
Download from Wow! eBook <www.wowebook.com>

What People Are Saying About

Test-Driven Development for Embedded C

In this much-needed book, Agile methods expert James Grenning con-

cisely demonstrates why and how to apply Test-Driven Development

in embedded software development. Coming from a purely embedded

background, I was myself skeptical about TDD initially. But with this

book by my side, I’m ready to plunge right in and certain I can apply

TDD even to device drivers and other challenging low-level code.

Michael Barr

Author of Programming Embedded Systems: With C and GNU

Development Tools and Embedded C Coding Standard,

Netrino, Inc.

“Test-Driven Development cannot work for us! We work in C, and

Test-Driven Development requires an object-oriented language such

as Java!” I frequently hear statements such as these when coaching

teams in TDD in C. I’ve always pointed them to the work of James

Grenning, such as the article “Embedded TDD Cycle.” James is a true

pioneer in applying Agile development techniques to embedded prod-

uct development. I was really excited when he told me he was going

to write this book because I felt it would definitively help the embed-

ded Agile community forward. It took James more than two years, but

the result, this book, was worth waiting for. This is a good and useful

book that every embedded developer should read.

Bas Vodde

Author of Scaling Lean and Agile Development and Practices

for Scaling Lean and Agile Development, Odd-e, Singapore

I have been preaching and teaching TDD in C for years, and finally

there is a book I can recommend to fellow C programmers who want

to learn more about modern programming techniques.

Olve Maudal

C programmer, Cisco Systems

Download from Wow! eBook <www.wowebook.com>

This book is a practical guide that sheds light on how to apply Agile

development practices in the world of embedded software. You’ll soon

be writing tests that help you pinpoint problems early and avoid hours

tearing your hair out trying to figure out what’s going on. From my

experience writing code for robotics, telemetry, and telecommunica-

tions products, I can heartily recommend reading this book; it’s a

great way to learn how you can apply Test-Driven Development for

embedded C.

Rachel Davies

Author of Agile Coaching, Agile Experience Limited

This is a long-awaited book. It guides the reader through the unique

challenges of applying Test-Driven Development to developing embed-

ded software in C. It explains the principles and techniques of TDD

using code examples, creating a clear path from start to finish. I rec-

ommend this book to anyone involved in embedded software develop-

ment who is interested in doing it better.

Timo Punkka

Software Development Manager, Schneider Electric

This book is targeting the embedded-programmer-on-the-street and

hits its target. It is neither spoon-fed baby talk nor useless theory-

spin. In clear and simple prose, James shows working geeks each of

the TDD concepts and their C implementations. Any C programmer

can benefit from working through this book.

Michael “GeePaw” Hill

Senior TDD coach, Anarchy Creek Software

Test-Driven Development for Embedded C is the first book I would rec-

ommend to both C and C++ developers wanting to learn TDD, whether

or not their target is an embedded platform. It’s just that good.

C. Keith Ray

Agile coach/trainer, Industrial Logic, Inc.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Test-Driven Development
for Embedded C

James W. Grenning

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jacquelyn Carter

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2011 James W. Grenning.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-62-X

ISBN-13: 978-1-934356-62-3

Printed on acid-free paper.

P1.0 printing, April, 2011

Version: 2011-4-6

Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com

In dedication to my dad,

for giving me a good compass,

and my loving wife Marilee

for helping me not lose it.

Download from Wow! eBook <www.wowebook.com>

Contents
Foreword by Jack Ganssle 13

Foreword by Robert C. Martin 15

Acknowledgments 18

Preface 20

Who Is This Book For? . 21

How to Read This Book . 21

The Code in This Book . 22

Online Resources . 23

1 Test-Driven Development 24

1.1 Why Do We Need TDD? 25

1.2 What Is Test-Driven Development? 27

1.3 Physics of TDD . 28

1.4 The TDD Microcycle 29

1.5 TDD Benefits . 32

1.6 Benefits for Embedded 33

I Getting Started 35

2 Test-Driving Tools and Conventions 36

2.1 What Is a Unit Test Harness? 36

2.2 Unity: A C-Only Test Harness 38

2.3 CppUTest: A C++ Unit Test Harness 44

2.4 Unit Tests Can Crash 48

2.5 The Four-Phase Test Pattern 49

2.6 Where Are We? . 49

Download from Wow! eBook <www.wowebook.com>

CONTENTS 9

3 Starting a C Module 51

3.1 Elements of a Testable C Module 51

3.2 What Does an LED Driver Do? 53

3.3 Write a Test List . 54

3.4 Writing the First Test 55

3.5 Test-Drive the Interface Before the Internals 61

3.6 Incremental Progress 68

3.7 Test-Driven Developer State Machine 70

3.8 Tests Are FIRST . 72

3.9 Where Are We? . 72

4 Testing Your Way to Done 75

4.1 Grow the Solution from Simple Beginnings 75

4.2 Keep the Code Clean—Refactor as You Go 91

4.3 Repeat Until Done . 94

4.4 Take a Step Back Before Claiming Done 101

4.5 Where Are We? . 101

5 Embedded TDD Strategy 104

5.1 The Target Hardware Bottleneck 104

5.2 Benefits of Dual-Targeting 106

5.3 Risks of Dual-Target Testing 107

5.4 The Embedded TDD Cycle 108

5.5 Dual-Target Incompatibilities 111

5.6 Testing with Hardware 116

5.7 Slow Down to Go Fast 120

5.8 Where Are We? . 120

6 Yeah, but... 122

6.1 We Don’t Have Time 122

6.2 Why Not Write Tests After the Code? 126

6.3 We’ll Have to Maintain the Tests 127

6.4 Unit Tests Don’t Find All the Bugs 127

6.5 We Have a Long Build Time 128

6.6 We Have Existing Code 128

6.7 We Have Constrained Memory 129

6.8 We Have to Interact with Hardware 130

6.9 Why a C++ Test Harness for Testing C? 131

6.10 Where Are We? . 132

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=9

CONTENTS 10

II Testing Modules with Collaborators 133

7 Introducing Test Doubles 134

7.1 Collaborators . 134

7.2 Breaking Dependencies 135

7.3 When to Use a Test Double 139

7.4 Faking It in C, What’s Next 140

7.5 Where Are We? . 144

8 Spying on the Production Code 145

8.1 Light Scheduler Test List 147

8.2 Dependencies on Hardware and OS 147

8.3 Link-Time Substitution 148

8.4 Spying on the Code Under Test 149

8.5 Controlling the Clock 154

8.6 Make It Work for None, Then One 155

8.7 Make It Work for Many 170

8.8 Where Are We? . 175

9 Runtime-Bound Test Doubles 177

9.1 Testing Randomness 177

9.2 Faking with a Function Pointer 179

9.3 Surgically Inserted Spy 182

9.4 Verifying Output with a Spy 186

9.5 Where Are We? . 191

10 The Mock Object 193

10.1 Flash Driver . 194

10.2 MockIO . 202

10.3 Test-Driving the Driver 205

10.4 Simulating a Device Timeout 208

10.5 Is It Worth It? . 211

10.6 Mocking with CppUMock 212

10.7 Generating Mocks . 214

10.8 Where Are We? . 216

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=10

CONTENTS 11

III Design and Continuous Improvement 218

11 SOLID, Flexible, and Testable Designs 219

11.1 SOLID Design Principles 220

11.2 SOLID C Design Models 223

11.3 Evolving Requirements and a Problem Design . . . 226

11.4 Improving the Design with Dynamic Interface . . . 233

11.5 More Flexibility with Per-Type Dynamic Interface . 242

11.6 How Much Design Is Enough? 246

11.7 Where Are We? . 247

12 Refactoring 249

12.1 Two Values of Software 249

12.2 Three Critical Skills 250

12.3 Code Smells and How to Improve Them 252

12.4 Transforming the Code 263

12.5 But What About Performance and Size? 281

12.6 Where Are We? . 284

13 Adding Tests to Legacy Code 285

13.1 Legacy Code Change Policy 286

13.2 Boy Scout Principle 286

13.3 Legacy Change Algorithm 287

13.4 Test Points . 289

13.5 Two-Stage struct Initialization 292

13.6 Crash to Pass . 296

13.7 Characterization Tests 301

13.8 Learning Tests for Third-Party Code 305

13.9 Test-Driven Bug Fixes 307

13.10 Add Strategic Tests 308

13.11 Where Are We? . 308

14 Test Patterns and Antipatterns 310

14.1 Ramble-on Test Antipattern 310

14.2 Copy-Paste-Tweak-Repeat Antipattern 312

14.3 Sore Thumb Test Cases Antipattern 313

14.4 Duplication Between Test Groups Antipattern . . . 315

14.5 Test Disrespect Antipattern 316

14.6 Behavior-Driven Development Test Pattern 316

14.7 Where Are We? . 317

15 Closing Thoughts 318

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=11

CONTENTS 12

IV Appendixes 321

A Development System Test Environment 322

A.1 Development System Tool Chain 322

A.2 Full Test Build makefile 324

A.3 Smaller Test Builds 325

B Unity Quick Reference 327

B.1 Unity Test File . 327

B.2 Unity Test main . 329

B.3 Unity TEST Condition Checks 329

B.4 Command-Line Options 330

B.5 Unity in Your Target 330

C CppUTest Quick Reference 332

C.1 The CppUTest Test File 332

C.2 Test Main . 333

C.3 TEST Condition Checks 333

C.4 Test Execution Order 334

C.5 Scripts to Create Starter Files 334

C.6 CppUTest in Your Target 336

C.7 Convert CppUTest Tests to Unity 336

D LedDriver After Getting Started 337

D.1 LedDriver First Few Tests in Unity 337

D.2 LedDriver First Few Tests in CppUTest 338

D.3 LedDriver Early Interface 339

D.4 LedDriver Skeletal Implementation 339

E Example OS Isolation Layer 340

E.1 Test Cases to Assure Substitutable Behavior 341

E.2 POSIX Implementation 342

E.3 Micrium RTOS Implementation 344

E.4 Win32 Implementation 346

E.5 Burden the Layer, Not the Application 348

F Bibliography 349

Index 352

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=12

Foreword by Jack Ganssle
Test-Driven Development for Embedded C is hands-down the best book

on the subject. This is an amiable, readable book with an easy style

that is fairly code-centric, taking the reader from the essence of TDD

through mastery using detailed examples. It’s a welcome addition to

the genre because the book is completely C-focused, unlike so many

others, and is specifically for those of us writing firmware.

James skips no steps and leads one through the gritty details but

always keeps the discussion grounded so one is not left confused by

the particulars. The discussion is laced with homey advice and great

insight. He’s not reluctant to draw on the wisdom of others, which gives

the book a sense of completeness.

The early phases of a TDD project are mundane to the point of seeming

pointlessness. One writes tests to ensure that the most elemental of

things work correctly. Why bother checking to see that what is essen-

tially a simple write works correctly? I’ve tossed a couple of books on

the floor in disgust at this seeming waste of time, but James warns the

gentle reader to adopt patience, with a promise, later fulfilled, that he’ll

show how the process is a gestalt that yields great code.

TDD does mean one is buried in the details of a particular method or

a particular test, and the path ahead can be obscured by the tests at

hand. If you’re a TDD cynic or novice, be sure to read the entire book

before forming any judgments so you can see how the details morph

into a complete system accompanied by a stable of tests.

Better than any book I’ve read on the subject, Test-Driven Develop-

ment for Embedded C lays out the essential contrast between TDD and

the more conventional write-a-lot-of-code-and-start-debugging style for

working. With the latter technique, we’re feeding chili dogs to our ulcers

as the bugs stem from work we did long ago and are correspondingly

hard to find. TDD, on the other hand, means today’s bug is a result of

Download from Wow! eBook <www.wowebook.com>

FOREWORD BY JACK GANSSLE 14

work one did ten minutes ago. They’re exposed, like ecdysiast Gypsy

Rose Lee’s, uh, assets. A test fails? Well, the bug must be in the last

thing you did.

One of TDD’s core strengths is the testing of boundary conditions. My

file of embedded disasters reeks of expensive failures caused by code

that failed because of overflows, off-by-one errors, and the like. TDD—

or, at least James’ approach to it—means getting the “happy” path

working and tested and then writing tests to ensure each and every

boundary condition is also tested. Conventional unit testing is rarely

so extensive and effective.

Embedded TDD revolves around creating a test harness, which is a

software package that allows a programmer to express how production

code should behave. James delves into both Unity and CppUTest in

detail. (Despite its name, the latter supports both C++ and C). Each

test invokes creation and teardown routines to set up and remove the

proper environment, like, for instance, initializing a buffer and then

checking for buffer overflows. I found that very cool.

Test-Driven Development for Embedded C is an active-voice work packed

with practical advice and useful aphorisms, such as “refactor on green”

(get the code working first, and when the tests pass, then you can

improve the code if necessary). Above all, the book stresses having fun

while doing development. And that’s why most of us got into this field

in the first place.

Jack Ganssle

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=14

Foreword by Robert C. Martin
You’ve picked up this book because you are an embedded software

engineer. You don’t live in the programmer’s world of multicores, tera-

bytes, and gigaflops. You live in the engineer’s world of hard limits

and physical constraint and of microseconds, milliwatts, and kilobytes.

You probably use C more than C++ because you know the code the C

compiler will generate. You probqably write assembler when necessary

because sometimes even the C compiler is too profligate.

So, what are you doing looking at a book about Test-Driven Develop-

ment? You don’t live in the kind of spendthrift environment where

programmers piddle around with fads like that. Come on, TDD is for

Java programmers and Ruby programmers. TDD code runs in inter-

preted languages and virtual machines. It’s not for the kind of code

that runs on real metal, is it?

James Grenning and I cut our teeth on embedded software in the late

70s and early 80s. We worked together programming 8085 assembler

on telephone test systems that were installed in racks in telephone

central offices. We spent many an evening in central offices sitting on

concrete floors with oscilloscopes, logic analyzers, and prom burners.

We had 32KB of RAM and 32KB of ROM in which to work our miracles.

And boy, what miracles we worked!

James and I were the first to introduce C into the embedded systems

at our company. We had to fight the battles against those hardware

engineers who claimed “C is too slow.” We wrote the drivers, the mon-

itors, and the task switchers that allowed our systems run in a 16-bit

address space split between RAM and ROM. It took several years, but

in the end, we saw all the newer embedded systems at our company

written in C.

After those heady days in the 70s and 80s, James and I parted com-

pany. I wandered off into the realms of IT and product-ware, where

Download from Wow! eBook <www.wowebook.com>

FOREWORD BY ROBERT C. MARTIN 16

resources flow like wine at an Italian wedding. But James had a spe-

cial love for the embedded world, so for the past thirty+ years James

Grenning has been writing code in embedded environments such as

digital telephone switches, high-speed photocopiers, radio controllers,

cell phones, and the like.

James and I joined forces again in the late 90s. He and I consulted

at Xerox on the embedded C++ software running on 68000s in Xerox’s

high-end digital printers. James was also consulting at a well-known

cell phone company on its communications subsystems.

As accomplished as James is as an embedded software engineer, he is

also an accomplished software craftsman. He cares deeply about the

code he writes and the products he produces. He also cares about his

industry. His goal has always been to improve the state-of-the-art in

embedded development.

When the first XP Immersion took place in 1999, James was there.

When the Agile Manifesto was conceived in Snowbird in 2001, James

was there and was one of the original signatories. James was deter-

mined to find a way to introduce the embedded industry to the values

and techniques of Agile software development.

So, for the past decade, James has participated in the Agile community

and worked to find a way to integrate the best ideas of Agile software

development with embedded software development. He has introduced

TDD to many embedded shops and helped their engineers write better,

more reliable, embedded code.

This book is the result of all that hard work. This book is the inte-

gration of Agile and embedded. Actually, this book has the wrong title.

It should be Crafting Embedded Systems in C because although this

book talks a lot about TDD, it talks about an awful lot more than that!

This book provides a very complete and highly professional approach to

engineering high-quality embedded software in C, quickly and reliably.

I think this book is destined to become the bible of embedded software

engineering.

Yes, you can do TDD in the embedded world. Not only that, you should!

In these pages, James will show you how to use TDD economically,

efficiently, and profitably. He’ll show you the tricks and techniques, the

disciplines, and the processes. And, he’ll show you the code!

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=16

FOREWORD BY ROBERT C. MARTIN 17

Get ready to read a lot of code. This book is chock-full of code. And it’s

code written by a craftsman with a lot to teach. As you read through

this book and all the code within it, James will teach you about testing,

design principles, refactoring, code smells, legacy code management,

design patterns, test patterns, and much more.

And, on top of that, the code is almost entirely written in C and is

100 percent applicable to the constrained development and execution

environments of embedded systems.

So, if you are a pragmatic embedded engineer who lives in the real

world and codes close to the metal, then, yes, this book is for you.

You’ve picked it up and read this far. Now finish what you started and

read the rest of it.

Robert C. Martin (Uncle Bob)

October 2010

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=17

Acknowledgments
To my reviewers—Michael Barr, Sriram Chadalavad, Rachel Davies, Ian

Dees, Jack Ganssle, Anders Hedberg, Kevlin Henny, Olve Maudal, Timo

Punkka, Mark VanderVoord, and Bas Vodde—thank you for the time,

effort, constructive comments, and challenges. Let me add a special

thank you to Timo Punkka, my fine Finnish friend, for going above

and beyond. I’ll also add specific thanks to Olve Maudal who nitpicked

the code; it’s much improved because of his suggestions. Thanks, Bas

Vodde, for the extremely careful reads, excellent suggestions, and blunt

feedback, as well as your efforts on CppUTest. And speaking of test

harnesses, thanks to the developers of the Unity test harness: Mark

VanderVoord, Greg Williams, and Mike Karlesky.

Thank you, Bob Martin and Jack Ganssle, for writing the forewords

to my book. Bob, also thank you for the years as my colleague and

mentor who helped me establish a solid foundation to be able to write

this book. Jack, thanks for listening to a guy who thinks he has part of

the answer for the quality problems that plague the embedded software

industry. I appreciate how you have helped me expose these ideas to

the community.

I’d like to thank my clients for giving me the opportunity to teach TDD

for embedded C and C++. They helped me learn the important ques-

tions and develop (I hope) articulate and convincing answers to the

challenges of applying TDD to embedded C. Thanks for giving me the

opportunity to teach and learn in your organizations.

Thanks to Gerard Meszaros for checking my work on test doubles.

Thanks to Mike “GeePaw” Hill for a careful read and many useful com-

ments. Thank you, Randy Coulman, Nancy Van Schooenderwoert, and

Ron Morsicato for contributing stories. Thanks to Jean Labrosse and

Matt Gordon of Micrium for donating hardware to my effort and for the

µC/OS-III example code. Dan Saks, thanks for your expert help with

some C language questions. Thank you, Hidetake Uwano, Masahide

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTS 19

Nakamura, Akito Monden, and Ken-ichi Matsumoto for the use of the

eye-movement graphs.

Thanks to software development heros and pioneers Brian Kernighan,

Donald Knuth, Martin Fowler, Joe Newcomer, Michael Feathers, Kent

Beck, and others already mentioned for letting me quote you in my

book.

Many problems, small and large, were found by the readers of my beta

book. Thank you, Kenny Wickstrom, Keith Ray, Nathan Itskovitch, Ken-

rick Chien, Charles Manning, David Wright, Mark Taube, Dave Kel-

logg, Alex Rodriguez, Dave Rooney, Nick Barendt, Jake Goulding, Mark

Dodgson, Michael Chock, Thomas Eriksson, John Ratke, Florin Iucha,

Donghee Park, Hans Peter Jepsen, Michael Weller, Kenelm McKinney,

Edward Barnard, Lluis Gesa Boté, Paul Swingle, Andrew Johnson, and

any of you I missed. You were very generous with your time and efforts,

which allowed me to weed out problems as the book evolved.

Thanks to the Pragmatic Programmers, Andy and Dave, for giving me

the opportunity to work with you. I probably would not have even

thought to bring my book to the Pragmatic Bookshelf if not for a chance

meeting with Ken Pugh and a walk through Valley Forge. Thanks for the

suggestion, Ken.

Writing is a challenge. So, I must give Jackie Carter, my editor, a big

thank you. She helped me go from not being able to string two coherent

pages together to writing this book. You really helped, as did a few

others, in the effort to learn to write. Thanks, Mike Cohn, for suggesting

Stephen Wilbers’ book, Keys to Great Writing [Wil00]. It helped me get

the most out of every word. Thanks to my sister-in-law Debbie Cepla,

a fifth-grade schoolteacher; she showed me where semicolons go and

where they don’t. Thanks to Jeff Langr for suggesting I read all my

words out loud so I could hear what I wrote. This was good advice, but

too often I still read what I thought I wrote. That leads me to thank

Vikki, the text-to-speech voice on my Mac, for brutally reading every

word to [deleted: to] me.

Finally, I want to thank my loving wife, Marilee, and family for encour-

aging me and generously giving me the time to write this book. She

even selflessly asked what my next book would be.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=19

Preface
I was first exposed to Test-Driven Development at the first Extreme Pro-

gramming Immersion1 in 1999. At the time, I was working on a team

creating an embedded communications system. We had just begun

extracting use cases from the project’s requirements document when

I took a week away from the client to attend Immersion. It changed

my professional life. I had discovered Test-Driven Development (among

other things).

As with many embedded development efforts, having a product release

held up by software development was nothing new. But we could not

start, because the hardware and OS were not decided on or ready. Each

day added to the overall schedule. We were set up, again, because the

target hardware bottleneck choked progress to a slow drip. What else

could we do but have meetings, talk, argue, dream, and document the

software we might write? As it turns out, plenty.

Every embedded developer has experienced the target hardware bot-

tleneck. Often the hardware is developed alongside the software and

unavailable for much of the development cycle. If that’s not bad enough,

both the hardware and the software have bugs, and it’s not always

clear where they are. For others, the target hardware is so expensive

that there’s no way for each developer to have their own target system,

ready when they are. Developers have to wait, and waiting is expensive.

After a week of immersion in Extreme Programming, the big a-ha hit

me! We can do more than document and wait. We can take action.

Test-Driven Development was the key to making meaningful progress

on the code before hardware and throughout the development cycle.

In the years following that a-ha, I learned TDD and taught TDD in C,

C++, Java, and C#. I’ve dabbled in several other languages as well. I

found that I was nearly the only voice working to bring TDD to embed-

ded developers. I needed to write this book.

1. XP Immersion is an Object Mentor training course.

Download from Wow! eBook <www.wowebook.com>

WHO IS THIS BOOK FOR? 21

Who Is This Book For?

Although the word test is in the title, this book isn’t written for software

testers; I wrote the book for you, the embedded software developer.

You probably thought TDD was for someone else. All the books were

written in Java or high-level dynamic languages. Conference talks and

papers were targeted at web apps or desktop applications. Those talking

about TDD wrote code in a foreign language; they spoke about foreign

problems. Your concerns were never mentioned or considered.

My mission with this book is to bring you some of the great ideas in

software development refined over the past ten years. I wrote this book

with examples that will look familiar to you, in your language. The ideas

will challenge you. They will help you build better software and free you

from the long hours of “test and fix.”

Although the primary audience for the book is embedded C program-

mers, any C programmer can learn TDD from this book. The examples

are all from the embedded space, but that does not change the lessons.

My style of C is rather object oriented, so you C++ programmers could

also learn a lot about TDD from this book.

How to Read This Book

The book is meant to be read from beginning to end, although you don’t

have to read the whole book to get started with TDD. You will be able

to start once you finish the first full example, the LED driver. Let me

describe the three major parts of the book.

After a short introduction to TDD, we spend the first part of the book

looking at a couple open source test harnesses. Then we go test by test

developing our first module. Usually after seeing TDD, developers often

have a lot of questions. So, rather than letting them linger, I spend a

couple chapters answering some of the questions I’ve been asked over

the past ten years about TDD and TDD applied to embedded systems

development.

In the middle part of the book, we get into the techniques needed to test

code that interacts with other modules in the system. We’ll go through

examples where we stub out the dependencies of the code under test. I’ll

introduce the concept of a test double and a mock object, both important

to being able to thoroughly test-drive your code. This part of the book

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=21

THE CODE IN THIS BOOK 22

will arm you with the tools you will need to develop code in the more

complex world of interacting modules.

The final part of the book has four important chapters. First we will

look at important design principles that can help guide you to better

code. We’ll look at some advanced techniques in C programming to

build testable and flexible designs. Then we’ll get into refactoring, the

practice of improving existing code. After that, we’ll look at some of the

problems you already have in your legacy code base and how you can

safely get tests around them that start to improve the existing code

that you have invested so much in already. We’ll conclude with a few

guidelines on writing and maintaining tests.

If you are already experienced in TDD and are now just starting to test-

drive C, you can skim the first part of the book. (If you discover that I’m

doing TDD in a way that is not familiar to you, maybe you’d better go

back to the beginning.) The meat of the book for an experienced TDD

programmer just applying TDD to C is in the second and third parts.

If you are more of a beginner at TDD, work through the book from

start to finish. Code the examples as you go. Do some of the activities

suggested in the Put the Knowledge to Work sections at the end of each

chapter. After the first and second parts, you will have a good toolkit to

apply to your projects.

If you are relatively new at C or not using all of C, you might find Chap-

ter 11, SOLID, Flexible, and Testable Designs, on page 219 challenging.

If it’s too much at first, come back to it in a few months after getting

TDD in C experience.

The Code in This Book

There is a lot of code in this book. You can’t understand TDD in detail

without a lot of code. Read the code and program along with me to get

the most out of this book.

In Appendix A, on page 322, you can find some help on getting a host

development system test environment. Look at code/README.txt in the

code download for instructions on building the book’s example code. If

you have the electronic copy of this book, you can click the filename

above the code snippet, and the containing file will download for your

perusal.

As the book progresses, the code evolves. Some of the evolutions are

small, with older versions kept within the same file but compiled using

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=22

ONLINE RESOURCES 23

#if 0 ... #endif directives. Other code evolutions are larger, requiring part

of one chapter’s code to be cloned and evolved in a new directory hier-

archy. In the later part of the book, you will notice the evolving code/t0,

code/t1, code/t2, and code/t3 directories.

It’s likely I did not use your coding style. But I did make considerable

effort to present a consistent code style. The C code compiles under an

ANSI-compatible compiler—I used GCC.

I use two test harnesses in the book, Unity and CppUTest. Both are

included in the book’s code download. Unity is a C-only test harness

and used in the beginning part of the book. CppUTest is written in

C++ but intended for both C and C++. There are many C programmers

around the world using CppUTest. The C++ is hidden in macros. The

CppUTest-based tests look almost identical to the Unity tests. I’ll make

my case why I use a C++ compiler for the later examples before we make

the transition. As you learn more about TDD and test harnesses, you

will be able to decide for yourself which test harness best suits your

product development needs.

Thanks for picking up Test-Driven Development for Embedded C! I hope

you find it helpful in your own quest to creating great software.

About the Cover

That’s a bee, not a bug. It keeps the system clean and well structured.

Online Resources

Here are some of the online resources you may appreciate:

Home page for this book http://www.pragprog.com/titles/jgade

Get book updates, discuss, report errata, and download the book’s code.

CppUTest.org http://www.cpputest.org

Find documentation and discussions about CppUTest.

CppUTest at SourceForge.orghttp://www.cpputest.org

Get the latest version of CppUTest.

Unity. ..http://unity.sourceforge.net

Visit the home of Unity.

Author’s Website .. http://www.jamesgrenning.com

Get up-to-date information about the book, TDD, and Agile for embedded from

my blog, as well as find links to other related material.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com/titles/jgade
http://www.cpputest.org
http://www.cpputest.org
http://unity.sourceforge.net
http://www.jamesgrenning.com
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=23

Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly

as possible, you are, by definition, not smart enough

to debug it.

Brian Kernighan

Chapter 1

Test-Driven Development
We’ve all done it—written a bunch of code and then toiled to make it

work. Build it and then fix it. Testing was something we did after the

code was done. It was always an afterthought, but it was the only way

we knew.

We would spend about half our time in the unpredictable activity affec-

tionately called debugging. Debugging would show up in our schedules

under the disguise of test and integration. It was always a source of

risk and uncertainty. Fixing one bug might lead to another and some-

times to a cascade of other bugs. We’d keep statistics to help predict

how much time would be needed to get the bugs out. We would watch

for the knee of the curve, the trend that showed we finally started to

fix more bugs than were introduced and reported. The knee showed

that we were almost done—but we never really knew whether there was

another killer bug hiding in a dark corner of the code.

QA started to write regression test suites so they could quickly find new

problems, rather than letting them lay in wait only to be discovered in

the mad rush at the bottom of the waterfall. But we still got surprised;

a small mistake could take days, weeks, or months to find. Some were

never found.

Some insightful people saw the potential; they saw that short cycles led

to fewer problems. They saw that aggressive test automation saved time

and effort. Tedious and error-prone work did not have to be repeated.

Tests could be run without the great expense incurred when mobiliz-

ing a small army of manual testers. Side effects were detected quickly;

debug sessions were avoided. One root cause of schedule variability

was isolated, and more predictable schedules emerged.

Download from Wow! eBook <www.wowebook.com>

WHY DO WE NEED TDD? 25

Fabric of Development

“The only reasonable way to build an embedded system
is to start integrating today. The biggest schedule killers are
unknowns; only testing and running code and hardware will
reveal the existence of these unknowns. Test and integration
are no longer individual milestones; they are the very fabric of
development.” From The Art of Designing Embedded Systems
[Gan00], by Jack Ganssle

Jack Ganssle, a well-known embedded guru, suggests, in the sidebar

on this page, that integration and test are the fabric of development.

Well, they aren’t—at least not yet, not in any widespread fashion—but

they need to be. Test-Driven Development is one way, an effective way,

to weave testing into the fabric of software development. It’s Kevlar for

your code.1

There’s a lot to applying TDD to embedded C, and that’s what this book

is about. In this chapter, you will get the 10,000-foot view of TDD. After

that, you’ll apply TDD to a simple C module. Of course, that will lead

to questions, which we’ll address in the following chapters. Before we

begin, let’s look at a famous bug that could have been prevented by

applying TDD.

1.1 Why Do We Need TDD?

Test-Driven Development might have helped to avoid an embarrassing

bug, the Zune bug. The Zune is the Microsoft product that competes

with the iPod. On December 31, 2008, the Zune became a brick for a

day. What was special about December 31, 2008? It’s New Year’s Eve

and the last day of a leap year, the first leap year that the 30G Zune

would experience.

Many people looked into the Zune bug and narrowed the problem down

to this function in the clock driver. Although this is not the actual driver

code, it does suffer from exactly the same bug:2

1. Kevlar is a registered trademark of DuPont.
2. The actual Zune code could not be used because of copyright concerns. Zune is a

registered trademark of Microsoft Corporation.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=25

WHY DO WE NEED TDD? 26

Download src/zune/RtcTime.c

static void SetYearAndDayOfYear(RtcTime * time)

{

int days = time->daysSince1980;

int year = STARTING_YEAR;

while (days > 365)

{

if (IsLeapYear(year))

{

if (days > 366)

{

days -= 366;

year += 1;

}

}

else

{

days -= 365;

year += 1;

}

}

time->dayOfYear = days;

time->year = year;

}

Many code-reading pundits reviewed this code and came to the same

wrong conclusion that I did. We focused in on the boolean expression

(days > 366). The last day of leap year is the 366th day of the year,

and that case is not handled correctly. On the last day of leap year, this

code enters an infinite loop! I decided to write some tests for SetYearAnd-

DayOfYear() to see whether changing boolean to (days >= 366) fixes the

problem, as about 90 percent of the Zune bug bloggers predicted.

After getting this code into the test harness, I wrote the test case that

would have saved many New Year’s Eve parties:

Download tests/zune/RtcTimeTest.cpp

TEST(RtcTime, 2008_12_31_last_day_of_leap_year)

{

int yearStart = daysSince1980ForYear(2008);

rtcTime = RtcTime_Create(yearStart+366);

assertDate(2008, 12, 31, Wednesday);

}

Just like the Zune, the test goes into an infinite loop. After killing the

test process, I apply the popular fix based on reviews by thousands of

programmers. Much to my surprise, the test fails, because SetYearAnd-

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/zune/RtcTime.c
http://media.pragprog.com/titles/jgade/code/tests/zune/RtcTimeTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=26

WHAT IS TEST-DRIVEN DEVELOPMENT? 27

DayOfYear() determines that it is January 0, 2009. New Year’s Eve par-

ties have their music but still a bug; it’s now visible and easily fixable.

With that one test, the Zune bug could have been prevented. The code

review by the masses got it close, but still the correct behavior eluded

most reviewers. I am not knocking code reviews; they are essential. But

running the code is the only way to know for sure.

You wonder, how would we know to write that one test? We could just

write tests where the bugs are. The problem is we don’t know where the

bugs are; they can be anywhere. So, that means we have to write tests

for everything, at least everything that can break. It’s mind-boggling to

imagine all the tests that are needed. But don’t worry. You don’t need a

test for every day of every year; you just need a test for every day that

matters. This book is about writing those tests. This book will help you

learn what tests to write, it will help you learn to write the tests, and it

will help you prevent problems like the Zune bug in your product.

Finally, let’s get around to answering “Why do we need TDD?” We need

TDD because we’re human and we make mistakes. Computer program-

ming is a very complex activity. Among other reasons, TDD is needed

to systematically get our code working as intended and to produce the

automated test cases that keep the code working.

1.2 What Is Test-Driven Development?

Test-Driven Development is a technique for building software incre-

mentally. Simply put, no production code is written without first writing

a failing unit test. Tests are small. Tests are automated. Test-driving is

logical. Instead of diving into the production code, leaving testing for

later, the TDD practitioner expresses the desired behavior of the code

in a test. The test fails. Only then do they write the code, making the

test pass.

Test automation is key to TDD. Each step of the way, new automated

unit tests are written, followed immediately by code satisfying those

tests. As the production code grows, so does a suite of unit tests, which

is an asset as valuable as the production code itself. With every code

change, the test suite runs, checking the new code’s function but also

checking all existing code for compatibility with the latest change.

Software is fragile. Just about any change can have unintended con-

sequences. When tests are manual, we can’t afford to run all the tests

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=27

PHYSICS OF TDD 28

that are needed to catch unintended consequences. The cost of retest is

too high, so we rerun the manual tests we think are needed. Sometimes

we’re not too lucky and defects are created and go undetected. In TDD,

the tests help detect the unintended consequences, so when changes

are made, prior behavior is not compromised.

Test-Driven Development is not a testing technique, although you do

write a lot of valuable automated tests. It is a way to solve program-

ming problems. It helps software developers make good design deci-

sions. Tests provide a clear warning when the solution takes a wrong

path or breaks some forgotten constraint. Tests capture the production

code’s desired behavior.

TDD is fun! It’s like a game where you navigate a maze of technical

decisions that lead to highly robust software while avoiding the quag-

mire of long debug sessions. With each test there is a renewed sense of

accomplishment and clear progress toward the goal. Automated tests

record assumptions, capture decisions, and free the mind to focus on

the next challenge.

1.3 Physics of TDD

To see how Test-Driven Development is different, let’s compare it to the

traditional way of programming, something I call Debug-Later Program-

ming. In DLP, code is designed and written; when the code is “done,”

it is tested. Interestingly, that definition of done fails to include about

half the software development effort.

It’s natural to make mistakes during design and coding—we’re only

human. Therein lies the problem with Debug-Later Programming; the

feedback revealing those mistakes may take days, weeks, or months to

get back to you, the developer. The feedback is too late to help you learn

from your mistakes. It won’t help you avoid the mistake the next time.

With the late feedback, other changes may be piled on broken code so

that there is often no clear root cause. Some code might depend on

the buggy behavior. With no clear cause and effect, your only recourse

is a bug hunt. This inherently unpredictable activity can destroy the

most carefully crafted plans. Sure, you can plan time for bug fixing,

but do you ever plan enough? You can’t estimate reliably because of

unknowable unknowns.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=28

THE TDD MICROCYCLE 29

Bug discoveryMistake made
(bug injection)

Bug found Bug fixed

Td Tfind T fix

Time

Figure 1.1: Physics of Debug-Later Programming

Looking at Figure 1.1, when the time to discover a bug (Td) increases,

the time to find a defect’s root cause (Tfind) also increases, often dra-

matically. For some bugs, the time to fix the bug (Tfix) is often not

impacted by Td. But if the mistake is compounded by other code build-

ing on top of a wrong assumption, Tfix may increase dramatically as

well. Some bugs lay undetected or unfound for years.

Now take a look at Figure 1.2, on the following page. When the time

to discover a bug (Td) approaches zero, the time to find the bug (Tfind)

also approaches zero. A code problem, just introduced, is often obvious.

When it is not obvious, the developer can get back to a working system

by simply undoing the last change. Tfind + Tfix is as low as it can get,

given that things can only get worse as time clouds the programmer’s

memory and as more code depends on the earlier mistake.

In comparison, TDD provides feedback immediately! Immediate noti-

fication of mistakes prevents bugs. If a bug lives for less than a few

minutes, is it really a bug? No, it’s a prevented bug. TDD is defect pre-

vention. DLP institutionalizes waste.

1.4 The TDD Microcycle

I’ll start by telling you what TDD is not. It is not spending an hour, a

day, or a week writing masses of test code, followed by writing reams of

production code.

TDD is writing one small test, followed by writing just enough produc-

tion code to make that one test pass, while breaking no existing test.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=29

THE TDD MICROCYCLE 30

Mistake
discovery

Mistake
made

Root cause
 found

Mistake fixed

T d Tfind T fix

Time

Figure 1.2: Physics of Test-Driven Development

TDD makes you decide what you want before you build it. It provides

feedback that everything is working to your current expectations.

At the core of TDD is a repeating cycle of small steps known as the TDD

microcycle. Each pass through the cycle provides feedback answering

the question, does the new and old code behave as expected? The feed-

back feels good. Progress is concrete. Progress is measurable. Mistakes

are obvious.

The steps of the TDD cycle in the following list are based on Kent Beck’s

description in his book Test-Driven Development [Bec02]:

1. Add a small test.

2. Run all the tests and see the new one fail, maybe not even compile.

3. Make the small changes needed to pass the test.

4. Run all the tests and see the new one pass.

5. Refactor to remove duplication and improve expressiveness.

Each spin through the TDD cycle is designed to take a few seconds

up to a few minutes. New tests and code are added incrementally with

immediate feedback showing that the code just written actually does

what it is supposed to do. You grow the code envisioned in your mind

from simple roots to its full and more complex behavior.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=30

THE TDD MICROCYCLE 31

As you progress, not only do you learn the solution, but you also build

up your knowledge of the problem being solved. Tests form a concrete

statement of detailed requirements. As you work incrementally, the test

and production code capture the problem definition and its solution.

Knowledge is captured in a nonvolatile form.

With every change, run the tests. The tests show you when the new code

works; they also warn when a change has unintended consequences.

In a sense, the code screams when you break it!

When a test passes, it feels good; it is concrete progress. Sometimes it’s

a cause for to celebrate! Sometimes a little, sometimes a lot.

Keep Code Clean and Expressive

Passing tests show correct behavior. The code has to work. But there’s

more to software than correct behavior. Code has to be kept clean

and well structured, showing professional pride in workmanship and

an investment in future ease of modification. Cleaning up code has

a name, and it’s the last step of the repeating microcycle. It’s called

refactoring. In Martin Fowler’s book Refactoring: Improving the Design

of Existing Code [FBB+99], he describes refactoring like this: refactor-

ing is the activity of changing a program’s structure without changing

its behavior. The purpose is to make less work by creating code that is

easy to understand, easy to evolve, and easy to maintain by others and

ourselves.

Small messes are easy to create. Unfortunately, they are also easy to

ignore. The mess will never be easier to clean up than right after—

ahem—you make it. Clean the mess while it’s fresh. “All tests passing”

gives an opportunity to refactor. Refactoring is discussed and demon-

strated throughout this book, and we’ll focus on it in Chapter 12, Refac-

toring, on page 249.

TDD helps get code working in the first place, but the bigger payoff is

in the future, where it supports future developers in understanding the

code and keeping it working. Code can be (almost) fearlessly changed.

Test code and TDD are first about supporting the writer of the code, get-

ting the code to behave. Looking further out, it’s really about the reader,

because the tests describe what we are building and then communicate

it to the reader.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=31

TDD BENEFITS 32

Red-Green-Refactor and Pavlov’s Programmer

Red Green Refactor

The rhythm of TDD is referred to as Red-Green-Refactor. Red-
Green-Refactor comes from the Java world, where TDD practi-
tioners use a unit test harness called JUnit that provides a graph-
ical test result representation as a progress bar. A failing unit
test turns the test progress bar red. The green bar is JUnit’s way
of saying all tests passing. Initially, new tests fail, resulting in an
expected red bar and a feeling of being in control. Getting
the new test to pass, without breaking any other test, results in
a green bar. When expected, the green bar leaves you feeling
good. When green happens and you expected red, something
is wrong—maybe your test case or maybe just your expecta-
tion.

With all tests passing, it is safe to refactor. An unexpected red
bar during refactoring means behavior was not preserved, a
mistake was detected, or a bug was prevented. Green is only
a few undo operations away and a safe place to try to refactor
from again.

You will hear TDD practitioners call the rhythm embodied by the micro-

cycle Red-Green-Refactor. To learn why, see the sidebar on this page.

1.5 TDD Benefits

Just as with any skill, such as playing pool or skiing black diamonds,3

TDD skills take time to develop. Many developers have adopted it and

would not go back to Debug-Later Programming. Here are some of the

benefits TDD practitioners report:

3. Black diamond ski runs are really steep.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=32

BENEFITS FOR EMBEDDED 33

Fewer bugs

Small and large logic errors, which can have grave consequences

in the field, are found quickly during TDD. Defects are prevented.

Less debug time

Having fewer bugs means less debug time. That’s only logical, Mr.

Spock.

Fewer side effect defects

Tests capture assumptions, constraints, and illustrate represen-

tative usage. When new code violates a constraint or assumption,

the tests holler.

Documentation that does not lie

Well-structured tests become a form of executable and unambigu-

ous documentation. A working example is worth 1,000 words.

Peace of mind

Having thoroughly tested code with a comprehensive regression

test suite gives confidence. TDD developers report better sleep pat-

terns and fewer interrupted weekends.

Improved design

A good design is a testable design. Long functions, tight cou-

pling, and complex conditionals all lead to more complex and less

testable code. The developer gets an early warning of design prob-

lems if tests cannot be written for the envisioned code change.

TDD is a code-rot radar.

Progress monitor

The tests keep track of exactly what is working and how much

work is done. It gives you another thing to estimate and a good

definition of done.

Fun and rewarding

TDD is instant gratification for developers. Every time you code,

you get something done, and you know it works.

1.6 Benefits for Embedded

Embedded software has all the challenges of “regular” software, such as

poor quality and unreliable schedules, but adds challenges of its own.

But this doesn’t mean that TDD can’t work for embedded.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=33

BENEFITS FOR EMBEDDED 34

The problem most cited by embedded developers is that embedded

code depends on the hardware. Dependencies are a huge problem for

nonembedded code too. Thankfully, there are solutions for managing

dependencies. In principle, there is no difference between a dependency

on a hardware device and one on a database.

There are challenges that embedded developers face, and we’ll explore

how to use TDD to your advantage. The embedded developer can expect

the same benefits described in the previous section that nonembedded

developers enjoy, plus a few bonus benefits specific to embedded:

• Reduce risk by verifying production code, independent of hard-

ware, before hardware is ready or when hardware is expensive

and scarce.

• Reduce the number of long target compile, link, and upload cycles

that are executed by removing bugs on the development system.

• Reduce debug time on the target hardware where problems are

more difficult to find and fix.

• Isolate hardware/software interaction issues by modeling hard-

ware interactions in the tests.

• Improve software design through the decoupling of modules from

each other and the hardware. Testable code is, by necessity, mod-

ular.

The next part of the book is dedicated to getting you started with TDD.

After a TDD programming example in the next couple chapters, we’ll

talk more about some of the additional techniques needed for doing

TDD for embedded software in Chapter 5, Embedded TDD Strategy, on

page 104.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=34

Part I

Getting Started

Download from Wow! eBook <www.wowebook.com>

Don’t use manual procedures.

Andrew Hunt and Dave Thomas

Chapter 2

Test-Driving Tools and
Conventions

I rarely get bored, but following a manual procedure is boring, error-

prone, tedious...take your pick. Defining one is not so bad; at least

there is something creative there. But repeating it time and time again,

that’s another story.

Automation, on the other hand, is much more fun. You still have to

define the procedure, but you define it so a computer can do the grunt

work. It is repeatable. It frees your mind so you can focus on the

creative work, knowing that the procedure, once established, can run

itself. TDD relies on test automation.

We don’t get into TDD in this chapter, but we do look at example unit

tests using two unit test harnesses. Along the way, we will also discuss

some of the common terminology of automated unit testing.

We run the test cases natively on the development system, not on a

target platform. We’ll talk about when to run tests on the target system

in Chapter 5, Embedded TDD Strategy, on page 104.

2.1 What Is a Unit Test Harness?

A unit test harness is a software package that allows a programmer to

express how production code should behave. A unit test harness’s job

is to provide these capabilities:

• A common language to express test cases

• A common language to express expected results

Download from Wow! eBook <www.wowebook.com>

WHAT IS A UNIT TEST HARNESS? 37

• Access to the features of the production code programming lan-

guage

• A place to collect all the unit test cases for the project, system, or

subsystem

• A mechanism to run the test cases, either in full or in partial

batches

• A concise report of the test suite success or failure

• A detailed report of any test failures

The unit test frameworks used in this book are both popular for testing

embedded C and for open source, and they are easy to use. Both the test

harnesses are descendants of the xUnit family of unit test harnesses.1

First we’ll employ Unity, a C-only test harness. Later in the book we

will use CppUTest, a unit test harness written in C++ but not requiring

C++ knowledge to use. You’ll find that the bulk of the lessons in this

book can be applied using any test harness.

Here are a few terms that will come in handy while reading this book:

• Code under test is just like it sounds; it is the code being tested.

• Production code is code that is (or will be) part of the released

product.

• Test code is code that is used for testing the production code and

is not part of the released product.

• A test case is test code that describes the behavior of code under

test. It establishes the preconditions and checks that significant

post conditions are met.

• A test fixture is code that provides the proper environment for a

series of test cases that exercise the code under test. A test fixture

will assist in establishing a common setup and environment for

exercising the production code.

To take the mystery out of these terms, let’s look at a few tests for

something we’ve all used: sprintf(). For this first example, sprintf() is the

code under test; it is production code.

1. If your company has a policy forbidding open source in your product, the test harness

code does not go into the product. It is used only for the test build and may not violate

your policy.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=37

UNITY: A C-ONLY TEST HARNESS 38

sprintf() is good for a first example because it is a stand-alone function,

which is the most straightforward kind of function to test. The output

of a stand-alone function is fully determined by the parameters passed

immediately to the function. There are no visible external interactions

and no stored state to get in the way. Each call to the function is inde-

pendent of all previous calls.

2.2 Unity: A C-Only Test Harness

Unity is a straightforward, small unit test harness. It is comprised of

just a few files. Let’s get familiar with Unity and unit tests by looking

at a couple example unit test cases. If you are a long-time Unity user,

you’ll notice some additional macros that are helpful when you are not

using Unity’s scripts to generate a test runner.

sprintf() Test Cases in Unity

A test should be short and focused. Think of it as an experiment that

silently does its work when it passes but makes some noise when it

fails. This test checks that sprintf() handles a format spec with no format

operations.

Download unity/stdio/SprintfTest.c

TEST(sprintf, NoFormatOperations)

{

char output[5];

TEST_ASSERT_EQUAL(3, sprintf(output, "hey"));

TEST_ASSERT_EQUAL_STRING("hey", output);

}

The TEST() macro defines a function that is called when all tests are

run. The first parameter is the name of a group of tests. The second

parameter is the name of the test. We’ll look at TEST() in more detail

later in the chapter.

The TEST_ASSERT_EQUAL() macro compares two integers. sprintf() should

report that it formatted a string of length three, and if it does, the

TEST_ASSERT_EQUAL() check succeeds. As is the case with most unit test

harnesses, the first parameter is the expected value.

TEST_ASSERT_EQUAL_STRING() compares two null-terminated strings. This

statement declares that output should contain the string "hey". Following

convention, the first parameter is the expected value.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=38

UNITY: A C-ONLY TEST HARNESS 39

If either of the checked conditions is not met, the test will fail. The

checks are performed in order, and the TEST() will terminate on the first

failure.

Notice that TEST_ASSERT_EQUAL_STRING() could pass by accident; if the out-

put just happened to hold the string "hey", the test would pass without

sprintf() doing a thing. Yes, this is unlikely, but we better improve the

test and initialize the output to the empty string.

Download unity/stdio/SprintfTest.c

TEST(sprintf, NoFormatOperations)

{

char output[5] = "";

TEST_ASSERT_EQUAL(3, sprintf(output, "hey"));

TEST_ASSERT_EQUAL_STRING("hey", output);

}

The next TEST challenges sprintf() to format a string with %s.

Download unity/stdio/SprintfTest.c

TEST(sprintf, InsertString)

{

char output[20] = "";

TEST_ASSERT_EQUAL(12, sprintf(output, "Hello %s\n", "World"));

TEST_ASSERT_EQUAL_STRING("Hello World\n", output);

}

A weakness in both the preceding tests is that they do not guard against

sprintf() writing past the string terminator. The following tests watch for

output buffer overruns by filling the output with a known value and

checking that the character after the terminating null is not changed.

Download unity/stdio/SprintfTest.c

TEST(sprintf, NoFormatOperations)

{

char output[5];

memset(output, 0xaa, sizeof output);

TEST_ASSERT_EQUAL(3, sprintf(output, "hey"));

TEST_ASSERT_EQUAL_STRING("hey", output);

TEST_ASSERT_BYTES_EQUAL(0xaa, output[4]);

}

TEST(sprintf, InsertString)

{

char output[20];

memset(output, 0xaa, sizeof output);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=39

UNITY: A C-ONLY TEST HARNESS 40

TEST_ASSERT_EQUAL(12, sprintf(output, "Hello %s\n", "World"));

TEST_ASSERT_EQUAL_STRING("Hello World\n", output);

TEST_ASSERT_BYTES_EQUAL(0xaa, output[13]);

}

If we were worried about sprintf() corrupting memory in front of output,

we could always make output a character bigger and pass &output[1] to

sprintf(). Checking that output[0] is still 0xaa would be a good sign that

sprintf() is behaving itself.

In C it is hard to make tests totally fool-proof. Errant or malicious code

can go way beyond the end or way in front of the beginning of output.

It’s a judgment call on how far to take the tests. You will see when we

get into TDD how to decide which tests to write.

With those tests, you can see some subtle duplication creeping into the

tests. There are duplicate output declarations, duplicate initializations,

and duplicate overrun checks. With just two tests, this is no big deal,

but if you happen to be sprintf()’s maintainer, there will be many more

tests. With every test added, the duplication will crowd out and obscure

the code that is essential to understand the test case. Let’s see how a

test fixture can help avoid duplication in TEST() cases.

Test Fixtures in Unity

Duplication reduction is the motivation for a test fixture. A test fix-

ture helps organize the common facilities needed by all the tests in one

place. Notice how TEST_SETUP() and TEST_TEAR_DOWN() keep duplication

out of the sprintf() tests.

Download unity/stdio/SprintfTest.c

TEST_GROUP(sprintf);

static char output[100];

static const char * expected;

TEST_SETUP(sprintf)

{

memset(output, 0xaa, sizeof output);

expected = "";

}

TEST_TEAR_DOWN(sprintf)

{

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=40

UNITY: A C-ONLY TEST HARNESS 41

static void expect(const char * s)

{

expected = s;

}

static void given(int charsWritten)

{

TEST_ASSERT_EQUAL(strlen(expected), charsWritten);

TEST_ASSERT_EQUAL_STRING(expected, output);

TEST_ASSERT_BYTES_EQUAL(0xaa, output[strlen(expected) + 1]);

}

The shared data items defined after the TEST_GROUP() are initialized by

TEST_SETUP() before the opening curly brace of each TEST(). The data items

are file scope, accessible by each TEST() and all the helper functions. For

this TEST_GROUP(), there is no cleanup work for TEST_TEAR_DOWN().

The file scope helper functions, expect() and given(), help keep the

sprintf() tests clean and low on duplication.

In the end, it’s just plain C, so you can do what you want as far as

shared data and helper functions. I’m showing the typical way to struc-

ture a group of tests with common data and condition checks.

Now these tests are focused, lean, mean, and to the point.

Download unity/stdio/SprintfTest.c

TEST(sprintf, NoFormatOperations)

{

expect("hey");

given(sprintf(output, "hey"));

}

TEST(sprintf, InsertString)

{

expect("Hello World\n");

given(sprintf(output, "Hello %s\n", "World"));

}

Notice that once you understand a specific TEST_GROUP() and have seen

a couple examples, writing the next test case is much less work. When

there is a common pattern within a TEST_GROUP(), each test case is eas-

ier to read, understand, and evolve, as change becomes necessary.

Installing Unity Tests

It is not evident from the example how the test cases get run with the

necessary pre- and postprocessing. It’s done with another macro, the

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=41

UNITY: A C-ONLY TEST HARNESS 42

TEST_GROUP_RUNNER(). The TEST_GROUP_RUNNER() can go in the file with

the tests or a separate file. To avoid scrolling through the file, I use a

separate file. For the two sprintf() tests written, the TEST_GROUP_RUNNER()

looks like this:

Download unity/stdio/SprintfTestRunner.c

#include "unity_fixture.h"

TEST_GROUP_RUNNER(sprintf)

{

RUN_TEST_CASE(sprintf, NoFormatOperations);

RUN_TEST_CASE(sprintf, InsertString);

}

Each test case is called through the RUN_TEST_CASE() macro. Essentially,

this RUN_GROUP_RUNNER() calls the function bodies associated with each

of these macros:

TEST_SETUP(sprintf);

TEST(sprintf, NoFormatOperations);

TEST_TEAR_DOWN(sprintf);

TEST_SETUP(sprintf);

TEST(sprintf, InsertString);

TEST_TEAR_DOWN(sprintf);

Invoking TEST_SETUP() before each TEST() means that each test starts out

fresh, with no accumulated state. TEST_TEAR_DOWN() is called to clean

up after each test.

Now that the tests are wired into a TEST_GROUP_RUNNER(), let’s see how

the TEST_GROUP_RUNNERs are called. For this last step we have to look

at main(). You will have a main() for your production code and one, or

more, for your test code. The Unity test main() looks like this:

Download unity/AllTests.c

#include "unity_fixture.h"

static void RunAllTests(void)

{

RUN_TEST_GROUP(sprintf);

}

int main(int argc, char * argv[])

{

return UnityMain(argc, argv, RunAllTests);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTestRunner.c
http://media.pragprog.com/titles/jgade/code/unity/AllTests.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=42

UNITY: A C-ONLY TEST HARNESS 43

RUN_TEST_GROUP(GroupName) calls the function defined by TEST_GROUP_-

RUNNER(). So, each TEST_GROUP_RUNNER() you want to run as part of your

test main() has to be mentioned in a RUN_TEST_GROUP. Notice that RunAll-

Tests() is passed to UnityMain().

One unfortunate side effect of using a C-only test harness is that you

have to remember to install each TEST() into a TEST_GROUP_RUNNER(), and

the runner is invoked by calling UnityMain(). If you forget, tests will com-

pile but not run, potentially giving a false positive.

Because of this opportunity for error, the designers of Unity created a

system of code generators that read your test files and produce the

needed test runner code. To keep the dependencies low for getting

started with Unity, I’ve opted to not use the code-generating scripts

and manually wire all the test code.

When we look at CppUTest in the next section, you will see another

solution to that problem. But before we do that, let’s look at Unity’s

output.

Unity Output

The tests should be run as part the automated test build. A single

command builds and runs your test executable. You will see that I build

often, with each small change. This is TDD. I set up my development

environment to automatically make all whenever a file is saved. Test

output looks like this:

⇒ make

compiling SprintfTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

..

2 Tests 0 Failures 0 Ignored

OK

Notice that when all tests are passing, the output is minimal. At quick

glance, a single line of text says “OK,” meaning “All tests passing.” In

the Unix style, the test harness follows the “no news is good news”

principle. (When a test case fails, as you will see shortly, it reports a

specific error message.) It’s pretty self-explanatory, but let’s decipher

the test output and summary line.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=43

CPPUTEST: A C++ UNIT TEST HARNESS 44

Notice also that a dot (.) is printed before each test case runs. For a

long test run, this lets you know something is happening. The line of

hyphens (- - -) is just a separator line for the test summary.

• Tests—the total number of TEST() cases.

• Failures—the total number of TEST() cases that failed.

• Ignored—a count of the number of tests in ignore state. Ignored

tests are compiled but are not run.

Let’s add a failing test to see what happens. Look at the test output,

and the intentional error in this test case will be evident:

Download unity/stdio/SprintfTest.c

TEST(sprintf, NoFormatOperations)

{

char output[5];

TEST_ASSERT_EQUAL(4, sprintf(output, "hey"));

TEST_ASSERT_EQUAL_STRING("hey", output);

}

The failure looks like this:

⇒ make

compiling SprintfTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

..

TEST(sprintf, NoFormatOperations)

stdio/SprintfTest.c:75: FAIL

Expected 4 Was 3

2 Tests 1 Failures 0 Ignored

FAIL

The failure reports the filename and line of the failing test case, the

name of the test case, and the reason for failure. Also notice the sum-

mary line now shows one test failure.

You can find more on Unity in Appendix B, on page 327.

2.3 CppUTest: A C++ Unit Test Harness

Now that you’ve seen Unity, I’ll quickly describe CppUTest, my pre-

ferred unit test harness for C and C++. In full disclosure, I am partial

to CppUTest, not only because it is a capable test harness but also

because I am one of its authors. The first examples in this book use

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/stdio/SprintfTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=44

CPPUTEST: A C++ UNIT TEST HARNESS 45

Unity. The later examples, starting in Chapter 8, Spying on the Produc-

tion Code, on page 145, use CppUTest.

CppUTest was developed to support multiple OS platforms with a spe-

cific goal of being usable for embedded development. The CppUTest

macros make it so that test cases can be written without knowledge of

C++. This makes it easy for C programmers to use the test harness.

CppUTest uses a primitive subset of C++; it’s a good choice for embed-

ded development where not all compilers support the full C++ language.

You will see that the test cases are nearly identical between Unity and

CppUtest. You, of course, can use whichever test harness you prefer for

your product development.

sprintf Test Cases in CppUTest

This CppUTest test case is equivalent to the second Unity test case

found in Section 2.2, sprintf() Test Cases in Unity, on page 38.

Download tests/stdio/SprintfTest.cpp

TEST(sprintf, NoFormatOperations)

{

char output[5] = "";

LONGS_EQUAL(3, sprintf(output, "hey"));

STRCMP_EQUAL("hey", output);

}

Besides the macro names, the test cases are the same.

sprintf Test Fixture in CppUTest

Let’s look at this CppUTest test fixture that is equivalent to the exam-

ple Unity test fixture found in Section 2.2, Test Fixtures in Unity, on

page 40.

Download tests/stdio/SprintfTest.cpp

TEST_GROUP(sprintf)

{

char output[100];

const char * expected;

void setup()

{

memset(output, 0xaa, sizeof output);

expected = "";

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/stdio/SprintfTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/stdio/SprintfTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=45

CPPUTEST: A C++ UNIT TEST HARNESS 46

void teardown()

{

}

void expect(const char * s)

{

expected = s;

}

void given(int charsWritten)

{

LONGS_EQUAL(strlen(expected), charsWritten);

STRCMP_EQUAL(expected, output);

BYTES_EQUAL(0xaa, output[strlen(expected) + 1]);

}

};

Again, it is very similar, with all the same concepts represented. One

formatting difference is that the CppUTest TEST_GROUP is followed by a

set of curly braces enclosing shared data declarations and functions.

Everything between the curly braces is part of the TEST_GROUP and

accessible to each TEST() in the group. The shared data items (output,

expected, and length) are initialized by a special helper function called

setup(). As you might guess, setup() is called before each TEST(). Another

special function, teardown(), is called after each TEST(). In this example,

it is not used. expect() and given() are free-form helper functions that

are accessible to all TEST() cases in the TEST_GROUP.

These refactored test cases are identical to the unity test cases:

Download tests/stdio/SprintfTest.cpp

TEST(sprintf, NoFormatOperations)

{

expect("hey");

given(sprintf(output, "hey"));

}

TEST(sprintf, InsertString)

{

expect("Hello World\n");

given(sprintf(output, "%s\n", "Hello World"));

}

One advantage to CppUTest is that tests self-install. There is no need

for an external script to generate a test runner or manually write and

maintain test wiring code like RUN_TEST_CASE(), TEST_GROUP_RUNNER(),

and RUN_TEST_GROUP(). On the minor difference list are the assertion

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/stdio/SprintfTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=46

CPPUTEST: A C++ UNIT TEST HARNESS 47

macros; each test harness supports different macros, though there is

functional overlap.

You may notice that Unity and CppUTest are suspiciously close in their

macros and test structure. Well, there is no real mystery there; they do

follow a well-established pattern that I first saw with JUnit, a Java test

framework. The more specific similarities are because I contributed the

test fixture–related macros to the Unity project.

CppUTest Output

As already explained for Unity, tests run as part of an automated build

using make. Test output looks like this:

⇒ make all

compiling SprintfTest.cpp

Linking BookCode_tests

Running BookCode_tests

..

OK (2 tests, 2 ran, 0 checks, 0 ignored, 0 filtered out)

Just like with Unity, when all tests are passing, the output is minimal.

Here is how to interpret the summary line of the test run:

• tests—the total number of TEST() cases.

• ran—the total number of TEST() cases that ran (in this case, they

passed too).

• checks—a count of the number of condition checks made. (Condi-

tion checks are calls such as LONGS_EQUAL().)

• ignores—a count of the number of tests in ignore state. Ignored

tests are compiled but are not run.

• filtered out—a count of the number of tests that were filtered out

of this test run. Command-line options select specific tests to run.

Let’s insert an error into the test to see what the output looks like:

Download tests/stdio/SprintfTest.cpp

TEST(sprintf, NoFormatOperations)

{

char output[5];

LONGS_EQUAL(4, sprintf(output, "hey"));

STRCMP_EQUAL("hey", output);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/stdio/SprintfTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=47

UNIT TESTS CAN CRASH 48

The failure looks like this:

⇒ make

compiling SprintfTest.cpp

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

...

stdio/SprintfTest.cpp:75: TEST(sprintf, NoFormatOperations)

expected <4 0x2>

but was <3 0x1>

Errors (1 failures, 2 tests, 2 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)

The failure reports the line of the failing condition check, the name of

the test case, and the reason for failure. Also notice the summary line

includes a count of test failures.

If you ever insert an error on purpose into a test case, make sure you

remove it, or you risk baking a bug into your code.

2.4 Unit Tests Can Crash

One other possible outcome during a test run is a crash. Generally

speaking, C is not a safe language. The code can go off into the weeds,

never to return. sprintf() is a dangerous function. If you pass it an out-

put buffer that is too small, it will corrupt memory. This error might

crash the system now. It might crash later. The behavior is undefined.

Consequently, a test run may silently exit with an OK, silently exit early

showing no errors, or crash with a bang.

When you have a silent failing or crashing test, let the test harness help

you confirm what is wrong. Sometimes a production code change will

cause a previously passing test to fail, or even crash. So, before chasing

the crash, make sure you know which test is failing.

Because the test harness is normally quiet except for test failures, when

a test crashes, you probably won’t get any useful output. Both Unity

and CppUTest have a command-line option for running the test in ver-

bose mode (-v). With -v, each TEST() announces itself before running.

Conveniently, the last TEST() mentioned is the one that crashed.

You can also filter tests by test group (-g testgroup) and test case (-n

testname). This lets you get very precise about which test cases are

running. These are very helpful for chasing down crashes.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=48

THE FOUR-PHASE TEST PATTERN 49

2.5 The Four-Phase Test Pattern

In Gerard Meszaros’ book, xUnit Testing Patterns [Mes07], he describes

the Four-Phase Test, which I’ll be using throughout this book. The goal

of the pattern is to create concise, readable, and well-structured tests.

