there are various ways
to implement a CI system, but this should get you started in under-
standing the parts of a typical system.

What Is a Build?
A build is much more than a compile (or its dynamic language
variations). A build may consist of the compilation, testing,
inspection, and deployment—among other things. A build acts as
the process for putting source code together and verifying that
the software works as a cohesive unit.

A CI scenario starts with the developer committing source code to
the repository. On a typical project, people in many project roles may
commit changes that trigger a CI cycle: Developers change source
code, database administrators (DBAs) change table definitions, build
and deployment teams change configuration files, interface teams
change DTD/XSD specifications, and so on.

Keeping Examples Up to Date
The risk of writing a “hands-on” example in a book is that it
quickly becomes outdated, especially with a dynamic topic like
CI. To offset changes that may occur after this book is published,
we will update the book’s companion Web site, www.integrate-
button.com, with examples on not just CruiseControl and Ant, but
many other CI servers and tools as well.

www.integratebutton.com
www.integratebutton.com

Build Software at Every Change 5

The steps in a CI scenario will typically go something like this.

1. First, a developer commits code to the version control reposi-
tory. Meanwhile, the CI server on the integration build machine
is polling this repository for changes (e.g., every few minutes).

2. Soon after a commit occurs, the CI server detects that changes
have occurred in the version control repository, so the CI server
retrieves the latest copy of the code from the repository and then
executes a build script, which integrates the software.

3. The CI server generates feedback by e-mailing build results to
specified project members.

4. The CI server continues to poll for changes in the version con-
trol repository.

Figure 1-1 illustrates these parts of the CI system.
The following sections describe the tools and players identified in

Figure 1-1 in more detail.

FIGURE 1-1 The components of a CI system

Developer

Developer

Developer

Subversion
Version Control

Repository

Feedback
Mechanism

CI Server
Integration Build

Machine

Compile Source Code,
Integrate Database,

Run Tests,
Run Inspections,
Deploy Software

Commit Changes

Commit Changes

Commit Changes

Poll

:

Generate

Build Script

6 Chapter 1 ❑ Getting Started

Developer
Once a developer has performed all of the modifications related to the
assigned task, she runs a private build (which integrates changes from
the rest of the team) and then commits her changes to the version con-
trol repository. This step may occur at any time and does not affect the
subsequent steps of the CI process. An integration build does not occur
unless there are changes applied to the version control repository.

Listing 1-1 demonstrates an example of executing a private build
by calling an Ant build script from the command line. Notice that this
script retrieves the latest updates from the Subversion version control
repository.

Find Problems Earlier by Building Often

Once you’ve automated your build and it can be run via a single
command, you are ready to perform CI. By running this automated
build whenever a change is committed to your project’s version
control system, teams can answer questions like:

• Do all the software components work together?

• What is my code complexity?

• Is the team adhering to the established coding standards?

• How much code is covered by automated tests?

• Were all the tests successful after the latest change?

• Does my application still meet the performance
requirements?

• Were there any problems with the last deployment?

Knowing that software was successfully “built” with the latest
changes is valuable, but knowing that software was built correctly
is invaluable, as software defects will undoubtedly creep into a
code base at some point. The reason you want to build continu-
ously is to get rapid feedback so that you can find and fix problems
throughout the development lifecycle.

Build Software at Every Change 7

LISTING 1-1 Running a Private Build Using Ant

> ant integrate
Buildfile: build.xml
clean:
svn-update:
all:
compile-src:
compile-tests:
integrate-database:
run-tests:
run-inspections:
package:
deploy:
BUILD SUCCESSFUL
Total time: 3 minutes 13 seconds

After running a successful private build, you can check in new and
modified files to the repository. Most version control systems provide
simple commands to perform these processes, as shown in Listing 1-2
using Subversion.

LISTING 1-2 Committing Changes to a Subversion Repository

> svn commit –m "Added CRUD capabilities to DAO"
Sending src\BeerDaoImpl.jaca
Transmitting file data .

Committed revision 52.

You can execute your build script and commit changes to your
repository using your Integrated Development Environment (IDE) as
well. Just make sure you can perform both activities from the com-
mand line so that you don’t have tightly coupled dependencies with
your IDE or version control system.

Version Control Repository
Simply put, you must use a version control repository in order to per-
form CI. In fact, even if you don’t use CI, a version control repository
should be standard for your project. The purpose of a version control
repository is to manage changes to source code and other software
assets (such as documentation) using a controlled access repository.
This provides you with a “single source point” so that all source code

8 Chapter 1 ❑ Getting Started

is available from one primary location. A version control repository
allows you to go back in time and get different versions of source code
and other files.

You run CI against the mainline of the version control repository
(e.g., the Head/Trunk in systems like CVS and Subversion). There are
different types of version control systems you can use too. We use
Subversion for most of the examples in the book because of its feature
set—and it’s freely available. Other Software Configuration Manage-
ment (SCM)/version control tools include CVS, Perforce, PVCS,
ClearCase, MKS, and Visual SourceSafe. To learn effective techniques
of software configuration management, see Software Configuration
Management Patterns by Stephen Berczuk and Brad Appleton.

CI Server
A CI server runs an integration build whenever a change is committed
to the version control repository. Typically, you will configure the CI
server to check for changes in a version control repository every few
minutes or so. The CI server will retrieve the source files and run a
build script or scripts. CI servers can also be hard-scheduled to build
on a regular frequency, such as every hour (but note that this is not CI).
In addition, CI servers usually provide a convenient dashboard where
build results are published. Although it is recommended, a CI server
isn’t required to perform continuous integration. You can write your
own custom scripts. Moreover, you can manually run an integration
build whenever a change is applied to the repository. Using a CI
server2 can reduce the number of custom scripts that you would other-
wise need to write. Many CI servers are freely available and open
source. Listing 1-3 shows an example of using the CruiseControl con-
fig.xml to poll a Subversion repository looking for changes.

LISTING 1-3 CruiseControl config.xml Polling Subversion Repository

<project name="brewery" >
 <listeners>
 <currentbuildstatuslistener file="logs/${project.name}/status.txt"/>

2. For more information on CI servers, see Appendix B.

Build Software at Every Change 9

 </listeners>
 <modificationset quietperiod="30">
 <svn RepositoryLocation="http://build.ib.com/trunk/brewery"
 username="bfranklin"
 password="G0Fly@Kite"/>
 </modificationset>
 <schedule interval="300">
 <ant anthome="apache-ant-1.6.5" buildfile="bld-{project.name}.xml"/>
 </schedule>
 <log dir="logs/${project.name}">
 <merge dir="projects/${project.name}/impl/logs/junit"/>
 <merge dir="projects/${project.name}/impl/logs/cobertura"/>
 </log>
 <publishers>
 <artifactspublisher dir="projects/${project.name}/impl/logs"
dest="artifacts/${project.name}"/>
 <artifactspublisher dir="projects/${project.name}/impl/logs"
dest="artifacts/${project.name}"/>
 </publishers>
</project>

In Listing 1-3, the interval attribute of the schedule task indi-
cates how often CruiseControl will check for changes in the Subver-
sion repository (in this example, 300 seconds). If CruiseControl finds
any modifications, it executes a delegating build (called using the
buildfile attribute in Listing 1-3). The delegating build (not shown)
retrieves the latest source code from the repository and executes the
project build file, such as the one in Listing 1-3. Other CI servers may
use a Web-based configuration or other interface for administration.
CruiseControl comes with a Web application so that you can view the
results of the latest build and view build reports (such as test and
inspection reports). Figure 1-2 illustrates an example of CruiseControl
build results for a project.

FIGURE 1-2 CruiseControl dashboard displaying the latest build status

10 Chapter 1 ❑ Getting Started

Build Script
The build script is a single script, or set of scripts, you use to compile,
test, inspect, and deploy software. You can use a build script without
implementing a CI system. Ant, NAnt, make, MSBuild, and Rake are
examples of build tools that can automate the software build cycle, but
they don’t provide CI by themselves. Some may use an IDE to build
software; however, since CI is a “hands-off” process, solely using
IDE-based builds won’t cut it for CI. To be clear, using an IDE to run a
build is appropriate as long as you can run the same build without
using the IDE as well. Listing 1-4 shows an example of the shell of an
Ant script that runs through the type of processes typically performed
as part of a private build.3

LISTING 1-4 Shell of an Ant Script to Perform a Build

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="brewery" default="all" basedir=".">
 <target name="clean" />
 <target name="svn-update" />
 <target name="all" depends="clean,svn-update"/>
 <target name="compile-src" />
 <target name="compile-tests" />
 <target name="integrate-database" />
 <target name="run-tests" />
 <target name="run-inspections" />
 <target name="package" />
 <target name="deploy" />
</project>

Feedback Mechanism
One of the key purposes of CI is to produce feedback on an integration
build, because you want to know as soon as possible if there was a
problem with the latest build. By receiving this information promptly,
you can fix the problem quickly. Figure 1-3 shows an e-mail as a feed-
back mechanism. We demonstrate more feedback devices in Chapter 9.
Other feedback mechanisms include Short Message Service (SMS)
and Really Simple Syndication (RSS).

3. A more detailed example is provided at www.integratebutton.com.

www.integratebutton.com

Build Software at Every Change 11

Listing 1-5 contains an example of using the CruiseControl CI
server to send an e-mail to project members.

LISTING 1-5 CruiseControl config.xml Configured to Send E-mail

<project>
 …
 <publishers>
 <htmlemail
 css="./webapps/cruisecontrol/css/cruisecontrol.css"
 mailhost="localhost"
 xsldir="./webapps/cruisecontrol/xsl"
 returnaddress="pduvall@localhost"
 buildresultsurl="http://localhost:8080"
 mailport="225"
 username="pduvall"
 password="password"
 reportsuccess="always"
 spamwhilebroken="true">
 <always address="pduvall@localhost"/>
 <always address="aglover@localhost"/>
 </htmlemail>
 </publishers>
 …
</project>

FIGURE 1-3 E-mail messages from the CI server

12 Chapter 1 ❑ Getting Started

Integration Build Machine
The integration build machine is a separate machine whose sole respon-
sibility is to integrate software. The integration build machine hosts
the CI server, and the CI server polls the version control repository.

Features of CI

Now that we have an example to build from, we can delve into the fea-
tures of CI. There are only four features required for CI.

• A connection to a version control repository

• A build script

• Some sort of feedback mechanism (such as e-mail)

• A process for integrating the source code changes (manual or CI
server)

This “bare-bones” behavior is the key to an effective CI system.
Once an automated build is run with every change to your version con-
trol system, you can add other features to your CI system.

By performing automated and continuous database integration,
testing, inspection, deployment, and feedback, your CI system can
reduce common risks on your project, thus leading to better confidence
and improved communication. Some features depend on other features;
for instance, automated testing depends on source code compilation.

This repeatable process can help reduce risks throughout the devel-
opment lifecycle. These subprocesses are described in detail next.

Source Code Compilation
Continuous source code compilation is one of the most basic and com-
mon features of a CI system. In fact, it’s so common that it has almost
become synonymous with CI. Compilation involves creating execut-
able code from your human-readable source. CI is much more than
source code compilation, though; with the proliferation in the use of
dynamic languages—Python, PHP, Ruby, and so on—compilation is

Features of CI 13

slightly different in these environments. Although you are not generat-
ing binaries using dynamic languages, many provide the capability to
perform strict checking, which you can think of as compilation in the
context of these languages. Despite this subtlety, dynamic language
environments benefit from the other activities executed during a CI build.

The Integrate Button

The Integrate button (see Figure 1-4) is a visualization of a fully
functioning and automated integration build—making the build a
nonevent. Include many of the processes to ensure that your soft-
ware works as intended. You can compile, rebuild a database with
test data, run tests, inspect, deploy, and provide feedback. By
automating your build, you can run many of the processes at the
push of a button.

FIGURE 1-4 Visualization of the Integrate button

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

14 Chapter 1 ❑ Getting Started

Database Integration
Some people consider the source code integration and integration of
the database as completely separate processes—always performed by
different groups. This is unfortunate because the database (if you are
using one on your project) is an integral part of the software applica-
tion. By using a CI system, you can ensure the integration of a database
through a single source: your version control repository.

Figure 1-5 demonstrates enabling continuous database integration
in the build process of a CI system. We treat the database source
code—Data Definition Language (DDL) scripts, Data Manipulation
Language (DML) scripts, stored procedure definitions, partitioning,
and so on—in the same manner as any other source code in the system.
For instance, when a project member (developer or DBA, for instance)
modifies a database script and commits it to the version control sys-
tem, the same build script that integrates source code will rebuild the
database and data as part of the integration build process.

Listing 1-6 demonstrates how to drop and create a MySQL data-
base using Ant’s sql task. There is much more you will do to rebuild
your database and test data. This example hard-codes many values for
demonstration purposes.

LISTING 1-6 MySQL and Ant

<target name="db:create-database”>
 <sql driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/"
 userid="root"
 password="sa"
 classpathref="db.lib.path"
 delimiter=";">
 <fileset file="${database.dir}/drop-database.sql"/>
 <fileset file="${database.dir}/create-database.sql "/>
 </sql>
</target>

We demonstrate examples, approaches, and the benefits of data-
base integration in Chapter 5.

Features of CI 15

Testing
Many consider CI without automated, continuous testing not to be CI.
We couldn’t agree more. Without automated tests, it is difficult for
developers or other project stakeholders to have confidence in software
changes. Most developers on projects that use a CI system use unit-
testing tools such as JUnit, NUnit, or other xUnit frameworks to run
tests. Furthermore, you can run different categories of tests from a CI
system to speed up your builds. These categories may include unit,
component, system, load/performance, security, and others. Many of
these tests are discussed in more detail in Chapter 6. Figure 1-6 shows
an example of a JUnit report that CI servers such as CruiseControl
may generate as part of an integration build.

FIGURE 1-5 Database integration design

Developer

Developer

Developer

Subversion
Version Control

Repository

Feedback
Mechanism

CI Server

Database Scripts

Integration Build
Machine

Compile Source Code,
Integrate Database,

Run Tests,
Run Inspections,
Deploy Software

Drop/Create
Database/Tables

Apply Procedures/
Triggers

Insert Test
Data

Commit Changes

Commit Changes

Commit Changes

Poll

:

Generate

Database

Build Script

16 Chapter 1 ❑ Getting Started

Listing 1-7 demonstrates an example that runs a batch of JUnit
tests and generates the report in Figure 1-6 using Ant tasks.

LISTING 1-7 Ant and JUnit

<?xml version="1.0" encoding="iso-8859-1"?>
 <target name="run-tests">
 <mkdir dir="${logs.junit.dir}" />
 <junit fork="yes" haltonfailure="true" dir="${basedir}"

 printsummary="yes">
 <classpath refid="test.class.path" />
 <classpath refid="project.class.path"/>
 <formatter type="plain" usefile="true" />
 <formatter type="xml" usefile="true" />
 <batchtest fork="yes" todir="${logs.junit.dir}">
 <fileset dir="${test.unit.dir}">
 <patternset refid="test.sources.pattern"/>
 </fileset>
 </batchtest>
 </junit>
 <mkdir dir="${reports.junit.dir}" />
 <junitreport todir="${reports.junit.dir}">
 <fileset dir="${logs.junit.dir}">
 <include name="TEST-*.xml" />
 <include name="TEST-*.txt" />
 </fileset>
 <report format="frames" todir="${reports.junit.dir}" />
 </junitreport>
 </target>
</project>

FIGURE 1-6 Unit test regression report using JUnit

Features of CI 17

Inspection
Automated code inspections (e.g., static and dynamic analysis) can be
used to enhance the quality of the software by enforcing rules. For
instance, a project might have a rule that no class may be longer than
300 lines of noncommented code. You can use your CI system to run
these rules automatically against a code base. We discuss and demon-
strate various tools and techniques in Chapter 7.

The sample software inspection report shown in Figure 1-7 was
generated using Checkstyle, which inspects Java code. Using a report
like this can enable continuous monitoring of coding standards and
quality metrics.

Listing 1-8 shows an example using the Checkstyle static code
analysis tool with Ant. This example generates the report in Figure 1-7.

FIGURE 1-7 Automated inspection report using Checkstyle

18 Chapter 1 ❑ Getting Started

LISTING 1-8 Checkstyle Example Using Ant4

<target name="run-inspections">
 <taskdef resource="checkstyletask.properties"
classpath="${checkstyle.jar}"/>
 <checkstyle config="${basedir}/checkstyle-rules.xml"
failOnViolation="false">
 <formatter toFile="${checkstyle.data.file}" type="xml" />
 <fileset dir="${src.dir}" includes="**/*.java" />
 </checkstyle>
 <xslt taskname="checkstyle"
 in="${checkstyle.data.file}"
 out="${checkstyle.report.file}"
 style="${checkstyle.xsl.file}" />
</target>

Deployment
Many processes encompass what is considered deployment. In fact, most
of the other processes discussed in this section are a part of the deploy-
ment process. Continuous deployment enables you to deliver working,
deployable software at any point in time. This means a key purpose of
a CI system is to generate the bundled software artifacts with the latest
code changes and make it available to a testing environment.

Among other things, the source files from the version control
repository must be checked out, a build must be performed, all tests
and inspections must successfully execute, the release must be labeled,
and the deployment files must be staged.

CI can even automatically deploy or install files to the appropriate
environment, as shown in Figure 1-8. Furthermore, deployments
should include the capability to automatically roll back all changes
applied in the deployment. Note that you may be using slightly differ-
ent operating environments from development (for instance, Jetty, as
illustrated in Figure 1-8) to your integration and test environments
(Tomcat). Regardless, the same automated build, with slightly differ-
ent parameters, is executed in these environments. We discuss these
strategies in Chapter 8.

4. From “Automation for the People: Continuous Inspection,” by Paul Duvall. From
IBM developerWorks, August 2006, at http://www-128.ibm.com/developerworks/
java/library/j-ap08016/.

http://www-128.ibm.com/developerworks/java/library/j-ap08016/
http://www-128.ibm.com/developerworks/java/library/j-ap08016/

Features of CI 19

Listing 1-9 demonstrates the use of a tool called Cargo, which pro-
vides an interface between Ant and a Web container. In this case, we
are deploying to a Tomcat server. Cargo provides interfaces to many of
the popular Web containers on the market.

LISTING 1-9 Deploy to Tomcat Using Ant and Cargo

<target name="deploy">
 <cargo containerId="tomcat5x" action="start"
 wait="false" id="${tomcat-refid}">
 <zipurlinstaller installurl="${tomcat-installer-url}"/>
 <configuration type="standalone" home="${tomcatdir}">
 <property name="cargo.remote.username" value="admin"/>
 <property name="cargo.remote.password" value=""/>
 <deployable type="war" file="${wardir}/${warfile}"/>
 </configuration>
 </cargo>
</target>

FIGURE 1-8 Deployment environments

ib.com Dev MySQL DB
url: jdbc:mysql://localhost:3306/ibcom
u/p: ibdev/ibdev

ib.com Dev (Jetty)
http://localhost:8080/ib/app

ib.com Test MySQL DB
url: jdbc:mysql://test.integratebutton.com:3306/ibcom
u/p: ibtest/ibtest

ib.com Dev (Tomcat)
http://test.integratebutton.com:8888/ib/app

ib.com
Project

SCM
Repository

checkout
ib_com
release_1_1

ib_war
release 1_1

ib_com
release 1_1

ib.com Integration MySQL DB
url: jdbc:mysql://int.integratebutton.com:3306/ibcom
u/p: ibint/ibint

ib.com Dev (Tomcat)
http://int.integratebutton.com:8989/ib/app

CI System

20 Chapter 1 ❑ Getting Started

Documentation and Feedback
Many developers work under the firm belief that documentation
belongs in the source code, in fact, that clear, concise code with well-
chosen class, variable, and method names (for instance) is the best
documentation. A CI system can provide the benefits of documenta-
tion without some of the hassles. You can use tools such as Maven,
Javadoc, or NDoc to generate documentation. Moreover, there are
tools that can generate class diagrams and other information, all based
on the committed source code in your version control repository.
You’ll find significant benefits in obtaining near-real-time documenta-
tion of source code and project status using your CI system. You may
choose to generate your document artifacts periodically rather than
continuously.

A critical feature to good CI systems is speed. The essence of a CI
system is to provide timely feedback to developers and project stake-
holders. It’s easy to load so much into a CI system—for the sake of
completeness—that it takes an unreasonable amount of time to finish a
cycle. As such, a balance must be struck between the breadth and
depth of a CI process against the need to provide rapid results. This is
especially important when using continuous testing. We discuss tech-
niques for creating fast builds in Chapters 4 and 6.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
This chapter has given you a simple overview of the features of Con-
tinuous Integration. It also has shown how you can incorporate addi-
tional processes into your CI system, such as comprehensive
database integration, testing, inspection, deployment, and feedback.
The rest of this book explores the details of each of these processes
associated with developing software using CI.

Questions
How do you know you are doing CI correctly? These questions can
help you decide what’s missing on your projects.

Questions 21

■ Are you using a version control repository (or SCM tool)?

■ Is your project’s build process automated and repeatable? Does it
occur entirely without intervention?

■ Are you writing and running automated tests?

■ Is the execution of your tests a part of your build process?

■ How do you enforce coding and design standards?

■ Which of your feedback mechanisms are automated?

■ Are you using a separate integration machine to build software?

This page intentionally left blank

23

Chapter 2

Introducing Continuous Integration

Assumption is the mother of all screw-ups.

—WETHERN’S LAW OF SUSPENDED JUDGMENT

Early in my career, I learned that developing good software comes
down to consistently carrying out fundamental practices regardless of
the particular technology. In my experience, one of the most signifi-
cant problems in software development is assuming. If you assume a
method will be passed the right parameter value, the method will fail.
Assume that developers are following coding and design standards and
the software will be difficult to maintain. Assume configuration files

Commit Code
Frequently

Don’t Commit
Broken Code

Fix Broken Builds
Immediately

Write Automated
Developer Tests

All Tests and
Inspections
Must Pass

Run Private
Builds

Avoid Getting
Broken Code

24 Chapter 2 ❑ Introducing Continuous Integration

haven’t changed, and you’ll spend precious development hours need-
lessly hunting down problems that don’t exist. When we make
assumptions in software development, we waste time and increase
risks.

Reducing Assumptions
Continuous Integration can help reduce assumptions on a
project by rebuilding software whenever a change occurs in a
version control system.

We may think that the latest, greatest technology will be the “silver
bullet” to solve all of our problems, but it will not. At one company,
one of my initial responsibilities was to incorporate good software
development practices into the company—by example. Over time, we
were able to implement many widely accepted practices for develop-
ing good software into the projects. Having worked on many different
projects that used different methodologies, I have found that, in gen-
eral, iterative projects—using the Rational Unified Process (RUP) and
eXtreme Programming (XP), in my case—work best, because risks are
mitigated all along the way. Developing software requires planning for
change, continuously observing the results, and incrementally course-
correcting based on the results. This is how CI operates. CI is the
embodiment of tactics that gives us, as software developers, the ability
to make changes in our code, knowing that if we break software, we’ll
receive immediate feedback. This immediate feedback gives us time to
course-correct and adjust to change more rapidly.

CI is about the fundamentals. It may not be the most glamorous
activity in software development, but integrating software is vitally
important in today’s complex projects. Seldom do the users of the soft-
ware say to me, “Wow, I really like the way you integrated the soft-
ware in the last release.” And since that doesn’t happen, it may seem
like it isn’t worthwhile to make these efforts behind the scenes. How-
ever, anyone who has developed software using a practice such as CI is
empowered by a consistent and repeatable build process kicked off
when a change occurs to the version control repository.

A Day in the Life of CI 25

CI as a Centerpiece for Quality
Some see CI as a process of simply putting software compo-
nents together. We see CI as the centerpiece of software devel-
opment, as it ensures the health of software through running a
build with every change. Determining the quality of software can
be as easy as checking the latest integration build.

Spending some time on the nonglamorous fundamental activities
in software development means there is more time to spend on the
challenging, thought-provoking activities that make our jobs interest-
ing and fun. If we don’t focus on the fundamentals, such as defining
the development environment and building the software, we’ll be
forced to perform low-level tasks later, usually at the most inconve-
nient times (immediately before software goes to production, for
example). This is when mistakes happen as well. The discipline
involved in keeping the build “in the green” frees you from worrying
about whether everything is still working. It’s like exercising—yes, it
takes self-discipline; yes, it can be painful work—but it keeps you in
shape to play in the big game, when it counts.

 This chapter attempts to answer the questions that you may have
when making the decision to implement the practices of CI on a
project. It provides an overview of the advantages and disadvantages
of CI, and covers how CI complements other software development
practices. CI is not a practice that can be handed off to a project’s
“build master” and forgotten about. It affects every person on the soft-
ware development team, so we discuss CI in terms of what all team
members must practice to implement it.

What’s a day of work like using CI? Let’s examine Tim’s experiences.

A Day in the Life of CI

As Tim opens the door to his company’s suite, he views the wide-
screen monitor displaying real-time information for his project. The
monitor shows him that the last integration build ran successfully a
few minutes ago on the CI server. It shows a list of the latest quality

26 Chapter 2 ❑ Introducing Continuous Integration

metrics, including coding/design standard adherence, code duplica-
tion, and so on. Tim is one of 15 developers on a Java project creating
management software for an online brewery. See Figure 2-1 for a visu-
alization of some of the activities in Tim’s day.

Starting his day, Tim refactors a subsystem that was reported to
have too much duplicate code based on the latest reports from the CI
server. Prior to committing his changes to Subversion, he runs a pri-
vate build, which compiles and runs the unit tests against the newest
source code. After running this build on his machine, he commits his
changes to Subversion. All the while, the CruiseControl CI server is
polling the Subversion repository. A few minutes later, the CI server
discovers the changes that Tim committed and runs an integration
build. This integration build runs automated inspection tools to verify
that all code adheres to the coding standard. Tim receives an e-mail
about a coding standard violation, quickly makes the changes, and
checks the source code back into Subversion. The CI server runs
another build and it is successful. By reviewing the Web reports gener-
ated by the CI server, Tim finds that his recent code refactoring suc-
cessfully reduced the amount of duplicate code in his subsystem.

FIGURE 2-1 A day in the life

Tim

Lisa

Subversion
Version Control

Repository

Run Private Build

Run Private Build

Feedback
Mechanism

CI Server
Integration Build

Machine

Commit Changes

Review

Commit Changes

A Day in the Life of CI 27

Later in the day, another developer on the project, Lisa, runs into
Tim’s office.

Lisa: I think the changes you made earlier today broke the last build!

Tim: Hmm…but, I ran the tests.

Lisa: Oh, I didn’t have time to write tests.

Tim: Are you following the code coverage metric we have established
for the project? 1

Because of this discussion, they decided to fail the integration build
if their code coverage was below 85%. Furthermore, Lisa wrote a test for
the defect and fixed the problem she discovered because of her conver-
sation with Tim. The integration build continued to stay “in the green.” 23

1. From www.martinfowler.com/articles/continuousIntegration.html.

Terms of the Trade

automated—A “hands-off” process. Once a fully automated pro-
cess begins, no user intervention is required. Systems administra-
tors call this a “headless” process.

build—A set of activities performed to generate, test, inspect, and
deploy software.

continuous—Technically, continuous means something that, once
started, never stops. This would mean the build runs all the time;
however, this isn’t the case. Continuous, in the context of CI, is
more like continual, and in the case of CI servers, a process con-
tinually runs, polling for changes to the version control repository.
If the CI server discovers changes, it executes a build script.

Continuous Integration—“A software development practice where
members of a team integrate their work frequently, usually each
person integrates at least daily—leading to multiple integrations
per day. Each integration is verified by an automated build (includ-
ing test) to detect integration errors as quickly as possible. Many
teams find that this approach leads to significantly reduced inte-
gration problems and allows a team to develop cohesive software
more rapidly.”1

www.martinfowler.com/articles/continuousIntegration.html

28 Chapter 2 ❑ Introducing Continuous Integration

2. Based on Software Configuration Management Patterns by Stephen Berczuk and
Brad Appleton.

3. At www.thefreedictionary.com.

development environment—The environment in which software
is written. This can include the IDE, build scripts, tools, third-party
libraries, servers, and configuration files.

inspection—Analysis of source code/bytecode for the internal
quality attributes. In the context of this book, we refer to the auto-
mated aspects (static and runtime analysis) as software inspection.

integration—The act of combining separate source code artifacts
together to determine how they work as a whole.

integration build—An integration build is the act of combining
software components (programs and files) into a software system.
This build includes multiple components on bigger projects or only
low-level compiled source files on smaller projects. In our every-
day life, we tend to use the terms build and integration build inter-
changeably, but for the purposes of this book we make the
distinction that an integration build is performed by a separate
integration build machine.

private (system) build—Running a build locally on your worksta-
tion before committing your changes to the version control reposi-
tory, to lessen the chances that your recent changes break the
integration build.2

quality—The Free On-Line Dictionary of Computing3 defines
quality as “an essential and distinguishing attribute of some-
thing...” and “superior grade.” The term quality is often overused,
and some seem to think it is based on perception. In this book, we
take the stance that quality is a measurable specification just like
any other. This means you can identify specific metrics of quality,
such as maintainability, extensibility, security, performance, and
readability.

release build—Readies the software for release to users. It may
occur at the end of an iteration or some other milestone, and it
must include any acceptance tests and may include more exten-
sive performance and load tests.

www.thefreedictionary.com

What Is the Value of CI? 29

What Is the Value of CI?

At a high level, the value of CI is to:

• Reduce risks

• Reduce repetitive manual processes

• Generate deployable software at any time and at any place

• Enable better project visibility

• Establish greater confidence in the software product from the
development team

Let’s review what these principles mean and what value they offer.

Reduce Risks
By integrating many times a day, you can reduce risks on your project.
Doing so facilitates the detection of defects, the measurement of soft-
ware health, and a reduction of assumptions.

• Defects are detected and fixed sooner—Because CI integrates
and runs tests and inspections several times a day, there is a greater
chance that defects are discovered when they are introduced (i.e.,

risk—The potential for a problem to occur. A risk that has been
realized is known as a problem. We focus on the higher-priority
risks (damage to our interests and goals) that have the highest
likelihood of occurring.

testing—The general process of verifying that software works as
designed. Furthermore, we define developer tests into multiple
categories, such as unit tests, component tests, and system tests,
all of which verify that objects, packages, modules, and the soft-
ware system work as designed. There are many other types of
tests, such as functional and load tests, but from a CI perspective,
all unit tests written by developers, at a minimum, are executed as
a part of a build (although builds may be staged to run fast tests
first followed by slower tests).

30 Chapter 2 ❑ Introducing Continuous Integration

when the code is checked into the version control repository)
instead of during late-cycle testing.

• Health of software is measurable—By incorporating continu-
ous testing and inspection into the automated integration pro-
cess, the software product’s health attributes, such as complexity,
can be tracked over time.

• Reduce assumptions—By rebuilding and testing software in a
clean environment using the same process and scripts on a con-
tinual basis, you can reduce assumptions (e.g., whether you are
accounting for third-party libraries or environment variables).

CI provides a safety net to reduce the risk that defects will be intro-
duced into the code base. The following are some of the risks that CI
helps to mitigate. We discuss these and other risks in the next chapter.

• Lack of cohesive, deployable software

• Late defect discovery

• Low-quality software

• Lack of project visibility

Reduce Repetitive Processes
Reducing repetitive processes saves time, costs, and effort. This
sounds straightforward, doesn’t it? These repetitive processes can
occur across all project activities, including code compilation, data-
base integration, testing, inspection, deployment, and feedback. By
automating CI, you have a greater ability to ensure all of the following.

• The process runs the same way every time.

• An ordered process is followed. For example, you may run inspec-
tions (static analysis) before you run tests—in your build scripts.

• The processes will run every time a commit occurs in the version
control repository.

This facilitates

• The reduction of labor on repetitive processes, freeing people to
do more thought-provoking, higher-value work

What Is the Value of CI? 31

• The capability to overcome resistance (from other team members)
to implement improvements by using automated mechanisms for
important processes such as testing and database integration

Generate Deployable Software
CI can enable you to release deployable software at any point in time.
From an outside perspective, this is the most obvious benefit of CI. We
could talk endlessly about improved software quality and reduced
risks, but deployable software is the most tangible asset to “outsiders”
such as clients or users. The importance of this point cannot be over-
stated. With CI, you make small changes to the source code and inte-
grate these changes with the rest of the code base on a regular basis. If
there are any problems, the project members are informed and the
fixes are applied to the software immediately. Projects that do not
embrace this practice may wait until immediately prior to delivery to
integrate and test the software. This can delay a release, delay or pre-
vent fixing certain defects, cause new defects as you rush to complete,
and can ultimately spell the end of the project.

Enable Better Project Visibility
CI provides the ability to notice trends and make effective decisions,
and it helps provide the courage to innovate new improvements.
Projects suffer when there is no real or recent data to support deci-
sions, so everyone offers their best guesses. Typically, project mem-
bers collect this information manually, making the effort burdensome
and untimely. The result is that often the information is never gathered.
CI has the following positive effects.

• Effective decisions—A CI system can provide just-in-time infor-
mation on the recent build status and quality metrics. Some CI
systems can also show defect rates and feature completion statuses.

• Noticing trends—Since integrations occur frequently with a CI
system, the ability to notice trends in build success or failure,
overall quality, and other pertinent project information becomes
possible.

32 Chapter 2 ❑ Introducing Continuous Integration

Establish Greater Product Confidence
Overall, effective application of CI practices can provide greater confi-
dence in producing a software product. With every build, your team
knows that tests are run against the software to verify behavior, that
project coding and design standards are met, and that the result is a
functionally testable product.

Without frequent integrations, some teams may feel stifled
because they don’t know the impacts of their code changes. Since a CI
system can inform you when something goes wrong, developers and
other team members have more confidence in making changes.
Because CI encourages a single-source point from which all software
assets are built, there is greater confidence in its accuracy.

What Prevents Teams from Using CI?

If CI has so many benefits, then what would prevent a development
team from continuously integrating software on its projects? Often, it
is a combination of concerns.

• Increased overhead in maintaining the CI system—This is
usually a misguided perception, because the need to integrate,
test, inspect, and deploy exists regardless of whether you are
using CI. Managing a robust CI system is better than managing
manual processes. Manage the CI system or be controlled by the
manual processes. Ironically, complicated multiplatform
projects are the ones that need CI the most, yet these projects
often resist the practice as being “too much extra work.”

• Too much change—Some may feel there are too many pro-
cesses that need to change to achieve CI for their legacy project.
An incremental approach to CI is most effective; first add builds
and tests with a lower occurrence (for example, a daily build),
then increase the frequency as everyone gets comfortable with
the results.

• Too many failed builds—Typically, this occurs when develop-
ers are not performing a private build prior to committing their
code to the version control repository. It could be that a devel-

How Do I Get to “Continuous” Integration? 33

oper forgot to check in a file or had some failed tests. Rapid
response is imperative when using CI because of the frequency
of changes.

• Additional hardware/software costs—To effectively use CI, a
separate integration machine should be acquired, which is a
nominal expense when compared to the more expensive costs of
finding problems later in the development lifecycle.

• Developers should be performing these activities—Some-
times management feels like CI is just duplicating the activities
that developers should be performing anyway. Yes, developers
should be performing some of these activities, but they need to
perform them more effectively and reliably in a separate envi-
ronment. Leveraging automated tools can improve the efficiency
and frequency of these activities. Additionally, it ensures that
these activities are performed in a clean environment, which will
reduce assumptions and lead to better decision making.

How Do I Get to “Continuous” Integration?

It’s often surprising to learn the level of automation of most develop-
ment organizations. Developers spend most of their time automating
processes for their users, yet don’t always see ways to automate their
own development processes. Sometimes teams believe their automation
is sufficient because they’ve written a few scripts to eliminate some
steps in the development process. The following is a typical scenario.

Joan (Developer): …I already automated that. I wrote some batch
scripts that drop and recreate the database tables.

Sue (Technical Lead): That’s great. Did you apply it to the CVS
repository?

Joan: No.

Sue: Did you make it a part of the build script?

Joan: No.

Sue: So, if it’s not a part of the CI system then it’s not really auto-
mated yet… right?

34 Chapter 2 ❑ Introducing Continuous Integration

CI is not just the process of gathering a few scripts together and
running them all the time. In the preceding scenario, it’s great that Joan
wrote those automation scripts, but in order for them to actually add
value to the end product, they must be added to the version control
repository and made a working part of the build process. Figure 2-2
illustrates the steps to making a process continuous.

These steps can be applied one by one to virtually every activity
you conduct on a project.

• Identify—Identify a process that requires automation. The pro-
cess may be in the areas of compilation, test, inspection, deploy-
ment, database integration, and so on.

• Build—Creating a build script makes the automation repeatable
and consistent. Build scripts can be constructed in NAnt for the
.NET platform, Ant for the Java platform, and Rake for Ruby,
just to name a few.

• Share—By using a version control system such as Subversion,
you make it possible for others to use these scripts/programs.
Now the value is being spread consistently across the project.

• Make it continuous—Ensure that the automated process is run
with every change applied, using a CI server. If your team has
the discipline, you can also choose to manually run the build
with every change applied to the version control system.

Here is an acrostic to help you remember and communicate this: “I
Build So Consistently”—for Identify, Build, Share, and Continuous.

Aim for incremental growth in your CI system. This is simple to
implement, the team gets more motivated as each new item is added,
and you can better plan what you need next based on what’s working

FIGURE 2-2 Getting to CI— “I Build So Consistently ”

Identify Build Share Continuous

When and How Should a Project Implement CI? 35

so far. Often, attempting to throw everything into a CI system immedi-
ately can be a bad move, just like refactoring a lot of code at once isn’t
the best approach when writing software. Get it to work first, get
developers using it, and then add other automated processes as needed
based on the project risks.

When and How Should a Project Implement CI?

It is best to implement CI early in the project. Although possible, it is
more difficult to implement CI late in a project, as people will be under
pressure and more likely to resist change. If you do implement CI later
in a project, it is especially important to start small and add more as
time permits.

There are different approaches to setting up the CI system. Though
you eventually want a build to run on every change to the system, you

Is It Continuous Compilation or Continuous Integration?

I’ve worked with a number of organizations on implementing CI,
and on several occasions I’ve heard the reply, “Yes, we do CI.” Of
course, I think, “Great!” and then ask a few questions. How much
code coverage do you have with your tests? How long does it take
to run your builds? What is your average code complexity? How
much code duplication do you have? Are you labeling your builds
in your version control repository? Where do you store your
deployed software?

I discover that what they’ve been doing all along is more like a
“continuous compilation,” in which they’ve set up a tool like Cruise-
Control to poll their version control repository (e.g., CVS) for
changes. When it detects changes, it retrieves the source code
from CVS, compiles the code, and sends an e-mail if anything
goes wrong. Automatically compiling the software system on a
separate machine is better than nothing at all, but doing that isn’t
going to provide all of the benefits of a full-featured CI system.

36 Chapter 2 ❑ Introducing Continuous Integration

can start by running a build on a daily basis to get the practice going in
your organization. Remember: CI is not just a technical implementa-
tion; it is also an organizational and cultural implementation. People
often resist change, and the best approach for an organization may be
to add these automated mechanisms to the process piece by piece.

At first the build can just compile the source code and package the
binaries without executing the automated regression tests. This can be
effective, initially, if the developers are unfamiliar with an automated
testing tool. Once this is in place and developers have learned the test-
ing tool, you can move closer to the benefits of CI: running these tests
(and inspections) with every change.

The Evolution of Integration

Is CI the newest, latest, “whiz-bang” approach to software develop-
ment? Hardly. CI is simply an advance in the evolution of integrating
software. When software programs consisted of a few small files, inte-
grating them into a system was not much of a problem. The practice of
performing nightly builds has been described as a best practice for
years. Similar practices have been discussed in other books and arti-
cles. In the book Microsoft Secrets, Michael A. Cusumano and Richard
W. Selby discuss the practice of daily builds at Microsoft. Steve
McConnell, in Software Project Survival Guide, discusses the practice
of the “Daily Build and Smoke Test” as part of a software development
project.

In Object Solutions: Managing the Object-Oriented Project,
Grady Booch writes, “The macro process of object-oriented develop-
ment is one of ‘continuous integration’… At regular intervals, the pro-
cess of ‘continuous integration’ yields executable releases that grow in
functionality at every release... It is through these milestones that man-
agement can measure progress and quality, and hence anticipate, iden-
tify, and then actively attack risks on an ongoing basis.” With the
advent of XP and other Agile methodologies, and with the recom-
mended practice of CI, people began to take notice of the concept of
not just daily, but “continuous,” builds.

How Does CI Complement Other Development Practices? 37

The practice of CI continues to evolve. You’ll find the practice in
almost every XP book. Often, when people discuss the practice of CI,
they refer to Martin Fowler’s seminal “Continuous Integration” article.4

As hardware and software resources continue to increase, you’ll find
that more processes will become a part of what is considered to be CI.

How Does CI Complement Other Development
Practices?

The practice of CI complements other software development practices,
such as developer testing, adherence to coding standards, refactoring,
and small releases. It doesn’t matter if you are using RUP, XP, RUP
with XP, SCRUM, Crystal, or any other methodology. The following
list identifies how the practice of CI works with and improves these
practices.

• Developer testing—Developers who write tests most often use
some xUnit-based framework such as JUnit or NUnit. These
tests can be automatically executed from the build scripts. Since
the practice of CI advocates that builds be run any time a change
is made to the software, and that the automated tests are a part of
these builds, CI enables automated regression tests to be run on
the entire code base whenever a change is applied to the software.

• Coding standard adherence—A coding standard is the set of
guidelines that developers must adhere to on a project. On many
projects, ensuring adherence is largely a manual process that is
performed by a code review. CI can run a build script to report
on adherence to the coding standards by running a suite of auto-
mated static analysis tools that inspect the source code against
the established standard whenever a change is applied.

• Refactoring—As Fowler states, refactoring is “the process of
changing the software system in such a way that it does not alter

4. See www.martinfowler.com/articles/continuousIntegration.html.

www.martinfowler.com/articles/continuousIntegration.html

38 Chapter 2 ❑ Introducing Continuous Integration

the external behavior of the code yet improves its internal
structure.”5 Among other benefits, this makes the code easier to
maintain. CI can assist with refactoring by running inspection
tools that identify potential problem areas at every build.

• Small releases—This practice allows testers and users to get
working software to use and review as often as required. CI
works very well with this practice, because software integration
is occurring many times a day and a release is available at virtu-
ally any time. Once a CI system is in place, a release can be gen-
erated with minimal effort.

• Collective ownership—Any developer can work on any part of
the software system. This prevents “knowledge silos,” where
there is only one person who has knowledge of a particular area
of the system. The practice of CI can help with collective owner-
ship by ensuring adherence to coding standards and the running
of regression tests on a continual basis.

How Long Does CI Take to Set Up?

Implementing a basic CI system along with simple build scripts for a
new project may take you a few hours to set up and configure (more if
you don’t have any existing build scripts). As you expand your knowl-
edge of the CI system, it will grow with the addition of inspection
tools, deployments that are more complex, more thorough testing, and
many other processes. These additional features tend to be added a lit-
tle at a time.

For a project already in progress, it can take days, weeks, or even
months to set up a CI system. It also depends upon whether people
have been dedicated to work on the project. Usually you must com-
plete many tasks when moving to a continuous, automated, and head-
less system such as when using a CI server. In some cases, you may be
moving from batch or shell scripts to a build scripting tool such as Ant

5. Fowler, et al. Refactoring: Improving the Design of Existing Code (Reading,
MA: Addison-Wesley, 1999).

Commit Code Frequently 39

or managing all of the project’s binary dependencies. In other cases,
you may have previously used your IDE for “integration” and deploy-
ment. Either way, the road map to full CI adoption could be quite a bit
longer.

CI and You

In order for CI to work effectively on a project, developers must
change their typical day-to-day software development habits. Developers
must commit code more frequently, make it a priority to fix broken builds,
write automated builds with tests that pass 100% of the time, and not
get or commit broken code from/to the version control repository.

The practices we recommend take some discipline, yet provide the
benefits stated throughout this chapter. The best situation is one where
most project members agree that there is an exponential payback to the
time and attention they pay to the practices of CI.

There are seven practices that we’ve found work well for individu-
als and teams running CI on a project.

• Commit code frequently

• Don’t commit broken code

• Fix broken builds immediately

• Write automated developer tests

• All tests and inspections must pass

• Run private builds

• Avoid getting broken code

The following sections cover each practice in greater detail.

Commit Code Frequently

One of the central tenets of CI is integrating early and often. Develop-
ers must commit code frequently in order to realize the benefits of CI.

40 Chapter 2 ❑ Introducing Continuous Integration

Waiting more than a day or so to commit code to the version control
repository makes integration time-consuming and may prevent devel-
opers from being able to use the latest changes. Try one or both of
these techniques to commit code more frequently.

• Make small changes—Try not to change many components all
at once. Instead, choose a small task, write the tests and source
code, run your tests, and then commit your code to the version
control repository.

• Commit after each task—Assuming tasks/work items have
been broken up so that they can be finished in a few hours, some
development shops require developers to commit their code as
they complete each task.

Try to avoid having everyone commit at the same time every day.
You’ll find that there are usually many more build errors to manage
because of the collisions between changes. This is especially trouble-
some at the end of the day, when people are ready to leave. The longer
you wait to integrate with others, the more difficult your integration
will prove to be.

I Just Can’t Commit

A friend runs a 25-developer project and he’d like to incorporate
many CI practices, but he is experiencing challenges in getting the
developers to commit code frequently. I’ve found that the main rea-
son that changes are not committed frequently is because of the
project culture. Sometimes developers do not want to commit their
code until it is “perfect.” This usually happens because their
changes affect too many components. Committing code frequently
to the version control repository is the only effective way to imple-
ment CI, and this means that all developers need to embrace this
development practice by grabbing smaller chunks of code and
breaking up their tasks into smaller work items.

Write Automated Developer Tests 41

Don’t Commit Broken Code

A dangerous assumption on a project is that everyone knows not to
commit code that doesn’t work to the version control repository. The
ultimate mitigation for this risk is having a well-factored build script
that compiles and tests the code in a repeatable manner. Make it part of
the team’s accepted development practice to always run a private build
(which closely resembles the integration build process) before com-
mitting code to the version control repository. See the later section,
Run Private Builds, for additional recommendations before commit-
ting your code.

Fix Broken Builds Immediately

A broken build is anything that prevents the build from reporting suc-
cess. This may be a compilation error, a failed test or inspection, a
problem with the database, or a failed deployment. When operating in
a CI environment, these problems must be fixed immediately; fortu-
nately, in a CI environment, each error is discovered incrementally and
therefore is likely very small. Some projects have a penalty for break-
ing the build, such as throwing some money in a jar or placing the pic-
ture of the last developer to break the build on the company’s large-
screen monitor (just kidding; hopefully no one is doing this). The
project culture should convey that fixing a broken build is a top project
priority. That way, not just some but every team member can then get
back to what they were doing.

