
Pro iOS
Testing

XCTest Framework for UI
and Unit Testing
—
Avi Tsadok

Pro iOS Testing
XCTest Framework for UI

and Unit Testing

Avi Tsadok

Pro iOS Testing: XCTest Framework for UI and Unit Testing

ISBN-13 (pbk): 978-1-4842-6381-5 ISBN-13 (electronic): 978-1-4842-6382-2
https://doi.org/10.1007/978-1-4842-6382-2

Copyright © 2020 by Avi Tsadok

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6381-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Avi Tsadok
Tel Mond, Israel

https://doi.org/10.1007/978-1-4842-6382-2

It is a big challenge to write a book while also being
a full- time dad and an iOS developer.

Therefore, I would like to thank my family – my kids,
Harel and Maya, and my loving wife, Tammy – who

gave me the time and strength to sit down,
investigate, dig, and write.

Without your unconditional support,
this book would not exist.

v

Table of Contents

Chapter 1: Introduction for Testing ���1

Introduction ���1

How to Read This Book ���2

What Is Software Testing? ��2

Software Testing in iOS ���2

Why Is Testing So Important? ��4

What Can We Test? ��6

Summary���8

Chapter 2: Setting Up Our Infrastructure ��9

Introduction ���9

Basic Terms ���10

“My Weather” App ���11

Add Test Targets to an Existing Project ��14

Link Everything Together���15

The Info Tab ���17

The Arguments Tab ��26

The Options Tab ���30

The Diagnostics Tab ���32

About the Author ��xv

About the Technical Reviewer ��xvii

vi

Exclude Test Classes ���35

Disable Tests from the Scheme Editor ���35

Disable Tests from the Test Navigator ���36

Disable Tests by Renaming Them ��37

How Many Test Bundles to Create?���38

Test Plans ��39

Test Plans to Make Your Life Easier ���39

Create Your First Test Plan ���40

Test Plan Configurations ��42

Running Your Test Plans ��46

Summary���47

Chapter 3: Writing Tests – The Basics ��49

Introduction ���49

What Exactly Are Unit Tests? ���50

XCTest and XCTestCase ���51

XCTestCase ��51

Our First Test Class ��53

Enable Testability ���55

@testable ��56

CocoaPods and Testing Targets ���57

XCTestCase Life Cycle ���58

Writing Unit Tests ��62

Unit Test Anatomy ��63

Assertions ��64

Write Asynchronous Operations ��70

Summary���78

Table of ConTenTs

vii

Chapter 4: Writing Tests – Advanced Techniques �������������������������������79

Introduction ���79

Test Doubles (Fake, Fake, Fake) ��80

Mocks� Mocks Everywhere (?) ���80

Avoid Test Doubles If Possible ���89

Comparing ���94

The Problem with Comparing ��94

Equatable Protocol ��95

Comparable Protocol ���96

Compare UIImages ��97

Compare Arrays ���98

Comparison Is Critical in Testing ���99

Parameterized Unit Tests ��99

Create Abstract Method for Testing ���101

Loading Test Cases from a File ��103

Invoke Tests Dynamically ��106

Summary���111

Chapter 5: Integration Tests ���113

Introduction ���113

The Idea Behind Integration Tests ���114

What Exactly Are Integration Tests ��114

Integration Tests vs� Unit Tests ��115

Define the Scope ���115

Table of ConTenTs

viii

Writing Integration Tests ���118

Our First Integration Test ���118

Running in Parallel ��121

Fault Point in Integration Tests ��121

A Bigger System to Test ���121

Client-Server Tests ��129

Summary���139

Chapter 6: Write Testable Code ���141

Introduction ���141

What Is a Testable Code? ��142

Clean Code ��144

KISS (Keep It Simple, Stupid) ���145

DRY ��146

YAGNI (You Aren’t Gonna Need It) ��147

Code That Is Pleasant to Read Is Also Pleasant to Test �������������������������������147

Pure Functions ��149

Refactor Our Functions to Be Pure ��151

Protocol-Oriented Programming ��153

Dependency Injection ��153

Ways to Implement Dependency Injection���154

SOLID Principles ��158

S – Single-Responsibility Principle��159

O – Open/Closed Principle ���159

L – Liskov Substitution Principle ���159

I – Interface-Segregation Principle��162

D – Dependency Inversion Principle ��162

Table of ConTenTs

ix

Design Patterns and Architectures��163

Singleton ���163

Facade ���164

Decorator ���165

Factory ��166

MVC ���167

The Model – M ���169

The View – V ��170

The Controller – C ��170

The Problem with MVC ��171

MVP/MVVM ��171

VIPER ���174

Comparison Between Different Design Patterns ���176

Summary���176

Chapter 7: User Interface Tests ��177

Introduction ���177

Adding UI Tests ��178

How Do UI Tests Work? ���179

Accessibility in UIKit – accessibilityLabel ��180

Element Tree ��181

Write Our First UI Test ���182

XCUIApplication ���183

Elements ��183

Wrap It All Together ���194

Record Your Actions ���195

Table of ConTenTs

x

Dealing with Problems ��197

Keeping Your Tests Consistent ���198

Handling System Alerts ���199

Page Object Model ��200

The Problem ��200

What Is a Page Object Model? ���201

Test Reports ��205

Activities ��206

Attachments ��210

More Great UI Test Features ��216

Testing Your Siri Integration ���217

Multiple App Testing ��217

Dragging Using XCUICoordinate ��218

Summary���219

Chapter 8: Cover Another Aspect of Your App –
Performance Testing ���221

Introduction ���221

The Basic Idea of Performance Test ��222

The Basic Measuring Function ��223

Define the Baseline ���224

What the “Baseline” Means for Our Test? ���226

measure(metrics:) Function ��227

Analyzing the Metrics ��229

More Configuration with XCTMeasureOptions ��231

iterationCount ��232

invocationOptions ��232

Measuring App Launch ��234

Table of ConTenTs

xi

Asynchronous Performance Tests ���234

The Baseline Under the Hood ��236

Where Xcode Saves the Baseline? ��236

How Xcode Pulls the Baseline from These Files ��238

Summary���238

Chapter 9: Snapshot Testing ���239

Introduction ���239

What Is Snapshot Testing? ��240

Snapshot Testing from Scratch ���241

Using Swift Keywords ��242

Creating Our Assertion Function ��244

Snapshot Testing Drawbacks ��247

Documentation Is Missing ���247

Too Easy to Fix ���247

Why My Tests Failed ��248

UI Snapshot Testing with iOSSnapshotTestCase ���248

Why Do We Need That?��248

iOSSnapshotTestCase ��249

How Does It Work? ��249

Set Up and Run iOSSnapshotTestCase ��249

Verification Failure ���254

Snapshot Testing Configuration ���257

Summary���259

Table of ConTenTs

xii

Chapter 10: Implement Tests in Our Daily Work Routine ������������������261

Introduction ���261

How Do We Start? ���262

Tests Are Part of the Development Task ��262

We Need to Decide What to Test ��262

Fixed a Bug? Write a Test ��263

Test Mix ���263

The Test Pyramids ���264

The Classic Pyramid ��264

The Ice Cream Cone Model ��265

The Testing Diamond ���268

What Is the Right Approach? ���270

How to Compose Test Scenarios? ���270

Test-Driven Development (TDD)���271

Behavior-Driven Development (BDD) ���272

How to Write Good BDD Scenarios ��274

Code Coverage ��280

Don’t Set a Target for Code Coverage ��280

So Why Do We Need Code Coverage?��282

And Then There Is Test Coverage� Wait� What? ��282

Summary���283

Chapter 11: Using Command-Line Tools ���285

Introduction ���285

What Is CI/CD Anyway? ���286

How Tests Fit In? ���286

Table of ConTenTs

xiii

Command-Line Tools ���287

Meet xcodebuild ��287

Install and Set Up xcodebuild ��287

Run Tests with xcodebuild ���288

More xcodebuild Important Arguments ���291

Summary���293

Index ���295

Table of ConTenTs

xv

About the Author

Avi Tsadok is an accomplished iOS developer with almost a decade of

experience. He currently heads mobile development at Any.do, a leading

productivity app. He’s also a regular contributor to “Better Programming”

and has an active presence on Medium. Having written many iOS articles,

he’s decided to combine his passion for writing and developing by writing

his first book.

xvii

About the Technical Reviewer

Felipe Laso is a Senior Systems Engineer working at Lextech Global

Services. He’s also an aspiring game designer/programmer. You can follow

him on Twitter at @iFeliLM or on his blog.

1© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_1

CHAPTER 1

Introduction for
Testing

If you don’t like unit testing your product, most likely your
customers won’t like to test it either.

—Anonymous

 Introduction
Software testing is a complementary process to your development flow. It

may be the only way to monitor your work and your project over time, and

as a result, it has a positive impact on how your project is built and how

your code is written.

This book takes you from the very beginning of what software testing

is, how to set up an excellent infrastructure, how to write a great, clean,

testable code, and of course how to test your code in many ways and

techniques.

In this first chapter, you will learn

 – What is software testing

 – How software testing is relevant for us, iOS developers

 – Why it’s so important

 – What are the different main types of testing which we

can use

https://doi.org/10.1007/978-1-4842-6382-2_1#DOI

2

 How to Read This Book
Although it’s possible to read this book in chronological order, you

don’t have to follow that rule. There are some theoretical chapters that I

recommend you start with, and for the practical chapters’ part, you can

read them in any order you want.

Even if you have a lot of experience with writing tests, I believe you can

find new useful tips and exciting techniques to leverage your coding and

testing skills.

There are plenty of code samples and examples throughout the book

you can try yourself and even add them to your existing tests (if you have

some).

 What Is Software Testing?
Testing is a process aimed to retrieve information about the quality of an

app, a feature, or a function. Developers and QA testers manage testing by

running a program that examines your app code and decides if it's ready

for production or if it's broken.

The testing process can investigate your app in several ways – product

requirements, edge cases, performance, memory, different screens/

devices, or integrations. In many cases, testing is a part of a continuous

deployment service or integration, where it plays a significant role in an

automatic deployment process to the App Store or TestFlight.

 Software Testing in iOS
If you haven’t written tests yet, the test target may look like an alien to you.

To be aligned, take a look at the marked part in Figure 1-1.

Chapter 1 IntroduCtIon for testIng

3

Those are your project’s test targets, and their primary mission is to

help you monitor your code quality and performance. This is done using

test functions when each of them is responsible for a specific use case.

A test function might look something like this:

 func testPrimeNumberFunction() {

 // arrange

 let number = 7

 // act

 let result = MathService().isPrimeFunction(number: number)

 // assert

 XCTAssertTrue(result)

 }

The preceding code is an example of a simple test function that checks

if a function called isPrimeFunction() is working correctly.

Figure 1-1. Test targets in Xcode project

Chapter 1 IntroduCtIon for testIng

4

Note although all the code examples in this book are written in
swift, you can write tests in objective-C as well. But I’m sure you’ll
be able to understand most of my examples even if your swift
knowledge is poor.

As iOS developers, we write functions every day. Some of them are

very simple, but some are incredibly complex. How can we make sure they

perform as expected in different cases? Not only that – how can we make

sure we don’t break them over time as our project gets bigger?

If we consider ourselves professional developers, writing tests is not a

“nice to have” task – it’s a must. And if we write clean code, it can also be

easy and straightforward.

In general, the more test functions you have, the better your code will

be monitored and controlled.

This book aims not only to show you how to write great and useful

tests. It also aims to influence your work culture.

 Why Is Testing So Important?
If we want to dig deeper to understand the importance of testing in our

projects, I can think of several reasons:

Refactoring – Some think that refactoring is a negative word that

you do when you have a crisis or just a poorly written piece of code,

but refactoring is a part of the developer's daily routine. When we write

code, we do it based on a specific product assumption, SDK version,

architecture, or our own experience and point of view. But things change

rapidly in the technological (and especially in the mobile) world. We often

find ourselves refactor parts of our code every few months and even less.

When we write tests, we define how our code behaves and not how it is

written. When we refactor, we need to keep the behavior of our code the

Chapter 1 IntroduCtIon for testIng

5

same, and tests are our guiding angels for doing that. Not only that, tests

actually “lock” the code at a specific quality level, and that’s the way to

make sure nothing is broken when we are making changes.

Check Ourselves – When we write a code or a feature, we need to

make sure it works as required in all use cases and scenarios. Writing tests

is a great way to check ourselves and make sure we covered what we need

to answer the product requirements. It’s also a great way to make sure

we covered edge cases and use cases that are hard to test manually. For

example, let’s say we are working on a calendar app, and we need to test

how our code performs when we have hundreds or even thousands of

calendar events. Simulating a device with so many events is difficult and

time-consuming, not to mention we need to run this simulation over and

over again. Automating this process by writing a performance test is much

more efficient and comfortable.

Prevent Regressions – Regressions in our code can happen not only

when we refactor but also when we make small changes to a function,

update the iOS version, or even install our app on a new device. The more

we cover, the more chances we will catch regression bugs that could find

their way into production. Sometimes it’s hard to detect regressions in

manual testing even if the QA member works with a very detailed test plan.

For example, snapshot testing (explained later in the chapter) can detect

minimal changes in the UI, and performance testing can detect changes

in the speed of our code or memory usage. Also, it’s tough to catch edge

case issues when doing a standard manual regression testing, much harder

than automated tests.

Better Code Quality – Tests can help us to come up with different use

cases our code can bump into. Also, tests can help us measure our code

resources (CPU/memory) usage and help to reduce it. Code coverage

reports can help us detect untested parts of the code and can even bring

up product issues we didn’t think of just by the look on our code. But I

believe that the best contribution tests do in terms of code quality is make

Chapter 1 IntroduCtIon for testIng

6

us write better code and, more precisely, better architecture. To make our

code testable, we need to write a cleaner, more modular, and protocol-

oriented code, and this is a clean profit.

Documentation – I’ve got to admit – I hate writing technical

documentation for my code. I write comments, but only because I have

to. Otherwise, I won’t understand what I meant to achieve even in the day

after I wrote them. Tests are a great way to document your code. Think of

it – you take a function and explain what is expected to happen when you

call it with different parameters and in different situations. You won't find

better documentation of your code than that.

 What Can We Test?
Short answer – everything.

Long answer – depends.

If you have a look at the “Software Testing” page in Wikipedia, you

can find around 20 different types of software testing techniques! But

we are here to make our life simpler, so we’ll discuss only some of these

techniques which are mainly relevant for us as iOS developers.

Unit Tests – Unit tests are the bread and butter of testing. Unit Tests

are responsible for testing small code pieces of your app, such as methods

and functions. The unit tests are best for refactors and TDD (Test-Driven

Development), and you should write as many of them.

The goal of a unit test is to test a specific function or method while

ignoring and isolating the function from any possible side effect or outer

state. Also, they are easy to write, run very fast, can be run in parallel, and

writing them should be a natural step when developing a feature.

Integration Tests – If we said that unit tests live in isolation and that

they focus on testing a specific method, there are cases when we need to

test the integration between two or more layers of the app.

Chapter 1 IntroduCtIon for testIng

7

For example, sometimes we want to test the integration between

the presenter/view model and the database layer. Integration tests are

precisely for that. Some say integration tests are the most important tests

you can have in your project even more than unit tests because, in the end,

it doesn’t matter how your unit tests perform, it’s how they perform with

each other.

UI Tests – UI Test refers to our app as a black box and uses the

accessibility layer to activate it. The basic commands can be something

like “press here” and “scroll there,” and it’s the closest thing to manual

testing. Although UI Tests can perform as an edge-to-edge tests and

can be very useful, they are expensive – they are harder to write and run

much slower than unit tests. They can also break easily with every feature

change. Also, since UI Tests can look only at the accessibility layer, they

cannot produce a code coverage report. Therefore, they are not valid if you

want to detect untested parts of your code.

Snapshot UI Testing – Snapshot testing is an addition to UI Testing.

The way snapshot testing works is to take a snapshot of the screen or the

view and compare it to a previously captured snapshot that represents the

required one. The goal here is to identify any visual changes to the app, a

task that is hard to do in any other way – for example, buttons’ positions,

font size changes, layout issues, and more.

Performance Testing – In every project, some methods are doing

a massive job. These functions need optimization, and one of the best

techniques is a performance test. Performance test runs your function

several times; calculates the average CPU, memory usage, and running

time; and decides if it passed or failed according to a minimum bar you

can set in advance.

You don’t have to cover every part of your project with all types of tests.

For example, if we are dealing with view controllers or view models, we

probably want to write integration tests to make sure everything works

as expected when the user interacts with our app. If we need to deal with

Chapter 1 IntroduCtIon for testIng

8

complex functions and classes, we are going to choose unit tests to cover

our functions from all sides. And if these are heavily loaded functions, we

can also add performance tests.

The secret is to create the right mix so that you could monitor your

project from different angles and in various aspects.

 Summary
We discussed what software testing is, how it is implemented in iOS, and

why it’s important. We also talked about different types of tests that are

relevant for iOS development.

Now, it’s time to pull our sleeves, set up our testing infrastructure in

Xcode, and integrate it with our project.

Chapter 1 IntroduCtIon for testIng

9© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_2

CHAPTER 2

Setting Up Our
Infrastructure

To an optimist, the glass is half full. To a pessimist, the glass is
half empty. To a good tester, the glass is twice as big as it needs
to be.

—Anonymous

 Introduction
You cannot start writing tests without a deep understanding of how Xcode

projects are built and how the testing layer integrates with it.

In this chapter, you will learn

 1. The basic terms such as scheme, target, and project

 2. How to customize your testing flows using schemes

and test bundles

 3. How to disable specific tests from running

 4. How to take advantage of Xcode 11 great feature –

Test Plan – to take your testing flows to the next level

https://doi.org/10.1007/978-1-4842-6382-2_2#DOI

10

 Basic Terms
To start testing your app, you need to understand some basic terms in

Xcode and how your projects are built.

Let’s start with one of the core Xcode terms – Project.

Project is a big file that maps all the files for your different products,

including the build settings, assets, and more. It can stand alone, be

included in a workspace, or be part of other projects.

An Xcode project is a repository for all the files, resources, and
information required to build one or more software products.
A project contains all the elements used to build your products
and maintains the relationships between those elements. It
contains one or more targets, which specify how to build
products. A project defines default build settings for all the
targets in the project (each target can also specify its own build
settings, which override the project build settings).

—Apple Documentation

A project contains one or more definitions of products called “targets.”

Target – A target represents a product to build and contains all the

instructions on how to build it, including what files to compile, the build

settings, build phases, code signing, and capabilities. A target doesn’t have

to be an “app.” It can also be a framework/library, an extension (such as

Today Widget), and, in our case, unit/UI test bundles that test other targets.

So, we understand that a target can be the app itself, and it can be the

unit test product that tests the app. But how can we tell Xcode what test

targets to run when we either start our test, build for the app store, or are

just debugging and on what configuration?

That’s what Schemes are for.

Schemes – Scheme connect targets with different scenarios (Build,

Run, Test, Profile, Analyze, and Archive), and it also specifies what targets

to run and on what configuration.

Chapter 2 Setting Up OUr infraStrUCtUre

11

The best way to explain that is with Xcode, so let’s start a new app

called “My Weather” App.

 “My Weather” App
To start a new Project, select File ➤ New ➤ Project…. A Popup dialog

appears where you request to select a template for your new project. You

can choose either iOS, watchOS, tvOS, macOS, or even a cross-platform

project. Your project doesn’t have to be an app; it can also be a framework

or a static library (see Figure 2-1).

Note not every platform can be tested using Xcode tools. We’ll
discuss it later in this section.

Figure 2-1. Xcode project template box

Chapter 2 Setting Up OUr infraStrUCtUre

12

After selecting the template, you are forwarded to a second dialog

where you need to fill some details about your project. Some fields are

required in order to continue (this is why the “Next” button is disabled).

Take a look at the two options at the bottom (Figure 2-2), circled in red.

Those options are suggested to you according to the platform and template

you chose. If you mark them, Xcode creates an infrastructure for unit tests

and UI tests. You can always do that later.

As I mentioned earlier, not all platforms and templates include those

options. For example, as of this writing, you cannot add tests at all to an

Apple Watch app. If you create a framework or a library, you can only add

unit tests and not UI tests. Since our new cutting-edge and award-winning

“My Weather” app is an iOS app, we can add both unit and UI tests.

Figure 2-2. New project setup box

Chapter 2 Setting Up OUr infraStrUCtUre

13

After pressing the “Next” button, our project window is opened

(Figure 2-3), and we can see the new test bundles under the list of targets.

In the project navigator, we can see the two test bundles, unit and UI tests,

as two groups of files. Those are the places where we save our coding test.

For every target created, Xcode is creating a dedicated group of files in the

project navigator.

Note there are “groups” in the project navigator that represent
links to actual folders, and there are “groups” that represent logical
folders. in this case, the two groups that were created refer to two
folders in the project root folder.

Figure 2-3. Test targets appear both in the target list and in the file
hierarchy

Chapter 2 Setting Up OUr infraStrUCtUre

14

 Add Test Targets to an Existing Project
Of course, you don’t have to create a new project to add UI and unit tests.

It’s straightforward to add tests to an existing project – just like adding

any new target. To add a new test target, go to File ➤ New ➤ Target…. In

the “Choose template” box that appears on the screen, look for UI Testing

bundle or Unit Testing Bundle targets. You can take advantage of the

search field in the top corner of the box (see Figure 2-4). Again, not all

platforms have the option to add tests, so make sure the correct platform is

selected.

After tapping “Next”, you are being navigated to a new dialog pretty

similar to the new project dialog. Besides all the usual properties you need

to fill there, such as bundle ID and name, the most important property

Figure 2-4. Adding test target to an existing project

Chapter 2 Setting Up OUr infraStrUCtUre

15

is the “Target to be Tested.” This target is the actual “product” (app or

framework) that your new test bundle tests. “Target to be Tested” can also

be changed later (see Figure 2-5).

 Link Everything Together
At the beginning of the chapter, I mentioned the term “Schemes.” Schemes

let you define all the build configurations and options for different types

of scenarios. You can have multiple schemes that can help you configure

different scenarios and states for your app. For example, you can have a

scheme that works with your development environment or a scheme that

runs performance tests with an optimized code.

When you look at the top left corner of your Xcode window, next to the

“stop” button, you can see the scheme menu and the selected scheme (see

Figure 2-6).

Figure 2-5. Choose options for new test target

Chapter 2 Setting Up OUr infraStrUCtUre

16

Tap on the scheme name and select “Edit Scheme” from the

popup menu. A box appears with the list of available actions and their

configurations (Figure 2-7).

Let’s go over the actions:

• Build – Compile your app without running it.

• Run – Build your app and run it either on a simulator or

a device.

• Test – Build your app and run the enabled tests defined

in the scheme.

Figure 2-6. Scheme’s popup menu in the toolbar

Figure 2-7. Scheme edit box

Chapter 2 Setting Up OUr infraStrUCtUre

17

• Profile – Run your app, and profile it with instruments.

• Analyze – Build the app with insights about your code.

• Archive – Build your app and create an IPA file from it

to submit to the App Store.

In this chapter, I focus on the Test action. Tapping on the “Test” action

displays four tabs: Info, Arguments, Options, and Diagnostics.

 The Info Tab
Info – The Info tab contains general information about your test action

in the scheme. The two most important settings here are the Build
Configuration and the list of tests.

In Build Configuration, you can define if your tests run in Debug,

Release, or your custom build configuration. There are cases where this

is important – for example, sometimes you want to run a test against an

optimized code for the App Store, or sometimes you want to run your tests

with certain flags.

In the list of tests, you can see all the tests that are relevant for the

executable product in the scheme. Remember, you can create as many

tests as you want, but this is the place where you define what tests are

executed when you test your app with this scheme.

Next to each test in the list, you have an enabled checkbox button that

specifies if the list runs. On the right, you have a button named “options”.

Tap on it, and you can set how the test runs (again, only in this scheme)

(see Figure 2-8).

Chapter 2 Setting Up OUr infraStrUCtUre

18

The options menu is unknown for many developers, and the button

may look unimportant, but it holds extremely valuable settings.

 Parallel Testing

The first option is the ability to execute your tests in parallel. Up until Xcode

9, you could only run your tests on one simulator at a time. In Xcode 9, Apple

gave the ability to run your tests in multiple simulators. Xcode launches

several simulators and runs the full test bundle on each one of them.

Although this option speeds up the execution of the tests in case you want to

run them on different devices, it doesn’t speed up the test bundle itself.

Xcode 10 finally brings real parallel testing – it launches multiple test

runners (Simulators), and each test runner receives a different test class

from executing. The number of simulators is a derivative of the number of

the available cores in the running machines.

Figure 2-8. Test options menu in scheme editor

Chapter 2 Setting Up OUr infraStrUCtUre

19

Before you celebrate the parallel testing feature, you should be aware

of the following:

 – Parallel testing consumes a lot of processing power.

If you want to take advantage of this feature, it’s better

to run it on a heavy machine as part of a continuous

integration process.

 – In parallel testing, each simulator receives different test

classes. Different test classes mean that you cannot
create dependencies in your tests. For example, testB()

cannot rely on the success of the testA() and should

run independently. Independent tests are important,

especially in UI tests, when sometimes tests are

expected to start in a particular state that is the result of

another test.

 – In case your tests are working against a server, running

them in parallel can cause a bottleneck in network
requests and as a result of that timeouts and test

failures. In general, it’s not the best practice to rely on

a network in your tests, but sometimes you cannot

avoid them in a certain integration and edge-to-edge

scenarios.

 Randomize Execution Order

In my opinion, “Randomize Execution Order” is a more significant thing

than running your tests in parallel. While the latter influences the duration

of your test run, the “randomize execution order” option influences the

way you write tests.

Let me start with a popular hack many developers do when they write

tests – in many test classes, you may see something like this:

Chapter 2 Setting Up OUr infraStrUCtUre

20

func test01() {

 ...

}

Func test02() {

 ...

}

The hack the developer here tried to do is to make those tests run in a

specific order. XCTest framework runs tests by the lexicographic order,

and because 01 is bigger than 02, test01 runs before test02.

Running tests in a constant order can be convenient for some. It can

help you start the test from the state the previous test ended and save you

precious time when you want to test user flows. But this feature comes with

a price – running tests in a constant order creates dependencies between

your tests, and this makes your test suite much more fragile. Every small

change can make one of the tests fail and, as a result of that, make the rest

of the other tests to fail.

Tests supposed to run in isolation and not be dependent on an

external or previous state of another test. The only way to ensure your tests

are stable is to turn on the “Randomize Execution Order.” Randomizing

the test order forces you to write independent tests. It’s better to rely on

dependency injection and make your code more testable.

 Location and Application Data

One of the most challenging tasks in integration and UI Tests is to simulate

different conditions such as device location and application state. If we

could use dependency injection in integration tests to somehow solve it,

it’s much harder to do that in UI Tests. A widespread use case for that is to

simulate a particular condition for a bug or an edge case hard to debug.

In the scheme editor under the “test” action, we have two more

options: Location and Application Data. Let’s go over them.

Chapter 2 Setting Up OUr infraStrUCtUre

21

 Location

The Location option lets you simulate a specific geo-location for your test

bundle or even a movement. Without the location feature, it is tough to

simulate location changes or movement tracking.

The location popup menu in the editor scheme has a list of predefined

locations like London, Moscow, New York, and more.

You don’t have to settle for the predefined list, but you can create your

own locations using a file format named “GPX.” GPX (GPS Exchange) files

contain location data such as longitude and latitude, waypoints, routes,

and tracks. The basic format of GPX is XML, and you can create such a file

in any text editor or online generator. Xcode itself has an option to create

a GPX file, select from the menu File ➤ New ➤ File, and search for GPX in

the dialog box (see Figure 2-9).

Figure 2-9. Creating GPX file template

Chapter 2 Setting Up OUr infraStrUCtUre

22

The basic format of the GPX file should look something like this:

<gpx>

 <wpt lat="40.7484" lon="73.9857">

 <name>Empire States Building</name>

 </wpt>

 </gpx>

After adding the file to your project, you can see the “Empire States

Building” location in the list of locations (see Figure 2-10).

GPX files can also contain movement. The way to do it is by adding

multiple locations and timestamps so that Xcode can simulate the location

changes according to the required pace.

Figure 2-10. Selecting the new custom location from the locations list

Chapter 2 Setting Up OUr infraStrUCtUre

23

 <gpx>

 <wpt lat="40.606641" lon="-74.044835">

 <time>2020-03-01T16:25:12Z</time>

 </wpt>

 <wpt lat="40.608693" lon="-74.038514">

 <time>2020-03-01T16:25:17Z</time>

 </wpt>

 <wpt lat="40.610769" lon="-74.032217">

 <time>2020-03-01T16:25:26Z</time>

 </wpt>

</gpx>

 Application Data

One of the neat features Xcode has is the ability to load the app in a specific

app state, including persistent data, user defaults, and even cache. Loading

the app with specific data is done using something called XCAppData file.

XCAppData file is a files package that contains all the app data, including

documents, Library, cache, and temporary file.

To get the XCAppData file, you need to make sure your device is

connected to your Mac and go to Window ➤ Devices and Simulators. In

the opened window, look for your connected device on the left and select

it. Now you supposed to see the list of paired Apple Watches and installed

apps (see Figure 2-11).

Chapter 2 Setting Up OUr infraStrUCtUre

24

After selecting your app, you can download its app data container to

your Mac. You should see a file with the following format:

<bundleID>.<Date>.xcappdata

For example:

www.myweatherapp.com.My-Weather-App 2020-03-10 06/32.03.037.

xcappdata

You should be aware of the fact that .xcappdata is a package, meaning

it’s a system directory displayed as a standard file and it contains

additional files and directories. To open the package, right-click on the

package in the Finder and select “Show Package Contents”. After that, you

can see the app data files hierarchy (see Figure 2-12).

Figure 2-11. Download application data container from your
connected iPhone

Chapter 2 Setting Up OUr infraStrUCtUre

25

As you can see in Figure 2-12, the package contains all the app data

that your device stores, including documents, temporary files, states, and

even app screenshots the system uses for app switching user experience.

If you want to use the app data package (.xcappdata file) in your Xcode

settings, you need to add it to your project.

Create a new group in your project, let’s say “Tests Data,” and add the

package to that folder. Make sure the xcappdata doesn’t belong to any

target.

Figure 2-12. Expanded app data package in the finder

Chapter 2 Setting Up OUr infraStrUCtUre

26

Note files that you want to use in your scheme such as gpX files
and data packages should not be added to any target, not even your
test target. if a file belongs to a certain target, it will be bundled with
the final product and not only will increase the application size, but it
can also reveal security and sensitive privacy information.

 The Arguments Tab
Xcode has another neat and unknown features in their scheme editor,

hidden under the arguments tab, called Launch Arguments and

Environments Variables (see Figure 2-13).

The Arguments tab lets you control the runtime of your app by setting

arguments and variables that applied to the app only in this scheme.

Figure 2-13. The Arguments tab in scheme editor

Chapter 2 Setting Up OUr infraStrUCtUre

27

 Launch Arguments

Let’s say we want to add an “In-App Purchase” capability to our “My

Weather” app, and we want to run integration and UI tests when the user is

already registered to our premium subscription.

The typical way many developers test their In-App Purchase is by

returning “true” in the function that checks if the user is registered or not

(look at the following code):

func isTheUserRegistered()->Bool {

return true

// The rest of the "real code", checking if the keychain

contains information about the user purchase

...

}

Returning “true” might work fine when you do your checks during

development, but running tests like that may not be the right solution.

Fortunately, we can change values in runtime easily using the

“Arguments Passed on Launch” list.

Arguments are a list of values passed to the app on launch and can be

read in the code easily.

Your app can use arguments to run with specific flags without

recompiling or using different targets. Arguments can be handy in testing

because there are times when you want to mock different layers in your

app, such as network, database, and more.

To add a new argument, go to the Arguments tab in the scheme editor,

and under the list of arguments, tap on the plus button (see Figure 2-14).

Chapter 2 Setting Up OUr infraStrUCtUre

28

If you don’t want an argument to pass on launch, you don’t need to

delete it from the list; uncheck the checkbox near its name.

There are two similar ways to read the list of arguments in your code,

CommandLine and ProcessInfo.

Look at the following code:

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 var purchasedIAP = CommandLine.arguments.

contains("PURCHASED_IAP")

 // or we can use ProcessInfo

 purchasedIAP = ProcessInfo.processInfo.arguments.

contains("PURCHASED_IAP")

Figure 2-14. List of added arguments

Chapter 2 Setting Up OUr infraStrUCtUre

29

 if purchasedIAP {

 // do something useful here...

 }

 return true

 }

To clarify the differences between the two, CommandLine is part of

Swift, and its primary goal is to read the command-line arguments, and, in

this case, Arguments passed on launch.

ProcessInfo is part of foundation, and it contains information about

the current process, including variables, host name, and also, just like

CommandLine, the list of arguments.

For the goal of reading the arguments, you can use both of them.

 Environment Variables

Just like many other development environments, iOS also has something

similar called “Environment Variables.” An environment variable is a

collection of key–value which let you configure your app not just with a list

of argument but also with values.

Adding an environment variable is just like adding an argument. Tap

on the plus button under the variables list and add a new variable (see

Figure 2-15).

Chapter 2 Setting Up OUr infraStrUCtUre

30

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 let printInfoLogs = ProcessInfo.processInfo.

environment["PRINT_INFO_LOGS"]

 return true

 }

Adding Environment Variables is also a great way to configure UI Tests

by launching the app dynamically with different arguments each time. UI

Tests will be covered later in this book.

 The Options Tab
The options tab includes different settings related to your tests (see

Figure 2-16).

Figure 2-15. Adding new environment variable to a scheme

Chapter 2 Setting Up OUr infraStrUCtUre

31

Let’s go over those settings:

 – Application Language – One of the biggest challenges

of mobile development is localization – LTR vs. RTL and

languages that contain long words and phrases. Not only

can you set the device language using that option, but

you can also simulate different text directions and even

double the length of the texts to detect UI layout glitches.

 – Application Region – Different regions mean different

date formats, different currencies, and different

measuring systems. By choosing the application region,

you can test your app as if the device is in another region.

Figure 2-16. The options tab in the scheme editor

Figure 2-17. The Application Language settings

Chapter 2 Setting Up OUr infraStrUCtUre

32

Note While it’s a convenience to set different languages and
regions to test functions, sometimes it can be not very easy when
you want to run a unit test multiple times for different regions. Later
in this book, i will cover how to do this without the need of scheme
options but with excellent and testable architecture.

 – UI Testing – Unlike unit and integration tests, getting

the reason why the UI test failed can be a little tricky.

Screenshots and attachments are the best way to

display the failure reason and the app state at that time.

The UI Testing options let configure how your test

treats attachments and screenshots.

 – Code Coverage – We discussed code coverage in

Chapter 1. Without marking this option, Xcode won’t

collect code coverage during your tests.

 The Diagnostics Tab
The diagnostics tab is almost similar to the diagnostics tab you can find

under “Run”. This tab contains tools that can help determine issues with

your app while running your tests, such as memory corrupts and thread

issues (see Figure 2-19).

Figure 2-18. Application Language and Application Region
settings

Chapter 2 Setting Up OUr infraStrUCtUre

33

Since those tools are not explicitly related to testing, I will go over them

in short.

My recommendation for you is to learn those tools deeper if you want

to investigate your issues better.

 – Address Sanitizer – This tool, introduced in Xcode 7,

can help you debug memory corruption issues with

your app. Those issues don’t have to be just crashes –

it can be general bugs as well. The combination of

Address Sanitizer and Unit Tests can be beneficial

under challenging bugs, but you should be aware of

two downsides regarding this tool:

• Address Sanitizer is much more relevant for C and

Objective-C code rather than Swift.

Figure 2-19. The Diagnostics Tab in the Scheme Editor

Chapter 2 Setting Up OUr infraStrUCtUre

34

• Address Sanitizer comes with a cost – your app

consumes 2x–3x more memory and 2x–5x more

CPU power when enabled. While this may seem not

a big issue when running tests, it can be an issue

when running performance tests when you measure

critical metrics such as CPU time and memory.

 – Thread Sanitizer – Thread Sanitizer is another LLVM-

based tool that can help you detect data race between

threads, which can cause unpredictable behavior. Just

like Address Sanitizer, Thread Sanitizer doesn’t come

without a cost – memory usage increases by 5x–10x,

and CPU performance increases by 2x–20x. Also, you

cannot run Thread Sanitizer on a device, only on

simulators.

 – Main Thread Checker – One of the first rules every

developer learns when he starts developing for iOS is

never to run UI operations in the background but only

on the main thread. Main Thread Checker stops your

app at the point when it detects UI operation done on

any background thread. This can be great in UI testing

when you entirely run your app and feel safe all of your

operations are on the right thread as they should.

