

iOS Test-Driven Development by Tutorials
By Joshua Greene & Michael Katz

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

iOS Test-Driven Development by Tutorials

raywenderlich.com 2

Dedications
"For you girls — Madeline and Amelia. I love you very much."

— Joshua Greene

"Dedicated to the memory of my mother-in-law, Barbara Schwartz.
Her selflessness and dedication to teaching inspires me to give back

to the community and educate others."

— Michael Katz

iOS Test-Driven Development by Tutorials

raywenderlich.com 3

About the Authors
Joshua Greene is an author of this book. He's an experienced
software developer and has created many mobile apps. He enjoys
software development because he likes to see his dreams come to life!
When he's not slinging code, he's often watching Netflix, traveling or
spending time with his family. He has has two wonderful, beautiful
daughters whom he loves very much. You can reach him on Twitter
@jrg_developer.

Michael Katz is a champion baker. ;] Oh, he's also an author of this
book, developer, architect, speaker, writer and avid Homebrewer. He
has contributed to several books on iOS development and is a long-
time member of the raywenderlich.com tutorial team. He's currently
serving as Senior Manager of iOS development at Viacom. He shares
his home state of New York with his family, the world's best bagels
and the Yankees. When he's not at his computer, he's out on the trails,
in his shop or reading a good book (like this one!).

About the Editors
Darren Ferguson is the final pass editor for this book. He is an
experienced software developer and works for M.C. Dean, Inc, a
systems integration provider from North Virginia. When he's not
coding, you'll find him enjoying EPL Football, traveling as much as
possible and spending time with his wife and daughter.

Manda Frederick is the editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

iOS Test-Driven Development by Tutorials

raywenderlich.com 4

Jeff Rames is a tech editor for this book. He’s an enterprise software
developer in San Antonio, Texas who's focused on iOS for nearly a
decade. He spends his free time with his wife and daughters, except
when he abandons them for trips to Cape Canaveral to watch rocket
launches. Say hi on Twitter @jefframes!

James Taylor is a tech editor for this book. He’s an iOS developer
living in San Antonio, Texas with both his wife and daughter. He
enjoys bicycle touring around the United States and spending way too
much time on YouTube. You can find him on Twitter
@jamestaylorios.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

iOS Test-Driven Development by Tutorials

raywenderlich.com 5

Table of Contents: Overview
Early Access Edition 12...
Introduction 13..
What You Need 16..
Book License 17..
Book Source Code & Forums 18...................................
Section I: Hello, TDD! 19...

Chapter 1: What Is TDD? 20..................................
Chapter 2: The TDD Cycle 25................................

Section II: Beginning TDD 38..
Chapter 3: Driving TDD 39....................................
Chapter 4: Test Expressions 58.............................
Chapter 5: Test Expectations 79............................
Chapter 6: Dependency Injection & Mocks 104.....

Section III: TDD with Networking 126...........................
Chapter 7: Introducing Dog Patch 127...................
Chapter 8: RESTful Networking 132......................
Chapter 9: Authentication Client 133.....................
Chapter 10: Authenticated Network Calls 134.......
Chapter 11: Websockets 135.................................

Section IV: TDD in Legacy Apps 136............................

iOS Test-Driven Development by Tutorials

raywenderlich.com 6

Chapter 12: Legacy Problems 138.........................
Chapter 13: Dependency Maps 139......................
Chapter 14: Breaking Up Depdendencies 140.......
Chapter 15: Adding Features to Existing
Classes 141..
Chapter 16: Refactoring Large Classes 142...........

iOS Test-Driven Development by Tutorials

raywenderlich.com 7

Table of Contents: Extended
Early Access Edition 12.
Introduction 13.

About this book 14.

Section introductions 14.

How to read this book 15.

What You Need 16.
Book License 17.
Book Source Code & Forums 18.
Section I: Hello, TDD! 19.
Chapter 1: What Is TDD? 20.

Why should you use TDD? 21.

What should you test? 22.

But TDD takes too long! 23.

When should you use TDD? 23.

Key points 24.

Chapter 2: The TDD Cycle 25.
Getting started 26.

Red: Write a failing test 26.

Green: Make the test pass 28.

Refactor: Clean up your code 28.

Repeat: Do it again 29.

TDDing init(availableFunds:) 29.

TDDing addItem 31.

Adding two items 34.

Challenge 36.

Key points 37.

iOS Test-Driven Development by Tutorials

raywenderlich.com 8

Section II: Beginning TDD 38.
Chapter 3: Driving TDD 39.

About the FitNess app 39.

Your first test 40.

Red-Green-Refactor 44.

Test nomenclature 48.

Structure of XCTestCase subclass 49.

Your next set of tests 51.

Using @testable import 52.

Testing initial conditions 55.

Refactoring 56.

Challenge 57.

Key points 57.

Where to go from here? 57.

Chapter 4: Test Expressions 58.
Assert methods 59.

View controller testing 65.

Test ordering matters 69.

Code coverage 72.

Debugging tests 74.

Challenge 77.

Key points 78.

Where to go from here? 78.

Chapter 5: Test Expectations 79.
Using an expectation 79.

Testing for true asynchronicity 82.

Waiting for notifications 84.

Showing the alert to a user 89.

Getting specific about notifications 93.

Driving alerts from the data model 95.

Using other types of expectations 101.

Challenge 102.

iOS Test-Driven Development by Tutorials

raywenderlich.com 9

Key points 103.

Where to go from here? 103.

Chapter 6: Dependency Injection & Mocks 104.
What's up with fakes, mocks, and stubs? 104.

Understanding CMPedometer 105.

Mocking 107.

Handling error conditions 110.

Getting actual data 116.

Making a functional fake 119.

Wiring up the chase view 121.

Time dependencies 124.

Challenge 125.

Key points 125.

Where to go from here? 125.

Section III: TDD with Networking 126.
Chapter 7: Introducing Dog Patch 127.

Getting started 127.

Understanding Dog Patch's architecture 130.

Where to go from here? 131.

Chapter 8: RESTful Networking 132.
Chapter 9: Authentication Client 133.
Chapter 10: Authenticated Network Calls 134.
Chapter 11: Websockets 135.
Section IV: TDD in Legacy Apps 136.
Chapter 12: Legacy Problems 138.
Chapter 13: Dependency Maps 139.
Chapter 14: Breaking Up Depdendencies 140.

iOS Test-Driven Development by Tutorials

raywenderlich.com 10

Chapter 15: Adding Features to Existing Classes 141. .
Chapter 16: Refactoring Large Classes 142.

iOS Test-Driven Development by Tutorials

raywenderlich.com 11

EEarly Access Edition

You’re reading an an early access edition of iOS Test-Driven Development by Tutorials.
This edition contains a sample of the chapters that will be contained in the final
release.

We hope you enjoy the preview of this book, and that you’ll come back to help us
celebrate the full launch of iOS Test-Driven Development by Tutorials later in 2019!

The best way to get update notifications is to sign up for our monthly newsletter. This
includes a list of the tutorials that came out on raywenderlich.com that month, any
important news like book updates or new books, and a list of our favorite development
links for that month. You can sign up here:

• www.raywenderlich.com/newsletter

raywenderlich.com 12

IIntroduction

Welcome to iOS Test-Driven Development by Tutorials! This book will teach you all about
test-driven development (TDD) — the art of turning requirements into tests and tests
into production code.

You'll get hands-on TDD experience by creating three real-world apps in this book:

By the end of this book, you'll have a strong understanding of TDD and be able to apply
this knowledge to your own apps.

raywenderlich.com 13

About this book
We wrote this book with beginner-to-intermediate developers in mind. The only
requirements for reading this book are a basic understanding of Swift and iOS
development.

If you’ve worked through our classic beginner books — the Swift Apprentice https://
store.raywenderlich.com/products/swift-apprentice and the iOS Apprentice https://
store.raywenderlich.com/products/ios-apprentice — or have similar development
experience, you’re ready to read this book. You'll also benefit from a working knowledge
of design patterns — such as working through Design Patterns by Tutorials https://
store.raywenderlich.com/products/design-patterns-by-tutorials — but this isn't strictly
required.

As you work through this book, you’ll progress from beginner topics to more advanced
concepts.

Section introductions
I. Introduction
This is a high-level introduction to TDD, explaining why it's important and how it will
help you.

You'll also be introduced to the TDD Cycle in this section. This is the foundation for
how TDD works and guiding principles on the best way to apply it.

II. Beginning TDD
You'll learn the basics of TDD in this section, including XCTest, test expressions,
mocks and test expectations.

The chapters in this section build an example app called Fitness. This is the premier
fitness-coaching app based on the "Loch Ness" workout: You'll have to outrun, outswim
and outclimb Nessie (or get eaten)!

iOS Test-Driven Development by Tutorials Introduction

raywenderlich.com 14

III. TDD with Networking
This section will teach you about TDD and networking, including writing tests for
RESTful networking calls, authentication and even WebSockets.

You'll create an app called Dog Patch throughout this section. Dog Patch lets dog
lovers everywhere connect with kind breeders to help get the dog of their dreams. You'll
be able to search, view and chat in real time.

IV. TDD in Legacy Apps
This section will teach you how to start TDD in a legacy app that wasn't created with
TDD and doesn't have sufficient test coverage.

You'll update an app called MyBiz throughout this section. MyBiz is an enterprise
resource planning (ERP) app for running a business, including employee management
and scheduling, time tracking, payroll and inventory management.

How to read this book
If you're new to unit testing or TDD, you should read this book from cover to cover.

If you already have some experience with TDD, you can skip from chapter to chapter or
use this book as a reference. You'll always be provided with a starter project in each
chapter to get up and running quickly.

What's the absolute best way to read this book? Just start reading wherever makes sense
to you!

iOS Test-Driven Development by Tutorials Introduction

raywenderlich.com 15

WWhat You Need

To follow along with this book, you'll need the following:

• Xcode 10 or later. Xcode is the main development tool for writing code in Swift. You
need Xcode 10 at a minimum, since that version includes Swift 4.2. You can
download the latest version of Xcode for free from the Mac App Store, here: apple.co/
1FLn51R.

If you haven't installed the latest version of Xcode, be sure to do that before continuing
with the book. The code covered in this book depends on Swift 4.2 and Xcode 10 — the
code may not compile if you try to work with an older version.

raywenderlich.com 16

LBook License

By purchasing iOS Test-Driven Development by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in iOS Test-Driven Development
by Tutorials in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
iOS Test-Driven Development by Tutorials in as many apps as you want, but must
include this attribution line somewhere inside your app: “Artwork/images/designs:
from iOS Test-Driven Development by Tutorials, available at www.raywenderlich.com”.

• The source code included in iOS Test-Driven Development by Tutorials is for your
personal use only. You are NOT allowed to distribute or sell the source code in iOS
Test-Driven Development by Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action or contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 17

BBook Source Code &
Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
https://store.raywenderlich.com/products/ios-test-driven-development.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 18

Section I: Hello, TDD!

This section is a high-level introduction to test-driven development, how it works and
why you should use it. You'll also learn about the TDD cycle in this chapter, and you'll
use this throughout the rest of the book.

• Chapter 1: What Is TDD?: Test-driven development, or TDD, is an iterative way to
develop software by iteratively making many small changes backed by tests.

• Chapter 2: The TDD Cycle: In the previous chapter, you learned that test-driven
development boils down to a simple process called the TDD Cycle. It has four steps
and is also called the Red-Green-Refactor Cycle.

raywenderlich.com 19

1Chapter 1: What Is TDD?
By Joshua Greene

Test-driven development, or TDD, is an iterative way to develop software by iteratively
making many small changes backed by tests.

It has four steps:

1. Write a failing test

2. Make the test pass

3. Refactor

4. Repeat

This is called the TDD Cycle. It ensures you thoroughly and accurately test your code
because your development is... driven by testing!

raywenderlich.com 20

By writing a test followed by the production code to make it pass, you ensure your
production code is testable and that it meets all of your requirements during
development. As an added bonus, your tests act as documentation for your production
code, describing how it works.

On the surface, the TDD process seems pretty simple. Well, I’m sorry to tell you that...
wait, it actually is really simple!

Sure, there are special circumstances for how to implement this cycle at times, but
that’s where this book comes in! Once you get the hang of this process, it will become
second nature. You’ll learn a lot more about this process in the next chapter.

Why should you use TDD?
TDD is the single best way to ensure your software works and continues to work well
into the future — well, that’s quite a bold claim! Let me explain.

It’s hard to argue against testing your code, but you don’t have to follow TDD to do this.
For example, you could write all of your production code and then write all of your
tests. Alternatively, you could skip writing tests altogether and, instead, manually test
your code. Why is TDD better than these options?

Good tests ensure your app works as expected. However, not all tests are "good." Writing
tests for the sake of having tests isn’t a worthwhile exercise. Rather, good tests are
failable, repeatable, quick to run and maintainable.

TDD provides methodology that ensures your tests are good:

• The first step is to write a failing test. By definition, this proves the test is failable.
Tests that can’t fail aren’t very useful. Rather, they waste valuable CPU time.

• Before you’re allowed to write a new test, all other previous tests must pass. This
ensures that your tests are repeatable: You don’t just run the single test you’re
working on, but rather, you constantly run all of the tests.

• By frequently running every test, you’re incentivized to make sure tests are quick to
run. All of your tests should take seconds to run — preferably, one second or less.

A single test that takes a hundred milliseconds is too slow: After only ten tests, your
entire test suite will take one second to run. After fifty tests, it takes five seconds.
After several seconds, no one runs all of the tests because it takes too long.

iOS Test-Driven Development by Tutorials Chapter 1: What Is TDD?

raywenderlich.com 21

• When you refactor, you update both your production and test code. This ensures
your tests are maintained: You’re constantly keeping them up-to-date.

• By iteratively writing production code and tests in parallel, you ensure your code is
testable. If you were to write tests after completing the code, it’s likely the
production code would require quite a bit of refactoring to fully unit test.

Nonetheless, the devil’s advocate in you may say, "But you could write good tests
without following TDD." You definitely could, but you may struggle to succeed. You can
definitely do it in the short term, but it’s much more difficult in the long term. You’d
need to be disciplined about writing good tests. Before long, you’d likely create some
sort of system to ensure that you’re writing good tests... you’d likely find yourself doing
a variant of TDD!

What should you test?
Better test coverage doesn’t always mean your app is better tested. There are things you
should test and others you shouldn’t. Here are the do’s and don’ts:

• Do write tests for code that can’t be caught in an automated fashion otherwise. This
includes code in your classes’ methods, custom getters and setters and most
anything else you write yourself.

• Don’t write tests for generated code. For example, it’s not worthwhile to write tests
for generated getters and setters. Swift does this very well, and you can trust it
works.

• Don’t write tests for issues that can be caught by the compiler. If the tested issue
would generate an error or warning, Xcode will catch it for you.

• Don’t write tests for dependency code, such as first- or third-party frameworks your
app uses. The framework authors are responsible for writing those tests. For
example, you shouldn’t write tests for UIKit classes because UIKit developers are
responsible for writing these. However, you should write tests for your custom
subclasses thereof: This is your custom code, so you’re responsible for writing the
tests.

An exception to the above is writing tests in order to determine how a framework
works. This can be very useful to do. However, you don’t need to keep these tests long
term. Rather, you should delete them afterwards.

Another exception is "sanity tests" that prove third-party code works as you expect.

iOS Test-Driven Development by Tutorials Chapter 1: What Is TDD?

raywenderlich.com 22

These sort of tests are useful if the library isn’t fully stable, or you don’t trust it entirely.
In either case, you should really scrutinize whether or not you want to use the library at
all — is there a better option that’s more trustworthy?

But TDD takes too long!
The most common complaint about TDD is that it takes too long — usually followed by
exclamation point(s) or sad-face emojis.

Fortunately, TDD gets faster once you get used to doing it. However, the truth is that
compared to not writing any tests at all, you’re writing more code ultimately. It likely
will take a little more time to develop initially.

That said, there’s a really big hole in this argument: The real time cost of development
isn’t just writing the initial, first-version production code. It also includes adding new
features over time, modifying existing code, fixing bugs and more. In the long run,
following TDD takes much less time than not following it because it yields more
maintainable code with fewer bugs.

There’s also another cost to consider: customer impact of bugs in production. The
longer an issue goes undiscovered, the more expensive it is. It can result in negative
reviews, lost trust and lost revenue.

If an issue is caught during development, it’s easier to debug and quicker to fix. If you
discovered it weeks later, you’d spend substantially more time getting up to speed on
the code and tracking down the root cause. By following TDD, your tests ultimately
help safeguard and protect your app against bugs.

When should you use TDD?
TDD can be used during any point in a product’s life cycle: new development, legacy
apps and everything in between. However, how and where you start TDD does depend
on the state of your project. This book will cover how to approach many of these
situations!

However, an important question to ask: Should your project use TDD at all?

As a general rule of thumb, if your app is going to last more than a few months, will
have multiple releases and/or require complex logic, you’re likely better off using TDD
than not.

iOS Test-Driven Development by Tutorials Chapter 1: What Is TDD?

raywenderlich.com 23

If you’re creating an app for a hackathon, test project or something else that’s meant to
be temporary, you should evaluate whether TDD makes sense. If there’s really only
going to be one version of the app, you might not follow TDD or might only do TDD for
critical or difficult parts.

Ultimately, TDD is a tool, and it’s up to you to decide when it’s best to use it!

Key points
In this chapter, you learned what TDD is, why you should use it, what to test and when
to use it. Here are the key points to remember:

• TDD offers a consistent method to write good tests.

• Goods tests are failable, repeatable, quick to run and maintainable.

• Write tests for code that you’re responsible for maintaining. Don’t test code that’s
automatically generated or code within dependencies.

• The real cost of development includes initial coding time, adding new features over
time, modifying existing code, fixing bugs and more. TDD reduces maintenance costs
and quantity of bugs, often making it the most cost effective approach.

• TDD is most useful for long-term projects lasting more than a few months or having
multiple releases.

iOS Test-Driven Development by Tutorials Chapter 1: What Is TDD?

raywenderlich.com 24

2Chapter 2: The TDD Cycle
By Joshua Greene

In the previous chapter, you learned that test-driven development boils down to a
simple process called the TDD Cycle. It has four steps that are often "color coded" as
follows:

1. Red: Write a failing test, before writing any app code.

2. Green: Write the bare minimum code to make the test pass.

3. Refactor: Clean up both your app and test code.

4. Repeat: Do this cycle again until all features are implemented.

This is also called the Red-Green-Refactor Cycle.

raywenderlich.com 25

Why is it color coded? This corresponds to the colors shown in most code editors,
including Xcode:

• Failing tests are indicated with a red X.

• Passing tests are shown with a green checkmark.

This chapter provides an introduction to the TDD Cycle, which you'll use throughout
the rest of this book. However, it doesn't go into detail about test expressions
(XCTAssert, et al.) or how to set up a test target. Rather, these topics are covered in later
chapters. For now, focus on learning the TDD Cycle, and you'll learn the rest as you go
along.

It's best to learn by doing, so let's jump straight into code!