Write Automated Developer Tests

A build should be fully automated. In order to run tests for a CI sys-
tem, the tests must be automated. Writing your tests in an xUnit frame-
work such as NUnit or JUnit will provide the capability of running
these tests in an automated fashion. Chapter 6 provides details on writ-
ing automated tests.

42 Chapter 2 ❑ Introducing Continuous Integration

All Tests and Inspections Must Pass

In a CI environment, 100% of a project’s automated tests must pass for
your build to pass (this is a technical criterion, not an expectation that
all workers or all work should be perfect). Automated tests are as
important as the compilation. Everyone accepts that code that does not
compile will not work; therefore, code that has test errors will not
work either. Accepting code that does not pass the tests can lead to
lower-quality software.

An unscrupulous developer may simply comment out the failing
test. Of course, this defeats the purpose. Coverage tools assist in pin-
pointing source code that does not have a corresponding test. You can
run a code coverage tool as part of an integration build.

The same goes for running automated software inspectors. Use a
general rule set of coding and design standards that all code must pass.
More advanced inspections may be added that don’t fail the build, but
identify areas of the code that should be investigated.

Run Private Builds

To prevent broken builds, developers should emulate an integration
build on their local workstation IDE after completing their unit tests.
This build allows you to integrate your new working software with the
working software from all the other developers,6 obtaining the changes
from the version control repository and successfully building locally
with the recent changes. Thus, the code each developer commits has
contributed to the greater good, with code that is less likely to fail on
the integration build server.

6. Some configuration management tools, such as ClearCase, have an option to
automatically update your local environment with the changes from the version
control repository (called “dynamic views” in ClearCase).

Avoid Getting Broken Code 43

Avoid Getting Broken Code

When the build is broken, don’t check out the latest code from the ver-
sion control repository. Otherwise, you must spend time developing a
workaround to the error known to have failed the build, just so you can
compile and test your code. Ultimately, it’s the responsibility of the
team, but the developers responsible for breaking the build should
already be working on fixing their code and committing it back to the
version control repository. Sometimes a developer may not have seen
the e-mail on the broken build. This is when a passive feedback mech-
anism such as a light or sound can be useful for colocated developers.
We consider it critical that all developers know the state of the code in
the version control repository. For more information on continuous
feedback mechanisms, see Chapter 9. An alternative, but not preferable,
approach to avoiding a checkout is to use the version control system to
roll back any changes since the most recent commit.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Keep Builds in the “Green”

I find that there are two measures of using CI effectively: number
of commits and build status. Each developer (or pair) should have
at least one commit to the repository per day, and the number of
checkins usually demonstrates the size of the changes (more
commits usually means smaller changes—and this is good). Your
build status should be “green” (pass) a large percentage of the
day; set this value for the team. We all get a “red” build status
sometimes, but what’s important is that it’s changed back to green
as soon as possible. Never let your team get used to waiting in the
red status until this or that other project task is done. The willing-
ness to leave the status at red for other criteria defeats much of
the strength of CI.

44 Chapter 2 ❑ Introducing Continuous Integration

Summary
Now you have the ammunition to go talk to others about CI. This chap-
ter covered some of the basics of CI, discussed how to get to a contin-
uous process, and pointed out all the other areas that get explored in
detail in subsequent chapters. Table 2-1 summarizes seven practices
to follow when using CI. The next chapter delves into the software
risks that CI can help mitigate to improve quality.

Questions
Practicing CI is more than installing and configuring some tools. How
many of the following items are you consistently performing on your
project? How many of the other CI practices can improve your devel-
opment capabilities?

TABLE 2-1 CI Practices Discussed in This Chapter

Practice Description

Commit code frequently Commit code to your version control repository
at least once a day.

Don’t commit broken
code

Don’t commit code that does not compile with
other code or fails a test.

Fix broken builds
immediately

Although it’s the team’s responsibility, the devel-
oper who recently committed code must be
involved in fixing the failed build.

Write automated
developer tests

Verify that your software works using automated
developer tests. Run these tests with your auto-
mated build and run them often with CI.

All tests and inspections
must pass

Not 90% or 95% of tests, but all tests must pass
prior to committing code to the version control
repository.

Run private builds To prevent integration failures, get changes from
other developers by getting the latest changes
from the repository and run a full integration
build locally, known as a private system build.

Avoid getting broken
code

If the build has failed, you will lose time if you get
code from the repository. Wait for the change or
help the developer(s) fix the build failure and
then get the latest code.

Questions 45

■ On average, is everyone on your team committing code at least
once a day? Are you employing techniques to make it easier to
commit code often?

■ What percentage of each day’s integration builds is successful (that
is, the most recent build run has passed)?

■ Is everyone on your team running a private build before committing
to the repository so that integration errors are reduced?

■ Have you scripted your builds to fail if any of your tests or inspec-
tions fail?

■ Is a broken integration build a priority to fix on your projects?

■ Do you avoid getting the latest code from the version control sys-
tem when there is a broken build?

■ How often do you consider adding automated processes to your
build and CI system—on a continuous or even periodic basis?

This page intentionally left blank

47

Chapter 3

Reducing Risks Using CI

Quality means doing it right when no one is looking.

—HENRY FORD

Things will always go wrong on a project. By effectively practicing
CI, you find out what at every step along the way—rather than late into
the development cycle. CI helps you identify and mitigate risks when
they occur, making it easier to evaluate and report on the health of the
project based on concrete evidence. How much of the software have
we implemented? Answer: Check the latest build. How much test cov-
erage do we have? Answer: Check the latest build. Who checked in the
latest code? Answer: Check the latest build.

In this chapter, we cover risks that CI can mitigate, such as late dis-
covery of defects, lack of project visibility, low-quality software, and
the inability to create deployable software.

Most teams begin with good intentions, yet some are overwhelmed
with problems on their projects. These problems are a result of not
managing risks. As I mentioned earlier in the book, we don’t often
hear development groups say, “We think testing and code reviews
(paired or otherwise) are bad practices.” Yet, when affected by sched-
ule pressure, these are usually the first practices a team will skip. This
chapter focuses on the software risks you can reduce using different
aspects of CI. By using CI, you can build a “quality safety net” and
deliver software faster. When you press the “Integrate button” at every
change, you build a foundation for reducing risks early and often, as
indicated in Figure 3-1.

48 Chapter 3 ❑ Reducing Risks Using CI

If you can reduce certain software risks, you can improve software
quality. In describing the risks in this chapter, we use this template:

• An introduction and description of the software risk

• A scenario based on our experiences

• A solution to mitigate the risk using an aspect of CI

On any project, there are many risks to manage. We focus on the
key risks that you can reduce by using CI. Of course, CI cannot
directly assist with the business challenges of eliciting requirements
from your customer, understanding the customer’s industry, funding,
or resource management, but by using CI you can discover problems
with the software faster—while it’s under development.

By building software with every change, CI can put time on your
side. With CI, you can focus sooner on the larger, more interesting
issues on your project. Because CI is an aggregate practice, the risks
covered in this chapter span many software development practices.

FIGURE 3-1 CI can help improve software quality and reduce risk

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

Risk: Lack of Deployable Software 49

• Lack of deployable software

• Late discovery of defects

• Lack of project visibility

• Low-quality software

You may say, “Oh, I’ve heard of all of these risks before. This is
nothing new to me.” However, you can be aware of a risk but not nec-
essarily mitigating it. There are more efficient and productive ways to
identify and address risks so that they are no longer a focus on your
projects. Like most practices, it comes down to effective implementa-
tion. In later chapters, using the model of the Integrate button, we
show you effective ways to recognize and reduce these risks.

Risk: Lack of Deployable Software

I was on a project in which we built the software on a separate machine
every month or so. When we finally built the software, too close to the
delivery deadline, most team members would stay until the late hours
of the night to pull off another miracle. During this “integration hell,”
we found that we had interfaces that did not work, were missing con-
figuration files, had multiple components providing similar functional-
ity, and had difficulty in merging many changes that were part of the
latest build. This sometimes caused us to miss critical milestones on
the project.

On another project, the software integration build was a manual
process initiated by the IDE. On average, we were manually integrat-
ing software on a weekly basis. In some cases, there were certain
scripts used by the Configuration Management (CM) analyst to build
the software that did not reside in the version control repository. The
lack of automation increased the overhead of running the build.
Because we were not performing the build in a clean environment on a
separate machine, we had no confidence we were building the soft-
ware correctly. The effects of all these were threefold:

• Little or no confidence in whether we could even build the
software

50 Chapter 3 ❑ Reducing Risks Using CI

• Lengthy integration phases before delivering the software inter-
nally (i.e., test team) or externally (i.e., customer), during which
time nothing else got done

• Inability to produce and reproduce testable builds

Scenario: “It Works on My Machine”
There can be many reasons why a project team is unable to create
working, deployable software: Anything from failing tests to the
wrong files applied to the version control repository can contribute to a
failed build. Here’s one such scenario.

John (Technical Lead): We’re having a problem with the latest build
on the test server.

Adam (Developer): That’s funny; it was working when I built it on my
machine. Let me see… Yeah, it’s still working.

John: Oh, I see the problem. You didn’t commit your new files into
the Subversion repository.

Solution
We cannot overemphasize the importance of eliminating tight coupling
between your IDE and your build processes. Use a separate machine
solely for integrating the software. Ensure that everything you need to
build the software is contained in the version control repository.
Finally, create a CI system. Use a CI server such as CruiseControl
along with an automated build using tools such as Ant, NAnt, or Rake.
CruiseControl watches for changes in the version control repository
and runs the project build script when it detects a change to the reposi-
tory. You can increase the capabilities of this CI system to include hav-
ing the build run through tests, perform inspections, and deploy the
software in the development and test environments; this way you
always have working software.

Scenario: Synching with the Database
If you are unable to recreate your database quickly during develop-
ment, you will find it difficult to make changes. Often this is due to a

Risk: Lack of Deployable Software 51

separation between the database team and the development team—
each team is focused on their own responsibilities with little collabora-
tion between the two. How can the product be integrated if the teams
aren’t integrated? In a scenario like this, the database administrator, for
instance, may not be committing most of the database scripts to the
version control repository. These types of risks can then arise.

• Fear of making changes or refactoring the database or source
code

• Difficulty in populating the database with different sets of test
data

• Difficulty in maintaining development and testing environments
(e.g., Development, Integration, QA, and Test)

This negatively affects development, because the database is not
keeping up with the development team or vice versa. The software and
database developers may all be running different versions of the data-
base. Project members are unable to go to a single source point (ver-
sion control repository) to get the latest database. The following dialog
illustrates this problem.

Lauren (Developer): I’m having a lot of problems testing on
v1.2.1.b1 of the database using build 1345.

Pauline (Database Designer): Oh no, with build 1345, you should use
v1.2.1.b2, but I also need to make a few changes to it first.

Lauren: I just spent four hours for nothing.

Pauline: Well, you should have checked with me first.

Solution
This solution would necessitate fundamental change for some projects;
it outlines an approach where the database is not a separate entity from
development.

• Place all database artifacts in your version control repository.
This means everything you need to recreate the database schema
and data: database creation scripts, data manipulation scripts,
stored procedures, triggers, and any other database assets.

52 Chapter 3 ❑ Reducing Risks Using CI

• Rebuild the database and data from your build script, by drop-
ping and recreating your database and tables. Next, apply the
stored procedures and triggers, and finally, insert the test data.

• Test (and inspect) your database. Typically, you will use the
component tests to test the database and data. In some cases,
you’ll need to write database-specific tests.

We go much deeper into this topic and discuss scenarios and solu-
tions in Chapter 5.

Scenario: The Missing Click
Deploying your software manually wastes time and effort. On one
project, we manually deployed the software as needed using the appli-
cation server’s Web administration utility. This was supposed to occur
once a day, but because the team was typically sidetracked with other
issues, this created bottlenecks when we needed the latest integrated
build. This repetitive, mundane process took 10–15 minutes to com-
plete every day—if all went well. The problem was that we were
spending time on something that should have been automatic: deploy-
ment to the test machine. In addition, it was easy to cause problems if
we didn’t click the right buttons on the administration tool.

Here is an example of a typical problem resulting from a manual
deployment approach.

Rachel (Developer): Is the latest build updated to the development
server? Where is John?

Kelly (Developer): Oh, John is at lunch. He’s supposed to have posted
the update to the server.

Rachel: Well, I’ll just wait for John to get back.

Later, John arrives…

Rachel: John, what happened with the latest build? It looks like the
JSPs weren’t precompiled, so we’re receiving runtime errors now.

John (Technical Lead): Oops, sorry about that. I must have forgotten
to select that option when I deployed with the Web tool yesterday.

Risk: Late Discovery of Defects 53

Solution
On our projects, we automated the deployment process by adding it to
the Ant build scripts that use the application server command-line
options. This reduced the bottleneck of waiting for someone else to
deploy the software and eliminated mistakes. We always had a testable
version of the latest software available. We ran this Ant build script
continuously from the CruiseControl CI server whenever we applied a
change to the version control repository. For more information, see
Chapter 8.

Risk: Late Discovery of Defects

On some projects, we performed testing manually. We didn’t know if
the latest changes to the software caused other problems—for exam-
ple, the infamous cycle of fixing one defect only to cause other unre-
lated defects to surface. We had no confidence to make changes since
we didn’t know the downstream effects of a change. There was no way
to ensure that developers were running the tests on the software since
these tests were being performed manually.

Scenario: Regression Testing
Let’s look at a regression-testing scenario.

Sally (Technical Lead): I noticed that the latest version deployed to
the test environment has the same bug that we had two months ago.
Why is that?

Kyle (Developer): I’m not sure. I tested all of my latest changes.

Sally: Did you run all of the other tests for the other parts of the system?

Kyle: No, I didn’t have time to manually run through those tests.
That’s probably why I didn’t find the bug before we went to test.

Solution
On new projects, we began writing unit and component tests in JUnit
at the business, data, and common layers. For existing projects, we

54 Chapter 3 ❑ Reducing Risks Using CI

wrote unit tests for the code that was changed, based on defects. We
configured the Ant build scripts to run all the unit tests and publish a
report for every build.

The following steps demonstrate how you can use the CI system to
enable automated regression testing on your project.

1. Write test code for all of your source code (an xUnit framework
is a good place to start).

2. Run tests from your build script (Ant or NAnt are the most
common).

3. Run tests continuously as a part of your CI system so that they
are executed at every checkin to the version control repository
(using CruiseControl or a similar CI server).

And as simple as that, you have automated regression testing on
your project! We discuss more about making your tests an integral part
of builds, at all levels, in Chapter 6.

Scenario: Test Coverage
If you write and run tests, you view the results but you also want to
know how much of your code is actually being tested. Since most of
the unit testing on our project was manual before our CI system, there
was no way to independently verify that the tests were executed. How
does the manager determine how much was actually tested? Consider
the following interaction.

Evelyn (Manager): Did you run unit tests before you committed your
changes to the repository?

Noah (Developer): Yes.

Evelyn: Great. How’s it going on the other feature you are implement-
ing?

What didn’t Evelyn ask? Let’s try it again.

Evelyn: Did you write new tests or update existing tests for your new
code?

Noah: Yes.

Risk: Lack of Project Visibility 55

Evelyn: Did all the tests pass?

Noah: Yes.

Evelyn: How did you determine whether enough of the code was
tested adequately?

That line of questioning is a bit better, but it’s still an unnecessarily
qualitative analysis of something that can be described more con-
cretely through some quantitative analysis. Let’s go to the solution.

Solution
Once developers or teams believe they have written the corresponding
tests for their source code, you can run a code coverage tool to assess
the amount of source code that is actually executed by the tests. Many
of the tools will display the percentage of coverage by package and
class.

Using CI can ensure this test coverage is always up to date. For
instance, you can run a test coverage tool as a part of your CI system’s
build script whenever there is a change to your version control reposi-
tory. We discuss code coverage in Chapter 7.

Risk: Lack of Project Visibility

Manual communication mechanisms require a lot of coordination to
ensure the dissemination of project information to the right people in a
timely manner. Leaning over to the developer next to you and letting
her know that the latest build is on the shared drive is rather effective,
yet it doesn’t scale very well. What if there are other developers who
need this information and they are on a break or otherwise unavail-
able? If a server goes down, how are you notified? Some believe they
can mitigate this risk by manually sending an e-mail. However, this
cannot ensure the information is communicated to the right people at
the right time because you may accidentally leave out interested par-
ties, and some may not have access to their e-mail at the time.

56 Chapter 3 ❑ Reducing Risks Using CI

Scenario: “Did You Get the Memo?”
There are many different scenarios for this risk; here’s just one.

Evelyn (Manager): What are you working on, Noah?

Noah (Tester): I’m waiting for the latest build to be deployed to QA in
order to start testing.

Evelyn: The latest build was deployed to the test server two days ago.
Didn’t you hear?

Noah: No, I’ve been out of the office the past few days.

Solution
To mitigate this risk, we installed and configured a CruiseControl CI
server on our projects with the automated mechanism that sends
e-mails to affected parties when a build fails. In addition, we added
SMS notifications so that we received text messages on our mobile
phones, in case we didn’t have access to e-mail. We installed auto-
mated agents that checked the availability of the servers on a regular
basis. For examples and more information, see Chapter 9.

Scenario: Inability to Visualize Software
On one project, we were making enhancements and modifying exist-
ing software. However, we had no reverse-engineering tool that was
showing us the big picture: a model of the classes and relationships. If
there was an up-to-date class diagram we could reference, we would
have been better able to determine repetition of behavior or incorrect
structure, and thereby reduce ineffective decisions.

Maile (Developer): Hi. I’m new to the project and I’d like to review
the design. Are there any UML or other diagrams I can see?

Allie (Developer): Grr. We don’t do the UML here. All you have to do
is read the code. If you can’t read the code, then maybe you don’t
belong here.

Maile: That’s okay; I was just hoping I could see the big picture and
determine the overall architecture rather than slowly interrogating the
code. I’m more of a visual person.

Risk: Low-Quality Software 57

Solution
In seeking to reduce the time between the introduction of a design
defect and its resolution, we began generating diagrams of the design
using the CI system. We ran an automated code documentation tool,
called Doxygen, as part of the CI system. Doxygen documents the
source code and creates UML diagrams that model the software.
Because it was running as a part of the CI system, it was always up to
date, based on the software that was most recently checked into the
version control repository.

Although we could have created this with the CI system, we also
chose to create a simple one- or two-page architecture document that
described the software architecture, identifying the key components
and interface for new developers.

Risk: Low-Quality Software

There are defects and then there are potential defects. You can have
potential defects when your software is not well designed, is not fol-
lowing the project standards, or is complex to maintain. Sometimes
people refer to this as code or design smells—“a symptom that some-
thing may be wrong.”1 Some believe that lower-quality software is
solely a deferred project cost (after delivery). It can be a deferred
project cost, but it also leads to many other problems before you
deliver the software to users. Overly complex code, code that does not
follow the architecture, and duplicated code all usually lead to defects
in the software. Finding these code and design smells before they man-
ifest into defects can save much time and money and can lead to
higher-quality software. We examine a few such scenarios in this section.

On one project, we had no idea how maintainable our software was
unless we manually reviewed all of the source code every day. We
were unable to identify quality trends in the software under develop-
ment. Many project members were feeling like they “didn’t have time”
to fix the internal qualities of the software and didn’t know where to

1. From http://en.wikipedia.org/wiki/Code_smell.

http://en.wikipedia.org/wiki/Code_smell

58 Chapter 3 ❑ Reducing Risks Using CI

start. Some projects had a coding standards document that was rarely
consulted or followed. Other projects had no standard at all. On some
of the projects, the entropy of the software was apparent, as we were
afraid that making changes would break the software.

Scenario: Coding Standard Adherence
Here is a typical interaction concerning adherence to a coding standard.

Brian (Developer): I’m finding it difficult to read your code. Did you
read the 30-page coding standards document when you started last
month?

Lindsay (Developer): I am using the style I used in my previous job.
The code I write is kind of complex so it may be difficult for you to
grasp it.

Brian: Writing code that others can’t work with doesn’t make you
smarter; it makes you a less valuable resource. It’s taking me longer
to review and update the code. Please review the coding standards
document as soon as you can. First, you can retrofit your existing
code, and then get back to new code using the guidelines.

Solution
Instead of writing a 30-page standards document, we created a one-
page annotated class that contained all of the coding standards.2 We
enforced the coding standard by using automated inspection tools as a
part of the build scripts initiated by CruiseControl. While working pri-
marily on Java projects, we used Checkstyle3 and PMD4 to report any
lines of code that were not meeting the established standards. We pre-

2. See Java Coding Conventions on One Page, by William C. Wake, at
www.xp123.com/xplor/xp0002f/codingstd.gif.

3. Checkstyle is a static analysis tool that assesses your source code and reports
any deviations from the established coding standard. It is available at http://check-
style.sourceforge.net/.

4. PMD is a metrics tool that reports any anomalies in your source code, such as
unused variables, unused imports, or overly complex code. It is available at http://
pmd.sourceforge.net/.

www.xp123.com/xplor/xp0002f/codingstd.gif
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://pmd.sourceforge.net/
http://pmd.sourceforge.net/

Risk: Low-Quality Software 59

sented this information in the form of HTML reports, which we inte-
grated into the CruiseControl CI server. On newer projects, we did not
allow the build to pass if there were any violations of the coding standard.

Scenario: Architectural Adherence
Source code that does not follow the intended design is more difficult
to maintain. Have you been on a project that had established a very
elegant software architecture at the beginning of the project only to
have it morph into a “Big Ball of Mud”5 by the end of the project? Per-
haps the architect designed the whole system using a UML modeling
tool and said something like, “Follow this reference architecture.” This may
be the extreme and, as always, there are shades of gray in between.

A discrepancy between the intended and the actual architecture
can be problematic. For example, let’s say you have an architectural
guideline like: “The data layer should never ‘talk’ to the business
layer.” Perhaps the architect used a UML modeling tool to forward-
engineer the model based on this architecture into the source code.
However, over time, the code changed and the architecture got out of
sync with its intended design. For instance, let’s say a new developer
starts on the project and finds some useful methods in the business
layer and calls them from the data layer. This is a violation of the
project’s architecture. How can you ensure that this doesn’t happen?

Jenn (Architect): Are you guys following the architecture? I found
some problems in one of the controllers in which one of you is calling
a component in the data layer directly.

Mark and Charlie (Developers): (Perplexed expressions)

Jenn: The reason I created all of those UML diagrams is so that
everyone will follow the established software architecture. You’re not
following the established protocol that has been in place for months.

Charlie: I looked at those at the beginning of the project, but the
architecture has changed a few times since then and it’s difficult to
keep up.

5. “A system…that has no real distinguishable architecture.” From http://en.wiki-
pedia.org/wiki/Big_ball_of_mud.

http://en.wikipedia.org/wiki/Big_ball_of_mud
http://en.wikipedia.org/wiki/Big_ball_of_mud

60 Chapter 3 ❑ Reducing Risks Using CI

Solution
Add automated inspection tools to assess adherence to the project’s
architectural standards. For instance, you could add a rule that control-
ler classes should never make direct calls to the data access objects.
You can use dependency analysis tools such as JDepend6 or NDepend
to create reports for architectural adherence. You can run a tool such as
this with every integration build.

Scenario: Duplicate Code
Duplicate code, which makes code more difficult to maintain,
increases costs. Code that has been copied and pasted has been a risk
on virtually every project we have seen. In fact, there are many well-
known software development kits and tools where over 25% of the
code has been duplicated. We analyzed all the software development
projects at one company and found an average 45% of duplicated
code. This can present problems when you have multiple copies of
similar code that you need to maintain. For example, one system had
five copies of similar code in different subsystems. Now, let’s say you
have some code that checks the authorization of a user who is cur-
rently logged in. Instead of writing a single method, the developer
chooses to copy and paste the code everywhere he needs to authorize
this user. You’ll find another variation of code duplication when devel-
opers create their own logic rather than using a common utility. The
code is not literally copied and pasted, but it still produces the same
effect as explicit code duplication.

Mary (Developer): Do you know how I can iterate over a collection of
User objects?

Adam (Developer): Yes, I wrote some code for that last week. You
can find it in the User package.

Mary: Great! I will copy it out of there and use it. Thanks.

6. JDepend is a tool to determine the architecture and design of your source code.
It is available at www.clarkware.com/software/JDepend.html.

www.clarkware.com/software/JDepend.html

Risk: Low-Quality Software 61

And so it goes, the code duplication continues. Unless you know
whether the duplication is going up or down and where the duplication
is occurring, it’s difficult to determine what problems you’re heading
toward and where to refactor.

Solution
To create a solution, you first need to assess the problem. You can add
automated inspection tools such as PMD’s CPD7 or the Simian8 static
analysis tools to report duplicate source code. We executed these
inspection tools as part of the build process so that we could run them
at any time. Using these tools, we determined the areas of code that
had the most duplication and then we generalized the code into com-
ponents. Using this approach, we were able to continually monitor our
code duplication and reduce the amount of duplicated code in the system.

In a typical scenario, you might discover that multiple classes have
the same or similar code. Follow these steps to reduce duplicate code.

1. Analyze the code using a code duplication analyzer such as
Simian or PMD’s CPD. Incorporate this into your build script.

2. Reduce the duplicated code by refactoring9 the code into a sin-
gle method or component that is called by the classes where it
used to appear.

3. Run code duplication inspections continuously by incorporating
a code duplication inspector into your CI system. This gives you
the capability to determine code duplication over time.

Chapter 7 details the inspections you can run, how often, and when
to apply them.

7. CPD, a utility of the PMD metrics tool, reports instances of copied and pasted
source code. It is available at http://pmd.sourceforge.net/.

8. Simian (Similarity Analyser) provides support for C#, Java, Ruby, and a number
of other languages. It is available for download at www.redhillconsulting.com.au/
products/simian/.

9. “Refactoring is making changes to a body of code in order to improve its inter-
nal structure, without changing its external behavior.” From “Refactoring with
Martin Fowler: A Conversation with Martin Fowler, Part I,” by Bill Venners, at
www.artima.com/intv/refactor.html.

www.redhillconsulting.com.au/products/simian/
www.redhillconsulting.com.au/products/simian/
www.artima.com/intv/refactor.html
http://pmd.sourceforge.net/

62 Chapter 3 ❑ Reducing Risks Using CI

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
This chapter outlined the key risk areas that CI will help to mitigate,
such as database integration, testing, inspection, deployment, feed-
back, and documentation. Table 3-1 provides an overview of the mate-
rial covered in this chapter. You will find that by mitigating these risks
using CI practices, you will improve software quality.

Questions
How many risks do you have on your project that CI can help mitigate?
These questions should help you determine the risks on your project.

■ When do you find the most defects on your project, in the beginning
or in later parts of the lifecycle?

■ How do you determine the quality on your software projects? Are
you able to measure it?

■ Which processes on your projects are manual? Have you deter-
mined which processes you can or should automate?

TABLE 3-1 Summary of Risks and Mitigations

Risk Mitigation

Lack of deployable
software

Use a CI system to build deployable software at any
time. Create a repeatable build process that uses all
software assets from the version control repository.

Late discovery of
defects

Run builds that include developer tests with every
change, so you can discover defects earlier in the
software lifecycle.

Lack of project
visibility

Know the health of your software at all times by run-
ning builds regularly. When effectively applying the
practice of CI, the project status is no longer in
question.

Low-quality software Run tests and inspections at every change so you
can discover potential defects that may be intro-
duced into the code base by learning the complexity,
duplication, design, code coverage, and other
factors.

Questions 63

■ Do you have all of the scripts to rebuild your database and data in
your version control repository? Are you able to rebuild your data-
base and test data during the build process?

■ Are you able to perform regression testing whenever a change is
made to the software? Are you able to run various types of regres-
sion tests, including functional, integration, load, and performance
tests?

■ Do you have the capability to determine which source code does
not have a corresponding test? Are you using test coverage tools?

■ What percentage of your software has duplicate code? Are you
seeking to reduce this amount?

■ At any point in time, how do you verify that the current source code
adheres to the software architecture?

■ How do you notify that the build or deployment is ready to test?
Which communication mechanisms on your project are manual,
and which should be automated?

■ Are you able to view a current visual diagram of your software?
How do you communicate the software architecture to a new devel-
oper on the project?

This page intentionally left blank

65

Chapter 4

Building Software at Every Change

The whole damn universe has to be taken apart, brick by brick,
and reconstructed.

—HENRY MILLER, AMERICAN WRITER AND PAINTER (1891–1980)

In the early 1900s, workers on the Ford assembly line manufactured
cars by hand. A Model T took several days to create. Today, cars are
infinitely more complex than the Model T, yet they now take a fraction
of the time to assemble. Why is this? The answer is simple: automa-
tion. The automobile manufacturing industry has removed humans
from repetitive tasks and replaced them with robots. So, too, can time-

Automate Builds
Perform Single
Command Builds

Separate Build
Scripts from
Your IDE

Centralize
Software Assets

Create a
Consistent
Directory
Structure

Fail Builds
Fast

Build for Any
Environment

Use a Dedicated
Integration Build

Machine

(Optional)
Use a CI Server

(Optional)
Run Manual

Integration Builds
Run Fast Builds Stage Builds

66 Chapter 4 ❑ Building Software at Every Change

consuming tasks within a software process be mechanized using auto-
mated builds. In fact, in both industries, the volume of demand has
necessitated this advancement. If a worker’s effort in her eight-hour
day is tied up in eight hours of manual tasks, there is absolutely no
time left for monitoring the process and the product, planning
improvements, and so on.

Sometimes developers are like the cobbler who provides all his
customers with shoes, but forgets shoes for his children: We create
applications to automate processes for users, yet we don’t automate
our own processes for developing software. A study1 conducted in
2003 indicated that approximately 27% of development teams run
daily builds. As an industry, you could say that we are still using the
old, manual automobile assembly line model.

People sometimes refer to the complex nature of software as an
excuse for not automating portions of development. Yes, developing
software is often complex, but there are many repetitive, error-prone
activities that we can automate. The development of software may be
complex, but the delivery of software must be a push-button affair.

The Integrate button (as seen in Figure 4-1) contains an “auto-
mated assembly line” that embodies many practices that compose the
high-level practice of CI. An automated build represents the modern-
day automated assembly line that uses “robots” to integrate software.

In this chapter, we discuss the benefits of using a CI server to per-
form an integration build whenever a change occurs. Not all builds are
built the same, so we cover the types of builds you will typically exe-
cute and how to stage your builds. We also cover the aspects of choos-
ing and using a separate integration build machine for CI. Automated
CI is not the only viable approach to running an integration build; we
also cover a technique to run manual integrations using a queued
approach. Since obtaining build feedback quickly is so important, we
finish the chapter with the bane of CI, long-running builds, along with
common questions about CI we’ve heard over the years.

1. Cited in “Software Development Worldwide: The State of the Practice” (with
Alan MacCormack, Chris Kemerer, and Bill Crandall), IEEE Software, November–
December 2003, vol. 20, no. 6, pp. 28–34 (Invited). www.pitt.edu/~ckemerer/
CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormack
Kemerer03.pdf.

www.pitt.edu/~ckemerer/CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf
www.pitt.edu/~ckemerer/CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf
www.pitt.edu/~ckemerer/CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf

Automate Builds 67

Automate Builds

By writing automated build scripts, you reduce the number of manual,
repetitive, and error-prone processes performed on a software project.

What is a software build? Is a build just compiling software com-
ponents? Is a build compiling components and running automated
tests? Is it a build only if inspections are included? A build can be any
of these, yet the processes that you include in a build can more effec-
tively reduce risks; however, the more processes added to a build, the
slower the feedback. Therefore, you must determine which processes
to include in an automated build. For example, in Chapter 2 we
described the practice of running a private build, which consists of
integrating changes from the team, and running a full build (which
may include compile, test, inspections, etc.) on your workstation prior
to committing code to the version control repository to prevent broken

FIGURE 4-1 Building your software to improve software quality and reduce risk

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

68 Chapter 4 ❑ Building Software at Every Change

builds. On the other hand, if you are just trying out a couple of changes
and do not intend to commit anything, you may choose to run a lighter-
weight build that may only perform a compile and then execute a few
unit tests.

“Ant It Great?”
Many of the examples used in this book use the Ant and NAnt
build tools. This is because of their wide use and recognition
throughout the development community. I expect (or hope) that
new build tools that provide support for dependencies and pro-
gramming constructs become more widely accepted in the com-
ing years.

There are a variety of build tools from which to choose. Some of
the most popular build tools include Ant for Java and NAnt for .NET.
Using a scripting tool designed specifically for building software,
instead of a custom set of shell or batch scripts, is the most effective
manner for developing a consistent, repeatable build solution.

Remember, builds should be a push-button proposition. When you
press the Integrate button, as shown in Figure 4-1, the assembly line
process runs and produces working software. At times, organizations
are unable to adopt CI because they are unable to truly automate their
builds. In some cases, this inability is correlated to tightly coupled
dependencies, such as third-party libraries and hard-coded references.
I once saw a project with some examples of this, where:

• There were dependencies on shared drives, and parts of the build
script were hard-coded for the K:\ drive (which was a problem
since there wasn’t a “K” drive on the developer’s machine)

• And there were hard-coded references to the locations (C:\ drive)
of certain tools that weren’t residing on the developer’s machine

Both of these examples not only make the script inoperable on a
non-Windows machine, but they also make it inoperable on the devel-
oper’s machine because the developer may not have mapped the drives
or those directories on the C:\ drive. Attempting to run a script like this
will only lead to frustration, as dependency after dependency is unable
to be resolved, resulting in a failed build.

Perform Single Command Builds 69

Would you consider software that hasn’t been tested to be working
software? How about software that was tested but hasn’t been
inspected? Suppose someone said, “Everything works except for the
database”—is this working software? Some developers consider their
software to be working if it compiles. There are different types of
builds (covered later in this chapter), and you will be balancing
between a need for a heavyweight build that verifies and produces
working, deployable software (usually via many types of tests and
inspections) versus the need for getting rapid feedback.

Perform Single Command Builds

Martin Fowler states, “Get everything you need into source control and
get it so that you can build the whole system with a single command.”2

The Integrate button concept is realized only if you can run your build
via a single command. For instance, typing nant integrate from the
command line, as shown in Listing 4-1, is an example of a single com-
mand initiating an integration build.

LISTING 4-1 Build Script Run via a Single Command

> nant integrate
Buildfile: file:///C:/dev/projects/acme/project.build
clean:
svn-update:
all:
compile-src:
compile-tests:
integrate-database:
run-tests:
run-inspections:
package:
deploy:
BUILD SUCCEEDED
Total time: 3 minutes 13 seconds

A CI server needs a headless process, such as a single command
script, to execute in an automated manner. When running an integration

2. “Continuous Integration” at www.martinfowler.com/articles/
continuousIntegration.html.

www.martinfowler.com/articles/continuousIntegration.html
www.martinfowler.com/articles/continuousIntegration.html

70 Chapter 4 ❑ Building Software at Every Change

build on a separate machine, it’s not feasible or appropriate to rely on
an IDE. Also, to run an integration build via a single command, you
need to access all software assets (from a version control system) in
order to build the software.

An automated build is just like having an Integrate button: “Press
the button” and your software is built (and deployed). This means all
software assets are cohesive and functionally testable. Figure 4-2 illus-
trates the activities that a build script will typically perform.

FIGURE 4-2 The logical processes of a build script

Clean

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Build Script

Perform Single Command Builds 71

The high-level steps for building your software go something like
this.

1. Create your build using a build scripting tool like NAnt, Rake,
Ant, or Maven. Keep it simple at first; you can add more pro-
cesses as you go.

2. Add each process (clean, compile, etc.) of the Integrate button
within the build script.

3. Run the script from an IDE or the command line to build software.

Listings 4-2 through 4-6 demonstrate examples using the NAnt
build tool for the .NET platform; however, you can achieve the same
effect with other build scripting tools, such as Ant or Maven for Java,
MSBuild for .NET, and Rake for Ruby, to name a few. The issue is not
so much which tool you choose to use, but you should ideally use an
existing build tool rather than creating a custom solution.

Listing 4-2 shows a NAnt script that uses the delete task to remove
any directories and files before a new build. This reduces any chance
that files from a previous build will adversely affect the new build.

LISTING 4-2 Clean Generated Directories Using NAnt

<target name="clean">
 <delete dir="${build.dir}" verbose="true" failonerror="false"/>
 <delete dir="${dist.dir}" verbose="true" failonerror="false"/>
 <delete dir="${reports.dir}" verbose="true" failonerror="false"/>
</target>

Listing 4-3 demonstrates C# compilation using the csc task. This
task will compile all of the files in a certain directory and move the
generated .dll file to a different directory. The second part of this
example demonstrates the execution of a SQL script that runs a data
definition script to create the tables in a database.

LISTING 4-3 Compile and Rebuild Database Using NAnt

<target name="build">
 <csc target="library" debug="${build.debug}"
 output="${build.dir}\bin\${config}\${nant.project.name}.dll">
 <sources failonempty="true">
 <include name="${project.localpath}/**/*.cs" />
 </sources>
 </csc>
</target>

72 Chapter 4 ❑ Building Software at Every Change

<target name="integrate-database">
 <sql connstring="${project.db.conn}"
 delimiter=";"
 delimstyle="Normal"
 print="true"
 source="${data-definitions}"/>
</target>

Listing 4-4 is an example of running the nunit2 task in NAnt to
execute a suite of NUnit tests. Notice that if any of the tests fail, the
build fails (as demonstrated by setting the failonerror attribute of
the nunit2 task to true). As the CI practice stated in Chapter 2, all
tests and inspections must pass in order for a build to pass.

LISTING 4-4 Testing Using NUnit and NAnt

<target name="run-tests" depends="compile-src">
 <nunit2 failonerror="true">
 <formatter type="Xml"
 usefile="true"
 extension=".xml"
 outputdir="${build.dir}/results"/>
 <test
 assemblyname="${build.dir}\bin\${config}\${project}.Test.dll"
 appconfig="mydefaulttest.config"/>
 </nunit2>
</target>

Listing 4-5 demonstrates the execution of the fxcop task, which
runs FxCop, a free tool for the .NET platform that inspects and reports
on predefined code violations relating to performance, security con-
cerns, naming conventions, and so on.

LISTING 4-5 Inspection Using FxCop and NAnt

<target name="fxcop">
 <fxcop>
 <targets>
 <include
 name="${build.dir}\bin\${config}\${project}.dll"/>
 </targets>
 <arg value="/out:${build.dir}\bin\${config}\fxcop.xml"/>
 </fxcop>
</target>

Separate Build Scripts from Your IDE 73

The last build activity shown in Figure 4-2 is for deployment. List-
ing 4-6 illustrates the use of a NAnt task for a simple deployment to an
FTP server.

LISTING 4-6 Deployment Using FTP and NAnt

<target name="deploy">
 <connection id="staging"
 server="devqa.ib.com"
 username="helloworld"
 password="myftppwd" />
 <ftp connection="staging"
 remotedir="incoming"
 localdir="c:\dev\project\acme">
 <put type="bin">
 <include name="${build.dir}\bin\${config}\${project}.dll" />
 </put>
 </ftp>
</target>

If a build script is executed by a developer without any feedback,
she will not know whether the build succeeded or failed. A very simple
example of a failure notification is included in Listing 4-4. If any test
run by the nunit2 task fails, then the entire build is considered a fail-
ure. In fact, NAnt will end the build with a glaring BUILD FAILED mes-
sage so there won’t be any doubts.

This is by no means an exhaustive example of a build script. The
benefits of a build script that fully enables the Integrate button would
need to incorporate many more processes and paths.3

Separate Build Scripts from Your IDE

You should avoid coupling your build scripts with an IDE. An IDE
may be dependent on a build script, but a build script shouldn’t be
dependent on your IDE. Figure 4-3 illustrates the proper dependency.
This dependency is sometimes more subtle than you may think. For

3. For more on this topic, see the book’s companion Web site:
www.integratebutton.com/.

www.integratebutton.com

74 Chapter 4 ❑ Building Software at Every Change

example, IDEs can make it easy to create build scripts, but they place
the build files and dependencies within the directory structure of the
installed IDE. To test the reusability of an IDE-generated build script,
take the build script and run it on a new machine with only the operat-
ing system installed (and the associated build tool).

Creating a separate build script is important for two reasons.

1. Each developer may be using a different IDE, and it can be diffi-
cult to account for configuration differences in each IDE.

2. A CI server must execute an automated build without human
intervention. Therefore, the same automated build script used
by developers can and should be used by the CI server.

Centralize Software Assets

To build software effectively, all software assets must be centralized.
By centralizing software assets into a version control system, you are
able to better achieve the single command build described earlier in
this chapter. Moreover, centralizing software helps prevent the “but it
works on my machine” problem, where a developer is unable to recre-
ate a defect that occurred in some other environment, such as the test-
ing area or the user’s machine. We cover different techniques in
centralizing software assets in this section.

One approach to centralization of software assets is to use the ver-
sion control repository to host all files. In the book Software Configu-
ration Management Patterns, Stephen Berczuk and Brad Appleton call

FIGURE 4-3 Decoupling your build script from the IDE

CI Server

IDE

Build Script

Create a Consistent Directory Structure 75

this the “Repository pattern.” The pattern indicates that “a workspace
consists of more than just code,” including all of the following:

• Components, as either source or library files

• Third-party components, such as JAR files, libraries, DLLs, and
so on, depending on the language and platform

• Configuration files

• Data files to initialize an application

• Build scripts and build environment settings

• Installation scripts for some components4

When using a version control repository to centralize all software
assets, you still make the judgment call as to what constitutes “all.”
Use the level or risk to decide the minimum types of software assets
that go into the version control repository. For example, one of the
risks for a product with a long lifespan is that subsequent versions of
compilers and tools may cause problems, sometimes subtle and unde-
tectable, with your software. This is a risk because you may need to go
back and compile the earlier version.

Moreover, certain versions of tools don’t work well with others.
It’s easy for developers to pull down whatever version of a tool they
think is appropriate, possibly running into problems and chasing false
positives or negatives. Similarly, going back and producing an old
build (e.g., to reproduce a customer problem or fix a bug) may require
a specific set of tools that were used at that point in development. As
such, you’ll probably conclude that there’s almost no part of your
project that could not benefit in the future, for some reason, from the
version tracking and centralization of assets in a project repository.

Create a Consistent Directory Structure

Using a version control repository to manage all software assets does
all of the important things just discussed, but using one makes it possi-

4. From Software Configuration Management Patterns by Stephen Berczuk and
Brad Appleton.

76 Chapter 4 ❑ Building Software at Every Change

ble to perform scripted retrievals from a CI server. To do so effectively,
to be able to draw on the repository for all the myriad asset combina-
tions you can use throughout the project, you must create a consistent,
logical directory structure.

One approach is to base the directory structure on typical software
development project activities such as requirements, design, imple-
mentation, and testing. Whether you use these or other named “buck-
ets” for the structure, the salient point is to keep their distinctions and
contents defined and consistent. In addition, it is important that each
task in your build is retrieving from a directory that contains only the
source code and related scripts for that task, not the entire project. For
instance, your integration build script can get all source code and
related scripts from the implementation directory. This can speed up
builds significantly, whereas retrieving all files, such as documents and
binary files, can make builds crawl. A simple directory structure such
as the following can help separate source files from others so that it’s
easier to run builds.

• implementation

• requirements

• design

• management

• deployment

• testing

• tools

Of course, almost all of these top-level directories might have
many subdirectories below them. The implementation directory
should have only source files in it and can be the primary directory for
running builds.

Fail Builds Fast

Good builds know how to fail fast. It is annoying to fail after so many
other portions of the build have passed, and you are losing precious

Build for Any Environment 77

time targeting the failed targets. The high-level steps to create fast-failing
builds are

1. Integrate components (get latest changes from repository and
compile)

2. Run true unit tests (i.e., quick tests that don’t have a database or
any other dependency)

3. Run other automated processes (rebuild database, inspect, and
deploy)

This is only one recommended order of build execution. It all
depends on what is more likely to fail most often on a particular
project. The more likely it is to fail, the sooner you should have it exe-
cute within the build script. Also, keep in mind that the order of execu-
tion is sometimes dictated by what must be built first. For example,
source code needs to be compiled before running developer tests.
Builds are most effective when they send a build failure as soon as
possible. The Run Fast Builds section, later in this chapter, addresses
ways to reduce your build duration and to stage builds so that they pro-
vide faster feedback.

Build for Any Environment

A software project often requires you to deploy to different environ-
ments. You may find it useful to maintain different configuration files
in your repository to execute against different environment configura-
tions (development, integration, test, QA, and production) by using
.properties, .xml, or .ini files. Each platform, language, and scripting
tool will have its own variation on configuration. A build’s config-
urability relies on its build scripts to alter the predefined configurations
available in the software without changing the core functionality of the
build scripts. In many cases, you can provide these configuration
“hooks” by altering configuration files used by the application. Fre-
quently, you can also configure the frameworks and APIs on which an
application relies. The technique will vary depending on the platform’s
convention. The following is a list of configurable values that you will
likely find in most environments.

78 Chapter 4 ❑ Building Software at Every Change

• Logging verbosity

• Application server configuration

• Database connection information

• Framework configuration

Although the environments that you test or deploy to may be dif-
ferent, the build scripts do not need to be different. Configuration files
(such as .properties or .include files) let you account for variations
rather than having to copy and paste values for each environment
within the build scripts. Here is another area, just like source code,
where duplicated code leads to greater complexity and lower reliabil-
ity. To ensure that you can create working software in any environ-
ment, improve your build’s configurability by parameterizing the build
scripts. As demonstrated in Figure 4-4, you can run the same build
script and provide an associated properties file to customize for each
build environment. For instance, you can call this build script:

ant –f build.xml –Denvironment=qa

when deploying to the QA environment. environment is a property
that was defined in the Ant script. –D indicates it’s a system parameter
passed to the Ant script.

Build Types and Mechanisms

There are different types of builds, and each type has different, but
sometimes overlapping, parties who are interested in the build status or
who also will use it. These builds can be triggered using different
mechanisms, such as user-driven, scheduled, polling for changes, and
event-driven mechanisms.

Build Types
Build types occur in a three-level hierarchy: for the individual, the
team, and users (the customer). A developer (or pair) runs a private

Build Types and Mechanisms 79

build, an integration build integrates the results with the rest of the
team, and a release build readies the software for the users.

Private Build
A developer will run a private build prior to committing code to the
repository. By running a private build, you integrate your changes with
the last changes available in the version control repository. This can
prevent broken builds. The steps to running a private build are

1. Check out the code you will alter from the repository.

2. Make changes to that code.

3. Get the latest system changes from the repository.

4. Run a build that includes execution of all your unit tests.

5. Commit your code changes to the repository.

Integration Build
An integration build integrates changes committed to the repository
by the team against the mainline (also known as the head or trunk).

