
M A N N I N G

Petar Tahchiev
Felipe Leme

Vincent Massol
Gary Gregory

Covers JUnit 4.8

SECOND EDITION
IN ACTION

Praise for the First Edition

The definitive how-to manual for unit testing Java EE components. Pick up one of the
other books if you’re looking for something more motivational, but when you’re ready
to sit down and bang out some code, you’ll want this book at your side.

—JavaRanch.com

I would definitely recommend JUnit in Action for anyone interested in testing their
code.… It is a book that flows nicely, and offers a great mix of technology theory and
how to put it all into practice.

—TheServerSide.com

An essential guide for intermediate level Java programmers who want to learn how
to build Java EE applications properly...clear, simple and fun...the best I have seen
thus far…. The book actually goes into detail about using mock objects and stubs,
further expanding your understanding of basic software design…. I highly recom-
mend it.

—Killersites.com

Not a JUnit tutorial, it covers JUnit in depth. It also explains the importance of JUnit
in the context of software development process. This well-edited book is highly recom-
mended both for the beginner and advanced users of JUnit.

—Denver JUG

With a number of Manning books I can see myself start to think differently about
problems and so I end up being a better developer; JUnit in Action was like that for
me. At first it bothered me that I was changing my code in order to test it, but then I
started seeing that the changes made the code better overall. Now my code is littered
with factory methods and similar patterns. You guys are doing good stuff.

—Joshua Smith, a reader

The examples are clear and real-world. The authors address the complex issues of unit
testing EJBs and web apps head-on. They don’t shy away from the real issues that
come with testing these kinds of applications.

—Wade Matveyenko, a reader

JUnit in Action
SECOND EDITION

PETAR TAHCHIEV
FELIPE LEME

VINCENT MASSOL
GARY GREGORY

M A N N I N G
Greenwich

(74° w. long.)

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development Editor: Sebastian Stirling
Manning Publications Co. Copyeditor: Linda Recktenwald
180 Broad St. Proofreader: Katie Tennant
Suite 1323 Typesetters: Dennis Dalinnik
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 9781935182023
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10

http://www.manning.com
mailto:orders@manning.com

 To my sister Hrissy; you showed me what real courage means
 —P.T.

 To the memory of my father, Leonidas de Almeida Leme

 —F.L.

 To my wife, Marie-Albane, and my children,

Paul, Jean, and Pierre-Olivier
 —V.M.

 To my loving family: my wife Lori, my son Alexander,

my mother Micheline, and to the memory of my father Greg
 —G.G.

brief contents
PART 1 JUNIT ESSENTIALS .. 1

1 ■ JUnit jump-start 3

2 ■ Exploring core JUnit 14

3 ■ Mastering JUnit 25

4 ■ Software testing principles 53

PART 2 DIFFERENT TESTING STRATEGIES 65

5 ■ Test coverage and development 67

6 ■ Coarse-grained testing with stubs 84

7 ■ Testing with mock objects 99

8 ■ In-container testing 126

PART 3 JUNIT AND THE BUILD PROCESS.................................135

9 ■ Running JUnit tests from Ant 137

10 ■ Running JUnit tests from Maven2 152

11 ■ Continuous integration tools 169
vii

BRIEF CONTENTSviii
PART 4 JUNIT EXTENSIONS... 187

12 ■ Presentation-layer testing 189

13 ■ Ajax testing 224

14 ■ Server-side Java testing with Cactus 259

15 ■ Testing JSF applications 292

16 ■ Testing OSGi components 310

17 ■ Testing database access 326

18 ■ Testing JPA-based applications 360

19 ■ JUnit on steroids 389

contents
preface xix
preface to the first edition xxi
acknowledgments xxiii
about this book xxv
about the authors xxx
about the cover illustration xxxii

PART I JUNIT ESSENTIALS .. 1

1 JUnit jump-start 3
1.1 Proving it works 4
1.2 Starting from scratch 6
1.3 Understanding unit testing frameworks 8
1.4 JUnit design goals 9
1.5 Setting up JUnit 9
1.6 Testing with JUnit 10
1.7 Summary 13

2 Exploring core JUnit 14
2.1 Exploring core JUnit 15
ix

CONTENTSx
2.2 Running parameterized tests 17
2.3 JUnit test runners 19

Test runner overview 19 ■ The JUnitCore
façade 20 ■ Custom test runners 20

2.4 Composing tests with a suite 21
Composing a suite of test classes 21 ■ Composing a
suite of suites 22 ■ Suites, IDEs, Ant, and Maven 23

2.5 Summary 24

3 Mastering JUnit 25
3.1 Introducing the controller component 26

Designing the interfaces 26 ■ Implementing the base class 28

3.2 Let’s test it! 30
Testing the DefaultController 30 ■ Adding a handler 32
Processing a request 35 ■ Improving testProcessRequest 38

3.3 Testing exception handling 40
Simulating exceptional conditions 41 ■ Testing
for exceptions 44

3.4 Timeout testing 45
3.5 Introducing Hamcrest matchers 47
3.6 Setting up a project for testing 50
3.7 Summary 52

4 Software testing principles 53
4.1 The need for unit tests 54

Allowing greater test coverage 54 ■ Increasing team
productivity 54 ■ Detecting regressions and limiting
debugging 54 ■ Refactoring with confidence 55
Improving implementation 55 ■ Documenting expected
behavior 56 ■ Enabling code coverage and other metrics 56

4.2 Test types 57
The four types of software tests 57 ■ The three
types of unit tests 60

4.3 Black box versus white box testing 62
4.4 Summary 63

CONTENTS xi
PART II DIFFERENT TESTING STRATEGIES 65

5 Test coverage and development 67
5.1 Measuring test coverage 67

Introduction to test coverage 68 ■ Introduction
to Cobertura 69 ■ Generating test coverage
reports 70 ■ Combining black box and
white box testing 71

5.2 Writing testable code 72
Public APIs are contracts 72 ■ Reduce dependencies 72
Create simple constructors 73 ■ Follow the Principle
of Least Knowledge 74 ■ Avoid hidden dependencies
and global state 74 ■ Singletons pros and cons 75
Favor generic methods 76 ■ Favor composition over
inheritance 77 ■ Favor polymorphism
over conditionals 77

5.3 Test-driven development 78
Adapting the development cycle 78 ■ The TDD two-step 79

5.4 Testing in the development cycle 80
5.5 Summary 83

6 Coarse-grained testing with stubs 84
6.1 Introducing stubs 85
6.2 Stubbing an HTTP connection 86

Choosing a stubbing solution 88 ■ Using Jetty as
an embedded server 89

6.3 Stubbing the web server’s resources 90
Setting up the first stub test 90 ■ Testing for failure
conditions 94 ■ Reviewing the first stub test 95

6.4 Stubbing the connection 95
Producing a custom URL protocol handler 95 ■ Creating a
JDK HttpURLConnection stub 97 ■ Running the test 98

6.5 Summary 98

7 Testing with mock objects 99
7.1 Introducing mock objects 100
7.2 Unit testing with mock objects 100

CONTENTSxii
7.3 Refactoring with mock objects 104
Refactoring example 105

7.4 Mocking an HTTP connection 107
Defining the mock objects 108 ■ Testing a sample
method 108 ■ First attempt: easy method refactoring
technique 109 ■ Second attempt: refactoring by using
a class factory 111

7.5 Using mocks as Trojan horses 113
7.6 Introducing mock frameworks 117

Using EasyMock 117 ■ Using JMock 121

7.7 Summary 124

8 In-container testing 126
8.1 Limitations of standard unit testing 126
8.2 The mock objects solution 127
8.3 In-container testing 129

Implementation strategies 129 ■ In-container
testing frameworks 130

8.4 Comparing stubs, mock objects, and in-container
testing 131
Stubs pros and cons 131 ■ Mock objects pros and
cons 131 ■ In-container testing pros and cons 133
In-container versus out-of-container testing 134

8.5 Summary 134

PART III JUNIT AND THE BUILD PROCESS 135

9 Running JUnit tests from Ant 137
9.1 A day in the life 138
9.2 Running tests from Ant 138
9.3 Introducing and installing Ant 139
9.4 Ant targets, projects, properties, and tasks 140

The javac task 141 ■ The JUnit task 143

9.5 Putting Ant to the task 144
9.6 Dependency management with Ivy 145

CONTENTS xiii
9.7 Creating HTML reports 147
9.8 Batching tests 149
9.9 Summary 151

10 Running JUnit tests from Maven2 152
10.1 Maven’s features 153

Convention over configuration 153 ■ Strong dependency
management 154 ■ Maven build lifecycles 155
Plug-in-based architecture 156 ■ The Maven
Project Object Model 157

10.2 Setting up a Maven project 159
10.3 Introduction to Maven plug-ins 163

Maven Compiler plug-in 164 ■ Maven Surefire
plug-in 165 ■ HTML JUnit reports with Maven 166

10.4 The bad side of Maven 167
10.5 Summary 168

11 Continuous integration tools 169
11.1 A taste of continuous integration 169

Continuous integration testing 170

11.2 CruiseControl to the rescue 172
Getting started with CruiseControl 172 ■ Setting up a sample
project 173 ■ The CruiseControl config file explained 173

11.3 Another neat tool—Hudson 179
Introducing Hudson 179 ■ Installation 179 ■ Configuring
Hudson 180 ■ Configuring a project in Hudson 182

11.4 Benefits of continuous integration 184
11.5 Summary 185

PART IV JUNIT EXTENSIONS....................................... 187

12 Presentation-layer testing 189
12.1 Choosing a testing framework 190
12.2 Introducing HtmlUnit 190

A live example 190

CONTENTSxiv
12.3 Writing HtmlUnit tests 191
HTML assertions 191 ■ Testing for a specific
web browser 192 ■ Testing more than one web
browser 192 ■ Creating standalone tests 193
Navigating the object model 195 ■ Accessing elements
by specific element type 195 ■ Accessing elements by name
versus index 195 ■ Accessing elements with references 196
Using XPath 197 ■ Test failures and exceptions 198
Application and internet navigation 199 ■ Testing forms
with HtmlUnit 200 ■ Testing frames 202 ■ Testing
JavaScript 203 ■ Testing CSS 205 ■ SSL errors 205

12.4 Integrating HtmlUnit with Cactus 206
Writing tests in Cactus 206

12.5 Introducing Selenium 208
12.6 Generating Selenium tests 210

A live example 210

12.7 Running Selenium tests 211
Managing the Selenium server 211 ■ Running Selenium
tests with JUnit 4 212

12.8 Writing Selenium tests 215
Testing for a specific web browser 215 ■ Testing multiple
browsers 216 ■ Application and internet navigation 218
Accessing elements with references 219 ■ Failing tests with
exceptions 219 ■ Testing forms with Selenium 220 ■ Testing
JavaScript alerts 220 ■ Capturing a screen shot for a JUnit 3
test failure 221 ■ Capturing a screen shot for a
JUnit 4 test failure 221

12.9 HtmlUnit versus Selenium 222
12.10 Summary 223

13 Ajax testing 224
13.1 Why are Ajax applications difficult to test? 225

Web-classic interaction 225 ■ Ajax interaction 225
A brave new world 227 ■ Testing challenges 227

13.2 Testing patterns for Ajax 227
Functional testing 227 ■ Client-side script
unit testing 228 ■ Service testing 228

CONTENTS xv
13.3 Functional testing 229
Functional testing with Selenium 229 ■ Functional
testing with HtmlUnit 233

13.4 JavaScript testing 234
JavaScript testing with RhinoUnit 234 ■ JavaScript testing
with JsUnit 237 ■ Writing JsUnit tests 238 ■ Writing
JsUnit test suites 239 ■ Running JsUnit tests
manually 241 ■ Running JsUnit tests with Ant 242

13.5 RhinoUnit versus JsUnit 245
13.6 Checking best practices with JSLint 245
13.7 Testing services with HttpClient 247

Calling an XML service 247 ■ Validating an XML
response 248 ■ Validating a JSON response 249

13.8 Testing Google Web Toolkit applications 251
Choosing a testing framework for a GWT
application 251 ■ Creating a GWTTestCase
manually 253 ■ Creating a GWTTestCase with
junitCreator 255 ■ Running test cases 256
Setup and teardown 256 ■ Creating a
test suite 256 ■ Running a test suite 257

13.9 Summary 257

14 Server-side Java testing with Cactus 259
14.1 What is Cactus? 260
14.2 Testing with Cactus 260

Java components that you can test with Cactus 260
General principles 261 ■ How Cactus works 263

14.3 Testing servlets and filters 265
Presenting the Administration application 266
Writing servlet tests with Cactus 266

14.4 Testing JSPs 273
Revisiting the Administration application 273 ■ What is JSP
unit testing? 273 ■ Unit testing a JSP in isolation with
Cactus 273 ■ Executing a JSP with SQL results data 274

14.5 Testing EJBs 277
14.6 What is Cargo? 279
14.7 Executing Cactus tests with Ant 280

Cactus tasks to prepare the archive 280

CONTENTSxvi
14.8 Executing Cactus tests with Maven2x 285
Maven2 cactifywar MOJO 285 ■ Maven2
cactifyear MOJO 289

14.9 Executing Cactus tests from the browser 290
14.10 Summary 291

15 Testing JSF applications 292
15.1 Introducing JSF 293
15.2 Introducing the sample application 294
15.3 Typical problems when testing JSF applications 300
15.4 Strategies for testing JSF applications 301

Black box approach 301 ■ Mock objects to the rescue 302

15.5 Testing the sample application with JSFUnit 304
Executing a JSFUnit test from a browser 305 ■ Testing Ajax
using JSFUnit 305

15.6 Using HtmlUnit with JSFUnit 307
15.7 Performance testing for your JSF application 308
15.8 Summary 309

16 Testing OSGi components 310
16.1 Introducing OSGi 311
16.2 Our first OSGi service 312

The sample application 316

16.3 Testing OSGi services 318
Mock objects 319

16.4 Introducing JUnit4OSGi 322
16.5 Summary 325

17 Testing database access 326
17.1 The database unit testing impedance mismatch 327

Unit tests must exercise code in isolation 327 ■ Unit tests must be
easy to write and run 328 ■ Unit tests must be fast to run 328

17.2 Introducing DbUnit 329
The sample application 329 ■ Setting up DbUnit and
running the sample application 330

CONTENTS xvii
17.3 Using datasets to populate the database 330
DatabaseOperation dissected 334

17.4 Asserting database state with datasets 335
Filtering data sets 337 ■ Ignoring columns 338

17.5 Transforming data using ReplacementDataSet 340
Using ReplacementDataSet to handle the different IDs
issue 340 ■ Handling NULL values 342

17.6 Creating datasets from existing database data 346
17.7 Advanced techniques 347

DbUnit and the Template Design Pattern 347 ■ Improving
reuse through custom annotations 350 ■ Using Expression
Language in datasets 353

17.8 Database access testing best practices 356
Use one database per developer 356 ■ Make sure the
target database is tested 356 ■ Create complementary
tests for loading and storing data 357 ■ When writing
load test cases, cover all the basic scenarios 357 ■ Plan your
dataset usage 357 ■ Test cleanup 358

17.9 Summary 358

18 Testing JPA-based applications 360
18.1 Testing multilayered applications 361

The sample application 361 ■ Multiple layers,
multiple testing strategies 363

18.2 Aspects of JPA testing 366
18.3 Preparing the infrastructure 368
18.4 Testing JPA entities mapping 371

Integrating test cases with JPA ID generators 373

18.5 Testing JPA-based DAOs 379
18.6 Testing foreign key names 385
18.7 Summary 388

19 JUnit on steroids 389
19.1 Introduction 390

Tools overview 390 ■ Running the examples 391

CONTENTSxviii
19.2 Transparent mock usage 391
Unitils EasyMock support 392
FEST-Mocks 394 ■ Mycila 395

19.3 DbUnit integration 397
19.4 Assertions made easy 401

JUnit-addons assertions package 401 ■ Unitils’
ReflectionAssert 403 ■ FEST Fluent Assertions
Module 405 ■ Mycila extend assertions 407

19.5 Using reflection to bypass encapsulation 407
In-house alternative 407 ■ JUnit-addons 410
FEST-Reflect 411

19.6 Summary 412

appendix A Differences between JUnit 3 and JUnit 4 413

appendix B Extending the JUnit API with custom runners and matchers 424

appendix C The source code for the book 438

appendix D JUnit IDE integration 442

appendix E Installing software 452

index 457

preface
As an award-winning mathematician, I don’t tolerate mediocrity. That’s what mathe-
matics taught me—never stop until you get it done, and not just in a good way but in
the best way.