 – Malloc Scribble – Helps you debug reference counting

cycles by filling freed memory with predefined values

and by that to get more accurate results in memory

graph.

 – Malloc Guard Edges – Add guard pages before and

after large allocations.

Chapter 2 Setting Up OUr infraStrUCtUre

35

 – Guard Malloc – Helps you catch common memory

problems such as buffer overruns and use-after-free.

 – Zombie Objects – One of the most popular tools Xcode

has to offer. Zombie Objects are objects that were

released (reference count 0) and replaced by a zombie

object. Zombie Objects can help you track variables by

keeping a copy of them in memory.

 Exclude Test Classes
You might be wondering, “There’s a whole chapter describing the

importance of tests. Why on earth we want to exclude some of them from

our test bundles?”

Well, in big, old projects, there are situations where tests may fail or

even are not compiled because of a massive structural change, and we

wish to disable them from running temporarily.

Xcode lets you not only disable test bundles in your scheme settings

but also disable specific test classes and even test functions.

There are three ways of doing that – from scheme editor, from the Test

Navigator, and by renaming test functions.

 Disable Tests from the Scheme Editor
If you want to disable a test in a specific scheme, unchecking it from the

scheme editor is one way of doing that. Open the scheme editor, and

under Test ➤ Info, expand the test bundle in the list of test bundles (see

Figure 2- 20).

Chapter 2 Setting Up OUr infraStrUCtUre

36

Remember, the disabling test only disables it from the specific scheme,

so make sure you are doing this operation on the desired scheme.

Also, you can disable the whole class by unchecking the checkbox

near the class name or disable the whole test bundle by unchecking the

checkbox near the test bundle name.

 Disable Tests from the Test Navigator
Maybe the easiest way to disable a test is from the Test Navigator or the

code editor.

From the Navigator pane, open the Test Navigator by selecting it or

pressing ⌘-6.

Search the test you want to disable and right-click it (see Figure 2-21).

Figure 2-20. Disable specific test from the scheme editor

Chapter 2 Setting Up OUr infraStrUCtUre

37

Select “Disable <name of the test>” from the popup menu. Disabling

can be done for classes and test bundles as well. In case the test is already

disabled, you can re-enable it again from the same menu.

This approach also works from the code editor – right-click the

function of the class you want to disable and choose “Disable <name of the

function>”.

 Disable Tests by Renaming Them
Another way to disable tests is by renaming them with some prefix other

than “test”. Since Xcode runs only test functions that start with “test”,

changing the prefix disables them.

Figure 2-21.

Chapter 2 Setting Up OUr infraStrUCtUre

38

 func testLogin() {

 // test code

 }

 func testLogout() {

 // test code

 }

 func disable_due_refactor_testOldScreen() {

 // test code

 }

In the preceding example, Xcode ignores the third function since we

changed its prefix.

In general, renaming test functions is considered to be an anti-pattern,

and you should follow the natural way of disabling the tests using the

scheme editor or the Test Navigator. The renaming test function does have

one advantage, though – you can set a different prefix for a different reason

and then relocate them by searching their prefix. Renaming a function

name is a convenient way when you’re doing a big refactor and want to

disable tests by categories.

Note it would be best if you never left disabled tests forever. having
disabled tests should be a temporary situation only; it exists only to
let our project compile. those tests are there for a reason; remember
that.

 How Many Test Bundles to Create?
The number of test bundles changed from project to project, but if I have

to choose one rule of thumb, I would say it’s a separation of concerns.

If you remember from the first chapter, there are several types of tests:

Chapter 2 Setting Up OUr infraStrUCtUre

39

UI tests; unit tests, which include BDD and TDD; integration tests, and

performance tests. Unit tests can be used both for BDD, TDD, Integration,

and performance. UI Tests can be used for BDD. But it’s a best practice to

separate your test bundles according to your company flows. For example,

if you have a significant new feature in development, you can create a test

bundle for it, and it will be easier to run it only when needed.

Here are some ideas on how to separate your tests:

 – Separate BDD from TDD.

 – Separate regression tests from sanity and feature

testing.

 – Separate significant features from the others.

Separating your project to different test bundles can give you necessary

flexibility in the future and can help maintain your test’s infrastructure and

control it.

 Test Plans
We saw that schemes are great tools to configure your test runs. Now let’s

say you want to run your tests several times with a different configuration

each time. Different configurations mean you need to either create

different schemes and run them one by one or change your current test

scheme configuration each time before you run it.

Fortunately, Apple introduced a new feature in Xcode 11 called “Test

Plans” which aims to solve exactly that – running the same test suite

multiple times but with a different configuration.

 Test Plans to Make Your Life Easier
Test Plans take the power of the test run customization in Xcode to the next

level by giving you the flexibility to run your tests with different settings

Chapter 2 Setting Up OUr infraStrUCtUre

40

multiple times. Each Test Plan can test different issues that you may have

in your app. Maybe the most common problem developers have with their

apps is localization – you can create a test plan dedicated to localization

and run the same tests over and over again but with different languages

and regions.

The same goes for almost every option you currently have in your

scheme editor.

 Create Your First Test Plan
The easiest way to start with the Test Plan’s feature is right from the

scheme editor. Go to your scheme editor, and in the Test action, you can

find a button called “Convert to user Test Plans…” under the list of your test

bundles (see Figure 2-22).

After tapping the button, you’ll have a dialog when you need to choose

how to convert your new scheme to use test plans instead (see Figure 2- 23).

Figure 2-22. Scheme editor, “Convert to use Test Plans…” button

Chapter 2 Setting Up OUr infraStrUCtUre

41

Let’s talk about those three options:

 – Create Test Plan from Scheme – This option creates a

Test Plan based on the current scheme configuration.

After all, the test plan configuration is similar to the

scheme test configuration, and it’s easy to create a new

test plan with the old options. “Creating Test Plan from

Scheme” is the recommended option for the first test

plan of your project.

 – Create Empty Test Plan – Creates a new test plan

template regarding the scheme test configuration.

 – Choose Test Plan – Add an existing test plan to the

scheme. It can be a test plan you created from scratch

(Test Plan is an XML file; you can create it with any text

editor), but in most cases, this option comes in handy

when you create a new scheme and want to connect it

to an existing test plan from another scheme.

Figure 2-23. Converting a scheme to use test plans

Chapter 2 Setting Up OUr infraStrUCtUre

42

After creating the test plan, it is saved to your project, and the Xcode

upgrades the scheme to use Test Plans instead of the old Info/Arguments/

Options/Diagnostics screen we covered earlier (see Figure 2-24).

Scheme can contain multiple test plans. In each test plan, you can see

how many test targets it runs and how many different configurations it has.

When you select “Test” for this scheme (Command + U), the test plan,

which is marked as default, runs according to its configuration.

 Test Plan Configurations
If we open our new “My Weather App.xctestplan” file that was added to our

project, we could see it’s just a simple XML file:

Figure 2-24. Scheme converted to use test plans in its tests

Chapter 2 Setting Up OUr infraStrUCtUre

43

{

 "configurations" : [

 {

 "id" : "C9003BF5-4AD2-45D6-BB60-30C721C0D075",

 "name" : "Configuration 1",

 "options" : {

 }

 }

],

 "defaultOptions" : {

 "codeCoverage" : false

 },

 "testTargets" : [

 {

 "target" : {

 "containerPath" : "container:My Weather App.xcodeproj",

 "identifier" : "9032DE112411A30D00F8F02D",

 "name" : "My Weather AppTests"

 }

 },

 {

 "target" : {

 "containerPath" : "container:My Weather App.xcodeproj",

 "identifier" : "9032DE1C2411A30D00F8F02D",

 "name" : "My Weather AppUITests"

 }

 }

],

 "version" : 1

}

Chapter 2 Setting Up OUr infraStrUCtUre

44

Although we are not supposed to edit the .xctestplan file directly,

we can learn that Test Plan is quite simple. It contains an array of

configurations and an array of test targets. Test Plan also has a default

options section in case they are not set in the configurations themselves.

Tapping on the test plan in the project navigator will open the test plan

edit screen (see Figure 2-25).

As you can see, you can enable/disable test bundles, classes, and

functions just like you can do in your scheme editor. If you notice, you also

have a new tab named “Configurations”. If the “Tests” define what your

test plan runs, “Configurations” define how your test plan runs it. A test

plan configuration contains a list of values like location, region, and more,

very similar to the options you had in your scheme editor. The significant

difference here is that you can create as many configurations as you want

(see Figure 2-26).

Figure 2-25. Test Plan edit screen

Chapter 2 Setting Up OUr infraStrUCtUre

45

The test plan in Figure 2-26 tries to test the app in different localization.

Localization is one example of how a Test Plan can be useful. You can have

several test plans that can handle different issues such as memory and

performance issues, localization, and more. Whenever you run a test plan,

Xcode runs the selected tests one time for each configuration, and there’s

no limit on the number of configurations you can create. This is something

tough to do without using a test plan.

Note there’s no need to go over the list of options in a test plan
configuration, as it was covered earlier in this chapter.

Figure 2-26. Test Plan configuration

Chapter 2 Setting Up OUr infraStrUCtUre

46

If you want to disable a test configuration from running, right-click the

configuration name and select “Disable”.

 Running Your Test Plans
Because we added a new layer of complexity, let’s try to simplify what

we have learned till now and how everything is linked together (see

Figure 2- 27).

As you can see from the preceding diagram, a scheme can have

multiple test plans, but when you run a test, only one of them executes.

To run the test plan selected for the scheme, press Command + U or

run it from the Test Navigator.

Figure 2-27. How Scheme, Test Plans, Tests, and configurations are
linked together

Chapter 2 Setting Up OUr infraStrUCtUre

47

 Running Only One Configuration

As already mentioned, a test plan can contain many configurations. While

it’s important to run them all as part of a continuous integration flow,

during development, you may want to run just one configuration to save

precious time.

In that case, it’s effortless to run the test plan according to a specific

configuration.

To do that, right-click the desired test function/class/ bundle and

select the desired configuration (see Figure 2-28).

 Summary
From now on, schemes, targets, and test plans should be your best

friends. Knowing them well can help you adapt your tests to your daily

development flow, and it’s a prerequisite for the next chapters where we

are going to learn how to write tests in all colors and forms.

Are you ready to start testing?

Figure 2-28. Run only English configuration

Chapter 2 Setting Up OUr infraStrUCtUre

49© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_3

CHAPTER 3

Writing Tests –
The Basics

Pay attention to zeros. If there is a zero, someone will divide by it.

—Dr. Cem Kaner

 Introduction
In the previous chapter, we have learned how to set up our infrastructure

for testing. It seems we are ready to write. But, even when your code is

excellent, with pure functions and dependency injection, we need to learn

the basics of how to write proper tests that we can maintain over time.

In this chapter, you will learn

 – What exactly are unit tests

 – What are the XCTest framework and XCTestCase class

 – How to configure your target and your test bundle to

work together

 – About the XCTestCase life cycle and how it works

under the hood

 – How to write a simple unit test method and how it is

built

https://doi.org/10.1007/978-1-4842-6382-2_3#DOI

50

 – What assertions we have and how we can create our

assertions

 – How to test asynchronous operations

 What Exactly Are Unit Tests?
Unit Test is a function that tests a specific piece of code and assets in the

case the results of the test are not according to the requirements.

When you try to add a test, you have two options – Unit Tests and UI Tests.

In this step, “Unit Test” is just a tool that can help you create different kinds of

tests – integration tests, performance tests, regressions tests, and more.

But “Unit Tests” in the traditional way of meaning is a software testing

method.

The goal of the unit test method is to check a code, isolated, without

examining its side effects on other layers or objects.

Unit Tests have several characteristics:

 – They should run fast. There shouldn’t be any real heavy

loaded code in Unit Tests or integration with a server or

a database. A normal test suite should run in seconds.

If this is not the case, you should check if all the tests

you created are unit tests.

 – Unit Tests are easy to build. You shouldn’t work hard to

set up a unit test. If it takes too much effort on your

side, maybe it’s not a unit test or maybe your code is

not testable enough. In this case, go over the previous

chapter to learn how to improve your code testability.

 – Unit Tests need the ability to run in parallel. Isolation

is the key here. Running in parallel is the best way to

ensure your unit tests don’t have any unknown side

effects that can influence not just other tests but also

your code in an unpredictable way.

Chapter 3 Writing tests – the BasiCs

51

 – Unit Tests are in charge of checking the behavior of a
method or even a specific piece of code. Unit Tests are

not supposed to check how layers in your app work

together, find memory leaks, or make sure your code

runs fast enough.

You should write as many unit tests as you can as part of your daily

development routine. If you write a readable and clear code, it’s not

supposed to be a difficult task.

Note Unit tests are not tDD, and tDD is not Unit tests. Developers
often mix those terms. Unit tests are what you test, and tDD is when
you test it. in tDD, you write your unit test before the actual code, and
unit tests are integrated in this process.

 XCTest and XCTestCase
XCTest is the framework used to write tests for your app. It comes as part of

your Xcode, and there is no additional setup required to start writing tests.

XCTest is also the name of the abstract class for creating and executing

tests, both Unit Tests and UI Tests. To create a new test class, we are going

to make use of XCTest’s subclass – XCTestCase.

 XCTestCase
When we want to create a new test class, we need to subclass

XCTestCase. In unit tests, we usually want to create one test class to

handle one “regular” class in our project. The recommended name can

be the name of the tested class with the addition of the word “tests.” For

example, for a class named “LoginHandler”, we can create a test class

Chapter 3 Writing tests – the BasiCs

52

named “LoginHandlerTests”. This can help us understand exactly what

this class tests and also prevent redeclaration of the same class name by

mistake.

 Adding a New XCTestCase Subclass

To add a new test case, go to File ➤ New ➤ File and select “Unit Test Case

Class” (see Figure 3-1).

After tapping “Next”, give a name for the test class and choose its

location in your project just like any other file.

Notice that, in the last step, you need to choose the test target this test

class belongs to (Figure 3-2) – this is extremely important since test classes

cannot be part of your executable target.

Figure 3-1. Adding new Unit Test Case Class

Chapter 3 Writing tests – the BasiCs

53

 Our First Test Class
Congratulations, it’s a test class!

Look at how our new test class looks like:

import XCTest // 1

class DemoTests: XCTestCase { // 2

 override func setUpWithError() throws { // 3

 // Put setup code here. This method is called before

the invocation of each test method in the class.

 }

Figure 3-2. Selecting a target for your test class

Chapter 3 Writing tests – the BasiCs

54

 override func tearDownWithError() throws { // 4

 // Put teardown code here. This method is called after

the invocation of each test method in the class.

 }

 func testExample() throws { // 5

 // This is an example of a functional test case.

 // Use XCTAssert and related functions to verify your

tests produce the correct results.

 }

 func testPerformanceExample() throws { // 6

 // This is an example of a performance test case.

 self.measure {

 // Put the code you want to measure the time of here.

 }

 }

}

Let’s go over it together:

 1. import XCTest – In order to subclass XCTestCase

and add it to the test runner, we need to import the

XCTest framework just like any other framework we

want to use.

 2. class DemoTests: XCTestCase – Always make sure

you are subclassing from XCTestCase.

 3. setUpWithError() – This method runs before every

test method execution. It will be explained later in

this chapter.

 4. tearDownWithError() – This method runs

after every test method execution. It also will be

explained later in this chapter.

Chapter 3 Writing tests – the BasiCs

55

 5. testExample() – This is our first unit test example.

Currently, it’s empty.

 6. testPerformanceExample() – This is a

performance test example. It will be explained later

in this book.

 Enable Testability
Before we move on and add more tests, we need to make sure everything is

linked up correctly in our project.

Your test code is not part of your executable. It’s a different module in

your Xcode project, and for your tests to have access to your app code, you

need to take care of access privileges.

But don’t worry; there is a fairly simple flag to help you with the access

privileges problem, and it’s called “Enable Testability”.

When you go to your executable target, under “Build Settings”, search

for “Enable Testability”. Setting this flag to “YES” gives your test targets

access to code. Take a look at Figure 3-3.

One thing we notice here is that this flag is set to NO in release

configuration. One reason for that is that we do not need access to

the executable code since we usually don’t test our app in release

Figure 3-3. Set "Enable Testability" to YES

Chapter 3 Writing tests – the BasiCs

56

configuration. The more important reason for that is that this option

prevents code optimization, which is used in release configuration and is

not suitable for your tests and for debugging.

 @testable
So now after we took care of the settings in the executable side, we need to

import the executable target to the test class.

On the top of the file, just above the class declaration, we add a new

attribute called “@testable”:

import XCTest

@testable import My_Weather_App

class My_Weather_AppTests: XCTestCase {

 // testing code

}

What @testable does and why do we need it? First, lets recall the five

access levels in Swift:

 – Public – Anyone can access within the module and in

external code that imports the module.

 – Open – It is same as Public, but it is possible to sub-

class it from any module and not just the original class

module.

 – Internal – Access is prohibited outside the module. The

internal access level is the default level for classes and

methods.

 – Fileprivate – Access is only from the current file.

 – Private – Access is only from the same class or struct.

Chapter 3 Writing tests – the BasiCs

57

If you notice, the default access for classes and methods is internal.
Because Unit Tests require full access to your code outside the module, we

may have a problem here assuming your access level for most classes and

methods is set to the default one.

What @testable does is to elevate access levels in the imported

module. Members marked as Public now behave as Open, and members

marked as Internal behave as Public.

Note there are some discussions in the swift developers’
community about @testable. some claim @testable attribute is a
“hack” who tries to overcome the access level issue in testing. those
who claim that, say that since it’s a “hack,” why not give private and
fileprivate public access level as well?

 CocoaPods and Testing Targets
Many projects today use Dependency Manager to integrate with external

libraries and frameworks. One of the most popular managers is CocoaPods

with over 72,000 libraries, and it’s used in more than three million apps.

One of the tasks CocoaPods does when linking a new framework

is to update the header search path according to the new integrated

frameworks.

If you want to use those libraries directly in your test target, you need

to add your test target to the Podfile file, like this:

target "My_Weather_AppTests" do

 inherit! :search_paths

 pod 'Fabric', '1.10.2'

 pod 'Firebase'

end

Chapter 3 Writing tests – the BasiCs

58

Adding pods to the test target is something developers usually forget

during test writing, so the key to remember that is to treat the test target as

a separate app. Everything you want to use, you need to link it to your test

target, just as you would do in your executable target.

 XCTestCase Life Cycle
XCTestCase life cycle is a little bit different than what you would expect in

standard Swift classes. Because test cases are part of a test runner, the test

runner calls the test case methods in a specific timing, suitable for testing.

 Class Method setUp()

When a new test class starts its run (it’s more accurate to say that we are

“adding the test case to the test runner”), the first method to be called

is the setup() method in the class level. You don’t have to override it, of

course, but this method is called once for all the tests in the class. setup()

method is the place for you to do some initial setup for your tests, such as

creating a database or setting up a mock server:

 override class func setUp() {

 super.setUp()

 // runs once before all the tests begin

 }

 Method setUpWithError () throw

After class method setup(), XCTest locates all the methods in the class that

start with “test” and don’t have any arguments.

For each one of those methods, XCTest calls setUpWithError() function

before it runs the test method itself. This is the place where you can

prepare any instance variables you have instead of duplicating those steps

in every test method.

Chapter 3 Writing tests – the BasiCs

59

Also, an instance method setup() is called after each setUpWithError()

call.

You might notice that setUpWithError() method is a throwing method.

This is a welcome addition in Xcode 11.4, since a lot of code that is done at

this method is a throwing code, for example:

override func setUpWithError() throws {

 networkResponse = try buildResponseFromJSON(filename :

"response.json")

 }

If setUpWithError() throws, it means that the test that follows it will fail

as well.

 Test Methods

After setting up the state for the test, XCTest runs the test method and

asserts if needed. XCTest considers a method to be a test method if all the

following conditions exist:

 – It belongs to a subclass of XCTestCase.

 – Its name starts with “test”.

 – The method doesn’t have any arguments.

A test method passes if it doesn’t have any failed assertions or crashes.

We’ll talk about how to write test methods later in this chapter.

 Teardown Block

If your test method changes some state or has a specific side effect you

want to clean up, you can add a teardown block that runs at the end of the

test:

Chapter 3 Writing tests – the BasiCs

60

 func testExample() throws {

 // creating a temporary file

 addTeardownBlock {

 // removing the temporary file

 }

 }

You can add as many teardown blocks as you want, and it’s explicit

for changes made at this function only. To create a teardown code that

runs after each method, you need to override the tearDownWithError()

method.

 Method tearDownWithError() throw

tearDownWithError method runs after each test method whether it failed

or passed. We use this method to clean up any side effect your test method

might have caused, and in most cases, it should be the inverse function of

setUpWithError() method.

For example, if you opened up a connection to SQLite in

setUpWithError(), this is the place to close it:

 override func tearDownWithError() throws {

 try super.tearDownWithError()

 // clean up any side effects caused by setupWithError()

 }

Just like setUpWithError() and setup(), tearDownWithError() is called

before “tearDown()”. They are both valid so that you can use them in your

projects.

Chapter 3 Writing tests – the BasiCs

61

 Class Method tearDown()

Class method tearDown() is the parallel closing function of the class

method “setup()”. It runs at the end of all tests and is used to clean up any

setup code you did before the tests started to run:

 override class func tearDown() {

 super.tearDown()

 // runs at the end of all tests in the class, and is

used to clean up any side effect the class method

setup() might have caused.

 }

 How It All Fits Together

Confused? Well, that sounds normal. But setting up the initial state for a

test and cleaning it up afterward are crucial steps to achieve stability in

your test run.

This is why I created Figure 3-4 to show you how it looks from above.

Figure 3-4. XCTestCase life cycle

Chapter 3 Writing tests – the BasiCs

62

 XCTest Creates an XCTestCase Instance for Every Test
Method

Some may think that before a test case class starts its execution, XCTest

creates an instance of this class and just runs all the tests one by one. While

that makes sense in standard classes, this is not the case in XCTest classes.

When Xcode starts its test suite, it actually creates an XCTestCase

instance for every test method and adds it to its test runner queue before

the test execution even begins.

Let’s say you have a test class named “LoginTests” with four different

test methods. When the test run begins, XCTest creates four instances

of LoginTests class, one for each test method, and adds them to the test

runner. Those four instances get deallocated at the end of the run, only

after all the other tests finished their execution.

And this is important because it can give you a sense about how states

are managed during the test run execution. For example, you cannot share

an instance variable value across different test methods, since each one of

those methods has its own class instance.

And regarding memory management, you need to remember that

none of the class instances get deallocated until the end of the test run.

This means you need to pay attention to what you are doing in the setup

and tearDown methods and make sure to release and reset any data that

can affect other test methods.

 Writing Unit Tests
As I said before, not only unit tests are fast to run, but they also need to

be written fast. But don’t worry; you don’t have to invent the wheel here –

there are particular pattern and structure on how to write unit tests. If

you’ll keep a constant pattern, not only will they be easy to write but also

readable.

Chapter 3 Writing tests – the BasiCs

63

 Unit Test Anatomy
Take a look at the following code:

 func testGetSpeedLimit_private_expect110() {

 // arrange

 car.type = .private

 // act

 let speedLimit = car.getSpeedLimit()

 // assert

 XCTAssertEqual(speedLimit, 110)

 }

As you can see, in a unit test, we have three steps Arrange, Act, Assert,

or in short AAA. We can also call it GWT (Given-When-Then). Some

developers prefer AAA since its terminology is closer to the code level, and

some prefer GWT for easier communication with the business level.

But in the bottom line, it doesn’t matter. The idea stays the same:

 – Arrange/Given – Do all the setup for the test here.

Connect dependencies, set properties, and allocate

variables. Remember what we learned about the life

cycle. If it’s something you do in every test method,

consider moving it to the setup() method to save

yourself code duplication.

 – Act/When – This is the place when you execute the

function you want to test. In this stage, it is best practice

to save the value you want to verify against your

requirements in a local variable.

 – Assert/Then – The final setup is the actual validation of

the test. In this step, you check if the test fulfills the expec-

tation, generally by asserting (we will discuss it later).

Chapter 3 Writing tests – the BasiCs

64

Separating your test method into three steps makes your testing code

much more readable and easier to understand.

 Assertions
There is a long list of assertions XCTest supports. In all assertions,

you have the option to include a formatted error message to help you

understand what the failed test is and the reason for the failure is. This is

especially important when running tests from the command line or CI/CD

environment, but also helpful from Xcode itself.

Table 4-1. List of XCTest Assertions

Name Description

XCTFail Unconditionally fails the test

XCTAssertNil Failure when the passed object is not nil

XCTAssertNotNil Failure when the object is nil

XCTAssertEqual Failure when expressions are not equal

XCTAssertNotEqual Failure when expressions are equal

XCTAssertNotEqualObjects Failure when objects are not equal

XCTAssertNotEqualObjects Failure when objects are equal

XCTAssertNoThrow Failure when expression throws expression

XCTAssertGreaterThan Failure when the first object is not greater than

the second object

XCTAssertLessThan Failure when the first object is not smaller than

the second object

XCTAssertLessThanOrEqual Failure when the first object is greater than the

second object

XCTUnwrap Failure when the given expression tries to

unwrap and returns nil

Chapter 3 Writing tests – the BasiCs

65

You may wonder, “Why do I need to learn the full assertions list? I can

just use XCTAssertTrue.”

So basically, you are right. If you use XCTAssertTrue and pass the

condition you want, this will actually do the job.

But take a look at Figure 3-5.

Do you see the problem? Sure, “x == y” is not “true”. But we didn’t want

to check a Boolean expression; we wanted to check if two objects are
equal.

Now let’s change it to XCTAssertEqual (Figure 3-6).

As you can see, using the right assertion can help you get a descriptive

failure message free of charge.

 Creating a Custom Assertion

Believe it or not, there are cases when the existing assertions are not the

precise and convenient tool for validating your tests.

Luckily, there’s a way of creating your custom assertions and making

your testing code much cleaner.

Figure 3-5. XCTAssertTrue failure in Xcode

Figure 3-6. XCTAssertEqual failure in Xcode

Chapter 3 Writing tests – the BasiCs

66

Here are some of the use cases that can make you consider writing

your own custom assertion:

 – Duplicate Assertion Code – Let’s say you want to

validate an object configuration, and you need to check

a few properties. You can either use one big assertion

that checks several values (an ugly solution) or use

multiple assertions which is not an elegant solution

either. The bottom line is when you see a repeated use

of assertion sequence, you should consider a custom

assertion.

 – When Your Assertion Code Is Too Big – If you need to

parse a JSON every time and check a certain value or if

you need to analyze a string or to do some calculation,

write your own assertion. When you feel that the last

part of your test (the “Assert” or “Then” part) is too big

and can be a good fit to a function of its own, this is a

sign you should create a custom assertion.

 – When Your Assertion Doesn't Speak the Right
Language – If you are checking that an email address is

valid or the string contains only one “@”, or maybe you

want to check if a date object is in a certain month or

year. Sure, you can use a standard assertion for that, but

the standard assertions don’t speak the “same lan-

guage.” “Bigger than,” “Equal,” or “isTrue” is fine to use,

but for a more stylish way, it is better to use your

assertion to do those validations.

I’m In. How to Write My Own Assertion?

The basic method of writing your own assertion is, well, a new method in

your tests.

Chapter 3 Writing tests – the BasiCs

67

Let’s look at the following example:

 func testPersonFetcher_getPersonByID_checkProperties() {

 // arrange

 PersonDataBase().insertNewPerson(newPerson:

Person(firstName: "Tyler", lastName: "Butler"))

 let personFetcher = PersonFetcher()

 // act

 let person = personFetcher.getPerson(byID: "me")!

 // assert

 XCTAssertEqual(person.firstName, "Tyler")

 XCTAssertEqual(person.lastName, "Butler")

 }

In this test method, we are fetching a “Person” object and check its first

and last name. Now let’s say for the sake of our example that we want to

bundle those two assertions to one function that checks both first and last

name. We can create a function that gets three arguments, the “Person”

object, first name, and last name, as strings and run those two assertions:

 func checkPersonValues(person: Person, firstName : String,

lastName : String) {

 XCTAssertEqual(person.firstName, firstName)

 XCTAssertEqual(person.lastName, lastName)

 }

 func testPersonFetcher_getPersonByID_checkProperties() {

 // arrange

 PersonDataBase().insertNewPerson(newPerson:

Person(firstName: "Tyler", lastName: "Butler"))

 let personFetcher = PersonFetcher()

Chapter 3 Writing tests – the BasiCs

68

 // act

 let person = personFetcher.getPerson(byID: "me")!

 // assert

 checkPersonValues(person: person, firstName: "Tyler",

lastName: "Butler")

 }

Simple, ha? Not so quickly. Let’s run this test and see Figure 3-7.

Our test failed, but this is not the issue. Do you see the problem here?

From the preceding screenshot, we see the two methods – the test method

and the assertion method. We also see the failure message, but instead of

pointing on the test method, it points on the assertion method!

We see that we have no way of connecting the failure message to the

correct test method. Also, in case of several failed test methods, we are

going to have multiple failure messages in the same place, one above the

other – it’s a testing nightmare!

Figure 3-7. Running test with external assertion method

Chapter 3 Writing tests – the BasiCs

69

But fortunately, we have a solution. Let’s look for a second on the

XCTAssert function’s signature:

func XCTAssert(_ expression: @autoclosure () throws -> Bool, _

message: @autoclosure () -> String = "", file: StaticString =

#file, line: UInt = #line)

As you can see, besides the expression and the message arguments, we

also have two more arguments – file and line.

File (String) and Line (UInt) contain the information on where in the

code XCTest shows the failure message. By default, both of them have the

values of the place where we call the assertion function.

Note #file and #line are two expressions that are part of the swift
language. You can use them not only in your tests but also in your
project code. swift also has more interesting expressions you can use
in your tests and in general, like #function, #column, and more.

So, if we want to show the message on the right place, all we need to do

is to pass the #line and #file expression to our final assertion method:

 func checkPersonValues(person: Person, firstName : String,

lastName : String, line : UInt = #line, file : StaticString

= #file) {

 XCTAssertEqual(person.firstName, firstName, file: file,

line:line)

 XCTAssertEqual(person.lastName, lastName, file: file,

line:line)

 }

Let me explain what I did here – our custom assertion method has two

more arguments, line and file, filled with default values. The default values

are the actual place where we call the function. Later then, we pass those

Chapter 3 Writing tests – the BasiCs

70

two arguments to the assertion methods inside, overriding their default

values. I can say we are kind of tricking the system into getting a clear

failure message.

Now let’s run our test with our improved assertion method (Figure 3- 8).

Great! Now our failure message displayed is in the right place – in

the test method and not in the assertion method. Also, we didn’t have to

change anything in the test method.

To sum it up, custom assertion methods can help you maintain your

testing code easier by making it more readable and less duplicated (DRY).

Whenever you feel your assertion code is a little bit complex or confusing,

just write your own method. It’s that easy.

 Write Asynchronous Operations
Take a look at the following code:

 func testImageProcessing() {

 // arrange

 let image = UIImage(named: "3cats")!

 let manager = CatsProcessingManager()

Figure 3-8. Custom assertion method with line and file arguments

Chapter 3 Writing tests – the BasiCs

71

 // act

 var cuteCats = 0

 manager.findCuteCats(image: image) { (numberOfCuteCats) in

 cuteCats = numberOfCuteCats

 }

 // assert

 XCTAssertEqual(cuteCats, 3)

 }

In the preceding code, we want to test the method findCuteCats(),

which receives an image and is supposed to find the number of cute cats

shown in the picture (which is basically the total number of cats displayed

since all cats are cute).

We presented an image with three cats and expected to get three as

the return answer, but the test failed. At the end of the test, the cuteCats

variable is still 0, and this is because findCuteCats() is an asynchronous
method. Our intuitive fix for that is putting the assertion line inside the

completion block of the function, but this makes it even worse – now, we

get a false positive and our test always succeeds because the test run ends

before the completion block gets executed!

We need to find a way of keeping the test method, waiting for the

findCuteCats() method to finish before it asserts it.

 Expect, Wait, Fulfill, and Assert

Fortunately, XCTest has an easy solution for asynchronous operations. We

base this solution on three simple parts:

 – Define the Expectation – We need to work with some

kind of expectation object that can be transferred into

the completion block and to help us manage the

process. The definition is done using something called

XCTestExpectation.

Chapter 3 Writing tests – the BasiCs

72

 – Mark the Expectation As Fulfill – It’s not enough for

the completion block to finish; we need to tell the

expectation object we created that we have all the data

that we need, and we are now ready to assert.

 – Pause the Test Method Run Until We Have an
Answer – We need to halt the run of the test method

before we assert; otherwise, it will just continue to the

end of the method without waiting for an answer. Also,

we need to define some timeout to prevent the test

execution from running forever.

 XCTestExpectation Pattern

Let’s look at our testImageProcessing() method refactored for

asynchronous testing:

 func testImageProcessing() {

 // arrange

 let image = UIImage(named: "cats")!

 let manager = CatsProcessingManager()

 // act

 var cuteCats = 0

 // creating an expectation to get number of cats.

 let expectation = self.expectation(description:

"Counting number of cats") //1

 manager.findCuteCats(image: image) { (numberOfCuteCats) in

 cuteCats = numberOfCuteCats

 // we've got an answer. our expectation is

fulfilled!

 expectation.fulfill() //2

 }

Chapter 3 Writing tests – the BasiCs

73

 // assert

 // let's wait 5 seconds before asserting...

 waitForExpectations(timeout: 5.0, handler: nil) //3

 XCTAssertEqual(cuteCats, 3)

 }

In the preceding code, we can see the three parts I mentioned earlier.

Let’s go over them:

let expectation = self.expectation(description: "Counting

number of cats") //1

When we want to create an asynchronous test, we create a

XCTestExpectation object. On its initialization, we pass an informative

description that can help us understand what expectation was not fulfilled

if our test failed.

It is possible to create multiple expectations for the same test:

expectation.fulfill() //2

When the asynchronous operation finishes its work, we call the fulfill()

method of the expectation object we created previously. In most cases,

it’s best practice to call the fulfill() function even when the completion

block failed. Don’t be confused – fulfill doesn’t mean our test passed;

it just means we can move on to the assertion part. The terminology of

“expectation is fulfilled” can be mixed with the “Expect” part of our test, so

beware!

waitForExpectations(timeout: 5.0, handler: nil) //3

Before the assertion part, we call waitForExpectations() method. What

this method does is to stop the test execution until all the expectations are

fulfilled or the timeout was reached.

Chapter 3 Writing tests – the BasiCs

74

If the timeout is reached, our test fails automatically. When all the

expectations are fulfilled, it’s time for you to assert:

XCTAssertEqual(cuteCats, 3)

 Fulfill Multiple Times for One Expectation

There are tests when we want to execute an asynchronous code several

times before we can say the expectation is fulfilled, and we can move on to

the assertion part. For that kind of test, XCTestExpectation has a property

called expectedFulfillmentCount:

 let expectation = self.expectation(description:

"executing closure code 3 times")

 expectation.expectedFulfillmentCount = 3

A good use case for that is a music player that needs to update the

progress of the song a few times. The expectation can count the number of

times it gets called and then moves on to the assertion part when it reaches

a specific number.

 Assert When the Expectation Is Not Fulfilled

OK, I need you to stay focused on this one. There are cases when we

want to make sure a code is not being executed. In other words, if our

expectation is fulfilled, our test fails.

In this case, we can use the isInverted property (default is “false”):

 let expectation = self.expectation(description: "Code

is not executed")

 expectation.isInverted = true

A good use case for isInverted property is permissions handling. We

want to make sure parts of our code are not being executed in a specific

configuration and states.

Chapter 3 Writing tests – the BasiCs

75

 Expect Array of Expectations, Ordered

If you have multiple expectations in a test method, you don’t have to wait

for them separately. Just wait at the end of the test method while passing

the array of expectations:

wait(for: [loadFromFileExpectation, locateCuteCatsExpectation],

timeout: 2.0)

You can even make sure all the expectations fulfilled in a provided order!

wait(for: [loadFromFileExpectation, locateCuteCatsExpectation],

timeout: 2.0, enforceOrder: true)

 XCTestExpectation Subclasses

Now that you have “wait” + “fulfill” + “assert” tools, basically, every a-sync

job can be tested using XCTestExpectation. But Xcode 8.3 brought several

improvements in that area in order to make those tasks much easier to

build and read.

Let’s look at the following code:

 func testIfNotificationRaised() {

 let expectation = self.expectation(description:

"Notification Raised")

 _ = NotificationCenter.default.addObserver(forName:

NSNotification.Name("notif"), object: nil, queue: nil,

using: { (notification) in

 expectation.fulfill()

 })

 NotificationCenter.default.post(name: NSNotification.