If you follow this pattern, the test reader can quickly determine what is

being tested. Paraphrasing Gerard, here are the four phases:

• Setup: Establish the preconditions to the test.

• Exercise: Do something to the system.

• Verify: Check the expected outcome.

• Cleanup: Return the system under test to its initial state after the

test.

To keep your tests clear, make the pattern visible in your tests. When

this pattern is broken, the documentation value of the test is dimin-

ished; the reader has to work harder to understand the requirements

expressed by the test.

2.6 Where Are We?

At this point, you should have a good overview of Unity and understand

how test fixtures and test cases allow a set of tests to be defined.

What you have not seen so far is Test-Driven Development. The tests

written for sprintf() are not TDD tests; sprintf() is existing code. I invite

you to put you new knowledge to work by doing the following exercises.

Then we’ll test-drive some new code in the next couple chapters.

Put the Knowledge to Work

1. Set up a host development system test environment. You can get

some help from Appendix A, on page 322. Download the book

code, and run the makefile. You can find the book’s code by vis-

iting the book’s home page at http://www.pragprog.com/titles/jgade.

Look at code/README.txt for more information. Run the makefile.

All its unit tests pass.

2. Run make -f MakefileUnity.mk in the code directory. The Unity sprintf()

tests are built by this makefile.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com/titles/jgade
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=49

WHERE ARE WE? 50

3. Then run make -f MakefileCppUTest.mk in the code directory. The

CppUTest sprintf() tests are built by this makefile.

4. Write more sprintf() tests like the examples shown in this chapter.

For Unity, use code/unity/stdio/SprintfTest.c. For CppUTest tests, use

code/tests/stdio/SprintfTest.cpp.

5. Modify TEST_GROUP(Sprintf) so that it handles any size sprintf() out-

put.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=50

Those who want really reliable software will discover that

they must find means of avoiding the majority of bugs to

start with, and as a result, the programming process will

become cheaper. If you want more effective programmers,

you will discover that they should not waste their time

debugging, they should not introduce the bugs to start with.

Edsger Dijkstra, “The Humble Programmer”

Chapter 3

Starting a C Module
In this chapter, I’ll lead you through some of the first steps you’ll take

when test-driving a new module in C. In the next chapter, we’ll be in

full stride as we complete the module. Starting in this chapter and

continued throughout this book, we will see whether we can realize

Dijkstra’s vision of not introducing bugs.1 The tool we will use is TDD.

3.1 Elements of a Testable C Module

The examples in the book will use the idea of a module. For our pur-

poses, a module is a self-contained part of a system that has a well-

defined interface. This does not say how big a module can get. In this

book, we’ll use small modules; the module examples will coincide with

compilation units, although in the wild, not all modules consist of a

single compilation unit. You will see that modularity is needed to make

testable code. You will also see that modular design is a natural out-

come of TDD.

Testability impacts design significantly and positively. In creating mod-

ular C, we will draw upon the idea of an abstract data type. Bar-

bara Liskov defines ADTs in her Programming with Abstract Data Types

[Lis74] as follows: “An abstract data type is defined indirectly, only by

the operations that may be performed on it and by mathematical con-

straints on the effects (and possibly cost) of those operations.”

In an ADT, a module’s data is treated as private; it is encapsulated.

There are a couple modularity options we can employ for encapsulating

1. The Edsger Dijkstra quote is from The Humble Programmer [Dij72].

Download from Wow! eBook <www.wowebook.com>

ELEMENTS OF A TESTABLE C MODULE 52

a module’s data. The first choice is to hide data using static file scope

variables in the .c file, giving access to the functions in the compila-

tion unit. The data is accessible only indirectly through the module’s

public interface, which is defined in the .h file as a set of function pro-

totypes. This approach works for a module that has a single set of data

to manage, something I call a single-instance module.

When a module has to manage different sets of data for different clients,

we can use the multiple-instance module. With a multiple-instance mod-

ule, structures must be initialized and passed back to a client holding

their context. Here is where ADTs come into play. You can declare a

typedef of a forward declared struct in a header file like this:

typedef struct CircularBufferStruct * CircularBuffer;

The compiler is happy to allow pointers to incomplete types to be passed

around as long as no code dereferences the pointer. Inside the .c file for

CircularBuffer, the struct elements can be defined, effectively hiding the

data so that only the module whose responsibility is the integrity of that

structure can manipulate it. If you are familiar with the POSIX pthread

library, it uses this technique. FILE, from Unix, is another example of an

ADT.

When doing TDD to create modular C, we will use these files and con-

ventions:

• The header file defines the module’s interface. For single-instance

modules, the header file is made up of function prototypes. For

abstract data types, in addition to function prototypes, a typedef

is created for a pointer to a forward declared struct. Again, hiding

the struct hides the data details of the module.

• The source file contains the implementation of the interface. It also

includes any needed private helper functions and hidden data.

The module implementation manages the integrity of the module’s

data. For ADTs, the forward declared struct members are defined

in the source file.

• The test file holds the test cases, keeping test code and production

code separate. Each module has at least one test file usually con-

taining only one, but sometimes a few, test groups. Test groups

are organized around data common to all the tests in the group.

When the setup needs of some test cases are significantly differ-

ent from others, we’ll use multiple test groups and maybe multiple

test files.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=52

WHAT DOES AN LED DRIVER DO? 53

• Module initialization and cleanup functions. Every module that

manages hidden data should have initialization and cleanup func-

tions. ADTs certainly need them with their totally hidden inter-

nals. C++ builds this idea into the language with constructors and

destructors. By convention, I’ll make Create and Destroy functions

for each module. Modules made up of stand-alone functions, like

strlen() and sprintf(), that keep no internal state won’t need initial-

ization and cleanup.

Following these practices and conventions makes code easier to test

and easier to read and evolve. It’s not impossible to test code that

follows the data structure/function call free-for-all approach—it’s just

harder. In the first example, I’ll use the single-instance module while

test-driving an LED driver. We’ll use abstract data types later.

3.2 What Does an LED Driver Do?

Let’s say that our system uses LEDs to communicate status to the users

or developers of the system. We are going to need a driver for the LEDs.

Here’s what we know about the LED driver requirements:

• The LED driver controls 16 two-state LEDs.

• The driver can turn on or off any individual LED without affecting

the others.

• The driver can turn all LEDs on or off with a single interface call.

• The user of the driver can query the state of any LED.

• At power-on, the hardware default is for LEDs to be latched on.

They must be turned off by the software.

• LEDs are memory-mapped to a 16-bit word (at an address to be

determined).

• A 1 in a bit position lights the corresponding LED; 0 turns it off.

• The least significant bit corresponds to LED 1; the most significant

bit corresponds to LED 16.

The first four goals are focused on what the LED driver is supposed to

do. Goals 5 to 8 describe how the driver will interact with the hardware.

In addition to these requirements, there’s a design goal: make the driver

testable off the target hardware. There is just one bank of LEDs in the

target system, so we’ll use the single-instance design model.

Before we start, let’s figure out what tests we need.
Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=53

WRITE A TEST LIST 54

 LED Driver Tests

 All LEDs are off after the driver is initialized.
 A single LED can be turned on.
 A single LED can be turned off.
 Multiple LEDs can be turned on/off .
 Turn on all LEDs
 Turn off all LEDs
 Query LED state
 Check boundary values
 Check out-of-bounds values

Figure 3.1: LED driver test list

3.3 Write a Test List

It’s helpful to create a test list before developing new functionality. The

test list is derived from the requirements. The test list defines your best

vision of what it means to be done. The list does not need to be perfect.

It’s a temporary document, probably on a note card or notepad. You

can also type the list right into the test file as a comment. As you add

each test, the corresponding comment line is deleted.

Don’t spend a lot of time composing the list; for the LedDriver, it should

take only a couple minutes. My initial test list is shown in Figure 3.1.

Beware of diminishing returns when making a test list. Once you get a

few tests down, tests come pretty quickly. When progress slows, you’ve

hit diminishing returns, and that’s probably a good time to stop work-

ing the test list and start test-driving the design. You will think of other

tests as you drive the design. Some of the tests will later be split. Some

might be combined. The purpose of the list is to help make sure you

don’t forget anything. It acts as a map to reorient yourself after a deep

dive that is needed to get a test to pass. It’s your to-do list.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=54

WRITING THE FIRST TEST 55

Some of the tests identified might not have clear outcomes. For exam-

ple, how do you think the driver should react to out-of-bounds param-

eters? The answer is not clear. But that’s OK. You will probably know

your options better when the code comes together. Sometimes more

experience clarifies, but sometimes it triggers new questions, ones that

cannot be resolved immediately.

In the next section, you will start the TDD test-drive. Before that, I have

a question for you. Have you ever been told to tackle the hardest part

of the problem first, letting the little things take care of themselves? I

have, and it always seemed to be good advice. I am going to turn that

advice on its head.

The test-driven developer starts with something small, or easy, that

moves the work toward the goal. Each step along the way is verifiable.

Capability is added to the production code one test at a time, working

toward a robust and well-tested solution. The result is a foundation

that can support the more complex behaviors when we get to them.

Anticipating the tests to write, and choosing an order to write them in,

is a skill you develop over time.

3.4 Writing the First Test

The test list is done, so let’s get started. A natural first test is to test that

initialization is correct. LEDs are supposed to be off after initialization.

First we’ll create the LedDriver test file. By convention, I call it Led-

DriverTest.c. I usually place test code in a different directory from the

production code. I’ll put this code in the unity/LedDriver directory and

adjust my makefile so it compiles and links with the new test file. Choos-

ing a suitable test name for what we are trying to accomplish, the file

should look like this:

Download unity/LedDriver/LedDriverTest.c

#include "unity_fixture.h"

TEST_GROUP(LedDriver)

TEST_SETUP(LedDriver)

{

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=55

WRITING THE FIRST TEST 56

TEST_TEAR_DOWN(LedDriver)

{

}

TEST(LedDriver, LedsOffAfterCreate)

{

TEST_FAIL_MESSAGE("Start here");

}

If you build and run this test, you’ll get this output:

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

0 Tests 0 Failures 0 Ignored

An initial failing test would indicate that everything is in place, but we

did not get a failing test. Add the LedDriverTestGroupRunner.c file to the

tests/LedDriver, and add this test case to it like this:

Download unity/LedDriver/LedDriverTestRunner.c

TEST_GROUP_RUNNER(LedDriver)

{

RUN_TEST_CASE(LedDriver, LedsOffAfterCreate);

}

Running make again gives the same results:

⇒ make

compiling LedDriverTestRunner.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

0 Tests 0 Failures 0 Ignored

One final bit of wiring is needed. Have main() call the test group runner:

Download unity/AllTests.c

#include "unity_fixture.h"

static void RunAllTests(void)

{

RUN_TEST_GROUP(LedDriver);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTestRunner.c
http://media.pragprog.com/titles/jgade/code/unity/AllTests.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=56

WRITING THE FIRST TEST 57

Save, Make, Run

In TDD we make a lot of small changes and additions to the
code. We build and run tests really often. I suggest you set up
your development environment so that a simple keystroke saves
your work and initiates a build. I’m using Eclipse for the code
examples. I have it set to run make whenever a file is saved. I
use the Save All key sequence reflexively.

int main(int argc, char * argv[])

{

return UnityMain(argc, argv, RunAllTests);

}

With everything wired together properly, we get this failure message:

⇒ make

compiling AllTests.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.

TEST(LedDriver, LedsOffAfterCreate)

LedDriver/LedDriverTest.c:15: FAIL

Start here

1 Tests 1 Failures 0 Ignored

FAIL

Now delete the TEST_FAIL_MESSAGE() and see this output:

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.

1 Tests 0 Failures 0 Ignored

OK

Now let’s make the test check something meaningful. Looking at the

test list, the driver has the responsibility to turn off all the LEDs as

part of initialization.

How can that be checked? An automatic test can’t look at an LED, can

it? A retina is needed or a photo cell. Or is it? During hardware software

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=57

WRITING THE FIRST TEST 58

integration we’ll have to look at the LEDs, but during unit testing we

can virtually look at them.

In the target hardware there is a specific address, a memory-mapped

I/O address, that is literally wired into the circuitry. The bits written

to that address turn on and off specific LEDs. The driver must write a

16-bit zero value to the LED’s I/O address during LedDriver_Create() to

turn off all the LEDs.

This book is about TDD, so another design goal is that the LedDriver

must be testable independent of the hardware (that is, on the develop-

ment system). If during the test the driver writes to the physical address

required by the target hardware, there will be a problem: memory cor-

ruption or a memory access fault. Let’s address how to get this code

testable in the development system.

Fake Out the Driver

If the address is passed to the driver, the test case can fake out the

driver by passing the address of a bank of virtual LEDs instead of the

real physical address. The virtual LEDs are nothing more than a vari-

able with the same number of bits as the memory-mapped LEDs. The

test case can set, reset, and read the variable representing the virtual

LEDs. The driver does not know that it is being tricked. It’s just as

happy turning on a bit in RAM as it is setting a bit in a memory-mapped

device.

The virtual LEDs idea will work, but what values should we check for?

The spec and test list give direction on what values to check. Setting

an individual LED bit to zero turns the LED off, while setting it to one

turns it on. The hardware powers up with each LED in the on state.

Per the spec, the software is responsible for turning all LEDs off during

initialization. So, we better make sure that a zero is written to each bit

of the virtual LEDs.

To test that LEDs are initialized correctly, we write this test:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, LedsOffAfterCreate)

{

uint16_t virtualLeds = 0xffff;

LedDriver_Create(&virtualLeds);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=58

WRITING THE FIRST TEST 59

There is some subtlety here. In TEST(LedDriver, LedsOffAfterCreate), virtu-

alLeds is set to 0xFFFF followed by a call to LedDriver_Create(&virtualLeds).

Initializing virtualLeds to 0xFFFF makes sure that the test can tell the dif-

ference between virtualLeds coincidentally being zero and it being zero

because the initialization did its job.

Also, notice the type of virtualLeds. The LEDs are represented by a 16-

bit unsigned integer, matching the width of the LEDs in the memory-

mapped I/O space. The tests and the production code need to run on

at least two machines: the development systems and the target. Conse-

quently, the width of virtualLeds must be specified. As you know, int sizes

can vary from one machine architecture to another. Using a portable int

type like uint16_t from stdint.h2 allows us to force the integer length to 16

bits on any machine.

Compiling results in an error, just as expected:

⇒ make

compiling LedDriverTest.c

LedDriver/LedDriverTest.c: In function 'TEST_LedDriver_LedsOffAfterCreate_':

LedDriver/LedDriverTest.c:16: warning: implicit declaration

of function 'LedDriver_Create'

Linking BookCode_Unity_tests

Undefined symbols:

"_LedDriver_Create", referenced from:

TEST_LedDriver_LedsOffAfterCreate_ in LedDriverTest.o

ld: symbol(s) not found

Create the LedDriver.h file and add the prototype for the function Led-

Driver_Create(). Add the #include to the test file. Compile and see the

link error.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Undefined symbols:

"_LedDriver_Create", referenced from:

TEST_LedDriver_LedsOffAfterCreate_ in LedDriverTest.o

ld: symbol(s) not found

After a clean compile, create LedDriver.c, and add a skeletal version of

LedDriver_Create(). Don’t implement the initialization yet. It should look

like the following:

2. stdint.h is only guaranteed to exist in compilers that are C99 or later.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=59

WRITING THE FIRST TEST 60

Download src/LedDriver/LedDriver.c

#include "LedDriver.h"

void LedDriver_Create(uint16_t * address)

{

}

void LedDriver_Destroy(void)

{

}

We let the test fail to assure it can do its job. Can it detect a specific

failure? It looks like this test case can:

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.

TEST(LedDriver, LedsOffAfterCreate)

LedDriver/LedDriverTest.c:17: FAIL

Expected 0x0000 Was 0xFFFF

1 Tests 1 Failures 0 Ignored

FAIL

The next code example shows the simplest implementation needed to

get it to pass:

Download src/LedDriver/LedDriver.c

void LedDriver_Create(uint16_t * address)

{

*address = 0;

}

Building again, we see that the updated test is passing:

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.

1 Tests 0 Failures 0 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=60

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 61

Dependency Injection

Passing the virtualLeds to the driver is a use of dependency injection.

Instead of the driver knowing and depending upon the LED’s address

at compile time, we inject it at runtime. Only the target system’s initial-

ization function will have a compile-time dependency on the physical

LED address.

An interesting side benefit of using dependency injection is that the

LedDriver is more reusable. The driver could be put in a library and

used in systems that have different LED addresses. This is an example

of TDD naturally leading to a more flexible design.

Don’t Let the Code Get Ahead of the Tests

If you are envisioning the final code, this incomplete implementation is

probably bothering you. The ledsAddress is not stored anywhere, and of

course it will need to be stored. Don’t store it yet; no failing test requires

it. Write a test that won’t pass unless you store the address. The next

test will force the driver to use the passed-in ledAddress.

I know it’s hard to resist writing code that you know will be needed, but

don’t write it yet. Let the code follow the tests. Sticking to this discipline

produces comprehensive tests and thoroughly tested production code.

Bob Martin composed The Three Laws of TDD, shown in the sidebar on

the next page, which provides guidance on alternating between writ-

ing test code and production code. Storing the address before a test

requires it is a violation of Bob’s third law of TDD.

3.5 Test-Drive the Interface Before the Internals

A good interface is critical for a well-designed module. The first few tests

drive the interface design. The focus on the interface means that we’re

working from the outside of the code being developed to the inside. The

test, as the first user of the interface, gives the callers (or client code)

perspective of how to use the code being developed. Starting from the

user’s perspective leads to more usable interfaces.

I also usually let the first few tests exercise some boundary condition in

the code being developed. Choose a simple case but one that exercises

a boundary.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=61

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 62

Bob Martin’s Three Laws of TDD∗

Bob Martin describes Test-Driven Development using these
three simple rules:

• Do not write production code unless it is to make a failing
unit test pass.

• Do not write more of a unit test than is sufficient to fail, and
build failures are failures.

• Do not write more production code than is sufficient to
pass the one failing unit test.

Even though this sounds restrictive, it is a very productive and
fun way to develop software.

. Found at http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

The code behind the interface starts with hard-coded return results, so

it feels like nothing is being tested. The point is not testing but driving

the interface design and getting the simple boundary tests in place.

The main purpose of the driver is to turn LEDs on and off. From the

schematic, we found that the LEDs are numbered 01 through 16. To

turn on LED 01, when no other LEDs are on, the driver writes 0x0001

to the LED’s memory-mapped address. Turning on LED 01 in the test

should result in setting virtualLed to 1, as shown in the following test:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOnLedOne)

{

uint16_t virtualLeds;

LedDriver_Create(&virtualLeds);

LedDriver_TurnOn(1);

TEST_ASSERT_EQUAL_HEX16(1, virtualLeds);

}

Notice that in this test ledsAddress is not first initialized to 0xFFFF. That

was significant for the LedDriver_Create() function, but not here. The

initial state does not really matter because LedDriver_Create() takes care

of it. This test produces a compilation error as expected.

⇒ make

compiling LedDriverTest.c

LedDriver/LedDriverTest.c: In function 'TEST_LedDriver_TurnOnLedOne_':

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=62

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 63

LedDriver/LedDriverTest.c:23: warning: implicit declaration of function 'LedDriver_TurnOn'

Linking BookCode_Unity_tests

Undefined symbols:

"LedDriver_TurnOn", referenced from:

TEST_LedDriver_TurnOnLedOne_ in LedDriverTest.o

ld: symbol(s) not found

To get rid of the compilation error, add the interface-function prototype

to the module’s interface declaration in the header file like this:

Download include/LedDriver/LedDriver.h

void LedDriver_TurnOn(int ledNumber);

If you typed everything right, the compilation error is gone. Your reward

is a link error.

⇒ make

compiling LedDriver.c

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Undefined symbols:

"LedDriver_TurnOn", referenced from:

TEST_LedDriver_TurnOnLedOne_ in LedDriverTest.o

ld: symbol(s) not found

To get rid of the link error, again add a skeletal, but wrong, implemen-

tation to the .c file.

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

}

Building and running now should result in a failing test. Here’s what

we get:

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

.

1 Tests 0 Failures 0 Ignored

OK

Tests pass, but something is wrong. Notice there is only one test in the

run. We better update the TEST_GROUP_RUNNER() so it knows about our

new test.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/LedDriver/LedDriver.h
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=63

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 64

Download unity/LedDriver/LedDriverTestRunner.c

TEST_GROUP_RUNNER(LedDriver)

{

RUN_TEST_CASE(LedDriver, LedsOffAfterCreate);

RUN_TEST_CASE(LedDriver, TurnOnLedOne);

}

There is no need to add anything to main() this time, because the

TEST_GROUP_RUNNER() is already installed. Witness the successful link

and the new test failure:

⇒ make

compiling LedDriverTestRunner.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

..

TEST(LedDriver, TurnOnLedOne)

LedDriver/LedDriverTest.c:19: FAIL

Expected 0x0001 Was 0x0000

2 Tests 1 Failures 0 Ignored

FAIL

Now there’s a failure, right on cue. To get this test to pass, TurnOn()

will need access to the LED’s address that was passed into the Led-

Driver_Create(). Add a private file-scope variable to the .c file, and ini-

tialize it like this:

Download src/LedDriver/LedDriver.c

static uint16_t * ledsAddress;

void LedDriver_Create(uint16_t * address)

{

ledsAddress = address;

*ledsAddress = 0;

}

And finally, do the simplest thing possible to get this test to pass. In

this case, write a 1 to the LED’s address in memory:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

*ledsAddress = 1;

}

Build the code, and watch it pass the two tests:

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTestRunner.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=64

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 65

Running BookCode_Unity_tests

..

2 Tests 0 Failures 0 Ignored

OK

Writing and passing this test helped accomplish a couple things: it

defined the interface for one driver function and confirms our approach

for intercepting writes going to the hardware. But I bet there is some-

thing bothering you.

The Implementation Is Wrong!

Like most engineers, you are probably a little uncomfortable with hard-

coding something that is obviously wrong. The final implementation

should only set the lowest order bit. But, if you think about it, it is

exactly right for the tests written so far. If we were not practicing TDD,

where more tests are to follow, leaving this wrong implementation could

result in a bug. But we are doing TDD and will write the tests that reveal

this weakness.

I can’t imagine getting through our test list and leaving this wrong

implementation in place. But if you find yourself hard-coding some-

thing that is not covered in the current test list, write the test to reveal

the weakness immediately or add another item to the test list.

The Tests Are Right

With the implementation being incomplete, you might think that noth-

ing is being tested. Big deal! The test makes sure that a variable is set

to one!

Try to think about it a different way. The tests are right! They are a

very valuable by-product of TDD. These simple implementations test

our tests. Watching the test case fail shows that the test can detect a

wrong result. Hard-coding the right answer shows that the test case can

detect the right result. The test is right and valuable, even though the

production code is incomplete. Later, as the implementation evolves,

these seemingly trivial tests will test important behavior and boundary

conditions. In essence, we’re closing a vice around the code under test,

holding the behavior steady (see the sidebar on the following page).

Don’t worry, the production code won’t be hard-coded and incomplete

for long. As soon as you need to turn on a different LED, the hard-coded

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=65

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 66

Software Vice

“When we have tests that detect change, it is like having a
vice around our code. The behavior of the code is fixed in
place. When we make changes, we can know that we are
only changing one piece of behavior at a time. In short, we’re
in control of our work.” —Michael Feathers, Working Effectively
with Legacy Code [Fea04]

value will have to go. The real implementation is not much more diffi-

cult, but I ask you to resist the temptation to put in more code than is

needed by the current test. We’re evolving the design. The problem with

adding more code than the current tests require is that you probably

won’t write all the tests you need to keep future, and present, bugs out

of the code.

Adding code before it is needed by the tests adds complexity. Sometimes

you will be wrong about the need, resulting in carrying the complexity

unnecessarily. Also, there is no end to the thinking “I will need it.”

Where should you stop? In practicing TDD, we stop when the code is

not needed by the current tests. Loose ends are cataloged in the test

list.

TDD is structured procrastination. Put off writing the right production

code until the tests force us to. Implementation completeness, the ulti-

mate objective, is reached only after all the correct tests are in place.

Choose the Next Test

What test is next? We could write a new test that would force us to

eliminate the simple-minded implementation. But I’d rather evolve the

interface to get a better picture of the module being built. Let’s turn

off the LED just turned on. Turn on and turn off complement each

other and will come in handy in the coming tests that verify that LED

manipulations do not interfere with each other. One other point, we

could actually deploy this code to the target if all we needed to do was

turn on LED 1. It’s settled—let’s write a test to turn off LED 1:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=66

TEST-DRIVE THE INTERFACE BEFORE THE INTERNALS 67

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOffLedOne)

{

uint16_t virtualLeds;

LedDriver_Create(&virtualLeds);

LedDriver_TurnOn(1);

LedDriver_TurnOff(1);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

I’m not going to show all the steps this time. Go ahead and add the

LedDriver_TurnOff() prototype to the .h file, add an empty implementation

of the function to the .c files, and install the test case into the test

group runner just like before. Incrementally we’re getting rid of compiler

errors and then linker errors. The new test builds but fails because

LedDriver_TurnOff() doesn’t actually turn anything off.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

...

TEST(LedDriver, TurnOffLedOne)

LedDriver/LedDriverTest.c:28: FAIL

Expected 0x0000 Was 0x0001

3 Tests 1 Failures 0 Ignored

FAIL

You are probably getting uncomfortable again, because you know I’m

going to make you hard-code the LED value again to get this test to

pass. Right you are. Make the code pass like this:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOff(int ledNumber)

{

*ledsAddress = 0;

}

All the tests pass again.

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

...

3 Tests 0 Failures 0 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=67

INCREMENTAL PROGRESS 68

At this point, the interface of the LED driver is taking shape. We have

three tests and a skeletal implementation of the driver. We’ll return to

the code in the next chapter, but first let’s discuss these small steps

we’re taking.

3.6 Incremental Progress

People new to TDD are often bothered by an early version of code like

this. We’re testing nothing (you might think), just some hard-coded

return values; the tests are tiny, and we’re bouncing between activi-

ties. Let me explain a little more.

Do TSTTCPW: Fake It and Then Make It

Back when I was first learning extreme programming, Kent Beck wrote

this catchy acronym on the board: DTSTTCPW.3 It has a real nice ring

to it; I like to think of words that rhyme with it. It stands for Do The

Simplest Thing That Could Possibly Work. When you have written only

a few simple tests, the simplest thing is usually faking it. The LedDriver

faked it by hard-coding the values written to the LED’s address. Once

you have some more tests, faking won’t be simple—it will be simpler to

use the real solution or part of the real solution.

In traditional development, having the hard-coded values could be a

serious problem. It’s easy to forget shortcuts like this when they are

buried in the implementation. In TDD it’s no big deal because you will

go back to them. As you design more tests, the weaknesses are revealed.

If you are concerned that you will forget, add a test to the test list.

When I first saw Kent fake the return result, I was bothered. But I tried

it and found it worked. As Kent suggested, I made sure I wrote all the

needed tests. After quite a bit of TDD experience, I had an important

revelation. Even though the implementation is nowhere near correct,

the tests are correct!

I’ve taught many people TDD and shown them “fake it ’til you make it.”

Often they ask, “When do you stop faking and write the real code?” My

simple rule of thumb is that as soon as it is more trouble to fake it than

it is to make it, you make it. You will see what I mean soon.

3. See http://www.c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=68

INCREMENTAL PROGRESS 69

Keep Tests Small, Focused

It’s worth taking notice of a couple things. You might wonder why there

is a second test case for turning off LED 1. The easiest thing to do to test

turning off LED 1 would be to add a little more code to the TEST(LedDriver,

TurnOnLedOne). But that would have made the test less focused. There

would be two reasons for that test to fail: LedDriver_TurnOn() is broken or

LedDriver_TurnOff() is broken.

In the second test, notice that there is no check to see whether Led-

Driver_TurnOn() worked. TEST(LedDriver, TurnOnLedOne) makes that check,

so there is no need to keep checking it in this and the other tests to

come.

Programmers new to TDD usually put too much in each test. It hurts

readability and focus. There is no limit to the number of lines or asser-

tions in a test case, just like there is no limit to the number of lines

in a function. Keep tests readable, small, and focused. The steps of the

Four-Phase Test pattern (setup, exercise, verify, and cleanup) should

be visible in your test cases. When tests get too big or unclear, they

lose their documentation value. When tests get unclear, readers are

not sure what they are trying to accomplish. Keep your tests small,

focused, and well named; they will repay the effort for years to come.

Ideally a single code problem will result in a single test failure. By the

way, this ideal will never be met, but it’s still good to have the ideal.

Refactor on Green

Another integral part of TDD is refactoring. Refactoring is the regular

cleaning of the code and design. We’ll be refactoring as we continue

developing the LedDriver in the next chapter. We’ll also go in-depth into

refactoring in Chapter 12, Refactoring, on page 249.

The only safe time to refactor is when the tests are passing. Said more

emphatically, don’t refactor when tests are not passing! When tests are

failing, you don’t have the behavior locked in. Structural changes, while

hunting down a failing test, can make it very difficult to get back to all

tests passing. Passing tests are the safety net, making the acrobatics

of refactoring safe. Tests are passing, so let’s see whether there are any

problems in our new code.

With a well-developed sense of smell, you will detect a whiff of code

smells before the design rot becomes too advanced to easily fix.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=69

TEST-DRIVEN DEVELOPER STATE MACHINE 70

The test code has developed a smell, duplication. virtualLeds are being

created in each test case, and LedDriver_Create() is called in each test

case. TEST(LedDriver, LedsOffAfterCreate) needs to stay as it is because it

deals with a special case. The duplication in the other two tests should

be moved out of the test cases like this:

Download unity/LedDriver/LedDriverTest.c

TEST_GROUP(LedDriver);

static uint16_t virtualLeds;

TEST_SETUP(LedDriver)

{

LedDriver_Create(&virtualLeds);

}

TEST_TEAR_DOWN(LedDriver)

{

}

TEST(LedDriver, LedsOffAfterCreate)

{

uint16_t virtualLeds = 0xffff;

LedDriver_Create(&virtualLeds);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

TEST(LedDriver, TurnOnLedOne)

{

LedDriver_TurnOn(1);

TEST_ASSERT_EQUAL_HEX16(1, virtualLeds);

}

TEST(LedDriver, TurnOffLedOne)

{

LedDriver_TurnOn(1);

LedDriver_TurnOff(1);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

Tests are documentation; they should be carefully named. Once the

test is passing, make sure the name expresses the test’s intention.

3.7 Test-Driven Developer State Machine

You can think of TDD as working through a state machine, like the one

shown in Figure 3.2, on the following page. Each step of the way, you

are focused on solving one specific problem. First, you have to decide

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=70

TEST-DRIVEN DEVELOPER STATE MACHINE 71

Write the test

Make the test

link

Make the test

compile

Compilation error

Link error

New test failsMake the test pass

Refactor

(Make it right)

All tests pass

All tests pass

No more tests

Choose a test

Start

Compilation error

Link error

DONE!

Programming error

Compiles clean
and test fails

Figure 3.2: TDD state machine

the next increment of behavior and express the desired outcome in a

test. Then you have to make the compiler happy as you design the

interface and get the header file and test to agree (sometimes the name

you choose is already taken; you find that out during this step).

With the interface and test in agreement, expect a link error, and then

add the skeletal implementation that is intentionally wrong. Watching

the test fail is a good sign that your test can detect when the code

is broken. If you find that the test passes while expecting a failure, it

might indicate that the test has a mistake in it. This is pretty common

when cutting and pasting the last test to make the next test. Also, when

using Unity, or any test harness that requires multiple steps to install

a test, the failing test shows that your test is installed into the test

runner.

Once the test passes, you know you have the desired behavior, but your

work isn’t done yet. The code needs to be left clean. While making the

test pass, it’s OK to make a mess. Just don’t leave the mess; refactor it

out.

Why do these small steps? They allow you to focus on solving one prob-

lem at a time.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=71

TESTS ARE FIRST 72

3.8 Tests Are FIRST

In Agile in a Flash [OL11], Tim Ottinger and Jeff Langr tell us five criti-

cal attributes of unit tests. Tests need to be FIRST to be most effective.

F Fast: Tests are fast, so fast that developers run them with every

small change without waits that break the flow.

I Isolated: Tests are isolated. One test does not set up the next test.

Tests also isolate failures.

R Repeatable: Tests are repeatable; repeatable means automated.

Tests run in a loop always giving the same result.

S Self-verifying: Tests verify their outcome, reporting a simple “OK”

when they pass while providing concise details when they fail.

T Timely: Tests are timely. Programmers write them just in time, in

lock-step (but just before) the production code, preventing bugs.

It is a challenge to test-drive C. TDD is best applied to self-contained

units of functionality. In common C programming practice, the self-

contained units of functionality are often missing; module boundaries

are not very evident, and the language constructs are limited.

In object-oriented languages, functions are gathered around common

data and accessed through the interface defined by the functions. The

language supports self-contained units directly. Self-contained units

are more testable. That’s why TDD is more natural when applied to OO

programming languages. Although C is not an OO language, there is

nothing stopping us from applying valuable lessons from the OO world.

When we make tests FIRST, it leads to modular designs, which are

designs that can stand the test of time. Let’s look at how we’ll keep

code modular and testable.

3.9 Where Are We?

In this chapter, we got a start on the LedDriver. The LedDriver is not a

complicated example, but it’s best to start with a simple example to

show the mechanics and thought processes of TDD.

We have a test list will help drive design and meet the needs of the users

of the driver. These first few tests have delivered a skeleton of the test

fixture and of the driver. We’re ready to add more meat to the bone.

Probably some of you are concerned about the loose ends in this code,

the partial implementations. Don’t fret. You can’t work on everything

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=72

WHERE ARE WE? 73

Code

without

new feature

Code with

new untested

 feature

Code with

new tested

 feature

Write
 all pr

oduct
ion co

de at
once

Debu
g

Test Driven Development

Figure 3.3: TDD stepping-stones

at once anyway. We are methodically and incrementally adding and

verifying behavior. We’re procrastinating, but here procrastination is

not a bad word.

We broke the dependency from the driver to hardware by passing the

LED’s address to the driver. This design decision gave us the opportu-

nity to fake out the driver, allowing it to intercept bit patterns destined

for the hardware.

TDD is kind of like crossing a mountain stream on the rocks that pro-

trude from the rushing water. The path is not perfectly straight, as the

Debug-Later Programming approach may appear. But we get across

the stream with dry shoes. DLP is like making a flying leap to cross the

stream in one bound. If the stream is narrow, this might work. More

often we end up in the stream fighting unexpected currents to get to

done. Each test moves the code toward the goal of being done, as illus-

trated in Figure 3.3. TDD’s crooked path has less risk because the code

is always passing its currently defined tests. There is less risk of bugs

impeding our progress. We’re partway across the stream. We’ll get the

rest of the way across in the next chapter.

Put the Knowledge to Work

1. Start your own LedDriver so that you can follow along in the next

chapter. You will find starter files in code/SandBox. Look there for

a README.txt file.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=73

WHERE ARE WE? 74

2. Write a test list for a first-in first-out CircularBuffer that holds a

series of ints.

3. Start test-driving the CircularBuffer. Choose tests that check the ini-

tial state and explore its interface. Only choose tests that can pass

with hard-coded return results. You will need to modify the make-

file so it can find the CircularBuffer files. You will get a chance to

finish it after the next chapter.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=74

When you find yourself in a hole, stop digging.

Will Rogers

Chapter 4

Testing Your Way to Done
In the previous chapter, we started LedDriver. In this chapter, we’ll fin-

ish it...if there is anything such as finished in software development.

Starting a task is very different from sustaining it or finishing it. In this

chapter, you will see the steady state, the basic rhythm, of TDD. We’ll

grow the driver, one test at a time, until it’s done.

Before we jump back into it, let’s review where we left off in the previous

chapter. The skeletal header, source, and test files are in place and part

of our automated build. The LedDriver’s interface is partially defined, and

we have a list of anticipated tests. We also have a test fixture that tests

the driver independent of the target hardware. All three of our tests are

passing.

If you want to refresh your memory about the current state of the Led-

Driver, you can find it in Appendix D, on page 337.

4.1 Grow the Solution from Simple Beginnings

The simple-minded implementation from the previous chapter will get

more robust incrementally. Each test-drives the implementation to a

more complete state.

The next test turns on a couple of LEDs. That is enough to force a more

general and complete implementation. Notice which LEDs are turned

on in the test that follows, and see if you can easily determine whether

the expected value in virtualLeds is correct.

Download from Wow! eBook <www.wowebook.com>

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 76

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOnMultipleLeds)

{

LedDriver_TurnOn(9);

LedDriver_TurnOn(8);

TEST_ASSERT_EQUAL_HEX16(0x180, virtualLeds);

}

Tests are documentation, and a successful document should be easy to

understand. If you want to have well-written tests, you must carefully

select your test data.

Someone who works with binary and hexadecimal should find it pretty

easy to confirm that test data. I chose LEDs 8 and 9 because the arith-

metic is fairly simple and the two bits are in separate nibbles, making

their combination easy to recognize in hex.

I expect this test to compile; there were no interface changes. If you build

and run right now, there is no failing test, as expected. Add the test into

the TEST_GROUP_RUNNER(). It fails because we did the simplest thing that

could possibly work at the end of the previous chapter, and it doesn’t

work for this test.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

...

TEST(LedDriver, TurnOnMultipleLeds)

LedDriver/LedDriverTest.c:60: FAIL

Expected 0x0180 Was 0x0001

4 Tests 1 Failures 0 Ignored

FAIL

No surprise here. The test fails as expected, proving the implementation

inadequate by this test. What was the DTSTTCPW before this test is no

longer DTSTTCPW; it doesn’t work.

Instead of just assigning *ledAddress = 1, we do some bit fiddling like

this:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

*ledsAddress |= (1 << ledNumber);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=76

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 77

Will the test pass? That’s the goal. I’m bullish as I save and build.

⇒ make

compiling LedDriver.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

...

TEST(LedDriver, TurnOnLedOne)

LedDriver/LedDriverTest.c:43: FAIL

Expected 0x0001 Was 0x0002

.

TEST(LedDriver, TurnOnMultipleLeds)

LedDriver/LedDriverTest.c:60: FAIL

Expected 0x0180 Was 0x0300

4 Tests 2 Failures 0 Ignored

FAIL

What’s with those two failures? This was supposed to pass! The pre-

viously passing TEST(LedDriver, TurnOnLedOne) and the new TEST(LedDriver,

TurnOnMultipleLeds) are both failing.

There must be some small mistake. It can’t be big; only one line was

changed. Small logic mistakes happen all the time. One of the big ben-

efits of TDD is catching small problems while they are easy to find and

fix. A key to this is detecting them right away.

If this mistake had been discovered in the fully integrated system, find-

ing it would take much longer. There would have been multiple changes

bundled with it. The fault could have been with the caller asking for

the wrong LED rather than the driver controlling the wrong LED. It’s

this defect prevention aspect of TDD that helps developers keep a rapid

steady pace.

Let’s find the problem. Look carefully at the TEST(LedDriver, TurnOnLedOne)

output, and you can see that 0x0001 was expected but the result was

a 0x0002. The bit shifter between your ears might tell you that the bit

was shifted one position too many to the left. No print statements or

debuggers needed, and we’ve isolated the problem: ledNumber needs to

be converted to a bit offset by subtracting one from it prior to using it

as a shift count.

Off-by-one errors and other logic errors are very easy to make, but their

consequence can be catastrophic as a hidden bug. In Debug-Later Pro-

gramming, mature bugs are hunted down. In TDD, we see them in the

larvae stage and squash them before they infest the code.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=77

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 78

One of the goals of running tests on the development system is to find

and fix most errors before running on the hardware, avoiding extra

target uploads and lengthy Debug on Hardware (DOH!) sessions. Of

course, there will still be problems that can be found only on the hard-

ware, but we can avoid DOH! for many of the problems along the way.

The off-by-one error is fixed like this:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

*ledsAddress |= 1 << (ledNumber - 1);

}

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

4 Tests 0 Failures 0 Ignored

OK

Ahhh, having a passing test feels much better. It is fixed now, never to

be broken again, at least not without us knowing right away.

Now that all tests pass, it’s a good time to look for ways to improve the

code. That bit manipulation is a little tough on the eyes. Let’s refactor

the bit manipulation into its own helper function.

Download src/LedDriver/LedDriver.c

static uint16_t convertLedNumberToBit(int ledNumber)

{

return 1 << (ledNumber - 1);

}

void LedDriver_TurnOn(int ledNumber)

{

*ledsAddress |= convertLedNumberToBit(ledNumber);

}

It’s easier to see the ideas in the code when you extract them and wrap

them in an intention-revealing name. You might be concerned with the

added overhead for extracting the bit manipulation. You can see I chose

a static function to avoid adding to the global namespace. If we are really

concerned about the memory footprint, we could also make convertLed-

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=78

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 79

NumberToBit() an inline1 function or a preprocessor macro. That may be

unnecessary with today’s optimizing compilers.

Steady Progress

Each test moves the implementation closer to done. Often, there is a

natural sequence to the tests, like the stones in a mountain stream.

Sometimes there is more than one path. Let’s hop to the next stone,

testing that we’re on the right path.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOffAnyLed)

{

LedDriver_TurnOn(9);

LedDriver_TurnOn(8); LedDriver_TurnOff(8);

TEST_ASSERT_EQUAL_HEX16(0x100, virtualLeds);

}

The test fails (assuming you installed it in the TEST_GROUP_RUNNER).

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

....

TEST(LedDriver, TurnOffAnyLed)

LedDriver/LedDriverTest.c:68: FAIL

Expected 0x0100 Was 0x0000

5 Tests 1 Failures 0 Ignored

FAIL

Notice that the test turns on LED 9 before turning on and off LED 8.

Without turning on some other LED, the current brute-force imple-

mentation would have passed. The existing simple implementation used

to turn off LED 1 (*ledsAddress = 0;) turns off all LEDs. LedDriver_TurnOff()

does not mask the bits that should not be affected. To force the writing

of the masking code, we have to make sure some LED will be left in the

on state.

This test would be better if we had LedDriver_TurnAllOn() to work with.

Let’s comment out this test, implement the turn all on function, and then

come back to this test. We just stepped back one stone and are taking a

different path. Here’s the test for turning all LEDs on:

1. inline is part of the C99 standard.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=79

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 80

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, AllOn)

{

LedDriver_TurnAllOn();

TEST_ASSERT_EQUAL_HEX16(0xffff, virtualLeds);

}

And its implementation:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnAllOn(void)

{

*ledsAddress = 0xffff;

}

Before we move on, let’s refactor out the magic numbers for all LEDs

on and off here and in LedDriver_Create().

Download src/LedDriver/LedDriver.c

enum {ALL_LEDS_ON = ~0, ALL_LEDS_OFF = ~ALL_LEDS_ON};

void LedDriver_TurnAllOn(void)

{

*ledsAddress = ALL_LEDS_ON;

}

With the ability to turn on all LEDs, here is the revised test for turning

off any LED:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOffAnyLed)

{

LedDriver_TurnAllOn();

LedDriver_TurnOff(8);

TEST_ASSERT_EQUAL_HEX16(0xff7f, virtualLeds);

}

After installing TEST(LedDriver, TurnOffAnyLed) and then watching it fail,

we add the code to LedDriver_TurnOff(). I predict it will work right the first

time. What do you think?

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOff(int ledNumber)

{

*ledsAddress &= ~(convertLedNumberToBit(ledNumber));

}

Tests are passing once again. Notice that LedDriver_TurnOff() took advan-

tage of the recently extracted convertLedNumberToBit().

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=80

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 81

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.....

6 Tests 0 Failures 0 Ignored

OK

I wonder, can the software read the state of the LEDs? The LEDs I/O-

mapped address is probably write-only. It’s best not to guess. I holler to

our hardware engineer to get a quick answer:

James: Hey Gary, can we read the state of the LEDs with software?

Gary: That’s a stupid question; of course not. Read the schematic!

James, a little peeved: Thanks, Gary, love you like a brother.

I think Gary had a bad weekend, but I’m glad I asked. The driver, as

currently implemented, won’t work in the real hardware because the

production code uses the LED memory location for reading and writing.

How do we prove the hardware is not read? It’s easier than it sounds.

Add a test that shows that the driver is not getting the current LED state

from the hardware by first setting virtualLeds to 0xFFFF. Remember that

during initialization LedDriver_Create turns off all the LEDs.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, LedMemoryIsNotReadable)

{

virtualLeds = 0xffff;

LedDriver_TurnOn(8);

TEST_ASSERT_EQUAL_HEX16(0x80, virtualLeds);

}

In the current implementation, the driver reads from virtualLeds, causing

this test to fail and giving this message:

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

......

TEST(LedDriver, TurnOnMultipleLeds)

LedDriver/LedDriverTest.c:80: FAIL

Expected 0x0080 Was 0xFFFF

7 Tests 1 Failures 0 Ignored

FAIL

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=81

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 82

After initially forgetting to install the test case...the newly installed test

fails. (I’m going to stop mentioning that the test must be installed into

the TEST_GROUP_RUNNER(). If you are following along writing this code,

you probably forget a couple times, and the unexpected passing test will

warn you.) To make the test pass, record the LED’s state in a private

file-scope variable ledsImage. Initialize it in LedDriver_Create().

Download src/LedDriver/LedDriver.c

enum {ALL_LEDS_ON = ~0, ALL_LEDS_OFF = ~ALL_LEDS_ON};

static uint16_t * ledsAddress;

static uint16_t ledsImage;

void LedDriver_Create(uint16_t * address)

{

ledsAddress = address;

ledsImage = ALL_LEDS_OFF;

*ledsAddress = ledsImage;

}

Use ledsImage in the functions LedDriver_TurnOn(), LedDriver_TurnOff(), and

LedDriver_TurnAllOn() as a record of the current LED states.

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

ledsImage |= convertLedNumberToBit(ledNumber);

*ledsAddress = ledsImage;

}

void LedDriver_TurnOff(int ledNumber)

{

ledsImage &= ~(convertLedNumberToBit(ledNumber));

*ledsAddress = ledsImage;

}

void LedDriver_TurnAllOn(void)

{

ledsImage = ALL_LEDS_ON;

*ledsAddress = ledsImage;

}

The tests are running green again.

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

......

7 Tests 0 Failures 0 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=82

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 83

Let’s remove a bit more duplication and make this code easier for future

readers by extracting *ledsAddress = ledsImage; into a helper function.

Download src/LedDriver/LedDriver.c

static void updateHardware(void)

{

*ledsAddress = ledsImage;

}

void LedDriver_TurnAllOn(void)

{

ledsImage = ALL_LEDS_ON;

updateHardware();

}

The implementation for LedDriver_TurnOn() and LedDriver_TurnOff() looks

pretty complete, with one exception: there are no boundary checks.

Let’s decide whether bounds checks are needed.

Test Boundary Conditions

In some designs, the responsibility for assuring that no out-of-bounds

LEDs are controlled may be somewhere else. In that case, the design

would not call for boundary checking. But in this case, the LedDriver

will be used by the application-level code, so boundary checks are the

driver’s responsibility.

This test checks the upper and lower bounds of the legal LED values.

The tests act as a detailed requirement. The really cool part about this

document is that it executes, making sure the requirement is met.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, UpperAndLowerBounds)

{

LedDriver_TurnOn(1);

LedDriver_TurnOn(16);

TEST_ASSERT_EQUAL_HEX16(0x8001, virtualLeds);

}

Unsurprisingly, this test compiles and runs the first time.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.......

8 Tests 0 Failures 0 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=83

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 84

What should happen when you manipulate an out-of-bounds LED?

Should the driver write over adjacent memory, silently ignore the bad

parameters, corrupt the stack, or produce a runtime error? Of all those,

the last one sounds best. If the code detects the wrong LED number,

there is certainly a programming error.

Before we get to how to handle the runtime error, let’s make sure that

the out-of-bounds values do no harm—part of a Hippocratic Oath for

LED drivers. This test exercises the driver with some fence-post values

and a way out-of-bounds value.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsChangesNothing)

{

LedDriver_TurnOn(-1);

LedDriver_TurnOn(0);

LedDriver_TurnOn(17);

LedDriver_TurnOn(3141);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

Running the tests...

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

......

TEST(LedDriver, OutOfBoundsChangesNothing)

LedDriver/LedDriverTest.c:100: FAIL

Expected 0x0000 Was 0x0010

9 Tests 1 Failures 0 Ignored

FAIL

I thought this would pass, just by accident, but it didn’t. When you shift

a bit totally out of the variable, shouldn’t the variable be zero? If inquiring

minds really need to know, insert TEST_ASSERT_EQUAL_HEX16(0, virtualLeds)

after each LedDriver_TurnOn() call, and read the sidebar on the next page

to understand the test output.

Sometimes testing unhandled out-of-bounds conditions will crash the

test run. For instance, an out-of-bounds for an array on the stack can

corrupt the stack. Out-of-bounds in this case won’t do any damage; it

just gives an odd result.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=84

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 85

Inquiring Minds and LedDriver_TurnOn(3141)

I just had to know. So, I did the experiment, sprinkling in
the TEST_ASSERT_EQUAL_HEX16(0, virtualLeds) assertions. On my
machine, turning on LED 3141 actually sets the bit associated
with LED 5. 5 is the remainder of 3141 divided by 32. I guess shift-
ing actually rotates the bit through a 32-bit int. The other wrong
values have no effect.

To confirm my hunch, I turned on LED 33, like this:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsChangesNothing)
{

LedDriver_TurnOn(-1);
TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);
LedDriver_TurnOn(0);
TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);
LedDriver_TurnOn(17);
TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);
LedDriver_TurnOn(33);
TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);
LedDriver_TurnOn(3141);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);
}

If my 32-bit rotation hypothesis is correct, I would expect the low-
order bit to be set. Here are the results confirming my hunch:

⇒ make
compiling LedDriverTest.c
Linking BookCode_Unity_tests
Running BookCode_Unity_tests
Unity test run 1 of 1
........
TEST(LedDriver, OutOfBoundsChangesNothing)

LedDriver/LedDriverTest.c:99: FAIL
Expected 0x0000 Was 0x0001

9 Tests 1 Failures 0 Ignored
FAIL

The tests provide a very convenient means to design experi-
ments around your code. When the experiment is done, don’t
leave those crufty interspersed assertions in the tests.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=85

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 86

To make the test pass, add guard clauses to LedDriver_TurnOn() and Led-

Driver_TurnOff() like this:

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

if (ledNumber <= 0 || ledNumber > 16)

return;

ledsImage |= convertLedNumberToBit(ledNumber);

updateHardware();

}

void LedDriver_TurnOff(int ledNumber)

{

if (ledNumber <= 0 || ledNumber > 16)

return;

ledsImage &= ~(convertLedNumberToBit(ledNumber));

updateHardware();

}

Run the makefile, and see the tests pass:

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

........

9 Tests 0 Failures 0 Ignored

OK

Wait a second. The code just got ahead of the tests.2 The guard clause in

LedDriver_TurnOff() is not tested. The copied code from LedDriver_TurnOn()

was tested in TEST(LedDriver, OutOfBoundsChangesNothing), but it is not

tested in its new home.

Sure, you feel perfectly safe copying tested code, but beware—the two

copies are likely to diverge in the future. Tests are not just for getting the

code right in the first place but keeping it right over the long run. So, de-

lete or comment out the pasted code and add an out-of-bounds test for

LedDriver_TurnOff(). You want to see it fail first.

Let’s rename TEST(LedDriver, OutOfBoundsChangesNothing) to TEST(LedDriver,

OutOfBoundsTurnOnDoesNoHarm)—the name now focusses on the out-of-

2. See the sidebar on the following page for some advice on preventing the production

code from getting ahead of the tests.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=86

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 87

Do You Have a Test for That?

Test-Driven Development has its roots in Extreme Programming.
Pair programming, another XP practice, involves two develop-
ers working side by side doing TDD. It’s a fun and productive
way to work. Pair programming is a helpful technique to stay-
ing on track, keeping the quality high, and learning from each
other. Essentially, it is a real-time code review and problem-
solving session.

Letting the production code get ahead of the tests is such a
common mistake, especially when you are learning TDD, that
Kent Beck taught a technique for dealing with it. If your partner
writes production code before the test, ask, “Do you have a
test for that?” Whenever you hear that, don’t make excuses;
write a new test. Or push the keyboard to your partner to write
the missing test.

If you are programming solo, make sure to ask yourself that from
time to time too!

bounds behavior of LedDriver_TurnOn(). A quick copy/paste/edit gives

the LedDriver_TurnOff() variant of the test.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsTurnOffDoesNoHarm)

{

LedDriver_TurnOff(-1);

LedDriver_TurnOff(0);

LedDriver_TurnOff(17);

LedDriver_TurnOff(3141);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

The test should have failed, but it passed!

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.........

10 Tests 0 Failures 0 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=87

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 88

Copy/paste almost got us in trouble...again; the LEDs are all off to start

with! The LEDs must be on to be able to tell whether LedDriver_TurnOff()

does its job. This should help.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsTurnOffDoesNoHarm)

{

LedDriver_TurnAllOn();

LedDriver_TurnOff(-1);

LedDriver_TurnOff(0);

LedDriver_TurnOff(17);

LedDriver_TurnOff(3141);

TEST_ASSERT_EQUAL_HEX16(0xffff, virtualLeds);

}

Now we get the failure and can copy and paste in the LED guard clause.

Now back to the runtime error. Rather than silently having a runtime

error, the driver should let someone know about the error. Let’s invoke

the RUNTIME_ERROR() macro. RUNTIME_ERROR() logs an error recording the

message provided as well as the file and line number. Here is its decla-

ration:

Download include/util/RuntimeError.h

void RuntimeError(const char * message, int parameter,

const char * file, int line);

#define RUNTIME_ERROR(description, parameter)\

RuntimeError(description, parameter, __FILE__, __LINE__)

In production, RuntimeError() puts an entry into an event log. During test,

stub out RuntimeError() so the last error can be captured and checked.

The stub header looks like the following:

Download mocks/RuntimeErrorStub.h

void RuntimeErrorStub_Reset(void);

const char * RuntimeErrorStub_GetLastError(void);

int RuntimeErrorStub_GetLastParameter(void);

Here’s the stub implementation:

Download mocks/RuntimeErrorStub.c

#include "RuntimeErrorStub.h"

static const char * message = "No Error";

static int parameter = -1;

static const char * file = 0;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/include/util/RuntimeError.h
http://media.pragprog.com/titles/jgade/code/mocks/RuntimeErrorStub.h
http://media.pragprog.com/titles/jgade/code/mocks/RuntimeErrorStub.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=88

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 89

static int line = -1;

void RuntimeErrorStub_Reset(void)

{

message = "No Error";

parameter = -1;

}

const char * RuntimeErrorStub_GetLastError(void)

{

return message;

}

void RuntimeError(const char * m, int p, const char * f, int l)

{

message = m;

parameter = p;

file = f;

line = l;

}

int RuntimeErrorStub_GetLastParameter(void)

{

return parameter;

}

As you can see, the stub version of RuntimeError() just captures the error

description. The other two functions give a way to reset the stub and

access to the captured message.

The stub version of RuntimeError() is linked in during test. It lets the test

check that out-of-bounds produces a RuntimeError(). This is shown in

the following code.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsProducesRuntimeError)

{

LedDriver_TurnOn(-1);

TEST_ASSERT_EQUAL_STRING("LED Driver: out-of-bounds LED",

RuntimeErrorStub_GetLastError());

TEST_ASSERT_EQUAL(-1, RuntimeErrorStub_GetLastParameter());

}

Watch the test fail.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=89

GROW THE SOLUTION FROM SIMPLE BEGINNINGS 90

TEST(LedDriver, OutOfBoundsProducesRuntimeError) unity/

LedDriver/LedDriverTest.c:138: FAIL

Expected 'LED Driver: out-of-bounds LED' Was 'No Error'

11 Tests 1 Failures 0 Ignored

FAIL

Now add the call to RUNTIME_ERROR(); the test passes.

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........

11 Tests 0 Failures 0 Ignored

OK

Executable Reminders

We decided that the out-of-bounds LED number should issue a runtime

error. What if we could not decide? We could add an item to the test list

and come back to it later. We could also add an executable reminder.

Most unit tests harnesses have some provision for ignoring a test. In

Unity and CppUTest, change TEST() to IGNORE_TEST(). The ignored test

must still compile, but it does not run. You can use ignored tests as

an executable reminder. A good thing about an executable reminder is

that it will be hard to lose. You see evidence of it with every test run.

Download unity/LedDriver/LedDriverTest.c

IGNORE_TEST(LedDriver, OutOfBoundsToDo)

{

/* TODO: what should we do during runtime? */

}

Notice the ! in the sequence of dots. Also the ignored count is now 1.

The reminder is subtle, but it is there.

⇒ make

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

.........!

12 Tests 0 Failures 1 Ignored

OK

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=90

KEEP THE CODE CLEAN—REFACTOR AS YOU GO 91

To see what test is ignored, run the test with the verbose flag set. When

verbose is switched on, all tests are announced before they are run,

including any ignored tests.

⇒ $./BookCode_Unity_tests -v

TEST(LedDriver, LedsOffAfterCreate) PASS

TEST(LedDriver, TurnOnLedOne) PASS

TEST(LedDriver, TurnOffLedOne) PASS

TEST(LedDriver, TurnOnMultipleLeds) PASS

TEST(LedDriver, TurnOffAnyLed) PASS

TEST(LedDriver, AllOn) PASS

TEST(LedDriver, LedMemoryIsNotReadable) PASS

TEST(LedDriver, UpperAndLowerBounds) PASS

TEST(LedDriver, OutOfBoundsTurnOnDoesNoHarm) PASS

TEST(LedDriver, OutOfBoundsTurnOffDoesNoHarm) PASS

TEST(LedDriver, OutOfBoundsProducesRuntimeError) PASS

IGNORE_TEST(LedDriver, OutOfBoundsToDo)

12 Tests 0 Failures 1 Ignored

OK

4.2 Keep the Code Clean—Refactor as You Go

On several occasions, we’ve refactored some small problems out of the

code. When there is something to refactor, refactor it. Code problems,

detected early, never get a chance to grow up into the big bad code

problems some of you are wrestling with in your legacy code bases.

But first, a reminder. Only refactor code when the tests are passing!

Otherwise, you’re asking for trouble.

LedDriver_TurnOn() and LedDriver_TurnOff() have some duplicate code and

magic numbers. Cutting and pasting and hard-coded constants are

helpful to get the code to have the right behavior but is a long-term

liability to leave the duplication and magic numbers. In Chapter 12,

Refactoring, on page 249, we will go deeper into this topic, but for now

let’s just look at eliminating these two smells by extracting the duplicate

code into a helper and defining constants for the magic numbers.

Copy, Don’t Cut

When you extract a new function, copy—don’t cut—the duplicate code.

Define the function and paste the code into the new function body.

Add parameters and the return value as needed, and then compile. In

an easy-to-undo operation, switch to the new code and see it pass its

tests. If you happen to comment out the old code, delete it now.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=91

KEEP THE CODE CLEAN—REFACTOR AS YOU GO 92

With tests passing, replace the other uses of duplicate code with the

new helper.

The reason we get the extracted function compiling before cutting to it

is to make it easy to get back to working code if we make a mistake. We

don’t want to burn our old bridge, the currently working code, before

the new bridge is in place.

After the new helper function is integrated and passes its tests, replace

the magic numbers with symbolic constants. Here are the constants

and the extracted function:

Download src/LedDriver/LedDriver.c

enum {FIRST_LED = 1, LAST_LED = 16};

static BOOL IsLedOutOfBounds(int ledNumber)

{

return (ledNumber < FIRST_LED) || (ledNumber > LAST_LED);

}

IsLedOutOfBounds() is not needed by users of the driver. So, do not men-

tion it in the .h file. Also, declare it as static, keeping it out of the global

namespace.

Here’s the refactored LedDriver_TurnOn() and LedDriver_TurnOff():

Download src/LedDriver/LedDriver.c

void LedDriver_TurnOn(int ledNumber)

{

if (IsLedOutOfBounds(ledNumber))

return;

ledsImage |= convertLedNumberToBit(ledNumber);

updateHardware();

}

void LedDriver_TurnOff(int ledNumber)

{

if (IsLedOutOfBounds(ledNumber))

return;

ledsImage &= ~(convertLedNumberToBit(ledNumber));

updateHardware();

}

The bit manipulation code doesn’t fit the level of abstraction of the

refactored functions. Let’s make it consistent by extracting a couple of

helper functions—one at a time, of course. Here’s the refactored code:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=92

KEEP THE CODE CLEAN—REFACTOR AS YOU GO 93

Download src/LedDriver/LedDriver.c

static void setLedImageBit(int ledNumber)

{

ledsImage |= convertLedNumberToBit(ledNumber);

}

void LedDriver_TurnOn(int ledNumber)

{

if (IsLedOutOfBounds(ledNumber))

return;

setLedImageBit(ledNumber);

updateHardware();

}

static void clearLedImageBit(int ledNumber)

{

ledsImage &= ~convertLedNumberToBit(ledNumber);

}

void LedDriver_TurnOff(int ledNumber)

{

if (IsLedOutOfBounds(ledNumber))

return;

clearLedImageBit(ledNumber);

updateHardware();

}

We’ve eliminated a little more duplication. Why am I making such a big

deal about it? Duplicate code is a big problem in software. Read the

sidebar on page 96 to see what a couple software development gurus

have to say about duplicate code.

Solve One Problem at a Time

The small steps help keep you focused on solving one problem at a time.

Humans do much better when solving one problem at a time.

For example, by compiling the replacement code before calling it, we’re

solving the design problem of “What should the extract function look

like?” Getting syntax right and a decent API is a different problem from

getting the behavior right.

Also, changing one caller to IsLedOutOfBounds() at a time, you find sub-

tle mistakes more quickly. Less code was changed, so any problem is

easier to see.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=93

REPEAT UNTIL DONE 94

 LED Driver Tests

 All LEDs are off after the driver is initialized.
 A single LED can be turned on.
 A single LED can be turned off.
 Multiple LEDs can be turned on/off .
 Turn on all LEDs
 Turn off all LEDs
 Query LED state
 Check boundary values
 Check out-of-bounds values
 Hardware interaction

 Beyond max breaks nothing
 Under min breaks nothing
 Runtime Error
 What should really happen?

Figure 4.1: LedDriver test list—evolved

Let me stress that when a refactoring breaks a previously working test,

don’t debug. Undo and inspect your work. If the problem is really obvi-

ous, then give a fix a try, but be conscious of how many undos it will

take to get back to green. If the first or second change does not pass

the tests, you’re digging a hole. Stop digging.

4.3 Repeat Until Done

The core of the driver is in place. The turn on and turn off functionality

works top to bottom. Now you continue adding tests and production

code until all the meat is on the skeleton. Let’s look at the updated test

list in Figure 4.1.

I’ve crossed off the completed tests and also added tests that were not

originally anticipated, at least not to the level of detail that TDD drove

us to. Test lists evolve; it’s expected, and there is nothing wrong with

it. As we dig in, we learn more, and the ideas for new tests come as a

consequence of our evolving understanding.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=94

REPEAT UNTIL DONE 95

Let’s add LED query next. Recall that the hardware is not designed to

support reading the state of an LED. That functionality is encapsulated

in the driver.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, IsOn)

{

TEST_ASSERT_FALSE(LedDriver_IsOn(11));

LedDriver_TurnOn(11);

TEST_ASSERT_TRUE(LedDriver_IsOn(11));

}

In the previous test, the LEDs are initially off; then we turn one on and

check that it is now on. Compiling, you get an error. Fix the compilation

error by adding this prototype to the header:

Download include/LedDriver/LedDriver.h

BOOL LedDriver_IsOn(int ledNumber);

Fix the link error by adding this hard-coded implementation. It will

cause the test to fail:

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOn(int ledNumber)

{

return FALSE;

}

Now code the winning return result:

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOn(int ledNumber)

{

return ledsImage & (convertLedNumberToBit(ledNumber));

}

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!.

13 Tests 0 Failures 1 Ignored

OK

You might wonder why the TEST(LedDriver, IsOn) is not testing more LEDs.