FIGURE 4-4 Configurable builds for different environments

local.properties

Build Script

integration.properties

qa.properties

production.properties

80 Chapter 4 ❑ Building Software at Every Change

Ideally, an integration build should run on a separate, dedicated
machine.

Fowler5 discusses different types of builds that can be run as part
of an integration build. He calls these “staged builds,” which include a
“commit build” and “secondary build(s).” A commit build is your fast-
est integration build (< ten minutes) and includes a compile and the
unit tests. A secondary build is an integration build that runs slower
tests, such as component, system, and performance tests. It can also
include automated inspections such as coding standard adherence and
code complexity.

Release Build
A release build readies the software for release to users. One of the
goals of CI is to create deployable software. A release build may occur
at the end of an iteration or some other milestone, may include more
extensive performance and load tests, and must include any acceptance
tests. Moreover, many release builds also create the installation media
to run it in the user’s environment. A release build may also be used to
ready it for QA, if you are using a separate, staged process and team.

Build Mechanisms
Not all builds are triggered in the same manner. To trigger a certain
build in the most appropriate manner, you must consider the build’s
purpose and frequency. In some situations, there may be scripts that
are so large or have so many dependencies that it shouldn’t be run
automatically; instead, it should always be run on demand. In other
cases, the automatic execution can be run under CI. The following list
describes the types of build mechanisms.

• On-demand—This is a user-driven process in which someone
manually initiates an integration build.

• Scheduled—Scheduled processes are driven by time, for
instance, so that it runs on an hourly basis, whether or not a

5. See Continuous Integration at www.martinfowler.com/articles/
continuousIntegration.html.

www.martinfowler.com/articles/continuousIntegration.html
www.martinfowler.com/articles/continuousIntegration.html

Use a Dedicated Integration Build Machine 81

change has occurred. A scheduled activity may be appropriate
for an off-hour process, such as running a set of exhaustive secu-
rity or load tests on the software. You can use cron to schedule
tasks, but many of the CI servers support a scheduling capability
as well.

• Poll for changes—A process wakes up on a regular interval and
checks for changes to the version control repository. If changes
are detected, it runs the integration build. All CI servers support
some type of “poll for changes” mechanism.

• Event-driven—Event-driven is like polling for changes, but
instead of the CI tool, the version control repository triggers the
build, based on a predefined change event. If the version control
repository detects a change, it initiates the build script.

Triggering Builds
Table 4-1 links the build type with how the build might be triggered.

Use a Dedicated Integration Build Machine

When you dedicate a machine to integration builds, you drastically
reduce assumptions about environment and configuration, and you
help prevent the “but it works on my machine” problem from occur-
ring too late in development. Any local workstation typically has
slightly different configurations and dependencies, often undetectable,
from the deployment environments. If a developer makes local

TABLE 4-1 Triggering Builds Using Different Mechanisms

Build Type Build Mechanism

Private On-demand

Integration On-demand, poll for changes, scheduled, event-driven

Release On-demand, scheduled

82 Chapter 4 ❑ Building Software at Every Change

changes and forgets to commit a few files to the version control repos-
itory, the CI system, which is running on a separate machine, runs an
integration build and finds these omissions. Furthermore, you can put
application and database servers into known states each time an inte-
gration build occurs, which can reduce assumptions and enable much
faster discovery and resolution of problems. When individuals know
that the latest integration build failed, they can avoid getting the bad
source code from the version control repository. The integration build
machine acts as a safety net, ensuring that the software is working as
expected.

Often someone asks how much it costs to have a dedicated integra-
tion build machine. This is an important question and has an even
more important answer. The following scenario demonstrates how this
question plays out.

Peter (Technical Lead): I’d like for us to purchase a dedicated integra-
tion build machine for our Logistics project.

Bill (Project Manager): Why do you need a separate machine?

Peter: So that we are able to build our software directly from our Sub-
version repository every time a change occurs. We will also have the
capability to clean and reapply the environment, including the test
data. All of this will allow us to find and fix problems sooner.

Bill: That sounds good, Peter, but we really don’t have the funds for
that. I am guessing it will cost at least $1,000 for this—is that right?

Peter: The reason we had to come in last Saturday was because of
integration problems. By getting an integration build machine, we can
save considerable time and money. The time saved will easily pay for
the cost of the machine many times over. We had to manually inte-
grate and test before Monday’s demo. We really need this machine to
integrate our software automatically with every change.

Bill: Okay, what we can do is go ahead and use one of the extra
machines in the server room. You can remove everything on that
machine and make it your integration build machine.

As demonstrated in Bill and Peter’s conversation, you don’t need
to spend money to purchase a new machine. An extra machine that’s

Use a Dedicated Integration Build Machine 83

not being utilized can become the CI machine. If a dedicated integra-
tion build machine isn’t available, start by using your own develop-
ment machine. This is better than not integrating at all, but this isn’t a
long-term solution. Be sure to use a separate location (i.e., directory or
partition) on your machine.

There are a few items to consider when creating an integration
build machine. By focusing on these issues you’ll receive the maxi-
mum benefits from it.

• Recommended system resources—A lot can be gained by
using the right tools. By increasing hardware resources, a build’s
duration can be reduced (discussed later in this chapter). In gen-
eral, it is worth the money to increase hardware resources for an
integration build machine rather than wasting time waiting for
slow builds.

• All software assets in the version control repository—Any-
thing that has to do with developing the software needs to be
committed to the version control repository. This includes source
code, build scripts, configuration files, tools (such as application
server, database server, and static analysis tools), test code, and
database scripts/files (see the Centralize Software Assets section,
earlier in this chapter).

• Clean environment—Before performing an integration build,
the CI script needs to remove any code dependencies on the inte-
gration environment. Ensure that it is removing all of the source
code and binaries from the previous integration build in order to
baseline the environment. Also make sure that the CI system sets
test data and any other configuration elements to a known state.
This approach reduces assumptions by removing dependencies
and building the software as if it were on a new machine.

By using a dedicated build machine that is capable of running
builds efficiently, the build process can be run often; moreover, the
build environment becomes truly repeatable by reducing environmen-
tal assumptions.

84 Chapter 4 ❑ Building Software at Every Change

6

The Magic Machine

Many developers have had this machine at one point or another. The situation
occurs when you have written and thoroughly tested your software, but when it
is deployed on another machine (like one of the testing machines), something
doesn’t work. There are many possible reasons: Perhaps you forgot to commit
a file to the version control repository, maybe the testing machine’s configura-
tion is different, or an application server’s pooling mechanism is set for fewer
connections. But in all cases, it means that something is different between your
machine and the other machine(s). This is when you exclaim, “But it works on
my machine!” because you can’t even get it to fail there. Could it be a “magic”
machine?

“Magic machines are those one-of-a-kind magical pieces of hardware that
happen to be the only machines capable of building a company’s software
application. This scenario isn’t as far-fetched as it may seem. I’ve run across
these wizardly beasts a number of times in my career. These machines turn
demonic, though, when dependencies are lost or when the inevitable bit rot
strikes. It’s easy to see how a normal machine in a company’s infrastructure
can turn enchanted: over time, developers inadvertently added hard dependen-
cies into the machine’s script, made references to fully qualified directory paths,
or even installed tools that only exist on a select machine, which slowly pre-
vented the build from being able to run on any other machine.”6

Magic machines occur because of the “hard-wired” dependencies to the
machine on which you are building. This can also occur on the integration build
machine. Sometimes people will add an environment variable or apply a config-
uration change to the build machine to solve a problem, but forget to script it so
that it can be used on another machine. If your build machine were to fail to
work, what would be the impact? How long would it take you to get up and run-
ning again?

There can be many solutions to this problem. You can script most depen-
dencies into your build and include the dependency in your repository. Another
option is to create an image of certain dependencies, such as your database or
application server. Furthermore, you can refactor your build scripts to remove
many of the hard-coded dependencies (for instance, environment variables)
and make a relative reference instead.

6. From http://www-128.ibm.com/developerworks/java/library/j-ap10106/index.html.

http://www-128.ibm.com/developerworks/java/library/j-ap10106/index.html

Use a CI Server 85

Use a CI Server

It makes sense to use a CI server when performing CI. Of course, you
can create your own tool or perform integrations manually; however,
these days there are many excellent tools on the market that provide
valuable features and the capability to extend those features. There-
fore, it’s unnecessary to create your own CI server. However, if you
were to write your own server, you would probably want to incorpo-
rate many of these features.

• Poll for changes in the version control repository on a specified
time interval.

• Perform certain actions on a scheduled basis, such as hourly or
daily.

• Identify a “quiet period” during which no integration builds are
performed for the project.

• Support for different build scripting tools including command-
line tools such as Rake, make, Ant, or NAnt.

• Send e-mails to the concerned parties.

• Display a history of previous builds.

• Display a dashboard that is Web accessible so that everyone can
review integration build information.

• Support multiple version control systems for your different
projects.

And the list goes on. Most CI servers have already implemented
these features. There is sure to be a tool that fits your needs and devel-
opment environment. CruiseControl, Luntbuild, Continuum, Pulse,
and Gauntlet are a few of the tools that you can use to perform CI.
Appendix B explores and evaluates the various CI tools on the market
at the time this book was published.

So, should you use a CI server, manual integrations, or a combina-
tion? We will leave it up to you. We obviously favor using a CI server.
However, there are good reasons for manually performing integrations,
especially given the minimal tool support for preventing broken code
from entering the repository.

86 Chapter 4 ❑ Building Software at Every Change

Run Manual Integration Builds

An alternative or complementary technique to using a CI server is to
perform a manual integration. A manual integration build is a prac-
tice where only one person at a time can commit changes to the repos-
itory. It utilizes a queue in which developers manually run an
integration build on a separate integration machine to ensure the build
always stays in the green.

By running a CI server, your team is performing an automated
(nonsequential) integration build that can be run at any time. As dis-
cussed earlier in the book, a CI server can poll for changes to the
repository every few minutes or so. Once it finds a change, it kicks off
an automated build. The problem with automated integrations is that
they can lead to broken builds. In its current practice, CI is very reac-
tionary. Often you don’t discover the problem until it has been com-
mitted to the repository—which means that other developers will get
broken code when they check out from the repository. Moreover, a
broken build can disrupt the flow of developers’ work.

To prevent broken code from ever entering the repository, some
teams utilize these manual, sequential integrations. Some teams will
use a physical token (I observed one team that used the Staples Easy
button) or a simple file lock to signify who is integrating—since only
one person (or pair) is integrating at a time.

Manual integration can be effective in preventing broken builds,
but it doesn’t scale particularly well for larger teams. Furthermore, a
side effect of this form of integration is that team members may stack
up many changes they make for a larger and less frequent integration,
rather than smaller and more frequent ones that maximize quality. In
addition, if you are exclusively manually integrating your build, there
is no guarantee the practice will be followed. Using a CI server pro-
vides a safety net to know the integration will occur. Some groups will
use a combination of sequential and automated integrations. For
instance, a team that exclusively uses automated CI can combine the
approach of separate private builds by each developer to prevent bro-
ken integration builds. Much of this is personal preference. We clearly
lean toward automated integrations, but there definitely are unique bene-
fits of a manual, sequential integration to keep the build in the green.

Run Fast Builds 87

Run Fast Builds

Stopping your development activities to wait for feedback slows the
rhythm of development for everyone on the project. Consequently,
builds that take a long time to complete often cast an unfavorable
shadow over the practice of CI. Rapid feedback in CI is crucial. The
shorter the duration of the integration build, the faster you will receive
feedback.

Integration Build Scalability and Performance
Your build scalability indicates how capable your build system
is of handling an increase in the amount of code that it integrates
and analyzes. Your build performance refers to the duration of
your build. Ideally, as your code base gets larger, your CI system
should be capable of handling this increase without much degra-
dation in performance.

If developers are not committing code to a version control reposi-
tory frequently, the reason may be a slow integration build. To begin to
reduce build duration, perform a high-level analysis of the integration
build environment to determine the bottlenecks. Next, analyze the
findings and determine the most appropriate improvement, then
attempt to make changes in the build process to reduce the build’s
duration. Lastly, reevaluate the build duration to determine if further
improvements are warranted.

At a high level, here is an approach you can use to diagnose and
reduce a build’s duration.

1. Gather build metrics.

2. Analyze build metrics.

3. Choose and perform improvements.

4. Reevaluate; repeat if necessary.

88 Chapter 4 ❑ Building Software at Every Change

Gather Build Metrics
The first step in improving a build’s duration is to capture build met-
rics. Table 4-2 lists some common metrics that can produce a more
qualitative analysis of your integration build process. You probably
won’t need to gather all of these build metrics every time, but it is a
useful exercise if you are unsure about a problem or would rather not
waste time attempting to fix problems that don’t exist.

Ten-Minute Builds

In Extreme Programming Explained, Second Edition, Kent Beck
suggests that a good rule of thumb is to keep your (integration)
builds to no more than ten minutes. Many developers who use CI
follow the practice of not moving on to the next task until their most
recent checkin integrates successfully. Therefore, builds taking
longer than ten minutes can interrupt their flow. This suggestion
can work for most projects. Your ten-minute commit build doesn’t
need to run every type of test or inspection. You can offload the
time it takes to run a build by running multiple build types in suc-
cession (as mentioned earlier, what Fowler calls “staged builds”).

TABLE 4-2 Integration Build Metrics

Integration Build Metric Description

Compilation time The time it takes to compile the software, and how it
compares to your past compile times.

Number of source lines of code
(SLOC)

This indicates the system’s size or at least what needs to
be compiled.

Number and types of
inspections

The number of different types of inspections you are
performing. Consider eliminating any redundancy.

Average assembly generation
time

The time it takes to generate the assembly, archive, or
however you are packaging the software.

Test execution time (based on
category)

The time it takes to perform testing at each level: unit,
component, and system (these are described in Chapter 6).

Run Fast Builds 89

Analyze Build Metrics
Next, analyze the metrics gathered using Figure 4-5 as a general guide
for determining which improvement will best reduce build duration.
These improvement tactics are prioritized using the following criteria:
scalability, performance, and difficulty in implementation. Many solu-
tions can depend on the code base size and certain automated build
processes that take a while to run (such as automated developer tests).
You may want to document the approach and rationale to refer to the
next time you seek to reduce build duration.

Choose and Implement Improvements
With metrics in hand and an improvement strategy in mind, you can
begin to target specific improvements to implement.

Integration Build Metric Description

Ratio between successful and
unsuccessful builds

Divide the number of failed builds into the number of
total builds to determine the ratio between successful
and unsuccessful builds.

Inspection time The time it takes to perform all of the automated
inspections.

Deployment time The time it takes to deploy the software into the target
environment from the integration build.

Database rebuild time The time it takes to rebuild your database.

Integration build machine
system resources and usage

Improving the memory, disk speed, and/or processor
can improve the performance of your integration builds.
This helps determine whether an integration build
machine has an application server or database server or
some other process that is using up memory or proces-
sor speed.

Version control system load Helps determine the version control system’s peak-time
load, how long it takes to check out/update your project
from the integration build machine, and if the network
bandwidth, processor, memory, or disk drives are
adequate.

90 Chapter 4 ❑ Building Software at Every Change

Use a Dedicated Integration Build Machine
We covered the merits of using a dedicated integration build machine
in an earlier section. Using a dedicated integration build machine has a
number of performance-enhancing benefits, such as reducing false
positive or negative builds and enabling faster builds.

Increase Integration Build Machine(s) Hardware Capacity
Often, improving the hardware capacity of a machine is a quicker,
low-cost approach to reducing integration build duration. You’ve prob-
ably heard that “CPU cycles are cheaper than people cycles”; however,
the machine must be upgradeable, and this method only works until
you’ve maximized the machine’s upgrade capability. The following

FIGURE 4-5 Integration build duration improvements

Use a dedicated integration
build machine

Increase integration build
machine(s) hardware capacity

Improve test performance

Streamline integration builds

Optimize infrastructure

Optimize build process

Build system components
separately

Improve software inspection
performance

Perform distributed integration
builds

Improvement Tactic Priority Scalability Performance Difficulty

Legend (Impact on scalability, performance, and difficulty):

High Medium Low

1

2

3

4

5

6

7

8

9

Run Fast Builds 91

list of questions can help you determine if integration build machine
hardware is at maximum capacity.

• What is the current CPU speed? Are there options to improve
speed on the machine? Is it expandable to a faster processor or to
a Symmetric Multiprocessing (SMP) configuration?

• How much of available memory does the machine utilize?

• Is the system using all of its available network bandwidth?

Depending on the answers to these questions, there are several
options for improving build performance and scalability.

• Perform available upgrades to CPU, disk, or memory.

• Offload processes to other systems.

• Eliminate unnecessary system processes.

Improve Test Performance
Even in a well-functioning CI system, a bulk of the integration build
time will be taken up by the execution of automated tests. Evaluating
and improving the performance of these tests can dramatically reduce
build duration. Capture the following metrics to help you improve test
performance.

Buying an Integration Build Machine

When I was working on a large project in the 1990s, we had used
the same integration build machine for a while. Our integration
builds were taking about two hours to complete (for more than 1
million lines of code)—if there were no failures. Rather than
accepting the fact that the build took this long, another developer
and I asked management if we could purchase the “fastest
machine on the market.” We researched and submitted a request
to purchase a machine with the top specifications in disk speed,
memory, and processor speed. It was our belief that hardware is
cheap when compared to the cost of person-hours waiting on a
build, and thankfully the project manager agreed. With the new
machine, we reduced the build time to 30 minutes.

92 Chapter 4 ❑ Building Software at Every Change

• Time automated tests. Examine the test execution timings pro-
vided by your testing framework.

• Use a performance-testing tool to analyze certain areas of your
test code. In addition, many xUnit testing frameworks provide a
reporting utility that displays the time taken to execute each test.

• Use inspection tools to analyze your test code and test complexity.

• Verify that your unit tests are actually unit tests, not component
or system tests. A quick way to determine this is to remove your
network cable, shut down your database, and run your tests.
Which tests still run? The tests that still run are (or should be)
your unit tests.

After performing a high-level evaluation of the test environment,
you’ll have a better idea of how to improve test performance. Several
strategies will suggest themselves, including the following.

• Separate automated tests by category—unit, component, and
system—and run these tests at different times (e.g., unit tests at
every commit, component/system tests in a secondary build).
See Chapter 6 for details on test categorization.

• Refactor your tests based on the results of the inspection tools.

• Use mocks/stubs for components that may otherwise be too dif-
ficult or complex to use in the unit-testing environment. For
example, a common implementation of a mock object is mock-
ing the interface for data access.

• Separate long-running integration tests into separate specialized
test suites.

• Execute your tests in parallel.

• Run different types of tests based on build type: A commit build
is followed by secondary builds, a full integration build, or
release build.

Stage Builds

As mentioned earlier, another approach to reducing build duration is to
run a lightweight build followed by a “heavyweight” build (which

Stage Builds 93

Fowler refers to as staged builds: a commit build followed by a sec-
ondary build). Figure 4-6 illustrates this approach. In running staged
builds, you first run an initial integration “commit” or lightweight
build that integrates the software components and runs unit tests to
root out any obvious problems. After this lightweight build is success-
ful, a more exhaustive integration build is run to include component
tests or system tests, inspections, and deployment. This supports the
practice of “fail builds fast,” described earlier in this chapter.

Examine Infrastructure
You may discover that integration builds are slow because of the sys-
tem infrastructure. Perhaps network performance is slow or there is a
slow-performing virtual private network connection. Geographically
dispersed systems and unreliable hardware or software can also induce
performance issues. Investigate and improve any infrastructure
resources to reduce the build duration.

FIGURE 4-6 A staged build process

Developer

Developer

Version Control
Repository

Feedback
Mechanism

CI Server
Integration Build

Machine

Commit Changes

Commit Changes

If Commit Build Successful

Poll

:

Generate
Compile Source Code,
Integrate Database,

Run Tests,
Run Inspections,
Deploy Software

Commit Build
(Lightweight)

Longer Running Tests
(Component, System,

Functional, Performance),
Code Coverage

Secondary Build
(Heavyweight)

94 Chapter 4 ❑ Building Software at Every Change

Optimize the Build Process
Large code bases can cause the integration of software components to
take a considerably long time. To determine if the problem is related to
the size or integration of these components, ascertain the amount of
time the compile step is taking. If it turns out this step is taking a large
amount of time, perform an incremental build instead of a full build.

An incremental build will compile and/or regenerate only the files
that have changed. This can be risky because, depending on how this is
implemented, you may not receive all the benefits of CI. An effective
CI system is about reducing risks and, ideally, an integration environ-
ment should be cleaned by removing old files and then compiling/
regenerating the code to effectively determine if anything has broken.
Therefore, use incremental builds judiciously as you investigate other
areas that lead to slow-performing builds.

Some areas may lend themselves to an incremental build. For
example, if you have a Java system with a native DLL or shared object
library that rarely changes, it might be reasonable to only rebuild that
library once a day. In fact, some may argue that this infrequent DLL or
shared object be treated as a separate CI project and referenced as part
of your project using project dependencies.

Build System Components Separately
Sometimes integration builds take a long time to execute because of
the time it takes to integrate the source code and other associated files.
In this case, you can break apart the software into smaller subsystems
(modules) and build each of the subsystems separately.

To build the system components individually, create separate
projects for each subsystem that can be isolated. This can be done
from within a CI system—just make one of the subsystems the master
project. If there are any changes to one project based on the dependen-
cies, the other projects are rebuilt as well. Figure 4-7 demonstrates a
sample project layout based on separating the project into discrete
components to achieve faster builds.

Stage Builds 95

Improve Software Inspection Performance
Just like testing performance, inspection performance may be slowing
down your CI system. Use the following list of questions to determine
if inspections are slowing down integration builds.

• Which metrics are used? Does each metric provide tangible value?

• Are there two or more tools providing the same metrics, which
may decrease your build performance?

• Are you running automated inspections with every build? Are
there certain analyses that can run as part of a secondary or peri-
odic build?

• Are there inspections that you can run on specific subsystems
rather than the entire code base?

This next list identifies possible solutions to improve software
inspection performance.

• Remove unused and unnecessary inspections.

• Reduce duplicate inspections.

• Reduce the frequency of certain inspections.

FIGURE 4-7 Building system components separately

Timesheet
Subsystem

Budget
Subsystem

User
Subsystem

FinanIT
Project

After

Build if any subsystem
projects change

FinanIT
Project

Before

96 Chapter 4 ❑ Building Software at Every Change

Perform Distributed Integration Builds
If you have an extremely large code base and you’ve tried adding more
processing speed, memory, and disk speed to the integration build
machine, and you’ve also attempted to reduce build duration in other
ways, including reducing the frequency of component and system
tests, but the build still takes too long, then you should consider per-
forming distributed integration builds.

There are integration build tools that specialize in leveraging the
power of multiple machines. BuildForge7 and ParaBuild8 are tools that
provide features for distributing integration builds. There are also con-
tributions to other CI servers, such as CruiseControl; however, distrib-
uted integration builds are a complex problem with an even more
complex solution. Moving part of the build to another machine may
mean copying large files around as part of the build process, which has
the potential to slow things down even more. Try to exercise all other
options for reducing your build duration before attempting this solution.

Reevaluate
We have discussed several approaches, including improvements to test
performance, the build process, hardware capacity, and design. Which
improvements did you try and what is the build’s duration now? It’s
time now to try the improvement with the rest of the team and gauge
whether an additional improvement cycle is necessary. If you have
already gone through this process once, repeating the improvement
cycle should be less time-consuming and less painful.

How Will This Work for You?

At this point, you may agree that by executing an integration build
with every change to the software you can reduce many risks on a
project. However, you may be thinking, “This works fine on your

7. See www.buildforge.com for more information.

8. See www.viewtier.com/products/parabuild/index.htm for details.

www.buildforge.com
www.viewtier.com/products/parabuild/index.htm

How Will This Work for You? 97

project, but it won’t work on mine because we don’t have the time,
resources, and money” or “We’re a different type of project—not like
the ones you’ve described.” The following questions and answers deal
with some of these concerns.

“My project has seven billion lines of code. How is this
going to work for me?”
Okay, so your project probably doesn’t have “seven billion” lines of
code, but let’s just say you’re on a large project and feel like CI causes
too many interruptions. The larger the project, the more you need CI
because of the constancy of change. It’s like saying, “I’d rather not
know about problems that exist in our code base; I’d rather wait until
later when I don’t remember what I was working on.” This is not to
say, however, that incorporating CI into a large project won’t take
more time than on a smaller project. It simply equates to more pain
that can be reduced, more success you can gain more often, and more
flexibility with your project assets to create more artifacts.

The primary concern with a large project is keeping the build fast.
You may want to run longer-running processes periodically (or staged,
as described earlier) rather than continuously. Examples include com-
ponent tests, system tests, functional tests, and inspections. Splitting
the code base into separate projects can also help improve the integra-
tion build duration.

“I have a legacy application, so how will this work for me?”
If you are not running a CI system, it may take some time to create a
build script to support your source code, since build scripts must be
written so that they can be executed by an automated process. How-
ever, even if you don’t have automated tests, you can start adding auto-
mated tests for every change request (i.e., if there is a defect, the first
thing you can do is write an automated test). Then, include the execution
of this test into the build script and run it as a part of the CI system.

“What if our source code is in multiple version control
repositories?”
This question is often related to the next question about distributed
development. Let’s suppose you have one project in Subversion called

98 Chapter 4 ❑ Building Software at Every Change

Project Management System and another in CVS called Financial
Management System. If there is a change to the Financial Manage-
ment System, the Project Management System must be built because it
uses an API in the Financial Management System. Your CI server
should provide the capability for build dependencies. This forces a
build to occur on one project based on the initiation of a build on
another project.

“Our project is separated geographically, so how can we
practice CI?”
Do you have development teams working at remote locations finding it
difficult to practice CI? This may occur because of slow network con-
nectivity or high security to protect intellectual property. Most CI serv-
ers include the capability to use project dependencies. Imagine a
project in Virginia that is developing a software product that has “spe-
cial sauce” algorithms, and a development group in California respon-
sible for developing other components for the product. The company
uses a CVS version control repository in Virginia, which contains the
special algorithms. In addition, it establishes a new subversion reposi-
tory in California. The technical lead in Virginia configures the Cruise-
Control CI server to support two projects: one project in Virginia and
the other in California. Before an integration build is successfully exe-
cuted for the team in California, the CI server kicks off the project in
Virginia. This will only work, however, if components are decoupled
well.

“My integration builds are taking too long!”
See the Run Fast Builds section, earlier in this chapter.

“We frequently get build failures. Are we doing something
wrong?”
Yes, you’re committing code that doesn’t work! It could be that your
code is not compiling, your tests or inspections are failing, or your
database scripts are generating errors. One way to solve this problem is
to run a private build (see Chapter 2) to emulate the integration envi-
ronment as much as possible on development machines before com-
mitting changes to the version control repository. This means that each

How Will This Work for You? 99

developer puts the latest changes from the version control repository
onto her development machine, ensures all tests and inspections run
successfully, and that the database is successfully rebuilt with test data.
This also means each developer should have a “sandbox” in her envi-
ronment that runs the same processes that the integration build runs.
The most important principle to understand is that you should prevent
the larger builds from failing, and this means following a process to
integrate and verify all changes with your own build capabilities before
committing changes to the version control repository. Figure 4-8 dem-
onstrates the steps involved in running a private build before commit-
ting changes to the repository.

“We can’t afford a separate build machine.”
Hardware is cheap when compared to the amount of time that can be
lost when an integration problem occurs. It doesn’t have to cost you a
lot of money. As indicated earlier in this chapter in Bill and Peter’s
conversation, you can find an unused computer as your build machine
at first. Then, after the team experiences the benefits of fully integrated
builds, you can invest money in a more capable machine. Without a
separate build machine, you’ll also spend time attempting to diagnose
a problem only to discover that a file had not been committed to the
version control repository. That took time, and time is money. Do your
best to put your “sales hat” on and convince management that it will

FIGURE 4-8 Running a private build to reduce integration build errors

Developer

Version Control
Repository

Get Changes from Repository3

Check Out Code from Repository1

Commit Code to Repository5

Run “Integration Build” Locally4

Make Source Code Changes2

Build Script

100 Chapter 4 ❑ Building Software at Every Change

save money in the end to purchase a build machine. In using the phrase
“the long run,” we’re talking about recouping the money within a few
weeks (depending on the size of your team), not months or years. In
addition, you’ll receive the quality benefit of a repeatable build process
that provides the capability to release working software at any point in
time (based on your business needs).

“Our software is too complex; we have to do things manu-
ally” or “No—we have all sorts of stuff going on.”
This is the perfect reason to create a CI system, because you are prob-
ably spending too much time performing redundant processes. If your
software is complex and has many dependencies, there is even more
incentive to create a system that puts all the pieces together and runs a
suite of tests and inspections to ensure everything is working correctly
and continuously. This is not to say that it will be easy for you to create
a repeatable build process. In fact, the larger the development infra-
structure, the more time it’ll probably take to create this build system.

But creating a build system is easy if you think of the process as a
series of small steps. First, clean up the directory structure for the ver-
sion control repository so that source code, test code, configuration
files, and anything else needed is easily available. Next, use your build
scripting tool to create a simple build script that just compiles the
source code. Then add tests and inspections. Try to evolve the build
over time rather than throwing everything in at one time. As a matter
of fact, that is how we’ve brought about most of our CI systems. As
you get the rewards of the first few steps, you are definitely motivated
to carry on more. Work seems to go more smoothly following the
“write a little, test a little” scenario.

“Our software uses a version control repository, but we
need to support multiple versions using branching. How
will this work?”
This is an important point. CI is run against the mainline (head/trunk).
You must ensure that this mainline is stable at all times. Development
teams can become distributed or disjointed supporting various efforts,
which makes communication more difficult. There are good reasons to
create branches, but changes must be brought back to the mainline.

Summary 101

Although many build management systems can run builds for more
than one development line, a “CI integration build” runs against the
mainline.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
This chapter identified some of the practices for building software. The
build consists of the activities that create working software: compila-
tion of source code, database integration, testing, inspection, deploy-
ment, and feedback. This list isn’t exhaustive; consider other activities
that can be made a part of the Integrate button.

Table 4-3 summarizes the practices covered in this chapter.

TABLE 4-3 CI Practices Discussed in This Chapter

Practice Description

Automate builds Create build scripts that are decoupled from IDEs.
Later, these build scripts will be executed by a CI
system so that software is built at every repository
change.

Perform single com-
mand builds

Assuming certain tools have been downloaded,
you should be able to type one command to exe-
cute a build from your build script to get the latest
code and run an entire build.

Separate build scripts
from your IDE

You should be able to run your automated build
without needing an IDE.

Centralize software
assets

To decrease the number of broken dependencies,
centralize all software assets. This lessens the
chance of broken builds when moving to a different
machine.

Create a consistent
directory structure

Create a consistent, logical directory structure,
which makes it easy to build the software.

Fail builds fast The faster the feedback occurs, the faster the
problem can be fixed. Execute build activities in
the order of what is most likely to fail first.

(Continued)

102 Chapter 4 ❑ Building Software at Every Change

Questions
■ Is your build automated? Are you able to run your build without your

IDE?

■ Have you centralized all of your software assets into your version
control repository? Are you able to perform a complete build by get-
ting all necessary files from the version control repository?

■ Do you ensure that the build tasks that are more likely to fail are at
the beginning of your build scripts so that you receive notification of
a build failure quickly?

Build for any
environment

Run the same automated build on your worksta-
tion, on the integration build machine, and for any
other platform environment as necessary.

Use a dedicated inte-
gration build machine

Use one machine dedicated to running your
builds. Ensure that the integration location is free
of old build artifacts.

Use a CI server In addition to or as an alternative to running man-
ual integration builds, use a CI server, such as
CruiseControl, to automatically poll for version
control changes and run an integration build on a
separate machine.

Run manual integration
builds

Run a sequential integration build manually using
an automated build as an approach to reduce inte-
gration build errors. Some use this approach as an
alternative to a CI server.

Run fast builds Try to get your integration builds down to ten min-
utes by increasing computing resources, offload-
ing slower tests, offloading or reducing
inspections, and running staged builds.

Stage builds Run lightweight “commit” builds that perform com-
pile, unit test execution, and deployment followed
by heavyweight “secondary” builds that include
component, system, and other slower-running
tests and inspections.

TABLE 4-3 CI Practices Discussed in This Chapter (Continued)

Practice Description

Questions 103

■ Do you have an “Integrate button” for your software build processes?
Is your database integration automated? Testing? Inspection?
Deployment? Are you receiving and using feedback from the process?

■ Does your integration build process occur on a separate machine?

■ What is the duration of your integration builds? Are you seeking to
shorten your build duration to improve feedback?

■ Are you using a CI server to integrate your software? Or do you
have a disciplined process for manually integrating builds?

■ How often does your project perform integration builds: weekly,
nightly, or hourly? Or is it at every change (continuously)?

This page intentionally left blank

105

Part II

Creating a Full-Featured
CI System

This page intentionally left blank

107

Chapter 5

Continuous Database Integration

Things do not change; we change.

—HENRY DAVID THOREAU

Continuous Database Integration (CDBI) is the process of rebuilding
your database and test data any time a change is applied to a project’s
version control repository.

Do you ever feel like your source code and database are operating
in different “galaxies” throughout the development lifecycle on
projects? As a developer, you may wait several days for a change to
the database. You may even be restricted from making minor test data
changes, or are afraid to make data changes for fear of ruining the one
shared database for fellow developers. Situations like these are not
unusual, and effectively utilizing CDBI can help alleviate some of
these challenges and many others as well.

Automate
Database
Integration

Use a Local
Database
Sandbox

Use a Version
Control Repository

to Share
Database Assets

Give Developers
Capability to
Modify the
Database

Make DBA Part
of Development

Team

108 Chapter 5 ❑ Continuous Database Integration

Revisiting the theme of the book, database integration is one of the
parts of the Integrate button (see Figure 5-1), because it is based on the
principle that database code (DDL, DML, configuration files, etc.) is,
in essence, no different from the rest of the source code in a system. In
fact, the artifacts related to database integration:

• Should reside in a version control system

• Can be tested for rigor and inspected for policy compliance

• And can be generated using your build scripts

Therefore, the building of the database can be incorporated into a
CI system and can enjoy the same benefits as the rest of the project
source code. What’s more, changes to database source code can trigger
an integration build just as other source code changes do.

FIGURE 5-1 Database integration in the Integrate button

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

Chapter 5 ❑ Continuous Database Integration 109

Not All Data Sources Are Alike
Some projects, or portions of projects, don’t use a database
exactly the way that we define it in this chapter. However, most
projects need to persist data, be it in a flat file, an XML file, a
binary file, or an RDBMS. Regardless of your chosen persistent
store, the principles of CDBI apply.

As a first step in describing how to automate database integration
with CI, we start by describing how to incorporate database integration
into a build process. The scripts used to build, configure, and populate
a database need to be shared with the rest of the project team, so we
discuss which database files are committed to a version control reposi-
tory. Automating a database integration build process solves only part
of the problem, so we go one step further by rebuilding the database
and data at every software change—making the verification process
continuous. If a team is adopting CDBI for the first time, most people
on a project will probably need to modify their development practices,
so we finish the chapter looking at effective CDBI practices.

Refactoring Databases
The topics covered in this chapter could even be the subject of a
separate book.1 Other materials already make the case for treat-
ing your database as just another type of source code that is
managed through the version control repository. This chapter
gives you the essentials to automate and run database integra-
tion processes continuously.

1. In fact, Scott Ambler and Pramod Sadalage have much more in a book called
Refactoring Databases. Martin Fowler and Pramod Sadalage wrote about similar
topics in “Evolutionary Database Design,” at www.martinfowler.com/articles/
evodb.html.

www.martinfowler.com/articles/evodb.html
www.martinfowler.com/articles/evodb.html

110 Chapter 5 ❑ Continuous Database Integration

Automate Database Integration

On many projects, a database administrator (DBA) can often feel like a
short-order cook. DBAs typically have analytical skills that took many
years to cultivate, but they often spend most of their time performing
low-level command tasks. What’s more, this job role can also be
stressful, because the DBA often becomes a development bottleneck as
the team members wait for the DBA to apply one small change to the
database after another. Here’s a familiar scenario.

Nona (Developer): Hi Julie, will you set up a development database
for me on the shared development machine?

Julie (DBA): I am in the middle of something. I should be able to set it
up later this afternoon. Would you like the data from last week or an
export of today’s data?

Nona: Today’s data.

Julie: Okay, I can have that for you by tomorrow morning.

10 minutes later…

Scott (Technical Lead): I am unable to perform testing on the test
server because there are no assigned records for the Reviewer role.

Julie: Oh, let me create some test records that are assigned this role. I
think Nona may have used up all of those records.

Scott: Thanks. While you’re at it, would you remove the Y/N con-
straint on the APPROVED columns on the PERSON table? We’d like
to use different flags on this column.

It’s more of the same on a typical day for the DBA. Not only is this
a poor use of the DBA’s talents, it causes a significant bottleneck, espe-
cially in the continuous approach promoted by CI. If you asked any
DBA what they’d rather do on a day-to-day basis, they would probably
tell you that they’d rather spend time on data normalization, improving
performance, or developing and enforcing standards, not giving people
database access or recreating databases and refreshing test data. In this
section, you’ll see how you can automate these repetitive tasks so both
the DBA’s and the team’s time is spent on improving the efficacy and

Automate Database Integration 111

efficiency of the database—not on simple administration. Table 5-1
identifies database integration activities typically performed by a
project member that can be automated.

Once you have automated these database-related tasks, you’ll find
yourself solving problems just by dropping and creating a database
followed by inserting test data. This chapter’s examples utilize Ant,
but the principles apply to any build platform that supports communi-
cating with a database. If your build platform is NAnt, Rake, or Maven,
you can do the same things this chapter demonstrates. Listing 5-1 executes
a series of SQL statements to create a database including its related
tables, comments, constraints, and stored procedures. The script also
applies test data for the given environment, such as development or

TABLE 5-1 Repeatable Database Integration Activities

Activity Description

Drop database Drop the database and remove the associated data so that
you can create a new database with the same name.

Create database Create a new database using Data Definition Language (DDL).

Insert system data Insert any initial data (e.g., lookup tables) that your system
is expected to contain when delivered.

Insert test data Insert test data into multiple testing instances.

Migrate database and data Migrate the database schema and data on a periodic basis (if
you are creating a system based on an existing database).

Set up database instances in
multiple environments

Establish separate databases to support different versions
and environments.

Modify column attributes
and constraints

Modify table column attributes and constraints based on
requirements and refactoring.

Modify test data Alter test data as needed for multiple environments.

Modify stored procedures
(along with functions and
triggers)

Modify and test your stored procedures many times during
development (you typically need to do this if you are using
stored procedures to provide behavior for your software).

Obtain access to different
environments

Log in to different database environments using an ID, pass-
word, and database identifier(s).

Back up/restore large data
sets

Create specialized functions for especially large data sets or
entire databases.

112 Chapter 5 ❑ Continuous Database Integration

QA. Using this process, you can simply type ant db:prepare2 from
the command line and the build process will perform the tasks outlined
in Table 5-1. If you’d like to see this same process using other tools,
like NAnt or Maven, we’ve provided additional examples at the book’s
associated Web site.3

LISTING 5-1 build-database.xml: Automating Database Integration
Using Ant

> ant –f build-database.xml db:prepare
Buildfile: build-database.xml

db:create:
 [sql] Executing file: data-definition.sql
 [sql] 8 of 8 SQL statements executed successfully

db:insert:
 [sql] Executing file: data-manipulation.sql
 [sql] 60 of 60 SQL statements executed successfully

BUILD SUCCESSFUL
Total time: 20 seconds

As you can see, using a single instruction from the command line
enables the execution of SQL scripts that define (db:create) and
manipulate a database (db:insert). We describe each of these tasks in
more detail in subsequent sections.

Figure 5-2 shows the steps to automate your database integration.
The following sections present a discussion of each component in

Figure 5-2.

Creating Your Database
To automate database integration, you must first create a database. In
this script, you typically drop and recreate the database, enforce data
integrity through constraints and triggers, and define database behav-

2. To manage other environments from the command line, incorporate a feature
into your build script to override the default configuration. For instance, in Ant
this would be ant –Denvironment=devqa <targetname>.

3. At www.integratebutton.com/.

www.integratebutton.com/

Automate Database Integration 113

ior through stored procedures or functions. We are using Ant to auto-
mate the execution of this process in Listing 5-2; however, as
mentioned earlier, you can also use make, shell, batch, Rake, Ruby, or
any number of tools. Notice that Ant provides a task to execute a SQL
script via the sql task. Using a build platform like Ant allows you to
perform the database integration activities using a sequential approach
and enforce dependencies on other targets (a set of tasks) in the script.
The example in Listing 5-2 demonstrates the use of Ant’s sql
attributes, such as driver, userid, and password, to connect to the
database.

LISTING 5-2 build-database.xml: Defining Your Database Using an
Ant Script

<target name="db:create" depends="filterSqlFiles" description="Create
 the database definition">
 <sql
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/"
 userid="root"
 password="root"
 classpathref="db.lib.path"
 src="${filtered.sql.dir}/database-definition.sql"
 delimiter="//"/>
</target>

FIGURE 5-2 The sequence of automated database integration

Developer: DB:build-database.xml:ANT: build-database.xml:ANT: database-definition.sql: database-manipulation.sql:

db:prepare

filterSqlFiles

db:create

db:create

load

execute

execute

db:insert

114 Chapter 5 ❑ Continuous Database Integration

Create Reusable Scripts
When you are writing a script that you plan to reuse, you can
define the attributes in a single file so that you only need to
define them one time for use in all of your manual and automated
scripts, rather than every time you use these attributes.

In Listing 5-3, data-definition.sql is the SQL script that’s called by
the Ant script in Listing 5-2. We’re using a MySQL database in this
example, so some of the commands are MySQL-dependent. The data-
definition.sql file is responsible for creating the database and its tables,
enforcing data integrity, and applying stored procedures. The follow-
ing is a typical order for this creation process.

1. Database and permissions

2. Tables

3. Sequences

4. Views

5. Stored procedures and functions

6. Triggers

The order of creation within your DDL statements may vary based
on database object dependencies. For example, you may have a func-
tion that depends on a view, or vice versa, so you may need to list the
view first, for example.

LISTING 5-3 data-definition.sql: Sample Database Definition Script
for MySQL

DROP DATABASE IF EXISTS brewery//
…
CREATE DATABASE IF NOT EXISTS brewery//

GRANT ALL PRIVILEGES ON *.* TO 'brewery'@'localhost' IDENTIFIED BY
'brewery' WITH GRANT OPTION//
GRANT ALL PRIVILEGES ON *.* TO 'brewery'@'%' IDENTIFIED BY 'brewery'
WITH GRANT OPTION//

USE brewery//
…
CREATE TABLE beer(id BIGINT(20) PRIMARY KEY, beer_name VARCHAR(50),
brewer VARCHAR(50), date_received DATE);
CREATE TABLE state(state CHAR(2), description VARCHAR(50));//

Automate Database Integration 115

…
CREATE PROCEDURE beerCount(OUT count INT)
BEGIN
 SELECT count(0) INTO count FROM beer;
END
//

Technically Speaking…
You may find it easier to organize your targets and scripts by
database definition type (such as a table, view, and function) or
by subsystem (e.g., Property and Application).

Manipulating Your Database
Once you’ve created a database from a build script, you’ll need to provide
initial data (e.g., lookup tables) and test data for testing code that relies
on the database. This is where you supply the test data for your particular
environment or testing context. What’s more, you may also find your-
self needing to use different SQL data files to support different envi-
ronments, like development, test, QA, and production environments.

The example in Listing 5-4 shows an Ant script pointing to a SQL
file, whose contents are inserted as test data into a database.

LISTING 5-4 build-database.xml: Manipulating Your Database Using an
Ant Script

<target name="db:insert" depends="filterSqlFiles" description="Insert
 data">
 <sql
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/brewery"
 userid="brewery"
 password="brewery"
 classpathref="db.lib.path"
 src="${filtered.sql.dir}/database-manipulation.sql"
 delimiter=";"/>
</target>

The SQL script in Listing 5-5 represents test data. This is the script
that is referenced in Listing 5-4. In a typical script, you’ll have many
more records than the three shown in Listing 5-5. Our intent is to give
you an idea of what the SQL scripts often execute. Tools like DbUnit

116 Chapter 5 ❑ Continuous Database Integration

and NDbUnit4 can help seed the data that is inserted into and deleted
from a database as well.

LISTING 5-5 data-manipulation.sql: Sample Database Manipulation
Script for MySQL

INSERT INTO beer(id, beer_name, brewer, date_received) VALUES (1,
'Liberty Ale','Anchor Brewing Company','2006-12-09');
INSERT INTO beer(id, beer_name, brewer, date_received) VALUES (2,
'Guinness Stout','St. James Gate Brewery','2006-10-23');
INSERT INTO state (state, description) VALUES('VT','Vermont');
INSERT INTO state (state, description) VALUES('VA','Virginia');
INSERT INTO state (state, description) VALUES('VI','Virgin Islands');

To achieve the benefits of automated database integration, you’ll
need to provide scripts for inserting, updating, and deleting data.
These data manipulation scripts execute as part of an overall build pro-
cess. Next, we discuss how to tie these scripts together with the
orchestration script.

Creating a Build Database Orchestration Script
A database integration orchestration script executes the DDL and Data
Manipulation Language (DML) statements. Listing 5-6 shows an Ant
script that uses the sql task to call the data-definition.sql and data-
manipulation.sql files we created in Listing 5-3 and Listing 5-5. You’ll
incorporate this orchestration into your higher-level build and integra-
tion processes.

LISTING 5-6 build-database.xml: Database Integration Orchestration
Script Using Ant

<target name="db:prepare" depends="db:create, db:insert"/>
<target name="db:create">
…
<target name="db:insert" depends="filterSqlFiles">
…

4. DbUnit is available at www.dbunit.org/ and NDbUnit is available at
www.ndbunit.org/.

www.dbunit.org/
www.ndbunit.org/

Use a Local Database Sandbox 117

Use a Local Database Sandbox

A significant challenge on many software development projects is
making changes to the database structure. Many projects I’ve observed
typically use one shared database, so when developers make changes
to this shared development database they can adversely affect others
on the team—causing each developer’s private build to break (if their
tests are part of the build). If developers have their own local code
“sandbox” to isolate their coding changes from other developers,
wouldn’t it be great if they had a “database sandbox” too?

Multiple Database Instances
You may not have the resources to get a database for each
developer. In this situation, you could assign each developer a
separate schema on a central database server or use one of the
freely available, lightweight, open source equivalent databases.
Furthermore, many of the more widely used RDBMSs provide
free developer versions.

Are You on Autopilot?