Getting started
In this chapter, you'll create a simple version of a cash register to learn the TDD Cycle.
To keep the focus on TDD instead of Xcode setup, you'll use a playground. Open
CashRegister.playground in the starter directory, then open the CashRegister page.
You'll see this page has two imports, but otherwise it's empty.

Naturally, you'll begin with the first step in the TDD Cycle: red.

Red: Write a failing test
Before you write any production code, you must first write a failing test. To do so, you
need to create a test class. Add the following below the import statements:

class CashRegisterTests: XCTestCase {

}

Above, you declare CashRegisterTests as a subclass of XCTestCase, which is part of the
XCTest framework. You'll almost always subclass XCTestCase to create your test classes.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 26

Next, add the following at the end of the playground:

CashRegisterTests.defaultTestSuite.run()

This tells the playground to run the test methods defined within CashRegisterTests.
However, you haven't actually written any tests yet. Add the following within
CashRegisterTests, which should cause a compiler error:

// 1
func testInit_createsCashRegister() {
 // 2
 XCTAssertNotNil(CashRegister())
}

Here's a line-by-line explanation:

1. Tests are named per this convention throughout the book:

• XCTest: Requires all test methods begin with test to be run.

• test: Followed by the name of the method being tested. Here, this is init. There's
then an underscore to separate it from the next part.

• Optionally, if special set up is required, this comes next. This test doesn't include
this. If provided, this likewise is followed by an underscore to separate it from the
last part.

• Lastly, this is followed by the expected outcome or result. Here this is
createsCashRegister.

This convention results in test names that are easy to read and provide meaningful
context. If a test ever fails, Xcode will tell you the name of the test's class and method.
By naming your tests this way, you can quickly determine the problem.

2. You then attempt to instantiate a new instance of CashRegister, which you pass
into XCTAssertNil. This is a test expression that asserts whatever passed to it is not
nil. If it actually is nil, the test will be marked as failed.

However, this last line doesn't compile! This is because you haven't created a class for
CashRegister just yet... how are you suppose to advance the TDD Cycle, then?
Fortunately, there's a rule in TDD for this: Compilation failures count as test failures.
So, you've completed the red step in the TDD Cycle and can move onto the next step:
green.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 27

Green: Make the test pass
You're only allowed to write the bare minimum code to make a test pass. If you write
more code than this, your tests will fall behind your app code. What's the bare
minimum code you can write to fix this compilation error? Define CashRegister!

Add the following directly above class CashRegisterTests:

class CashRegister {

}

Press Play to execute the playground, and you should see output like this in the
console:

Test Suite 'CashRegisterTests' started at
 2019-01-02 18:25:57.661
Test Case '-[__lldb_expr_3.CashRegisterTests
 testInit_createsCashRegister]' started.
Test Case '-[__lldb_expr_3.CashRegisterTests
 testInit_createsCashRegister]' passed (0.130 seconds).
Test Suite 'CashRegisterTests' passed at
 2019-01-02 18:25:57.792.
 Executed 1 test, with 0 failures (0 unexpected) in 0.130
 (0.131) seconds

Awesome, you've made the test pass! The next step is to refactor your code.

Refactor: Clean up your code
You'll clean up both your app code and test code in the refactor step. By doing so, you
constantly maintain and improve your code. Here are a few things you might look to
refactor:

• Duplicate logic: Can you pull out any properties, methods or classes to eliminate
duplication?

• Comments: Your comments should explain why something is done, not how it's
done. Try to eliminate comments that explain how code works. The how should be
conveyed by breaking up large methods into several well-named methods, renaming
properties and methods to be more clear or sometimes simply structuring your code
better.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 28

• Code smells: Sometimes a particular block of code simply seems wrong. Trust your
gut and try to eliminate these "code smells." For example, you might have logic that's
making too many assumptions, uses hardcoded strings or has other issues. The tricks
from above apply here, too: Pulling out methods and classes, renaming and
restructuring code can go a long way to fixing these problems.

Right now, CashRegister and CashRegisterTests don't have much logic in them, and
there isn't anything to refactor. So, you're done with this step — that was easy! The
most important step in the TDD Cycle happens next: repeat.

Repeat: Do it again
Use TDD throughout your app's development to get the most benefit from it. You'll
accomplish a little bit in each TDD Cycle, and you'll build up app code backed by tests.
Once you've completed all of your app's features, you'll have a working, well-tested
system.

You've completed your first TDD Cycle, and you now have a class that can be
instantiated: CashRegister. However, there's still more functionality to add for this
class to be useful. Here's your to-do list:

• Write an initializer that accepts availableFunds.

• Write a method for addItem that adds to a transaction.

• Write a method for acceptPayment.

You've got this!

TDDing init(availableFunds:)
Just like every TDD cycle, you first need to write a failing test. Add the following below
the previous test, which should generate a compiler error:

func testInitAvailableFunds_setsAvailableFunds() {
 // given
 let availableFunds = Decimal(100)

 // when
 let sut = CashRegister(availableFunds: availableFunds)

 // then
 XCTAssertEqual(sut.availableFunds, availableFunds)
}

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 29

This test is more complex than the first, so you've broken it into three parts: given,
when and then. It's useful to think of unit tests in this fashion:

• Given a certain condition...

• When a certain action happens...

• Then an expected result occurs.

In this case, you're given availableFunds of Decimal(100). When you create the sut via
init(availableFunds:), then you expect sut.availableFunds to equal availableFunds.

What's the name sut about? sut stands for system under test. It's a very common
name used in TDD that represents whatever you're testing. This name is used
throughout this book for this very purpose.

This code doesn't compile yet because you haven't defined init(availableFunds:).
Compilation failures are treated as test failures, so you've completed the red step.

You next need to get this to pass. Add the following code inside CashRegister:

var availableFunds: Decimal

init(availableFunds: Decimal = 0) {
 self.availableFunds = availableFunds
}

CashRegister can now be initialized with availableFunds.

Press Play to execute all of the tests, and you should see output like this in the console:

Test Suite 'CashRegisterTests' started at
 2019-01-02 18:29:25.888
Test Case '-[__lldb_expr_7.CashRegisterTests
 testInit_createsCashRegister]' started.
Test Case '-[__lldb_expr_7.CashRegisterTests
 testInit_createsCashRegister]' passed (0.129 seconds).
Test Case '-[__lldb_expr_7.CashRegisterTests
 testInitAvailableFunds_setsAvailableFunds]' started.
Test Case '-[__lldb_expr_7.CashRegisterTests
 testInitAvailableFunds_setsAvailableFunds]' passed
 (0.004 seconds).
Test Suite 'CashRegisterTests' passed at
 2019-01-02 18:29:26.022.
 Executed 2 tests, with 0 failures (0 unexpected) in 0.133
 (0.134) seconds

This shows both tests pass, so you've completed the green step.

You next need to clean up both your app and test code. First, take a look at the test
code.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 30

testInit_createsCashRegister is now obsolete: There isn't an init() method
anymore. Rather, this test is actually calling init(availableFunds:) using the default
parameter value of 0 for availableFunds.

Delete testInit_createsCashRegister entirely.

What about the app code? Does it make sense to have a default parameter value of 0 for
availableFunds? This was useful to get both testInit and testInitAvailableFunds to
compile, but should this class actually have this?

Ultimately, this is a design decision:

• If you choose to keep the default parameter, you might consider adding a test for
testInit_setsDefaultAvailableFunds, in which you'd verify availableFunds is set to
the expected default value.

• Alternatively, you might choose to remove the default parameter, if you decide it
doesn't make sense to have this.

For this example, assume that it doesn't make sense to have a default parameter. So,
delete the default parameter value of 0. Your initializer should then look like this:

init(availableFunds: Decimal) {

Press Play to execute your remaining test, and you'll see it passes.

The fact that testInitAvailableFunds still passes after refactoring
init(availableFunds:) gives you a sense of security that your changes didn't break
existing functionality. This added confidence in refactoring is a major benefit of TDD!

You've now completed the refactor step, and you're ready to move onto the next TDD
Cycle.

TDDing addItem
You'll next TDD addItem to add an item's cost to a transaction. As always, you first need
to write a failing test. Add the following below the previous test, which should generate
compiler errors:

func testAddItem_oneItem_addsCostToTransactionTotal() {
 // given
 let availableFunds = Decimal(100)
 let sut = CashRegister(availableFunds: availableFunds)

 let itemCost = Decimal(42)

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 31

 // when
 sut.addItem(itemCost)

 // then
 XCTAssertEqual(sut.transactionTotal, itemCost)
}

This test doesn't compile because you haven't defined addItem(_:) or
transactionTotal yet.

To fix this, add the following property right after availableFunds within CashRegister:

var transactionTotal: Decimal = 0

Then, add this code right after init(availableFunds:):

func addItem(_ cost: Decimal) {
 transactionTotal = cost
}

Here, you set transactionTotal to the passed-in cost. But wait — that's not exactly
right, or is it?

Remember how you're supposed to write the bare minimum code to get a test to pass?
In this case, the bare minimum code required to add a single transaction is setting
transactionTotal to the passed-in cost of the item, not adding it! Thereby, this is what
you did.

Press Play, and you should see console output indicating all tests have passed. This is
technically correct — for one item. Just because you've completed a single TDD Cycle
doesn't mean that you're done. Rather, you must implement all of your app's features
before you're done!

In this case, the missing "feature" is the ability to add multiple items to a transaction.
Before you do this, you need to finish the current TDD cycle by refactoring what you've
written.

Start by looking over your test code. Is there any duplication? There sure is! Check out
these lines:

let availableFunds = Decimal(100)
let sut = CashRegister(availableFunds: availableFunds)

This code is common to both testInitAvailableFunds and testAddItem. To eliminate
this duplication, you'll create instance variables within CashRegisterTests.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 32

Add the following right after the opening curly brace for CashRegisterTests:

var availableFunds: Decimal!
var sut: CashRegister!

Just like production code, you're free to define whatever properties, methods and
classes you need to refactor your test code. There's even a pair of special methods to
"set up" and "tear down" your tests, conveniently named setUp() and tearDown().

setUp() is called right before each test method is run, and tearDown() is called right
after each test method finishes.

These methods are the perfect place to move the duplicated logic. Add the following
below your test properties:

// 1
override func setUp() {
 super.setUp()
 availableFunds = 100
 sut = CashRegister(availableFunds: availableFunds)
}

// 2
override func tearDown() {
 availableFunds = nil
 sut = nil
 super.tearDown()
}

Here's what this does:

1. Within setup(), you first call super.setUp() to give the superclass a chance to do
its setup. You then set availableFunds and sut.

2. Within tearDown(), you do the opposite. You first set availableFunds and sut to
nil, and you lastly call super.tearDown().

You should always nil any properties within tearDown() that you set within setUp().
This is due to the way the XCTest framework works: It instantiates each XCTestCase
subclass within your test target, and it doesn't release them until all of the test cases
have run. Thereby, if you have a many test cases, and you don't set their properties to
nil within tearDown, you'll hold onto the properties' memory longer than you need.
Given enough test cases, this can even cause memory and performance issues when
running your tests.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 33

You can now use these instance properties to get rid of the duplicated logic in the test
methods. Replace the contents of testInitAvailableFunds with the following:

XCTAssertEqual(sut.availableFunds, availableFunds)

Since there's now a single line in this method, it's very easy to read, and this removes
the need for the given and when comments.

Next, replace the contents of testAddItem with the following:

// given
let itemCost = Decimal(42)

// when
sut.addItem(itemCost)

// then
XCTAssertEqual(sut.transactionTotal, itemCost)

Ah, that's much simpler too! By moving the initialization code into setup(), you can
clearly see this method is simply exercising addItem(_:). Press Play to confirm all tests
have passed.

This completes the refactoring work, so you're now ready to move onto the next TDD
Cycle.

Adding two items
testAddItem_oneItem confirms addItem() passes for one item, but it won't pass for
two... or will it? A new test can definitively prove this.

Add the following test right after the previous one:

func testAddItem_twoItems_addsCostsToTransactionTotal() {
 // given
 let itemCost = Decimal(42)
 let itemCost2 = Decimal(20)
 let expectedTotal = itemCost + itemCost2

 // when
 sut.addItem(itemCost)
 sut.addItem(itemCost2)

 // then
 XCTAssertEqual(sut.transactionTotal, expectedTotal)
}

This test calls addItem() twice, and it validates whether the transactionTotal
accumulates.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 34

Press Play, and you'll see the console output indicates the test failed:

Test Case '-[__lldb_expr_14.CashRegisterTests
 testAddItem_twoItems_addsCostsToTransactionTotal]' started.
CashRegister.playground:89: error:
 -[__lldb_expr_14.CashRegisterTests
 testAddItem_twoItems_addsCostsToTransactionTotal] :
 XCTAssertEqual failed: ("20") is not equal to ("62") -
Test Case '-[__lldb_expr_14.CashRegisterTests
 testAddItem_twoItems_addsCostsToTransactionTotal]'
 failed (0.008 seconds).
...
Test Suite 'CashRegisterTests' failed at
 2019-01-02 18:57:04.208.
 Executed 3 tests, with 1 failure (0 unexpected) in 0.141
 (0.142) seconds

You next need to get this test to pass. To do so, replace the contents of addItem(_:)
with this:

transactionTotal += cost

Here, you've replaced the = operator with += to add to the transactionTotal instead of
set it. Press the Play button again, and you'll now see that all tests pass.

You lastly need to refactor your code. Notice any duplication? How about the itemCost
variable used in both addItem tests? Yep, you should pull this into an instance property.

Add the following below the instance property for availableFunds within
CashRegisterTests:

var itemCost: Decimal!

Then, add this line right after setting availableFunds within setUp():

itemCost = 42

Since you set this property within setUp(), you also must nil it within tearDown. Add
the following right after setting availableFunds to nil within tearDown():

itemCost = nil

Next, delete these two lines from testAddItem_oneItem:

// given
let itemCost = Decimal(42)

Likewise, delete this line from testAddItem_twoItems:

let itemCost = Decimal(42)

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 35

When you're done, the only itemCost to remain should be the instance property defined
on CashRegisterTests.

See any other duplication within CashRegisterTests? What about this line?

sut.addItem(itemCost)

This is common to both testAddItem_oneItem and testAddItem_twoItems. Should you
try to eliminate this duplication?

Remember how setUp() is called before every test method is run? You already have one
test method that doesn't require this call, testInitAvailableFunds.

As you continue to TDD CashRegister, you'll likely write other methods that won't need
to call addItem(_:). Consequently, you shouldn't move this call into setUp().

When to refactor code to eliminate duplication is more an art than an exact science. Do
what you think is best while you're going along, but don't be afraid to change your
decision later if needed!

Challenge
CashRegister is off to a great start! However, there's still more work to do. Specifically,
you need a method to accept payment. To keep it simple, you'll only accept cash
payments — no credit cards or IOUs allowed!

Your challenge is to TDD this new method, acceptCashPayment(_ cash:).

Try to solve this yourself first without help. If you get stuck, see below for hints.

For this challenge, you need to create two test methods within CashRegisterTests.

First, create a test method called
testAcceptCashPayment_subtractsPaymentFromTransactionTotal. Within this, do the
following:

• Call sut.addItem(_:) to set up a "transaction in progress."

• Call sut.acceptCashPayment(_:) to accept payment.

• Assert transactionTotal has the payment subtracted from it.

Then, implement acceptCashPayment(_:) within CashRegister to make the test pass,
and refactor as needed.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 36

Create a second test method called
testAcceptCashPayment_addsPaymentToAvailableFunds. Therein, do the following:

• Call sut.addItem(_:) to set up a current transaction.

• Call sut.acceptCashPayment(_:) to accept payment.

• Assert the availableFunds has the payment added to it.

Then, update acceptCashPayment(_:) to make this test pass, and refactor as needed.

Key points
You learned about the TDD Cycle in this chapter. This has four steps:

1. Red: Write a failing test.

2. Green: Make the test pass.

3. Refactor: Clean up both your app and test code.

4. Repeat: Do it again until all of your features are implemented.

Xcode playgrounds are a great way to learn new concepts, just like you learned the TDD
Cycle in this chapter. In real-world development, however, you typically create unit test
targets within your iOS projects, instead of using playgrounds. Fortunately, TDD works
even better with apps than playgrounds!

Continue onto the next section to learn about using TDD in iOS apps.

iOS Test-Driven Development by Tutorials Chapter 2: The TDD Cycle

raywenderlich.com 37

Section II: Beginning TDD

This section will teach you the basics of test-driven development. You'll learn about
setting up your app for TDD, test expressions, dependency injection, mocks and test
expectations.

Along the way, you'll build a fitness app to learn the basics of TDD through hands-on
practice.

• Chapter 3: TDD App Setup: The goal of this chapter is to give you a feel for how
Xcode testing works by creating a test target with a few tests. You'll do this while
learning the key concepts of TDD.

• Chapter 4: Test Expressions: This chapter covers how to use the XCTAssert
functions. These are the primary actors of the test infrastructure. Next, you'll learn
how to use the host application to drive view controller unit testing. Then, you'll go
through gathering code coverage to verify the minimum amount of testing. Finally,
you'll use the test debugger to find and fix test errors.

• Chapter 5: Test Expectations: In the previous chapters you built out the app's state
based upon what the user can do with the Start button. The main part of the app
relies on responding to changes as the user moves around and records steps. These
actions create events outside the program's control. XCTestExpectation is the tool
for testing things that happen outside the direct flow.

• Chapter 6: Dependency Injection & Mocks: In this chapter you'll learn how to use
mocks to test code that depends on system or external services without needing to
call services: They may not be available, usable or reliable. These techniques allow
you to test error conditions like a failed save and to isolate logic from SDKs like
CoreMotion and HealthKit.

raywenderlich.com 38

3Chapter 3: Driving TDD
By Michael Katz

By now, you should be either sold on Test-Driven Development (TDD) or at least
curious. Following the TDD methodology helps you write clean, concise and correct
code. This chapter will guide you through its fundamentals.

The goal of this chapter is to give you a feel for how Xcode testing works by creating a
test target with a few tests. You'll do this while learning the key concepts of TDD.

By the end of the chapter, you'll be able to:

• Create a test target and run unit tests.

• Write unit tests that verify data and state.

About the FitNess app
In this book section, you'll build up a fun step-tracking app: FitNess. FitNess is the
premier fitness-coaching app based on the “Loch Ness” workout. Users have to outrun,
outswim or outclimb Nessie, the fitness monster. The goal of the app is to motivate user
movement by having them outpace Nessie. If they fail, their avatar gets eaten.

Start with the starter project for Chapter 3. This is a shell app. It comes with some
things already wired up to save you some busy work. It's mostly bare-bones since the
goal is to lead development with writing tests. If you build and run, the app won't do
anything.

raywenderlich.com 39

Your first test
First things first: You can't run any tests without a test target. A test target is a binary
that contains the test code, and it's executed during the test phase. It's built alongside
the app, but is not included in the app bundle.

This means your test code can contain code that doesn't ship to your users. Just because
your users don't see this code isn't an excuse to write lower-quality code.