What to put into the test is a judgment call. If you can think of a test

that would fail, add it. If more tests won’t fail, then you’re done.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/include/LedDriver/LedDriver.h
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=95

REPEAT UNTIL DONE 96

DRY: Don’t Repeat Yourself

Duplicate bounds checks are a violation of the DRY principle.
The DRY principle, found in Dave Thomas and Andy Hunt’s The
Pragmatic Programmer [HT00], is described like this:

“Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system. ” —From The Prag-
matic Programmer [HT00]

With duplicate code, the same idea is expressed in more than
one place. What’s the big deal? Here are a few considerations.

First, there is a maintenance liability to having the same idea
coded in more than one place. In our example, you can antic-
ipate that the bounds check will be expressed in four places
once we implement the LED query functions. Maybe there will
be other places as well. This form of duplication will likely cause
maintenance problems. A change in requirements, or imple-
mentation, would mean visiting each place and changing it. If
one is forgotten, you have a new bug! Maybe it won’t bite you
in this case, but it is best to be vigilant and remove all duplica-
tion, thus preventing the possibility of inconsistent behavior.

Second, leaving the duplication makes the code more
detailed and less abstract, putting an extra burden on the pro-
grammer. Without extracting the duplication into a well-named
function, the reader must interpret and analyze the code, not
just in one place but in all places the duplicate code appears.

Third, with the duplication removed, the overall code memory
usage could decrease. Your mileage will vary.

On the downside, extracting code into functions could make
the code execute more slowly. Not that this will never mat-
ter, but don’t let the performance factor outweigh improved
design and readability unless there is proof the code is con-
tributing to a specific performance problem. We can talk more
about this issue in Section 12.5, But What About Performance
and Size?, on page 281.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=96

REPEAT UNTIL DONE 97

There is a black-box aspect to the tests: you are testing through the

external interface. There is also a white-box aspect to the tests: you

know the implementation. TDD unit tests often are more like gray-box

tests. So, there is a gray area here on how exhaustive the test must be.

Knowing the implementation, I think these tests are pretty good.

LedDriver_IsOn() should guard against invalid LED numbers, just as the

LED control functions did. There is a decision to make: should an

invalid LED be considered on or off? Or should they be neither on nor

off? Something about that last option bothers me; I’m not quite sure

that clients of the driver want that uncertainty. OK, it’s settled, at least

for now. LEDs outside this universe are off. Here’s the test:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsLedsAreAlwaysOff)

{

TEST_ASSERT_FALSE(LedDriver_IsOn(0));

TEST_ASSERT_FALSE(LedDriver_IsOn(17));

}

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!..

14 Tests 0 Failures 1 Ignored

OK

Interestingly enough, this test passes when there is no guard clause,

and it’s not because the test is not installed in the test runner. I suspect

this is machine dependent. To make sure the test case can really detect

the wrong behavior, hard-code return TRUE;.

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOn(int ledNumber)

{

return TRUE;

/* return 0 != (ledsImage & convertLedNumberToBit(ledNumber)); */

}

You should see these results when you run make:

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=97

REPEAT UNTIL DONE 98

TEST(LedDriver, IsOn)

LedDriver/LedDriverTest.c:193: FAIL

Expected FALSE Was TRUE

.

TEST(LedDriver, OutOfBoundsLedsAreAlwaysOff)

LedDriver/LedDriverTest.c:211: FAIL

Expected TRUE Was FALSE

14 Tests 2 Failures 1 Ignored

OK

Now that the test is failing, add the needed production code:

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOn(int ledNumber)

{

if (IsLedOutOfBounds(ledNumber))

return FALSE;

return ledsImage & (convertLedNumberToBit(ledNumber));

}

Building the code, all the tests run.

Finish off the query duo; implement LedDriver_IsOff(). I won’t bother

showing the .h file. To keep duplication at a minimum, implement Led-

Driver_IsOff() by inverting the result of LedDriver_IsOn().

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOff(int ledNumber)

{

return !LedDriver_IsOn(ledNumber);

}

What did you say? “Do you have a test for that?” You learn fast. In

all the excitement of cut-and-paste reuse, I forgot the boundary tests

for LedDriver_IsOff(). Better write the test, checking the out-of-bounds

markers. Good catch! No harm done, this time.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, IsOff)

{

TEST_ASSERT_TRUE(LedDriver_IsOff(12));

LedDriver_TurnOn(12);

TEST_ASSERT_FALSE(LedDriver_IsOff(12));

}

Before running the test, insert an error into LedDriver_IsOff().

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=98

REPEAT UNTIL DONE 99

Download src/LedDriver/LedDriver.c

BOOL LedDriver_IsOff(int ledNumber)

{

return FALSE; /* !LedDriver_IsOn(ledNumber); */

}

The error fails the new test.

⇒ make

compiling LedDriver.c

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!...

TEST(LedDriver, IsOff)

LedDriver/LedDriverTest.c:202: FAIL

Expected TRUE Was FALSE

15 Tests 1 Failures 1 Ignored

FAIL

To wrap up LedDriver_IsOff(), we have to make sure that out-of-bounds

LEDs are always off.

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, OutOfBoundsLedsAreAlwaysOff)

{

TEST_ASSERT_TRUE(LedDriver_IsOff(0));

TEST_ASSERT_TRUE(LedDriver_IsOff(17));

TEST_ASSERT_FALSE(LedDriver_IsOn(0));

TEST_ASSERT_FALSE(LedDriver_IsOn(17));

}

And not surprisingly, it works. A case can be made for not adding the

previous test at all; no code was needed for it to pass. I tend to add them

for completeness and as documentation.

⇒ make

compiling LedDriver.c

compiling LedDriverTest.c

Linking BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!....

16 Tests 0 Failures 1 Ignored

OK

We have two items left on the test list—turn off multiple LEDs and turn

all off. Here’s turn off multiple:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=99

REPEAT UNTIL DONE 100

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, TurnOffMultipleLeds)

{

LedDriver_TurnAllOn();

LedDriver_TurnOff(9);

LedDriver_TurnOff(8);

TEST_ASSERT_EQUAL_HEX16((~0x180)&0xffff, virtualLeds);

}

We expect this test to pass, because LedDriver_TurnOff() is already gener-

alized. But inject an error anyway to make sure the test is wired in.

If you look at the test file, you will see that I added the TurnOffMulti-

pleLeds test after TurnOnMultipleLeds, keeping similar tests together. Usu-

ally I keep the tests in the order they are developed in, unless there is

some affinity as in this case. I also structured them similarly to make

interpreting them a little easier.

Here is the final test from the test list:

Download unity/LedDriver/LedDriverTest.c

TEST(LedDriver, AllOff)

{

LedDriver_TurnAllOn();

LedDriver_TurnAllOff();

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

Again follow the same drill. Watch the new test fail. Then, finish the

implementation.

Download src/LedDriver/LedDriver.c

void LedDriver_TurnAllOff(void)

{

ledsImage = ALL_LEDS_OFF;

updateHardware();

}

⇒ make

compiling LedDriver.c Link-

ing BookCode_Unity_tests

Running BookCode_Unity_tests

Unity test run 1 of 1

..........!....

18 Tests 0 Failures 1 Ignored

OK

Are we done? When you think you are done, it’s time to take a step

back.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=100

TAKE A STEP BACK BEFORE CLAIMING Done 101

4.4 Take a Step Back Before Claiming Done

Before you claim to be done, take a look at your work and see whether

there is any cleanup needed. After a quick review, the production code

looks clean; functions are short and focused, names are readable, and

we got rid of magic numbers as we proceeded.

There are magic numbers in the LedDriverTest.c file for the boundary

values. They could be removed, but I’ll leave them for now. I think it

makes the tests a little bit easier to read. Once again, it’s a judgment

call.

As the design evolved, our test strategy evolved too. Maybe that should

be revisited. The early tests relied on the value of virtualLeds. Later tests

depended upon the query functions. You could refactor the tests so that

more of the tests depend on the query functions added to the driver. Of

course, you’d want some test cases that verify that the right bit patterns

are sent to the hardware.

How far to take the refactoring is a judgment call. The judgment should

be based on detecting code smell and envisioning a better form for

the code. We’ll spend a chapter on that in Chapter 12, Refactoring, on

page 249.

4.5 Where Are We?

Our first TDD session is done. We have seen TDD at the detailed level.

We should have a fair idea of what TDD is and what it is not.

If we had marked up the test list to include the added tests (I probably

would not; I’d just add ones that I plan to do later), it would look like

Figure 4.2, on the following page. You can see that the anticipated tests

evolved quite a bit. This is natural and what would be expected as you

get into the details. We moved from writing the test list to implementing

tests when we noticed the diminishing returns for the effort needed for

additional tests in the test list.

You can find a complete listing of the LedDriver and its tests online in

the code download. You will find both the CppUTest and the Unity ver-

sions of the test code as well there. Take a few minutes to look at the

differences between Unity and CppUTest test cases and test fixtures.

They are very similar.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=101

WHERE ARE WE? 102

 LED Driver Tests

 All LEDs are off after the driver is initialized.
 A single LED can be turned on.
 A single LED can be turned off.
 Multiple LEDs can be turned on/off .
 Turn on all LEDs
 Turn off all LEDs
 Query LED state
 Check boundary values
 Check out of bounds values
 Hardware interaction

 Beyond max breaks nothing
 Under min breaks nothing
 Runtime Error
 What should really happen?

 Query is on
 Query is off
 out-of-bounds is on
 out-of-bounds is off

Figure 4.2: LedDriver test list—final

I’ll use CppUTest for the rest of the code examples. In Section 6.9, Why

a C++ Test Harness for Testing C?, on page 131, I’ll summarize why I

and others doing TDD for embedded C prefer a C++ test harness. Of

course, it is up to you to choose the right test harness for your work.

I expect you have a few questions about TDD and how TDD can be

effectively used for embedded development. The next couple chapters

answer some of the common questions that come up after a TDD intro-

duction. Others you will have to answer through your own experiences.

After we get through the questions, we’ll get back into more TDD and

code.

At first TDD is foreign and requires discipline to keep the tests before

the code. As you become more experienced, the feedback from TDD

becomes its own reward. You will find yourself addicted to tests and the

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=102

WHERE ARE WE? 103

rapid feedback they provide. You might become Pavlov’s Programmer

anticipating the test results. You won’t be comfortable without them.

Put the Knowledge to Work

1. Do the LED driver example from start to finish on your own. The

exercises in the previous chapter show you where to start.

2. Finish the CircularBuffer that you started at the end of the previous

chapter.

3. Our hardware engineer informed us she could save $0.12/board

if the LEDs used inverted logic. Modify the LedDriver and its tests

to use inverted logic.

How could our tests or design be improved so that most of the

tests don’t care about inverted logic?

4. Our company just completed the version of the board with inverted

LED logic. We find out that some of the previous version are still

in the field. How should the LedDriver and its tests be modified to

support both versions of the hardware? Conditional compilation is

not part of a correct answer. We want one binary.

5. The production board’s silkscreen is wrong! LED 1 is labeled 16,

Led 2 is 15, and so on. How do you modify the tests and code to

work with the real hardware?

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=103

Idealism increases in direct proportion to one’s distance

from the problem.

John Galsworthy

Chapter 5

Embedded TDD Strategy
The previous chapter shows how an LED driver, a hardware-dependent

piece of code, is developed using TDD and tested off the target on the

host development system. You may wonder, are these tests valid when

they are not run on target hardware? They are valuable, but along with

the benefits, there are risks that must be considered and contained.

Testing off the target hardware also allows difficult-to-cause errors to

be easily injected. Without this ability, a lot of code may go untested

until that fateful day when the hardware error we anticipated occurs

but the corrective action is wrong.

In this chapter, we’ll look at specific progress blockers and time wasters

common for embedded software and how to adapt TDD to help elimi-

nate the target hardware bottleneck.1

5.1 The Target Hardware Bottleneck

Concurrent hardware and software development is a reality for many

embedded projects. If software can be run only on the target, you will

likely suffer unnecessarily from one or more of these time wasters:

• Target hardware is not ready until late in the project, delaying

software testing.

• Target hardware is expensive and scarce. This makes developers

wait and build up mounds of unverified work.

1. This chapter is based upon work previously published through the Agile Times

[Gre04], Embedded Systems Conference [Gre07a], and IEEE [Gre07b].

Download from Wow! eBook <www.wowebook.com>

THE TARGET HARDWARE BOTTLENECK 105

• When target hardware is finally available, it may have bugs of its

own. The mound of untested software has bugs too. Putting them

together makes for difficult debugging, long days, and plenty of

finger pointing.

• Long target build times waste valuable time during the edit, com-

pile, load, and test cycle.

• Long target upload times waste valuable time during the edit, com-

pile, load, and test cycle.

• Long target upload times lead to batching numerous changes in

one build, which means that more can go wrong, leading to more

debugging.

• Compilers for the target hardware are typically considerably more

expensive than native compilers. The development team may have

a limited number of licenses available, adding expense and possi-

ble delays.

Not all development efforts suffer from all those problems. But it is

likely that every embedded development effort suffers from at least

some of them, and these problems will block software development

progress. Bob Martin’s prime directive says, “We will not be blocked!”2

Don’t allow our progress to be blocked by lack of the target hardware.

Don’t wait for a long tool chain to do its job. Don’t wait for a long upload.

Don’t wait in line to test your code.

Embedded developers have traditionally turned to the evaluation board

for relief from one of the causes of the target hardware bottleneck.3

An eval board provides an execution environment prior to target avail-

ability or when target hardware is too expensive for each developer to

have their own. It’s a very useful weapon in the embedded developer’s

arsenal, defending you from late and defect-laden projects, but it’s

really not enough. Eval boards suffer from long build and upload times

but do provide a platform that works and is relatively inexpensive.

Developers could have one for themselves early in the development

cycle.

Here is where your development system and dual-targeting come into

play as an effective way to cope with the target-hardware bottleneck.

2. http://butunclebob.com/ArticleS.UncleBob.ThePrimeDirectiveOfAgileDevelopment

3. An eval board is a circuit board used in development with the same processor config-

uration as the target system and ideally some of the same I/O.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://butunclebob.com/ArticleS.UncleBob.ThePrimeDirectiveOfAgileDevelopment
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=105

BENEFITS OF DUAL-TARGETING 106

5.2 Benefits of Dual-Targeting

Dual-targeting means that from day one, your code is designed to run

on at least two platforms: the final target hardware and your develop-

ment system. In the LED driver example, the code is ultimately intended

to run on an embedded target, but first it is written and tested on the

development system. The goal is not some esoteric or academic pursuit;

it is a pragmatic technique to keep development going at a steady pace.

We avoid the waste and risk that comes with creating an inventory of

unverified work. Nancy and Ron, in the following story, describe how

they put dual-targeting to work on their project.

Excerpt from: Taming the Embedded Tiger [SM04]

by Nancy Van Schooenderwoert and Ron Morsicato

When you try to run newly written software on your embedded platform,

you are tackling many unknowns simultaneously. A problem on the

board, the CPU circuitry, the connectors, or the cabling can masquerade

as a software bug, sending you off on a huge and frustrating waste of

time. Hardware that worked perfectly one minute can be buggy the

next—intermittent hardware bugs are horrendous to deal with. We

needed a practical way to completely isolate the software under test to

avoid debugging hardware and software simultaneously!

Our application ran on a desktop PC as well as on the target CPU. We

maintained this capability throughout development, even after we had

good hardware. With so many hardware components at early stages in

their own development, we simply could not risk having to troubleshoot

with multiple unknowns. Very little of the application had to interact

directly with hardware.

This test technique required all the team members to have a clear

understanding of the boundary between “pure” code and

hardware-specific code. That, in itself, was good for software design and

modularity. Finally, by continuing with the dual-targeting strategy, we

were able to maintain an environment that was amenable to automation.

Dual-targeting solves several problems. It allows you to test code before

the hardware is ready, and you can avoid the hardware bottleneck

throughout the development cycle. You also avoid the finger pointing

that goes with simultaneous hardware software debugging. It is a prac-

tice that keeps you moving fast.

Dual-targeting, like TDD, has another benefit: it influences your design.

Paying attention to the boundaries between software and hardware pro-

duces more modular designs, in other words, designs with hardware

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=106

RISKS OF DUAL-TARGET TESTING 107

Dual-Target Bonus Benefits

A side benefit of dual-targeting for test purposes is that the
code will be easier to port in the future to different hardware
platforms. How many of you are working with ten- or fifteen-
year-old code that has been ported to several platforms? It’s a
significant issue for embedded. Hardware changes, often out
of our control, will happen. Starting with dual-targeted code
might just make it easier to move your code to the next unfore-
seen target hardware platform.

In addition, when the time comes to port your code to yet
another platform, you have the tests to support the porting
effort, helping to lock in the desired behavior.

independence. Unless you are building a one-of-a-kind product, hard-

ware independence will remove some of the burden in future platform

migrations. Hardware will change, that’s a given. When it does, you’ll

be better prepared, having automated unit tests and code that already

runs on multiple target platforms.

5.3 Risks of Dual-Target Testing

Testing code in the development system builds confidence in your code

before committing it to the target, but there are risks inherent in the

dual-target approach. Most of these risks are because of differences

between the development and target environments. These include:

• Compilers may support different language features.

• The target compiler may have one set of bugs, while the develop-

ment system native compiler has another set of bugs.4

• The runtime libraries may be different.

• The include filenames and features may be different.

• Primitive data types might have different sizes.

• Byte ordering and data structure alignments may be different.

4. The day this paragraph was written, a popular open source compiler had 3,427 open

bug reports. Seventy-four new bugs arrived the previous week, while fifty-four bugs were

closed. The bugs were winning by twenty.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=107

THE EMBEDDED TDD CYCLE 108

Write a Test
Make it Pass
Refactor

Stage 1

Compile
for Target
Processor

Stage 2

Run Tests
 in the Eval
Hardware
or Simulator

Stage 3

Run Tests
in Target
Hardware

Stage 4

Run
Acceptance
Tests in
Target

Stage 5

More Frequent Less Frequent

Figure 5.1: The embedded Test-Driven Development cycle

Because of these risks, you may find that code that runs failure free in

one environment experiences test failures in other environments.

The fact that there are potential differences in execution environments

should not discourage you from dual-targeting. On the contrary, these

are all workable obstacles on the path to getting more done. But it’s

best to take this path with eyes open and knowledge of some of the

spear-filled pits that await further down the path.

With the benefits and risks enumerated, let’s see how the embedded

TDD cycle overcomes the challenges, without compromising the bene-

fits.

5.4 The Embedded TDD Cycle

The embedded TDD cycle is an extension of the core TDD microcycle,

described in Section 1.4, The TDD Microcycle, on page 29. It is designed

to overcome the target-hardware bottleneck.

TDD is most effective when the build and test cycle takes only a handful

of seconds. A longer build and test time usually results in taking big-

ger steps; with the bigger steps come more things that can be broken,

leading to more debugging when the test finally is run. The need for a

fast feedback loop leads us to move the TDD microcycle off the target

to run natively on the development system. The TDD microcycle is the

first stage of the embedded TDD cycle, as depicted in Figure 5.1.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=108

THE EMBEDDED TDD CYCLE 109

Stages 2–4 are designed to mitigate the risk of using the development

platform to run unit tests. Stage 5 makes sure that the fully integrated

system delivers working features. Without the TDD approach, stage 5

is where many embedded testing efforts begin.

Let’s look at each stage in a little more detail.

Stage 1—TDD Microcycle

The first stage is run most frequently, usually every few minutes.

During this stage, you write the bulk of the code and compile it

to run on your host development system. Testing it on the devel-

opment system gives fast feedback, not encumbered by the con-

straints of hardware reliability or availability. There are no target

compiles or lengthy uploads delaying feedback. The development

system is a proven and stable execution environment; it often has

a richer debugging environment (which you won’t use much5) than

the target. You will also be able to run your code through tools like

valgrind, profil, and gcov. Also, each developer has a development

system or can get one tomorrow.

During this stage, you write code that is platform independent.

You look for opportunities to disconnect software from hardware,

as much as is practical. The boundary between hardware and soft-

ware becomes evident and is recorded in your test cases.

As mentioned earlier, there is a risk to running code on the devel-

opment system when it is eventually going to run in a foreign

execution environment. It’s best to confront that risk regularly

because sometimes there are problems...enter stage 2.

Stage 2—Compiler Compatibility Check

Periodically, compile for the target, using the cross-compiler you

expect to use for production compilations. This stage is an early

warning system for compiler incompatibilities. It warns of porting

problems such as unavailable header files, incompatible language

support, and missing language features. This leads to code that

uses only those facilities available in both development environ-

ments.

Early in a embedded development project, the tool chain may not

yet be decided, and you may think this stage cannot be executed.

5. You won’t use your debugger as much because TDD reveals mistakes as you make

them. The cause is usually obvious, not requiring a debugger.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=109

THE EMBEDDED TDD CYCLE 110

Take your best guess about the tool chain, and compile against

that compiler. You could use your suite of tests as part of your

compiler evaluation criteria. As the compiler market changes, you

also could use your suite of tests to evaluate new compiler vendors

or versions.

You don’t need to run stage 2 with every code change. You should

do a target cross-compile whenever you use some new language

feature, include a new header file, or make a new library call.

That said, it’s best to make this happen automatically as part of

a nightly build or your continuous integration build, where builds

run on every check-in. See the sidebar on page 112.

Stage 3—Run Unit Tests in an Eval Board

There is a risk that the compiled code will run differently in the

host development system and the target processor. To mitigate

this risk, run the unit tests on an eval board. Using an eval board

shows when the code’s behavior differs between the development

system and the target processor. You will see, in a true story com-

ing up in Section 5.5, Runtime Libraries Have Bugs, on the next

page, that this risk is real.

In an ideal world, we’d have the target hardware, and we would

not need to use eval hardware. If it’s late in the development cycle,

we may have reliable target hardware making this stage appear

unnecessary. So if every developer has ready access to the target

hardware and we have high confidence in the hardware, this stage

could be eliminated. But don’t make this decision lightly.

Having the ability to run in an eval board may come in handy even

after the target is ready. If there is some suspicious target behav-

ior, you could quickly rule in or out target hardware problems by

running tests in the eval platform.

These test runs should be built into the continuous integration

build and run at least daily.

Stage 4—Run Unit Tests in the Target Hardware

The objectives here are the same as stage 3 while exercising the

real hardware. One additional aspect to this stage is that you

could also run target hardware-specific tests. These tests allow

you to characterize or learn how the target hardware behaves.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=110

DUAL-TARGET INCOMPATIBILITIES 111

An additional challenge in this stage is limited memory in the tar-

get. You might find that all the tests do not fit into the target.

In that case, you can organize the tests into separate test suites

where each suite fits in memory. This does result in more compli-

cated build automation.

Stage 5—Run Acceptance Tests in the Target

Finally, we make sure the product features work by running auto-

mated and manual acceptance tests in the target. Here you have

to make sure that any of the hardware-dependent code that can’t

be fully tested automatically is tested manually. You already know

what that is.

At different points in the project life cycle, some of the stages might

be either impossible or not so critical. For example, when there is no

hardware early in the project, stages 4 and 5 are not possible to com-

plete. Similarly, if the target is available and appears reliable, the eval

board tests could be suspended until there is some question of target

reliability. Off-target TDD, stage 1, is still where the bulk of the code is

written and tested regardless of target availability.

5.5 Dual-Target Incompatibilities

The world is real, not ideal. Consequently, there will be differences in

and out of the target. To test production code in both environments,

you need code that works the same in both environments. Let’s look at

some of the portability problems you might encounter.

Runtime Libraries Have Bugs

Shocking but true, runtime libraries have bugs. A few years back, I was

working with a client adopting TDD. We were porting the test harness

to a new target processor. We ran into a little snag. The target version

of strstr() did not behave like all other versions of strstr() before it.

CppUTest compiled with no problem. The unit test harness had its own

suite of unit tests, so the first order of business was to run those tests

in the target. We waited through the upload, we ran the tests, and then

we got some odd failures. Hmmm, the tests ran fine on the development

system but failed on the target. What could that be?

We fired up the in-target debugger and started stepping through the

code. After some digging, we discovered that strstr(), from the standard

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=111

DUAL-TARGET INCOMPATIBILITIES 112

Continuous Integration

Continuous integration is a companion practice of Test-Driven
Development. In continuous integration, team members inte-
grate and check in changes to their version control system
main branch regularly, usually many times a day. As a precon-
dition to check in, all tests must pass.

An automated build is needed for successful CI. It has to be
easy to build the system. If the build is a tedious manual process
with numerous mouse clicks and file copies, you won’t build as
often as you should. The goal is a single command build.

In the dual-target approach suggested in this chapter, the test
build must be automated. But that’s not the end of it. The pro-
duction build should also be automated. In the mouse-heavy
IDEs of today, this may take some doing.

With a single command build, you can automate the running
of the build. The current state of the art is the continuous inte-
gration server. The CI server watches for check-ins to the code
repository and initiates a complete build and test sequence
once the check-in is complete. If a build breaks or any test fail-
ures occur, the team is notified usually by email. Fixing the build
becomes the number-one responsibility of the team.

An embedded build would be done in two stages, first for the
development system tests. If successful, the target build would
run next. If your product deploys to more execution platforms,
you would want a build for each.

CI is a risk reduction strategy and a time-saver. When develop-
ers go for long periods of time without integrating, the difficulty
and risk of the integration grows. Like TDD, if testing is hard, do it
all the time—it gets easier. With CI the mind-set is similar. If inte-
gration is hard, do it all the time. You avoid those long and error-
prone code merges. Merges are smaller, and they are assisted
by automated tests created via TDD.

There are good open source tools, such as CruiseControl and
Husdon, to help automate CI builds and error notifications.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=112

DUAL-TARGET INCOMPATIBILITIES 113

library, was not handling empty strings properly. Instead of working

like strstr() does in the rest of the free world, where an empty string is

contained in every string, this implementation reported that the empty

string was not part of any string. We found a bug in the target compiler’s

implementation of the standard library function strstr()!

Once we understood the incompatibility, we modified the code so that it

would pass on both systems, covering up the strstr() bug. We introduced

a new platform-specific function called PlatformSpecificStrStr(). The GCC

implementation looks like this:

int PlatformSpecificStrStr(const char * s, const char * other) const

{

return strstr(s, other) != NULL;

}

The target compiler’s implementation covers up the bug so that all plat-

forms work the same. It looks like this:

int PlatformSpecificStrStr(const char * s, const char * other) const

{

//strstr on the XXXX processor library does not handle "" correctly

//"" should be found in any string.

//The conditional logic works around that problem

if (strlen(other) == 0)

return TRUE;

else if (strlen(s) == 0)

return FALSE;

else

return strstr(s, other) != NULL;

}

We added the comment because the reason for the check was not obvi-

ous. To someone who knows the standard C library, that code looks

unneeded. The comment explains why the seemingly unnecessary con-

ditional logic is there.

Interestingly enough, the existing production code was peppered with

the same kludge to overcome the bug in the target library implementa-

tion. Someone should have fixed that long ago.

Incompatible Header Files

Header file compatibility can be a significant portability problem. There

can be different signatures, function names, defines, and include paths

for essentially the same functionality. An example of this kind of incom-

patibility is the safer versions of sprintf(). In the Unix world, there is

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=113

DUAL-TARGET INCOMPATIBILITIES 114

snprintf(), and in the Windows world there is _snprintf(), two functions

that do almost the same thing.

Many C programmers use conditional compilation to handle platform-

specific code. I suggest you avoid conditional compilation because it

makes a mess of the code. It also makes it hard to see what code is

really compiled under various situations.

Rather than conditional compilation, you could use a platform-specific

header file that can map names like this:

#define snprintf _snprintf

This kludge works, but it is ugly. There is a better way.

In the development of CppUTest, we decided to isolate platform-specific

code in one place. Each platform has a directory to hold the platform-

specific code. We created a header file that defines function prototypes

for operations that have to be implemented in a platform-specific way.

Then we created an implementation for each platform, isolating it in a

directory for that target. We used the compiler and linker, instead of the

preprocessor.

We also created platform-independent test cases that describe how

these functions must behave. For example, this is one of many test

cases that define how snprintf() should behave:

TEST(PlatformSpecificSprintf, OutputFitsInBuffer)

{

char buf[10];

int count = PlatformSpecificSprintf(buf, sizeof buf, "%s", "12345");

STRCMP_EQUAL("12345", buf);

LONGS_EQUAL(5, count);

}

Here’s the prototype that was added to the header file, right next to the

other platform-specific prototypes:

int PlatformSpecificSprintf(char *str, size_t size, const char *format, ...);

Starting with the Visual C++ implementation and its variable-length

argument list support, the implementation looks like this:

int PlatformSpecificSprintf(char *str, size_t size, const char *format, ...)

{

int result;

va_list args;

va_start(args, format);

memset(str, 0, size);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=114

DUAL-TARGET INCOMPATIBILITIES 115

result = _vsnprintf(str, size-1, format, args);

va_end(args);

return result;

}

The gcc code is the same, with the exception of a missing underscore.

Both builds passed their tests. Before cutting over to the new code, we

added another test to make sure both implementations behaved the

same when the buffer is not big enough to hold the whole string. We

did not want CppUTest to have a buffer overrun. Reading the Unix-

defined behavior for vsnprintf(), it says that if the output is truncated,

the return value is the number of characters (excluding the trailing \0),

which would have been written if space had been available. That led to

this test, which passed just fine...with gcc.

TEST(SimpleString, PlatformSpecificSprintf_doesNotFit)

{

char buf[10];

int count = PlatformSpecificSprintf(buf, sizeof buf, "%s", "12345678901");

STRCMP_EQUAL("123456789", buf);

LONGS_EQUAL(11, count);

}

However, the test failed for Visual C++. Visual C++ and GNU do not

agree. Insufficient buffer space in Visual C++ results in a -1 return

value.

Initially, we had no interest in the precision of the Unix-style return

value, and neither did any of the rest of the CppUTest code. So, we

dumbed down the gcc version to mimic the Visual C++ version like

this:

int PlatformSpecificSprintf(char *str, size_t size, const char *format, ...)

{

va_list args;

va_start(args, format);

size_t count = vsnprintf(str, size, format, args);

if (size < count)

return -1;

else

return count;

}

Later, CppUTest needed the Unix-style return value for a new feature,

and PlatformSpecificSprintf() had to evolve to meet the new need.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=115

TESTING WITH HARDWARE 116

This incompatibility problem was solved by making a common inter-

face that was independent of either platform’s native function and then

implementing the function for each platform.

In the prior two examples, the solution to an incompatibility was to

implement a form of an adapter in C. An adapter converts the interface

needed by the client to the interface provided by the server. This is

a common pattern for solving platform-independence problems. It is

described in the book Design Patterns [GHJV95]. The adapter pattern

is very helpful for managing dependencies between code you control

and code you don’t control.

5.6 Testing with Hardware

Where practical, tests with hardware should be automated. Let’s look

at three kinds of tests we can create that interact with the hardware:

• Automated hardware tests

• Partially automated hardware tests

• Automated hardware tests with external instrumentation

Automated Hardware Tests

Your embedded hardware will probably have areas that are well-suited

for automated testing. Other areas of the hardware will probably need

special instruments to test hardware functionality. Where possible, you

should write tests that help you learn what the hardware does and

give you confidence that the hardware is working. As the inevitable

hardware changes happen, your tests can help you see when a new

hardware design has problems. You might find that some of these tests

are valuable during production and may want some to be included in a

built-in test sequence that ships with the product.

Let’s say your design uses a Common Flash-Memory Interface (CFI)–

compliant device. There are operations we can use to interrogate the

flash memory device to see whether it is responding properly. For exam-

ple, when a 0x98 is written to flash offset 0x55, a CFI-compliant flash

memory device will respond with Q, R, and Y when offsets 0x10, 0x11,

and 0x12 are read, respectively. The device must be reset after the

query by writing a 0xff. This simple test, run on the target, will pass if

the device is responding properly. It’s not a thorough test, but it is a

quick sanity test.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=116

TESTING WITH HARDWARE 117

TEST(Flash, CheckCfiCommand)

{

FlashWrite(0x55, 0x98);

CHECK(FlashRead(0x10) == 'Q');

CHECK(FlashRead(0x11) == 'R');

CHECK(FlashRead(0x12) == 'Y');

FlashWrite(0, 0xff);

}

In the following story, the tests that software developers put together

to test-drive their code became an invaluable tool for their hardware

developer colleagues.

No Fear of Change

by Randy Coulman, embedded software development engineer

We started a new project involving several custom hardware devices, all

with an embedded processor and FPGA. We resolved to avoid problems we

had in the past with buggy FPGA designs and fixes breaking other

features. As with most projects with concurrent hardware/software

development, we needed to start developing the software well before the

hardware was available. We had a mostly complete spec for the hardware.

We decided that the best approach was to write tests for the hardware. We

started with the most foundational feature of the hardware and wrote

tests for it. We called these hardware acceptance tests. Since we didn’t

have hardware yet, we also wrote a simple simulation that would pass the

test. We continued on this way, writing tests for features of the hardware

and simulations that passed them. We used TDD to write unit tests for

our software as we went along as well.

When the hardware became available, the integration effort was much

shorter and simpler than it had been in the past. We encountered three

types of problems:

• Places where certain language constructs worked differently on the

embedded processor than they did on our development platform

• Places where the compiler was generating memory access code that

the FPGA didn’t support

• Places where we misinterpreted the hardware spec

Initially, the hardware acceptance tests were for the software team’s

benefit. Over time, the EEs came to trust our tests more and more. We

had implemented a set of automated builds that would compile the

software on the desktop platform and run all the tests against our

hardware simulation and then install the latest software and FPGA binary

on our target hardware, run the hardware acceptance tests (and some

others as well), and report the results. At the request of the EEs, we

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=117

TESTING WITH HARDWARE 118

added a “sandbox build” where they could drop in a new FPGA binary and

have the automated tests run against it. Once it was passing all of the

tests, they would then deliver the binary for us to integrate into the

system. This allowed them to verify their work even if they were working

in the middle of the night while the software engineers were home in bed.

These hardware acceptance tests have caught several regressions in the

FPGA, allowing our EEs to upgrade their toolset, recompile their designs,

and be confident that they didn’t break anything. Overall, the integration

effort was much less than in the past, and we’ve been able to continue to

add new features over time with great confidence.

Partially Automated Hardware Tests

The LedDriver example, completed in the previous chapter, shows how a

hardware-dependent piece of code can be tested outside the target. But,

how do you know it really turns on the right LEDs? The LedDriver thinks

it is controlling LEDs, but any number of mistakes could lead to soft-

ware that thinks it is doing the right thing but actually does nothing or

possibly something harmful. So, you have to make sure the last inch of

code, right next to the hardware, is right.

What kind of problems could we have with the LedDriver? It can be ini-

tialized with the wrong base address. It is possible that you misread the

spec and the bits are inverted. It is possible that the schematic and the

silk screen don’t match. Maybe some of the connections on the board

are not right. You’re not just testing software; you’re testing an embed-

ded system. So, to be sure that the LedDriver really turns on the right

LED at the right time, you have to look at it!

This is a good application for a partially automated test. A partially

automated test displays a cue prompting the operator to manually

interact with the system or view some system output. In this case,

we would verify that a specific LED is either on or off. This would be

repeated for each LED. This could also be part of built-in test capability

shipped with the product or used to support manufacturing.

Manual tests are more expensive to run than automated tests, but they

can’t be completely avoided. If we are effective at minimizing the code

that depends on the hardware, it is likely that the hardware-dependent

code will not be changed very often. Consequently, the manual accep-

tance test will likely not need to be rerun as often. You will have to

decide when these are run. A new hardware revision or changes to the

hardware-dependent code would trigger a manual retest. You might

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=118

TESTING WITH HARDWARE 119

also consider short and long versions of the partially automated tests,

running the short one regularly and the longer one less frequently or

when necessitated by change.

Tests with External Instrumentation

Special-purpose external test equipment can help automate hardware-

dependent tests. This story was ahead of its time.

In the late 1980s, we developed a digital telecommunication monitoring

system that monitored 1.544 Mbps (T1) signals. A major part of the

behavior depended on a custom application-specific integrated circuit

(ASIC). The ASIC monitored the T1 signals in real time; our embedded

software interrogated the ASIC and reported performance information

on demand and alarm conditions as they occurred. Testing this system

required specialized test equipment to generate T1 signals and inject

errors found in the real world.

After tiring of the manual tests that involved poking buttons on the

T1 signal generator, our test engineer, Dee, dug into the instrument’s

capabilities and discovered it could be controlled through a serial port.

Dee started writing test scripts. Her scripts instructed the external sig-

nal generator to corrupt the digital transmission with a specific bit error

rate, then interrogate the system under test to see whether it reported

the correct diagnosis. Incrementally, she automated her manual pro-

cedure, growing the automated test suite each day. The regression test

grew to have wide functional coverage. This practice allowed Dee to

report defects to the group within one day of their introduction.

Dee was not popular at first, walking from the lab smiling with a fresh

list of bugs. After a while, the development team met the challenge

and grew to rely on the morning bug report. A healthy competition

developed; developers worked diligently to produce bug-free code. They

used the test scripts before releasing to check their work. The quality

improved.

We had zero defects reported from our installed base of thousands

of units. Many other products developed at about the same time, by

teams using manual test practices, had long bug lists and expensive

field retrofits. This test investment had a great return.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=119

SLOW DOWN TO GO FAST 120

5.7 Slow Down to Go Fast

Using Test-Driven Development for embedded software has its chal-

lenges. Some of those challenges will be unique to your development

efforts. In spite of the challenges, putting TDD to work in the embed-

ded environment is worth the effort.

As hardware and requirements evolve, existing functionality usually

needs to be preserved. The next product’s specification usually starts

with “The product does everything the current product does plus....”

The automated tests produced through TDD are a safety net, detecting

unwanted changes to production code behavior during product evolu-

tion.

TDD helps you go faster. It may feel like TDD slows you down as you

change from the developer’s juggling act that many of us have found

ourselves performing to the careful and thoughtful process encom-

passed by TDD. Slowing down is exactly what is needed to go fast!

The careful, thoughtful, and verified work leads to higher quality.

5.8 Where Are We?

In this chapter, we looked at the problem of cross-platform develop-

ment and the all too common scarcity of hardware. We discussed the

need to isolating hardware dependencies. The more successful we are

at that, the longer the useful life you can expect from your code and

your tests. If you let hardware dependencies permeate the code, hard-

ware evolution (and obsolescence) will accelerate the aging of your code

and shorten its useful life. It may also shorten your life through the

stress of keeping an aging code base alive.

We looked at the embedded TDD cycle and how to keep the pace of

development unencumbered by cross development issues. We looked at

the advantages of dual-targeting and how to contain the risk of testing

off the target.

Often, the foremost question on the embedded developer’s mind is how

to apply TDD effectively in a cross development environment. But there

are other issues, too. In the next chapter, we’ll look at some of the

other common concerns of embedded developers as they think of how

to apply TDD to their development efforts.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=120

WHERE ARE WE? 121

Put the Knowledge to Work

1. Test some of your production code off the target. Choose some-

thing simple that has few external dependencies.

2. Compile CppUTest or Unity for your target. Run the unit tests.

3. Write a script that uploads your test executable, runs it, and

reports pass or fail.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=121

Chapter 6

Yeah, but...
The initial discussion of TDD always raises quite a few questions that

reflect real concerns. In the following sections, I’ll try to address some of

the questions and concerns that might be on your mind. I don’t expect

I’ll totally convince you, though I hope to show you what is possible. To

really convince yourself, you will need your own TDD experiences.

6.1 We Don’t Have Time

We all need more time. Where will we find time to write all this test code?

There is barely enough time to write the production code we need. There

are more lines of test code than production code for the LedDriver. But

does that really matter?

If people programmed error-free and at a constant rate, then there is

some reason for concern. But people do neither. The time-consuming

parts of programming are thinking, problem solving, and confirming

solutions. Confirming solutions can be done many ways, Debug Later

Programming (DLP) or TDD to name two. The important question is, did

writing the test impede or speed your progress?

Many proficient practitioners proclaim that TDD makes them go faster.

They report a productive and sustainable pace. The speedup comes

from reducing current and future debug times, and from having a

cleaner code base with tests as executable documentation.

What if TDD takes a little more time? There are other costs besides

development time: customer dissatisfaction, lost sales, warranty repair,

defect management, field service...the list goes on. Maybe it is worth

it to you and your customers to spend more time and deliver fewer

Download from Wow! eBook <www.wowebook.com>

WE DON’T HAVE TIME 123

problems to the field. Also, you may become one of those people who

goes faster with TDD.

If you look only at the time it takes to get the production code written,

you are not looking at the whole job. You still have to get the bugs

out. How much time do you currently spend testing and debugging

code? The most popular answer I have heard, from polling conference

attendees, is 50 percent. That is a lot of time. The first place to look for

the time to do TDD is in your current practice. You should be able to

trade some reactive debug time for the proactive TDD approach. In the

next few sections, we’ll look at some common unit test approaches that

could be at least partially replaced by TDD.

Manual Test

If you are manually unit testing, use some of that time. If you are in

a legacy code environment, you won’t leave manual testing completely

behind, but you could start to develop new code using TDD or write

tests for some of the untested legacy code.

The initial investment in manual test may be lower than automating

tests, but it is not sustainable; it has a nearly zero future return. A

change to manually tested code nullifies the prior manual tests. You

have to run the tests again. Because they are manual, we tend to ratio-

nalize running only a subset of the tests. When you don’t rerun the

right tests, you get the joy and cost of a future bug.

Custom Test Harness

From time to time, we have all written a test main() and a few test stubs

that exercises newly written code. The test main() exercises the code

under test, and stubs provide indirect inputs and log their parameters

so we can inspect the behavior. You have created a custom test harness.

These tests are very helpful; they improve the quality of the code so that

we are integrating better working code into the product. But too often,

after integration, the tests fall into disrepair, as all testing moves to the

integrated system. The tests fall out of sync with the production code,

and the return on investment is diminished. Your custom test harness

was helpful for a while.

Often custom test harnesses have a poor return on investment. They

often become incompatible and are discarded after very few uses. The

custom-crafted test main() also takes more effort than writing tests that

plug into a test harness like CppUTest or Unity.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=123

WE DON’T HAVE TIME 124

Unit Test by Single-Step

Another manual unit test approach is to single-step through the code

under test with a debugger. This is a slow and inherently nonrepeat-

able process. When change comes, as it always does, the single-step

unit test has to be repeated. Because it’s a long and tedious process,

it is likely to be a less thorough job the second, third, and Nth times

through. We’re only human; we make mistakes and miss subtle inter-

actions within the code.

The shelf life of these tests is even worse than the shelf life of the test

main() approach. Any single change invalidates prior tests. You have to

start over and do it again. So, the manual test effort will tend to grow

over time. But you can’t afford that time, so you don’t rerun all the

needed single-step tests, and what happens? A bug creeps in, costing

future effort too.

Documented and Reviewed Unit Test Process

I consulted at a company that had a very well-defined process. Well-

defined and big are usually synonymous when it comes to processes.

Their process manual was big. Their process police force was big, and

they had a big stick.

They were assessed at CMM level three. They had good conformance

and enforcement. One area covered by their process was unit testing.

The process consisted of first documenting the unit test procedure and

then getting the procedure reviewed and approved. Then they had to

record evidence of executing the process. I asked the engineer, Dave,

how they used this procedure. Here is how that conversation went:

James: How do you do unit testing?

Dave: We have a unit testing standard. We write a unit test plan for

each function.

James: Does the unit test plan get reviewed?

Dave: Yeah, we do a formal technical review on the plan.

James: When do you perform the unit test plan?

Dave: We run it before the code has been through its formal technical

review.

James: So if there are holes in the test plan, the reviewer can make

suggestions and improvements to fill those holes.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=124

WE DON’T HAVE TIME 125

Dave: Yes, that’s how it goes.

James: What does the unit test plan look like?

Dave: We follow the standard template and add the plan as comments

before every function in the source code. The plan becomes part of the

code. It includes a series of operations performed on the code, checking

various conditions. We make sure we check each branch.

James: What is it like to run the tests?

Dave: We use the debugger or the emulator and single-step through

each statement and verify it does the right thing. We’re really thorough.

James: It sounds like it. It takes a lot of time I bet.

Dave: Sure does.

James: What happens the next time you change that function?

Confidently Dave says: We do part of the tests over, based on what

we changed.

James, knowing the answer to the question: Does code like this

change very often?

Dave says accusingly: Yes, the systems engineers never can make up

their mind.

James: What happens as there are more changes?

Dave: We rerun those parts of the unit test affected by the change.

James: How do you know what part of the plan needs to be rerun?

Dave: It’s a judgment call.

This big process took a lot of effort. It made everybody feel good because

of all the investment in the software quality. Unfortunately, this kind of

effort too often returns little on the investment. When the manual unit

test process is repeated, the process gets boring, shortcuts naturally

follow, and bugs find their way into the code.

I suggest test automation over test documentation. Test automation is

the gift that keeps on giving. If you’re using a process that is similar

to Dave’s, it’s time to stop! Spend your unit test dollars somewhere

else. By the way, the tests are documentation too. Dave’s company had

product safety requirements; we settled on reviewing the test cases to

help assure the cases were thorough.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=125

WHY NOT WRITE TESTS AFTER THE CODE? 126

Where Do Your Unit Test Dollars Go?

When you look at how to pay for the unit tests that are written as

part of TDD, take an honest look at your current process. Maybe your

process is ad hoc or you write a test main or you document a unit test

procedure or single-step through the code. Those activities cost a lot to

implement but have a very limited payback.

You are already paying for unit tests either directly as mentioned or

indirectly through long debug cycles. Consider spending some of your

unit test effort on TDD rather than your current process. With TDD the

tests are run with every change, the tests evolve along with the code,

and the investment is returned many times over.

6.2 Why Not Write Tests After the Code?

It’s hard to shift from DLP to TDD, and this is a common reaction: “Let’s

just write the tests after.” This practice has a name, Test-After Devel-

opment. You will get benefit from writing tests after, but not as much

benefit as letting tests drive your production code. Test-After Develop-

ment is about testing, where TDD is about much more. Here are a few

examples of benefits you won’t get from writing tests after development:

• TDD influences design. When you test after you do not get as

much positive design impact, TDD leads to better APIs and more

cohesive modules that are loosely coupled.

• TDD prevents defects. As you make small mistakes, TDD finds

them immediately. When you test after, you might find many of

your mistakes, but some will escape detection where TDD would

have found them. These mistakes eventually populate your bug

database.

• When you write tests after, you also will have to spend valuable

time hunting down the root cause of the test failures, while in

TDD the root cause is usually obvious.

• TDD is more rigorous and provides better test coverage—the right

test coverage. Test coverage is not the goal of TDD, but test cover-

age will suffer when tests are written after code.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=126

WE’LL HAVE TO MAINTAIN THE TESTS 127

6.3 We’ll Have to Maintain the Tests

Yes, you will have to maintain the tests. When you don’t have tests,

you don’t have to maintain them, but you do have to do those tedious

manual retests. You get value from having the tests that makes the

maintenance effort worth the investment.

Tests have to be kept clean and expressive and free from duplication. It

takes time to learn these skills. After you gain skill at TDD and design-

ing test cases, you will find that tests do not have to be difficult to

maintain.

6.4 Unit Tests Don’t Find All the Bugs

It is true, TDD will not prevent all bugs, but that does not make a case

for not doing TDD. I like to think of TDD as helping make really solid

building blocks by making sure each line of code does what we expect.

Having each block behave as intended makes it possible for the system

to behave as needed.

You will still need integration tests, acceptance tests, exploratory tests,

and load tests. TDD will eliminate many of the problems so that the

higher-level tests are finding appropriate problems. Integration tests

should find integration problems, acceptance tests should show that

the code meets its requirements, and load tests should help determine

whether the system can meets its design limits. When changes occur,

there will be implications at the unit test level, and the TDD tests will

help assure changes have only the intended consequences.

A single wrong bit can spell disaster for software-controlled systems.

Software is amazingly complex, and mistakes are amazingly easy to

make. Years ago one of my colleagues, Joe, designed a multiprocessor

communication infrastructure that was part of our product platform.

We would report some hard-to-reproduce bugs in the platform from

time to time. Joe would disappear for weeks while he tracked down

these hard-to-find bugs. Eventually he would emerge from his cube

and claim, “It wasn’t a bug, just a typo!”

I did not know TDD then, but this is definitely a case of the code at a

low level not doing what the programmer expected. Joe’s mistake may

have been minor, but the resulting bugs were in no way minor. Small

mistakes don’t mean small bugs. Mistakes small and large cause a lot of

wasted effort. TDD may not prevent all bugs, but it does a very effective

job of preventing many mistakes from becoming bugs.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=127

WE HAVE A LONG BUILD TIME 128

6.5 We Have a Long Build Time

It’s common for the build time in big embedded projects to take hours—

a cell phone manufacturer I worked with had a six-hour build. But, the

edit/build/unit test cycle time must be measured in seconds, not min-

utes or hours. To get into a TDD rhythm, you need a fast incremental

build—you don’t need to build the whole system for TDD. You can build

parts of the system independently when dependencies are managed.

If your build time is too long, you will probably need multiple unit test

builds to keep the incremental build time down. Multiple unit tests

builds should not be too difficult to set up, because your product likely

already has some structure based around libraries, components, and

subsystems. The exact mechanics of setting up each build depend on

your development environment and the unit test harness being used.

In essence, you set up different make files or different make targets to

generate the different test executables.

The real challenge with testing modules, or groups of modules together,

is that you need modular code! The all too prevalent data structure and

function call free-for-all antipattern makes breaking the system apart

for testing more difficult. Starting in the next chapter, we will look at

techniques for breaking dependencies that can help in creating smaller,

more focused test builds.

6.6 We Have Existing Code

Most of you reading this book have an existing product code base you

work with day in and day out. Most likely you have few or no automated

unit tests. Does that mean you cannot do TDD? Of course not. Do you

need to write tests for all your existing code before you begin? Come

on, be serious. It would be great to have the unit tests, but it is not

practical to write them all after the fact, stopping product development.

The recommended prescription for legacy code (code without tests) is to

incrementally add tests while delivering new product functionality. We’ll

look at this topic in detail in Chapter 13, Adding Tests to Legacy Code,

on page 285. As a brief preview, here are the techniques for adding tests

and getting TDD going for your product:

• Use TDD for new functions and modules.

• Add tests when changing existing code.

• Add tests when fixing bugs.

• Invest in some strategic tests proactively.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=128

WE HAVE CONSTRAINED MEMORY 129

Figure 6.1: Flash usage graph

6.7 We Have Constrained Memory

Constrained memory is the reality for many embedded developers. Run-

ning tests in the development system won’t reveal the same memory

constraints found in the target. Here are a few things to help TDD in

constrained memory situations:

• Use dual-targeting so the bulk of your code is tested off-target.

• Find a small test harness. Unity is a good choice.

• Make a lab version of your target system with plenty of memory to

hold all production code and test cases.

• As described in Section 6.5, We Have a Long Build Time, on the

previous page, create multiple test runners, each with a subset of

tests that fit into the limited memory.

• Track memory usage for your target build.

Let’s talk a little about tracking memory usage. Let’s say that your tar-

get system has 1MB of flash memory. You could graph your usage each

iteration, as shown in Figure 6.1.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=129

WE HAVE TO INTERACT WITH HARDWARE 130

Your continuous integration system would build the target flash mem-

ory binary image and also create a map file. A simple shell script could

read the map file and calculate the code area usage. Each iteration, the

team pulls that number from the build and puts it on their Big Visi-

ble Chart (BVC). When the consumption of this limited resource has an

unexpected spike, as in iteration 7, the team can see there is a problem.

The build records would reveal when and what was changed to cause

the bump in usage. The chart illustrates a drop in flash usage—they

must have found some flash hog and put it on a diet.

The team could also establish budgets for flash or RAM usage for each

iteration or feature, and set that number in the CI build. The build

could fail if the budgeted usage is exceeded—bringing it to the atten-

tion of the team immediately during the iteration. The BVC is a very

handy tool and could be used for tracking any critical resource such

as CPU idle time or I/O data rate. You can see that a BVC for resource

consumption could give early warning.

6.8 We Have to Interact with Hardware

Tests that interact with hardware can be written and tested off the

target. This is an important topic, and we spend a lot of time on it.

Recall the LedDriver, first shown in Chapter 3, Starting a C Module, on

page 51. This did not prove that the code will work in the hardware, but

the tests do show that the code meets our understanding of what the

hardware is supposed to do. When the LedDriver is integrated with the

hardware, any misunderstandings can be fixed in the production code

and the tests.

LedDriver is a simple driver; many drivers will have more complex inter-

actions with the hardware. Several chapters in the book (starting in

Chapter 7, Introducing Test Doubles, on page 134) are dedicated to

exploring the use of test stubs in test-driving interactions between mod-

ules as well as interactions from the software to the hardware.

We’ll take control of the clock, one of the often critical hardware inter-

actions. You will see that time is just a function call. We’ll control time

so that testing of time-dependent code is thorough and practical.

We’ll also get right next to the silicon in Chapter 10, The Mock Object,

on page 193 where we will simulate the complex interactions between

a device driver and the hardware. No, don’t let “simulate” give you

the wrong impression. Simulate often means creating software, and

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=130

WHY A C++ TEST HARNESS FOR TESTING C? 131

maybe hardware, that can be as complex as the thing being built or

simulated. Test doubles and mocks are not simulators; they simulate

specific interaction scenarios. Simulating a sequence of interactions is

much less complex than a simulation of the whole and very effective.

6.9 Why a C++ Test Harness for Testing C?

Much of CppUtest could be written in straight C, but straight C cannot

directly handle the self-installation of test cases. Unity and other C-only

test harnesses require a two-step (and sometimes three-step) process

to install test cases. This makes it easy to make mistakes. For example,

if you write a test case and then forget to install it, it will appear to pass

when actually it has not even run.

Having multiple entries for each test makes refactoring tests more dif-

ficult. If you rename or split a test, you have duplicate work. It’s more

likely you’ll just leave the bad name when renaming is hard, so it’s best

if we use a test harness that makes it easy to do the right thing.

As you’ve seen, the designers of Unity1 addressed the test installation

problem with a Ruby script that reads test cases and generates a test

caller.

CppUTest’s designers2 chose a different approach. We used some of the

C++ capabilities to install each test into a list of all tests. If you are not

very familiar with C++, the explanation might be a little foreign. One

of the important features of C++ provides built-in language support for

initializing objects. The declaration of a file scope object will be initial-

ized before main() runs, using the object’s constructor. A constructor is

like an init function for a struct. Basically, the TEST() macro creates a file

scope C++ object whose constructor installs the TEST() into the list of all

tests.

I would not dismiss CppUTest, even if your target has only a C compiler.

Sometimes when you compile with a different compiler, you can find

problems you wouldn’t have found before. Testing in the host develop-

ment system can help identify portability problems. Self-installed tests

help eliminate lost test cases. Some users of CppUTest report that their

reluctance to use C++ was lessened as a side effect of using a C++ test

1. Greg Williams, Mark Karlesky, and Mark Vander Voord
2. Michael Feathers, Bas Vodde, and your humble author

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=131

WHERE ARE WE? 132

harness. It allowed them to experiment with C++ in the test cases, and

they now use it in their production code too.

If your target does not have a C++ compiler or you’re still concerned

about using CppUTest, have a look at the Ruby script that comes with

CppUTest that converts CppUTest tests to Unity tests. This lets you

work first in the development compiler environment and automatically

convert test cases to Unity for target execution.

6.10 Where Are We?

You probably still have questions about how to fit TDD into your devel-

opment effort. The LedDriver example was simple in that the driver had

only a single dependency. It helped you get the feel of TDD. You will

have easy code like this to write in your work. Don’t feel you must

solve the biggest testing challenges first. The simpler testing challenges

help you develop the testing and incremental development skills needed

for going after the bigger challenges.

Don’t worry, TDD is not just for testing the easy stuff. The complexities

of systems come from dependencies on other parts of the system. In

the next part of this book, we will look at applying TDD to modules that

have dependencies that make writing automated tests a challenge.

Put the Knowledge to Work

1. Think of 100 reasons why TDD could never work for you. Then go

review your bug list.

2. List bug root causes, and consider which of them might get pre-

vented by TDD.

3. Pretend that TDD might work for you and try it.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=132

Part II

Testing Modules with

Collaborators

Download from Wow! eBook <www.wowebook.com>

You can fool some of the people all of the time and all of the

people some of the time, but you cannot fool all of the

people all of the time.

Abraham Lincoln

Chapter 7

Introducing Test Doubles
So far, we have developed and written tests for self-contained code,

which is code without dependencies. These are, and have always been,

the easier parts of any system development, the easily sharable parts,

and the reusable parts. A more formidable challenge for TDD is test-

ing code in the middle, which consists of the modules that must work

through other modules, functions, and data stores to get their job done.

This part of the book is dedicated to demonstrating techniques to effec-

tively test the code in the middle.

7.1 Collaborators

A collaborator is some function, data, module, or device outside the

code under test (CUT) that the CUT depends upon. We’ve already seen a

very simple collaborator in LedDriver. At first glance, it looks like a stand-

alone module with no collaborators. First glances can be deceptive—it

does have a collaborator, as you can see in Figure 7.1, on the follow-

ing page. In production, LedsAddress points to the memory-mapped I/O

address required by the hardware. During testing, the LedDriver is given

the address of virtualLeds, which is a word of memory standing in for the

actual hardware. The test case indirectly monitors the driver’s behavior

by inspecting virtualLeds after each operation.

virtualLeds is a simple test double.1 A test double impersonates some

function, data, module, or library during a test. The CUT does not know

it is using a double; it interacts with the double the same way it inter-

acts with the real collaborator.

1. Test doubles are described in Gerard Meszaros’ book xUnit Testing Patterns [Mes07].

Download from Wow! eBook <www.wowebook.com>

BREAKING DEPENDENCIES 135

Led Driver
Test

Led Driver

Leds
Address

Operation
on the public
interface.

Sneaking around
to the back door to see
what happened.

Figure 7.1: Testing the LedDriver

You have probably used test doubles before. In the simplest form, the

test double is a stub taking the place of the actual production code.

You’ve written them, but you probably considered the stub a short-term

solution to not having the real code. Once you had the real code, you

stopped using the stubs. In TDD, the test doubles are used and main-

tained throughout the life of the production code, facilitating automated

unit testing.

7.2 Breaking Dependencies

Real code has dependencies. One module interacts with several others

to get its job done. Code resists automated tests when it interacts with

the operating system, hardware devices, or sometimes other modules.

The bad news is that these problem dependencies make test automa-

tion difficult or maybe prohibitively expensive. The good news is that

we can design code to be testable; we can break problem dependencies.

The key to breaking dependencies is a more rigorous use of interfaces,

encapsulation, and data hiding and less reliance on unprotected global

data. To design more modular and testable C, we employ a header file

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=135

BREAKING DEPENDENCIES 136

!est

The module in the middle... ...has baggage.

Figure 7.2: Dependency mess

to publish the interface of a module. A testable module is one that

interacts with other modules through the module’s interface.

When the interactions between modules are through interfaces, collab-

orators can be designed to be swapped out, and test versions of the

collaborators can be inserted. We use the substitute collaborators only

when needed; if you can test with the real production code collaborator,

then do it. If the collaborator gets in the way of your automated tests,

then it is time to use a test double.

Collaborators can get in the way when is it hard to control their behav-

ior. For example, to test the proper reaction to a network failure, we

need to be able to cause the failure at the right instant for the test case.

Networks might not fail when we want them to, and they also tend

to fail when we don’t want them to. To test code that interacts with

a network, we need to be able to insert a test version of the network

communication API.

Test doubles solve the problem of testing a precisely timed network

failure. Let’s say there is a message sequence involving four messages.

When there is a communications failure, the recovery varies based on

which message was the last sent. To be confident that the code meets

its requirements, you need to test the various failure modes. Does the

code recover properly when the network fails after the third message?

“Pull the plug now, Harry!” might work, but it is hardly repeatable.

Testing this scenario requires taking control of the collaborator and

causing the error at exactly the right moment.

Refer to the left of Figure 7.2, and you’ll see a dependency graph of a

handful of modules. Your mission, should you choose to accept it, is to

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=136

BREAKING DEPENDENCIES 137

Test

Code
Under Test

Depended
On

Component
DOC DOC

Transitively
DOC

TDOC TDOCTDOCTDOC

Figure 7.3: Test dependency octopus

test the gray module in the middle. As you investigate the dependencies,

it’s clear that the gray box has a lot of baggage. The dependency graph

on the right shows the module to test and the web of dependencies that

might hinder getting the code into a test harness. There are hidden

runtime dependencies and initializations that will be hard to anticipate

and discover. Where does it end? We can confidently accept the mission

because the problem dependency chains can be broken using one or

more test doubles.

Without test doubles, we have the dependency mess shown in Fig-

ure 7.3. At the top is the test case, acting as the client to the CUT.

The test case’s dependencies make it look like an octopus. The dashed

lines are the tentacles reaching to the CUT’s collaborating modules or

data structures. Gerard calls these Depended on Components (DOC).

As discussed in Section 2.5, The Four-Phase Test Pattern, on page 49,

tests are responsible for the four phases of each test: setup, exercise,

verify, and cleanup. The test’s dependency mess comes from fulfilling

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=137

BREAKING DEPENDENCIES 138

Test

Code
Under Test

Test Double Test Double Test Double

Figure 7.4: Managing test dependencies with test doubles

its responsibility in the Four-Phase Test pattern. The test case must

set up and clean up the DOCs. There can be transitively depended

on components to initialize too.2 If you do not give up, you might find

your whole system being initialized in the test case. After the test cases

exercise the CUT, you may need to consult the DOCs and transitively

depended upon components to check proper CUT behavior. It can be a

mess.

Aside from making the test complex, the test’s knowledge of the direct

and transitive dependencies makes the test fragile. Future changes to

the design are likely to result in test breakage as dependencies evolve.

Unmanaged dependencies in test code are dangerous, just as they are

in production code.

2. The transitive property of dependencies says if A depends on B and B depends on C,

then A depends on C.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=138

WHEN TO USE A TEST DOUBLE 139

Figure 7.4, on the preceding page shows how we can use test doubles

to simplify testing and reduce knowledge of transitively depended on

components. The test double stands in for the real collaborator; the

CUT cannot tell the difference. The double is the collaborator from the

CUT’s point of view.

The test doubles are not full simulations of the thing being replaced,

just as a stunt double is not the same as the leading man. The stunt

double knows his part; he can fall off a building really well. A different

double might be needed to fall off a horse. Doubles take the place of

the leading man in very specific situations. This helps test doubles stay

simple, much simpler than the thing being replaced.

Test doubles provide indirect inputs (return values) to the CUT or to

capture and possibly check indirect outputs (parameters) sent by the

CUT to the test double.

There are a number of variants of the test double concept. Read the

sidebar on page 141 to see a few of the variations.

7.3 When to Use a Test Double

Not all interactions will use test doubles. My rule of thumb is to use the

real code when you can and use a test double when you must. You will

need to use judgment to decide when to fake and when not to fake.

For example, if the CUT uses a linked list as one of its collaborators,

there is no need to use a fake linked list. Use the real one. The test case

consults the linked list during the verify stage of the Four-Phase Test

pattern to see whether the right additions, deletions, and modifications

were made to the linked list.

Here are some common reasons to use a test double:

Hardware independence

Having test doubles for hardware interactions will allow testing

independently from the hardware. It also provides the ability to

feed a wide variety of inputs into the core of the system that may

be very difficult or time-consuming to do in the lab or field.

Inject difficult to produce input(s)

Some computed or hardware-generated event scenarios may be

difficult to produce. By adjusting the return result of a test double,

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=139

FAKING IT IN C, WHAT’S NEXT 140

the CUT might have all it needs to trigger some unlikely execution

path.

Speed up a slow collaborator

If tests don’t run fast, you will likely stop running them as often

as you should. A slow collaborator, such as a database, a network

service, or some number crunching, can be faked out by returning

a result controlled by the test case, speeding up the test.

Dependency on something volatile

The classic example of a volatile collaborator is the clock. You have

some event that is supposed to happen at 8:42 a.m.—either you

get one chance a day or you have to reset the clock. But with a

double standing in for the clock, it can be 8:42 a.m.—or the last

day of leap year—whenever you want.