Name("notif"), object: nil)

 waitForExpectations(timeout: 0.1, handler: nil)

 }

Chapter 3 Writing tests – the BasiCs

76

In this code, we are trying to test if a notification was raised. We add an

observer, and when we receive it, we fulfill the expectation. In the following

line, we post the notification and wait 0.1 seconds for the expectation for

being fulfilled.

Simple, ha? Well, the problem is that most of our tests don't look like

this example. The observing code is usually located somewhere else, not

even in our test code, and this is also true for posting the notifications in

most cases:

 func testMyScree_savingData_checkNotificationReceived () {

 // arrange

 let dataConnector = DataLayer()

 let myScreen = MyScreen()

 // act

 dataConnector.save()

 // assert

 // checking if myScreen receives a "data updated"

notification...

 }

In the preceding example, we have some data layers and a UI Screen.

The test is to save some data and check if the screen receives a “data

updated” notification.

We understand that the posting notification code is inside the data

layer and the observer code is inside the UI Screen. So how do we check it?

Note the current discussed example is not really a “unit test,” but
an integration test. We'll talk about integration tests later in this book.

Chapter 3 Writing tests – the BasiCs

77

OK, so we can add some closure or delegate pattern to pass the event

from the myScreen class to the test method, but this requires us to change

our code only to make our tests easier to test. This may be true in many

cases, but not in this case – no one observes this event, only the test

method.

Fortunately, we have the ability to observe notification calls in our tests

very easily.

Let’s solve the issue we have in our test method:

 func testMyScreen_savingData_checkNotificationRaised () {

 // arrange

 let dataConnector = DataLayer()

 let myScreen = MyScreen()

 let expectation = self.expectation(forNotification:

NSNotification.Name("dataUpdated"), object: nil,

handler: nil)

 // act

 dataConnector.save()

 // assert

 waitForExpectations(timeout: 0.1, handler: nil)

 }

As you can see, we are adding expectation(forNotification:). When

the notification is raised, the expectation is fulfilled. Notice we are not

checking if myScreen receives the notification. This is something you need

to do some other way, for example, checking its state.

Chapter 3 Writing tests – the BasiCs

78

 Summary
XCTest is a robust framework, and it can help you set up an excellent

testing suite very easily.

Also, we’ve learned how to write structured test methods and how to

write them as part of a test case life cycle.

But those are only the basics – in the next chapter, we will learn how to

leverage our skill and write useful and maintainable unit tests.

Chapter 3 Writing tests – the BasiCs

79© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_4

CHAPTER 4

Writing Tests –
Advanced Techniques

More than the act of testing, the act of designing tests is one of
the best bug preventers known. The thinking that must be done
to create a useful test can discover and eliminate bugs before
they are coded – indeed, test-design thinking can discover and
eliminate bugs at every stage in the creation of software, from
conception to specification, to design, coding and the rest.

—Boris Beizer

 Introduction
In the previous chapter, we’ve learned how to write basic unit tests. But in

reality, we encounter more significant problems – we need to fake or mock

certain parts of our code or compare values.

In this chapter, you will learn advanced techniques in unit tests, like

the following:

 – How to create test doubles, such as Mocks, Dummies,

Fakes, Stubs, and Spies

 – How to avoid using test doubles if possible

 – How to compare values like structs and classes

 – How to compare images and arrays

https://doi.org/10.1007/978-1-4842-6382-2_4#DOI

80

 – How to avoid duplicating your testing code when

trying to run your test method multiple times with

different values

 – How to create test cases dynamically

 Test Doubles (Fake, Fake, Fake)
It’s true; we have unit tests that are easy to test. There are no dependencies,

no network or database, and no extra work required to make our test unit

to be stable and maintainable.

But with all due respect, we know the reality is different. While we are

trying to isolate our functions as much as we can, they still operate in a

world with other living creatures that we need to pay attention to.

Remember that in unit tests we need to focus on one area of our code

at each test. Testing a specific area of the code is the reason why we need to

isolate our code from the rest of the system.

Test Double is a generic term that describes objects that behave or

look like the real objects our code depended on. Faking a server-layer

response might be an excellent example of that. It is almost impossible to

avoid the use of test doubles, especially in unit testing.

 Mocks. Mocks Everywhere (?)
One of the most common mistakes developers do when dealing with test

doubles is calling them “mocks.” It’s not that there isn’t such a thing, a

“mock.” It’s just that this term is mistakenly used when talking about test

doubles.

There are several types of test doubles, other than just a “mock.” Each

one of them aims to solve a different part of our test isolation mission.

Chapter 4 Writing tests – advanCed teChniques

81

 Dummy

A dummy is an object that does nothing. It doesn’t return any value, and

you never really call it. It’s an object that will never be used in the test. So

why do we need it? Well, there are methods that, to initialize them, you

have to pass an object from a certain type. In that case, you can create a

new dummy class. The dummy can be either a subclass of the original

object you need to pass or a new class that conforms to the relevant

protocol:

class ManufactureDummy : Manufacture {

}

class CarTests: XCTestCase {

 func testCarMethod(){

 let manufactureDummy = ManufactureDummy()

 let car = Car(manufacture: manufactureDummy)

 // rest of the test method

 }

}

Let’s examine the preceding code – we want to test the class “Car”

when its constructor requires one argument, “manufacture”.

But this argument is not going to be used in our test, and it’s only there

for code design purposes. We just want to create our car object and move

on. So we create dummy manufacture, which is a subclass (or a protocol

based), and pass it to the car init() method.

We can say that dummies can help us initialize objects when we have

to deal with a custom init() method.

Chapter 4 Writing tests – advanCed teChniques

82

 Fake

Sure, we can say that every test double is a “fake.” But in this case, “fake” is

an object that always returns the same value. A good example might be a

network layer to fake a network response.

Another example can be a fake login service to help you test some

login logic code:

class LoginService {

 var isLoggedIn : Bool {

 return true

 }

}

class FakeLoginService : LoginService {

 override var isLoggedIn : Bool {

 return true

 }

}

The simple “FakeLoginService” always returns true in the “isLoggedIn”

variable getter. You can inject this fake object in tests that require the user

to be logged in when running your test.

 Stub

A Stub is a test double you can use to control its return value. We can say

it’s a “sophisticated fake.” For example, you can use a stub to fake a return

or success of a service.

Look at LoginScreenPresenter.swift:

class LoginScreenPresenter {

 var loginService : LoginService

Chapter 4 Writing tests – advanCed teChniques

83

 init(loginService : LoginService) {

 self.loginService = loginService

 }

 func doLogin(withEmail email : String, password :

String, completion : @escaping (String)->Void) {

 loginService.doLogin(email: email, password: password)

{ (result) in

 switch result {

 case .failure:

 completion("Failed!")

 case .success:

 completion("Success")

 }

 }

 }

}

LoginScreenPresenter has a dependency called loginService. We want

to test the message output in case of a failure or success.

For the test, we create a LoginServiceStub to control the return value of

doLogin() method:

class LoginServiceStub: LoginService {

 var _loginServiceResult : LoginOperationResult = .success

 init(result : LoginOperationResult) {

 _loginServiceResult = result

 }

 override func doLogin(email: String, password: String,

completion: (LoginOperationResult) -> Void) {

 completion(_loginServiceResult)

 }

}

Chapter 4 Writing tests – advanCed teChniques

84

LoginServiceStub is a subclass of the original LoginService (remember,

OOP is not the only way of creating stubs; you can also use Protocol-

Oriented).

We create a new initializer for the stub to set the fake login result and

override the doLogin() method to return that fake value.

Now let’s see how to use this stub in a test:

 func testLoginPresenter_whenFailure_expectFailureMessage()

{

 //arrange

 let loginServiceStub = LoginServiceStub(result: .failure)

 let presenter = LoginScreenPresenter(loginService:

loginServiceStub)

 let expectation = self.expectation(description: "Check

Login Flow Message")

 // act

 var message = ""

 presenter.doLogin(withEmail: "avi@emailServer.com",

password: "123456") { (resultMessage) in

 message = resultMessage

 expectation.fulfill()

 }

 self.waitForExpectations(timeout: 0.1, handler: nil)

 // assert

 XCTAssertEqual(message, "Failed!")

 }

Passing the loginServiceStub as an argument to the LoginPresenter

sure makes writing this test easy for us, ha? Notice we can easily create

another test with the same stub while passing a different return value.

Chapter 4 Writing tests – advanCed teChniques

85

 Spy

Spy is the opposite of stub. We use the stub to configure a dependency of

the object we are testing. In Spy, we want to inspect the side effect of our

tested code.

Spy doesn’t return anything; it’s only there to record our calls, and we

can use that information later in our assertion part – this is why it is called

a “Spy.”

The way a spy works is straightforward. Let’s say we want to test one

of the presenter methods, and we know this method calls some methods

in the view. All we need to do is to create a spy, meaning some object that

conforms to the same protocol of the view and records specific calls.

Look at Figure 4-1.

And now the code version:

class LoginViewSpy : LoginViewProtocol {

 var messageReceived = ""

 func showMessage(message : String) {

 messageReceived = message

 }

}

 func testLoginPresenter_whenTappedOnLoginButtonAndNoNetork_

showError() {

 // arrange

 let loginPresenter = LoginPresenter()

Figure 4-1. Spy vs. Stub

Chapter 4 Writing tests – advanCed teChniques

86

 let viewSpy = LoginViewSpy()

 loginPresenter.view = viewSpy

 // act

 loginPresenter.onLoginButtonTapped()

 // assert

 let messageReceived = viewSpy.messageReceived

 XCTAssertEqual(messageReceived, "Error. Please check

your network")

 }

In the preceding code, we have our LoginPresenter that needs to

update its view.

Usually, its View is some kind of a UIViewController that conforms

to LoginViewProtocol, but in this case, we created a spy. Just a regular

class that conforms to the same protocol and the presenter doesn’t know

he updates the Spy and not the real view controller. This Spy saves the

message it receives in a variable, and later the method asserts and verifies

the received message.

Spies are a widespread test double, and the inspection can go further –

you can inspect the order of the calls or even how many calls were made.

 Mock

I mentioned earlier that from many developer’s perspective, all test

doubles are mocks, and this a common mistake. Up until now, we

discussed Dummy, Fake, Stub, and Spy.

So, what is a Mock? Well, a mock is a sophisticated and more

independent spy. Mock also records method call information. But unlike a

spy, it knows what to expect and does the verification itself.

In real mocks (it’s weird to name mocks “real”), we define the

expectations on the setup, and the mocks verify them on the assertion part.

Chapter 4 Writing tests – advanCed teChniques

87

The mock object usually has a function “verify()” to make sure it meets

the expectations.

Let’s rewrite our test with mock instead of a spy:

class LoginViewMock : LoginViewProtocol {

 var expectedMessage = ""

 private var messageReceived = ""

 func showMessage(message : String) {

 messageReceived = message

 }

 func verify()->Bool {

 return messageReceived == expectedMessage

 }

}

 func testLoginPresenter_whenTappedOnLoginButtonAndNoNetork_

showError() {

 // arrange

 let loginPresenter = LoginPresenter()

 let viewMock = LoginViewMock()

 loginPresenter.view = viewMock

 // setup expectations

 viewMock.expectedMessage = "Error. Please check your

network"

 // act

 loginPresenter.onLoginButtonTapped()

 // assert

 XCTAssertTrue(viewMock.verify())

 }

Chapter 4 Writing tests – advanCed teChniques

88

In the rewritten test method, we are now using a mock instead of a spy.

We define the expected message, and in the assert part, we are checking

the verify() method. The comparison between the expected message and

the received message is done inside the mock and not in the test method.

While this may not sound like a big deal, in fact, it is, especially in unit

testing.

First, remember we talked about the arrange part – we said we need

to set up the state of the test in that part. But when dealing with mocks, we

also need to set up its expectations.

Second, in stubs, we do state verifications, meaning we are checking

to see if the stub made the right calls to the mock. But in mocks, we do

behavior verification. In this case, we don’t care about the actual calls

made to the mock, but instead, we want to know that the mock object

responded right to our “act” part of the test.

 Complete vs. Partial Mocking

We have two ways of mocking objects – “complete” and “partial.” In some

of the examples I presented, we create the test double by conforming to a

protocol. In other cases, we subclass the original type and override some

of its methods. So, we see there is a difference in the way we choose how to

create our test doubles.

Partial Mocking is when we create a test double while modifying

and changing the original type (class or struct). The mocking is done by

subclassing and overriding the specific methods we want to change.

In Complete Mocking, we create our test double from scratch. This is

usually done by conforming to a protocol, represented the original type.

In general, partial mocking is closer to the real code and is “less fake.”

I think that we need to avoid partial mocking. Using partial mocking might

be OK in the short run, but in the long term, modifying the existing types

may encounter problems. Working with a modified real object can lead to

unexpected behavior, while these objects are being changed over time due

to code evolution.

Chapter 4 Writing tests – advanCed teChniques

89

 Avoid Test Doubles If Possible
OK. What? We just had a long session about how to create great test

doubles to help us test our code. So how come I recommend you not to use

test doubles if possible?

Well, in many cases (not all!), test doubles consider being a code smell.

A code smell is an indication of a deeper problem you might have in your

code – maybe some anti-pattern you are using or a wrong structure. If you

heavily rely on test doubles for testing, it might be code coupling, and code

coupling is not ideal for unit testing.

 Coupling

When a type (class/struct) works with another type, we call it coupling.

In general, we want to reduce coupling in our app to the minimum (zero

is not realistic. After all, it’s a system). Think of two objects that work

together – the more they know about each other, the more chances this

relationship will break in the future. Classes evolve and change, and those

changes may have impacts on other related classes as well.

Types of Coupling

But what exactly do we mean when we say “coupled objects”?There are

several types of coupling – Subclass, Shared Object, Dependencies, and
Side Effects.

Subclass Coupling – When a class is inherited from another class,

it depended on its superclass, and those two classes become coupled.

Not only that – the entire inheritance hierarchy is coupled. But this is just

logical – think how little you know what happens when you override a

method in a class with five levels of inheritance. Many developers subclass

when they could just use a protocol instead and reduce coupling.

Chapter 4 Writing tests – advanCed teChniques

90

Shared Objects – When different objects mutate properties on a

shared object, and at the same time, they depend on it, they are coupled

through the shared objects. Re-think whether the shared object is

required to be shared. This is one of the drawbacks with the Singleton

pattern – sharing an object throughout the system reduces your ability to

predict how your code behaves as a system.

Second, you need to think about restrictions for changing the shared

object state – what objects allow to change its state and when. The fewer

objects can change the state, the smaller the coupling is.

Dependencies – If your class relies on another class without a chance

to change it, you’ve got a tight coupling here. There are many ways to

decouple such a thing – from injecting new dependencies, delegate

patterns, protocol-based dependency, or even using a closure.

Side Effects – Always examine your code for side effects. If you have a

function that modifies other object's properties or changes persistent data,

these are side effects. Try to reduce side effects to a minimum. Follow the

“Single-Responsibility Principle” to isolate these side effects to one place

and by that loosen the coupling of your objects.

How to Decouple Existing Code?

Decoupling an existing code doesn’t have to be a big refactor task.

Sometimes small changes are enough to reduce the coupling level in your

project.

First, let’s understand what coupling levels are.

Coupling Severity Levels

We have four levels of severity:

Tightly Coupled – A class holds a dependency that cannot be replaced

at all, not even with the same class. “Tightly coupled” usually happens

when the dependency is a constant (“let”) and cannot be set.

Chapter 4 Writing tests – advanCed teChniques

91

Coupled – In “coupled,” the dependency relies on a particular class,

meaning we can change the dependency with an object from the same

class or one of its subclasses (unless it’s marked as “final”). Although it still

considered a coupled relationship, it’s much better than tightly coupled.

Usually, this can be done by making the dependency a public variable or

adding a constructor to set the dependency upon initializing.

Loosely Coupled – In loosely coupled, the class is not dependent on a

specific class but rather a protocol. Loosely coupled expands the spectrum of

possibilities even further by letting you connect objects without constraining

them to their implementation. Loosely coupled is the level when you can

easily create mocks/stubs and connect them during testing. You can also

combine different objects with different implementation in runtime.

Decoupled – In the “decoupled” level, the relationship between

objects is not based on a class type or even a protocol. It doesn’t mean

there are no dependencies at all – we do have dependencies. But they can

communicate through closure or a notification. When this is done, not

only can you reuse your classes across your project; chances are you can

also do it between other projects (sometimes with minor changes).

Make Changes to Your Code

Let’s see how we can change our code to improve our coupling levels.

Here we have our LoginPresenter class:

class LoginPresenter {

 let networkClient = NetworkClient()

}

We see this class has a dependency named “networkClient”. Because

it’s a “let” dependency, this means we cannot change it at all. Therefore,

it’s a Tightly Coupled level. If we want to improve our coupling level, we

just need to make a small modification – change “let” to “var”:

Chapter 4 Writing tests – advanCed teChniques

92

class LoginPresenter {

 var networkClient = NetworkClient()

}

Great! Now we can change the networkClient variable to a different

object, as long as it’s from the same class (NetworkClient) or one of its

subclasses.

Now, we are no longer in Tightly Coupled, and we upgraded the

coupling level to Coupled. But we don’t have to stop here – we can add

one more thing to improve it:

class LoginPresenter {

 var networkClient : NetworkClientProtocol = NetworkClient()

}

Now our variable is no longer from the type “NetworkClient”. In

fact, the networkClient variable can hold any object that conforms to

NetworkClientProtocol. This lets us connect other objects with different

implementation and even mocks and stubs.

The use of a protocol leverages our coupling level to Loosely Coupled.

As mentioned before, we can skip the three steps and go straight to

Decoupling level, where we can use a closure or a notification.

In this way, the class that calls the closure or the notification doesn’t

care about the type or the interface of the dependency. In most cases, it

doesn’t even care that there is a dependency:

typealias doLoginClosure = ()->Void

class LoginPresenter {

 var doLoginClosure : doLoginClosure?

Chapter 4 Writing tests – advanCed teChniques

93

 func onLoginButtonTapped() {

 doLoginClosure?()

 }

}

The latest example is simple, but it makes the term “Decoupled” much

clearer.

Decoupled objects reduce the number of mocking you need to do in

your tests. When any object or piece of code can be a dependency, even

your testing method can implement the desired behavior for your test.

There Are More Ways to Reduce Coupling

Another way to reduce coupling is how you write your functions. The same

principles we follow on objects can be implemented in functions as well.

For example, Pure Functions (which we already discussed) are an excellent

example of decoupling pieces of code from each other.

The same goes for function size – when you have a function that

handles several tasks, you are coupling responsibilities together.

Take a look at the following code:

class myScreenPresenter {

 var view : myScreenViewProtocol?

 func onTappedSave(fileURL : URL) {

 NetworkClient.shared.fetchCities {[weak self] (data) in

 try! data?.write(to: fileURL)

 NotificationCenter.default.post(name: NSNotification.

Name(rawValue: "DataSavedNotification"), object: nil)

 self?.view?.dismiss()

 }

 }

}

Chapter 4 Writing tests – advanCed teChniques

94

The method onTappedSave() has too many responsibilities – it goes

to the network, saves the returned value, posts a notification, and also

asks the view to dismiss itself. We already know that we need to write

single-responsibility functions, but this is part of the reason why – we are

chaining too many tasks together. Not only it’s a bad practice – but it also

makes us fake the network client anytime we want to test something not

related to fetching the requests (like saving or processing the data).

Creating small functions also helps us reduce the use of test doubles by

creating short pieces of code that, in many cases, don’t need mocks.

 Comparing
The assertion part is not always that simple. Comparing Int, Strings, and

Boolean values is straightforward. But what about comparing your classes?

And colors? Arrays?

In some cases, you need to add changes to your code to make your

tests easier on the assertion part.

 The Problem with Comparing
Let’s say we have a “Person” class:

class Person {

 var personID : String

 var firstName : String

 var lastName : String

 init(personID : String, firstName : String, lastName :

String) {

 self.personID = personID

Chapter 4 Writing tests – advanCed teChniques

95

 self.firstName = firstName

 self.lastName = lastName

 }

}

In our tests, we want to compare two “Persons” to see if they are equal.

We can do something like this:

XCTAssertEqual(person1.personID,person2.personID)

XCTAssertEqual(person1.firstName,person2.firstName)

XCTAssertEqual(person1.lastName,person2.lastName)

Sure, it works, but admit it doesn’t look like an elegant assertion part.

Also, writing a custom assertion method as we’ve learned has a code smell

that something is wrong here – we are trying to compare two objects from

the same class. It should be naturally possible.

We can also try this one:

XCTAssertEqual(person1, person2)

But this doesn’t even compile – we get a complication error:

Global function 'XCTAssertEqual(_:_:_:file:line:)' requires

that 'Person' conform to 'Equatable'

The error message states that “Person” needs to conform to the

“Equatable” protocol. What does it mean?

 Equatable Protocol
Primitive values (Int, String, Boolean) are easy to compare and assert, but

classes and structs require extra work.

To compare different objects or structs, we need to extend those types

and implement the Equatable protocol.

Chapter 4 Writing tests – advanCed teChniques

96

Let’s take the example of a “Person” class:

extension Person : Equatable {

 static func ==(lhs: Person, rhs : Person)->Bool {

 return lhs.personID == rhs.personID

 }

}

In this code snippet, we make the comparison of Person using the

“personID” property, but you can also extend it to first and last name if you

want.

Now, the XCTAssertEqual(person1, person2) is working correctly,

and you can use it in your tests just like primitive values.

 Comparable Protocol
Sometimes Equatable is not useful enough to create easy tests, and we

need something more elaborate. This is where the Comparable protocol

gets in.

If Equatable lets us define equality and inequality, Comparable

protocol, which is built on top of Equatable, lets you compare between

objects and identify which is “bigger” or “smaller.” “Comparable” is helpful

with ordering tasks, but it’s also useful for testing.

Let’s take our “Person” class and add it an “age” property:

class Person {

 var personID : String

 var firstName : String

 var lastName : String

 var age : Int

Chapter 4 Writing tests – advanCed teChniques

97

 init(personID : String, firstName : String, lastName :

String, age : Int) {

 self.personID = personID

 self.firstName = firstName

 self.lastName = lastName

 self.age = age

 }

}

Now we want to compare it by its age property. Using the “<” and “>”

operators doesn’t work because we need to define exactly how to compare

two persons.

Let’s extend “Person” using Comparable protocol:

extension Person : Comparable {

 static func < (lhs : Person, rhs: Person) -> Bool {

 return lhs.age < rhs.age

 }

}

Now it’s perfectly fine to use the compared “Person” by size:

XCTAssertGreaterThan(person1, person2)

You probably noticed something unique here. We know we can use

“<”, “>”, “<=”, and “>=” operators when comparing objects. In Comparable

protocol, implementing only the “<” function does the job for the rest of the

operators. By the way, is the “<” function? It should also be tested, of course.

 Compare UIImages
If you want to test a method that generates images, you probably want

to verify that the generated image is the correct one. Unfortunately,

comparing UIImages just by using the “==” operator doesn’t work.

Chapter 4 Writing tests – advanCed teChniques

98

Lucky for us, we have simple tools to fix that.

The trick is to convert those images to Data and compare the two data

objects. Using the image data comparison makes it possible to conform to

the Equatable protocol we discussed earlier:

func ==(lhs: UIImage, rhs: UIImage) -> Bool {

 if let lhsData = lhs.pngData(), let rhsData = rhs.pngData() {

 return lhsData == rhsData

 }

 return false

}

And then:

XCTAssertEqual(image1, image2)

Comparing UIImage may not sound like a common task in testing, but

when you have a use case for that, this extension can save you a lot of time.

 Compare Arrays
Comparing Arrays can be a little bit tricky since we have several issues we

need to address here:

 – We need to make sure the items in the array can be
compared. If the array doesn’t contain primitive values

(Int, String, Boolean) but references or structs, we need

to make sure they are all compliant with Comparable or

Equatable protocols, as discussed earlier.

 – We need to decide if we care about the order of the
elements. Sometimes we just want to check if both

arrays contain the same elements regardless of their

order.

Chapter 4 Writing tests – advanCed teChniques

99

 – Another thing is duplicate elements – unlike Set,

Arrays can contain duplicate items. Does a duplicate

item cause our test to fail, or can we ignore it?

These are questions you need to ask yourself when you want to assert

arrays.

 Comparison Is Critical in Testing
Comparison is an essential part of writing code, but in testing, it’s even

more critical. Comparing objects and values is one of the most common

tasks we do in the assertion part of the test, and the most dangerous

thing that can happen to us is False Negative, due to inadequate

implementation of Equatable protocol.

Also, using Equatable and Comparison protocols can simplify your

testing techniques, so you should learn them deeply.

 Parameterized Unit Tests
Let’s say we are building a calendar application, and we write a great

function that takes a list of calendar events and generate layout

information to help us display them on the screen.

The function signature looks something like this:

class CalendarLayoutGenerator {

 func generateLayout(events : [Event])->LayoutStructure {

 // This is where the generated code takes apart.

 }

}

Chapter 4 Writing tests – advanCed teChniques

100

Writing a test method for the “generateLayout()” function seems

straightforward. We need to create an array of Event objects, an expected

LayoutStructure, run the test method, and compare between them. It’s not

a complicated work for such an important test:

func testGenerateLayout() {

 var events = [Event]()

 events.append(Event(startTime: generateDateFromString

(str: "04/27/2020 10:00"), endTime:

generateDateFromString(str : "04/27/2020 11:00")))

 events.append(Event(startTime: generateDateFromString

(str: "04/27/2020 10:30"), endTime:

generateDateFromString(str : "04/27/2020 11:20")))

 events.append(Event(startTime: generateDateFromString

(str: "04/28/2020 12:30"), endTime:

generateDateFromString(str : "04/28/2020 14:20")))

 var expectedStructure = LayoutStructure()

 // modify expectedStructure with the expected results

 // act

 let actualStructure = CalendarLayoutGenerator().

generateLayout(events: events)

 // assert

 XCTAssertEqual(actualStructure, expectedStructure)

 }

The preceding testing method refers to only one use case; however, we

have many layout variations we want to verify.

So, we can duplicate our testing method and just change/add/remove

the relevant values.

Duplicating a method can be a decent solution for 2–3 cases, but what

if we want to run the same test with 10–15 data variations?

Chapter 4 Writing tests – advanCed teChniques

101

Duplicating our testing method so many times may work on the first

day, but over time, it can cause our tests to break.

Any small change to the generateLayout() method signature forces us

to “find and replace” all the test methods in the class.

Any improvement to the assertion part makes us refactor all the test

methods.

Any small change in our testing mechanism or our execution code

might require us to work hard and modify the long list of tests we created.

What we need to do to make our testing code more maintainable is

to find a way of running multiple test cases, where the only difference
between them is the data. One option is to create an abstracting layer

above our test methods.

 Create Abstract Method for Testing
The trick is straightforward. We create a method (called “runTest” for

that matter) in this example that does all the dirty work – all the setup,

connections, and assertion, and all the stuff you don’t want to repeat

yourself every test and has nothing to do with the actual data being tested.

For your actual test cases, you create an explicit test method for each

one of them. These test methods do not assert but, instead, call our “dirty”

function while passing the relevant data.

Here is an example:

func runTest(withData events : [Event], expectedLayout :

LayoutStructure, file : StaticString = #file, line : UInt =

#line) {

 // act

 let actualStructure = CalendarLayoutGenerator().

generateLayout(events: events)

Chapter 4 Writing tests – advanCed teChniques

102

 // assert

 XCTAssertEqual(actualStructure, expectedLayout, file :

file, line : line)

 }

 func testGenerateLayout_abstractMethod1() {

 var events = [Event]()

 events.append(Event(startTime: generateDateFromString

(str: "04/27/2020 10:00"), endTime:

generateDateFromString(str : "04/27/2020 11:00")))

 events.append(Event(startTime: generateDateFromString

(str: "04/27/2020 10:30"), endTime:

generateDateFromString(str : "04/27/2020 11:20")))

 events.append(Event(startTime: generateDateFromString

(str: "04/28/2020 12:30"), endTime:

generateDateFromString(str : "04/28/2020 12:30")))

 let expectedLayout = LayoutStructure()

 runTest(withData: events, expectedLayout:

LayoutStructure())

 }

 func testGenerateLayout_abstractMethod2() {

 var events = [Event]()

 events.append(Event(startTime: generateDateFromString

(str: "04/28/2020 10:00"), endTime:

generateDateFromString(str : "04/28/2020 11:00")))

 events.append(Event(startTime: generateDateFromString

(str: "04/28/2020 10:30"), endTime:

generateDateFromString(str : "04/29/2020 11:20")))

Chapter 4 Writing tests – advanCed teChniques

103

 events.append(Event(startTime: generateDateFromString

(str: "04/29/2020 12:30"), endTime:

generateDateFromString(str : "04/30/2020 12:30")))

 let expectedLayout = LayoutStructure()

 runTest(withData: events, expectedLayout:

LayoutStructure())

 }

In the preceding code example, the “runTest()” method is simple,

to demonstrate how to implement this pattern in more complicated test

methods.

Also, notice the test method receives the file and line parameters to

show the precise location where the test fails.

 Loading Test Cases from a File
Another option we can do to do parameterized unit tests is to load the test

cases from a file.

Instead of creating a test method manually for each use case, we can

create a JSON file with an array of all test cases, load, and iterate the array.

Let’s take a look at a potentially JSON file, containing several test cases:

{

 "test":[

 {

 "name":"test1",

 "events":[

 {

 "startDate":"04/27/2020 10:00",

 "endDate":"04/27/2020 11:00"

 },

Chapter 4 Writing tests – advanCed teChniques

104

 {

 "startDate":"04/27/2020 10:30",

 "endDate":"04/27/2020 11:20"

 },

 {

 "startDate":"04/28/2020 12:30",

 "endDate":"04/28/2020 12:30"

 }

],

 "expectedStructure":"--==--"

 },

 {

 "name":"test2",

 "events":[

 {

 "startDate":"04/27/2020 10:30",

 "endDate":"04/27/2020 11:30"

 },

 {

 "startDate":"04/27/2020 10:45",

 "endDate":"04/27/2020 11:50"

 },

 {

 "startDate":"04/28/2020 12:20",

 "endDate":"04/28/2020 15:30"

 }

],

 "expectedStructure":"--==--"

 }

]

}

Chapter 4 Writing tests – advanCed teChniques

105

The goal of the “name” property for each test case is to point at a

specific test case if a failure occurs. Loading test cases from a file has many

advantages:

 – It’s effortless to add more test cases. You can do that

with any editor or external script.

 – It’s also easy to validate those tests. Since it’s a JSON

file, your parsing code requires a specific structure to

run the tests. Think about the previous example of

creating more and more methods. What are the odds of

having a mistake with that process?

 – Anybody can write those tests. You don’t have to know

Swift or even coding to add more test cases. Heck, you

don’t also have to know JSON – it’s possible to write

them in Excel or some other tool and later on generate

a JSON file. Working with JSON is extremely practical

when you want your QA team to be a part of test

writing.

 – The opportunity to save your tests in a readable file

can make your life easier when trying to understand

what exactly you are testing and what scenarios you’re

covering.

 – It’s excellent for cross-platform testing. Many tools

help you write cross-platform code. But if you insist on

writing native code on each platform, sharing tests is a

great way to make sure the implementations are on the

same standards.

One thing to notice when loading data from a JSON file is that you

cannot use the main bundle for that. The main bundle is only for execution

code, not frameworks and test code.

Chapter 4 Writing tests – advanCed teChniques

106

You should do something like this:

Bundle(for: type(of: self)).path(forResource: "tests", ofType:

"json")

 Invoke Tests Dynamically
Loading tests from a file is a great way to create many unit tests in a

readable and accessible format. But we have a problem here; when we

want to read our test report at the end of the run, we’re going to see only

one test – the test method that loads the file and loops all the cases.

Fortunately, XCTest has a neat feature that lets you invoke tests

dynamically and add them to the test run on runtime.

 The XCTestRun Environment

Before we move on with loading tests dynamically, we need to understand

the test runtime environment. Take a look at Figure 4-2.

Figure 4-2. XCTestRun environment

Chapter 4 Writing tests – advanCed teChniques

107

We previously discussed the testing runtime, but in fact, running tests

is a complicated task needed to be managed. XCTest framework uses

several tools to accomplish that.

The first one is XCTestRun. XCTestRun is an instance created when

you start your test. It contains useful information, such as the start

date of the test run, duration, failure count, and more. Also, XCTestRun

represented in a file contains the list of tests and assets.

In every test run, we also have XCTestSuite. XCTestSuite is created for

every XCTestCase, and it groups the tests according to the corresponding

XCTestCase it belongs to.

Think of XCTestCase as planning and XCTestSuite as the execution.

Also, remember, XCTestCase instance is created for every test method,

as we discussed before.

Every XCTestSuite has a list of NSInvocations which forwards the

message to the actual test methods that need to run.

XCTestSuite is created automatically on runtime and managed by

XCTestRun.

So, if we want to invoke test methods on runtime, we need to find a

way to invoke more tests in the already created XCTestSuite.

If right now you are confused with the “XCT**” classes mentioned,

that’s perfectly normal. Let’s try to understand it with some code examples.

 First Step – Override defaultTestSuite() Variable

Each XCTestCase has a class variable called defaultTestSuite():

class var defaultTestSuite : XCTestSuite { get }

XCTestRun uses this variable to get the corresponding test suite for the

current XCTestCase and to run all tests included. What we need to do is to

override this variable and return our own XCTestSuite.

Chapter 4 Writing tests – advanCed teChniques

108

 Creating XCTestSuite Object

To create a relevant test suite which is based on the current XCTestCase,

we need to initialize it with the name of the current XCTestCase subclass:

let testSuite = XCTestSuite(name: NSStringFromClass(self))

Passing the class name of the XCTestCase creates a test suite with all

the tests derived from the test case itself.

 Create and Add New Test Cases On the Fly

Now that we have a test suite, we can add new test cases and run them.

But, some of you might notice a problem here – test methods cannot

have any parameters, and in our case, we need to create a test case with

different data each time.

If you recall from previous chapters, XCTestRun creates an XCTestCase

instance for every test method that it runs.

For example, if we test a case with four test methods, we are going to

have four XCTestCase instances, one for each test method.

This mechanism also applies here. For every test method, we need to

 – Create a new XCTestCase instance

 – Initialize it with the test method invocation (to connect

it to the right method)

 – Customize it with data using custom properties

 – Add it to the test suite

While it might sound difficult to understand, it’s quite simple. Let’s see

the full code in action:

 class FullNamesGeneratorTests: XCTestCase {

 var names = [String]()

 var expectedFullName = ""

Chapter 4 Writing tests – advanCed teChniques

109

 override class var defaultTestSuite: XCTestSuite {

 get {

 let testSuite = XCTestSuite(name:

NSStringFromClass(self))

 addNewTest(withNames: ["Avi", "Tsadok"],

expectedResult: "Avi Tsadok", testSuite: testSuite)

 addNewTest(withNames: ["Bill", "Gates"],

expectedResult: "Bill Gates", testSuite: testSuite)

 addNewTest(withNames: ["Steve", "Jobs"],

expectedResult: "Steve Ballmer", testSuite:

testSuite)

 return testSuite

 }

 }

 class func addNewTest(withNames names : [String],

expectedResult : String, testSuite : XCTestSuite) {

 for invocation in self.testInvocations {

 let newTestCase = FullNamesGeneratorTests(invocati

on: invocation)

 newTestCase.names = names

 newTestCase.expectedFullName = expectedResult

 testSuite.addTest(newTestCase)

 }

 }

 func testFullNameGenerator() {

 var fullName = ""

 for name in names {

 fullName += name

Chapter 4 Writing tests – advanCed teChniques

110

 if name != names.last! {

 fullName += " "

 }

 }

 XCTAssertEqual(fullName, expectedFullName)

 }

}

What do we have here? Let’s try to understand it together.

The FullNamesGeneratorTests class has two methods, two properties,

and one class-level property. The goal of this class is to test a piece of code

that takes an array of names and produces a full name string:

 – “names” Property – This variable contains our input

for the test method.

 – “expectedFullName” Property – This is our expected

result from the test method.

 – testFullNameGenerator() – This is the actual test

method of the class. It takes the “names” property,

trying to build a string out of it, and compares it to the

“expectedFullName” property.

 – “addNewTest” Class Method – This method loops all

the class invocation (there is one invocation for each

test method), creates a new test case, sets its “names”

and “expectedFullName” properties, and adds it to the

received test suite.

 – Class Variable defaultTestSuite – After we create a

new test suite, we expand its test list (using “addNew-

Test” function) and return the modified suite.

Chapter 4 Writing tests – advanCed teChniques

111

What’s excellent with invoking new test cases on the run is that it

affects our test report and makes it more reliable and accurate.

Look at our test report now (Figure 4-3).