The TDD philosophy treats tests as first-class code, meaning they should fit the same
standards as your production code in terms of readability, naming, error handling and
coding conventions.

Adding a test target
First, create a test target. Select the FitNess project in the Project navigator to show the
the project editor. Click the + button at the bottom of the targets list to add a new
target.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 40

Scroll down to the Test section and select iOS Unit Testing Bundle. Click Next.

Did you notice the other bundle — iOS UI Testing Bundle? This is another type of
testing. It uses automation scripting to verify views and app state. This type of testing
is not necessary for adherence to TDD methodology, and is outside the scope of this
book.

On the next screen, double check the Product Name is FitNessTests and the Target to
be Tested is FitNess. Then click Finish.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 41

Voila! You now have a FitNessTests target. Xcode will have also added a FitNessTests
group in the Project navigator with a FitNessTest.swift file and an Info.plist for the
target.

Figuring out what to test
The unit test target template comes with a unit test class: FitNessTests. Uselessly, it
doesn't actually test anything. Delete the FitNessTests.swift file.

Right now, the app does nothing since there is no business logic. There's only one
button and users expect tapping Start will start the activity. Therefore, you should start
with... Start.

The TDD process requires writing a test first. This means you have to determine the
smallest unit of functionality. This unit is where to start — the smallest thing that does
something.

The App Model directory contains an AppState enum, which, not surprisingly,
represents the different states the app can be in. The AppModel class holds the
knowledge of which state the app is currently in.

The minimum functionality to start the app is to have the Start button put the app into
a started, or in-progress, state. There are two statements that can be made to support
this goal:

1. The app should start off in the .notStarted state. This will allow the UI to render
the welcome messaging.

2. When the user taps the Start button, the app should move into the .inProgress
state so the app can start tracking user activity and display updates.

The statements are actually assertions and what you'll use to define test cases.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 42

Adding a test class
Right-click on FitNessTests in the project navigator. Select New File. In the iOS tab,
select Unit Test Case Class and click Next.

Name the class AppModelTests. A good naming convention takes the name of the file
or class you're testing and appends the suffix: Tests. In this case, you're writing tests for
AppModel. Click Next.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 43

Make sure the group is FitNessTests and only the eponymous target is checked. Click
Create. If Xcode asks to create an Objective-C bridging header, click Don't Create —
there's no Objective-C in this project.

You now have a fresh test class to start adding test cases. Delete the template methods
testExample() and testPerformanceExample(), and ignore setUp() and tearDown() for
now.

Red-Green-Refactor
The name of the game in TDD is red, green, refactor. This means iteratively writing
tests in this fashion:

1. Write a test that fails (red).

2. Write the minimum amount of code so the test passes (green).

3. Clean up test(s) and code as needed (refactor).

4. Repeat the process until all the logic cases are covered.

Writing a red test
Add your first failing-to-compile test to the class:

func testAppModel_whenInitialized_isInNotStartedState() {
 let sut = AppModel()
 let initialState = sut.appState
 XCTAssertEqual(initialState, AppState.notStarted)
}

This method creates an app model and gets its appState. The third line of the test
actually performs the assertion that the state matches the expected value. More on that
in a little bit.

Next, run the test.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 44

Xcode provides several way of running a test:

• You can click the diamond next to an individual test in the line number bar. This
runs just that test.

• You can click the diamond next to the class definition. This runs all the tests in the
file.

• You can click the Play button at the right of a test or test class in the Test navigator.
This will run an individual test, a whole test file, or all the tests in a test target.

• You can use the Product ▸ Test menu action (Command + U). This runs all the tests
in the scheme. Right now, there is one test target, so it would just run all the tests in
FitNessTests.

• You can press Control + Option + Commanda + U. This will run the test function if
the editor cursor is within a test function, or the whole test file if the cursor is in a
test file but outside a specific test function.

That's a lot of ways to run a test! Choose whichever one you prefer to run your one test.

Before the test executes, you should receive two compilation error, which means this is
a failing test! Congratulations!

A failing test is the first step of TDD! Remember that red is not just good, but necessary
at this stage. If the test were to pass without any code written, then it's not a
worthwhile test.

Making the test green
The first issue with this test is the test code doesn't know what the heck an AppModel is.
Add this statement to the top of the file:

import FitNess

In Xcode, although application targets aren't frameworks, they are modules, and test
targets have the ability to import them as if it were a framework. Like frameworks, they
have to be imported in each Swift file, so the compiler is aware of what the app
contains.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 45

If the compile error unresolved identifier 'AppModel' doesn't resolve itself, you can
make Xcode rebuild the test target via the Product ▸ Build For ▸ Testing menu, or the
default keyboard shortcut Shift + Command + U.

You're not done fixing compiler errors yet. Now, it should be complaining about Value
of type 'AppModel' has no member 'appState'.

Go to AppModel.swift and add this variable to the class directly above init():

public var appState: AppState = .notStarted

Run the test again. You'll get a green check mark next to the test since it passes. Notice
how the only application code you wrote was to make that one pass.

Congrats, you now have a green test! This is a trivial test: You're testing the default
state of an enum variable as the result of an initializer. That means in this case there's
nothing to refactor. You're done.

Writing a more interesting test
The previous test asserted the app starts in a not started state. Next, assert the
application can go from not started to in-progress.

Add the following test to the end of your class before the closing bracket:

func testAppModel_whenStarted_isInInProgressState() {
 // 1 given app in not started
 let sut = AppModel()

 // 2 when started
 sut.start()

 // 3 then it is in inProgress
 let observedState = sut.appState
 XCTAssertEqual(observedState, AppState.inProgress)
}

This test is broken into three parts:

1. The first line creates an AppModel. The previous test ensures the model initializes to
.notStarted.

2. The second line calls a yet-to-be created start method.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 46

3. The last two lines verify the state should then be equal to .inProgress.

Run the tests. Once again, you have a red test that doesn't compile. Next step is to fix
the compiler errors.

Open AppModel.swift and add the following method below init():

public func start() {

}

Now, the app should compile. Run the tests.

The test fails! This is obvious since start() has no code. Add the minimum code to this
method so the test passes:

appState = .inProgress

Run the tests again, and the test passes!

Note: It's straightforward that an empty start() fails the test. TDD is about
discipline, and it's good practice to strictly follow the process while learning. With
more experience, it's OK to skip the literal build and test step after getting the test
to compile. Writing the minimum amount of code so the test passes cannot be
skipped, though. It's essential to the TDD process and is what ensures adequate
coverage.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 47

Test nomenclature
Some TDD nomenclature and naming best practices were followed for these tests. Take
a look again at the second test, line-by-line:

1. func testAppModel_whenStarted_isInInProgressState() {

The test function name should describe the test. The test name shows up in the test
navigator and in test logs. With a large test suite that runs in a continuous integration
rig, you'll be able to just look at the test failures and know what the problem is. Avoid
creating tests named test1, test2, etc.

The naming scheme used here has up to four parts:

1. All tests must begin with test.

2. AppModel This says an AppModel is the system under test (sut).

3. whenStarted is the condition or state change that is the catalyst for the test.

4. isInInProgressState is the assertion about what the sut's state should be after the
when happens.

This naming convention also helps keep the test code focused to a specific condition.
Any code that doesn't flow naturally from the test name belongs in another test.

2. let sut = AppModel()

This makes the system under test explicit by naming it sut. This test is in the
AppModelTests test case subclass and this is a test on AppModel. It may be slightly
redundant, but it's nice and explicit.

3. sut.start()

This is the behavior to test. In this case, the test is covering what happens when
start() is called.

4. let observedState = sut.appState

Define a property that holds the value you observed while executing the application
code.

5. XCTAssertEqual(observedSate, AppState.inProgress)

The last part is the assertion about what happened to sut when it was started. The
stated logical assertions correspond directly in XCTest to XCTAssert functions.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 48

This division of a test method is referred to as given/when/then:

• The first part for a test is the things that are given. That is the initial state of system.

• The second part is the when, which is the action, event, or state change that acts on
the system.

• The third part, or then, is testing the expected state after the when.

TDD is a process, not a naming convention. This book uses the convention outlined
here, but you can still follow TDD on your own using whatever naming you'd like.
What's important is your write failing tests, add the code that makes the test pass, and
refactor and repeat until the application is complete.

Structure of XCTestCase subclass
XCTest is in the family of test frameworks dervied from XUnit. Like so many good
object-oriented things, XUnit comes from Smalltalk (where it was SUnit). It's an
architecture for running unit tests. The "X" is a stand-in for the programming language.
For example, in Java it's JUnit, and in Objective-C it's OCUnit. In Swift, it's just XCTest.

With XUnit, tests are methods whose name starts with test that are part of a test case
class. Test cases are grouped together into a test suite. Test runner is a program that
knows how to find test cases in the suite, run them, and gather and display results. It's
Xcode's test runner that is executed when you run the test phase of a scheme.

Each test case class has a setUp() and tearDown() method that is used to set up global
and class state before and after each test method is run. Unlike other XUnit
implementations, XCTest does not have lifecycle methods that run just once for a
whole test class or the test target.

These methods are important because there a few subtle but extremely important
gotchas:

• XCTestCase subclass lifecycles are managed outside the test execution, and any class-
level state is persisted between test methods.

• The order in which test classes and test methods are run is not explicitly defined and
cannot be relied upon.

Therefore, it's important to use setUp() and tearDown() to clean up and make sure state
is in a known position before each test.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 49

Setting up a test
Both tests need an AppModel() to test. It's common for test cases to use a common sut
object.

In AppModelTests.swift add the following variable to the top of the class:

var sut: AppModel!

This sets aside storage for an AppModel to use in the tests. It's force-unwrapped in this
case because you do not have access to the class initializer. Instead, you have to set up
variables at a later time; i.e., in the setUp() method.

Next, add the following to setUp():

super.setUp()
sut = AppModel()

Finally, remove the following:

let sut = AppModel()

In both testAppModel_whenInitialized_isInNotStartedState() and
testAppModel_whenStarted_isInInProgressState().

Build and test. The tests should both still pass.

The second test modifies the appState of sut. Without the set up code, the test ordering
could matter, because the first test asserts the initial state of sut. But now ordering
does not matter, since sut is re-instantiated each test.

Tearing down a test
A related gotcha with XCTestCases is it won't be deinitialized until all the tests are
complete. That means it's important to clean up a test's state after it's run to control
memory usage, clean up the filesystem, or otherwise put things back the way it was
found.

Add the following to tearDown():

sut = nil
super.tearDown()

So far it's a pretty simple test case, and the only persistent state is in sut, so clearing it
in tearDown is good practice. It helps ensure that new global behavior added in the
future won't affect previous tests.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 50

Your next set of tests
You've now added a little bit of application logic. But there is not yet any user-visible
functionality. You need to wire up the Start button so that it changes app state and it's
reflected to the user.

Hold up! This is test-driven development, and that means writing the test first.

Since StepCountController contains the logic for the main screen, create a new Unit
Test Case Class named StepCountControllerTests in the FitNessTests target.

Test target organization
Take a moment to think about the test target organization. As you continue to add test
cases when building out the app, they will become hard to find and maintain in one
unorganized list. Unit tests are first class code and should have the same level of
scrutiny as app code. That also means keeping them organized.

In this book, you'll use the following organization:

Test Target
 ⌊ Cases
 ⌊ Group 1
 ⌊ Tests 1
 ⌊ Tests 2
 ⌊ Group 2
 ⌊ Tests
 ⌊ Mocks
 ⌊ Helper Classes
 ⌊ Helper Extensions

• Cases: The group for the test cases, and these are organized in a parallel structure to
the app code. This makes it really easy to navigate between the app class and its
tests.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 51

• Mocks: For code that stands in for functional code, allowing for separating
functionality from implementation. For example, network requests are commonly
mocked. You'll build these in later chapters.

• Helper classes and extensions: For additional code that you'll write to make the
test code easier to write, but don't directly test or mock functionality.

Take the two classes already in the target and group them together in a group named
Cases.

Next, put AppModelTests.swift in a App Model group. Then put
StepCountControllerTests.swift in a UI Layer group.

When it's all done, your target structure should look like this:

As you add new tests, keep them organized in groups.

Using @testable import
Open StepCountControllerTests.swift.

Delete the testExample() and testPerformanceExample() stubs and delete the
comments in setUp() and tearDown().

Next, add the following class variable above setUp():

var sut: StepCountController!

If you build the test class now, you'll see the following error: use of undeclared type
'StepCountController'. This is because the class is specified as internal because it
doesn't explicitly define access control.

There are two ways to fix this error. The first is to declare StepCountController as
public. This will make that class available outside the FitNess module and usable by
the test class. However, this would violate SOLID principles by making the view
controller visible outside of the app.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 52

Fortunately, Xcode provides a way to expose data types for testing without making
them available for general use. That's through the @testable attribute.

Add the following to the top of the file, under import XCTest:

@testable import FitNess

This makes symbols that are open, public, and internal available to the test case. Note
that this attribute is only available in test targets, and will not work in application or
framework code. Now, the test can successfully build.

Next, update setUp() and tearDown() as follows:

override func setUp() {
 super.setUp()
 sut = StepCountController()
}

override func tearDown() {
 sut = nil
 super.tearDown()
}

Testing a state change
Now comes the fun part. There are two things to check when the user taps Start: First is
that the app state updates, and the second is that the UI updates. Take each one in turn.

Add the following test method below tearDown():

func testController_whenStartTapped_appIsInProgress() {
 // when
 sut.startStopPause(nil)

 // then
 let state = AppModel.instance.appState
 XCTAssertEqual(state, AppState.inProgress)
}

This tests that when the startStopPause(_:) action is called, the app state will be
inProgress.

Build and test, and you'll get a test failure. This is because startStopPause is not
implemented yet. Remember, test failures at this point are good! Open
StepCountController.swift, and add the following code to startStopPause(_:):

AppModel.instance.start()

Build and test again. Now the test passes!

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 53

Testing UI updates
UI testing with UI Automation is a whole separate kind of testing and not covered in
this book. However, there plenty of UI aspects that can, and should, be unit tested.

Add the following test case at the bottom of StepCountControllerTests:

func testController_whenStartTapped_buttonLabelIsPause() {
 // when
 sut.startStopPause(nil)

 // then
 let text = sut.startButton.title(for: .normal)
 XCTAssertEqual(text, AppState.inProgress.nextStateButtonLabel)
}

Like the previous tests, this performs the startStopPause(_:) action, but this time the
test checks that the button text updates.

You may have noticed that this test is almost exactly the same as the previous one. It
has the same initial conditions and "when" action. The important difference is that this
tests a different state change.

TDD best practice is to have one assert per test. With well-named test methods, when
the test fails, you'll know exactly where the issue is, because there is no ambiguity
between multiple conditions. You'll tackle cleaning up this kind of redundancy in later
chapters.

Another good practice illustrated here is the use of
AppState.inProgress.nextStateButtonLabel instead of hard-coding the string. By
using the app's value, the assert is testing behavior and not a specific value. If the string
changes or gets localized, the test won't have to change to accommodate that.

Since this is TDD, the test will fail if you run it. Fix the test by adding the appropriate
code to the end of startStopPause(_:):

let title = AppModel.instance.appState.nextStateButtonLabel
startButton.setTitle(title, for: .normal)

Now, build and test again for a green test. You can also build and run to try out the
functionality.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 54

Tapping the Start button turns it into a Pause button.

As you can see from the lack of any other functionality, the app still has a way to go.

Testing initial conditions
The last two tests rely on certain initial conditions for its state. For example in
testController_whenStartTapped_buttonLabelIsPause, the desire is to test for the
transition from .notStarted to .inProgress. But the test could also pass if the view
controller started out already in .inProgress.

Part of writing comprehensive unit tests is to make implicit assumptions into explicit
assertions. Insert the following code between tearDown() and
testController_whenStartTapped_appIsInProgress():

// MARK: - Initial State

func testController_whenCreated_buttonLabelIsStart() {
 let text = sut.startButton.title(for: .normal)
 XCTAssertEqual(text, AppState.notStarted.nextStateButtonLabel)
}

// MARK: - In Progress

This test checks the button's label after it's created to make sure it reflects
the .notStarted state.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 55

This also adds some MARKs to the file to help divide the test case up into sections. As the
classes get more complicated, the test files will grow quite large, so it's important to
keep them well organized.

Build and test. Hurray, another failure! Go ahead and fix the test.

Open StepCountController.swift and add the following at the end of viewDidLoad():

let title = AppState.notStarted.nextStateButtonLabel
startButton.setTitle(title, for: .normal)

The test is not quite ready yet to pass. Go back to the tests, and add at the top of
testController_whenCreated_buttonLabelIsStart() the following lines:

// given
sut.viewDidLoad()

Now, build and test and the tests will pass. The call to viewDidLoad() is needed because
the sut is not actually loaded from the xib and put into a view hierarchy, so the view
lifecycle methods do not get called. You'll see in Chapter 4, "Test Expressions," how to
get a properly loaded view controller for testing.

Refactoring
If you look at StepCountController.swift, the code that sets the button text is awfully
redundant. When building an app using TDD, after you get all the tests to pass, you can
then refactor the code to make it more efficient, readable, maintainable, etc. You can
feel free to modify the both the app code and test code at will, resting easy because you
have a complete set of tests to catch any issues if you break it.

Add the following method to the bottom of StepCountController:

private func updateButton() {
 let title = AppModel.instance.appState.nextStateButtonLabel
 startButton.setTitle(title, for: .normal)
}

This helper method will be used in multiple places in the file — whenever the button
needs to reflect a change in app state. This can be private as this is an internal
implementation detail of the class. The behavioral methods remain internal and can
still be tested.

In viewDidLoad() and startStopPause(_:) replace the two lines that update the title
with a call to updateButton().

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 56

Build and test. The tests will all still pass. Code was changed, but behavior was kept
constant. Hooray refactoring! This type of refactoring is called Extract Method. There
is a menu item to do it available in the Editor ▸ Refactor menu in Xcode.

You're still a long way from a complete app with a full test suite, but you are on your
way.

Challenge
There are a few things still to do with the two test classes made already. For example,
AppModel is public when it should really be internal. Update its access modifier and use
@testable import in AppModelTests.

And in StepCountControllerTests.swift there is a redundancy in the call to
startStopPause(_:). Extract that out into a helper when method.

Key points
• TDD is about writing tests before writing app logic.

• Use logical statements to drive what should be tested.

• Each test should fail upon its first execution. Not compiling counts as a failure.

• Use tests to guide refactoring code for readability and performance.

• Good naming conventions make it easier to navigate and find issues.

Where to go from here?
Test-driven development is pretty simple in its fundamentals: Only write app code in
order for a unit test to pass. For the rest of the book, you'll be over and over again
following the red-green-refactor model. You'll explore more interesting types of tests,
and learn how to test things that aren't obviously unit testable.

For more information specific to how Xcode works with tests and test targets see the
developer documentation. For a jam-packed overview on iOS testing try out this free
tutorial.