Dependency on something under development

Design often encompasses unknown areas, especially when hard-

ware and software are concurrently developed. As you approach

an area of the unknown, develop a test double with the interface

that best meets the CUT’s needs. Progress on the CUT can con-

tinue, while at the same time exploring the CUT’s needs of the

currently unimplemented service.

Dependency on something that is difficult to configure

If a DOC is difficult to set up and get into one or more desired

states, it may be best to substitute a test double. A database is a

good example of a DOC that you could test with but is difficult to

set up.

Choosing to use test doubles for the CUT is not an all-or-nothing propo-

sition. Most often you will have a variety of real and fake collaborators,

as shown in Figure 7.5, on page 142. Also, for some tests you will want

to use the production code collaborator, and for others you will want

the test double.

7.4 Faking It in C, What’s Next

We’ve talked conceptually about the problems that test doubles are

designed to address. We have defined some of the variations on test

doubles that fit differing testing needs. We have listed some of the sit-

uations where test doubles are almost always used. What we have not

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=140

FAKING IT IN C, WHAT’S NEXT 141

Test Doubles Variations

In Gerard’s book, he identifies different types of doubles. We’ll
use spies, stubs, mocks, and exploding fakes in this book. It is
good to know there are other kinds of doubles.

Name Variation
Test dummy Keeps the linker from rejecting your build. A

dummy is a simple stub that is never called.
It is provided to satisfy the complier, linker, or
runtime dependency.

Test stub Returns some value, as directed by the cur-
rent test case.

Test spy Captures the parameters passed from the
CUT so the test can verify that the correct
parameters have been passed to the CUT. The
spy can also feed return values to the CUT just
like a test stub.

Mock object Verifies the functions called, the call order,
and the parameters passed from the CUT to
the DOC. It also is programmed to return spe-
cific values to the CUT. The mock object is
usually dealing with a situation where multi-
ple calls are made to it, and each call and
response are potentially different.

Fake object Provides a partial implementation for the
replaced component. The fake usually has a
simplified implementation when compared to
the replaced implementation.

Exploding fake Causes the test to fail if it is called.

These terms are helpful when talking about the different kinds
of behavior and capability needed by the test double. Often
a distinction is not needed, though, so I suggest you don’t get
too hung up on the terms in practice. You will find that people
generally use the terms fake, mock, and stub interchangeably.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=141

FAKING IT IN C, WHAT’S NEXT 142

Test

Code
Under Test

Depended
On

Component
Test Double Test Double

Transitively
DOC

TDOC

Figure 7.5: Using test doubles and real collaborators

done is show you the mechanics of substituting the test double for the

production code.

C has only these primitive mechanisms: linker substitution, function

pointer substitution, and preprocessor substitution. So, when do you

use, or not use, each substitution technique?

Link-time substitution

Use link-time substitution when you want to replace the DOC for

the whole unit test executable. Also, you will need to use linker

substitution to substitute a module where you do not control the

interface. This technique is especially helpful for off-target testing

and eliminating dependencies on third-party libraries, hardware-

dependent modules, or the operating system. You’ll see an exam-

ple of this in the next chapter.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=142

FAKING IT IN C, WHAT’S NEXT 143

If you also have to test the DOC, then you need a separate test

executable that contains the DOC and does not contain the test

double. We’ll use link-time test doubles in the next chapter.

Function pointer substitution

Use function pointer substitution when you want to replace the

DOC for only some of the test cases. You could use function point-

ers substitution everywhere that you control the interface, but it

is more complicated, uses some RAM, and compromises function

declaration readability, at least until you get used to it. Function

pointers allow great control over which functions get overridden

and which do not. Function pointer substitution is covered in

detail in Chapter 9, Runtime-Bound Test Doubles, on page 177.

Preprocessor substitution

Use preprocessor substitution when linker and function pointer

substitutions can’t do the job. You can break a chain of unwanted

includes with the preprocessor. You can also use it selectively or

temporarily to override names. CppUTest uses preprocessor sub-

stitution to override the standard library’s free(), malloc(), calloc(),

and realloc() functions, allowing it to monitor heap usage. It uses

the GCC command-line switch -include to force an include at the

beginning of every file. Here is an example of a forced include file

that allows CppUTest to monitor the heap:

#include <stdlib.h>

void* cpputest_malloc(size_t size, const char *, int);

void* cpputest_calloc(size_t count, size_t size, const char *, int);

void* cpputest_ralloc(void *, size_t, const char *, int);

void cpputest_free(void* mem, const char *, int);

#define malloc(a) cpputest_malloc(a, __FILE__, __LINE__)

#define calloc(a, b) cpputest_calloc(a, b, __FILE__, __LINE__)

#define realloc(a, b) cpputest_realloc(a, b, __FILE__, __LINE__)

#define free(a) cpputest_free(a, __FILE__, __LINE__)

Preprocessor substitution is the substitution of last choice. The

problem is that the compiled code in the CUT is actually different.

It permeates changes to the code far and wide. When tempted to

use preprocessor substitution, consider an alternative: wrapping

the code and providing a new interface that you do control that

gives substitutability through the linker or function pointers.

Combined link-time and function pointer substitution

We can combine link-time and function pointer substitution to

work together. A link-time stub can be created that contains a

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=143

WHERE ARE WE? 144

function pointer. Initially the function pointer is initialized to NULL.

In this case, the stub has default do-nothing behavior. A test case

can override the NULL pointer and provide exactly the stub function

needed for the test. This is helpful when you want the flexibility

of the function pointer but do not want to change the interface to

the DOC.

7.5 Where Are We?

In this chapter, we looked conceptually at the problem of dependencies.

We looked at a few ideas of how to separate the code under test from

its collaborator by using test doubles. There are a variety of different

kinds of test doubles and substitution techniques that are available to

you in C.

In the next few chapters, we’ll put the various test doubles and sub-

stitution techniques to work as we do TDD for some modules in the

middle or close to the hardware. Always choose the simplest approach

that works and keeps the design clean.

Your existing legacy code may have dependency problems much worse

than this. TDD helps avoid that mess by making dependency problems

visible. We’ll look at how to start taming legacy code in Chapter 13,

Adding Tests to Legacy Code, on page 285.

Put the Knowledge to Work

Create a block diagram of your system. Identify collaborations that you

expect to make automated tests difficult.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=144

Chapter 8

Spying on the Production Code
In the previous chapter, we looked at some of the challenges of testing

modules that interact with other parts of the system. I described some

of the techniques needed in C to overcome these challenges. In this

chapter, we’ll look at an example module that has problem hardware

and OS dependencies. We’ll use interfaces, test doubles, and link-time

substitution to manage the problem dependencies.

To manage dependencies on the Code Under Test execution environ-

ment, all access to the execution environment must go through defined

interfaces. Interface calls can be intercepted and inspected by replacing

a problem Depended Upon Component with a test double. The test case

can control the test double’s return results, driving the CUT indirectly.

The essential idea is that the test case and the test doubles together

form a software test fixture that surrounds the CUT, driving its inputs

and monitoring and checking its outputs.

The test case takes the role of the client, driving the direct inputs on the

CUT, while the test doubles play the role of the DOC. The test doubles

can monitor data intended for the DOC and provide indirect input as

return results that drive the CUT as needed by the test case.

In this chapter, we will create core system functionality that needs to

interact with the hardware and operating system. We won’t let this code

directly access the hardware or OS. We’ll make it go through a thin layer

that can be replaced with a test double, a spy that will help verify the

behavior of the code under test.

As embedded software developers, you have probably heard the terms

OS abstraction layer and hardware abstraction layer. These layers give

us portability between execution environments. We’re using the same

Download from Wow! eBook <www.wowebook.com>

LIGHT SCHEDULER TEST LIST 146

 Light Scheduler Tests

 Lights are not changed at initialization
 Time is wrong, day is wrong, no lights are changed
 Day is right, time is wrong, no lights are changed
 Day is wrong, time is right, no lights are changed
 Day is right, time is right, the right light is turned on
 Day is right, time is right, the right light is turned off
 Schedule every day
 Schedule a specific day
 Schedule all weekdays
 Schedule weekend days
 Remove scheduled event
 Remove non-existent event
 Multiple scheduled events at the same time
 Multiple scheduled events for the same light
 Remove non scheduled light schedule
 Schedule the maximum supported number of events (128)
 Schedule too many events

Figure 8.1: Light Scheduler test list

idea to make the core logic of the system testable. Now you have another

good reason to introduce these layers in your code.

In the closing of the previous chapter, you saw three techniques for

sneaking test doubles into the test runner, one of which was link-time

substitution. We’ll use link-time substitution in this situation, because

we want to completely eliminate the OS and hardware dependencies in

the test executable.

We will also use the CppUTest test harness for the rest of the book.

CppUTest tests look very similar to Unity tests. You may want to look

again at Section 2.3, CppUTest: A C++ Unit Test Harness, on page 44 or

Appendix C, on page 332, for a refresher.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=146

LIGHT SCHEDULER TEST LIST 147

8.1 Light Scheduler Test List

We’re developing light-scheduling features of a home automation sys-

tem. The first cut of the test list is in Figure 8.1, on the previous page.

The test list is roughly in the order we expect to implement the tests.

Don’t worry too much about getting the test order exactly right; you

will change the order as you go. You will discover forgotten tests or find

that an item in the test list is really multiple tests. Don’t spend too

much time on the test list. If you try to get it perfect, you are definitely

spending too much time on it.

8.2 Dependencies on Hardware and OS

Let’s see how we can design and test the light-scheduling portion of a

home automation system. The component that handles light schedul-

ing is called the LightScheduler, shown in context in Figure 8.2, on the

following page. The LightScheduler has transitive dependencies on the

hardware and the operating system (OS). If left unbroken, these depen-

dencies mean that the light scheduler will be testable only in the target

hardware.

The design works like this. The client of the LightScheduler is in the

AdminConsole subsystem. The AdminConsole instructs the LightScheduler

to turn on and off the lights at specific times during the week. Every

minute, the LightScheduler is pinged through an OS callback from Time-

Service. The ping triggers the LightScheduler to check its internally main-

tained schedule of light control actions. At the appropriate time, the

LightScheduler tells the LightController to turn on or off a light by its id.

Each design element has focused responsibilities. The scheduler owns

the overall application logic, while LightController and TimeService interact

with hardware and OS. LightController and TimeService are parts of larger

hardware and operating system abstraction layers.1

By following the dependency arrows, you can see that the LightSched-

uler transitively depends on the hardware and OS. The dependencies

could mean that LightScheduler can be tested only in the target. But

with our separation of responsibilities, it’s easy to disconnect the prob-

lem dependencies during test. Let’s look at how we can use the linker

to break the transitive dependency on the hardware and OS.

1. Note that not all interface functions are shown in the UML diagrams, just a few

representative functions. This is common for informal usage of UML.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=147

LINK-TIME SUBSTITUTION 148

Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ScheduleTurnOn()
+RemoveSchedule()
+WakeUp()

Light Controller

+ On(id)
+ Off(id)

Hardware RTOS

<<anonymous callback>>

Admin
Console

Figure 8.2: Initial light scheduler design

8.3 Link-Time Substitution

To break the dependencies on the production code, think of the collabo-

rators only in terms of their interfaces. In Figure 8.3, on the next page,

we can see the separation of the interface from the implementation.

The interface is represented by the header file, and the implementation

is represented by the source file, as we have discussed. LightScheduler

is bound to the production code implementation at link time. Michael

Feathers, author of Working Effectively with Legacy Code [Fea04], calls

this a link seam. And at a seam we have flexibility.

The unit tests take advantage of the link seam by providing alterna-

tive implementations for LightController and TimeService, as shown in Fig-

ure 8.4, on page 150.

Though there are other ways to accomplish this, a good way to struc-

ture the test build is to compile all production code into a library. Test

doubles are left as object (.o) files. When building for test, the makefile

explicitly links the test double object files before linking to the produc-

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=148

SPYING ON THE CODE UNDER TEST 149

<<interface>>

Time Service
+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+WakeUp()

<<interface>>

Light Controller
+ On(id)
+ Off(id)

Model 42 Hardware RTOS

<<anonymous callback>>

Model 42
Light Controller

RTOS
Time Service

<<implements>> <<implements>>

Admin
Console

Figure 8.3: The light scheduler instructs collaborators through their

interfaces.

tion code library. This allows the test doubles to override production

code with same names. This is described in more detail in Appendix A,

on page 322.

8.4 Spying on the Code Under Test

The spy is on a covert operation. It intercepts the inputs destined for the

production code, later providing it to the test case. As part of its covert

mission, it may also feed return results to the client code, getting the

CUT to do the test’s bidding. Very sneaky indeed.

After setting up the initial LightScheduler files (I use the shell scripts

provided with CppUTest to create the initial files), write a test case that

helps you envision the roles of theLightControllerSpy and FakeTimeSource

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=149

SPYING ON THE CODE UNDER TEST 150

<<interface>>

Time Service
+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

Test

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+WakeUp()

<<interface>>

Light Controller
+ On(id)
+ Off(id)

Light Controller
Spy

Fake
Time Service

<<implements>> <<implements>>

Figure 8.4: Light scheduler unit test structure

in the testing of LightScheduler. This tests helps you decide what facilities

are needed in the test fixture.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleOnEverydayNotTimeYet)

{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1199);

LightScheduler_Wakeup();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=150

SPYING ON THE CODE UNDER TEST 151

Dissecting this test case one line at a time, we see the test schedules

the light with id equal to 3 to turn on every day at the 1,200th minute

of the day (8 p.m.). The test takes control of the clock, telling the Fake-

TimeSource that it should report that it is Monday at 7:59 p.m. Then the

test simulates a callback to LightScheduler_WakeUp(), like the production

TimeService will do every minute. Finally, the test checks the expected

outcome. The literal constants for EVERYDAY and MONDAY, along with

similar constants, will be part of the LightScheduler interface.

There are no scheduled events due, so LightController functions should

not be called. The spy is debriefed after the covert mission by checking

its secret test-only interface made up of LightControllerSpy_GetLastId() and

LightControllerSpy_GetLastState(). LightControllerSpy_GetLastId() returns the

id of the light that was controlled or LIGHT_ID_UNKNOWN when there has

been no light control. LightControllerSpy_GetLastState() returns LIGHT_OFF,

LIGHT_ON, or LIGHT_STATE_UNKNOWN. LIGHT_STATE_UNKNOWN means that

the light has not been changed since initialization. If the mission is suc-

cessful, the debrief should show that no light instructions were given.

TEST(LightScheduler, ScheduleOnTodayNotTimeYet) looks like a decent test,

but it’s too big for a first test. There are two test doubles and skeletons

of the production code to write. In addition, all the pieces must be wired

together. Still, it is good to have this goal articulated. Comment out this

test, and save it for later.

A natural first test is one that specifies what should happen during

initialization, like this:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, NoChangeToLightsDuringInitialization)

{

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

This test can be put together more quickly and keep the feedback com-

ing rapidly. Nothing is needed for LightScheduler, letting us focus on the

test double.

What if we have not yet chosen our OS, or the light-controlling hard-

ware is still on the drawing board? Does that have to paralyze us while

we make those decisions? No, it does not. We can treat those two areas

as DOCs and define interfaces that perfectly meet the needs of the

code under test. Interfaces let us break dependencies on unknowns.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=151

SPYING ON THE CODE UNDER TEST 152

We develop right up to the unknown, defining what we want from it.

The tests are helping to drive the design.

There is a subtle positive side benefit to programming when you don’t

kow all the details—it can lead to a more abstract interface, one that

does not get polluted with low-level implementation details. Since it

does not reveal the implementation, it allows different potential imple-

mentations for different targets.

Write a few tests to drive the new fake, not so much to make sure the

fake works—usually there is little that can go wrong—but to document

the fake’s behavior. You could drive the fake fully from the production

code, but by writing tests for it, you also document the fake’s behavior.

You non-C++ programmers are going to have to put up with a little bit

of C++. When CppUTest is used to test C code, you have to enclose

C function declarations in an extern "C" block. You will see this in the

following example. extern "C" tells the compiler to generate calls to the

enclosed functions using C calling conventions. If you don’t, you will get

linker errors reporting that the linker cannot find functions you know

are there. The names will look the same to you, but not to the linker.

Download tests/HomeAutomation/LightControllerSpyTest.cpp

#include "CppUTest/TestHarness.h"

extern "C"

{

#include "LightControllerSpy.h"

}

TEST_GROUP(LightControllerSpy)

{

void setup()

{

LightController_Create();

}

void teardown()

{

LightController_Destroy();

}

};

TEST(LightControllerSpy, Create)

{

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpyTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=152

SPYING ON THE CODE UNDER TEST 153

TEST(LightControllerSpy, RememberTheLastLightIdControlled)

{

LightController_On(10);

LONGS_EQUAL(10, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_ON, LightControllerSpy_GetLastState());

}

The spy’s header includes the header file of the interface it is replacing.

The spy is an implementation of the LightController interface. Including

that header is a way to stress that point.

Download tests/HomeAutomation/LightControllerSpy.h

#include "LightController.h"

enum

{

LIGHT_ID_UNKNOWN = -1, LIGHT_STATE_UNKNOWN = -1,

LIGHT_OFF = 0, LIGHT_ON = 1

};

int LightControllerSpy_GetLastId(void);

int LightControllerSpy_GetLastState(void);

You might wonder why the spy’s header file defines the literal values

for the light states instead of the production code header. Those values

are used for interrogating the spy during test. They would pollute the

production code.

The spy’s implementation defines a dead drop,2 made from file scope

data, where the spy stores intelligence during its important covert oper-

ation.

Download tests/HomeAutomation/LightControllerSpy.c

#include "LightController.h"

static int lastId;

static int lastState;

The create function initializes the spy’s dead drop.

Download tests/HomeAutomation/LightControllerSpy.c

void LightController_Create(void)

{

lastId = LIGHT_ID_UNKNOWN;

lastState = LIGHT_STATE_UNKNOWN;

}

2. A secret location where a spy leaves material to be picked up

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.h
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=153

CONTROLLING THE CLOCK 154

During the spy’s mission, critical information is intercepted through

the interface of the replaced collaborator.

Download tests/HomeAutomation/LightControllerSpy.c

void LightController_On(int id)

{

lastId = id;

lastState = LIGHT_ON;

}

void LightController_Off(int id)

{

lastId = id;

lastState = LIGHT_OFF;

}

The one being spied on suspects nothing. The intelligence is retrieved

from the dead drop through secret accessor functions after the CUT is

exercised.

Download tests/HomeAutomation/LightControllerSpy.c

int LightControllerSpy_GetLastId(void)

{

return lastId;

}

int LightControllerSpy_GetLastState(void)

{

return lastState;

}

As you can see, this spy is quite simple to write. Let’s do something

similar to take control of the clock in the next section.

8.5 Controlling the Clock

Time is usually a big deal in embedded systems. Time, a volatile input,

makes testing a challenge. Waiting for timed events in tests makes the

tests take too long, longer than they have to be. The bottom line is that

the tests have to take over the clock.

Abstracting the clock is important too. Real-time operating systems

often define nonstandard time functions, and this can lead to porta-

bility problems. If you want code that runs on more than one platform,

abstract the clock. The abstraction provides a perfect place to insert

your fake clock. In production, use a thin adapter to convert the embed-

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=154

MAKE IT WORK FOR NONE, THEN ONE 155

ded application’s time API to the underlying OS calls. You get a shot of

testability with a portability chaser.

The test stub needed for the TimeService is kind of the opposite of the

LightControllerSpy. The test is not interested in what the CUT passes to

the TimeService. But it is interested in controlling what the TimeService

returns to the CUT. This is known as an indirect input. Take a look at

its tests to reveal its behavior:

Download tests/HomeAutomation/FakeTimeServiceTest.cpp

TEST(FakeTimeService, Create)

{

Time time;

TimeService_GetTime(&time);

LONGS_EQUAL(TIME_UNKNOWN, time.minuteOfDay);

LONGS_EQUAL(TIME_UNKNOWN, time.dayOfWeek);

}

TEST(FakeTimeService, Set)

{

Time time;

FakeTimeService_SetMinute(42);

FakeTimeService_SetDay(SATURDAY);

TimeService_GetTime(&time);

LONGS_EQUAL(42, time.minuteOfDay);

LONGS_EQUAL(SATURDAY, time.dayOfWeek);

}

Now that the test doubles are assembled, let’s look again at the test list

in Figure 8.1, on page 146. Like I mentioned earlier, the list is roughly

in the order we think we’ll implement them. We’ll start with the easiest

tests first.

8.6 Make It Work for None, Then One

The fully implemented LightScheduler will have to manage a collection of

scheduled items. Starting with a test case that involves many scheduled

events makes for too much code. A good way to attack and conquer

this problem is to start with the cases of no scheduled items and then

one scheduled item, saving the many case for later. This is a common

approach for engineering collection behavior using TDD.

The do nothing tests provides the shortest path to a passing test. All

that is needed is the interface definitions for the production code calls.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/FakeTimeServiceTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=155

MAKE IT WORK FOR NONE, THEN ONE 156

Don’t worry that it seems that nothing is being tested. The objective

here is to get these boundary tests right. Later when the full implemen-

tation is in place, these tests will continue to assure correct behavior of

these boundary cases. You will be tempted to put in more code than an

empty function body; don’t do it. It is a path to untested code.

It looks like there are two areas of scheduler tests. Many of the sched-

uler tests will be concerned with the time and day matching, while other

tests are concerned with the managing of multiple scheduled events.

You really don’t have to decide the whole test path up front, but I find

it helpful to use the 0-1-N pattern when there is collection behavior.

First we handle the zero cases where there is nothing scheduled, or no

events trigger. Then we handle the one event variation that drives the

support for all the day and time variations. After the day and time vari-

ations are passing their tests, we will shift our focus to add support for

the N cases where multiple scheduled events are test-driven.

Here’s what the no scheduled items test looks like:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, NoScheduleNothingHappens)

{

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(100);

LightScheduler_Wakeup();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

It may seem that there’s no need to set the day and minute on the

FakeTimeService; there are no scheduled events, so any time will do. We’ll

still set the day and minute so they are at least valid values. Only a

skeleton of LightScheduler_Wakeup() is needed to satisfy this test.

Here is the initial TEST_GROUP():

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST_GROUP(LightScheduler)

{

void setup()

{

LightController_Create();

LightScheduler_Create();

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=156

MAKE IT WORK FOR NONE, THEN ONE 157

void teardown()

{

LightScheduler_Destroy();

LightController_Destroy();

}

};

Now we’re ready for that test we used to envision the test fixture capa-

bilities.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleOnEverydayNotTimeYet)

{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1199);

LightScheduler_Wakeup();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

Because no lights are actually controlled during the previous test, only

empty implementations are needed for the production code. The test

drives the fixture development and the API for scheduling a light. Also,

LightScheduler_ScheduleTurnOn() would just be a skeletal implementation

like this:

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)

{

}

void LightScheduler_Wakeup(void)

{

}

Now for the moment we’ve been waiting for; let’s turn on a light. I chose

the EVERYDAY test case because that requires less production code to

pass the test in this early stage.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleOnEverydayItsTime)

{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1200);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=157

MAKE IT WORK FOR NONE, THEN ONE 158

LightScheduler_Wakeup();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_ON, LightControllerSpy_GetLastState());

}

Let’s think a little about how we will implement the LightScheduler. We’ll

need a struct to hold the information about each schedule light control.

With that struct we’ll create an array to hold the 128 separate sched-

uled events (128 is the design limit from the requirements). LightSched-

uler_ScheduleTurnOn(), and similar operations, will use the next unused

slot in the array. LightScheduler_Wakeup() will go through the array and

see whether any scheduled lights need to be controlled.

Given that we have an idea of how to proceed, let’s turn on a light,

scheduled for every day at the right time. We need this struct and ini-

tialization:

Download src/HomeAutomation/LightScheduler.c

typedef struct

{

int id;

int minuteOfDay;

} ScheduledLightEvent;

static ScheduledLightEvent scheduledEvent;

void LightScheduler_Create(void)

{

scheduledEvent.id = UNUSED;

}

You are probably wondering why ScheduledLightEvent only has fields for

id and minuteOfDay. Also, where is the array to hold the different sched-

uled events? Before we get into the whys, take a look at the implemen-

tation and see that nothing else is yet needed.

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)

{

scheduledEvent.id = id;

scheduledEvent.minuteOfDay = minuteOfDay;

}

void LightScheduler_Wakeup(void)

{

Time time;

TimeService_GetTime(&time);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=158

MAKE IT WORK FOR NONE, THEN ONE 159

if (scheduledEvent.id == UNUSED)

return;

if (time.minuteOfDay != scheduledEvent.minuteOfDay)

return;

LightController_On(scheduledEvent.id);

}

It is tempting to add more fields to ScheduledLightEvent and make sched-

uledEvent an array. But we don’t need it yet. In Debug-Later Program-

ming, we add all the stuff we think we’ll need right away. There is vir-

tually no end to “I’m going to need it soon” thinking. So in TDD, we

generally only add what is needed by the current tests.

By that reasoning, you might question the need to introduce the Sched-

uledLightEvent data structure. I chose to introduce it now because it is

not much extra syntactical weight to carry, and it will make converting

to an array easier. I think ahead, but I act only on some things.

Why not add the array? I’d like to focus on the collection aspect of

the scheduler separately and rather not carry around the array index

syntax. These are judgment calls.

Now back to the code. Notice that the structure definition is in the .c

file and not the .h file. We’re purposely hiding those details so that the

LightScheduler can manage them.

You can see what the test list would look like if I added some of the

details of the specific tests written and scratched out the completed

tests in Figure 8.5, on the next page.

This test drives us to add the API for scheduling a light to turn off.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleOffEverydayItsTime)

{

LightScheduler_ScheduleTurnOff(3, EVERYDAY, 1200);

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_Wakeup();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_OFF, LightControllerSpy_GetLastState());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=159

MAKE IT WORK FOR NONE, THEN ONE 160

Light Scheduler Tests

 Lights are not changed at initialization
 Time is wrong, day is wrong, no lights are changed
 Day is right, time is wrong, no lights are changed
 Day is wrong, time is right, no lights are changed
 Day is right, time is right, the right light is turned on
 Day is right, time is right, the right light is turned off
 Schedule every day
 Schedule a specific day
 Schedule all weekdays
 Schedule weekend days
 Remove scheduled event
 Remove non-existent event
 Multiple scheduled events at the same time
 Multiple scheduled events for the same light
 Remove non scheduled light schedule
 Schedule the maximum supported number of events (128)
 Schedule too many events
 No lights are scheduled and none turn on during wakeup

Time is wrong, no change
Right time, light turns on

Figure 8.5: LightSchedulerTestList-revised1

Given our current tests, LightScheduler_Wakeup() can turn on or off a

light that is scheduled for EVERYDAY. We are all set to continue adding

scheduling scenarios and driving the implementation. Here is the cur-

rent state of LightScheduler_Wakeup():

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_Wakeup(void)

{

Time time;

TimeService_GetTime(&time);

if (scheduledEvent.id == UNUSED)

return;

if (time.minuteOfDay != scheduledEvent.minuteOfDay)

return;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=160

MAKE IT WORK FOR NONE, THEN ONE 161

if (scheduledEvent.event == TURN_ON)

LightController_On(scheduledEvent.id);

else if (scheduledEvent.event == TURN_OFF)

LightController_Off(scheduledEvent.id);

}

The corresponding LightScheduler_ScheduleTurnOn() looks like the follow-

ing, with LightScheduler_ScheduleTurnOff() being almost identical.

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)

{

scheduledEvent.minuteOfDay = minuteOfDay;

scheduledEvent.event = TURN_ON;

scheduledEvent.id = id;

}

void LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay)

{

scheduledEvent.minuteOfDay = minuteOfDay;

scheduledEvent.event = TURN_OFF;

scheduledEvent.id = id;

}

The LightScheduler’s interface has evolved to this point:

Download include/HomeAutomation/LightScheduler.h

#ifndef D_LightScheduler_H

#define D_LightScheduler_H

enum Day {

NONE=-1, EVERYDAY=10, WEEKDAY, WEEKEND,

SUNDAY=1, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

};

typedef enum Day Day;

void LightScheduler_Create(void);

void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay);

void LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay);

void LightScheduler_Wakeup(void);

#endif /* D_LightScheduler_H */

Refactor to Remove Duplications

With tests passing, we can refactor out the small bits of duplication in

LightScheduler_ScheduleTurnOn/Off(). Then we’ll spend a little time clean-

ing up LightScheduler_Wakeup() a little.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/include/HomeAutomation/LightScheduler.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=161

MAKE IT WORK FOR NONE, THEN ONE 162

First we extract the duplicate code into its own static function:

Download src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, int minuteOfDay, int event)

{

scheduledEvent.minuteOfDay = minuteOfDay;

scheduledEvent.event = event;

scheduledEvent.id = id;

}

Once that compiles, convert LightScheduler_ScheduleTurnOn() to use

scheduleEvent(). Then do the same with LightScheduler_ScheduleTurnOff():

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)

{

scheduleEvent(id, day, minuteOfDay, TURN_ON);

}

void LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay)

{

scheduleEvent(id, day, minuteOfDay, TURN_OFF);

}

Why not just expose scheduleEvent() and eliminate the new LightSched-

uler_ScheduleTurnOn/Off() functions? My reasoning is that the parameter

list was already long enough; adding another parameter makes it longer

and further burdens the client code. I prefer to enumerate a list of func-

tions than to pass an enumerated type. It’s safer and more descriptive.

Refactor for Responsibility

In this code, you’ll see that LightScheduler_Wakeup() was refactored to

separate responsibilities. We did two function extractions to get the

code to speak to us better.

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_Wakeup(void)

{

Time time;

TimeService_GetTime(&time);

processEventDueNow(&time, &scheduledEvent);

}

LightScheduler_Wakeup() is the function we will provide to the TimeService

as a periodic callback function. Right now it processes a single event

but later will process each event in the collection of scheduled events.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=162

MAKE IT WORK FOR NONE, THEN ONE 163

Download src/HomeAutomation/LightScheduler.c

static void processEventDueNow(Time * time, ScheduledLightEvent * lightEvent)

{

if (lightEvent->id == UNUSED)

return;

if (lightEvent->minuteOfDay != time->minuteOfDay)

return;

operateLight(lightEvent);

}

processEventDueNow() is responsible for conditionally triggering a single

event. This function is all set to be called from a loop when we add

support for multiple events.

Download src/HomeAutomation/LightScheduler.c

static void operateLight(ScheduledLightEvent * lightEvent)

{

if (lightEvent->event == TURN_ON)

LightController_On(lightEvent->id);

else if (lightEvent->event == TURN_OFF)

LightController_Off(lightEvent->id);

}

operateLight() captures the idea behind the if/else chain.

Refactor the Tests

Notice the duplication in the tests. The test cases are not really long,

but they are hard to read with all the details to interpret. The repeated

operations and checks can be extracted into helper functions, leaving

the tests easier to read.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsMonday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(MONDAY, 1200);

LightScheduler_Wakeup();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

The helpers are part of the TEST_GROUP(LightScheduler), working to isolate

the details. The code is as follows:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=163

MAKE IT WORK FOR NONE, THEN ONE 164

Download tests/HomeAutomation/LightSchedulerTest.cpp

void setTimeTo(int day, int minuteOfDay)

{

FakeTimeService_SetDay(day);

FakeTimeService_SetMinute(minuteOfDay);

}

void checkLightState(int id, int level)

{

LONGS_EQUAL(id, LightControllerSpy_GetLastId());

LONGS_EQUAL(level, LightControllerSpy_GetLastState());

}

With the details isolated in the test group’s helper functions, the tests

will also be easier to evolve. For example, we could completely change

how the tests interact with the fake LightController and have to change

only the helpers.

Complex Conditional Logic

The tests so far have been about EVERYDAY, so we have not even had

to check the day setting in the production code yet. The next series of

tests will help us drive the complete day-matching conditional logic one

step at a time. Here is a first test:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleTuesdayButItsMonday)

{

LightScheduler_ScheduleTurnOn(3, TUESDAY, 1200);

setTimeTo(MONDAY, 1200);

LightScheduler_Wakeup();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

This test will initially fail because there is no EVERYDAY check in the

LightScheduler. So, we make the change:

Download src/HomeAutomation/LightScheduler.c

static void processEventDueNow(Time * time, ScheduledLightEvent * lightEvent)

{

if (lightEvent->id == UNUSED)

return;

if (lightEvent->day != EVERYDAY)

return;

if (lightEvent->minuteOfDay != time->minuteOfDay)

return;

operateLight(lightEvent);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=164

MAKE IT WORK FOR NONE, THEN ONE 165

Now let’s test-drive the exact day conditional with this test:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleTuesdayAndItsTuesday)

{

LightScheduler_ScheduleTurnOn(3, TUESDAY, 1200);

setTimeTo(TUESDAY, 1200);

LightScheduler_Wakeup();

checkLightState(3, LIGHT_ON);

}

The test fails until we add the exact day match:

Download src/HomeAutomation/LightScheduler.c

static void processEventDueNow(Time * time, ScheduledLightEvent * lightEvent)

{

int reactionDay = lightEvent->day;

if (lightEvent->id == UNUSED)

return;

if (reactionDay != EVERYDAY && reactionDay != today)

return;

if (lightEvent->minuteOfDay != time->minuteOfDay)

return;

operateLight(lightEvent);

}

Knowing what you know about the production code, do you need to test

every day of the week? I say you don’t, because each day’s check uses

the same code.

Now let’s get the WEEKEND schedule behavior in place. I won’t show each

change to the code, but the conditional logic should grow incrementally

by only adding the needed conditional clause in response to a failing

test.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsFriday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(FRIDAY, 1200);

LightScheduler_Wakeup();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

The first test case checks a boundary condition. No production code

change was needed to make TEST(LightScheduler, ScheduleWeekEndItsFriday)

pass, because it is not a WEEKEND.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=165

MAKE IT WORK FOR NONE, THEN ONE 166

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsSaturday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(SATURDAY, 1200);

LightScheduler_Wakeup();

checkLightState(3, LIGHT_ON);

}

After watching TEST(LightScheduler, ScheduleWeekEndItsSaturday) fail, alter

the production code to check for WEEKEND and for SATURDAY. Don’t add

the SUNDAY check yet.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsSunday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(SUNDAY, 1200);

LightScheduler_Wakeup();

checkLightState(3, LIGHT_ON);

}

TEST(LightScheduler, ScheduleWeekEndItsSunday) forces the addition of the

SUNDAY clause in the conditional.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsMonday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(MONDAY, 1200);

LightScheduler_Wakeup();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

TEST(LightScheduler, ScheduleWeekEndItsMonday) just passes. The bound-

ary condition is already satisfied. You could add tests for every other

weekday, but knowing the implementation, it’s not really necessary.

Let’s fast-forward a little to when we have completed the scheduler tests

for all the day-matching conditions. You can see the rest of the tests in

the book’s code download.

Now we have a fairly complex conditional in processEventDueNow(). To

isolate the complexity and improve the code’s readability, extract the

conditional logic into a helper function, DoesLightRespondToday(). With

the extraction, the logic of processEventDueNow() is more clear.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=166

MAKE IT WORK FOR NONE, THEN ONE 167

Download src/HomeAutomation/LightScheduler.c

static void processEventDueNow(Time * time, ScheduledLightEvent * lightEvent)

{

if (lightEvent->id == UNUSED)

return;

if (!DoesLightRespondToday(time, lightEvent->day))

return;

if (lightEvent->minuteOfDay != time->minuteOfDay)

return;

operateLight(lightEvent);

}

DoesLightRespondToday() is clear and focussed as well.

Download src/HomeAutomation/LightScheduler.c

static int DoesLightRespondToday(Time * time, int reactionDay)

{

int today = time->dayOfWeek;

if (reactionDay == EVERYDAY)

return TRUE;

if (reactionDay == today)

return TRUE;

if (reactionDay == WEEKEND && (SATURDAY == today || SUNDAY == today))

return TRUE;

if (reactionDay == WEEKDAY && today >= MONDAY && today <= FRIDAY)

return TRUE;

return FALSE;

}

The series of if statements, in DoesLightRespondToday(), started out as

one big compound if statement. It was a mess. You can see that by

separating each logical area into its own if statement, it reads much

easier. Strive to make the code readable, but don’t believe your eyes.

Make sure the conditional is fully tested.

Test the Wiring

We’ve been talking about TimeService invoking LightScheduler_Wakeup()

once a minute. The relationship is shown in Figure 8.2, on page 148.

The test case has been calling the function LightScheduler_WakeUp().

This callback was registered by the LightScheduler by passing a func-

tion pointer to the TimeService.

The following test assures that the system is wired properly:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=167

MAKE IT WORK FOR NONE, THEN ONE 168

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST_GROUP(LightSchedulerInitAndCleanup)

{

};

TEST(LightSchedulerInitAndCleanup, CreateStartsOneMinuteAlarm)

{

LightScheduler_Create();

POINTERS_EQUAL((void *)LightScheduler_Wakeup,

(void *)FakeTimeSource_GetAlarmCallback());

LONGS_EQUAL(60, FakeTimeSource_GetAlarmPeriod());

LightScheduler_Destroy();

}

To test the registration, FakeTimeService needs to spy on the call to

TimeService_SetPeriodicAlarmSeconds(). This lets the test check that the

proper callback was set.

Notice that this TEST() uses a new TEST_GROUP(). The initialization and

cleanup tests have very different needs from the other LightScheduler

tests. That’s the reason for a new TEST_GROUP(). The TEST_GROUP() has

nothing in it, because each TEST() is self-contained. There is no duplica-

tion to get rid of.

LightScheduler_Create() registers the callback like this:

Download src/HomeAutomation/LightScheduler.c

static ScheduledLightEvent scheduledEvent;

void LightScheduler_Create(void)

{

int i;

scheduledEvent.id = UNUSED;

TimeService_SetPeriodicAlarmInSeconds(60,

LightScheduler_Wakeup);

}

This test checks that LightScheduler_Destroy() cancels the wakeup call:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightSchedulerInitAndCleanup, DestroyCancelsOneMinuteAlarm)

{

LightScheduler_Create();

LightScheduler_Destroy();

POINTERS_EQUAL(NULL, (void *)FakeTimeSource_GetAlarmCallback());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=168

MAKE IT WORK FOR NONE, THEN ONE 169

LightScheduler_Destroy() cancels the periodic alarm.

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_Destroy(void)

{

TimeService_CancelPeriodicAlarmInSeconds(60,

LightScheduler_Wakeup);

}

The TimeService calls for creating and canceling the periodic wakeup

look like this:

Download include/HomeAutomation/TimeService.h

typedef void (*WakeupCallback)(void);

void TimeService_SetPeriodicAlarmInSeconds(

int seconds, WakeupCallback);

void TimeService_CancelPeriodicAlarmInSeconds(

int seconds, WakeupCallback);

The fake simply saves the callback function pointer and reports it on-

demand.

Download tests/HomeAutomation/FakeTimeService.c

void TimeService_SetPeriodicAlarmInSeconds(int seconds, WakeupCallback cb)

{

callback = cb;

period = seconds;

}

void TimeService_CancelPeriodicAlarmInSeconds(

int seconds, WakeupCallback cb)

{

if (cb == callback && period == seconds)

{

callback = NULL;

period = 0;

}

}

Let’s review our progress. The production code for the LightScheduler and

the interfaces it needs are wired together and evolving. The test fixture

can effectively test the core application logic. We fast-forwarded through

the day-matching conditional logic and are ready to do something dif-

ferent, making the LightScheduler handle multiple scheduled actions.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/include/HomeAutomation/TimeService.h
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/FakeTimeService.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=169

MAKE IT WORK FOR MANY 170

8.7 Make It Work for Many

To make the scheduler work for multiple scheduled items, we’re going

to need to be able to check the state of multiple lights, something our

current LightControllerSpy cannot do. Let’s evolve the LightControllerSpy to

remember the state of each light like this:

Download tests/HomeAutomation/LightControllerSpyTest.cpp

TEST(LightControllerSpy, RememberAllLightStates)

{

LightController_On(0);

LightController_Off(31);

LONGS_EQUAL(LIGHT_ON, LightControllerSpy_GetLightState(0));

LONGS_EQUAL(LIGHT_OFF, LightControllerSpy_GetLightState(31));

}

Add a new accessor to LightControllerSpy’s header file to allow any light’s

state to be checked:

Download tests/HomeAutomation/LightControllerSpy.h

int LightControllerSpy_GetLightState(int id);

int LightControllerSpy_GetLastId(void);

int LightControllerSpy_GetLastState(void);

In addition to remembering the last light change, now the LightCon-

trollerSpy keeps a record of the state of each light ID in an internal

array. The test helper, checkLightState(), is modified to use LightController-

Spy_GetLightState(). This allows checkLightState() to work in the multiple-

event case. Imagine all the editing needed if you decided to retrofit

LightControllerSpy_GetLightState() into all the existing test cases. The well-

refactored test cases, with helper functions, can help minimize changes

when there is a change in test strategy and fake interactions.

Download tests/HomeAutomation/LightSchedulerTest.cpp

void checkLightState(int id, int level)

{

if (id == LIGHT_ID_UNKNOWN)

{

LONGS_EQUAL(id, LightControllerSpy_GetLastId());

LONGS_EQUAL(level, LightControllerSpy_GetLastState());

}

else

LONGS_EQUAL(level, LightControllerSpy_GetLightState(id));

}

The spy is newly outfitted for its new mission, driving the code to handle

multiple events. Here’s the failing test case:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpyTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.h
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=170

MAKE IT WORK FOR MANY 171

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleTwoEventsAtTheSameTIme)

{

LightScheduler_ScheduleTurnOn(3, SUNDAY, 1200);

LightScheduler_ScheduleTurnOn(12, SUNDAY, 1200);

setTimeTo(SUNDAY, 1200);

LightScheduler_Wakeup();

checkLightState(3, LIGHT_ON);

checkLightState(12, LIGHT_ON);

}

As you add the code for multiple events, you can avoid breaking the

existing tests by using the “Don’t burn your bridges” principle. Add the

new multi-event functionality alongside the support for a single event.

See how the LightScheduler_Create() function handles both single- and

multiple-event initializations like this:

Download src/HomeAutomation/LightScheduler.c

static ScheduledLightEvent scheduledEvent;

static ScheduledLightEvent scheduledEvents[MAX_EVENTS];

void LightScheduler_Create(void)

{

int i;

scheduledEvent.id = UNUSED;

for (i = 0; i < MAX_EVENTS; i++)

scheduledEvents[i].id = UNUSED;

TimeService_SetPeriodicAlarmInSeconds(60,

LightScheduler_Wakeup);

}

With this careful approach, the single-event tests keep passing the

whole time, unless you somehow make a mistake. When support for

multiple events is in place, the single-event code can be deleted, one

function at a time, and all tests should still pass. The same approach

works for adding multiple event support to scheduleEvent(). The array is

initialized in the for loop and the single event outside the loop.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=171

MAKE IT WORK FOR MANY 172

Download src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, int minuteOfDay, int event)

{

int i;

for (i = 0; i < MAX_EVENTS; i++)

{

if (scheduledEvents[i].id == UNUSED)

{

scheduledEvents[i].day = day;

scheduledEvents[i].minuteOfDay = minuteOfDay;

scheduledEvents[i].event = event;

scheduledEvents[i].id = id;

break;

}

}

scheduledEvent.day = day;

scheduledEvent.minuteOfDay = minuteOfDay;

scheduledEvent.event = event;

scheduledEvent.id = id;

}

Bridges are intact, and all single event tests are passing. The multiple-

event test still fails; we’re almost done. Finally, when you add looping

support to LightScheduler_Wakeup(), the new test passes. Now that old

bridge can be torched.

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_Wakeup(void)

{

int i;

Time time;

TimeService_GetTime(&time);

for (i = 0; i < MAX_EVENTS; i++)

{

processEventDueNow(&time, &scheduledEvents[i]);

}

processEventDueNow(&time, &scheduledEvent);

}

Now the tests pass, we can delete the redundant single-event code from

LightScheduler_Create(), scheduleEvent(), and LightScheduler_Wakeup(). It’s

best to delete the redundant implementation one function at a time,

with a single editing command. Run the tests. You can get back to

passing tests with a single UNDO when problems arise.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=172

MAKE IT WORK FOR MANY 173

After deleting the single-event code, LightScheduler_Wakeup() looks like:

Download src/HomeAutomation/LightScheduler.c

void LightScheduler_Wakeup(void)

{

int i;

Time time;

TimeService_GetTime(&time);

for (i = 0; i < MAX_EVENTS; i++)

{

processEventDueNow(&time, &scheduledEvents[i]);

}

}

Let’s finish this LightScheduler by dealing with the edge conditions and

special cases. This test makes sure the code handles its design maxi-

mum of 128 scheduled events:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, RejectsTooManyEvents)

{

int i;

for (i = 0; i < 128; i++)

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(6, MONDAY, 600+i));

LONGS_EQUAL(LS_TOO_MANY_EVENTS,

LightScheduler_ScheduleTurnOn(6, MONDAY, 600+i));

}

For this test to pass, we had to change LightScheduler_ScheduleTurnOn()

and LightScheduler_ScheduleTurnOff() to return a result. It was a minor

change to modify the header file and add condition checks to the imple-

mentation. You will notice that we also added a set of enum constants to

the LightScheduler interface, allowing it to communicate each operation’s

result. We’ll add others as we implement each error scenario.

This is a good opportunity to implement the test that removes a sched-

uled event. This test shows that the event slot is freed up when a sched-

uled item is removed.

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, RemoveRecyclesScheduleSlot)

{

int i;

for (i = 0; i < 128; i++)

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(6, MONDAY, 600+i));

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=173

MAKE IT WORK FOR MANY 174

LightScheduler_ScheduleRemove(6, MONDAY, 600);

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(13, MONDAY, 1000));

}

We’d also like to make sure the right event was removed. This test veri-

fies the correct behavior:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, RemoveMultipleScheduledEvent)

{

LightScheduler_ScheduleTurnOn(6, MONDAY, 600);

LightScheduler_ScheduleTurnOn(7, MONDAY, 600);

LightScheduler_ScheduleRemove(6, MONDAY, 600);

setTimeTo(MONDAY, 600);

LightScheduler_Wakeup();

checkLightState(6, LIGHT_STATE_UNKNOWN);

checkLightState(7, LIGHT_ON);

}

Finally, we need to test LightScheduler rejects invalid light identifiers:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, AcceptsValidLightIds)

{

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(0, MONDAY, 600));

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(15, MONDAY, 600));

LONGS_EQUAL(LS_OK,

LightScheduler_ScheduleTurnOn(31, MONDAY, 600));

}

TEST(LightScheduler, RejectsInvalidLightIds)

{

LONGS_EQUAL(LS_ID_OUT_OF_BOUNDS,

LightScheduler_ScheduleTurnOn(-1, MONDAY, 600));

LONGS_EQUAL(LS_ID_OUT_OF_BOUNDS,

LightScheduler_ScheduleTurnOn(32, MONDAY, 600));

}

You might think these condition checks are too simple to get wrong.

Maybe they are, but my motto in this case is, if it’s important enough

to check a condition in the production code, it’s important enough to

test it.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=174

WHERE ARE WE? 175

8.8 Where Are We?

In this chapter, we created a seemingly target-dependent module by

breaking the dependencies on the hardware and OS using link-time

test doubles. We employed a spy and a fake. The tests are valid, and we

made progress without hardware.

We started by composing a test list. This helps organize our thoughts.

We don’t expect to make a perfect test list. Start with whatever tests

you can think of, and evolve the test list as you learn more.

We thought about how to implement the scheduler but did not imple-

ment it all at once. We let the tests drive us, but we did have a design

goal in mind.

When there is collection behavior, use the 0-1-N TDD pattern. The 0

and 1 cases are usually easy to define and help clarify thoughts on

interfaces, collaborators, and some boundary behaviors. They provide

a stepping-stone to the more challenging behavior, and they help you

get into the rhythm of TDD.

After you get a test to pass and come up for air, you may be disoriented

and not know which way to go. Your test list will help you go in the

right direction without treading much water.

Link-time test doubles are helpful, but sometimes you need more flex-

ibility and configurability. Then you are going to need to convert some

direct dependencies into runtime dependencies, the topic of the next

chapter. Also, link-time test doubles means you may need multiple test

builds if some builds need to include the code that is being overridden

by the test double.

Put the Knowledge to Work

1. Build, run, and review the examples from the code/test directory.

2. Test-drive an alarm clock service that keeps a list of time call-

backs. In production, the timer interrupt will ping the time service

every 100 milliseconds. When a scheduled action is ready to run,

call the callback function.

3. Your home automation system can notify you, via email, when

your spouse’s RFID tag has returned to or left the house. The

RFID events (in range, now out of range) are fed to your module.

Test-drive the WhoIsHome module that emails changes in who is

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=175

WHERE ARE WE? 176

home to your email address. Email addresses are configurable by

a person’s RFID tag. You are not really sure how the email service

works, but you do know the essential parts of an email: to, subject,

and body.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=176

Would ye both eat your cake and have your cake?

John Heywood

Chapter 9

Runtime-Bound Test Doubles
In the previous chapter, we substituted test doubles using the linker.

That approach works fine when the code being swapped out for the test

double is not needed in the test build. What if the code being stubbed

was needed for some of the tests but got in the way of some other

tests? We need additional flexibility that the linker cannot provide. We

will employ function pointers so that we can test a function and replace

it too, in the same test build.

We happen to have a new feature that causes this problem in the

LightScheduler. The scheduler right now does exactly what it is told; if

a light is scheduled to turn on at 8 p.m., it does so at precisely 8 p.m.

What’s the problem? The system is supposed to make it look like some-

one is home even when they are not. If the neighborhood burglars are

casing the house and they see the living room light turn on at 8 like

clockwork, they will know that no one is home and may cause some

mischief. What we need is a randomization feature.

9.1 Testing Randomness

When a particular light is being scheduled, the operator can select the

randomize feature. What the randomize feature does is to randomly

vary light controls up to thirty minutes early or thirty minutes late. For

this we need a function that generates a random number in the range

of +30 to -30.

If we randomize a light, how do we test it? When should it come on?

Will we have to check a whole hour of possibilities and then not even be

sure that the randomness is because of a bug or the random number

generator?

Download from Wow! eBook <www.wowebook.com>

TESTING RANDOMNESS 178

It sounds like we have two separate problems. First, does the random

minute generator produce an adequately random number, within the

right range of values? Second, does the LightScheduler use the random

minute generator appropriately?

This test needs the flexibility of runtime binding. We need tests for the

random minute generator, and we need to get the random minute gen-

erator out of the way for some of the tests.

First, let’s get the random minute generator working and tested. Here

we will make sure that no generated values are outside the range:

Download t0/tests/HomeAutomation/RandomMinuteTest.cpp

TEST(RandomMinute, GetIsInRange)

{

for (int i = 0; i < 100; i++)

{

minute = RandomMinute_Get();

AssertMinuteIsInRange();

}

}

Here’s the TEST_GROUP test group that supports the previous test. The

helper function, AssertMinuteIsInRange(), came from a little refactoring to

make the test read a little easier.

Download t0/tests/HomeAutomation/RandomMinuteTest.cpp

enum { BOUND=30 };

TEST_GROUP(RandomMinute)

{

int minute;

void setup()

{

RandomMinute_Create(BOUND);

srand(1);

}

void AssertMinuteIsInRange()

{

if (minute < -BOUND || minute > BOUND)

{

printf("bad minute value: %d\n", minute);

FAIL("Minute out of range");

}

}

};

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/RandomMinuteTest.cpp
http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/RandomMinuteTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=178

FAKING WITH A FUNCTION POINTER 179

Notice that setup() initializes the standard library random number gen-

erator with a call to srand(). This keeps the random number generator

from potentially causing random failures. This is done after Random-

Minute_Create() to undo any seeding done in RandomMinute_Create().

We could get the previous test to pass just by returning a fixed in-

range number. A better test makes sure that all the values in-range are

generated.

Download t0/tests/HomeAutomation/RandomMinuteTest.cpp

TEST(RandomMinute, AllValuesPossible)

{

int hit[2*BOUND + 1];

memset(hit, 0, sizeof(hit));

int i;

for (i = 0; i < 225; i++)

{

minute = RandomMinute_Get();

AssertMinuteIsInRange();

hit[minute + BOUND]++;

}

for (i = 0; i < 2* BOUND + 1; i++) {

CHECK(hit[i] > 0);

}

}

After a little experimentation, I set the loop counter to 225. If you were

building a game that needed a specific random number distribution

over many samples, a more thorough test would be needed. This is no

slot machine, so this simple test will do.

9.2 Faking with a Function Pointer

Let’s use our random minute generator for the randomized light sched-

ule feature. The scheduler will have unpredictable results because of its

unpredictable indirect input from RandomMinute_Get(). When produc-

tion code depends on something unpredictable, it’s time to substitute

in a test double. We have a problem; the binding of the LightScheduler to

RandomMinute_Get() is done by the linker, as you can see by looking at

the interface of RandomMinute:

Download t0/include/HomeAutomation/RandomMinute.h

void RandomMinute_Create(int bound);

int RandomMinute_Get(void);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/RandomMinuteTest.cpp
http://media.pragprog.com/titles/jgade/code/t0/include/HomeAutomation/RandomMinute.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=179

FAKING WITH A FUNCTION POINTER 180

Before we refactor the interface to allow function pointer substitution,

let’s design the test for the randomized schedule.

Download t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp

TEST(LightSchedulerRandomize, TurnsOnEarly)

{

FakeRandomMinute_SetFirstAndIncrement(-10, 5);

LightScheduler_ScheduleTurnOn(4, EVERYDAY, 600);

LightScheduler_Randomize(4, EVERYDAY, 600);

setTimeTo(MONDAY, 600-10);

LightScheduler_WakeUp();

checkLightState(4, LIGHT_ON);

}

The first line of the test calls to FakeRandomMinute_SetFirstAndIncrement()

and establishes a not so random minute sequence. The random minute

starts at -10 and increments by 5. The test schedules a turn on event

and randomizes it. Then the test makes sure the light comes on at the

scheduled time plus the random factor, minus ten.

Now that the test objective is clear, let’s refactor the design so that we

can substitute RandomMinute with FakeRandomMinute. The direct func-

tion call needs to be converted to a function pointer. The header file

declaration looks like this:

Download t0/include/HomeAutomation/RandomMinute.h

void RandomMinute_Create(int bound);

extern int (*RandomMinute_Get)(void);

The pointer must be extern to avoid multiple definition errors at link

time. The declaration says that there is a pointer to a function called

RandomMinute_Get() that takes no arguments and returns an int.

In the .c file, we write the default production code implementation of

the random minute generator. It’s followed by the defining instance of

the global function pointer RandomMinute_Get(). Notice that Random-

Minute_Get() is initialized to point to RandomMinute_GetImpl().

Download t0/src/HomeAutomation/RandomMinute.c

int RandomMinute_GetImpl(void)

{

return bound - rand() % (bound * 2 + 1);

}

int (*RandomMinute_Get)(void) = RandomMinute_GetImpl;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp
http://media.pragprog.com/titles/jgade/code/t0/include/HomeAutomation/RandomMinute.h
http://media.pragprog.com/titles/jgade/code/t0/src/HomeAutomation/RandomMinute.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=180

FAKING WITH A FUNCTION POINTER 181

Any TEST() or TEST_GROUP() can override the default function pointer

value with a pointer to the FakeRandomMinute. A good citizen always

restores the original function pointer after running each test. setup()

and teardown() are the most natural places to put the function pointer

manipulations.

Download t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp

TEST_GROUP(LightSchedulerRandomize)

{

int (*savedRandomMinute_Get)();

void setup()

{

LightController_Create();

LightScheduler_Create();

savedRandomMinute_Get = RandomMinute_Get;

RandomMinute_Get = FakeRandomMinute_Get;

}

void teardown()

{

LightScheduler_Destroy();

LightController_Destroy();

RandomMinute_Get = savedRandomMinute_Get;

}

};

Function pointer restoration is so common that CppUTest has a built-

in macro for setting and restoring function pointers. When a function

pointer is set with UT_PTR_SET() (during setup() or during any TEST()), it is

automatically restored after teardown() completes.

Download t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp

TEST_GROUP(LightSchedulerRandomize)

{

void setup()

{

LightController_Create();

LightScheduler_Create();

UT_PTR_SET(RandomMinute_Get, FakeRandomMinute_Get);

}

void teardown()

{

LightScheduler_Destroy();

LightController_Destroy();

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp
http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/LightSchedulerRandomizeTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=181

SURGICALLY INSERTED SPY 182

void checkLightState(int id, int level)

{

if (id == LIGHT_ID_UNKNOWN)

{

LONGS_EQUAL(id, LightControllerSpy_GetLastId());

LONGS_EQUAL(level, LightControllerSpy_GetLastState());

}

else

LONGS_EQUAL(level, LightControllerSpy_GetLightState(id));

}

void setTimeTo(int day, int minute)

{

FakeTimeService_SetDay(day);

FakeTimeService_SetMinute(minute);

}

};

With function pointers, tests can intercept outgoing function calls from

the code under test. It can be a very effective way to surgically isolate

calls to particular functions. I’ve also seen this overused, where all of a

sudden all functions are converted to function pointers. Use this, but

only when it is called for. Like usual, it’s a judgment call.

The code calling a function through a pointer better know it is calling

through a pointer. This is easy enough to do; the calling code must see

the function’s declaration—if it hasn’t, the compiler will issue a warn-

ing and make some assumptions. (You might not notice the warning if

you tolerate warnings in your code.1) A call to a previously undeclared

function is assumed to be a direct call. Calling a function pointer as a

direct call is trouble. You can only hope it fails fast.

The function pointer allows very fine control over what is stubbed and

what is not. Let’s see how a single function can be faked out as we look

at testing code with printed output.

9.3 Surgically Inserted Spy

When a system has printed output, it is usually manually inspected.

Printed output can be very tedious to verify, so you probably don’t want

to reinspect the output as often as you should. We will never get totally

away from manually inspecting printed output, but we can eliminate

the re-inspections by locking in the desired behavior.

1. Shame on you :-)

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=182

SURGICALLY INSERTED SPY 183

Let’s say you already have aprintf()-like function to produce printed out-

put called FormatOutput(). As it is, FormatOutput() is a direct function

call that is in a header file with many other utilities. You’d like to create

a spy for FormatOutput(), but you don’t want to stub out all the func-

tions in the file containing FormatOutput(). A more surgical approach is

needed to intercept calls to just one function in a compilation unit. The

prototype for the direct function call to FormatOutput() looks like this:

Download include/util/Utils.h

int FormatOutput(const char *, ...);

A function pointer is the right tool for surgically intercepting calls to

FormatOutput(). To infiltrate the callers of FormatOutput(), first convert

the FormatOutput() prototype to a function pointer.

Download include/util/Utils.h

extern int (*FormatOutput)(const char *, ...);

In the .c file, rename FormatOutput() to FormatOutput_Impl(). Then create

the defining instance of the FormatOutput function pointer, initializing

it to the address of FormatOutput_Impl(). To keep outsiders from calling

FormatOutput_Impl() directly, you should also make it static:

Download src/util/Utils.c

static int FormatOutput_Impl(const char * format, ...)

{

/* snip */

}

int (*FormatOutput)(const char * format, ...) = FormatOutput_Impl;

With those changes to the .h and .c files, rebuild. There is no need to

change the callers of FormatOutput(), because the calling syntax is the

same for a direct call and a call through a function pointer.

If you are using printf() directly, you can do the same thing, initializing

FormatOutput_Impl() like this:

Download src/util/Utils.c

int (*FormatOutput)(const char * format, ...) = printf;

If your make does not use #include dependencies to decide what to

rebuild, do a clean build. (Later invest in your build to do a proper

incremental build based on dependencies.) If all callers to FormatOut-

put() are not recompiled, they will call the function pointer as a direct

call; bad things will happen.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/util/Utils.h
http://media.pragprog.com/titles/jgade/code/include/util/Utils.h
http://media.pragprog.com/titles/jgade/code/src/util/Utils.c
http://media.pragprog.com/titles/jgade/code/src/util/Utils.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=183

SURGICALLY INSERTED SPY 184

Let’s write a test that shows how to use a FormatOutputSpy. The For-

matOutputSpy captures whatever was to be printed so it can be retrieved

and checked in the test case.

Download mocks/FormatOutputSpyTest.cpp

TEST(FormatOutputSpy, HelloWorld)

{

FormatOutputSpy_Create(20);

FormatOutput("Hello, World\n");

STRCMP_EQUAL("Hello, World\n", FormatOutputSpy_GetOutput());

}

When the spy is created, it is told how long of a string to capture. When

calls to FormatOutput() have been overridden with FormatOutputSpy(), the

output can be accessed by a call to FormatOutputSpy_GetOuput().

The TEST_GROUP() in the next code segment is responsible for overriding

FormatOutput() and cleaning up after each test:

Download mocks/FormatOutputSpyTest.cpp

extern "C"

{

#include "FormatOutputSpy.h"

}

TEST_GROUP(FormatOutputSpy)

{

void setup()

{

UT_PTR_SET(FormatOutput, FormatOutputSpy);

}

void teardown()

{

FormatOutputSpy_Destroy();

}

};

This test illustrates that the spy only captures the number of characters

specified in FormatOutputSpy_Create():

Download mocks/FormatOutputSpyTest.cpp

TEST(FormatOutputSpy, LimitTheOutputBufferSize)

{

FormatOutputSpy_Create(4);

FormatOutput("Hello, World\n");

STRCMP_EQUAL("Hell", FormatOutputSpy_GetOutput());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpyTest.cpp
http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpyTest.cpp
http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpyTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=184

SURGICALLY INSERTED SPY 185

Like real FormatOutput(), the spy can be called multiple times. This test

shows that the spy appends characters with each FormatOutput() call:

Download mocks/FormatOutputSpyTest.cpp

TEST(FormatOutputSpy, PrintMultipleTimes)

{

FormatOutputSpy_Create(25);

FormatOutput("Hello");

FormatOutput(", World\n");

STRCMP_EQUAL("Hello, World\n", FormatOutputSpy_GetOutput());

}

In this final test, the spy is called multiple times with more output

than the spy can capture. This test assures that the output captured is

limited to the specified maximum string length.

Download mocks/FormatOutputSpyTest.cpp

TEST(FormatOutputSpy, PrintMultipleOutputsPastFull)

{

FormatOutputSpy_Create(12);

FormatOutput("12345");

FormatOutput("67890");

FormatOutput("ABCDEF");

STRCMP_EQUAL("1234567890AB", FormatOutputSpy_GetOutput());

}

Not all test doubles need tests. But in this case, with a more complex

spy, tests are needed. The tests show how the spy behaves and makes

sure it works. Here are the inner workings of the spy:

Download mocks/FormatOutputSpy.c

#include <stdlib.h>

#include <stdarg.h>

static char * buffer = 0;

static size_t buffer_size = 0;

static int buffer_offset = 0;

static int buffer_used = 0;

void FormatOutputSpy_Create(int size)

{

FormatOutputSpy_Destroy();

buffer_size = size+1;

buffer = (char *)calloc(buffer_size, sizeof(char));

buffer_offset = 0;

buffer_used = 0;

buffer[0] = '\0';

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpyTest.cpp
http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpyTest.cpp
http://media.pragprog.com/titles/jgade/code/mocks/FormatOutputSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=185

VERIFYING OUTPUT WITH A SPY 186

void FormatOutputSpy_Destroy(void)

{

if (buffer == 0)

return;

free(buffer);

buffer = 0;

}

int FormatOutputSpy(const char * format, ...)

{

int written_size;

va_list arguments;

va_start(arguments, format);

written_size = vsnprintf(buffer + buffer_offset,

buffer_size - buffer_used, format, arguments);

buffer_offset += written_size;

buffer_used += written_size;

va_end(arguments);

return 1;

}

const char * FormatOutputSpy_GetOutput(void)

{

return buffer;

}

In the next section, we’ll test-drive some production code that has to

print something, using the spy to verify printed output.

9.4 Verifying Output with a Spy

In this section, we’ll look at a utility module, the CircularBuffer. A Circu-

larBuffer can be created with a specified capacity; it can have integers

added to it and removed from it. It behaves as a first-in first-out data

structure. Some of the situations a CircularBuffer might find itself in are

shown in Figure 9.1, on the next page.