 When I started writing software, I found that the same principles apply. I knew
some colleagues who were neglectful of their work, and I saw how their results suf-
fered from that. They were impatient to finish their tasks, not worrying about the
quality of the software they produced, let alone searching for the best possible solu-
tion. For those guys, reusing the same code meant simply copying and pasting it every-
where they needed it. I saw how being impatient to finish the task as quickly as
possible led to that same task being reopened again and again, because of bugs and
problems with the code as written.

 Thankfully, those colleagues have been few and far between. Most of my friends
were people that I could learn from. I had the opportunity to work for Hewlett Pack-
ard, not only with the technical team, but also with the project managers on every
level, and from them I learned the secret of delivering a quality software product.
Later, I became involved with the Apache Software Foundation (ASF), where I had the
chance to work with some of the best software developers on the planet. I studied
their best practices and habits of writing code, writing test cases and sharing informa-
tion among ourselves, and I was able to apply the things I learned to projects for some
of the biggest clients of HP.

 Gradually I got interested in the question of ensuring the sustainable quality of a
software product. Then I met Vincent Massol and Felipe Leme in the spring of
2008. I had worked with both of them on the Cactus framework at the ASF. Vince
xix

PREFACExx
proposed that I write an up-to-date revision of the bestselling book he authored five
years ago. The plan was clear, but I needed some soul mates to help me achieve it.
That’s when I contacted Felipe Leme and Gary Gregory. They both agreed to help
with some of the chapters.

 Things moved faster after that, and we spent a year and a half writing with the pri-
mary goal of revising Vince’s work. If someone had told me in the beginning how
hard it would be, I wouldn’t have believed him. And that is why I feel that I need I to
express my sincere gratitude to the Manning team—they made the whole journey a
lot easier.

 Now that the book is finished and you hold it in your hands, I hope you enjoy it. It
has been a rough journey to get it done, but here it is. I know you’ll learn a lot of new
things from our book, the way I’m sure you’ll improve the quality of your software—
you’ve already taken the first step.

PETAR TAHCHIEV

preface to the first edition
To date tests are still the best solution mankind has found to deliver working software.
This book is the sum of four years of research and practice in the testing field. The
practice comes from my IT consulting background, first at Octo Technology and then
at Pivolis; the research comes from my involvement with open source development at
night and on weekends.

 Since my early programming days in 1982, I’ve been interested in writing tools to
help developers write better code and develop more quickly. This interest has led me
into domains such as software mentoring and quality improvement. These days, I’m set-
ting up continuous-build platforms and working on development best practices, both of
which require strong suites of tests. The closer these tests are to the coding activity, the
faster you get feedback on your code—hence my interest in unit testing, which is so close
to coding that it’s now as much a part of development as the code that’s being written.

 This background led to my involvement in open source projects related to soft-
ware quality:

Cactus for unit-testing J2EE components (http://jakarta.apache.org/cactus/)
Mock objects for unit-testing any code (http://www.mockobjects.com/)
Gump for continuous builds (http://jakarta.apache.org/gump/)
Maven for builds and continuous builds (http://maven.apache.org/)
The Pattern Testing proof of concept for using Aspect-Oriented Programming
(AOP) to check architecture and design rules (http://patterntesting.sf.net/)

JUnit in Action is the logical conclusion to this involvement.
xxi

http://jakarta.apache.org/cactus
http://www.mockobjects.com
http://jakarta.apache.org/gump
http://maven.apache.org
http://patterntesting.sf.net

PREFACE TO THE FIRST EDITIONxxii
 Nobody wants to write sloppy code. We all want to write code that works—code
that we can be proud of. But we’re often distracted from our good intentions. How
often have you heard this: “We wanted to write tests, but we were under pressure and
didn’t have enough time to do it”; or, “We started writing unit tests, but after two
weeks our momentum dropped, and over time we stopped writing them.”

 This book will give you the tools and techniques you need to write quality code.
It demonstrates hands-on how to use the tools in an effective way, avoiding com-
mon pitfalls. It will empower you to write code that works. It will help you intro-
duce unit testing in your day-to-day development activity and develop a rhythm for
writing robust code.

 Most of all, this book will show you how to control the entropy of your software
instead of being controlled by it. I’m reminded of some verses from the Latin writer
Lucretius, who, in 94 –55 BC wrote in his On the Nature of Things (I’ll spare you the
original Latin text):

It is lovely to gaze out at the churning sea from the safety of the shore when someone else is
out there fighting the waves, not because you’re enjoying their troubles, but because you
yourself are being spared.

This is exactly the feeling you’ll experience when you know you’re armed with a good
suite of tests. You’ll see others struggling, and you’ll be thankful that you have tests to
prevent anyone (including yourself) from wreaking havoc in your application.

VINCENT MASSOL

acknowledgments
We’d like to acknowledge all of the people who played important roles in the creation
of this book. First of all, the project wouldn’t have started if not for Michael Stephens
and Marjan Bace of Manning. After that, any coherence the book exhibits is largely
due to our developmental editor, Sebastian Stirling. We’d also like to thank Megan
Yockey, Steven Hong, Mary Piergies, Karen Tegtmeyer, Katie Tennant, Linda Reckten-
wald, and any other folks at Manning whose efforts we’re less aware of than we should
be. Special thanks to Ivan Ivanov who did the final technical proofread of the book
shortly before it went to press.

 We’d also like to thank all the developers who spent time reading this manuscript
during its development and pointing out the problems. The following reviewers
proved invaluable in the evolution of this book from a manuscript to a book that’s
worth a reader’s investment of time and money: Robert Wenner, Paul Holser, Andy
Dingley, Lasse Koskela, Greg Bridges, Pratic Patel, Martijn Dashorst, Leonardo Galvao,
Amos Bannister, Jason Kolter, Steffen Müller, Marion Sturtevant, Deepak Vohra, Eric
Raymond, Andrew Rhine, Robert Hanson, Tyson S. Maxwell, Doug Warren, David
Strong, John Griffin, and Clint Howarth.

 Finally, we’d like to extend a sincere thank-you to the people who participated in
the Manning Early Access Program; those who left feedback in the Author Online
forum had a strong impact on the quality of the final printed product.

 Thanks to all!
xxiii

ACKNOWLEDGMENTSxxiv
Petar Tahchiev
I’d like to begin by thanking my family—a big thank-you for always believing in me. A
special thank-you goes to my sister, who showed me the real meaning of the word cour-
age. Another big thank-you goes to my cousin Ivan Ivanov, who made me start this
crazy computer journey in my life. I’m also grateful for all of the English teachers I’ve
had in my life—thank you. This book wouldn’t be here if it weren’t for the hard work
of Vincent Massol—thank you for making this possible. Finally, I’d like to thank both
Felipe Leme and Gary Gregory for being such great coworkers. I hope to meet you in
person one day.

Felipe Leme
First of all, I’d like to thank those who directly contributed to my career development
and hence made my participation in this book possible: my parents, who always under-
stood the importance of education; my middle school teachers (particularly Mr. Ivo),
who taught me the fundamentals of good writing and sparked my interest in science;
and Leonardo Galvão, whose tough reviews of my Java Magazine articles made me a
better author. Then special thanks go to Petar, not only for inviting me to be a coau-
thor but also for his vision and effort that made this project a reality. Finally, I’d like to
thank my wife and children for their support and inspiration.

Vincent Massol
Back in 2003, JUnit in Action was the first book I ever wrote. I had no idea how long the
writing process would take. It took me 18 months to give birth to it (twice as long as
for a natural baby!). The great thing about long-running tasks is that when they’re
done you reap the benefits for a long time, enjoying it even more. It’s always with the
same initial trepidation that I follow JUnit in Action sales and I’m delighted that seven
years later the first edition is still selling. However, it was time for an update. Although
a good portion of the book is still valid, most of the examples and frameworks have
evolved and new ones have surfaced. It was a real pleasure for me that Petar agreed to
write this second edition, giving the book a second life. You’ll see that Petar, Felipe,
and Gary have done a wonderful job of updating the book with a lot of exciting new
topics. Well done, guys!

Gary Gregory
I’d like to thank my parents for getting me started on my journey, providing me the
opportunity for a great education, and giving me the freedom to choose my path. I’m
eternally grateful to my wife, Lori, and my son, Alexander, for giving me the time to
pursue a project like this one. Along the way, I’ve studied and worked with truly excep-
tional individuals too numerous to name. Finally, I thank my coauthors and all of the
people at Manning for their support, professionalism, and great feedback.

about this book
Welcome to the second edition of JUnit in Action! If you’ve picked up this book, we sus-
pect you’re a Java developer who cares about the quality of software you produce. Per-
haps you’ve worked with the previous versions of the JUnit framework in the past,
perhaps you’ve worked with other testing frameworks, or perhaps this is your first step
into the testing world. Whichever path has led you here, you’re probably interested in
improving your software process and the quality of the software you write. The goal of
this book is to give the basic foundation you need—and much more. The world of soft-
ware testing consists of many projects that solve specific tasks, of testing different com-
ponents and layers of your application. The central player in this world is the JUnit
framework. Written by Erich Gamma and Kent Beck about a decade ago, this frame-
work has become the de facto standard in Java testing. The latest 4.x versions of the
JUnit framework are much more than a revision of the old 3.x JUnit framework. If you
haven’t heard anything about the JUnit framework yet, you might expect, based on the
name, to find a new release of that old proven framework. But this is not the case.
Unlike the old version of JUnit, the 4.x versions introduce a new approach and rewrite
of the whole framework. Hence the need for an up-to-date copy of the first edition.

 In this second edition of the book, we introduce the core concepts you need to
know in order to start testing your projects with the JUnit framework. But that’s not
the whole picture! This book will not only teach you how to write your test cases with
the JUnit framework; it will also guide you through the process of writing your code,
giving you suggestions of how to make it more testable. This book will also teach you
about fundamental software development principles like test-driven development
xxv

ABOUT THIS BOOKxxvi
(TDD). It will also guide you step by step through the process of testing each and every
layer of a typical Java EE application: the front layer, with external tools like Selenium
and JSFUnit; the business layer, with tools like Cactus, mock objects, and stubs; and
finally the database and JPA layer, with tools like DBUnit.

 The book is organized into several parts, the goal being to walk you through JUnit
in a sequence of increasing complexity. The first part contains the preliminary chap-
ters that introduce the technological context of the framework, give a high-level over-
view of the architecture, and present a bare-bones HelloWorld sample application to
get your environment up and running. After this brief introduction, we set off into a
series of chapters that cover the core concepts and components of the framework one
by one. We take time to explain the functionality of each component in depth.

 The second part of the book deals with the different techniques of testing: the mock
approach and the in-container approach. It introduces some new tools to create the
fake objects we need. The third and fourth parts of the book look into detailed expla-
nations of third-party tools/JUnit extensions that we use to test the different layers of
our applications. In addition, the book has several appendixes that will help you to
switch easily to the latest version of JUnit and integrate easily with your favorite IDE.

Roadmap
Chapter 1 gets you started right away. The gentle introduction defines what testing is,
how to perform it efficiently, and how to write your first test cases. This chapter is a
must to give you the confidence to realize that testing is something natural that
should always happen during development.

 Chapter 2 dives into the architecture of JUnit and shows how it’s organized. We
introduce most of the common features of JUnit in this chapter.

 In chapter 3 we start to build a sample real-life application. You get to know several
design patterns and use them to build our application. Later in the chapter, we dem-
onstrate how to test the application efficiently using the JUnit features introduced in
chapter 2.

 Chapter 4 looks at several important aspects: the need for unit testing, the vari-
ous flavors of software tests that exist, and the difference between those kinds of
tests. We also give handy advice on how to set up different development and test-
ing environments.

 In chapter 5 we discuss the quality of tests. We go on to answer several key ques-
tions, such as how to improve your tests, how to improve your test coverage, and how
to design your application architecture in such a way that your application will be
easily testable. The last point is a brief introduction to the test-driven development
(TDD) approach.

 Chapter 6 takes a closer look at stubbing as a technique for faking system resources
that normally aren’t available. We use an example of stubbing a servlet container by
using the Jetty embedded servlet container.

ABOUT THIS BOOK xxvii
 Chapter 7 demonstrates another technique for incorporating fake objects in your
tests: mock objects. This technique is useful when you program against a closed API
and you can’t modify or instantiate the available resources. In this chapter, we give an
example of mocking a servlet and testing it by using two of the most popular frame-
works, EasyMock and JMock.

 Chapter 8 briefly introduces the final technique that we can use when we’re miss-
ing important system objects: in-container testing. We provide this introduction so
that in chapters 14, 15, and 16 we can expand on it and discuss real-world examples
of in-container testing. Chapter 8 also serves as a summary chapter for this part of
the book, so it compares the previously discussed approaches: stubs, mocks, and in-
container testing.

 Chapter 9 is the opening chapter for the third part of the book. In this part, we
focus on the integration of JUnit with various build frameworks; specifically in this
chapter, we introduce the Ant build framework. We show you how to execute your
tests automatically and how to produce efficient, great-looking reports with the results
of the execution. We run some of the examples from the previous chapter using the
Ant framework.

 Chapter 10 continues the approach of introducing build frameworks and integrat-
ing JUnit with them. This time we take a closer look at Maven.

 Chapter 11 is dedicated to the theory of continuous integration (CI)—building
our project and executing our tests in a continuous manner in order to make sure
none of our changes break the project. We take a closer look at two of the most popu-
lar software projects for practicing continuous integration: CruiseControl and Hud-
son. We also take the opportunity to import some of our previous examples into both
of the tools, set them up, and execute them.

 Chapter 12 opens the last part of the book. This part deals with various JUnit
extensions, which enhance the testing framework to do specific tasks that normally
aren’t possible. Also in this last part of the book, we walk through all the layers of a
typical application and explain how to test those layers. Chapter 12 deals with the pre-
sentation layer of a web application. We introduce the HtmlUnit and Selenium tools
and show exactly how to use them.

 Chapter 13 continues with the presentation layer of a web application, but this
time we focus on one of the hardest parts: Ajax. We detail what Ajax is and why it’s dif-
ficult to test, and we also describe various testing scenarios. Finally, we introduce the
JsUnit project and give some special hints on testing a Google Web Toolkit (GWT)
application.

 Chapter 14 explores testing your presentation layer with a different approach: the
in-container testing we introduced in chapter 8. For this purpose, we introduce the
first in-container testing framework ever made: the Apache Cactus project.