As you are automating your database integration, a few things
may trip you up. It’s easy for manual activities to unintentionally
accumulate in your database integration process. Try to resist this.
As Andrew Hunt and David Thomas mention in The Pragmatic
Programmer : Don’t Repeat Yourself (or DRY, for short), keep your
build scripts “DRY.” An easy form of “duplication” to miss is when
we get acclimated to clicking through the database vendor’s GUI
application wizard rather than interfacing through the command
line where it can run scripted. Another potential problem is the ten-
dency to wait until there are many DDL/DML changes before com-
mitting back to the version control repository. Database changes
can be pervasive, so try to make and check in small, incremental
changes to your database; this will make it easier to test and
debug.

118 Chapter 5 ❑ Continuous Database Integration

Another important capability you gain by automating your data-
base integration is that everyone on the team will be able to create a
local instance of the database on their workstations. Every team mem-
ber can then create a database “sandbox” to make and test database
changes without affecting others. If your database integration is
scripted, creating a new database instance is a push-button affair; con-
versely, if you don’t automate your database integration, it is more dif-
ficult to recreate your database and run tests on your workstation.
Figure 5-3 provides an illustration of each developer using a local
database instance.

Using automated database integration, you are able to get the latest
version of your database scripts along with your application source
code. Each developer is able to create a local instance of the database,
modify the version of the database on his workstation, test the
changes, and commit the changes back to the repository. These
changes will be integrated and tested with the rest of the software as
part of the CI system. When another developer refreshes her private
workspace with changes from the repository, the database changes are

FIGURE 5-3 Each developer uses a local database sandbox

Developers

SQL
Scripts

Build
Scripts

Local
Database
Sandbox

Local
Database
Sandbox

Local
Database
Sandbox

<@>

SQL
Scripts

Build
Scripts

<@>

SQL
Scripts

Build
Scripts

<@>

Use a Version Control Repository to Share Database Assets 119

copied down to her workstation along with the other source code
changes, and her next private build will incorporate the changes in her
local database instance.

The next section identifies the reasons and approach for using a
version control repository for database integration.

Use a Version Control Repository to Share
Database Assets

Sharing your database integration scripts is a best practice, plain and sim-
ple. All software assets need to be in a version control repository, and this
includes all database assets. Such assets might include the following:

• DDL to drop and create tables and views, including constraints
and triggers

• Stored procedures and functions

Supporting Multiple Database Environments

The next logical step after creating a local database sandbox is
creating different database instances to support multiple database
environments. For example, you may need to create a database
that contains all of your migrated production data. Assuming there
are many records in this database, you probably don’t want to
include it in your local development database. Usually, this will
only be the DML (data changes), not the DDL (create, alter, and
drop statements to the database). By automating your database
integration, you can modify build script parameters to include the
data to support these environments. This way, you can execute
one command to provide data for different database environ-
ments. The same goes for versions. You may want to test new
code against a prior version of the database. Use automated data-
base integration to provide this capability with a “push of the Inte-
grate button.”

120 Chapter 5 ❑ Continuous Database Integration

• Entity relationship diagrams

• Test data for different environments

• Specific database configurations

For numerous project scenarios, you should be able to recreate
your entire database from “scratch” using the scripts in your version
control repository (for large data sets, you may store data export
scripts rather than row-by-row DML scripts). Once you’ve applied all
your database assets to the version control repository, you’ll have a
history of all of the database changes, so you can run prior versions of
the database with the latest code (or with prior versions of the code as
well). This also reduces the gridlock on projects when all the develop-
ers need to go to the DBA for everything. Once database assets are in
one place, you can make a change to a database column, perform a pri-
vate build on your machine, commit it to the version control system,
and know you will receive feedback after the integration build is run.

Sometimes during development the database will need to undergo
large-scale changes. In most cases, these changes will require the
expertise of several people on the team and a longer duration to com-
plete. When such situations arise, it is best to create a task branch5 to
commit the changes back into the version control repository rather
than break the mainline and slow the activity of the rest of the team.
Without CDBI, often the DBA will be making these large-scale data-
base alterations, and he may be less suited to make all the changes at
once to the database, dependent application source code, associated
test code, and shared scripts because he may lack the knowledge of the
source code that developers are writing.

Just as you have a consistent directory structure for your source
code, you’ll want to do the same for your database. Define the location
of database assets—probably somewhere in the implementation/con-
struction directory where your source code is located. In your database
directory, define subdirectories for each of the database entity types
and environments. Listing 5-7 shows a directory structure for an
implementation directory (using a MySQL database).

5. In Software Configuration Management Patterns, Stephen P. Berczuk and
Brad Appleton describe a task branch as having “part of your team perform a dis-
ruptive task without forcing the rest of the team to work around them. . . .”

Continuous Database Integration 121

LISTING 5-7 Sample Implementation Directory

 implementation
 bin
 build
 filtered-sql
 config
 properties
 xml
 database
 migration
 lib
 mysql
 src
 tests
 tools
 mysql

Just as with your source code, choose a directory structure that
works well for you, one that clearly defines the entities while making it
adaptable to changes.

Directory Structure and Script Maintenance
In the beginning, you may find that the directory structure is less
important, but beware of making frequent directory structure
changes, as you’ll spend additional time updating your scripts to
account for these changes.

Now that you’ve automated your database integration activities
and are checking them into the version control repository to share with
others on the team, let’s make the process continuous so that it is run
with every change to the software.

Continuous Database Integration

This is where the “rubber meets the road.” The reason to automate,
share, and build the database integration processes is so you can make
these processes continuous. Using CDBI, your database and your
source code are synchronized many times a day. Once you commit

122 Chapter 5 ❑ Continuous Database Integration

your database changes to your version control repository, the CI sys-
tem proceeds like this: It gets a complete copy of the system source
code, including your database data definition and manipulation scripts;
recreates your database from the source; integrates your other source
code; and then runs through your automated tests and inspections to
ensure that the change(s) didn’t introduce defects into your system’s
code base. Figure 5-4 demonstrates how the changes made by each
developer are synchronized with the integration build based on the
mainline in the version control repository.

Figure 5-4 shows that the changes that were made at 10 AM (by
Mike) and the changes that were made at 10:15 AM (by Sandy) are

FIGURE 5-4 Single source for database changes

Mike

Version
Control
System

Integration
Build

Machine

DB

data_definition.sql

Sandy

data_manipulation.sql

Integration Build Database
Contains Changes from
Sandy and Mike

Give Developers the Capability to Modify the Database 123

included in the integration build that occurred at 10:30 AM. The inte-
gration build machine uses a single source point, provided by the ver-
sion control repository, to synchronize and test changes as a part of the
integration build.

Once you have automated your database integration and incorpo-
rated it into your build scripts, making it run continuously is simple.
Your database integration tasks, along with the rest of your build,
should be executed using one command (such as an Ant/NAnt target).
To run your database integration tasks continuously, you only need to
make sure these database integration build task commands are exe-
cuted as a part of the automated build.

Give Developers the Capability to Modify the
Database

Each developer should have the capability to modify any of the data-
base scripts. This doesn’t mean that every developer will modify these
database scripts, because not every developer will have the necessary
database expertise. Because each developer will have his own database
sandbox, each can modify the local database and then commit the
changes to the version control repository. This will reduce the DBA
bottleneck and empower developers to make necessary changes. The
DBA can evaluate the new changes to the repository by reviewing the
integration builds or working with the developers if the build breaks.

As the adage goes, with this additional authority comes additional
responsibility. Changes to the underlying database structure can have
far-reaching impacts on the system. The developer who makes changes
to the database structure must assume the responsibility for thorough
testing before committing these changes. We feel it is far more likely
in today’s industry for a developer to have a knowledge of databases
and database scripting—and the DBA is still there to “oversee” what
changes, if any, move into the system.

124 Chapter 5 ❑ Continuous Database Integration

The Team Focuses Together on Fixing
Broken Builds

Since you treat the database the same as the other source code, you
may experience broken builds because of a database error. Of course,
errors may occur in any part of your build: source code, deployment,
tests, inspections, as well as the database. When using CDBI, database
integration is just another part of the build, so the playing field is lev-
eled: Whatever breaks the build, the priority is to fix it. The payoff
comes after this; the fix is now integrated, and that particular issue is
prevented from recurring.

Make the DBA Part of the Development Team

Break down barriers and make members of your database team a part
of the development team. You may already be doing this, but all too
often there is a “wall” between the DBA and the software developers.
As mentioned earlier, treat your database code and your other source
code in the same manner. The same goes for the people on your team.
This is probably the most controversial of the CDBI practices. We’ve
worked on teams that have used CDBI with the DBA on the develop-
ment team, and we’ve also seen the more traditional approach with the
DBA on another team, the database team. CDBI worked in both envi-
ronments, but it worked significantly better when the DBA was a part
of the team.

Some people ask, “If the DBA is no longer dropping and recreat-
ing tables, creating test environments, and granting access, then what
is she doing?” The simple answer is, “Now she can do her job!”—
spending more time on higher-level tasks such as improving database
performance, improving SQL performance, data normalization, and
other value-added improvements.

Database Integration and the Integrate Button 125

Database Integration and the Integrate Button

The rest of this book covers topics concerning the additional parts of
the Integrate button: continuous testing, inspection, deployment, and
feedback. This section covers some specific issues concerning these
practices when it comes to database integration.

Testing
Just as with source code, you’ll want to test your database. We cover
testing in detail in Chapter 6. There are tools you can use for database-
specific testing such as PL/Unit, OUnit for Oracle, and SQLUnit. Your
database may contain behavior in stored procedures or functions that
needs to be tested and executed as a part of the build script, just like
the behavior of your other source code. You may also want to test the
interactions of constraints, triggers, and transactional boundaries by
performing application security data tests.

Inspection
As with your other source code, you should be running inspections on
your data source. This includes not just your DDL, but reference and
testing data as well. There are tools you can incorporate and run in
your automated build process so that you do not need to run these
inspections manually. Here are a few ideas for inspections on your
database.

• Ensure efficient data performance by running set explain
against your project’s rules to target optimizations for your SQL
queries.

• Analyze data to ensure data integrity.

• Use a SQL recorder tool to determine which queries are being
run the most. These queries might be candidates for stored pro-
cedures.

• Ensure adherence to data naming conventions and standards.

126 Chapter 5 ❑ Continuous Database Integration

Deployment
As we have indicated, the goal of CDBI is to treat your database
source code and other source code in the same manner. The Continu-
ous Deployment process will deploy your database to your develop-
ment and test database instances just as it deploys your other code to
its different environments (e.g., application servers). If you need to
migrate from one database to another, you will be able to better test the
migration process by running through the process on a continuous or
scheduled basis.

Feedback and Documentation
When you incorporate continuous feedback and CDBI into your CI
system, you will find out if your build failed because of the latest data-
base changes. By default, most CI systems send the build status to the
people who last applied changes to the version control repository. Just
like with the source code, the CI system notifies those who made data-
base changes quickly so that they can make the necessary fixes to the
database.

Documentation is about communication, and there is much about
the database you’ll want to communicate to other project members or
your customer. Your Entity Relationship Diagram (ERD) and data dic-
tionary are excellent candidates for generating as a part of your contin-
uous build process, perhaps as a secondary build (described in Chapter 4).

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
This chapter demonstrated that database assets are the same as
other source code. Therefore, the same principles apply.

■ Automate your database integration using orchestrated build
scripts that are run continuously, after any change to your database
or its source code.

■ Ensure a single source for database assets by placing them in a
version control repository.

Summary 127

■ Test and inspect your database scripts and code.

■ Change database development practices by ensuring that all database
integration is managed through the build scripts, that all database
assets are checked into version control, and that all developers
(who interact with the database) have a database sandbox.

Table 5-2 summarizes the practices covered in this chapter.

Let’s see how Julie, Scott, and Nona are doing now that they’re
using CDBI.

Nona (Developer): I need to refresh my test data. What do I need to
do?

Scott (Technical Lead): Just run ant db:refresh from the command
line. Before you do that, get the latest changes out of Subversion by
typing ant scm:update, because I made a few changes to the USER
database table and the source code that uses this change.

TABLE 5-2 CI Practices Discussed in This Chapter

Practice Description

Automate database
integration

Rebuild your database and insert test data as part of
your automated build.

Use a local database
sandbox

All developers should have their own copy of the
database that can be generated via SQL scripts. This
can be on their workstations or even shared on a
development server—as long as all developers have
their own copy on this shared server.

Use a version control
repository to share
database assets

Commit your DDL and DML scripts to your version
control system so that other developers can run the
same scripts to rebuild the database and test data.

Give developers the
capability to modify
the database

Avoid the DBA bottleneck that occurs when database
changes are restricted to just one or two people. Give
developers the capability to modify the DDL and DML
scripts and commit them to the version control
repository.

Make the DBA part
of the development
team

Be sure the DBA can run the same automated
build—which includes a database rebuild that other
developers run—to ensure consistency. By making
the DBA a part of the development team, the shared
experiences can benefit both the database and the
development teams.

128 Chapter 5 ❑ Continuous Database Integration

Julie (DBA): Do you guys need any help?

Scott: Yeah, we are having a performance problem on one of the que-
ries. Do you have time to look at it? Also, I think we need to denormal-
ize the PRODUCT table. Can you model the table changes, prototype
the DDL changes, and set up a code branch so Nona can modify her
code for your changes? When you two are satisfied with the changes,
merge the branch and commit it to Subversion so that they run as part
of the integration build. Thanks, Julie.

Nona: . . . Sure, Scott. Should we use the test database rather than the
development database?

Scott: Yeah, just run ant –Denvironment=test db:refresh.

The developers and DBAs, who often perform roles that seem oppos-
ing or distant, are now continually working toward the same goal, and
both are accomplishing more of their tasks that require analysis or
design.

Questions
These questions can help you determine your level of automation and
continuous database integration.

■ Are you capable of recreating your database from your automated
build process? Can you rebuild your database at the “push of a
button?”

■ Are the scripts (build and SQL) to your database integration auto-
mation committed to your version control repository?

■ Is everyone on your project capable of recreating the database
using the automated build process?

■ During development, are you able to go back to prior versions of
the database using your version control repository?

■ Is your database integration process continuous? Are your software
code changes integrated and tested with the latest database when-
ever you apply those changes to the version control repository?

■ Are you running tests to verify the behavior of your database stored
procedures and triggers?

■ Is your automated database integration process configurable? Are
you able to modify the userid, password, unique database identifier,
tablespace size, and so on using a single configuration file?

129

Chapter 6

Continuous Testing

Practice makes perfect.

—ENGLISH PROVERB

re·li·a·ble—adjective—Giving the same result in successive trials.1

A tenet of systems engineering says that the reliability of a linear
system is the product of the reliability of each of the system’s compo-
nents. For example, imagine a system with three components like that
shown in Figure 6-1.

Automate
Unit
Tests

Automate
Component
Tests

Automate
Functional
Tests

Categorize
Developer
Tests

Run Faster
Tests First

Write Tests
for Defects

Make Component
Tests Repeatable

Limit Test Cases
to One Asset

Automate
System
Tests

1. From www.m-w.com/cgi-bin/dictionary?va=reliable.

www.m-w.com/cgi-bin/dictionary?va=reliable

130 Chapter 6 ❑ Continuous Testing

Each component in this sample system has its reliability measured
and the values are each determined to be 90% (disregard how the 90%
value was determined). If you weren’t a systems engineer, you’d prob-
ably figure the reliability of this entire system is then 90%. That
answer, however, isn’t correct: .90 * .90 * .90 is actually .73. The over-
all reliability of this system is only 73%.

Ever driven across a bridge that was 73% reliable? If you had a pen
that only worked 73% of the time, wouldn’t you throw it out? We
assume that most bridges we drive over are 100% reliable and most
pens we use are 100% reliable until they run out of ink. To gain that
reliability, the builders of bridges and makers of pens ensure reliability
at the lowest possible building block, because that’s the only way to
ensure the overall reliability.

This is why in the 1970s sales of Japanese cars began to eclipse
sales of U.S.-made cars. The Japanese manufacturers identified and
applied this principle, and the reliability of Japanese-made cars was sim-
ply much better than their U.S. counterparts. The Japanese manufactur-
ers realized they had to ensure reliability at the lowest possible level.

Now imagine a software system (which, by the way, is nonlinear—
this essentially means you have to also consider the reliability of the
interface or connector between each object). Probably none of us has
ever worked on a software system with three components (i.e., objects)
like in Figure 6-1. Most software systems have hundreds if not thou-
sands of objects! A linear system composed of 100 components each
having 99% reliability would yield a system that is only 37% reliable.

If you wanted to build a software application that had a Service
Level Agreement of 100% (or close), you’d absolutely have to ensure
reliability at the individual object level. If you can’t ensure and mea-
sure reliability at the lowest level, you can’t possibly do that at the sys-
tem level. Yet this is how we, as an industry, have largely been

FIGURE 6-1 A system with three components

Component A
90% Reliable

Component B
90% Reliable

Component C
90% Reliable

Chapter 6 ❑ Continuous Testing 131

constructing and delivering software. Design it, build it, then throw it
over the wall to the Quality Assurance (QA) team, who tests at the sys-
tem level and inevitably finds some number of defects. At some point,
we then unleash the system on our customers, who unsurprisingly also
find defects, sometimes to the detriment of corporate profits, your rep-
utation, or both.

So as a bottom line, if we are to build software systems that are
truly reliable, we have to ensure reliability at the object level, which
can only be achieved through successful unit testing. Otherwise, we
can’t possibly hope to build highly reliable applications. Of course,
just writing the unit test for an object doesn’t necessarily guarantee
reliability. The test must effectively exercise the use of the object;
moreover, the test must be run often.

Because objects in a software system communicate with each
other, tests must be run any time and every time something in the sys-
tem changes. Building continuous testing into your CI system gives
you this capability. Figure 6-2 shows you where we are in creating a

FIGURE 6-2 Integrate button—running automated developer tests

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

132 Chapter 6 ❑ Continuous Testing

fully implemented, automated build and CI system using the Integrate
button illustration.

Automate Unit Tests

People often use the term “unit test” rather broadly. This can cause
confusion, especially when people start claiming their unit tests “take
too long to run.” Defining a common vocabulary for developer tests
can assist in categorizing them into efficient groups, which can make
all the difference in creating an effective CI system capable of running
fast builds.

Unit tests verify the behavior of small elements in a software sys-
tem, which are most often a single class. Occasionally, though, the
one-to-one relationship between a unit test and a class is slightly aug-
mented with additional classes because the classes under test are
tightly coupled.

Listing 6-1 shows a unit test written with the TestNG framework.
TestNG is annotation-based, hence the @testng.test Javadoc-like
comment in the starPatternTest method. This test case verifies, via
Java 1.4’s assert capability, that the class RegexPackageFilter
properly filters strings via a regular expression pattern.

LISTING 6-1 Isolated Unit Test Using TestNG

public class RegexPackageFilterTestNG {
 /**
 * @testng.test
 */
 public void starPatternTest() throws Exception{

 Filter filter = new RegexPackageFilter("java.lang.*");

 assert filter.applyFilter("java.lang.String"):
 "filter returned false";

 assert !filter.applyFilter("org.junit.TestCase"):
 "filter returned true for org.junit.TestCase";
 }
}

Automate Unit Tests 133

Some unit tests require minimal outside dependencies, which are
only other classes. Those dependent classes are themselves simple and
don’t have deep object graphs. Occasionally, unit tests even employ
mocks, which are simple objects that substitute for real, more compli-
cated objects. If a dependent object itself does depend on an outside
entity like a file system or database and isn’t mocked, the test becomes
a component test (defined next).

Listing 6-2 shows an example of a unit test written in Ruby that
verifies the behavior of a filtering type. This test would still be consid-
ered a unit test even though it uses two classes, RegexFilter and
SimpleFilter, because it only uses one type to verify behavior.

LISTING 6-2 Isolated Unit Test Using Ruby

require "test/unit"
require "filters"

class FiltersTest < Test::Unit::TestCase

 def test_regex
 fltr = RegexFilter.new(/Google|Amazon/)
 assert(fltr.apply_filter("Google"))
 end

 def test_simple
 fltr = SimpleFilter.new("oo")
 assert(fltr.apply_filter("google"))
 end

 def test_filters
 fltrs = [SimpleFilter.new("oo"), RegexFilter.new(/Go+gle/)]
 fltrs.each{ | fltr |
 assert(fltr.apply_filter("I love to Gooogle on the Internet"))
 }
 end
end

The key aspect for unit tests is having no reliance on outside
dependencies such as databases, which have the tendency to increase
the amount of time it takes to set up and run tests. Unit tests can be cre-
ated and run early in the development cycle (i.e., day one). Because of
the rapid time between coding and testing the results, unit tests are an
efficient way of debugging.

134 Chapter 6 ❑ Continuous Testing

Automate Component Tests

Component or subsystem tests verify portions of a system and may
require a fully installed system or some external dependencies, such as
databases, file systems, or network endpoints, to name a few. These
tests verify that components interact to produce the expected aggregate
behavior. A typical component test requires the underlying database to
be running and may even cross architectural boundaries. Because
larger amounts of code are exercised by each test case, more code cov-
erage is obtained per test, and therefore, these tests tend to run longer
than unit tests.

Listing 6-3 presents a sample component test that utilizes the
DbUnit framework to seed a database, and then attempts to find data
based on the contents of the database. DbUnit uses XML files, which it
reads and then inserts the corresponding data into matching database
tables.

LISTING 6-3 Component Test Using DbUnit

public class DefaultWordDAOImplTest extends DatabaseTestCase {
 protected IDataSet getDataSet() throws Exception {
 return new FlatXmlDataSet(new File("test/conf/wseed.xml"));
 }

 protected IDatabaseConnection getConnection() throws Exception {
 final Class driverClass =
 Class.forName("org.gjt.mm.mysql.Driver");
 final Connection jdbcConnection =
 DriverManager.getConnection(

"jdbc:mysql://localhost/words",
 "words", "words");

 return new DatabaseConnection(jdbcConnection);
 }

 public void testFindVerifyDefinition() throws Exception{
 final WordDAOImpl dao = new WordDAOImpl();
 final IWord wrd = dao.findWord("pugnacious");
 for(Iterator iter =

 wrd.getDefinitions().iterator();
 iter.hasNext();){

 IDefinition def = (IDefinition)iter.next();
 TestCase.assertEquals(

 "def is not Combative in nature; belligerent.",
 "Combative in nature; belligerent.",

 def.getDefinition());
 }
 }

Automate Component Tests 135

 public DefaultWordDAOImplTest(String name) {
 super(name);
 }
}

Component-level tests use more dependencies than unit tests, but
still not necessarily as many as higher-level system tests (defined
shortly). Component-level tests exercise code via an API, but these
may or may not be exposed to clients. In Listing 6-3, an object in a
Data Access Object (DAO) layer is essentially tested via an exposed
interface. Another example of a component test is exercising an action
class in a Struts architecture via the StrutsTestCase framework, as
shown in Listing 6-4. This test obviously requires a database to be run-
ning; however, the Web container is mocked out and the API exercised
isn’t necessarily exposed to clients.

In Listing 6-4, the StrutsTestCase framework has been combined
with DbUnit to provide both a database seeding functionality and a
mock container. The DeftMeinMockStrutsTestCase class is a template,
which requires that the getDBUnitDataSetFileForSetUp method be
implemented.

LISTING 6-4 Component Test Using StrutsTest

public class ProjectViewActionTest extends DeftMeinMockStrutsTestCase {
 public void testProjectViewAction() throws Exception {
 this.addRequestParameter("projectId", "100");
 this.setRequestPathInfo("/viewProjectHistory");
 this.actionPerform();
 this.verifyForward("success");

 Project project = (Project)this.getRequest()
.getAttribute("project");
 assertNotNull(project);

 assertEquals(project.getName(), "DS");
 }

 protected String getDBUnitDataSetFileForSetUp() {
 return "dbunit-seed.xml";
 }

 public ProjectViewActionTest(String name) {
 super(name);
 }
}

136 Chapter 6 ❑ Continuous Testing

This type of test is also commonly referred to as an integration
test. The difference between this type of test and a system test is that
integration tests (or component tests or subsystem tests) don’t always
exercise a publicly preferable API. For example, a system test would
exercise a Web application through its Web pages, but a component
test would exercise the business layer under the application Web pages.

Automate System Tests

System tests exercise a complete software system and therefore
require a fully installed system, such as a servlet container and associ-
ated database. These tests verify that external interfaces like Web
pages, Web service end points, and GUIs work end to end as designed.
System tests have the tendency for lengthy runtimes in addition to pro-
longed set-up times. But when you are successfully running your auto-
mated unit and component tests, you are identifying a number of
lower-level issues beforehand and you simply plan intervals for run-
ning this longer test, perhaps as part of a secondary integration build or
even during off-hours, like overnight.

System tests are fundamentally different than functional tests,
which test a system much like a client would use the system. For
example, in Listing 6-5 the test mimics a browser by manipulating the
site via HTTP; however, this test doesn’t use a browser. A framework
like Selenium,2 which drives a browser, can be used to create func-
tional tests. You still perform automated and manual functional testing
at another interval after completing automated systems tests—one
does not preclude the other.

Listing 6-5 contains a sample JWebUnit test case, which attempts
a Web site login and then verifies whether the attempt was successful.
While it may not be obvious in this code, the entire system (a servlet
container and a database) has to be installed and running for this test
case to work. Note that the setup here isn’t in the test case but is part of
a larger aspect of the build.

2. Selenium is a Web-based, cross-browser functional testing tool available at
www.openqa.org/selenium/.

www.openqa.org/selenium/

Automate Functional Tests 137

LISTING 6-5 System Test Using JWebUnit

public class LoginTest extends WebTestCase {

 protected void setUp() throws Exception {
 getTestContext().
 setBaseUrl("http://pone.acme.com/meinst/");
 }

 public void testLogIn() {
 beginAt("/");
 setFormElement("j_username", "aader");
 setFormElement("j_password", "a1445");
 submit();
 assertTextPresent("Logged in as aader");
 }
}

Automate Functional Tests

Functional tests, as the name implies, test the functionality of an
application from the viewpoint of a client, which means the tests them-
selves mimic clients. These tests are also known as acceptance tests.

As mentioned earlier, frameworks like Selenium actually control a
browser and enable it to interact with a Web site. Selenium tests are
written in tabular forms, which represent a work flow, complete with
commands and assertions. The code in Listing 6-6 is a Selenium test
case that attempts a Web site login and then verifies if the attempt was
successful.

LISTING 6-6 Functional Test Using Selenium

TestLoginSuccess

open /ib/app

verifyTitle Integrate Button – Welcome

verifyTextPresent Welcome to The IntegrateButton.com.
Please log in to access exclusive
material for the book.

clickAndWait link=Log In

type inputUserId admin

type inputPassword admin

clickAndWait loginSubmit

assertTextPresent Logout

138 Chapter 6 ❑ Continuous Testing

As demonstrated in Listing 6-6, Selenium utilizes table models for
testing, which are highly effective communication mechanisms that
someone can author without needing to be a developer. As you can
see, this test does a number of things: It verifies aspects of a page as
well as fills in forms and verifies data.

We need a common understanding that tests are differentiated spe-
cifically by the setup they require (seeding databases, etc.), which cor-
relates directly to how long they take to run. Test categorization is
especially important in the context of CI—when builds run long in too
many contexts, it can drastically affect you and your team’s perception
of CI.

Categorize Developer Tests

Writing and running tests is obviously a good thing, but unless we treat
them as an architectural component that requires proper categorization
and structure, they can start looking like a hurdle, instead of the key, to
success. As the code base increases during your project, we’re talking
about a lot of tests—and if you run all written tests at all times in your
CI system, builds take longer and longer to complete.

Categorizing developer tests into respective buckets (unit tests,
component tests, system tests, and even functional tests) helps you to
run slower running tests after the faster running tests. For example,
running system tests every time the repository changes is a time- and
resource-consuming task and delays notifying interested parties if
there happens to be an issue with the build. If this delay is too long and
developers have moved on to other activities, one of the primary bene-
fits of Continuous Integration is not realized. Why not run unit tests
every time someone checks code in, as they don’t take much time to

clickAndWait Link=Logout

assertTextPresent Log In

verifyTitle Integrate Button - Welcome

assertTextPresent Welcome to The IntegrateButton.com.
Please log in to access exclusive
material for the book.

Categorize Developer Tests 139

execute, and then schedule periodic intervals to run component tests
(or after commit builds) and then another interval scheme for system
tests? Those intervals can be increased as iterations come to a close,
and you probably want to run them more often in the initial project
stages too.

Frameworks like NUnit for .NET and versions of JUnit and
TestNG for Java have annotations that make categorizing tests quite
easy; in other frameworks, segregating tests is a bit more challenging.
For example, with older versions of JUnit, there is no mechanism
within the framework itself or within Ant to easily divide tests into
three groups. This still can be achieved, however, with a simple nam-
ing scheme or, even easier, with an appropriate directory strategy.

One practice for developer testing is to place unit tests in a sepa-
rate directory from the source code. For example, a project directory
structure would have a src folder for the source code and a test
folder for associated tests. A sample project could have a root direc-
tory like that shown in Listing 6-7.

LISTING 6-7 Sample Project Directory

root
 build.xml
 build.properties
 src/
 test/

The src directory contains directories that hold source code, while
the test directory is further divided into more specific directories such
unit, component, and system. For example, the directory listing
would appear as shown in Listing 6-8.

LISTING 6-8 Directory Listing of test

test/
 unit/
 component/
 system/

The unit, component, and system directories in Listing 6-8 hold
associated tests for each category. The system directory, for example,

140 Chapter 6 ❑ Continuous Testing

would have a directory structure which maps to the system tests’ pack-
age names (which usually map to the corresponding class under the
tests’ packages), as shown in Listing 6-9.

LISTING 6-9 Sample Directory Structure of the system Folder

test/
 system/
 test/
 com/
 acme/
 stock/

 LogInTest.java
 AccountTest.java

Now that the tests are segregated into separate directories, your
chosen build system needs an update. In the case of Ant, running cate-
gorized tests becomes a matter of defining targets that use the
batchtest element found in Ant’s JUnit task, which is displayed in
Listing 6-10.

LISTING 6-10 The JUnit Task’s batchtest Element

<batchtest todir="${testreportdir}">
 <fileset dir="test/unit">
 <include name="**/*Test.*"/>
 </fileset>
</batchtest>

The naming pattern referenced in the include element is
generic—it’s the directory referenced in the dir attribute of fileset
that specifies what tests to run, which in this case are the unit tests.

Don’t forget that you can also automate functional tests, such as
those defined with Selenium; however, these tests will follow a differ-
ent execution paradigm with additional test runners that can be easily
segregated, for example, into unique Ant tasks. By defining a common
manner for categorizing tests, such as through annotations or naming
patterns, you are all set to instruct your CI system to run each category
when appropriate, and your build times are completely manageable.
This means that tests can be run at regular intervals instead of being
abandoned when they take too long to execute.

Run Faster Tests First 141

Run Faster Tests First

Typically, the majority of a build’s runtime is spent on tests, and the
longest tests are those with dependencies on outside objects such as
databases, file systems, and Web containers. Unit tests require the least
setup (by definition, none), and system tests need the most (every-
thing). By defining and grouping tests by type—unit, component, and
system—development teams can fashion a build process that runs test
categories rather than a gigantic test task that runs everything at once.
Unit tests run most often (with every commit); component tests, sys-
tem tests, and functional tests can be run with secondary builds or on
periodic intervals.

Unit Tests
A true unit test should run to completion (successfully) in a fraction of
a second. If a unit test takes longer, take a close look at it—it’s either
broken, or instead of being a unit test, it is really a component-level
test. The XP mantra of “test a little, code a little, test a little…” is pred-
icated on the notion of rapid testing. If unit testing takes enough time
that the developer can focus on something else, it’s taking too long. It
will become a burden, and will soon become something to avoid
instead of depend on.

In a CI environment, builds are run any time someone applies a
change to the version control repository; therefore, unit tests should be
run each time someone checks in code (called the commit build).
There is little configuration cost, and the resource cost to run them is
negligible.

Component Tests
Component tests, which usually have multiple dependencies, take a bit
longer to run. As such, they should be run as part of secondary builds
or periodically; regardless, they should be run before committing code
into a repository (in your private build). As we covered in Chapter 4,
component tests can be run as part of a secondary, and more “heavy-
weight,” integration build that follows the commit build. Component

142 Chapter 6 ❑ Continuous Testing

tests have a specific cost to them: Dependencies have to be put in place
and configured. These tests alone may only take a few seconds; how-
ever, in the aggregate, this time adds up. Some projects with light-
weight component tests can get away with running them with every
commit build.

For example, the component test shown in Listing 6-11 takes, on
average, four seconds to run.

LISTING 6-11 Sample Component Test

using System;
using System.Collections;
using NUnit.Framework;
using NHibernate.Cfg;
using NDbUnit.Core.OleDb;
using NDbUnit.Core;

namespace NHibernate.words
{
 [TestFixture]
 public class WordTest
 {
 private const string CONN = @"Provider=SQLOLEDB..";
 private const string SCHEMA = @"Dataset2.xsd";
 private const string XML = @"XMLFile2.xml";

 private OleDbUnitTest fixture;
 private ISessionFactory sessFact;

 [SetUp]
 public void SetUp()
 {
 this.fixture = new OleDbUnitTest(CONN);
 this.fixture.ReadXmlSchema(SCHEMA);
 this.fixture.ReadXml(XML);

 this.sessFact =
 new Configuration().Configure().BuildSessionFactory();
 }

 [Test]
 public void verifyFinder()
 {

 this.fixture.PerformDbOperation(DbOperationFlag.CleanInsert);
 ISession session = this.sessFact.OpenSession();

 IQuery qry = session.GetNamedQuery("word.finder.bySpelling");
 qry.SetAnsiString("spelling", "pugnacious");
 IList list = qry.List();

Write Tests for Defects 143

 Assert.AreEqual(((Word)(list[0])).PartOfSpeech, "adj");
 session.Close();

 }
 }
}

This test does a couple of things that cause the total test time to
increase, and it is also more complex to configure. First, the test seeds
a database via NDbUnit,3 which is a database seeding framework. In
this case, NDbUnit does an insert of the data found in the XML file
XMLFile2.xml, which also means an XML parsing step. This test case
then configures NHibernate, and then a test is run and a word is
retrieved from the database.

Any wonder why this test takes four seconds to run? Each addi-
tional test case in this class may not add too much time; however, execute
this ten more times and the total time is now approaching a minute.

System Tests
System and functional tests, which require a fully installed system,
take the longest to run. Additionally, the complexity of configuring a
fully functional system occasionally limits the full automation of these
tests. Running system tests with every commit build could be a recipe
for disaster, but sometimes these types of tests are run with secondary
or periodic builds. Otherwise, nightly (off-hour) runs are good for
these tests.

The next time you add a test case to your build, consider the long-
term implications of running all of your tests, and then start optimizing
your build to categorize your tests so you can stage their execution.

Write Tests for Defects

Developer testing and CI may decrease the frequency of software
defects, but the fact of the matter is that defects will still occur. That’s

3. NDbUnit is an open source project for .NET, available at www.ndbunit.org/.

www.ndbunit.org/

144 Chapter 6 ❑ Continuous Testing

okay, though—mistakes happen and mistakes can be fixed and, ideally,
learned from. Making the same mistake twice, though, is quite
unforgivable.

Some use the term defect-driven development when referring to
writing tests for defects; however, that term has always sounded rather
negative. Defects don’t drive development—preventing those nasty
aberrations drives development! If anything, defects halt develop-
ment—it’s the act of addressing them and then ensuring they don’t
come back that keeps the wheels moving. Here is a proven strategy for
guaranteeing that once a defect is found, it doesn’t come back.

When a defect is discovered, find and isolate the offending code. If
the project has a healthy number of test cases, it’s probably a good bet
that the defect has occurred in some portion of untested code (maybe an
unconsidered path)—and most likely in the interaction of components.
For example, Listing 6-12 presents a find method in a Hibernate
DAO class, which attempts to retrieve a word from a database.

LISTING 6-12 DAO with a Defect

public IWord findWord(String word) throws FindException{
 Session sess = null;
 try{
 sess = WordDAOImpl.sessFactory.getHibernateSession();

 final Query qry = sess.getNamedQuery("word.finder.bySpelling");
 qry.setString("spelling", word);

 final List lst = qry.list();
 final IWord wrd = (IWord)lst.get(0);
 sess.close();
 return wrd;
 }catch(Throwable thr){
 try{sess.close();}catch(Exception e){}
 throw new FindException("Exception while finding word: "
 + word + " "+ thr.getMessage(), thr);
 }
}

This class has been reasonably tested in a series of component-
level tests that utilize DbUnit. These tests verify the basic CRUD (cre-
ate, read, update, and delete) operations. For example, Listing 6-13
shows a test for the find method.

Write Tests for Defects 145

LISTING 6-13 Sample Sunny Day Test Case

public void testFindVerifyDefinition() throws Exception{
 final WordDAOImpl dao = new WordDAOImpl();
 final IWord wrd = dao.findWord("pugnacious");

 for(Iterator iter = wrd.getDefinitions().iterator();
 iter.hasNext();){
 IDefinition def = (IDefinition)iter.next();

TestCase.assertEquals(
 "def is Combative in nature; belligerent.",
 "Combative in nature; belligerent.",

 def.getDefinition());
 }
}

During functional testing of the larger application (in this case, a
dictionary), it is discovered that if the user attempts to search for a word
that isn’t in the dictionary, the application heaves a nasty exception
stack trace, which utterly confuses users. After some crafty detective
work, someone discovers that the findWord method in WordDAOImpl
throws an unexpected IndexOutOfBoundsException (which is masked
by a FindException) if no word is returned via the Hibernate API.

This aberrant behavior wasn’t accounted for! A defect has been
discovered! All is not lost, though. Remember, we are forgiven for cre-
ating this defect, but only once. We have an opportunity to fix this
nefarious glitch, but if it breaks again we should rethink our approach.

The first step in regaining your pride is to write a test case that
exposes the defect. Read that sentence again slowly. Your first reaction
may be to fix the offending code and move on to other, more exciting
things (happy hour!); however, if you go that route, you lose an excel-
lent chance to ensure that the same bug never comes back again. Start
by writing a test case that triggers the same exact behavior that was
reported in the defect summary. In this case, we need to cause the code
to throw an IndexOutOfBoundsException, such as the one shown in
Listing 6-14. Remember that we’re writing a test to pass on the behav-
ior, not to fail.

LISTING 6-14 Test Case Verifying the Defect

public void testFindInvalidWord() throws Exception{
 final WordDAOImpl dao = new WordDAOImpl();
 try{
 final IWord wrd = dao.findWord("fetit");

146 Chapter 6 ❑ Continuous Testing

 TestCase.fail("This should throw an exception");
 }catch(FindException ex){
 Throwable thr = ex.getOriginalException();
 TestCase.assertTrue("Should be instance of " +
 IndexOutOfBoundsException",
 ex.getOriginalException() instanceof

IndexOutOfBoundsException);
 }
}

If you run this test, it passes. Therefore, you’ve proven that there is
a defect. Now you can fix it.

This methodology, by the way, is slightly different than the pre-
vailing “defect-driven development” approach, which suggests writing
a failing test case first and then to keep running that test (while fixing
the defect) until the test stops failing. For example, the code in Listing
6-15 is a defect-driven test case.

LISTING 6-15 Sample Defect-Driven Style Test Case

public void testFindInvalidWordException() {
 final WordDAOImpl dao = new WordDAOImpl();
 try{
 final IWord wrd = dao.findWord("fetit");
 }catch (FindException e){
 TestCase.fail("Didn't find word fetit");
 }
}

This test case, of course, fails when first run (assuming the defect
is still present). This practice does work; however, it presents some
opportunities for refinement. Writing a test case that purposely fails at
first present these challenges.

• It is difficult to write a failing test in this scenario that uses an
assert properly.

Because of this, asserts may not ever be added, even after the test
case doesn’t fail anymore. This means the test case isn’t neces-
sarily passing—it is merely not failing.

• At this point in the game, it is tricky to know how the fix will
affect behavior, so in attempting to fail the test you end up guess-
ing what the fix may be.

Write Tests for Defects 147

In Listing 6-15, the assumption is made that the fix will cause
the code to no longer throw an exception. This is true, but it’s
only part of the whole story.

• Once a fix has been made in the code under test, the failing test
works; however, it doesn’t actually verify the change in behavior.

At this point, because the test case works, most people don’t go
back to update it. In our case, in order to fix the defect we in essence
need to break the test, which is the opposite of what defect-driven
development advocates.

Examining the code closely reveals that we need to check for an
empty list before attempting to grab the first element. We’re left with a
design choice at this point—should the code return null, return an
empty Word, or throw an exception? The decision is made to return
null if the parameter value cannot be retrieved from the database via
Hibernate (see Listing 6-16).

LISTING 6-16 Updated Code That Fixes the Defect

public IWord findWord(String word) throws FindException{
 Session sess = null;
 try{
 sess = WordDAOImpl.sessFactory.getHibernateSession();

 final Query qry = sess.getNamedQuery("word.finder.bySpelling");
 qry.setString("spelling", word);

 final List lst = qry.list();
 IWord wrd = null;
 if(lst.size() > 0){
 wrd = (IWord)lst.get(0);
 }
 sess.close();
 return wrd;
 }catch(Throwable thr){
 try{sess.close();}catch(Exception e){}
 throw new FindException("Exception while finding word: "
 + word + " "+ thr.getMessage(), thr);
 }
}

With the code under test conceivably fixed, the test is run again
and this time it fails. This next decision is what differentiates this
approach from others—in fixing our test case, we will assert the new

148 Chapter 6 ❑ Continuous Testing

behavior. The defect-driven example would work by now, and the
chances are we’d leave the test case as so. But that test case doesn’t
provide too much value now. We need to assert that when an invalid
word is passed into the findWord method, null is returned. We also
need to assert than an Exception isn’t thrown. The updated test case is
shown in Listing 6-17.

LISTING 6-17 Updated Test Case Verifying the Fix

public void testFindInvalidWord() throws Exception{
 final WordDAOImpl dao = new WordDAOImpl();
 try{
 final IWord wrd = dao.findWord("fetit");
 TestCase.assertNull("Should have received back a null object", wrd);
 }catch(FindException ex){
 TestCase.fail("This should not throw an exception");
 }
}

Now we’re done and we’ve accomplished two things. First, the
defect has been corrected. Congratulations! Second, a regression test is
now in place that truly asserts the correct behavior of the fix.

Which practice should we follow: defect-driven development, or
should we call it continuous-prevention development? They both
drive you to:

• Fix the defect

• And prevent the defect from recurring

Continuous-prevention development, however, has the tendency to
drive you to carry out a third step, which is asserting any new behavior
triggered by the defect’s fix.

Make Component Tests Repeatable

Many Web applications work against databases. Databases, however,
present quite a large dependency for testing, leaving you with two
choices: Either mock out as much as possible and avoid the database
altogether for as long as possible, or pay the price and utilize the data-

Make Component Tests Repeatable 149

base. The latter choice presents a new series of challenges—how do
you control the database during testing? Even better, how do you make
those tests repeatable?

By far, the easiest way to make your testing cake and eat it is to
use a database-seeding framework like any of the xDbUnits (such as
NDbUnit for .NET, DbUnit for Java, and PDbSeed for Python). These
frameworks abstract a database’s data set into XML files and then
offer the developer fine-grained control as to how this data is seeded
into a database during testing. For example, the snippet shown in Listing
6-18 is from a DbUnit XML seed file.

LISTING 6-18 Sample DbUnit Data File

 <word WORD_ID="1" SPELLING="pugnacious" PART_OF_SPEECH="Adjective"/>
 <definition DEFINITION_ID="10"
 DEFINITION="Combative in nature; belligerent."
 WORD_ID="1"

EXAMPLE_SENTENCE="The pugnacious youth had no friends left to pick on."/>
 <synonym SYNONYM_ID="20" WORD_ID="1" SPELLING="belligerent"/>
 <synonym SYNONYM_ID="21" WORD_ID="1" SPELLING="aggressive"/>

Via DbUnit’s DatabaseTestCase, the data in the XML file is
manipulated via operations such as insert, update, and delete. The specific
database is configured by implementing the abstract getConnection
method, and the XML file is located via the getDataSet method (see
Listing 6-19).

LISTING 6-19 Sample Database Test Case

public class DefaultWordDAOImplTest extends DatabaseTestCase {
 protected IDataSet getDataSet() throws Exception {
 return new FlatXmlDataSet(
 new File("test/conf/words-seed.xml"));
 }

 protected IDatabaseConnection getConnection() throws Exception {
 final Class driverClass =
 Class.forName("org.gjt.mm.mysql.Driver");

 final Connection jdbcConnection =
 DriverManager.getConnection(

 "jdbc:mysql://localhost/words",
 "words", "words");

 return new DatabaseConnection(jdbcConnection);
 }

150 Chapter 6 ❑ Continuous Testing

 public void testFindVerifyDefinition() throws Exception{
 final WordDAOImpl dao = new WordDAOImpl();
 final IWord wrd = dao.findWord("pugnacious");

 for(Iterator iter =
 wrd.getDefinitions().iterator(); iter.hasNext();){
 IDefinition def = (IDefinition)iter.next();
 assertEquals("Combative in nature; belligerent.",

"Combative in nature; belligerent.",
 def.getDefinition());

 }
 }

 public DefaultWordDAOImplTest(String name) {
 super(name);
 }
}

Note, though, that this class makes the assumption that the data-
base is located on the same machine on which the test is run. This may
be a safe assumption on the developer’s workstation, but obviously this
configuration can present a challenge in CI environments.

One solution is to pull out the hard-coded connection strings and
place them into properties files. There is, however, a more effective
mechanism. If DbUnit is utilized to seed a database, you can infer that
the application itself then uses a database. If this is the case, it is a
common practice to avoid hard-coding connection information within
a code base; therefore, why not configure DbUnit to read the same file
that the application under test reads?

For example, in Hibernate applications, database connection infor-
mation is usually defined in the hibernate.cfg.xml file. You can easily
write a utility class that parses this file and obtains the proper connec-
tion information. Even better, as shown in Listing 6-20, you can rely
on Hibernate to provide the desired information.