The CircularBuffer also must print itself out, oldest entry to newest, and

not disturb the contents of the buffer. Given all the special cases, this

is not quite as easy as it sounds. We’re coming into this problem with

a working CircularBuffer and have to add the print capability. To get our

test fixture in place, let’s start with the simplest case, printing an empty

buffer. When an empty buffer is printed, its output would look like this:

⇒ Circular buffer content:

<>

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=186

VERIFYING OUTPUT WITH A SPY 187

-2 16 23 7 66 12 99 16 90 99 43 17 13

In-Index Out-Index

41 59 14 33 7 31

In-Index Out-Index

Out-Index In-Index

23 7 66 12 99 16 90

Out-Index In-Index

42 -6 23 7 66 12 99 16 90

Out-Index In-Index

99

Figure 9.1: CircularBuffer

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=187

VERIFYING OUTPUT WITH A SPY 188

It seems like too simple of a case to test, but it is a boundary test that

should not crash the system, and the simple case helps get the test

fixture set up properly. Here is the test case that confirms that printing

an empty CircularBuffer produces the desired output:

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintEmpty)

{

expectedOutput = "Circular buffer content:\n<>\n";

CircularBuffer_Print(buffer);

STRCMP_EQUAL(expectedOutput, actualOutput);

}

The TEST_GROUP that supports CircularBuffer prints tests looks like this:

Download tests/util/CircularBufferPrintTest.cpp

TEST_GROUP(CircularBufferPrint)

{

CircularBuffer buffer;

const char * expectedOutput;

const char * actualOutput;

void setup()

{

UT_PTR_SET(FormatOutput, FormatOutputSpy);

FormatOutputSpy_Create(100);

actualOutput = FormatOutputSpy_GetOutput();

buffer = CircularBuffer_Create(10);

}

void teardown()

{

CircularBuffer_Destroy(buffer);

FormatOutputSpy_Destroy();

}

};

Look at how actualOutput is assigned during setup() before the output

has been captured. You might wonder, how can actualOutput be ini-

tialized now? FormatOutputSpy_GetOuput() simply returns a pointer to

the beginning of its internal array that will hold the captured char-

acters once the production code print function is called. The Circular-

Buffer_Create() parameter, 10, specifies the capacity of the buffer.

This TEST_GROUP tests just the print function of CircularBuffer. There is

another TEST_GROUP (not shown) that drove the development of the other

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=188

VERIFYING OUTPUT WITH A SPY 189

CircularBuffer operations. TEST_GROUP(CircularBufferPrint) is an example of

organizing tests around a common setup.

This next test is another boundary test. It checks that a buffer con-

taining a single item prints properly. When the buffer contains only the

number 17, the output looks like this:

⇒ Circular buffer content:

<17>

Here is the test that locks in that behavior:

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintAfterOneIsPut)

{

expectedOutput = "Circular buffer content:\n<17>\n";

CircularBuffer_Put(buffer, 17);

CircularBuffer_Print(buffer);

STRCMP_EQUAL(expectedOutput, actualOutput);

}

This test handles the case when there are a few items in the buffer, but

it is not full and has not wrapped around to the first slot. Given that

there are the values 10, 20, and 30 in the buffer, the output looks like

this:

⇒ Circular buffer content:

<10, 20, 30>

The TEST() looks like this:

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintNotYetWrappedOrFull)

{

expectedOutput = "Circular buffer content:\n<10, 20, 30>\n";

CircularBuffer_Put(buffer, 10);

CircularBuffer_Put(buffer, 20);

CircularBuffer_Put(buffer, 30);

CircularBuffer_Print(buffer);

STRCMP_EQUAL(expectedOutput, actualOutput);

}

Here is the test for another boundary case: the buffer is completely full,

created with a capacity of five, but has not yet wrapped back around to

the first location.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=189

VERIFYING OUTPUT WITH A SPY 190

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintNotYetWrappedAndIsFull)

{

expectedOutput = "Circular buffer content:\n"

"<31, 41, 59, 26, 53>\n";

CircularBuffer b = CircularBuffer_Create(5);

CircularBuffer_Put(b, 31);

CircularBuffer_Put(b, 41);

CircularBuffer_Put(b, 59);

CircularBuffer_Put(b, 26);

CircularBuffer_Put(b, 53);

CircularBuffer_Print(b);

STRCMP_EQUAL(expectedOutput, actualOutput);

CircularBuffer_Destroy(b);

}

This test deals with the situation after wrap-around has occurred:

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintOldToNewWhenWrappedAndFull)

{

expectedOutput =

"Circular buffer content:\n"

"<201, 202, 203, 204, 999>\n";

CircularBuffer b = CircularBuffer_Create(5);

CircularBuffer_Put(b, 200);

CircularBuffer_Put(b, 201);

CircularBuffer_Put(b, 202);

CircularBuffer_Put(b, 203);

CircularBuffer_Put(b, 204);

CircularBuffer_Get(b);

CircularBuffer_Put(b, 999);

CircularBuffer_Print(b);

STRCMP_EQUAL(expectedOutput, actualOutput);

CircularBuffer_Destroy(b);

}

We could write some more tests, but I think you have the picture.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=190

WHERE ARE WE? 191

9.5 Where Are We?

We’ve seen a couple applications of the function pointer in making

testable C code. First we saw that we use a function pointer to dynami-

cally swap out troublesome code for some test cases as we did with the

RandomMinute. Then we saw how to surgically insert a test double to

substitute only one part of a compilation unit.

Any function call dependency can be converted to a function pointer.

Maybe you wonder, is testability reason enough to convert a direct func-

tion call to a function pointer? Yes, it is. Should you turn all your direct

function calls into function pointers? Of course not.

Like any tool, you want to use it when it’s called for. If a link-time test

double will do, use a link-time test double. It is the right tool for swap-

ping out target platform dependencies and sometimes entire third-party

libraries. The function pointer provides a more surgical tool for break-

ing dependencies at runtime. If you need the code in the test executable

but you also need to get it out of the way for some tests, use a function

pointer.

A function pointer is also a good tool for the job if you only want to stub

out a subset of the functions in a compilation unit. But it’s not the

only tool. You could also split the compilation unit and use link-time

binding. Choose the right tool for the job.

We’re not done with function pointers. We employ them not only to

make code more testable, but they can also be used to make code more

flexible, as you will see when we get into the Chapter 11, SOLID, Flexi-

ble, and Testable Designs, on page 219.

Prior to the FormatOutputSpy, the test doubles have been pretty simple.

There was only a single interaction with the test double during the test

case. The FormatOutputSpy could record what happened over multiple

interactions. In the next chapter, we’ll look at the mock object. It lets the

tests model more complex interactions between collaborating modules.

Put the Knowledge to Work

1. Extend the CircularBuffer so that it can print multiple lines of values

in neat columns, allowing no more than sixty characters per line.

It needs to handle only five-digit decimal numbers.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=191

WHERE ARE WE? 192

2. Evolve CircularBuffer print capabilities so that the column width

adjusts to the two characters wider than the largest number in

the buffer.

3. The customer can’t decide how they want the CircularBuffer output.

Separate print formatting from the CircularBuffer. A PrintFormatter

function should be passed to the CircularBuffer, which gives each

value in its correct order to the formatter.

4. The randomization implementation and tests for the LightScheduler

that you can find in book’s code download in directory code/t0

have just been barely started. Make a test list for the special cases,

and test-drive the complete behavior. Two things to consider are

that a random scheduled event should be operated only once a

day, and a random scheduled event near midnight should handle

the day change correctly.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=192

Let’s mock the midnight bell.

William Shakespeare

Chapter 10

The Mock Object
While test-driving the LightScheduler, the test fixture intercepted calls

to the TimeService and the LightController to verify the correct behavior of

the LightScheduler. The test doubles employed were very simple and were

made up of a few static variables along with some getters and setters.

This works fine for those simple interactions. Unfortunately, not all

interactions between software entities are so simple. Simple spies or

stubs won’t always work. For more complex interactions, we need a

different tool, the mock object.

The mock object (or simply the mock) is a test double. It allows a test

case to describe the calls expected from one module to another. During

test execution the mock checks that all calls happen with the right

parameters and in the right order. The mock can also be instructed

to return specific values in proper sequence to the code under test. A

mock is not a simulator, but it allows a test case to simulate a specific

scenario or sequence of events.1

In this chapter, we’ll use a mock to model and confirm the interac-

tions between a device driver and the hardware. The mock intercepts

commands to and from the device, simulating one usage scenario. In

the “Endo-Testing: Unit Testing with Mock Objects” paper, the authors

claim that using mock objects means that tests can be written for any-

thing. This example shows that even something as hardware-dependent

as a device driver can be thoroughly unit tested using a mock.

1. Mock objects were first described in the paper Endo-Testing: Unit Testing with Mock

Objects [MFC01].

Download from Wow! eBook <www.wowebook.com>

FLASH DRIVER 194

<<implementation>>
IO

<<implements>>

+ Read(addr) : data
+ Write(addr, data)

<<interface>
IO

+ Expect_Read(addr, data)
+ Expect_Write(addr, data)

MockIO
<<hardware>>

+ Program(addr, data)
+ ProtectBlock(block)
+ EraseBlock(block)
//etc

FlashDriver

FlashDriverTest

Figure 10.1: Flash driver and its test fixture

10.1 Flash Driver

When I talk to embedded developers about applying TDD to embedded

systems, the statement often comes up, “Yeah, but you can’t test-drive

a device driver!” To that I reply, “Yes, you can.” This example will kill

two birds with one stone. We’ll get right next to the silicon and develop

part of a flash memory driver, and we’ll use a mock object to model and

confirm the complex interactions between the driver and the hardware.

For the example, we’ll use the ST Microelectronics 16 Mb flash memory

device (M28W160ECT). I chose this one for a number of reasons. The

flash memory device requires a specific protocol, involving numerous

device reads and device writes. There are also several failure modes,

some of which would be very difficult to cause in the actual device. In

addition, the device is well documented: its data sheet is fifty pages

in length, including numerous flowcharts, tables, and detailed instruc-

tions. Finally, the vendor provides a reference design, so we can com-

pare implementations.2

2. You can find the device spec and code in the code download for the book in

docs/STMicroelectronics.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=194

FLASH DRIVER 195

Figure 10.1, on the previous page shows the relationship between the

test case, the mock, and the production code. The FlashDriver inter-

acts with the hardware through two simple functions: IO_Read() and

IO_Write().

Download src/IO/IO.c

#include "IO.h"

void IO_Write(ioAddress addr, ioData data)

{

ioData * p = 0;

*(p + addr) = data;

}

ioData IO_Read(ioAddress addr)

{

ioData * p = 0;

return *(p + addr);

}

These two functions are the gateway to the hardware from the driver.

They are statically linked. Because there is no need for the production

version of IO_Read() and IO_Write() during unit testing, a link-time test

double works well. Function pointers would give additional flexibility to

run unit tests in the target, along with test cases that actually interact

with the hardware through the production versions of IO_Read() and

IO_Write(). It’s a small modification to convert to function pointers if we

change our minds later.

MockIO is standing in for the hardware-dependent implementation of IO.

The test case tells the mock which calls to IO_Read() and IO_Write() to

expect. Then, during the exercise phase, the mock checks each actual

call with the expected call. You can think of expectation setting as an

additional step in the Four-Phase Test pattern: set up, establish expec-

tations, exercise (and check), and check and clean up.

As shown in the flowchart in Figure 10.2, on the following page, flash

operations can have many interactions. The flowchart shows how to

program a specific location in the device. It also identifies the failures

that can occur while programming a specific location in the flash.

Programming a memory location is initiated with two device writes.

Then the driver goes into a wait for ready loop, waiting for the device to

complete the operation. The flowchart shows that there are four possi-

ble outcomes, suggesting the need for at least four test cases. In addi-

tion to what the device flowchart suggests, our driver will read back

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/IO.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=195

FLASH DRIVER 196

b7 == 1

Start

Program Command

Write 0x40 to 0x0

Start/Stop

Write data to

address

Read status

register

b3 == 0

b4 == 0

b1 == 0

YES

NO

YES

YES

YES

Vpp Error

Program Error

Protected Block

Error

NO

NO

NO

Clear status

Write 0xFF to 0x0

W
a
it
 f
o
r
re
a
d
y
 l
o
o
p

b7 == 1

Figure 10.2: Flash memory program—flowchart

the data from the device to confirm that the write was successful. That

adds an additional test case. We’ll also need a test case to simulate a

device that never responds. The initial test list is shown in Figure 10.3,

on the next page.

As shown in the sequence chart in Figure 10.4, on the following page,

multiple device interactions are needed to program a flash location.

Simple spies and stubs cannot confirm the complex interaction needed.

The mock object is the right tool for this job.

A common misconception is that a mock is a simulator; it is not. A

mock is used to simulate and verify a series of interactions for a specific

usage scenario. The mock has no idea what a flash device is. Each test

case programs the mock for the needed scenario. The mock simulates a

single scenario at a time, not the device in total. And it’s good we don’t

have to create a flash simulator. Such a simulator would probably be

more complicated than the device driver itself.

To be testable, all interactions from the driver to the hardware must

go through a pair of functions, IO_Read() and IO_Write(). MockIO inter-

cepts calls to those functions. The MockIO versions of IO_Read() and

IO_Write() intercept and check each operation. In addition, IO_Read() is

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=196

FLASH DRIVER 197

Flash Memory Write - Test List

Successful operation
Invalid programming voltage
Program error
Attempt to program protected block
Read back fails
Device timeout during write operation

Figure 10.3: Flash memory program—test list

FlashDriver FlashDevice

IOWrite(CommandRegister, 0x40)

IOWrite(offset, data)

IORead(StatusRegister)

b7 == 0

IORead(StatusRegister)

b7 == 1, other bits == 0

Repeats while
b7 == 0

IORead(offset)

data

Flash_Program(offset, data)

FlashSuccess

Figure 10.4: Flash_Write() sequence chart—success case

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=197

FLASH DRIVER 198

programmed to return specific values for each read operation in the

usage scenario.

Let’s see how to use MockIO. Treat MockIO as a black box; we’ll look at

its inner workings after that.

Tests with a mock object take a little getting used to. They are different

in that they start with recording expectations rather than ending with

checking expectations. This test shows how MockIO has its expectations

set up for the scenario illustrated in Figure 10.4, on the previous page:

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteSucceeds_ReadyImmediately)

{

int result = 0;

MockIO_Expect_Write(0, 0x40);

MockIO_Expect_Write(0x1000, 0xBEEF);

MockIO_Expect_ReadThenReturn(0, 1<<7);

MockIO_Expect_ReadThenReturn(0x1000, 0xBEEF);

result = Flash_Write(0x1000, 0xBEEF);

LONGS_EQUAL(0, result);

MockIO_Verify_Complete();

}

The test case is programming MockIO’s behavior. Each call to MockIO

identifies the I/O operations to expect and how to react to each. Ignor-

ing the parameters for a second, this test says that Flash_Write() should

do two IO_Write() calls followed by two IO_Read() calls. If the expecta-

tions are not met (in the specified order) by the end of the test case, the

test fails. For the test to pass, the production code, Flash_Write(), should

interact with the flash device as described by the expectations.

This test scenario represents a successful programming of location

0x1000 with the value 0xBEEF. Walking through the establish expectations

phase of the test, the first call to MockIO_Expect_Write(0, 0x40) tells the

mock that the first thing that should happen is a write to location 0x0

the value 0x40. As documented in the flowchart, this puts the device in

program mode. The second thing the driver must do is write to location

0x1000 the value 0xBEEF. Then the call to MockIO_Expect_ReadThenReturn(0,

1<<7); tells the mock to expect a read from location 0x0 and that the

mock should return a 1 in bit position 7, signaling the device’s suc-

cessful completion.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=198

FLASH DRIVER 199

It’s unlikely the device would really be ready on the first pass around

the ready check loop, but the code better handle it properly at any rate.

The error scenarios might be ready immediately. The magic numbers

are straight from the flowchart on Figure 10.2, on page 196. After the

device reports a successful program operation, the driver should read

back the data written to confirm the successful write, which is pro-

grammed by the final MockIO_Expect_ReadThenReturn().

After all the expectations are set, the test calls the production code

function Flash_Write(). Because Flash_Write() is linked to MockIO versions

of IO_Read() and IO_Write(), each call is checked to see that it matches

the expected call exactly. If calls are out of order or parameters are

wrong, the test immediately fails. With a mock, the check phase is not

as distinct as it is mingled with the execution of the production code.

In the final check phase, the test checks that Flash_Write() returns a

0, indicating successful programming of the flash memory location. By

the time that check is made, all IO calls that happened were valid. The

final line of the test case makes sure there are no unused expectations;

if there are, MockIO_Verify_Complete() causes the test to fail.

Let’s look at some of the errors MockIO generates as we test-drive the

Flash_Write() function. Here’s its first implementation:

Download src/IO/Flash.c

int Flash_Write(ioAddress address, ioData data)

{

return -1;

}

Because no expectations are met, we get this feedback from the mock:

mocks/MockIO.c:139: error: Failure in TEST(Flash, ProgramSucceedsReadyImmediately)

Expected 4 reads/writes but got 0

Now let’s meet the first expectation with this implementation:

Download src/IO/Flash.c

int Flash_Write(ioAddress address, ioData data)

{

IO_Write(0x40, 0);

return -1;

}

The Flash_Write() call has the parameters reversed; we get this error:

mocks/MockIO.c:64: error: Failure in TEST(Flash, ProgramSucceedsReadyImmediately)

R/W 1: Expected IO_Write(0x0, 0x40)

But was IO_Write(0x40, 0x0)

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=199

FLASH DRIVER 200

Aside from checking for unconsumed expectations and wrong param-

eters, MockIO checks that each operation matches its expectation. The

test will fail under these conditions:

• IO_Read() called when expecting IO_Write()

• IO_Write() called when expecting IO_Read()

• IO_Write() called with the wrong address or data

• IO_Read() called with the wrong address

This code passes that test case:

Download src/IO/Flash.c

int Flash_Write(ioAddress address, ioData data)

{

IO_Write(0, 0x40);

IO_Write(address, data);

IO_Read(0);

IO_Read(address);

return FLASH_SUCCESS;

}

Notice we have not done the looping logic yet or checked for any of the

error conditions. Those tests would come one by one as we have done

in previous examples. Before we continue, let’s refactor the test. Go

ahead and eliminate the magic numbers and pull common items into

the TEST_GROUP(). Now the test group looks like this:

Download tests/IO/FlashTest.cpp

TEST_GROUP(Flash)

{

ioAddress address;

ioData data;

int result;

void setup()

{

address = 0x1000;

data = 0xBEEF;

result = -1;

MockIO_Create(10);

Flash_Create();

}

void teardown()

{

Flash_Destroy();

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=200

FLASH DRIVER 201

MockIO_Verify_Complete();

MockIO_Destroy();

}

};

And the magic numberless test case looks like this:

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteSucceeds_ReadyImmediately)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit);

MockIO_Expect_ReadThenReturn(address, data);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_SUCCESS, result);

}

The refactored production code that passes this test looks like this:

Download src/IO/Flash.c

int Flash_Write(ioAddress address, ioData data)

{

IO_Write(CommandRegister, ProgramCommand);

IO_Write(address, data);

IO_Read(StatusRegister);

IO_Read(address);

return FLASH_SUCCESS;

}

The literal constants are defined in a device-specific header file. I did

not add these to Flash.h because users of the driver have no need to

know these constants.

Download include/IO/m28w160ect.h

typedef enum

{

CommandRegister = 0x0,

StatusRegister = 0x0

} Flash_Registers;

typedef enum

{

ProgramCommand = 0x40,

Reset = 0xff

} Flash_Command;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/include/IO/m28w160ect.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=201

MOCKIO 202

Because the header is used by both production and test code, errors in

definitions won’t be found by these tests. They could be found by code

inspections and will certainly be found during hardware integration.

The flowchart shows that we need to loop while waiting for the device to

finish the program command. Also, the error conditions must be inter-

preted and translated to return codes. The test fixture is in place, and

we should be able to make good progress. But before we complete the

Flash_Write()’s tests and production code, let’s look deeper into MockIO.

10.2 MockIO

MockIO might seem like a mysterious thing. You might think that it’s

extra work that won’t be needed and just takes time from the produc-

tion code. Let’s clear up some of the mystery around MockIO and look

at its full interface and some of its implementation. I hope you will see

that it’s not that much trouble.

MockIO’s public interface consists of the usual create/destroy func-

tions, along with the functions for programming the expectations and

assuring that all expectations are met.

Download mocks/MockIO.h

#ifndef D_MockIO_H

#define D_MockIO_H

#include "IO.h"

void MockIO_Create(int maxExpectations);

void MockIO_Destroy(void);

void MockIO_Expect_Write(ioAddress offset, ioData data);

void MockIO_Expect_ReadThenReturn(ioAddress offset, ioData returnData);

void MockIO_Verify_Complete(void);

#endif

As you might expect, MockIO.c has an ordered table of expectations. It’s

made from an array of data structures and local variables.

Download mocks/MockIO.c

typedef struct Expectation

{

int kind;

ioAddress addr;

ioData value;

} Expectation;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/MockIO.h
http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=202

MOCKIO 203

static Expectation * expectations = 0;

static int setExpectationCount;

static int getExpectationCount;

static int maxExpectationCount;

static int failureAlreadyReported = 0;

The expectations table and its associated local data are initialized and

cleaned up like this:

Download mocks/MockIO.c

void MockIO_Create(int maxExpectations)

{

expectations = calloc(maxExpectations, sizeof(Expectation));

setExpectationCount = 0;

getExpectationCount = 0;

maxExpectationCount = maxExpectations;

failureAlreadyReported = 0;

}

void MockIO_Destroy(void)

{

if (expectations)

free(expectations);

expectations = 0;

}

As you saw in the test case, the expectations are recorded using these

functions:

Download mocks/MockIO.c

void MockIO_Expect_Write(ioAddress addr, ioData value)

{

failWhenNoRoomForExpectations(report_too_many_write_expectations);

recordExpectation(FLASH_WRITE, addr, value);

}

void MockIO_Expect_ReadThenReturn(ioAddress addr, ioData value)

{

failWhenNoRoomForExpectations(report_too_many_read_expectations);

recordExpectation(FLASH_READ, addr, value);

}

The failWhenNoMoreRoomForExpectations() function is a private file scope

function that makes sure MockIO is initialized and has room for more

expectations. If those checks are not satisfied, failWhenNoMoreRoomFor-

Expectations() fails, never to return. When there is room, recordExpecta-

tion() makes an entry into the expectations table.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=203

MOCKIO 204

IO_Write() does not really write anything; it makes sure that whatever

the caller is trying to write matches the expectations set in the corre-

sponding MockIO_Expect_Write().

Download mocks/MockIO.c

void IO_Write(ioAddress addr, ioData value)

{

setExpectedAndActual(addr, value);

failWhenNotInitialized();

failWhenNoUnusedExpectations(report_write_but_out_of_expectations);

failWhen(expectationIsNot(FLASH_WRITE), report_expect_read_was_write);

failWhen(expectedAddressIsNot(addr), report_write_does_not_match);

failWhen(expectedDataIsNot(value), report_write_does_not_match);

getExpectationCount++;

}

IO_Write() can fail when MockIO has not been initialized, when there

are no more unused expectations, when an IO_Read() was expected, or

when there is a mismatch in the address or data written.

Likewise, IO_Read() does not really read anything—it makes checks

similar to IO_Write(). In addition, it returns the return result specified

in the second parameter of MockIO_Expect_ReadThenReturn().

Download mocks/MockIO.c

ioData IO_Read(ioAddress addr)

{

setExpectedAndActual(addr, NoExpectedValue);

failWhenNotInitialized();

failWhenNoUnusedExpectations(report_read_but_out_of_expectations);

failWhen(expectationIsNot(FLASH_READ), report_expect_write_was_read);

failWhen(expectedAddressIsNot(addr), report_read_wrong_address);

return expectations[getExpectationCount++].value;

}

With this mechanism we can rig a series of return values so we can get

Flash_Write() to loop, waiting for a specific bit setting from IO_Read().

Finally, MockIO_Verify_Complete() confirms that all the preprogrammed

expectations have been met. MockIO_Verify_Complete() should be called

after the exercise phase of the TEST(). It can be called in teardown().

Download mocks/MockIO.c

void MockIO_Verify_Complete(void)

{

if (failureAlreadyReported)

return;

failWhenNotAllExpectationsUsed();

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://media.pragprog.com/titles/jgade/code/mocks/MockIO.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=204

TEST-DRIVING THE DRIVER 205

Notice that MockIO_Verify_Complete() checks the mock has not reported

any other errors. Any mock failure terminates the test case but not the

running of teardown(). This makes sure that MockIO_Verify_Complete()

does not report another error during teardown().

Now that you’ve seen how the mock works, let’s go back and finish

Flash_Write(). You can find the full listing of MockIO and its tests in the

online code download.

10.3 Test-Driving the Driver

Before we looked under the hood of MockIO, Flash_Write() passed a simple

test where the device is immediately ready. It is not likely that the device

would be ready right away. According to its specification, this device

has a typical write time of ten microseconds. When the driver runs in

a real device, the StatusRegister may be read hundreds or thousands of

times. The driver needs to loop, waiting for the operation to complete,

though we can prove the looping logic with just a few reads:

Download tests/IO/FlashTest.cpp

TEST(Flash, ProgramSucceedsNotImmediatelyReady)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

MockIO_Expect_ReadThenReturn(StatusRegister, 0);

MockIO_Expect_ReadThenReturn(StatusRegister, 0);

MockIO_Expect_ReadThenReturn(StatusRegister, 0);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit);

MockIO_Expect_ReadThenReturn(address, data);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_SUCCESS, result);

}

Here’s the error that drives us to add the looping logic to IO_Read():

IO/FlashTest.cpp:78: error: Failure in TEST(Flash,ProgramSucceedsNotImmediatelyReady)

../mocks/MockIO.c:83: error:

R/W 4: Expected IO_Read(0x0) returns 0x0;

But was IO_Read(0x1000)

Now add the loop to Flash_Write():

Download src/IO/Flash.c

int Flash_Write(ioAddress address, ioData data)

{

ioData status = 0;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=205

TEST-DRIVING THE DRIVER 206

IO_Write(CommandRegister, ProgramCommand);

IO_Write(address, data);

while ((status & ReadyBit) == 0)

status = IO_Read(StatusRegister);

IO_Read(address);

return FLASH_SUCCESS;

}

Flash_Write() handles the happy path through the function. So now let’s

get to the error conditions. The first error on our flowchart is the Vpp

error. The Vpp bit is set when the programming voltage on the device is

incorrect. To test this in the target, we’d have to damage the hardware,

which means the error detection code might never run until there is

a board failure. We’ll set VppErrorBit along with ReadyBit. Note that the

flowchart shows that the driver must reset the device for each error

case.

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteFails_VppError)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit | VppErrorBit);

MockIO_Expect_Write(CommandRegister, Reset);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_VPP_ERROR, result);

}

We’ll need similar test cases for each of the other two possible device

errors (tests for EraseErrorBit and BlockProtectionErrorBit are not shown).

Here is the tested implementation that handles all the errors in the

spec:

Download src/IO/Flash.c

int Flash_Write(ioAddress offset, ioData data)

{

ioData status = 0;

IO_Write(CommandRegister, ProgramCommand);

IO_Write(offset, data);

while ((status & ReadyBit) == 0)

status = IO_Read(StatusRegister);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=206

TEST-DRIVING THE DRIVER 207

if (status != ReadyBit)

{

IO_Write(CommandRegister, Reset);

if (status & VppErrorBit)

return FLASH_VPP_ERROR;

else if (status & ProgramErrorBit)

return FLASH_PROGRAM_ERROR;

else if (status & BlockProtectionErrorBit)

return FLASH_PROTECTED_BLOCK_ERROR;

else

return FLASH_UNKNOWN_PROGRAM_ERROR;

}

return FLASH_SUCCESS;

}

Our driver requirements say that the driver must read back the written

data to confirm a successful write. Add the scenario where the data

read back does not match the data written:

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteFails_FlashReadBackError)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit);

MockIO_Expect_ReadThenReturn(address, data-1);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_READ_BACK_ERROR, result);

}

One other thing: the device specification says that until ReadyBit is set,

other status bits may change and should be ignored. This test assures

that the driver terminates the loop only when ReadyBit is set.

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteSucceeds_IgnoresOtherBitsUntilReady)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

MockIO_Expect_ReadThenReturn(StatusRegister, ~ReadyBit);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit);

MockIO_Expect_ReadThenReturn(address, data);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_SUCCESS, result);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=207

SIMULATING A DEVICE TIMEOUT 208

The Flash_Write() device driver function is almost done. Before we add

timeout detection, let’s refactor Flash_Write() by extracting the error pro-

cessing. Here’s the refactored Flash_Write():

Download src/IO/Flash.c

int Flash_Write(ioAddress offset, ioData data)

{

ioData status = 0;

IO_Write(CommandRegister, ProgramCommand);

IO_Write(offset, data);

while ((status & ReadyBit) == 0)

status = IO_Read(StatusRegister);

if (status != ReadyBit)

return writeError(status);

if (data != IO_Read(offset))

return FLASH_READ_BACK_ERROR;

return FLASH_SUCCESS;

}

Extracting the error handling helper function helps keep Flash_Write()

concise.

Download src/IO/Flash.c

static int writeError(int status)

{

IO_Write(CommandRegister, Reset);

if (status & VppErrorBit)

return FLASH_VPP_ERROR;

else if (status & ProgramErrorBit)

return FLASH_PROGRAM_ERROR;

else if (status & BlockProtectionErrorBit)

return FLASH_PROTECTED_BLOCK_ERROR;

else

return FLASH_UNKNOWN_PROGRAM_ERROR;

}

Now let’s get the code to handle the timeout.

10.4 Simulating a Device Timeout

It’s possible for the flash memory device to never become ready, proba-

bly because of some transient or permanent hardware error. Testing the

timeout with a real device would be difficult. Like Vpp error, we might

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=208

SIMULATING A DEVICE TIMEOUT 209

even need to hack up a board. However, with an addition to our test

fixture, we can reliably test the error case.

The device specification says that the device has a typical response time

of ten microseconds. Let’s give the driver five milliseconds before ending

in an error. In terms of implementation, the driver can read a real-time

clock tic to get the current rolling µs counter during the ready wait loop.

If it makes sense with your system’s context switch time, you could also

consider a delay or processor yield during the loop. After the timeout

period expires, Flash_Write returns FLASH_TIMEOUT_ERROR. We can control

this timeout if we take control of the RTC tic with a link-time fake. It

looks like this:

Download mocks/FakeMicroTime.c

void FakeMicroTime_Init(uint32_t start, uint32_t incr)

{

time = start;

increment = incr;

totalDelay = 0;

}

uint32_t MicroTime_Get(void)

{

uint32_t t = time;

time += increment;

return t;

}

Using FakeMicroTime_Init(), the fake is started at a particular µs and

increments by the supplied value each time MicroTime_Get() is called.

This test case forces a timeout.

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteFails_Timeout)

{

FakeMicroTime_Init(0, 500);

Flash_Create();

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

for (int i = 0; i < 10; i++)

MockIO_Expect_ReadThenReturn(StatusRegister, ~ReadyBit);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_TIMEOUT_ERROR, result);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/FakeMicroTime.c
http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=209

SIMULATING A DEVICE TIMEOUT 210

First, we initialize FakeMicroTime to start at 0 and increment by 500 µs.

Using 500 as the upper limit results in breaking out of the loop with

a timeout after ten laps. Ten I/O reads are expected before declaring a

timeout.

Once we have everything compiling, the test fails as it runs out of expec-

tations; it looks like this:

IO/FlashTest.cpp:210: error: Failure in TEST(Flash, WriteFails_Timeout)

../mocks/MockIO.c:83: error:

R/W 13: No more expectations but was IO_Read(0x0)

Now we’ll add the needed timeout detection:

Download src/IO/Flash.c

int Flash_Write(ioAddress offset, ioData data)

{

ioData status = 0;

uint32_t timestamp = MicroTime_Get();

IO_Write(CommandRegister, ProgramCommand);

IO_Write(offset, data);

status = IO_Read(StatusRegister);

while ((status & ReadyBit) == 0)

{

if (MicroTime_Get() - timestamp >= FLASH_WRITE_TIMEOUT_IN_MICROSECONDS)

return FLASH_TIMEOUT_ERROR;

status = IO_Read(StatusRegister);

}

if (status != ReadyBit)

return writeError(status);

if (data != IO_Read(offset))

return FLASH_READ_BACK_ERROR;

return FLASH_SUCCESS;

}

When clocks roll over, as this one will every 136 years, you’d like the

code to continue working. Maybe it won’t matter in 136 years, but

maybe your hardware only has a 16-bit timer: then a µs timer rolls

over in just about 18 hours. We can test it like this:

Download tests/IO/FlashTest.cpp

TEST(Flash, WriteFails_TimeoutAtEndOfTime)

{

FakeMicroTime_Init(0xffffffff, 500);

Flash_Create();

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=210

IS IT WORTH IT? 211

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(address, data);

for (int i = 0; i < 10; i++)

MockIO_Expect_ReadThenReturn(StatusRegister, ~ReadyBit);

result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_TIMEOUT_ERROR, result);

}

As far as we know, we have all the scenarios covered. We’re ready when

the hardware is ready to integrate.

10.5 Is It Worth It?

Unlike the test doubles supporting the development of the LightSched-

uler, MockIO is much more complex. The mock is more than 200 lines of

code. There are about 150 lines of Flash test code on top of that, all to

test about 70 lines of production code. It seems like that might be a lot

of investment.

It is worth it. For one thing, MockIO won’t just be used for the flash

driver. It is a handy tool for testing anything that does I/O reads and

writes. That investment will be leveraged across many drivers. Look-

ing at the reference implementation from the manufacturer, there are

almost 900 lines of C code. Much of this code is not as simple as

Flash_Write()—there is much looping and conditional logic. Given that,

the effort to put the mock together is not big compared to the overall

flash driver size and the value of avoiding Debug on Hardware (DOH!).

When the driver meets the hardware, we are likely to bump into inte-

gration problems. We could also write some hardware integration tests

intended to be run only on the hardware. As we find integration prob-

lems where the tests don’t agree with the hardware, the tests and pro-

duction code need to be revised to be compatible with the real world.

I think the case for writing these tests is strong. The work in progress

is well tested. The regression test safety net is in place for future driver

modifications. Yes, there is more typing to do, but typing is not the lim-

iting factor when programming. It’s thinking, understanding, problem

solving, experimenting, proving concepts, and keeping the code working

that takes time.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=211

MOCKING WITH CPPUMOCK 212

10.6 Mocking with CppUMock

CppUTest has an extension library to support writing of mocks called

CppUMock. You may anticipate that mocks for different modules might

have considerable duplication between them. That led Bas Vodde, one

of CppUTest’s authors, to create CppUMock.

Let’s see how to use CppUTest Mock Support to test-drive the Flash

driver. This test is equivalent to the first Flash test earlier in the chapter.

Download t1/tests/IO/FlashTest.cpp

TEST(Flash, WriteSuccessImmediately)

{

mock().expectOneCall("IO_Write")

.withParameter("addr", CommandRegister)

.withParameter("value", ProgramCommand);

mock().expectOneCall("IO_Write")

.withParameter("addr", (int) address)

.withParameter("value", data);

mock().expectOneCall("IO_Read")

.withParameter("addr", StatusRegister)

.andReturnValue((int) ReadyBit);

mock().expectOneCall("IO_Read")

.withParameter("addr", (int) address)

.andReturnValue((int) data);

int result = Flash_Write(address, data);

LONGS_EQUAL(FLASH_SUCCESS, result);

}

The first statement in the test sets the first expectation. The mock

should expect a call to IO_Write() with two parameters. The first parame-

ter’s name is addr, and its value is CommandRegister. The second param-

eter’s name is value, and its value should be ProgramCommand.

Notice that the two IO_Read() calls also specify a return value for the

call. IO_Write has a void return type, so there is no .andReturnValue()

clause.

Now for mock versions of IO_Write() and IO_Read(). You write the mock

version of IO_Write() like this:

Download t1/tests/IO/FlashTest.cpp

void IO_Write(ioAddress addr, ioData value)

{

mock_c()->actualCall("IO_Write")

->withIntParameters("addr", addr)

->withIntParameters("value", value);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/t1/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=212

MOCKING WITH CPPUMOCK 213

The mock setup code used to set expectations is C++, but the mock_c

code in the .c file is pure C, though a unique style. IO_Write() simply

informs mock_c() of the name of the function called and each of the

parameters’ names and values. IO_Read() is similar.

Download t1/tests/IO/FlashTest.cpp

ioData IO_Read(ioAddress addr)

{

mock_c()->actualCall("IO_Read")

->withIntParameters("addr", addr);

return mock_c()->returnValue().value.intValue;

}

Like IO_Write(), IO_Read() checks the function name and each parame-

ter. Additionally, it returns the associated value.

Here is the TEST_GROUP:

Download t1/tests/IO/FlashTest.cpp

TEST_GROUP(Flash)

{

ioAddress address;

ioData data;

int result;

void setup()

{

address = 0xfeed;

data = 0x1dea;

}

void teardown()

{

mock().checkExpectations();

mock().clear();

}

};

The teardown() call to mock().checkExpectations() makes sure all expecta-

tions have been met. .clear() cleans up after the mock. There is a plug-in

that can be installed into CppUTest that makes these calls after tear-

down().

If we ran the test with a skeleton of Flash_Write() that does no I/O, we’d

get the following output:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/tests/IO/FlashTest.cpp
http://media.pragprog.com/titles/jgade/code/t1/tests/IO/FlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=213

GENERATING MOCKS 214

tests/IO/FlashTest.cpp:105: error: Failure in

TEST(CppUTestMockIO, WriteSucceedsReadyImmediately)

Mock Failure: Expected call did not happen.

EXPECTED calls that did NOT happen:

IO_Write -> int addr: <0>, int value: <64>

IO_Write -> int addr: <65261>, int value: <7658>

IO_Read -> int addr: <0>

IO_Read -> int addr: <65261>

ACTUAL calls that did happen:

<none>

If the production code didn’t put the device in command mode, Cpp-

UMock will generate this error:

tests/IO/FlashTest.cpp:105: error: Failure in

TEST(CppUTestMockIO, WriteSucceedsReadyImmediately)

Mock Failure: Expected call did not happen.

EXPECTED calls that did NOT happen:

IO_Write -> int addr: <0>, int value: <64>

ACTUAL calls that did happen:

IO_Write -> int addr: <65261>, int value: <7658>

IO_Read -> int addr: <0>

IO_Read -> int addr: <65261>

Unlike the handcrafted mock, this version of CppUTest mock does not

reject calls that are not in the same order as the expect calls. This

makes for a more flexible test if there is no order dependency in the

interactions, but it is a problem when there is an order dependency.

CppUMock takes a lot of the pain and repetition out of creating mocks.

It has more capabilities than we’ve discussed here, so give it a test-drive

to see what else it does.3 In the next section we’ll look at Unity’s mock

support, CMock, that generates mocks from header files.

10.7 Generating Mocks

CMock4 is a mock generator that is a companion to Unity. CMock gen-

erates test double functions that conform to the interface specified in a

header file. Let’s see what CMock will generate if we give it IO.h:

Download include/IO/IO.h

#ifndef D_IO_H

#define D_IO_H

#include <stdint.h>

3. You can find CppUMock documentation at http://www.cpputest.org/node/30.
4. You can find CMock at http://sourceforge.net/projects/cmock/.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/IO/IO.h
http://www.cpputest.org/node/30
http://sourceforge.net/projects/cmock/
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=214

GENERATING MOCKS 215

typedef uint32_t ioAddress;

typedef uint16_t ioData;

ioData IO_Read(ioAddress offset);

void IO_Write(ioAddress offset, ioData data);

#endif

CMock generates a header file and a mock implementation. The .h file

looks a lot like the mock we handcrafted.

Download mocks/cmock/MockIO.h

/* AUTOGENERATED FILE. DO NOT EDIT. */

#ifndef _MOCKIO_H

#define _MOCKIO_H

#include "IO.h"

void MockIO_Init(void);

void MockIO_Destroy(void);

void MockIO_Verify(void);

void IO_Read_ExpectAndReturn(ioAddress offset, ioData toReturn);

void IO_Write_Expect(ioAddress offset, ioData data);

#endif

The .c file is about 255 lines of generated code. Essentially, the gener-

ated mock is doing the same job as the handcrafted mock. A tool like

CMock can be very helpful for testing complex interactions between

collaborating C modules. Here is the generated IO_Read():

Download mocks/cmock/MockIO.c

ioData IO_Read(ioAddress offset)

{

Mock.IO_Read_CallCount++;

if (Mock.IO_Read_CallCount > Mock.IO_Read_CallsExpected)

{

TEST_FAIL("Function 'IO_Read' called more times than expected");

}

if (Mock.IO_Read_Expected_offset != Mock.IO_Read_Expected_offset_Tail)

{

ioAddress* p_expected = Mock.IO_Read_Expected_offset;

Mock.IO_Read_Expected_offset++;

TEST_ASSERT_EQUAL_MEMORY_MESSAGE(

(void*)p_expected, (void*)&(offset), sizeof(ioAddress),

"Function 'IO_Read' called with unexpected value for argument 'offset'.");

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/mocks/cmock/MockIO.h
http://media.pragprog.com/titles/jgade/code/mocks/cmock/MockIO.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=215

WHERE ARE WE? 216

if (Mock.IO_Read_Return != Mock.IO_Read_Return_Tail)

{

ioData toReturn = *Mock.IO_Read_Return;

Mock.IO_Read_Return++;

return toReturn;

}

else

{

return *(Mock.IO_Read_Return_Tail - 1);

}

}

With a little extra work, CMock allows you to customize the generated

mocks. You can add the ability to ignore some calls and override others

with function pointers.

10.8 Where Are We?

In this chapter, we saw how MockIO is used for testing complex inter-

actions between a driver and the hardware, testing code that would

appear to be too hardware-dependent to test off the hardware. Mocks

are not just for testing at the hardware level. Mocks are helpful when-

ever the interactions are complex. Mocks help when you need the test

double to be involved in checking for correct behavior as it happens.

In this example we chose a link-time mock. Mocks can also be substi-

tuted via a function pointer. A function pointer would be appropriate if

you wanted to use the real IO_Read() and IO_Write() functions for some

tests. You would go the function pointer route if some tests actually

interact with the hardware.

Mocks enforce a strict ordering of interactions, which can lead to fragile

tests when the precise ordering of interactions is not critical to correct-

ness. This is not the case in the flash driver examples, where orderings

are essential. CppUMock and CMock can take some of the repetition

out of creating mocks. Don’t put learning the tool in front of trying the

concept. Hand-crafting is OK too. As usual, choose the right tool for the

job. Simple interactions should lead to using simple test doubles. More

complex interactions suggest using mocks.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=216

WHERE ARE WE? 217

Put the Knowledge to Work

1. Use MockIO to implement the CFI command in Appendix B of

the device specification in docs/STMicroelectronics/m28w160ect.pdf.

Compare your implementation to the vendor’s reference driver in

docs/StMicroelectronics.

2. Read include/IO/m28w160ect.pdf and implement the Erase Suspend

& Resume Flowchart.

3. Implement a mock equivalent to MockIO using the CppUMock in

CppUTest/include/CppUTestExt.

4. Yeah, I know, you have real work to do. Take one of your device

drivers, get it into the test harness, and write characterization

tests for a driver you need to change using MockIO, CppUMock,

or CMock.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=217

Part III

Design and Continuous

Improvement

Download from Wow! eBook <www.wowebook.com>

If you think good architecture is expensive, try bad

architecture.

Brian Foote and Joseph Yoder

Chapter 11

SOLID, Flexible, and Testable
Designs

To build good designs, it is important to change the usual way of design

evaluation from NIH1 to using SOLID design principles. The five design

principles, described in Bob Martin’s book (Agile Software Development,

Principles, Patterns, and Practices [Mar02]), spell the word SOLID.

S Single Responsibility Principle

O Open Closed Principle

L Liskov Substitution Principle

I Interface Segregation Principle

D Dependency Inversion Principle

This chapter has two major topics. First we’ll look at the SOLID design

principles, which are a handful of tried-and-true principles that help

build better designs. We’ll reflect on how some of the earlier examples in

the book follow these principles. In the second major topic of the chap-

ter we will look at advanced C programming approaches as we apply the

SOLID principles to C modules. We’ll look at some more advanced usage

of function pointers to build SOLID, flexible, and testable designs.

Building SOLID designs is important because over the life of a soft-

ware system, there will be many changing needs for the system and

many changing ideas of how to best implement the system. Awareness

of SOLID will help us organize our code into modules that have high

1. Not Invented Here.

Download from Wow! eBook <www.wowebook.com>

SOLID DESIGN PRINCIPLES 220

internal cohesion and are loosely coupled to other modules. They com-

partmentalize ideas so that code changes tend to be more localized and

designs are more testable.

Why is this in a book about TDD? TDD helps drive design. TDD helps

you see when a good design starts to go bad. Let’s say you can see the

code change you want to make, but you can’t find a decent way to test

it. The tests are warning you. The design is starting to deteriorate. TDD

is a code-rot radar, and the SOLID design principles help you envision

a better design so you can avoid the rot.

11.1 SOLID Design Principles

Let’s look at each principle. We’ll look at the SOLID influence on the

design of some of the examples you’ve already seen in this book, as well

as some new designs.

Single Responsibility Principle

The Single Responsibility Principle (SRP) states that a module should

have a single responsibility—it should do one thing, and it should have

a single reason to change. Applying SRP leads to modules with good

cohesion, modules that are made up of functions and data with a uni-

fied purpose—in a nutshell, modules that do a job and do it well.

We’ve seen SRP at work in the modules in this book. The CircularBuffer,

found in Section 9.3, Surgically Inserted Spy, on page 182, is responsi-

ble for maintaining the integrity of a FIFO data structure holding inte-

gers. The LightScheduler, found in Chapter 8, Spying on the Production

Code, on page 145, turns lights on or off at a scheduled time.

When modules and their functions are well-named, their responsibili-

ties should be clear. There should be little need for complex explana-

tions. The modules, along with their tests, tell their story.

We also applied SRP to functions in a module. Well-focused responsibil-

ities help you recognize where changes should be made as requirements

evolve. When this principle is not followed, you get those 1,000-line

functions participating in global function and data orgies.

Open Closed Principle

The Open Closed Principle (OCP), described by Meyer in Object-Oriented

Software Construction [Mey97] and interpreted by Bob Martin, says a

module should be “open for extension but closed for modification.”

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=220

SOLID DESIGN PRINCIPLES 221

Let me explain OCP by metaphor: a USB port can be extended (you

can plug any compliant USB devices into the port) but does not need

to be modified to accept a new device. So, a computer that has a USB

port is open for extension but closed for modification for compliant USB

devices.

When some aspect of a design follows the OCP, it can be extended by

adding new code, rather than modifying existing code. We can say that

the LightScheduler (from Chapter 8, Spying on the Production Code, on

page 145) is open for extension for new kinds of LightControllers. Why? If

the interface is obeyed, the calling code (the client) does not care about

the type of the called code (the server). OCP supports substitution of

service providers in such a way that no change is needed to the client

to accommodate a new server.

Liskov Substitution Principle

The Liskov Substitution Principle (LSP) was defined by Barbara Liskov

in her paper Data Abstraction and Hierarchy [Lis88]. Paraphrasing her

work, LSP says that client modules should not care which kind of server

modules they are working with. Modules with the same interface should

be substitutable without any special knowledge in the calling code.

We have seen LSP at work with the test doubles. For example, the client

code, LightScheduler, did not have to behave differently when interacting

with the server’s test double, LightControllerSpy. The client cannot tell the

difference.

The Liskov Substitution Principle may sound a lot like the Open Closed

Principle. That’s because OCP and LSP are two sides of the same coin.

But there is more to LSP than just having an interface that links or a

compatible function pointer type. The meaning of the calls must be the

same. The expectations of both the client and the server must be met.

Nothing additional is required from the LightScheduler when it interacts

with a LightControllerSpy or a production LightController. No additional pre-

conditions must be established, and no postconditions are weakened.

The LightControllerSpy and LightController are not only syntactically substi-

tutable but are semantically substitutable from the LightScheduler per-

spective.

In Appendix E, on page 340, you will find an example that illustrates

LSP in the design of a operating system isolation layer.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=221

SOLID DESIGN PRINCIPLES 222

Interface Segregation Principle

The Interface Segregation Principle (ISP) suggests that client modules

should not depend on fat interfaces. Interfaces should be tailored to

the client’s needs. For example, the TimeService, from Section 8.3, Link-

Time Substitution, on page 148, has a very focused interface. There may

be many more time-related functions in the target operating system.

Although the target OS tries to be everything for every application, the

TimeService is focused on the needs of this system. By tailoring inter-

faces, we limit dependencies, make code more easily ported, and make

it easier to test the code that uses the interface.

Dependency Inversion Principle

In the Dependency Inversion Principle (DIP), Bob Martin tells us that

high-level modules shouldn’t depend on low-level modules. Both should

depend on abstractions. He also says that abstractions should not

depend on the details. Details should depend on abstractions. We can

break dependencies with abstractions and interfaces.

We often implement DIP In C by using a function pointer to break an

unwanted direct dependency. On the left in Figure 11.1, on the follow-

ing page, the LightScheduler depends directly on RandomMinute_Get. The

arrow points to the dependency. The high level depends directly on the

details. The right side of the figure shows an inverted dependency. Here

the high level depends on an abstraction, which is an interface in the

form of a function pointer. The details also depend on the abstraction;

RandomMinute_Get() implements the interface.

Operating systems use the same mechanism to keep the OS code from

depending directly on your code. A callback function is a form of depen-

dency inversion.

When we introduce an abstract data type, like CircularBuffer, we are

applying DIP, because the CircularBuffer does not reveal its inner work-

ings. Clients of the CircularBuffer depend on the idea, the abstraction,

and not the details.

Dependency inversion in C does not have to involve function pointers or

ADTs. In C, it’s almost more a state of mind. We applied DIP when the

Flash driver called the functions IO_Read() and IO_Write() in Section 10.1,

Flash Driver, on page 194. We could have interacted with the memory-

mapped I/O device directly but abstracted the direct access into the

interface.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=222

SOLID C DESIGN MODELS 223

LightScheduler

Random Minute Get

int (*RandomMinute_Get)()

<<implements>>

Random Minute Get

LightScheduler

Figure 11.1: Inverting a dependency with a function pointer

We are using DIP when:

• implementation details hide behind an interface,

• the interface does not reveal the implementation details,

• a client calls a server through a function pointer,

• a server calls a client back through a function pointer, and

• an ADT hides the details of a data type.

These interrelated principles can give some guidance for avoiding the

data structure function call free-for-all all too prevalent in C program-

ming. In the next section, we’ll look at more techniques for applying

these ideas in C.

11.2 SOLID C Design Models

In the following sections, we will look at several design models for apply-

ing the SOLID principles to C modules. All the examples illustrate SRP

and DIP, so I won’t call those out. The first two models will be familiar

because they have appeared in prior example code. The last two models

show how to implement OCP and LSP with C function pointers.

Each model is more complex than the previous model. Each solves

some specific design problem at the cost of some added complexity.
Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=223

SOLID C DESIGN MODELS 224

You can decide whether the complexity is worth it as we work through

some examples. Here are the four models we’ll look at:

Single-instance module

Encapsulates a module’s internal state when only one instance of

the module is needed

Multiple-instance module

Encapsulates a module’s internal state and lets you create multi-

ple instances of the module’s data

Dynamic interface

Allows a module’s interface functions to be assigned at runtime

Per-type dynamic interface

Allows multiple types of modules with the same interface to have

unique interface functions

We’ll do a quick review of the first two models and relate them to some

of the examples earlier in the book. Then we’ll go in-depth on the last

two models.

Single-Instance Module

You have already seen this model in action in the LightScheduler in Chap-

ter 8, Spying on the Production Code, on page 145. Aside from a stand-

alone function with no state, this is the simplest module form and will

probably be the most often used. Let’s review the LightScheduler inter-

face:

Download t0/include/HomeAutomation/LightScheduler.h

#include "TimeService.h"

enum { LS_OK=0, LS_TOO_MANY_EVENTS, LS_ID_OUT_OF_BOUNDS };

void LightScheduler_Create(void);

void LightScheduler_Destroy(void);

int LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay);

int LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay);

void LightScheduler_Randomize(int id, Day day, int minuteOfDay);

void LightScheduler_ScheduleRemove(int id, Day day, int minuteOfDay);

void LightScheduler_WakeUp(void);

For single-instance modules, the header file defines everything needed

to interact with the module, including the enum for specifying time con-

stants, as well as the function prototypes.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/include/HomeAutomation/LightScheduler.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=224

SOLID C DESIGN MODELS 225

The data structures that the scheduler needs to do its job are hidden

as file scope variables in the .c file. The scheduler’s data is not needed

in the header because no other modules should care. This makes it

impossible for other modules to depend on the structure and assures

its integrity is the scheduler’s responsibility.

Multiple-Instance Module

Sometimes an application needs several instances of a module that con-

tain different data and state. For example, an application might need

several first-in first-out data structures. The CircularBuffer, explored in

Section 9.3, Surgically Inserted Spy, on page 182, is an example of a

multiple-instance module. Each instance of CircularBuffer may have its

own unique capacity and current contents. Here is what the interface

to the CircularBuffer looks like:

Download include/util/CircularBuffer.h

#ifndef D_CircularBuffer_H

#define D_CircularBuffer_H

typedef struct CircularBufferStruct * CircularBuffer;

CircularBuffer CircularBuffer_Create(int capacity);

void CircularBuffer_Destroy(CircularBuffer);

int CircularBuffer_IsEmpty(CircularBuffer);

int CircularBuffer_IsFull(CircularBuffer);

int CircularBuffer_Put(CircularBuffer, int);

int CircularBuffer_Get(CircularBuffer);

int CircularBuffer_Capacity(CircularBuffer);

void CircularBuffer_Print(CircularBuffer);

#endif /* D_CircularBuffer_H */

This is a well-established design model based on Liskov’s abstract data

type, introduced in Section 3.1, Elements of a Testable C Module, on

page 51. As we saw earlier, the members of the CircularBufferStruct are not

revealed in the header file. The typedef statement declares that there is

a struct of a given name but hides the members of the struct to users

of the interface. This prevents users of the CircularBuffer from directly

depending upon the data in the struct. The struct is defined in the .c file,

hidden from view.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/util/CircularBuffer.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=225

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 226

11.3 Evolving Requirements and a Problem Design

Before we go in-depth into the two dynamic interface models, we’ll look

at a requirements change that led to a problematic design. We’ll then

see how the dynamic interface models can help create a better design.

So far in the home automation system design, we have not looked at

the light-controlling hardware. The LightScheduler and its tests drove the

design of the LightController interface introduced in Section 8.2, Depen-

dencies on Hardware and OS, on page 147. The interface is intention-

revealing and hardware-independent. Creating a test double for the

interface allowed us to make concrete progress on the LightScheduler.

Now the product manager and hardware designers have refined some

of the requirements. The system must be able to handle different light-

controlling technologies in one shipped binary. Also, the light opera-

tions will be expanded to support brightening, dimming, and strobe.

During system configuration, the administrator of the home automa-

tion system selects from one of the supported light-controlling hard-

ware products. Let’s look at a not so great, but common, way to handle

this situation, and then we’ll look at a SOLID design.

A common, though problematic, way to handle hardware variations in

C is to use conditional logic during runtime. A design that relies on

runtime conditional logic often results in code that is difficult to under-

stand and maintain. The application problem being solved is buried in

a mass of conditional logic, making virtually everything a special case.

Let’s look at the LightController interface and how a runtime choice of

light-controlling hardware was shoehorned into the code. Before we get

to the problematic part of this design, let’s look at the reasonable parts

to set the stage.

LightController Interface

Download t1/include/HomeAutomation/LightController.h

void LightController_Create(void);

void LightController_Destroy(void);

BOOL LightController_Add(int id, LightDriver);

void LightController_TurnOn(int id);

void LightController_TurnOff(int id);

Most of the interface is not surprising. Notice that LightController_Add()

takes a LightDriver ADT as a parameter and adds it to its internal storage.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/include/HomeAutomation/LightController.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=226

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 227

A Specific LightDriver

Download t1/include/devices/LightDriver.h

typedef struct LightDriverStruct * LightDriver;

typedef enum LightDriverType

{

TestLightDriver,

X10,

AcmeWireless,

MemoryMapped

} LightDriverType;

typedef struct LightDriverStruct

{

LightDriverType type;

int id;

} LightDriverStruct;

Each specific type of LightDriver needs to define a struct that begins with

an instance of LightDriverStruct, like this:

Download t1/src/devices/X10LightDriver.c

typedef struct X10LightDriverStruct * X10LightDriver;

typedef struct X10LightDriverStruct

{

LightDriverStruct base;

X10_HouseCode house;

int unit;

char message[MAX_X10_MESSAGE_LENGTH];

} X10LightDriverStruct;

This is a fairly common technique for managing a family of related data

structures. By putting LightDriverStruct at the beginning, each member

of the family will have the same memory layout for the common data.

Don’t accidentally use LightDriver in place of LightDriverStruct. The Light-

DriverStruct is contained by value, not by pointer.

After the LightDriverStruct comes the hardware-specific parameters; in

this example, we use the X10 implementation.2 The X10-specific data

includes the house code and the unit number. The house code is set to

a value from X10_A to X10_P inclusive. The unit number ranges from 0 to

15. The combination of the two values identifies a specific light. These

constants are part of the X10 driver interface.

Here is a representative specific interface, again for X10:

2. X10 is an industry standard for device communication used in home automation.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/include/devices/LightDriver.h
http://media.pragprog.com/titles/jgade/code/t1/src/devices/X10LightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=227

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 228

Download t1/include/devices/X10LightDriver.h

#include "LightDriver.h"

typedef enum X10_HouseCode

{

X10_A,X10_B,X10_C,X10_D,X10_E,X10_F,

X10_G,X10_H,X10_I,X10_J,X10_K,X10_L,

X10_M,X10_N,X10_O,X10_P

} X10_HouseCode;

LightDriver X10LightDriver_Create(int id, X10_HouseCode code, int unit);

void X10LightDriver_Destroy(LightDriver);

void X10LightDriver_TurnOn(LightDriver);

void X10LightDriver_TurnOff(LightDriver);

The specific LightDriver create functions return a LightDriver ADT. All their

driver functions accept the ADT too.

The create function looks like this:

Download t1/src/devices/X10LightDriver.c

LightDriver X10LightDriver_Create(int id, X10_HouseCode house, int unit)

{

X10LightDriver self = calloc(1, sizeof(X10LightDriverStruct));

self->base.type = X10;

self->base.id = id;

self->house = house;

self->unit = unit;

return (LightDriver)self;

}

X10LightDriver_Create() takes the common id parameter as well as param-

eters specific to X10. It allocates memory for the X10 data structure

and then populates it. As I mentioned earlier, it is critical to allocate

a LightDriverStruct dynamically. You can see that we have by the struct

dereferencing of base.

X10 driver functions look like this:

Download t1/src/devices/X10LightDriver.c

void X10LightDriver_TurnOn(LightDriver base)

{

X10LightDriver self = (X10LightDriver)base;

formatTurnOnMessage(self);

sendMessage(self);

}

void X10LightDriver_TurnOff(LightDriver base)

{

X10LightDriver self = (X10LightDriver)base;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/include/devices/X10LightDriver.h
http://media.pragprog.com/titles/jgade/code/t1/src/devices/X10LightDriver.c
http://media.pragprog.com/titles/jgade/code/t1/src/devices/X10LightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=228

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 229

formatTurnOffMessage(self);

sendMessage(self);

}

Drivers start by casting the generic LightDriver pointer into their specific

driver type. Then they do whatever detailed work is necessary, which

for X10 means formatting a message and sending it to the device.

The Problematic switch Statement

The data structures and X10LightDriver functions we’ve seen so far in

this design are fine. But this design breaks down in the next function.

Looking into the LightController, we find a switch statement that knows

the type of the currently configured hardware and chooses the imple-

mentation to match the type of the hardware.

Download t1/src/HomeAutomation/LightController.c

void LightController_TurnOn(int id)

{

LightDriver driver = lightDrivers[id];

if (NULL == driver)

return;

switch (driver->type)

{

case X10:

X10LightDriver_TurnOn(driver);

break;

case AcmeWireless:

AcmeWirelessLightDriver_TurnOn(driver);

break;

case MemoryMapped:

MemMappedLightDriver_TurnOn(driver);

break;

case TestLightDriver:

LightDriverSpy_TurnOn(driver);

break;

default:

/* now what? */

break;

}

}

The problem is that the switch statement is going to be repeated, as you

can probably anticipate. We will come back to discuss that further after

we look at a little more of the design.

The previous code used lightDrivers, an array internal to the LightController

that holds all the LightDriver instances. It is created like this:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/src/HomeAutomation/LightController.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=229

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 230

Download t1/src/HomeAutomation/LightController.c

static LightDriver lightDrivers[MAX_LIGHTS] =

{ NULL };

void LightController_Create(void)

{

memset(lightDrivers, 0, sizeof lightDrivers);

}

LightController_Create() initializes the driver pointers to NULL. LightCon-

troller_Destroy() dispatches to the destroy function for each specific Light-

Driver type.

Download t1/src/HomeAutomation/LightController.c

static void destroy(LightDriver driver)

{

if (!driver)

return;

switch (driver->type)

{

case X10:

X10LightDriver_Destroy(driver);

break;

case AcmeWireless:

AcmeWirelessLightDriver_Destroy(driver);

break;

case MemoryMapped:

MemMappedLightDriver_Destroy(driver);

break;

case TestLightDriver:

LightDriverSpy_Destroy(driver);

break;

default:

/* now what? */

break;

}

}

void LightController_Destroy(void)

{

int i;

for (i = 0; i < MAX_LIGHTS; i++)

{

LightDriver driver = lightDrivers[i];

destroy(driver);

lightDrivers[i] = NULL;

}

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/src/HomeAutomation/LightController.c
http://media.pragprog.com/titles/jgade/code/t1/src/HomeAutomation/LightController.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=230

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 231

LightScheduler

LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightController

X10
LightDriver

Acme Wireless
LightDriver

Memory Mapped
LightDriver

<<implements>>

LightDriver Spy

Figure 11.2: Coupled light driver design

Now, back to the problem duplication. The switch statement’s condi-

tional logic is repeated in LightController_TurnOn(), LightController_TurnOff(),

and LightController_Destroy().3 There are other LightDriver requirements

coming. We’ll need to brighten, dim, and strobe controlled lights as

well. This pattern will be duplicated at least three more times.

There is another problem with this code. There is test code, LightDriver-

Spy_TurnOn(), mixed in with production code. It’s good the code can be

tested; it’s not good that the production code has knowledge of the test

code.

The duplicate switch statement is exactly the problem that the Open

Closed Principle is designed to address. In Figure 11.2, we can see that

the LightController knows each of the devices it must manage. Adding a

new kind of LightDriver means touching all the switch statements. Adding

a new operation results in the need for yet another switch. If the Light-

Controller were open for extension for new kinds of LightDrivers, a new

driver would plug into the design without the usual slicing and stitch-

ing needed for duplicate switch statement Shotgun Surgery.4 We can do

better with a SOLID design.

3. You can look for yourself in the code download.
4. Shotgun Surgery is one of Martin Fowler’s code smells.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=231

EVOLVING REQUIREMENTS AND A PROBLEM DESIGN 232

The Test Safety Net

Before we improve this design, let’s look at some of the tests that drove

the current design; they will be our safety net during the refactoring.

Here is the a test for LightController_TurnOn() along with its TEST_GROUP:

Download t1/tests/HomeAutomation/LightControllerTest.cpp

TEST_GROUP(LightController)

{

LightDriver spy;

void setup()

{

LightController_Create();

LightDriverSpy_AddSpiesToController();

}

void teardown()

{

LightController_Destroy();

}

};

TEST(LightController, TurnOn)

{

LightController_TurnOn(7);

LONGS_EQUAL(LIGHT_ON, LightDriverSpy_GetState(7));

}

The TurnOn test shows that the callers of LightController_TurnOn() don’t

have to concern themselves with LightDrivers; they are hidden from view.