 Chapter 15 reveals techniques that are specifically applicable for testing JSF appli-
cations. This chapter explains how to use another recent tool called JSFUnit—a new,

ABOUT THIS BOOKxxviii
in-container testing framework that builds on Apache Cactus and is specifically
designed to test JSF applications.

 Chapter 16 is for those of you who are interested in OSGi applications. It starts with
a brief introduction of what OSGi means. Then we introduce the JUnit4OSGi exten-
sion of JUnit and show several techniques for testing OSGi applications, using both
mocking and in-container testing.

 Chapter 17 is the first of the last three chapters, which deal with database testing.
Here we tell you everything you need to know about a project called DBUnit. We dem-
onstrate several techniques for testing your database, regardless of the persistence
technology that you use.

 Chapter 18 reveals all the secrets of JPA testing: testing multilayered applications
and JPA persistence-layer applications.

 Chapter 19 is the final chapter. Here we demonstrate techniques for making your
tests more efficient. We introduce a new project that will help you to test your Spring
applications: Unitils.

Code conventions
The following typographical conventions are used throughout the book:

Courier typeface is used in all code listings.
Courier typeface is used within text for certain code words.
Italics are used for emphasis and to introduce new terms.
Annotations are used in place of inline comments in the code. These highlight
important concepts or areas of the code. Annotations appear with numbered
bullets like this b that are referenced later in the text.

 In addition, in the code listings you might occasionally find

bold code—We use this for two purposes: to highlight some of the Java key-
words (for your convenience) or to highlight the differences between two or
more code listings.

Code downloads
You can download the sample code for this book via a link found on the book’s home
page on the Manning website, www.manning.com/JUnitinActionSecondEdition, or
www.manning.com/tahchiev. This page contains a folder structure of all the submod-
ules for the different chapters. Each of the subfolders contains a build script to com-
pile and package, and you can execute the tests associated with it. Instructions on how
to install the application are contained in a README file in that download.

 We should make a couple of points about the source code. Initially we wanted to
have a large-scale application demonstrating the various testing approaches in the
application layers. Later, we realized the difficulties of having such a large-scale appli-
cation, and instead we followed the folder-structure notation; each chapter has a
source code example associated with it. Those are split into subfolders, clearly labeled

http://www.manning.com/JUnitinActionSecondEdition
http://www.manning.com/tahchiev

ABOUT THIS BOOK xxix
with the name of the chapter. All of them contain a Maven build script, and some of
them contain an Ant build script as well. In order to run the examples in the book,
you will need to have Maven2 installed on your computer.

Author Online
The purchase of JUnit in Action, Second Edition, includes free access to a private forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and other users. You can access
and subscribe to the forum at www.manning.com/JUnitinActionSecondEdition. This
page provides information on getting on the forum once you’re registered, what kind
of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help with learning and remembering. According to research in
cognitive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that for
learning to become permanent, it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action book is that it is example
driven. It encourages the reader to try things out, to play with new code, and to
explore new ideas.

 There is another, more mundane reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.

 They need books that aid them in action. The books in this series are designed for
such readers.

http://www.manning.com/JUnitinActionSecondEdition

about the authors
PETAR TAHCHIEV is a software engineer who serves as a Jakarta PMC member with the
Apache Software Foundation. For many years he has been the Jakarta Cactus lead
developer and part of the Apache Maven development team. In addition, he is also a
member of the JCP, leader of the Bulgarian Java User Group (BGJUG), and a frequent
speaker at OpenFest, ApacheCON, CommunityONE, and many other conferences.
Born and raised in Bulgaria, Petar graduated with honors in mathematics from Sofia
University. He spent many years working in Germany and the Netherlands for compa-
nies like Unic and Hewlett Packard. Now he is back in lovely Sofia, working predomi-
nantly with Phamola, his own company, which assists and advises clients on how to excel
through technology. Petar authored chapters 1–11 and 14–16, and appendixes A–D.

FELIPE LEME is a software engineer who is very passionate about TDD (test-driven
development), Java, and computers in general. He got his first computer at age 11,
learned Java in 1996, and wrote his first JUnit test case in 2000. Since he earned a
Bachelor degree in Computer Engineering at the State University of Campinas (Uni-
camp) in 1997, he has worked almost exclusively with Java, and has contributed back
to the community in many ways: as a committer for open source projects such as
DbUnit, as a speaker in conferences such as JavaOne, as an individual member of the
JCP, and as a blogger and writer at java.net. Felipe authored chapters 17–19. After liv-
ing alternately in São Paulo, Brazil, and California, U.S., he finally settled down in the
San Francisco Bay Area, where he lives with his wife, kids, and hermit crabs.
xxx

ABOUT THE AUTHORS xxxi
VINCENT MASSOL, after spending several night-years creating Jakarta Cactus and Code-
haus Cargo and participating to the Apache Maven open source projects, is now
enjoying full-time development of XWiki, an open source project offering a state-of-
the-art enterprise wiki. Vincent is also the CTO of XWiki SAS, a company offering ser-
vices around the XWiki open source project. He was the lead author of the first edi-
tion. Vincent lives in Paris, France, and can be found online at www.massol.net.

GARY GREGORY has more than 20 years of experience in object-oriented languages
including Smalltalk, Java, and the whole soup of XML and database technologies.
Gary has held positions at Ashton-Tate, ParcPlace-Digitalk, and several other soft-
ware companies, including Seagull Software, where he currently develops application
servers for legacy integration. He is an active member of the Apache Software Foun-
dation and the Apache Jakarta Project Management Committee, and contributes reg-
ularly to various Apache Commons projects. Born and raised in Paris, France, Gary
received a B.A. in linguistics and computer science from the University of California
at Los Angeles. Gary authored chapters 12–13 and appendix E. He lives in Los Ange-
les with his wife, their son, golf clubs, and assorted surfboards. He can be reached at
http://www.garygregory.com.

http://www.massol.net
http://www.garygregory.com

about the cover illustration
The figure on the cover of JUnit in Action, Second Edition is captioned “Burco de
Alpeo,” taken from a Spanish compendium of regional dress customs first published
in Madrid in 1799. The same figure appeared on the cover of the first edition of the
book, and we have not been successful in the intervening years in finding an accu-
rate translation of the figure caption, in spite of having asked our first edition read-
ers to help out. Please post any new suggestions in the Author Online forum for the
second edition.

 The title page of the compendium states thus:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y
en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world, designed
and printed with great exactitude by R.M.V.A.R. This work is very useful especially for
those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing,
which is just one of many in this colorful collection. Their diversity speaks vividly of
the uniqueness and individuality of the world’s towns and regions just 200 years ago.
xxxii

ABOUT THE COVER ILLUSTRATION xxxiii
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other.

 The collection brings to life a sense of isolation and distance of that period—and
of every other historical period except our own hyperkinetic present. Dress codes
have changed since then and the diversity by region, so rich at the time, has faded
away. It is now often hard to tell the inhabitant of one continent from another. Per-
haps, trying to view it optimistically, we have traded a cultural and visual diversity for
a more varied personal life. Or a more varied and interesting intellectual and techni-
cal life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

Part 1

JUnit essentials

Welcome to JUnit in Action, Second Edition. JUnit is a framework that was
started by Kent Beck and Erich Gamma in late 1995. Ever since then, the popu-
larity of the framework has been growing, and it’s now the de facto standard for
unit testing Java applications.

 This book is a second edition. The first edition was a best seller, written
by Vincent Massol and Ted Husted in 2003, and was dedicated to version 3.x
of JUnit.

 We cover the newest version of JUnit, 4.6, and we talk about many features
that were included after the first edition of the book. At the same time, we focus
on some other interesting techniques in testing your code: mock objects, JUnit
extensions, testing different layers of your application, and many more.

 This part starts by exploring JUnit itself. We focus on the other tools and tech-
niques later in the book.

 The first chapter gives you a quick introduction to the concepts of testing.
You need this information to get started. You’ll jump straight to the code and see
how to write a simple test, execute it, and see the results.

 The second chapter introduces JUnit at its best. We build a bigger project
and walk through the code. We not only explain the JUnit concepts, widgets, and
guts, but we also show you the best practices in writing a test case and demon-
strate them with the project we build.

 The third chapter is dedicated to tests as a whole. We describe different
kinds of tests and the scenarios to which they apply. We also explore the various
platforms (development, production, and so on) and show you which tests and
which scenarios are best to execute there.

2 PART 1 JUnit essentials
 The last chapter in this part of the book is dedicated to improving your testing
skills. We show you how to measure your test coverage and how to improve it. We also
explain how to produce testable code before you write your tests as well as how to
write the tests before you write a single line of code.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

JUnit jump-start

Never in the field of software

 development was so much owed by

 so many to so few lines of code.
—Martin Fowler

All code is tested.
 During development, the first thing we do is run our own programmer’s “accep-

tance test.” We code, compile, and run. When we run, we test. The test may just be
clicking a button to see if it brings up the expected menu. Nevertheless, every day,
we code, we compile, we run, and we test.

 When we test, we often find issues—especially on the first run. Therefore, we
code, compile, run, and test again.

 Most of us quickly develop a pattern for our informal tests: we add a record,
view a record, edit a record, and delete a record. Running a little test suite like this
by hand is easy enough to do, so we do it—over and over again.

This chapter covers
■ Exploring JUnit
■ Installing JUnit
■ Writing our first test
■ Running tests
3

4 CHAPTER 1 JUnit jump-start
 Some programmers like this type of repetitive testing. It can be a pleasant break
from deep thought and hardcoding. When our little click-through tests finally suc-
ceed, there’s a feeling of accomplishment: Eureka! I found it!

 Other programmers dislike this type of repetitive work. Rather than run the test
by hand, they prefer to create a small program that runs the test automatically. Play-
testing code is one thing; running automated tests is another.

 If you’re a play-test developer, this book is for you. We’ll show you how creating
automated tests can be easy, effective, and even fun.

 If you’re already “test-infected,”1 this book is also for you. We cover the basics in
part 1 and then move on to the tough, real-life problems in parts 2, 3, and 4.

1.1 Proving it works
Some developers feel that automated tests are an essential part of the development
process: you can’t prove a component works until it passes a comprehensive series of
tests. Two developers felt that this type of unit testing was so important that it deserved
its own framework. In 1997, Erich Gamma and Kent Beck created a simple but effec-
tive unit testing framework for Java, called JUnit. Their work followed the design of an
earlier framework Kent Beck had created for Smalltalk, called SUnit.

DEFINITION A framework is a semi-complete application.2 A framework pro-
vides a reusable, common structure to share among applications. Developers
incorporate the framework into their own application and extend it to meet
their specific needs. Frameworks differ from toolkits by providing a coherent
structure, rather than a simple set of utility classes.

If you recognize those names, it’s for good reason. Erich Gamma is one of the Gang of
Four who gave us the now-classic Design Patterns book.3 We know Kent Beck equally
well for his groundbreaking work in the software discipline known as Extreme Pro-
gramming (http://www.extremeprogramming.org).

 JUnit (http://www.junit.org) is open source software, released under IBM’s Com-
mon Public License Version 1.0 and hosted on SourceForge. The Common Public
License is business friendly: people can distribute JUnit with commercial products
without a lot of red tape or restrictions.

 JUnit quickly became the de facto standard framework for developing unit tests in
Java. The underlying testing model, known as xUnit, is on its way to becoming the
standard framework for any language. There are xUnit frameworks available for ASP,
C++, C#, Eiffel, Delphi, Perl, PHP, Python, REBOL, Smalltalk, and Visual Basic—to
name a few!

1 Test-infected is a term coined by Gamma/Beck, “Test-Infected: Programmers Love Writing Tests,” Java Report, 3, 7, 37–
50: 1998.

2 Ralph E. Johnson and Brian Foote, “Designing Reusable Classes,” Journal of Object-Oriented Programming 1.5
(June/July 1988): 22–35; http://www.laputan.org/drc/drc.html.

3 Erich Gamma et al., Design Patterns (Reading, MA: Addison-Wesley, 1995).

http://www.extremeprogramming.org
http://www.junit.org
http://www.laputan.org/drc/drc.html

5Proving it works
 The JUnit team did not invent software testing or even the unit test. Originally, the
term unit test described a test that examined the behavior of a single unit of work.

 Over time, usage of the term unit test broadened. For example, IEEE has defined
unit testing as “Testing of individual hardware or software units or groups of related
units” (emphasis added).4

 In this book, we use the term unit test in the narrower sense of a test that examines
a single unit in isolation from other units. We focus on the type of small, incremental
tests that programmers apply to their own code. Sometimes we call these programmer
tests to differentiate them from quality assurance tests or customer tests (http://
c2.com/cgi/wiki?ProgrammerTest).

 Here’s a generic description of a typical unit test from our perspective: “Confirm
that the method accepts the expected range of input and that the method returns the
expected value for each input.”

 This description asks us to test the behavior of a method through its interface. If
we give it value x, will it return value y? If we give it value z instead, will it throw the
proper exception?

DEFINITION A unit test examines the behavior of a distinct unit of work. Within
a Java application, the “distinct unit of work” is often (but not always) a single
method. By contrast, integration tests and acceptance tests examine how various
components interact. A unit of work is a task that isn’t directly dependent on
the completion of any other task.

Unit tests often focus on testing whether a method follows the terms of its API contract.
Like a written contract by people who agree to exchange certain goods or services
under specific conditions, an API contract is a formal agreement made by the signa-
ture of a method. A method requires its callers to provide specific object references or
primitive values and returns an object reference or primitive value. If the method
can’t fulfill the contract, the test should throw an exception, and we say that the
method has broken its contract.

 In this chapter, we walk through creating a unit test for a simple class from scratch.
We start by writing a test and its minimal runtime framework, so you can see how we
used to do things. Then we roll out JUnit to show you how the right tools can make life
much simpler.

DEFINITION An API contract is a view of an application programming interface
(API) as a formal agreement between the caller and the callee. Often the unit
tests help define the API contract by demonstrating the expected behavior.
The notion of an API contract stems from the practice of, popularized by the
Eiffel programming language (http://archive.eiffel.com/doc/manuals/tech-
nology/contract).

4 EEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries (New York, IEEE, 1990).

http://c2.com/cgi/wiki?ProgrammerTest
http://c2.com/cgi/wiki?ProgrammerTest
http://archive.eiffel.com/doc/manuals/technology/contract
http://archive.eiffel.com/doc/manuals/technology/contract

6 CHAPTER 1 JUnit jump-start
1.2 Starting from scratch
For our first example, we create a simple calculator class that adds two numbers. Our
calculator provides an API to clients and doesn’t contain a user interface; it’s shown in
listing 1.1.

public class Calculator {
 public double add(double number1, double number2) {
 return number1 + number2;
 }
}

Although the documentation isn’t shown, the intended purpose of the Calculator’s
add(double, double) method is to take two doubles and return the sum as a double.
The compiler can tell us that it compiles, but we should also make sure it works at run-
time. A core tenet of unit testing is, “Any program feature without an automated test
doesn’t exist.”5 The add method represents a core feature of the calculator. We have
some code that allegedly implements the feature. What’s missing is an automated test
that proves our implementation works.

Testing anything at this point seems problematic. We don’t even have a user interface
with which to enter a pair of doubles. We could write a small command-line program
that waited for us to type in two double values and then displayed the result. Then
we’d also be testing our own ability to type numbers and add the result ourselves. This
is much more than what we want to do. We want to know if this unit of work will add
two doubles and return the correct sum. We don’t want to test whether programmers
can type numbers!