In the next chapter, you'll learn more about XCTAssert functions, testing view
controllers, code coverage and debugging unit tests.

iOS Test-Driven Development by Tutorials Chapter 3: Driving TDD

raywenderlich.com 57

4Chapter 4: Test
Expressions
By Michael Katz

The TDD process is straightforward, but writing good tests may not always be.
Fortunately, each year, Xcode and Swift have become more capable. This means you
have many features at your disposal that help with both writing and running tests.

This chapter covers how to use the XCTAssert functions. These are the primary actors of
the test infrastructure. Next, you'll learn how to use the host application to drive view
controller unit testing. Then, you'll go through gathering code coverage to verify the
minimum amount of testing. Finally, you'll use the test debugger to find and fix test
errors.

In this chapter, you'll learn about:

• XCTAssert functions

• UIViewController testing

• Code Coverage

• Test debugging

Note: Be sure to use the Chapter 4 starter project rather than continuing with the
Chapter 3 final project. It has a few new things added to it, including placeholders
for the code to add in this tutorial.

raywenderlich.com 58

Assert methods
In Chapter 3, "Driving TDD," you used XCTAssertEqual exclusively. There are several
other assert functions in XCTest:

• Equality: XCTAssertEqual, XCTAssertNotEqual

• Truthiness: XCTAssertTrue, XCTAssertFalse

• Nullability: XCTAssertNil, XCTAssertNotNil

• Comparison: XCTAssertLessThan, XCTAssertGreaterThan, XCTAssertLessThanOrEqual,
XCTAssertGreaterThanOrEqual

• Erroring: XCTAssertThrowsError, XCTAssertNoThrow

Ultimately, any test case can be boiled down to a conditional: (does it meet an
expectation or not) so any test assert can be re-composed into a XCTAssertTrue.

Note: With XCTest, a test is marked as passed as long as there are no failures. This
means that it does not require a positive XCTAssert assertion. A test with no
asserts will be marked as success, even though it does not test anything!

App state
In the previous chapter, you built out the functionality to move the app from a not
started state to an in-progress one. Now is a good time to think about about the whole
app lifecycle.

Here are the possible app states, as represented by the AppState enum:

• notStarted: The initial state of the app.

• inProgress: The app is actively monitoring the activity of the user and Nessie.

• paused: The app was paused by the user. Nessie is put to sleep and the activity
tracking stops.

• completed: The user has reached their activity goal before Nessie caught up.

• caught: Nessie caught up to the user and "ate" them.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 59

The following diagram shows the possible state transitions:

The solid lines represent user action on the UI, and the dotted lines happen
automatically due to time or activity events. The user-based transitions will be covered
in this chapter project, and the automatic transitions will be covered in Chapter 5: "Test
Expectations."

Asserting true and false
To build out the state transitions, you need to add some more information to the app
about the user. The completed and caught states depend on the user activity, the set
goal and Nessie's activity. To keep the architecture clean, the app state information will
be kept separate from the raw data that is tracking the user.

Add a new unit test case class to the test target, in the Data Model group. Name it
DataModelTests. Once again, and like always, remove testExample() and
testPerformanceExample().

Add the import to the top of the file:

@testable import FitNess

Next, add this class variable:

var sut: DataModel!

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 60

Now, you have a red test case class. To fix it, open DataModel.swift and add this code,
the minimum to get the test to compile:

class DataModel {

}

This creates a stub class to fix the compiler error. You'll build upon this piece-by-piece.

Next, open DataModelTests.swift and replace setUp() and tearDown() with the
following:

override func setUp() {
 super.setUp()
 sut = DataModel()
}

override func tearDown() {
 sut = nil
 super.tearDown()
}

These create a new DataModel for each test, and then cleans it up afterwards.

Add the following code to the end of DataModelTests:

// MARK: - Goal
func testModel_whenStarted_goalIsNotReached() {
 XCTAssertFalse(sut.goalReached,
 "goalReached should be false when the model is created")
}

This test introduces XCTAssertFalse, which checks that the expected value is false.
Each XCTAssert function can also take an optional String message. This message is
displayed in the standard editor and report navigator's error log when the test fails. If
you follow the test naming convention and only use one XCTAssert per test, then you
won't normally need to supply an error message. While test name will usually be
descriptive enough to inform you why a failure occurred, it can be useful to add a
message if the assertion isn't obvious.

Fix the non-compiling test by adding the following to DataModel in DataModel.swift:

var goalReached: Bool { return false }

Build and test, and the test will pass.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 61

The initial state is the boring state. Next build out the business logic. First, open
DataModelTests.swift and add the following test method below tearDown():

func testModel_whenStepsReachGoal_goalIsReached() {
 // given
 sut.goal = 1000

 // when
 sut.steps = 1000

 // then
 XCTAssertTrue(sut.goalReached)
}

This tests the logic "the goal is reached when the number of steps equals or exceeds the
goal."

Now, you need a goal and steps for it to compile. Open DataModel.swift and add the
following below goalReached:

var goal: Int?
var steps: Int = 0

goal is an optional because it should be set explicitly by the user.

Now, the test will build, but fail.

Next, replace goalReached with the following:

var goalReached: Bool {
 if let goal = goal,
 steps >= goal {
 return true
 }
 return false
}

Run the test again. It's a little tricky on the fingers, but you can use Product ▸ Perform
Action ▸ Test Again (^⌥⌘G) to re-run the last test from anywhere in Xcode. Now, the
test passes, and you've seen true and false asserts.

Pretty much every assert is just a Boolean test and can be rewritten as such. That means
you can write your own helper methods that look like XCTAssert's. These just have to
eventually evaluate to a Boolean that is passed to XCTAssertTrue().

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 62

Testing Errors
If the optional goal property isn't set, it doesn't make sense for the app to enter the
inProgress state. Therefore starting the app without a goal is an error!

Make it a real error. Open AppModel.swift, then add the throws keyword to the
function signature of start():

func start() throws {

Now, fix the compilation errors. In StepCountController.swift replace
startStopPause(_:) with the following:

@IBAction func startStopPause(_ sender: Any?) {
 do {
 try AppModel.instance.start()
 } catch {
 showNeedGoalAlert()
 }

 updateUI()
}

Once you're done, tapping the Start button without setting a goal will display an alert.
Don't worry about writing a test first for this right now.

Next, update testAppModel_whenStarted_isInInProgressState() in
AppModelTests.swift. Add a try? to the sut.start() line to quiet the error. This test
should still pass. You'll come back here after changing the logic in a bit.

Next, add the following test before
testAppModel_whenStarted_isInInProgressState():

func testModelWithNoGoal_whenStarted_throwsError() {
 XCTAssertThrowsError(try sut.start())
}

Using XCTAssertThrowsError, you can verify that an error is thrown if the model is
started in its initial state without a goal set.

This test fails since there is no error thrown yet. To fix that, open AppModel.swift and
add the following instance variable:

let dataModel = DataModel()

The app model will be the container for the data model, since the app's data is a subset
of the app's state. The data model's goal is needed to check for an error.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 63

Add this guard statement at the top of start():

guard dataModel.goal != nil else {
 throw AppError.goalNotSet
}

Now, build and test testModelWithNoGoal_whenStarted_throwsError, and the test will
pass.

Next, verify that setting a goal means that start() will not throw an error. Open
AppModelTests.swift and add the following under // MARK: - Given:

func givenGoalSet() {
 sut.dataModel.goal = 1000
}

Next, add the following test under testModelWithNoGoal_whenStarted_throwsError():

func testStart_withGoalSet_doesNotThrow() {
 // given
 givenGoalSet()

 // then
 XCTAssertNoThrow(try sut.start())
}

This test should go right to green, since the app logic was already written. Even though
no code had to be added or changed for this test, it's still TDD since the tests are
leading the way. This test just completes checking all the cases of the logical flow.

Finally, it's time to fix all the other tests that started failing due to this change.

First, add the following to the top of testAppModel_whenStarted_isInInProgressState:

// given
givenGoalSet()

Next, open StepCountControllerTests.swift and add the following under // MARK: -
Given:

func givenGoalSet() {
 AppModel.instance.dataModel.goal = 1000
}

Finally, in the two tests under // MARK: - In Progress, add the following to the top of
each:

// given
givenGoalSet()

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 64

Build and run all the tests. They all pass! Changing these existing tests to pass again
after changing the app logic is another aspect of the refactor phase of the TDD cycle.

If you build and run the app, there will now be an alert when Start is tapped and the
app won't move into the inProgress state. In the next section you will update the app
with the ability to save the goal.

View controller testing
Now that the model can have a goal set and the app state checks it, the next feature is
to expose that to the user. In the previous chapter, you wrote some unit tests for
StepCountController. Now build on that with some proper view controller unit testing.

Functional view controller testing
The important thing when testing view controllers is to not test the views and controls
directly. This is better done using UI automation tests. Here, the goal is to check the
logic and state of the view controller.

Functional testing is done by using separate methods for interacting with the UI
(callbacks, delegate methods, etc.) from logic methods (updating state).

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 65

Note: If you have experience with other app architectures, using something like
MVVM or VIPER makes it cleaner to test this type of logic. Separating a
ViewModel from the controller takes the unit-testable logic out of the controller.
For the purposes of this section, you'll continue to build the app using the
traditional Apple MVC model. This is what's covered in most of the
documentation and the traditional place to start developing iOS applications.

First, open StepCountControllerTests.swift. Next, add the following test under //
MARK - Goal:

func testDataModel_whenGoalUpdate_updatesToNewGoal() {
 // when
 sut.updateGoal(newGoal: 50)

 // then
 XCTAssertEqual(AppModel.instance.dataModel.goal, 50)
}

This test calls updateGoal(newGoal:) and verifies the data model has been properly
updated.

Be sure to also restore the state by adding the following line to tearDown() above
super.tearDown():

AppModel.instance.dataModel.goal = nil

As expected, the test will fail. Let's turn the test green. Open
StepCountController.swift and replace updateGoal(newGoal:) with the following:

func updateGoal(newGoal: Int) {
 AppModel.instance.dataModel.goal = newGoal
}

Another beautiful green test.

Using the host app
The next requirement for the app is that the central view should show the user's avatar
in the running position. The word should signifies an assertion, so you'll write one, now.
First, open StepCountControllerTests.swift. Next, add the following under // MARK: -
Chase View:

func testChaseView_whenLoaded_isNotStarted() {
 // when loaded, then
 let chaseView = sut.chaseView
 XCTAssertEqual(chaseView?.state, AppState.notStarted)
}

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 66

The test builds, but does not pass, because chaseView is nil. What gives?

Well, there is a cheat in the code to allow the existing tests to pass. Under normal app
flow, a StepCountController is created and populated by the storyboard. It's already
loaded by the time any app code gets to execute.

In this test the sut is initialized directly, which means its starting state is not the same
as when the app runs. Fortunately, there is a clean way to handle this.

When unit tests are run as part of the Test action in an app scheme, Xcode uses a Host
Application as specified in the target settings.

Open the General tab of the Project editor for the FitNessTests target. You'll see that
FitNess is selected as the Host Application.

This means that running the test action, will launch the host app on the specified
destination (simulator or device). The test runner waits for the app to load before
starting the tests, and the tests are run in the app's context.

As a consequence, you have access to the UIApplication object and the whole View
hierarchy in the tests.

In the Project navigator, under FitNessTests target, add a new group: Test Classes.
Next, create a new Swift File, ViewControllers.swift, in that group

Replace the contents of this file with the following:

import UIKit
@testable import FitNess

func loadRootViewController() -> RootViewController {
 let window = UIApplication.shared.windows[0]
 return window.rootViewController as! RootViewController
}

This function navigates the app's window to retrieve the root view controller, which is of
type RootViewController. This helper function will be used to obtain other view
controllers.

Next, create another new group, Test Extensions under FitNessTests. In that group,
add a new Swift file: RootViewController+Tests.swift.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 67

Replace the contents of this file with the following RootViewController extension:

import UIKit
@testable import FitNess

extension RootViewController {
 var stepController: StepCountController {
 return children.first { $0 is StepCountController }
 as! StepCountController
 }
}

Now, you have all the pieces to get the StepCountController from the host app.

Fixing the tests
Go back to StepCountControllerTests.swift, and replace setUp() with the following:

override func setUp() {
 super.setUp()
 let rootController = loadRootViewController()
 sut = rootController.stepController
}

Remove the call to viewDidLoad from
testController_whenCreated_buttonLabelIsStart(), as this is no longer needed.

Next, add this method under // MARK: - Given:

func givenInProgress() {
 givenGoalSet()
 sut.startStopPause(nil)
}

This sets the app into the inProgressState. It's ensured by the test
testController_whenStartTapped_appIsInProgress().

Finally, add the following test to the bottom of StepCountControllerTests:

func testChaseView_whenInProgress_viewIsInProgress() {
 // given
 givenInProgress()

 // then
 let chaseView = sut.chaseView
 XCTAssertEqual(chaseView?.state, AppState.inProgress)
}

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 68

This test will fail since the chaseView is not yet updated. Open
StepCountController.swift and replace updateChaseView() at the bottom with the
following:

private func updateChaseView() {
 chaseView.state = AppModel.instance.appState
}

The test testChaseView_whenInProgress_viewIsInProgress will now pass, and no more
funny business with loading view controllers.

Note: One alternate way of retrieving and testing a view controller can be done as
follows: First, get a reference to the storyboard:

let storyboard = UIStoryboard(name: "Main", bundle: nil)

Second, get a reference to the view controller:

let stepController = storyboard.instantiateViewcontroller(withIdentifier:
"stepController") as! StepCountController

Finally, if needed, you may load the view as follows:

stepController.loadViewIfNeeded()

Following this pattern allows you to instantiate a fresh view controller for each
test, and it affords the option to set up and tear down the view controller for each
test.

Test ordering matters
Build and test the whole target, and most of the tests should pass, but not
testController_whenCreated_buttonLabelIsStart. This test fails.

Now, only test testController_whenCreated_buttonLabelIsStart and it will pass.
Hrm... strange.

Open the report navigator and look at the result for when you last ran all the tests.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 69

Look at the test failure: XCTAssertEqual failed: ("Optional("Pause")") is not
equal to ("Optional("Start")").

This message tells you not only that the button text is not what's expected, but
specifically that the button text is "Pause." That's what the button should say when the
app is inProgress. This violates the assumption that the test is starting with a fresh
StepCountController.

The previous change to using the host app's StepCountController meant that a new
controller is not created every setUp() and the app state is persisted. In order to have
clean tests, you need to reset the state in tearDown().

To help with this, you can create a new function on AppModel to reset the state. But,
first, write the tests.

Open AppModelTests.swift. Add the following helper to the Given section:

func givenInProgress() {
 givenGoalSet()
 try! sut.start()
}

This puts the app in an inProgress state, allowing for the state restart test to actually
test a change.

Next, add the following to the bottom of the test case class:

// MARK: - Restart

func testAppModel_whenReset_isInNotStartedState() {
 // given
 givenInProgress()

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 70

 // when
 sut.restart()

 // then
 XCTAssertEqual(sut.appState, .notStarted)
}

This tests that the not-yet-added restart() puts the model back into notStarted. To
get the test to pass open AppModel.swift and add the following to AppModel:

func restart() {
 appState = .notStarted
}

This function will be used as a test helper for now, but eventually will be part of the
whole app's state cycle.

Finally, go back and fix the original issue. Change tearDown() in
StepCountControllerTests.swift to:

override func tearDown() {
 AppModel.instance.dataModel.goal = nil
 AppModel.instance.restart()
 sut.updateUI()
 super.tearDown()
}

Now, running the whole target's tests will succeed.

Randomized order
There is also an option in the Test action of the scheme to randomize the test order.

Edit the FitNess scheme. Select the Test action. In the center pane, next to
FitNessTests is an Options... button. Click that and, in the pop-up, check Randomize
execution order. This will cause the tests to run in a random order each time.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 71

This can expose hidden inter-test dependencies that you wouldn't catch with the
default ordering. The downside is that the ordering is not guaranteed, meaning you
might have missed the previous issue. Also, if an ordering issue does come up, it might
be hard to reproduce if it was very specific. Sporadic and hard-to-diagnose test failures
are one symptom that the random ordering uncovered an issue.

Code coverage
While on the subject of the scheme editor, open up the Test Action again. This time
select the Options tab. There is a checkbox for Code Coverage. Check it.

Run the tests again. After the tests succeed, open the Report navigator. Under the latest
test, there will be three reports: Build, Coverage and Log. Select Coverage to display
the coverage report.

Code coverage is the measure of how many lines of app code are executed during tests.
There will be a list of each file in the target along with the percentage of the code lines
that were executed. Having 100% or close for a file means you're following TDD closely.
When the tests are written first, only the code needed to pass the test gets added.

Opening up an individual file will show the coverage on a per-function or closure basis.
Double-clicking on a file or function name will open up that file in the editor.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 72

Open StepCountController.swift and navigate to startStopPause(_:)

You'll see a coverage annotation on the right side of the editor. The number shown
represents the number of times that line was executed. Lines with a red coloring or a "0"
indicate opportunities to add additional tests.

Lines with a striped red annotation mean that only part of that line was run. Hovering
over the stripe in the annotation bar will show you in green which part was run and in
red what was not.

In StepCountController, it looks like the startStopPause(_:) method was never called
when AppModel.start() throws an error.

The problem with testing that condition is that, when there's an error, an alert
controller is shown. You could write a test that checks for that alert controller, but that
is really the domain of UI automation testing. You could refactor StepCountController
so that a variable is set or a callback is called in that error case, but then you would be
modifying app code just to add a test. The test would then be testing itself and not app
functionality, which does not provide any value.

The goal should be to get as close to 100% as possible. Coverage doesn't mean the code
works, but lack of coverage means that it's not tested. For views and view controllers,
it's not expected to get to 100% coverage because TDD does not include UI testing.
When you combine unit tests with UI automation tests, then you should expect to be
able to cover most if not all of these files.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 73

Debugging tests
When it comes to debugging tests, you've already practiced the first line of defense.
That is: "Am I testing the right thing?"

Make sure:

• You have the right assumptions in the given statements.

• Your then statements accurately reflect the desired behavior.

If nothing obvious in the test code appears, next check the test execution order for
preserved state. Also use code coverage to make sure the right code paths are taken.

After trying that, you can use some other tools in Xcode's arsenal. To try them out, it's
time to think about the other important actor in the app: Nessie.

Using test breakpoints
With Nessie in the picture, the data model gets a little more complicated. Here are the
new rules with Nessie:

• When Nessie's distance is greater than or equal to the user's, Nessie wins (the user is
caught). The user cannot be caught when the distance is at 0, which is the start
condition.

• If the user is caught by Nessie, the goal cannot be reached.

Open DataModelTests.swift and add the following test to DataModelTests:

// MARK: - Nessie
func testModel_whenStarted_userIsNotCaught() {
 XCTAssertFalse(sut.caught)
}

This tests that with a fresh DataModel, the user is not caught. This test does not yet
compile.

Fix the broken test by adding the following to DataModel in DataModel.swift:

// MARK: - Nessie

let nessie = Nessie()
var distance: Double = 0

var caught: Bool {
 return nessie.distance >= distance
}

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 74

This adds a Nessie to the data model, a variable to track user distance, and a computed
variable to compare the distances. A separate variable for distance is used instead of
steps to keep the calculations cleaner later on.