LISTING 6-20 Hibernate Configuration Utility

public class DBUnitHibernateConfigurator {
 static Configuration configuration = null;

 private DBUnitHibernateConfigurator() {
 super();
 }

 private static Configuration getConfiguration()
 throws HibernateException {

Make Component Tests Repeatable 151

 if (configuration == null) {
 configuration = new Configuration().configure();
 }
 return configuration;
}

public static IDataSet getDataSet(final String fileName)
 throws ResourceNotFoundException,
 DBUnitHibernateConfigurationException {
 try{
 return DBUnitConfigurator.getDataSet(fileName);
 }catch(DBUnitConfigurationException e2){
 throw new DBUnitHibernateConfigurationException(
 "DBUnitConfigurationException in getDataSet", e2);
 }
}

 private static String getProperty(final String name)
 throws HibernateException {
 return getConfiguration().getProperty(name);
 }

public static Properties getHibernateProperties()
 throws ResourceNotFoundException,
 DBUnitHibernateConfigurationException{
 try{
 final Properties hProp = new Properties();
 hProp.put("hibernate.connection.driver_class",
 DBUnitHibernateConfigurator.getProperty(
 "hibernate.connection.driver_class"));
 hProp.put("hibernate.connection.url",
 DBUnitHibernateConfigurator.getProperty(
 "hibernate.connection.url"));
 hProp.put("hibernate.connection.username",
 DBUnitHibernateConfigurator.getProperty(
 "hibernate.connection.username"));
 hProp.put("hibernate.connection.password",
 DBUnitHibernateConfigurator.getProperty(
 "hibernate.connection.password"));
 return hProp;
 }catch(HibernateException e){
 throw new DBUnitHibernateConfigurationException(
 "HibernateException in getHibernatePropertiesFile", e);
 }
}

 public static IDatabaseConnection getDBUnitConnection()
 throws DBUnitHibernateConfigurationException{
 try{
 final Properties props =
 DBUnitHibernateConfigurator.getHibernateProperties();
 return DBUnitConfigurator.getDBUnitConnection(props);
 }catch(DBUnitConfigurationException e1){
 throw new DBUnitHibernateConfigurationException(
 "DBUnitConfigurationException in getDBUnitConnection", e1);

152 Chapter 6 ❑ Continuous Testing

 }catch (ResourceNotFoundException e2) {
 throw new DBUnitHibernateConfigurationException(
 "ResourceNotFoundException in getDBUnitConnection", e2);
 }
 }
}

Note how the class in Listing 6-20 puts the Hibernate connection
information in a Properties object, which is then converted into
DbUnit’s IDatabaseConnection type in a DBUnitConfigurator class.
The DbUnit connection type is then returned via the getDBUnit-
Connection method. DbUnit’s IDataSet type, which represents those
XML files containing all the data, is returned via the getDataSet
method. This method frees developers from having to provide a path to
a file—something especially tricky in different environments.

In Listing 6-21, a custom abstract test case class can be created
which requests that implementers feed the desired data set information
for a particular test case.

LISTING 6-21 Convenient Test Case

public abstract class DefaultDBUnitHibernateTestCase extends
DatabaseTestCase {
 public DefaultDBUnitHibernateTestCase(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();
 DefaultHibernateSessionFactory.
 closeSessionAndEvictCache();
 DefaultHibernateSessionFactory.
 getInstance().getHibernateSession();
 }

 protected void tearDown() throws Exception {
 DefaultHibernateSessionFactory.
 closeSessionAndEvictCache();
 super.tearDown();
 }

 protected IDatabaseConnection getConnection() throws Exception {
 return DBUnitHibernateConfigurator.
 getDBUnitConnection();
 }

 protected IDataSet getDataSet() throws Exception {
 final String fileName = this.getDBUnitDataSetFileForSetUp();

Make Component Tests Repeatable 153

 DatabaseTestCase.assertNotNull("data set file was null", fileName);
 return DBUnitHibernateConfigurator.getDataSet(fileName);
 }

 protected abstract String getDBUnitDataSetFileForSetUp();
}

A sample resulting test case that implements DefaultDBUnit-
HibernateTestCase is shown in Listing 6-22.

LISTING 6-22 The New Test Case in Action

public class WordDAOImplTest extends DefaultDBUnitHibernateTestCase {

 public void testUpdateWordSpelling() throws Exception{
 WordDAOImpl dao = new WordDAOImpl();
 IWord wrd = dao.findWord("pugnacious");

 wrd.setSpelling("pugnacious-ness");
 dao.updateWord(wrd);

 IWord wrd2 = dao.findWord("pugnacious-ness");
 assertEquals("should be id of 1", 1, wrd2.getId());
 }

 public void testFindVerifyDefinitionsSize() throws Exception{
 WordDAOImpl dao = new WordDAOImpl();
 IWord wrd = dao.findWord("pugnacious");

 Set defs = wrd.getDefinitions();
 assertEquals("size should be one", 1, defs.size());
 }

 protected String getDBUnitDataSetFileForSetUp() {
 return "words-seed.xml";
 }

 public WordDAOImplTest(String name) {
 super(name);
 }
}

DbUnit offers an API (as shown earlier) that can be utilized effec-
tively via composition, which creates enormous opportunities for pow-
erful combination frameworks, too. With this added flexibility, testing
various architectures at different layers becomes quite easy. For exam-
ple, developer testing of Struts applications can be challenging. A
common tactic is to utilize a framework like HttpUnit, which simulates

154 Chapter 6 ❑ Continuous Testing

HTTP requests; however, this can be tedious work and doesn’t offer
the desired precision for Struts architecture that heavily utilizes
Action classes and a configuration for mapping requests.

The StrutsTestCase project was created to address this issue. With
this framework you can easily isolate and test Struts’ Action classes.
This project, however, requires a developer to extend a base class
which handles mocking of a servlet container. If a Struts application
requires the use of a database, you may be left in a quandary.

Via DbUnit’s API, a combination framework can be created that
utilizes the seeding capabilities of DbUnit with the mocking capabili-
ties of the StrutsTestCase project (see Listing 6-23).

LISTING 6-23 Combination Struts and Hibernate Test Case

public abstract class DefaultDBUnitMockStrutsTestCase
 extends MockStrutsTestCase {

 public DefaultDBUnitMockStrutsTestCase(String testName) {
 super(testName);
 }

 public void setUp() throws Exception {
 super.setUp();
 this.executeOperation(this.getSetUpOperation());
 }

 public void tearDown() throws Exception{
 super.tearDown();
 this.executeOperation(this.getTearDownOperation());
 }

 private void executeOperation(DatabaseOperation operation)
 throws Exception{
 if (operation != DatabaseOperation.NONE){
 final IDatabaseConnection connection =
 this.getConnection();
 try{
 operation.execute(connection, this.getDataSet());
 }finally{
 closeConnection(connection);
 }
 }
}

 protected void closeConnection(IDatabaseConnection connection)
 throws Exception{
 connection.close();
 }

Make Component Tests Repeatable 155

 protected abstract Properties getConnectionProperties();

 protected abstract String getDBUnitDataSetFileForSetUp();

 protected IDatabaseConnection getConnection() throws Exception {
 final Properties dbPrps = this.getConnectionProperties();
 DatabaseTestCase.
 assertNotNull("database properties were null", dbPrps);
 return DBUnitConfigurator.getDBUnitConnection(dbPrps);
 }

 protected DatabaseOperation getSetUpOperation() throws Exception {
 return DatabaseOperation.CLEAN_INSERT;
 }

 protected DatabaseOperation getTearDownOperation() throws Exception {
 return DatabaseOperation.NONE;
 }

 protected IDataSet getDataSet() throws Exception {
 final String fileName = this.getDBUnitDataSetFileForSetUp();
 DatabaseTestCase.assertNotNull("data set file was null", fileName);
 return DBUnitConfigurator.getDataSet(fileName);
 }
}

Once again, you may be left with the option of hard-coding con-
nection information or reusing existing files for this purpose. Testing a
Struts application that uses Hibernate? Not a problem—just combine
the new DefaultDBUnitMockStrutsTestCase with its handy utility
for reading Hibernate files.

For example, Listing 6-24 is a class that implements a Default-
MerlinMockStrutsTestCase class, which combines the DbUnit capa-
bility of DefaultDBUnitMockStrutsTestCase with the handy Hibernate
reader utility defined previously in Listing 6-20.

LISTING 6-24 The Combo Framework in Action

public class ProjectListActionTest
 extends DefaultMerlinMockStrutsTestCase {

 public void testProjectListAction() throws Exception{
 this.setRequestPathInfo("/viewProjects");
 this.actionPerform();
 this.verifyForward("success");

 IProject[] projects = (IProject[])this.getRequest().
 getAttribute("projects");
 assertNotNull("object was null", projects);
 }

156 Chapter 6 ❑ Continuous Testing

 public ProjectListActionTest(String name) {
 super(name);
 }

 protected String getDBUnitDataSetFileForSetUp() {
 return "dbunit-project-seed.xml";
 }
}

Now you have one excellent test case, making it difficult for anyone
to complain that they can’t test this application in a repeatable manner.

Limit Test Cases to One Assert

During the drive of development with tight schedules and impending
happy hours, it’s tempting to try and fit everything into a test case. This
haphazardness tends to lead to an abundance of assert methods ending
up in one test case. For example, the code in Listing 6-25 attempts to
verify the behavior of HierarchyBuilder’s buildHierarchy method
as well as the behavior of the Hierarchy object in one test case.

LISTING 6-25 A Test Case with Too Many Asserts

public void testBuildHierarchy() throws Exception{
 Hierarchy hier = HierarchyBuilder.buildHierarchy(
 "test.com.vanward.adana.hierarchy.HierarchyBuilderTest");
 assertEquals("should be 2", 2,
 hier.getHierarchyClassNames().length);
 assertEquals("should be junit.framework.TestCase",
 "junit.framework.TestCase",
 hier.getHierarchyClassNames()[0]);
 assertEquals("should be junit.framework.Assert",
 "junit.framework.Assert",
 hier.getHierarchyClassNames()[1]);
 }

Note that there are three assert methods in Listing 6-25. This is a
valid JUnit test case; there is nothing prohibiting the inclusion of mul-
tiple asserts in a test case. The problem with this practice, however, is
that JUnit is built to be fast-failing. If the first assert fails, the whole
test case is abandoned from the point of failure. This means that the
next two asserts aren’t run during that test run.

Limit Test Cases to One Assert 157

Once a code fix is completed and the test is rerun, the second
assert may fail, which causes a repeat of the whole fix-rerun test case
cycle. If when running the second try, the third assert fails, yet again,
the process repeats. Notice an inefficient pattern here?

A more effective practice is to try and limit one assert to each test
case. That way, rather than repeating the three-step process just
described any number of times, you can get all your failures without
intervention in one test run. For example, the code from Listing 6-25
would be refactored into three separate test cases (see Listing 6-26).

LISTING 6-26 Test Case Refactoring

public final void testBuildHierarchyStrSize() throws Exception{
 Hierarchy hier = HierarchyBuilder.buildHierarchy(
 "test.com.vanward.adana.hierarchy.HierarchyBuilderTest");
 assertEquals("should be 2", 2,
 hier.getHierarchyClassNames().length);
}

public final void testBuildHierarchyStrNameAgain() throws Exception{
 Hierarchy hier = HierarchyBuilder.buildHierarchy(
 "test.com.vanward.adana.hierarchy.HierarchyBuilderTest");
 assertEquals("should be junit.framework.TestCase",
 "junit.framework.TestCase",
 hier.getHierarchyClassNames()[0]);
}

public final void testBuildHierarchyStrName() throws Exception{
 Hierarchy hier = HierarchyBuilder.buildHierarchy(
 "test.com.vanward.adana.hierarchy.HierarchyBuilderTest");
 assertEquals("should be junit.framework.Assert",
 "junit.framework.Assert",
 hier.getHierarchyClassNames()[1]);
}

With three separate test cases, in the first test run, three failures are
reported. This way, you can limit yourself to one fix-rerun cycle. This
practice, of course, leads to a proliferation of test cases. This is why
we have the separate directory structure introduced at the beginning of
this chapter. And the number of test cases is growing at the rate of your
code, so you must be making progress!

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

158 Chapter 6 ❑ Continuous Testing

Summary
How reliable do you want your software to be? Source code is only as
reliable as the test coverage, and tests are only as valuable as their
execution frequency. By segregating tests into four automatable cate-
gories mapping to unit, component, system, and functional, a CI sys-
tem can be configured to execute tests in an efficient manner. Unit
tests can be run during checkins; component, system, and functional
tests on some regular interval—such as with a secondary build.

Table 6-1 summarizes the practices covered in this chapter.

TABLE 6-1 CI Practices Discussed in This Chapter

Practice Description

Automate unit tests Automate your unit tests, preferably with a unit test-
ing framework such as NUnit or JUnit. These unit
tests should have no external dependencies such as
a file system or database.

Automate compo-
nent tests

Automate your component tests with unit testing
frameworks such as JUnit, NUnit, DbUnit, and
NDbUnit if you are using a database. These tests
involve more objects and typically take much longer
to run than unit tests.

Automate system
tests

System tests are longer to run than component tests
and usually involve multiple components.

Automate functional
tests

Functional tests can be automated using tools like
Selenium (for Web applications) and Abbot for GUI
applications. Functional tests operate from a user’s
perspective and are typically the longest running
tests in your automated test suite.

Categorize devel-
oper tests

By categorizing your tests into distinct “buckets,” you
can run slower running tests (e.g., component) at dif-
ferent intervals than faster running tests (e.g., unit).

Run faster tests first Run your unit tests prior to running component, sys-
tem, and functional tests. You can achieve this by
categorizing your tests.

Write tests for
defects

Increase your code coverage by writing tests based
on new defects and ensuring that the defect does not
surface again.

Make component
tests repeatable

Use database testing frameworks to make certain
that the data is a “known state,” which helps make
component tests repeatable.

Questions 159

Questions
Use this list of questions to evaluate your test process in light of the CI
environment and what it can provide for you.

■ Are you categorizing your automated tests, such as unit tests, com-
ponent tests, system tests, and functional tests?

■ Are you configuring your CI system to run each test category with
different staged builds?

■ Are you writing automated unit tests for each defect?

■ How many asserts are in each of your test cases? Are you limiting
each test case to one assert?

■ Are these tests automatable? Has your project committed auto-
mated developer tests to the version control repository?

Practice Description
Limit test cases to
one assert

Spend less time tracking down the cause of a test
failure by limiting your automated tests to one asser-
tion per test.

This page intentionally left blank

161

Chapter 7

Continuous Inspection

That man is great who can use the brains
of others to carry out his work.

—DONN PIATT

Peer-based code reviews are generally considered beneficial to the
overall quality of a code base because they present opportunities for an
objective analysis by a second pair of eyes. For this same reason, XP’s
pair programming practice offers some of the same objective analysis
benefits. Static source code analysis tools like Java’s PMD and .NET’s
FxCop, which scan files for violations of predefined rules, offer some
of the same analysis benefits.

All three of these techniques for code analysis (code reviews, pair
programming, and static code analysis), however, are only marginally
useful unless rigorously applied—their analysis benefits fade over
time without proactive reinforcement. Moreover, code reviews and

Reduce Code
Complexity

Perform Design
Reviews

Continuously

Maintain
Organizational
Standards

with Code Audits

Reduce
Duplicate

Code

Assess Code
Coverage

162 Chapter 7 ❑ Continuous Inspection

pair programming are performed by humans, who are error prone and
have a limited capacity to quickly and successfully conduct endless,
repetitive tasks.

Code reviews, when conducted efficiently, such as through the
venerable Fagan inspection process,1 can be impressively effective;
however, they are run by humans, who tend to be emotional. This
means that colleagues may not be able to tell other colleagues when
their code stinks, and people collaborating in a work environment have
the tendency to subjectively review one another’s work. There is also a
time cost associated with code reviews, even in the most informal of
environments.

Pair programming has also been shown to be effective when
applied correctly. Having another pair of eyes constantly reviewing
code can yield higher quality code; however, organizations practicing
this innovative technique are in the minority. Pairs can also suffer the
same issues of emotion and subjectivity.

The difference between human-based inspection and that done
with a static analysis tool is twofold.

• These tools are incredibly cheap to run often. They only require
human intervention to configure and run once—after that, they
are automated and provide a savings as compared to a person’s
hourly rate.

• These tools harness the unflinching and unrelenting objective-
ness of a computer. A computer won’t offer compromises like
“Your code looks fine if you say mine looks fine,” and it won’t
ask for bio-breaks and personal time if you run an automated
inspection tool every time the version control repository
changes.

These tools are also customizable—organizations can choose the
most relevant rules for their code base and run these rules every time
code is checked into the version control repository. These tools
become, in essence, tireless watchers of source code, which is practi-
cally impossible to mimic with human activity.

1. For more information on the Fagan inspection process, see http://en.wikipedia.org/
wiki/Fagan_inspection.

http://en.wikipedia.org/wiki/Fagan_inspection
http://en.wikipedia.org/wiki/Fagan_inspection

Chapter 7 ❑ Continuous Inspection 163

These tools also work very well in geographically distributed
teams (i.e., some developers work from home, others at the office, and
others in another state, country, continent, etc.). It helps mitigate any
additional risks with people out of range for verbal collaboration.

Automated static code analysis scales more efficiently than
humans for large code bases; some tools offer hundreds of different
rules, which a human can’t possibly remember while reviewing a
series of files. Moreover, running a tool’s myriad rules against your
code base will take less time than having your partner review one
package. Having a human manage the review of all code is a costly
proposition!

Automating code inspections with analysis tools handles 80% of
the big picture and allows humans to intervene in the 20% that matters.
For instance, Java’s PMD will run 180+ rules against a file every time
it changes. If a particularly important rule is violated, such as a high
cyclomatic complexity2 value, someone can take a look. Can you
imagine trying to accomplish this targeting process manually? Why
would anyone want to? The key to remember with automated code
reviews is that they are not a replacement for manual ones—they are
merely an enhancement for applying human intelligence where it’s
most needed.

We are not advocating an “either/or” scenario in which you must
decide which review technique to use, automated or manual. Auto-
mated inspection tools augment in-person reviews, and they have
become necessary because code has become infinitely longer and
denser. The beauty with automating code inspections is that when you
do perform a manual review, the process is much more effective
because the low-level details of code have already been scanned. The
human reviews become more focused on aspects that automated tools
cannot process, such as whether the code meets the requirements and
if it will be easy to maintain in the long run.

Figure 7-1 demonstrates how inspection is another piece of the
one-command build necessary for running a CI system.

2. Cyclomatic complexity is the number of paths through a section of code such
as a method. It is discussed more later in this chapter.

164 Chapter 7 ❑ Continuous Inspection

What Is the Difference between Inspection
and Testing?

There are subtle differences between inspecting and testing software.
Testing is dynamic and executes the software in order to test the func-
tionality. Inspection analyzes the code based on a set of predefined
rules. Chapter 6 identified many types of testing, including unit, com-
ponent, and system tests, which are executed against running software.
Inspectors (or static and dynamic analysis tools) are directed by identi-
fied standards that teams should adhere to (usually coding or design
metrics). Examples of inspection targets include coding “grammar”
standards, architectural layering adherence, code duplication, and
many others that we discuss in this chapter. Testing and inspection are
similar concepts in the sense that both do not change the software

FIGURE 7-1 Integrate button—run inspections

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

How Often Should You Run Inspectors? 165

code; they only show where problems may reside. You do not achieve
higher quality software by inspecting and testing alone, of course; the
value isn’t manifested until you take action on the problems that are
reported by the tests and inspections.

How Often Should You Run Inspectors?

Continuous inspection reduces the time between a discovery and a fix.
You’ve also freed up more human time for actually devising the fix.
Software inspection helps determine areas of the system that require
greater attention. In reality, software development teams working man-
ually can only conduct reviews of small, targeted areas of the system at
a time. How do you determine which areas to examine, and how do
you find this time? Then, not if, but when you find defects, you need
the time after the review to correct the defects, and you must try to
remember the logic and assumptions in place at the time. After this,
the software components must be reviewed again.

On projects that perform manual reviews only, a problem may be
introduced in the code several months before it is actually discovered.
Time is lost, and the context of the problem may have been lost also.
However, if your process of writing code is immediately followed by
running automated inspectors (as well as tests, of course), you have
built a secure future where defects will likely be discovered and fixed
in a matter of minutes. Reducing the proximity between when a defect
is introduced and when it is fixed improves code quality; of course,
preventing defects from ever being introduced is even better, and
inspections make this more likely, too.

Find Defects before They Are Introduced
Reduce the time between discovery of a defect and the subse-
quent fix by using continuous inspection.

Many IDEs have built-in inspection features to assist with auto-
mated code formatting, unused variables, and poor language usage—

166 Chapter 7 ❑ Continuous Inspection

to name a few. Using an IDE to run automated inspections locally is
highly encouraged, but these inspections should also be run with an
automated build and CI to prevent false positives and to ensure a
repeatable and consistent approach.

Code Metrics: A History

Decades ago, a few smart people began studying code to see if there
were measurements one could take that correlate to defects. This was
an interesting proposition—by studying patterns in buggy code, the
hope was that formal models could be created and used to detect prob-
lems before they became defects. When applied well, this has provided
useful knowledge for code improvement.

Then some other smart people also decided to see if, by using
code, they could measure developer productivity. On the surface, it
seemed fair enough: “David produces more code than Bill; therefore,
David is more productive and worth every penny we pay him. Plus, I
noticed Bill hangs out at the water cooler a lot. I think we should fire
Bill.” It became evident, however, that this metric could become
abused. Some lines of code measurements included the counting of
comments; furthermore, this metric actually favors copy-and-paste
style development. Later they said, “David wrote a lot of defects!
Every other defect we find is assigned to him. It’s too bad we fired
Bill—his code is practically defect-free.”

The classic metric of lines of code per developer as a means to
indicate value was a spectacular disappointment.3 Many managers may
have been surprised, but most developers were not. Thankfully, that
phase eventually led to a rebound phase where people came to view
complexity as delivering less value, not the other way around.

3. From www.martinfowler.com/bliki/CannotMeasureProductivity.html.

www.martinfowler.com/bliki/CannotMeasureProductivity.html

Reduce Code Complexity 167

Reduce Code Complexity

Have you ever noticed that long methods are sometimes hard to fol-
low? Ever had trouble understanding the logic in an excessive, deeply
nested conditional? Your instincts are correct. Long methods and
methods with a high number of paths are hard to understand, and in
fact they actually have been shown to be directly proportionate with
defects.

A number of studies over time have shown a correlation between
the number of paths through code and defects. One metric that arose
from these studies is called the Cyclomatic Complexity Number
(CCN). The CCN is a plain integer that measures complexity by count-
ing the number of distinct paths through a method. Various studies
with this metric over the years have determined that methods with a
CCN greater than 10 have a higher risk of defects than other code of
the same bulk.4

In Java, JavaNCSS5 is an excellent tool that determines the lengths
of methods and classes by examining source files, and it also counts
the cyclomatic complexity of every method in a code base. By config-
uring JavaNCSS either through its Ant task or via a Maven plug-in, an
XML report is generated, which lists these data:

• The number of classes, methods, noncommenting lines of code,
and varying comment styles in each package

• The number of noncommenting lines of code, methods, inner
classes, and Javadoc comments in each class

• The total number of noncommenting lines of code and the cyclo-
matic complexity

JavaNCSS ships with a few style sheets that can generate an
HTML report summarizing the data. Figure 7-2 shows a sample
HTML report generated by Maven.

4. From www.sei.cmu.edu/str/descriptions/cyclomatic_body.html.

5. JavaNCSS is available at www.kclee.de/clemens/java/javancss/. CCMetrics
and Source Monitor provide CCN measurements for .NET.

www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
www.kclee.de/clemens/java/javancss/

168 Chapter 7 ❑ Continuous Inspection

This report section, labeled “Top 30 functions containing the most
NCSS (Noncommenting Source Statements),” details the largest meth-
ods in the code base, which usually correlate to high cyclomatic com-
plexity. For instance, the report lists the class BeerDaoImpl’s
findAllStates method as having 238 lines of code and a cyclomatic
complexity (labeled as CCN) of 114.

You may be wondering, “So what does that mean?”
Because high cyclomatic complexity values tend to correlate with

defects, our next course of action is to verify the existence of any cor-
responding tests. If there are tests, how many are there? A rule of
thumb for test coverage related to cyclomatic complexity is to have
test cases equal in number to the cyclomatic complexity value (i.e., in
the example of the findAllStates method, 114 test cases would be
required). It would be unlikely to actually have 114 test cases for this
method, but having a few is a great start in reducing the risk of defects
in this method.

FIGURE 7-2 CCN report generated with Maven

Reduce Code Complexity 169

If there aren’t any associated test cases, this method is wildly at
risk and you should write some tests immediately. Some may think it’s
time to refactor; however, that would break the first rule of refactoring:
Write a test case before you change anything.6 Once test cases are in
place, you can begin to lower your risk by refactoring. The most effec-
tive way to reduce cyclomatic complexity is to apply the extract
method technique7 and distribute the complexity into smaller, more
manageable, and therefore more testable, methods. Of course, then the
next step after creating each smaller method is to write inspectors and
tests for it.

In a CI environment, evaluating a method’s complexity over time
becomes possible. The first time you run the inspection report, this
method’s complexity value can be monitored in subsequent inspec-
tions for any growth (or decline). If you see growth, you can then take
appropriate action.

If a method’s CCN value keeps growing, teams can

• Ensure a healthy number of related tests are present to reduce
risk

• Evaluate the possibility of refactoring the method to reduce any
long-term maintenance issues

Because JavaNCSS also reports on documentation trends, these
values can be monitored for organizational standards. The tool reports
single-line comments and multiline comments that occur in addition to
Javadocs. In some software circles, the mere presence of a high count
of inline code comments is an indication of complexity.

JavaNCSS isn’t the only tool that can facilitate complexity reporting
in the Java platform. PMD, another open source project that analyzes
Java source files, has a series of rules that report on complexity, includ-
ing cyclomatic complexity, long classes, and long methods. Check-
style is another open source project with similar rules. Both PMD and
Checkstyle have Ant tasks and Maven plug-ins like JavaNCSS.

6. See the section entitled The Value of Self-testing Code in Chapter 4 of Martin
Fowler’s book, Refactoring.
7. See www.refactoring.com/catalog/extractMethod.html.

www.refactoring.com/catalog/extractMethod.html

170 Chapter 7 ❑ Continuous Inspection

Complexity has been shown to correlate with defects. Use your
inspections to monitor a code base’s complexity values, and take action
to monitor trends or lower defect risks with test cases and refactoring.

Perform Design Reviews Continuously

There are other useful metrics that blossomed in the latter part of the
twentieth century. Have you ever noticed that objects that have a lot of
dependencies on other objects become somewhat brittle? If one of
their dependencies changes, the object itself may break. From the
other direction, when you change an object that every other object in a
system depends on, it creates issues elsewhere. (This tendency is com-
monly referred to as the “collateral damage” effect.) It is important to
be poised for unanticipated change (the one constant), and you don’t
want dependencies holding you back from creating changes that you
wish to make.

Two metrics most helpful in determining over-coupling are known
as Afferent Coupling and Efferent Coupling (sometimes called Fan
In and Fan Out, respectively). These simple integer metrics count the
relationships to or from objects. Both Afferent and Efferent Coupling
signify an architectural maintenance issue: Either an object has
responsibility to too many other objects (highly afferent) or the object
isn’t sufficiently independent of other objects (highly efferent).

These dependency metrics can be extremely helpful in determin-
ing the risk in maintaining a code base. Objects or namespaces/pack-
ages with too much responsibility present a risk when those objects
need to be changed. If their behavior changes somehow, other objects
in the software system may stop functioning as intended. Objects that
are highly dependent on other objects present brittleness in the face of
change—they too may stop functioning as intended if one of their
imported objects changes, even in subtle ways.

What’s more, both Afferent and Efferent Coupling can be com-
bined to form an Instability value. For example, the following equa-
tion can represent an object’s (or namespace’s/package’s) level of
instability in the face of change. Note that a value of one is instable,
while a value of zero is stable.

Perform Design Reviews Continuously 171

Instability = Efferent Coupling / (Efferent Coupling +
Afferent Coupling)

NDepend for the .NET platform is an open source project that
reports Efferent Coupling, Afferent Coupling, Instability, and a num-
ber of other interesting architectural metrics. These metrics are
reported by assembly and by class. The tool is easily executed via
NAnt and produces reports in both XML and HTML formats. The
HTML report in Figure 7-3, for example, displays metrics for a .NET
assembly, which in this case is the NUnit framework.

Note how the nunit.framework assembly has an Afferent Cou-
pling of 204 and an Efferent Coupling of 43. This is the core code of
the NUnit framework, which means this code can’t change easily.
Hence, the Instability value for this assembly is 0.17—because so
many other objects depend on this core code, there is little chance that
this code can change without something breaking quickly. For another
assembly containing tests, nunit.mocks.tests, NDepend reported an

FIGURE 7-3 NDepend report

172 Chapter 7 ❑ Continuous Inspection

Efferent Coupling value of 26 and an Afferent Coupling value of 0;
therefore, the value is 1, or unstable. This makes sense—any time code
changes, tests usually break (and if they don’t, there could be issues
with those tests).

Understanding these metrics for your code base can have dramatic
effects on maintainability. For instance, assemblies with high Afferent
Coupling should have a high degree of associated tests because, of
course, with so much code dependent on that assembly, you want to
guarantee it is reliable. Also, evaluating the long-term implications of
Afferent Coupling could drive teams to decide to break assemblies into
smaller, more flexible chunks of code.

Whereas high Afferent values belong to objects that do the break-
ing, assemblies with a high Efferent Coupling are subject to breakage.
Again, having a healthy amount of code coverage for these assemblies
will help teams spot troubles quickly. In a CI environment, monitoring
these values over time can enable development teams to intervene
sooner, before things get out of control. If you notice strong growth
trends in coupling, teams can do any one or all of the following:

• Create tests right away based on the risks you have identified.

• Evaluate the long-term implications of any brittleness associated
with that high coupling value.

• After running your tests, consider some refactoring to enable
smoother changes in the future.

Much like NDepend for .NET, JDepend is an open source project
for the Java platform that reports coupling metrics by package. JDepend
can be run with Ant or Maven, and it produces reports in XML and
HTML formats.

Architectural coupling metrics can effectively spot long-term
maintenance issues for a code base by quantifying your assembly/
package or object couplings. These metrics can provide insights into
any associated risks in the face of change. What’s more, monitoring
these metrics on a regular basis in a CI environment effectively brings
these risks to light before they become maintenance nightmares.

Maintain Organizational Standards with Code Audits 173

Maintain Organizational Standards with
Code Audits

Coding standards facilitate a common understanding of a code base
among a diverse group of developers. Just like the car maintenance
market has been largely standardized so that you can buy a new head-
light from your manufacturer or any number of third-party vendors, so
too can a code base’s “structure” become standardized, which permits
various individuals to quickly assess behavior and modify it as needed.
This makes your response in development faster, and keeps you from
being dependent on one certain developer or team to make changes.

As mentioned earlier, while both human code reviews and pair
programming can be effective in monitoring coding standards, they do
not scale as well as automated tools. Not only do tools contain hun-
dreds of rules (that are usually customizable), they can be run fre-
quently and usually without intervention.

In a CI environment, a code analysis tool can be run any time a
change is made to the project’s repository. The tool can analyze an
individual file when it is changed, or analyze the entire code base
when structural or other system changes are made. What’s more, due
to the nature of CI, interested parties can be instantly notified of viola-
tions in architecture or coding. For instance, a popular code analysis
tool for the Java platform PMD has more than 180 customizable rules
in categories ranging from braces placement in conditionals to naming
conventions, design conventions (like simplifying conditionals, etc.),
and even unused code. In Java, if a conditional only has one statement
following it, braces are optional. The code in Listing 7-1, for example,
is completely legal in Java. Some organizations, however, find this
code dangerous because later someone may forget to add braces when
adding additional statements.

LISTING 7-1 Simple Conditional without Braces

if(status)
 commit();

The code in Listing 7-2 is completely legal; however, there is a
subtle defect that could ensnare an unsuspecting developer who may

174 Chapter 7 ❑ Continuous Inspection

think that a commit only occurs if status is true. Hint: The commit
occurs no matter what. PMD, with its handy rule set, will find code
that has the potential to cause these errors and signify them in a report.

LISTING 7-2 Simple Conditional with a Logical Defect

if(status)
 log.debug("committing db");
 commit();

Naming conventions are usually the first coding aspects defined by
teams, since nondescriptive, terse variable names and methods can be
somewhat difficult to comprehend (especially if the original author no
longer works for the company). For example, the method shown in
Listing 7-3 could use a better name, and the variables s and t are not
very helpful in the larger context (you can figure out their type by
examining the top of the method; however, if they were named more
descriptively someone wouldn’t be required to look back at the top of
the method).

LISTING 7-3 A Poorly Named Method with Nondescriptive Variables

public void cw(IWord wrd) throws CreateException {
 Session s = null;
 Transaction t = null;
 try{
 s = WordDAOImpl.sessFactory.getHibernateSession();
 t = s.beginTransaction();
 s.saveOrUpdateCopy(wrd);

 t.commit();
 s.flush();
 s.close();
 }catch(Throwable thr){
 thr.printStackTrace();
 try{s.close();}catch(Exception e){}
 try{t.rollback();}catch(Exception e){}
 throw new CreateException(thr.getMessage());
 }
}

Once again, PMD comes to the rescue. Running PMD against this
code would report rule violations for both the method name and those

Maintain Organizational Standards with Code Audits 175

one-character variable names. By default, PMD’s scanning lengths are
set to 3; however, teams can modify these values for longer names if
desired.

PMD can also facilitate the simplification of code. For example,
the method shown in Listing 7-4, while syntactically correct, is rather
verbose.

LISTING 7-4 Completely Legal Code, but Rather Verbose

public boolean validateAddress(){
 if(this.getToAddress() != null){
 return true;
 }else{
 return false;
 }
}

Once this method is flagged by PMD, it can be made more
straightforward, as shown in Listing 7-5.

LISTING 7-5 A Simplified Method, Thanks to PMD

public boolean validateAddress(){
 return (this.getToAddress() != null);
}

PMD can be run via Ant or Maven and, like most every other
inspection tool on the market, PMD produces an XML report that can
be transformed into HTML. For example, the report in Figure 7-4 dis-
plays the violations for a series of .java files in a code base.

As mentioned earlier, PMD can also report complexity metrics like
cyclomatic complexity, long methods, and long classes. Checkstyle is
another open source tool available to Java developers, and it has exten-
sive documentation and Ant and Maven runners capable of producing
HTML reports. FxCop is a similar tool for the .NET platform with
myriad rules and reporting capabilities. PyLint is available for Python.

By continuously monitoring and auditing code, your team can stay
on track with architectural and coding guidelines. Issues are identified
early and often, thus avoiding any long-term maintenance issues.

176 Chapter 7 ❑ Continuous Inspection

Reduce Duplicate Code

Too often developers opt to copy and paste code rather than determin-
ing better ways to generalize, reuse, or abstract behavior. This problem
of code duplication has existed since the first programs were written;
moreover, researchers and developers alike have been working to elim-
inate the need to duplicate code for many years. Improvements to pro-
gramming constructs—such as the introduction of procedural
programming, object-oriented programming, and more recently,
aspect-oriented programming—have all helped to reduce the need to
duplicate code. However, the urge to copy and paste will always
exist—and often, the problem is that the developer just doesn’t realize
he’s doing it.

Copied-and-pasted code can occur in all areas of the system in one
form or another, including

• Database logic, including stored procedures and views—for
example, SQL

• Compiled source code—for example, Java, C, C++, and C#

FIGURE 7-4 PMD report

Reduce Duplicate Code 177

• Interpreted source code—for example, ASP, JSP, JavaScript, and
Ruby

• Build scripts—for example, make and Ant build files

• Data and configuration files—for example, ASCII, XML, XSD,
and DTD

Michael Toomim, Andrew Begel, and Susan L. Graham8 noted that
“recent studies estimate that the Linux kernel (as of 2002) is 15%–
25% duplicated,”9 and “the Sun Java JDK is 21%–29% duplicated.”10

Code duplication is a real-life problem, even for popular software
packages used throughout the industry.11

Duplicated code causes these problems:

• Increased maintenance costs due to discovering, reporting, ana-
lyzing, and fixing bugs multiple times

• Uncertainty about the existence of other bugs (duplicate code
that hasn’t been found yet)

• Increased testing costs for the additional code written

Using PMD-CPD
Several tools are available for finding duplicate code. PMD offers a
Copy/Paste Detector (CPD) for C/C++, Java, PHP, and Ruby. The tool
works fairly well, is simple to set up and use, and can generate output
to XML, CSV, or text (ASCII). Listing 7-6 demonstrates using the
CPD task with Ant.

8. See “Managing Duplicated Code with Linked Editing,” at http://harmo-
nia.cs.berkeley.edu/papers/toomim-linked-editing.pdf.

9. As referenced in the article “Analyzing cloning evolution in the Linux kernel,”
by G. Antoniol, M. D. Penta, E. Merlo, and U. Villano, in the Journal of Informa-
tion and Software Technology 44(13):755–765, 2002.

10. As referenced in “CCFinder: A multilinguistic token-based code clone detec-
tion system for large scale source code,” by T. Kamiya, S. Kusumoto, and K. Inoue,
in IEEE Transactions on Software Engineering, 28(6):654–670, 2002.

11. See “Managing Duplicated Code with Linked Editing,” at http://harmo-
nia.cs.berkeley.edu/papers/toomim-linked-editing.pdf.

http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf
http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf
http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf
http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf

178 Chapter 7 ❑ Continuous Inspection

LISTING 7-6 Using CPD Ant Task

1 <property name="reports.pmd.dir"
 value="${reports.dir}/pmd-reports" />
2 <property name="reports.cpd.dir" value="${reports.pmd.dir}" />
3 <property name="cpd.output.type" value="text"
 description="csv,xml,text"/>
4 <property name="cpd.output.filename"
 value="cpd-results.${cpd.output.type}" />
5 <property name="cpd.output.dir" value="${build.dir}" />
6 <property name="cpd.outputfile"
 value="${cpd.output.dir}/${cpd.output.filename}" />
7 <target name="run-cpd">
8 <taskdef name="cpd"
 classname="net.sourceforge.pmd.cpd.CPDTask"

classpathref="pmd.classpath" />
9 <cpd minimumTokenCount="20"
 outputFile="${cpd.outputfile}"
 format="${cpd.output.type}"

ignoreLiterals="true"
ignoreIdentifiers="true">

10 <fileset dir="${src.dir}">
11 <patternset refid="non.test.sources.pattern" />
12 </fileset>
13 </cpd>
14 </target>

• Line 2—Assigns the CPD report directory to the same directory
where PMD reports are placed.

• Line 3—In this example, a text report is created. You can also
create a comma-separated report or an XML report.

• Line 9—Invokes the CPD task. The attribute minimumTokenCount
is used to determine how many tokens must match to be consid-
ered duplicated code. The ignoreLiterals="true" causes
CPD to ignore string literals when evaluating a duplicate block.
Likewise, the ignoreIdentifiers="true" does the same, but
for identifiers (variables, methods).

• Lines 10–11—Specify the source code to check for duplication.

Using Simian
Another tool used to seek out copied-and-pasted code is Simian. Sim-
ian works with .NET 1.1 and later, and Java 1.4 and later. Listing 7-7
demonstrates how to use Simian in Ant.

Reduce Duplicate Code 179

LISTING 7-7 Using Simian in an Ant Task

1 <property name="reports.simian.dir"
 value="${reports.dir}/simian-reports"/>
2 <property name="simian.output.filename" value="simian-results.xml"/>
3 <property name="simian.output.dir" value="${build.dir}"/>
4 <property name="simian.outputfile"
 value="${simian.output.dir}/${simian.output.filename}"/>
5 <path id="simian.classpath">
6 <pathelement location="${lib.dir}/simian-2.2.17.jar"/>
7 </path
8 <target name="run-simian">
9 <delete dir="${reports.simian.dir}" quiet="true"/>
10 <mkdir dir="${reports.simian.dir}"/>
11 <taskdef resource="simiantask.properties"
 classpathref="simian.classpath"/>
12 <simian threshold="4" language="java">
13 <fileset dir="${src.dir}" >
14 <include name="**/*.java"/>
15 <exclude name="**/*Test*"/>
16 </fileset>
17 <formatter type="xml" toFile="${simian.outputfile}"/>
18 </simian>
19 </target>

• Line 1—Defines a property for the location of the Simian dupli-
cation report.

• Lines 2–4—Define a simian.outputfile property. The XML
output file will be placed in the build directory.

• Lines 5–7—Create a Simian class path to load the Simian Ant
task.

• Lines 9–10—Clean up any previous reports and prepare for a
new duplication report.

• Line 11—Loads the Simian Ant task.

• Line 12—Invokes the Simian Ant task, with the duplication lan-
guage to check set to java. The threshold attribute sets the
minimum number of lines to be considered a match.

• Lines 13–16—Include the project source code; exclude any test
code.

Simian comes with an XSLT style sheet to enable transformation
of an XML report into HTML (see Listing 7-8).

180 Chapter 7 ❑ Continuous Inspection

LISTING 7-8 Generating a Simian HTML Report

1 <available property="simian.outputfile.present"
 file="${simian.outputfile}"/>
2 <target name="simian-report" if="simian.outputfile.present">
3 <xslt

in="${simian.outputfile}"
 out="${reports.simian.dir}/Simian-Report.html"
 style="${config.dir}/simian/simian.xsl"/>
4 </target>

• Line 1—Checks for the existence of the Simian output file
(XML) and sets the simian.outputfile.present property if
the file exists.

• Line 2—Executes the simian-report target if the sim-
ian.outputfile.present has been set.

• Line 3—Generates the Simian report using the XSLT style sheet
provided with the Simian distribution.

Figure 7-5 is a sample report that Ant and Simian generated for the
code in Listing 7-7. Notice that the code in this example has 4.27%
duplication, given the line threshold of 4.

Assess Code Coverage

There are different types of coverage measurements, but most tools
focus on line coverage (also known as statement coverage). Line
coverage simply indicates that a particular line of code was exercised.
You obtain a test coverage measurement by exercising a code base
with a test harness and capturing data that corresponds to code having
been “touched” throughout the lifetime of the test process. The data is
then synthesized to produce a coverage report. In Java shops, the test
harness is commonly JUnit and the coverage tool is usually something
like Cobertura, EMMA, or Clover. With .NET, NUnit may be the test-
ing framework, and NCover and Clover.NET are commonly used as
code coverage tools.

For example, if a method is ten lines long and seven lines of the
method were exercised in a test run, then the method has a line cover-
age of 70%. The process works at the aggregate level as well: If a class

Assess Code Coverage 181

has 100 lines and 65 of them were touched, then the class has a line
coverage of 65%. Likewise, if a code base comprises 10,000 noncom-
menting lines of code and 3,000 of them were exercised on a particular
test run, then the code base’s line coverage is 30%.

Some tools also offer reporting for branch coverage (sometimes
referred to as path coverage). These tools attempt to measure the cov-
erage of decision points, such as conditional blocks like if and else.
As with line coverage reporting, if there are two branches in a particu-
lar method and both were covered through tests, then you could say the
method has 100% branch coverage.

For example, in Maven environments, running EMMA requires
two steps. First, you download the plug-in and place it into Maven’s
plug-ins directory. Second, you run the emma goal, which automatically
compiles both the source code and the test code. EMMA then instruments
the source code and runs the test code directly via the test:test goal.
EMMA generates an HTML report like the one shown in Figure 7-6.

FIGURE 7-5 Report showing the code duplication report generated by Simian and Ant

182 Chapter 7 ❑ Continuous Inspection

Evaluate Code Quality Continuously

Now to the important part: How do we apply these measurements?
You should use test coverage tools as part of a testing process in a CI
environment, but don’t overestimate what they can tell you. Remember
that coverage reports are best used to expose code that hasn’t been ade-
quately tested. When you examine a coverage report, seek out the low
values and ask why that particular code hasn’t been tested fully.

QA can also use this information to fine-tune their functional test-
ing. Knowing that certain sections of a code base are lacking in test
coverage, QA can receive portions of an application in advance and
focus their efforts in suspect areas.

 Knowing this, development and QA teams can use test coverage
tools in a CI environment to target manual functional testing.

Developer testing decreases the risk of defects in code; therefore,
some development teams now require that unit tests be written along-
side newly developed or modified code. CI helps ensure that this goal

FIGURE 7-6 EMMA coverage report for CruiseControl

Evaluate Code Quality Continuously 183

is met consistently throughout development, because these tests are
run with every change.

Monitoring coverage reports helps development teams quickly
spot code that is growing without corresponding tests. For example,
running a coverage report in the beginning of the week shows that a key
package in the project has a coverage rate of 70%. If later in the week
that package’s coverage has changed to 60%, you can infer that both

• The package grew in terms of lines of code, but no correspond-
ing tests were written for the new code (or that newly added tests
do not effectively cover the new code)

• And test cases were removed

Viewing the report regularly makes it easier to set goals and moni-
tor progress, such as obtaining a certain coverage rate and maintaining
ratios of test cases to lines of code. If you notice that tests routinely are
not being written, you can take action by sending developers for train-
ing, mentoring, or pair programming.

The benefit of this is seeing trends in front of you. People can drift
away from quality principles when deadlines are tight and the work is
intense. Informed, proactive response to indicators is much better than
pointing fingers later, when the customer discovers that “once in a life-
time” defect (which could have been exposed with a simple test
months earlier), or the inevitable surprise (and anger) when manage-
ment finds out some unit testing was overlooked.

Coverage Frequency
Because most code coverage tools instrument a code base with addi-
tional behavior for reporting purposes (i.e., the code has “listeners”
that report when they’ve been executed), tests run slower than they do
in noncoverage scenarios. This can have negative effects in a CI envi-
ronment if the coverage process isn’t well thought out. It may be most
appropriate to run code coverage tools as part of a secondary, more
heavyweight build.

If there are strategies for running tests at different stages (which
map to test categorization), it makes sense, then, to create an additional
strategy for the coverage process to run once a day as part of each

184 Chapter 7 ❑ Continuous Inspection

categorical test run. For example, every time the repository changes,
the unit tests are run. Using a secondary build or in regular intervals
throughout the day, component tests are executed, and most likely
once a day (usually during the evening) system tests are run. After the
system test process is run, another series of tests can be run where cov-
erage is turned on (i.e., unit tests run, then component tests, and then
system tests). This process creates a series of reports the team can view
the following morning.

Keep in mind that the three different reports have different per-
spectives, so be aware that uncovered code in one report may show
high coverage in a different report. For example, the class Foo may
have 0% coverage in the unit test report but may show high coverage
in the system test report. Also, because the three coverage reports will
be run, you must configure the build process to not overwrite, say, the
unit coverage report that just got written with the component report
that’s coming next. Remember to do a move or to write each report to a
unique location. Some tools, like Java’s Cobertura, have a merge capa-
bility that lets you feed each into one master report.

In Listing 7-9, an Ant target is defined that merges the Cobertura
coverage reports from three different test runs.