 Meanwhile, if we’re going to go to the effort of testing our work, we should also try
to preserve that effort. It’s good to know that the add(double,double) method
worked when we wrote it. But what we really want to know is whether the method will

Listing 1.1 The test calculator class

5 Kent Beck, Extreme Programming Explained: Embrace Change (Reading, MA: Addison-Wesley, 1999).

Isn’t the add method too simple to break?
The current implementation of the add method is too simple to break. If add
were a minor utility method, then we might not test it directly. In that case, if
add did fail, then tests of the methods that used add would fail. The add method
would be tested indirectly, but tested nonetheless. In the context of the calcula-
tor program, add isn’t just a method; it’s a program feature. In order to have con-
fidence in the program, most developers would expect there to be an automated
test for the add feature, no matter how simple the implementation appears. In
some cases, we can prove program features through automatic functional tests
or automatic acceptance tests. For more about software tests in general, see
chapter 3.

7Starting from scratch
work when we ship the rest of the application or whenever we make a subsequent
modification. If we put these requirements together, we come up with the idea of writ-
ing a simple test program for the add method.

 The test program could pass known values to the method and see if the result
matches our expectations. We could also run the program again later to be sure
the method continues to work as the application grows. What’s the simplest possi-
ble test program we could write? What about the CalculatorTest program shown
in listing 1.2?

public class CalculatorTest {
 public static void main(String[] args) {
 Calculator calculator = new Calculator();
 double result = calculator.add(10,50);
 if (result != 60) {
 System.out.println("Bad result: " + result);
 }
 }
}

The first CalculatorTest is simple indeed. It creates an instance of Calculator,
passes it two numbers, and checks the result. If the result doesn’t meet our expecta-
tions, we print a message on standard output.

 If we compile and run this program now, the test will quietly pass, and all will seem
well. But what happens if we change the code so that it fails? We’ll have to watch the
screen carefully for the error message. We may not have to supply the input, but we’re
still testing our own ability to monitor the program’s output. We want to test the code,
not ourselves!

 The conventional way to signal error conditions in Java is to throw an exception.
Let’s throw an exception instead to indicate a test failure.

 Meanwhile, we may also want to run tests for other Calculator methods that we
haven’t written yet, like subtract or multiply. Moving to a modular design would
make it easier to catch and handle exceptions as well as extend the test program later.
Listing 1.3 shows a slightly better CalculatorTest program.

public class CalculatorTest {

 private int nbErrors = 0;

 public void testAdd() {
 Calculator calculator = new Calculator();
 double result = calculator.add(10, 50);
 if (result != 60) {
 throw new IllegalStateException("Bad result: " + result);
 }
 }

Listing 1.2 A simple test calculator program

Listing 1.3 A (slightly) better test calculator program

 B

8 CHAPTER 1 JUnit jump-start
 public static void main(String[] args) {
 CalculatorTest test = new CalculatorTest();
 try {
 test.testAdd();
 }
 catch (Throwable e) {
 test.nbErrors++;
 e.printStackTrace();
 }
 if (test.nbErrors > 0) {
 throw new IllegalStateException("There were " + test.nbErrors
 + " error(s)");
 }
 }
}

Working from listing 1.3, at B we move the test into its own testAdd method. It’s now
easier to focus on what the test does. We can also add more methods with more unit
tests later, without making the main method harder to maintain. At C, we change the
main method to print a stack trace when an error occurs and then, if there are any
errors, end by throwing a summary exception.

 Now that you’ve seen a simple application and its tests, you can see that even this
small class and its tests can benefit from the bit of scaffolding code we’ve created to
run and manage test results. As an application gets more complicated and tests more
involved, continuing to build and maintain our own custom testing framework
becomes a burden.

 Next, we take a step back and look at the general case for a unit testing framework.

1.3 Understanding unit testing frameworks
Unit testing frameworks should follow several best practices. These seemingly minor
improvements in the CalculatorTest program highlight three rules that (in our
experience) all unit testing frameworks should follow:

■ Each unit test should run independently of all other unit tests.
■ The framework should detect and report errors test by test.
■ It should be easy to define which unit tests will run.

The “slightly better” test program comes close to following these rules but still falls
short. For example, in order for each unit test to be truly independent, each should
run in a different class instance and ideally in a different class loader instance.

 We can now add new unit tests by adding a new method and then adding a cor-
responding try/catch block to main. This is a step up, but it’s still short of what
we’d want in a real unit test suite. Our experience tells us that large try/catch
blocks cause maintenance problems. We could easily leave out a unit test and never
know it!

 It would be nice if we could add new test methods and continue working. But
how would the program know which methods to run? Well, we could have a simple

 C

9Setting up JUnit
registration procedure. A registration method would at least inventory which tests
are running.

 Another approach would be to use Java’s reflection and introspection capabilities.
A program could look at itself and decide to run whatever methods follow a certain
naming convention—like those that begin with test, for example.

 Making it easy to add tests (the third rule in our earlier list) sounds like
another good rule for a unit testing framework. The support code to realize this
rule (via registration or introspection) wouldn’t be trivial, but it would be worth-
while. There’d be a lot of work up front, but that effort would pay off each time
we added a new test.

 Happily, the JUnit team has saved us the trouble. The JUnit framework already sup-
ports introspecting methods. It also supports using a different class instance and class
loader instance for each test and reports all errors on a test-by-test basis.

 Now that you have a better idea of why you need a unit testing framework, let’s
look specifically at JUnit.

1.4 JUnit design goals
The JUnit team has defined three discrete goals for the framework:

■ The framework must help us write useful tests.
■ The framework must help us create tests that retain their value over time.
■ The framework must help us lower the cost of writing tests by reusing code.

We return to these goals in chapter 2.
 Next, before we get into the action, we’ll show you how to set up JUnit.

1.5 Setting up JUnit
In order to use JUnit to write your application tests, you need to add the JUnit JAR
file to your project’s compilation classpath and to your execution classpath. Follow
these steps:

 Download the JUnit distribution (junit-4.6 or newer) from http://www.junit.org.
JUnit contains several test samples that you’ll run to get familiar with executing
JUnit tests.

 Unzip the distribution zip file to a directory on your computer system (for exam-
ple, C:\ on Windows or /opt/ on UNIX).

 In this directory, unzipping will create a subdirectory for the JUnit distribution you
downloaded (for example, C:\junit4.6 on Windows or /opt/junit4.6 on UNIX).

 You’re now ready to run the tests provided with the JUnit distribution. JUnit comes
complete with Java programs that you can use to view the result of a test, including a
text-based test runner with console output (figure 1.2).

 To run the text test runner, open a shell in C:\junit4.6 on Windows or in /opt/
junit4.6 UNIX, and type the appropriate command for your operating system:

http://www.junit.org

10 CHAPTER 1 JUnit jump-start
Windows
java -cp junit-4.6.jar;. junit.samples.AllTests

UNIX
java -cp junit-4.6.jar:. junit.samples.AllTests

The AllTests class contains a main method to execute the sample tests:

public static void main (String[] args) {
 junit.textui.TestRunner.run(suite());
}

Figure 1.1 shows the result of the test execution.
 Notice that the JUnit text test runner displays passing tests with a dot. Had there

been errors, they would have displayed with an E instead of a dot.
 In part 3 of the book, we look at running tests using the Ant build tool and also the

Maven build tool.

1.6 Testing with JUnit
JUnit has many features that make it easy to write and run tests. You’ll see these fea-
tures at work throughout this book:

■ Separate test class instances and class loaders for each unit test to avoid
side effects

■ JUnit annotations to provide resource initialization and reclamation methods:
@Before, @BeforeClass, @After, and @AfterClass

■ A variety of assert methods to make it easy to check the results of your tests
■ Integration with popular tools like Ant and Maven, and popular IDEs like

Eclipse, NetBeans, IntelliJ, and JBuilder

Without further ado, let’s turn to listing 1.4 and see what the simple Calculator test
looks like when written with JUnit.

Figure 1.1 Execution of the JUnit distribution sample tests using the text test runner

11Testing with JUnit
import static org.junit.Assert.*;
import org.junit.Test;

public class CalculatorTest {

 @Test
 public void testAdd() {
 Calculator calculator = new Calculator();
 double result = calculator.add(10, 50);
 assertEquals(60, result, 0);
 }
}

This is a much simpler test; let’s walk through it. At B, we start by defining a test class.
The only restriction is that the class must be public; we can name it whatever we like.
It’s common practice to end the class name with Test. Notice also that in contrast to
JUnit 3 where we needed to extend the TestCase class, this requirement has been
removed in JUnit 4.

 At C, we mark the method as a unit test method by adding the @Test annotation.6

A best practice is to name test methods following the testXXX pattern. JUnit doesn’t
have method name restrictions. You can name your methods as you like; as long as
they have the @Test annotation, JUnit will execute them.

 At D, we start the test by creating an instance of the Calculator class (the “object
under test”), and at E, as before, we execute the test by calling the method to test,
passing it two known values.

 At F, the JUnit framework begins to shine! To check the result of the test, we call
an assertEquals method, which we imported with a static import on the first line of
the class. The Javadoc for the assertEquals method is as follows:

/**
 * Asserts that two doubles or floats are equal to within a positive delta.
 * If the expected value is infinity then the delta value is ignored.
 */
static public void assertEquals(
 double expected, double actual, double delta)

In listing 1.4, we passed assertEquals these parameters:

expected = 60
actual = result
delta = 0

Because we passed the calculator the values 10 and 50, we tell assertEquals to expect
the sum to be 60. (We pass 0 as the delta because we’re adding integers.) When we
called the calculator object, we tucked the return value into a local double named
result. Therefore, we pass that variable to assertEquals to compare against the
expected value of 60.

Listing 1.4 The JUnit CalculatorTest program

6 Annotations were first introduced in JDK 1.5, so in order to use them you need to have version 1.5 or later of the JDK.

 B

 C D
 E

 F

12 CHAPTER 1 JUnit jump-start
 If the actual value isn’t equal to the expected value, JUnit throws an unchecked
exception, which causes the test to fail.

 Most often, the delta parameter can be zero, and we can safely ignore it. It comes
into play with calculations that aren’t always precise, which includes many floating-
point calculations. The delta provides a range factor. If the actual value is within the
range expected - delta and expected + delta, the test will pass. You may find it use-
ful when doing mathematical computations with rounding or truncating errors or
when asserting a condition about the modification date of a file, because the precision
of these dates depends on the operating system.

 Let’s assume that we’ve entered the code from listings 1.1 and 1.4 in the C:\junit-
book\ch01-jumpstart directory (/opt/junitbook/ch01-jumpstart on UNIX). Let’s first
compile the code by opening a command shell in that directory and typing the follow-
ing (we’ll assume we have the javac executable on our PATH):

Windows
javac -cp \junit4.6\junit-4.6.jar *.java

UNIX
javac -cp /opt/junit4.6/junit-4.6.jar *.java

We’re now ready to start the console test runner, by typing the following:

Windows
java -cp .;\junit4.6\junit-4.6.jar
 org.junit.runner.JUnitCore CalculatorTest

UNIX
java -cp .:/opt/junit4.6/junit-4.6.jar
 org.junit.runner.JUnitCore CalculatorTest

Figure 1.2 shows the test result.

Figure 1.2 Execution of the first JUnit test CalculatorTest using the text test runner

13Summary
The remarkable thing about the JUnit CalculatorTest class in listing 1.4 is that the
code is easier to write than the first CalculatorTest program in listing 1.2. In addi-
tion, we can run the test automatically through the JUnit framework.

 When we run the test from the command line (figure 1.2), we see the amount of
time it took and the number of tests that passed. There are many other ways to run
tests, from IDEs like Eclipse to build tools like Ant. This simple example gives you a
taste of the power of JUnit and unit testing.

1.7 Summary
Every developer should perform some type of test to see if code works. Developers
who use automatic unit tests can repeat these tests on demand to ensure that new code
works and doesn’t break existing tests.

 Simple unit tests aren’t difficult to create without JUnit, but as tests are added and
become more complex, writing and maintaining tests becomes more difficult. JUnit is
a unit testing framework that makes it easier to create, run, and revise unit tests.

 In this chapter, we scratched the surface of JUnit by stepping through a simple test.
JUnit has much more to offer.

 In chapter 2 we take a closer look at the JUnit framework classes (different annota-
tions and assertion mechanisms) and how they work together to make unit testing effi-
cient and effective. We also walk through the differences between the old-style JUnit 3
and the new features in JUnit 4.

Exploring core JUnit

Mistakes are the portals of discovery.

—James Joyce

In chapter 1, we decided that we need a reliable and repeatable way to test our pro-
gram. Our solution is to write or reuse a framework to drive test code that exercises
our program’s API. As our program grows with new classes and new methods to
existing classes, we need to grow our test code as well. Experience has taught us
that sometimes classes interact in unexpected ways; we need to make sure that we
can run all of our tests at any time, no matter what code changes took place. The
question becomes, how do we run multiple test classes? And how do we find out
which tests passed and which ones failed?

 In this chapter, we look at how JUnit provides the functionality to answer those
questions. We begin with an overview of the core JUnit concepts—the test class, test
suite, and test runner. We take a close look at the core test runners and the test
suite before we revisit our old friend the test class. We also examine how the core
classes work together.

This chapter covers
■ Using the core JUnit classes
■ Understanding JUnit mechanisms
■ Understanding the JUnit lifecycle
14

15Exploring core JUnit
 Then, in the next chapter, we use an example application to show you how to use
these core JUnit concepts. We demonstrate best practices for writing and organizing
test code.

2.1 Exploring core JUnit
The CalculatorTest program from chapter 1, shown in listing 2.1, defines a test class
with a single test method testAdd.

 The requirements to define a test class are that the class must be public and con-
tain a zero-argument constructor. In our example, because we don’t define any other
constructors, we don’t need to define the zero-argument constructor; Java creates it
for us implicitly.

 The requirements to create a test method are that it must be annotated with
@Test, be public, take no arguments, and return void.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class CalculatorTest {

 @Test
 public void testAdd() {
 Calculator calculator = new Calculator();
 double result = calculator.add(1, 1);
 assertEquals(2, result, 0);
 }
}

JUnit creates a new instance of the test class before invoking each @Test method. This
helps provide independence between test methods and avoids unintentional side
effects in the test code. Because each test method runs on a new test class instance, we
can’t reuse instance variable values across test methods.

 To perform test validation, we use the assert methods provided by the JUnit
Assert class. As you can see from the previous example, we statically import these
methods in our test class. Alternatively, we can import the JUnit Assert class itself,
depending on our taste for static imports. Table 2.1 lists some of the most popular
assert methods.

 Assert methods with two value parameters follow a pattern worth memorizing: the
first parameter (A in the table) is the expected value, and the second parameter (B in
the table) is the actual value.

 JUnit provides many other methods, such as assertArrayNotEquals, assertNot-
Same, assertNotTrue, and so on. It also provides the same methods with a different
signature—without the message parameter. It’s a best practice to provide an error
message for all your assert method calls. Recall Murphy’s Law and apply it here;
when an assertion fails, describe what went wrong in a human-readable message.

Listing 2.1 The CalculatorTest test case

16 CHAPTER 2 Exploring core JUnit
When you need to run several test classes at once, you create another object called a
test suite (or Suite.) Your test suite is a special test runner (or Runner), so you can run
it as you would a test class. Once you understand how a test class, Suite, and Runner
work, you’ll be able to write whatever tests you need. These three objects form the
backbone of the JUnit framework.

 On a daily basis, you need only write test classes and test suites. The other classes
work behind the scenes to bring your tests to life.