The test indirectly confirms the LightController() is working by checking

the LightDriverSpy. The LightController is populated with spies, one for each

light ID, by LightDriverSpy_AddSpiesToController().

One more thing about the LightController—when a new LightDriver is added

on top of a previously added LightDriver, LightController_Add() destroys the

old driver before installing the new driver, as this test illustrates:

Download t1/tests/HomeAutomation/LightControllerTest.cpp

TEST(LightController, AddingDriverDestroysPrevious)

{

LightDriver spy = LightDriverSpy_Create(1);

LightController_Add(1, spy);

LightController_Destroy();

}

The test would fail with a leak if the old driver is just overwritten.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/tests/HomeAutomation/LightControllerTest.cpp
http://media.pragprog.com/titles/jgade/code/t1/tests/HomeAutomation/LightControllerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=232

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 233

Here is the LightDriverSpy interface. You can pretty easily figure out its

operation from its interface. The tests in t1/mocks/LightDriverSpyTest.cpp

show the behavior explicitly.

Download t1/mocks/LightDriverSpy.h

#include "LightDriver.h"

#include "LightController.h"

LightDriver LightDriverSpy_Create(int id);

void LightDriverSpy_Destroy(LightDriver);

void LightDriverSpy_TurnOn(LightDriver);

void LightDriverSpy_TurnOff(LightDriver);

/* Functions just needed by the spy */

void LightDriverSpy_Reset(void);

int LightDriverSpy_GetState(int id);

int LightDriverSpy_GetLastId(void);

int LightDriverSpy_GetLastState(void);

void LightDriverSpy_AddSpiesToController(void);

enum {

LIGHT_ID_UNKNOWN = -1, LIGHT_STATE_UNKNOWN = -1,

LIGHT_OFF = 0, LIGHT_ON = 1

};

Like any LightDriver, LightDriverSpy can be created, destroyed, turned on,

and turned off. You can see that in the first part of the spy’s inter-

face. The second part of the interface is for debriefing the spy after its

mission.

In terms of the SOLID design principles, the previous design does not

follow OCP for adding new kinds of drivers. The LightController knows

each LightDriver type. You can anticipate Shotgun Surgery whenever a

new driver type is added. The fact that there are already several types

of drivers (in the online code base) is evidence that the design should

be improved.

11.4 Improving the Design with Dynamic Interface

Now that we’ve reviewed the existing design with its duplicate condi-

tional logic, let’s improve the design and eliminate the duplication with

a dynamic interface.

A dynamic interface uses one or more function pointers to allow the

implementation of a given function to be chosen at runtime. This single

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/mocks/LightDriverSpy.h
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=233

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 234

LightScheduler

LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightDriver

X10
LightDriver

Acme Wireless
LightDriver

Memory Mapped
LightDriver

<<implements>>

LightDriver Spy

<<implements>>

Figure 11.3: Extendable light driver design

level of indirection provides runtime flexibility.5 Function pointers are

a powerful language feature that allow the caller of a function to avoid

a compile or link-time dependency on a particular function.

Applying OCP and LSP

We can apply the Open Closed and the Liskov Substitution Princi-

ples to eliminate the redundant conditional logic. The design vision is

illustrated in Figure 11.3. In this design, the LightController is open for

extension for new LightDrivers while being closed for modification. Unlike

the previous design, the LightController has no knowledge of any specific

LightDrivers.

We’ll keep most of the existing design and refactor out the duplicate

switch statements to a design that uses function pointers. This will

eliminate the direct dependencies on specific driver functions such as

X10LightDriver_TurnOn() or LightDriverSpy_TurnOn().

We could change all the LightDriver prototypes into function pointers;

you have seen how to do that with the RandomMinute example found

in Section 9.1, Testing Randomness, on page 177. I prefer to keep the

function pointers behind the scenes as private data, so we will imple-

5. This is the basis of polymorphism in object-oriented programming.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=234

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 235

ment the function pointers under the hood of the LightDriver. It makes

for a cleaner interface and less global data to abuse.

I won’t show each refactoring step but enough to get the idea of the

incremental transformation of the design. If you are following along in

the code, make sure you build with every small change.

Envision the Change in the Test

Recall that the administrator can choose the supported light-controlling

technology during system configuration. Let’s test-drive the interface of

the LightDriver using the LightDriverSpy as an example.

Download t1/mocks/LightDriverSpyTest.cpp

TEST_GROUP(LightDriverSpy)

{

LightDriver lightDriverSpy;

void setup()

{

LightDriverSpy_Reset();

lightDriverSpy = LightDriverSpy_Create(1);

// LightDriverSpy_InstallInterface();

}

void teardown()

{

LightDriverSpy_Destroy(lightDriverSpy);

}

};

TEST(LightDriverSpy, On)

{

//LightDriver_TurnOn(lightDriverSpy);

LightDriverSpy_TurnOn(lightDriverSpy);

LONGS_EQUAL(LIGHT_ON, LightDriverSpy_GetState(1));

}

There are two commented-out lines. We need two new functions to try

the idea. LightDriverSpy_InstallInterface() tells the spy to install its function

pointers into the LightDriver. LightDriver_TurnOn() dispatches through the

installed function pointer. Once we make LightDriver_TurnOn() work, we

can apply the same idea to the other two functions.

Function Pointer Interface

The following code shows the struct that holds the function pointers for

each driver function:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/mocks/LightDriverSpyTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=235

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 236

Download t2/include/devices/LightDriverPrivate.h

typedef struct LightDriverInterfaceStruct

{

void (*TurnOn)(LightDriver);

void (*TurnOff)(LightDriver);

void (*Destroy)(LightDriver);

} LightDriverInterfaceStruct;

Notice the name of the file holding the data structures. By naming the

file LightDriverPrivate.h, we’re letting the world know that they should

ignore the details of the data structures. Unlike CircularBuffer, we could

not define the struct in the .c file; multiple files need to know the struct

layout.

The interface is set on the LightDriver like this:

Download t2/src/devices/LightDriver.c

static LightDriverInterface interface = NULL;

void LightDriver_SetInterface(LightDriverInterface i)

{

interface = i;

}

The generic LightDriver_TurnOn() function calls the specific driver through

this interface struct, passing a pointer to the LightDriver ADT.

Download t2/src/devices/LightDriver.c

void LightDriver_TurnOn(LightDriver self)

{

interface->TurnOn(self);

}

Drivers Don’t Change

The LightDriver functions themselves do not change, just how the Light-

Controller gets to them. Here is the existing LightDriverSpy_TurnOn() func-

tion:

Download t2/mocks/LightDriverSpy.c

void LightDriverSpy_TurnOn(LightDriver base)

{

LightDriverSpy self = (LightDriverSpy)base;

states[self->base.id] = LIGHT_ON;

lastId = self->base.id;

lastState = LIGHT_ON;

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/include/devices/LightDriverPrivate.h
http://media.pragprog.com/titles/jgade/code/t2/src/devices/LightDriver.c
http://media.pragprog.com/titles/jgade/code/t2/src/devices/LightDriver.c
http://media.pragprog.com/titles/jgade/code/t2/mocks/LightDriverSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=236

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 237

Here the spy initializes its TurnOn() function pointer to point to Light-

DriverSpy_TurnOn(), while leaving the other two pointers NULL.

Download t2/mocks/LightDriverSpy.c

static LightDriverInterfaceStruct interface =

{

LightDriverSpy_TurnOn,

0,

0

};

Once we have LightDriver_TurnOn() passing its tests, we can follow the

same approach to LightDriver_TurnOff() and LightDriver_Destroy().

When we’ve finished, the LightDriver interface looks like this:

Download t2/include/devices/LightDriver.h

typedef struct LightDriverStruct * LightDriver;

typedef struct LightDriverInterfaceStruct * LightDriverInterface;

void LightDriver_SetInterface(LightDriverInterface);

void LightDriver_Destroy(LightDriver);

void LightDriver_TurnOn(LightDriver);

void LightDriver_TurnOff(LightDriver);

const char * LightDriver_GetType(LightDriver);

int LightDriver_GetId(LightDriver);

#include "LightDriverPrivate.h"

Protect Against NULL Pointers

Before we change LightController to call the new LightDriver functions, let’s

protect the LightDriver functions from NULL pointers. We’ll have to test for

NULL interface and NULL driver instances. It might seem trivial to test

these cases, but if it is important enough to go in the production code,

it is important enough to test.

This interface structure that will help us test the NULL conditions.

Download t2/tests/devices/LightDriverTest.cpp

#define NONSENSE_POINTER (LightDriver)~0

static LightDriver savedDriver = NONSENSE_POINTER;

static void shouldNotBeCalled(LightDriver self) { savedDriver = self ;}

LightDriverInterfaceStruct interface =

{

shouldNotBeCalled,

shouldNotBeCalled,

shouldNotBeCalled

};

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/mocks/LightDriverSpy.c
http://media.pragprog.com/titles/jgade/code/t2/include/devices/LightDriver.h
http://media.pragprog.com/titles/jgade/code/t2/tests/devices/LightDriverTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=237

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 238

LightDriverStruct testDriver =

{

"testDriver",

13

};

In the next test, we don’t expect the stub function shouldNotBeCalled()

to be called. If it is, the savedDriver will be changed from the NON-

SENSE_POINTER value of all ones to NULL. Here is the test that checks

for the NULL pointer being passed to the driver functions:

Download t2/tests/devices/LightDriverTest.cpp

TEST(LightDriver, NullDriverDoesNotCrash)

{

LightDriver_SetInterface(&interface);

LightDriver_TurnOn(NULL);

LightDriver_TurnOff(NULL);

LightDriver_Destroy(NULL);

POINTERS_EQUAL(NONSENSE_POINTER, savedDriver);

}

So, you can see in the previous test that a valid interface is set, but

NULL LightDriver instances are passed to the driver functions.

This next test protects against an uninitialized interface, which is set

to NULL by default. The test resets the interface to NULL and makes sure

that no drivers are called.

Download t2/tests/devices/LightDriverTest.cpp

TEST(LightDriver, NullInterfaceDoesNotCrash)

{

LightDriver_SetInterface(NULL);

LightDriver_TurnOn(&testDriver);

LightDriver_TurnOff(&testDriver);

LightDriver_Destroy(&testDriver);

POINTERS_EQUAL(NONSENSE_POINTER, savedDriver);

}

Those tests drove the addition of the validity check on each of the Light-

Driver functions. Here is LightDriver_TurnOn(), for example:

Download t2/src/devices/LightDriver.c

void LightDriver_TurnOn(LightDriver self)

{

if (isValid(self))

interface->TurnOn(self);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/tests/devices/LightDriverTest.cpp
http://media.pragprog.com/titles/jgade/code/t2/tests/devices/LightDriverTest.cpp
http://media.pragprog.com/titles/jgade/code/t2/src/devices/LightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=238

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 239

isValid() was extracted into its own helper function to eliminate the

duplicate conditional clause in each of the driver functions.

Download t2/src/devices/LightDriver.c

static BOOL isValid(LightDriver self)

{

return interface && self;

}

With the NULL checks done by LightDriver, none of the specific drivers

need to do NULL checks.

Eliminating the Switch

We are almost ready to eliminate the switch statements from LightCon-

troller for destroy, turn on, and turn off. But first, add a call to LightDriver-

Spy_AddSpiesToController() and LightDriverSpy_InstallInterface() to the Light-

Controller and LightScheduler tests’ setup() functions. Here is the updated

TEST_GROUP(LightController):

Download t2/tests/HomeAutomation/LightControllerTest.cpp

TEST_GROUP(LightController)

{

void setup()

{

LightController_Create();

LightDriverSpy_AddSpiesToController();

LightDriverSpy_InstallInterface();

LightDriverSpy_Reset();

}

void teardown()

{

LightController_Destroy();

}

};

TEST(LightController, TurnOn)

{

LightController_TurnOn(7);

LONGS_EQUAL(LIGHT_ON, LightDriverSpy_GetState(7));

}

Test should still pass. Now, one at a time, remove the switch statement

and add a call to the appropriate LightDriver function. After refactoring,

the turn-on and turn-off functions look like the following:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/devices/LightDriver.c
http://media.pragprog.com/titles/jgade/code/t2/tests/HomeAutomation/LightControllerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=239

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 240

Download t2/src/HomeAutomation/LightController.c

void LightController_TurnOn(int id)

{

LightDriver_TurnOn(lightDrivers[id]);

}

void LightController_TurnOff(int id)

{

LightDriver_TurnOff(lightDrivers[id]);

}

After that change, you might feel the LightController is not really pulling

its weight, but its main job is to map from the light ID to the associated

driver. It’s pulling its weight with that single responsibility.

Hide the Details

With the driver function calls going through the function pointers, the

LightDriver implementations should be converted to file scope, making it

impossible to call them directly. The driver functions should be called

only through their associated function pointer.

Download t2/mocks/LightDriverSpy.c

static void destroy(LightDriver base)

{

free(base);

}

static void update(int id, int state)

{

states[id] = state;

lastId = id;

lastState = state;

}

static void turnOn(LightDriver base)

{

LightDriverSpy self = (LightDriverSpy)base;

update(self->base.id, LIGHT_ON);

}

static void turnOff(LightDriver base)

{

LightDriverSpy self = (LightDriverSpy)base;

update(self->base.id, LIGHT_OFF);

}

Here is the fully initialized struct, now pointing to the file scope imple-

mentations:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightController.c
http://media.pragprog.com/titles/jgade/code/t2/mocks/LightDriverSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=240

IMPROVING THE DESIGN WITH DYNAMIC INTERFACE 241

Download t2/mocks/LightDriverSpy.c

static LightDriverInterfaceStruct interface =

{

turnOn,

turnOff,

destroy

};

This style of data structure initialization is error prone; the initializer

order must match the struct member declaration order. Being ANSI com-

pliant, it’s the most portable way to initialize the structure. If you have

a C99-compatible compiler, you could use this approach:

Download t2/mocks/LightDriverSpy.c

static LightDriverInterfaceStruct interface =

{

.Destroy = LightDriverSpy_Destroy

.TurnOn = LightDriverSpy_TurnOn,

.TurnOff = LightDriverSpy_TurnOff,

};

The advantage of this approach is that it’s harder to mess up the

initialization. Also, any unmentioned fields are set to zero. Think of

this as applying the DRY principle.6 Only one place in the code cares

about the ordering of the structure members. If all you have is ANSI C,

don’t worry; you have the tests to help keep you safe. Also, if you had

functions that are not supported by all drivers, those drivers cannot

even mention the unsupported operations, and the default do-nothing

behavior can be implemented like this:

Download t2/src/devices/LightDriver.c

void LightDriver_SetBrightness(LightDriver self, int level)

{

if(isValid(self) && self->brightness)

self->brightness(self, level);

}

We’ve converted the design to be open for extension for new kinds of

drivers. Each of the specific drivers is also changed to meet the Light-

Controllers interface expectations.

We have a flexible enough design for today’s requirements. But what

happens when those requirements change, as they always do?

6. Don’t Repeat Yourself

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/mocks/LightDriverSpy.c
http://media.pragprog.com/titles/jgade/code/t2/mocks/LightDriverSpy.c
http://media.pragprog.com/titles/jgade/code/t2/src/devices/LightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=241

MORE FLEXIBILITY WITH PER-TYPE DYNAMIC INTERFACE 242

11.5 More Flexibility with Per-Type Dynamic Interface

Good news from marketing—we just sold 1,000 units. Supporting other

manufacturers has really opened the market!

The bad news is that someone in marketing did not get the memo

that we handle a homogeneous manufacturer’s equipment at only one

installation. They sold systems claiming our machine can work with

any combination of supported vendor hardware. It’s already printed on

the packaging materials and user’s guide.

Why is opportunity usually followed by a design change? No worries.

It’s great to have the opportunity, and our clean design can evolve the

design to handle the market need.

Let’s look at how we can evolve the design to meet the new need. To

customize the driver type per light, each driver struct needs an associ-

ated set of function pointers. Instead of just one interface pointer, as

in the dynamic interface model, each LightDriverStruct has a pointer to a

table of interface functions. This is the same mechanism used in C++

for implementing virtual functions. Calling a function declared as virtual

in C++ means the function is called through a virtual function table

(vtable). We’ll convert our design to use a vtable.

A Test with Two Different Drivers

First let’s design a test to drive the work. To show that the design can

simultaneously handle more than one set of function pointers, we will

need another test double module to use along with the LightDriverSpy.

Let’s add a simple test double that counts calls to TurnOn() and TurnOff().

With a CountingLightDriver, we can write this test:

Download t3/tests/HomeAutomation/LightControllerTest.cpp

TEST(LightController, turnOnDifferentDriverTypes)

{

LightDriver otherDriver = CountingLightDriver_Create(5);

LightController_Add(5, otherDriver);

LightController_TurnOn(7);

LightController_TurnOn(5);

LightController_TurnOff(5);

LONGS_EQUAL(LIGHT_ON, LightDriverSpy_GetState(7));

LONGS_EQUAL(2, CountingLightDriver_GetCallCount(otherDriver));

}

The test creates a CountingLightDriver, with an id of 5, and adds it to the

LightController, replacing one of the LightDriverSpy instances. When the

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t3/tests/HomeAutomation/LightControllerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=242

MORE FLEXIBILITY WITH PER-TYPE DYNAMIC INTERFACE 243

test case turns on light number 7, it is using a LightDriverSpy installed

during setup(). Turning on light 5, and then off, results in the Counting-

LightDriver reporting two calls. Let’s look at the new test double.

Call Counting Test Double

The CountingLightDriver follows the same conventions as any other driver.

Download t3/mocks/CountingLightDriver.c

typedef struct CountingLightDriverStruct * CountingLightDriver;

typedef struct CountingLightDriverStruct

{

LightDriverStruct base;

int counter;

} CountingLightDriverStruct;

This function increments a counter for each CountingLightDriver.

Download t3/mocks/CountingLightDriver.c

static void count(LightDriver base)

{

CountingLightDriver self = (CountingLightDriver)base;

self->counter++;

}

count() will be installed into the interface table for the CountingLight-

Driver. The initial create function looks like the others and is compatible

with the other already defined drivers.

Download t3/mocks/CountingLightDriver.c

LightDriver CountingLightDriver_Create(int id)

{

CountingLightDriver self = calloc(1, sizeof(CountingLightDriverStruct));

self->base.type = "CountingLightDriver";

self->base.id = id;

return (LightDriver)self;

}

Here is an accessor function for getting the count out of the Counting-

LightDriver.

Download t3/mocks/CountingLightDriver.c

int CountingLightDriver_GetCallCount(LightDriver base)

{

CountingLightDriver self = (CountingLightDriver)base;

return self->counter;

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=243

MORE FLEXIBILITY WITH PER-TYPE DYNAMIC INTERFACE 244

Test-Driving in the Vtable

Our new test continues to fail as the changes are made. Now we can

rewire the code to meet the new requirement. First let’s add a vtable

field into the LightDriverStruct. This will let each LightDriver instance point

to the LightDriverInterface for that type.

Download t3/include/devices/LightDriverPrivate.h

typedef struct LightDriverStruct

{

LightDriverInterface vtable;

const char * type;

int id;

} LightDriverStruct;

Let’s go back to the CountingLightDriver and install the interface into the

vtable. Here is the interface struct:

Download t3/mocks/CountingLightDriver.c

static LightDriverInterfaceStruct interface =

{

count, count, destroy

};

CountingLightDriver_Create() initializes the vtable member. Notice that all

instances of the same type point to the same function table.

Download t3/mocks/CountingLightDriver.c

LightDriver CountingLightDriver_Create(int id)

{

CountingLightDriver self = calloc(1, sizeof(CountingLightDriverStruct));

self->base.vtable = &interface;

self->base.type = "CountingLightDriver";

self->base.id = id;

return (LightDriver)self;

}

So far, we have not changed the LightDriver to dispatch through the

vtable. Before we change the LightDriver, let’s set the vtable field for Light-

DriverSpy.

Download t3/mocks/LightDriverSpy.c

LightDriver LightDriverSpy_Create(int id)

{

LightDriverSpy self = calloc(1, sizeof(LightDriverSpyStruct));

self->base.vtable = &interface;

self->base.type = "Spy";

self->base.id = id;

return (LightDriver)self;

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t3/include/devices/LightDriverPrivate.h
http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/mocks/CountingLightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/mocks/LightDriverSpy.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=244

MORE FLEXIBILITY WITH PER-TYPE DYNAMIC INTERFACE 245

After a clean compile, make the LightDriver functions dispatch through

the vtable member of LightDriver instead of the LightDriver’s single interface

pointer. It’s best to try them one at a time. That way, if there is a prob-

lem, we won’t have a lot of work to do to get back to working code. As

long as we leave the interface pointer alone, dispatches to LightDriverSpy

will continue to work. Here is LightDriver_TurnOn():

Download t3/src/devices/LightDriver.c

void LightDriver_TurnOn(LightDriver self)

{

if (self)

self->vtable->TurnOn(self);

}

Notice the validity check is simpler. It only has to check that the driver

is not NULL, because all drivers are responsible for initializing a vtable.

If you run the tests with just LightDriver_TurnOn() dispatching through the

vtable, there will be one failing test. CountingLightDriver_GetCallCount()

reports a single call when in the end there should be two.

Here are the unsurprising implementations of the other two dynami-

cally called driver functions. You can brave and change both, knowing

the first one worked. But if anything goes wrong, try them one at a time.

Download t3/src/devices/LightDriver.c

void LightDriver_TurnOff(LightDriver self)

{

if (self)

self->vtable->TurnOff(self);

}

void LightDriver_Destroy(LightDriver self)

{

if (self)

self->vtable->Destroy(self);

}

You might decide that you don’t want to trust all the drivers to initialize

their pointers. In that case, you would want to have this implementa-

tion and the associated tests. (Again, if it is important enough to go into

the production code, it is important enough to test.)

Download t3/src/devices/LightDriver.c

void LightDriver_TurnOn(LightDriver self)

{

if (self && self->vtable && self->vtable->TurnOn)

self->vtable->TurnOn(self);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t3/src/devices/LightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/src/devices/LightDriver.c
http://media.pragprog.com/titles/jgade/code/t3/src/devices/LightDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=245

HOW MUCH DESIGN IS ENOUGH? 246

At this point, the per-type dynamic interface design works! All that is

left is to apply the same changes to the other driver types and throw

out the interface setting and installing functions from LightDriver and the

specific light drivers.

11.6 How Much Design Is Enough?

At the start of a new development effort, there is considerable uncer-

tainty. There are unknowns in hardware, software, product goals, and

requirements. How can we get started with all this uncertainty? Isn’t it

better to wait? If you wait, there really is no end to the waiting, because

certainty will never come. So, it is better to get started sooner even

though some things will get changed later.

I am not suggesting that you shouldn’t think ahead—it’s impossible

not to. But you can choose what you will act on now vs. what you will

act on later. There is a thin line between thinking ahead and analysis

paralysis. When you start piling guesses on top of guesses, consider

that you’ve gone too far ahead, and it’s time to try the ideas in code.

When there is uncertainty in the hardware/software boundary, you can

start from the inside by solving the application problem, working your

way to where application code can articulate what it wants from the

hardware. Create an interface that provides exactly the services the

application needs from the hardware. The LightScheduler/LightController

relationship is an example of this. The LightController became part of our

hardware abstraction layer.

A nice side effect of the application driving the interface is that hard-

ware implementation details are less likely to pollute the application’s

core. The LightScheduler knows nothing about X10 or any of the other

drivers, and that’s a good thing.

We saw that the design had to evolve as requirements became more

clear during the LightController to LightDriver evolution. That’s no failure;

that’s good news that we’ve learned more. The problem with much of

the legacy code out there today is that as requirements evolved, designs

were not improved to more naturally accept the changes.

We can’t anticipate all the coming product changes; that is why we have

to get good at design evolution. Underlying many of these ideas are the

Extreme Programming Rules of Simple Design (from http://c2.com/xp/

XpSimplicityRules.html). Let’s look at them and see how they help us keep

the design good for today’s requirements.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://c2.com/xp/XpSimplicityRules.html
http://c2.com/xp/XpSimplicityRules.html
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=246

WHERE ARE WE? 247

XP Rules of Simple Design

1. Runs all the tests.

The code must do what is needed. Why bother if it does not?

2. Expresses every idea that we need to express.

The code should be self-documenting, communicating the inten-

tion of the programmer.

3. Says everything once and only once.

Duplication must be removed so that as things change, the same

idea does not have to be changed in numerous places.

4. Has no superfluous parts.

This final rule prevents us from putting in things that are not yet

needed.

The rules are evaluated in order. Rule 1 rules them all. If the code does

not meet its intended purpose, demonstrated by passing tests, the code

is not valuable to anyone. Rules 2 and 3 help with the maintainability

of the code, keeping it clean with a design fit for today’s requirements.

The first three rules speak for themselves but rule 4 is a little more

difficult to understand.

The fourth rule tells us to not over-engineer the design. It should be

perfect for the currently implemented features. Adding complexity early

delays features and integration opportunities. It wastes time when the

premature design is wrong. Living with unused or unneeded design

elements slows progress. Designs always evolve. We need to be good at

keeping the design right for the currently supported features.

That fourth rule may be the hardest to follow for people new to TDD.

Like I said before, it’s OK to think ahead; just try to act on the design

vision only once the tests to pull it in. Having the tests as a safety net

makes this a very practical and productive way to work.

11.7 Where Are We?

In this chapter, we looked at the SOLID design principles and four

design models for keeping C modules flexible and when to use them. We

looked at how designs earlier in the book were influenced by SOLID. We

also went beyond the earlier examples and looked at how to effectively

use function pointers to reduce coupling between C modules.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=247

WHERE ARE WE? 248

The function pointer is an important C capability that is often over-

looked by programmers. It plays a very important role in the application

of SOLID in C, making code more flexible and testable. It’s a helpful tool

for eliminating duplicate conditional logic.

With a dynamic interface, the system can choose a specific implemen-

tation of a function at runtime. For example, as the system initializes

itself the software can interrogate the hardware to determine the hard-

ware environment. Then driver functions can be installed based on the

kind of hardware discovered. Instead of spreading the decisions mak-

ing around the system, the decision is made once, and the system is

configured to support the situation.

As I’ve suggested, and the XP Rules of Simple Design reinforce, choose

an appropriate model for the job. Don’t add complexity before it is

needed. Choose the simplest option that passes all tests, expresses the

programmer’s intent, and has no duplication.

Put the Knowledge to Work

1. Look at the application of OCP and LSP in MyOS in Appendix E,

on page 340. Evolve MyOS to support Mutex and Event. A Mutex can

be acquired and released. One thread can wait for a signal from

another thread.

2. Add an accessor function to get the return result from a joined

thread by calling Thread_Result(). (You can find my work on that in

t1/tests/MyOS, t1/include/MyOS, and t1/src/MyOS.)

3. Make a list of all the changes needed to add LightDriver functions

for brighten, dim, and strobe to the LightDriver in the code/t1 code

base.

4. Add LightDriver functions for brighten, dim, and strobe to the Light-

Driver and LightDriverSpy in the code/t3 code base. Test-drive this, of

course. Compare the work needed in code/t1 to code/t3.

5. Some interfaces do not support brighten and dim. Such a device’s

driver should do nothing when those operations are called. Test-

drive your design change.

6. Other modules need their own instance of RandomMinute. Evolve

RandomMinute to allow its random number generator to be seeded

(see srand() in the C library). Convert RandomMinute, FakeRandom-

Minute, and tests to use the per-type dynamic interface.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=248

Humpty Dumpty sat on a wall, Humpty Dumpty had a

great fall. All the king’s horses and all the king’s men

couldn’t put Humpty together again.

Traditional English Nursery Rhyme

Chapter 12

Refactoring
A well-designed system won’t stay well-designed unless there is con-

stant care and energy put back into the code to avoid software entropy.1

As a multitude of little and big changes are applied to the code, it is

natural for disorder to grow if you don’t take the time to counteract the

disorganization.

Many of the ideas in this chapter come from Martin Fowler’s book Refac-

toring, Improving the Design of Existing Code [FBB+99]. It is an excellent

resource to get a greater understanding of refactoring.

Martin Fowler says, “Any fool can write code that the compiler under-

stands, but it takes real skill to write code other programmers can

understand.” With the potential long life of code we write, writing code

that other programmers can understand is critical to our product’s suc-

cess.

So, what is refactoring? Refactoring is the modifying of a computer pro-

gram’s structure, without modifying its behavior. Why would anyone

want to do that? Isn’t it all about behavior? Who really cares about a

program’s structure besides idealist software developers? Let’s look at

software’s inherent values to answer those questions.

12.1 Two Values of Software

Software systems have two inherent values—one obvious, one not so

obvious. The obvious value is in what the software does. When you

place a phone call with your cell phone, software does a lot of the work.

1. Entropy is the measure of a system’s disorganization.

Download from Wow! eBook <www.wowebook.com>

THREE CRITICAL SKILLS 250

It makes the call possible. Software keeps your car’s engine running

smoothly. Software keeps your bank accounts in order. The internal

structure of the code does not matter as long as the code behaves itself,

right? No, that’s wrong. Code structure is the key to the less obvious

value of software.

Software must be soft; it must be easy to change. Easy to change has

huge business value. Think back to that marketing request that seemed

so trivial, but it had to wait for next year’s release to make it into the

product. Was it caused by hard-to-understand, overly complex, and

inconsistent code? Some of you might be nodding right now.

What happened to that beautiful design? How did it rot? Well, it slowly

degraded because changes in functionality were not accompanied by

changes in design. Code rots one line at a time.

If marketing would only make their mind up, we could have beautiful

code. This is flawed thinking. The world is ever-changing; why should

your requirements not change? Fighting requirements changes is usu-

ally a losing battle. Compare today’s requirements to last year’s or to

five year ago. Would it have been possible to anticipate those require-

ments and build the code to handle them? Probably not, but even if

you could, that would have wasted precious time to market for earlier

products.

With refactoring, we accept change as a given and get good at dealing

with change. We enhance the critical, but not so visible, value of soft-

ware by keeping code clean. What is clean code? You can find many

answers to that question in Bob Martin’s book Clean Code [Mar08].

Simply put, in my own words, code should be easy for someone to

understand and modify.

12.2 Three Critical Skills

The relationship between the three critical skills needed to be success-

ful in keeping code clean is illustrated in Figure 12.1, on the following

page. First, the developer needs a good nose for code smells, but that

is not enough. The developer also needs to envision a better design, a

bright idea.

The final skill is to transform the design from one structure to another,

keeping it running and passing its tests the whole time.

Let’s talk a little more about each of these critical skills.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=250

THREE CRITICAL SKILLS 251

Test

Test

Test

Test

Test

Rename

Extract

Move

Replace

Rename

Figure 12.1: Three critical refactoring skills

A Nose for Bad Code

There is a tendency in our profession to apply the Not Invented Here

(NIH) factor when evaluating design and code. It goes something like

this: code invented by me, I like; code invented by someone else, I

don’t like. Although an easy-to-learn code evaluation technique, it is

not really that useful.

Instead of “that code stinks,” we must develop a keen sense of code

smells. Like a chef or a gardener, we should be able to identify differ-

ent smells. If we can identify a particular code smell, we have a better

chance of eliminating the bad smell. In Fowler’s book, he describes a

number of code smells. We’ll be exploring code smells in Section 12.3,

Code Smells and How to Improve Them, on the next page.

A Vision of Better Code

Once we sense what’s wrong with the code, next we draw on our knowl-

edge of code and design to envision a better solution. The SOLID design

principles provide some guidance for structure and coupling. This skill

takes the longest to master, requiring study and experience. Other

design envisioning comes more easily, like choosing better names and

seeing segments of code to extract.

Transform the Code

Given the current state of the code and a vision of the destination,

we perform a series of code changes, or refactorings, that move the

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=251

CODE SMELLS AND HOW TO IMPROVE THEM 252

Code with

design problem

Envisioned

design

Improved

design that works

Take i
t apar

t, put
it back

 toget
her.

The s
ystem

 is bro
ken du

ring re
design

 effort
.

Brok
en

Deb
ug

Rew
ork

Unp
redic

table

Unh
appy

Refactor to the better design.
Test are always passing.

The system is never broken.

Figure 12.2: Refactoring vs. Humpty Dumpty design change

code toward the improved design. For simple changes, maybe the series

requires only a single refactoring. More complex changes may require

many steps and incremental change over time.

Without the ability to transform one working design into another, you

incur great risk, the same risk the Humpty Dumpty faced while sitting

on that high wall, described in Figure 12.2.2

You are likely to discover that the envisioned design and the improved

design that works are different, once you get into the code and under-

stand the details better.

Notice that refactoring is used as either a noun or a verb. I could say, “I

am refactoring the LightScheduler” or “I think we should use the extract

function refactoring.”

12.3 Code Smells and How to Improve Them

In this section, we’ll look at many of the code smells found in C code.

We’ll also envision some design changes that can make the situation

better. As I mentioned, Fowler has a list of code smells, but his list is

2. Humpty Dumpty from The Book of Knowledge, p. 968, Vol. III,

The Grolier Society, New York, 1911. Public domain image found at

http://commons.wikimedia.org/wiki/File:HumptyDumpty.jpg.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://commons.wikimedia.org/wiki/File:HumptyDumpty.jpg
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=252

CODE SMELLS AND HOW TO IMPROVE THEM 253

more suitable for the smells found in code written in an object-oriented

programming language. Some apply to C, but then C also has its own

common smells.

Duplicate Code

Duplicate code is essentially the root cause of most code smells. The

problems of duplication are well known and were discussed earlier in

the sidebar on page 96.

Bad Names

Good names make code easier to understand; bad names make code

obscure. Sometimes you’d think there is a penalty for using vowels or

whole words in C code.

Tim Ottinger has some good advice for naming in his chapter in Clean

Code [Mar08]. The advice is written from an object-oriented perspective

but is still applicable to C. My brief advice on names is about making

code easier to come back to or read the first time:

• Make names readable. Avoid abbreviations and acronyms. Use

LightScheduler, not lht_sched.

• Reveal intended outcome in function names, not internal work-

ings: Find(), not BinarySearch()

BinarySearch() might be fine for a library function, where several search

algorithms are available. But in the context of solving some domain-

specific problem, a function like FindScheduledEvent() is much better

than BinarySearchForScheduledEvent().

Bad Pasta

We’ve all heard of spaghetti code, but it’s not the only pasta in the

programming pantry. Besides spaghetti, there’s ravioli, lasagna, and

meatballs with the spaghetti code.3

We all know spaghetti code—it’s that snarled mess of code that keeps

you from knowing what is going on. This code is typified by high Cyclo-

matic Complexity.4

3. http://en.wikipedia.org/wiki/Spaghetti_code

4. Cyclomatic Complexity is the number of paths through a function. A big number is

bad.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Spaghetti_code
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=253

CODE SMELLS AND HOW TO IMPROVE THEM 254

Ravioli code, on the other hand, consists of small self-contained packets

loosely coupled with a tomato-based sauce. When it comes to code,

ravioli is a good pasta. Some people say that if the ravioli packets get

too small, you can’t see what is going on because processing is spread

over too many packets. I suspect you don’t have that problem. Large

mounds of spaghetti is usually the problem.

Lasagna code5 is typified in a layered architecture, with cohesion in the

layer and loose coupling between layers. Again, it’s a more desirable

pasta-based code structure than spaghetti. Sometimes lasagna code

comes with spaghetti in the layers; that’s better than just spaghetti but

not as good as just lasagna.

Finally, there is spaghetti and meatball code. It’s a tangled mess, with

some modular code that depends on the tangled mess. This is ideally a

code base in transition to greater modularity, but it could go both ways.

The transition from spaghetti code can be a long one. It usually starts

by extracting small functions from big functions and grouping related

data together. After several rounds of extractions, function dependen-

cies on subsets of data become evident. The data groupings and the

functions that operate on them can be extracted to form new modules

or form layers. You’ll increase the ravioli and lasagna and rely less on

a strict spaghetti diet. Your code structure will be moving in the right

direction.

Long Function

The Long Function is the offspring of most C coding smells. “How long

should a function be?” Should it be one screen, twenty-five lines, fifty

lines, or a hundred lines?

That first answer, one screen, is reportedly in a lot of coding standards.

That coding standard is routinely violated, but it’s a hard one to mea-

sure when you have these high-res screens and tiny fonts.

A function is too long if it cannot quickly fit in your head. Sometimes

that is one line but rarely a screenful at any font size. A hundred-line

switch statement that simply dispatches to one of N workers is not a

problem. You can quickly understand why it is the way it is.

There is some evidence that allowing code to spread to more than one

screen is probably very bad for quick comprehension. The study by

5. The term was coined by database guru Joe Celko in 1982.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=254

CODE SMELLS AND HOW TO IMPROVE THEM 255

Figure 12.3: Tracking eye movement during code review

Hidetake Uwano et al. in Analyzing Individual Performance of Source

Code Review Using Reviewers’ Eye Movement [UNMiM07], used eye

movement to better understand a programmer’s cognitive action while

trying to understand a segment of source code. In Figure 12.3, we can

see where the eye, and consequently the mind, focuses attention during

the act of understanding code.

The researchers found that code reviewers first performed an initial

scan of the code and then focused in on some detail. You can see

the quick scan in the first sixty eye fixations followed by the deep dive

beyond the 60th fixation. If the code did not fit on a page, there would

be a lot scrolling and searching for variable declarations, references,

and manipulations.

I conclude from Dr. Uwano’s data that there is a penalty paid when

trying to understand a long function. Letting a function spread beyond

one screenful will definitely make it difficult to fit the code in your head.

On the other hand, a twenty-five line function with complex condition-

als and looping and global data references probably won’t fit too quickly

into your head either.

With the next code example, imagine that we inherited the LightScheduler

rather than building it ourselves as we did in Chapter 8, Spying on the

Production Code, on page 145. It has tests, but it has problems.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=255

CODE SMELLS AND HOW TO IMPROVE THEM 256

Download t2/src/HomeAutomation/LightScheduler.c

void LightScheduler_WakeUp(void)

{

int i;

Time time;

TimeService_GetTime(&time);

Day td = time.dayOfWeek;

int min = time.minuteOfDay;

for (i = 0; i < MAX_EVENTS; i++)

{

ScheduledLightEvent * se = &eventList[i];

if (se->id != UNUSED)

{

Day d = se->day;

if ((d == EVERYDAY) || (d == td) || (d == WEEKEND &&

(td == SATURDAY || td == SUNDAY)) ||

(d == WEEKDAY && (td >= MONDAY

&& td <= FRIDAY)))

{

/* it's the right day */

if (min == se->minuteOfDay + se->randomMinutes)

{

if (se->event == TURN_ON)

LightController_TurnOn(se->id);

else if (se->event == TURN_OFF)

LightController_TurnOff(se->id);

if (se->randomize == RANDOM_ON)

se->randomMinutes = RandomMinute_Get();

else

se->randomMinutes = 0;

}

}

}

}

}

It’s hard to see what is going on. There are short and cryptic names

and five levels of nesting. How many responsibilities does LightSched-

uler_Wakeup() have? Quite a few. A function with a single responsibility

will tell its story much better.

Download t2/src/HomeAutomation/LightScheduler.c

void LightScheduler_WakeUp(void)

{

int i;

Time time;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=256

CODE SMELLS AND HOW TO IMPROVE THEM 257

TimeService_GetTime(&time);

for (i = 0; i < MAX_EVENTS; i++)

{

processEventsDueNow(&time, &eventList[i]);

}

}

By extracting the contents of the for loop into a well-named function,

the responsibility of LightScheduler_Wakeup() is clear—it for processes

scheduled events that are due now.

Higher-level functions should look high level and read like a use case,

inasmuch as that is possible in C. High-level functions delegate to

lower-level functions to do the work. I don’t mean there are only two

levels; this pattern repeats as we get to the code that does the dirty

work. Code like this acts as an index on the underlying implementa-

tion, making it so the programmer can find the part of the code they

are interested in.

Intention-revealing names are much easier to relate to than the nitty-

gritty detail found in long C functions. As evidence, see how main()

(shown in Figure 12.3, on page 255) is visited only once and the low-

level C is studied with nearly a hundred eye fixations?

Enough ranting on about long functions; what should we do about it?

The obvious answer is the right answer—make them smaller. As a func-

tion grows, it should be broken into pieces.

When you add new functionality and the function starts to get too long,

split out a new function. If you are tempted to put in a comment for

a block of code, instead create a new function with a descriptive name

and move the code there.

This refactoring has a name. Fowler calls it Extract Method. It’s a rather

object-oriented name where functions that are part of an object are

called methods. In C let’s just call it Extract Function.

Long functions do too much, violating the Single Responsibility Princi-

ple. They obscure potentially useful ideas and hide duplication. To get

rid of long functions, we need a nose that can detect the root causes.

The next few smells often contribute to long functions.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=257

CODE SMELLS AND HOW TO IMPROVE THEM 258

Abstraction Distraction

Each function should have a consistent level of abstraction. C func-

tions tend to exhibit a code smell Fowler calls Primitive Obsession. The

high-level ideas are lost in the noise produced by primitive types and

operations.

The roller coaster of abstraction levels is distracting. Shifting levels of

abstraction should happen with purpose. Code exhibiting Abstraction

Distraction is often fixed like a long function is fixed, with some function

extractions.

Bewildering Boolean

You are staring at the code. The ANDs, ORs, and parentheses are mak-

ing your mind numb. You ask, “What is this conditional for?” You are

bewildered, and your brain has recognized the Bewildered Boolean code

smell. How much more time do you have to spend interpreting this

code:

if (!(day == EVERYDAY || day == today

||(day == WEEKEND && (SATURDAY == today

|| SUNDAY == today)) || (day == WEEKDAY

&& today >= MONDAY && today <= FRIDAY)))

return;

compared to code that is intention-revealing like this:

if (!matchesToday(day))

return;

With the refactored code segment, the dependent variable is obvious.

The intention of the conditional is obvious. If you are interested in the

day-matching logic, look into matchesToday(). If you are not, there is no

need to waste time interpreting the complex conditional.

Switch Case Disgrace

The switch/case goes on for pages; some cases have nested switch or if

statements. This code won’t quickly fit into anyone’s head.

Functions with switch/case statements should follow the Single Respon-

sibility Principle. The function should be about determining the case

and then doing something simple or delegating to something to do the

work.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=258

CODE SMELLS AND HOW TO IMPROVE THEM 259

Duplicate Switch Case

When the switch/case logic is duplicated but with different actions, it’s

time to think of replacing the need for duplicate switch/case logic by

applying the Open/Closed Principle and using a design that employs

one of the patterns in the previous chapter.

Nefarious Nesting

Deeply nested code is hard to understand, especially when there are

hanging else statements that have to be matched up or loops within

loops. Even having just a couple levels of nesting, with its beautiful

cascading curly braces look, is hard to understand.

If the code has a loop, with nested conditional logic, consider making it

a function that is only about the loop, with a helper function that does

the work each iteration through the loop. An interesting consequence

of this is that the helper function could be tested separately from the

loop. This is important to making code testable.

Feature Envy

Martin Fowler describes feature envy from a object-oriented design per-

spective. To paraphrase, one object is envious of another if it grabs the

other’s data, operates on it, and then puts it back into the other object

or produces some derived output.

In C, this is basically what happens when a data structure is passed

around or globally accessed. It may not be obvious which module owns

a given struct that is part of a data structure/function call free-for-all.

Feature envy often leads to a lot of duplication. When there is no place

to put code that manipulates a particular data structure, each function

that wants to use the struct is likely to have to do the same work as other

users of the struct. Just to illustrate how out of control this can get,

consider the Y2K reengineering that consumed so much effort at the

end of the 1990s. Too much code had to deal with years that contained

two digits.

We can improve modularity, improve coupling, and reduce duplica-

tion by using the OO concepts and data abstraction discussed in Sec-

tion 11.2, Multiple-Instance Module, on page 225.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=259

CODE SMELLS AND HOW TO IMPROVE THEM 260

Long Parameter List

How many parameters are too many? That depends on the context.

When a common parameter is duplicated in many function signatures,

it’s a pretty good indication that a new data structure is needed.

Like many code problems, Long Parameter List tends to happen over

time. Initially, just a couple parameters are needed. Then another is

added and later another. Functions start to get long, so someone tries

to do the right thing and extract a helper function. In doing so, the

long parameter list is copied. A few more cell divisions, and you have a

duplicate long parameter list mess.

To improve the situation, we need a new module. The duplicate param-

eter list becomes the core of a new module. One of the calls with the

long parameter list becomes the module’s initialization function. The

other functions replace their long parameter list with a pointer to the

newly defined struct.

Willy-Nilly Initialization

The Willy-Nilly Initialization smell tickles your nostrils when you start

adding tests to existing legacy code. You find that a lot of manual ini-

tialization of data is needed before a test can run without crashing the

tests.

A likely root cause to this problem is that there are no distinct initial-

ization functions for the data structures involved; the data structures

tend to get initialized willy-nilly.6 The code shows no real distinction

made between initialization and running.

Improving this smell involves collecting related initialization code into

one place and making initialization obvious. You might find that if you

start developing tests for legacy code that you will write these func-

tions out of necessity in the test cases. Once you have them there,

consider migrating the initialization code back into the production code

and eliminate some Willy-Nilly Initialization.

Global Free-for-All

A Global Free-for-All is made of numerous global variables and data

structures. There is no clear ownership of the data. Any function can

6. Willy-nilly: in a haphazard or spontaneous manner

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=260

CODE SMELLS AND HOW TO IMPROVE THEM 261

access any global data. Globals often suffer from Willy-Nilly Initializa-

tion. They also are a strong coupling force. Adding tests to code with

lots of globals is a challenge, because one test might leave state infor-

mation in the globals that break other tests or, just as bad, that other

tests start to depend upon.

File scope variables can have a negative impact on testability too. Data

held in static variables is retained between test runs. A test that might

work fine one minute is broken the next because a static (or global) is

not in the right state for the test. The single-instance module relies on

static variables but does not suffer from data retention when initializa-

tion functions are provided.

To combat the global free-for-all, consider encapsulating globals in pro-

tective function calls. One of the calls should be for properly initializing

the global data. If global data is a struct, consider converting its use to

an abstract data type.

Comments

Comments sometimes are necessary but are more often a weakness.

The goal of refactoring is to have well-structured code where the code

speaks for itself. Save comments for when there is no other way. Martin

Fowler suggests that “Comments are often used as a deodorant.”

Why am I disparaging comments? Comments tend to get stale. Over

time, comments tend to fall into disrepair and become lies. Program-

mers don’t trust comments. Fowler also says, “Comments are a code

smell when they are out-of-date.”

Well-structured code won’t need many comments. Also, some com-

ments are duplication. Why maintain the same idea twice? I’ve seen

plenty of comment headers like this where comments are mandated.

Have a look at the code in Figure 12.4, on the following page. Is this

mandated comment worth the effort to maintain it? No. It adds no value

and took time to create.

When should we use comments? Use them when the code cannot be

made clear through good names and structure. They should be used

when code cannot speak for itself, like working around a problem API

or for code that had to be optimized and is no longer as clear as it

could be. Use comments to describe why a particular implementation is

chosen over some other. Use comments at the module level to establish

context and describe responsibility.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=261

CODE SMELLS AND HOW TO IMPROVE THEM 262

/***

* Function:

* BOOL Time_IsLeapYear(int year)

*

* Parameters

* year - the year to test for leap year

*

* Returns

* TRUE - for leap years

* FALSE - for non-leap years

*

* Process

* years evenly divisible by 4 but not

* divisible by 100, except when divisible by

* 400 return TRUE, otherwise FALSE

**/

BOOL Time_IsLeapYear(int year)

{

if (year % 400 == 0)

return TRUE;

if (year % 100 == 0)

return FALSE;

if (year % 4 == 0)

return TRUE;

return FALSE;

}

Figure 12.4: A Mandated Comment Block

What should we do with our existing comments? Use your existing com-

ments as hints to how to restructure the code. Try to replace a comment

with an extracted and well-named function. Delete valueless comments.

Your code can speak for itself much better when a module has a single

responsibility, is well named, and has functions that reveal intention.

When you are tempted to add a comment, see whether you can get the

code to speak for itself by extracting a function and naming it well. If

after following this advice a comment is still needed, add it.

Commented-Out Code

Source files littered with commented-out code are an ugly mess. New or

returning programmers are faced with questions about what the code

is supposed to do. “Should the code be uncommented?” “Is it no longer

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=262

TRANSFORMING THE CODE 263

needed?” “When will it be needed and under what circumstances is it

needed?” “What’s that for?!”

The solution to this code smell is simple; delete the commented-out

code. It can always be recovered from your source repository.

Conditional Compilation

Code littered with conditional compilation is hard to follow. Sometimes

conditional compilation is unavoidable, but it should be considered the

tool of last choice when dealing with platform variations. Conditional

compilation used in a focused way might not be so bad, but often

the conditional compilation approach spreads platform dependencies

around the code.

When looking through a client’s code, I saw a lot of conditional com-

pilation. Large chunks of their code were bracketed by #ifdef BOARD_V1

or #ifdef BOARD_V2. I got curious and list all occurrences of BOARD_V2.

There were thousands of them. The code was out of control. The code

size basically doubled from version 1 to version 2. I guess the code

only going up by 50 percent on the next board could be viewed as an

improvement, but not to me. They told me they knew it was a bad idea,

but they were in a hurry. I doubt this brute-force method of incorpo-

rating BOARD_V2 cost them more than an approach that improved the

design and brought together the commonality of the boards and sepa-

rated the differences.

I prefer using the linker or function pointers to isolate platform depen-

dencies, like we did with TimeService and LightDriver, respectively. We

grouped platform-dependent code, bounding the work of changing plat-

forms. We kept platform-dependent and independent code separate.

The independent code is your long-term investment. There’s another

example of this in CppUTest. Look at PlatformSpecificFunctions.h and the

implementations in the Platforms directory.

12.4 Transforming the Code

About half of Martin Fowler’s book is a catalog of refactorings. Each

refactoring has a name, a problem that it solves, and a series of detailed

steps that guide you through a code transformation. Fowler uses Java

in his examples, but there is still plenty of useful advice for embedded

C programmers.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=263

TRANSFORMING THE CODE 264

To give you the feel of refactoring, we’ll refactor a long function. As we

refactor, I’ll introduce some helpful techniques and a guiding principle.

Like in the real world, most of your time will be spent extracting func-

tions from long functions. Aside from Rename, Extract Function is the

most often used refactoring. Extracting functions reveals the work the

long function is doing, raising its level of abstraction. In the process, I

suspect we’ll discover a function that is out of place; we’ll move it.

We saw this code earlier, when it was part of LightScheduler_WakeUp().

In addition to extracting this function, the cryptic names have been

replaced by better names.

Download t2/src/HomeAutomation/LightScheduler.c

static void processEventsDueNow(Time * time, ScheduledLightEvent * event)

{

Day today = time->dayOfWeek;

int minuteOfDay = time->minuteOfDay;

if (event->id != UNUSED)

{

Day day = event->day;

if ((day == EVERYDAY) || (day == today) || (day == WEEKEND &&

(today == SATURDAY || today == SUNDAY)) ||

(day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

{

/* it's the right day */

if (minuteOfDay == event->minuteOfDay + event->randomMinutes)

{

if (event->event == TURN_ON)

LightController_TurnOn(event->id);

else if (event->event == TURN_OFF)

LightController_TurnOff(event->id);

if (event->randomize == RANDOM_ON)

event->randomMinutes = RandomMinute_Get();

else

event->randomMinutes = 0;

}

}

}

}

What’s that smell? It’s a long function, of course, with root causes in

bewildering boolean and nefarious nesting. Now we need to identify

which ideas to pull out of this code and put in their own functions.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=264

TRANSFORMING THE CODE 265

Envision the Code You Wish You Had

When envisioning a better code structure, it’s helpful to add a comment

before the offending code that represents the code you wish you had,

like this:

Download t2/src/HomeAutomation/LightScheduler.c

static void processEventsDueNow(Time * time, ScheduledLightEvent * event)

{

Day today = time->dayOfWeek;

int minuteOfDay = time->minuteOfDay;

if (event->id != UNUSED)

{

Day day = event->day;

/* if (isEventDueNow()) */

if ((day == EVERYDAY) || (day == today) || (day == WEEKEND &&

(today == SATURDAY || today == SUNDAY)) ||

(day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

{

if (minuteOfDay == event->minuteOfDay + event->randomMinutes)

{

/* operateLight(); */

if (event->event == TURN_ON)

LightController_TurnOn(event->id);

else if (event->event == TURN_OFF)

LightController_TurnOff(event->id);

/* resetRandomize(); */

if (event->randomize == RANDOM_ON)

event->randomMinutes = RandomMinute_Get();

else

event->randomMinutes = 0;

}

}

}

}

I added several comments for the functions I wished I had. These are

not permanent comments; they are comments that help envision better

code. It’s more common to add the comments one at a time, especially

in a really long function. I’m showing several because it would have

been fine to start with any one of them.

Choose a name that reveals the intention of the function from the

caller’s perspective. Try to make in-function comments unnecessary;

code should read like a story—well, a story that a computer geek can

read.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=265

TRANSFORMING THE CODE 266

Evaluate Signatures

When you are about to extract a function, evaluate the needed param-

eters and return types. Let’s consider the parameters needed for each

of these extraction candidates, and I’ll justify my decisions. You might

arrive at a different conclusion.

• Should isEventDueNow() be passed the time or does it get it? Should

it know about events or just the day and minute of interest?

Let’s pass in the time because we want all events to be evaluated

against the same time.

Let’s also pass in the event. That keeps isEventDueNow() at a higher

level of abstraction.

isEventDueNow() takes the place of the Bewildering Boolean, so it

must return a BOOL.

• Should operateLight() know about event or just the light operation

and ID?

We’ll pass in the event; two struct members are needed, and the

function is useful only in this .c file.

operateLight() has no return value.

• It looks like resetRandomize() needs to know the event; not only is

it queried, it is modified.

Also, resetRandomize() has no return value.

Now that we have a good idea of the parameters, let’s extract the func-

tions using an important principle.

Don’t Burn Bridges Principle

Let’s start by extracting an easy one, operateLight(). Notice the comment

now includes the parameter event like we decided while evaluating the

signature needed:

Download t2/src/HomeAutomation/LightScheduler.c

/* operateLight(event); */

if (event->event == TURN_ON)

LightController_TurnOn(event->id);

else if (event->event == TURN_OFF)

LightController_TurnOff(event->id);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=266

TRANSFORMING THE CODE 267

Copy, don’t cut, from the start of the comment to the end of the code to

be included in operateLight(). Paste it into the file before processEvents-

DueNow(); add the return type, parameter, and curly braces. Get it to

compile. It will look like this:

Download t2/src/HomeAutomation/LightScheduler.c

static void operateLight(ScheduledLightEvent * event)

{

if (event->event == TURN_ON)

LightController_TurnOn(event->id);

else if (TURN_OFF == event->event)

LightController_TurnOff(event->id);

}

Only after the extracted function compiles do you delete the old code

and call the new. The edit to go from the old working code to the newly

extracted code should be easy to undo. I like to uncomment the call to

the extracted function and then select and delete old code. If tests pass,

processEventsDueNow() is a little better. If they fail, a couple undos will

restore the code that passes all your tests.

A natural instinct for programmers who are not used to working with

comprehensive automated unit tests is to cut the code being extracted

out of its original home. Then create a new function, paste in the cut

code, modify it so it compiles, and finally call the extracted function.

As soon as you have cut the code out of its original home, the code is

broken. The code might compile, but it won’t pass its tests. Your new

bridge is incomplete; your old bridge is burning.

Keep your working bridge intact during construction of the new bridge.

Watch the tests run one final time before cutting over to the new code.

When something goes wrong, resist the urge to debug. Restore the orig-

inal code, and look for what went wrong with the safety of passing tests.

Ignore this advice at your own peril. If you choose to try a fix or two, be

aware of the bridge back to working code.

Avoid Abstraction Distraction

After pulling out isEventDueNow(), operateLight(), and resetRandomize()

into static functions, the processEventsDueNow() looks like the following:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=267

TRANSFORMING THE CODE 268

Download t2/src/HomeAutomation/LightScheduler.c

static void processEventsDueNow(Time * time, ScheduledLightEvent * event)

{

if (event->id != UNUSED)

{

if (isEventDueNow(time, event))

{

operateLight(event);

resetRandomize(event);

}

}

}

You can’t really call this function long, in the sense of the number

of lines of code, but something is still wrong; there are two levels of

abstraction. Asking if (event->id != UNUSED) is notably different from the

other lines in this function. scheduleEvent() (which we last saw in Sec-

tion 8.6, Make It Work for None, Then One, on page 155) makes a simi-

lar comparison. Let’s DRY this code; extract the conditional into a new

function:

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isInUse(ScheduledLightEvent * event)

{

return event->id != UNUSED;

}

Once the extract function compiles, replace the conditional with the

new function, and run the tests.

Download t2/src/HomeAutomation/LightScheduler.c

static void processEventsDueNow(Time * time, ScheduledLightEvent * event)

{

if (isInUse(event))

{

if (isEventDueNow(time, event))

{

operateLight(event);

resetRandomize(event);

}

}

}

With isInUse(), the abstraction is consistent. Let’s flatten the function by

replacing nesting with a guard clause.

Download t2/src/HomeAutomation/LightScheduler.c

static void processEventsDueNow(Time * time, ScheduledLightEvent * event)

{

if (!isInUse(event))

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=268

TRANSFORMING THE CODE 269

return;

if (isEventDueNow(time, event))

{

operateLight(event);

resetRandomize(event);

}

}

Now, let’s get rid of the duplicate conditional.

Remove Duplication

We’ll come back to isEventDueNow() after we make scheduleEvent() use

isInUse(), eliminating the duplicate conditional.

Download t2/src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, long int minuteOfDay, int control,

int randomize)

{

int i;

for (i = 0; i < MAX_EVENTS; i++)

{

if (!isInUse(&eventList[i]))

{

eventList[i].id = id;

eventList[i].day = day;

eventList[i].minuteOfDay = minuteOfDay;

eventList[i].event = control;

eventList[i].randomize = randomize;

resetRandomize(&eventList[i]);

break;

}

}

}

scheduleEvent() is not reading so well. It is really two ideas: finding an

open slot in the event table and populating the slot.

Separate Ideas

Let’s separate the finding of a vacant slot from saving the schedule data.

Finding a vacant slot should be its own function. But, the code is not

ready to extract a find function unless we want it to return the index.

I’d prefer it to return a pointer to an available slot. So for starters, let’s

get rid of the clutter of all the array indexing.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=269

TRANSFORMING THE CODE 270

Download t2/src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, long int minuteOfDay, int control,

int randomize)

{

int i;

ScheduledLightEvent * event = 0;

for (i = 0; i < MAX_EVENTS; i++)

{

if (!isInUse(&eventList[i]))

{

event = &eventList[i];

event->id = id;

event->day = day;

event->minuteOfDay = minuteOfDay;

event->event = control;

event->randomize = randomize;

resetRandomize(event);

break;

}

}

}

We introduced a pointer and changed from array to pointer syntax. Run

the tests. (I made an editing mistake during that last “too simple to fail”

step. The tests caught it.) Now we can separate the find loop from the

event data initialization:

Download t2/src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, long int minuteOfDay, int control,

int randomize)

{

int i;

ScheduledLightEvent * event = 0;

for (i = 0; i < MAX_EVENTS; i++)

{

if (!isInUse(&eventList[i]))

{

event = &eventList[i];

break;

}

}

if (event)

{

event->id = id;

event->day = day;

event->minuteOfDay = minuteOfDay;

event->event = control;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=270

TRANSFORMING THE CODE 271

event->randomize = randomize;

resetRandomize(event);

}

}

With that change, we can copy the loop code into findUnusedEvent() and

make it compile:

Download t2/src/HomeAutomation/LightScheduler.c

static ScheduledLightEvent * findUnusedEvent(void)

{

int i;

ScheduledLightEvent * event = 0;

for (i = 0; i < MAX_EVENTS; i++)

{

if (!isInUse(&eventList[i]))

{

event = &eventList[i];

return event;

}

}

return NULL;

}

After the clean compile, we change scheduleEvent() to call findUnusedE-

vent().

Download t2/src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, long int minuteOfDay, int control,

int randomize)

{

ScheduledLightEvent * event = findUnusedEvent(void);

if (event)

{

event->id = id;

event->day = day;

event->minuteOfDay = minuteOfDay;

event->event = control;

event->randomize = randomize;

resetRandomize(event);

}

}

That’s better, but there are now two levels of abstraction represented

in scheduleEvent(). Extracting the event initialization would level the

abstraction.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=271

TRANSFORMING THE CODE 272

Download t2/src/HomeAutomation/LightScheduler.c

static void setEventSchedule(ScheduledLightEvent * event,

int id, Day day, long int minute, int control, int randomize)

{

event->id = id;

event->day = day;

event->minuteOfDay = minute;

event->event = control;

event->randomize = randomize;

resetRandomize(event);

}

Here’s scheduleEvent() with a consistent level of abstraction:

Download t2/src/HomeAutomation/LightScheduler.c

static void scheduleEvent(int id, Day day, long int minute, int control,

int randomize)

{

ScheduledLightEvent * event = findUnusedEvent();

if (event)

setEventSchedule(event, id, day, minute, control, randomize);

}

Tests are passing, so now clean up findUnusedEvent() like this:

Download t2/src/HomeAutomation/LightScheduler.c

static ScheduledLightEvent * findUnusedEvent(void)

{

int i;

ScheduledLightEvent * event = eventList;

for (i = 0; i < MAX_EVENTS; i++, event++)

{

if (!isInUse(event))

return event;

}

return NULL;

}

Notice in the previous refactoring that we introduced a temporary vari-

able to help the code read a little better.

We have scheduleEvent() and its helpers in order; let’s go back to isEvent-

DueNow().

Organizing a Bewildering Boolean

We swept the big messy conditional under the rug:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=272

TRANSFORMING THE CODE 273

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

Day today = time->dayOfWeek;

int minuteOfDay = time->minuteOfDay;

Day day = event->day;

if ((day == EVERYDAY) || (day == today) || (day == WEEKEND &&

(today == SATURDAY || today == SUNDAY)) ||

(day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

{

if (minuteOfDay == event->minuteOfDay + event->randomMinutes)

return TRUE;

}

return FALSE;

}

The essential questions being asked are “Is it the scheduled day, and is

it the scheduled minute?”

Let’s separate the nested conditional from the body of the compound

conditional. If it’s not the right minute, the day is irrelevant.

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

Day today = time->dayOfWeek;

int minuteOfDay = time->minuteOfDay;

Day day = event->day;

if (minuteOfDay != event->minuteOfDay + event->randomMinutes)

return FALSE;

if ((day == EVERYDAY) || (day == today)

|| (day == WEEKEND &&

(today == SATURDAY || today == SUNDAY))

|| (day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

return TRUE;

return FALSE;

}

Copy the complex conditional, and put it in its new home.

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL daysMatch(Day scheduledDay, Day today)

{

if ((day == EVERYDAY) || (day == today)

|| (day == WEEKEND &&

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=273

TRANSFORMING THE CODE 274

(today == SATURDAY || today == SUNDAY))

|| (day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

return TRUE;

return FALSE;

}

This compiles but is still messy. Before we cut over to the extracted

daysMatch(), let’s clean it up.

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL daysMatch(Day scheduledDay, Day today)

{

if (scheduledDay == EVERYDAY)

return TRUE;

if (scheduledDay == today)

return TRUE;

if (scheduledDay == WEEKEND && (today == SATURDAY || today == SUNDAY))

return TRUE;

if (scheduledDay == WEEKDAY && (today >= MONDAY && today <= FRIDAY))

return TRUE;

return FALSE;

}

It looks nicer and compiles, but many tests fail. Something is wrong

with the extracted code. Get back to passing tests by restoring isEvent-

DueNow() with a couple undos.

While we figure this out, we might have to change code in existing isEv-

entDueNow() and new daysMatch() functions. Undo on error might be

kind of cumbersome. Let’s try the quick swap technique.