Did you see it? testFullNameGenerator function ran three times and

failed on the third run.

Parameterized tests are a great way to dynamically add more and more

tests without writing new test methods or duplicating your code. It’s an

excellent example of how to treat your testing code like a “real code,” with a

dynamic approach and DRY principle.

 Summary
In this chapter, we covered advanced techniques in unit testing, and this

should give you the tools to write your own maintainable and effective unit

tests quickly.

While unit testing is significant and essential, you should remember we

also need to test our app as an integrated system. This is what “Integration

Tests” are for – to allow you to test your app closer to the user.

Figure 4-3. Test report with three new test cases

Chapter 4 Writing tests – advanCed teChniques

113© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_5

CHAPTER 5

Integration Tests
Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

 Introduction
In the previous chapters, we learned how to test a specific unit. We

discussed how to isolate it from the rest of the app and focus on its specific

implementation.

However, our project is not just a bunch of functions needed to be

tested. It’s a whole system designed to work together.

In this chapter, you will learn

 – Why it’s essential to add Integration tests to your project

 – What is the cost of Integration tests vs. unit tests

 – How to define the scope of our tests

 – How to write a simple integration test

 – How to write incremental integration tests

 – What is “Bottom-Up” and “Top-Down” testing

 – How to write Client-Server tests, including Black Box

and White Box

https://doi.org/10.1007/978-1-4842-6382-2_5#DOI

114

 The Idea Behind Integration Tests
The roots for the idea of integration tests were planted years ago, where

developer’s teams tried to come up with a big, complicated system. The

problem was that each team had its mission – to develop a module that

needed to be integrated later on into a bigger module. While each team

took care of writing a unit test to make sure its code performs as expected,

the big challenge was to combine all the modules.

Think of this challenge as a sports team with very talented players. It’s

not enough for the players to be in good shape – they also need to work

together as a team, especially to improve their communication with each

other.

 What Exactly Are Integration Tests
Most of the features we create are built upon modules or layers. An

example of such a layer is the UI layer represented by UIViewController.

A presenter/ViewModel can be another layer. Interactor, a business logic, a

calendar connector, and a network layer are additional examples of layers

that we have in our app.

In fact, it’s not unusual to find an app with five, six, or even seven

layers.

The recommended workflow is first to test each layer of its own and

then test how all units work together (see Figure 5-1).

Figure 5-1. Integration Tests – Unit Test each layer and then the
communication between them

Chapter 5 IntegratIon tests

115

Notice that an integration test can be between two modules or more or

the whole system.

 Integration Tests vs. Unit Tests
The first confusion developers have with integration tests is with the creation

of such a test. If you recall, we have only two ways to create a test in XCTest –

UI and Unit Tests. Integration Tests fall under Unit Tests in this case.

Another confusion is what exactly considered to be an integration.

For instance, if you test a function that relies on another logic function, is

that an integration? And let’s say that this function uses some helper class

in your project, is that integration as well? After all, two classes talk to each

other – sounds like integration to me.

Well, not every communication between classes and functions is

considered being an “integration” in our case.

In iOS Integration Tests, it is common to test integration between

layers of our architecture, which means testing the layers according to the

data flow and not just the use of external functions or classes.

Also, in Unit Tests, we have heavy use of test doubles. It’s not that

integration tests don’t include test doubles – they are, but much less and

mostly on the edges (we’ll cover that later).

 Define the Scope
I previously mentioned that integration tests refer to data flows between

layers. Remember that some of those layers are harder to test. For

example, the Network Layer is responsible for the communication with

our server. This requires not only network connections and a live server,

but sometimes tokens and other authentication data. Another example

of a hard-to-test layer might be on the other side of our system – the UI
layer. In this layer, we often required to load classes from XIB files or

Storyboards.

Chapter 5 IntegratIon tests

116

In general, when dealing with Integration Tests, we need to define

our testing scope. On the one hand, it’s ideal for testing the whole system

(edge to edge), from UI layer all the way down to the server. On the other

hand, tests like that are harder to write and maintain and would run

slower.

Take a look of schematic feature architecture (Figure 5-2).

Figure 5-2 displays a classic screen architecture – from the UI Layer

down to the iOS SDK frameworks. You can see we can do extensive testing,

meaning do some action on the UI Layer and examine the effect on the

other edge (e.g., Core Data), or do a narrow test – test some of the layers

and use test doubles for the rest of the system.

 Filling the Gap

Although Narrow Integration tests are very cost-effective, some may

argue they don’t test the system as a whole. This may be true, but we

can overcome it. We can easily divide our integration tests into different

suites – one suite can test several layers (from the UI to the app core

services), and another suite can focus on Client-Server integration tests.

Figure 5-2. Integration Tests scope

Chapter 5 IntegratIon tests

117

Separating our integration tests to different test classes or bundles can

help us run them at different frequencies. The question is “is it worth all

that trouble?”

 It’s like Unit Tests vs. Integration Tests Ratio

If you remember from the first chapter, we talked about the testing

pyramid and that we should come up with a reasonable mix between the

different test suites.

One of the considerations we have is the ratio between effectiveness

and cost. Take a look at Figure 5-3.

The preceding figure is a rough estimate regarding the ratio between

cost and effectiveness. As you can see, Narrow Integration Tests are much

more useful than Broad Integration Tests, just like the difference between

Unit Tests and Integration Tests in general.

Figure 5-3. The effectiveness of the different types of testing

Chapter 5 IntegratIon tests

118

Too many integration tests can make you spend much time

maintaining them from breaking up, more time than Unit Tests. On the

other hand, testing the critical flows gives you more confidence in your

app and your code.

 Writing Integration Tests
Technically wise, writing integration tests is much like writing unit tests.

Unit Test and UI Test are the technical names of the templates, not their

methodological names. Integration Tests fall under Unit Tests and use the

same assertion and function structure.

However, Integration Tests require more preliminary design process

and broader knowledge and awareness of the feature and screen

architecture.

Let’s try to write our first Integration Test.

 Our First Integration Test
We have a basic To-Do App (Figure 5-4) with just three components.

Our To-Do app is built with three layers – the UI Layer (the screen

itself), basic business logic, and a core data persistent store, which is

responsible for handling the state of the to-do items.

Figure 5-4. A basic To-Do App with three layers

Chapter 5 IntegratIon tests

119

The test case we want to write is when the user marks an item as

“checked”; the item is expected to be also marked as “checked” in our Core

Data store. Obviously, this is an Integration Test, verifying that our three

layers work together seamlessly.

Let’s see how our layers supposed to work together:

 – The user presses the “mark” button on the view

controller.

 – The Business Logic receives the tap and receives the

corresponding item.

 – The Business Logic updates the item state property to

“checked”.

 – The Data Connector updates the data in our CoreData

persistent store.

Now let’s take a look at our test method:

func testMarkItemAsChecked_verifySavedInStore() {

 // arrange

 let viewController = ToDoListItemsViewController(nibNa

me: "ToDoListItemsViewController", bundle: nil)

 viewController.loadViewIfNeeded()

 let itemID = UUID().uuidString

 _ = CoreDataConnector.shared.insertNewItem(title: "my

Item", id: itemID)

 viewController.itemID = itemID

 // act

 viewController.markItemAsCheckedButtonTapped()

 // assert

 let item = CoreDataConnector.shared.getItem(byID: itemID)!

 XCTAssertTrue(item.checked)

 }

Chapter 5 IntegratIon tests

120

First, just like Unit Tests, we also have our AAA pattern – Arrange-Act-

Assert.

In the “Arrange” section, we initialized our UI Layer and, in our case, a

UIViewController.

Notice for an unusual call we did there:

viewController.loadViewIfNeeded()

The method “loadViewIfNeeded()” forces the view to load even if we

didn’t add it to the screen. This is extremely useful in testing when dealing

with UI elements is not trivial.

After initializing the UI Layer, we prepare our database and insert a

new item to our core data store.

The “Act” part is pretty straightforward – since we already loaded the

view in the arrange part, all our IBOutlets and IBActions are connected. We

can simulate pressing on the mark button by just calling its IBAction.

In the Assert part, we go straight to the DataConnector and fetch the

relevant CoreData object and assert its “checked” value.

As you can you, we tested how three layers integrate, without the need

of any test doubles.

But, there are a couple of things that we need to pay attention to,

especially in Integration Tests:

 – Always clean after your test. Integration tests change

states, write files, and modify databases. This can

influence the results not only for the next test you run

but also for tests that are running in parallel. Take into

consideration that you already have some data saved

on your device/simulator, and your app is not “clean”

when you start your test.

 – As a result of what is said, you need to run your integration
tests in isolation from other tests. Remember, your tests

share the same resources. It is better different persistent

store files or other UserDefaults settings for each test.

Chapter 5 IntegratIon tests

121

 – You have to assume your app state is unpredictable when

you start your test. If you manage some authentication state

such as “logged in” and it has an impact on your tests,

reset it before you start (you can use the setup() method).

 Running in Parallel
As you can see, running in parallel can cause us a headache when dealing

with shared resources. However, there are ways to overcome that.

For instance, using an In-Memory Core Data store can help you

separate it from other tests. Launching your test with different SQLite file

names can also be useful.

 Fault Point in Integration Tests
One of the challenges we have when writing Integration Tests is to identify

our fault point when the test fails.

Unlike Unit Tests, in Integration Tests, our data flow goes through

several layers, when each one of them can be the cause of our issue. To

be specific, the source of the problem might not be the layer, but the

integration between two layers. Fortunately, some techniques can help

us get on the problem and locate precisely where it fails.

 A Bigger System to Test
Identifying the fault point may not seem like a big issue when dealing with

a three-layer architecture. But there are features and architectures with five

to six layers that are more difficult to integrate and debug.

Let’s take a look at such a system (Figure 5-5).

Chapter 5 IntegratIon tests

122

Figure 5-5 describes a design for a feature with five layers, starting from

the UI and ending with core services that connect to the device calendar

and network.

How do we write an efficient integration test for such an architecture in

a way that can help us track issues? One approach can be an incremental
integration test.

 Incremental Integration Test

We know that testing integration between several layers can be an issue,

but testing integration between two layers is much more straightforward.

In Incremental testing, we take our architecture and start with the first two

layers. At each step, we add one more layer to our test and recheck it until

we add all of our layers.

In this way, we are re-testing our integration in each step, which makes

it easier for us to locate the problem.

But how exactly can we test one layer at a time? After all, we are not

dealing with Lego cubes.

Well, there are mainly two ways of implementing an Incremental

Integration Test – Bottom-Up and Top-Down.

Figure 5-5. A complex feature with five layers

Chapter 5 IntegratIon tests

123

Bottom-Up

If the UI layer is considered to be the “Top” layer of our architecture, the

core services layer is the “Bottom” one. When talking about “top” and

“bottom,” we usually refer to layers that are closer to the user level as “Top”

and layers that are closer to the system level as “Bottom.”

In BUA (Bottom-Up Approach), we test the integration starting with

the Core Services layer and add one more layer on top of it until we fully

cover the system.

Let’s try to build a test suite for our calendar feature (Figure 5-6).

The preceding diagram describes the list of tests we write to come up

with incremental testing to our feature. As you can see, we are adding one

test in each step. Just like standard unit tests, it is recommended that you test

each step in a test method of its own to separate your tests from each other.

Figure 5-6. BUA test suite for the calendar feature

Chapter 5 IntegratIon tests

124

Let’s take a look at how it’s done in code:

class CalendarConnectorSpy : CalendarConnectorProtocol {

 var fetchEventsFromDate : Date?

 var fetchEventsToDate : Date?

 func fetchEvents(fromDate startDate: Date, toDate endDate:

Date, visibleCalendars: [String]) -> [EventItem] {

 return []

 }

 func clean() {

 fetchEventsFromDate = nil

 fetchEventsToDate = nil

 }

}

class CalendarScreenIntegrationTests: XCTestCase {

 var startDate : Date = Date()

 var endDate : Date = {

 return Calendar.current.date(byAdding: .hour, value: 1,

to: Date())!

 }()

 let spy = CalendarConnectorSpy()

 override func setUp() {

 CalendarService.shared.calendarConnector = spy

 }

 override func tearDown() {

 CalendarService.shared.calendarConnector =

CalendarConnector()

 spy.clean()

 }

Chapter 5 IntegratIon tests

125

 func validateDates(file : StaticString = #file, line : UInt

= #line) {

 XCTAssertEqual(spy.fetchEventsFromDate!, startDate)

 XCTAssertEqual(spy.fetchEventsToDate!, endDate)

 }

// ------ testing the bottom layers ---------

 func testBusinessLogicLayer() {

 // arrange and act

 _ = CalendarService.shared.fetchEvents(fromDate:

startDate, toDate: endDate)

 // assert

 validateDates()

 }

// ---- adding the interactor -------

 func testInteractorLayer() {

 // arrange

 let interactor = CalendarScreenInteractor()

 // act

 _ = interactor.fetchEvents(fromDate: startDate, toDate:

endDate)

 // assert

 validateDates()

 }

// ------ reaching to the UI Login layer

 func testPresenterLayer() {

 // arrange

 let presenter = CalendarScreenPresenter()

Chapter 5 IntegratIon tests

126

 // act

 presenter.onDateChange(toDate: startDate)

 // assert

 validateDates()

 }

// ---------- this is the top layer ---------

 func testVCLayer() {

 // arrange

 let vc = CalendarScreenViewController(nibName:

"CalendarScreenViewController", bundle: nil)

 vc.loadViewIfNeeded()

 // act

 vc.tappedDate(date: startDate)

 // assert

 validateDates()()

 }

}

Let’s start with the setUp() and tearDown() methods:

override func setUp() {

 CalendarService.shared.calendarConnector = spy

 }

 override func tearDown() {

 CalendarService.shared.gConnector = CalendarConnector()

 spy.clean()

 }

In calendar features, it’s hard to run a broad integration test, mainly

because it requires user permissions to the calendar itself.

Chapter 5 IntegratIon tests

127

So, in this case, we create a spy. If you recall, a spy is an object that

doesn’t return anything, but instead, it records calls and information.

We connect our spy to our CalendarService singleton, and on the

teardown() method, we clean it up.

Our first test is related to the next layer after the connector layer – the

CalendarService layer:

 func validateDates(file : StaticString = #file, line : UInt

= #line) {

 XCTAssertEqual(spy.fetchEventsFromDate!, startDate)

 XCTAssertEqual(spy.fetchEventsToDate!, endDate)

 }

 func testBusinessLogicLayer() {

 // arrange and act

 _ = CalendarService.shared.fetchEvents(fromDate:

startDate, toDate: endDate)

 // assert

 validateDates()

 }

In our test method, we run the CalendarService method

(fetchEvents()), and hopefully, it will fill our spy with useful information.

In order not to repeat ourselves in each test, we create a custom

assertion method to validate the dates the spy receives, just like we’ve

learned in previous chapters.

After our business logic test passed, we can continue to the next layer –

the screen interactor:

 func testInteractorLayer() {

 // arrange

 let interactor = CalendarScreenInteractor()

Chapter 5 IntegratIon tests

128

 // act

 _ = interactor.fetchEvents(fromDate: startDate, toDate:

endDate)

 // assert

 validateDates()

 }

Same goes in here – we call the fetchEvents() method in the interactor

and check the spy at the end.

We continue with the test until we reach the last layer – the

UIViewController.

In this layer, we simulate the user action:

vc.tappedDate(date: startDate)

The Bottom-Up approach is easy to implement and reduces the use of

test doubles. However, using the Bottom-Up approach is not possible, and

you have to go with Top-Down Incremental testing.

Top-Down

There are cases when the bottom layers are not ready yet. In fact, this is

the usual situation when starting with the development of a new feature.

We start by defining the interfaces between all layers and then continue to

develop it top to bottom.

As we make progress in our development, we want to make sure our

components are integrated correctly. Since our bottom layers are not ready

yet, we can create a stub to replace them and, by that, create incremental

tests on the go. This approach is called “Top-Down,” and it is usually the

approach we take during development when there are components that

are not ready yet.

Chapter 5 IntegratIon tests

129

Dealing with the Edges

The most complicated steps in Integration Tests are the first and last –

simulating the UI behavior on one side and checking the results on the

other side, which may involve dealing with system frameworks, network,

and maybe a persistent store.

There are some solutions to those parts.

On the UI side, it is a best practice to avoid calling directly to UI-

related methods such as UIScrollView delegate methods or UITableView

dataSource. One solution is to take out the logic from those methods and

put it in pure functions.

In more complex UI screens, you might consider eliminating the UI
layer and only test the presenter/ViewModel classes. It is better to have

a narrower test than striving with a hard-to-maintain test that has more

chances to break in future changes.

On the core services side, avoid including layers that require user

permissions such as Calendar, Contacts, and Assets Library. Invest time in

fake and record data instead of finding hacks to bypass access permissions

(and there are some techniques for that).

Remember, although it is better to use the actual objects and simulate

a real-life flow, it is not worth spending a tremendous amount of time

bypassing and hacking the system for that.

 Client-Server Tests
One fact is well known – most mobile apps today work with some kind

of a back end. In fact, some of them are deeply dependent on a server to

perform their first day-to-day tasks.

If we said that integration between internal layers could break easily,

it’s especially true when talking about integration between our client and a

server.

Chapter 5 IntegratIon tests

130

But testing integrations with the server might be complicated and can

have several challenges and issues:

 – Hard to Set Up – Yes, sending requests to the server

may be easy, but writing the assertion part when you

need to compare the response to the expected one

might be cumbersome. There are long and complicated

JSON responses that are just too difficult to write, not to

mention maintaining them over time with all future

changes.

 – Slow – Unlike unit tests or even narrow integration

tests, Client-Server testing involves working with a

server, and as a result, it depends on a network connec-

tion and back-end resources. When running tens of

client-server requests, this may be an issue.

 – It Can Be Fragile – In continuation of the previous

section, the dependency on a server can cause those

tests to break easily. Also, the assertion part is not

simple – sometimes, a simple change in the response,

such as an extra field or a different timestamp, can fail

our test without any justice.

 – Dependencies Between Tests – We always say that

tests shouldn’t be dependent on each other. But how

can we test a data sync method if we didn’t test the

login method first? Most likely, we have some order we

need to run those tests, and this is contrary to what we

do in almost any other test.

Before we move on with Client-Server testing, we need to understand

what exactly is the scope of our tests.

For instance, do we care about the structure of the response, or do we

just need to make sure our client processes it correctly?

Chapter 5 IntegratIon tests

131

If we get an HTTP 200 status code, is it enough for our test to pass?

As you can tell, it is vital to narrow down what exactly we are going to

test and what’s important to us.

In general, it is accepted that client-server tests are divided into two

main approaches – Black Box and White Box Testing (Figure 5-7).

Black Box testing ignores structures and protocol and focuses on

behavior only. White Box testing validates the protocols, structure,

requests, and responses. These are entirely two approaches, and the

decision on what to choose is crucial.

Note Black Box and White Box are being used in many test areas
and not just in Client-server. You can meet these terms especially
when talking about UI testing.

Figure 5-7. Black Box vs. White Box Testing

Chapter 5 IntegratIon tests

132

 Black Box Client-Server Testing

In Black Box testing, we don’t care about the actual request and response.

We don’t deal with JSON’s or any other data structure. What we do care is

the functionality.

When talking about Client-Server Testing, the Black Box approach is

more straightforward and probably the most common way to go.

So, where do we start? Since we are dealing with network requests, our

tests have to be asynchronous. In this case, we’re going to use a tool we

previously learned – XCTestExpectation.

Look at our first Client-Server test:

class LoginServiceIntegrationTests: XCTestCase {

 override func tearDown() {

 // it's important to reset our state at the end of the

test

 LoginService().logout()

 }

 func testLoginFunction() {

 // we define our expectation and a local variable to

store the incoming result

 let expectation = self.expectation(description: "Check

Login Flow Message")

 var receivedResult : LoginOperationResult = .success

 LoginService().doLogin(email: "avi@myemail.com",

password: "123") { (result) in

 receivedResult = result

 expectation.fulfill()

 }

Chapter 5 IntegratIon tests

133

 // since it's a network request, we wait 10 seconds to make

sure we are getting an answer even in slow connection

 self.waitForExpectations(timeout: 10.0, handler: nil)

 // assert

 XCTAssertEqual(receivedResult, LoginOperationResult.

success)

 }

}

In the preceding example, we test our login mechanism. As you can

see, we need to use a constant user name and password.

As alternative, we can chain two requests – Registration and Login:

 func testRegistrationService() {

 // we define our expectation and a local variable to

store the incoming result

 let expectation = self.expectation(description: "Check

Register and Login Flow")

 var receivedResult : LoginOperationResult = .failure

 let email = generateEmail()

 let password = generatePassword()

 RegisterService().register(email: email

 , password: password) { (result) in

 if result == .success {

 LoginService().doLogin(email: email, password:

password) { (loginResult) in

 receivedResult = loginResult

 expectation.fulfill()

 }

 }

 }

Chapter 5 IntegratIon tests

134

 // since it's a network request, we wait 10 seconds

to make sure we are getting an answer even in slow

connection

 self.waitForExpectations(timeout: 15.0, handler: nil)

 // assert

 XCTAssertEqual(receivedResult, LoginOperationResult.

success)

 }

We generate an email and password, create a new user, and then try

to log in with the same credentials. As mentioned before, unlike other test

categories, client-server testing sometimes requires chaining requests

together. In many situations, Integration tests simulate real user flow

scenarios, so planning your tests is a little different than standard unit tests.

Also, remember that Client-Server tests not only influence the state of

your app but also on the data in your server. So, cleaning after your tests is

a crucial step.

 White Box Client-Server Testing

Black Box testing is excellent.

It’s easier to write because you don’t have to deal with test doubles.

You are not “dirtying” your hands with parsing server response and

comparing values. Also, usually, black box tests cover the essential things

and basic functionality.

But Black Box testing has its drawbacks. There are cases when checking

only your functionality is not enough, cases where you need a more

profound validation and test the structure of your request and response.

Data sync is a good example – we send a sync request and receive a

success response. But is it enough to determine that our integration works

well? What if we didn’t send all the expected data? What if we needed to

send a critical flag or essential piece of data, but our request was missing

this piece of data?

Chapter 5 IntegratIon tests

135

White Box Integration aims to fill that gap. In white box integration, we

go deeper into our testing and check the protocols between our client and

the server.

The process of creating a white box testing is built upon three steps:

Bring your app to an ideal state, a state that defined the baseline.

From now on, you’re going to compare your tests to this state.

Snapshot that state – record your requests and responses and save

them to a file. We can call the saved responses “Gold Responses” because

those are the ideal responses we should get when we run our tests.

In your tests, execute your logic functions, but this time, record

(again) your requests and responses and, in the end, compare them to the

gold responses you saved in the early step.

While these steps might sound scary, building an excellent

infrastructure and helpers can help you achieve them.

Bring Your App to an Ideal State

Sure, we can implement TDD with this process. But TDD is great when

defining behaviors in advance. When checking data structures, it is simpler

and easier to do it while “snapshotting” an ideal state that we reached. By

the way, in my opinion, it’s not a wrong approach when writing tests other

than unit tests.

Record the Current State

To record our requests and responses, we need to create some network

recorder. The network recorder receives the request and the response,

bundles them together, and saves them to a file (Figure 5-8).

Chapter 5 IntegratIon tests

136

The interface of such a recorder is simple:

typealias RequestData = [AnyHashable : Any]

typealias ResponseDate = [AnyHashable : Any]

struct RequestBundle {

 var request : RequestData

 var response : ResponseDate

}

enum RequestBundleType {

 case login

 case register

 case sync

 case setup

}

Figure 5-8. Implementing a network recorder

Chapter 5 IntegratIon tests

137

class NetworkRecorder {

 var data = [RequestBundleType : RequestBundle]()

 func recordRequest(bundle : RequestBundle, type :

RequestBundleType) {

 // save the bundle to data

 }

 private func saveDataToFile(data : [RequestBundleType :

RequestBundle]) {

 // save the data into a file.

 }

}

To activate recording, we can use the launch arguments that we’ve

already learned in previous chapters (Figure 5-9).

All we need to do after the snapshotting session is to take the “Gold

Responses” file and add it to our test bundle so we can validate our

requests and responses in the future.

Figure 5-9. Launch Arguments to activate recording

Chapter 5 IntegratIon tests

138

The gold responses file can look something like this:

[

 {

 "request" : "login_request",

 "response" : {

 "id" : "f3e0b3a7-6db7-408e-bd26-

a91bf31c03d2",

 "name" : "Avi Tsadok",

 "token" : "peoqFB8KcAjmVtQfe34TmWxgpum

IUEhs",

 "updated_date" : "1589603996"

 }

 },

 {

 "request" : "configuration",

 "response" : {

 "push_notification_on" : 1

 }

 }

]

Comparing Responses with the Gold Responses File

The recording session is quite simple. We just take the request and

response and put it in a file. But the real challenge is the comparison.

First, I must say these white box tests are very fragile. Every small,

harmless change in the structure or values can make our tests to fail. Keep

that in mind, and make sure you implement those tests on critical use

cases such as sync and login.

Nevertheless, if we do decide to write white box testing, there are some

issues we need to take into consideration:

Chapter 5 IntegratIon tests

139

 – The data type that usually causes problems is Date/
Time or, in other words, Timestamps. These values are

often driven from the computer time or server time.

There are several ways to deal with it:

• Sometimes it’s important to fail the test if the
timestamp is incorrect.

• Sometimes, the timestamp is relative. In this

case, we need to adapt our comparison also to be

relative.

• In most cases, it is better to ignore any comparison

to the values, but just make sure it is present.

 – We need to decide what to do if the response or the

request contains additional values that are not present

in the gold responses file. Usually, extra attributes are

harmless to your code, and you can ignore them.

 – If your response contains arrays, you need to decide if

the order of the elements is crucial.

As you can see, the comparison method you need to write can be

complicated. The cost of writing white box client-server integration tests is

much higher than a black box and can break easily.

 Summary
While Integration Tests are important, they are harder to write and maintain.

It is better to write integration tests to the critical parts of your app, and this

is especially true when talking about Client-Server tests. Those tests improve

not only your confidence in your code but in your system.

In the next chapter, we’ll do a step backward and learn how to prepare

our code for testing – both integration and unit tests.

Chapter 5 IntegratIon tests

141© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_6

CHAPTER 6

Write Testable Code
Quality means doing it right even when no one is looking.

—Henry Ford

 Introduction
We already know that testing your app is a crucial task to maintain high-

quality code over time. But to do that, we need our tests to be simple and

easy.

Testable code is a derivative of robust, modular architecture and clean,

simple code. Although this chapter does not deal directly with testing, it’s

a prerequisite to learn how to test your code, and in general, it’s a good

chance to leverage your code quality.

In this chapter, you will learn

• What is Clean Code, including terms like KISS, DRY,

and YAGNI

• What are Pure Functions and how it can help your

code to be more testable

• The different ways to implement Dependency
Injection

• What are SOLID principles

https://doi.org/10.1007/978-1-4842-6382-2_6#DOI

142

• Design Patterns that you can use to organize your code,

including Singleton, Façade, Decorator, and Factory

• What are MVC, MVP, MVVM, and VIPER and which

one is better for your needs

 What Is a Testable Code?
Testable code is a code you don’t need to struggle with writing automated

tests for. In most cases, it also means high-quality, simple, and readable

code.

Look at the following code from the main screen of our great My

Weather app:

 override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 var request = URLRequest(url: URL(string: "http://www.

myweatherapp.com/getCities.php")!)

 request.httpMethod = "GET"

 let task = networkSession.dataTask(with: request)

{(data, response, error) in

 if let receivedData = data {

 try receivedData.write(to: self.localURL)

 }

 }

 task.resume()

 }

Let’s summarize what this code snippet does:

 – Runs when the screen appeared

 – Creates a GET request

Chapter 6 Write testable Code

143

 – Creates a data task to send the request

 – Writes the received data from the GET request to a local

file

While it may seem like a simple code, it is unlikely to be testable from

the following reasons:

 – All the code is inside the ViewDidAppear method.

This method is part of the UIViewController life cycle

and potentially contains more code not related to

downloading files. Also, we may want to move this code

out in the future and put it in another method. This

step can cause our tests to fail when doing that.

 – The code sends an HTTP request to our server. While in

some integration tests this is acceptable, we don’t want

to rely on an Internet connection or server state in our

unit and BDD tests (not even in some UI Tests). We

can’t let server or network issues affect the result of

our tests, and in this example, it is difficult to mock our

requests.

 – In case of success, the code writes data to a file.

Checking if the file is written is excellent for integration

tests, less for unit tests. Having a function with a side
effect is less convenient to test, especially if it involves

I/O operations.

But don’t worry! There are a couple of things we can do to improve our

code.

First, we can remove the code from the viewDidAppear method

and put it in its own function. Second, we can create two service layers,

NetworkClient to handle network requests and DataLayer to handle I/O

operations.

Chapter 6 Write testable Code

144

Look at the following fixed code:

 override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 loadCities()

 }

 func loadCities() {

 NetworkClient.shared.fetchCities {(data) in

 if let receivedData = data {

 DataLayer().saveCitiesData(data: receivedData)

 }

 }

 }

Now our code is much cleaner, easy to read, and, yes, more

testable. You can test loadCities() function; without worry, it might

contain unrelated logic, and it’s straightforward to mock all the other

dependencies.

We can say that writing clean and modular code is not only a higher-

quality code, but it’s also a more testable one. Testable code and high-

quality code naturally go hand in hand, and this is what this chapter is all

about.

 Clean Code
There are plenty of great books discussing clean Code. The primary excuse

for not writing a clean and structured Code is “not enough time.” Well,

writing a clean Code doesn’t mean “more time.” Not only that, but cleaner

code can also actually save you time in the future while being easier to

maintain and test. Clean Code is a matter of mindset.

There are several principles and guidelines for writing a clean Code,

and I will go over some of them.

Chapter 6 Write testable Code

145

 KISS (Keep It Simple, Stupid)
KISS states for “Keep It Simple, Stupid”. KISS is not just the “One Rule to

Rule Them All,” but it’s also the hardest rule to follow.

The root of the problem is human nature. When we write code, we

understand it. We understand it the same day later and maybe even the

day after.

But a few months later or even a few weeks later, when we look at our

code, we find ourselves struggling to understand what we wrote.

Ironically, it’s more common to see a dirty, complex code in a

beginner’s code. The reason is that writing a simple code is complicated. It

takes a lot of experience and knowledge to write a simple, structural code,

with clear function names, layers, and good, understandable API.

It also requires abstract thinking, technology understating, and mostly

much maturity not to chase every new framework or language feature the

minute they pop up.

But there are some rule thumbs for keeping your code simple.

Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.

—Bill Gates

Less is more: shorter functions, shorter classes, and shorter files. If

your function takes more than 50 or 60 lines of code, it’s a good sign for you

to reconsider rewriting or splitting it.

The same goes for classes – they need to be short with no more than

20 methods. Imagine someone trying to read a class interface with 40–50

methods. Just like long methods, consider splitting it.

Less code is less code to read and, more importantly, less code to

debug and test.

Chapter 6 Write testable Code

146

After 30 statements you have in your function, chances to have a bug

increase. It becomes harder to cover all the states and output the function

can produce.

The nature of big functions is to get bigger and bigger until they

become code monsters that no one knows how they work, and everybody

prays they won’t break in the future.

Handle variables with care. If your code is like a “country,” the

variables are its “citizens.” Don’t give them meaningless names like “i” or

“qty”; try names like “city” or “firstPersonInTheList”. Think of your code as

a story written in English, not Swift.

Keep your variables’ scope as small as possible. Don’t declare

variables outside of a for loop when you only use them inside the loop. Try

to avoid instance variables to float around your class if you can pass them

as an argument to functions.

Don’t reuse variables – if you have a string variable that was used to

store a person’s first name, don’t reuse it to store last name or an email.

This can cause you headaches, trying to understand what that variable

represents at a specific statement.

Use Typealias when you can. Typealias is a great way to explain your

code without the need for comments.

 DRY
DRY stands for Don’t Repeat Yourself, and it means that every piece of

knowledge or logic you have in your app should be in one single place and

not duplicated across your project. This can be either business logic code,

network access, UI Component, or anything you think of that should be in

one place and copied around your project. Code duplication is a common

source for bugs or inconsistent behavior, and every developer knows that it

is considered being bad practice.

Chapter 6 Write testable Code

147

 YAGNI (You Aren’t Gonna Need It)
YAGNI is another simplicity principle saying that you shouldn’t develop a

feature or be prepared for it unless you are going to use or need it.

There is an assumption that when a developer works on a feature, he

should take into account potential future extensions to the feature and,

as a result, to build a flexible architecture in the cost of simplicity and

readability.

This assumption is based on the idea that building a system at the thought

of future changes is more cost-effective than doing those changes later.

The problem is that the cost estimation doesn’t include maintenance

over time, more complicated tests to support it, and a much more complex

system to work with. It’s much more comfortable and cost-effective to

write simple code that works and refactor when the time comes.

I’m not saying don’t write flexible architectures – but in most cases,

future features that we don’t know what they are and if they will come are

not developed at all. In the meantime, this complex system that we built

has cost us with extra maintenance we don’t need.

 Code That Is Pleasant to Read Is Also Pleasant
to Test
I mentioned before that quality and testability go hand in hand. Pleasant to

read code is also easier to test. The primary thumb rule for knowing if your

code is readable is comments. If you overuse comments, this can be a good

sign, something is wrong with your code, and it may be too complicated to

understand.

Swift has some great tools to help you make your code more delightful.

I mentioned Typealias before as a way to write the names of a

descriptive and meaningful variable, but there are more ways to make your

code look more delicate.

Chapter 6 Write testable Code

148

For example, instead of writing a function with lots of arguments, it is

better to pass a struct bundling them together.

Take a look at the following code:

 func runRegistrationProcess(email : String, name : String,

password : String, receivingEmailApproval : Bool) {

 }

Now it can look like this:

 struct RegistrationData {

 var email : String

 var name : String

 var password : String

 var receivingEmailApproval : Bool

 }

 func runRegistrationProcess(registrationData :

RegistrationData) {

 }

Nice, isn’t it? Also, it’s better for testing, because it makes the API much

more clear and predefined, and those arguments can be quickly passed

forward to more functions and objects.

Another way to make your code more beautiful is to define your

code style and naming conventions. Code Style (indentations, empty

lines between methods, variables order, and more) is not only for the

look. When you keep your code’s structure constant, it makes your code

scanning much more comfortable and makes use of the short-term

memory better. It can help you read old code better and make your debug

session much easier. It doesn’t matter what code style you choose as long

as you keep it constant throughout your project.

Chapter 6 Write testable Code

149

Of course, all the principles given also refer to the testing code. You

should treat your tests as a “Real” code and not just a playground for your

app. Testing code is also a code you need to maintain and debug overtime.

 Pure Functions
This is another way to make our code more testable and clean.

One of the key factors for testing is the ability to run your tests over and

over again with the same arguments and expect the same behavior at each

run.

To reach a very stable testing bundle, we need our tests to be isolated

from any external state, both for input and for output. One of the problems

we have in object-oriented programming is that its encapsulation nature

encourages us to use instance variables inside our functions, which kind of

is missing the point of isolation.

Pure Functions are functions that don’t generate any side effects or do

not depend on the external state like global or instance variables in a way

that you always get the same output for the same input.

To achieve that, we want to pass all the required data using the

function’s arguments, including the instance variables. Take a look at

Figure 6-1.

Chapter 6 Write testable Code

150

The class displayed in diagram A doesn’t have any pure functions. It

has one function that makes use of other functions, and they both work

with instance variables. By looking at Figure 6-1, you can understand

that those functions are not “pure”. This means those functions have side

effects, and they are based on an instance variable.

To test those functions, you need to make sure this instance variable is

set to a specific value before you start the test itself.

Setting up the initial state before each test run can lead to complicated

test functions, with a high chance of breaking them in the future.

Now let’s take a look at the diagram B (still, Figure 6-1). You can see

that the described pure function is not working with any instance or global

variable and therefore always produces the same results for the same

arguments.

This is also true for calling system and SDK framework since they also

potentially hold their own state.

Figure 6-1. Pure Function vs. Standard function

Chapter 6 Write testable Code

151

 Refactor Our Functions to Be Pure
One thumb rule you can use to check if your function is pure is to move it

to another class. If you have to modify the function implementation to use

it, good chances are it’s not pure. Pure functions need to be not only class

agnostic but also SDK agnostic.

Take a look at the method updateTitle(:) in CitiesViewController:

class CitiesViewController: UIViewController {

 var topTitle : String?

 var placeType: String = "City"

 override func viewDidLoad() {

 super.viewDidLoad()

 updateTitle(newTitle: "New York")

 }

 func updateTitle(newTitle : String) {

 self.topTitle = String(format: "%@ - %@", placeType,

newTitle.uppercased())

 }

}

It seems like a straightforward code – updateTitle(:) is getting one

argument and sets the top title according to the new title and placeType

instance variable. You can already understand that this method is not pure.