DEFINITIONS Test class (or TestCase or test case)—A class that contains one or
more tests represented by methods annotated with @Test. Use a test class to
group together tests that exercise common behaviors. In the remainder of
this book, when we mention a test, we mean a method annotated with @Test;
when we mention a test case (or test class), we mean a class that holds these
test methods—a set of tests. There’s usually a one-to-one mapping between a
production class and a test class.

Suite (or test suite)—A group of tests. A test suite is a convenient way to group
together tests that are related. For example, if you don’t define a test suite for
a test class, JUnit automatically provides a test suite that includes all tests
found in the test class (more on that later). A suite usually groups test classes
from the same package.

Runner (or test runner)—A runner of test suites. JUnit provides various runners
to execute your tests. We cover these runners later in this chapter and show
you how to write your own test runners.

Table 2.1 JUnit assert method sample

assertXXX method What it’s used for

assertArrayEquals("message", A, B) Asserts the equality of the A and B arrays.

assertEquals("message", A, B) Asserts the equality of objects A and B. This
assert invokes the equals() method on the
first object against the second.

assertSame("message", A, B) Asserts that the A and B objects are the same
object. Whereas the previous assert method
checks to see that A and B have the same
value (using the equals method), the
assertSame method checks to see if the A
and B objects are one and the same object
(using the == operator).

assertTrue("message", A) Asserts that the A condition is true.

assertNotNull("message", A) Asserts that the A object isn’t null.

17Running parameterized tests
Let’s take a closer look at the responsibilities of each of the core objects that make up
JUnit; see table 2.2.

 We can move on to explaining in detail the objects from this table that we’ve not
seen yet: the test Runner and test Suite objects.

 To run a basic test class, you needn’t do anything special; JUnit uses a test runner on
your behalf to manage the lifecycle of your test class, including creating the class,
invoking tests, and gathering results. The next sections address situations that may
require you to set up your test to run in a special manner. One of these situations alle-
viates a common problem when creating tests: invoking tests with different inputs. We
discuss this specific scenario with an example in the next section before looking at the
remaining test runners provided by JUnit.

2.2 Running parameterized tests
The Parameterized test runner allows you to run a test many times with different sets
of parameters. Listing 2.2 demonstrates the Parameterized runner in action (you can
find this test in the source code samples for chapter 1).

[...]
@RunWith(value=Parameterized.class)
public class ParameterizedTest {

 private double expected;
 private double valueOne;
 private double valueTwo;

 @Parameters
 public static Collection<Integer[]> getTestParameters() {
 return Arrays.asList(new Integer[][] {

Table 2.2 JUnit core objects

JUnit concept Responsibilities Introduced in

Assert Lets you define the conditions that you want to test. An assert
method is silent when its proposition succeeds but throws an
exception if the proposition fails.

Section 2.1

Test A method with a @Test annotation defines a test. To run this
method JUnit constructs a new instance of the containing class
and then invokes the annotated method.

Section 2.1

Test class A test class is the container for @Test methods. Section 2.1

Suite The Suite allows you to group test classes together. Section 2.3

Runner The Runner class runs tests. JUnit 4 is backward compatible and
will run JUnit 3 tests.

Section 2.2

Listing 2.2 Parameterized tests

 B

 C

 D

18 CHAPTER 2 Exploring core JUnit
 {2, 1, 1}, //expected, valueOne, valueTwo
 {3, 2, 1}, //expected, valueOne, valueTwo
 {4, 3, 1}, //expected, valueOne, valueTwo
 });
 }

 public ParameterizedTest(double expected,
 double valueOne, double valueTwo) {
 this.expected = expected;
 this.valueOne = valueOne;
 this.valueTwo = valueTwo;
 }

 @Test
 public void sum() {
 Calculator calc = new Calculator();
 assertEquals(expected, calc.add(valueOne, valueTwo), 0);
 }
}

To run a test class with the Parameterized test runner, you must meet the following
requirements. The test class must carry the @RunWith annotation with the Parame-
terized class as its argument b. You must declare instance variables used in the tests

C and provide a method annotated with @Parameters D, here called getTest-
Parameters. The signature of this method must be @Parameters public static
java.util.Collection, without parameters. The Collection elements must be
arrays of identical length. This array length must match the number of arguments of
the only public constructor. In our case, each array contains three elements because
the public constructor has three arguments. Our example uses this method to pro-
vide the input and expected output values for the tests. Because we want to test the
add method of our Calculator program, we provide three parameters: expected
value and two values that we add together. At E we specify the required constructor
for the test. Note that this time our test case doesn’t have a no-argument constructor
but instead has a constructor that accepts parameters for the test. At F we finally
implement the sum @Test method, which instantiates the Calculator program G,
and assert calls for the parameters we’ve provided H.

 Running this test will loop exactly as many times as the size of the collection
returned by the @Parameters method. The execution of this single test case has the
same result as the execution of the following test cases with different parameters:

sum: assertEquals(2, calculator.add(1, 1), 0);
sum: assertEquals(3, calculator.add(2, 1), 0);
sum: assertEquals(4, calculator.add(3, 1), 0);

It’s worth stepping through the JUnit runtime to understand this powerful feature:
JUnit calls the static method getTestParameters D. Next, JUnit loops for each
array in the getTestParameters collection D. JUnit then calls the only public con-
structor E. If there is more than one public constructor, JUnit throws an assertion
error. JUnit then calls the constructor E with an argument list built from the array

 E

 F
 G

 H

19JUnit test runners
elements. In our case, JUnit calls the three-argument constructor E with the first
element in the array, itself an array: {2, 1, 1}. JUnit then calls each @Test method

F as usual. JUnit repeats the process for the next array in the getTestParameters
collection D.

 When you compare the test results with the previous example, you see that instead
of running one test, the parameterized JUnit test runner ran the same method three
times, once for each value in our @Parameters collection.

 The JUnit class Parameterized is one of JUnit’s many test runners. A test runner
allows you to tell JUnit how a test should be run. Next, we look at the other JUnit
test runners.

2.3 JUnit test runners
When you’re first writing tests, you want them to run as quickly and easily as possible.
You should be able to make testing part of the development cycle: code-run-test-code (or
test-code run-test if you’re test-first inclined). There are IDEs and compilers for quickly
building and running applications; JUnit lets you build and run tests.

2.3.1 Test runner overview

JUnit 4 is built with backward compatibility with version 3.8.x. Because the 4.x version
of JUnit is completely different from the 3.x versions, it should be possible to execute
not only JUnit 4 tests but also 3.x-style tests. That’s why in its latest versions JUnit pro-
vides different runners (listed in table 2.3) for running JUnit 3.x tests, JUnit 4 tests,
and different sets of tests.

Table 2.3 JUnit 4 test runners

Runner Purpose

org.junit.internal.runners.JUnit38ClassRunner This runner is included in the cur-
rent release of JUnit only for
backward compatibility. It will
start the test case as a JUnit 3.8
test case.

org.junit.runners.JUnit4 This runner will start the test
case as a JUnit 4 test case.

org.junit.runners.Parameterized A Parameterized test runner
runs same sets of tests with dif-
ferent parameters.

org.junit.runners.Suite The Suite is a container that
can hold different tests. The
Suite is also a runner that exe-
cutes all the @Test annotated
methods in a test class.

20 CHAPTER 2 Exploring core JUnit
JUnit will use a default test runner if none is provided based on the test class. If you
want JUnit to use a specific test runner, specify the test runner class using the @Run-
With annotation, as demonstrated in the following code:

@RunWith(value=org.junit.internal.runners.JUnit38ClassRunner.class)
public class TestWithJUnit38 extends junit.framework.TestCase {
 [...]
}

Now that we’ve seen an overview of the different test runners and how to direct JUnit
to use them, we look at various test runners in more detail.

2.3.2 The JUnitCore façade

To make running tests as quick and easy as possible, JUnit provides a façade
(org.junit.runner.JUnitCore), which operates with any of the test runners. JUnit
designed this façade to execute your tests and gather results and statistics. You can see
the JUnitCore class in action in figure 1.3 in the previous chapter.

The JUnit façade determines which runner to use for running your tests. It supports
running JUnit 3.8 tests, JUnit 4 tests, and a mixture of both.1

 Before JUnit 4, JUnit included Swing and AWT test runners; these are no longer
included. Those graphical test runners had a progress indicator running across the
screen, known as the famous JUnit green bar. JUnit testers tend to refer to passing
tests as green bar and failing tests as red bar. “Keep the bar green to keep the code clean”
is the JUnit motto.

 Figure 2.1 shows the Eclipse JUnit view after a green-bar test run.
 These days, all major IDEs support integration with JUnit.

2.3.3 Custom test runners

Unlike other elements of the JUnit framework, there is no Runner interface. Instead,
the various test runners bundled with JUnit all extend the org.junit.runner.Runner
class. To create your own test runner, you’ll need to extend the Runner class. Please
refer to appendix B, where we cover this topic in detail.

Design patterns in action: façade
A façade1 is a design pattern that provides a unified interface to a set of interfaces
in a subsystem. Façade defines a higher-level interface that makes the subsystem
easier to use. You can use a façade to simplify a number of complicated object
interactions into a single interface.

1 The definition is taken from the Portland Pattern Repository: http://c2.com/cgi/wiki?FacadePattern.

http://c2.com/cgi/wiki?FacadePattern

21Composing tests with a suite
2.4 Composing tests with a suite
For a simple test, you can compile the simple calculator test program from listing 2.1
and hand it to the console façade runner, like this:

>java org.junit.runner.JUnitCore CalculatorTest

The test should run fine assuming the classpath is configured properly. This is simple
enough—at least as far as running a single test case is concerned.

2.4.1 Composing a suite of test classes

The next step is to run more than one test class. To facilitate this task JUnit provides
the test Suite. The Suite is a container used to gather tests for the purpose of group-
ing and invocation.

 JUnit designed the Suite to run one or more test cases. The test runner launches
the Suite; which test case to run is up to the Suite.

 You might wonder how you managed to run the example at the end of chapter 1,
when you didn’t define a Suite. To keep simple things simple, the test runner auto-
matically creates a Suite if you don’t provide one of your own.

 The default Suite scans your test class for any methods that you annotated with
@Test. Internally, the default Suite creates an instance of your test class for each @Test
method. JUnit then executes every @Test method independently from the others to
avoid potential side effects.

Figure 2.1
JUnit’s green bar, shown in Eclipse

22 CHAPTER 2 Exploring core JUnit
 If you add another test to the CalculatorTest class, like testSubtract, and you
annotate it with the @Test, the default Suite would automatically include it.

 The Suite object is a Runner that executes all of the @Test annotated methods
in the test class. Listing 2.3 shows how to compose multiple test classes in a single
test suite.

[...]
@RunWith(value=org.junit.runners.Suite.class)
@SuiteClasses(value={FolderConfigurationTest.class,
 FileConfigurationTest.class})
public class FileSystemConfigurationTestSuite {
}

In listing 2.3, we specify the appropriate runner with the @RunWith annotation B and
list the tests we want to include in this test by specifying the test classes in the @Suite-
Classes annotation C. All the @Test methods from these classes will be included in
the Suite.

 For the CalculatorTest in listing 2.1, you can represent the default Suite like this:

@RunWith(value=Suite.class)
@SuiteClasses(value={CalculatorTest.class})
public class AllTests {
}

2.4.2 Composing a suite of suites

Because of the clever way JUnit is constructed, it’s possible to create a suite of test
suites. For example, listing 2.4 concatenates various files to show how test cases make
up suites, which in turn make up a master suite.

[...]
public class TestCaseA {
 @Test
 public void testA1() {
 // omitted
 }
}

[...]
public class TestCaseB {
 @Test
 public void testB1() {
 // omitted
 }
}

[...]
@RunWith(value=Suite.class)
@SuiteClasses(value = {TestCaseA.class})

Listing 2.3 Composing a Suite from test classes

Listing 2.4 Suite of suites

 B
 C

23Composing tests with a suite
public class TestSuiteA {
}

[...]
@RunWith(value=Suite.class)
@SuiteClasses(value = {TestCaseB.class})
public class TestSuiteB {
}

[...]
@RunWith(value = Suite.class)
@SuiteClasses(value = {TestSuiteA.class, TestSuiteB.class})
public class MasterTestSuite{
}

Our simple test suites TestSuiteA and TestSuiteB have only one test case each, a sim-
plification to abbreviate this example. A real suite would contain more than one test
class, like our master suite.

 You can run any of the classes in this listing as a JUnit test, one of the two test
classes, one of the two test suites, or the master test suite. Figure 2.2 displays the result
of running the master suite in Eclipse.

 Test suites provide a powerful way to organize your tests. The convenience isn’t
unique to JUnit, as you’ll see in the next section, which will make us reconsider creat-
ing any JUnit suites at all.

2.4.3 Suites, IDEs, Ant, and Maven

Ant and Maven also provide ways to run groups of test classes and suites by allowing
you to specify, with a type of regular expression, the names of test classes and suites to
run. In addition, IDEs like Eclipse allow you to run all test classes and Suites in a
selected package or source directory. This is enough to make us reconsider whether
it’s worth creating JUnit Suites in the first place.

 JUnit Suites are useful if you want to organize your tests in Java, independent of
the capability of your build system, because it’s common for someone or a group
other than the developers to maintain builds. Similarly, you may wish to provide inde-
pendence from any given IDE and its JUnit integration capabilities.

Figure 2.2
Running a suite of suites in Eclipse

24 CHAPTER 2 Exploring core JUnit
2.5 Summary
In this chapter, we introduced the core JUnit concepts and classes. We showed you
how to fuse a test class, a Suite, and a Runner.

 Use a test class to test one domain object where each test method focuses on one
domain method or a specific set of methods. JUnit 4 makes extensive uses of annota-
tions to define and manage tests. JUnit 4 has made obsolete the JUnit 3 requirement
of making a test class a TestCase subclass.

 You use a test suite to group related test classes together, allowing you to invoke
them as a group. You can even group suites together in higher-level suites.

 You use a Runner to invoke unit tests and test suites.
 In the next chapter, we introduce the Controller design pattern and build a sam-

ple Controller component application that we test with JUnit. This way, we not only
show you how to use the JUnit components we’ve been discussing so far, but we also
introduce many JUnit best practices.

Mastering JUnit

Tests are the Programmer’s Stone,

 transmuting fear into boredom.

—Kent Beck,
Test First Development

So far, we’ve made a JUnit survey and shown how to use it (chapter 1). We also
looked at JUnit internals, what the core classes and methods are, and how they
interact with each other (chapter 2).

 We now dive deeper by introducing a real-life component and testing it. In this
chapter, we implement a small application using the Controller design pattern. We
then test every part of the application using JUnit. We also look at JUnit best prac-
tices when writing and organizing your tests.

This chapter covers
■ Implementing a sample application
■ Testing the sample application with JUnit
■ Following JUnit best practices
25

26 CHAPTER 3 Mastering JUnit
3.1 Introducing the controller component
Core Java EE Patterns describes a controller as a component that “interacts with a client,
controlling and managing the handling of each request,” and tells us that it’s used in
both presentation-tier and business-tier patterns.1

 In general, a controller does the following:

■ Accepts requests
■ Performs any common computations on the request
■ Selects an appropriate request handler
■ Routes the request so that the handler can execute the relevant business logic
■ May provide a top-level handler for errors and exceptions

You’ll find controllers to be handy in a variety of applications. For example, in a
presentation-tier pattern, a web controller accepts HTTP requests and extracts HTTP
parameters, cookies, and HTTP headers, perhaps making the HTTP elements easily
accessible to the rest of the application. A web controller determines the appropri-
ate business logic component to call based on elements in the request, perhaps
with the help of persistent data in the HTTP session, a database, or some other
resource. The Apache Struts framework is an example of a web controller.