Even with the updated code, the test still fails. There are several ways to go about
diagnosing the problem. As you've already seen there are a few things to check:

• The test itself is correct, the given is a fresh DataModel as created in startUp(). The
then is also correct, caught should be false.

• The DataModel code was executed, as shown by the code coverage.

A good next step is to try out the debugger. In the Breakpoint navigator, click the + all
the way at the bottom. Select Test Failure Breakpoint.

This creates a special breakpoint that halts execution when a unit test fails. Run the
test again, and the debugger will stop at the test failure.

Open the variables view, and expand self and then sut.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 75

Here, you'll see that both distance and steps are 0. So the app logic is doing the right
thing, Nessie is tied with the user, which should be the caught state. However, this is a
special case in which the starting condition cannot result in a capture.

To fix this, open DataModel.swift and replace caught with the following:

var caught: Bool {
 return distance > 0 && nessie.distance >= distance
}

Now, the test will pass. This might have been an obvious example, but it illustrates that
you have all your normal debugging techniques available when running tests.

Completing coverage
If you take a look at the code coverage for DataModel.swift, it is no longer 100%. If you
look at the file, notice the striped annotation in the updated caught. Hovering over the
stripe shows that only the distance > 0 condition was checked. This tells you that
there are more conditions to test.

Open DataModelTests.swift and add the following test cases to complete DataModel
coverage:

func testModel_whenUserAheadOfNessie_isNotCaught() {
 // given
 sut.distance = 1000
 sut.nessie.distance = 100

 // then
 XCTAssertFalse(sut.caught)
}

func testModel_whenNessieAheadofUser_isCaught() {
 // given
 sut.nessie.distance = 1000
 sut.distance = 100

 // then
 XCTAssertTrue(sut.caught)
}

Now, test and check out the DataModel coverage... 100%

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 76

Finishing out the requirements
There is one final piece that hasn't been accounted for yet: The user cannot reach the
goal if they have been caught. Add this test to the Goal tests section:

func testGoal_whenUserCaught_cannotBeReached() {
 //given goal should be reached
 sut.goal = 1000
 sut.steps = 1000

 // when caught by nessie
 sut.distance = 100
 sut.nessie.distance = 100

 // then
 XCTAssertFalse(sut.goalReached)
}

Then, to make the test pass, update goalReached in DataModel.swift:

var goalReached: Bool {
 if let goal = goal,
 steps >= goal, !caught {
 return true
 }
 return false
}

Test again for success.

Challenge
In StepCountControllerTests.tearDown(), there are separate calls to reset the
AppModel and the DataModel. Since the data model is a property of the app model,
refactor the data model reset into AppModel.restart(), along with the appropriate
tests.

For an extra challenge, use some of the other XCTAssert functions not yet used, like
XCTAssertNil or XCTAssertLessThanOrEqual.

A second challenge is to add the pause functionality to the app so the user can move
back and forth between .paused and .inProgress. The pause doesn't have to do
anything else at this point, since the direct functionality will be covered in later
chapters.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 77

Key points
• Test methods require calling a XCTAssert function.

• View controller logic can be separated in to data/state functions, which can be unit
tested and view setup and response functions, which should be tested by UI
automation.

• Test execution order matters.

• The code coverage reports can be used to make sure all branches have a minimum
level of testing.

• Test failure breakpoints are a tool on top of regular debugging tools for fixing tests.

Where to go from here?
For more on code coverage, this video tutorial covers that topic. And you can learn
everything and more about debugging from the Advanced Apple Debugging and
Reverse Engineering book. The tools and techniques taught in that tome are just as
applicable to test code as application code.

In the next chapter, you'll learn about testing asynchronous functions using
XCTestExpectation.

iOS Test-Driven Development by Tutorials Chapter 4: Test Expressions

raywenderlich.com 78

5Chapter 5: Test
Expectations
By Michael Katz

In the previous chapters you built out the app's state based upon what the user can do
with the Start button. The main part of the app relies on responding to changes as the
user moves around and records steps. These actions create events outside the program's
control. XCTestExpectation is the tool for testing things that happen outside the direct
flow.

In this chapter you'll learn:

• General test expectations

• Notification expectations

Use this chapter's starter project instead of continuing on from the previous' final, as it
has some additions to help you out.

Using an expectation
XCTest expectations have two parts: the expectation and a waiter. An expectation is
an object that you can later fulfill. The wait method of XCTestCase tells the test
execution to wait until the expectation is fulfilled or a specified amount of time passes.

In the last chapter you built out the app states corresponding to direct user action: in
progress, paused, and not started. In this chapter you'll add support for caught and
completed.

raywenderlich.com 79

These state transitions occur in response to asynchronous events outside the user's
control.

The red-shaded states have already been built. You'll be adding the grey states.

Writing an asynchronous test
In order to react to an asynchronous event, the code needs a way to listen for a change.
This is commonly done through a closure, a delegate method, or by observing a
notification.

To test caught and completed state changes that asynchronously update in AppModel,
you'll add a callback closure. The first step is to write the test!

Open AppModelTests.swift and add the following test under // MARK: - State
Changes:

func testAppModel_whenStateChanges_executesCallback() {
 // given
 givenInProgress()
 var observedState = AppState.notStarted

 // 1
 let expected = expectation(description: "callback happened")
 sut.stateChangedCallback = { model in
 observedState = model.appState
 // 2
 expected.fulfill()
 }

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 80

 // when
 sut.pause()

 // then
 // 3
 wait(for: [expected], timeout: 1)
 XCTAssertEqual(observedState, .paused)
}

This test updates the appState using sut.pause then checks that stateChangedCallback
gets triggered and sets observedState to the new value. You are using a few new things
in this test:

1. expectation(description:) is an XCTestCase method that creates an
XCTestExpectation object. The description helps identify a failure in the test logs.
You'll see shortly how expected is used to track if and when the expectation is
fulfilled.

2. fulfill() is called on the expectation to indicate it has been fulfilled - specifically,
the callback has occurred. Here stateChangedCallback will trigger on sut when a
state change occurs.

3. wait(for:timeout:) causes the test runner to pause until all expectations are
fulfilled or the timeout time (in seconds) passes. The assertion will not be called
until the wait completes.

The test won't compile, because stateChangedCallback doesn't yet exist. In
AppModel.swift, add the following to the class:

var stateChangedCallback: ((AppModel) -> ())?

Adding this property allows the test to build. Now run it, and you'll see the following
failure in the console:

Asynchronous wait failed: Exceeded timeout of 1 seconds, with unfulfilled
expectations: "callback happened".

The expectation never got fulfilled, so the test failed after the 1 second wait timeout.

To fix it, change appState in AppModel to match the following:

private(set) var appState: AppState = .notStarted {
 didSet {
 stateChangedCallback?(self)
 }
}

The callback is now triggered each time AppState is set.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 81

Back in AppModelTests.swift, clean up the callback reference by adding the following
to the top of tearDown:

sut.stateChangedCallback = nil

Run the test again, and now it will pass!

Note: It is best practice to always call fulfill in the completion block, then test
for errors or other negative conditions using XCTAssert after the wait. Timeout
should not be used to signal a test failure, as it adds significant time to the test.

Testing for true asynchronicity
The last test checks that the callback is called in direct response to an update on the
sut. Next, you'll tackle a more indirect usage via updates to the view controller. In
StepCountControllerTests.swift at the end of // MARK: - Terminal States add the
following two tests:

func testController_whenCaught_buttonLabelIsTryAgain() {
 // given
 givenInProgress()
 let exp = expectation(description: "button title change")
 let observer = ButtonObserver()
 observer.observe(sut.startButton, expectation: exp)

 // when
 whenCaught()

 // then
 waitForExpectations(timeout: 1)
 let text = sut.startButton.title(for: .normal)
 XCTAssertEqual(text, AppState.caught.nextStateButtonLabel)
}

func testController_whenComplete_buttonLabelIsStartOver() {
 // given
 givenInProgress()
 let exp = expectation(description: "button title change")
 let observer = ButtonObserver()
 observer.observe(sut.startButton, expectation: exp)

 // when
 whenCompleted()

 // then
 waitForExpectations(timeout: 1)
 let text = sut.startButton.title(for: .normal)
 XCTAssertEqual(text, AppState.completed.nextStateButtonLabel)
}

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 82

These tests observe the startButton title to confirm it properly updates after model
state changes.

observe(_:expectation:) will fulfill the passed expectation (exp) when the textLabel
of sut.startButton is updated. This requires the ButtonObserver helper class, which
you're about to create!

Add a new Swift File to the Test Classes group and name it ButtonObserver.swift.
Place the following in the file:

import XCTest

class ButtonObserver: NSObject {

 var expectation: XCTestExpectation?
 weak var button: UIButton?

 func observe(_ button: UIButton,
 expectation: XCTestExpectation) {
 self.expectation = expectation
 self.button = button

 button.addObserver(self, forKeyPath: "titleLabel.text",
 options: [.new], context: nil)
 }

 override func observeValue(
 forKeyPath keyPath: String?,
 of object: Any?,
 change: [NSKeyValueChangeKey : Any]?,
 context: UnsafeMutableRawPointer?) {

 expectation?.fulfill()
 }

 deinit {
 button?.removeObserver(self, forKeyPath: "titleLabel.text")
 }
}

ButtonObserver observes a UIButton for changes to its titleLabel's text by using Key-
Value Observing. When the text changes, a callback is made to
observeValue(forKeyPath:of:change:context:). This object holds on to the supplied
XCTestExpectation and fulfills it in that callback.

Next, open StepCountControllerTests.swift add the following test helpers under //
MARK: - When:

func whenCaught() {
 AppModel.instance.setToCaught()
}

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 83

func whenCompleted() {
 AppModel.instance.setToComplete()
}

Build and run the StepCountControllerTests tests, and you'll see a couple failures in
the console:

XCTAssertEqual failed: ("Optional("Pause")") is not equal to
("Optional("Try Again")")

XCTAssertEqual failed: ("Optional("Pause")") is not equal to
("Optional("Start Over")")

The button titles aren't updating when whenCaught() and whenCompleted() are called in
your test, because there aren't yet any hooks in the production code to do this. Fix that
by adding the following to viewDidLoad in StepCountController.swift:

AppModel.instance.stateChangedCallback = { model in
 DispatchQueue.main.async {
 self.updateUI()
 }
}

stateChangedCallback is now used to update the UI when appState is updated in the
model. Now the tests will pass and you're ready to move on.

Note: Stopping execution in the debugger doesn't pause the wait timeout. You
just added a bunch of code, and if there was a mistake you might go back and
debug the problem. This is common when writing tests, especially when they do
not behave as expected. When the debugger pauses at a breakpoint and you
explore for the logic error, be mindful that the test will probably fail due to
timeout. Simply disable or remove the breakpoint and re-run once the issue is
corrected.

Waiting for notifications
In the next phase of app building, you'll add a feature to visually notify the users when
an event happens, such as meeting a milestone goal or when Nessie catches up.

In addition to fulfilling expectations in arbitrary callbacks, there is also a feature that
allows the test to wait for User Notifications.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 84

Building the alert center
One important feature for an activity app or game is to update the user when important
events happen. In FitNess these updates are managed by an AlertCenter. When
something interesting happens, the code will post Alerts to the AlertCenter. The alert
center is responsible for managing a stack of messages to display to the user.

AlertCenter uses Notifications to communicate with the view controllers which
handle the alerts on screen. Because this happens asynchronously, it's a good case to
test using XCTestExpectation.

A stub implementation of AlertCenter and AlertCenterTests have been added to the
project to speed things up.

To test out the notification behavior add the following test in AlertCenterTests.swift:

func testPostOne_generatesANotification() {
 // given
 let exp = expectation(forNotification: AlertNotification.name,
 object: sut,
 handler: nil)
 let alert = Alert("this is an alert")

 // when
 sut.postAlert(alert: alert)

 // then
 wait(for: [exp], timeout: 1)
}

expectation(forNotification:object:handler:) creates an expectation that fulfills
when a notification posts. In this case, when AlertNotification.name is posted to sut,
the expectation is fulfilled. The test then posts a new Alert and waits for that
notification to be sent.

Note that it's not generally a good idea to use a wait as the test assertion. It's better to
use an explicit assert call. wait only tests that an expectation was fulfilled and does not
make any claims about the app's logic. You'll test the contents of the notification a little
later in this chapter.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 85

Build and test, and this test will fail. If you look at the error in the console, you'll see a
timeout failure:

Asynchronous wait failed: Exceeded timeout of 1 seconds, with unfulfilled
expectations: "Expect notification 'Alert' from FitNess.AlertCenter".

Time to implement the application code to fix this! In AlertCenter.swift, replace the
stub implementation of postAlert(alert:) with the following:

func postAlert(alert: Alert) {
 let notification = Notification(name: AlertNotification.name,
 object: self)
 notificationCenter.post(notification)
}

This creates and posts the Notification your test is listening for. Note that the passed
alert isn't used currently, but you'll circle back to this later.

Build and test. And the test will pass! :]

Waiting for multiple events
Next, try testing if posting two alerts sends two notifications. Add the following to the
end of AlertCenterTests:

func testPostingTwoAlerts_generatesTwoNotifications() {
 //given
 let exp1 = expectation(
 forNotification: AlertNotification.name,
 object: sut,
 handler: nil)
 let exp2 = expectation(
 forNotification: AlertNotification.name,
 object: sut,
 handler: nil)
 let alert1 = Alert("this is the first alert")
 let alert2 = Alert("this is the second alert")

 // when
 sut.postAlert(alert: alert1)
 sut.postAlert(alert: alert2)

 // then
 wait(for: [exp1, exp2], timeout: 1)
}

This creates two expectations waiting for AlertNotification.name, posts two different
alerts, and waits for both alerts to notify.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 86

Build and test, and it will pass. However, this test is a little naïve. To see how, delete this
line:

sut.postAlert(alert: alert2)

Now you're only posting one of the two alerts tied to expectations the wait requires.

Test again, and it will still pass! This is because the two expectations are expecting the
same thing. They run in parallel—they don't stack. So as soon as one alert is posted,
both expectations are fulfilled.

To solve this conundrum, you can use notification expectation's
expectedFulfillmentCount property refine the fulfillment condition. Replace
testPostingTwoAlerts_generatesTwoNotifications() with the following:

func testPostingTwoAlerts_generatesTwoNotifications() {
 //given
 let exp = expectation(forNotification: AlertNotification.name,
 object: sut,
 handler: nil)
 exp.expectedFulfillmentCount = 2
 let alert1 = Alert("this is the first alert")
 let alert2 = Alert("this is the second alert")

 // when
 sut.postAlert(alert: alert1)

 // then
 wait(for: [exp], timeout: 1)
}

Setting expectedFulfillmentCount to two means the expectation won't be met until
fulfill() has been called twice before the timeout.

Run the test, and you'll see it fails because you only called postAlert once. This is good
proof your test is working as expected!

In the when section, add back the second postAlert under sut.postAlert(alert:
alert1):

sut.postAlert(alert: alert2)

Run the test again, and you'll see it pass.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 87

Expecting something not to happen
Good test suites not only test when things happen according to plan, but also check
that certain side effects do not occur. One of things the app should not do is spam the
user with alerts. Therefore, if a specific alert is posted twice, it should only generate one
notification.

And of course, you can test for this scenario. Add the following test:

func testPostDouble_generatesOnlyOneNotification() {
 //given
 let exp = expectation(forNotification: AlertNotification.name,
 object: sut,
 handler: nil)
 exp.expectedFulfillmentCount = 2
 exp.isInverted = true
 let alert = Alert("this is an alert")

 // when
 sut.postAlert(alert: alert)
 sut.postAlert(alert: alert)

 // then
 wait(for: [exp], timeout: 1)
}

This is almost exactly like the last one, except for this line:

exp.isInverted = true

When an expectation is inverted it indicates this test fails if the expectation is fulfilled
and succeeds if the wait times out. Put another way, this test will fail if two
notifications are triggered by the two alerts.

Right now, the test fails because the application code currently allows multiple alerts to
post.

Open AlertCenter.swift. Add the following instance variable:

private var alertQueue: [Alert] = []

The alertQueue will be an important part of AlertCenter. It will help manage a
potentially large stack of messages for the user, as they can accumulate in the
background.

Next add the following statements to the top of postAlert(alert:):

guard !alertQueue.contains(alert) else { return }

alertQueue.append(alert)

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 88

If the same alert is passed to postAlert(alert:) twice, the second one will be ignored.

Build and test again. All green!

Be sure to run all the tests from time to time to make sure fixes for one test don't break
another.

Showing the alert to a user
In the app's architecture, the RootViewController is responsible for showing alerts to
the user via its alertContainer view.

Create a new Unit Test Case Class file in the App Layer folder, under Cases. Name it
RootViewControllerTests.swift.

Add the following import:

@testable import FitNess

Next, replace the test boilerplate in the class with:

var sut: RootViewController!

override func setUp() {
 super.setUp()
 sut = loadRootViewController()
}

override func tearDown() {
 sut = nil
 super.tearDown()
}

Finally, add a test for the base condition: that is, when the view controller is loaded,
there are no alerts showing:

// MARK: - Alert Container

func testWhenLoaded_noAlertsAreShown() {
 XCTAssertTrue(sut.alertContainer.isHidden)
}

Run this and confirm it passes.

Next, add the following to test that the alert container is shown when there is an alert:

func testWhenAlertsPosted_alertContainerIsShown() {
 // given
 let exp = expectation(forNotification: AlertNotification.name,

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 89

 object: nil, handler: nil)
 let alert = Alert("show the container")

 // when
 AlertCenter.instance.postAlert(alert: alert)

 // then
 wait(for: [exp], timeout: 1)
 XCTAssertFalse(sut.alertContainer.isHidden)
}

An expectation will be fulfilled by AlertNotification.name and postAlert(alert:) is
called to ultimately trigger the notification. After waiting for the expectation,
XCTAssertFalse checks the alertContainer is visible.

Now it's time to get the test to pass by adding the code to show the alert. Go back to
RootViewController.swift and add the following at the bottom of viewDidLoad:

AlertCenter.listenForAlerts { center in
 self.alertContainer.isHidden = false
}

AlertCenter.listenForAlerts(_:) is a helper method that you'll create to register for
alert notifications, and run the passed closure. The closure will unhide the
alertContainer when triggered.

In AlertCenter.swift, in the "class helpers" extension add:

class func listenForAlerts(
 _ callback: @escaping (AlertCenter) -> ()) {

 instance.notificationCenter
 .addObserver(forName: AlertNotification.name,
 object: instance, queue: .main) { _ in
 callback(instance)
 }
}

listenForAlerts(_:) adds AlertCenter as an observer for the AlertNotification.name
notification that triggers the callback. This will result in alertContainer displaying in
RootViewController.

Build and run your new test and it should now pass.