The method is based on an instance variable in the input side and updates

another instance variable on the output side.

The good news is that it’s really easy to refactor the code and change

this function to be pure:

class CitiesViewController: UIViewController {

 var topTitle : String?

 var placeType : String = "City"

Chapter 6 Write testable Code

152

 override func viewDidLoad() {

 super.viewDidLoad()

 topTitle = updateTitle(newTitle: "New York", placeType:

placeType)

 }

 func updateTitle(newTitle : String, placeType : String)

->String {

 return String(format: "%@ - %@", placeType, newTitle.

uppercased())

 }

}

In the refactored code, you can see I added another argument to the

function called “placeType” and that the method no longer changes the

instance variable; instead, it returns the new value.

While this may look like a small change, it makes the function

totally pure. This isolation means that tests for this function are very

easy to set up.

To summarize pure function:

 – It is better to try and make your functions return a

value instead of updating an instance or a global

variable.

 – Try to pass arguments to the function instead of pre-

venting it from accessing your instance variables, other

frameworks, or singletons.

 – The best way to check if your function is pure is to try

and move it to another place in your code. If you can

still use it, it’s probably pure.

Chapter 6 Write testable Code

153

 Protocol-Oriented Programming
The main advantage of using Protocols instead of basic OOP (object-

oriented programming) is that a class can conform to multiple protocols.

This ability allows us to design a very flexible and modular architecture.

This ensures transparent and predictable behavior, which is very

important for building tests.

When you design your architecture, try to make your layers connect

with each other only through protocols. Take a look at Figure 6-2.

Protocols are the “glue” that connects the objects in your architecture.

This flexibility is reflected by the fact that you can replace each object in

your system with a new one as long as it conforms to the required protocol.

Replacing objects easily is really handy when we talk about mocking layers

and behaviors.

 Dependency Injection
One of the problems when talking about isolation is the dependencies

between layers and objects in your code. We know, for example, that UI

components are based on some business logic components. The business

logic components are also dependent on some core services such as

network and database layers.

Figure 6-2. Protocol-oriented programming

Chapter 6 Write testable Code

154

When we want to test a method in one of those layers, we sometimes

find ourselves struggling to adjust those methods’ behavior to the one that

can help us achieve the task efficiently. Remember, again, if it’s too hard to

test it, it might be a good sign that your code isn’t easy enough to maintain

over time.

But there is a way to control the behavior of an object by injecting its

instance variables – it’s called Dependency Injection.

 Ways to Implement Dependency Injection
Now, let’s go back to Dependency Injection and see how it is related to

protocol-oriented programming.

There are several patterns to implement Dependency Injection. There

isn’t a “best way” or “correct way”; it all depends on your situation and

your personal flavor.

Take a look at the following “CitiesManager” business logic unit:

class CitiesManager {

 func refreshCitiesFromServer() {

 NetworkClient.shared.fetchCities {[weak self] (data) in

 if data != nil {

 self?.saveCitiesDataToDisk(data: data!)

 }

 }

 }

 private func saveCitiesDataToDisk(data : Data) {

 DatabaseClient.shared.saveCitiesDataToDB(data: data)

 }

}

Chapter 6 Write testable Code

155

In refreshCitiesFromServer, the code calls the network client, received

its data, and then saves it to disk. Although this function is minimal, it’s still

hard to test. “NetworkClient” opens HTTP requests, and “DatabaseClient”

is doing I/O operations. We can safely say this class is dependent on these

two objects.

The first way of injecting other dependencies is using its constructor.

 The Classic One – Initializer-Based DI

The Initializer-based Dependency Injection is a way to give the object its

dependencies when it’s being initialized (I guess you knew that from its

name). This is done by writing a constructor that receives the required

dependencies in its arguments.

Let’s take the CitiesManager class from the last example and try to

refactor it:

class CitiesManager {

 var dataBaseClient : DatabaseClientProtocol

 var networkClient : NetworkClientProtocol

 init(databaseClient : DatabaseClientProtocol =

DatabaseClient.shared, networkClient :

NetworkClientProtocol = NetworkClient.shared) {

 self.dataBaseClient = databaseClient

 self.networkClient = networkClient

 }

 func refreshCitiesFromServer() {

 networkClient.fetchCities {[weak self] (data) in

 if data != nil {

 self?.saveCitiesDataToDisk(data: data!)

 }

 }

 }

Chapter 6 Write testable Code

156

 private func saveCitiesDataToDisk(data : Data) {

 dataBaseClient.saveCitiesDataToDB(data: data)

 }

}

There are two important things we did here:

 – We created a new constructor, which expects to

receive two dependencies – the database client and the

network client.

 – Those dependencies are protocol based, meaning we

can inject any objects that we want as long as it con-

forms to the required protocol.

The big advantage of this approach is that it requires us to inject

external dependencies, and that ensures that the class behaves the way we

want.

 The Simple Way – Property-Based DI

Another way to inject dependencies is Property-Based injection, which is

also the simplest way.

In Property-Based injection, we assigned the dependencies after the

object has been initialized:

class CitiesManager {

 var dataBaseClient : DatabaseClientProtocol = DatabaseClient.

shared

 var networkClient : NetworkClientProtocol = NetworkClient.

shared

 func refreshCitiesFromServer() {

 networkClient.fetchCities {[weak self] (data) in

 if data != nil {

Chapter 6 Write testable Code

157

 self?.saveCitiesDataToDisk(data: data!)

 }

 }

 }

 private func saveCitiesDataToDisk(data : Data) {

 dataBaseClient.saveCitiesDataToDB(data: data)

 }

}

let citiesManager = CitiesManager()

// Setting the dependencies

citiesManager.dataBaseClient = myCustomDatabaseClient

citiesManager.networkClient = myCustomNetworkClient

You need to be aware that property-based injection has upsides

and downsides. For example, it is much simpler to implement than the

initializer way, and it can be convenient when subclassing or doing that
on a XIB-based view.

It also doesn’t require you to refactor existing constructors, which

can be quite a headache in many projects and let you easily add new

dependencies to an existing class.

But Property-Based injection also has some downsides. It requires you

to expose instant variables when all you want is to assign them. Another

consideration is that the injection is not part of any interface the compiler

can assure or notifies us, so you may not know what the dependencies are

or how to inject them.

 The Compromised Way – Parameter-Based DI

The Parameter-Based way doesn’t require you to change your constructor

signature or expose your instance variables. The idea behind Parameter-

Based DI is to inject the dependencies only to the method you call using its

arguments:

Chapter 6 Write testable Code

158

class CitiesManager {

 func refreshCitiesFromServer(networkClient :

NetworkClientProtocol = NetworkClient.shared,

dataBaseClient : DatabaseClientProtocol = DatabaseClient.

shared) {

 networkClient.fetchCities {[weak self] (data) in

 if data != nil {

 self?.saveCitiesDataToDisk(data: data!)

 }

 }

 }

 private func saveCitiesDataToDisk(data : Data,

dataBaseClient : DatabaseClientProtocol = DatabaseClient.

shared) {

 dataBaseClient.saveCitiesDataToDB(data: data)

 }

}

let citiesManager = CitiesManager()

citiesManager.refreshCitiesFromServer(networkClient:

myCustomNetworkClient, dataBaseClient: myCustomDatabaseClient)

Not only you don’t expose your instance variables; in many cases, you

do not even have dependencies as instance variables. The Parameter-

Based injection can help you make your functions pure, which can make

your testing much easier.

 SOLID Principles
SOLID is an acronym that represents five important design principles that

can help you write understandable and easier to maintain code and, as a

result, a more testable one.

Chapter 6 Write testable Code

159

Following these principles is not hard, but it requires you to pay

attention whenever you decide to create a new method.

Let’s go over them.

 S – Single-Responsibility Principle
This means an object should do one thing and should be the only object

in your project that does this thing. It’s harder to maintain methods

and classes that are responsible for several things, and breaking them

is just a matter of time. For example, if your method parses a network

response and writes to the disk, split it into two methods and test them

separately.

 O – Open/Closed Principle
A class should be open to extension but closed to change. Whenever you’re

done writing a method/class and testing it, consider it closed. If you need

to add its behavior, do it by subclassing, dependency injection, or using

Swift extensions (or Objective-C Categories). This will help you decrease

the number of test’s rewrites every time you need to change something

and also help you avoid regressions.

 L – Liskov Substitution Principle
LSP (Liskov Substitution Principle) may be hard to understand at first,

but it’s very simple to implement, so try to concentrate here ☺. What LSP

means is that if type A is dependent upon type B, then objects of type B

may be replaced with objects of type A. In other words, subclass objects

should keep the behavior of the superclasses in any matter.

Chapter 6 Write testable Code

160

Let’s try to understand it using the next example:

protocol ChatMessage {

 var sender : String { get set }

 var content : String { get set }

 var time : Date { get set }

 var fileURL : URL { get set }

}

struct TextMessage : ChatMessage {

}

struct AudioMessage : ChatMessage {

}

struct ImageMessage : ChatMessage

{

}

struct FileMessage : ChatMessage {

}

In the preceding example, we tried to design a basic structure for a

chat system. We created a protocol named ChatMessage and four different

struct types that conform to this protocol.

The protocol assumes that all structs have some fileURL data, but this is

not true – the fileURL is not relevant for TextMessage struct. The same goes

for the content variable – it’s only relevant for TextMessage but not for the

others. Some may say “So what? I can just ignore and return an empty string

or empty URL.” Of course, it can be done, but remember the code that is going

to use TextMessage expects the fileURL to contain a real value; otherwise, it

wouldn’t be there. The solution, in this case, is to split the protocols:

Chapter 6 Write testable Code

161

protocol ChatMessage {

 var sender : String { get set }

 var time : Date { get set }

}

protocol ChatMessageFile {

 var fileURL : URL { get set }

}

protocol ChatMessageTextual {

 var content : String { get set }

}

struct TextMessage : ChatMessage, ChatMessageTextual {

}

struct AudioMessage : ChatMessage, ChatMessageFile {

}

struct ImageMessage : ChatMessage, ChatMessageFile

{

}

struct FileMessage : ChatMessage, ChatMessageFile {

}

You follow this principle also for subclassing. When overriding method

from the superclass, if you don’t call the superclass method, you are

actually violating the LSP and may remove a critical behavior.

To summarize it, always call the superclass method and always

implement the required protocol methods. If they are not relevant, you

are probably doing something wrong; consider splitting or changing

architecture.

Chapter 6 Write testable Code

162

 I – Interface-Segregation Principle
The previous principle is built upon the Interface-Segregation Principle.

The basic rule here is creating the minimal interface you need for objects

and structs. This is also true also for class public methods and also for

protocols. When a class needs to implement methods it uses, it requires

your mock objects to implement those methods as well. This adds levels

of complexity to your project and your tests. Create small protocols – it will

pay off for you in the future.

 D – Dependency Inversion Principle
The Dependency Inversion Principle is a form of decoupling software

modules. The principle states

 1. High-level modules should not depend on low-level

modules. Both should depend on abstractions.

 2. Abstractions should not depend on details. Details

should depend on abstractions.

In other words, when high-level objects interact with lower-level

objects, they do not need to know their implementation or even their class,

but only their interface. This can be done using abstraction (Protocol or

Base class) and reducing coupling.

Also, when designing an abstraction, it needs to be done from the

point of what are the goals of this abstraction and not how it is going

to implement them. The best technique to do that is to design first your

architecture UML (Unified Modeling Language) and then write it as a

protocol in your code. Only then you build your classes and start coding.

Decoupling your architecture is actually what testing is based on. The

ability to exchange each part in your system with another object as long
as it conforms to the defined abstraction is important for mocking and

molding your initial testing state.

Chapter 6 Write testable Code

163

 Design Patterns and Architectures
Design Pattern is a reusable solution you can apply to a common problem

you have in your project. The problem can be network requests, a screen,

communication between objects, and more. An example of such a design

pattern can be a delegate.

Some design patterns solve UI problems or some database access

problems; there isn’t a “right” design pattern but rather a design pattern

that fits your need.

All design patterns have cons and pros, and they have a deep influence

on your ability to cover your app with tests.

 Singleton
A Singleton is a case when you have only one copy of a class. The reference

to the one instance of the class is done using a static variable that points to

this instance.

While it is very convenient to create and use a singleton, they are

overused in many projects. Overuse of a singleton is not a best practice,

not only in terms of memory but mostly in control.

Use the Singleton pattern only if you need one and only one instance

of your class. One good example is a network handler or a database

connector, because in both cases, it’s inefficient to hold multiple

connections or requests.

Also, a class that contains a state of something should have one and

only one instance to avoid data conflicts.

Creating a singleton is very easy, and you can do that with one line

only:

class NetworkClient {

 static let shared = NetworkClient()

Chapter 6 Write testable Code

164

 private init() {

 }

}

let networkClient = NetworkClient.shared

Writing tests that involve singletons should not be a major problem.

You should be able to mock singletons easily and make use of them using

dependency injection covered earlier.

Note it’s important to note at this point that most of the described
design patterns here are based on principles you learned in this
chapter. as long as you are following those principles, choosing the
right design pattern should be easy and intuitive.

 Facade
Facade is a simple interface that hides a complex system of classes. The

Facade is used when you have a set of classes, and you want to put them

under the same “umbrella” since they are all related to each other in some

way.

For example, let’s go back to our Weather app. We have a class that

handles login, a class that handles registration, and a class that handles the

mechanism of “forget password.”

On the one hand, it seems good we separated this logic to multiple

classes, but on the other hand, it’s getting much more complicated now,

since our authentication logic is spread across three different classes.

So, we can create a Facade – one unified interface that can help you

access your public methods from one place.

Chapter 6 Write testable Code

165

Let’s take a look of such Facade:

class UserAccessFacade {

 lazy private var loginService = LoginService()

 lazy private var registerService = RegisterService()

 lazy private var forgetPasswordService =

ForgetPasswordService()

 func doLogin(email : String, password : String) {

 loginService.doLogin(email: email, password: password)

 }

 func doRegister(email : String, password: String, name :

String) {

 registerService.doRegister(email: email, password:

password, name: name)

 }

 func doForgetPassword(email : String) {

 forgetPasswordService.doForgetPassword(email: email)

 }

}

The Facade holds the relevant objects as private and has a simple

interface to the relevant methods. The developer that uses the Facade is

not aware of the complexity underneath.

In terms of testing, Facade is very testable as it lets you replace the

whole object inside it and still maintains its behavior while keeping its

interface constant.

 Decorator
Decorator is a popular design pattern that modifies the behavior of an

object without changing its interface or its code.

Chapter 6 Write testable Code

166

The Decorator is an object that wraps the core object and has the same

interface. The Decorator acts as a “middleman” and by that can “decorate”

the behavior of the original object.

The Decorator is useful in situations when you cannot or don’t want to

change the code of an existing class. Frameworks and legacy code are good

examples of a situation like that.

For the “client” that uses a Decorator, it doesn’t matter if it works with

the original class or a decorator since they both use the same interface.

Another way to decorate an object other than wrapping it is to use

Swift extensions or Objective-C Categories. Both are good examples for not

modifying an existing code but expanding it.

 Factory
Factory is a design pattern that encapsulates the object creation process. It

implements several principles, like single responsibility and isolation.

The basic form of a Factory is an object that creates other objects – for

example, if you have a table view with different kinds of cells, you can

create a cell factory to create those cells according to their corresponding

object models.

But Factory can do more than that – it can decide what type of object

to return based on the arguments it gets. Let’s say we want to create a car

factory that produces a car according to a customer needs:

struct Mazda : Car {

}

struct Toyota : Car {

}

struct BMW : Car {

}

Chapter 6 Write testable Code

167

class CarsFactory {

 func getCar(accordingTo customerNeeds : CustomerNeeds)->Car

{

 switch customerNeeds.typeRequested {

 case .mazda:

 return Mazda()

 case .toyota:

 return Toyota()

 case .bmw:

 return BMW()

 }

 }

}

As you can see from the preceding code, the CarsFactory encapsulates

the logic of the decision what type of struct to return by examining the

received customer needs. The caller for the getCar method doesn’t care

about the implementation as long as it gets a “Car” back. This way, we can

write the logic in one place only and test it easily while it’s isolated nicely

from the rest of the codebase.

 MVC

Important since this book is about testing and not architectures,
i only want to go over the next parts in general to make you move
to more testable design patterns. Many books are discussing these
topics, and i recommend you invest some time studying it in case
MVC, MVVM, MVp, and Viper are strange words for you.

Chapter 6 Write testable Code

168

One of the first things junior developers struggle with is responsibilities’

distribution or, in simple words, “Where do I put this code snippet?”

question.

The MVC pattern is considered to be the simplest pattern to follow,

and Apple itself recommends it.

MVC stands for Model-View-Controller, and it is common not only in

Apple development environments but in other platforms as well.

Although MVC is not the best pattern for tests to be based on, it’s still

quite popular, and you should know how to make it testable as much as

you can. Also, MVC is what the other patterns are based on, so knowing it

better can help you work with more sophisticated design patterns in the

future.

So, what is MVC (Model-View-Controller)? It’s a design pattern that

separates the business logic and data (“Model”) from the UI (“View”),

while the Controller is the “glue” between them.

To understand how the interaction between the components works,

take a look at Figure 6-3.

If you notice, the Model and the View don’t interact with each other. In

real MVC pattern, the Model and the View don’t even have a reference to

each other, and all the interaction happens with the controller.

Figure 6-3. MVC pattern

Chapter 6 Write testable Code

169

Here are examples of a flow to demonstrate it:

 – The user taps a button (the View is sending the action

to the controller).

 – The app makes a network request. The controller

decides to get the information and asks for the network

layer (which represents the Model in this case) to make

a request.

 – The network layer (again, the Model in this case) makes

the request and returns the results to the controller.

 – The controller updates the TableView (which is also a

part of the View) with new data.

From the flow described earlier, it’s clear that the View layer (Button

and TableView) doesn’t become aware of the Model (Network Layer), and

the controller acts as the middleman here.

But when we develop an app, what exactly are Model, View, and

Controller?

 The Model – M
The Model layers hold the app’s data, but not only that. There are many

examples of the Model layer:

 – Network Layer – Usually a singleton, responsible for

handling network requests and error handling.

 – Managers and Services – There are many names for

those types of classes: “Manager”, “Logic”, or “Service”,

but at the end, it’s those classes that hold the business

logic and act as a wrapper for other APIs such as

UserDefaults or Keychain.

Chapter 6 Write testable Code

170

 – Database Layer – Similar to the Network Layer, the

Database layer is usually a singleton, whether it’s based

on CoreData or SQLite.

There are more examples for Model classes, but the rule thumb is,

basically, if it doesn’t interact with the user or the UI, it’s probably part of

the Model layer.

 The View – V
The view layer contains all the objects that you see on the user screen

and objects that support them. Among the examples are classes that are

subclasses of UIView like UIButton, UITableView, and more. But not only

are views part of this layer – you can also find transitions, Core Graphics

code, animation, layouts, images, and colors.

Importantly, the View doesn’t contain any business logic or interacts

with the model layer. It doesn’t mean View classes are dumb – they are

not. There are examples of very sophisticated views, such as MKMapView,

UICollectionView, and UITableView. But Views are not familiar with the

logic of the data and the app and theoretically can be transferred to other

apps without special modifications.

 The Controller – C
You already know by now that the Controller is responsible for connecting

the view and the model layers. When we’re talking about “Controller” in

iOS apps, we usually mean “UIViewController”.

The UIViewController is the layer that connects the UI and the Model,

and this is why UIViewController usually represents a screen in the app

and has its own life cycle.

Chapter 6 Write testable Code

171

Controller can be any class that connects UI to Model, not just

UIViewController. For example, you can connect a progress bar to an audio

player class with a controller. The progress bar doesn’t know anything

about the audio player, and the audio player doesn’t know anything about

the UI it needs to update. But the Controller wires them together.

Note the root view inside the UiViewController is not part of
the “Controller” layer. it is considered to be part of the View layer;
therefore it also doesn’t need to be aware of the “Model.”

 The Problem with MVC
One of the pitfalls MVC has is that it can lead to other MVC form – Massive
View Controller.

UIViewControllers can become huge – they might contain business

logic, persistent data saving, response to user actions, life cycle code, and

more. But the biggest problem of all is that MVC pattern is hard to test.

Remember, most of the things we the developers do in mobile

development revolve around UI and responding to the UI actions. UI

elements are hard to use in tests – there’s a life cycle you need to mock

somehow, XIB loading, and layout issues. The line between logic and UI is

blurred – this is how MVP/MVVM design patterns were created.

 MVP/MVVM
We know what a Model is, and we know what a View is. I want to focus

now on the term Controller. As I said before, the Controller is the glue that

manages the data flow between the Model and the View. But in iOS, the

Controller is part of the UI – it contains the root view, it has IBOutlets and

Chapter 6 Write testable Code

172

IBActions, and it is part of the Storyboard. And since the Controller (may I

say now UIViewController) is part of the UI, we can cautiously say it is part

of the View layer.

What is the “real” controller? MVP and MVVM are two design patterns

that share roughly the same principles and are here to solve this question.

In MVVM, we can find another layer called View-Model. In MVP,

we can find this layer with another name – Presenter. In both patterns,

the UIViewController (our old “controller”) becomes part of the View

layer when the Presenter/View-Model becomes the Controller layer.

The main difference between the Presenter and the View-Model is its

implementation.

Look at Figures 6-4 (MVP) and 6-5 (MVVM).

Figure 6-4. MVP design pattern

Chapter 6 Write testable Code

173

As you can see in Figures 6-4 and 6-5, MVP and MVVM are not only

similar to each other but are also the MVC design pattern.

What is the difference between MVP/MVVM and MVC? Well, just

like the classic Controller in MVC, the Presenter and the ViewModel are

connected to the View and Model and are responsible of the updates

and data flows between the layers. The Presenter and the ViewModel are

clean from any UI elements, which makes them much easier to test and

maintain.

As I said, the main difference between MVVM and MVP is their

implementation.

In MVP, the Presenter has a reference to the View (actually, the

UIViewController) in the form of a protocol. In MVVM, the ViewModel

doesn’t have any reference to the View, and the data flow is based on data
binding, meaning you can use KVO, closures, or reactive programming

frameworks like RxSwift or ReactiveCocoa.

The use of MVVM/MVP helps us uphold the principle of separation
of concerns better. The UIViewController contains so much UI logic, and

moving it to the View part makes so much more sense in this case. If you

want to make your app more testable, choosing MVVM/MVP over MVC is

a good move.

Figure 6-5. MVVM design pattern

Chapter 6 Write testable Code

174

 VIPER
For most people, VIPER is a snake. But in this case, VIPER is an upgraded

version of MVVM/MVP.

While MVP/MVVM has three components, VIPER has two more

components – the Router and Interactor. Let’s look at how it looks (Figure 6-6).

OK, we need to understand what’s going on here:

 – We have the View and the Presenter just like MVP.

 – For getting the data, the Presenter asks a component

called Interactor.

 – The Interactor goes to the business logic and asks for

the data. This business logic is the Entity part of the

pattern. The Interactor receives back the data and

notifies the Presenter with the change.

Figure 6-6. VIPER design pattern

Chapter 6 Write testable Code

175

 – The Presenter updates the UI with the new data for the

Interactor.

 – The Router part is responsible for transitioning the

user to this screen.

VIPER is considered to be a better design pattern for testing and scale

because it fulfills the separation of concern with five different components.

Before you run and refactor your code to VIPER, I want to highlight some

notes here:

 – VIPER should be a protocol-based architecture,

meaning all the interaction between all components

needs to be through a protocol only and not directly.

This can be very helpful in testing, but not only that –

the protocol actually defines what the rules and the

data flow in your architecture are, and in such modular

pattern, this issue is much more critical.

 – I want to explain the Interactor part because it has an

important job here. First, it needs to convert the data it

receives (the Entity) to a readable format the presenter

and the UI can understand and work with. The

Interactor should be the only component that “knows”

the entity and interacts with it. Another task the

Interactor has is to work with business logic and
system services. This can help you mock your pre-

senter easily and simulate many situations you can’t

simulate in any other way.

 – VIPER can be an overkill for simple screens and

features. Try to adapt the design pattern to the feature

you build.

Chapter 6 Write testable Code

176

 Comparison Between Different Design
Patterns
Remember, there isn’t “The Best Design Pattern.” All have cons and pros,

and you should know the differences to choose the right one for you.

Table 6-1 can help you make the right decision.

As you can see, VIPER is the best pattern in terms of testing, while MVC

is easier for development. Quality isn’t just testing; it’s also simple, and not

all your features/screens need to be with the same architecture. Choose

the one that is suitable for your needs.

 Summary
Writing a better designed code is a crucial step to do before you start

testing your app. The main goal of the chapter is to get you to the position

where you can mock different components or easily test different

functions. Remember, it is more important to follow the principles

described here and not just copy the implementation you see here or in

other places.

Next - tests are not only based on code but also on UI. This is what the

next chapter is all about.

Table 6-1. General Comparison Between the Design Patterns

MVC MVP MVVM VIPER

distribution of responsibilities problematic better better best

ease of use easy easy Can be hard hard

testability problematic better better best

Chapter 6 Write testable Code

177© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_7

CHAPTER 7

User Interface Tests
I don’t care if it works on your machine! We are not shipping
your machine!

—Vidiu Platon

 Introduction
Going back to the beginning of the book, I mentioned the Testing Pyramid.

If you recall, UI tests are considered to be pricey and less cost-effective

than Integration Tests, not to mention Unit Tests.

Nevertheless, it doesn’t mean you should avoid UI Tests altogether.

UI Tests can be beneficial in many flows – from basic sanity through

performance tests and user flows in specific screens.

In this chapter, you will learn

 – How UI Test works and how it is different from unit and

integration tests

 – How to write a basic UI Test

 – How to interact with elements on the screen

 – How to deal with issues in UI Tests

 – What is “Page Object Model” and how it can help you

maintain your tests over time

https://doi.org/10.1007/978-1-4842-6382-2_7#DOI

178

 – How to read your test reports, improve their readability,

and attach relevant contextual data

 – Take advantage of more features of UI Tests such as

multi-app testing and dragging

 Adding UI Tests
Adding UI Tests is easy and is similar to adding unit tests. If your project

doesn’t contain the UI Test bundle already, you can go to File ➤ New ➤

Target… and choose the UI Testing template from the popup window

(Figure 7-1). You can use the search field to locate it quickly.

Figure 7-1. Adding UI Testing target

The next screen is also similar to adding a unit test target screen

(Figure 7-2).

Chapter 7 User InterfaCe tests

179

The new target we create contains one test case, besides the regular

info.plist file any target contains.

By looking at the new fresh file, you can tell it’s quite different than the

unit test code you are already familiar with. The changes start at the top of

the file when the “@testable import <module name>” line is missing. To

understand why, you need to know how UI Tests work.

 How Do UI Tests Work?
Xcode refers to your UI Test bundle as a black box, meaning it doesn’t have

access to your application code at all. When the test runner starts, it creates

a temporary outsider app that launches your app and activates it.

To do that, XCTest uses the Accessibility framework in UIKit.

Figure 7-2. Options window for the new UI testing target

Chapter 7 User InterfaCe tests

180

 Accessibility in UIKit – accessibilityLabel
If you are not familiar with Accessibility in UIKit, UI Testing is a great place

to start. Accessibility in UIKit is not something new, and it helps disabled

users interact with apps in many ways. Every UIView conforms to a

protocol named UIAccessibility that allows iOS features such as VoiceOver

to identify the different UI elements on the screen.

One of the main properties included in the UIAccessibility protocol

is accessibilityLabel, which represents the name of the element on the

screen for disabled users.

There are two easy ways of setting an accessibilityLabel. You can do

that by code

saveButton.accessibilityLabel = "save"

or by going to the Identity Inspector pane in your storyboard (Figure 7- 3).

Figure 7-3. Accessibility Inspector inside the Identity Inspector

Chapter 7 User InterfaCe tests

181

Some controls such as UIButtons have a “built-in” accessibilityLabel

which holds the value of their label unless defined otherwise.

When running UI Tests, XCTest uses the accessibility labels to “see” the

elements on the screen and, by that, do actions such as tapping, scrolling,

typing, and also different validations to make sure the test passed or failed.

 Element Tree
Just like the view’s hierarchy in your UIWindow, XCTest “sees” this as a tree

of accessibility elements.

Take a look at Figure 7-4.

Figure 7-4. Application screen and its corresponding element tree

Figure 7-4 displays an app screen and on the left side its element tree,

as it was printed in a console. As you can see, we don’t have class names or

any other “coding” information in the tree – only the types of the elements,

their frames, and names. As mentioned before, XCTest looks at our app as

a black box and the information available for it.

Chapter 7 User InterfaCe tests

182

 Write Our First UI Test
Let’s start with a simple test case. We have a screen with a list of fruits.

Tapping on the “Orange” fruit should lead to a new screen. See Figure 7-5.

Figure 7-5. Fruits app

In Figure 7-5, the accessibility labels are marked in red.

Let’s examine our first test code:

func testTappingOnOrangeButton() {

 let app = XCUIApplication() //1

 app.launch() //2

 app.cells["orangeCell"].tap() //3

 // assert XCTAssertTrue(app.staticTexts

["fruitPageTitle"].exists) //4

 }

Chapter 7 User InterfaCe tests

183

It is surprising how easy it is to set up a short UI Test with not much effort.

These are the steps in details:

//1 : Create a reference to XCUIApplication, which

represents the application you are testing.

//2 : Launch the application.

//3 : Runs query to find the orange cell button, and

tap on it.

//4 : Assert to make sure the next screen appears.

Almost all of your UI Tests start with creating an XCUIApplication

instance.

 XCUIApplication
XCUIApplication is a proxy for an application. Using this proxy, you can

launch an app and get a reference to its visible elements.

The specific application doesn’t have to be the application being

tested – you can pass bundle identifier on initializing and, by that, running

multiple apps’ UI Tests:

let otherApp = XCUIApplication(bundleIdentifier: "com.myOther

App.www")

 Elements
When talking about “elements,” we refer to objects that subclass

XCUIElement. XCUIElement represents a view on the screen and has

properties and methods that let you interact and communicate.

In fact, XCUIApplication itself is a subclass of XCUIElement.

Chapter 7 User InterfaCe tests

184

 Querying Element(s)

To retrieve elements, we need to query them. Querying is where the

accessibilityLabel property comes in hand.

Querying elements are natural. For example, if you want to get the

“save” button, all you need to do is

app.buttons["save"]

The buttons property returns all the buttons on the screen, and the

“save” is there to get only the button with an accessibility label named

“save”.

But what is considered to be a “button”? Is it only controls that subclass

from UIButton? Can we create our control and define it as a “button”?

Well, if we return to the Accessibility Inspector in Xcode, we can define

the trait for the different views on the screen (Figure 7-6).

Chapter 7 User InterfaCe tests

185

Now that we know what traits are available for us and how we can

define a trait for an element, let’s take a step back and understand how

queries for elements work underneath.

Figure 7-6. Accessibility Inspector within Identity Inspector, Traits

Chapter 7 User InterfaCe tests

186

How Queries Work?

So, what is the problem with querying elements in UI Testing?

Look at the following diagram (Figure 7-7).

Figure 7-7. Querying your app for elements

The querying element mission has some structured pitfalls. First,

your app has potentially many elements to go over to retrieve your search

results. Also, each element contains many attributes that, in most cases,

are not important to your test at all. These pitfalls cause performance

and memory issues that may affect your test result and fail it without any

justification.

Be Precise with Queries

Let’s call back to our last query:

app.buttons["save"]

Our query has two problems:

Chapter 7 User InterfaCe tests

187

 – It searches for all buttons on the screen, no matter their

position in the view hierarchy.

 – It does a full scan on the element tree even after it already

found an element named “save”.

Those problems lead to potential memory and performance spikes.

To easily fix it, we can do a small modification:

self.navigationBars.buttons["save"].first

We did two crucial changes here – first, we are now searching only in

the navigation bar while eliminating the rest of the tree. Second, we used

the property “first” to return the first element that we find.

We now understand how to optimize our queries better. But, do you

remember I mentioned that, in most cases, we don’t need all the element

data when querying, but only their references? This leads us to the next

optimization.

Resolving Element Data

When querying for a single element, returning its full data is not a big

problem. But when querying for a long list of elements, it may cause some

memory issues. This is why when querying for elements, they return only

as references without their full data:

let saveButton = app.navigationBars.buttons["save"].firstMatch

// return only element

let frame = saveButton.frame //resolving the element data

XCTest is resolving the element data only when it needs it. So, fetching

the button frame is done only when calling the frame property directly

using a second query. Similar to what happens in Core Data, if you are

familiar with this framework.

Chapter 7 User InterfaCe tests

188

Elements by Identifier or Index

Look at the following code:

let buttons = app.buttons

Unlike you would think, app.buttons doesn’t return a list of buttons,

but a query from the object type XCUIElementQuery. To get the result of the

query, it has two important properties:

let buttons = app.buttons.

allElementsBoundByAccessibilityElement

let buttons = app.buttons.allElementsBoundByIndex

So, what is the difference between these two properties?

Both properties return an array of buttons. The difference is with the

resolving method.

We said the querying elements only return their references and not

their full data. The complete data fetching is happening later, only by

demand. At that point of fetching the data, there’s a concern that the actual

element tree might have changed.

In this case, XCTest needs to know how to fetch the data on the second

query – is it going to be according to its accessibility label or by its index?

We can define it to be by label:

let buttons = app.buttons.

allElementsBoundByAccessibilityElement

// changes in the UI....

let firstButton = buttons.first! // fetching its label

Or by its index in the array:

let buttons = app.buttons.allElementsBoundByIndex

// changes in the UI....

let firstButton = buttons.first! // fetching its index

Chapter 7 User InterfaCe tests

189

In most cases, we are going to use the first property – fetch them and

keep sync with the accessibility label. But there are situations when we

don’t care about the label but the position of the array, for example, cells of

UITableView or UICollectionView.

Examples for Element’s Queries

It is always better to be updated with changes in XCTest in that area, since

UI Testing evolved by Apple every Xcode version.

But here are some examples to give you an idea of how it works.

To get just get an element by type (if you have multiple elements from

this type/trait, you might get an unexpected behavior):

app.alerts.element

app.buttons.element

app.collectionViews.element

app.images.element

app.maps.element

app.navigationBars.element

app.pickers.element

app.progressIndicators.element

app.scrollViews.element

app.segmentedControls.element

app.staticTexts.element

app.switches.element

app.tabBars.element

app.tables.element

app.textFields.element

app.textViews.element

app.webViews.element

Chapter 7 User InterfaCe tests

190

To get an element by its accessibility identifier:

app.testFields["password"]

To get all images in a specific scroll view (directly):

app.scrollViews["Main"].children(matching: .image)

To get all the descendant images for the scroll view (including

subviews and their subviews, etc.):

app.scrollViews["Main"].descendants(matching: .image)

To get the fifth element in a query:

app.switches.element(bound: 4)

 Actions on Elements

Getting a reference to an element is useless if we don’t interact with it.

To simulate the user’s actions, we need to have the ability to type, tap,

scroll, and swipe on elements.

Fortunately, each XCUIElement has a series of actions you can use that

can help you write scripts for your tests quickly.

Note I recommend you to be updated with apple Online
Documentation with additional available actions.

Chapter 7 User InterfaCe tests

191

Table 7-1. XCUIElement Actions List

Method Name Description

typeText(string) types a string into an input field element

such as text field or text view.

note: the text field needs to be in focus when

doing that.

tap() taps on a hittable point in the element.

doubleTap() sends a double-tap event to the element.

triggers the doubletap gesture action if it

exists.

press(forDuration :

TimeInterval)

Is a long touching gesture with a specific

duration.

press(forDuration:

TimeInterval, thenDragTo:

XCUIElement)

simulates drag and drop event.

twoFingerTap() simulates two fingers tap on a hittable

element.

tap(withNumberOfTaps: Int,

numberOfTouches: Int)

Gives you great flexibility in tapping.

swipeLeft()

swipeRight()

swipeDown()

swipeUp()

sends a swipe gesture. this is also the way

to simulate a scroll.

pinch(withScale: CGFloat,

velocity: CGFloat)

pinches the elements to scale at a specific

velocity.

(continued)

Chapter 7 User InterfaCe tests

192

Method Name Description

adjust(toNormalizedSlider

Poisition: CGFloat)

Is relevant only to UIslider controls –

change the value of the slider with a

normalized value from 0 to 1. You can use

normalizedSliderPosition: CGFloat

to determine the current slider value.

adjust(toPickereWheelValue:

String)

Is relevant only to pickers such as

UIpickerView and UIDatepickerView.