 Another common use for a controller is to handle applications in a business-tier
pattern. Many business applications support several presentation layers. HTTP clients
may handle web applications. Swing clients may handle desktop applications. Behind
these presentation tiers, there’s often an application controller, or state machine. Pro-
grammers implement many Enterprise JavaBean (EJB) applications this way. The EJB
tier has its own controller, which connects to different presentation tiers through a
business façade or delegate.

 Given the many uses for a controller, it’s no surprise that controllers crop up in a
number of enterprise architecture patterns, including Page Controller, Front Control-
ler, and Application Controller.2 The controller you’ll design here could be the first
step in implementing any of these classic patterns. Let’s work through the code for
the simple controller, to see how it works, and then try a few tests. If you’d like to fol-
low along and run the tests as you go, all the source code for this chapter is available at
SourceForge (http://junitbook.sf.net). See appendix A for more about setting up the
source code.

3.1.1 Designing the interfaces

Looking over the description of a controller, four objects pop out: the Request,
the Response, the RequestHandler, and the Controller. The Controller accepts

1 Deepak Alur, John Crupi, and Dan Malks, Core Java EE Patterns: Best Practices and Design Strategies (Upper
Saddle River, NJ: Prentice Hall, 2001).

2 Martin Fowler, Patterns of Enterprise Application Architecture (Boston: Addison-Wesley, 2003).

http://junitbook.sf.net

27Introducing the controller component
a Request, dispatches a RequestHandler, and returns a Response object. With a
description in hand, you can code some simple starter interfaces, like those shown
in listing 3.1.

public interface Request
{
 String getName();
}
public interface Response
{
}
public interface RequestHandler
{
 Response process(Request request) throws Exception;
}
public interface Controller
{
 Response processRequest(Request request);
 void addHandler(Request request, RequestHandler requestHandler);
}

First, define a Request interface with a single getName method that returns the
request’s unique name B, so you can differentiate one request from another. As
you develop the component, you’ll need other methods, but you can add those as you
go along.

 Next, specify an empty interface C. To begin coding, you need only return a
Response object. What the Response encloses is something you can deal with later. For
now, you need a Response type you can plug into a signature.

 The next step is to define a RequestHandler that can process a Request and return
your Response D. RequestHandler is a helper component designed to do most of the
dirty work. It may call on classes that throw any type of exception. Exception is what
you have the process method throw.

 Define a top-level method for processing an incoming request E. After accepting
the request, the controller dispatches it to the appropriate RequestHandler. Notice
that processRequest doesn’t declare any exceptions. This method is at the top of the
control stack and should catch and cope with all errors internally. If it did throw an
exception, the error would usually go up to the Java Virtual Machine (JVM) or servlet
container. The JVM or container would then present the user with one of those nasty
white pages. It’s better that you code for it yourself.

 Finally, F is an important design element. The addHandler method allows you to
extend the Controller without modifying the Java source.

Listing 3.1 Request, Response, RequestHandler, and Controller interfaces

 B

 C

 D

 E
 F

28 CHAPTER 3 Mastering JUnit
3.1.2 Implementing the base class

Following up on the interfaces in listing 3.1, listing 3.2 shows a first draft of the simple
controller class.3

[...]
import java.util.HashMap;
import java.util.Map;

public class DefaultController implements Controller
{
 private Map requestHandlers = new HashMap();

 protected RequestHandler getHandler(Request request)
 {
 if (!this.requestHandlers.containsKey(request.getName()))
 {
 String message = "Cannot find handler for request name "
 + "[" + request.getName() + "]";
 throw new RuntimeException(message);
 }
 return (RequestHandler)
 this.requestHandlers.get(request.getName());
 }

 public Response processRequest(Request request)
 {
 Response response;
 try
 {
 response = getHandler(request).process(request);
 }
 catch (Exception exception)
 {
 response = new ErrorResponse(request, exception);
 }
 return response;
 }

Design patterns in action: Inversion of Control
Registering a handler with the controller is an example of Inversion of Control. You
may know this pattern as the Hollywood Principle, or “Don’t call us, we’ll call you.”
Objects register as handlers for an event. When the event occurs, a hook method
on the registered object is invoked. Inversion of Control lets frameworks manage
the event lifecycle while allowing developers to plug in custom handlers for frame-
work events.3

Listing 3.2 The generic controller

3 4 http://c2.com/cgi/wiki?HollywoodPrinciple

 B

 C

 D

 E

 F

http://c2.com/cgi/wiki?HollywoodPrinciple

29Introducing the controller component
 public void addHandler(Request request, RequestHandler requestHandler)
 {
 if (this.requestHandlers.containsKey(request.getName()))
 {
 throw new RuntimeException("A request handler has "
 + "already been registered for request name "
 + "[" + request.getName() + "]");
 }
 else
 {
 this.requestHandlers.put(request.getName(), requestHandler);
 }
 }
 }

First, declare a HashMap (java.util.HashMap) to act as the registry for your request
handlers B. Next, add a protected method, getHandler, to fetch the Request-
Handler for a given request C. If a RequestHandler has not been registered, you
throw a RuntimeException (java.lang.RuntimeException) D, because this happen-
stance represents a programming mistake rather than an issue raised by a user or
external system. Java doesn’t require you to declare the RuntimeException in the
method’s signature, but you can still catch it as an exception. An improvement would
be to add a specific exception to the controller framework (NoSuitableRequest-
HandlerException, for example).

 Your utility method then returns the appropriate handler to its caller E.
 The processRequest method F is the core of the Controller class. This method

dispatches the appropriate handler for the request and passes back the handler’s
Response. If an exception bubbles up, it’s caught in the ErrorResponse class, shown
in listing 3.3.

 Finally, check to see whether the name for the handler has been registered G, and
throw an exception if it has. Looking at the implementation, note that the signature
passes the request object, but you use only its name. This sort of thing often occurs
when an interface is defined before the code is written. One way to avoid overdesigning
an interface is to practice test-driven development (see chapter 5).

[...]
public class ErrorResponse implements Response
{
 private Request originalRequest;
 private Exception originalException;
 public ErrorResponse(Request request, Exception exception)
 {
 this.originalRequest = request;
 this.originalException = exception;

 }
 public Request getOriginalRequest()
 {

Listing 3.3 Special response class signaling an error

 G

30 CHAPTER 3 Mastering JUnit
 return this.originalRequest;
 }
 public Exception getOriginalException()
 {
 return this.originalException;
 }
}

At this point, you have a crude but effective skeleton for the controller. Table 3.1
shows how the requirements at the top of this section relate to the source code.

The next step for many developers would be to cobble up a stub application to go
with the skeleton controller. As test-infected developers, we can write a test suite
for the controller without fussing with a stub application. That’s the beauty of unit
testing. We can write a package and verify that it works, all outside a conventional
Java application.

3.2 Let’s test it!
A fit of inspiration has led us to code the four interfaces shown in listing 3.1 and the
two starter classes shown in listings 3.2 and 3.3. If we don’t write an automatic test now,
the Bureau of Extreme Programming will be asking for our membership cards back!

 Listings 3.2 and 3.3 began with the simplest implementations possible. Let’s do
the same with the new set of unit tests. What’s the simplest-possible test case we
can explore?

3.2.1 Testing the DefaultController

How about a test case that instantiates the DefaultController class? The first step
in doing anything useful with the controller is to construct it, so let’s start there.
Listing 3.4 shows the bootstrap test code. It constructs the DefaultController
object and sets up a framework for writing tests.

[...]
import org.junit.core.Test;
import static org.junit.Assert.*;

Table 3.1 Resolving the base requirements for the component

Requirement Resolution

Accept requests public Response processRequest(Request request)

Select handler this.requestHandlers.get(request.getName())

Route requests response = getRequestHandler(request).process(request);

Error handling Subclass ErrorResponse

Listing 3.4 TestDefaultController—a bootstrap iteration

31Let’s test it!
public class TestDefaultController
{
 private DefaultController controller;

 @Before
 public void instantiate() throws Exception
 {
 controller = new DefaultController();
 }
 @Test
 public void testMethod()
 {
 throw new RuntimeException("implement me");
 }
}

Start the name of the test case class with the prefix Test B. The naming convention
isn’t required, but by doing so, we mark the class as a test case so that we can easily rec-
ognize test classes and possibly filter them in build scripts. Alternatively, and depend-
ing on your native language, you may prefer to postfix class names with Test.

 Next, use the @Before annotated method to instantiate DefaultController C.
This is a built-in extension point that the JUnit framework calls between test methods.
At D you insert a dummy test method, so you have something to run. As soon as
you’re sure the test infrastructure is working, you can begin adding real test methods.
Although this test runs, it also fails. The next step is to fix the test!

 Use a best practice by throwing an exception for test code that you haven’t imple-
mented yet E. This prevents the test from passing and reminds you that you must
implement this code.

 Now that you have a bootstrap test, the next step is to decide what to test first.

JUnit’s details
The @Before and @After annotated methods are executed right before/after the
execution of each one of your @Test methods and regardless of whether the test
failed or not. This helps you to extract all of your common logic, like instantiating
your domain objects and setting them up in some known state. You can have as
many of these methods as you want, but beware that if you have more than one of
the @Before/@After methods, the order of their execution is not defined.

JUnit also provides the @BeforeClass and @AfterClass annotations to anno-
tate your methods in that class. The methods that you annotate will get exe-
cuted, only once, before/after all of your @Test methods. Again, as with the
@Before and @After annotations, you can have as many of these methods as
you want, and again the order of the execution is unspecified.

You need to remember that both the @Before/@After and @BeforeClass/@After-
Class annotated methods must be public. The @BeforeClass/@AfterClass
annotated methods must be public and static.

 B

 C

 D

 E

32 CHAPTER 3 Mastering JUnit
3.2.2 Adding a handler

Now that you have a bootstrap test, the next step is to decide what to test first. We
started the test case with the DefaultController object, because that’s the point of
this exercise: to create a controller. You wrote some code and made sure it compiled.
But how can you test to see if it works?

 The purpose of the controller is to process a request and return a response. But
before you process a request, the design calls for adding a RequestHandler to do the
processing. So, first things first: you should test whether you can add a RequestHandler.

 The tests you ran in chapter 1 returned a known result. To see if a test succeeded,
you compared the result you expected with whatever result the object you were testing
returned. The signature for addHandler is

void addHandler(Request request, RequestHandler requestHandler)

To add a RequestHandler, you need a Request with a known name. To check to see if
adding it worked, you can use the getHandler method from DefaultController,
which uses this signature:

RequestHandler getHandler(Request request)

This is possible because the getHandler method is protected, and the test classes are
located in the same package as the classes they’re testing. This is one reason to define
the tests under the same package.

 For the first test, it looks like you can do the following:

■ Add a RequestHandler, referencing a Request.
■ Get a RequestHandler and pass the same Request.
■ Check to see if you get the same RequestHandler back.

WHERE DO TESTS COME FROM?
Now you know what objects you need. The next question is, “Where do these objects
come from?” Should you go ahead and write some of the objects you’ll use in the
application, such as a logon request?

 The point of unit testing is to test one object at a time. In an object-oriented envi-
ronment like Java, you design objects to interact with other objects. To create a unit
test, it follows that you need two flavors of objects: the domain object you’re testing and
test objects to interact with the object under test.

DEFINITION Domain object—In the context of unit testing, the term domain
object is used to contrast and compare the objects you use in your application
with the objects that you use to test your application (test objects). Any object
under test is considered a domain object.

If you used another domain object, like a logon request, and a test failed, it would be
hard to identify the culprit. You might not be able to tell whether the problem was with
the controller or the request. So, in the first series of tests, the only class you’ll use in
production is DefaultController. Everything else should be a special test class.

33Let’s test it!
WHERE DO TEST CLASSES LIVE?
Where do you put the test classes? Java provides several alternatives. For starters, you
could do one of the following:

■ Make them public classes in your package.
■ Make them inner classes within your test-case class.

If the classes are simple and likely to stay that way, then it’s easiest to code them as
inner classes. The classes in this example are simple. Listing 3.5 shows the inner
classes you can add to the TestDefaultController class.

public class TestDefaultController
{
[...]
 private class SampleRequest implements Request
 {
 public String getName()
 {
 return "Test";
 }
 }
 private class SampleHandler implements RequestHandler
 {
 public Response process(Request request) throws Exception
 {
 return new SampleResponse();
 }
 }
 private class SampleResponse implements Response
 {
 // empty
 }
[...]

First, set up a request object B that returns a known name (Test). Next, imple-
ment a SampleHandler C. The interface calls for a process method, so you have to

JUnit best practices: unit test one object at a time
A vital aspect of unit tests is that they’re finely grained. A unit test independently
examines each object you create, so that you can isolate problems as soon as they
occur. If you put more than one object under test, you can’t predict how the objects
will interact when changes occur to one or the other. When an object interacts
with other complex objects, you can surround the object under test with predict-
able test objects. Another form of software test, integration testing, examines how
working objects interact with each other. See chapter 4 for more about other types
of tests.

Listing 3.5 Test classes as inner classes

 B

 C

 D

34 CHAPTER 3 Mastering JUnit
code that too. You’re not testing the process method right now, so you have it
return a SampleResponse object to satisfy the signature. Go ahead and define an
empty SampleResponse D so you have something to instantiate.

 With the scaffolding from listing 3.5 in place, let’s look at listing 3.6, which shows
the test for adding a RequestHandler.

[...]
import static org.junit.Assert.*;

public class TestDefaultController
{
[...]
 @Test
 public void testAddHandler()
 {
 Request request = new SampleRequest();
 RequestHandler handler = new SampleHandler();
 controller.addHandler(request, handler);
 RequestHandler handler2 = controller.getHandler(request);
 assertSame("Handler we set in controller should be the
 same handler we get", handler2, handler);
 }
}

Pick an obvious name for the test method, and annotate your test method with the
@Test annotation B. Remember to instantiate your test objects C. This code gets to
the point of the test: controller (the object under test) adds the test handler D.
Note that the DefaultController object is instantiated by the @Before annotated
method (see listing 3.4).

 Read back the handler under a new variable name E, and check to see if you get
back the same object you put in F.

Listing 3.6 TestDefaultController.testAddHandler

JUnit best practices: choose meaningful test method names
You can see that a method is a test method by the @Test annotation. You also
must be able to understand what a method is testing by reading the name.
Although JUnit doesn’t require any special rules for naming your test methods, a
good rule is to start with the testXXX naming scheme, where XXX is the name of
the domain method to test. As you add other tests against the same method, move
to the testXXXYYY scheme, where YYY describes how the tests differ. Don’t be
afraid that the names of your tests are getting long or verbose. As you’ll see by the
end of the chapter, it’s sometimes not so obvious what a method is testing by look-
ing at its assert methods. Name your test methods in a descriptive fashion, and
add comments where necessary.

 B

 C
 D

 E

 F

35Let’s test it!
Although it’s simple, this unit test confirms the key premise that the mechanism for
storing and retrieving RequestHandler is alive and well. If addHandler or getRequest
fails in the future, the test will quickly detect the problem.

 As you create more tests like this, you’ll notice that you follow a pattern:

1 Set up the test by placing the environment in a known state (create objects,
acquire resources). The pretest state is referred to as the test fixture.