LISTING 7-9 The Cobertura merge Task in Action

 <target name="merge-coverage" depends="all-coverage-run">
 <cobertura-merge datafile="${cobertura.all.ser}">
 <fileset dir="${base.dir}">
 <include name="${cobertura.comp.ser}" />
 <include name="${cobertura.unit.ser}" />
 <include name="${cobertura.sys.ser}" />
 </fileset>
 </cobertura-merge>

 <mkdir dir="${cov.report.dir}"/>
 <cobertura-report format="html"
 datafile="${base.dir}/${cobertura.all.ser}"
 destdir="${cov.report.dir}" srcdir="${src.dir}" />
</target>

Coverage and Performance
Here’s an important point to remember, especially if you are running
these processes at night: Consider whether these tests run at the same

Summary 185

time as performance tests. This isn’t very effective. Because the cover-
age process affects the test performance, we highly recommend you
not run performance, stress, or load tests at the same time.

Listing 7-10 shows the JUnit task’s batchtest element for run-
ning a series of component tests with coverage turned on. Note how a
few tests (corresponding to load, stress, and performance categories)
get excluded from the run. Much like you devise strategies for catego-
rizing tests and their frequencies, think through your coverage report
frequencies to obtain all of the benefits without any additional head-
aches from stressing out your computing resources.

LISTING 7-10 batchtest Element with Coverage Turned On, Excluding
Tests

<batchtest todir="${testreportdir}">
 <fileset dir="test/component">
 <include name="**/*Test.*" />
 <exclude name="**/*StressTest.java" />
 <exclude name="**/BatchDepXMLReportPerfTest.java" />
 <exclude name="**/BatchDepXMLReportLoadTest.java"/>
 </fileset>
 </batchtest>

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
In this chapter, you learned how to harness the power of CI—once
again—by automating software inspections. No matter how mundane
the anomaly, an inspection tool will consistently throw up flags on sus-
pect code that more than likely will lead to bigger technical risks. Code
inspections and reviews have proven to be an effective mechanism for
discovering defects; however, by continuously performing this inspec-
tion process any time a change occurs (using CI), the time between
the discovery and fix is consistently reduced.

As with testing, inspection can provide quantitative metrics of suc-
cess to developers, management, the customer, and potential custom-
ers. Teams can quantify qualitative measurements by running
inspectors on code to ensure quality thresholds are met, thus demon-
strating the software’s future performance in the user’s environment.

186 Chapter 7 ❑ Continuous Inspection

Automated inspectors alone will not detect all problems, but by
automating reviews and reporting before face-to-face code reviews,
teams can concentrate on more interesting and complex analyses of
code. Using automated software inspection tools puts the equivalent
of many more eyes on the code. In performing continuous inspections,
teams can see real benefits and timesavings. The inspection reports
bring most routine violations to light, enabling more intelligent, speedy
code reviews, improved decision-making capacity, and the best possi-
ble confidence as to the true health of a software system. Chapter 9
examines how you can utilize feedback from these inspectors to facili-
tate communication and rapid action.

Table 7-1 summarizes the practices covered in this chapter.

Questions
The following questions will help you devise your own continuous
inspection process.

TABLE 7-1 CI Practices Discussed in This Chapter

Practice Description

Reduce code
complexity

Reduce cyclomatic complexity in your code base by
leveraging automated inspectors such as JavaNCSS
or CCMetrics to identify areas of your code with
higher complexity. Run these inspectors from your
automated build.

Perform design
reviews continuously

Incorporate tools that can help determine packages/
assemblies that are highly dependent on other pack-
ages and may lead to brittle architecture.

Maintain organiza-
tional standards with
code audits

Run tools such as PMD or FxCop that report on cod-
ing standards violations from your automated build.

Reduce duplicate
code

Reduce the amount of duplicate code in a code base
by running tools such as Simian or CPD that pin-
point areas of higher code duplication based on
custom thresholds. Use this information in targeted
refactorings.

Assess code
coverage

Leverage tools such as NCover, Cobertura, or
Clover to identify line and branch coverage test code
percentages. Use this information in determining
areas that can use more tests.

Questions 187

■ Do you perform unit testing sporadically, periodically, or continu-
ously? How often do you run your full unit, component, and system
test coverage review?

■ Are you monitoring code complexity?

■ Are you continuously performing automated design reviews with
tools like JDepend and NDepend?

■ Are you automating code audits with tools like PMD, Checkstyle, or
FxCop?

■ Are you monitoring code duplication?

■ Are you able to assess code coverage? How are you reacting to the
data?

■ Do you know what percentage of your code has a corresponding
test?

■ Is your build properly configured to produce coverage reports?

This page intentionally left blank

189

Chapter 8

Continuous Deployment

If you want a thing done well, do it yourself.

—ENGLISH PROVERB

If you are paid to write software, the organization that is paying you
most likely expects you to provide working software to end users after
a time span that is predictable and realistic. Therefore, it stands to reason
that our industry would have figured out a rock-solid way to deliver
high-quality, working software to end users on an expected schedule.
But still we hear the stories of the “nightmare release” that went hay-
wire, everyone was in a state of panic, lost sleep, got more gray hairs—
and still may not have resulted with the end user getting a new release.

Creating working software efficiently is the reason for a profes-
sional software developer’s existence. Without a successful deployment,
the software doesn’t even really exist. In today’s world we create and
release software much more frequently, so we have to get that process

Release Working
Software
Any Time,
Any Place

Label a
Repository’s
Assets

Produce a
Clean

Environment

Label Each
Build

Run All Tests
Create Build
Feedback
Reports

Possess
Capability to
Roll Back
Release

190 Chapter 8 ❑ Continuous Deployment

just as right as we get the development process. Continuous Integra-
tion then needs Continuous Deployment, a culmination of practices
and steps which enable us to release working software any time, any
place, with as little effort as possible.

This doesn’t mean the process is easy, for though some of us have
gotten it right, many of us haven’t. Amazon, Google, and eBay are
prime examples of organizations that release working software
quickly. In fact, Tim O’Reilly reported that the lead developer of
Flickr, the photo sharing Web site, indicated that, on a good day, they
were releasing software every 30 minutes or so.1

As shown in Figure 8-1, deploying software is the last process
accomplished by the one-command Integrate button.

1. See “What Is Web 2.0: Design Patterns and Business Models for the Next Gen-
eration of Software,” at www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html.

FIGURE 8-1 Integrate button—deploy software

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Label a Repository’s Assets 191

Release Working Software Any Time,
Any Place

Automated builds and repeatable builds. Automated tests and repeatable
tests. Test categories and test frequencies. Continuous inspections.
Continuous database integration. This string of tasks in creating an
effective CI environment primarily enables one key benefit: releasing
working software at any point in time, in any environment. As we said,
if you can’t release your software, then it’s almost as if it doesn’t exist.

What makes up a typical deployment? Regardless of platform,
technology, or domain, deploying working software principally
embodies six high-level steps.

1. Label a repository’s assets.

2. Produce a clean environment, free of assumptions.

3. Generate and label a build directly from the repository and
install it on the target machine.

4. Successfully run tests at all levels in a clone of the production
environment.

5. Create build feedback reports.

6. If necessary, you can roll back the release by using labels in
your version control repository.

Once your CI environment is established, these sometimes painful
steps can become as easy as pushing the Integrate button. You still need
to keep track of which of the delivered features were supposed to be
delivered based on customer expectations (bill of materials), but you
know that what is in there all works and constitutes working software.

The single command should be as simple as typing ant deploy.

Label a Repository’s Assets

Creating a repository label facilitates the identification and tracking of
assets, as it clearly delineates a group of files as belonging together.
What’s more, labels enable historical tracking of a group of files—and

192 Chapter 8 ❑ Continuous Deployment

not just individual files, which may be on different versions at any
given point.

For example, consider the files Foo.cs and Bar.cs in a repository,
each on a different release version of your software (4.5 and 8.3,
respectively). Both are related as one package, however, when they are
grouped as a part of a repository label. As shown in Figure 8-2, 3_78
labels both Foo.cs (version 4.5) and Bar.cs (version 8.3) as belonging
together.

Labeling repository versions is paramount in a disciplined soft-
ware process, as it enables a smooth transition to newer versions of
code by creating snapshots in time. These snapshots serve as a base for
reporting—and in worst-case scenarios, rollbacks. These labels also
allow parallel branches within a version control system, creating the
capability to handle multiple development lines. The following dem-
onstrates tagging a build for a particular release:

cvs -d:pserver:uname:passwd@cvs.ib.com:/cvsrepo rtag release_9 website

For example, having parallel branches with labels facilitates “bug
fix” releases. If customers are using an application that was built off
label 3_78 and the development team is working on a mainline (or
trunk, the very latest version of any file in the CM system) of the
repository, producing a point release from the trunk with bug fixes is
risky, because there could be new features in this newer code or, even
worse, new undiscovered defects. But by working off the 3_78 label,
developers can add the required fixes and produce a stable build that
doesn’t necessarily contain new features that exist on the trunk.

Once a release has been labeled, generating that same release
becomes quite simple. For example, via Ant, you can check out a
labeled group of assets from CVS by specifying the label identifier
(see Listing 8-1).

LISTING 8-1 Checking Out a Labeled Version from CVS

<cvs
cvsRoot=":pserver:${cvs.usern}:${cvs.passw}@${cvs.server.hostname}:
${cvs.server.path}" package="${cvs.module}" tag="${cvs.tag.id}"
dest="${cvs.module.dest}" command="checkout" />

Label a R
epository’s A

ssets
193

FIGURE 8-2 Foo.cs and Bar.cs in the same repository

Release
4

Foo.cs
4.5Release

4_1

Label
3_78

Release
8

Release
8.1

Feature
A

Feature
B

Release
8 Fixes

Release
4 Fixes

Feature
E, F, M4 6 7 8 95

Bar.cs
8.3

/Rel4-Maint /Rel8-Maint

/Mainline

Bar.cs

Foo.cs

194 Chapter 8 ❑ Continuous Deployment

Labeling a repository version can follow many different styles;
however, the simplest follows this naming pattern:

major release number ‘_’ (or a point, if your CM system accepts
them) minor release number (e.g., 2_89)

Produce a Clean Environment

Have you ever attempted to deploy software in an environment only to
discover that the environment has a different version of the operating
system, database, or application server? Producing a clean environ-
ment is a matter of removing and reapplying software, scripts, and
configuration values to ensure that the environment is operating as
expected.

When building software, it is critical to ensure that there are no
leftover files or configuration settings that may make the software fail
(or give a false positive). There are different approaches for this. The
first is to start with nothing on the computer and apply a “layer” at a
time until the complete system is applied. This is typically performed
on a testing or staging machine. Ideally, you would automate the
implementation of removing and reapplying each layer. For example,
you would remove everything from a machine and then apply the fol-
lowing layers to it.

• Operating system

• Operating system configurations (e.g., network connectivity,
users, and firewall)

• Server components for the software (e.g., application server,
database server, and messaging server)

• Server configuration

• Third-party tools (such as Web frameworks, object-relational
mapping tool, etc.)

• Custom software (software written for the user)

It’s possible to remove only one layer when building the software,
such as the custom software components only. The number of layers

Label Each Build 195

removed and reapplied will depend on the desired level of risk. If a
software application relies on various operating system files, then it
may be wise to clean the entire system more often. In any case, we rec-
ommend that all layers be removed at least a few times before releas-
ing the software to end users.

Label Each Build

Creating a unique identifier for a build, build labels, follows two
steps: First, the code in the repository requires a label (as just dis-
cussed); second, the actual act of building that code requires a unique
label. These build labels create a common understanding of what ver-
sion of code is in a particular environment; moreover, through build
labeling, defects, features, and new requirements can be issued against
that instance of a code base.

Note the difference, however, between a repository label and a
build label. Repository labels signify that a group of files (usually
uncompiled ones) are related. Build labels signify a binary output of a
build as being unique. This could be a series of executables, a .jar file,
a .NET assembly, or even a .zip file. The two naming schemes, how-
ever, are usually related, with build labels being slightly more specific
in terms of build number and platform. Be sure that everyone knows
and follows the conventions for your development project. For
instance, if the repository label is 2_89, a build of that snapshot of
code could be 2_89.01. If the build is targeting a specific platform,
then additional information can be affixed, such as 2_89.hp-01.

Not labeling a build makes it difficult to associate features, defects,
or requirements to a binary artifact. For example, deploying an unla-
beled build to a testing environment, such as QA, in essence creates a
moving target. If the QA team finds a defect, then coordinating with
the development team can be problematic. Without the ability to pin-
point when the problem occurred, it becomes difficult to identify what
led up to the issue. If builds are labeled, however, problem reporting
becomes a matter of specifying a build’s unique identification.

196 Chapter 8 ❑ Continuous Deployment

Labeling a build is as simple as performing a full build and assign-
ing an identification to it. For example, deploying a labeled version to
a QA environment should be as easy as typing the following:

ant –Dbuild.id=2_89.01 –Denvironment=qa deploy

What’s interesting about automating a deployment like this is that
all of the other processes must be executed (compilation, database
integration, testing, inspection, etc.) before the deployment is exe-
cuted. Obviously, a compile is performed, but there are other key steps
in the process, including a successful database rebuild and successful
tests and inspections run. Moreover, there could be additional tests run
after a deployment.

Run All Tests

While some stages of development may only require running certain
groups of tests, before packaging a deployment build all tests must run
and pass. It’s that simple. Run all of your automated tests, from unit
tests to functional tests. It can be done once on your build machine, but
an important part of predeployment testing is to run all tests on your
clean, reapplied environment, a clone of the targeted production envi-
ronment. It is important to make sure one more time that no environ-
mental issues will cause a failure or unintended performance. By
running all tests before promoting to the next stage, you develop more
confidence that you have working software. And even though we
firmly believe in the power and necessity of automation in all sorts of
processes, including testing, software is still a product which will be
used by humans and, therefore, still needs to be tested by humans.

Create Build Feedback Reports

Generating automated build feedback facilitates a common under-
standing of what exactly is in a build intended for release, including
the file differences in the build, the defects addressed, and the features

Create Build Feedback Reports 197

Don’t Forget the Human Touch

You could say that even the most robust automated testing is still hap-
pening “from the inside.” To be sure your product behaves as it should for
the user, you must emulate user activities—look at it from the “outside”—
before releasing the software.

I once had the opportunity to speak with a project manager at a large
financial institution whose development team had fashioned a fairly rigor-
ous automated development testing regimen. They had a high degree of
testing at all levels, and they had built a fairly robust auto-deployment
process via their build. However, they did notice that sometimes when
the team deployed their application into company-wide production, glar-
ing user interface-specific issues, such as pages with broken tables and
missing images, would surface. It was particularly painful for this man-
ager, as he would inevitably find out about the issues from other groups
in the company who depended on this application. It turned out that this
development team was focused on automation, but they got a little car-
ried away: No one had ever actually sat down and worked through the
behavior and appearance of their product. This team responded as they
should, not by deprecating the automated testing, but by considering that
the manual review could reveal things a “robot” would not know. Once
they added the manual checks, issues with the UI largely disappeared.

Human testing requires 100% test success. If a test fails, there could
be subtle issues in the environment or the code base that could spell
disaster later, once the application is deployed.

98% Is Still an A, Right?

I once consulted for an organization that had a test-pass threshold of
98%. This strategy was put into place because of a perceived notion that
the organization could never attain a pass rate of 100% due to various
complexities in the code base and environment at any given point in time.
Unfortunately, this strategy of permitting a pass rate with less than 100%
created a situation of uncertainty between builds—they had no way of
ascertaining which tests were failing between releases and whether they
were the same failures or new ones. The CI approach requires that you
automate a requirement for 100% test success; that way, you receive the
data on which tests failed and why.

198 Chapter 8 ❑ Continuous Deployment

implemented. By capturing this information, interested parties can ver-
ify the presence or absence of desired aspects.

For example, when a release candidate is released to a QA team,
ascertaining which defects have been addressed is of primary impor-
tance, because the team will need to verify that those defects have truly
been fixed. Having a report clearly labeling the addressed defects
quickly and effectively facilitates this process.

Another report which works in tandem with the defects addressed
report is the file difference report, which is generated from the build.
This report facilitates the understanding of what changes (as reported
by your version control system) are present in the build. For example,
Listing 8-2 shows how build tools like Ant can generate a list of the
file differences in the build, with a CVS build difference report based
on two dates or labels.

LISTING 8-2 Generating a Build Difference Report with Ant

<target name="diff-tag-to-tag">
 <delete dir="${cvs.reports.dir}" />
 <mkdir dir="${cvs.reports.dir}" />
 <cvstagdiff package="${cvstagdiff.package}"
 destfile="${cvstagdiff.destfile}"
 starttag="${cvstagdiff.starttag}"
 endtag="${cvstagdiff.endtag}" compression="true"/>
 <style in="${cvstagdiff.destfile}"
 out="${cvs.reports.dir}/tagdiff.html"
 style="${ant.home}/etc/tagdiff.xsl">
 <param name="title" expression="Ant Diff" />
 <param name="module" expression="ant" />
 <param name="cvsweb" expression="http://cvs.ib.com/viewcvs/"/>
 </style>
</target>

This Ant task will create an HTML report which describes the ver-
sions of any changed files present. With this report, interested individ-
uals can trace changes back to versions. For example, imagine that the
QA team reported a number of defects for the previous release candi-
date. On a subsequent release, the QA team reports an identical defect
from the previous build that was said to have been “fixed.” By collabo-
rating with the development team, the QA team can examine the build
difference report to verify that the changes related to fixing that defect
are actually present.

Summary 199

Possess Capability to Roll Back Release

Ultimately, having the capability to undo a deployment is an important
part of efficient development. There comes a time for many teams
when they need to rapidly replace new defective code with some previ-
ous release that worked better. By using build labeling and repository
labeling, this process only requires requesting the desired version.

For example, say that during a tight release schedule the QA team
receives build 89_3.04, which was to have fixed a number of high-
priority defects. After the deployment, however, QA quickly deter-
mines that this release candidate has a subtle yet showstopping defect
that prohibits further testing. By rapidly rolling back to the previous
build (89_3.03), QA doesn’t necessarily lose precious testing cycles
and can continue to test the previous release and issue defects against it.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
Your project can benefit from continuously deploying working soft-
ware. While every application, platform, and target domain has unique
requirements, the process for effectively releasing working software at
any time and any place is largely dependent on six steps. Labeling a
repository version signifies a group of files as being related, while pro-
ducing a clean environment reduces assumptions about existing
assets that, when missing, can stump even the simplest of builds.
Generating a labeled build produces a named binary that can be
reported against, while ensuring that all tests run successfully can
help give you more confidence that the software is working as
intended. Build feedback reports facilitate a team’s common under-
standing regarding features, defects, and requirements associated
with a binary. Lastly, having the capability to roll back a release means
that if something goes wrong, you can still provide users with the last
working version.

Table 8-1 summarizes the practices covered in this chapter.

200 Chapter 8 ❑ Continuous Deployment

Questions
Are your deployments automated? How quickly are you able to get a
release out into production? How quickly are you able to get the soft-
ware into your development or test environment? Use these questions
to determine your project’s capability to continuously deploy software.

■ Do you possess the capability to roll back a release?

■ Are you labeling your builds in your version control system?

■ Do you have a full set of automated tests that are followed by man-
ual tests of the release candidate afterward?

■ How does your team handle release fixes?

TABLE 8-1 CI Practices Discussed in This Chapter

Practice Description

Release working
software any time,
any place

By running a fully automated build including compi-
lation, all tests, inspections, packaging, and deploy-
ment, you have the capability to release working
software at any time and in any known environment.

Label a repository’s
assets

Label the files for your project in your version con-
trol repository. Typically, this is performed at the end
of a project milestone.

Produce a clean envi-
ronment

Remove all files, configuration changes, servers,
and anything else from your integration build machine
and ensure you can rebuild back to a state where
your integration build is successful. The more
scripted this process is, the better.

Label each build Label the binary artifacts of a build distribution in
your version control repository.

Run all tests Run all tests against the software. This includes
unit, component, system, functional, and perhaps
even performance, load, and other types of tests
that ensure the software is ready to be delivered (to
the next stage or even to production).

Create build feedback
reports

List the changes that were made in the most recent
build. This can be useful for other teams in the
delivery process, such as QA.

Possess capability to
roll back release

Something can always go wrong, so use your build
labels to roll back any changes that shouldn’t have
been committed to the version control repository.

Questions 201

■ Are your version control labels and build versions related?

■ Does your build produce feedback reports?

■ Are you able to deploy your software from the command line with a
single command?

■ Are you building your deployments from the version control
repository?

■ Are you able to configure your deployments for different environ-
ments? Does your software install and run properly on a “clean”
machine clone of the user’s environment?

■ Do you have a bug tracking system, and can it generate reports?

This page intentionally left blank

203

Chapter 9

Continuous Feedback

As a general rule, the most successful man in life
is the man who has the best information.

—BENJAMIN DISRAELI (1804–1881)

One day I was speaking with my coworker, Chuck, when the build
failed on one of our projects. I knew this because I received a Short
Message Service (SMS) text message on my mobile phone, a person-
alized sound clip played through my computer speakers, I received an
e-mail, and the Orb on my desk changed to a red hue. I briefly inter-
rupted my conversation with Chuck and rang the technical lead for the
project, who said, “I just got it and I’m on it.” I hung up the phone and
continued my conversation without getting sidetracked. This is contin-
uous feedback in action. I did have to interrupt Chuck for a moment,
but this is an example of the relatively unobtrusive types of feedback
mechanisms you can use with your CI system.

Feedback is a key output of the Integrate button. Without feedback,
none of the other aspects of CI is useful. The reason you want fast
builds and your builds to fail fast is feedback. Rapid feedback is at the
heart of CI. For example, if you don’t know that tests or inspections

Use Continuous
Feedback

Mechanisms

204 Chapter 9 ❑ Continuous Feedback

failed until several hours later in the day, you are unable to take imme-
diate action and fix the problem before it propagates and causes other
failures. The same goes for a database failure or a failed deployment.
Feedback is necessary to take action, and it provides the real, current
status of your integration build (see Figure 9-1).

Information on a software project is always changing. As the
ancient Greek philosopher Heraclitus noted, “The only constant is
change.” We must communicate information to our customers, devel-
opers, management, or any other stakeholder on a project, and it is
vitally useful when it is pertinent, concise, and up-to-date. While face-
to-face communication may be the most effective, it is not very scal-
able. Making feedback continuous provides a team the capability to
inform more people on more projects automatically; moreover, this
information can be aggregated to detect trends across a project.

This chapter covers why and how to send the right information to
the right people at the right time and in the right way.

FIGURE 9-1 Providing feedback with the Integrate button

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

All the Right Stuff 205

All the Right Stuff

Sending information to whoever, whenever, however is not what will
achieve results. The purpose of feedback is to create a notification that
most quickly and precisely stimulates action. You must send the right
information to the right people at the right time and in the right way. In
considering the right information, we first focus on the type of infor-
mation we are sending and ensuring that it is accurate. Next, we discuss
who gets the information, why they get it, and when they receive it.

Continuous Feedback and CI
Getting the right information to the right people at the right time
and in the right way—CI is the best tool for making this feedback
automated, targeted, and real-time (continuous).

Finally, in discussing the right way to send information, we’ll dis-
cuss some of the communication mechanisms that can be employed
with a CI system, which are known as continuous feedback devices
(CFDs). CFDs typically notify project stakeholders of the success or
failure of a build, but they also can notify them of other issues. For
example, a CFD can notify specific parties that a threshold has been
exceeded (e.g., code duplication has gone over a specified percentage).

Figure 9-2 illustrates this approach.

The Right Information
Continuous feedback doesn’t take the action to improve the software,
project members do—typically, software developers. The information
may be useful to others, such as analysts, testers, and management, as
well. Continuous feedback provides the means to structure the infor-
mation, and you decide what portions are delivered to which project
members upon certain events. You and the other recipients know both
that the information is accurate and fresh and that you are taking the
most effective action to solve an issue. Instead of waiting for stake-
holders to notice they have questions and then putting them to you, you

206 Chapter 9 ❑ Continuous Feedback

can devise notifications for them on a particular concern and have the
notices sent regularly and/or right when an issue develops.

As described throughout the book, you can leverage your CI sys-
tem for work that you might otherwise have to do manually. Build sta-
tus notification is a good example of information that is appropriate for
a number of project roles. The ideal build status notification includes
the results of all of the regression tests run against the application, the
multitude of inspectors (e.g., static analysis tools) that report anoma-
lies in the source code, and the results of a deployment. Some of this

FIGURE 9-2 The right stuff for continuous feedback

Build Status
Inspection Reports
Test Results

E-mail
Ambient Orb

SMS
Sound
X10

Project Manager
Build Master
Technical Lead
Developer

Business Analyst

When Problem Occurs
Daily
Weekly

Right Information

Right Time

Right PeopleRight Way

All the Right Stuff 207

information does not always need to be continuous, but it should be on
some type of schedule.

The Right People
Everyone needs to receive some type of feedback on the project, but
not necessarily every item every time. With a little bit of planning, you
can devise a strategy for distributing the type of information your CI
system can generate. Sometimes a message simply informs members
that everything is going fine, which is great, but you don’t want a sea
of “fine” messages burying a “not fine” message in its depths. Sending
feedback to all project members too often will ensure that everyone
begins to ignore the messages. Also, notifying a whole group about
something that only one or two team members can fix creates undesir-
able bulk—what if all developers receive an error based on what a sin-
gle developer just checked in? They may begin to see so many
messages that they don’t notice when one of them is in their area. It is
important that your team doesn’t learn to ignore messages from the CI
build process altogether.

Beware of Information Overload
Sending feedback to everyone on a project usually only causes
everyone to ignore the information.

CI helps get the right information to the right people, which is
really the right role. On some projects, one person may serve multiple
roles. Depending on your role, you may receive communications from
the CI system in different ways.

• Project Manager—A project manager (PM) must often make
decisions that center on resource allocation (people, hardware,
and supplies), time, and costs. PMs are usually managing many
tasks at once, so they need high-level, real-time feedback on
software completion as it relates to time, cost, quality, and scope.
A CI system can be most effective at providing much of this
feedback because of its automated and continuous nature.

208 Chapter 9 ❑ Continuous Feedback

• Architect/Technical Lead—Technical leads and architects usu-
ally want to see the status of all builds because they’re looking at
the entire system. Of particular interest will be the results of the
quality metrics, such as those from static and dynamic analysis
tools (inspectors) that ensure adherence to the coding and archi-
tectural standards.

• Developers—Typically, developers will receive messages from
the CI system on the code they just checked into the version con-
trol repository. Developers receive a variety of information from
tests and inspections to the status of the most recent build. The
group benefits only when the messages everyone receives from a
continuous feedback mechanism (e.g., e-mail) are relevant to his
or her own tasks.

• Testers—Testers will probably be most interested in communi-
cation relating to the automated tests and inspections. Their mes-
sages contain information about all code tested and inspected
across the system. Depending on your team’s approach to test-
ing, this information can be used to learn about new features
before they are “released” to the testing group.

The Right Time
Old news is not really news at all. Discovering that the build broke two
days ago doesn’t offer much help. Sending information that tells you
what happened—such as fixing some code right away—is why contin-
uous feedback insists on sending information at the right time. As
many experts have already established, reducing the time intervals
between the introduction, discovery, and resolution of a defect saves
time and money. The more time that has passed since the defect was
introduced, the less the parties responsible remember what happened
or why; they may have applied a faulty principle elsewhere, may have
built another component around it, or may target and “fix” the wrong
part of the original code. Certainly as important as the wasted time and
money are the chance for errors and the frustration in chasing bugs that
don’t even exist.

Use Continuous Feedback Mechanisms 209

The Heart of Continuous Feedback
At the heart of continuous feedback is reducing the time between
when a defect is introduced, discovered, and fixed.

CI is extremely effective in helping get the right information to the
right people at the right time. Using a CI server such as CruiseControl
enables the dissemination of information as soon as a build fails or
succeeds, along with an available wealth of detailed information that
contributes to that and other issues.

The Right Way
A CI system also provides the opportunity for sending information the
right way. The right way is choosing the most appropriate communica-
tion mechanism, how to present this information, and to whom. There
are various mechanisms to enable continuous feedback, such as
e-mail, sound, visual devices, and text messages.

Certain communication feedback mechanisms inform better than
others. Sometimes hanging poster paper on the wall that indicates the
number of current defects is an effective communication device. How-
ever, this is a perfect example of information that very quickly can
become dated, so this chapter focuses on using automation to commu-
nicate information in real time. The feedback typically dictates some
type of action, so of course it is done in the right way to the right peo-
ple, but they might have different preferences or needs for feedback.

Use Continuous Feedback Mechanisms

Just as you wouldn’t use a hammer for every home improvement
project, you won’t use the same continuous feedback mechanism for
every communication. This section introduces you to a variety of
mechanisms that can provide continuous feedback: e-mail, text mes-
saging, Ambient Orbs/X10 devices, Windows taskbar monitor, sounds,
and others. It also discusses the use of wide-screen monitors.

210 Chapter 9 ❑ Continuous Feedback

Figure 9-3 shows the various feedback mechanisms you can utilize
with a CI system.

E-mail
When considering e-mail as a feedback mechanism, you also should
consider the following requirements, advantages, and disadvantages.

Requires: A CI server such as CruiseControl, an e-mail client
such as Microsoft Outlook or Eudora, and an e-mail server (one
that supports SMTP) such as James.1

Advantages: It pushes the information, asynchronously, to the
right people.

FIGURE 9-3 Continuous feedback mechanisms

Developer

Developer

Version Control
Repository

Monitor
Text Message

Browser
Plug-in

Orb E-mailSounds

CI Server
Integration Build

Machine

Compile Source Code,
Integrate Database,

Run Tests,
Run Inspections,
Deploy Software

Commit Changes

Commit Changes

Poll

:

Generate

Build Script

1. “The Apache Java Enterprise Mail Server (a.ka. Apache James) is a 100% pure
Java SMTP and POP3 Mail server and NNTP News server.” From http://
james.apache.org/.

http://james.apache.org/
http://james.apache.org/

Use Continuous Feedback Mechanisms 211

Disadvantages: People don’t always have immediate access to
e-mail, and there’s the potential of inundating (“spamming”)
project members with e-mails.

E-mail is the most common form of feedback for CI. A CI system
can send an e-mail if the build succeeds or fails along with any details
that you have specified. For example, I configure CruiseControl to
send an e-mail in HTML that displays the status, the changes since the
last build, the unit tests run, and the deployment files created. It also
provides a link to the CruiseControl reporting application where I can
see detailed information on the builds, including access to inspection
artifacts and trend graphs. E-mail is a very useful form of feedback,
but it does have its disadvantages. There is not an effective way to stay
notified of trends in software without being inundated with e-mails
that come every time something changes.

Listing 9-1 shows a CruiseControl config.xml file configured to
send e-mails to the last person (@localhost) to check in files and the
technical lead (pduvall@localhost) on the project using the default-
suffix attribute of the htmlemail element.

LISTING 9-1 CruiseControl config.xml Configured to Send E-mail

…
<publishers>
 <currentbuildstatuspublisher
 file="buildstatus.txt"/>
 <htmlemail mailhost="localhost"
 xslDir="xsl"
 css="cruisecontrol.css"
 returnaddress="buildstatus@localhost"
 returnname="ABC Project Build Status"
 defaultsuffix="@localhost"
 spamwhilebroken="true"
 buildresultsurl="http://localhost:8989/cruisecontrol>
 <always address="pduvall@localhost"/>
 <failure address="pduvall@localhost "/>
 </htmlemail>
</publishers>

Figure 9-4 is a sample HTML message you can receive on the
build status from a CI server. Notice also that the Inbox received three
messages in just a couple of minutes; many people (including you) can
get overloaded and begin to ignore this form of feedback.

212 Chapter 9 ❑ Continuous Feedback

SMS (Text Messages)
Keep the following in mind when considering SMS as a feedback
mechanism.

Requires: A mobile phone with SMS capability, an e-mail
server, and a tool capable of sending e-mail.

Advantages: Can receive messages while away from e-mail.

Disadvantages: Messages will be very short. Same disadvan-
tages as mentioned earlier for e-mail.

It’s easy to have a CI server using an e-mail server send an SMS
text message to a mobile phone. All that’s needed is a phone capable of
receiving SMS text messages and a tool that will send the e-mail via an
e-mail server. This is as simple as sending an e-mail in CruiseControl.
Listing 9-2 demonstrates sending a text message from CruiseControl
when the build fails.

FIGURE 9-4 E-mail about build status

Use Continuous Feedback Mechanisms 213

LISTING 9-2 Sending a Text Message from CruiseControl When the
Build Fails

<publishers>
 <email mailhost="smtp.mydomain.com"
 returnaddress=buildstatus@mydomain.com
 defaultsuffix=@mydomain.com
 returnname="Project Build Status"
 spamwhilebroken="false"
 buildresultsurl="SMS">
 <failure address="7035551212@mobilephone-emailaddress.com"
 reportWhenFixed="true"/>
 </email>
</publishers>

Here’s a short explanation of Listing 9-2 as well as some other options
you can use with SMS.

• smtp.mydomain.com should be replaced with your SMTP
server. You may also need to specify credentials to send e-mail
through your SMTP server; in this case, use the username and
password attributes.

• The returnaddress attribute identifies the return e-mail address
that appears in the e-mail’s from field.

• The text @mydomain.com in the default suffix attribute should be
replaced with your domain name.

• This uses a <failure> child element to always send failure mes-
sages to a specified e-mail address. The value
7035551212@mobilephone-emailaddress.com should be
replaced with the e-mail address you would like your build fail-
ures to be sent to. The reportWhenFixed attribute is set to true
to send a follow-up e-mail to indicate when a build has been
fixed.

• CruiseControl permits the use of the xslfile attribute, which
eliminates the need for css and xslDir attributes.

You may want to receive a text message every time the build suc-
ceeds or fails. However, I prefer to receive a text message only when
the build fails, and then once when the fixed build succeeds. We have
many builds per day, and I do not want a flurry of text messages when
no action is required (i.e., a successful build).

214 Chapter 9 ❑ Continuous Feedback

Ambient Orb and X10 Devices
Visible devices are great as notifiers because you can set them any-
where (some don’t even need to be connected to a computer), and team
members can simply look at a device to determine the build status.

Ambient Orb
We recommend using an Ambient Orb because it can be customized to
display lots of different colors to show you different things. It is more
expensive than a typical X10 device, so your team has to value its
greater capability. When considering an Ambient Orb as a feedback
mechanism, bear in mind the following.

Requires: Ambient Orb, special subscription with Ambient
Devices,2 a script capable of sending HTTP get messages, a
build script (such as Ant), and a network connection (or 9-pin
serial connector)

Advantages: At-a-glance, nonbinary information; cool factor.

Disadvantages: Cost, presents no detailed information, and
need to be within visual range to notice need for action.

We refer to the Orb as a “glanceable device” because you can sim-
ply glance at it and determine the status of your project—without
receiving 20 e-mails indicating different thresholds the project may
have exceeded, and without receiving details that you are not prepared
for or want yet. Everyone on the project can glance at the Orb and get
the status of the latest build and/or quality metrics (if you have added
customizations). I set up the Orb in our project development room so
that it displayed different colors based on the build status. For exam-
ple, if the build has been failing for more than 30 minutes, it is a
deeper red.

Benefits of using an Orb is that it can be placed anywhere, and it is
not binary, like e-mail or an X10 device (discussed next). The Orb con-
tains a pager-like device that is a part of a wireless network. From a
build script, such as Ant, an HTTP get message can be sent to the

2. See www.ambientdevices.com.

www.ambientdevices.com

Use Continuous Feedback Mechanisms 215

device’s Web server component. Orbs can be a bit pricey, but they have
proven very useful on projects. There is, of course, a “cool factor,” and
we think it shows that we’re very serious about quality, we want imme-
diate notification of a problem, and we also believe in creating a fun
and visual work environment.

Listing 9-3 demonstrates an Ant target that executes the ambientorb3

task and changes the Orb color based on the success or failure of your
build. Figure 9-5 shows the Ambient Orb.

LISTING 9-3 Registering ambientorb Ant Task to Notify Ambient Orb

<target name="registerOrb" if="is.integration.machine">
<taskdef classname="org.qualitylabs.ambientorb.ant.OrbTask" name="orb"
classpathref="orb.class.path"/>
 <orb listener="org.qualitylabs.ambientorb.ant.OrbListener"
 deviceId="AAA-99A-AAA"
 colorPass="green"
 colorFail="red"
 animationFail="heartbeat"
 animationPass="none"
 commentPass="The+build+passed"
 commentFail="Build+Failure!!"/>
</target>

3. The Ambient Orb Ant task is available at www.qualitylabs.org/projects/
ambientorb.

FIGURE 9-5 Ambient Orb on a desk

www.qualitylabs.org/projects/ambientorb
www.qualitylabs.org/projects/ambientorb

216 Chapter 9 ❑ Continuous Feedback

X10 Devices
X10 devices are not as flexible as the Ambient Orb in several ways,
but they are a great option when you don’t have the budget for an
Ambient Orb. When thinking about implementing an X10 device as a
feedback mechanism, consider the following.

Requires: Device capable of receiving X10 messages and a
home automation kit (e.g., FireCracker).

Advantages: Cool factor, “glanceable,” and access to any elec-
trical device.

Disadvantages: Binary information: the device is either on or
off. Just like the Orb, you must be within visual range to notice
that action needs to be taken. X10 devices are not useful to the
visually impaired.

An X10 device is another “glanceable” device with two distinct
differences: There are literally hundreds of different X10 devices to
choose from, and there are only two visual modes with an X10 device,
either on or off (you configure which mode indicates what). The effect
is similar to the Ambient Orb; we value a central, simple notification
to improve quality, and we rather like using something a little more fun
to do it. The X10 device is a relatively cost-effective solution to notify
all project members in visual range of the latest build status.

Listing 9-4 shows a CruiseControl config.xml file configured to
turn on X10 device(s) A2 and turn off X10 device(s) A3 using a
CM17A computer interface on COM1 whenever the build succeeds or
fails. This example demonstrates how to control two lava lamps as
homemade traffic lights (red and green).4

LISTING 9-4 CruiseControl config.xml File Configured to Trigger X10
Devices

<publishers>
 <!-- Successful Builds: Turn on Green Lava Lamp / Light -->
 <x10
 port="COM1"

4. Quick Start instructions are provided at http://cruisecontrol.sourceforge.net/
main/configxml.html#x10.

http://cruisecontrol.sourceforge.net/main/configxml.html#x10
http://cruisecontrol.sourceforge.net/main/configxml.html#x10

Use Continuous Feedback Mechanisms 217

 houseCode="A"
 deviceCode="2"
 onWhenBroken="false"
 interfaceModel="CM17A"/>
 <!-- Failed Builds: Turn on Red Lava Lamp / Light -->
 <x10
 port="COM1"
 houseCode="A"
 deviceCode="3"
 onWhenBroken="true"
 interfaceModel="CM17A"/>
</publishers>

By default, the device’s “on” signal is sent when the build fails.
The device’s “off” signal is sent when the build succeeds/passes. If
you want the opposite, that is, on when successful and off when bro-
ken, set the onWhenBroken attribute to false. The CI server sends an
X10 message to the devices each time, but if it’s the same as before,
the lamp won’t change state.

Windows Taskbar
CCTray will monitor your CruiseControl.NET builds and report on the
status using the Windows taskbar. This way you don’t need to open or
wait for an e-mail to know the status of the build—you just look at the
icon located on your desktop. Figure 9-6 shows the CCTray Windows

Any Time, Any Place

One time while having lunch at a conference in Denver, I received
a text message on my mobile phone indicating that the build on
one of our projects back in Virginia had failed. I called the techni-
cal lead on the project, and he briefed me on the nature of the
problem. After some troubleshooting, they found out that one of
the JUnit tests had failed because one of the component inter-
faces had changed. It really gave me peace of mind to know that
an automated system was building, testing, inspecting, and
deploying software (among other activities) and letting me know if
anything was wrong, even while I was away from my office and not
able to access e-mail.

218 Chapter 9 ❑ Continuous Feedback

taskbar icon and the latest build status (which appears in hover text).
The CCTray installation, provided in the CruiseControl.NET installa-
tion, is simple to set up and configure using a Windows installer.

This is useful because team members can simply look in their
Windows taskbar to determine the build status. Consider the following
when thinking about implementing a message from the Windows task-
bar as a feedback mechanism.

Requires: Windows operating system and CruiseControl.NET
or CruiseControl.

Advantages: Real-time, unobtrusive feedback.

Disadvantages: This is only available for Windows systems.

Sounds
Sound is another item that can add a bit of fun to the workplace, and
it’s useful if you’re within earshot. When considering implementing
sound as a feedback mechanism, bear in mind the following:

Requires: A sound card and speakers.

Advantages: It’s able to reach many people at the same time and
makes the process fun.

Disadvantages: Typically, the sound only plays once. You must
be nearby to hear the sound. If you are wearing headphones (that
aren’t connected to the computer from which the sound is
played), you may not hear it. People who have difficulty hearing
may not be aware of it.

I enjoy using different sounds based on the build status. This can
be integrated into other CFDs as well, such as the Windows system
tray or e-mail. I’ve used e-mail rules to play a certain sound depending
on the subject of the e-mail. For example, when a build fails, it plays a

FIGURE 9-6 CCTray build status message from Windows taskbar

Use Continuous Feedback Mechanisms 219

sound byte from the movie Office Space saying “We’ve got sorta a
problem here.” If the build succeeded, it plays “Houston, we are go for
launch” from the movie Apollo 13. On some of our projects, the devel-
opment group works in the same room as the build machine. Using the
same sounds, the build machine announces success or failure from its
speakers. Listing 9-5 demonstrates an Ant delegating build script that
provides this functionality. This delegating build script is called by the
CruiseControl configuration file (config.xml).

LISTING 9-5 Register Sounds with CruiseControl

<project name="project-delegating-build” default=”run-cc-build">
 <target name="run-cc-build” depends="registerSounds ">
 …
 </target>
 <property name="sounds.dir" location="PATH_TO_SOUNDS"/>
 <target name="registerSounds" if="use.sounds">
 <sound>
 <fail source="${sounds.dir}/failure/problemhere.wav"/>
 <success source="${sounds.dir}/success"/>
 </sound>
 </target>
</project>

A bit of explanation is in order.

• You will register the build sounds in your delegating-build.xml,
and make sure the <sound> task is invoked at the beginning of
your script.

• The <fail> element will play a specific sound file from the
build failure sounds directory.

• The <success> element will play a specific sound file from the
build success sounds directory.

• You need to replace the PATH_TO_SOUNDS value with the location
of your sounds directory.

• You can enable and disable the use of build sounds from your
CruiseControl config.xml file by setting the value of the
use.sounds property.

Again, we really believe in incorporating gadgets, noises, and noti-
fication styles that make environments more fun and personalized

220 Chapter 9 ❑ Continuous Feedback

while conducting the business of continuous feedback. We believe
these devices demonstrate how seriously the team takes their work, not
the opposite.

Wide-Screen Monitors
You can use a wide-screen monitor to provide high visibility to what
your project team considers important. What’s more, the information
is automated. When thinking about implementing a wide-screen moni-
tor as a feedback mechanism, consider the following.

Requires: A network connection and video projector or large-
screen monitors.

Advantages: Automated, real-time “actionable” information.

Disadvantages: Some upfront costs depending on the type of
information you are automating.

Alistair Cockburn uses the term information radiators to describe
communication mechanisms that “radiate” information. When he first
conceived this idea, this meant posting a large item that everyone
nearby could see (called BVCs—big visual charts). They originally
used colors and large writing, but we can step way beyond that techno-
logically. BVCs are not effective for distributed development groups,
and they require repetitious manual updates to keep information fresh.
Since CI can generate much of this information, you can leverage the
reports generated from the CI server for much of this.

I can’t count how many times I’ve heard conversations at work that
begin, “Did you receive my e-mail?” or “I checked the latest version of
the file into CVS the other day,” or “Did you check the latest project
schedule?” In my experience, communication is typically the number
one challenge on software projects. The typical problem is not that we
don’t communicate; problems arise when we don’t communicate in
the right way.

Information radiators make project schedules, metrics, build
results, and other information visible to all project members, and they
are updated automatically. When people view them, and for what

Use Continuous Feedback Mechanisms 221

information, is up to them. Be sure to focus your design the same as
you do with your outgoing single notifications (e-mail and text mes-
sages): Include some key data and set it to update as needed. Other-
wise, the wide-screen monitor is the same sea of information in a
different form. 5

Additional Feedback Devices

There are many other types of devices and mechanisms you can
use to communicate; just make sure the information is informative,
concise, timely, and fun. The purpose is for someone to take
action on the information as quickly as possible. You may want to
change CFDs from time to time to keep your environment from
getting stale. Here are some other ideas of CFDs you can use on
projects.

• Browser plug-in—There is a useful plug-in5 for the Firefox
Web browser that displays the build status using red and
green indicators (similar to the Windows taskbar).

• Instant Messenger—Notify project members on the build
status via one of the instant messenger applications such
as AIM or Yahoo.

• RSS—Publish the results of your builds using Really Simple
Syndication (RSS). An RSS XML file is updated for every
build. You can use a reader to get these updates rather than
having to check your e-mail. Many CI servers provide sup-
port for RSS.

• Widgets—There are various widgets created for the Win-
dows and Mac platforms that monitor CruiseControl servers
and report the build status.

5. See www.md.pp.ru/mozilla/cc/ for more information on the Firefox plug-in for
CruiseControl.

www.md.pp.ru/mozilla/cc/

222 Chapter 9 ❑ Continuous Feedback

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
In this chapter, you learned how to harness the power of CI by auto-
mating feedback on a continuous basis based on established thresh-
olds. Sending the right information to the right people at the right time
and in the right way can drastically cut the time between when a prob-
lem or risk is introduced and when it is fixed. This will help improve
software quality and reduce risks as they occur.

Questions
Here is a handy list of considerations to help you develop continuous
feedback mechanisms in your development environment.

■ Have you automated your feedback processes?

■ Is your feedback incorporated into your CI system so that feedback
does not need to be sent manually?

■ Are the right people getting notified? Are too many people being
notified too often?

■ Is the feedback timely? Are project members receiving the feed-
back as soon as a problem is identified?

■ Are you sending the appropriate amount of information to project
members?

■ Is your team distributed geographically? Are you automating your
information radiators?

■ Are you making feedback fun? Have you incorporated devices such
as sounds or the Ambient Orb into your feedback processes?

223

Epilogue:

The Future of CI

I’ve found there are typically two key complaints from those who have
been practicing CI for a while.

• How can I prevent broken builds?

• How can I get my builds to run faster?

I will address each of these concerns here, although I don’t expect
we’ll find a “perfect” solution to these concerns for some time.

Although the practice of CI provides faster feedback in smaller
increments, it is still a rather reactionary practice. Some people choose
to perform manual sequential integrations because they always want to
keep the build in the green. I expect to see more tool support for run-
ning successful integrations on a separate machine, using a queue, before
the source code changes are committed to the version control repository.