Here are some examples of interacting with elements:

app.buttons["green"].doubleTap() // double tap the green button

app.textFields["email"].tap() //makes the email textfield the

first responder

As you can see, XCTest is full of XCUIElement actions to help you set

up (almost) any scenario with your app.

Note When running UI tests on the simulator, it is better to make
sure the software keyboard is available. Go to I/O ➤ Keyboard and
make sure “Connect hardware Keyboard” is not marked. simulating a
hardware keyboard can cause issues with text fields and text views.

 Waiting for Elements

XCUIElements have a simple property called “exists”. You can use this

property to check if an element is visible on the screen:

Let messageExists = app.staticTexts["welcomeMessage"].exists

Chapter 7 User InterfaCe tests

193

But, UI Tests are not like standard unit tests, in a sense that when you

think of it, they actually a-sync tests. Almost every move to a new screen is

followed by animation, and many actions such as scrolling or heavy task

take time.

When pressing on a button on a page that navigates to a second page,

we need to wait for the appearance of the second page before we can do

any query for new elements to continue our test.

Instead of writing a “delay” function to halt the program, we have a

great function called waitForExistence(timeout:).

waitForExistence(:) halts the execution and waits for the

existence of an element before it continues. You can pass a

timeout value to make sure the waiting doesn’t last forever.

Look at the following code:

app.buttons["nextPage"].tap() //navigating to a new page

app.cells["newYork"].waitForExistence(timeout: 1)

app.cells["newYork"].tap()

 – The user presses on “nextPage” button, and the app

navigates to a new screen.

 – We wait 1 second for the appearance of a cell called

“newYork” on the new screen.

 – We press on the cell called “newYork”.

“Waiting for elements” plays a lead role in UI Tests and also leads us to

the next section – assertions.

Chapter 7 User InterfaCe tests

194

 Assertions

When talking about assertions in UI Test, it usually means we want to

verify the state of the screen. Here are some examples of this kind of

verification:

 – We want to make sure an element is visible on the screen.

 – We want to verify the text or colors on a specific element.

 – We want to check the position of an element.

Remember UI Tests are actually a black box, and therefore, you do not

have access to the code, just like the user or the tester.

To verify the existence of an element, you can use the

waitForExistence(timeout:) function I mentioned earlier:

XCTAssertTrue(app.staticTexts["hello"].firstMatch.

waitForExistence(timeout: 2.0))

Or text:

XCTAssertEqual(app.staticTexts["result"].firstMatch.label)

The assertion function we use for unit and integration tests is the same

for UI Testing.

 Wrap It All Together
We already know how to query elements, interact with them, and assert

them. Let’s try to pack everything together:

func testLogin() throws {

 let app = XCUIApplication()

 app.launch()

 app.textFields["email"].firstMatch.tap()

Chapter 7 User InterfaCe tests

195

 app.textFields["email"].firstMatch.

typeText("myEmail@gmail.com")

 app.textFields["password"].firstMatch.tap()

 app.textFields["password"].firstMatch.

typeText("123456") // It's a bad password. don't

really use it :)

 app.buttons["go"].firstMatch.tap()

 XCTAssertTrue(app.staticTexts["welcome"].

waitForExistence(timeout: 2.0))

 }

Great, we wrote our first UI Test!

Let’s describe in short what our test does –

it types email and password values in the corresponding text fields,

presses on the “go” button, waits for 2 seconds, and then verifies that the

welcome message appears.

Notice we had to tap the text fields before inserting the texts, just like a

real user.

 Record Your Actions
Writing your tests is not the only way to create UI tests. Starting iOS 9,

Xcode has a neat feature that lets you record your actions on the simulator

and convert them to scripting code in your XCTestCase.

To start recording, locate your cursor inside a UI test method. Once

you do that, you will be able to see a record button at the bottom of the

Xcode window (Figure 7-8).

Chapter 7 User InterfaCe tests

196

Figure 7-8. The record button in Xcode

Clicking the record button again stops the recording.

Notice that the generated code might not be readable and

straightforward, like the code you would write yourself.

For example, this is a generated code for typing inside a text field:

func testLoginProcess() {

 let app = XCUIApplication()

 app.launch()

 app.textFields["email"].tap()

 let aKey = app.keys["m"]

 aKey.tap()

 let vKey = app.keys["y"]

 vKey.tap()

 let iKey = app.keys["e"]

 iKey.tap()

}

And this is just for typing three letters.

But recording your tests can also be useful – sometimes it is hard to

do something just by code, like swiping, scrolling, or doing an action with

many interactions. Also, it’s a great way to discover more possibilities we

have in UI Testing.

Chapter 7 User InterfaCe tests

197

 Dealing with Problems
Not only UI Tests take time to run, but they also require significant efforts

to maintain.

There are all kinds of issues with UI Tests:

 – Most UI Tests involve dealing with a server or a network.

Every hiccup in our connection can lead to a test failure.

 – The nature of mobile apps is to change their UI now and

then. While most unit and integration tests can survive UI

changes, this is not the case with UI Testing when it is

dependent solely on the element tree.

 – Also, if you implement A/B testing in your app, things

may start being messy when the UI is unpredictable.

 – Each test has to start with a predictable state. Since the

order of the tests is inconsistent (and shouldn’t be), you

need to reset your state before each test. The problem is

you don’t have access to your code.

 – There are external changes and interactions in the app

that are hard to control. A good example is system alerts –

for push notifications, location permissions, and more.

Those alerts interrupt your test and have an influence on

your element tree.

But just like (almost) anything in coding, it is possible to find a decent

solution for every problem.

Chapter 7 User InterfaCe tests

198

 Keeping Your Tests Consistent
The first problem with edge-to-edge tests is that they are dependent on

external states such as network and server.

Also, working with a server means that you cannot expect the same

response for the same request.

But, if you go back to the Integration Tests chapter, you can see we

can simulate the network quickly and make sure we are getting the same

responses all the time while eliminating any server or network issues.

The second mission that we have is to make sure we always begin from

the same app state. Most of the times, it means

 – Cleared User Defaults.

 – Cache folder is empty.

 – Local persistent store is empty.

 – Any temporary files should be cleared.

In general, it means to reset your app when starting a new test case.

Just like in previous chapters, we can use launch arguments for that.

To launch your app with specific arguments, you can use the

launchArguments property:

let app = XCUIApplication()

app.launchArguments = ["-clearDB", "-clearUserDefaults"]

app.launch()

And in your app delegate:

if CommandLine.arguments.contains("-clearDB") {

 // clear your db

}

Launch arguments are perhaps the only way you have to “inject code” to

your application in UI Testing. Be careful not to add too many arguments –

after all, we want our test to reflect the real-life situation of the app.

Chapter 7 User InterfaCe tests

199

 Handling System Alerts
As mentioned before, system alerts such as push notification or location

permissions can block your test run from interacting with UI elements and

by that fail your test.

Sometimes you can synchronize your alerts timing and try to tap the

“Allow” button yourself, but I doubt it can be a long-term solution.

So, meet addUIInterruptionMonitor() function. This function is part

of XCTestCase, and it can help you monitor and react to any system alerts

that your app gets on the way.

Let’s see an example for that:

addUIInterruptionMonitor(withDescription: "Some System Alert")

{ (alert) -> Bool in

 alert.buttons["Allow"].tap()

 return true

}

When calling this function, you need to pass a closure that runs each

time your test run detects some interruption. The closure parameter is the

XCUIElement that interrupts your test. In most cases, it will be some kind

of “alert” element. Querying for the “Allow” button and tapping is a good

option to continue with the test.

But what about other alerts? How can you tell what alert is shown?

Well, the XCUIElement is just like any other element. Query for its label to

find the exact text shown on the screen and by that decide on what button

you want to tap.

If you don’t know in advance if it’s “OK” or “Allow”, you can check it:

let okButton = alert.buttons["OK"]

if okButton.exists {

 okButton.tap()

}

Chapter 7 User InterfaCe tests

200

let allowButton = alert.buttons["Allow"]

if allowButton.exists {

 allowButton.tap()

 }

Or, you can just tap on the “second button”

alert.buttons.element(boundBy: 1)

Remember that the closure invoked only when there is a system alert.

In terms of code, you should continue with writing the test as if the alert

never showed.

Note Dealing with alerts is an excellent example of what is the
right approach in UI tests. these are not standard developer testing,
because it’s from the point of view of the user. system alerts block
the screen for the test runner just like they do for the user, and the
handling should be the same.

Sometimes you need to use waitForExistence when tapping on one

of the alert buttons because there is a delay between the closure invocation

and the actual dialog appearance on the screen.

 Page Object Model
 The Problem
OK, here’s a situation – we created several UI tests, and they work great.

But after a few weeks, they all started to fail. We did everything according

to the book – we handled the system alerts and A/B testing, mocked the

network, and cleared everything correctly.

So, what happened?

Chapter 7 User InterfaCe tests

201

Well, it seems that we made a change – we added a new step to the

login process, and naturally, we now need to update all our tests to the new

flow.

As you can see, we have a complicated situation here. We did a small

change, and now we need to go over every test and update it. Undoubtedly,

it now hurts our motivation to write more UI tests when we know we need

to work hard to maintain them. The more UI tests we write, the harder we

need to work in the future.

But we have a solution, and it’s called the Page Object Model.

 What Is a Page Object Model?
The idea behind the Page Object Model (or in short POM) is to separate
the test script from the UI locators and actions. Sometimes, it also means

separating the test script from the assertions as well.

For every screen of the app, we create an object that has several types

of methods and properties:

 – It has methods that perform main actions. For example,

a method like doSignIn(withEmail email : String,

password : String) fills the email text field and the

password and starts the sign-in process. It doesn’t matter

if you do a full refactor on the sign-in screen – the only

change you need to do is within the page object.

 – It has methods that check different states, for example,

a method that verifies that you are on the correct screen

(isCurrentPageisSignup()) or method that returns a

specific value (getWelcomeMessageText()). This elimi-

nates any direct access to the elements themselves and

prevents code duplications.

Chapter 7 User InterfaCe tests

202

 – It has private properties that return central elements on

the screen. These are actually locators that help us

reduce code complications and also make it more

transparent.

When we start working with the POM pattern, our test scripts don’t

have any direct access to the element tree. All the actions are done through

the page object.

Another thing, whenever we call the page object for an action that

navigates us to a new screen, the page object should return the new screen

page object.

Let’s take a look at an example for such a page object:

class SignInPageObject {

 var app : XCUIApplication

 init(app : XCUIApplication) {

 self.app = app

 }

 private var emailField : XCUIElement {

 return app.textFields["email"].firstMatch

 }

 private var passwordField : XCUIElement {

 return app.textFields["password"].firstMatch

 }

 private var loginButton : XCUIElement {

 return app.buttons["login"].firstMatch

 }

 func doSignIn(withEmail email : String, password : String)-

>UpsellPageObject {

 emailField.tap()

Chapter 7 User InterfaCe tests

203

 emailField.typeText(email)

 passwordField.tap()

 passwordField.typeText(password)

 loginButton.tap()

 return UpsellPageObject(app: app)

 }

}

Here are a few notes about the preceding code:

 – We can see the page object receives the XCUIApplication

in its init() method. This is because the

XCUIApplication object is the root object for every UI

Test action that we do. You would think that initializing a

new XCUIApplication each time can be a good option

but take into account that sometimes we initialize

XCUIApplication with a specific bundle identifier, so

passing on the application object is being on the safe side.

 – We have several private properties that return the main

elements on the screen using simple queries. This is the

only place where you query those elements, and when-

ever the page object needs to interact with those ele-

ments, it does it using these properties. The reason they

are private is to make sure that we can only access them

through the actions and not directly.

 – doSignIn() method is doing a standard logging flow, and

it’s the only non-private method/property we currently

have in our page object model. Notice that this method

returns our next page object model, UpsellPageObject,

which represents the next screen.

Chapter 7 User InterfaCe tests

204

Now, let’s take a look on a code snippet using our page object in test:

func testSignIn() {

 let app = XCUIApplication()

 app.launch()

 SignInPageObject(app: app).doSignIn(withEmail: "user",

password: "12345").pressSkip().verifyWeAreOnTheMainScreen()

}

Do you see how simple it is? We can chain our screens to create a

concise, readable test and also maintainable.

We call doSignIn(), receive a new object back, press the skip button,

obtain a new object back, and verify we are on the right screen – all that

with one row. Look at Figure 7-9.

Figure 7-9. Chaining page objects together

If you want to get serious about UI Testing in your project, working

with POM is not a recommendation – it’s a must. Also, this means that

recording your tests is only suitable for generating the code. Afterward, you

need to take the generated code and organize it in models.

Chapter 7 User InterfaCe tests

205

 Test Reports
At the end of your test run, the natural thing to do is to read your test
report. Xcode generates a detailed test report for every run, including test

duration and attachments.

The report is generated automatically and can be found in the

Reporter Pane in Xcode (see Figure 7-10).

Figure 7-10. Xcode test report

Looking at the test report in Figure 7-10 reveals several information

details:

 – It is possible to filter the tests according to their state. You

can see only passed, failed, skipped, or all tests. This is a

handful when you have many tests, and you want to focus

on the failed ones, for example.

 – You can also see how much time each test took. Don’t

forget that UI Tests take time. This is an opportunity to

Chapter 7 User InterfaCe tests

206

nail down long-running tests and try to optimize them to

reduce the total test duration.

 – Also, you can see each small step in your test and how

much time it took.

Long-running tests are usually loaded with many steps, and you can

find yourself struggling with information overload, trying to find your path.

The solution is to break your test into activities.

 Activities
Activities are a group of steps you create in UI Tests that are meaningful

and can make your test reports look much simpler and short.

Grouping of steps with Activity is very simple. If I want to group my

login test script, I will do something like this:

 – Step 1 – Enter user email.

 – Step 2 – Enter the user password.

 – Step 3 – Tap on “Go” button.

 – Step 4 – Verify the welcome message.

And to the code, now with activities:

func testLoginProcess() {

 let app = XCUIApplication()

 app.launch()

 XCTContext.runActivity(named: "Enter Email") { _ in

 app.textFields["email"].firstMatch.tap()

 app.textFields["email"].firstMatch.

typeText("myUser@domain.com")

 }

Chapter 7 User InterfaCe tests

207

Figure 7-11. Test report with activities

 XCTContext.runActivity(named: "Enter Password") { _ in

 app.textFields["password"].firstMatch.tap()

 app.textFields["password"].firstMatch.

typeText("123456")

 }

 XCTContext.runActivity(named: "Pressing Go") { _ in

 app.buttons["go"].firstMatch.tap()

 }

 XCTContext.runActivity(named: "Verify Welcome Message")

{ _ in

 app.staticTexts["welcome"].firstMatch.

waitForExistence(timeout: 2.0)

 }

 }

Grouping your steps to activities changes the way your test report looks

(Figure 7-11).

Chapter 7 User InterfaCe tests

208

Not only that, but you can also group several groups to a new activity:

func testLoginProcess() {

 let app = XCUIApplication()

 app.launch()

 XCTContext.runActivity(named: "Do Sign In") { _ in

 XCTContext.runActivity(named: "Enter Email") { _ in

 app.textFields["email"].firstMatch.tap()

 app.textFields["email"].firstMatch.

typeText("myUser@domain.com")

 }

 XCTContext.runActivity(named: "Enter Password") { _ in

 app.textFields["password"].firstMatch.tap()

 app.textFields["password"].firstMatch.

typeText("123456")

 }

 XCTContext.runActivity(named: "Pressing Go") { _ in

 app.buttons["go"].firstMatch.tap()

 }

 }

 XCTContext.runActivity(named: "Verify Welcome Message")

{ _ in

 app.staticTexts["welcome"].firstMatch.

waitForExistence(timeout: 2.0)

 }

 }

And now, your test report looks even better (Figure 7-12).

Chapter 7 User InterfaCe tests

209

Figure 7-12. Group of activities in a test report

If you are working with a page object model, it is even easier

to implement activities by wrapping the actions with XCTContext.

runActivity closure:

func doSignIn(withEmail email : String, password : String)-

>UpsellPageObject {

 XCTContext.runActivity(named: "Do Sign In") {_ in

 emailField.tap()

 emailField.typeText(email)

 passwordField.tap()

 passwordField.typeText(password)

 loginButton.tap()

 }

 return UpsellPageObject(app: app)

 }

The Page Object Model and Activities go hand in hand. Hooking them

together can brighten up your test reports without much effort.

Chapter 7 User InterfaCe tests

210

 Attachments
One of the most challenging tasks when debugging UI Tests (or actually,

debugging in general) is to get information about the state of our app at the

time of failure or the state of the app in a particular step that precedes to

the failure itself.

Starting Xcode 9.0, Apple added a new feature – XCTAttachment.

XCTAttachment gives you the ability to attach useful information to your

test report and helps you investigate your failures. But attachments really

shine when dealing with a continuous integration environment, for

example, not from your computer.

Attachments show up in your test report and can hold different types

of data:

 – Screenshots

 – Images

 – Files

 – Texts

 – Data (blob)

The most common data is, of course, screenshots.

 Screenshots

Creating screenshot attachments is a great way to record your test

steps to help you diagnose your test failures. Xcode creates screenshots

automatically anytime one of your tests fails, but you can also create your

own screenshots whenever you want.

To create a screenshot, you need to do three things:

 1) Take a screenshot of your screen or one of your

elements.

Chapter 7 User InterfaCe tests

211

Figure 7-13. Screenshots removed from the test report

 2) Create an attachment based on the snapshot.

 3) Add the attachment to the test run.

Here is a quick code snippet to show you how it’s done:

let screenshot = app.windows.firstMatch.screenshot()

let attachment = XCTAttachment(screenshot: screenshot)

add(attachment)

Screenshots in Test Report

The best place to see your screenshots is your test report.

But adding the preceding code to your test probably won’t show you

any attachment in your test report. Let’s take a look at your test report after

adding an attachment (Figure 7-13).

Because screenshots can quickly fill up your storage, we have places

where we can handle the lifetime of our attachments.

The first place is the scheme configuration (Figure 7-14).

Chapter 7 User InterfaCe tests

212

By default, XCTest captures screenshots for every step in your test.

This is extremely useful when you want to reproduce your test step by step.

XCTest also deletes those screenshots whenever your tests succeed. This

option is enabled by default as well.

The second place you can control the lifetime of your attachments is in

the code itself:

let screenshot = app.screenshot()

let attachment = XCTAttachment(screenshot: screenshot)

attachment.lifetime = .keepAlways

add(attachment)

Each attachment has a lifetime property, which has two options:

keepAlways and deleteOnSuccess. The default value is deleteOnSuccess.

Setting it to keepAlways overrides the scheme settings and will keep

your attachments regardless of your test results.

Examine Your Attachments

After we changed our scheme configuration or modified our code, we can

have a look at our test report to examine our test details (Figure 7-15).

Figure 7-14. Scheme configuration

Chapter 7 User InterfaCe tests

213

Figure 7-15. Screenshot in the test report

If you add attachment inside a specific activity, you will see it under the

activity group. Otherwise, it will appear in the root of your test.

Location of Your Screenshots

Many developers run their tests not on a local machine but in a continuous

integration environment.

Therefore, they do not have access to Xcode, especially to the Report

Navigation pane.

In this case, we need access to the screenshot’s files.

Chapter 7 User InterfaCe tests

214

Up until Xcode 11, it was easy to access the attachments – they were

located in a folder named “Attachments” in the project’s derived data

folder.

But in Xcode 11, Apple made significant changes in the test results’ file

structure, and now it’s much more complicated to analyze the test results.

About XCResult

Xcode saves each one of your test reports to a file with a type of “XCResult”.

Those files are located in the derived data folder under Logs/Test/:

~/Library/Developer/Xcode/DerivedData/<Project>/Logs/Test/

XCResult file is a package, containing a general .plist file and a data

folder with a bunch of binary files.

You can open the XCResult file in Xcode just by tapping it. But if

you want to parse it, you may encounter some difficulties and can be

cumbersome.

To parse XCResult file, you need to use the provided xcresulttool tool

provided by Xcode:

xcrun xcresulttool get --path <path of file> --format json

Running this command doesn’t extract your attachments, but it gives

you some general details about your test run.

At this point, you need to locate your test within the JSON and run this

command on the specific test by its id:

 xcrun xcresulttool get --path <path of file> --format json –-id

<testID>

On some point, you’ll see the attachments section you were waiting for.

Then you need to run the export command:

xcrun xcresulttool export –path <path of file> --output-path

<Destination path> --id <test id>

Chapter 7 User InterfaCe tests

215

As you can see, it’s not that easy to export attachments from the

XCResult file. One option to overcome it is to write your own script to

do it easily. Another option can be using an open source command tool

that is doing just that. For example, XCParse (https://github.com/

ChargePoint/xcparse) is a tool that can extract those attachments with

only one command:

xcparse -s <xcresult file path> <destination path>

 More Attachment Types

There are additional types of attachments rather than screenshots. For

example, you can attach files, strings, audio, and more.

These are the types of available attachments you can create:

 – Images

 – Screenshots

 – Data blob

 – Zip archive

 – Texts

Let’s take a look at how we can create a simple text attachment:

let stringAttachment = XCTAttachment(string: "Email:

\(emailEntered)")

stringAttachment.lifetime = .keepAlways

add(stringAttachment)

And this is how it looks in your test report (Figure 7-16).

Chapter 7 User InterfaCe tests

https://github.com/ChargePoint/xcparse
https://github.com/ChargePoint/xcparse

216

You should think about attachments as your way to log your test and

leave small pieces of information that can help you investigate your test

failures.

 More Great UI Test Features
Xcode UI Testing framework has more features and capabilities if you have

additional needs. For example, it can help you test your Siri integration,

check how your app interacts with other installed apps, and make an

advanced dragging gesture.

Figure 7-16. Text attachment in the test report

Chapter 7 User InterfaCe tests

217

 Testing Your Siri Integration
If your app has a Siri integration, you can start your test with launching it

using a Siri phrase:

XCUIDevice.shared.siriService.activate(voiceRecognitionText:

"Open My Weather")

If you have a Siri intent, you can verify it like we’ve learned earlier in

this chapter – querying your screen elements and asserting them.

Note for siri intents, I recommend you use unit testing. there is no
point in testing the UI of something that is entirely logical.

 Multiple App Testing
If you recall at the beginning of the chapter, I mentioned it is possible to

initialize your XCUIApplication object with a specific bundle identifier.

If you have multiple apps and you want to test them together, this is an

excellent way of doing that:

func testMultipleAppsIntegration() {

 let todoApp = XCUIApplication(bundleIdentifier:

"com.myTodoApp.www")

 let notesApp = XCUIApplication(bundleIdentifier:

"com.myNotesApp.www")

 todoApp.launch()

 todoApp.buttons["seeMyNotesButton"].tap()

 notesApp.activate()

 notesApp.buttons["addNewNoteButton"].tap()

Chapter 7 User InterfaCe tests

218

 _ = notesApp.textViews["notesTextView"].

waitForExistence(timeout: 0.5)

 notesApp.textViews["notesTextView"].tap()

 notesApp.textViews["notesTextView"].typeText("This is

my note")

 notesApp.buttons["saveNewNote"].tap()

 todoApp.activate()

 // check that the new note appears in todo app as well

 }

What you do need to be aware of is that now you have a new method

called activate(). Unlike launch(), activate() doesn’t terminate the

current running app, but lets you open another app while keeping the

existing app alive.

Note the “springboard” (the main screen of iOs where you have all
your apps) is also an app you can activate with the bundle identifier
“com.apple.springboard”. try it!

 Dragging Using XCUICoordinate
It is possible to simulate almost any finger movement you want by using

something called XCUICoordinate.

XCUICoordinate is an object that represents a location on the screen

relative to a specific element. This element can be even the app itself

(XCUIApplication object).

After you have a coordinate, you can press it and “drag” it to another

coordinate.

Chapter 7 User InterfaCe tests

219

For example, here is a code snippet demonstrating how to do a “pull to

refresh” easily:

func testPullToRefresh() {

 let app = XCUIApplication()

 let fromCoordinate = app.coordinate(withNormalizedOffs

et: CGVector(dx: 0, dy: 10))

 let toCoordinate = app.coordinate(withNormalizedOffset:

CGVector(dx: 0, dy: 20))

 fromCoordinate.press(forDuration: 0, thenDragTo:

toCoordinate)

 }

The chances are that you are not going to need it for most of your use

cases, but for the ones that you need, it can be convenient.

 Summary
UI Tests are harder to maintain for many reasons. But they are great

for many tasks as well, sanity checks, for example. They can also be an

excellent alternative to integration tests. My recommendation to you is to

implement UI testing in your critical flows and cover them.

Another thing UI Tests are useful for is performance tests. We’ll discuss

performance tests in detail in the next chapter.

Chapter 7 User InterfaCe tests

221© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_8

CHAPTER 8

Cover Another
Aspect of Your
App – Performance
Testing

Just as athletes can’t win without a sophisticated mixture of
strategy, form, attitude, tactics, and speed, performance engi-
neering requires a good collection of metrics and tools to
deliver the desired business results.

—Todd DeCapua

 Introduction
Performance Tests are another aspect of software testing. We can say that

performance tests are not about “if things work” but rather “how things

work,” and that positions them as a unique test bundle compared to the

other test methods.

https://doi.org/10.1007/978-1-4842-6382-2_8#DOI

222

In this chapter, you will learn

 – What is the basic idea of performance testing

 – How measure() function works and how to define a

baseline

 – The different metrics you can use starting from Xcode 11

 – How to configure your tests

 – How to write a-sync performance testing

 – Where Xcode saves your test baseline information so you

can adjust it to your CI/CD environment

 The Basic Idea of Performance Test
Unlike other tests such as Unit or Integration tests, Performance Tests are a

little “catchy.” They have several unique characteristics, which make them

less predictable.

For example, running performance tests on an old device probably

produces different results than running them on a new one.

Also, on one run, you can have a certain result, which may be different

than the second or the third run. Not to mention other factors such as

machine state, CPU load, free memory, caching, and more.

So, based on the given details, we understand that performance tests

work a little bit differently:

 – Each tested code runs several times to prevent any

one-time result that may affect our test results. At the end

of the test run, the final results will be based on the

average of all executions.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

223

 – Because the average result might be different from tests to

test, it is not enough to satisfy our needs. We still need to

set some baseline to make sure the change is not too big

and it’s within the reasonable spectrum.

 – The last issue is also a major one – the baseline is linked
to a specific device based on its UUID. The reason is

obvious – not only that each device has different hard-

ware, but it also has different settings and installed

software.

So, the unpredictable nature of performance tests makes it a unique

creature in our testing suite, and we should use it for specific use cases or

flows that may cause us performance issues in future changes.

 The Basic Measuring Function
Let’s start with writing our first performance test:

class PerformanceTests: XCTestCase {

 func testPerformance() {

 let imageProcessor = ImageProcessor()

 measure {

 _ = imageProcessor.generateImage()

 }

 }

}

In the preceding test, we have a class named ImageProcessor

with a function called generateImage(). We know that the function

generateImage() is doing some heavy task, and we want to execute this

code as part of the measure function.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

224

The Measure() function is part of XCTestCase, and it’s the basic

performance method we have. It has one single parameter, which is a

closure. What measure() function does is executing the closure ten times

and calculating the average time in the end.

Let’s run the test (Figure 8-1).

Figure 8-1. Running our first performance test

We see some interesting information after our first run. First, we see

the average time, 1.127 seconds. We also see a message saying there is no

baseline time. This leads to our third insight – you can see that our test

actually passed.

Unlike other tests, performance tests don’t use assertion. Instead, we

define a baseline for our metric to make sure our result stays below it.

 Define the Baseline
You don’t have to work hard to set a baseline for your test. Pressing on the

gray diamond next to the message “No baseline average for Time” opens a

small popup window with more details and functionality (see Figure 8-2).

Chapter 8 Cover another aspeCt of Your app – performanCe testing

225

In this popup, you can see additional information about your run and

an option to set a baseline easily by just pressing a button.

On the lower part of the popup, you can see your executions over time.

Note it’s not rare for the first execution to be much longer than the
others. it has to do with things like caching or internal behaviors of
the swift language. this is part of the reason we run this test several
times to get a score that is closed to a real-life state.

Pressing the “Set Baseline” button changes the state of the popup

window to Edit mode (see Figure 8-3).

Figure 8-2. Performance Result Settings window

Chapter 8 Cover another aspeCt of Your app – performanCe testing

226

Tapping the “Accept” button sets the current average result as our

baseline for the next test.

You can also edit the baseline manually just by tapping it and type the

new value.

To confirm the change, just press on “Save”.

 What the “Baseline” Means for Our Test?
Performance tests are based on two important values – Baseline and Max

STDDEV.

The Baseline value is the bar your test needs to reach. If your execution

code runs 10%+ slower than the baseline, your test will fail.

Another value being calculated is the standard deviation, the STDDEV.

If the deviation of your runs is more than 10%, a value that can be changed

easily, your test will fail as well.

Figure 8-3. Performance test baseline edit

Chapter 8 Cover another aspeCt of Your app – performanCe testing

227

 Why Is the Deviation Important?

When running performance tests, we need to make sure our score is

reliable. If you get a high deviation in your tests, it might be a code smell

and point on two things:

 – It may be an indication of a problem in your code.

Basically, you need to expect heavily loaded code to

perform similarly in multiple runs. If this is not the case, it

means your code executes in an unexpected manner

and maybe be affected by external values or states.

 – A big deviation means that there are some executions
that are slow, much slower than the average score you

get. It also means that our average score is not relevant

and our users experience poor performance even though

our test might be below the baseline.

If your test fails because of high deviation, don’t increase the bar for

no reason. You should investigate the behavior of your code before making

any changes.

 measure(metrics:) Function
Up until Xcode 11, the only metric you could measure is execution time.

But the new Xcode version brought new metrics to the table:

 – XCTClockMetric – This is the execution time metric

similar to what we’ve learned in the previous section.

 – XCTCPUMetric – This metric gives you information about

the CPU activity during the run.

 – XCTMemoryMetric – Measure allocated during the test.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

228

 – XCTStorageMetric – Record bytes written to disk.

 – XCTOSSignpostMetric – Measure execution time for a

specific part of your code, defined externally in your code

using os_signpost functions.

The most basic metric developers use is the time/clock metric, but

there are many cases why you would want to check other metrics as well.

It doesn’t mean you need to run the performance test for each one of

your metrics – you can pass array of metrics and get results for all of them:

func testGeneratingImageWithAllMetrics() {

 let imageProcessor = ImageProcessor()

 measure(metrics: [XCTClockMetric(), XCTCPUMetric(),

XCTStorageMetric(), XCTMemoryMetric()]) {

 _ = imageProcessor.generateImage()

 }

}

Running the test while passing all the metrics gives you the same

popup as before, but now with information for each of your metrics (see

Figure 8-4).

Chapter 8 Cover another aspeCt of Your app – performanCe testing

229

This is plenty of information! Let’s try to dig in and understand what it

means.

 Analyzing the Metrics
 Clock Monotonic Time

This measurement is part of the XCTClockMetric, and it measures the

exact duration of your execution block. At this point, I want to explain what

exactly Monotonic Time means.

If you want to measure code without using the measure function, you

can do something like this:

Figure 8-4. Setting baselines to all metrics

Chapter 8 Cover another aspeCt of Your app – performanCe testing

230

let startTime = Date()

_ = imageProcessor.generateImage()

let endTime = Date()

let duration = startTime.timeIntervalSince1970 - endTime.

timeIntervalSince1970

We measure the time before the execution and the time after the

execution. Obviously, the elapsed time between them is the duration of the

execution, right?

Well, not exactly. Doing that would be wrong.

There are two different clocks in almost every modern operating

system – the Wall Clock and Monotonic Clock.

The Wall Clock is the clock that is presented to the user (and the

application). This is the time that we get when we use the Date() function

to get the current time. Wall Clock time is affected by NTP (Network

Time Protocol) and can be synchronized during the application running.

Therefore, not only the elapsed time might not be accurate; it can even be

negative.

Monotonic Clock, on the other hand, cannot be affected by any

external influence. Monotonic Clock is not aiming to give the current time

since it doesn’t have a “starting point.” What it does is to give you a stable

duration measurement, and this is why we use it in performance tests.

 CPU Cycles, CPU Time, and CPU Instructions

OK, so we have a clock time, why do we need a “CPU Time”? And what is it

anyway?

So, first, CPU Time doesn’t represent the total execution time, but only

the time the CPU was busy executing your instructions. For example, the

total execution duration also includes any I/O operations or even network

requests (although it’s not recommended to include network time in your

performance tests).

Chapter 8 Cover another aspeCt of Your app – performanCe testing

231

So, if you want to eliminate any external factors and focus on your

processing time, CPU Time under XCTCPUMetric is the way to go.

So, what are CPU Instructions Retired and CPU cycles?

CPU Cycles is the metric that shows you how much your CPU worked

hard during the block execution, and CPU Instructions metric contains the

number of the actual instructions completed – in general, a low number

of instructions for the same task, points of better efficiency, and power

consumption.

 Checking Your Writing Activity with XCTStorageMetric

XCTStorageMetric is another interesting aspect of the performance tests.

Instead of measuring time, it measures your writing to disk activity. This

might not sound like an interesting metric, but when concluding it with the

clock metric, it’s a great metric to help you optimize your code.

Writing to disk is considered to be a heavy task much more than

writing to memory. It is best practice to avoid it if possible. A big increase

in this metric can explain poor results in the clock metric and can be an

indication of unnecessary writing activity.

 More Configuration with
XCTMeasureOptions
Using performance metrics is pretty straightforward. In fact, they are so

useful and effective that you don’t really need any configuration for them.

But, still, there is an option that can help you tune your performance tests

better to get more accurate results.

The way of doing that is bypassing an object of type

XCTMeasureOptions. XCTMeasureOptions was added along with the

performance test metrics, and it has two properties that you are able to

configure.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

232

 iterationCount
The first property you can update is the iterationCount. This property

defines the number of times your test runs. The default is 5, but you should

be aware that XCTest always adds another iteration and ignores it (it

actually ignores the first one).

Why would we want to change the number of iterations? There could

be two reasons – the first one is heavy and time-consuming performance

tests that you want to run no more than one or two times. The second

option might be the opposite – very small performance tests that you need

to run many times to get accurate results as possible.

In 95% of the cases, you don’t need to change the default value. Also,

if you run your test without passing an XCTMeasureOptions object, the

number of iterations will be ten times and not five as described earlier in

this chapter.

 invocationOptions
Performance tests are great, but they still have one major drawback, and

that’s controlling the start and the end of the measured part of your code.

I’ll explain – we know that performance tests run multiple times, and

they all should start from the same state. In fact, they are exactly like any

other tests – you need to have some setup code before you start and do a

cleanup when you finish.

The problem is that you need to execute the setup and cleanup code

inside the measured block, which means that all the metrics cover these

parts of your block as well.

The invocationOptions property lets you define how your

measurements are taken. It’s an optionSet that has two options –

manuallyStart and manuallyStop.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

233

If invocationOptions contains manuallyStart, it means

that measurements are taken when you call the function self.

startMeasure() in your execution code. If manuallyStop is included in

invocationOptions, it means the Xcode stops the measurement when on

self.stopMeasure().

Look at the following code:

 func testGeneratingImageWithAllMetrics() {

 let imageProcessor = ImageProcessor()

 let options = XCTMeasureOptions()

 options.invocationOptions = [.manuallyStop ,.manuallyStart]

 measure(metrics: [XCTClockMetric(), XCTCPUMetric(),

XCTStorageMetric(), XCTMemoryMetric()], options:

options) {

 // do some preparations

 self.startMeasuring()

 _ = imageProcessor.generateImage()

 self.stopMeasuring()

 // do some cleanup

 }

 }

Looking at the code, you can see we can easily insert some setup and

cleanup code inside our execution closure and define exactly what part we

want to measure.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

234

 Measuring App Launch
One great way you can make use of performance tests is to measure your

app launch.

App launch time is extremely important to your app user experience

and, in many cases, is the root of ongoing frustrations among users.

Setting up a test for that mission is very easy. In fact, you don’t need

to do anything – any new UI testing target comes with a predefined app

launch test:

 func testLaunchPerformance() throws {

 if #available(macOS 10.15, iOS 13.0, tvOS 13.0, *) {

 // This measures how long it takes to launch your

application.

 measure(metrics: [XCTOSSignpostMetric.

applicationLaunch]) {

 XCUIApplication().launch()

 }

 }

 }

It is pretty amazing that in two rows we can measure our app launch

time.

This test also contains baseline just like all the other performance tests,

and since it’s already written for you, it’s recommended for you to include

it in your test bundle.

 Asynchronous Performance Tests
So, we can see how easy it is to measure the performance of a specific

function/method by just wrapping it inside the measuring closure. But

what if we want to measure an a-sync function?