2 Invoke the method under test.
3 Confirm the result, usually by calling one or more assert methods.

3.2.3 Processing a request

Let’s look at testing the core purpose of the controller, processing a request. Because
you know the routine, we present the test in listing 3.7 and review it.

import static org.junit.Assert.*;

public class TestDefaultController
{
[...]
 @Test
 public void testProcessRequest()
 {
 Request request = new SampleRequest();
 RequestHandler handler = new SampleHandler();
 controller.addHandler(request, handler);
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(“Response should be of type SampleResponse”,
 SampleResponse.class, response.getClass());

 }
}

First, annotate the test with the @Test annotation and give the test a simple, uniform
name B. Set up the test objects and add the test handler C.

 At D the code diverges from listing 3.6 and calls the processRequest method. You
verify that the returned Response object isn’t null E. This is important because you
call the getClass method on the Response object. It will fail with a dreaded Null-
PointerException if the Response object is null. You use the assertNotNull(String,
Object) signature so that if the test fails, the error displayed is meaningful and easy to
understand. If you’d used the assertNotNull(Object) signature, the JUnit runner
would have displayed a stack trace showing a java.lang.AssertionError exception
with no message, which would be more difficult to diagnose.

 Once again, compare the result of the test against the expected SampleResponse
class F.

Listing 3.7 testProcessRequest method

 B

 C

 D E

 F

36 CHAPTER 3 Mastering JUnit
FACTORIZING SETUP LOGIC

Because both tests do the same type of setup, you can try moving that code into a
@Before annotated method. At the same time, you don’t want to move it into a
new @Before method because you aren’t sure which method will be executed first, and
you may get an exception. Instead, you can move it into the same @Before method.

 As you add more test methods, you may need to adjust what you do in the @Before
methods. For now, eliminating duplicate code as soon as possible helps you write
more tests more quickly. Listing 3.8 shows the new and improved TestDefault-
Controller class (changes are shown in bold).

[...]
public class TestDefaultController
{
 private DefaultController controller;
 private Request request;
 private RequestHandler handler;

 @Before
 public void initialize() throws Exception {
 controller = new DefaultController();
 request = new SampleRequest();
 handler = new SampleHandler();

 controller.addHandler(request, handler);
 }
 private class SampleRequest implements Request
 {
 // Same as in listing 3.1
 }
 private class SampleHandler implements RequestHandler
 {
 // Same as in listing 3.1
 }
 private class SampleResponse implements Response
 {
 // Same as in listing 3.1
 }
 @Test
 public void testAddHandler()
 {

JUnit best practices: explain the failure reason in assert calls
Whenever you use any of the JUnit assert* methods, make sure you use the sig-
nature that takes a String as the first parameter. This parameter lets you provide
a meaningful description that’s displayed in the JUnit test runner if the assert fails.
Not using this parameter makes it difficult to understand the reason for a failure
when it happens.

Listing 3.8 TestDefaultController after some refactoring

 B

 C

37Let’s test it!
 RequestHandler handler2 = controller.getHandler(request);
 assertSame(handler2, handler);
 }
 @Test
 public void testProcessRequest()
 {
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(“Response should be of type SampleResponse”,
 SampleResponse.class, response.getClass());
 }
}

We move the instantiation of the test Request and RequestHandler objects to ini-
tialize B. This saves us from repeating the same code in testAddHandler C and
testProcessRequest D. Also, we make a new @Before annotated method for adding
the handler to the controller. Because @Before methods are executed before every sin-
gle @Test method, we make sure we have a fully set up DefaultController object.

DEFINITION Refactor—To improve the design of existing code. For more
about refactoring, see Martin Fowler’s already-classic book, Refactoring: Improv-
ing the Design of Existing Code.4

Note that you don’t try to share the setup code by testing more than one operation in
a test method, as shown in listing 3.9 (an anti-example).

public class TestDefaultController
{
[...]
 @Test
 public void testAddAndProcess()
 {
 Request request = new SampleRequest();
 RequestHandler handler = new SampleHandler();
 controller.addHandler(request, handler);
 RequestHandler handler2 = controller.getHandler(request);
 assertEquals(handler2,handler);

 // DO NOT COMBINE TEST METHODS THIS WAY
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(SampleResponse.class, response.getClass());
 }
}

4 Martin Fowler, Refactoring: Improving the Design of Existing Code (Reading, MA: Addison-Wesley, 1999).

Listing 3.9 Anti-example: don’t combine test methods

 D

38 CHAPTER 3 Mastering JUnit
Each test method must be as clear and focused as possible. This is why JUnit provides
you with the @Before, @After, @BeforeClass, and @AfterClass annotations: so you
can share fixtures between tests without combining test methods.

3.2.4 Improving testProcessRequest

When we wrote the testProcessRequest method in listing 3.7, we wanted to con-
firm that the response returned is the expected response. The implementation
confirms that the object returned is the object that we expected. But what we’d
like to know is whether the response returned equals the expected response. The
response could be a different class. What’s important is whether the class identi-
fies itself as the correct response.

 The assertSame method confirms that both references are to the same object.
The assertEquals method utilizes the equals method, inherited from the base
Object class. To see if two different objects have the same identity, you need to pro-
vide your own definition of identity. For an object like a response, you can assign each
response its own command token (or name).

JUnit best practices: one unit test equals one @Test method
Don’t try to cram several tests into one method. The result will be more complex
test methods, which will become increasingly difficult to read and understand.
Worse, the more logic you write in your test methods, the more risk there is that
they won’t work and will need debugging. This slippery slope can end with writing
tests to test your tests!

Unit tests give you confidence in a program by alerting you when something that
had worked now fails. If you put more than one unit test in a method, it becomes
more difficult to zoom in on exactly what went wrong. When tests share the same
method, a failing test may leave the fixture in an unpredictable state. Other tests
embedded in the method may not run or may not run properly. Your picture of the
test results will often be incomplete or even misleading.

Because all the test methods in a test class share the same fixture, and JUnit can
now generate an automatic test suite, it’s just as easy to place each unit test in
its own method. If you need to use the same block of code in more than one test,
extract it into a utility method that each test method can call. Better yet, if all
methods can share the code, put it into the fixture.

Another common pitfall is to write test methods that don’t contain any assert
statements. When you execute those tests, you see JUnit flag them as successful,
but this is an illusion of successful tests. Always use assert calls. The only time
when not using assert calls may be acceptable is when an exception is thrown to
indicate an error condition.

For best results, your test methods should be as concise and focused as your
domain methods.

39Let’s test it!
 The empty implementation of SampleResponse didn’t have a name property you
could test. To get the test you want, you have to implement a little more of the
Response class first. Listing 3.10 shows the enhanced SampleResponse class.

public class TestDefaultController
{
[...]
 private class SampleResponse implements Response
 {
 private static final String NAME = "Test";
 public String getName()
 {
 return NAME;
 }
 public boolean equals(Object object)
 {
 boolean result = false;
 if (object instanceof SampleResponse)
 {
 result = ((SampleResponse) object).getName().equals(getName());
 }
 return result;
 }
 public int hashCode()
 {
 return NAME.hashCode();
 }
 }
[...]

Now that SampleResponse has an identity (represented by getName()) and its own
equals method, you can amend the test method:

@Test
public void testProcessRequest()
{
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(new SampleResponse(), response);
}

We’ve introduced the concept of identity in the SampleResponse class for the purpose
of the test. But the tests are telling you that this should have existed in the proper
Response class. You need to modify the Response interface as follows:

public interface Response
{
 String getName();
}

As you see, tests can sometimes “talk” and guide you to a better design of your applica-
tion. But this isn’t the real purpose of the tests. Don’t forget that the tests are used to

Listing 3.10 A refactored SampleResponse

40 CHAPTER 3 Mastering JUnit
protect us from introducing errors in our code. To do this we need to test every condi-
tion under which our application might be executed. We start investigating the excep-
tional conditions in the next chapter.

3.3 Testing exception handling
So far, your tests have followed the main path of execution. If the behavior of one
of your objects under test changes in an unexpected way, this type of test points to
the root of the problem. In essence, you’ve been writing diagnostic tests that moni-
tor the application’s health.

 But sometimes bad things happen to good programs. Say an application needs to
connect to a database. Your diagnostics may test whether you’re following the data-
base’s API. If you open a connection but don’t close it, a diagnostic can note that
you’ve failed to meet the expectation that all connections must be closed after use.

 But what if a connection isn’t available? Maybe the connection pool is empty. Or
perhaps the database server is down. If the database server is configured properly and
you have all the resources you need, this may never happen.

 All resources are finite, and someday, instead of a connection, you may be handed
an exception. “Anything that can go wrong will.”

 If you’re testing an application by hand, one way to test for this sort of thing is to
turn off the database while the application is running. Forcing error conditions is an
excellent way to test your disaster-recovery capability. Creating error conditions is also
time consuming. Most of us can’t afford to do this several times a day—or even once a
day. In addition, many other error conditions aren’t easy to create by hand.

 Testing the main path of execution is a good thing—and a requirement. Testing
exception handling is just as important and should also be included as a requirement.
If the main path doesn’t work, your application won’t work either (a condition you’re
likely to notice.)

JUnit best practices: test anything that could possibly fail
Unit tests help ensure that your methods are keeping their API contracts with other
methods. If the contract is based solely on other components’ keeping their con-
tracts, then there may not be any useful behavior for you to test. But if the method
changes the parameter’s or field’s value in any way, then you’re providing unique
behavior that you should test. The method is no longer a simple go-between—it’s
a method with its own behavior that future changes could conceivably break. If a
method is changed such that it isn’t simple anymore, then you should add a test
when that change takes place but not before.

As the JUnit FAQ puts it, “The general philosophy is this: if it can’t break on its
own, it’s too simple to break.” This is also in keeping with the Extreme Program-
ming rule: “No functionality is added early.”

41Testing exception handling
We’re all human, and often we tend to be sloppy when it comes to exception cases.
Even textbooks scrimp on error handling so as to simplify the examples. As a result,
many otherwise great programs aren’t error proofed before they go into production.
If properly tested, an application should not expose a screen of death but should trap,
log, and explain all errors gracefully.

3.3.1 Simulating exceptional conditions

The exceptional test case is where unit tests shine. Unit tests can simulate exceptional
conditions as easily as normal conditions. Other types of tests, like functional and
acceptance tests, work at the production level. Whether these tests encounter systemic
errors is often a matter of happenstance. A unit test can produce exceptional condi-
tions on demand.

 During our original fit of inspired coding, we had the foresight to code an error
handler into the base classes. As you saw back in listing 3.2, the processRequest
method traps all exceptions and passes back a special error response instead:

try
{
 response = getHandler(request).process(request);
}
catch (Exception exception)
{
 response = new ErrorResponse(request, exception);
}

How do you simulate an exception to test whether your error handler works? To test
handling a normal request, you created a SampleRequestHandler that returned a
SampleRequest (see listing 3.5). To test the handling of error conditions, you can
create a SampleExceptionHandler that throws an exception instead, as shown in list-
ing 3.11.

public class TestDefaultController
{
[...]
 private class SampleExceptionHandler implements RequestHandler
 {

(continued)
What about things like JavaBean getters and setters? Well, that depends. If you’re
coding them by hand in a text editor, then yes, you might want to test them. It’s
surprisingly easy to miscode a setter in a way that the compiler won’t catch. But
if you’re using an IDE that watches for such things, then your team might decide
not to test simple JavaBean properties.

Listing 3.11 Request handler for exception cases

42 CHAPTER 3 Mastering JUnit
 public Response process(Request request) throws Exception
 {
 throw new Exception("error processing request");
 }
 }
}

This leaves creating a test method that registers the handler and tries processing a
request—for example, like the one shown in listing 3.12.

public class TestDefaultController
{
[...]
 @Test
 public void testProcessRequestAnswersErrorResponse()
 {
 SampleRequest request = new SampleRequest();
 SampleExceptionHandler handler = new SampleExceptionHandler();
 controller.addHandler(request, handler);
 Response response = controller.processRequest(request);

 assertNotNull("Must not return a null response", response);
 assertEquals(ErrorResponse.class, response.getClass());
 }
}

If you ran this test through JUnit, it would fail! A quick look at the message tells
you two things. First, you need to use a different name for the test request, because
there’s already a request named Test in the fixture. Second, you may need to add
more exception handling to the class so that a RuntimeException isn’t thrown
in production.

 As to the first item, you can try using the request object in the fixture instead of
your own, but that fails with the same error. (Moral: Once you have a test, use it to
explore alternative coding strategies.) You could consider changing the fixture. If you
remove from the fixture the code that registers a default SampleRequest and Sample-
Handler, you introduce duplication into the other test methods—not good. Better to
fix the SampleRequest so it can be instantiated under different names. Listing 3.13 is
the refactored result (changes from listings 3.11 and 3.12 are in bold).

public class TestDefaultController
{
[...]
 private class SampleRequest implements Request
 {
 private static final String DEFAULT_NAME = "Test";
 private String name;

Listing 3.12 testProcessRequestAnswersErrorResponse, first iteration

Listing 3.13 testProcessRequestExceptionHandler, fixed and refactored

Create request
and handler

objects

Reuse controller
object from
listing 3.8

Test the
outcome

 B

43Testing exception handling
 public SampleRequest(String name)
 {
 this.name = name;
 }

 public SampleRequest()
 {
 this(DEFAULT_NAME);
 }
 public String getName()
 {
 return this.name;
 }
 }
[...]
 @Test
 public void testProcessRequestAnswersErrorResponse()
 {
 SampleRequest request = new SampleRequest("testError");
 SampleExceptionHandler handler = new SampleExceptionHandler();
 controller.addHandler(request, handler);
 Response response = controller.processRequest(request);

 assertNotNull("Must not return a null response", response);
 assertEquals(ErrorResponse.class, response.getClass());
 }
}

Introduce a member field to hold the request’s name and set it to the previous ver-
sion’s default B. Next, introduce a new constructor that lets you pass a name to the
request C, to override the default. At D you introduce an empty constructor, so exist-
ing calls will continue to work. Finally, call the new constructor instead E, so the
exceptional request object doesn’t conflict with the fixture.

 If you added another test method that also used the exception handler, you might
move its instantiation to the @Before fixture, to eliminate duplication.

Because the duplication hasn’t happened yet, let’s resist the urge to anticipate
change and let the code stand (Extreme Programming’s “No functionality is added
early” rule).

JUnit best practices: let the test improve the code
Writing unit tests often helps you write better code. The reason is simple: a test
case is a user of your code. It’s only when using code that you find its shortcom-
ings. Don’t hesitate to listen to your tests and refactor your code so that it’s easier
to use. The practice of test-driven development relies on this principle. By writing
the tests first, you develop your classes from the point of view of a user of your
code. See chapter 5 for more about TDD.

 C

 D

 E

44 CHAPTER 3 Mastering JUnit
3.3.2 Testing for exceptions

During testing, you found that addHandler throws an undocumented Runtime-
Exception if you try to register a request with a duplicate name. (By undocumented, we
mean that it doesn’t appear in the signature.) Looking at the code, you see that get-
Handler throws a RuntimeException if the request has not been registered.

 Whether you should throw undocumented RuntimeException exceptions is a larger
design issue. (You can make that a to-do for later study.) For now, let’s write some tests
that prove the methods will behave as designed.