Continuous refactoring
When you only run testWhenLoaded_noAlertsAreShown(), it will pass. If you run all the
tests in RootViewControllerTests, then testWhenLoaded_noAlertsAreShown() may fail.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 90

That is because the sut state is tied to the running UIApplication and is preserved
between runs. If testWhenAlertsPosted_alertContainerIsShown() runs first and
displays the alert, it will still be there when testWhenLoaded_noAlertsAreShown()
checks if any are displayed.

To resolve this issue, you'll refactor the code and build a way to clear out all the alerts
and reset the view between tests.

First, you need an interface to the state of AlertCenter. Add the following test to
AlertCenterTests.swift:

// MARK: - Alert Count
func testWhenInitialized_AlertCountIsZero() {
 XCTAssertEqual(sut.alertCount, 0)
}

This means that AlertCenter needs an alertCount variable for the test to compile. Add
the following property to the class in AlertCenter.swift:

var alertCount: Int {
 return alertQueue.count
}

Build and test testWhenInitialized_AlertCountIsZero() and you'll see it now passes.

When adding new functionality, it's important to cover the basic conditions as well. Add
the following to AlertCenterTests.swift:

func testWhenAlertPosted_CountIsIncreased() {
 // given
 let alert = Alert("An alert")

 // when
 sut.postAlert(alert: alert)

 // then
 XCTAssertEqual(sut.alertCount, 1)
}

func testWhenCleared_CountIsZero() {
 // given
 let alert = Alert("An alert")
 sut.postAlert(alert: alert)

 // when
 sut.clearAlerts()

 // then
 XCTAssertEqual(sut.alertCount, 0)
}

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 91

testWhenAlertPosted_CountIsIncreased() tests that posting an alert increases the
alertCount you added for the prior test.

testWhenCleared_CountIsZero() tests a new method, clearAlerts(), which you need to
create. First, you'll want to run it in tearDown(), by adding the following to the top of
the method:

AlertCenter.instance.clearAlerts()

Because AppModelTests indirectly mess with DatModel state, they can also trigger alerts
that need to be cleared. Back in AppModelTests.swift, add the following to the top of
tearDown:

AlertCenter.instance.clearAlerts()

This ensures the state of AlertCenter is reset after each test that modifies it. Back in
AlertCenter.swift, add the following to AlertCenter:

// MARK: - Alert Handling

func clearAlerts() {
 alertQueue.removeAll()
}

This allows you to remove all alerts from alertQueue, which can be used to solve your
issues with persisted alerts between tests. But first, there is one more place you need to
use your new alertCount.

Go back to RootViewController.swift and change the listenForAlerts callback block
in viewDidLoad to:

self.alertContainer.isHidden = center.alertCount == 0

Now when an alert is triggered, you display alertContainer only if more than one alert
is currently present. Are you dizzy yet? With TDD, adding functionality requires
looping back and forth between the application and tests code.

Finally, you can fix the broken testWhenLoaded_noAlertsAreShown by adding to the top
of tearDown in RootViewControllerTests.swift:

AlertCenter.instance.clearAlerts()

Now alertQueue will clear after each test, preventing tests that modify the queue from
impacting each other.

With the count reset, you just need to clear any existing alerts at the start of each test
to avoid the persistence issue you observed in testWhenLoaded_noAlertsAreShown().

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 92

Add the following to the bottom of startUp:

sut.reset()

Now all the tests will pass, regardless of execution order.

If you want to see the alert view in practice, temporarily replace startStopPause(_:) in
StepCountController.swift with the following:

@IBAction func startStopPause(_ sender: Any?) {
 let alert = Alert("Test Alert")
 AlertCenter.instance.postAlert(alert: alert)
}

Now it'll display an alert for any state change. Build and run. When the app loads tap
Start.

For now undo those changes and move on for more expectation testing.

Getting specific about notifications
To make sure the UI is updated effectively, it will be useful to add additional
information to the alert notification beyond the name.

In particular, it will be useful to add the associated Alert to the notification's userInfo.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 93

Open AlertCenterTests.swift and add the following to AlertCenterTests:

// MARK: - Notification Contents

func testNotification_whenPosted_containsAlertObject() {
 // given
 let alert = Alert("test contents")
 let exp = expectation(forNotification: AlertNotification.name,
 object: sut,
 handler: nil)

 var postedAlert: Alert?
 sut.notificationCenter.addObserver(
 forName: AlertNotification.name,
 object: sut,
 queue: nil) { notification in
 let info = notification.userInfo
 postedAlert = info?[AlertNotification.Keys.alert] as? Alert
 }

 // when
 sut.postAlert(alert: alert)

 // then
 wait(for: [exp], timeout: 1)
 XCTAssertNotNil(postedAlert, "should have sent an alert")
 XCTAssertEqual(alert,
 postedAlert,
 "should have sent the original alert")
}

In addition to using a notification expectation, this test also sets up an additional
listener for an AlertNotification. In the observation closure, the Alert that is
expected to be in the userInfo is stored so it can be compared in the test assert.

Note: While you should strive for a single assert per test, it's OK to have more
than one if they both confirm the same truth. In this case, you're trying to validate
that the notification contains the same Alert object that was posted. Checking
that the notification's alert isn't nil is part of that validation, as is comparing it to
the posted alert.

To get this test to pass, you have to add the alert object to the notification. In
AlertCenter.swift change the let notification = ... line in postAlert(alert:) to:

let notification = Notification(
 name: AlertNotification.name,
 object: self,
 userInfo: [AlertNotification.Keys.alert: alert])

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 94

This adds the posted alert object to the notification so it can be observed in the test's
closure. Now run testNotification_whenPosted_containsAlertObject() and you
should see another green test.

Driving alerts from the data model
In order to drive engagement and give the user a sense of fulfillment as they near their
goal, it's important to present messages to the user as they reach certain milestones.

To start off on a positive note, encourage the user by giving them alerts at certain
milestones. When they reach 25%, 50%, and 75% of the goal, they should see an
encouragement alert, and at 100% a congratulations alert.

There are already some hard coded values for these in an Alert extension.

Before writing the next set of tests, create a new helper file. Under the Test Extensions
group add a new group, Alerts. Then add a new Swift file named
Notification+Tests.swift.

Add the following code to the new file, below the Foundation import:

@testable import FitNess

extension Notification {
 var alert: Alert? {
 return userInfo?[AlertNotification.Keys.alert] as? Alert
 }
}

This helper extension will make it easier to get the Alert object out of the notification.
You can be fairly confident this works because
testNotification_whenPosted_containsAlertObject() tested similarly built userInfo.
You could also go back and update that test to use this new helper. TDD For The Win!

Now you can start writing tests to check that milestone notifications are generated.

In DataModelTests.swift add the following test to the end of DataModelTests:

// MARK: - Alerts

func testWhenStepsHit25Percent_milestoneNotificationGenerated() {
 // given
 sut.goal = 400
 let exp = expectation(forNotification: AlertNotification.name,
 object: nil) { notification -> Bool in
 return notification.alert == Alert.milestone25Percent
 }

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 95

 // when
 sut.steps = 100

 // then
 wait(for: [exp], timeout: 1)
}

In this test, the optional handler closure is used when setting up the expectation. The
closure takes the Notification as input and returns a Bool indicating whether or not
the expectation should be fulfilled. Here you only fulfill the expectation when the alert
is a .milestone25Percent. With the goal set to 400, setting steps to 100 should trigger
that alert and fulfill your expectation.

To make this pass, you'll need to update DataModel to trigger the 25 percent alert when
appropriate.

First open DataModel.swift. Next, replace the steps var with the following:

var steps: Int = 0 {
 didSet {
 updateForSteps()
 }
}

Now changes in the step count will trigger updateForSteps(), which will post necessary
milestone alerts.

Finally, add the following method below restart():

// MARK: - Updates due to distance
func updateForSteps() {
 guard let goal = goal else { return }
 if Double(steps) >= Double(goal) * 0.25 {
 AlertCenter.instance.postAlert(alert: Alert.milestone25Percent)
 }
}

Now when steps hit 25% of the goal, you post Alert.milestone25Percent. Build and
test testWhenStepsHit25Percent_milestoneNotificationGenerated() and it will pass
when the alert is generated.

Previous tests let you know that because the alert is generated it will be shown to the
user. You'll have to wait for the next chapter to see the actual step counter in action.

On your own, add three more tests: one each for 50%, 75%, and 100% of completion
with a goal of 400:

• 50%: Use Alert.milestone50Percent and steps = 200 for the when condition.

• 75%: Use Alert.milestone75Percent and steps = 300 for the when condition.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 96

• 100%: Use Alert.goalComplete and steps = 400 for the when condition.

Duplicate the if statement in updateForSteps for each of these conditions to get the
tests to pass. With these separate if statements, updateForSteps will post all alerts up
to the current threshold when triggered; you shouldn't address that issue yet. You'll
also need to add AlertCenter.instance.clearAlerts() to the test's tearDown to flush
out the alert queue each time.

Testing for multiple expectations
Your new milestone notification tests all seem pretty similar. This is an indicator that
you should refactor them to reduce repeated code.

Still in DataModelTests.swift, add a new method under // MARK: - Given:

func givenExpectationForNotification(
 alert: Alert) -> XCTestExpectation {

 let exp = expectation(forNotification: AlertNotification.name,
 object: nil) { notification -> Bool in
 return notification.alert == alert
 }
 return exp
}

This helper method creates an expectation that waits for a notification containing the
passed alert. Next, refactor
testWhenStepsHit25Percent_milestoneNotificationGenerated() to use this helper.
Replace the expectation definition with the following:

let exp = givenExpectationForNotification(alert: .milestone25Percent)

Do the same for the other three milestone tests.

Now you can write a test that checks that all of these alerts are generated, each in order.

Add the following test to DataModelTests:

func testWhenGoalReached_allMilestoneNotificationsSent() {
 // given
 sut.goal = 400
 let expectations = [
 givenExpectationForNotification(alert: .milestone25Percent),
 givenExpectationForNotification(alert: .milestone50Percent),
 givenExpectationForNotification(alert: .milestone75Percent),
 givenExpectationForNotification(alert: .goalComplete)
]

 // when
 sut.steps = 400

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 97

 // then
 wait(for: expectations, timeout: 1, enforceOrder: true)
}

So far you've been using wait(for:timeout:) with an array of just one expectation.
Here you can see why accepting an array is useful. It allows you to provide multiple
expectations and wait for all of them to be fulfilled.

Also shown here is the optional enforceOrder parameter. This makes sure not only that
all the expectations are fulfilled but that those fulfillments happen in the order
specified by the input array.

The ordering check allows for sophisticated tests. For example, you could use this when
writing a test for a multi-step process like image filtering or a network login that
requires multiple API calls (like OAuth or SAML). These tests not only ensure all the
steps happen in the necessary order in production code, but also validate that your test
code isn't going through a different flow than expected.

Refining Requirements
The previous set of unit tests have one flaw when it comes to validating the app. They
test a snapshot of the app's state and do not consider that the app is dynamic.

When in progress, the app will continually update the step count, and it's important to
not spam the user at each step, but instead only alert them when a threshold is first
crossed. In addition, the user has the option to clear the alerts, so the guard added to
postAlert(alert:) won't prevent a repeat alert if an earlier alert was cleared by the
user.

Always testing first, open AlertCenterTests.swift and add this to the bottom of
AlertCenterTests:

// MARK: - Clearing Individual Alerts

func testWhenCleared_alertIsRemoved() {
 // given
 let alert = Alert("to be cleared")
 sut.postAlert(alert: alert)

 // when
 sut.clear(alert: alert)

 // then
 XCTAssertEqual(sut.alertCount, 0)
}

This tests that if an alert is added and then cleared, there are no alerts left in the
AlertCenter.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 98

To pass the test, add the following method to the "Alert Handling" section of
AlertCenter.swift:

func clear(alert: Alert) {
 if let index = alertQueue.firstIndex(of: alert) {
 alertQueue.remove(at: index)
 }
}

This removes the passed alert from the alertQueue. Run your tests and they should all
pass again.

Next, open DataModelTests.swift and add the following:

func testWhenStepsIncreased_onlyOneMilestoneNotificationSent() {
 // given
 sut.goal = 10
 let expectations = [
 givenExpectationForNotification(alert: .milestone25Percent),
 givenExpectationForNotification(alert: .milestone50Percent),
 givenExpectationForNotification(alert: .milestone75Percent),
 givenExpectationForNotification(alert: .goalComplete)
]

 // clear out the alerts to simulate user interaction
 let alertObserver = AlertCenter.instance.notificationCenter
 .addObserver(forName: AlertNotification.name,
 object: nil,
 queue: .main) { notification in
 if let alert = notification.alert {
 AlertCenter.instance.clear(alert: alert)
 }
 }

 // when
 for step in 1...10 {
 self.sut.steps = step
 sleep(1)
 }

 // then
 wait(for: expectations, timeout: 20, enforceOrder: true)
 AlertCenter.instance.notificationCenter
 .removeObserver(alertObserver)
}

This is your busiest test yet, and it has a few parts:

• The given section sets up a sequence of milestone alert expectations.

• A separate observer watches for alerts and clears them from the AlertCenter. This
ensures that repeated notifications don't get ignored because they haven't yet been
dismissed by the user.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 99

• The when section increments steps to generate the alerts by crossing a series of the
milestones individually. Using sleep or equivalent in tests should only be done
sparingly as this drastically increases the test time. It's necessary here to give time
for the notifications to post and be cleared.

• The then section uses wait to test that the expectations are fulfilled as expected. At
the end of the test, you remove alertObserver to prevent it from impacting other
tests.

Right now the test will pass, which violates the TDD step of writing a failing test first.
That's because right now it's not enforcing that there should be a single notification per
milestone. That has to be done in the expectation itself.

Still in DataModelTests.swift, replace givenExpectationForNotification(alert:)
with the following:

func givenExpectationForNotification(
 alert: Alert) -> XCTestExpectation {

 let exp = XCTNSNotificationExpectation(
 name: AlertNotification.name,
 object: AlertCenter.instance,
 notificationCenter: AlertCenter.instance.notificationCenter)
 exp.handler = { notification -> Bool in
 return notification.alert == alert
 }
 exp.expectedFulfillmentCount = 1
 exp.assertForOverFulfill = true
 return exp
}

This ditches the convenience method in order to create an
XCTNSNotificationExpectation, which is a XCTestExpectation with more notification
specific features. You set the expectedFulfillmentCount and assertForOverFulfill
which will generate an assertion if the expectation is fulfilled more than the count.

Now the test will fail as a single alert is repeated for multiple steps. To get the test to
pass, DataModel has to be modified to keep track of sent alerts.

Open DataModel.swift and add the following to the top of the class:

// MARK: - Alerts
var sentAlerts: [Alert] = []

Next, replace updateForSteps() with the following:

private func checkThreshold(percent: Double, alert: Alert) {
 guard !sentAlerts.contains(alert),
 let goal = goal else {

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 100

 return
 }
 if Double(steps) >= Double(goal) * percent {
 AlertCenter.instance.postAlert(alert: alert)
 sentAlerts.append(alert)
 }
}

func updateForSteps() {
 checkThreshold(percent: 0.25, alert: .milestone25Percent)
 checkThreshold(percent: 0.50, alert: .milestone50Percent)
 checkThreshold(percent: 0.75, alert: .milestone75Percent)
 checkThreshold(percent: 1.00, alert: .goalComplete)
}

This cleans up the code a little bit and now checks not just that the threshold was
crossed but also that an alert wasn't already sent. This way if a user crosses a threshold
and dismisses the alert, they won't see that same alert again.

Finally, add the following to the end of restart():

sentAlerts.removeAll()

This ensures that a restart clears out your alerts. Build and run, and the tests should all
pass!

Using other types of expectations
The bulk of the time you're testing asynchronous processes, you'll use a regular
XCTestExpectation. XCTNSNotificationExpectation covers most other needs. For
specific uses, there are two other stock expectations: XCTKVOExpectation and
XCTNSPredicateExpectation.

These look for their eponymous conditions: KVO expectations observe changes to a
keyPath and predicate expectations wait for their predicate to be true.

There's one place where you've already used KVO for an expectation, and that's with the
ButtonObserver found in StepCountControllerTests.swift. You can replace that helper
class completely using a KVO based XCTestExpectation. Rather than using the more
fully featured XCTKVOExpectation, you'll use a special XCTestExpectation initializer that
provides KVO capabilities.

Delete ButtonObserver.swift. Next, open StepCountControllerTests.swift and add
this method in the given section:

func expectTextChange() -> XCTestExpectation {
 return keyValueObservingExpectation(

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 101

 for: sut.startButton,
 keyPath: "titleLabel.text")
}

This helper creates an expectation on startButton that observes the keyPath
titleLabel.text. The same keyPath was used in the old ButtonObserver. This method
accepts an optional handler block where you would check the observation to see if it
meets the expectation. For these tests, only the first change needs to be observed, so
you don't supply the handler to filter fulfillment.

Next, in testController_whenCaught_buttonLabelIsTryAgain() and
testController_whenComplete_buttonLabelIsStartOver() replace the let exp = ...
and two observer lines with the following:

let exp = expectTextChange()

And change the waitForExpectations lines to:

wait(for: [exp], timeout: 1)

Build and test and the tests will pass as if nothing happened!

Challenge
This tutorial only scratched the surface of testing asynchronous functions. Here are
some things to add to the app with test coverage:

• Add AlertCenter tests addressing edge cases for clearing alerts such as clearing an
empty queue and clearing the same alert multiple times.

• Create tests for AlertViewController. Test that the text used for alertLabel's
updates to reflect a new alert, and that it uses the proper color for the given severity.
This requires adding the ability to get the first alert out of the AlertCenter, and
updating tests around that as well.

• It wouldn't be fair to the user if they didn't get a warning of Nessie's progress. Add
tests in DataModelTests for Nessie catching up to 50% and then to 90%.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 102

Key points
• Use XCTestExpectation and its subclasses to make tests wait for asynchronous

process completion.

• Test expectations help test properties of the asynchronicity, like order and number of
occurrences, but XCTAssert functions should still be used to test state.

Where to go from here?
So much app code is asynchronous by nature—disk and network access, UI events,
system callbacks, and so on. It's important to understand how to test that code, and this
chapter gives you a good start. Many popular 3rd party testing frameworks also have
functions that make writing these types of tests easier. For example Quick+Nimble
allows you to write an assert, expectation and wait in one line:

expect(alerts).toEventually(contain(alert1, alert2))

Alternatively if your app uses a framework like RxSwift then you can use their
RxBlocking and RxTest frameworks. See this tutorial for more information.

iOS Test-Driven Development by Tutorials Chapter 5: Test Expectations

raywenderlich.com 103

6Chapter 6: Dependency
Injection & Mocks
By Michael Katz

So far, you've built and tested a fair amount of the app. There is one gigantic hole that
you may have noticed... this "step-counting app" doesn't yet count any steps!

In this chapter, you'll learn how to use mocks to test code that depends on system or
external services without needing to call services — the services may not be available,
usable or reliable. These techniques allow you to test error conditions, like a failed save,
and to isolate logic from SDKs, like Core Motion and HealthKit.

Don't have an iPhone handy? Don't worry; you'll dip into functional testing using the
Simulator to handle mock data.