Chapter 8 Cover another aspeCt of Your app – performanCe testing

235

In general, it is much simpler to measure synced functions, but it is

still possible to also test a-sync function using the XCTestExpectation tool

we’ve learned in previous chapters.

Note if you don’t remember how to use XCTestExpectation, go
back to the unit test chapters and go over this part.

The basic steps to create a performance test for a-sync function are as

follows:

 – Open measuring closure while setting the automaticallyS-

tart to yes.

 – Create the XCTestExpectations inside the closure. Now,

this step is important. Creating the expectation object

outside the closure will raise an exception.

 – Wait for the expectation to be fulfilled inside the closure,

just like the expectation’s creation itself.

Let’s see an example:

func testImagePrcessongAsync() {

 measure(metrics: [XCTClockMetric()]) {

 let expectation = XCTestExpectation(description: "Image

processing")

 let imageProcessing = ImageProcessor()

 imageProcessing.generateImageAsync {

 expectation.fulfill()

 }

 wait(for: [expectation], timeout: 2.0)

 }

}

Chapter 8 Cover another aspeCt of Your app – performanCe testing

236

Remember that executions run one after the other, so the wait()

function halts the run until the expectation is fulfilled before it continues

to the next one.

Also, you need to be careful about the waiting timeout duration – if it’s

too low, say, lower than the baseline, the test can fail even though it ran

better than the baseline.

 The Baseline Under the Hood
Unlike other tests, performance tests rely on the specs of the machine that

runs them.

So, you can conclude that different machines give you different results;

therefore, the baseline has to be corresponding to the host machine.

And this is something you need to understand, especially if you run

your tests on a continuous integration environment – Xcode saves the

baseline values for any combination of the host machine (your Mac) and

device (including simulators).

Although iOS simulators are not emulators, meaning there shouldn’t

be any CPU difference, they can still give you different results.

For example, you might turn off/on different features for different

devices in your code. Also, the device resolution can have an impact on the

simulator performance (again, this is up to the host machine as well).

 Where Xcode Saves the Baseline?
This is an important question, especially if you work in a big corporate,

and your app integration process is running on different machines.

True to Xcode 12, the baseline values are saved inside your Xcode

project file.

Xcode project file (*.xcodeproj) is a package, meaning it’s actually a

folder that displayed like a typical file.

Chapter 8 Cover another aspeCt of Your app – performanCe testing

237

To reveal the package content, right-click the package (xcodeproj) and

select “Show Package Contents”.

Navigate to xcshareddata/xcbaselines/.

The first important file you see there is info.plist. This file contains

the list of the “host machine+device” combinations. Xcode generates a

unique UUID for each combination and saves it (see Figure 8-5).

Figure 8-5. Info.plist file, containing the host machine details along
with the target device information

If you look at the info.plist, you’ll see the generated UUID. For each

UUID, Xcode creates another plist file in the same directory, containing

the list of baselines for each test method (Figure 8-6).

Chapter 8 Cover another aspeCt of Your app – performanCe testing

238

 How Xcode Pulls the Baseline from These Files
If you take a look again at Figure 8-5, you can see that Xcode doesn’t save

the serial number of the machine, but rather its specs. This means that if

you run your tests on a different machine but with the same specs, Xcode

will pull the corresponding baselines for this test.

Why is this important? Because this is the way you can set the

baselines for your CI environment – by adjusting the “combo” settings to

match your remote machine.

 Summary
You don’t have to write performance tests for every method in your project.

More than that, there are projects that performance tests are useless.

Performance is all about the big numbers – if you have heavily loaded

functions or pieces of code, this tool is a great way to optimize them and

verify you don’t have any regressions. Not only testing performance on

small, unimportant function is useless; it’s also a mistake that can make

the maintenance of your test difficult.

We are heading to the next chapter – a technique that can help you

define the “expected result” easily.

Figure 8-6. List of test methods and their baselines for each metric

Chapter 8 Cover another aspeCt of Your app – performanCe testing

239© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_9

CHAPTER 9

Snapshot Testing
Reminds me of the awesome bug report I saw once: ‘Everything
is broken. Steps to reproduce: do anything. Expected result: it
should work’.

—Felipe Knorr Kuhn

 Introduction
When we think about writing tests, we usually think about defining

expected results and then writing tests to validate them. But what if we

know our code already executes as expected, and all we want to do is to

prevent regression in the future?

Snapshot testing is all about saving our current state persistency once

we know it’s stable and then making an ongoing comparison in each run.

In this chapter, you will learn

 – What is Snapshot Testing

 – How to write your own snapshot testing

 – What are the problems with snapshot testing

 – What are UI Snapshot Testing and why do we need it

 – Meeting FBSnapshotTestCase as an example for a UI

Snapshot Testing Framework

https://doi.org/10.1007/978-1-4842-6382-2_9#DOI

240

 What Is Snapshot Testing?
The following diagram (Figure 9-1) is the best way to explain what a

snapshot testing is.

Figure 9-1. What is a snapshot testing

Snapshot testing is a technique that can help you write tests quickly

and easily in cases it’s too complicated to cover it with the regular unit or

integration tests. For example, snapshot testing is a great way to cover UI

elements of your app or network responses.

This technique is not recommended in all cases. Still, before I explain

why we should be careful not to become addicted to snapshot testing,

I want to dive into the practice – how snapshot testing works.

Chapter 9 SnapShot teSting

241

 Snapshot Testing from Scratch
Let’s say we have a function that receives a sentence (as a string) and

return its verb.

This is the function signature:

func getSentenceComponents(sentence : String)->Components?

Now let’s write our first test for this function:

func testExtractComponents() {

 // arrange

 let str = "The man is running"

 // act

 let verb = SentencesAnalyzer().getVerb(sentence: str)!

 let reference = ""

 // assert

 XCTAssertEqual(verb, reference)

}

If you pay attention to the preceding code, you can see we did

something new here – we created an empty string called reference and

compared it to the result of the function. Now, we know the test is going to

fail because the preceding sentence has a verb – “running.”

After running the test, we receive the expected failure message:

XCTAssertEqual failed: ("running") is not equal to ("")

Even though our test failed, we know our code works as expected.

So, all we need to do now is fix our test, and set “running” as the value of

reference:

Chapter 9 SnapShot teSting

242

func testExtractComponents() {

 // arrange

 let str = "The man is running"

 // act

 let verb = SentencesAnalyzer().getVerb(sentence: str)!

 let reference = "running"

 // assert

 XCTAssertEqual(verb, reference)

}

That was our first snapshot testing!

Let’s summarize it:

 – We wrote a test when we compare the result to an empty

string.

 – We ran the test, took the result of the function, and saved

it to the reference variable.

 – We reran the test and see that it passes.

So, the first run is only to get the expected result, and every test from

now on takes a “snapshot” of the current state and compares it to the saved

result from earlier.

 Using Swift Keywords
If we want to complete the process of saving snapshot to a file, we need to

understand the challenges we have here.

First, we need to save all the snapshots to a file, so we’ll have access to

them when we run our tests. To get a directory relative to our test target,

we can use the #file keyword. If you recall, we’ve learned about swift

keywords in the Unit Testing chapter, and #file is another keyword we can

use here.

Chapter 9 SnapShot teSting

243

#file returns the absolute path for the current file:

let snapshotTestingDirectory = URL(fileURLWithPath: "\(#file)")

 .deletingPathExtension()

The preceding code returns a directory with the name of the testing

file, but without the .swift extension. It’s a neat trick to quickly produce a

relative directory to the file you are working on.

Now that we have our snapshot folder, we need to save a snapshot

for each function. Swift keyword feature comes to rescue once again with

#function. #function returns the name of the current function, and this

can be the keyword to our snapshot database.

We can save a snapshot file for each function, or we can keep all

snapshots in a big JSON file inside our snapshot’s directory.

Let’s create a path for our snapshot file based on the function name:

let snapShotFileForFunction = snapshotTestingDirectory.appendin

gPathComponent(#function).appendingPathExtension("snapshot")

Let’s continue the code with creating the folder and saving/reading the

snapshot and see the full code:

func testExtractComponents() {

 // arrange

 let str = "The man is running"

 // act

 let verb = SentencesAnalyzer().getVerb(sentence: str)!

 let snapshotTestingDirectory = URL(fileURLWithPath:

"\(#file)")

 .deletingPathExtension()

Chapter 9 SnapShot teSting

244

 let snapShotFileForFunction = snapshotTestingDirectory.appe

ndingPathComponent(#function).appendingPathExtension

("snapshot")

 let fileManager = FileManager.default

 try! fileManager.createDirectory(at: snapshotTestingDirecto

ry,withIntermediateDirectories: true)

 if fileManager.fileExists(atPath: snapShotFileForFunction.

path) {

 let reference =

 try! String(contentsOf: snapShotFileForFunction,

encoding: .utf8)

 XCTAssertEqual(reference, verb)

 } else {

 try! verb.write(to: snapShotFileForFunction, atomically:

true, encoding: .utf8)

 XCTFail("Failed to write snapshot")

 }

}

 Creating Our Assertion Function
Extracting the code to a function makes it reusable in other tests as well:

func doAssertSnapshot(match data : Any) {

 var stringData = ""

 dump(data, to: &stringData)

 let snapshotTestingDirectory = URL(fileURLWithPath:

"\(#file)")

 .deletingPathExtension()

Chapter 9 SnapShot teSting

245

 let snapShotFileForFunction = snapshotTestingDirectory.

appendingPathComponent(#function).appendingPathExtensio

n("snapshot")

 let fileManager = FileManager.default

 try! fileManager.createDirectory(at: snapshotTestingDir

ectory,withIntermediateDirectories: true)

 if fileManager.fileExists(atPath:

snapShotFileForFunction.path) {

 let reference =

 try! String(contentsOf: snapShotFileForFunction,

encoding: .utf8)

 XCTAssertEqual(reference, stringData)

 } else {

 try! stringData.write(to: snapShotFileForFunction,

atomically: true, encoding: .utf8)

 XCTFail("Failed to write snapshot")

 }

 }

Notice that we convert the Any object that we get to a string using the

dump() swift function.

But we haven’t finished quite yet. If you remember, when we discussed

about custom assertion, we said that we need to pass the swift keywords

such as #file and #line to our custom assertion function. Same goes

here – we need to pass #file, #line, and also #function to our new

assertion code:

func doAssertSnapshot(match data : Any, file : StaticString =

#file, line : UInt = #line, function : String = #function) {

 var stringData = ""

 dump(data, to: &stringData)

Chapter 9 SnapShot teSting

246

 let snapshotTestingDirectory = URL(fileURLWithPath:

"\(file)")

 .deletingPathExtension()

 let snapShotFileForFunction = snapshotTestingDirectory.

appendingPathComponent(function).appendingPathExtension

("snapshot")

 let fileManager = FileManager.default

 try! fileManager.createDirectory(at: snapshotTesting

Directory,withIntermediateDirectories: true)

 if fileManager.fileExists(atPath:

snapShotFileForFunction.path) {

 let reference =

 try! String(contentsOf: snapShotFileForFunction,

encoding: .utf8)

 XCTAssertEqual(reference, stringData, file : file,

line : line)

 } else {

 try! stringData.write(to: snapShotFileForFunction,

atomically: true, encoding: .utf8)

 XCTFail("Failed to write snapshot", file : file, line :

line)

 }

 }

Now our new test looks like this:

func testExtractComponents() {

 // arrange

 let str = "The man is running"

 // act

 let verb = SentencesAnalyzer().getVerb(sentence: str)!

Chapter 9 SnapShot teSting

247

 // assert

 doAssertSnapshot(match: verb)

}

With only one line, we did both assertions and saved the result for the

next test.

 Snapshot Testing Drawbacks
We can see that with a fair amount of code, we can implement snapshot

testing in our bundle quite easily. It doesn’t mean that snapshot testing is

a perfect solution – it’s not. Snapshot testing has its issues, and you need to

be familiar with some of them. Let’s list some of them.

 Documentation Is Missing
In the first chapter, I mentioned that tests are actually our documentation

to the code. While defining the expected behavior precisely and in details,

lead us to the appropriate state step by step, tests are actually the best

documentation you can have for your app.

Some of this documentation, or may I say, the crucial part of it – the

expected result - is hidden in a data file instead of being upfront. Sure,

we can document it in a comment right within the test, but if we do that,

what’s the point of snapshot testing?

 Too Easy to Fix
When regular unit tests fail as a result of code changes, we need to define

the expected result manually. This is a welcome process that forces us

to recheck our code and verify if it works as expected. Snapshot testing,

on the other hand, makes this process to be “too easy.” With a click of a

button, we delete the associated file and create a new snapshot.

Chapter 9 SnapShot teSting

248

In general, fixing tests shouldn’t be that easy – when you fix a failed

snapshot test, it actually means you are doing a manual test to verify that

the function (or the state) you are testing is working as expected. And

we all know what happens when a manual operation is involved in the

process – it usually means it’s not going to happen.

 Why My Tests Failed
Unit tests are usually narrowed. It means that you are checking a specific

function with a particular condition. So, when you have a failed test, it is

really easy to understand why it failed. This is not always the case with

snapshot testing. In snapshot testing, we often check a state or a big chunk

of serialized data. The nature of snapshot testing makes it hard for us to get

to the bottom of the issue.

 UI Snapshot Testing with
iOSSnapshotTestCase
One of the areas that snapshot testing really shines is UI Snapshot testing.

Unlike data snapshot testing, which can be handled easily using TDD,

UI snapshot testing has a real comparative advantage.

Imagine the following scenario – you take screenshots of main screens

in your app, and in every test run, you validate they stay the same at the

pixel level. This is something that UI designers have trouble to do, not to

mention QA testers.

 Why Do We Need That?
UI Screens are very vulnerable. Text changes can affect your UI, changes in

reusable UI components can break existing screens, and even OS updates

can break your UI screens.

Chapter 9 SnapShot teSting

249

Not only that; as mentioned before, sometimes it’s hard to notice those

changes without making a real diff process.

 iOSSnapshotTestCase
Many, many years ago (actually, it’s only 5–6 years), Facebook developed

an open source framework named FBSnapshotTestCase. After a short

period, Facebook ditched this project and created a new internal project.

Fortunately, Uber took ownership of maintaining the framework. Now

the framework is named iOSSnapshotTestCase, and you can find it here:

https://github.com/uber/ios-snapshot-test-case.

 How Does It Work?
Once iOSSnapshotTestCase is installed, it is elementary to make use of it in

your app. The process is based on two steps:

 – Run the test in record mode, meaning there is no com-

parison made, just saving the initial state to the file system.

 – Change the record mode to false, and then run again to

see that there are no changes vs. the saved snapshot.

Each test method initializes a view or a CALayer, comparing it to the

current screenshot it has.

The expected screenshots are saved in the file system. Each test case

has its own folder, and every test method has its own file with the name of

the method.

 Set Up and Run iOSSnapshotTestCase
Setting up iOSSnapshotTestCase is easier than you think.

The first step is to install the framework using any popular dependency

manager, for instance, CocoaPods.

Chapter 9 SnapShot teSting

https://github.com/uber/ios-snapshot-test-case

250

 Install Using CocoaPods

Once CocoaPods is installed (you are more than welcome to search

Google for how to install this great dependency manager), it’s easy to add

iOSSnapshotTestCase to your Podfile:

target 'MyWeatherAppTests' do

 inherit! :search_paths

 # Pods for testing

 pod 'iOSSnapshotTestCase'

end

Remember to add the framework to your test target and not your

primary target.

 Defining Environment Variables

The second step is to configure the environment variables. These variables

define the folders where our snapshots are saved. It is best practice to set

the values recommended by the documentation:

FB_REFERENCE_IMAGE_DIR = $(SOURCE_ROOT)/$(PROJECT_NAME)Tests/

Snapshots/ReferenceImages

IMAGE_DIFF_DIR = $(SOURCE_ROOT)$/(PROJECT_NAME)Tests/Snapshots/

FailureDiffs

If you remember, environment variables are set in the scheme editor

(Figure 9-2).

Chapter 9 SnapShot teSting

251

Notice the format – it adds “Tests” right after the project name. That’s

because the default target name for unit tests is the project name followed

by the word “Tests”. You just need to make sure that’s the case in your project.

 Subclass FBSnapshotTestCase

Unlike other unit tests, for the snapshot testing to work, you need to

subclass FBSnapshotTestCase (which subclasses XCTestCase).

FBSnapshotTestCase handles all the snapshot testing for you.

The first thing you need to do is to import the FBSnapshotTestCase

framework:

import FBSnapshotTestCase

Figure 9-2. Scheme editor

Chapter 9 SnapShot teSting

252

Again, remember that in your Podfile you need to include the snapshot

framework under the test target and not under your primary target.

Let’s build our first snapshot testing:

func testSnapshotMainScreen() {

 // arrange

 let controller = CityWeatherViewController(nibName:

"CityWeatherViewController", bundle: nil)

 // assert

 FBSnapshotVerifyViewController(controller)

 }

Oh, dear, it’s that easy! Yes, snapshot testing (in this case) is only two

lines. The first line initializes the view controller, and the second line

verifies it against a snapshot.

And of course, the problem is that we don’t have a snapshot yet. If we

run the test as it is, we get an error message (Figure 9-3).

Figure 9-3. Running a snapshot test for the first time

Chapter 9 SnapShot teSting

253

To make sure we have a snapshot for a specific function, we need to

run the test in a record mode. To do that, turn on the record mode under

the setup() method:

override func setUp() {

 super.setUp()

 self.recordMode = true

}

“recordMode” goes over the verification functions, and instead of

verifying them, it creates a snapshot and saves it in the folder defined in

your scheme.

Now, let’s run the test with record mode and see what happens

(Figure 9-4).

Figure 9-4. Running a snapshot test in record mode

Oh no, another error! Don’t worry; this is perfectly normal. The reason

the test fails is to remind us that we need to disable the record mode to

make sure that from now on our test will be verified against a snapshot.

But first, let’s make sure a snapshot has been saved in our file system

(see Figure 9-5).

Chapter 9 SnapShot teSting

254

Now that we have a snapshot, we can disable record mode

override func setUp() {

 super.setUp()

 self.recordMode = false

}

and rerun our test (see Figure 9-6).

Figure 9-5. The snapshot is saved in our file system

Figure 9-6. Running the test when record mode is disabled

That’s it. Now we can verify our screens automatically.

 Verification Failure
Let’s say that we made some UI re-design in a specific screen in our app by

changing the particular font size. What we didn’t know is that we broke our

CityWeather screen.

Let’s see what happens when we run our snapshot test (see Figure 9-7).

Chapter 9 SnapShot teSting

255

The verification function detects the UI has been changed and causes

our test to fail.

Now, one of the essential things in tests is the ability to identify the

reason for the failure.

Back to the scheme editor, we had to define a variable named “IMAGE_

DIFF_DIR”. This is an optional variable that contains the path for the diff

folder in case of a failure.

Let’s go back now to our file system (Figure 9-8).

Figure 9-7. Regression in snapshot testing

Figure 9-8. FailureDiffs folder in case of a failure

Chapter 9 SnapShot teSting

256

We see that we have three images:

 – Reference_<name_of_test_function> – This is the snap-

shot file that was created when we initially ran the test in

record mode.

 – Failed_<name_of_test_function> – This is the latest

snapshot that failed. This one is different from the

reference UI.

 – Diff__<name_of_test_function> – This is the most important

file here. This is an image that shows only the difference

of pixels between the two images.

Let’s open the three files (Figure 9-9).

Figure 9-9. The three images FBSnapshotTestCase generated for us

At first glance, it seems that the reference and the failed snapshot are

identical – something that could easily slip our eyes. But the diff image clears

things up – we can see that the temperature’s font size has increased. The diff

image shows only that change, so we can directly focus on the change.

Chapter 9 SnapShot teSting

257

 Snapshot Testing Configuration
The best thing about snapshot testing is its simplicity – with literally two

lines of code, we can create a snapshot test that detects changing our eyes

can barely see at first glance.

But it doesn’t mean we cannot adjust and tune the test for our needs.

 Include Device Information

By default, the generated snapshot file name is composed only out of the

test method name, for example:

testSnapshotMainScreen@2x.png

Of course, this means that if we want to check our views on different

devices and OS versions, this might be a problem.

Fortunately, the FBSnapshotTestCase class has a property named

fileNameOptions, which lets you configure the name of the file:

override func setUp() {

 super.setUp()

 self.recordMode = true

 self.fileNameOptions = [.device, .OS ,.screenSize]

}

The generated file name, now when running on iPhone 11 simulator

with iOS 13, is

testSnapshotMainScreen_iPhone_13_6_414x896.png

Personally, I think this is very handy, especially when testing full-

screen views, when there are significant changes with safe area spaces

between devices.

Chapter 9 SnapShot teSting

258

 Control the Tolerance for Changes and More

In my last example, we see that a small change caused our test to fail. And

this might be awesome – those regressions are sometimes hard to catch.

The only question is “how much do we care?” We are aware that our

changes can cause regressions here and there, but sometimes we want our

test to fail, starting from a certain level of difference.

If you need more control over your snapshot testing, you can use the

snapshotVerifyViewOrLayer function.

This function has some interesting parameters:

 – viewOrLayer – You can pass either view (UIView) or a

Core Animation Layer (CALayer).

 – Identifier – Why do we need an identifier? Well, you

know our views are usually dynamic, meaning we can

configure them to display different data or states. The

identifier you give to your snapshot is also added to the

snapshot file name. This means you can test your screen/

view in different states and keep a reference image for

each state. This may sound optional, but I find this option

extremely useful.

 – Suffixes – Here, you can add a suffix to your test folder.

 – perPixelTolerance – A float represents the tolerance to

changes in the RGB of your pixels. “0” means no change is

acceptable, and “1” means every change is acceptable.

 – overallTolerance – This is the total tolerance for changes

(both color and pixel location).

 – defaultReferenceDirectory – In case you don’t define the

reference directory in your scheme, you can do it here.

Chapter 9 SnapShot teSting

259

 – defaultImageDiffDirectory – Same goes here. You can

define the diff directory right from your snapshot asser-

tion function.

Let’s take a look on how to use it:

func testSnapshotMainScreen() {

 let controller = CityWeatherViewController(nibName:

"CityWeatherViewController", bundle: nil)

 controller.city = "New York"

 let result = snapshotVerifyViewOrLayer(controller.view.

layer, identifier: "NewYork", suffixes: ["cities"],

overallTolerance: 0.1, defaultReferenceDirectory: nil,

defaultImageDiffDirectory: nil)

 XCTAssertEqual(result, "")

}

As you can see, the directory parameters are not mandatory, and you

can just pass nil in case it’s already defined in your scheme.

 Summary
Snapshot Testing is a great way to write tests that involve big chunk or

serialized data quickly. But it really shines when talking about UI Snapshot

Testing.

My recommendation is to take the simple path. It is easy to set up and

maintain, but as always, too much of it can cause you big headaches in the

future. In fact, some developers ignore snapshot as a principle manner.

Chapter 9 SnapShot teSting

261© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_10

CHAPTER 10

Implement Tests in
Our Daily Work
Routine

No amount of testing can prove a software right, a single test
can prove a software wrong.

—Amir Ghahrai

 Introduction
We discussed many types of tests – unit, integration, performance, UI, and

snapshot tests. But if you ask me what the most challenging task in writing

tests is, I would say actually writing them.
Being a developer is not easy. Our daily schedule is full of stress –

deadlines, bugs, documentation to read, meetings, and some of us have an

angry boss who sits on our head. Eventually, we are full of excuses for why

we don’t have time right now for tests.

Writing the right tests, narrowing down the important ones, and

deciding what will be the focus, this are another challenges that we, as iOS

Developers, have to deal with.

https://doi.org/10.1007/978-1-4842-6382-2_10#DOI

262

In this chapter, you will learn

 1. How to write tests as part of your development routine

 2. How to build a good mix of unit, integration, and UI tests

 3. How to compose test scenarios

 4. What is “code coverage” and how to manage it in Xcode

 How Do We Start?
So, to solve that, we need to understand the keys that we need to follow.

 Tests Are Part of the Development Task
While many developers tend to leave writing tests to the end of the

development cycle, this is a crucial mistake. First, in most cases, our

development tasks encounter difficulties, and we need to give up on

something to finish our feature by time. What is more comfortable than

giving up on writing tests? We “know” our app works fine; anyway we have

a QA session, and we do have a deadline.

We need to understand that writing tests are an integral part of the

development itself. Wrote a complicated function? We write a unit test for

her to make sure our code works fine. When we postpone it to the end of

the development session, we’re, in fact, saying “If everything works out

exactly as planned, I’ll have time to write tests.” Most chances are it’s not

going to happen.

 We Need to Decide What to Test
Don’t test everything. Not only getting everything covered is not efficient,

but it also costs you more maintenance in the long run. Understand not

only the benefit of each test but also its price.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

263

Use each test technique (unit, integrations, etc.) for its purpose. If you

have a class full of sophisticated code, cover it deeply with unit tests. But if

you have something like this

func onSaveButtonTapped() {

 interactor.saveToFile()

}

there’s no need to cover that with a unit test. Just move on.

 Fixed a Bug? Write a Test
This one follows the previous point. We can’t tell what our problems will

be and what bugs we are going to bump into (otherwise, we would handle

them in the first place).

One great technique is to write a test for every bug we find. When

we have a bug, it is a great indication for a less covered but yet important

area of our code. In this case, it is better to use the TDD (Test-Driven

Development) approach and write the test before we fix the bug.

 Test Mix
Now that we understand when to write our tests, we need to

understand what to write. Unit tests are easy to write. Should we write

more of them? Or should we go on UI Tests to try to automate the end-

user experience?

This is not an easy question. It depends on your team resources, on

your project structure, and on even your app business model. But still,

there are some methodologies we follow, and we call it Test Pyramids.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

264

 The Test Pyramids
Each type of test has different influences on our daily work. For example,

UI Tests are pricey. They may check user interaction and sometimes

end-to-end scenarios, but they are hard to build and maintain and take

a long time to run. Unit tests, on the other hand, run very fast and catch

issues closer to the code, but they don’t tell anything about your app from

the user perspective point, and they cannot test your app flows or even

how your parts work together. The strategy where to invest more time and

effort is crucial to our work. In his book, Succeeding with Agile, Mike Cohn

describes this strategy as the “Test Automation Pyramid” or, in short, the

“Test Pyramid.” The Test Pyramid is a visual way to describe a mixture

of test automation suite that balances between development efforts and

efficiency.

 The Classic Pyramid
What considered to be the best practice and the most famous pyramid is

the classic pyramid. The traditional pyramid is the one you probably see

when the question of “what is the mix of tests we need to do” appears (see

Figure 10-1).

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

265

According to the “Classic Test Pyramid,” we should write as many unit

tests as we can. We should also write integration tests, but less than unit

units, and write even less E2E (UI Tests). As mentioned earlier, the idea

is to balance between speed and effectiveness. Another reason is that we

want to catch the bugs and defects closer to the code at the low level, and

this can be done easier with unit tests.

When we’re going up in the pyramid, we get away from the code and

go closer to the user. Also, since UI and APIs change more often than logic

functions, when we’re going up in the pyramid, we find ourselves invest

more effort in maintaining those layers.

 The Ice Cream Cone Model
Considered to be an anti-pattern but acceptable in specific development

teams is the Ice Cream Cone model. In this model, the pyramid is flipped

upside down (Figure 10-2).

Figure 10-1. The classic pyramid

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

266

The Ice Cream Cone pattern is getting less and less popular. However,

there are still companies that adopt this model, mainly big companies that

have resources to maintain this monster or companies that their user flows

are simple. Ice Cream Cone model is focusing a lot on GUI and end-to-end

testing. In most cases, you can find different teams work on different types

of tests without any collaboration or any sync between the development

team and the product team.

Since UI Tests cover end-to-end cases, meaning closer to the user,

there is an assumption that the more UI Tests we create, the more effective

the test suite is.

Figure 10-2. The Ice Cream Cone pattern

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

267

But there are several problems with this anti-pattern:

 – It’s harder to build. Building a UI Test scenario requires

preparation of the UI elements and much time in creating

the flows. Also, the verification that your tests run as they

should takes a fair amount of time.

 – UI Tests take time to run. Each test can easily take 10

seconds and even more, depending on the app and the

scenario, while unit tests take less than 0.1 seconds in the

worst part. Integration test can also take a fair amount of

time when running in front of a server or a network.

When you run a test suite that contains many UI and

integration tests, you take into account that those tests

can take 30+ minutes to run, and that can be an issue in a

continuous integration environment.

 – It’s harder to fix and maintain. Detecting issues is good,

but when you catch a bug far from code, it is harder to fix.

When a unit test fails, you get the exact broken method.

Also, every change in the UI requires us to modify the UI

test as well; otherwise, the long-running suite breaks.

However, there are several techniques to avoid Ice Cream Cone

pattern:

 – Collaboration – Make sure the different teammates (the

developers, the QA, and the automation team) are syn-

chronized. Try “Pair Testing”, to encourage teammates to

be aligned on what we are testing and how. Focus on

better “kick-off” meetings to make sure the feature or the

mission is clear to everyone.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

268

 – Give Priority to Unit Tests – Unit tests run fast and easy

to maintain. As mentioned earlier, there is a reason why

we need to test our app closer to code – closer to the code

means more comfortable to fix. Unit tests allow us to

focus on a specific piece of code and cover it with all

cases, something that it’s impossible to do in GUI testing.

Also, it’s straightforward to write unit tests and run them,

so their cost is cheap compared to other tests.

 – Explicit Agreement of the Testing Mix – Try to define the

percentage of tests, which are unit tests, and the percent-

age of tests that are GUI. The testing mix is something that

needs to be clear to all workers and needs to be managed

by the team leader. Try to decide exactly what are the

critical integrations and user flows you need to cover with

tests that are not unit tests and create only them.

 The Testing Diamond
So we agree that end-to-end (UI) tests are difficult to create and maintain.

They take too much time to run, and they are sensitive to small UI changes.

But there is a significant advantage of end-to-end testing – the ability to

test your app as a system and not as an isolated piece of code each time.

Some say that the most important tests you can do are to check how

your units work together. Although the end-to-end tests fill that need, we

do need to balance between their effectiveness to the speed and ease of

unit tests. The answer here is Integration tests, which are often considered

to be the “forgotten” layer of the test pyramid. The resulting pattern is

“Testing Diamond” (Figure 10-3).

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

269

As you can see, the testing diamond is focusing mainly on integration

tests based on the belief that most of the business-related issues and

scenarios are in this layer. These integrations are between your units. This

approach is to look at “the problem” as a complex system that needed to

be tested and not just individual units. In general, the testing diamond can

give you much higher confidence in your app stability and quality, because

it’s closer to the business and product requirements than unit tests;

however, they are most costly to create.

Figure 10-3. The diamond pattern

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

270

 What Is the Right Approach?
The bottom line is no matter what strategy you choose, you need to take

into account the maintenance and running time of your tests to decide

the mix of your test suites. Also, it depends on the context and type of

app. Some apps are full of small and complicated logic, and in that case,

you should focus on unit tests to make sure the basic functionality of

your app is working, and some apps are built from several layers and

require more integration testing. Some teams have the resources to

create a solid edge-to-edge tests and believe it has value to their app so

that they choose the Ice Cream Cone. You do need to understand that

the more UI and integration tests you create, the more it costs you in

terms of time.

 How to Compose Test Scenarios?
Now that we know how to write tests, there’s always a question bumping

up – how to come up with the test scenarios?

Sure, we can try and cover every line in the code, but we already know

this is now practical or useful.

There are two approaches I want to discuss with you – the one is TDD

(Test-Driven Development) and BDD (Behavior-Driven Development).

As you can tell by their name, both approaches are driven by something.

The list of tests driving the TDD and BDD is driven by the product

requirements.

You don’t have to follow those approaches one by one. But it can give

you a direction on how to write tests along with your code.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

271

 Test-Driven Development (TDD)
All code is guilty until proven innocent.

Test-Driven Development (TDD) is a software development technique

that states a simple principle – write your tests before writing the code.

While that sounds simple, it is a big thing for the developer. TDD ensures

the developer is aware and knows all the requirements from its class

or function, and when done right, it leads to high code coverage and

minimum bugs.

Developers consider TDD to be part of something called Extreme

Programming; a methodology started to gain momentum in the late 1990s.

Kent Beck, a software developer, developed TDD as a technique, and

while it’s simple to understand, it requires different thinking on how to

approach the code and the functions.

Look at the following diagram (Figure 10-4).

Figure 10-4. TDD life cycle

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

272

TDD starts with writing a test that fails on the first run (because we

haven’t written any code yet). After running the test and seeing that it

fails, we write the code that satisfies the requirement and rerun the test

to see that it is passing. We refactor our method, verify again with testing,

and then repeat the first step by adding a new test and continue with the

implementation.

This process makes sure we are adding the minimum code that we

need for the function/class to operate correctly.

Let’s stop for a minute and talk about the refactor part – some think

that, in this case, refactor means “write better code.” But when you think

of it, it sounds weird – we just wrote this code, so how come we need to

refactor it? Well, when doing a test-code-test-code process, we are writing

the function or the code block step by step according to the tests, and this

is a different approach of writing code than writing the function in one

session.

Think of how you write method and functions today – you write the

code with the intent that you have to fulfill all the requirements. TDD

approach is a vast difference from the standard approach, and this may

lead to duplication in our code. Eliminating this duplication is done on the

refactor stage, and by that, we are making a minimal change before moving

to the next test. Refactoring is not a recommended step – it’s an essential

step.

 Behavior-Driven Development (BDD)
A real story is I have been working on a feature that involved some text

processing and decided to develop the feature in TDD. I wrote some tests

in advance and started to develop the function. Some of the tests were a

list of text inputs, and I wanted to check different cases and cover several

points in the function to see how they perform.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

273

So, with test coverage of 100% of the function, I distributed a build to

the QA, and after 10–15 minutes of QA testing, the app crashed. I said to

myself, “But it was TDD! I covered every single expression in the code!”.

The QA tester was checking a use case where the user used an emoji

character in his input. That caused an exception of out of bounds because

of encoding issues.

Based on the bug’s history and reviews combined with a pre-thinking

process, the QA team decided to check this scenario, and that was the result.

So how come the fantastic process of TDD didn’t catch it? That’s

the result of a situation when a developer works apart from the product

and QA teams. Also, TDD aims to cover code, not to answer real-world

problems. And this is fine – thinking about possible and common user

behaviors is a mission that requires teamwork and collaboration. It’s not

a technical issue but rather a procedural issue. When teams don’t work

together, those things happen quite often, and the preceding example is

considered to be a light and an easy one. There are use cases that not only

affect a specific line in the code but can force you to refactor some of your

implementations if you don’t think about those cases in advance.

The solution here is to combine BDD (Behavior-Driven Development)

to your process. BDD is a collaborative process between the product

manager, the QA team, and the developer, which aims to define different

use cases from the user perspective, to direct the development, and to

focus it on the real-time world scenarios.

The collaboration between the product, the QA, and the development

teams can cover many user scenarios and real-world tests. To do this, the

team is having a “discovery meeting” where they start writing together user

stories when each one of the teammates brings value to the table.

The Product Owner is responsible for converting user stories into

features, defining the scope of the product, answering user experience

questions, and making sure the solutions brought up are aligned with the

feature requirements.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

274

The QA tester brings his experience and knowledge about how users

behave and what are the common pitfalls. He also thinks about edge

cases and how the application can break. QA can also represent “monkey

testing” – what if a monkey is playing with the product, pressing fast on

buttons, touching different places on the screen, entering a huge input,

and more?

The developer can bring his knowledge about practical solutions and

constraints related to what he can do. He is the only one who knows how

the app works underneath and adds the technical layer that is so important

to the discussion.

The three team heads’ mission is to write tests in plain English, in

a way that everyone can understand and is answering all the product

requirements.

BDD doesn’t come instead of TDD, but it helps the TDD process

to focus on the crucial tests. You can think of BDD as part of the design

process of the feature and TDD as part of the development itself. Some say

that the BDD is TDD done right or that it’s an extension of TDD. I think

that TDD done without BDD is an inefficient process, and it’s better to

implement BDD in your workflow rather than do a pure TDD without any

context.

 How to Write Good BDD Scenarios
More than the act of testing, the act of designing tests is one of
the best bug preventers known. The thinking that must be
done to create a useful test can discover and eliminate bugs
before they are coded – indeed, test-design thinking can
discover and eliminate bugs at every stage in the creation of
software, from conception to specification, to design, coding
and the rest.

—Boris Beizer

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

275

Take a look at the following scenario:

"Tapping the register button should start the registration

process"

We have several problems writing a test for that scenario. For example,

we don’t know what fields currently have values. We also assume that the

user is on the registration screen, but we only know that because we see

there is a register button in the scenario, not because it is mentioned. We

may have a register button in different places such as popups or even other

screens, so it’s important to mention the name of the screen in that case.