Imagine if the only activity the developer needs to perform is to
“commit” her code to the version control system. Before the repository
accepts the code, it runs an integration build on a separate machine.
Only if the integration build is successful will it commit the code to the
repository. This can significantly reduce broken integration builds and
may reduce the need to perform manual integration builds. At the time
of publication, we are starting to see tool support1 for this approach,
and we expect to see much more in the coming years.

1. See Borland’s Gauntlet (www.borland.com/us/products/silk/gauntlet/), Jet-
Brains’ TeamCity (www.jetbrains.com/teamcity/), and Microsoft’s Team Foun-
dation Server (TFS) (http://msdn2.microsoft.com/en-us/teamsystem/). At publication
time, Microsoft doesn’t provide “out of the box” support for CI, but it supports
scheduled builds instead.

www.borland.com/us/products/silk/gauntlet/
www.jetbrains.com/teamcity/
http://msdn2.microsoft.com/en-us/teamsystem/

224 Epilogue ❑ The Future of CI

Figure E-1 demonstrates this automated queued integration
approach. A developer commits her code changes, and a process inter-
cepts requests to commit and runs an integration build on the integra-
tion build machine in a queue to ensure that there are no conflicts with
other changes being committed. If the integration build is successful,
the code is committed to the repository. If a developer attempts to
commit code while an integration build is occurring, the server will
place it in the queue until the first integration build is successful.

I also figure we’ll see more version control system vendors pro-
vide CI features. It seems logical that since a version control system is
always running, and an effective CI system requires a version control
system, you could use it to prevent broken code, tests, or even inspec-
tions from ever entering the shared code base.

An alternative approach to preventing broken builds is to provide
the capability for a developer to run an integration build using the inte-
gration build machine and his local changes (that haven’t been com-
mitted to the version control repository) along with any other changes
committed to the version control repository.2 When this technique is
practiced by all developers, it can lead to significantly fewer broken

FIGURE E-1 The future of CI—automated queued integration builds

Developer

Developer

Version Control
Repository

Feedback
Mechanism

CI Server
Integration Build

Machine

Commit Changes

Run Integration Build in Queue

Commit on
Successful
Integration

Build

Commit Changes

Poll

:

Generate

Compile Source Code,
Integrate Database,

Run Tests,
Run Inspections,
Deploy Software

Build ScriptTwo-Phase
Commit

2. Zutubi calls this a “personal build” and is provided by their CI server, Pulse.

Epilogue ❑ The Future of CI 225

builds because you integrate all your changes and run an integration
build on a separate machine before committing your changes to the
repository.

The other area for improvement in practicing CI is providing more
rapid feedback by running faster builds. Chapter 4 covers techniques
and possible solutions, but I expect to see more capabilities in the areas
of parallelization and other capabilities to leverage additional hard-
ware and software resources to speed up builds.

This page intentionally left blank

227

Appendix A

CI Resources

This appendix provides information about tools and resources for CI
categorized under the following topics.

• Continuous Integration Web sites/articles

• CI tools/product resources

• Build scripting resources

• Version control resources

• Database resources

• Testing resources

• Automated inspection resources

• Deployment resources

• Feedback resources

• Documentation resources

Continuous Integration Web Sites/Articles

Automation for the people: Continuous feedback
• http://www-128.ibm.com/developerworks/java/library/j-

ap11146/

This IBM developerWorks article covers different feedback mecha-
nisms that can be used in a CI environment.

http://www-128.ibm.com/developerworks/java/library/jap11146/
http://www-128.ibm.com/developerworks/java/library/jap11146/

228 Appendix A ❑ CI Resources

Automation for the people: Continuous Inspection
• http://www-128.ibm.com/developerworks/java/library/j-

ap08016/

This IBM developerWorks article looks at how automated inspectors
like Checkstyle, JavaNCSS, and CPD enhance the development pro-
cess and when you should use them.

Automation for the people: Remove the smell from your
build scripts

• http://www-128.ibm.com/developerworks/java/library/j-
ap10106/

This IBM developerWorks article covers build smells using examples
in Ant.

Continuous Integration
• www.martinfowler.com/articles/continuousIntegration.html

Martin Fowler introduces the principles and practices of CI.

Continuous Integration
• www.stickyminds.com/BetterSoftware/magazine.asp?fn=

cifea&id=58

An article in Better Software Magazine on CI, by Jeffrey Frederick.

Daily Build and Smoke Test
• www.stevemcconnell.com/bp04.htm

Lest we think that the practice of CI is new or was created out of thin
air, here’s another very influential software leader, Steve McConnell,
discussing daily builds and smoke tests in IEEE Software, Vol. 13, No. 4,
July 1996.

http://www-128.ibm.com/developerworks/java/library/jap08016/
http://www-128.ibm.com/developerworks/java/library/jap08016/
http://www-128.ibm.com/developerworks/java/library/jap10106/
http://www-128.ibm.com/developerworks/java/library/jap10106/
www.martinfowler.com/articles/continuousIntegration.html
www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&id=58
www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&id=58
www.stevemcconnell.com/bp04.htm

CI Tools/Product Resources 229

IntegrateButton.com
• www.integratebutton.com

This is the book’s companion Web site, and it is dedicated to informa-
tion about CI including research, discussion forums, examples, and
much more.

Realizing continuous integration
• http://www-128.ibm.com/developerworks/rational/library/

sep05/lee/

This IBM developerWorks article, by Kevin Lee, introduces the con-
cept and practices of CI.

CI Tools/Product Resources

AnthillPro
• www.urbancode.com/products/anthillpro/

A commercial build management server that provides CI as a feature.
Also see Appendix B.

Apache Continuum
• http://maven.apache.org/continuum/

The Web site for the Apache Maven project. Also see Appendix B.

Bamboo
• www.atlassian.com/software/bamboo/

A commercial CI server, but freely available for open source projects.
Bamboo provides build metrics, an easy-to-use UI, and integration
with Atlassian tools such as JIRA.

www.integratebutton.com
http://www-128.ibm.com/developerworks/rational/library/sep05/lee/
http://www-128.ibm.com/developerworks/rational/library/sep05/lee/
www.urbancode.com/products/anthillpro/
http://maven.apache.org/continuum/
www.atlassian.com/software/bamboo/

230 Appendix A ❑ CI Resources

BuildForge
• http://www-306.ibm.com/software/awdtools/buildforge/

enterprise/

BuildForge is a heavy-duty commercial build management tool that
provides high-performance, distributed build, test, and deployment
functionality.

Continuous Integration Server Matrix
• http://damagecontrol.codehaus.org/Continuous+Integration+

Server+Feature+Matrix

This matrix gives an overview of both commercial and open source CI
servers on the market. It provides many criteria to use in determining
the best server.

CruiseControl
• http://cruisecontrol.sourceforge.net

CruiseControl, written in Java, is one of the first CI servers and has
been available since 2001. Also see Appendix B.

CruiseControl.NET
• http://ccnet.thoughtworks.com

Written in C#, this CI server is based on the Java version of Cruise-
Control and is open source and freely available as well. Also see
Appendix B.

Draco.NET
• http://draconet.sourceforge.net/

A freely available open source CI server. Also see Appendix B.

http://www-306.ibm.com/software/awdtools/buildforge/enterprise/
http://www-306.ibm.com/software/awdtools/buildforge/enterprise/
http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://cruisecontrol.sourceforge.net
http://ccnet.thoughtworks.com
http://draconet.sourceforge.net/

CI Tools/Product Resources 231

Gauntlet
• www.borland.com/us/products/silk/gauntlet/

Guantlet provides a feature called “sandboxing,” which isolates source
code changes in a branch until the integration build is successful. Jet-
Brains’ TeamCity provides a similar feature and is a positive step in
the evolution of CI, as it can prevent broken builds from entering a ver-
sion control repository.

Luntbuild
• http://luntbuild.javaforge.com/

Luntbuild is a build management server that also provides CI. Also see
Appendix B.

ParaBuild
• www.viewtier.com/products/parabuild/index.htm

ParaBuild is a commercial automated software-build management
server.

PMEase QuickBuild
• www.pmease.com/

QuickBuild is a professional version of Luntbuild.

Sin
• http://sin.tigris.org/

The Sin (its formal name is Continuous Integration for Subversion)
approach to CI helps prevent the corruption of a version control repos-
itory using defensive “checkin branches” to verify correctness before
accepting (i.e., merging) changes into the mainline. Sin requires .NET
and a Subversion repository.

www.borland.com/us/products/silk/gauntlet/
http://luntbuild.javaforge.com/
www.viewtier.com/products/parabuild/index.htm
www.pmease.com/
http://sin.tigris.org/

232 Appendix A ❑ CI Resources

Other CI Tools and Product Resources

Build Scripting Resources

Ant
• http://ant.apache.org

Ant is easily the most popular build scripting tool for Java develop-
ment teams. If you’re on a Java project, it is worth spending time
learning its features. Most CI tools support Ant.

Groovy

• http://groovy.codehaus.org/

• www.javaworld.com/javaworld/jw-10-2004/jw-1004-
groovy_p.html

• http://www-128.ibm.com/developerworks/library/j-
pg12144.html

Groovy is a dynamic language for the Java platform that you can use to
script your Ant XML scripts. You can script your build process by
using Groovy’s programming constructs.

Name Web Site

Bitten http://bitten.cmlenz.net/

BuildBeat www.timpanisoftware.com/

BuildBot http://buildbot.sourceforge.net/

CM Crossroads www.cmcrossroads.com/

CruiseControl.rb http://cruisecontrolrb.thoughtworks.com/

Gump http://gump.apache.org/

PerfectBuild www.codefast.com

Pragmatic Automation www.pragmaticautomation.com/

Pulse www.zutubi.com/products/pulse/

TeamCity www.jetbrains.com/teamcity/

Tinderbox www.mozilla.org/tinderbox.html

http://bitten.cmlenz.net/
www.timpanisoftware.com/
http://buildbot.sourceforge.net/
www.cmcrossroads.com/
http://cruisecontrolrb.thoughtworks.com/
http://gump.apache.org/
www.codefast.com
www.pragmaticautomation.com/
www.zutubi.com/products/pulse/
www.jetbrains.com/teamcity/
www.mozilla.org/tinderbox.html
http://groovy.codehaus.org/
www.javaworld.com/javaworld/jw-10-2004/jw-1004-groovy_p.html
www.javaworld.com/javaworld/jw-10-2004/jw-1004-groovy_p.html
http://www-128.ibm.com/developerworks/library/jpg12144.html
http://www-128.ibm.com/developerworks/library/jpg12144.html
http://ant.apache.org

Version Control Resources 233

Maven
• http://maven.apache.org

A project management and build tool. Also see Appendix B.

NAnt
• http://nant.sourceforge.net/

NAnt is the port of the Java-based Ant tool to the .NET platform.

Rake
• http://rake.rubyforge.org/

Rake is the build-scripting tool for Ruby-based applications. If you are
using Rake, you can also utilize the power of Ruby when scripting
your builds.

Version Control Resources

ClearCase
• www.ibm.com/software/awdtools/clearcase/

A commercial software configuration management tool with many
advanced features.

Concurrent Versions System (CVS)
• www.nongnu.org/cvs/

An open source version control tool for the UNIX platform.

MKS
• www.mks.com/

A commercial version control tool.

www.ibm.com/software/awdtools/clearcase/
www.nongnu.org/cvs/
www.mks.com/
http://maven.apache.org
http://nant.sourceforge.net/
http://rake.rubyforge.org/

234 Appendix A ❑ CI Resources

Subversion
• http://subversion.tigris.org/

The popular CVS product’s next-generation open source version con-
trol tool.

Other Version Control Resources

Database Resources

Hypersonic DB
• www.hsqldb.org/

HSQLDB is a lightweight (100K footprint), in-memory database writ-
ten in Java that is freely available. It is great for managing test data for
your application during developer testing.

Name Web Site

AccuRev www.accurev.com/

Alienbrain www.alienbrain.com/

Perforce www.perforce.com/

PVCS www.serena.com/Products/professional/vm/
home.asp

SnapshotCM www.truebluesoftware.com/

StarTeam www.borland.com/us/products/starteam/
index.html

Surround SCM www.seapine.com/surroundscm.html

Synergy CM www.telelogic.com/corp/products/synergy/
index.cfm

Visual SourceSafe http://msdn.microsoft.com/vstudio/Previous/ssafe/
default.aspx

www.accurev.com/
www.alienbrain.com/
www.perforce.com/
www.serena.com/Products/professional/vm/home.asp
www.serena.com/Products/professional/vm/home.asp
www.truebluesoftware.com/
www.borland.com/us/products/starteam/index.html
www.borland.com/us/products/starteam/index.html
www.seapine.com/surroundscm.html
www.telelogic.com/corp/products/synergy/index.cfm
www.telelogic.com/corp/products/synergy/index.cfm
http://msdn.microsoft.com/vstudio/Previous/ssafe/default.aspx
http://msdn.microsoft.com/vstudio/Previous/ssafe/default.aspx
www.hsqldb.org/
http://subversion.tigris.org/

Database Resources 235

Mckoi
• www.mckoi.com/database/

Mckoi is another open source (under GPL license), lightweight SQL
database for Java. It is great for teams that want to use a “developer
database sandbox” for development. A little work is required to get
your SQL to adhere to Sybase’s and Oracle’s SQL, but it is possible.

MySQL
• www.mysql.com

MySQL offers a suite of powerful databases that originally started as
an open source relational database system capable of running on all
major operating systems, including Linux, UNIX, and Windows.
Today, it has grown into an industry leader with the other big vendor
names. The Community Edition is freely available under GPL license
with bleeding-edge features.

Oracle
• www.oracle.com/technology/database/index.html

A well-known, enterprise-class relational database management sys-
tem capable of running on all major operating systems, including
Linux and Windows. Oracle Express Edition offers the best of both
worlds for developers: It is free to download, develop, deploy, and dis-
tribute, and it is a lightweight version of the Oracle product line
including Standard and Enterprise Editions.

PostgreSQL
• www.postgresql.org/

PostgreSQL is a powerful, open source relational database system
capable of running on all major operating systems, including Linux,
UNIX (AIX, BSD, HP-UX, Mac OS X, SGI IRIX, Solaris, and
Tru64), and Windows.

www.mckoi.com/database/
www.mysql.com
www.oracle.com/technology/database/index.html
www.postgresql.org/

236 Appendix A ❑ CI Resources

Testing Resources

Agitator
• www.agitar.com/products/

Agitar’s AgitarOne is a commercially available product that automati-
cally generates test cases for Java code.

DbUnit
• http://dbunit.sourceforge.net

DbUnit is an open source JUnit extension that puts a database back
into a known state between test runs.

Fit
• http://fit.c2.com/

Fit is an open source tool that facilitates communication between the
business clients who write requirements and the developers who
implement them. Fit is available for Java, .NET, Ruby, and Python.

FitNesse
• http://fitnesse.org/

FitNesse is an open source tool that enables Fit testing via a wiki.
FitNesse is available for .NET, Java, and Ruby.

Floyd
• www.openqa.org/floyd/

Floyd, an open source testing tool for the Java platform, simulates a
browser for testing Web-based applications.

HtmlUnit
• http://htmlunit.sourceforge.net/

HtmlUnit is an open source Java testing framework for testing Web-
based applications.

www.agitar.com/products/
http://dbunit.sourceforge.net
http://fit.c2.com/
http://fitnesse.org/
www.openqa.org/floyd/
http://htmlunit.sourceforge.net/

Testing Resources 237

JUnit
• http://junit.org

JUnit is an open source unit-testing framework for Java.

JWebUnit
• http://jwebunit.sourceforge.net/

JWebUnit is an open source Java framework that facilitates creation of
acceptance tests for Web applications.

NDbUnit
• www.ndbunit.org/

NDbUnit is an open source .NET library for putting a database into a
known state. NDbUnit can be used to increase repeatability in tests
that interact with a database by ensuring a consistent database state
across test executions.

NUnit
• www.nunit.org/

NUnit is an open source unit-testing framework for all .NET lan-
guages.

Selenium
• www.openqa.org/selenium

Selenium is a Fit-style (table-based test cases), in-browser functional
testing tool for Web applications. It works great for development
teams that desire automated regression system testing of their Web
applications, and it is easily incorporated into your CI system. A useful
open source companion tool, Selenium IDE, makes test script creation
simple by allowing testers to record their actions while using the appli-
cation (some basic HTML/JavaScript knowledge is required).

http://junit.org
http://jwebunit.sourceforge.net/
www.ndbunit.org/
www.nunit.org/
www.openqa.org/selenium

238 Appendix A ❑ CI Resources

SQLUnit
• http://sqlunit.sourceforge.net

SQLUnit is an open source testing framework for verifying database
stored procedures.

TestEarly.com
• www.testearly.com/

TestEarly.com is a blog dedicated to building quality into software
early in the development lifecycle. Some of this book’s authors are
regular contributors on this site.

TestNG
• www.testng.org

TestNG is an open source testing framework for the Java platform.
Inspired by JUnit and NUnit, it introduces some new features that
make it quite powerful for testing from component to system level.

utPLSQL
• http://utplsql.sourceforge.net/

utPLSQL is an open source testing framework for verifying programs
written in Oracle’s PL/SQL language.

Watir
• www.openqa.org/watir

Watir is an open source functional testing tool, written in Ruby, for
automating browser-based tests of Web applications.

xUnit Test Patterns
• http://xunitpatterns.com/

This is the Web site for the xUnit Test Patterns book, by Gerard
Meszaros.

http://sqlunit.sourceforge.net
www.testearly.com/
www.testng.org
http://utplsql.sourceforge.net/
www.openqa.org/watir
http://xunitpatterns.com/

Automated Inspection Resources 239

Automated Inspection Resources

Checkstyle
• http://checkstyle.sourceforge.net

Checkstyle is a Java-based coding standard adherence and inspection
tool. Since version 3, the types of checks have grown beyond the typi-
cal coding standard adherence. Currently, Checkstyle includes checks
for various types of inspections such as design, code complexity, and
code duplication.

Clover
• www.cenqua.com/clover/

Clover is a commercially available code-coverage tool for both Java
and .NET.

Cobertura
• http://cobertura.sourceforge.net/

Cobertura is an open source code-coverage tool for Java.

EMMA
• http://emma.sourceforge.net/

EMMA is an open source code-coverage tool for Java. EMMA’s
reports are slightly different than those of Cobertura.

FindBugs
• http://findbugs.sourceforge.net/

FindBugs is a Java-based inspection tool to find bugs in your Java code
based on bug patterns. Incorporate this tool into your build process and
generate the report. You’ll be surprised at what you didn’t know about
programming in Java.

http://checkstyle.sourceforge.net
www.cenqua.com/clover/
http://cobertura.sourceforge.net/
http://emma.sourceforge.net/
http://findbugs.sourceforge.net/

240 Appendix A ❑ CI Resources

FxCop
• www.gotdotnet.com/Team/FxCop/

FxCop is a code analysis tool for .NET that analyzes assemblies for
conformance to the .NET Framework Design Guidelines.

JavaNCSS
• www.kclee.de/clemens/java/javancss/

JavaNCSS is an open source tool that determines the lengths of meth-
ods and classes by examining Java source files.

JDepend
• www.clarkware.com/software/JDepend.html

JDepend scans Java class files and generates design-quality metrics for
each package.

NCover
• http://ncover.org

NCover is an open source code-coverage tool for .NET.

NDepend
• www.ndepend.com/

NDepend analyzes .NET code and generates design-quality metrics,
such as afferent and efferent coupling, instability, and a host of other
interesting metrics.

PMD
• http://pmd.sourceforge.net

PMD is an open source static-code analyzer for the Java platform.

www.gotdotnet.com/Team/FxCop/
www.kclee.de/clemens/java/javancss/
www.clarkware.com/software/JDepend.html
http://ncover.org
www.ndepend.com/
http://pmd.sourceforge.net

Feedback Resources 241

Simian
• www.redhillconsulting.com.au/products/simian/

Simian is a tool that identifies duplication in Java, C#, C++, Ruby, and
just about every other language available today. It can even spot dupli-
cation in plain text files.

SourceMonitor
• www.campwoodsw.com/sm20.html

SourceMonitor is freeware inspection tool (metrics) for programmers.
It supports C/C++, Delphi, HTML, Java, C#, and Visual Basic pro-
gramming languages. Analyze your code and learn how to improve it;
if you are unsure what certain metrics mean, you can refer to the
extensive documentation describing the metrics used by the tool. You
can parse the XML reports to HTML so that you can incorporate this
into your build process.

Deployment Resources

Capistrano (formerly SwitchTower)
• http://manuals.rubyonrails.com/read/book/17

Capistrano is a utility for deploying Ruby on Rails Web applications.

Feedback Resources

Ambient Devices

• www.ambientdevices.com/

• www.qualitylabs.org/projects/ambientorb/

Ambient Devices offers several products. Chapter 9 mentioned how
you can use the Ambient Orb as a “glanceable” information radiator.

www.redhillconsulting.com.au/products/simian/
www.campwoodsw.com/sm20.html
www.ambientdevices.com/
www.qualitylabs.org/projects/ambientorb/
http://manuals.rubyonrails.com/read/book/17

242 Appendix A ❑ CI Resources

An Ambient Orb Ant task is available at Quality Labs to make it easier
to interface with the Orb.

GoogleTalk
• www.google.com/talk/

With some work, you can incorporate a Jabber message to be sent
from your CI system (e.g., CruiseControl) to your instant-message
client.

Jabber
• www.jabber.org/

Incorporate open source instant messaging as a part of your CI sys-
tem’s feedback. Jabber is compatible with GoogleTalk.

X10
• www.x10.com/

You can use X10 to control any electrical device that uses radio fre-
quency. This site contains information on starter kits you can use to
grow your project’s or organization’s feedback mechanisms.

Others

Name Web Site

Apache Java Enterprise Mail
Server (“Apache James”)

http://james.apache.org/server/index.html

Gaim http://gaim.sourceforge.net/

Lava lamps www.lavalites.com/

www.google.com/talk/
www.jabber.org/
www.x10.com/
http://james.apache.org/server/index.html
http://gaim.sourceforge.net/
www.lavalites.com/

Documentation Resources 243

Documentation Resources

Doxygen
• www.stack.nl/~dimitri/doxygen/

Doxygen is an open source documentation system for C/C++, Java,
Objective-C, Python, and IDL (Corba and Microsoft flavors) and, to a
lesser extent, PHP, C#, and D. This program allows you to generate
documentation in various formats such as LaTeX, RTF, PostScript,
PDF, HTML, and UNIX man pages. Perhaps the best aspect of Doxygen
is using GraphViz to generate UML-style diagrams to help visualize
your source code.

Javadoc
• http://java.sun.com/j2se/javadoc/

Java includes a standard tool for generating API documentation in
HTML format. Various “doclets” exist that allow you to generate dif-
ferent formats as well as check your Javadoc comments for irregularities.

NDoc
• http://ndoc.sourceforge.net/

NDoc is an open source documentation tool for .NET (namely, .NET
assemblies and the XML documentation files generated by C#). This
tool will help you generate your documentation in the standard
Microsoft ways such as .chm, HTML Help 2, and MSDN online style
Web pages.

www.stack.nl/~dimitri/doxygen/
http://java.sun.com/j2se/javadoc/
http://ndoc.sourceforge.net/

This page intentionally left blank

245

Appendix B

Evaluating CI Tools

A craftsman who wishes to practice his craft
well must first sharpen his tools.

—CHINESE PROVERB

Raoul (not his real name) was part of a small team brought in to help
subdue a struggling J2EE project for a large development team. His
role in this effort was lead integrator, responsible for ensuring that
sixty or so development environments were consistent with one
another as well as with the test and production build environments.
The first task was to hunt down the source code and other build arti-
facts used to create the development environments. He searched in var-
ious version control repositories and networked file systems; then one
team member offered, “I think Carl has a pretty good copy of the
application server configuration on a diskette in his drawer.”

With the source artifacts in hand, Raoul’s next challenge was to
create an automated build process for the development environments.
The test and production build process was stable but was written as a
set of UNIX shell scripts that would check out the code, invoke com-
pilers, copy JARs, and so on—but unfortunately, all of the develop-
ment environments were Windows machines, each with whichever
JVM, application server version, and editing tools the developer had
installed.

Raoul pointed out to the project’s configuration manager the frus-
tration and loss of productivity that everyone was suffering at integra-
tion time. “We’re already on top of it,” Raoul was told. “We’re going to

246 Appendix B ❑ Evaluating CI Tools

requisition and install UNIX emulation software on the workstations
so that they can run the UNIX build scripts.” With a lot of reconfigura-
tion work and an equal amount of prayer, this rickety approach would
probably work, at least for those developers who had configured their
workstations similarly enough to the UNIX environments.

Raoul mustered some political and rhetorical skill (which isn’t
much, he tells me) and convinced the project managers to reverse their
course and instead institute a common Ant-based build mechanism.
Ant and Java are platform-independent, after all, and they could even
use Ant scripts to automatically set up consistent development envi-
ronments, saving the developers many hours of time.

The moral of this story is that tool selection matters. True, there is
more than one way to do most things, but some ways will leave you
scarred and bleeding. Fortunately, barring any “roll your own” type
approaches, it’s hard to make a big mistake choosing tools made to
implement your development environment. Most of the tools that are
available are mature and well suited to the task of CI.

This appendix is devoted to helping you select appropriate CI
tools. I wish I could tell you which tool is the perfect choice for you,
but choosing tools is highly dependent on your environment, the size
of your project, and the functionality you want to get out of your auto-
mated builds. Which is the better tool for driving nails, a hammer or a
nail gun? I’d expect to get a different answer depending on whether I
had asked a roofer on a construction job or a hobbyist building a bird
house. That being the case, the first section in this appendix elaborates
on the factors to consider when choosing tools to implement CI for
your development group.

The second and third sections give an overview of the tools cur-
rently available. Though space prevents giving complete instructions
on their use, I’ll discuss enough information to really give you the “fla-
vor” of the tools from installation to their use. I cover tools used to
support the two most common application development platforms:
Java and .NET. If you work in another language, such as Ruby, C, Perl,
or PHP, don’t despair—there are CI tools for a wide range of lan-
guages and development styles. A quick search of the Internet should
turn up what you need for these platforms.

Considerations When Evaluating Tools 247

Keep This Appendix Up to Date
Since the tools we cover in this appendix are in a rapidly chang-
ing market, we recommend that you visit the book’s Web site,
www.integratebutton.com, to keep up-to-date with the latest
scripts, tools, and research.

This appendix covers build and scheduling tools, but not version
control tools, because it’s likely that your version control system has
been chosen for you. If not, there are plenty of fine online resources
and books to help you choose. If you’re on an active project that
doesn’t use a version control tool yet, put this book down right now
and put one in place. Done? Good. Let’s get started.

Considerations When Evaluating Tools

Choosing automation software is a matter of finding the best fit for
your environment and development process. The best tool is the one
that saves you and the rest of the development team the most pain and
serves you the longest. Tool comparison conversations can often tran-
scend the practical and escalate into what sounds like a religious
debate. There were times where you’d read a discussion about the rela-
tive merits of CruiseControl and Anthill and you might be reminded of
the ongoing Ford versus Chevy debate (though I haven’t seen any dis-
paraging window decals on the software topic yet).

Also, bear in mind that your choice of tools needn’t be a lifelong
commitment. If it becomes one, it indicates that the tool works well
with you and you with it. I’ve worked on a couple of projects where I
changed the build scheduling tool in midstream. In both cases, it only
took an afternoon to do. Of course, if you’ve invested significant effort
and money in one of the heavy-duty distributed build tools, it may be a
different story. For most of us, though, one of the many open source
tools will work just fine, and switching between them is easy.

Let’s look at the various factors that should influence your deci-
sion. These points are helpful to take into account while contemplating

www.integratebutton.com

248 Appendix B ❑ Evaluating CI Tools

how to set up your development environment. Again, this isn’t a deci-
sion that will require weeks of research and has deep finality to it.
After a day or two, you should be up and integrating continuously, and
you can make adjustments as you go along.

Functionality
Naturally, the most important criterion in choosing a tool is whether it
does what you need it to do. This section describes the valuable essen-
tial and extended functionality offered by build and build-scheduler
tools.

Build Tools—Essential Functionality
The following are essential functionality for build tools.

• Code compilation—No surprise here: Compiling source code is
the main ingredient in building software. For efficiency, compi-
lation should be performed conditionally based on whether
source code or dependencies have changed.

• Component packaging—After compiling the source code and
formatting any other artifacts that need to be included, software
typically needs to be bundled into deployable components such
as Java JAR files or Windows EXE files. The build tool you
choose should understand how to package the necessary compo-
nents for your environment and do so only when the contents of
the package have changed.

• Program execution—The build tool should have good support
for invoking programs in its target platform as well as for invok-
ing any program that has a command-line interface.

• File manipulation—Creating, copying, and deleting files and
directories are typical build functionality that the tools should
support.

Build Tools—Extended Functionality
Extended functionality for build tools includes the following.

Considerations When Evaluating Tools 249

• Development test execution—Beyond simply compiling the
software, the most common activity is running the suite of auto-
mated developer tests for the software. Though you can integrate
your build tool with your testing tool via command-line execu-
tion if necessary, the better your build tool integrates with your
unit test tool, the better off you are.

• Version control tool integration—If your build scheduler tool
delegates version control activities to your build tool, or if you
have other version control activities that would benefit from
automation, look for support for your version control system
within the build tool. Again, command-line-based integration is
always a fallback option if necessary.

• Documentation generation—If you work in a programming
language that supports embedded documentation, such as C# or
Java, it’s very useful to have your build tool automatically gener-
ate the API documentation when the build is run.

• Deployment functionality—If you plan to run functional tests
or in-container unit tests during your automated build, the build
must first deploy the application to a test server. This functional-
ity may be provided from your build tool or may be provided as
a plug-in by the server vendor or the server’s user community.

• Code quality analysis—As Chapter 7 makes clear, you can gain
great insight into the stability and maintainability of your code
by running various types of automated inspectors. Look at which
analysis tools are bundled with your build tool or are available as
plug-ins.

• Extensibility—It’s uncommon to need to write your own plug-
ins for a build tool; most challenges you’ll run into aren’t unique
and have already been solved for you. However, in some cases,
you may want to extend the build tool itself; for instance, if you
want to seamlessly integrate a new test or reporting tool. A well-
documented extensibility API is a must in this case. Just don’t
forget to contribute your plug-in back to the user community.
You, your plug-in, and the community will be better off for it.

• Multiplatform builds—Most CI servers are designed to run on
a single build machine. This, of course, means that all the build

250 Appendix B ❑ Evaluating CI Tools

activities will take place on the build server platform. For most
applications, this is fine. However, if you’re developing software
that must be built and tested for multiple platforms, things get a
little trickier. The best option in this case may be to purchase one
of the commercial tools that orchestrate build processes across
multiple servers.

• Accelerated builds—A key to CI is the capability to run the
complete build cycle quickly. Some experts advise keeping the
complete build time less than ten minutes1 for this reason. If your
build cycle is many hours long due to the sheer volume of your
code (this is rare), you may want to examine some of the tools
that are able to distribute build steps among multiple processes
on multiple build servers.

Build Schedulers—Essential Functionality
Essential functionality for build schedulers includes the following.

• Build execution—The core functionality of a build scheduler is
the execution of the automated build on a periodic basis. There
are some subtle differences between how different tools deter-
mine when to execute a build. Some tools are polling-driven.
These tools poll your version control repository periodically
(usually every few minutes) and execute a build when they detect
that a change has been made. Other tools are schedule-driven.
These tools check your version control repository on a predeter-
mined schedule based on an interval or an explicit schedule.

CI purists will argue that schedule-driven tools aren’t true CI
servers, since they are often configured for daily builds and usu-
ally don’t handle short-interval configurations well. From a tech-
nical standpoint I agree, and I personally prefer polling-driven
tools, but remember that the best tool is the one that helps you do
your job most effectively. If you find you work best with an
hourly build, it won’t be held against you, but it isn’t CI by
definition.

1. See Kent Beck’s Extreme Programming Explained, Second Edition.

Considerations When Evaluating Tools 251

Finally, some tools are event driven, meaning that a build is trig-
gered automatically when a change is made to the artifacts in
your version control system. Though this may sound preferable,
there’s little practical difference between event-driven builds and
polling-driven builds. Furthermore, an event-driven tool will
almost certainly require some amount of monkeying around with
your version control system, whereas a polling-driven tool
will not.

• Version control integration—Naturally, it’s important that you
choose a tool that integrates with your version control system.
Most tools support the most popular version control systems,
and it’s unlikely that you won’t find a tool that works with yours.
You’ll want to pay attention to how the tool interacts with your
tool. Does the tool always fetch a complete set of files for each
changed build with no option to configure this behavior? This
approach may be unsuitable if your project is large and you’re
trying to run near-continuous builds. Another helpful feature to
look for is how well the tool identifies the changes that went into
the build. At a minimum, the tool should identify which files
changed and the version numbers of the changed files.

• Build tool integration—This is another component that you
choose for integration with your version control system, and
most tools support most popular version control systems. Just
watch how the tool interacts with your version control platform.

• Feedback—Feedback is essential to CI. All of the tools listed in
this appendix support at least e-mail feedback, which may be
sufficient, but there are other options you might wish to consider,
such as feedback by instant message, text message, or some
other device. See Chapter 9 to learn more about some of our
favorite feedback devices.

• Build labeling—In most cases, you’ll want the tool to mark the
artifacts that contributed to a given build. This is called either
labeling or tagging, depending on your version control system.
Most tools provide some sort of ascending counter that is
appended to the label format that you provide.

252 Appendix B ❑ Evaluating CI Tools

Build Schedulers—Extended Functionality
Extended functionality for build schedulers includes the following.

• Interproject dependencies—Depending on your configuration
management strategy, if you have interproject dependencies you
may want to execute dependent project builds when a depended-
upon project is rebuilt.

• User interface—Strictly speaking, there’s no reason to require a
user interface for a build scheduler tool. The core functionality
runs as a daemon checking for version control changes, running
builds, and sending feedback. However, it is useful to have a user
interface that allows you to alter the configuration, check the
current build status, and download artifacts. All tools provide
this in some fashion, usually as a Web application interface.
Some tools, such as Luntbuild, are distributed as Web applica-
tions. Other tools, such as CruiseControl, take a different
approach with the user interfaces provided as optional elements.
Whatever the approach, a well-designed user interface will save
you time and effort when working with the tool.

• Artifact publication—At the very least, the end result of a suc-
cessful build is a deployable component. If you’re leveraging the
real power of CI, the results will also include documentation, test
results, quality analysis results, and other metrics. All tools pro-
vide some level of publication functionality by providing a
directory to hold published artifacts. More sophisticated tools
format developer test results and other reports automatically for
easy review.

• Security—Finally, some tools provide authentication and autho-
rization to allow you to specify who may view results and make
configuration changes. Usually, given the collaborative spirit of
CI, this isn’t necessary, but if you are supporting multiple devel-
opment groups or have unique security requirements, this may
be important. Remember, though, that enabling security
increases the support burden. Each time someone joins or leaves
your development team, you will need to update the tool’s secu-
rity database.

Considerations When Evaluating Tools 253

Compatibility with Your Environment
By compatibility, we’re talking about how well the tool integrates
with the other elements of your software development process. When
evaluating a build tool, check whether it includes a compiler for the
language you work in. Does it support your version control system?
These are the essential considerations. Looking further, you may wish
to examine the following issues.

• Does the tool support your current build configuration? Let’s
say you’re working on a Java project that’s still using JDK 1.2
and the deprecated elements therein (perhaps you are on a gov-
ernment project). Will the tool run on this Java release, or can
you configure that JDK to be used for compilation and execu-
tion? Most tools can be configured to build for any arbitrary plat-
form, but this is something you want to check.

• Does the tool require installation of additional software in
order to run? In the best case, you can drop the new tool into
place and get right to configuring it. In other cases, you may be
required to install some additional software before you can start.
For example, most of the Java build schedulers we examine later
in this appendix require a Web server with a servlet container.
Some tools may require installation of a new execution environ-
ment, such as Python or Ruby, in order to run. You should con-
sider the additional effort required to set up and support any
additional software required. Typically, the burden is fairly low
for these additional elements, but sometimes the less you’re
required to change, the better.

• Is the tool written in the same language as your project? The
more the tool developers have had to walk in your shoes and
experience the same environment-related hassles that you have,
the better their tool will deal with those issues. With open source
software, you’ll have the opportunity to run the tool in a debug-
ger if necessary. Also, as you become a master in the ways of CI,
you might extend the tool in interesting and useful ways and
contribute back to the tool community.

254 Appendix B ❑ Evaluating CI Tools

Reliability
Basically, what you’re looking for here is the maturity of the tool.
Unless you want to spend your time being a toolsmith, you want a tool
that’s been around the block a few times; one that’s been beat up a lot
and has become battle-hardened as a result. It’s safe to say that a
release 3.0 tool is likely to be more reliable than the Beta release of a
different tool.

Other important indications of maturity include the size of the user
and development communities. Support for noncommercial software
generally comes from its users, so the larger the user community, the
easier it is to find answers to your questions. Check out the support
mailing list archives for the tool. Are they very active? For open source
tools, how many developers are contributing to the project? How
active is recent development? How many times has the tool been
downloaded? Furthermore, if the tool has a long and storied history,
it’s a good indication that it will continue to be around for a while
longer.

Longevity
Whereas with reliability we are considering a tool’s past and present,
with longevity we’re concerned with the tool’s future. I’d be willing to
bet that none of the tools described later in this appendix will still be
around 1,000 years from now, but then again you don’t want to choose
a tool that goes belly-up next month.

 Again, look for evidence of a healthy user base and an established
development group. Is the tool used by a large and thriving commu-
nity, or is it being sold off the back of a wagon as a “miracle” solution
that is supposedly still a “well-kept secret?”

Though counterintuitive to some, longevity is a compelling argu-
ment for choosing an open source tool. With open source, it’s the
tool’s user community that keeps the tool vital. A good tool with
unique value stays in use, and a tool with nothing special to offer goes
out of fashion very quickly. With commercial products, the lifecycle
depends on the economic viability of both the product and its vendor.
We’ve all seen cases where a sleek, well-designed commercial product
has turned into unusable bloatware due to the pressure to continually

Automated Build Tools 255

add features. This is not to say that choosing a commercial tool is nec-
essarily a bad decision. Some commercial tools offer features that
can’t be found in any of the open source offerings. Just keep in mind
that your CI server will become your close companion, and you’ll
want it to stick around for a long time before having to say good-bye.

Usability
Finally, the easier a tool is to configure and use, the better. You may need
to experiment with a few tools to figure this out. Typically, the only
variation in usability you’ll find between tools is in configuring new
projects, which only needs to be done once per project. CruiseControl
is my tool of choice, and I typically hand-code the XML configuration
file that it requires (though a separate configuration GUI application is
available for this purpose). Writing XML is certainly less user-friendly
than the Web interfaces provided by most other tools, but I find the dif-
ference in configuration time much less important compared to the
advantages in using CruiseControl for my projects.

So now that you know the various facets to consider when evaluat-
ing CI tools, consider which are the most important for your CI sce-
nario. Let’s take a look at the tools that are currently available.

Automated Build Tools

Choosing an automated build tool is fairly straightforward. If you’re
building Java software, you’ll probably use Ant or perhaps Maven if
you want the project management features that it offers. If you develop
for .NET, you’ll most likely use NAnt or MSBuild.

This section provides an overview of these automated build tools.
This isn’t meant to be an exhaustive list of all possible build tools; for
instance, we won’t cover the build tools bundled with IDEs or GUI-
centric stand-alone build tools.

Before proceeding, we should give a tip of the hat to make, the
granddaddy of all build tools and still going strong. Invented in 1977 at
Bell Labs, make introduced us to dependency checking and incremental

256 Appendix B ❑ Evaluating CI Tools

builds. Though the tools that followed are better suited for Java and
.NET projects, make (or one of its many variants) is a viable option for
building software written in many languages, most notably C or C++.
Now, with that acknowledgment out of the way, let’s start our tool survey.

Ant
Distributor: Apache (http://ant.apache.org)

Platform: Java

Requires: JDK 1.2 or later

At the time of this publication, Ant is the most widely used build tool
for Java. Its functionality is extensive, covering all the features listed
earlier in the appendix. Because the use of Ant has been covered ear-
lier in this book, I’ll simply reiterate that Ant builds are defined using
an XML configuration file (build.xml) and are run from the command
line or through integration with other tools such as IDEs and build
scheduler tools.

Ant was originally released by Apache for its own use in 2000 and
is one of the most widely used Java tools in the world. It is well docu-
mented and rock solid in terms of reliability. Simply put, Ant should
probably be your first thought when choosing a build tool for a Java
project. The only compelling alternatives to Ant—Maven and some
commercial tools covered later—work at a higher level than Ant and
often use Ant’s functionality “under the hood.”

Maven 1
Distributor: Apache (http://maven.apache.org/maven-1.x/)

Platform: Java 2

Requires: JDK 1.4 or later

Apache Maven is an open source tool that works at a level above typi-
cal build tools. On its Web site, Maven is described as a “software
project management and comprehension tool.” With very little config-
uration, Maven is able to build your software project, run your devel-
oper tests, produce a number of useful source quality reports, and
generate a Web site to contain the output of all of these steps.

http://ant.apache.org
http://maven.apache.org/maven-1.x/

Automated Build Tools 257

Installing Maven is straightforward. An installer is provided for
Windows platforms; on other platforms it’s a simple matter of extract-
ing the distribution, setting a MAVEN_HOME environment variable, and
adding Maven to your path. Integration is also provided for the follow-
ing IDEs: IntelliJ IDEA, Eclipse, JBuilder, and JDEE.

To configure a project to use Maven, you first write a project.xml
file in the project’s root directory that describes your project. A very
simple example can be seen in Listing B-1. The information in
project.xml defines what is known as the Project Object Model (POM).
The POM describes a wide range of information about the project,
from basics such as the layout of the project’s directory structure up to
higher-level information such as subscription information for the
developer and user mailing lists.

LISTING B-1 A Simple project.xml Example

1 <project>
2 <id>helloworld</id>
3 <name>Hello World</name>
4 <version>1.0-SNAPSHOT</version>
5 <organization>
6 <name>Continuous Integration Book</name>
7 </organization>
8 <description>Our Hello World project</description>
9 <build>
10 <sourceDirectory>src/java</sourceDirectory>
11 <unitTestSourceDirectory>src/test</unitTestSourceDirectory>
12 <unitTest>
13 <includes>
14 <include>**/*Test.java</include>
15 </includes>
16 </unitTest>
17 </build>
18 </project>

One of the key advantages of Maven is that, whereas with a build
tool such as Ant you are required to explicitly describe what you want
your build to do, Maven provides very sensible defaults for how a
project should be built and what artifacts should be produced. This
isn’t to imply that Maven is inflexible; you can easily customize your
POM to override and extend Maven’s default behavior. Maven
includes plug-ins that are used for everything from building J2EE arti-
facts to running additional reports. You can also extend Maven by
writing your own plug-ins or through scripting.

258 Appendix B ❑ Evaluating CI Tools

Another interesting aspect is how Maven handles dependencies,
including the JARs required to build your project and those required
internally by Maven for its own functionality. Instead of including
your own library of JARs within your project, you declare the JARs as
project dependencies, and Maven handles the task of downloading the
JARs from a central repository to a cache on the machine on which
Maven is installed.

Maven is used by invoking a goal from the command line. Maven
goals are analogous to targets in other build tools. For instance, calling
maven clean from the command line will remove all build output and
other generated artifacts. Calling maven build will build the project
and run its JUnit test suite. One of the more interesting goals is site,
which will build your project, test it, run reports, and publish to a
project Web site. This is the default project reports summary page gen-
erated from the project.xml shown in Listing B-1.

It’s important to understand that Maven is designed to produce a
single build artifact per project, be it a JAR, WAR, or EAR. If your
project is built from multiple JARs and other files, each of these
requires its own separate Maven project, with the interproject depen-
dencies declared as necessary. Maven 2 makes it much easier to aggre-
gate multiple build artifacts under a single Maven project.

Most Java build scheduler tools provide Maven integration in addi-
tion to Ant integration. There is also a separate Maven subproject
named Continuum, discussed later, to provide build scheduling. If
you’ve decided to use Maven, be sure that the build scheduler tool you
pick is one that supports it.

Overall, Maven is very worthy of consideration, provided that you
are comfortable with giving up the absolute control that you get with a
lower-level build tool and buy into its view of dependency manage-
ment. Maven certainly provides a lot of functionality for a relatively
small amount of configuration overhead.

Maven 2
Distributor: Apache (http://maven.apache.org)

Platform: Java

Requires: JDK 1.4 or later

http://maven.apache.org

Automated Build Tools 259

Maven 2 continues Maven 1’s tradition of a commonsense and easy-
to-use project management framework. Ease of use is achieved by pro-
viding a common project structure and enforcing a uniform build sys-
tem. Furthermore, Maven 2 supplies standardized project information,
guidelines for best practices, and a transparent route to migrating
Maven 1 features.

Maven 2 has significant improvements over its predecessor. It
seems much faster and the new distribution is also much smaller in
size. Other enhancements include improved dependency management
(support for transitive dependencies), defined build lifecycle, improved
plug-in architecture, and unified project definition.

Setting up and running Maven 2 is straightforward. Start by down-
loading the latest binary distribution from http://maven.apache.org/
download.html. You can easily create a skeleton project with the very
basic structure and the minimum number of files. Just run

mvn archetype:create -DgroupId=my.group.id -DartifactId=my-artifact-id

and Maven 2 will create a project conforming to a standard directory
layout. You can now add your own Java classes and build the project
by typing mvn clean package.

One of the features that makes Maven 2 so versatile is the avail-
ability of high-impact, open source plug-ins. The set of core Maven 2
plug-ins in Apache covers common tasks such as compilation and
deployment, packaging (EJB, JAR, RAR, WAR, and EAR files),
reporting, tools, and IDE project generation. Maven 2 is also supported
by the Mojo project at Codehaus. Mojo provides many plug-ins, rang-
ing from assembler and AspectJ to xml and xdoclet. Using a plug-in
can be as simple as declaring it in the POM file. The tool is smart
enough to locate the plug-in on the Internet, download its binaries to a
temporary location on the local drive, configure the plug-in, run the
appropriate goal, and report its results. Very useful—and just four lines
of code made that possible.

Maven 2 provides support for IDEs as well. Codehaus, the host of
Mojo, distributes Mergere for Eclipse and Mevenide for NetBeans.
Both plug-ins provide the capability to open a Maven 2 project file
(POM) inside the IDE and run Maven goals seamlessly from the IDE.

http://maven.apache.org/download.html
http://maven.apache.org/download.html

260 Appendix B ❑ Evaluating CI Tools

Having heard all the benefits of this new tool, should you consider
Maven 2 as your build system? It depends. If you have a large enter-
prise project with a number of Ant scripts, migrating the scripts and
changing your project layout can be quite time-consuming. Maven 2
provides ways to call Ant targets from the POM file, which could
potentially ease the migration; however, a certain level of planning will
be necessary. If, on the other hand, you’re starting a new project, the
key features such as standardized project layout, dependency manage-
ment, automatic project documentation, and the availability of highly
usable third-party plug-ins should put Maven 2 on top of your list of
choices for a build system. Many CI servers, including CruiseControl,
provide support for Maven 2. Figure B-1 shows a project site gener-
ated by Maven.