What's up with fakes, mocks, and
stubs?
When writing tests, it's important to isolate the SUT from other parts of the code so
your tests have high confidence that they're testing the system as described. Tests
focused on edge cases or error conditions can be very difficult to write, as they often
involve specific state external to the SUT. It's also difficult to diagnose and debug tests
that fail due to intermittent or inconsistent issues outside the SUT.

The way to isolate the SUT and circumvent these issues is to use test doubles: objects
that stands in for real code. There are several variants of test doubles:

• Stub: Stubs stand in for the original object and provide canned responses. These are
often used to implement one method of a protocol and have empty or nil returning
implementations for the others.

raywenderlich.com 104

• Fake: Fakes often have logic, but instead of providing real or production data, they
provide test data. For example, a fake network manager might read/write from local
JSON files instead of connecting over a network.

• Mock: Mocks are used to verify behavior, that is they should have an expectation
that a certain method of the mock gets called or that its state was set to an expected
value. Mocks are generally expected to provide test values or behaviors.

• Partial mock: While a regular mock is a complete substitution for a production
object, a partial mock uses the production code and only overrides part of it to test
the expectations. Partial mocks are usually a subclass or provide a proxy to the
production object.

Understanding CMPedometer
There are a few ways of gathering activity data from the user, but the CMPedometer API
in Core Motion is by far the easiest.

Using a CMPedometer is easy as:

1. Check that the pedometer is available and the user has granted permission.

2. Start listening for updates.

3. Gather step and distance updates until the user pauses, completes the goal or loses
to Nessie.

The pedometer object is supplied a CMPedometerHandler, which has a single callback
that receives CMPedometerData (or an error). This data object has the step count and
distance travelled.

Here's the thing... you're using TDD so using a CMPedometer is tricky, even if you have
the host app run on a physical device. CMPedometer depends on the device state, which
is too variable for consistent unit tests.

Give it a try. First, open PedometerTests.swift which has been added to the DataModel
test case group. Next add the following below tearDown():

func testCMPedometer_whenQueries_loadsHistoricalData() {
 // given
 var error: Error?
 var data: CMPedometerData?
 let exp = expectation(description: "pedometer query returns")

 // when

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 105

 let now = Date()
 let then = now.addingTimeInterval(-1000)
 sut.queryPedometerData(from: then, to: now) {
 pedometerData, pedometerError in
 error = pedometerError
 data = pedometerData
 exp.fulfill()
 }

 // then
 wait(for: [exp], timeout: 1)
 XCTAssertNil(error)
 XCTAssertNotNil(data)
 if let steps = data?.numberOfSteps {
 XCTAssertGreaterThan(steps.intValue, 0)
 } else {
 XCTFail("no step data")
 }
}

This test creates an expectation for a returned pedometer query, calls
queryPedometerData(from:to:) to query the data and fulfill the expectation. It then
asserts that the data contains at least one step.

Although this test compiles, it crashes on launch. Apple requires permission to use
Core Motion. Strike #1 against using a real CMPedometer object in the tests. In order to
ask for permission, a usage description is required. Open the app's Info.plist.

Add a new row, use the key Privacy - Motion Usage Description and set the value to
"Pedometer access is required to gather step and distance information."

Build and test, and it may fail depending on if you run the app on device or Simulator,
and if you've accepted the permission pop-up or not. The unpredictability caused by
lack of control over CMPedometer makes this a pretty poor test. This sounds like a job for
a mock!

Delete the PedometerTests.swift test file; you're about do much better.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 106

Mocking
Restating the problem
Open AppModelTests.swift, and add the following test beneath the "Pedometer" mark:

func testAppModel_whenStarted_startsPedometer() {
 //given
 givenGoalSet()
 let exp = expectation(for: NSPredicate(block:
 { thing, _ -> Bool in
 return (thing as! AppModel).pedometerStarted
 }), evaluatedWith: sut, handler: nil)

 // when
 try! sut.start()

 // then
 wait(for: [exp], timeout: 1)
 XCTAssertTrue(sut.pedometerStarted)
}

This test intends to verify that starting the app model will also start the pedometer. If
you read the previous chapter, you'll recognize the elusive XCTNSPredicateExpectation
used to wait for the status change.

This test is subtly different from the previous one: It doesn't test the pedometer object
directly. Instead, the test verifies the behavior of the SUT by measuring the effect on
the pedometer (as exposed through pedometerStarted).

To get this compiling, you'll need to modify AppModel. Open AppModel.swift, add the
following two vars:

let pedometer = CMPedometer()
private(set) var pedometerStarted = false

This adds a little state to keep track of the pedometer.

Next, add the following to the bottom of start():

startPedometer()

Finally, add the following extension to the bottom of the file:

// MARK: - Pedometer
extension AppModel {
 func startPedometer() {
 pedometer.startEventUpdates { event, error in
 if error == nil {
 self.pedometerStarted = true

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 107

 }
 }
 }
}

This uses the pedometer event handler callback to determine if the pedometer has
started. With a CMPedometer, you can't write a simple test to check if it's started as that
state isn't exposed in the API. However, this callback will be called soon after starting
event updates. If step counting is available, then there won't be an error, and you'll
know it's started.

Build and test, and this will pass if you run it on a device and have granted permission
to motion data. If you run on Simulator or device without this permission granted, it'll
fail.

Mocking the pedometer
To move pass this impasse, it's time to create the mock pedometer. In order to swap
CMPedometer for it's mock object, you'll first need to separate the pedometer's interface
from its implementation.

To do that, you'll make use of two classic patterns: Facade and Bridge.

First, create a new group in the app, named Pedometer. In that group, create a new
Swift file, Pedometer.swift.

For now, just add the following code:

protocol Pedometer {
 func start()
}

This is the start of the Bridge protocol that will allow you to substitute any pedometer
implementation for the real one.

In order to do that, you'll have to declare conformance for CMPedometer. Create another
Swift file in the group: CMPedometer+Pedometer.swift and replace its contents with
the following:

import CoreMotion

extension CMPedometer: Pedometer {
 func start() {
 startEventUpdates { event, error in
 // do nothing here for now
 }
 }
}

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 108

This declares conformance to the new protocol and migrates the start behavior you
implemented in startPedometer. It doesn't do anything much yet, but will soon.

Next, open AppModel.swift and decouple AppModel from the specific implementation
of CMPedometer:

1. Change the pedometer declaration to: let pedometer: Pedometer.

2. Remove the pedometerStarted property.

3. Add the following initializer:

init(pedometer: Pedometer = CMPedometer()) {
 self.pedometer = pedometer
}

4. Change startPedometer to:

func startPedometer() {
 pedometer.start()
}

The optional init parameter is where you'll be able to replace the default CMPedometer
with the mock object. The reduction of code in startPedometer is the advantage of
using a Facade: You can hide the specific complexity of the CMPedometer behind a
simplified interface.

Now, it's time to create the mock!

Create a new Swift file in the Mocks group in FitNessTests named
MockPedometer.swift and replace its contents with the following:

import CoreMotion
@testable import FitNess

class MockPedometer: Pedometer {
 private(set) var started: Bool = false

 func start() {
 started = true
 }

}

This creates a very different implementation of Pedometer. Its start method instead of
making CoreMotion calls just sets a Bool that can be checked in a test. Here's another
value of mocking — you can spy or inspect the mock to check that the right methods
were called or that its state was set appropriately.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 109

Now, go back to AppModelTests.swift and add the following property up top and
update setUp:

var mockPedometer: MockPedometer!

override func setUp() {
 super.setUp()
 mockPedometer = MockPedometer()
 sut = AppModel(pedometer: mockPedometer)
}

This creates a mock pedometer and uses it when creating the sut.

Now, go back to testAppModel_whenStarted_startsPedometer and replace it with the
following:

func testAppModel_whenStarted_startsPedometer() {
 //given
 givenGoalSet()

 // when
 try! sut.start()

 // then
 XCTAssertTrue(mockPedometer.started)
}

This simplified test now tests the side effect of start on the mock object. In addition to
being a simpler test, it's guaranteed to pass regardless of the device state. Build and
test, and you'll see that it passes.

Handling error conditions
Mocks make it easy to test error conditions. If you've been following along so far using
both Simulator and a device, you may have encountered one or both of these error
states:

• Step counting is not available on a device, such as the Simulator.

• The user may deny permission for motion recording on device.

Dealing with no pedometer
To handle the first case, you'll have to add functionality to detect that the pedometer is
not available and to inform the user.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 110

First, add this test in AppModelTests under the "Pedometer" mark:

func testPedometerNotAvailable_whenStarted_doesNotStart() {
 // given
 givenGoalSet()
 mockPedometer.pedometerAvailable = false

 // when
 try! sut.start()

 // then
 XCTAssertEqual(sut.appState, .notStarted)
}

This simple check just makes sure the app state doesn't proceed to inProgress when
the pedometer isn't available.

Next, open Pedometer.swift and add the following to the protocol definition:

var pedometerAvailable: Bool { get }

This creates a var to read the availability state.

Next, open MockPedometer.swift and update MockPedometer by adding the following:

var pedometerAvailable: Bool = true

And for the real implementation — to be used by your app code — open
CMPedometer+Pedometer.swift and add the following:

var pedometerAvailable: Bool {
 return CMPedometer.isStepCountingAvailable() &&
 CMPedometer.isDistanceAvailable() &&
 CMPedometer.authorizationStatus() != .restricted
}

You can see that the "real" implementation is a lot more interesting, but not
controllable.

Now the test compiles, and it's time to get it to pass.

Open AppModel.swift, find start() and add the following before appState
= .inProgress:

guard pedometer.pedometerAvailable else {
 AlertCenter.instance.postAlert(alert: .noPedometer)
 return
}

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 111

Unlike the other guard statement, this condition doesn't raise an exception; instead, it
uses the new AlertCenter way of communicating with the user. The resulting error
handling, where start() is called, will be a little different, and refactoring it is out of
scope of this chapter.

Build and test, and it will pass now, as the new guard prevents the appState from
progressing to inProgress when the pedometer isn't available. Note that, if you run the
entire suite, some other tests will now fail — you'll circle back to those in a moment.

It's a good idea to test the alert, as well.

Open, AppModelTests.swift and add the following below
testPedometerNotAvailable_whenStarted_doesNotStart():

func testPedometerNotAvailable_whenStarted_generatesAlert() {
 // given
 givenGoalSet()
 mockPedometer.pedometerAvailable = false
 let exp = expectation(forNotification: AlertNotification.name,
 object: nil,
 handler: alertHandler(.noPedometer))

 // when
 try! sut.start()

 // then
 wait(for: [exp], timeout: 1)
}

This sets pedometerAvailable to false and waits for the corresponding alert. The test
will pass out of the gate due to the code previously added to AppModel for displaying
this alert.

Injecting dependencies
Re-run all the tests, and you will see failures in StepCountControllerTests. That's
because this new pedometerAvailable guard in AppModel is still dependent on the
production CMPedometer in other tests.

One way to fix that this to make the pedometer into a variable so it can be modified for
testing.

Open AppModel.swift and change the let to a var:

var pedometer: Pedometer

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 112

Next, open ViewControllers.swift and add the following to the top of
loadRootViewController():

AppModel.instance.pedometer = MockPedometer()

This sets the mock pedometer when the root view controller is fetched for tests, which
means any view controller test will get a mock pedometer.

Build and run all the tests, and they will now pass.

Dealing with no permission
The other error state that needs to be handled is when the user declines the permission
pop-up.

Open, AppModelTests.swift and add the following to the end of the class:

func testPedometerNotAuthorized_whenStarted_doesNotStart() {
 // given
 givenGoalSet()
 mockPedometer.permissionDeclined = true

 // when
 try! sut.start()

 // then
 XCTAssertEqual(sut.appState, .notStarted)
}

func testPedometerNotAuthorized_whenStarted_generatesAlert() {
 // given
 givenGoalSet()
 mockPedometer.permissionDeclined = true
 let exp = expectation(forNotification: AlertNotification.name,
 object: nil,
 handler: alertHandler(.notAuthorized))

 // when
 try! sut.start()

 // then
 wait(for: [exp], timeout: 1)
}

These test handling of a permissionDeclined error. The first test checks that the app
state stays in .notStarted and the second checks for a user alert.

To get them to work, you need to add permissionDeclined in a few places:

First, open Pedometer.swift, and add the following to the protocol definition:

var permissionDeclined: Bool { get }

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 113

Next, open MockPedometer.swift and add the following to the mock implementation:

var permissionDeclined: Bool = false

Next, open CMPedometer+Pedometer.swift and add the following to the real
implementation:

var permissionDeclined: Bool {
 return CMPedometer.authorizationStatus() == .denied
}

Finally, open AppModel.swift, and add another guard statement to start:

guard !pedometer.permissionDeclined else {
 AlertCenter.instance.postAlert(alert: .notAuthorized)
 return
}

With permissionDeclined handled, the tests will now pass.

Mocking a callback
There is another important error situation to handle. This occurs the very first time the
user taps Start on a pedometer-capable device. In that case, the start flow goes ahead,
but the user can decline in the permission pop-up. If the user declines, there is an error
in the eventUpdates callback.

Lets test that condition. Open AppModelTests.swift and add the following to the end
of the class definition:

func testAppModel_whenDeniedAuthAfterStart_generatesAlert() {
 // given
 givenGoalSet()
 mockPedometer.error = MockPedometer.notAuthorizedError
 let exp = expectation(forNotification: AlertNotification.name,
 object: nil,
 handler: alertHandler(.notAuthorized))

 // when
 try! sut.start()

 // then
 wait(for: [exp], timeout: 1)
}

Unlike the previous tests, this doesn't explicitly set permissionDeclined, so the model
can attempt to start the pedometer. Instead, the test relies on passing an error to the
mock to generate the alert while the pedometer is starting.

The next step is to build a way to get that error back to the SUT.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 114

Open Pedometer.swift, change the definition of start() to the following:

func start(completion: @escaping (Error?) -> Void)

This allows for a completion callback for error handling.

Next, update CMPedometer+Pedometer.swift by replacing start with:

func start(completion: @escaping (Error?) -> Void) {
 startEventUpdates { event, error in
 completion(error)
 }
}

This forwards the error on to the completion.

Next add the error handling in AppModel.swift, by replacing startPedometer with the
following:

func startPedometer() {
 pedometer.start { error in
 if let error = error {
 let alert = error.is(CMErrorMotionActivityNotAuthorized)
 ? .notAuthorized : Alert(error.localizedDescription)
 AlertCenter.instance.postAlert(alert: alert)
 }
 }
}

The closure checks if an error was returned when starting the pedometer. If it's a
CMErrorMotionActivityNotAuthorized, then it posts a notAuthorized alert; otherwise, a
generic alert with the error's message is posted.

This takes care of the production code, but you also need to update the MockPedometer.

Open MockPedometer.swift and replace start() with the following:

var error: Error?

func start(completion: @escaping (Error?) -> Void) {
 started = true
 DispatchQueue.global(qos: .default).async {
 completion(self.error)
 }
}

static let notAuthorizedError =
 NSError(domain: CMErrorDomain,
 code: Int(CMErrorMotionActivityNotAuthorized.rawValue),
 userInfo: nil)

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 115

This update will call the completion, passing its error property. For convenience, the
static notAuthorizedError creates an error object that matches what is returned by
Core Motion when unauthorized. This is what you used in
testAppModel_whenDeniedAuthAfterStart_generatesAlert.

Build and test again, and your tests should pass.

Getting actual data
It's time move on to handling data updates. The incoming data is the most important
part of the app, and it's crucial to have it properly mocked. The actual step and distance
count are provided by CMPedometer through the aptly named CMPedometerData object.
This too should be abstracted between the app and Core Motion.

Open Pedometer.swift and add the following protocol:

protocol PedometerData {
 var steps: Int { get }
 var distanceTravelled: Double { get }
}

This adds an abstraction around CMPedometerData so that the step and distance data
can be mocked. Do that by creating a new .swift file in the Mocks group of the test
target: MockData.swift and replacing its contents with the following:

@testable import FitNess

struct MockData: PedometerData {
 let steps: Int
 let distanceTravelled: Double
}

With this in place, open AppModelTests.swift and add the following test at the end of
the class definition:

func testModel_whenPedometerUpdates_updatesDataModel() {
 // given
 givenInProgress()
 let data = MockData(steps: 100, distanceTravelled: 10)

 // when
 mockPedometer.sendData(data)

 // then
 XCTAssertEqual(sut.dataModel.steps, 100)
 XCTAssertEqual(sut.dataModel.distance, 10)
}

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 116

The test verifies that the supplied data is applied to the data model. This requires an
update to MockPedometer to pass the data. First, think about how that data will
eventually be passed to AppModel.

Open Pedometer.swift. In the Pedometer protocol, change the signature of
start(completion:) to the following:

func start(
 dataUpdates: @escaping (PedometerData?, Error?) -> Void,
 eventUpdates: @escaping (Error?) -> Void)

The dataUpdates block will provide a means of returning PedometerData from the
pedometer. eventUpdates will return events, as the old completion block did.

In MockPedometer, create two new variables to hold these callback blocks:

var updateBlock: ((Error?) -> Void)?
var dataBlock: ((PedometerData?, Error?) -> Void)?

Next, replace start(completion:) with the following:

func start(
 dataUpdates: @escaping (PedometerData?, Error?) -> Void,
 eventUpdates: @escaping (Error?) -> Void) {

 started = true
 updateBlock = eventUpdates
 dataBlock = dataUpdates
 DispatchQueue.global(qos: .default).async {
 self.updateBlock?(self.error)
 }
}

func sendData(_ data: PedometerData?) {
 dataBlock?(data, error)
}

The two blocks are saved for later use, but the updateBlock is still called as part of this
method, as completion was previously. You won't have to update any previous tests for
this one, as the behavior is the same. Also added is sendData(_:), which is used by the
test to call the dataBlock with the mock data.

You also need to update the CMPedometer extension for this new logic. Open
CMPedometer+Pedometer.swift and change start(completion:) to the following:

func start(
 dataUpdates: @escaping (PedometerData?, Error?) -> Void,
 eventUpdates: @escaping (Error?) -> Void) {

 startEventUpdates { event, error in
 eventUpdates(error)

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 117

 }

 startUpdates(from: Date()) { data, error in
 dataUpdates(data, error)
 }
}

This preserves the previous startEventUpdates behavior, plus adds a new call to
startUpdates to forward the data updates.

You also need to wrap CMPedometerData with the new PedometerData protocol. Add the
following extension to bottom of the file:

extension CMPedometerData: PedometerData {

 var steps: Int {
 return numberOfSteps.intValue
 }

 var distanceTravelled: Double {
 return distance?.doubleValue ?? 0
 }
}

This forwards the CMPedometerData values as PedometerData variables.