The last thing is there is no title for this scenario and no number, so it is

hard to find it and put it in a database for later use.

Now look at the following scenario:

SCENARIO 01: User Registration from the registration Page GIVEN

the user is on the registration page

AND the following fields are filled:

- Email

- Full Name

- Password

WHEN the user confirm the form

THEN the app should start the registration process

In the preceding example, we describe the context – what is the current

screen for the user and on what fields there is an input. We describe

the action – “confirm the form” (it can be either the register button or

the return button on the keyboard) – and we also describe the expected

behavior.

This style of writing is called GHERKO, and it is an acceptable way of

writing user scenarios in BDD. Several basic terms are being used here:

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

276

GIVEN – This describes the current state of the scenario, for example:

• On what screen the user is? Is he logged in? What do

the input fields contain?

• What is the network condition?

• What is currently saved in the DB?

This section includes the minimum details and conditions that are

relevant to the scenario.

WHEN – This describes the action the user performs in this scenario.

Try to make this part more declarative and less technical to cover

multiple tests.

THEN – This is the expected result when the action described is

performed. Remember, it is supposed to be something that can be

measured somehow so we can automatically test it.

AND – This can be used in GIVEN, WHEN, and THEN sections to

describe multiple states, actions, or results. Sometimes, if you have many

conditions, you can use a list like in the preceding example.

Those test scenarios are an excellent opportunity for the team to

communicate with each other regarding the product and the development

process. The QA testers are in charge of writing the scenarios when the

developer is in charge of the steps. The product manager is the one

that makes sure the scenarios are in the scope, answering the product

requirements and that it does not conflict with them in any way. The

recommended method is for the developer and the tester to work in pairs.

Some tips for writing scenarios are as follows:

 – Try to write declarative scenarios to cover as many use

cases as you can. In the “WHEN” rows, try to write the

intentions and not the actual actions. For example, in the

preceding example, the user intends to confirm the form.

It doesn't matter if it's by pressing the button or pressing

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

277

the return key on the keyboard. Writing “Tapping the

submit button” is a UX action that is not related to the

scenario and can even confuse both the developer and

the QA. Also, writing UI actions (such as tapping/swiping)

can narrow down the number of tests to only button

tapping. Remember, one scenario can produce multiple

tests. Remember that sometimes tapping on a specific

button can be an important scenario as opposed to

pressing a keyboard button, so this rule is not always

valid. It depends on the scenario.

 – Use real-world data when writing your scenarios.
Those scenarios are not supposed to check edge cases

such as very long inputs, a significant amount of data, or

low connectivity. Writing real-world data improves the

communication between the developer, the QA, and the

product manager by making sure everyone understands

the situation we are talking about. For example, don't use

“1” or “test” as the first name in the form earlier. For a

start, it doesn't express what we imagine the text input

contains and also when we read the scenario a few days

later. It's not clear what we meant when we wrote it.

Many times when writing scenarios, it’s really easy to write one that

covers multiple areas or check several issues. Try to focus on one test per
scenario. When your scenario refers to different tests or areas, you can

have several problems:

 – Multiple tests in the same scenarios mean there are

dependencies between them. If the first test fails, the

others fail as well, and we want to isolate those tests and

not chain them together.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

278

 – Look at the following sczenario:

SCENARIO 02: User Registration from the registration Page GIVEN

the user is on the registration page

AND the following fields are filled:

- Email

- Full Name

- Password

WHEN the user confirm the form

THEN the app should start the registration process AND

continue to the next screen

 – Take a look at the THEN section. It seems that the team

was a little bit lazy and didn’t want to break the scenario

into two scenarios. They added two expected results – one

is to start the registration process, and the second one

continues to the next screen. In this case, we may find two

different people that work in that area of the app. The first

one is responsible for building the form, and the second

developer is responsible for the Server API or with the

navigation of the app. This situation where multiple

people are in charge of fixing or testing the same scenario

is not ideal.

 – Understand the GHERKO language, and use it right.

Here is a lousy example of a scenario written in GHERKO:

SCENARIO 03: User Adding A New Note

GIVEN the user opens the app main menu

AND the user navigates to the notes screen WHEN the user tapped

on ADD NOTE button THEN "Add New Screen" opened

WHEN the user types note details

AND her the user tap the "Save Button" THEN screen is closed

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

279

 – Clearly, the writer of the scenario doesn’t understand the

GHERKO syntax or how to write useful tests. In the

preceding example, the GIVEN section describes an

action (“The user opens the app main menu”) instead of a

given state. But the worst part is the WHEN-THEN pair.

The order of the commands is always GIVEN-WHEN-

THEN, so WHEN cannot appear after THEN. Each WHEN-

THEN pair is new behavior, and therefore, you should

slice them to two scenarios. Also, that kind of scenario

contains duplicates. Imagine we have a document with all

the scenarios. Most chances are we already have a sce-

nario that describes what happens when you tap on the

ADD NOTE button, so this scenario is already covered.

The solution is to use the GIVEN section properly. The

GIVEN section should bring the user the desirable state.

Take a look at the fixed version of the preceding scenario:

SCENARIO 03: User Adding A New Note GIVEN the user in on the

add new screen AND there is text in the input field WHEN the

user tap the "Save Button" THEN screen is closed

It’s not only better, but it’s also shorter and takes less time to read and write.

 – Make sure the scenarios are written in English and not a
technical language, so anyone in the team can under-

stand them, especially the non- tech guys. Don’t talk

about “flags,” file names, queries, and so on. Keep the

scenario simple and user wording.

 – Since this book covers automated tests, when you write

BDD scenarios, keep in mind that those scenarios need to

be easily automated, meaning don’t write scenarios that

are hard to measure, such as “THEN it needs to animated

smooth” and so on.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

280

The final step after writing down and agreeing about all the scenarios

is for the developer to create tests out of them – some can be unit tests,

some integration tests, and some UI Tests. To create tests, your code must

be testable (test-friendly); otherwise, writing those tests will be hard at best

and impossible at worst.

 Code Coverage
Code coverage is a measure used to determine what is the percentage

of your code that gets executed during testing. Since UI Tests refer to

your app as a black box, code coverage is only relevant for unit tests and

integration tests.

To enable code coverage in Xcode, you need to enable it in your

scheme configuration, while it is not enabled on default. This action is

explained in detail in the next chapter.

Code Coverage calculations are straightforward – if you have ten lines

of code and your tests execute seven of them, you have code coverage

of 70% (7/10). Many teams try to achieve high coverage based on the

assumption that “higher is better.”

 Don’t Set a Target for Code Coverage
Setting a target for code coverage is something developers tend to do –

assuming that high code coverage means high-quality code. I'm afraid

that's not right. It's not that high code coverage is terrible – it isn't, and it

can tell you many things about your code, but the last thing it tells you is

your code quality.

Let’s take a look at the following example:

func divide(x :Float, with y :Float)->Float { return x / y

}

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

281

This function is a very simple example. When we are running a test

on this function with x = 4 and y = 2, and we are expecting the result to be

2, the test passes. The code coverage for this function is 100%. Does this

mean we are fully covered and this is a bug-free code? Of course not. If

we run another test on this function, when y = 0, we’ll get an exception

(“divided by zero”).

It’s a classic example of high coverage that doesn’t mean bug-free code

or even a high-quality code. It’s just said that our tests hit many rows in our

code when they run. There are also examples of companies and teams that

were so passionate about high coverage that they created unit tests without

any assertions, meaning their tests can never fail (!).

Another example is this:

func updateFirstName(newFirstName :String) { self.firstName =

newFirstName

}

A developer might create a test that runs this function with a parameter

and then verify that the instance property named “firstName” received the

new value. But since this function is so simple, it is clear that the developer

is writing this test only to gain better code coverage.

The problem here is that when high code coverage is the target,

developers prefer quantity over quality, and they become slaves of high

numbers and statistics, instead of aiming for high quality and bug catching.

It’s easy in this case to just cover functions and move on with the code.

Also, we need to remember not all parts of our code are importantly

equal, so investing the same effort in all your project areas is not a smart

strategy. By testing the unimportant code, you might skip essential

scenarios.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

282

 So Why Do We Need Code Coverage?
The fact that high code coverage doesn’t necessarily mean “no bugs”

doesn’t mean it’s useless. Code coverage is an excellent metric to detect
untested code, and it’s an excellent metric to identify areas of your app

that are not covered or may contain bugs you are not aware of. It doesn’t

mean you need to cover them, but it gives you the full picture of your app.

Another issue that code coverage can help you is detecting dead code.

If you see a private method that is not covered by tests, this could be a sign

of unreachable code or, in other words, a “dead code.” You can try checking

the call hierarchy to track what functions call it and decide if you want to

cover it or delete it if it’s not in use.

 And Then There Is Test Coverage. Wait. What?
When we say “Code Coverage,” we mean “what is the percentage of our

code that is covered by unit tests.” Or, as mentioned before, if we have 50

lines of code and our tests execute 20 of them, we can tell that our code

coverage is 40% (20 out of 50).

But there is another term – Test Coverage. A lot of teams and

developers are confused by those two terms. While they may sound

similar, they are not the same.

While code coverage measures the percentage of code covered by

tests, Test Coverage measures the percentage of requirements covered
by tests. Since test coverage doesn’t deal with code but with requirements,

it’s less relevant for developers but more relevant to the QA testers. The

reason I bring it here is that it can give you a sense of how to cover different

aspects of your app and not just chasing code coverage metric or testing

methods randomly.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

283

So when we say “requirements,” it is best practice to divide them

into different groups that represent how our app is covered and tested in

various aspects:

Product – What are the test coverage areas of your product? If your

product contains ten features and tests cover only eight of them, we can

say that in this case, you have a test coverage of 80%.

Risk – Your app requirements is a long list, that some of them are

critical or blockers, and some of them are minor. Out of those that you

define as critical and blockers, how many are covered? This is a crucial

factor in understanding if your app is ready for production or not.

Parameter Value Coverage – Remember the example with the

“divided by zero”? In main functions, you should test a vast scope of

parameters. Of course, we have the usual suspects such as nil, 0, and “”, but

sometimes it’s not enough. Try to focus on edge cases of user input – long

texts, big arrays, and more.

 Summary
We’ve learned how to incorporate tests in our daily work; we saw different

mixes of test suites that we call “test pyramid,” what are TDD and BDD, and

what is code coverage and how it is covered.

As I said earlier, writing tests as part of your daily work is a professional

challenge that is often related to culture and habits.

Another issue that is related to culture is running those tests

automatically daily. This is a part of something called “continuous

integration” and will be discussed in the next chapter.

Chapter 10 Implement tests In Our DaIly WOrk rOutIne

285© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2_11

CHAPTER 11

Using Command-Line
Tools

The most important practice for continuous integration to
work properly is frequent check-ins to trunk or mainline. You
should be checking in your code at least a couple of times a day.

—David Farley

 Introduction
While it’s very convenient to use the Xcode UI interface to configure and

run tests, it’s impossible to do that when you want to run them on a

remote server.

Fortunately, every new Xcode installed comes with a tool named

“Xcode Command-Line Tools” to help you run your tests without any UI

interface.

This chapter concludes the final piece in the puzzle by giving you

the tools to integrate your great test suites into a continuous integration

environment.

In this chapter, you will learn

 1. What CI/CD means and how tests fit it

 2. What are the command-line tools provided by Xcode

https://doi.org/10.1007/978-1-4842-6382-2_11#DOI

286

 3. Installing and setting up the xcodebuild application

 4. How to run tests from the command line

 5. How to run test plans from the command line

 6. Exciting and useful xcodebuild features

 What Is CI/CD Anyway?
“CI” and “CD” often come together – “CI/CD.” However, these are two

different processes:

CI (Continuous Integration) – In a continuous integration process,

we take the code from all the developers/third party/server changes and

merge it together to a new working build. The goal of this process is to

make sure this build is stable and nothing broke along the way.

CD (Continuous Deployment) – In “Continuous Deployment,” we

upload the build to an online service and make sure we have an available

app to download. In fact, CD is an extension of the CI process and cannot

stand by itself.

 How Tests Fit In?
Based on the preceding data, you can understand that tests are a central

part of this process. In fact, a continuous integration without any tests

involved is like dressing up, taking a babysitter, and going out to a

restaurant for a glass of water – it just doesn’t worth it.

There are plenty of tools that can help you integrate your tests

automatically in a CI environment, but they all rely on Xcode command-

line tools to run them.

Chapter 11 Using Command-Line tooLs

287

 Command-Line Tools
Command-Line tools are a great way to script your testing and incorporate

it with CI/CD environments. They let you build, archive, and test your

projects from the terminal command line and customize your run with

different parameters and arguments.

Command-Line Tools are not just for CI/CD – they can also help

you automate your tasks during development. For example, instead of

repeating the same actions of testing different test plans, committing, and

then archiving, you can implement all of that in one script file.

 Meet xcodebuild
“xcodebuild” is the primary tool of the command-line tool package, and

it’s used to build, archive, and analyze test and any action you can do with

the scheme.

The real power of xcodebuild is the flexibility to run various actions

and configurations and, as a result of that, it is the primary tool for testing.

 Install and Set Up xcodebuild
Although you can download Command-Line Tools separately, they come

with every new Xcode.

But if you still want to download them, you have two options:

 – Download from the Developer website.

 – Install from the command line using xcode-select.

“xcode-select” is a command line that comes bundled with macOS. If

you want to use it to install Command-Line Tools, open the Terminal and type

$ xcode-select –install

Chapter 11 Using Command-Line tooLs

288

And press Enter.

Many developers have multiple versions of Xcode installed on their

machine, and one of the first steps using xcodebuild is to make sure it

works with the correct Xcode version.

To find out what is the “active” Xcode version, we can use xcode-select

again for that:

$ xcode-select -p

/Applications/Xcode.app/Contents/Developer

To change the active Xcode version, locate the developer path and use

the -switch command:

$ xcode-select -switch /Applications/Xcode12.app/Contents/

Developer

To uninstall Command-Line Tools, just delete /Library/Developer/

CommandLineTools with this command:

$ sudo rm -r /Library/Developer/CommandLineTools

 Run Tests with xcodebuild
Running tests with xcodebuild is quite simple and requires very few

parameters for the basic run. First, you need to make sure your current

directory in the Terminal is the project directory.

A basic xcodebuild command looks something like this:

$ xcodebuild \

 -workspace MyWeatherApp.xcworkspace \

 -scheme MyWeatherApp \

 -destination 'platform=iOS Simulator,name=iPhone 11' \

 test

Chapter 11 Using Command-Line tooLs

289

Let’s go over the command parameters:

workspace – If you are using workspaces instead of

projects (CocoaPods is a good example), pass your

workspace name here.

scheme – Your selected scheme name.

test – Run the “test” action of the scheme.

destination – Specify the platform that is used for

the test. A destination can be either a simulator or a

physical device. Let’s go deeper into this.

 The Destination Argument

The syntax of the destination argument is based on key–value pairs.

The first key is the platform, which describes whether it’s a device or a

simulator and what platform it is.

This is the list of platforms you can use:

 – OS X, your Mac

 – iOS, a connected iOS device

 – iOS Simulator

 – watchOS

 – watchOS Simulator

 – tvOS

 – tvOS Simulator

The second key–value pair is related to the type of the device.

If it’s a physical device, you can use either “name” to target the actual

device name or “id” to target the device UUID.

Chapter 11 Using Command-Line tooLs

290

If it’s a simulator, the “name” key describes the name of the simulator

(“iPhone 11”), and another key–value pair is “os” to specify the OS version

(“11.0”).

Let’s see some examples:

To run your test on iPhone 11 Simulator, running iOS 12.0:

-destination "platform=iOS Simulator, name=iPhone 11, OS=12.0"

To run your test on a physical device:

-destination "platform=iOS, name=Avi's iPhone"

To list all of your available destinations, type in your terminal:

$ instruments -s devices

 Run Test Plans from Command Line

You can use xcodebuild to run test plans right from the command line.

To see the list of available test plans for a scheme, use showTestPlans

argument:

$ xcodebuild -scheme 'My Weather App' -showTestPlans

Test plans associated with the scheme "My Weather App":

 Localization Test Plan

 Memory

Running tests with a specific scheme will run the default test plan. To

run a particular test plan, use testPlan argument:

$ xcodebuild \

 -workspace MyWeatherApp.xcworkspace \

 -scheme MyWeatherApp \

 -destination 'platform=iOS Simulator,name=iPhone 11' \

 -testPlan 'Memory' test

Chapter 11 Using Command-Line tooLs

291

 More xcodebuild Important Arguments
“xcodebuild” has more tricks up in its sleeves.

To list all the schemes, build configurations, and targets, use list
argument:

$ xcodebuild -list

Information about project "My Weather App":

 Targets:

 My Weather App

 My Weather AppTests

 My Weather AppUITests

 Build Configurations:

 Debug

 Release

 If no build configuration is specified and -scheme is not

passed then "Release" is used.

 Schemes:

 My Weather App

If you already build your app for testing and want to rerun tests without

building it again, you can use run-without-building to save time:

$ xcodebuild \

 -workspace MyWeatherApp.xcworkspace \

 -scheme MyWeatherApp \

 -destination 'platform=iOS Simulator,name=iPhone 11' \

 run-without-building Test

Chapter 11 Using Command-Line tooLs

292

On the other hand, if all you want is to build but not test, you can use

build-for-testing argument:

$ xcodebuild \

 -workspace MyWeatherApp.xcworkspace \

 -scheme MyWeatherApp \

 -destination 'platform=iOS Simulator,name=iPhone 11' \

 build-for-testing Test

If you want to make sure Xcode cleans the project before running your

tests, you can add clean to the command:

$ xcodebuild \

 clean \

 -workspace MyWeatherApp.xcworkspace \

 -scheme MyWeatherApp \

 -destination 'platform=iOS Simulator,name=iPhone 11' \

 test

To see all the available SDKs you can use, try the showsdks argument:

$ xcodebuild -showsdks

iOS SDKs:

 iOS 13.2 -sdk iphoneos13.2

iOS Simulator SDKs:

 Simulator - iOS 13.2 -sdk iphonesimulator13.2

macOS SDKs:

 DriverKit 19.0 -sdk driverkit.macosx19.0

 macOS 10.15 -sdk macosx10.15

tvOS SDKs:

 tvOS 13.2 -sdk appletvos13.2

Chapter 11 Using Command-Line tooLs

293

tvOS Simulator SDKs:

 Simulator - tvOS 13.2 -sdk appletvsimulator13.2

watchOS SDKs:

 watchOS 6.1 -sdk watchos6.1

watchOS Simulator SDKs:

 Simulator - watchOS 6.1 -sdk watchsimulator6.1

 Summary
We’ve learned that it’s not enough to write great tests; it’s also essential

to make sure to run them continuously. As an iOS developer, we need

to focus on writing great software and solve complex problems. Let the

automation server take care of running the tests for us.

Chapter 11 Using Command-Line tooLs

295© Avi Tsadok 2020
A. Tsadok, Pro iOS Testing, https://doi.org/10.1007/978-1-4842-6382-2

Index

A
Arguments tab

environment variables, 29, 30
launch arguments

Arguments Passed on
Launch, 27

code, 28, 29
CommandLine, 28, 29
list of arguments, 27, 28
new argument, 27
ProcessInfo, 28, 29
user registration, 27

scheme editor, 26
Arrange-Act-Assert (AAA), 120
Attachment, types, 215, 216

B
Baseline

definition, 224
deviation, 227
info.plist, 237
packet content, 237
settings window, 225
STDDEV, 226
Xcode, 236, 238

Behavior-Driven Development
(BDD), 270

declarative scenarios, 276
developer, 274
GHERKO language, 278
GIVEN section, 279, 280
multiple tests, 277
product owner, 273
QA, 273
real-world data, 277
registration screen, 275
TDD process, 274
technical issue, 273
THEN section, 278
use cases, 273
user scenarios, 275, 276

Black Box testing, 131, 132, 134
Bottom-Up Approach

(BUA), 123, 128
Bugs, 263

C
CalendarService method, 127
Classic pyramid, 264, 265
Clean Code, 144

DRY, 146
KISS, 145, 146
pleasant to read, 147
pleasant to write, 148
YAGNI, 147

https://doi.org/10.1007/978-1-4842-6382-2#DOI

296

Client-Server integration
tests, 116, 139

Client-Server testing, 129, 130
black box testing, 132–134
black box vs. white box, 131
gold responses, 138
ideal state, 135
network recorder, 135–137
white box testing, 134, 135

Code coverage
detecting dead code, 282
identify areas, 282
target, 280, 281
UI tests, 280

Command-line tools
CI/CD environments, 287
installation, 287
-switch command, 288
xcodebuild, 287

Comparing
arrays, 98
Comparable protocol, 96, 97
Equatable protocol, 95
problem, 94, 95
testing, 99
UIImages, 97

Continuous Deployment
(CD), 2, 286

Continuous Integration
(CI), 19, 283, 286

Coupling, 89–93

D, E
Data sync, 130, 134
Decorator, 165, 166
Dependency injection

initializer-based, 155
logic unit, 154
parameter-based, 157, 158
property-based, 156, 157

Dependency Inversion Principle, 162
Design pattern

comparison, 176
decorator, 165, 166
facade, 164, 165
factory, 166, 167
singleton, 163, 164

Development task, 262
Diagnostics tab, 32, 33

Address Sanitizer, 33
Guard Malloc, 35
Main Thread Checker, 34
Malloc Guard Edges, 34
Malloc Scribble, 34
Thread Sanitizer, 34
Zombie Objects, 35

doLogin() method, 83, 84
dump() swift function, 245

F
Facade, 142, 164, 165
Factory, 166, 167

Index

297

#file keyword, 242
findCuteCats(), 71
fulfill() method, 73

G, H
Given-When-Then (GWT), 63
generateLayout() method, 100, 101
Groups, 13

I, J
Ice cream cone model, 265–267

collaboration, 267
explicit agreement, 268
unit tests, 268

ImageProcessor, 223
Incremental integration test

BUA, 123
edges, 129
top-down, 128

Info tab
application data

download container, 23, 24
format, 24
new group, 25
package, 24, 25
XCAppData, 23

build configuration, 17
list of tests, 17
location, 21, 22
options, 17, 18
parallel testing, 18, 19

Randomize Execution
Order, 19, 20

Initializer-based Dependency
Injection, 155

init() method, 81
Integration tests, 6, 7

iOS, 115
layer, 114
scope, 116
types, 117
UI layer, 115
vs. unit test, 115
writing

AAA, 120
complex feature, 122
fault point, 121
incremental, 122
layers, 119
running in parallel, 121
To-Do App, 118

Interface-Segregation
Principle, 162

iOSSnapshotTestCase
CocoaPods installation, 250
environment variables, 250, 251
FBSnapshotTestCase, 251, 252
setup() method, 253, 254

isInverted property, 74
isPrimeFunction() function, 3

K
Keep It Simple, Stupid (KISS), 145

Index

298

L
Liskov Substitution Principle

(LSP), 159–161
loadViewIfNeeded() method, 120

M
Measuring function

CPU cycles, 231
CPU time, 230
monotonic time, 229, 230
XCTClockMetric, 227
XCTCPUMetric, 227
XCTMemoryMetric, 227
XCTOSSignpostMetric, 228
XCTStorageMetric, 228, 231

Model layer, 169, 170
Model-View-Controller

(MVC), 168, 169
The controller-C, 170, 171
The model-M, 169
MVVM, 172, 173
problem, 171
The view-V, 170
VIPER, 174, 175

“My Weather” App, 11, 12, 27

N
Narrow integration tests, 116,

117, 130
Network Layer, 114, 115, 169, 170

O
Object-oriented programming

(OOP), 149, 153
Open/Closed Principle, 159
Options tab, 30, 31

application language, 31
application region, 31
code coverage, 32
UI testing, 32

P, Q, R
Page object model

A/B testing, 200
doSignIn() method, 203, 204
init() method, 203
methods/properties, 201, 202

Parameter-Based injection,
157, 158

Parameterized unit tests
abstract method, 101, 102
function signature, 99, 100
invoke tests

create/add new test cases,
Fly, 108, 110, 111

defaultTestSuite(), 107, 108
XCTestRun environment,

106, 107
loading test cases, file, 103, 105

Performance tests
a-sync function, 235
average, 222

Index

299

baseline (see Baseline)
measuring function, 223
software, 221
wait() function, 236
XCTestExpectation tool, 235

Property-based injection, 156, 157
Protocol-oriented

programming, 153
Pure functions, 149

placeType, 152
protocols, 153
refactor the code, 151
updateTitle(:), 151
vs. standard function, 150

S
Schemes, 10
Screenshots

creation, 210
location, 214
scheme configuration, 212, 213
test report, 211, 212
XCResult, 214, 215

setup() method, 58, 63, 121, 253
setUpWithError() function, 54,

58–60
Single-Responsibility

Principle, 159
Singletons, 152, 164
Snapshot testing

assertion function, 244, 245,
247, 259

diagram, 240

documentation, 247
fileNameOptions, 257
function signature, 241
manual test, 248
parameters, 259
reference, 241
snapshotVerifyViewOrLayer

function, 258
state persistency, 239
suffixes, 258
swift keywords, 242–244
unit test, 248

Software testing
better code quality, 5, 6
check ourselves, 5
definition, 1, 2
documentation, 6
iOS, 2–4
refactoring, 4
regressions, 5

SOLID principles, 158–162

T
teardown() method, 60, 61,

126, 127
tearDownWithError()

method, 54, 60
Testable code, 142
Test bundles, 38, 39
Test classes, disable

renaming, 37, 38
scheme editor, 35, 36
test navigator, 36, 37

Index

300

Test coverage
parameter value coverage, 283
product, 283
QA testers, 282
risk, 283

Test doubles
mocks

complete vs. partial, 88
dummy, 81
fake, 82
mock, 86–88
Spy, 85, 86
Stub, 82–84

Test-Driven Development
(TDD), 263, 270

life cycle, 271
refactor part, 272
software development

technique, 271
testImageProcessing()

method, 72
Testing diamond, 268, 269
Test plans

configuration, 42–46
convert, 40–42
definition, 39
options, 41
running, 46, 47
scheme editor, 40

Test report
activities, 206, 208, 209
Xcode, 205

Typealias, 146, 147

U
UI snapshot testing

FBSnapshotTestCase, 249
iOSSnapshotTestCase, 249
text changes, 248
verification failure, 254–256

UI Testing framework
features, 216
multiple app, 217, 218
Siri integration, 217
XCUICoordinate, 218, 219

Unit tests, 6, 8, 14, 50, 263
Unit tests, writing

anatomy, 63, 64
assertions, 64–70
asynchronous operations

code, 70
expect array expectation,

ordered, 75
expect/wait/fulfill/assert, 71
one expectation, fulfill

multiple times, 74
one expectation,

not fulfilled, 74
XCTestExpectation

pattern, 72, 73
XCTestExpectation

subclass, 75–77
User interface(UI) tests

accessibilityLabel, 180
addUIInterruptionMonitor()

function, 199

Index

301

consistent, 198
element tree, 181
flows, 177
fruits app, 182
identity inspector, 180
issues, 197
launchArguments property, 198
options window, 179
Xcode, 179
XCUIApplication, 183

V
verify() method, 88
viewDidAppear method, 143

W
waitForExpectations() method, 73
White box testing, 131, 135, 138

X
Xcode

record button, 196
text field, 196

Xcodebuild
build-for-testing

arguments, 292
destination arguments, 289

list arguments, 291
running tests, 288
showsdks arguments, 292, 293
testplan arguments, 290

Xcode project
arguments tab (see

Arguments tab)
basic terms, 10
definition, 10
diagnostics tab (see

Diagnostics tab)
Info tab (see Info tab)
“My Weather” app, 12
new, 12
options tab (see Options tab)
schemes, 15–17
template box, 11
test bundles, 13, 38, 39
test classes (see Test classes,

disable)
test plans (see Test plans)
test targets

adding, 14
options, 15

unit/UI tests, 12
XCParse, 215
XCTAttachment

screenshots, 210
test report, 210

XCTest, 51

Index

302

XCTestCase
Coc0apods, 57
enable testability, 55
first test class, 53, 54
lifecycle

instance, 62
setup(), 58
setUpWithError()

Throw, 58, 59
tearDown(), 61
teardown block, 59, 60
tearDownWithError(), 60
test methods, 59

LoginHandler, 51
subclass, 52, 53
@testable, 56

XCTMeasureOptions
invocationOptions, 232, 233

iterationCount, 232
measure app launch, 234
performance test metrics, 231

XCUIElement
actions, 190–192
assertions, 194
buttons property, 184
exists, 192, 193
identifier/index, 188, 189
modifications, 187
querying element, 184, 186
traits, 185
XCTest, 187

Y, Z
You Aren’t Gonna Need It

(YAGNI), 147

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction for Testing
	Introduction
	How to Read This Book
	What Is Software Testing?
	Software Testing in iOS
	Why Is Testing So Important?
	What Can We Test?
	Summary

	Chapter 2: Setting Up Our Infrastructure
	Introduction
	Basic Terms
	“My Weather” App
	Add Test Targets to an Existing Project

	Link Everything Together
	The Info Tab
	Parallel Testing
	Randomize Execution Order
	Location and Application Data
	Location
	Application Data

	The Arguments Tab
	Launch Arguments
	Environment Variables

	The Options Tab
	The Diagnostics Tab

	Exclude Test Classes
	Disable Tests from the Scheme Editor
	Disable Tests from the Test Navigator
	Disable Tests by Renaming Them

	How Many Test Bundles to Create?
	Test Plans
	Test Plans to Make Your Life Easier
	Create Your First Test Plan
	Test Plan Configurations
	Running Your Test Plans
	Running Only One Configuration

	Summary

	Chapter 3: Writing Tests – The Basics
	Introduction
	What Exactly Are Unit Tests?
	XCTest and XCTestCase
	XCTestCase
	Adding a New XCTestCase Subclass

	Our First Test Class
	Enable Testability
	@testable
	CocoaPods and Testing Targets
	XCTestCase Life Cycle
	Class Method setUp()
	Method setUpWithError () throw
	Test Methods
	Teardown Block
	Method tearDownWithError() throw
	Class Method tearDown()
	How It All Fits Together
	XCTest Creates an XCTestCase Instance for Every Test Method

	Writing Unit Tests
	Unit Test Anatomy
	Assertions
	Creating a Custom Assertion
	I’m In. How to Write My Own Assertion?

	Write Asynchronous Operations
	Expect, Wait, Fulfill, and Assert
	XCTestExpectation Pattern
	Fulfill Multiple Times for One Expectation
	Assert When the Expectation Is Not Fulfilled
	Expect Array of Expectations, Ordered
	XCTestExpectation Subclasses

	Summary

	Chapter 4: Writing Tests – Advanced Techniques
	Introduction
	Test Doubles (Fake, Fake, Fake)
	Mocks. Mocks Everywhere (?)
	Dummy
	Fake
	Stub
	Spy
	Mock
	Complete vs. Partial Mocking

	Avoid Test Doubles If Possible
	Coupling
	Types of Coupling
	How to Decouple Existing Code?
	Coupling Severity Levels
	Make Changes to Your Code

	There Are More Ways to Reduce Coupling

	Comparing
	The Problem with Comparing
	Equatable Protocol
	Comparable Protocol
	Compare UIImages
	Compare Arrays
	Comparison Is Critical in Testing

	Parameterized Unit Tests
	Create Abstract Method for Testing
	Loading Test Cases from a File
	Invoke Tests Dynamically
	The XCTestRun Environment
	First Step – Override defaultTestSuite() Variable
	Creating XCTestSuite Object
	Create and Add New Test Cases On the Fly

	Summary

	Chapter 5: Integration Tests
	Introduction
	The Idea Behind Integration Tests
	What Exactly Are Integration Tests
	Integration Tests vs. Unit Tests
	Define the Scope
	Filling the Gap
	It’s like Unit Tests vs. Integration Tests Ratio

	Writing Integration Tests
	Our First Integration Test
	Running in Parallel
	Fault Point in Integration Tests
	A Bigger System to Test
	Incremental Integration Test
	Bottom-Up
	Top-Down
	Dealing with the Edges

	Client-Server Tests
	Black Box Client-Server Testing
	White Box Client-Server Testing
	Bring Your App to an Ideal State
	Record the Current State
	Comparing Responses with the Gold Responses File

	Summary

	Chapter 6: Write Testable Code
	Introduction
	What Is a Testable Code?
	Clean Code
	KISS (Keep It Simple, Stupid)
	DRY
	YAGNI (You Aren’t Gonna Need It)
	Code That Is Pleasant to Read Is Also Pleasant to Test

	Pure Functions
	Refactor Our Functions to Be Pure
	Protocol-Oriented Programming

	Dependency Injection
	Ways to Implement Dependency Injection
	The Classic One – Initializer-Based DI
	The Simple Way – Property-Based DI
	The Compromised Way – Parameter-Based DI

	SOLID Principles
	S – Single-Responsibility Principle
	O – Open/Closed Principle
	L – Liskov Substitution Principle
	I – Interface-Segregation Principle
	D – Dependency Inversion Principle

	Design Patterns and Architectures
	Singleton
	Facade
	Decorator
	Factory

	MVC
	The Model – M
	The View – V
	The Controller – C
	The Problem with MVC

	MVP/MVVM
	VIPER
	Comparison Between Different Design Patterns
	Summary

	Chapter 7: User Interface Tests
	Introduction
	Adding UI Tests
	How Do UI Tests Work?
	Accessibility in UIKit – accessibilityLabel
	Element Tree

	Write Our First UI Test
	XCUIApplication
	Elements
	Querying Element(s)
	How Queries Work?
	Be Precise with Queries
	Resolving Element Data
	Elements by Identifier or Index
	Examples for Element’s Queries

	Actions on Elements
	Waiting for Elements
	Assertions

	Wrap It All Together
	Record Your Actions

	Dealing with Problems
	Keeping Your Tests Consistent
	Handling System Alerts

	Page Object Model
	The Problem
	What Is a Page Object Model?

	Test Reports
	Activities
	Attachments
	Screenshots
	Screenshots in Test Report
	Examine Your Attachments
	Location of Your Screenshots
	About XCResult

	More Attachment Types

	More Great UI Test Features
	Testing Your Siri Integration
	Multiple App Testing
	Dragging Using XCUICoordinate

	Summary

	Chapter 8: Cover Another Aspect of Your App – Performance Testing
	Introduction
	The Basic Idea of Performance Test
	The Basic Measuring Function
	Define the Baseline
	What the “Baseline” Means for Our Test?
	Why Is the Deviation Important?

	measure(metrics:) Function
	Analyzing the Metrics
	Clock Monotonic Time
	CPU Cycles, CPU Time, and CPU Instructions
	Checking Your Writing Activity with XCTStorageMetric

	More Configuration with XCTMeasureOptions
	iterationCount
	invocationOptions
	Measuring App Launch

	Asynchronous Performance Tests
	The Baseline Under the Hood
	Where Xcode Saves the Baseline?
	How Xcode Pulls the Baseline from These Files

	Summary

	Chapter 9: Snapshot Testing
	Introduction
	What Is Snapshot Testing?
	Snapshot Testing from Scratch
	Using Swift Keywords
	Creating Our Assertion Function

	Snapshot Testing Drawbacks
	Documentation Is Missing
	Too Easy to Fix
	Why My Tests Failed

	UI Snapshot Testing with iOSSnapshotTestCase
	Why Do We Need That?
	iOSSnapshotTestCase
	How Does It Work?
	Set Up and Run iOSSnapshotTestCase
	Install Using CocoaPods
	Defining Environment Variables
	Subclass FBSnapshotTestCase

	Verification Failure
	Snapshot Testing Configuration
	Include Device Information
	Control the Tolerance for Changes and More

	Summary

	Chapter 10: Implement Tests in Our Daily Work Routine
	Introduction
	How Do We Start?
	Tests Are Part of the Development Task
	We Need to Decide What to Test
	Fixed a Bug? Write a Test

	Test Mix
	The Test Pyramids
	The Classic Pyramid
	The Ice Cream Cone Model
	The Testing Diamond
	What Is the Right Approach?

	How to Compose Test Scenarios?
	Test-Driven Development (TDD)
	Behavior-Driven Development (BDD)
	How to Write Good BDD Scenarios

	Code Coverage
	Don’t Set a Target for Code Coverage
	So Why Do We Need Code Coverage?
	And Then There Is Test Coverage. Wait. What?

	Summary

	Chapter 11: Using Command-Line Tools
	Introduction
	What Is CI/CD Anyway?
	How Tests Fit In?

	Command-Line Tools
	Meet xcodebuild
	Install and Set Up xcodebuild
	Run Tests with xcodebuild
	The Destination Argument
	Run Test Plans from Command Line

	More xcodebuild Important Arguments

	Summary

	Index