FIGURE B-1 Project site generated by Maven

Automated Build Tools 261

NAnt
Distributor: SourceForge (http://nant.sourceforge.net)

Platform: Microsoft .NET

Requires: Microsoft .NET Framework 1.0 and later or Mono
(1.0 and 2.0 profile)

NAnt is an open source automated build tool for Microsoft .NET
projects. As its name implies, NAnt is very similar to Ant in configura-
tion and operation. Like Ant, NAnt uses an XML build file to define
how projects are built. Listing B-2 shows an sample build file that
compiles a single C# source file. Build files should be named with a
.build extension.

NAnt provides functionality as tasks that are called from targets
defined in your build files. NAnt includes tasks for compiling pro-
grams written in C, C++, C#, J#, Visual Basic.NET, and JScript.NET.
Other tasks supplied with NAnt provide functionality for managing
files, creating AssemblyInfo files, registering .NET services, running
NUnit unit tests, and accessing CVS version control repositories.

LISTING B-2 A Simple NAnt Build File

1 <project name="Hello World" default="build" basedir=".">
2 <target name="clean">
3 <delete file="HelloWorld.exe" failonerror="false" />
4 </target>
5 <target name="build">
6 <csc target="exe" output="HelloWorld.exe">
7 <sources>
8 <include name="HelloWorld.cs" />
9 </sources>
10 </csc>
11 </target>
12 </project>

Builds are run from the command line by invoking NAnt and pass-
ing a target name as an argument. For example, to run the clean target
in the example in Listing B-2, you would enter nant clean on the
command line. Build files may also declare a default target to run
when no target name is provided. Line 1 in Listing B-2 declares the
target build as the default.

http://nant.sourceforge.net

262 Appendix B ❑ Evaluating CI Tools

NAnt has been available since 2001. Though it is still in the Beta
phase of release, it is widely used and very robust. It should be noted
that beginning with Visual Studio 2005, Microsoft has entered the fray
with its own XML descriptor-based build tool named MSBuild. Both
NAnt and MSBuild should be considered good choices for automating
your .NET project builds.

Rake
Distributor: RubyForge (http://rake.rubyforge.org/)

Platform: Ruby and other development platforms

Requires: Ruby 1.8 or later

Rake is Ruby’s make; however, it’s unique in that Rake files are essen-
tially Ruby scripts rather than XML or some other grammar. Conse-
quently, employing Rake is incredibly simple. Much like Java’s Ant,
Rake has the notion of tasks, which can have dependencies on other
tasks; furthermore, Rake comes with a series of tasks out of the box,
such as running developer tests, generating RDocs, and a plethora of
file utilities. Interestingly enough, Rake’s powerful build language can
support building other languages, such as Java.

For example, Listing B-3 shows a Rake file that runs all unit tests
defined in the tests/unit/ directory.

LISTING B-3 Sample Rake File That Runs Unit Tests

require "rake/testtask"

task :default => [:unit-test]

Rake::TestTask.new(:unit-test) do | tsk |
 tsk.test_files = "tests/unit/**/*Test.rb"
end

Note how the second line defines the default task as the unit-
test, meaning that if Rake is invoked via the command line without
any arguments, the unit-test task will be run.

Creating Rake task dependencies is easy; in fact, you can see this
in action in Listing B-3. The default task has an implicit dependency
on unit-test. Within task definitions, you can also define dependen-

http://rake.rubyforge.org/

Build Scheduler Tools 263

cies. For instance, it probably makes sense to run all unit tests before
generating source code documentation; consequently, the Rake file in
Listing B-4 adds an RDoc generation task that has a direct dependency
on the unit-test task.

LISTING B-4 Sample Rake File with Dependencies

require "rake/testtask"
require "rake/rdoctask"

task :default => [:unit-test]

Rake::TestTask.new(:unit-test) do | tsk |
 tsk.test_files = "tests/unit/**/*Test.rb"
end

Rake::RDocTask.new(:rdoc => [:test]) do | tsk |
 tsk.rdoc_files.include("./src/ruby/*.rb")
end

Obviously, for those developing applications in a Ruby environ-
ment, Rake is the way to go. As mentioned previously, Rake doesn’t
prohibit building non-Ruby applications.

Build Scheduler Tools

Looking at the variety of build scheduler tools and their popularity, it’s
plain to see that CI has gained a lot of popular acceptance. In this sec-
tion, we examine the most popular of these tools for Java and .NET
projects. As indicated, we will not cover all of the different tools on
the market. However, we do cover the most well-established tools in
this arena (as well as some interesting newcomers), but new tools are
arriving on the scene all the time. These general-purpose tools are
designed to run on a single build server and easily handle most
projects. This accounts for the majority of tools in this appendix.
You’ll find both open source tools and commercial tools in this cate-
gory. For each tool, we tell you whether it’s open source or commer-
cial, then list the system prerequisites and the supported build tools
and version control systems.

264 Appendix B ❑ Evaluating CI Tools

AnthillPro
Distributor: Urbancode (www.anthillpro.com/)

Platform: Java

Build tools: Ant, GNU Make, Maven, NAnt, and command line

Version control systems: AccuRev, ClearCase, CVS, MKS,
Perforce, PVCS, StarTeam, Subversion, and Visual SourceSafe

Requires: JDK 1.4 or later

Urbancode created Anthill OS in 2001 as a freely available tool for
build management. Based on the success of this product, they provide
a commercial product called AnthillPro. AnthillPro builds upon the
functionality provided by Anthill OS, providing additional features,
more flexible configuration, and a revised user interface. The main
dashboard is shown in Figure B-2. Urbancode offers an evaluation edition
available for download from its Web site, so you can try it for yourself.

AnthillPro adds a number of capabilities beyond those offered in
Anthill OS. First, AnthillPro provides adapters for several additional
version control providers. Another key differentiator is that AnthillPro
provides support for Maven and GNU Make, as well as providing inte-
gration with Ant. For some, the most useful addition may be the
authentication and authorization features. This new functionality
allows administrators to control who is allowed to view and edit con-
figuration options, as well as who can access build artifacts. Because it
provides a tool for comprehensive build management, not just CI, it
provides features for multiple build types (other than just an integra-
tion build during the development cycle), project dependencies, and
several other features.

Installation essentially consists of extracting an installation JAR
from the command line. AnthillPro is very flexible when it comes to
configuration, allowing users to configure different JVM profiles and
Ant installations to be used for builds. Like Anthill OS, AnthillPro is
also schedule-driven. New schedules may be defined as simple inter-
vals or as cron expressions.

Configuring AnthillPro can be daunting for new users—the
increased flexibility is embodied in a vast array of options that can be
confusing. As often occurs with tools with an increased set of func-

www.anthillpro.com/

Build Scheduler Tools 265

tionality, this can make configuration difficult, though it shouldn’t take
long to become accustomed to the tool.

Creating a new build in AnthillPro takes several steps. First, you
add a new project, which identifies the project’s version control repos-
itory and the labeling strategy to use. After creating the project, you
choose which version control branches of the project to build. Often
this will just be the main branch (also called the trunk), but this feature
can also be used to provide different configurations—for example, for
a development branch, a release branch, and a bug fix branch. Each
branch lets you configure multiple “build life(s).” Each build life can
define its own schedule, publishing strategy, and build process. For
instance, you might configure an hourly incremental Ant build
throughout the day for compilation and testing, with a full Maven site
publication performed once a night for full system testing.

AnthillPro provides a lot of flexibility for those who require it, but
the increase in settings is fairly steep from Anthill OS. If you’re looking

FIGURE B-2 AnthillPro dashboard

266 Appendix B ❑ Evaluating CI Tools

for a tool to do more than CI, but still provide CI capabilities, this may
be a tool that meets your needs.

Continuum
Distributor: Apache (http://maven.apache.org/continuum/)

Platform: Java 2

Build tools: Ant, Maven 1, Maven 2, and Shell

Version control systems: Bazaar, CVS, Perforce, StarTeam, and
Subversion. There is partial support for ClearCase, Visual
Source Safe, and file systems.

Requires: Java JDK 1.4 or later

The benefits of Continuum include support for many of the leading
version control tools on the market, such as Subversion and CVS, with
plans for StarTeam, ClearCase, and Perforce. Continuum includes an
easy-to-use Web-based setup and user interface. Remote management
capabilities are already available via XML-RPC and SOAP. Contin-
uum, along with most other servers, provides various feedback mecha-
nisms such as e-mail and instant messaging (IRC, Jabber, and MSN).
Should Continuum not come up to speed fast enough, other Java-based
CI servers such as CruiseControl have already included support for
Maven 2. Be sure to check out the latest Maven 2 with Continuum
advancements online. Figure B-3 illustrates an example of configuring
a Continuum project for Ant.

CruiseControl
Distributor: ThoughtWorks (http://cruisecontrol.source-
forge.net)

Platform: Java 2

Build tools: Ant, Maven 1, Maven 2, and NAnt

Version control systems: ClearCase, CM Synergy, CVS, MKS,
Perforce, PVCS, Snapshot CM, StarTeam, Subversion, Surround
SCM, and Visual SourceSafe

Requires: Java JDK 1.3 or later

http://maven.apache.org/continuum/
http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

Build Scheduler Tools 267

The open source product CruiseControl is by far the most widely used
CI server for Java. Unlike the other general-purpose Java build sched-
uling tools in this appendix, which are packaged as monolithic Web
applications, CruiseControl is packaged as several complementary
components, such as the main CruiseControl service, an optional
reporting Web application, and an optional Swing configuration GUI.

CruiseControl is typically set up to run as a background process,
with the Java Web application providing the front-end and reporting
interface. Refer back to Chapter 1 for an overview of configuring Cruise-
Control. New users often find the initial setup challenging, at least
compared to the tools that provide a Web-based configuration interface.
You will probably find that using the Swing configuration GUI will
help reduce the time required for configuration. Even so, allow yourself
extra time to review the configuration reference and online resources
that exist to help you get started. Understanding the config.xml file is
crucial to configuring CruiseControl properly.

FIGURE B-3 Configuring an Ant project using Continuum

268 Appendix B ❑ Evaluating CI Tools

Beyond its efficient engine and support for a wide range of version
control systems, CruiseControl offers additional features not found in
some of the other tools. If you use CruiseControl to automate several
projects, you can configure it to run multiple threads, allowing for con-
current builds. Build artifacts can be pushed to remote servers using
FTP or Secure Copy (SCP) if desired. CruiseControl also offers a JMX
interface that can be used for remote configuration or automation of
the CruiseControl service itself.

Given its functionality, wide adoption, and robustness, you should
probably consider CruiseControl one of your prime candidates when
adopting a CI for Java projects.

CruiseControl.NET
Distributor: ThoughtWorks (http://confluence.public
.thoughtworks.org/display/CCNET)

Platform: Microsoft .NET

Build tools: MSBuild, NAnt, and Visual Studio .NET

Version control systems: ClearCase, CVS, MKS, Perforce,
PVCS, SourceGear Vault, StarTeam, Subversion, Synergy, and
Visual SourceSafe

Requires: Microsoft .NET Framework version 1.0, 1.1, or 2.0

Like CruiseControl for Java, CruiseControl.NET is the most widely
used CI server for .NET projects. I have to say that I found installation
and configuration quite easy to perform. Especially helpful were the
sample configuration files that are provided with the installation.
These examples demonstrate most of the common build and version
control configuration options. Granted that I’ve been using Cruise-
Control for some time and configuration of CruiseControl.NET is very
similar, I was still impressed when I was up and running with Cruise-
Control.NET literally within minutes of installation.

CruiseControl.NET can be used to run NAnt and MSBuild tasks,
but it can also be used to automate simple builds using Visual Studio
.NET (though this requires installation of Visual Studio components
on the build server). CruiseControl.NET build status information and
build artifacts can be accessed via the optional Web application. Instal-
lation of the Web application was likewise hassle-free. Figure B-4
shows a sample build result Web page.

http://confluence.public.thoughtworks.org/display/CCNET
http://confluence.public.thoughtworks.org/display/CCNET

Build Scheduler Tools 269

Released in 2003, CruiseControl.NET hasn’t been around as long
as its Java counterpart. Despite its relative youth, however, CruiseCon-
trol.NET is a very reliable tool and its documentation and user support
are excellent. If you’re planning to implement CI for your .NET
projects, I strongly recommend using this tool.

Draco.NET
Distributor: SourceForge (http://draconet.sourceforge.net/)

Platform: Microsoft .NET

Build tools: NAnt and Visual Studio .NET

Version control systems: CVS, Subversion, and Visual
SourceSafe

Requires: Microsoft .NET Framework version 1.0 or 1.1

FIGURE B-4 CruiseControl.NET dashboard

http://draconet.sourceforge.net/

270 Appendix B ❑ Evaluating CI Tools

Draco.NET is another open source CI server for the .NET set. It’s very
similar to CruiseControl in terms of configuration and use; in fact, the
Draco.NET home page credits CruiseControl as its inspiration. Like
CruiseControl, the core service and the Web front end are distributed
as separate components, in this case as Windows installers. To this,
Draco.NET adds a client component that allows for command-line
invocation of the build server from a remote machine.

Installation uses the standard Microsoft Installation service and is
very straightforward. Similar to CruiseControl, builds are configured
using an XML descriptor file, in this case named Draco.builds.config.
Listing B-5 shows a simple example. Documentation on configuring
Draco.NET is contained in a help file included with the distribution,
but it is fairly brief. Fortunately, Draco.NET includes extensive exam-
ples in its default configuration file. Even so, configuring builds and
the optional Web front end can be a tricky trial-and-error process; be
sure to allow yourself extra time to set up the tool. Draco.NET is typi-
cally used to control NAnt builds of .NET projects, but you can also
directly invoke Visual Studio .NET build functionality if Visual Studio
is installed on the build server.

LISTING B-5 Sample Draco.builds.config File

1 <draco xmlns="http://www.chive.com/draco">
2 <pollperiod>600</pollperiod>
3 <quietperiod>60</quietperiod>
4 <timeoutperiod>3600</timeoutperiod>
5 <rootsourcedir>Source</rootsourcedir>
6 <mailserver>mail.5amsolutions.com</mailserver>
7 <fromaddress>draco@5amsolutions.com</fromaddress>
8 <builds>
9 <build>
10 <name>HelloWorldNET</name>
11 <notification>
12 <email>
13 <recipient>etavela@5amsolutions.com</recipient>
14 </email>
15 <file>
16 <dir>C:\Draco\Output</dir>
17 </file>
18 </notification>
19 <nant>
20 <buildfile>nant.build</buildfile>
21 <targets>build</targets>
22 </nant>
23 <cvs>

Build Scheduler Tools 271

24 <cvsroot>:pserver:anonymous@localhost:/cvsrepo</cvsroot>
25 <module>HelloWorldNET</module>
26 </cvs>
27 </build>
28 </builds>
29 </draco>

Though not as widely used as CruiseControl.NET, Draco.NET has
a significant number of users. Despite some glitches along the way,
installation and configuration are reasonably manageable. If you’re
setting up CI for .NET for the first time, though, you’ll probably be
happier starting with CruiseControl.NET due to its usability and more
extensive documentation.

Luntbuild
Distributor: SourceForge (http://luntbuild.javaforge.com/)

Platform: Java 2

Build tools: Ant, Maven, and command line

Version control systems: AccuRev, ClearCase, ClearCase
UCM, CVS, Perforce, StarTeam, Subversion, and Visual
SourceSafe

Requires: JDK 1.3 and later, Java Servlet container

Luntbuild is another popular open source Web-based CI server for the
Java platform. As one would expect, installation consists of deploying
the Luntbuild WAR to an existing Java Server engine on the build
server.

The Web-based user interface can be somewhat confusing and
counterintuitive. Luntbuild does offer more flexibility than other Web-
based CI servers if you are willing to overcome the usability hurdle.
Figure B-5 is an example of configuring a scheduler using Luntbuild.

Luntbuild is a relatively recent addition, having been first released
on SourceForge in 2004, but nevertheless is robust and has a good-
sized user base. Its usability does leave something to be desired. Per-
haps as Luntbuild matures the interface will improve. In the meantime,
I would recommend sticking with the tried-and-true CruiseControl
unless having a Web interface for configuring builds is important to
you.

http://luntbuild.javaforge.com/

272 Appendix B ❑ Evaluating CI Tools

Conclusion

CI has entered the mainstream and has the tools and user community
to prove it. Now that you’re ready to join those of us who have bene-
fited from the CI approach, you can choose the tools that provide the
best match for you, your project, and your team. Though we’ve tried to
provide you with as much information as possible to inform your deci-
sions, you should use this appendix as a starting point in your investi-
gations. Be sure to explore the wealth of information about these tools
that you can find online in their documentation, FAQs, and mailing
lists. With all this information in hand, you should be able to make
your CI implementation a productive one.

FIGURE B-5 Luntbuild

273

Bibliography

Ambler, Scott W., and Pramod J. Sadalage. Refactoring Databases:
Evolutionary Database Design. Boston: Addison-Wesley, 2006.

Antoniol, G., M. D. Penta, E. Merlo, and U. Villano. “Analyzing clon-
ing evolution in the Linux kernel.” Journal of Information and Soft-
ware Technology, 44(13):755–765, 2002.

Beck, Kent, and Cynthia Andres. Extreme Programming Explained,
Second Edition. Boston: Addison-Wesley, 2005.

Berczuk, Stephen P., and Brad Appleton. Software Configuration
Management Patterns: Effective Teamwork, Practical Integration.
Boston: Addison-Wesley, 2003.

Booch, Grady. Object Solutions: Managing the Object-Oriented
Project. Menlo Park, CA: Pearson Education, 1996.

Cusumano, Michael A. “Software Development Worldwide: The State
of the Practice” (with Alan MacCormack, Chris Kemerer, and Bill
Crandall), IEEE Software, November–December 2003, vol. 20, no. 6,
pp. 28–34 (Invited). www.pitt.edu/~ckemerer/CK%20research%20papers/
SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf

Cusumano, Michael A., and Richard W. Selby. Microsoft Secrets: How
the World’s Most Powerful Software Company Creates Technology,
Shapes Markets, and Manages People. New York: Free Press, 1995.

Duvall, Paul. “Automation for the People: Choosing a Continuous
Integration Server.” http://www-128.ibm.com/developerworks/java/
library/j-ap09056/.

Duvall, Paul. “Automation for the People: Continuous Inspection.”
http://www-128.ibm.com/developerworks/java/library/j-ap08016/.

Duvall, Paul. “Automation for the People: Remove the Smell from
Your Build Scripts.” http://www-128.ibm.com/developerworks/java/
library/j-ap10106/.

www.pitt.edu/~ckemerer/CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf
http://www-128.ibm.com/developerworks/java/library/j-ap09056/
http://www-128.ibm.com/developerworks/java/library/j-ap09056/
http://www-128.ibm.com/developerworks/java/library/j-ap08016/
http://www-128.ibm.com/developerworks/java/library/j-ap10106/
http://www-128.ibm.com/developerworks/java/library/j-ap10106/
www.pitt.edu/~ckemerer/CK%20research%20papers/SwDevelopmentWorldwide_CusumanoMacCormackKemerer03.pdf

274 Bibliography

Fowler, Martin. “Continuous Integration.” Available online at
www.martinfowler.com/articles/continuousIntegration.html.

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Read-
ing, MA: Addison-Wesley, 1999.

Fowler, Martin, and Pramod Sadalage. “Evolutionary Database Design.”
Available online at www.martinfowler.com/articles/evodb.html.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Boston, MA: Addison-Wesley, 2000.

Kamiya, T., S. Kusumoto, and K. Inoue. “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.”
IEEE Transactions on Software Engineering, 28(6):654–670, 2002.

McConnell, Steve. Software Project Survival Guide. Redmond, WA:
Microsoft Press, 1998.

O’Reilly, Tim. “What Is Web 2.0: Design Patterns and Business Mod-
els for the Next Generation of Software.” www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html.

Sierra, Kathy. “Why ‘duh’... isn’t.” http://headrush.typepad.com/creating_
passionate_users/2006/09/why_duh_isnt.html.

Toomim, Michael, Andrew Begel, and Susan L. Graham. “Managing
Duplicated Code with Linked Editing.” http://harmonia.cs.berke-
ley.edu/papers/toomim-linked-editing.pdf.

VanDoren, Edmond. “Cyclomatic Complexity.” www.sei.cmu.edu/str/
descriptions/cyclomatic.html.

Venners, Bill. “Refactoring with Martin Fowler: A Conversation with
Martin Fowler, Part I.” www.artima.com/intv/refactor.html.

Wake, William C. “Java Coding Conventions on One Page.”
www.xp123.com/xplor/xp0002f/codingstd.gif.

Watson, Arthur H., and Thomas J. McCabe. “Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric.”
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm.

Wilcox, Glen. “Managing Your Dependencies with JDepend.”
www.onjava.com/pub/a/onjava/2004/01/21/jdepend.html.

www.martinfowler.com/articles/continuousIntegration.html
www.martinfowler.com/articles/evodb.html
www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://headrush.typepad.com/creating_passionate_users/2006/09/why_duh_isnt.html
http://headrush.typepad.com/creating_passionate_users/2006/09/why_duh_isnt.html
http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf
http://harmonia.cs.berkeley.edu/papers/toomim-linked-editing.pdf
www.artima.com/intv/refactor.html
www.sei.cmu.edu/str/descriptions/cyclomatic.html
www.sei.cmu.edu/str/descriptions/cyclomatic.html
www.xp123.com/xplor/xp0002f/codingstd.gif
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm
www.onjava.com/pub/a/onjava/2004/01/21/jdepend.html

275

Index

A

“A Day in the Life,” 25–29
Accelerated builds, 250
Acceptance tests. See Functional tests
AccuRev, 234
Afferent Coupling, 170–172, 240
Agitator, 236
Agitator Agitar One, 236
Alienbrain, 234
Amazon, 190
Ambient Devices, 214, 241–242
Ambient Orb, 214–215, 241–242
Ambler, Scott, 109n
Analysis tools, 37
Ant, 68, 256

and ambientorb, 215
build difference report, 198
build scripts, 6–7, 10, 34, 53–54, 219
and Cargo, 19
and Checkstyle, 17–18, 169
and CPD, 177–180
database integration, 112
and JDepend, 172
and JUnit, 16, 140
and PMD, 175
scripts, 113–116
and Simian, 178–181
sql, 14, 113–116

ant db:prepare, 112–113, 116
ant deploy, 191
AnthillPro, 229, 264–266
Apache, 233

Continuum, 85, 229, 266–267
Gump, 232
Maven, 229, 233, 258
Maven 1, 256–258
Maven 2, 258–260
Tomcat server, 18–19

XML scripts, 232
See also Ant

Apache Java Enterprise Mail Server (Apache
James), 210n, 242

Appleton, Brad, 8, 74–75, 120
Architects, and feedback, 208
Architectural adherence, 59–60
Artifact publication, 252
assert, 132–138, 146, 157
Asserts, in test cases, 156–157
Asset labeling, 191–194
Assumptions, 23–25, 30, 191
Atlassian, 229
Authentication, 252
Automated

builds, 6, 66–69, 224, 255–263
code documentation tool, 57
code inspections, 17–18, 163
inspection resources, 60, 239–241
inspectors, 228
process, 27
queued integration builds, 223–224
regression testing, 37, 53–54, 237
testing, 15–16, 41–42, 44, 197

Automation for the people, 227–228

B

Bamboo, 229
batchtest, 16, 140, 185
Beck, Kent, 88, 250n
Begel, Andrew, 177
Berczuk, Stephen, 8, 74–75, 120
“Big Ball of Mud,” 59
Bitten, 232
Booch, Grady, 36
Borland, 85, 223n, 231, 234
Branch coverage, 181

276 Index

Branching, 100–101
Broken builds, 41, 44, 86
Broken code, 39–44, 86
Browser-based testing, 238
Browser simulation, 136, 236
Bug detection, 53, 239
Build (CI step), 34–35
build-database.xml, 112, 115–116
.build extension, 261
BuildBeat, 232
BuildBot, 232
BuildForge, 96, 230
Build(s), 4, 27

automated, 6, 66–69, 224
broken, 41, 44, 86
delegating, 9
difference report, 198
execution, 250–251
failed, 32–33, 98, 213
feedback reports, 196–198
full builds, 67
incremental, 94
labels, 195–196, 251
life, 265
management tool, 230
mechanisms, 80–81
metrics, 88–89
performance, 87
private, 6–7, 10, 26–28, 41–44, 79, 99
scalability, 87
schedulers, 8–9, 250–252, 263–272
scripts, 10, 52, 70, 73–74, 228, 232–233
single command, 69–73
smell, 228
speed, 87–96
status, 43, 126, 206–207
success/failure trends, 31
tool integration, 251
tools, 10, 68, 248–250
triggering, 81
types, 78–81

BVCs (big visual charts), 220

C

C, 241, 243
C#, 71, 230, 241, 243
C++, 241, 243

Capistrano (formerly SwitchTower), 241
Cargo, 19
Categorizing tests, 132, 138–140
CCTray, 217–218
Centralized software, 74–75
Checkin branches, 231
Checkstyle, 17–18, 58n, 169, 175, 228, 239
ClearCase (SCM/version control tool), 8, 42n, 233,

266
Clover, 180, 239
Clover.NET, 180
CM Crossroads, 232
Cobertura, 180, 184, 239
Cockburn, Alistair, 220
Code

analysis tools, 37, 58n
audits, 173–176
compilation, 12–13, 248
coverage tool, 239, 240
and documentation, 20
documentation tool, 57
duplication, 239, 241
inspections, automated, 17–18
listeners, 183
metrics, 166–167, 170–172
metrics tool, 58n
quality analysis, 249
reuse, 176–180
smell, 57–58

Code coverage, 27, 42, 54–55, 180–182, 184
Codehaus, 259
Coding standard, 37, 173–176

adherence, 58–59, 239
Collateral damage effect, 170
Command line, 6–7, 69, 112
Commit build, 80
Commiting code frequently, 39–40, 44
Compatibility, tools, 253
Compilation, source code, 12–13
Complexity reporting, 167–170
component directory, 139–140
Component packaging, 248
Component tests, 134, 141–143

dbUnit, 134–135
length/speed to run, 142
repeatable, 148–156

Concurrent Versions System (CVS), 8, 192, 198,
233, 266

Confidence, 32

Index 277

Configuration files, 77–78
Continuous, 27
Continuous compilation, 35
Continuous Database Integration (CDBI), 107,

121–123
automating, 110–117
DBA on development team, 124
developer changes, 123
fixing broken builds, 124
integrate button, 125–126
local database sandbox, 117–119
version control repository, 119–121

Continuous deployment, 126, 189–191
build feedback reports, 196–198
build labels, 195–196
clean environment, 194–195
release rollback, 199
repository labels, 191–195
testing, 196

Continuous feedback, 203–209
Ambient Orb, 214–215
devices (CFDs), 205
e-mail, 210–212, 251
SMS (text messages), 56, 212–213, 217
sounds, 218–219
wide-screen monitors, 220–221
Windows task bar, 217–218
X10 devices, 216–217

Continuous inspection, 161–165
code audits, 173–176
code complexity, 167–170
code coverage, 180–182
code metrics, 166–167, 170–172
compared with testing, 164–165
design reviews, 170–172
duplicated code, 176–181
inspectors, 165–166
quality, 182–185

Continuous Integration, defined, 27
Continuous Integration Server Matrix, 230
Continuous-prevention development, 148
Continuum, 85, 229, 266–267
Copy/Paste Detector (CPD), 61, 177–180, 228
Coupling metrics, 170–172
Coverage frequency, 183–184
cron, 8, 81, 264
CRUD, 7, 144
CruiseControl, 230, 266–268

EMMA coverage report, 182

polling for changes, 8–9, 26
sending e-mail, 11, 56, 210–212
sounds, 219
web updates, 4
X10 devices, 216

CruiseControl config.xml, 8–9, 11
CruiseControl.NET, 217, 230, 268–269
CruiseControl.rb, 232
csc, 71
Cusumano, Michael A., 36
CVS (SCM/version control tool), 8, 192, 198, 233, 266
Cyclomatic complexity, 163
Cyclomatic Complexity Number (CCN), 167–169

D

-D, 78
D (programming language), 243
Daily builds, 36, 228

2003 study results, 66
Data Access Object (DAO), 135, 144–150, 153
Data Definition Language (DDL), 14, 114, 116
data-definition.sql, 112, 114, 116
Data Manipulation Language (DML), 14, 116
data-manipulation.sql, 112, 116
Data sources, 109
Database(s)

administration, 50–51
creation, 112–115
integration, 14–15
manipulation, 115–116
orchestration script, 116–117
resources, 234–235
sandbox, 117–119
scripts, 51
seeding, 116, 134–135, 143, 149, 154
server, 117
shared, 117–119
source code, 14
testing, 125
and version control repository, 50–51
See also Continuous Database Integration (CDBI)

DBA, 110–112, 120, 123–124
db:create, 14, 112–113, 116
db:insert, 112–116
db:refresh, 127–128
DbUnit, 115–116, 149, 152, 236

component tests, 134–135

278 Index

Debugging, xxiii, 53, 117, 133, 239
Dedicated machines, 80–84, 90, 99–100
Defect-driven development, 144–146
Defect testing, 143–148
Defects, 29–31, 57–58
Delegating builds, 9, 219
delete, 71
Delphi, 241
Dependency analysis tools, 60
Deployable software, 31
Deployment, 18–19

to an FTP server, 73
functionality, 249
resources, 241

Design reviews, 170–172
Design smell, 57
Developer testing, 37, 132, 138–140
Developers, 6–7, 39–43, 123

and feedback, 208
modifying database scripts, 123
and sandboxes, 117–119

Development environment, 28
Development test execution, 249
Directory structure, 74–76, 120–121, 139–140
Distributed integration builds, 96
Documentation, 20
Documentation generation, 249
Documentation resources, 243
Don’t repeat yourself (DRY), 117
Doxygen (code documentation tool), 57, 243
Draco.NET, 230, 269–271
driver, 14, 113–115
Duplicated code, 60–62, 176–181
Dynamic languages, 12–13

E

E-mail, 10–11, 55–56, 210–212, 251, 266
Early implementation, 35–36
Early integration, 39–40
eBay, 190
Eclipse, 259
Efferent Coupling, 170–172, 240
EMMA, 180–182, 239
Entity Relationship Diagram (ERD), 120, 126
Eudora, 210
Event driven, 251

Event-driven build mechanism, 81
Evolution of integration, 36–37
Evolutionary Database Design, 109n
Exceptions, 144–153
Extensibility, 249
Extract method technique, 169
Extreme Programming Explained, 88, 250n
eXtreme Programming (XP), 24

F

Fagan inspection process, 162
Failed builds, 32–33, 76–77
failonerror, 72
Fan In, 170–172
Fan Out, 170–172
Fast builds, 87–96
Features (of CI), 12–20
Feedback, 20, 24, 203–209, 251

Ambient Orb, 214–215
e-mail, 210–212, 251
reports, 196–198
resources, 241–242
SMS (text messages), 56, 212–213, 217
sounds, 218–219
wide-screen monitors, 220–221
Windows task bar, 217–218
X10 devices, 216–217

Feedback and documentation
Continuous Database Integration (CDBI),

126
Feedback mechanism, 10–11

See also Continuous feedback
File manipulation, 248
FindBugs, 239
Firefox plug-in, 221
Fit, 236
FitNesse, 236
Flickr, 190
Floyd, 236
Fowler, Martin, 27n, 37, 38n, 61n, 69, 80, 109n,

166n, 169n, 228
Frederick, Jeffrey, 228
FTP, 268
Full build, 67
Functional tests, 137–138, 182, 237, 238
FxCop, 72–73, 175, 240

Index 279

G

Gaim, 242
Gauntlet, 85, 223n, 231
Google, 190
GoogleTalk, 242
Graham, Susan L, 177
Groovy, 232
Gump, 232

H

Hibernate, 142–147, 150–155
Hibernate configuration utility, 150–152
Hibernate test case, 154–156
HSQLDB, 234
HTML reports, 167–168, 172
HtmlUnit, 236
HttpUnit, 153–154
Hunt, Andrew, 117
Hypersonic DB, 234

I

IBM developerWorks articles, 18, 84, 227–229
IBSC acrostic, 34–35
IDE (Integrated Development Environment), 7, 10,

73–74, 165–166
Identify (CI step), 34–35
IDL, 243
Implementation directory, 76, 120–121
Improvements, 89–96
Incremental build, 94
Information overload, 207–208, 211
Information radiators, 220
Inspection, 28, 42

automated, 17–18, 239–241
compared with testing, 164–165
database integration, 125
for duplicate code, 61
resources, 239–241
tools, 60
See also Continuous inspection

Inspectors, 165–166, 228
Instability, 170–172, 240
Instant messaging, 221, 242, 266
Integrate button, 13

IntegrateButton.com, 229
Integrated Development Environment (IDE), 7
Integration, term, 28
Integration build, 6, 8–9, 26, 28, 79–80, 88

automated, 223–224
distributed, 96
manual, 86
as nonevent, 13

Integration build machine, 12–13, 33, 81–84,
90–91, 122

Integration test, 136
Interproject dependencies, 252
interval, 9
Iterative projects, 24

J

Jabber, 242
Java

build tools, 68, 71
and Checkstyle, 17–18
Cobertura, 180, 184, 239
JavaNCSS, 167–169, 228, 240
PMD, 163, 177
test cases, 236

Java Coding Conventions on One Page, 58n
Javadoc, 20, 243
javaranch.com, 3
Javascript, 177, 237
JDepend, 60, 172, 240
JetBrains, 223n
Jetty, 18–19
JIRA, 229
JUnit, 15–16, 37, 180, 237

and Ant, 16
batchtest, 140, 185

JWebUnit, 237
system tests, 136–137

L

Labels
build, 195–196, 251
repository, 191–194

Large projects, 97
Lava lamps, 216–217, 242
Lee, Kevin, 229

280 Index

Legacy applications, 97
Line coverage, 180
Linux, 235
Listeners, 183
Local database sandbox, 117–119
Lookup tables, 111, 115
Luntbuild, 85, 231, 252, 271–272

M

Mac OS X, 221, 235
“Magic machines,” 84
Mainline, 79–80, 100–101
make, 10, 85, 255–256
“Make it continuous” (CI step), 34–35
Manual deployment of software, 52–53
Manual integration build, 86
Manual processes, 32
Manual reviews, 161–163
Manual testing, 197
Maven, 20, 71, 167–168, 181, 233
Maven 1, 256–258
Maven 2, 258–260
McConnell, Steve, 36, 228
Mckoi, 235
Merge (Cobertura), 184
Mergere, 259
Meszaros, Gerard, 238
Metrics tool, 58n
Mevenide, 259
Microsoft, 210, 234, 243, 261–262, 268–269

MSBuild, 262
Team Foundation Server (TFS), 223n

Microsoft Outlook, 210
Microsoft Secrets, 36
MKS (SCM/version control tool), 8, 233
Mocks, 92, 133, 135, 154–155
Mojo, 259
MSBuild, 10
Multiplatform builds, 249–250
MySQL, 14, 235
MySQL database, 114, 116

N

NAnt, 10, 34, 69, 85, 233
build file, 261–262

delete, 71
FTP, 73
fxcop, 72
nunit2, 72

nant integrate, 69
NCover, 180, 240
NDbUnit, 116, 143, 149, 237
NDepend, 60, 171, 240
NDoc, 20, 243
.NET, 34, 233, 237

build tools, 68
and FxCop, 72–73
NDbUnit, 143n
NDepend, 171
Simian, 178

.NET Framework Design Guidelines, 240
NetBeans, 259
Noncommenting source statements (NCSS), 168
NUnit, 15, 37, 72, 237
nunit2, 72, 73

O

Object Solutions: Managing the Object-Oriented
Project, 36

Objective-C, 243
On-demand build mechanism, 80
Oracle, 235
Oracle Express Edition, 235
Oracle PL/SQL, 238
O’Reilly, Tim, 190

P

Pair programming, 161–162
ParaBuild, 96, 231
password, 14, 113, 115
Path coverage, 181
PDbSeed, 149
Peer code reviews, 161–162
PerfectBuild, 232
Perforce (SCM/version control tool), 8, 234, 266
PHP, 12–13, 243
Plug-ins, 249, 259
PMD, 58, 61, 169, 174–176, 240
PMD-CPD, 61, 177–178
PMD report, 176

Index 281

PMEase QuickBuild, 231
Poll for changes, 81, 250–251
PostgreSQL, 235
Practices, tables of, 44, 101–102, 127, 158, 186, 200
Pragmatic Automation, 232
Pragmatic Programmer, 117
Private builds, 6–7, 10, 26–28, 41–44, 79, 99
Program execution, 248
Project Object Model (POM), 257, 259, 260
project.xml, 257–258
Pulse, 85, 223, 232
PVCS (SCM/version control tool), 8, 234
Python, 12–13, 149, 236, 243

Q

Quality assurance, 28, 131, 182–185
Quality control, 25
Quality Labs, 242

R

Rake, 10, 233, 262–263
Rational Unified Process (RUP), 24
RDBMS, 109, 117
Refactoring, 37–38, 61n, 157, 169
Refactoring: Improving the Design of Existing

Code, 38n, 169n
Refactoring databases, 109
Refactoring Databases, 109
Regression tests, 37, 53–54
Release build, 28, 80
Reliability, 129–132, 254
Remote users, 98
Repeatable component tests, 148–156
Repetitive processes, reducing, 30–31
Repository labels, 191–195
Repository pattern, 75
Resources

automated inspection, 239–241
build scripting, 232–233
databases, 234–235
documentation, 243
feedback, 241–242
testing, 236–238
tools and products, 229–232

version control, 233–234
web sites and articles, 227–229

Reusable scripts, 114
Reverse engineering, 56
Risk, defined, 29
Risk management, 47
Risk reduction, 29–30, 47–49

defects, 53–55
project visibility, 55–57
software quality, 57–61
software readiness, 49–53

Rollbacks, 18, 43, 192, 199
root directory, 139
RSS, 10, 221
Ruby, 12–13, 241, 262–263

Rake, 233, 262
unit testing, 133

Ruby on Rails, 241

S

Sadalage, Pramod, 109n
Sandbox, 117–119, 127, 235
Sandboxing, 231
Scheduled build mechanism, 80–81
Scheduling builds, 8–9
scm:update, 127
Scripts

Ant, 6–7, 10, 34, 53–54, 219
build, 10, 52, 70, 73–74, 228, 232–233
maintaining, 121
reusable, 114
SQL, 71–72, 112–116

Secondary builds, 80
Secure Copy (SCP), 268
Security, 72, 81, 98, 252
Seeding, 116, 134–135, 143, 149, 154
Selby, Richard W, 36
Selenium, 136–138, 237
Server matrix, 230
Servers, 5–9

Continuum, 266
CruiseControl, 50, 266–268
CruiseControl.NET, 268
Draco.NET, 269
features of, 85
lifespan, 254–255

282 Index

Servers continued
Luntbuild, 271
and Maven, 260

set explain, 125
Setup time, 38–39
Share (CI step), 34–35
Shared databases, 117–119
Sierra, Kathy, 3
Simian, 61, 178–181, 241
Similiarity Analyser, 61, 178–181, 241
Sin (Continuous Integration for Subversion), 231
Single command builds, 69–73
SMS (text messages), 10, 56, 212–213, 217
SMTP server, 213
SnapshotCM, 234
SOAP, 266
Software

assets, 74–75, 83
build, 67–69
delivery, 49–52
inspection, 28, 95
manual deployment of, 52–53

Software-build management server, 231
Software Configuration Management Patterns, 8,

74–75, 120
Software Configuration Management (SCM)

tools, 8
Software Project Survival Guide, 36
Sounds, 218–219
SourceForge, 269–272
SourceMonitor, 241
SQL, 125, 235
SQL scripts, 71–72, 112–116
sql task, 113
SQLUnit, 238
src directory, 139
Staged builds, 80, 88, 92
StarTeam, 234, 266
Statement coverage, 180
Static analysis tool, 58n, 61, 162–163
Static code analyzer, 240
Status reports, 31
Struts, 153
Struts test case, 154–156
StrutsTestCase, 135, 154–155
Subsystem tests. See Component tests
Subsystems, 94–95
Subversion, 7–9, 26, 234, 266
Surround SCM, 234

Sybase, 235
Synching with the database, 50–52
Synergy, 234
system directory, 139–140
System tests, 136–137, 143

T

Task branch, 120
Team Foundation Server (TFS), 223n
TeamCity, 223n, 232
Ten-minute builds, 88
Terms of the trade, 27–29
Test coverage, 54–55
Test-pass thresholds, 197
TestEarly.com, 238
Testing, 15–16, 91–92, 129–132

compared with inspection, 164–165
component tests, 134–136, 141
Continuous Database Integration (CDBI), 125
for defects, 143–148
developer tests, 138–140
functional tests, 137–138
repeatable component tests, 148–156
resources, 236–238
system tests, 136–137, 143
test cases, 156–157, 169, 236
unit tests, 132–133, 141
using NUnit and NAnt, 72

Testing (term), 29
TestNG, 132, 139, 238
Text messages (SMS), 56, 212–213, 217
Thomas, David, 117
ThoughtWorks, 230, 232, 266–268
Tinderbox, 232
Tomcat server, 18–19
Tools, evaluating, 245–248

automated build tools, 255–263
build schedulers, 250–252, 263–272
build tools, 248–250
compatibility, 253
longevity, 254–255
reliability, 254
usability, 255

Tools and product resources, 229–232
Toomim, Michael, 177
Trends, build success/failure, 31
Trunk, 79–80, 100–101

Index 283

U

unit directory, 139–140
Unit testing, 53, 132, 237

and Ant build scripts, 54
length/speed of test, 141
Ruby, 133

UNIX, 8, 233, 235, 243, 245–246
Urbancode, 264–266
User interface, 252
userid, 113
utPLSQL, 238

V

Version control, 75–76
integration, 251
resources, 233–234
systems, 8, 85
tool integration, 249
See also Subversion

Version control repository, 6–8, 50
and CDBI, 119–121
checking for changes, 8–9
and databases, 14–15, 50–51
directory structure, 75–76

Visual Basic, 241, 261
Visual SourceSafe (SCM/version control tool), 8, 234

W

Watir, 238
Web site login, 136–137
Web sites, and testing, 137
Wide-screen monitors, 220–221
Widgets, 221
Windows, 235
Windows task bar, 217–218
Windows Task Scheduler, 8

X

X10, 242
X10 devices, 216–217
XML, 134, 143, 177
XML build file, 261
.xml files, 77
XML reports, 167, 172, 175, 178
XML-RPC, 266
XML seed files, 149
XP, 36–37
XSD, 177
xslDIR, 213
xslfile, 213
XSLT, 179–180
xUnit, 15, 37, 41, 54
xUnit Test Patterns, 238

	Continuous Integration
	Contents
	Foreword
	Foreword
	Preface
	About the Authors
	About the Contributors
	Part I: A Background on CI: Principles and Practices
	Chapter 1 Getting Started
	Build Software at Every Change
	Features of CI
	Summary
	Questions

	Chapter 2 Introducing Continuous Integration
	A Day in the Life of CI
	What Is the Value of CI?
	What Prevents Teams from Using CI?
	How Do I Get to “Continuous” Integration?
	When and How Should a Project Implement CI?
	The Evolution of Integration
	How Does CI Complement Other Development Practices?
	How Long Does CI Take to Set Up?
	CI and You
	Commit Code Frequently
	Don’t Commit Broken Code
	Fix Broken Builds Immediately
	Write Automated Developer Tests
	All Tests and Inspections Must Pass
	Run Private Builds
	Avoid Getting Broken Code
	Summary
	Questions

	Chapter 3 Reducing Risks Using CI
	Risk: Lack of Deployable Software
	Risk: Late Discovery of Defects
	Risk: Lack of Project Visibility
	Risk: Low-Quality Software
	Summary
	Questions

	Chapter 4 Building Software at Every Change
	Automate Builds
	Perform Single Command Builds
	Separate Build Scripts from Your IDE
	Centralize Software Assets
	Create a Consistent Directory Structure
	Fail Builds Fast
	Build for Any Environment
	Build Types and Mechanisms
	Use a Dedicated Integration Build Machine
	Use a CI Server
	Run Manual Integration Builds
	Run Fast Builds
	Stage Builds
	How Will This Work for You?
	Summary
	Questions

	Part II: Creating a Full-Featured CI System
	Chapter 5 Continuous Database Integration
	Automate Database Integration
	Use a Local Database Sandbox
	Use a Version Control Repository to Share Database Assets
	Continuous Database Integration
	Give Developers the Capability to Modify the Database
	The Team Focuses Together on Fixing Broken Builds
	Make the DBA Part of the Development Team
	Database Integration and the Integrate Button
	Summary
	Questions

	Chapter 6 Continuous Testing
	Automate Unit Tests
	Automate Component Tests
	Automate System Tests
	Automate Functional Tests
	Categorize Developer Tests
	Run Faster Tests First
	Write Tests for Defects
	Make Component Tests Repeatable
	Limit Test Cases to One Assert
	Summary
	Questions

	Chapter 7 Continuous Inspection
	What Is the Difference between Inspection and Testing?
	How Often Should You Run Inspectors?
	Code Metrics: A History
	Reduce Code Complexity
	Perform Design Reviews Continuously
	Maintain Organizational Standards with Code Audits
	Reduce Duplicate Code
	Assess Code Coverage
	Evaluate Code Quality Continuously
	Summary
	Questions

	Chapter 8 Continuous Deployment
	Release Working Software Any Time, Any Place
	Label a Repository’s Assets
	Produce a Clean Environment
	Label Each Build
	Run All Tests
	Create Build Feedback Reports
	Possess Capability to Roll Back Release
	Summary
	Questions

	Chapter 9 Continuous Feedback
	All the Right Stuff
	Use Continuous Feedback Mechanisms
	Summary
	Questions

	Epilogue: The Future of CI
	Appendix A: CI Resources
	Continuous Integration Web Sites/Articles
	CI Tools/Product Resources
	Build Scripting Resources
	Version Control Resources
	Database Resources
	Testing Resources
	Automated Inspection Resources
	Deployment Resources
	Feedback Resources
	Documentation Resources

	Appendix B: Evaluating CI Tools
	Considerations When Evaluating Tools
	Functionality
	Compatibility with Your Environment
	Reliability
	Longevity
	Usability

	Automated Build Tools
	Build Scheduler Tools
	Conclusion

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