Finally, open AppModel.swift, and replace startPedometer() with the following:

func startPedometer() {
 pedometer.start(dataUpdates: handleData,
 eventUpdates: handleEvents)
}

func handleData(data: PedometerData?, error: Error?) {
 if let data = data {
 dataModel.steps += data.steps
 dataModel.distance += data.distanceTravelled
 }
}

func handleEvents(error: Error?) {
 if let error = error {
 let alert = error.is(CMErrorMotionActivityNotAuthorized)
 ? .notAuthorized : Alert(error.localizedDescription)
 AlertCenter.instance.postAlert(alert: alert)
 }
}

This moves the previous event handling to its own method and creates a new one to
update dataModel when there is new data. You'll notice that data update errors are not
handled here. That's left as a Challenge for you after this chapter is complete!

Build and test, and watch that green grow!

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 118

Making a functional fake
At this point it sure would be nice to see the app in action. The unit tests are useful for
verifying logic but are bad at verifying you're building a good user experience. One way
to do that is to build and run on a device, but that will require you to walk around to
complete the goal. That's very time and calorie consuming. There has got to be a better
way!

Enter the fake pedometer: You've already done the work to abstract the app from a real
CMPedometer, so it's straightforward to build a fake pedometer that speeds up time or
makes up movement.

Create a new .swift file in the pedometer group: SimulatorPedometer.swift. Replace
its contents with the following:

import Foundation

class SimulatorPedometer: Pedometer {

 struct Data: PedometerData {
 let steps: Int
 let distanceTravelled: Double
 }

 var pedometerAvailable: Bool = true
 var permissionDeclined: Bool = false

 var timer: Timer?
 var distance = 0.0

 var updateBlock: ((Error?) -> Void)?
 var dataBlock: ((PedometerData?, Error?) -> Void)?

 func start(
 dataUpdates: @escaping (PedometerData?, Error?) -> Void,
 eventUpdates: @escaping (Error?) -> Void) {

 updateBlock = eventUpdates
 dataBlock = dataUpdates

 timer = Timer(timeInterval: 1, repeats: true,
 block: { timer in
 self.distance += 1
 print("updated distance: \(self.distance)")
 let data = Data(steps: 10,
 distanceTravelled: self.distance)
 self.dataBlock?(data, nil)
 })
 RunLoop.main.add(timer!, forMode: .defaultRunLoopMode)
 updateBlock?(nil)
 }

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 119

 func stop() {
 timer?.invalidate()
 updateBlock?(nil)
 updateBlock = nil
 dataBlock = nil
 }
}

This giant block of code implements the Pedometer and PedometerData protocols. It sets
up a Timer object that, once start is called, adds ten steps every second. Each time it
updates, it calls dataBlock with the new data.

You've also added a stop method that stops the timer and cleans up. This will be used
when you add the ability to pause the pedometer by tapping the Pause button.

To use the simulated pedometer in the app, open AppModel.swift, and add the
following static var:

static var pedometerFactory: (() -> Pedometer) = {
 #if targetEnvironment(simulator)
 return SimulatorPedometer()
 #else
 return CMPedometer()
 #endif
}

This method creates either a SimulatorPedometer() or a CMPedometer() depending on
the app's target environment.

Next, replace init with the following:

init(pedometer: Pedometer = pedometerFactory()) {
 self.pedometer = pedometer
}

Now build and run in Simulator. Tap the settings cog in the lower-right and enter a goal
of 100 steps.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 120

Tap Start, and you'll see alert notifications coming in!

Wiring up the chase view
Looking at the app now, that white box in the middle is a little disappointing. This is
the chase view (it illustrates Nessie's chase of the user), and hasn't yet been wired up.

In order to test that it will accurately reflect the user's state, you can use a partial
mock. By partially mocking the chase view, you can add a little extra test functionality
without interrupting its main logic. This is instead of a full mock, which replaces all
functionality.

Create a new file in the Mocks group called ChaseViewPartialMock.swift and replace
its contents with the following:

@testable import FitNess

class ChaseViewPartialMock: ChaseView {
 var updateStateCalled = false
 var lastRunner: Double?
 var lastNessie: Double?

 override func updateState(runner: Double, nessie: Double) {
 updateStateCalled = true
 lastRunner = runner
 lastNessie = nessie
 super.updateState(runner: runner, nessie: nessie)

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 121

 }
}

This partial mock overrides updateState(runner:nessie:) so that the values sent to it
can be recorded and verified in tests. updateStateCalled can be used by tests to track
that the method has been called — a common mock validation.

This class is used by StepCountController.

First open StepCountControllerTests.swift and add the following variable:

var mockChaseView: ChaseViewPartialMock!

Next, add the following lines to the bottom of setUp():

mockChaseView = ChaseViewPartialMock()
sut.chaseView = mockChaseView

Finally, add a test that verifies that the view gets updated:

func testChaseView_whenDataSent_isUpdated() {
 // given
 givenInProgress()

 // when
 let data = MockData(steps:500, distanceTravelled:10)
 (AppModel.instance.pedometer as! MockPedometer).sendData(data)

 // then
 XCTAssertTrue(mockChaseView.updateStateCalled)
 XCTAssertEqual(mockChaseView.lastRunner, 0.5)
}

This uses the mocked pedometer to send data and verifies the state on the partial mock
chase view. The value for Nessie's position isn't checked since the code for Nessie isn't
part of the project yet.

Build and test, and you'll see neither assert passes, because the chase view isn't yet
being updated.

Open, StepCountController.swift, and add the following to viewDidLoad() to kick off
this update:

NotificationCenter.default
 .addObserver(forName: DataModel.UpdateNotification,
 object: nil,
 queue: nil) { _ in
 self.updateUI()
}

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 122

This listens for data model updates and calls updateUI when there is a data update.

updateUI calls updateChaseView, which needs to calculate the location of Nessie and the
runner, then update them in the view. Replace updateChaseView with with the
following:

private func updateChaseView() {
 chaseView.state = AppModel.instance.appState
 let dataModel = AppModel.instance.dataModel
 let runner =
 Double(dataModel.steps) / Double(dataModel.goal ?? 10_000)
 let nessie = dataModel.nessie.distance > 0 ?
 dataModel.distance / dataModel.nessie.distance : 0
 chaseView.updateState(runner: runner, nessie: nessie)
}

This gathers the distance of the user and Nessie from the data model, computes a
percent completion, and presents it to the chase view so that the avatars can be placed
accordingly.

Build and test to see the test pass! Build and run to see the view in action:

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 123

Time dependencies
The final major piece missing is Nessie. She should be chasing after the user while the
app is in progress. Her progress will be measured at a constant velocity. Measuring
something over time? Sounds like a Timer is the answer.

Timers are notoriously hard to test: They require using expectations along with having
a potentially long wait. There are few common solutions:

1. During tests, use a very short timer (e.g., one millisecond instead of one second).

2. Swap the timer for a mock that executes the callback immediately.

3. Use the callback directly, and save the timing for app or user-acceptance testing.

Any of these are reasonable solutions, but you're going to go with option #3. In
NessieTests.swift, add this test:

func testNessie_whenUpdated_incrementsDistance() {
 // when
 sut.incrementDistance()

 // then
 XCTAssertEqual(sut.distance, sut.velocity)
}

This calls incrementDistance directly, just as the Timer callback does in the Nessie
class. It asserts that after distance increments it is equal to the velocity.

The test doesn't yet pass, because incrementDistance is stubbed out. Open
Nessie.swift, and add the following line to incrementDistance():

distance += velocity

The distance now increments, and the test will pass.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 124

Challenge
You've reached the end of the chapter, but not the end of the app. You should be able to
take the testing tools you've learned and finish the app. Your challenge is to add the
following tests and features to complete the app:

• Complete the Pause functionality to be able to pause and resume the pedometer.

• Wire up Nessie to app state so it can start, pause and reset appropriately. You'll also
have to give the user a little bit of a head start since both the user and Nessie will
start at 0.

• Complete the handling of data errors from the pedometer (use the Alert Center).

Key points
• Test doubles let you test code in isolation from other systems, especially those that

are part of system SDKs, rely on networking or timers.

• Mocks let you swap in a test implementation of a class, and partial mocks let you
just substitute part of a class.

• Fakes let you supply data for testing or use in Simulator.

Where to go from here?
That's it. Over the past few chapters, you've built an an app from the ground up
following TDD principles.

This chapter covered using mocks to separate the test subjects from external code and
events. This just scratches the surface of what's possible. The next section will be all
about using external services like network requests.

If you want to learn more about the use and history of doubles, read this excellent
Martin Fowler article, "Mocks Aren't Stubs": https://martinfowler.com/articles/
mocksArentStubs.html.

iOS Test-Driven Development by Tutorials Chapter 6: Dependency Injection & Mocks

raywenderlich.com 125

Section III: TDD with
Networking

This section will teach you test-driven development with networking. You'll learn how
to do TDD for RESTful network calls, an authentication client, authenticated calls and
web sockets.

Throughout this section, you'll build onto a puppy-buying app that interacts with a
backend service to give you hands-on experience doing TDD with networking!

• Chapter 7: Introducing DogPatch: You'll complete a puppy-adoption app called
Dog Patch throughout this section. This app connects dog lovers with kind,
professional breeders to find the puppy of their dreams.

• Chapter 8: RESTful Networking: You'll learn how to start TDD for RESTful
networking in this chapter. By the end of this chapter, you'll have created a
networking client and will be able to make unauthenticated calls.

• Chapter 9: Authentication Client: You'll use TDD to create an authentication
client in this chapter that will trigger sign-up and sign-in flows.

• Chapter 10: Authenticated Network Calls: You'll TDD connecting the
authentication and networking clients together that you created in the previous
chapters to make authenticated networking calls in this chapter.

• Chapter 11: WebSockets: You'll learn about websockets and how you can use TDD
to create a real-time chat component in this chapter.

raywenderlich.com 126

7Chapter 7: Introducing Dog
Patch
By Joshua Greene

You've learned the basics of TDD, and you should be starting to feel comfortable with it.
However, you haven't learned how to do TDD for a very critical part of most apps:
networking!

Over the next several chapters, you'll learn the ins-and-outs of writing networking code
in a test-driven fashion. The goal of this chapter is to introduce you to this section's
sample project and highlight what work remains to be completed.

Getting started
You'll complete a puppy-adoption app called Dog Patch throughout this section. This
app connects dog lovers with kind, professional breeders to find the puppy of their
dreams.

A prospective owner first browses available puppy listings within the app. When they
find an adorable match, they can contact and chat directly with the breeder for more
information. The puppy purchase and delivery happens outside the app.

Let's go over what needs to be done to make this possible.

raywenderlich.com 127

Making unauthenticated network calls
In Chapter 8, you'll do TDD for making unauthenticated network calls. Specifically,
you'll complete ListingsViewController, which displays available puppy listings:

You'll make a GET request to fetch SaleListing models from a remote server, and you'll
then convert these to SaleViewModels. ListingViewController already has logic to
display these directly on screen.

Creating an authentication client
In Chapter 9, you'll follow TDD to create an AuthenticationClient. This will allow
existing users to sign into and new users to register on the app. You'll complete both
SignInViewController and RegisterViewController as part of this:

iOS Test-Driven Development by Tutorials Chapter 7: Introducing Dog Patch

raywenderlich.com 128

You'll use two forms of authentication in Chapter 9 as well. You'll first pass an email
and password via basic authentication to sign in. In response, you'll receive a JSON Web
Token (JWT), which you'll persist to later use as bearer authentication.

Making authenticated network calls
In Chapter 10, you'll use your previously obtained JWT to make authenticated network
calls. Specifically, you'll follow TDD to write a PUT request to update the User,
including the profile image via a multipart form requesting. You'll ultimately complete
the EditAccountViewController in this chapter:

iOS Test-Driven Development by Tutorials Chapter 7: Introducing Dog Patch

raywenderlich.com 129

Making calls over web sockets
In Chapter 11, you'll use TDD to send messages over web sockets. You'll use this to
complete both ChatListViewController and ChatsViewController:

Understanding Dog Patch's
architecture
You'll use Model-View-Controller-Networking (MVC-N) for this app's architecture. If
you've done any work in iOS before, you're very likely familiar with the Model-View-
Controller (MVC) architecture, wherein you separate objects into three types. These
are aptly named models, views and controllers, of course.

MVC-N is a spin-off architecture of MVC. Instead of just three types, however, it
separates out a fourth type for networking.

Especially for networking-heavy apps like Dog Patch, it makes sense to separate
networking into its own type. If you didn't do this, where would the networking code
go, after all? In pure MVC-architecture apps, developers tend to lump networking into
each view controller.

iOS Test-Driven Development by Tutorials Chapter 7: Introducing Dog Patch

raywenderlich.com 130

The problem here is that a lot of networking code is interrelated. For example, URL and
content serialization, authentication headers and more require exactly the same logic. If
networking code is directly in each view controller, you quickly wind up with a lot of
duplication. This quickly becomes an unmanageable mess as a result.

Fortunately, MVC-N allows you to avoid this issue altogether by putting your
networking code into a networking client. This client is then passed into whatever
view controllers need it, and this effectively eliminates the duplication across view
controllers.

It's OK if you haven't heard of MVC-N before. You'll learn all about it over the course of
the next few chapters!

Where to go from here?
This chapter introduced Dog Patch and what you'll be doing over the next few chapters.
Continue onto the next chapter to dive into the code!

iOS Test-Driven Development by Tutorials Chapter 7: Introducing Dog Patch

raywenderlich.com 131

8Chapter 8: RESTful
Networking

You'll learn how to start TDD for RESTful networking in this chapter. By the end of this
chapter, you'll have created a networking client and will be able to make
unauthenticated calls.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 132

9Chapter 9: Authentication
Client

You'll use TDD to create an authentication client in this chapter that will trigger sign-
up and sign-in flows.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 133

10Chapter 10: Authenticated
Network Calls

You'll TDD connecting the authentication and networking clients together that you
created in the previous chapters to make authenticated networking calls in this chapter.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 134

11Chapter 11: Websockets

You'll learn about websockets and how you can use TDD to create a real-time chat
component in this chapter.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 135

Section IV: TDD in Legacy
Apps

This section will show you how to start test-driven development in a legacy app that
lacks sufficient unit tests. You'll learn strategies for introducing TDD into existing apps,
methods for visualizing and splitting up dependencies, ways to add features safely
alongside existing code and how to refactor large classes.

Throughout this section, you'll introduce TDD into an app for managing a business. The
app is feature-rich with spaghetti code and ready for a TDD clean up!

Several techniques and concepts in this section were inspired by Michael Feather's book
Working Effectively with Legacy Code. Reading that book isn't a strict requirement for
working through these chapters. However, you'll likely benefit by having some
familiarity with the topics herein if you already have read it!

• Chapter 12: Legacy Problems: Beginning TDD on a "legacy" project is much
different than starting TDD on a new project. For example, the project may have few
(if any) unit tests, lack documentation and be slow to build. This chapter will
introduce you to strategies to start tackling these problems.

• Chapter 13: Dependency Maps: Before you can make a change, you must first
understand how the system works and which classes relate to one another. This
chapter will give you a tool for doing this: dependency maps.

• Chapter 14: Breaking Up Dependencies: In this chapter, you'll use the strategies
and techniques you learned from the previous chapters to start TDDing changes to
the legacy app. To make this possible, however, you'll have to break existing class
dependencies. You'll learn how to do this in a safe(r) manner in this chapter.

raywenderlich.com 136

• Chapter 15: Adding Features to Existing Classes: You won't always have the time,
or it may simply not be possible, to break dependencies of very large classes. In this
chapter, you'll learn strategies to add functionality to existing class, while at the
same time, avoid modifying them!

• Chapter 16: Refactoring Large Classes: As you continue to modify your legacy
code base using TDD, you'll naturally create "test islands" throughout your code that
are easier to test and change. Classes that were once "too big" to break up will start to
become possible now. In this chapter, you'll learn strategies specifically for breaking
up these very large classes.

iOS Test-Driven Development by Tutorials Section IV: TDD in Legacy Apps

raywenderlich.com 137

12Chapter 12: Legacy
Problems

Beginning TDD on a "legacy" project is much different than starting TDD on a new
project. For example, the project may have few (if any) unit tests, lack documentation
and be slow to build. This chapter will introduce you to strategies to start tackling these
problems.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 138

13Chapter 13: Dependency
Maps

Before you can make a change, you must first understand how the system works and
which classes relate to one another. This chapter will give you a tool for doing this:
dependency maps.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 139

14Chapter 14: Breaking Up
Depdendencies

In this chapter, you'll use the strategies and techniques you learned from the previous
chapters to start TDDing changes to the legacy app. To make this possible, however,
you'll have to break existing class dependencies. You'll learn how to do this in a safe(r)
manner in this chapter.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 140

15Chapter 15: Adding
Features to Existing Classes

You won't always have the time, or it may simply not be possible, to break dependencies
of very large classes. In this chapter, you'll learn strategies to add functionality to
existing class, while at the same time, avoid modifying them!

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 141

16Chapter 16: Refactoring
Large Classes

As you continue to modify your legacy code base using TDD, you'll naturally create "test
islands" throughout your code that are easier to test and change. Classes that were once
"too big" to break up will start to become possible now. In this chapter, you'll learn
strategies specifically for breaking up these very large classes.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

raywenderlich.com 142

	Early Access Edition
	Introduction
	About this book
	Section introductions
	How to read this book

	What You Need
	Book License
	Book Source Code & Forums
	Chapter 1: What Is TDD?
	Why should you use TDD?
	What should you test?
	But TDD takes too long!
	When should you use TDD?
	Key points

	Chapter 2: The TDD Cycle
	Getting started
	Red: Write a failing test
	Green: Make the test pass
	Refactor: Clean up your code
	Repeat: Do it again
	TDDing init(availableFunds:)
	TDDing addItem
	Adding two items
	Challenge
	Key points

	Chapter 3: Driving TDD
	About the FitNess app
	Your first test
	Red-Green-Refactor
	Test nomenclature
	Structure of XCTestCase subclass
	Your next set of tests
	Using @testable import
	Testing initial conditions
	Refactoring
	Challenge
	Key points
	Where to go from here?

	Chapter 4: Test Expressions
	Assert methods
	View controller testing
	Test ordering matters
	Code coverage
	Debugging tests
	Challenge
	Key points
	Where to go from here?

	Chapter 5: Test Expectations
	Using an expectation
	Testing for true asynchronicity
	Waiting for notifications
	Showing the alert to a user
	Getting specific about notifications
	Driving alerts from the data model
	Using other types of expectations
	Challenge
	Key points
	Where to go from here?

	Chapter 6: Dependency Injection & Mocks
	What's up with fakes, mocks, and stubs?
	Understanding CMPedometer
	Mocking
	Handling error conditions
	Getting actual data
	Making a functional fake
	Wiring up the chase view
	Time dependencies
	Challenge
	Key points
	Where to go from here?

	Chapter 7: Introducing Dog Patch
	Getting started
	Understanding Dog Patch's architecture
	Where to go from here?

	Chapter 8: RESTful Networking
	Chapter 9: Authentication Client
	Chapter 10: Authenticated Network Calls
	Chapter 11: Websockets
	Chapter 12: Legacy Problems
	Chapter 13: Dependency Maps
	Chapter 14: Breaking Up Depdendencies
	Chapter 15: Adding Features to Existing Classes
	Chapter 16: Refactoring Large Classes