Quick Swap

Quick swap lets you swap between two implementations quickly. It pre-

serves the old working code while you try to get the new broken code

to pass the tests. Quick swap uses conditional compilation to switch

between the pre- and postrefactored code, like this:

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

Day today = time->dayOfWeek;

int minuteOfDay = time->minuteOfDay;

Day day = event->day;

if (minuteOfDay != event->minuteOfDay + event->randomMinutes)

return FALSE;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=274

TRANSFORMING THE CODE 275

#if 1

if (daysMatch(today, day))

return TRUE;

#else

if ((day == EVERYDAY) || (day == today)

|| (day == WEEKEND &&

(today == SATURDAY || today == SUNDAY))

|| (day == WEEKDAY && (today >= MONDAY

&& today <= FRIDAY)))

return TRUE;

#endif

return FALSE;

}

After finding the silly mistake, tests pass. Here’s the working daysMatch:

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL daysMatch(Day today, Day scheduledDay)

{

if (scheduledDay == EVERYDAY)

return TRUE;

if (scheduledDay == today)

return TRUE;

if (scheduledDay == WEEKEND && (today == SATURDAY || today == SUNDAY))

return TRUE;

if (scheduledDay == WEEKDAY && (today >= MONDAY && today <= FRIDAY))

return TRUE;

return FALSE;

}

I accidentally reversed the parameters to daysMatch() during the extrac-

tion. The safety net caught the mistake. (It would have been better to

call daysMatch() from isEventDueNow() before cleaning it up.)

We could take the refactoring further and extract each conditional. If

these checks were duplicated (which they are not), it would be best

to extract them, eliminating the duplication. It’s a judgment call. We’ll

stop here.

Don’t forget the final step of the quick swap. Delete the conditional

compilation used in the quick swap. Don’t leave it in case you need it

again; you won’t. It will only confuse future programmers who look at

this code.

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

int minuteOfDay = time->minuteOfDay;

Day day = event->day;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=275

TRANSFORMING THE CODE 276

if (minuteOfDay != event->minuteOfDay + event->randomMinutes)

return FALSE;

if (!daysMatch(time, day))

return FALSE;

return TRUE;

}

Now that we’ve isolated daysMatch(), it seems a little out of place. That

function has an obvious case of Feature Envy. This sounds like a job

for Move Function.

Move Function

daysMatch() has more to do with TimeService than LightScheduler. All the

constants are part of TimeService, and one of the parameters comes from

the Time data structure. It is likely that daysMatch() functionality is or

will be duplicated in other TimeService clients that need to compare days

and metadays. TimeService is not doing its job. This is the essence of

Feature Envy.

Before we move daysMatch(), let’s let it know more about TimeService

by passing time to it, rather than today. This eliminates LightScheduler’s

knowledge of the dayOfWeek member of Time.

After testing the changed signature, make a copy of daysMatch(). Name

it so that it will fit in well in TimeService and get it to compile.

Download t2/src/HomeAutomation/LightScheduler.c

BOOL Time_MatchesDayOfWeek(Time * time, Day day)

{

int today = time->dayOfWeek;

if (day == EVERYDAY)

return TRUE;

if (day == today)

return TRUE;

if (day == WEEKEND && (today == SATURDAY || today == SUNDAY))

return TRUE;

if (day == WEEKDAY && today >= MONDAY && today <= FRIDAY)

return TRUE;

return FALSE;

}

I named the new function with the prefix Time because the function is

all about interrogating the Time structure. After a clean compile, modify

isEventDueNow() to use Time_MatchesDayOfWeek(). The test should pass.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=276

TRANSFORMING THE CODE 277

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

int minuteOfDay = time->minuteOfDay;

Day day = event->day;

if (minuteOfDay != event->minuteOfDay + event->randomMinutes)

return FALSE;

if (!Time_MatchesDayOfWeek(time, day))

return FALSE;

return TRUE;

}

Your compiler should be warning you now that daysMatch() is not used.

Delete it now.

To be consistent, the minute matching conditional should also be moved

to TimeService. This relieves LightScheduler of any knowledge of the inter-

nals of Time. We extract the helper in the same usual way.

Download t2/src/HomeAutomation/LightScheduler.c

BOOL Time_MatchesMinuteOfDay(Time * time, int minuteOfDay)

{

return time->minuteOfDay == minuteOfDay;

}

With tests passing, isEventDueNow() looks like this:

Download t2/src/HomeAutomation/LightScheduler.c

static BOOL isEventDueNow(Time * time, ScheduledLightEvent * event)

{

int todaysMinute = event->minuteOfDay + event->randomMinutes;

Day day = event->day;

if (!Time_MatchesMinuteOfDay(time, todaysMinute))

return FALSE;

if (!Time_MatchesDayOfWeek(time, day))

return FALSE;

return TRUE;

}

Tests are running, and we’re almost ready to move the new functions.

First add the function prototypes to TimeService.h and then build.

Obviously, when we move functions, we have to delete the original or

we’ll have a duplication function in our system. So, when we build after

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/t2/src/HomeAutomation/LightScheduler.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=277

TRANSFORMING THE CODE 278

the move and see a problem, we immediately suspect that we left the

original behind.

⇒ make

[...]

Linking t2_tests

ld: duplicate symbol _TimeService_Create in lib/libt2.a(TimeService.o)

and mocks/FakeTimeService.o

We have a duplicate symbol error but not because of the newly moved

functions. TimeService production code and the test double are colliding.

Before proceeding, we better revert to when the tests pass.

Splitting the Source File

The LightScheduler test fixture uses the linker to substitute a test dou-

ble for the OS-dependent TimeService functions. With the latest change,

the TimeService has both platform-dependent and independent func-

tions. The tests should use the platform-independent implementations

of Time_MatchesDayOfWeek() and Time_MatchesMinuteOfDay() but use the

test-double version of TimeService_GetTime(). In object-oriented program-

ming this would be called an abstract class or a partial abstraction. To

mimic the concept of a partial abstraction in C and a link-time test

double, we need to split the source into two files. We’ll need these three

files:

• TimeService.c: Holds the platform-specific code that can be overrid-

den by the linker

• FakeTimeService.c: Holds the test double implementation.

• Time.c: Holds the platform-independent code Time functions

Earlier in Chapter 9, Runtime-Bound Test Doubles, on page 177, we

used function pointers to override one (but not all) of the functions in

the RandomMinute. Function pointers let you be selective about which

functions to override and when. Splitting the source file is another

dependency management tool in your toolbox. We split the source file

so that the operating system–dependent code can be overridden at link

time, while keeping the time comparison functions.

Why didn’t we use function pointers? First, the OS-dependent code will

never need to be swapped in during host-based testing. Second, and

more significantly, it is likely that the target-dependent code would not

even compile on the development system. So, splitting target-dependent

from target-independent code would have been needed anyway.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=278

TRANSFORMING THE CODE 279

Add Tests for Moved Function

With Time_MatchesDayOfWeek() moved to Time.c, it should have its own

tests. The existing tests provide the safety net for the refactoring, but

for the long-term the new functions need their own tests. The tests

document the code’s responsibility and make sure any future failures

of the Time functions are caught directly by its own tests and not as a

side effect of some other test.

With time checking now in the Time module, we can do exhaustive tests:

Download t2/tests/util/TimeTest.cpp

TEST_GROUP(Time)

{

Time time;

void setup()

{

TimeService_Create();

}

void givenThatItIs(Day day)

{

FakeTimeService_SetDay(day);

}

void CheckThatTimeMatches(Day day)

{

TimeService_GetTime(&time);

CHECK(Time_MatchesDayOfWeek(&time, day));

}

void CheckThatTimeDoesNotMatch(Day day)

{

TimeService_GetTime(&time);

CHECK(!Time_MatchesDayOfWeek(&time, day));

}

};

TEST(Time, ExactMatch)

{

givenThatItIs(MONDAY);

CheckThatTimeMatches(MONDAY);

givenThatItIs(TUESDAY);

CheckThatTimeMatches(TUESDAY);

givenThatItIs(WEDNESDAY);

CheckThatTimeMatches(WEDNESDAY);

givenThatItIs(THURSDAY);

CheckThatTimeMatches(THURSDAY);

givenThatItIs(FRIDAY);

CheckThatTimeMatches(FRIDAY);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t2/tests/util/TimeTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=279

TRANSFORMING THE CODE 280

givenThatItIs(SATURDAY);

CheckThatTimeMatches(SATURDAY);

givenThatItIs(SUNDAY);

CheckThatTimeMatches(SUNDAY);

}

TEST(Time, WeekendDays)

{

givenThatItIs(SATURDAY);

CheckThatTimeMatches(WEEKEND);

givenThatItIs(SUNDAY);

CheckThatTimeMatches(WEEKEND);

}

TEST(Time, NotWeekendDays)

{

givenThatItIs(MONDAY);

CheckThatTimeDoesNotMatch(WEEKEND);

givenThatItIs(TUESDAY);

CheckThatTimeDoesNotMatch(WEEKEND);

givenThatItIs(WEDNESDAY);

CheckThatTimeDoesNotMatch(WEEKEND);

givenThatItIs(THURSDAY);

CheckThatTimeDoesNotMatch(WEEKEND);

givenThatItIs(FRIDAY);

}

In the code download, you can find the tests for WEEKDAY and EVERYDAY.

You can also see that this refactoring, along with adding Time tests,

means that many of the scheduled-day centric tests could (and should)

be eliminated. Ideally, any single production code problem should only

cause a single test failure that points right at the problem. By the way,

this ideal does not really happen much in practice but should not stop

us from having focused tests.

Incremental Cutover

In a code base that had a lazy module like TimeService, it is likely that

there are other places in the code that can use the new time-matching

functions. This would be a good time to seek them out and incremen-

tally change them. You also want to delete no longer needed test cases

as you transition the code to use the newly moved functions. This can

eliminate a lot of duplicate tests.

Encapsulate Data Structure

From the LightScheduler’s perspective, Time could be an abstract data

type, as we discussed in Section 11.2, Multiple-Instance Module, on

page 225. LightScheduler no longer accessed any members of Time. If
Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=280

BUT WHAT ABOUT PERFORMANCE AND SIZE? 281

no other clients directly access the members of Time, we can hide its

internals. The internals of Time become opaque.

Hiding data is important. The Y2K problem at the end of the last mil-

lennium illustrates the point. Too much code depended upon the date’s

representation. When a well-known data representation changes, there

will be some serious Shotgun Surgery to perform.

12.5 But What About Performance and Size?

Some of you may be concerned over the extra functions and function

calls that are the result of refactoring, maybe for speed, maybe for mem-

ory size. You may have such constrained environments that you have

to squeeze every last bit of space and performance out of it. My advice,

as well as that of many others, is to first structure code for clarity and

optimize only when measurements support the optimizations.

Make It Work, Then Right, Then Fast

In Extreme Programming Explained [Bec00], Kent Beck promotes this

motto:

• Make it work.

• Make it right.

• Make it fast.

What would you rather do, debug some optimized tricky code or opti-

mize some clean and well-factored code? It’s not a trick question. Mak-

ing clean code fast is much easier than making tricky code work.

The first statement, make it work, is all about getting the code to per-

form the correct behavior. Your tests help you get the code to have the

right behavior and to keep the right behavior while making it right and

fast. To get the tests to pass, do whatever it takes, including cut/paste/

hack. Breaking a good design is fair in this game, as long as you don’t

skip the make it right step.

Make it right means clean up the code. Make the code follow the Rules

of Simple Design discussed at the end of Chapter 11, SOLID, Flexible,

and Testable Designs, on page 219. Refactor the code: make the names

right, make the code’s intention clear, remove duplication, and keep

the design simple. Removing duplication is likely to be highly aligned

with keeping the code’s footprint small. The tests developed during TDD

allow you to make the code right, without breaking it.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=281

BUT WHAT ABOUT PERFORMANCE AND SIZE? 282

The final step is make it fast (enough). I like to add enough because any

effort to make it faster than is needed is effort that could be used to

add more functionality. Again, the tests support this effort by holding

the external behavior steady. How do you know what is fast enough?

You need to know where the code spends its time; you need metrics.

The sequence does not mean we should not avoid stupid or wasteful

things. But it suggests that some design attributes, such as functional-

ity and clean code, may be more valuable than sheer speed. Sure, some

places need the sheer speed but not every line of code.

Let’s hear what an expert has to say about optimizing code.

An Optimization Expert’s Opinion

Dr. Joseph M. Newcomer’s is an expert in optimization. In his article

“Optimization: Your Worst Enemy,” he says, “But always, and I repeat,

always, my experience has been that no programmer has ever been able

to predict or analyze where performance bottlenecks are without data.

No matter where you think the time is going, you will be surprised to

discover that it is going somewhere else.”7

Newcomer tells of yearlong efforts to redesign key system components

and resulted in slower code. He tells of a silly low-level optimizations

that sent developers on long bug hunts while migrating code to a dif-

ferent platform.

In an email discussion with Dr. Newcomer, he added, “Along the lines

of ’well-structured code is not efficient,” I often get ’all those function

calls add unnecessary overhead.’ The truth is that first-class optimizing

compilers will often automatically inline short code fragments, and in a

modern computer, function call is close to zero cost.”

Not all of you are in the modern processors Dr. Newcomer refers to,

but the bottom line is the same. Keep code clean and expressive and

optimize with data.

Beware of Micro-optimizations

Favor macro-optimizations over micro-optimizations. For example, it

may take more space and time to call a function through a function

pointer than directly, but eliminating multiple switch statements in favor

of one switch statement and dispatching through function pointers may

7. http://www.flounder.com/optimization.htm

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.flounder.com/optimization.htm
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=282

BUT WHAT ABOUT PERFORMANCE AND SIZE? 283

be an overall savings in both space and execution time. If you are sweat-

ing the little stuff, you probably have bigger problems.

Performance Tests

If there are time critical areas of code, try to isolate them so you can

measure them. You can write tests that will fail if a function exhausts

its time budget.

TEST(Performance, PostEventDeadline)

{

Voltage v;

unsigned long start = get_tic();

for (int i = 0; i < 1000; i ++)

QueueVoltageReading(v);

unsigned long end = get_tic();

CHECK(DEADLINE * 1000 >= end - start);

}

A test like the one shown previously is machine-dependent and won’t

be very useful when run on the development system. This is a target-

dependent test.

System-level performance tests, though outside the scope of this book,

should be part of your toolkit. If you follow the ideas for testability at

the unit level, you will find that you have plenty of hooks for doing

higher-level component, subsystem, and system tests.

Fourth of July Test

The radio system had a requirement to be able to handle the load on the

Fourth of July in a major U.S. city, a big day for radio calls. The

manufacturer of the system had done a study a few years earlier, so they

had an accurate traffic model for that busy day.

The system’s technical reviewers were concerned about the design and

threading model we were planning. They wanted to do more analysis on

the design. But because we had test hooks in all the right places, I

proposed we build a test, the Fourth of July test.

The main traffic concern was the push-to-talk events. We devised a test

script that fed push-to-talk events into the system, loading it to capacity

and beyond. Initially the test uncovered some concurrency problems, and

these problems resisted detection at the unit level. With the concurrency

problems cleared up, we could measure the system idle time during peak

load. The data showed that we were well within performance margins. We

continued with confidence in the chosen architecture with measurements

rather than opinion. As rocket scientist Wernher von Braun said, “One

test result is worth 1,000 expert opinions.”

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=283

WHERE ARE WE? 284

12.6 Where Are We?

Refactoring is a big topic. To learn more, definitely look into Martin

Fowler’s book and online resources such as the c2 wiki.8

Generally speaking, refactoring should be part of everyday develop-

ment. It’s not on your schedule, and you don’t ask for permission to

refactor. You do it to keep the code clean, you do it to help you under-

stand code you’ve never looked at before, you do it to pay for sins of the

past.

The refactoring mind-set insists that programming is not only about

instructing the computer what to do but that programming is also

about telling other programmers what you are telling the computer to

do.

In this chapter, we refactored without fear because we had tests acting

as a safety net. But many of you have significant amounts of legacy

code, or bad code without tests. Changing legacy code is risky. The

next chapter is about improving legacy code safely.

Put the Knowledge to Work

1. Now that TimeService is responsible for comparing days and meta-

days, there are many redundant LightScheduler tests. You are not

paid by the test. Remove the redundant tests from LightScheduler.

2. Refactor the LightScheduler found in code/t0/src/HomeAutomation in

the book code distribution. Compare your result with mine.

3. Convert Time into an abstract data type by getting the structure

declaration out of the public header file. You can use your refac-

tored code from the previous exercise or the work in progress in

code/t1/src/HomeAutomation.

8. http://www.c2.com/cgi/wiki?ExtremeProgrammingRoadmap

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=284

Let us change our traditional attitude to the construction of

programs. Instead of imagining that our main task is to

instruct a computer what to do, let us concentrate rather on

explaining to human beings what we want a computer to

do.

Donald Knuth

Chapter 13

Adding Tests to Legacy Code
Refactoring without tests is dangerous; with all the details we must

keep straight, a mistake is easy to make. How many code reviews

have you been in where the design changes are not made because “We

already tested it”? You already know it is dangerous to change code

without tests.

You’ll find that adding tests to existing C code is no easy task. The exist-

ing code is likely to suffer from functions and modules that know too

much about each other and have grown beyond sensible limits (remem-

ber that coding standard that said all functions must on a screen?).

Before TDD, you may have had no strong motivation to keep code

testable. So, it should be no surprise that legacy code resists being

tested the way we’ve tested code throughout this book.

Michael Feathers’ book Working Effectively with Legacy Code [Fea04] is

a great source for a deep dive into legacy code issues and refactoring

techniques. Feathers defines legacy code as “code without tests.” I can’t

justify the definition better than Michael:

“Code without tests is bad code. It doesn’t matter how well

written it is; it doesn’t matter how pretty or object-oriented or

well-encapsulated it is. With tests, we can change the behav-

ior of our code quickly and verifiably. Without them, we really

don’t know if our code is getting better or worse.”

Let’s start by looking at a policy to help guide improving a legacy code

base.

Download from Wow! eBook <www.wowebook.com>

LEGACY CODE CHANGE POLICY 286

13.1 Legacy Code Change Policy

Here is a policy for a team adopting TDD that has a legacy code base:

• Test-drive new code.

• Add tests to legacy code before modification.

• Test-drive changes to legacy code.

You’ve been learning TDD, so the first line of the policy should be no

surprise. New code should be test-driven. Whole new functions, mod-

ules, and subsystems can be developed with TDD.

In Working Effectively with Legacy Code, Michael describes sprouting.

When there is a need to change some legacy code, see whether you can

sprout a new function or module to do the new behavior. Test-drive it,

and call it from the legacy code. Michael says, “You might not be able to

get all those call points under test easily, but at the very least, you can

write tests for this new code.” This approach means we always work to

make the code a little better than we found it.

Sprouting can be very safe when operations done by the sprouted code

do not impact the flow of control of the calling code. When return

results are used in conditionals and data structures are modified, then

sprouting might not be enough; some behavior-preserving tests for the

legacy code might be needed too.

Where did this policy come from? Good policies come from good princi-

ples like the Boy Scout Principle.

13.2 Boy Scout Principle

The Boy Scouts follow this simple principle: leave the camp cleaner

than you found it. This does not mean that all the trash has to be

cleaned up now, but you can’t let it get worse, and it must get at least a

little better. In Clean Code [Mar08], Bob Martin asks, “What if code got

a little better every time you changed it?” I’ll answer this: the industry

would not find itself in the mess it’s in. The industry norm is for code

to incrementally worsen with each change. We need to reverse that.

Much of the time, following the Boy Scout rule won’t be hard. It sug-

gests an incremental strategy, which is a mind-set that we will continue

to make things better. It’s not to deny that we’ll face some large and

serious legacy code situations where the incremental changes may not

be enough. Every day we will find opportunities to be a Boy Scout.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=286

LEGACY CHANGE ALGORITHM 287

Adding to a Long Function

Extract something; there are plenty of opportunities to pull out some

idea and name it. You want to add three lines; take out five—the net

improvement leaves the function two lines shorter, but I bet you can

do better. Fix another complex conditional nearby to start a pattern of

improvement. Remember, add tests first to preserve behavior.

Adding to a Complex Conditional

Extract the conditional into a well-named helper function. Write a few

tests for it. That’s picking up the obvious beer cans. Look at the new

code carefully. Does the conditional really belong with some other mod-

ule? If so, the complex conditional is likely to be duplicated, and the

newly extracted function should be moved. Do the work or add it to

your technical debt list.

Copy/Paste/Tweak Temptation

Maybe you’re tempted by a copy/paste/tweak opportunity that meets

the functional requirements. Don’t do it, except maybe to test your

hypothesis. Before or after the change, do what the code is telling you:

extract the common code into a helper function. Generalize and param-

eterize it so it handles both cases. Write tests around the code to be

extracted to guard against breaking existing functionality. Make a list

of the other previous cut/paste/tweaks of the same code for conversion.

Cryptic Local Variable Name

Once you figure out what the variable is for, rename it to help you, and

your teammates, on the next code visit.

Deep Nesting

Pull out a nesting level or two into a helper function. Flatten nested

conditionals with guard clauses.

13.3 Legacy Change Algorithm

Michael defines the legacy code change algorithm as:

1. Identify change points.

2. Find test points.

3. Break dependencies.

4. Write tests.

5. Make changes and refactor.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=287

LEGACY CHANGE ALGORITHM 288

1. Identify Change Points

One bit of good news: Michael’s algorithm starts the way you always

start to change legacy code; you have to find the parts of the existing

code that you think you need to change.

2. Find Test Points

Once the change points are identified, consider how to test it. Where are

the natural points to sense what is happening in the code, and where

does the code get its inputs? Test points are most often evident in the

seams formed by function calls.

Test points don’t have to be seams, as we will see in Section 13.4,

Test Points, on the next page. Global variables, as much as we dislike

them, can provide test points. A data structure passed to a function

can provide a test point.

3. Break Dependencies (or Not)

To get legacy code into a test harness or to gain access to some test

points we have to break dependencies. We’ve seen how to do this on

new code during the TDD process using linker, function pointer, or

preprocessor test doubles. We’ll use these techniques in legacy code.

In monolithic functions, the function call boundaries are not there.

We’ll need to employ some safe function extractions before you can

employ the test double. When you are modifying legacy code, you must

be very careful and favor very safe code changes. Working with a col-

league will also help avoid the little mistakes that can happen.

Sometimes the risk of breaking dependencies is too high. In the next

section, we’ll look at a couple alternative approaches to breaking depen-

dencies: sensing variables, using existing debug output as a sense

point, and inserting inline monitors.

To break dependencies on global data, you can encapsulate access to

a problem global in an accessor function. Then during the test you can

override the accessor to give you better control over the global.

4. Write Tests

With test points in place, write some tests to characterize and help

preserve the behavior of the legacy code. This step can be very involved,

especially if the code under test has never been in a test harness before.

In Section 13.6, Crash to Pass, on page 296, we’ll look at a common

pattern used to get the code into the test harness.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=288

TEST POINTS 289

5. Make Changes and Refactor

Finally, when some behavior preserving tests are in place, it should be

safe to apply some of the refactoring transformations, getting the code

ready for the change we’d like to make. With the legacy behavior held

steady with tests, it is safe to test-drive the new behavior.

In the next section, we’ll look at some test point options for legacy code.

13.4 Test Points

We need test points to confirm our understanding of what the code is

doing. Sometimes they are easier to get to than others.

Seams

Function calls form seams between different parts of the code. These

seams make the best test points. Seams let us see and influence what

the code under test is doing.

Michael defines a seam as follows: “A seam is a place where you can

alter the behavior in your program without editing in that place.”

Seams are where we can employ test doubles to spy on data passed to

collaborators, allowing the test case to make sure the code under test

is giving its collaborator the right instructions. Function call seams are

also where the test double can provide indirect inputs to the code under

tests through a test double’s return results.

Your code probably has many function seams already. The exception to

this is the monolithic function. Creating seams in a monolithic function

can be dangerous; adding a sensing variable might be safer.

Global Variables

I am not going to make a case for global variables here, but maybe you

already have some. Global variables can serve as test points as well as

mechanisms to get specific test values into the code under test. Once

the code is under test, you can start to encapsulate globals.

Sensing Variables

Michael Feathers describes sensing variables in his book. A sensing

variable is helpful for getting access to hard-to-reach data or interme-

diate results in a long function.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=289

TEST POINTS 290

You have a big monolithic function you need to change. You think you

know where changes are needed, but the risks and unknowns are too

great to start with any structural changes. Adding one or more sensing

variables is a low-risk option.

A sensing variable can be used to inspect an intermediate value in a

series of computations, a value of a state variable, or maybe a count of

the number of times through a loop.

A sensing variable is a global variable that tests can inspect. Tests can

vary some inputs to the code under test and see the impact on the

sensing variable.

Are you objecting to the idea of adding a global for test? When you

are adding tests to legacy code, it’s not the right time to get all purist

about global variables. Given already compromised legacy code, we will

make compromises for the sake of gaining a test point. I’d like to think

that introducing a sensing variable is not a permanent change to the

code but rather an intermediate step used in the process of trying to

untangle long functions. If we were test-driving production code, we’d

look to exploit a function seam instead of a sensing variable.

Debug Output Sense Point

In Debug-Later Programming, code often gets sprinkled with calls to a

debug output function. Often the debug output can be switched on and

off either through conditional compilation or through runtime control.

You can use this existing debug output instrumentation as a debug out-

put sense point to get at hard-to-access information about the behavior

of the code.

In Section 9.3, Surgically Inserted Spy, on page 182, we saw how a test

can capture printed output. We could use a similar idea for intercepting

and monitoring debug output. Long-term, I’d like to rely less on debug

output, but again, we’re working in legacy code and may not be able to

solve all problems in one day.

For test, you could create a debug output spy that captures debug

output much like FormatOutputSpy(). I expect that this spy might need

some other capabilities such as asking for the number of entries, find-

ing specific entries by output line number or specific content, or finding

adjacent entries.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=290

TEST POINTS 291

Inline Monitor

The Debug Output Sense Point is a special case of an inline monitor

test point. With an inline monitor, we can insert a special function call

into the code to report on any information to test cases. This is like

a sensing variable, with a couple differences. An inline monitor allows

multiple readings of a particular sense point while the test is running.

It also allows checks to be made while the test is running, much as the

mock object did in Chapter 10, The Mock Object, on page 193.

Back in Section 1.1, Why Do We Need TDD?, on page 25, we looked

at the case of the Zune bug. We could have applied an inline monitor

to the code to break out of the infinite loop like this. We’ll declare and

insert a call to an inline monitor called monitorLoop():

Download src/zune/RtcTime.c

void monitorLoop(int days);

static void SetYearAndDayOfYear(RtcTime * time)

{

int days = time->daysSince1980;

int year = STARTING_YEAR;

while (days > 365)

{

if (IsLeapYear(year))

{

if (days > 366)

{

days -= 366;

year += 1;

}

}

else

{

days -= 365;

year += 1;

}

monitorLoop(days);

}

time->dayOfYear = days;

time->year = year;

}

monitorLoop() will look at each passed-in value of days and make sure

that no two monitorLoop() calls have the same days value. That would

indicate an the loop won’t end by itself. Insert a call to monitorLoop()

inside the suspected loop. Declare the monitorLoop() function to avoid

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/zune/RtcTime.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=291

TWO-STAGE STRUCT INITIALIZATION 292

warnings. If the call to monitorLoop() is going to be in the production

code for a while, I’d probably put it in a header file to keep the signa-

tures in sync with the test code.1

In the test case, define monitorLoop():

Download tests/zune/RtcTimeTest.cpp

extern "C"

{

#include "RtcTime.h"

static int lastMonitoredDays;

void monitorLoop(int days)

{

CHECK(lastMonitoredDays != days);

lastMonitoredDays = days;

}

}

The lastMonitoredDays variable has to be reset in setup() to avoid poten-

tial false positives if tests accidentally talk to each other through stale

values in lastMonitoredDays.

Download tests/zune/RtcTimeTest.cpp

void setup()

{

lastMonitoredDays = -1;

}

Running this test breaks out of the loop and avoids the test harness

hanging like a Zune.

Getting legacy code into a test harness can be quite a challenge in itself.

The next section should help you see what to expect while adding tests

to legacy code.

13.5 Two-Stage struct Initialization

Code that has dependencies on public data structures has its own

unique initialization problems. Data structures with manual initializa-

tion or, worse, willy-nilly initialization makes keeping duplication out of

tests difficult.

1. Because of copyright concerns, this code is not from the Zune but has the same

problem as the Zune 30G.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/zune/RtcTimeTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/zune/RtcTimeTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=292

TWO-STAGE STRUCT INITIALIZATION 293

Let’s say we’re integrating a digital video recorder into the home auto-

mation system. The DVR functions use a publicly known data structure

to hold the programming information. The structure is first initialized

with DvRecorder_Create(). But it is possible for programs to be stored in

the DVR’s nonvolatile memory. So, initializing the recorder takes two

steps. DvRecorder_RestorePrograms() does the second step of initializing

the DVR. The structure looks like this:

Download include/dvr/DvRecorder.h

typedef struct Program

{

const char * name;

int repeat;

int channel;

int startHour;

int startMinute;

int durationInMinutes;

int priority;

int preferences;

} Program;

enum {

ALL_EPISODES, NEW_EPISODES, REPEATED_EPISODES,

REPEAT, NO_REPEAT,

LOW_PRIORITY, MEDIUM_PRIORITY, HIGH_PRIORITY

};

typedef struct

{

int programCount;

Program programs[100];

/* etc... */

} DvRecorder;

Note how recorder is initialized using memcpy(). If you used the file

scope variable recorderData directly, the default data would get over-

written, changing the static data.

The first inclination is to do DvRecorder_RestorePrograms() in setup(), like

this:

Download tests/dvr/DvRecorderTest.cpp

static DvRecorder recorderData = {

4,

{

{"Rocky and Bullwinkle", REPEAT, 2, 8, 30, 30, HIGH_PRIORITY, ALL_EPISODES},

{"Bugs Bunny", REPEAT, 9, 8, 30, 30, HIGH_PRIORITY, ALL_EPISODES},

{"Dr. Who", REPEAT, 11, 23, 0, 90, HIGH_PRIORITY, REPEATED_EPISODES},

{"Law and Order", REPEAT, 5, 21, 0, 60, HIGH_PRIORITY, ALL_EPISODES},

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/dvr/DvRecorder.h
http://media.pragprog.com/titles/jgade/code/tests/dvr/DvRecorderTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=293

TWO-STAGE STRUCT INITIALIZATION 294

{ 0 }

}

};

TEST_GROUP(DvRecorder)

{

DvRecorder recorder;

void setup()

{

memcpy(&recorder, &recorderData, sizeof(recorder));

DvrRecorder_Create();

DvRecorder_RestorePrograms(&recorder);

}

void teardown()

{

DvRecorder_Destroy();

}

};

To test different program recording options, you need multiple setup

scenarios, many of which are small variations on the default setup.

This is a bit of a problem, because if we want to make a small variation

in the test data, it’s too late—programs have already been restored.

To make this work better, we can separate the two stages of the ini-

tialization by doing DvRecorder_Create() in setup() but deferring the call

to DvRecorder_RestorePrograms() to each test case. Here is the revised

setup():

Download tests/dvr/DvRecorderTest.cpp

TEST_GROUP(DvRecorder)

{

DvRecorder recorder;

void setup()

{

memcpy(&recorder, &recorderData, sizeof(recorder));

DvrRecorder_Create();

}

void teardown()

{

DvRecorder_Destroy();

}

};

TEST(DvRecorder, RestoreSomePrograms)

{

DvRecorder_RestorePrograms(&recorder);

//etc...

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/dvr/DvRecorderTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=294

TWO-STAGE STRUCT INITIALIZATION 295

Note that some of the tests use the default data. In other tests, some of

the statically initialized data is overwritten before the second stage of

initialization.

Download tests/dvr/DvRecorderTest.cpp

TEST(DvRecorder, RestoreNoPrograms)

{

recorder.programCount = 0;

recorder.programs[0].name = 0;

DvRecorder_RestorePrograms(&recorder);

//etc...

}

TEST(DvRecorder, RecordWithRepeat)

{

DvRecorder_RestorePrograms(&recorder);

//etc...

}

TEST(DvRecorder, RecordWithNoRepeat)

{

recorder.programs[0].repeat = NO_REPEAT;

recorder.programs[1].repeat = NO_REPEAT;

recorder.programs[2].repeat = NO_REPEAT;

DvRecorder_RestorePrograms(&recorder);

//etc...

}

TEST(DvRecorder, RecordConflictFirstHighPriorityWins)

{

DvRecorder_RestorePrograms(&recorder);

//etc...

}

TEST(DvRecorder, RecordConflictHighPriorityWins)

{

recorder.programs[0].priority = LOW_PRIORITY;

DvRecorder_RestorePrograms(&recorder);

//etc...

}

This is a fairly simple case here. In legacy code situations, there may

be many structures to initialize and wire together and no convenient

functions like DvRecorder_RestorePrograms() to help. In the process of

applying this idea, you might create some helper functions and discover

that they really belong in the production code.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/dvr/DvRecorderTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=295

CRASH TO PASS 296

13.6 Crash to Pass

Adding the first test to legacy code is usually the hardest. Knowing

what to expect and how to react can ease the process. The crash to

pass algorithm can help you get through Michael’s legacy code change

algorithm from Section 13.3, Legacy Change Algorithm, on page 287.

Here’s the situation. You want to test some existing legacy code. The

function to exercise in the test is part of an interwoven mass of C data

structures and functions. Just getting this data structure/function call

free-for-all compiled in the test harness is a challenge. Getting the code

to run in the test harness is enough to make you go for coffee and never

come back.

In complex C code, the data used by the legacy function may not be

obvious. Deciding what to initialize and how to initialize it may again

tempt you to give up.

Don’t give up; crash your way to discover what needs to be initialized

to pass your tests. The crash-to-pass approach starts with an empty

test case and a legacy code function you want to test. The algorithm,

expressed in C, looks like this:

void addNewLegacyCtest()

{

makeItCompile();

makeItLink();

while (runCrashes())

{

findRuntimeDependency();

fixRuntimeDependency();

}

addMoreLegacyCtests();

}

Let’s look at each step along the way.

makeItCompile

To call the function under test, you will have to provide data structures

and parameters to the function. During makeItCompile(), feel free to use

null pointers and simple literal data values. Use memset() to bulk fill

data structures with zeros. Later you will have to do more than feed

the code under tests meaningless inputs, but by plugging dependen-

cies with null pointers and simple data, you can get to a clean compile

sooner.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=296

CRASH TO PASS 297

Initially the test won’t even compile. Add #includes to try to get the test

file to compile. Add them slowly, one at a time. As you add includes, you

are rewarded with a long list of compilation errors. It’s best to attack

the first error, because it is the likely cause for 101 others. Don’t get

discouraged.

A shortcut for a really bad dependency mess is to copy the includes

from a production code file that calls the target function. You’ll get a

clean compile but probably a fat include list. Once the test is compiling,

try to prune the list of includes.

The less-committed TDDers might get discouraged during this process,

resulting in early termination of makeItCompile() via exit(FAILURE). Don’t

give up; exit(FAILURE) is a last resort. It’s also possible that you should

start with something that has less baggage.

Once makeItCompile() finishes, makeItLink() starts immediately.

makeItLink

With the includes in place, parameter and global dependencies plugged

with null pointers, and other meaningless data, you are ready for your

next reward: link errors. makeItLink() can be quite involved. The unre-

solved externals need to be resolved either by linking in parts of the

production code or by providing test doubles. makeItLink() might also

result in an exit(FAILURE) for those looking for an excuse to not write

their unit tests.

runCrashes

Once the executable test runner is built link-error free, the most likely

outcome is for the test runner to crash. The crashes are caused by the

uninitialized and improperly initialized data left dangling earlier. You

are right on track! Hang in there! The crashes are leading you right to

the runtime dependencies.

Stay in the loop as long as runCrashes() is TRUE. In the loop you find and

fix the runtime dependencies as you knit together the needed global

data and parameters to make the code under test happy. Getting run-

Crashes() to transition to FALSE is a major breakthrough; the function

runs in the test harness! Time to look at the find and fix processes.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=297

CRASH TO PASS 298

findRuntimeDependency

If you have a debugger, fire it up and visit the crash site. Inspecting for

clues will likely yield the root cause of the illegal access. If you don’t

have a debugger, it’s time to get one. You can also inspect the input

data to find obvious problem initializations. Single-stepping through

the code under test can also be revealing.

findRuntimeDependency() leans on the execution environment to help

find runtime dependencies.2 Operating system and hardware support

for illegal memory access helps you find runtime dependencies more

quickly. When the root cause of the crash is discovered, findRuntimeDe-

pendency() returns.

fixRuntimeDependency

With the root cause in focus, the missing initialization is often clear. The

cause might be uninitialized global data, a missing function pointer, or

some other unexpected value. Figure out what to initialize next and go

into a series of makeItCompile() and makeItLink() operations as needed.

Once one runtime dependency is resolved, the most likely outcome is

another crash. The good news is that eventually, when all the runtime

dependency holes are plugged, the crashes stop. Then new tests come

quickly.

addMoreLegacyCtests

You started at nine in the morning, and now it’s two in the afternoon.

The crashes have stopped, at least temporarily. High-fives are in order.

After the celebration, you can add more tests. Let’s dig a little deeper

into addMoreLegacyCtests(); there are two algorithms to consider. Here

is the most common implementation for people new to TDD:

void addMoreLegacyCtests()

{

while (!testsAreSufficientForCurrentNeeds())

{

copyPasteTweakTheLastTest();

}

}

2. Michael Feathers suggests leaning on the compiler to understand the compile-time

impact of a code change.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=298

CRASH TO PASS 299

You already know that copy and paste without refactoring results in a

mess for production code; it’s the same for test code. This implemen-

tation has problems because there is no refactoring as part of copy-

PasteTweakTheLastTest(). Here is a better implementation:

void addMoreLegacyCtests() //take two

{

while (!testsAreSufficientForCurrentNeeds())

{

copyPasteTweakTheLastTest();

while (!testDifferencesAreEvident())

{

if (setupStepsAreSimilar())

extractAndParameterizeCommonSetup();

if (checkStepsAreSimilar())

extractAndParameterizeCommonAssertions();

else

considerStartingANewTestGroup();

}

}

}

We still use copyPasteTweakTheLastTest(), and we add refactoring steps

that extract duplication to make test helpers. The refactoring of the

tests has an immediate payback. The helpers make creating new tests

easier. Revising tests becomes easier when a revision impacts all the

tests; the change can usually be made by modifying just the helper

functions. Let’s look at each of the steps.

testsAreSufficientForCurrentNeeds

In testsAreSufficientForCurrentNeeds(), you decide if the current tests are

adequate to hold the current behavior steady. While deciding, ask the

following:

• How should the inputs be varied?

• What should be checked to verify the operation of the code under

test?

• What other tests are needed?

• Are there boundary conditions and special cases that need to be

checked?

Letting testsAreSufficientForCurrentNeeds() return TRUE is a judgment call.

In a legacy code situation, you probably have a production code change

in mind. Return TRUE when you judge that the tests are adequate to

hold the current behavior steady. Otherwise, return FALSE.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=299

CRASH TO PASS 300

copyPasteTweakTheLastTest

copyPasteTweakTheLastTest() provides a new test case. But the first few

times copyPasteTweakTheLastTest() is executed, the resulting test cases

are filled with duplication. The valuable tweaks are hidden in the mass

of initialization code and a bank of assertions, obscuring the differences

between test cases. You are not being paid per line of test code, are you?

No! So, clean it up.

Why the big deal about keeping tests clean? Tests have to be kept clean

because in a few days (or hours) you or a colleague will look at the test

cases again. An easy-to-read and easy-to-modify test case is much more

valuable and not much more work. At the time you copyPasteTweakThe-

LastTest(), the differences are clear to you, but no one else. And they

won’t be clear to you for long if test cases carry a lot of duplication. So,

it is the best time to reduce the duplication and improve the readability

of the tests.

Sometimes copyPasteTweakTheLastTest() results in a crash, as you take

the code through new execution paths. That kicks you back out to the

top with addNewLegacyCtest().

testDifferencesAreEvident

The first time through, testDifferencesAreEvident() almost always results

in a FALSE return value. After a few laps around this loop controlled

by testDifferencesAreEvident(), the test cases get cleaner as helper func-

tions grow to support the tests. The only way testDifferencesAreEvident()

returns TRUE is when the duplication has been refactored into shared

test data and helper functions, allowing the tests to be concise and

expressive.

setupStepsAreSimilar

Looking over the original test case and its copy, setupStepsAreSimilar()

returns TRUE when there is duplication in the setup steps of the test.

extractAndParameterizeCommonSetup

In this activity, common setup is extracted into shared test case vari-

ables and helper functions. Tweaked data values often become the

parameters of the extracted initialization code. If some of the param-

eters do not change from test to test, they can go into setup(). setup()

should be refactored too. Run the tests after each change.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=300

CHARACTERIZATION TESTS 301

Sometimes you’ll extract initialization code that looks like useful pro-

duction code. Consider moving that code to the production code and

putting it to use, removing duplication, and adding structure.

checkStepsAreSimilar

Looking over the original test case and its copy, checkStepsAreSimilar()

returns TRUE when there is duplication in the verify steps of the test

cases.

extractAndParameterizeCommonAssertions

This is similar to extractAndParameterizeCommonSetup(). The common

assertions will probably depend on the shared test data added dur-

ing extractAndParameterizeCommonSetup(). Tweaked expected values will

become parameters for the extracted helpers.

considerStartingANewTestGroup();

You just copied the last test, but the changes to the test setup and

check phases are significantly different. It could be time for a new

TEST_GROUP(), especially if you envision more tests coming like the new

one.

exit(SUCCESS);

Your hard work is rewarded. After several spins through this cycle,

copyPasteTweakTheLastTest() won’t result in duplication. The differences

will be essential differences, and testDifferencesAreEvident() will repeat-

edly return TRUE.

When the inner loop breaks because tests are well-factored, subsequent

loops around copyPasteTweakTheLastTest() usually result in concise and

readable test case, requiring no refactoring. Tests get easier to add.

When you’ve coded enough tests, exit(SUCCESS) with success. If you find

you can’t get to exit(SUCCESS); choose something that is less difficult to

get into the test harness.

13.7 Characterization Tests

One of the problems with legacy code is that you can’t be sure of what

it is doing. You are going to change some existing function; it is critical

that the current desirable behavior is preserved. Capture the current

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=301

CHARACTERIZATION TESTS 302

desirable behavior in tests. Michael Feathers calls these characteriza-

tion tests.

Characterization tests really help to understand the code that is being

modified. If you understand the code well enough to write a test for

it, you probably understand it well enough to modify it. The opposite

holds true as well. If you can’t write a test for it, you probably should

not modify it. Characterization tests also serve as the team’s long-term

memory.

A mock object can be very helpful in characterization tests. Recall the

mock object, MockIO, used in Chapter 10, The Mock Object, on page 193.

If you had a legacy code driver that you wanted to characterize before

modification, you could use MockIO to help see how the driver interacts

with the hardware.

The first step when characterizing a driver is to break dependencies

with the hardware. You need to replace reads and writes with calls to

IO_Read() and IO_Write(). Create a test file and link it with MockIO, which

intercepts calls to IO_Read() and IO_Write(), as in the Flash example.

As an example, let’s pretend that the Flash driver we created earlier was

legacy code and we needed to characterize it. We need a TEST_GROUP()

and initial test that looks like this:

Download tests/IO/LegacyFlashTest.cpp

TEST_GROUP(LegacyFlash)

{

int result;

void setup()

{

MockIO_Create(10);

Flash_Create();

result = 0;

}

void teardown()

{

Flash_Destroy();

MockIO_Verify_Complete();

MockIO_Destroy();

}

};

Let’s try to characterize the happy path of the Flash_Write(). Have the

test case call the production and check its return result:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/LegacyFlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=302

CHARACTERIZATION TESTS 303

Download tests/IO/LegacyFlashTest.cpp

TEST(LegacyFlash, FlashProgramSuccess)

{

result = Flash_Write(0x1000, 0xBEEF);

LONGS_EQUAL(0, result);

}

Because there are no expectations set, the test will fail as soon as the

production code makes a call to IO_Read() or IO_Write(). Here’s the error:

IO/LegacyFlashTest.cpp:39: error: Failure in TEST(LegacyFlash, FlashProgramSuccess)

../mocks/MockIO.c:84: error:

R/W 1: No more expectations but was IO_Write(0x0, 0x40)

MockIO complains there are no more expectations but that IO_Write()

was called. We can see that the driver writes a 0x40 to location 0x0. After

looking into the production code and finding the symbols for 0x0 and

0x40, add an expectation:

Download tests/IO/LegacyFlashTest.cpp

TEST(LegacyFlash, FlashProgramSuccess)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

result = Flash_Write(0x1000, 0xBEEF);

LONGS_EQUAL(0, result);

}

Having the first expectation satisfied, now we get a new error:

IO/LegacyFlashTest.cpp:39: error: Failure in TEST(LegacyFlash, FlashProgramSuccess)

../mocks/MockIO.c:84: error:

R/W 2: No more expectations but was IO_Write(0x1000, 0xbeef)

Add the expectation for the second interaction with the mock:

Download tests/IO/LegacyFlashTest.cpp

TEST(LegacyFlash, FlashProgramSuccess)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(0x1000, 0xBEEF);

result = Flash_Write(0x1000, 0xBEEF);

LONGS_EQUAL(0, result);

}

The failure changes again:

IO/LegacyFlashTest.cpp:39: error: Failure in TEST(LegacyFlash, FlashProgramSuccess)

../mocks/MockIO.c:84: error:

R/W 3: No more expectations but was IO_Read(0x0)

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/IO/LegacyFlashTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/IO/LegacyFlashTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/IO/LegacyFlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=303

CHARACTERIZATION TESTS 304

Adding expectations for IO_Write() was straightforward, because there

was no return result. IO_Read() is a different story; it returns some-

thing. To determine the return result, we could consult Flash_Write() or

the device spec. (When writing test for legacy code, we might have only

the code as the specification.)

Download src/IO/Flash.c

int Flash_Write(ioAddress offset, ioData data)

{

ioData status = 0;

IO_Write(CommandRegister, ProgramCommand);

IO_Write(offset, data);

while ((status & ReadyBit) == 0)

status = IO_Read(StatusRegister);

if (status != ReadyBit)

{

IO_Write(CommandRegister, Reset);

if (status & VppErrorBit)

return FLASH_VPP_ERROR;

else if (status & ProgramErrorBit)

return FLASH_PROGRAM_ERROR;

else if (status & BlockProtectionErrorBit)

return FLASH_PROTECTED_BLOCK_ERROR;

else

return FLASH_UNKNOWN_PROGRAM_ERROR;

}

return FLASH_SUCCESS;

}

We can see that IO_Read() is part of a loop. If it returns a value with the

ReadyBit set, the loop will exit. We could add a few MockIO_Expect_Read()

operations so the code takes a spin and then breaks out of the loop.

Download tests/IO/LegacyFlashTest.cpp

TEST(LegacyFlash, FlashProgramSuccess)

{

MockIO_Expect_Write(CommandRegister, ProgramCommand);

MockIO_Expect_Write(0x1000, 0xBEEF);

MockIO_Expect_ReadThenReturn(StatusRegister, 0);

MockIO_Expect_ReadThenReturn(StatusRegister, 0);

MockIO_Expect_ReadThenReturn(StatusRegister, ReadyBit);

result = Flash_Write(0x1000, 0xBEEF);

LONGS_EQUAL(0, result);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/IO/Flash.c
http://media.pragprog.com/titles/jgade/code/tests/IO/LegacyFlashTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=304

LEARNING TESTS FOR THIRD-PARTY CODE 305

This would continue until you get through the happy path. After the

happy path is tested, make a list of the other scenarios to cover with

tests. When all the characterization tests are in place, you can safely

refactor the existing driver or start to add new functionality.

13.8 Learning Tests for Third-Party Code

What should a test-driven developer do about tests for third-party code?

We should expect that the third-party code is tested, so in general it’s

not our responsibility to write tests for third-party code.3 Even though

testing the vendor’s code is not our responsibility, it does not mean that

writing some tests won’t help us. Let’s talk about the role of tests in an

environment where we use off-the-shelf code.

You have an intended use for the third-party code. You could start by

integrating it immediately into your application. I recommend against

this course because it mixes learning the third-party code with applying

the learning in your code.

You must learn the code anyway, so why not learn it by writing tests

for the code to exercise it the way you plan to use it? Tests can be

controlled experiments that allow you to discover exactly how the code

behaves. Once you have learned the package, apply the learning to your

product.

A helpful side effect of this approach is that the tests can play an impor-

tant role in accepting new releases of the vendor’s code. If your tests

cover how you use the package, then a change in the interface of behav-

ior will show themselves and focus in on the incompatibility.

Here is an example of a learning test my son and I put together.

Learning strtok

My son, Paul, studied computer science at U of I in Chicago. He was

taking an operating systems class and had to do some projects in C.

(Some things change; some things stay the same.) At the time he had not

done much C, so he had some learning to do. I thought I better show him

CppUTest. He could use it for a playground to learn some of the subtleties

of C, as well as use TDD.

3. Some of you developing safety-critical systems may have more stringent standards

for off-the-shelf code vendors.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=305

LEARNING TESTS FOR THIRD-PARTY CODE 306

We met for a coffee to set up CppUTest and to start his assignment. His

assignment involved parsing a string (char *, that is). His professor

suggested they use strtok(). We googled strtok() to read about it.

Here is the signature of strtok():

char * strtok(char * str1, const char * str2);

To see whether we understood strtok(), we wrote this test:

TEST(Parser, ParseOneElement)

{

char * input = "abc";

char * token = strtok(input, "., ");

STRCMP_EQUAL(input, token);

}

The test passed. Feeling confident, we tried a little more interesting test:

TEST(Parser, ParseTwoElement)

{

char * input = "abc,def";

char * token1 = strtok(input, "., ");

char * token2 = strtok(0, "., ");

STRCMP_EQUAL("abc", token1);

STRCMP_EQUAL("def", token2);

}

Much to our surprise, this one crashed. After a little digging, we

discovered the error in our ways. strtok() actually changes the string. Now

I remember that, but then it was a surprise. The subtlety is right there in

its signature. The first parameter of strtok() is a char *, not a const char *. A

careful reading of two different strtok() references explains the behavior. It

makes sense that giving strtok() a pointer to a literal string causes a

segmentation fault when strtok() starts inserting its NUL characters into

read-only memory holding the literal string.

Making input a char array fixes the problem:

TEST(Parser, ParseTwoElement)

{

char input[] = "abc,def";

char* token1 = strtok(input, "., ");

char* token2 = strtok(0, "., ");

STRCMP_EQUAL("abc", token1);

STRCMP_EQUAL("def", token2);

}

Finding this subtle behavior in a controlled experiment went quickly...just

a few minutes. If our strtok() misuse was in a handful of other lines of

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=306

TEST-DRIVEN BUG FIXES 307

code, tracking down the mistake would have been more difficult. This

learning test was free, like most of them.

Fast-forward one week. Paul is working on his parser. He could not get

the unit test harness going for one reason or another during the week.

His main() would grab a line of text and parse it and then print the pieces.

He was manually testing the code, and it started crashing.

We dug through his code. With only a little code on top of strtok(), it took a

half hour to find the problem. The insight from the previous week’s test

made the problem evident. Without the tests from the prior week, the

debugging would have lasted quite a bit longer.

strtok() is a standard library function. We have an expectation of correct-

ness, although statistically some library functions will have bugs too.

In general, we don’t need to write tests for library functions to verify

the functions. We write the tests for us. We write them so we can learn.

What did they cost? Not much, but I think these learning tests have

already had a positive ROI. Learning tests are free! Or maybe better

than free!

13.9 Test-Driven Bug Fixes

Bug fixes need tests too. The existence of a bug often shows where prior

test efforts have failed. If we can write a unit test to reveal the bug, do

so. If investigation is needed to track down the bug, do the investigation

and capture some of your knowledge in the tests as you go. Once the

bug has been located, write a unit test that reveals the bug. Resist the

temptation to immediately fix the bug.

You want to make sure you don’t give life to new bugs when you kill the

bug you were hunting. Also, bugs have been known to nest together.

Both of these realities mean you should also write tests to lock in the

desired behavior before fixing a bug.

As you noticed in crash to pass, the first test in a new area usually

has high startup costs. Subsequent tests usually can be written pretty

quickly. This will be true when you start adding tests during the bug

hunt. Think of the cost of adding a test for the bug as the cost of

doing business—as the price to pay down the technical debt. Defects

are costly. Fix them right; it’s only a fractional cost.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=307

ADD STRATEGIC TESTS 308

13.10 Add Strategic Tests

Reactively, we add tests to anything that we are changing. Should we

proactively add tests? In the beginning, while your skill is building,

adding any test is good. You are learning. But that may not be enough.

A product team with a legacy code base should consider adding tests

proactively to find existing bugs and protect key functionality.

A proactive approach is also called for to help reduce the risk of break-

ing important features. Consider adding tests that cover the key uses

of the system, the things that are the primary reason for the system.

Cover the happy path of a usage scenario before the error paths. Look

to cover the most bang for the buck, adding tests that help preserve the

value of your product. Add tests that reduce safety risks or monetary

loss.

You have limited capacity for writing new tests for legacy code, so be

strategic.

13.11 Where Are We?

Legacy code, code without tests, is one of the biggest obstacles to adopt-

ing TDD. If you plan on continuing to deliver value with your code base,

it’s best to start today to keep the code from getting worse and, better

yet, to start the long road to legacy code improvement.

We’ve only scratched the surface on legacy code techniques. In a sense,

working with legacy code is a mind-set, based on the thought “I’m not

going to contribute to the problem; I’m going to make things better.”

We’ll start to pay down some of the principle on the technical debt and

reduce the interest payments on future visits to this code.

Some of you will have some very resistant code bases. Don’t give up

just because you cannot solve the toughest problems right now. Find

some important but easier problems to hone your skills. Remember

that changing legacy code without adding the needed tests is asking for

trouble.

I have a client with a big legacy code problem. I showed the client the

techniques you are learning in this book. The client said, “We want to

know the fast way to improve our code’s design; tell us the fast way,”

as if I were holding back a secret. I told them, “The careful way is the

fast way. Get good at being careful, and you will go faster.”

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=308

WHERE ARE WE? 309

Put the Knowledge to Work

1. Find a module in your code base that you need to have under test.

Work your way through crash to pass. If the code resists your

efforts, find something a little easier.

2. Write characterization tests for one of your device drivers using

MockIO.

3. Fix a bug from your bug list, but add tests first.

4. Make a list of ten critical scenarios your system must handle.

Envision how to get the core functionality under tests. Choose one

and implement it. Don’t pick your biggest challenge first.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=309

Can you clean that up?

Marilee Grenning

Chapter 14

Test Patterns and Antipatterns
People new to TDD and writing unit tests tend to repeat some of the

same mistakes. These common, but counterproductive, patterns are

known as antipatterns. This chapter will make you familiar with some

common antipatterns and the patterns that should replace them.

Most of the antipatterns have their roots in ignoring the Four-Phase

Test pattern (described in Section 2.5, The Four-Phase Test Pattern, on

page 49) and from allowing duplication in your tests. Remember this,

and your tests have a chance of being readable and clean.

Let’s look at a few common test antipatterns.

14.1 Ramble-on Test Antipattern

A Ramble-on Test just does not know when to end. The author either

has no knowledge or has no respect for the Four-Phase Test pattern.

Download t0/tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEnd)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

FakeTimeService_SetDay(FRIDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

FakeTimeService_SetDay(SATURDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(1, LightControllerSpy_GetLastState());

LightController_TurnOff(3);

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/LightSchedulerTest.cpp

RAMBLE-ON TEST ANTIPATTERN 311

FakeTimeService_SetDay(SUNDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(1, LightControllerSpy_GetLastState());

LightController_Create();

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

The Ramble-on Test can be repaired by applying the Four-Phase Test

pattern and extracting some helper functions. The test really wants to

be four separate tests, two checking each of the days that are part of the

weekend and the two days on either side. I am only glad that example

spares us the other three days of the week.

Here are the four tests extracted from the rambling test:

Download t0/tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndFridayExcluded)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

FakeTimeService_SetDay(FRIDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

TEST(LightScheduler, ScheduleWeekEndSaturdayIncluded)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

FakeTimeService_SetDay(SATURDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(1, LightControllerSpy_GetLastState());

}

TEST(LightScheduler, ScheduleWeekEndSundayIncluded)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

FakeTimeService_SetDay(SUNDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());

LONGS_EQUAL(1, LightControllerSpy_GetLastState());

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t0/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=311

COPY-PASTE-TWEAK-REPEAT ANTIPATTERN 312

TEST(LightScheduler, ScheduleWeekEndMondayExcluded)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

FakeTimeService_SetDay(MONDAY);

FakeTimeService_SetMinute(1200);

LightScheduler_WakeUp();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());

LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

14.2 Copy-Paste-Tweak-Repeat Antipattern

The satisfaction of getting a test to pass encourages you to get back

there again with another passing test. The fastest way to the next pass-

ing test is Cut-Paste-Tweak-Repeat. Cut-Paste-Tweak-Repeat is not a

sustainable practice. It generates a lot of tests quickly from a seed test

case, but if refactor is not part of the cycle, a mess follows.

The improved test cases from the Ramble-on Test pattern exhibit the

Cut-Paste-Tweak-Repeat symptoms. Numerous tests almost look the

same, requiring careful study to see the difference between test cases.

The refactored tests minimize the duplication.

Download t1/tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndFridayExcluded)

{

LightScheduler_ScheduleTurnOn(lightNumber, WEEKEND, scheduledMinute);

setTimeTo(FRIDAY, scheduledMinute);

LightScheduler_WakeUp();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

TEST(LightScheduler, ScheduleWeekEndSaturdayIncluded)

{

LightScheduler_ScheduleTurnOn(lightNumber, WEEKEND, scheduledMinute);

setTimeTo(SATURDAY, scheduledMinute);

LightScheduler_WakeUp();

checkLightState(lightNumber, LIGHT_ON);

}

TEST(LightScheduler, ScheduleWeekEndSundayIncluded)

{

LightScheduler_ScheduleTurnOn(lightNumber, WEEKEND, scheduledMinute);

setTimeTo(SUNDAY, scheduledMinute);

LightScheduler_WakeUp();

checkLightState(lightNumber, LIGHT_ON);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/t1/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=312

SORE THUMB TEST CASES ANTIPATTERN 313

TEST(LightScheduler, ScheduleWeekEndMondayExcluded)

{

LightScheduler_ScheduleTurnOn(lightNumber, WEEKEND, scheduledMinute);

setTimeTo(MONDAY, scheduledMinute);

LightScheduler_WakeUp();

checkLightState(LIGHT_ID_UNKNOWN, LIGHT_STATE_UNKNOWN);

}

In the refactored test, we used TEST_GROUP variables, lightNumber and

scheduledMinute, and extracted setTimeTo() and checkLightState(). Using

the TEST_GROUP variables helps illuminate that the day of the week is

the input being varied between the tests.

14.3 Sore Thumb Test Cases Antipattern

Sometimes the common setup(), teardown(), and helpers are working for

all the test cases, but then you take a turn to a new aspect of the code

under test. The new test cases can stick out like a sore thumb, as in

these tests for the CircularBuffer_Print():

Download tests/util/CircularBufferTest.cpp

TEST(CircularBuffer, PrintEmpty)

{

const char* expectedOutput = "Circular buffer content:\n<>\n";

FormatOutputSpy_Create(100);

UT_PTR_SET(FormatOutput, FormatOutputSpy);

CircularBuffer_Print(buffer);

STRCMP_EQUAL(expectedOutput, FormatOutputSpy_GetOutput());

FormatOutputSpy_Destroy();

}

TEST(CircularBuffer, PrintAfterOneIsPut)

{

const char* expectedOutput = "Circular buffer content:\n<17>\n";

FormatOutputSpy_Create(100);

UT_PTR_SET(FormatOutput, FormatOutputSpy);

CircularBuffer_Put(buffer, 17);

CircularBuffer_Print(buffer);

STRCMP_EQUAL(expectedOutput, FormatOutputSpy_GetOutput());

FormatOutputSpy_Destroy();

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=313

SORE THUMB TEST CASES ANTIPATTERN 314

None of the other fourteen tests (not shown) is at all concerned with

printing. The previous two tests and the others concerned with print-

ing will stick out like a sore thumb because of their different setup(),

teardown(), or helper needs. There is also duplication in the tests, and

they have steps that are usually in helpers or setup(). When that hap-

pens, we should create a new TEST_GROUP.

Download tests/util/CircularBufferPrintTest.cpp

TEST_GROUP(CircularBufferPrint)

{

CircularBuffer buffer;

const char * expectedOutput;

const char * actualOutput;

void setup()

{

UT_PTR_SET(FormatOutput, FormatOutputSpy);

FormatOutputSpy_Create(100);

actualOutput = FormatOutputSpy_GetOutput();

buffer = CircularBuffer_Create(10);

}

void teardown()

{

CircularBuffer_Destroy(buffer);

FormatOutputSpy_Destroy();

}

};

You can see that the common printing-related setup and cleanup is in

the TEST_GROUP, so tests like this can focus on what is their part.

Download tests/util/CircularBufferPrintTest.cpp

TEST(CircularBufferPrint, PrintNotYetWrappedAndIsFull)

{

expectedOutput = "Circular buffer content:\n"

"<31, 41, 59, 26, 53>\n";

CircularBuffer b = CircularBuffer_Create(5);

CircularBuffer_Put(b, 31);

CircularBuffer_Put(b, 41);

CircularBuffer_Put(b, 59);

CircularBuffer_Put(b, 26);

CircularBuffer_Put(b, 53);

CircularBuffer_Print(b);

STRCMP_EQUAL(expectedOutput, actualOutput);

CircularBuffer_Destroy(b);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/util/CircularBufferPrintTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=314

DUPLICATION BETWEEN TEST GROUPS ANTIPATTERN 315

14.4 Duplication Between Test Groups Antipattern

We just saw when it is appropriate to have more than one TEST_GROUP

for a module. Graphically, this is the refactoring performed.

Note

est Group 1

Test Group 2

Common Test
Helpers

Test Group 1

Test Group 2

Duplication

There is nothing that keeps you from having multiple TEST_GROUPs in

one file, but I prefer to have one TEST_GROUP per file as represented by

this diagram.

If you split files and there are common test helpers in the original

TEST_GROUP, you can have duplication. Copying and pasting TEST_GROUP

has the potential for the same duplication. Factoring out the helpers

into a separate file can reduce the duplication.

Note

Test Group 1

Test Group 2

Common Test
Helpers

NoteTest Group 1 NoteTest Group 2

Common Test Note
Helpers

With the helpers moved out of the TEST_GROUP, the test cases no longer

have easy access to the TEST_GROUP variables. Consequently, the helpers

may need to have more parameters or accessor functions to manage

them. The right thing to do is to factor out the helpers and not live with

the duplication that comes with cutting and pasting.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=315

TEST DISRESPECT ANTIPATTERN 316

14.5 Test Disrespect Antipattern

In teams new to TDD, not all team members will have bought into doing

the tests. Those resisting TDD and unit testing exhibit Test Disrespect.

This behavioral antipattern works like this: you develop functionality

using TDD and make it part of the continuous integration build. A

teammate makes a change, manually tests it, and checks in their work.

Little did they know that their work broke your prior work, but the CI

system does not rest. It lets all know about the broken build.

If the respect is low enough, your teammate (if you can call him that

after this next move) deletes the rightfully whining test cases. His stuff

works after all—he tested it. A less disrespectful teammate just put the

tests in IGNORE_TEST() mode and shoots you an email to fix your stuff.

Tests fall into disrepair and become irrelevant.

In these early stages of TDD adoption, evaluation, and experimentation,

you should get a team agreement to respect the tests. The people side

of change is often more difficult than the technical.

14.6 Behavior-Driven Development Test Pattern

In this chapter, we looked at some test antipatterns, but now we’ll move

away from antipatterns and look at another popular testing pattern

from Behavior-Driven Development (BDD).

Look back at a LightScheduler test before it was refactored:

Download tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleWeekEndItsSaturday)

{

LightScheduler_ScheduleTurnOn(3, WEEKEND, 1200);

setTimeTo(SATURDAY, 1200);

LightScheduler_Wakeup();

checkLightState(3, LIGHT_ON);

}

The Four-Phase Test pattern was evident. But there is duplication

between tests. Here is the result of the refactoring:

Download t1/tests/HomeAutomation/LightSchedulerTest.cpp

TEST(LightScheduler, ScheduleOffWeekendAndItsSaturdayAndItsTime)

{

LightScheduler_ScheduleTurnOff(lightNumber, WEEKEND, scheduledMinute);

setTimeTo(SATURDAY, scheduledMinute);

LightScheduler_WakeUp();

checkLightState(lightNumber, LIGHT_OFF);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/t1/tests/HomeAutomation/LightSchedulerTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=316

WHERE ARE WE? 317

You can see the refactored test is more declarative and the Four-Phase

Test pattern is not as evident. It reads a bit more like a specification

rather than a test procedure. This is the BDD style, where the emphasis

is on specification rather than testing. BDD-style tests follow this form:

• Given some precondition

• When something happens

• Then something that is dependent on Given and When should be

true

To get the test to look a little more BDD-like, we could write it like this:

• Given that a lightNumber is scheduled to turn off on Weekend days

at the scheduledMinute

• When it becomes Saturday at the scheduledMinute

• Then the light with lightNumber should be LIGHT_OFF

The catchy shorthand for this style of test is GivWenZen. GivWenZen is

another approach to structure tests that may improve test readability.

14.7 Where Are We?

We saw some common ways for tests to go bad. Of course, there are

numerous other ways for tests to go bad. You can find more in Gerard

Meszaros’ catalog of test smells in xUnit Testing Patterns [Mes07]. Keep-

ing tests clean and expressive may be more important than keeping

the production code clean. Developers with comprehensive well-written

tests use tests as the first place to look to understand existing code.

Tests can degrade overtime, because of the same incremental forces

applied to any code and because of your own skill growth. As your

test-writing skills grow, older tests might not be so easy to decipher.

Your sense of smell improves. Smells work their way into the tests just

as they work their way into the code, very slowly. Watch for the prob-

lems, and fix them right away. This keeps you working smoothly and

efficiently when tests need to be revisited, which is often.

Put the Knowledge to Work

1. Refactor the CircularBufferTest so that there are test groups for the

special cases of empty and full.

2. Refactor one of your CircularBufferTest groups to use a BDD test

style.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=317

What’s the best time to plant a tree?

Lee, the landscaper

Chapter 15

Closing Thoughts
If you have made it this far, I think you have learned a lot. I know I

have through this journey. Through the journey you’ve seen how TDD

guides design by encouraging loose coupling and high cohesion. You’ve

seen how TDD helps catch side effect defects, documents assumptions

in detail, and helps track progress.

It’s a challenge to learn TDD and make it part of everyday life. When

I started doing TDD in 1999, Kent Beck stressed that TDD is about

discipline. A couple years later, the story changed. It was about addic-

tion, though without the usual negative connotations. It’s an addiction

to getting feedback now for code written now. It’s an addiction to being

productive with less time spent chasing bugs. It’s an addiction to fun

and a feeling of accomplishment.

I hope through reflection on your own product development experi-

ences, working through this book, and my words of warning that you

see that messes in code and the lack of automated tests slow your

progress. Visualize the forces at work that lead to software degradation

by referring to Figure 15.1, on the next page.

With increased schedule pressure, we rush our work and let code qual-

ity suffer. We pledge to fix the problems later. But later never comes. We

say, “We’ll do it right the next time.” We don’t have time to run through

all the manual tests that are really needed, so defects go unnoticed.

Soon, the simplest features take surprisingly long to complete, we trip

over unknown bugs, and we get into a vicious cycle of test and fix.1

1. The diagrams in this chapter were inspired by Craig Larman and Bas Vodde’s book

Scaling Lean and Agile Development [LV09].

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15. CLOSING THOUGHTS 319

Eventual slow
down

O

Delayed

opposite

effect

Delayed

effect

O

Feature Velocity

increased Defects

Poor Code
Quality

Schedule
Pressure

O

O

Short term
improvement

Cause and

effect

Opposite

effect

Figure 15.1: The impact of rushing

Feature Velocity

Decreased
Defects

Code
Quality

Refactoring

O

Automated Tests

Short term slow
down

O

Long term
speed

O

Delayed

opposite

effect

Delayed

effect

O

Cause and

effect

Opposite

effect

Figure 15.2: Slow down to go fast.

You cannot claim you don’t know; you’ve read this far, and you know

that messes slow you down. Instead of a slow degrading pace, we can

work toward a sustainable pace, an improving pace. A development

organization cannot maintain a high-quality product and a sustainable

development pace with a manual test approach and slowly degrading

code base.

As Figure 15.2 illustrates, initially your organization will take a produc-

tivity hit as you learn the practices of TDD. As you learn, your efforts

with TDD improve code and design quality and relieve some of the man-

ual test burden. Like Bob Martin asked in Clean Code [Mar08], “What

if code got a little better every time you changed it?” Unfortunately, you

can’t turn the clock back ten years. But you do have a choice about

today and tomorrow.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=319

CHAPTER 15. CLOSING THOUGHTS 320

Back in the 1980s when my wife and I built our home, the grass was

coming in well. Lee, our landscaper stopped by; he wanted to sell us

some trees. My pockets were empty; I wasn’t ready to buy trees. Our

conversation went like this:

“What’s the best time to plant a tree?” asked Lee.

It was spring. Remembering my dusty bank account, I answered, “Fall.”

Lee set the trap: “No, the best time to plant a tree is ten years ago.”

I felt puzzled and trapped; I could’t do anything about ten years ago, I

thought. Lee continued, "What’s the second best time to plant a tree?”

After a few seconds waiting for me to solve the apparent riddle, he

smiled and said, “Today!”

There was nothing we could do about the past, but we could do some-

thing about the present. Within a week we’d bought some trees.

Don’t you wish someone would have started writing tests for your code

base and refactoring it ten years ago? You can’t do anything about that,

but you can pick the next best day to start adding tests; that’s today.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=320

Part IV

Appendixes

Download from Wow! eBook <www.wowebook.com>

Appendix A

Development System Test
Environment

Building for test and building for production are separate operations,

likely requiring different tools. This appendix describes some of the

tools available, as of the date of publication, for a development system–

based test environment.

A.1 Development System Tool Chain

The examples in this book use GNU Compiler Collection (GCC, http://

gcc.gnu.org) for native development system test builds. GCC is free and

provides an up-to-date implementation of C and C++. There are a few

options for GCC depending upon your development environment.

Development in Linux

Linux by default supports the gcc command to invoke the GNU C com-

piler. To use CppUTest, you need g++, GNU’s C++ compiler. g++ is not

installed by default in all Linux distributions. You can load the tools

easily enough using the apt-get command. Superuser capabilities are

needed, so you would enter this command:

⇒ sudo apt-get install g++

Some Linux distributions have only limited C support and may require

you to install build-essential using this command:

⇒ sudo apt-get install build-essential

Download from Wow! eBook <www.wowebook.com>

http://gcc.gnu.org
http://gcc.gnu.org

DEVELOPMENT SYSTEM TOOL CHAIN 323

You can also install g++ using graphical package management software

like Synaptic1 or Ubuntu Software Center.2

Development on Apple Macs

Mac OS X’s Xcode development environment includes the GNU tool

chain. If you have not already done it, install Xcode from the distribu-

tion CDs or download it from Apple.

Development in Windows

For Windows development environments, there are a few GNU tool

chain choices: Cygwin, MinGW+MSYS, and a virtual machine (VM) run-

ning Linux. The easiest to set up is Cygwin, a Unix command-line envi-

ronment. A virtual machine running Linux is another alternative, but

it’s more work to set up. Some TDD practitioners have reported that

they have a tenfold speed advantage with the Linux VM. So, start with

Cygwin or MinGW, but plan on moving to a VM running Linux when

test runs become too slow.

Cygwin and MinGW+MSYS offer similar capabilities but with different

licensing. Licensing is not an issue for using the tools as a test envi-

ronment. Aside from the gcc compilation environment, you get a Unix

command-line environment, giving you powerful scripting environment

for automating repetitive tasks.

Cygwin

Download the installation file.3 Install the Default packages plus the

Devel package. This will use about 500MB on your hard drive and take

some time depending upon your download speed. Cygwin is a bit slow,

but you can have a development system–based test environment up

and running in a morning.

MinGW+MSYS

MinGW+MSYS can be found at http://www.mingw.org/. However, it’s eas-

ier to install from the distribution at http://nuwen.net/mingw.html. I’ve

had some trouble setting up MinGW+MSYS, so I usually steer people to

Cygwin.

1. http://www.nongnu.org/synaptic/

2. https://wiki.ubuntu.com/SoftwareCenter

3. http://www.cygwin.com

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.mingw.org/
http://nuwen.net/mingw.html
http://www.nongnu.org/synaptic/
https://wiki.ubuntu.com/SoftwareCenter
http://www.cygwin.com
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=323

FULL TEST BUILD MAKEFILE 324

Virtual Machine with Linux

For the virtual machine approach on Windows, first you need to install

a virtual machine. VirtualBox4 is open source. Using it you can install

a Linux distribution such as Ubuntu.5 Plan on dedicating a gigabyte of

RAM to the virtual machine. You will need to install g++ once you have

installed Ubuntu.

Microsoft Visual Studio

Visual Studio is another option. Make sure your version of Visual Stu-

dio supports a command-line build. A command-line build is important

so that the build can be automatically run by a continuous integra-

tion server, such as Hudson.6 There are Visual C++ V6 workspace and

project files in the code base. CppUTest has additional Microsoft Visual

Studio support.

Eclipse IDE

I like Eclipse with CDT (C/C++ Development Tools).7 It runs on Mac,

Linux, and Windows. It’s handy for TDD because one key sequence

saves all files and triggers a build and test cycle.

Whatever development environment you use, make it easy to run the

build and test cycle. If you don’t have a single keystroke build, keep

a command-line window open so a test run is as simple as the key

sequence for the following: save all files, switch windows, run last com-

mand.

A.2 Full Test Build makefile

The makefile for the code examples found in this book provides a good

example of how to build for test. The examples use the GNU tool chain

for development system test builds. The principles behind the makefile

are as follows:

• The makefile must be fast, doing an incremental build based on

file dependencies.

• Tests are run with every build.

4. http://www.virtualbox.org

5. http://www.ubuntu.com

6. http://hudson-ci.org

7. http://www.eclipse.org/cdt/

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.virtualbox.org
http://www.ubuntu.com
http://hudson-ci.org
http://www.eclipse.org/cdt/
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=324

SMALLER TEST BUILDS 325

• Test files override production code.

• No cruft files should be in the directory tree.

The directories are structured to isolate test code from production code.

The makefile specifies a list of production code directories. All .c and

.cpp files in the production code directories are compiled and put into

a library. (That’s why the cruft has to be kept out of the source and test

directories.) First let’s see how the makefile specifies the production

code directories:

SRC_DIRS = \

src/IO \

src/util\

src/LedDriver \

src/HomeAutomation

The makefile specifies a list of directories containing tests, test doubles,

and test helpers; they are compiled but left as object (.o) files. They are

specified by directory like this:

TEST_SRC_DIRS = \

tests\

mocks\

tests/IO\

tests/util\

tests/LedDriver\

tests/HomeAutomation

A special file, usually called AllTests.cpp, is compiled to an object file as

well. AllTests.cpp defines the test main(), which calls the test runner to

run all the tests.

The test .o files are explicitly included as inputs to the linker along with

the test main. Production code is pulled in from the library only if there

are unresolved externals.

By explicitly including the test .o files, the link-time test doubles over-

ride any production code files in the library, because the test doubles

get the first chance to resolve undefined symbols. The linker only brings

production code .o files from the library if the .o file is needed to resolve

unresolved references.

A.3 Smaller Test Builds

An alternative approach to including all test .o files in the build is to do

a build with a subset of the test files.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=325

SMALLER TEST BUILDS 326

To do this with CppUTest, set up a test main file that selects the test

cases to include using IMPORT_TEST_GROUP():

#include "CppUTest/CommandLineTestRunner.h"

int main(int ac, char ** av)

{

return RUN_ALL_TESTS(ac, av);

}

IMPORT_TEST_GROUP(Flash);

IMPORT_TEST_GROUP(LedDriver);

IMPORT_TEST_GROUP(CircularBuffer);

For this approach, the test files need to be in a library so that only files

with associated TEST_GROUP are pulled into the test executable.

You may find that you mix and match the techniques. On a large

project, you may need libraries of shared test doubles. A common use

would be to stub out the operating system calls so that tests can be run

on the development platform.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=326

Appendix B

Unity Quick Reference
This appendix has reference information for Unity. Keep in mind that

Unity is open source and likely to evolve. This appendix is in sync with

the version of Unity included in the book’s source code distribution.

You can find out more about Unity and download the latest from the

website.1

B.1 Unity Test File

Test cases that belong to a group are put in the same file. The typ-

ical name for the file is GroupNameTest.c. The GroupName is usually

named after the module under test, such as CircularBuffer. When a mod-

ule needs more than one TEST_GROUP() to form a group of tests with

common setup, introduce another group like CircularBufferPrint for the

tests that are concerned with printing a CircularBuffer.

Here is a summary of the elements of a TEST_GROUP that go in a test file:

//test harness include

#include "unity_fixture.h"

//#includes for module under test

TEST_GROUP(GroupName)

//Define file scope data accessible to test group members prior to TEST_SETUP.

TEST_SETUP(GroupName)

{

//initialization steps are executed before each TEST

}

1. http://unity.sourceforge.net

Download from Wow! eBook <www.wowebook.com>

http://unity.sourceforge.net

UNITY TEST FILE 328

TEST_TEAR_DOWN(GroupName)

{

//clean up steps are executed after each TEST

}

TEST(GroupName, UniqueTestName)

{

/*

* A TEST contains:

* TEST specific initializations

* operations on the code under test

* TEST specific condition checks

*/

}

//There can be many tests in a TEST_GROUP

TEST(GroupName, AnotherUniqueTestName)

{

/*

* Some more test statements

*/

}

//Each group has a TEST_GROUP_RUNNER

TEST_GROUP_RUNNER(GroupName)

{

//Each TEST has a corresponding RUN_TEST_CASE

RUN_TEST_CASE(GroupName, UniqueTestName);

RUN_TEST_CASE(GroupName, AnotherUniqueTestName);

}

A TEST is a macro used to declare test cases. A TEST_GROUP associates

numerous TEST cases with their TEST_SETUP() and TEST_TEAR_DOWN() func-

tions. In the previous code example, the common parameter, Group-

Name, associates the TEST_GROUP_RUNNER(), TEST_GROUP, TEST_SETUP(),

TEST_TEAR_DOWN(), and each of the TEST cases. You could have multiple

TEST_GROUPs in a file, but it is more typical to have only one.

• TEST_GROUP(GroupName) defines the test group. Each TEST_GROUP()

in your test build must have a unique name.

• TEST_SETUP(GroupName) is run before every TEST() in the

TEST_GROUP(). Common initialization for each associated TEST()

goes into TEST_SETUP().

• TEST_TEAR_DOWN(GroupName) is run after each TEST() in the

TEST_GROUP(), restoring the system to its previous state. Common

cleanup code goes into TEST_TEAR_DOWN().

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=328

UNITY TEST MAIN 329

• TEST(GroupName, TestName) defines all the steps of a test case. The

GroupName and TestName() pairs must be unique in the test build.

• TEST_GROUP_RUNNER(GroupName) is responsible for invoking

RUN_TEST_CASE() for each TEST() in the group. If you forget to enter

your TEST() here, it won’t run. To keep from having to scroll to your

TEST_GROUP_RUNNER(), you can put it in a separate file, typically

named GroupNameTestRuner.c.

• RUN_TEST_CASE(GroupName, TestName) runs the associated TEST().

It’s important to note that the first failure terminates the calling test.

B.2 Unity Test main

You will have a main() for your production code and one, or more, for

your test code. A Unity test main() looks like this:

#include "unity_fixture.h"

static void runAllTests()

{

RUN_TEST_GROUP(GroupName);

RUN_TEST_GROUP(AnotherGroupName);

//...

}

int main(int argc, char * argv[])

{

return UnityMain(ac, av, runAllTests);

}

You would define multiple Unity test main() functions and builds when

you need to run tests in chunks. You would choose to chunk tests when

tests run too slowly or when all tests will not fit into the memory of the

target system.

B.3 Unity TEST Condition Checks

Here is a short list of some of the TEST checks supported by Unity. (You

can find the complete list of Unity assertion macros in unity.h.) When

it comes right down to it, the use of these condition checks are what

determines when your code is right or wrong.

• TEST_ASSERT_TRUE(boolean condition): Checks any boolean condition

to be true

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=329

COMMAND-LINE OPTIONS 330

• TEST_ASSERT_FALSE(boolean condition): Checks any boolean condition

to be false

• TEST_ASSERT_EQUAL_STRING(expected, actual): Compares const char*

strings for equality

• TEST_ASSERT_EQUAL(expected, actual): Compares two numbers

• TEST_ASSERT_EQUAL_INT(expected, actual): Compares two numbers

• TEST_ASSERT_BYTES_EQUAL(expected, actual): Compares two numbers,

eight bits wide

• TEST_ASSERT_POINTERS_EQUAL(expected, actual): Compares two point-

ers

• TEST_ASSERT_FLOAT_WITHIN(expected, actual, tolerance): Compares two

doubles within some tolerance

• TEST_FAIL_MESSAGE(text): Fails test and prints message

The checks are also known as asserts or assertions. I’ll be using all

three terms interchangeably.

B.4 Command-Line Options

Option Meaning

-v Verbose—announces each test before it runs.

-g testgroup Selects tests in testgroup using a substring match.

-n testname Selects tests by testname using a substring match.

-r [count] Repeats test run count times. The default value is 2.

This is helpful for checking for initialization problems and

memory leaks that can be attributed to lazy initialization.

B.5 Unity in Your Target

The only I/O that Unity does is to output characters. By default, Unit

uses putchar() for character output. You can send characters to a func-

tion of your choosing by providing your own definition of the macro

UNITY_OUTPUT_CHAR. Here is how the default is set:

#ifndef UNITY_OUTPUT_CHAR

#define UNITY_OUTPUT_CHAR(a) putchar(a)

#endif

The function pointer is initialized to point to putchar() like this:

int (*outputChar)(int) = putchar;

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=330

UNITY IN YOUR TARGET 331

As long as you have a putchar() function, Unity is ready to run in your

environment.

If your target does not have any way to output a character, you’ll have

to get creative. For example, your putchar() could capture lines of text,

see whether the last line begins with "OK", and then drive an output

pin to indicate test run status. If your target is this constrained in I/O,

running tests off-target becomes really important. You’ll probably also

want to invest in an eval board that has some way to output characters.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=331

Appendix C

CppUTest Quick Reference
This appendix has reference information for CppUTest. Keep in mind

that CppUTest is open source and is likely to evolve. This appendix

is in sync with the version of CppUTest included in the book’s source

code distribution. You can find out more about CppUTest at http://www.

cpputest.org and download the latest from http://cpputest.sourceforge.net.

C.1 The CppUTest Test File

Here’s a look at a CppUTest test file. As already mentioned, this is C++

with most of the C++ syntax hidden, making it easy to use for both C

and C++ programmers.

extern "C"

{

// #includes for things with C linkage

}

// #includes for things with C++ linkage

#include "CppUTest/TestHarness.h"

TEST_GROUP(GroupName)

{

//Define data accessible to test group members here.

void setup()

{

//initialization steps are executed before each TEST

}

void teardown()

Download from Wow! eBook <www.wowebook.com>

http://www.cpputest.org
http://www.cpputest.org
http://cpputest.sourceforge.net

TEST MAIN 333

{

//clean up steps are executed after each TEST

}

};

//Many test cases like this can be defined in the test file.

TEST(GroupName, TestCaseName)

{

/*

* The test case contains:

* test specific initializations

* operations on the code under test

* test specific condition checks

*/

}

As with Unity, the TEST_GROUP and TEST cases are tied together through

a common GroupName. Notice that there’s no TEST_GROUP_RUNNER(). The

TEST_GROUP_RUNNER() is not needed because each TEST() installs itself

into the list of all tests during file scope variable initialization.

Let’s see how the test main() is also different.

C.2 Test Main

A main() is needed to run all the installed tests. It looks like this:

Download tests/AllTests.cpp

#include "CppUTest/CommandLineTestRunner.h"

int main(int argc, char** argv)

{

return RUN_ALL_TESTS(argc, argv);

}

This main() is also missing something—the RUN_TEST_GROUP() invoca-

tions. This bit of manual wiring is not needed because each TEST installs

itself into the list of all tests.

C.3 TEST Condition Checks

Here is a list of the TEST condition checks available in CppUTest at the

time of this writing. Unity and CppUTest differ in their condition check

names. Conceptually they are the same.

• CHECK(boolean condition): Checks any boolean condition

• CHECK_TRUE(boolean condition): Same as CHECK()

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/AllTests.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=333

TEST EXECUTION ORDER 334

• CHECK_FALSE(boolean condition): Passes for a FALSE boolean condi-

tion.

• CHECK(boolean condition): Checks any boolean condition

• CHECK_EQUAL(expected, actual): Checks for equality between enti-

ties using ==

• STRCMP_EQUAL(expected, actual): Compares const char* strings for

equality using strcmp()

• LONGS_EQUAL(expected, actual): Compares two numbers

• BYTES_EQUAL(expected, actual): Compares two numbers, eight bits

wide

• POINTERS_EQUAL(expected, actual): Compares two pointers

• DOUBLES_EQUAL(expected, actual, tolerance): Compares two doubles

within some tolerance

• FAIL(text): Fails test and prints message

The checks are also known as asserts or assertions. I’ll be using all

three terms interchangeably. It’s important to note that the first failed

assertion terminates the calling test.

C.4 Test Execution Order

Tests run backward in CppUTest. Other test harnesses might run in

some other order. Test order should not matter, and you should not

count on any particular order. Tests should be independent of each

other, each one its own little experiment. One test might logically pre-

cede another in the design or as documentation, but when it comes

time to run them, unit tests must be designed to be independent of

each other. Prefer tests that depend only on setup() and teardown().

C.5 Scripts to Create Starter Files

Included with CppUTest are scripts for generating the header, source,

and test files needed for various forms of C modules and C++ classes.

The TDD purist might reject these scripts as not needed. A pragmatist

might prefer to eliminate tedious typing and follow one of a few well-

defined patterns.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=334

SCRIPTS TO CREATE STARTER FILES 335

Generating initial versions of the needed LedDriver files is as simple as

typing this command:

⇒ NewCModule LedDriver

Here’s the generated version of LedDriver.h:

Download include/LedDriver/LedDriver.h

#ifndef D_LedDriver_H

#define D_LedDriver_H

void LedDriver_Create(void);

void LedDriver_Destroy(void);

#endif /* D_LedDriver_H */

Here’s the generated LedDriver.c:

Download src/LedDriver/LedDriver.c

#include "LedDriver.h"

void LedDriver_Create(uint16_t * address)

{

}

void LedDriver_Destroy(void)

{

}

Here’s the generated TEST_GROUP() in LedDriverTest.cpp:

Download tests/LedDriver/LedDriverTest.cpp

#include "CppUTest/TestHarness.h"

extern "C"

{

#include "LedDriver.h"

}

TEST_GROUP(LedDriver)

{

void setup()

{

LedDriver_Create();

}

void teardown()

{

LedDriver_Destroy();

}

};

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/LedDriver/LedDriver.h
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://media.pragprog.com/titles/jgade/code/tests/LedDriver/LedDriverTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=335

CPPUTEST IN YOUR TARGET 336

TEST(LedDriver, Create)

{

FAIL("Start here");

}

C.6 CppUTest in Your Target

The only I/O that CppUTest does is to output characters with putchar().

As long as you have a putchar() function, CppUTest should be ready to

run in your environment.

If your target does not have any way to output a character, you’ll have

to get creative. For example, your putchar() could capture lines of text,

see whether the last line begins with "OK", and then drive an output

pin to indicate test run status. If your target is this constrained in I/O,

running tests off-target becomes really important. You’ll probably also

want to invest in an eval board that has some way to output characters.

Because embedded C++ compilers and runtime libraries often differ,

you may run into portability issues. You’ll find all CppUTest’s system

dependencies in this header file:

• include/CppUTest/PlatformSpecificFunctions.h

There are platform-specific implementations for GCC, Symbian, and

Visual C++ in the distribution. The GCC implementation can be found

here:

• src/Platforms/Gcc/UTestPlatform.cpp

C.7 Convert CppUTest Tests to Unity

Look in CppUTest/scripts/convertToUnity to see how to convert CppUTest

test files to Unity.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=336

Appendix D

LedDriver After Getting Started
This shows the state of the LedDriver at the start of Chapter 4, Testing

Your Way to Done, on page 75.

D.1 LedDriver First Few Tests in Unity

Download unity/LedDriver/LedDriverTest.c

TEST_GROUP(LedDriver);

static uint16_t virtualLeds;

TEST_SETUP(LedDriver)

{

LedDriver_Create(&virtualLeds);

}

TEST_TEAR_DOWN(LedDriver)

{

}

TEST(LedDriver, LedsOffAfterCreate)

{

uint16_t virtualLeds = 0xffff;

LedDriver_Create(&virtualLeds);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

TEST(LedDriver, TurnOnLedOne)

{

LedDriver_TurnOn(1);

TEST_ASSERT_EQUAL_HEX16(1, virtualLeds);

}

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTest.c

LEDDRIVER FIRST FEW TESTS IN CPPUTEST 338

TEST(LedDriver, TurnOffLedOne)

{

LedDriver_TurnOn(1);

LedDriver_TurnOff(1);

TEST_ASSERT_EQUAL_HEX16(0, virtualLeds);

}

Download unity/LedDriver/LedDriverTestRunner.c

TEST_GROUP_RUNNER(LedDriver)

{

RUN_TEST_CASE(LedDriver, LedsOffAfterCreate);

RUN_TEST_CASE(LedDriver, TurnOnLedOne);

RUN_TEST_CASE(LedDriver, TurnOffLedOne);

}

D.2 LedDriver First Few Tests in CppUTest

Download tests/LedDriver/LedDriverTest.cpp

TEST_GROUP(LedDriver)

{

uint16_t virtualLeds;

void setup()

{

LedDriver_Create(&virtualLeds);

}

void teardown()

{

LedDriver_Destroy();

}

};

TEST(LedDriver, LedsAreOffAfterCreate)

{

virtualLeds = 0xffff;

LedDriver_Create(&virtualLeds);

LONGS_EQUAL(0, virtualLeds);

}

TEST(LedDriver, TurnOnLedOne)

{

LedDriver_TurnOn(1);

LONGS_EQUAL(1, virtualLeds);

}

TEST(LedDriver, TurnOffLedOne)

{

LedDriver_TurnOn(1);

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/unity/LedDriver/LedDriverTestRunner.c
http://media.pragprog.com/titles/jgade/code/tests/LedDriver/LedDriverTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=338

LEDDRIVER EARLY INTERFACE 339

LedDriver_TurnOff(1);

LONGS_EQUAL(0, virtualLeds);

}

D.3 LedDriver Early Interface

Download include/LedDriver/LedDriver.h

#ifndef D_LedDriver_H

#define D_LedDriver_H

void LedDriver_Create(void);

void LedDriver_Destroy(void);

void LedDriver_TurnOn(int ledNumber);

void LedDriver_TurnOff(int ledNumber);

D.4 LedDriver Skeletal Implementation

Download src/LedDriver/LedDriver.c

#include "LedDriver.h"

static uint16_t * ledsAddress;

void LedDriver_Create(uint16_t * address)

{

ledsAddress = address;

*ledsAddress = 0;

}

void LedDriver_Destroy(void)

{

}

void LedDriver_TurnOn(int ledNumber)

{

*ledsAddress = 1;

}

void LedDriver_TurnOff(int ledNumber)

{

*ledsAddress = 0;

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/LedDriver/LedDriver.h
http://media.pragprog.com/titles/jgade/code/src/LedDriver/LedDriver.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=339

Appendix E

Example OS Isolation Layer
In Chapter 11, SOLID, Flexible, and Testable Designs, on page 219, we

looked at the Open Closed Principle (OCP) and Liskov Substitution Prin-

ciple (LSP). These principles are about creating plug-compatible soft-

ware. In this appendix, we are going to look at making an operating

system isolation layer. The layer is designed to allow your product’s

core application to run in different operating system environments.

We’ll call this OS isolation layer MyOS. The layer assures a common

interface, as well as plug-compatible behavior across multiple operating

systems. We’ll talk about one small part of the layer, thread creation,

and look at three substitutable implementations to illustrate OCP and

LSP.

MyOS must run on Linux and Micrium µC/OS-III.1 Linux is POSIX

compliant; µC/OS-III is proprietary. These two operating systems are

important because we our product ships in two configurations, one

requiring embedded Linux and the other µC/OS-III. For test purposes,

it would also be helpful to have MyOS run on Windows.

To illustrate creating the layer, we’ll look at one aspect of the layer,

thread creation. Each OS has its own unique way of creating a thread.

To support an application that can run on any of these operating sys-

tems, we need three substitutable implementations. The implementa-

tions must provide the same interface as well as preconditions and

postconditions surrounding each OS function.

1. µC/OS-III is a commercially available RTOS (http://www.micrium.com).

Download from Wow! eBook <www.wowebook.com>

http://www.micrium.com

TEST CASES TO ASSURE SUBSTITUTABLE BEHAVIOR 341

E.1 Test Cases to Assure Substitutable Behavior

Test cases can help us make MyOS behave the same regardless of the

underlying implementation. This is important because we don’t want

our application to care which OS is under the hood. Before we look at

the test cases, let’s look at an example MyOS Thread’s entry function

from our test fixture:

Download tests/MyOS/ThreadTest.cpp

static int threadRan = FALSE;

static void * threadEntry(void * p)

{

threadRan = TRUE;

return 0;

}

The entry function takes a pointer to anything (void *) as a parameter

and also returns a void *. This function sets threadRan to TRUE so the test

can check whether the thread is run at the appropriate time. setup()

sets threadRan to FALSE (not shown).

This test case assures that a MyOS Thread is not started upon creation.

Download tests/MyOS/ThreadTest.cpp

TEST(Thread, CreateDoesNotStartThread)

{

thread = Thread_Create(threadEntry, 0);

Thread_Destroy(thread);

CHECK(FALSE == threadRan);

}

Thread_Create() creates the thread. Thread_Destroy() waits for a Thread to

complete; this call may block but not in this case. A Thread that has

never been started can be destroyed without blocking. If the threadRan

check passes, the thread was not run.

This next test drives us to call the underlying OS functions:

Download tests/MyOS/ThreadTest.cpp

TEST(Thread, StartedThreadRunsBeforeItIsDestroyed)

{

thread = Thread_Create(threadEntry, 0);

Thread_Start(thread);

Thread_Destroy(thread);

CHECK(TRUE == threadRan);

}

Here’s the MyOS Thread’s interface supporting the first two tests:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/tests/MyOS/ThreadTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/MyOS/ThreadTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/MyOS/ThreadTest.cpp
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=341

POSIX IMPLEMENTATION 342

Download include/MyOS/Thread.h

typedef struct ThreadStruct * Thread;

typedef void * (*ThreadEntryFunction)(void *);

Thread Thread_Create(ThreadEntryFunction f, void * parameter);

void Thread_Start(Thread);

void Thread_Destroy(Thread);

In the next three sections, we’ll look at the three compatible implemen-

tations.

E.2 POSIX Implementation

To make this test pass for POSIX, we’ll have to use the POSIX pthread

functions properly. The POSIX thread create function also starts the

thread, so the MyOS Thread creation function can’t call pthread_create().

It has to store the parameters, so when Thread_Start() is called, it can

create and start the thread. Here is the MyOS data structure used in

the POSIX implementation:

Download src/MyOS/posix/Thread.c

typedef struct ThreadStruct

{

ThreadEntryFunction entry;

void * parameter;

pthread_t pthread;

} ThreadStruct;

pthread_t is an abstract data type (ADT) from the POSIX API. Here is the

POSIX implementation of Thread_Create():

Download src/MyOS/posix/Thread.c

Thread Thread_Create(ThreadEntryFunction f, void * parameter)

{

Thread self = calloc(1, sizeof(ThreadStruct));

self->entry = f;

self->parameter = parameter;

return self;

}

Thread_Create() captures the parameters into the ThreadStruct structure.

Thread_Start() uses the parameters to create and start the thread, as

shown in the following code:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/include/MyOS/Thread.h
http://media.pragprog.com/titles/jgade/code/src/MyOS/posix/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/posix/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=342

POSIX IMPLEMENTATION 343

Download src/MyOS/posix/Thread.c

void Thread_Start(Thread self)

{

pthread_create(&self->pthread, NULL, self->entry, self->parameter);

}

Once a Thread is started, the test must wait for the Thread to complete.

If the test does not synchronize with the completion of the running

thread, bad things may happen. Here is the POSIX Thread_Destroy()

implementation that waits for the thread to end:

void Thread_Destroy(Thread self)

{

pthread_join(self->pthread, NULL);

free(self);

}

pthread_join() blocks until the thread exits. The second parameter to

pthread_join() allows the caller to capture the thread’s return value. The

NULL means Thread_Destroy() is not interested in the ThreadEntryFunction()

return result.

This test worked fine on my Mac. My continuous integration (CI) build

on Linux was not so well behaved. For some reason, joining a pthread

that was never started crashed. To protect against this, add the started

flag to ThreadStruct, using it like this:

Download src/MyOS/posix/Thread.c

Thread Thread_Create(ThreadEntryFunction f, void * parameter)

{

Thread self = calloc(1, sizeof(ThreadStruct));

self->entry = f;

self->parameter = parameter;

self->started = FALSE;;

return self;

}

void Thread_Destroy(Thread self)

{

if (self->started)

pthread_join(self->pthread, NULL);

free(self);

}

void Thread_Start(Thread self)

{

self->started = TRUE;

pthread_create(&self->pthread, NULL, self->entry, self->parameter);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/MyOS/posix/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/posix/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=343

MICRIUM RTOS IMPLEMENTATION 344

The initial POSIX version passes its tests on Linux and Mac. CI should

also build for our embedded Linux environment and push out a test

run. There are probably other things we should do to Thread, like set-

ting thread stack size or priority, as well as handling various error con-

ditions, but I think you get the idea.

E.3 Micrium RTOS Implementation

Let’s look at one more implementation using the Micrium µC/OS-III.

Micrium’s concurrency model is based on tasks that are not allowed

to exit, though tasks can be killed. Killing a running task can cause

problems, so we’ll need to combine a task and a semaphore. We’ll use

the semaphore to synchronize Thread termination. Here is create:

Download src/MyOS/Micrium/Thread.c

Thread Thread_Create (ThreadEntryFunction entry, void *parameter)

{

OS_ERR err;

Thread self = OSMemGet(&AppMemTask, &err);

self->entry = entry;

self->parameter = parameter;

self->started = FALSE;

OSSemCreate (&(self->Sem), "Test Sem", 0, &err);

return self;

}

Micrium tasks start as soon as they are created too, so we don’t create

the task in Thread_Create(). We do interact with Micrium functions to

get task memory and to create a semaphore.

Here is the ThreadStruct needed for Micrium:

Download src/MyOS/Micrium/Thread.c

typedef struct ThreadStruct

{

ThreadEntryFunction entry;

void * parameter;

BOOL started;

OS_TCB TCB;

OS_SEM Sem;

CPU_STK Stk[APP_TASK_SIMPLE_STK_SIZE];

} ThreadStruct;

The struct contains the semaphore and the task data structures. Thread-

Struct also contains the task’s stack. The stack size is hard-coded in this

example, though we’d want to customize that.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/MyOS/Micrium/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Micrium/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=344

MICRIUM RTOS IMPLEMENTATION 345

Here Thread_Start() creates a Micrium task:

Download src/MyOS/Micrium/Thread.c

void Thread_Start(Thread self)

{

OS_ERR err;

self->started = TRUE;

OSTaskCreate(&(self->TCB), "App Task",

MicriumTaskShell, (void *)self,

APP_TASK_SIMPLE_PRIO,

self->Stk, APP_TASK_SIMPLE_STK_SIZE / 10,

APP_TASK_SIMPLE_STK_SIZE,

0,

0,

0,

(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),

&err);

}

As mentioned earlier, Micrium tasks are not allowed to exit. So, we use

this extended entry function to get compatible behavior.

Download src/MyOS/Micrium/Thread.c

static void MicriumTaskShell(void *p_arg)

{

Thread thread;

OS_ERR err;

thread = (Thread) p_arg;

thread->entry(thread->parameter);

OSSemPost(&(thread->Sem), OS_OPT_POST_ALL, &err);

while (DEF_ON)

{

OSTimeDlyHMSM(0, 0, 0, 100, OS_OPT_TIME_HMSM_STRICT, &err);

}

}

MicriumTaskShell() calls the thread->entry(). When entry() returns Micrium-

TaskShell() posts to its semaphore to signal that the task is done. The

task enters an infinite loop waiting to be killed. Here, Thread_Destroy()

synchronizes with the task’s completion signal:

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/MyOS/Micrium/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Micrium/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=345

WIN32 IMPLEMENTATION 346

Download src/MyOS/Micrium/Thread.c

void Thread_Destroy (Thread self)

{

OS_ERR err;

OSSemPend(&(self->Sem), 0, OS_OPT_PEND_BLOCKING, 0, &err);

OSTaskDel(&(self->TCB), &err);

OSSemDel(&(self->Sem));

OSMemPut (&AppMemTask, self, &err);

}

Once the OSSemPend() returns, Thread_Destroy() kills the task and frees

Micrium-controlled resources.

E.4 Win32 Implementation

Now let’s take a look at the equivalent Windows implementation. The

Windows implementation sits on top of the Win32 API. Win32 allows

thread creation and execution to be a two-step process. So, let’s take

advantage of that. That would imply that the entry function and param-

eter do not need to be in the struct. But the Win32 prototype for a thread

entry function is somewhat different from MyOS, so we have to store

the entry and parameter in the struct after all. Here is the struct:

Download src/MyOS/Win32/Thread.c

typedef struct ThreadStruct

{

HANDLE threadHandle;

ThreadEntryFunction entry;

void * parameter;

BOOL started;

} ThreadStruct;

Here is the Win32-compatible thread entry function:

Download src/MyOS/Win32/Thread.c

static DWORD WINAPI Win32ThreadEntry(LPVOID param)

{

Thread thread = (Thread)param;

return (UINT)thread->entry(thread->parameter);

}

The param passed to the entry function is the Thread pointer. So, the

Win32 entry function can pull out the actual thread entry point and

parameter from the struct. As a first cut, let’s just cast the return type

to what Win32 expects. We should start a test list and make sure we

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/MyOS/Micrium/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Win32/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Win32/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=346

WIN32 IMPLEMENTATION 347

check that a pointer can be returned through a Win32 DWORD WINAPI.

Thread creation looks like this:

Download src/MyOS/Win32/Thread.c

Thread Thread_Create(ThreadEntryFunction entry, void * parameter)

{

DWORD threadId;

Thread self = calloc(1, sizeof(ThreadStruct));

self->entry = entry;

self->parameter = parameter;

self->threadHandle = CreateThread(0, 0, Win32ThreadEntry, self,

CREATE_SUSPENDED, &threadId);

return self;

}

Notice the thread is created in the suspended state. The MyOS ThreadEn-

tryFunction() is passed with the ThreadStruct, while the Win32ThreadEntry()

is passed to Win32’s CreateThread() function. The threadHandle is stored

into the ThreadStruct for later thread controls.

Thread_Start() calls the Win32 function ThreadResume() to get the sus-

pended thread going:

Download src/MyOS/Win32/Thread.c

void Thread_Start(Thread self)

{

self->started = TRUE;

ResumeThread(self->threadHandle);

}

Like the other implementations, Thread_Destroy() has to wait for the

Win32 thread to complete. That is done with the call to WaitForSingleOb-

ject():

Download src/MyOS/Win32/Thread.c

void Thread_Destroy(Thread self)

{

if (self->started)

{

WaitForSingleObject(self->threadHandle, INFINITE);

self->started = FALSE;

}

CloseHandle(self->threadHandle);

free(self);

}

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jgade/code/src/MyOS/Win32/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Win32/Thread.c
http://media.pragprog.com/titles/jgade/code/src/MyOS/Win32/Thread.c
http://books.pragprog.com/titles/jgade/errata/add?pdf_page=347

BURDEN THE LAYER, NOT THE APPLICATION 348

E.5 Burden the Layer, Not the Application

Applying the Open-Closed Principle and the Liskov Substitution Princi-

ple makes for more flexible designs. High-level application logic can be

given a longer useful life by isolating the OS (and other dependencies)

using these principles. Test cases, run on each supported platform,

assure not only a common interface but a common meaning of all the

calls.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=348

Appendix F

Bibliography

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[Dij72] Edsger W. Dijkstra. The humble programmer. Communica-

tions of the ACM, 15:10:859–866, 1972.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Gan00] Jack Ganssle. The Art of Designing Embedded Systems.

Newnes, Woburn, MA, 2000.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Gre04] James W. Grenning. Progress before hardware. Agile Times,

4:74–78, February 2004.

[Gre07a] James W. Grenning. Embedded test driven development

cycle, 2004, 2006, 2007. Embedded Systems Conference,

Submissions.

Download from Wow! eBook <www.wowebook.com>

APPENDIX F. BIBLIOGRAPHY 350

[Gre07b] James W. Grenning. Applying test driven development to

embedded software. Instrumentation & Measurement Maga-

zine, IEEE, 10:20–25, December 2007.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Lis74] Barbara Liskov. Programming with abstract data types. Pro-

ceedings of the ACM SIGPLAN Symposium on Very High Level

Languages, 1974.

[Lis88] Barbara Liskov. Data abstraction and hierarchy. SIGPLAN

Notices, 23(5), May 1988.

[LV09] Craig Larman and Bas Vodde. Scaling Lean and Agile Devel-

opment. Addison-Wesley, Reading, MA, 2009.

[Mar02] Robert C. Martin. Agile Software Development, Principles,

Patterns, and Practices. Prentice Hall, Englewood Cliffs, NJ,

2002.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall, Englewood Cliffs, NJ, 2008.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.

Addison-Wesley, Reading, MA, 2007.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction.

Prentice Hall, Englewood Cliffs, NJ, second edition, 1997.

[MFC01] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-

testing: Unit testing with mock objects. In Giancarlo Succi

and Michele Marchesi, editors, Extreme Programming Exam-

ined, chapter 17, pages 287–302. Addison Wesley Longman,

Reading, MA, 2001.

[OL11] Tim Ottinger and Jeff Langr. Agile in a Flash. The Pragmatic

Programmers, LLC, Raleigh, NC, and Dallas, TX, 2011.

[SM04] Nancy Van Schooenderwoert and Ron Morsicato. Taming

the embedded tiger; agile test techniques for embedded soft-

ware. Proceedings of the 2004 Agile Development Conference,

June 2004.

[UNMiM07] Hidetake Uwano, Masahide Nakamura, Akito Monden, and

Ken ichi Matsumoto. Exploiting eye movements for evaluat-

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=350

APPENDIX F. BIBLIOGRAPHY 351

ing reviewer’s performance in software review. IEICE Trans-

actions on Fundamentals, E90-A, No.10:317–328, October

2007.

[Wil00] Stephen Wilbers. Keys to Great Writing. Writers Digest

Books, an imprint of F + W Publication, Inc., Cincinnati,

Ohio, first edition, 2000.

Report erratum

this copy is (P1.0 printing, April, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jgade/errata/add?pdf_page=351

Index
A
abstract data types, 51–52, 222

adapters, 116

ADTs, see abstract data types

antipatterns

copy-paste-tweak-repeat, 312

duplication between test groups, 315

ramble-on, 310–312

sore thumb test cases, 313–315

test disrespect, 316

assertions

in CppUTest, 333

in Unity, 329

automated testing

crashes, 48

for hardware, 116–118

importance of, 27

vs. manual testing, 123

unit test harnesses, 36–48

B
Behavior-Driven Development (BDD)

tests, 316

buffer overruns, 39

build time, 128

BYTES_EQUAL, 334

C
characterization tests, 301–305

CHECK_FALSE, 334

CHECK_TRUE, 333

CHECK, 333, 334

CHECK_EQUAL, 334

CircularBuffer module

definition, 52

multiple-instance module in, 225

verifying printed output, 182–190

CMock, 214–216

code duplication, 96

code smells, 252–263

code structure, 31, 253

code under test, 37

collaborators, 134, 136f, 136, 140

commented-out code, 262

comments, 261–262

compiler incompatibility, 109

conditional compilation, 263, 274

continuous integration, 112

CppUMock, 212

CppUTest

C function declarations, 152

choice of C++, 131–132

converting tests to Unity, 132, 336

examples, 44–47

function-pointer substitution, 181

output, 47–48

quick reference, 332–336

starter file scripts, 334

test execution order, 334

crashes, 48

CruiseControl, 112

cyclomatic complexity, 253

Cygwin, 323

D
data encapsulation, 51–52

dead drops, 153

Debug-Later Programming, 28, 29f

defect prevention, 29, 33, 77

dependencies

breaking, 135

dependency graphs, 136f

DOCs and TDOCs, 137

and legacy code, 288, 298

in Light Scheduler, 147–149

and test doubles, 138f, 137–140

see also hardware issues

dependency injection, 58–61

Download from Wow! eBook <www.wowebook.com>

DEPENDENCY INVERSION PRINCIPLE (DIP) INSTRUMENTATION

Dependency Inversion Principle (DIP),

223f, 222–223

design

hardware independence, 106

Rules of Simple Design, 246

SOLID design principles, 219–225

and testability, 33, 51–53, 135

design patterns

0-1-N, 156

adapter, 116

development cycle

continuous integration, 112

embedded TDD, 108f, 108–111

TDD, 29

development environments

Cygwin, 323

Eclipse IDE, 324

Linux tool chain, 322

Linux virtual machine, 324

Mac OS X Xcode, 323

Microsoft Visual Studio, 324

MinGW+MSYS, 323

device drivers, 193–211

see also flash memory driver; LED

driver

DOCs (Depended On Components), 137

Don’t Burn Bridges, 266

DOUBLES_EQUAL, 334

DRY (Don’t Repeat Yourself), 96, 247

DTSTTCPW, 68

dual-targeting

benefits, 106–107

risks, 107–108

dummies, 141

duplicate code, 96

dynamic interfaces, 233–246

E
Eclipse IDE, 324

encapsulation, 51–52, 135

evaluation boards, 105, 110

exploding fakes, 141

F
FAIL, 334

failure reporting

in CppUTest, 48

in Unity, 44

fakes, 141

feature envy, 259, 276

file scope variables, 52, 64, 225, 261

FIRST (Fast, Isolated, Repeatable,

Self-verifying, Timely) tests, 72

fixtures, see test fixtures

flash memory driver

clock rollover, 210

design, 194f, 194–198

flowchart, 197f

simulating device timeout, 208–210

test list, 197f

writing tests, 198–202, 205–211

FormatOutput method, 183–190

FormatOutputSpy class, 184–186

Four-Phase Test pattern, 49, 137

function length, 254–257

function names, 253

function pointer substitution

FormatOutput method, 183–190

randomness, testing, 177–182

see also randomness, testing

function-pointer substitution

CppUTest support for, 181

defined, 143

in Light Scheduler, 179–182

H
hardware abstraction layer, 145

hardware issues

acceptance tests, 117

build time, 128

compiler incompatibility, 109

dependency injection, 58–61

dual-targeting, 106–108, 130

evaluation boards, 105, 110

hardware-dependent code, 106–107,

226–241

header file incompatibility, 113–116

impacts on software projects,

104–105

manual testing, 111

memory limitations, 111, 129–130

runtime library issues, 111

schedule delays, 104–105

hardware testing, 110, 116–119

header file incompatibility, 113–116

Hudson, 112

I
IGNORE_TEST, 90

inline monitors, 291–292

instrumentation, testing with, 119

353
Download from Wow! eBook <www.wowebook.com>

INTERFACE SEGREGATION PRINCIPLE (ISP) QUICK SWAP

Interface Segregation Principle (ISP),

222

interface testing, 61

J
JUnit, 32, 47

L
lasagna code, 254

learning tests, 305–307

LED driver

boundary conditions, 83–90

dependency injection, 58–61

interface design, 61–64

refactoring, 69

requirements, 53

test list, 54f, 94f, 102f

writing tests, 55–64, 66–68, 75–100

legacy code

Boy Scout principle, 286–287

characterization tests, 301–305

code change algorithm, 287–289

code change policy, 128, 286

crash to pass, 296–301

debug output sense points, 290

inline monitors, 291–292

sensing variables, 289

strategic tests, 308

test points, 289–292

test-driven bug fixes, 307

two-stage struct initialization,

292–295

Light Scheduler

abstracting the clock, 155

collaborators in, 149f

design, 147, 148f

dynamic interfaces in, 233–246

function-pointer substitution in,

179–182

hardware variation support,

226–246

link-time substitution in, 148

refactoring, 161–164

single-instance module in, 224–225

spies in, 149–151

stubs in, 155

test list, 146f, 147, 160f

vtables in, 242–246

writing tests, 149–174, 177–182

LightControllerSpy class, 149–174

LightDriverSpy class, 227–241

link seams, 148

link-time substitution, 142, 148

Linux tool chain, 322

Liskov Substitution Principle (LSP),

221, 340

LONGS_EQUAL, 334

M
Mac OS X development environment,

323

makefiles

full test build, 324–325

small test build, 325

manual testing, 111, 123

memory corruption, 39

memory limitations, 111, 129–130

Microsoft Visual Studio, 324

MinGW+MSYS, 323

MockIO, 195–199, 202–205, 211,

302–305

mocks

in characterization tests, 302–305

defined, 141

in flash memory driver, 195–199,

202–205

tools for generating, 214–216

modular design, 51–53

multiple-instance modules, 225

multiple-use modules, 52

N
names, 253

O
Open Closed Principle (OCP), 220, 340

OS abstraction layer, 145, 340–348

P
pair programming, 87

platform-specific code, 106–107,

113–116

POINTERS_EQUAL, 334

preprocessor substitution, 143

primitive obsession, 258

printed output

debug output sense points, 290

verifying with spies, 182–190

production code, 37

Q
quick swap, 274

354
Download from Wow! eBook <www.wowebook.com>

RANDOM MINUTE GENERATOR TEST DOUBLES

R
random minute generator, see

randomness, testing

randomness, testing, 177–182

ravioli code, 254

Red-Green-Refactor, 32

refactoring

benefits, 31, 250

code duplication, 91–93, 96, 161,

269

commented-out code, 262

comments, 261–262

complex conditionals, 164–167, 258,

272–274

conditional compilation, 263, 274

critical skills for, 251–252

cyclomatic complexity, 254

deep nesting, 259

defined, 249

extracting functions, 255–257

global data, 260

initialization functions, 260

long parameter lists, 260

names, 253

performance impact, 281–283

separating responsibilities, 162

switch/case statements, 258

in test cases, 69–71, 163, 310–315

transforming Light Scheduler code,

264–280

see also code smells

regression testing, 33, 120

RUN_TEST_CASE, 42, 329

RUN_TEST_GROUP, 43

runtime library issues, 111–116

S
seams, 148, 289

sensing variables, 289

setup, 46

Shotgun Surgery, 231

single-instance modules, 52, 224–225

Single-Responsibility Principle (SRP),

220

software entropy, 250, 319f

SOLID design principles

defined, 219–223

implementing in C, 223–225

spies

defined, 141

and dead drops, 153

FormatOutputSpy class, 184–186

header files of, 153

in Light Scheduler, 149–151

LightControllerSpy class, 149–174

LightDriverSpy class, 227–241

verifying printed output, 182–190

static variables, 261

STRCMP_EQUAL, 334

strstr(), 111

stubs

defined, 141

in Light Scheduler, 155

T
target hardware, see hardware issues

TDOCs (Transitively Depended On

Components), 137f, 138

teardown, 46

test automation, see automated testing

test builds

and development environment, 43

build time, 128

makefiles, 324–326

test cases

antipatterns, 310–316

Behavior-Driven Development (BDD)

tests, 316

boundary conditions, 83–90

buffer overruns, 39

in CppUTest, 45

defined, 37

as documentation, 33, 76

experiments, 85

ignoring, 90

interface testing, 61

randomness, 177–182

as regression tests, 120

in Unity, 38–40

test code, 37

test doubles

defined, 134

function-pointer substitution,

177–190

link-time substitution, 148–155

managing dependencies with, 137,

138f

substitution techniques in C,

140–144

types of, 141

uses, 139–140

355
Download from Wow! eBook <www.wowebook.com>

TEST FIXTURES ZUNE BUG

see also dummies; fakes; mocks;

spies; stubs

test fixtures

in CppUTest, 45–47

defined, 37

in Unity, 40–41

test lists, 54–55

test points (legacy code), 289–292

Test-After Development, 126

Test-Driven Development (TDD)

benefits, 29, 32–34, 77, 318

vs. Debug-Later Programming, 28,

126

defined, 27–28

and device drivers, 193–211

embedded development cycle, 108f,

108–111

“fake it til you make it”, 68

Four-Phase Test, 49

and legacy code, 285–308

microcycle, 29

objections to adopting, 122–131

physics of, 30f

state machine for, 70, 71f

as structured procrastination, 66

test disrespect, 316

Three Laws of, 61

time required, 122–126, 319

TEST_ASSERT_BYTES_EQUAL, 330

TEST_ASSERT_EQUAL, 38, 330

TEST_ASSERT_EQUAL_INT, 330

TEST_ASSERT_EQUAL_STRING, 38, 330

TEST_ASSERT_FALSE, 330

TEST_ASSERT_FLOAT_WITHIN, 330

TEST_ASSERT_POINTERS_EQUAL, 330

TEST_ASSERT_TRUE, 329

TEST_FAIL_MESSAGE, 330

TEST_GROUP, 327–329

in CppUTest, 46, 168, 332

in Unity, 41

TEST_GROUP_RUNNER, 42, 329

TEST_SETUP, 41, 328

TEST_TEAR_DOWN, 41, 328

text fixtures

see also CircularBufferPrint module;

LED driver; Light Scheduler

third-party code, 305–307

thread creation

Micrium, 344

POSIX, 342

Win32, 346

Three Laws of TDD, 61

time-dependent code

abstracting the clock, 154

clock rollover, 210

device timeout, 208–210

U
unit test harnesses

vs. custom test harness, 123

defined, 36–37

and legacy code, 296–301

test execution order, 334

see also CppUTest; Unity

unit tests

antipatterns, 310–316

FIRST attributes, 72

Four-Phase Test pattern, 49, 137

GivWenZen style, 317

and legacy code, 288–292

manual, 123

vs. other test types, 127

process-heavy, 124–126

single-stepping, 124

small and focused, 69

Unity

examples, 38–43

output, 43–44

quick reference, 327–331

V
virtual function tables (vtables),

242–246

W
Windows development environment,

323–324

Z
Zune bug, 25–27

356
Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of April 2011; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile in a Flash: Speed-Learning Agile Software

Development

2011 9781934356715 110

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails 2009 9781934356166 792

Agile Web Development with Rails 2011 9781934356548 480

Arduino: A Quick-Start Guide 2011 9781934356661 275

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Crafting Rails Applications: Expert Practices for

Everyday Rails Development

2011 9781934356739 180

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Driving Technical Change: Why People on Your

Team Don’t Act on Good Ideas, and How to

Convince Them They Should

2010 9781934356609 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Continued on next page

Download from Wow! eBook <www.wowebook.com>

pragprog.com

Title Year ISBN Pages

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2010 9781934356562 320

HTML5 and CSS3: Develop with Tomorrow’s

Standards Today

2010 9781934356685 280

Interface Oriented Design 2006 9780976694052 240

iPad Programming: A Quick-Start Guide for

iPhone Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Guide to Git 2010 9781934356722 168

Pragmatic Guide to JavaScript 2010 9781934356678 150

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages

Pragmatic Guide to Subversion 2010 9781934356616 150

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 944

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300

Rails for PHP Developers 2008 9781934356043 432

Rails Recipes 2006 9780977616602 350

Rails Test Prescriptions: Keeping Your

Application Healthy

2011 9781934356647 368

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

Test-Drive ASP.NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages

The Agile Samurai: How Agile Masters Deliver

Great Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 232

The RSpec Book: Behaviour-Driven Development

with RSpec, Cucumber, and Friends

2010 9781934356371 448

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Using JRuby: Bringing Ruby to Java 2011 9781934356654 300

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

Download from Wow! eBook <www.wowebook.com>

More From PragProg.com

Agile in a Flash
The best agile book isn’t a book: Agile in a Flash is

a unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just

read.

Agile in a Flash: Speed-Learning Agile Software

Development

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 978-1-93435-671-5. $15.00

http://pragprog.com/titles/olag

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

More From PragProg.com

Pragmatic Guide to Git
New Git users will learn the basic tasks needed to

work with Git every day, including working with

remote repositories, dealing with branches and

tags, exploring the history, and fixing problems

when things go wrong. If you’re already familiar

with Git, this book will be your go-to reference for

Git commands and best practices.

Pragmatic Guide to Git

Travis Swicegood

(168 pages) ISBN: 978-1-93435-672-2. $25.00

http://pragprog.com/titles/pg_git

Ubuntu Kung Fu
Award-winning Linux author Keir Thomas gets

down and dirty with Ubuntu to provide over 300

concise tips that enhance productivity, avoid

annoyances, and simply get the most from Ubuntu.

You’ll find many unique tips here that can’t be

found anywhere else.

You’ll also get a crash course in Ubuntu’s flavor of

system administration. Whether you’re new to

Linux or an old hand, you’ll find tips to make your

day easier.

This is the Linux book for the rest of us.

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks

Keir Thomas

(400 pages) ISBN: 978-1-9343562-2-7. $34.95

http://pragprog.com/titles/ktuk

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_git
http://pragprog.com/titles/ktuk

More From PragProg.com

The Definitive ANTLR Reference
This book is the essential reference guide to ANTLR

v3, the most powerful, easy-to-use parser generator

built to date. Learn all about its amazing new LL(*)

parsing technology, tree construction facilities,

StringTemplate code generation template engine,

and sophisticated ANTLRWorks GUI development

environment. Learn to use ANTLR directly from its

author!

The Definitive ANTLR Reference: Building

Domain-Specific Languages

Terence Parr

(384 pages) ISBN: 0-9787392-5-6. $36.95

http://pragprog.com/titles/tpantlr

Language Implementation Patterns
Learn to build configuration file readers, data

readers, model-driven code generators,

source-to-source translators, source analyzers, and

interpreters. You don’t need a background in

computer science—ANTLR creator Terence Parr

demystifies language implementation by breaking it

down into the most common design patterns.

Pattern by pattern, you’ll learn the key skills you

need to implement your own computer languages.

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

Terence Parr

(350 pages) ISBN: 978-1934356-45-6. $34.95

http://pragprog.com/titles/tpdsl

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/tpantlr
http://pragprog.com/titles/tpdsl

More From PragProg.com

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure,

Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that

list, you’ll broaden your perspective of

programming by examining these languages

side-by-side. You’ll learn something new from each,

and best of all, you’ll learn how to learn a language

quickly.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

Bruce A. Tate

(300 pages) ISBN: 978-1934356-59-3. $34.95

http://pragprog.com/titles/btlang

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/btlang
http://pragprog.com/titles/bksqla

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Test-Driven Development for Embedded C

http://pragprog.com/titles/jgade

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jgade.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/jgade
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jgade
www.pragprog.com/catalog

	Contents
	Foreword by Jack Ganssle
	Foreword by Robert C. Martin
	Acknowledgments
	Preface
	Who Is This Book For?
	How to Read This Book
	The Code in This Book
	Online Resources

	Test-Driven Development
	Why Do We Need TDD?
	What Is Test-Driven Development?
	Physics of TDD
	The TDD Microcycle
	TDD Benefits
	Benefits for Embedded

	Getting Started
	Test-Driving Tools and Conventions
	What Is a Unit Test Harness?
	Unity: A C-Only Test Harness
	CppUTest: A C++ Unit Test Harness
	Unit Tests Can Crash
	The Four-Phase Test Pattern
	Where Are We?

	Starting a C Module
	Elements of a Testable C Module
	What Does an LED Driver Do?
	Write a Test List
	Writing the First Test
	Test-Drive the Interface Before the Internals
	Incremental Progress
	Test-Driven Developer State Machine
	Tests Are FIRST
	Where Are We?

	Testing Your Way to Done
	Grow the Solution from Simple Beginnings
	Keep the Code Clean---Refactor as You Go
	Repeat Until Done
	Take a Step Back Before Claiming Done
	Where Are We?

	Embedded TDD Strategy
	The Target Hardware Bottleneck
	Benefits of Dual-Targeting
	Risks of Dual-Target Testing
	The Embedded TDD Cycle
	Dual-Target Incompatibilities
	Testing with Hardware
	Slow Down to Go Fast
	Where Are We?

	Yeah, but...
	We Don't Have Time
	Why Not Write Tests After the Code?
	We'll Have to Maintain the Tests
	Unit Tests Don't Find All the Bugs
	We Have a Long Build Time
	We Have Existing Code
	We Have Constrained Memory
	We Have to Interact with Hardware
	Why a C++ Test Harness for Testing C?
	Where Are We?

	Testing Modules with Collaborators
	Introducing Test Doubles
	Collaborators
	Breaking Dependencies
	When to Use a Test Double
	Faking It in C, What's Next
	Where Are We?

	Spying on the Production Code
	Light Scheduler Test List
	Dependencies on Hardware and OS
	Link-Time Substitution
	Spying on the Code Under Test
	Controlling the Clock
	Make It Work for None, Then One
	Make It Work for Many
	Where Are We?

	Runtime-Bound Test Doubles
	Testing Randomness
	Faking with a Function Pointer
	Surgically Inserted Spy
	Verifying Output with a Spy
	Where Are We?

	The Mock Object
	Flash Driver
	MockIO
	Test-Driving the Driver
	Simulating a Device Timeout
	Is It Worth It?
	Mocking with CppUMock
	Generating Mocks
	Where Are We?

	Design and Continuous Improvement
	SOLID, Flexible, and Testable Designs
	SOLID Design Principles
	SOLID C Design Models
	Evolving Requirements and a Problem Design
	Improving the Design with Dynamic Interface
	More Flexibility with Per-Type Dynamic Interface
	How Much Design Is Enough?
	Where Are We?

	Refactoring
	Two Values of Software
	Three Critical Skills
	Code Smells and How to Improve Them
	Transforming the Code
	But What About Performance and Size?
	Where Are We?

	Adding Tests to Legacy Code
	Legacy Code Change Policy
	Boy Scout Principle
	Legacy Change Algorithm
	Test Points
	Two-Stage struct Initialization
	Crash to Pass
	Characterization Tests
	Learning Tests for Third-Party Code
	Test-Driven Bug Fixes
	Add Strategic Tests
	Where Are We?

	Test Patterns and Antipatterns
	Ramble-on Test Antipattern
	Copy-Paste-Tweak-Repeat Antipattern
	Sore Thumb Test Cases Antipattern
	Duplication Between Test Groups Antipattern
	Test Disrespect Antipattern
	Behavior-Driven Development Test Pattern
	Where Are We?

	Closing Thoughts

	Appendixes
	Development System Test Environment
	Development System Tool Chain
	Full Test Build makefile
	Smaller Test Builds

	Unity Quick Reference
	Unity Test File
	Unity Test main
	Unity TEST Condition Checks
	Command-Line Options
	Unity in Your Target

	CppUTest Quick Reference
	The CppUTest Test File
	Test Main
	TEST Condition Checks
	Test Execution Order
	Scripts to Create Starter Files
	CppUTest in Your Target
	Convert CppUTest Tests to Unity

	LedDriver After Getting Started
	LedDriver First Few Tests in Unity
	LedDriver First Few Tests in CppUTest
	LedDriver Early Interface
	LedDriver Skeletal Implementation

	Example OS Isolation Layer
	Test Cases to Assure Substitutable Behavior
	POSIX Implementation
	Micrium RTOS Implementation
	Win32 Implementation
	Burden the Layer, Not the Application

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