 Listing 3.14 shows two test methods that prove addHandler and getHandler will
throw runtime exceptions when expected.

public class TestDefaultController
{
[...]
 @Test(expected=RuntimeException.class)
 public void testGetHandlerNotDefined()
 {
 SampleRequest request = new SampleRequest("testNotDefined");

 //The following line is supposed to throw a RuntimeException
 controller.getHandler(request);
 }

 @Test(expected=RuntimeException.class)
 public void testAddRequestDuplicateName()
 {
 SampleRequest request = new SampleRequest();
 SampleHandler handler = new SampleHandler();

 // The following line is supposed to throw a RuntimeException
 controller.addHandler(request, handler);
 }
}

Annotate your method with the @Test annotation to denote that it’s a test method B.
Because we’re going to test an exceptional condition and we expect that the test
method will produce an exception of some kind, we need also to specify what kind of
an exception we expect to be raised. We do this by specifying the expected parameter
of the @Test annotation. Give the test an obvious name C. Because this test repre-
sents an exceptional case, append NotDefined to the standard testGetHandler pre-
fix. Doing so keeps all the getHandler tests together and documents the purpose of
each derivation.

 At D, you create the request object for the test, also giving it an obvious name.
Pass the (unregistered) request to the default getHandler method E. Because this
request has no handler attached, a RuntimeException should be raised.

Listing 3.14 Testing methods that throw an exception

 B
 C

 D

 E

 F

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

45Timeout testing
 You follow the same pattern F as the first method:

1 Insert a statement that should throw an exception.
2 Add the expected parameter to the @Test annotation to denote what kind of

an exception you expect.
3 Proceed normally.

The controller class is by no means finished, but you have a respectable first iteration
and a test suite proving that it works. Now you can commit the controller package,
along with its tests, to the project’s code repository and move on to the next task on
your list.

The next task on our list is timeout testing. 5 6

3.4 Timeout testing
So far, we’ve tested our application for proper functionality—when supplied with the
right data, not only does it behave in the expected manner, but it also produces

JUnit best practices: make exception tests easy to read
Normally the expected parameter in the @Test annotation clearly tells the devel-
opers that an exception of that type should be raised. But you can go even further.
Besides naming your test methods in an obvious fashion to denote that this method
is testing an exceptional condition, you can also place some comments to high-
light the line of the code that produces the expected exception.

JUnit best practices: let the test improve the code
An easy way to identify exceptional paths is to examine the different branches in
the code you’re testing. By branches, we mean the outcome of if clauses, switch
statements, and try-catch blocks. When you start following these branches,
sometimes you may find that testing each alternative is painful. If code is difficult
to test, it’s usually just as difficult to use. When testing indicates a poor design
(called a code smell, http://c2.com/cgi/wiki?CodeSmell), you should stop and
refactor the domain code. In the case of too many branches, the solution is usually
to split a larger method into several smaller methods.5 Alternatively, you may need
to modify the class hierarchy to better represent the problem domain.6 Other situ-
ations would call for different refactorings.

A test is your code’s first “customer,” and as the maxim goes, “the customer is
always right.”

5 Fowler, Refactoring, “Extract Method.”
6 More about writing testable code can be found in chapter 4.

http://c2.com/cgi/wiki?CodeSmell

46 CHAPTER 3 Mastering JUnit
the expected result. Now we want to look at another aspect of testing our applica-
tion: scalability. How scalable is our DefaultController class?

 We’re going to write some tests and expect that they run below a given time bar-
rier. To do this, JUnit provides us with another parameter to the @Test annotation
called timeout. In this parameter, you can specify your time barrier in terms of milli-
seconds, and if the test takes more time to execute, JUnit will mark the test as failed.
For example, let’s look at the code in listing 3.15.

[...]
public class TestDefaultController
{
[...]
 @Test(timeout=130)
 public void testProcessMultipleRequestsTimeout()
 {
 Request request;

Response response = new SampleResponse();
 RequestHandler handler = new SampleHandler();

 for(int i=0; i< 99999; i++)
 {
 request = new SampleRequest(String.valueOf(i));
 controller.addHandler(request, handler);
 response = controller.processRequest();
 assertNotNull(response);
 assertNotSame(ErrorResponse.class, response.getClass());
 }
 }

We start by specifying the timeout parameter in milliseconds, which we expect to be
our time barrier B. Then C we declare the Request, Response, and RequestHandler
objects we’re going to use in the test. At D we start a for loop to create 99,999 Sample-
Request objects and add them along with a handler to the controller. After that, we
invoke the processRequest() method of the controller and assert E that we get a non-
null Response object and also that the Response we get isn’t an ErrorResponse.

 You might consider the 130 milliseconds time barrier to be optimistic, and you’re
right. This time barrier was the lowest possible on my machine. But the execution
time depends on the hardware it runs on (processor speed, memory available, and so
on) and also on the software it runs on (mainly the operating system, but also the Java
version, and so on). For different developers this test would fail or pass. Further, when
adding more functionality in the processRequest() method, the time barrier we’ve
chosen will become insufficient for our needs.

 We get to the point where a few timeout tests might fail the whole build for some
developers. Sometimes it’s good to skip some of the tests. In JUnit 3.x we had to
change the name of the test method (to not start with the test prefix). In version
4.x of JUnit, however, we have a nice way to skip a test. The only thing we need to do

Listing 3.15 Timeout tests

 B

 C

 D

 E

47Introducing Hamcrest matchers
is annotate the @Test method with an @Ignore annotation. Look at the code in list-
ing 3.16.

[...]
@Test(timeout=130)
@Ignore(value="Ignore for now until we decide a decent time-limit")
public void testProcessMultipleRequestTimeout()
{
 [...]
}

As you can see, the only thing we’ve added is the @Ignore annotation B to the
method. This annotation accepts the value parameter, which lets us insert a message
as to why we skip the test.

As we mentioned, in JUnit 3 the only way to skip the execution of a test method was to
rename it or comment it out. This gives you no information whatsoever as to how
many tests were skipped. In JUnit 4, when you annotate methods with @Ignore, you
get statistics that include how many tests JUnit skipped in addition to how many tests
passed and failed.

3.5 Introducing Hamcrest matchers
The statistics show that people are easily infected with the unit testing philosophy.
Once you get accustomed to writing tests and see how good it feels to have someone
protecting you from possible mistakes, you’ll wonder how it was possible to live with-
out unit testing before.

 As you write more and more unit tests and assertions, you’ll inevitably encounter
the problem that some of the assertions are big and hard to read. For example, con-
sider the code in listing 3.17.

[...]
public class HamcrestTest {
 private List<String> values;

Listing 3.16 Ignoring a test method in JUnit 4.x

JUnit best practice: always specify a reason for skipping a test
As you saw in the previous listing, we specified why we needed to skip the exe-
cution of the test. It’s a good practice to do that. First, you notify your fellow
developers why you want to skip the execution of the test, and second, you
prove to yourself that you know what the test does, and you don’t ignore it just
because it fails.

Listing 3.17 Cumbersome JUnit assert method

 B

48 CHAPTER 3 Mastering JUnit
 @Before
 public void setUpList() {
 values = new ArrayList<String>();
 values.add("x");
 values.add("y");
 values.add("z");
 }

 @Test
 public void testWithoutHamcrest() {
 assertTrue(values.contains("one")
 || values.contains("two")
 || values.contains("three"));
 }
 }

What we do in this example is construct a simple JUnit test, exactly like the ones we’ve
been constructing so far. We have a @Before fixture B, which will initialize some data
for our test, and then we have a single test method C. In this test method you can see
that we make a long and hard-to-read assertion D (maybe it’s not that hard to read,
but it’s definitely not obvious what it does at first glance). Our goal is to simplify the
assertion we make in the test method.

 To solve this problem we’re going to present a library of matchers for building test
expressions. Hamcrest (http://code.google.com/p/hamcrest/) is a library that con-
tains a lot of helpful matcher objects (known also as constraints or predicates), ported
in several languages (Java, C++, Objective-C, Python, and PHP). Note that Hamcrest
isn’t a testing framework itself, but rather it helps you declaratively specify simple
matching rules. These matching rules can be used in many different situations, but
they’re particularly helpful for unit testing.

 Listing 3.18 is the same test method, this time written using the Hamcrest library.

[...]
import static org.junit.Assert.assertThat;
import static org.hamcrest.CoreMatchers.anyOf;
import static org.hamcrest.CoreMatchers.equalTo;
import static org.junit.JUnitMatchers.hasItem;
[...]

 @Test
 public void testWithHamcrest() {
 assertThat(values, hasItem(anyOf(equalTo("one"), equalTo("two"),
 equalTo("three"))));
 }
[...]

Here we reuse listing 3.17 and add another test method to it. This time we import
the needed matchers and the assertThat method B, and after that we construct a
test method. In the test method we use one of the most powerful features of the
matchers—they can nest within each other C. Whether you prefer assertion code

Listing 3.18 Hamcrest library to simplify our assert declarations

 B

 C

 D

 B

 C

http://code.google.com/p/hamcrest/

49Introducing Hamcrest matchers
with or without Hamcrest matchers is a personal preference. What Hamcrest gives
you that standard assertions don’t provide is a human-readable description of an
assertion failure.

 If you followed the examples in the two previous listings, you’ve probably noticed
that in both the cases we construct a List with the “x”, “y”, and “z” as elements in it.
After that we assert the presence of either “one”, “two”, or “three”, which means that
the test, as written, will fail. Let’s execute that test. The result from the execution is
shown in figure 3.1.

 As you can see from the two screens, the one on the right gives a lot more details,
doesn’t it? Table 3.2 lists some of the most commonly used Hamcrest matchers.

Table 3.2 Some of the most commonly used Hamcrest matchers

Core Logical

anything Matches absolutely anything. Useful in some
cases where you want to make the assert state-
ment more readable.

is Is used only to improve the readability of your
statements.

allOf Checks to see if all contained matchers match
(just like the && operator).

anyOf Checks to see if any of the contained matchers
match (like the || operator).

not Traverses the meaning of the contained matchers
(just like the ! operator in Java).

instanceOf, isCompatibleType Match whether objects are of compatible type
(are instances of one another).

Figure 3.1 The screen on the left shows the stack trace from the execution of the test without using
Hamcrest, and the one on the right shows the same thing using Hamcrest.

50 CHAPTER 3 Mastering JUnit
All of them seem straightforward to read and use, and remember that you can com-
bine them with each other.

 Finally, Hamcrest is extremely extensible. It’s easy to write your own matchers that
check a certain condition. The only thing you need to do is implement the Matcher
interface and an appropriately named factory method. You can find more on how to
write custom matchers in appendix D of this book, where we provide a complete over-
view of how to write your own matchers.

3.6 Setting up a project for testing
Because this chapter covers testing a realistic component, let’s finish up by looking at
how you set up the controller package as part of a larger project. In chapter 1, you
kept all the Java domain code and test code in the same folder.

 They were introductory tests on an example class, so this approach seemed sim-
plest for everyone. In this chapter, you’ve begun to build real classes with real tests, as
you would for one of your own projects. Accordingly, you’ve set up the source code
repository as you would for a real project.

 So far, you have only one test case. Mixing this in with the domain classes would
not have been a big deal. But experience tells us that soon you’ll have at least as many
test classes as you have domain classes. Placing all of them in the same directory will
begin to create file-management issues. It will become difficult to find the class you
want to edit next.

sameInstance Tests object identity.

notNullValue, nullValue Tests for null values (or non-null values).

hasProperty Tests whether a JavaBean has a certain property.

hasEntry, hasKey, hasValue Tests whether a given Map has a given entry,
key, or value.

hasItem, hasItems Tests a given collection for the presence of an
item or items.

closeTo, greaterThan,
greaterThanOrEqual, lessThan,
lessThanOrEqual

Test whether given numbers are close to, greater
than, greater than or equal to, less than, or less
than or equal to a given value.

equalToIgnoringCase Tests whether a given string equals another one,
ignoring the case.

equalToIgnoringWhiteSpace Tests whether a given string equals another one,
by ignoring the white spaces.

containsString, endsWith, startWith Test whether the given string contains, starts
with, or ends with a certain string.

Table 3.2 Some of the most commonly used Hamcrest matchers (continued)

Core Logical

51Setting up a project for testing
Meanwhile, you want the test classes to be able to unit test protected methods, so you
want to keep everything in the same Java package. The solution is to have one package
in two folders. Figure 3.2 shows a snapshot of how the directory structure looks in a
popular integrated development environment (IDE).

 This is the code for the third chapter, so we used ch03-mastering for the top-level
project directory name (see appendix C). Under the root directory, we created sepa-
rate src/main/java and src/main/test folders. Under each of these, the package struc-
ture begins.

 In this case, all of the code falls under the com.manning.junitbook.ch03.mastering
package. The working interfaces and classes go under src/main/java; the classes we
write for testing only go under the src/main/test directory.

 Beyond eliminating clutter, a separate-but-equal directory structure yields several
other benefits. Right now, the only test class has the convenient Test prefix. Later you
may need other helper classes to create more sophisticated tests. These might include
stubs, mock objects, and other helpers. It may not be convenient to prefix all of these
classes with Test, and it becomes harder to tell the domain classes from the test classes.

 Using a separate test folder also makes it easy to deliver a runtime JAR with only the
domain classes. And it simplifies running all the tests automatically.

JUnit best practices: same package, separate directories
Put test classes in the same package as the class they test but in a parallel direc-
tory structure. You need tests in the same package to allow access to protected
methods. You want tests in a separate directory to simplify file management and
to clearly delineate test and domain classes.

Figure 3.2
A separate-but-equal filing system
keeps tests in the same package but in
different directories.

52 CHAPTER 3 Mastering JUnit
3.7 Summary
As you saw in chapter 1, it isn’t hard to jump in and begin writing JUnit tests for your
applications. In this chapter, we created a test case for a simple but complete applica-
tion controller. Rather than test a single component, the test case examined how sev-
eral components worked together. We started with a bootstrap test case that could be
used with any class. Then we added new tests to the test case one by one until all of the
original components were under test. Because the assertions were getting more and
more complicated, we found a way to simplify them by means of the Hamcrest match-
ers. We expect this package to grow, so we created a second source code directory for
the test classes. Because the test and domain source directories are part of the same
package, we can still test protected and package default members.

 In the next chapter, we put unit testing in perspective with other types of tests that
you need to perform on your applications. We also talk about how unit testing fits in
the development lifecycle.

Software testing principles

A crash is when your competitor’s program dies. When your

 program dies, it is an “idiosyncrasy.” Frequently, crashes are

followed with a message like “ID 02.” “ID” is an abbreviation
 for idiosyncrasy and the number that follows indicates how
 many more months of testing the product should have had.

—Guy Kawasaki

Earlier chapters in this book took a pragmatic approach to designing and deploy-
ing unit tests. This chapter steps back and looks at the various types of software tests
and the roles they play in the application’s lifecycle.

 Why would you need to know all this? Because unit testing isn’t something you
do out of the blue. In order to become a well-rounded developer, you need to
understand unit tests compared to functional, integration, and other types of tests.
Once you understand why unit tests are necessary, then you need to know how far
to take your tests. Testing in and of itself isn’t the goal.

This chapter covers
■ The need for software tests
■ Types of software tests
■ Types of unit tests
53

54 CHAPTER 4 Software testing principles
4.1 The need for unit tests
The main goal of unit testing is to verify that your application works as expected and
to catch bugs early. Although functional testing accomplishes the same goal, unit tests
are extremely powerful and versatile and offer much more than verifying that the
application works. Unit tests

■ Allow greater test coverage than functional tests
■ Increase team productivity
■ Detect regressions and limit the need for debugging
■ Give us the confidence to refactor and, in general, make changes
■ Improve implementation
■ Document expected behavior
■ Enable code coverage and other metrics

4.1.1 Allowing greater test coverage

Unit tests are the first type of test any application should have. If you had to choose
between writing unit tests and writing functional tests, you should choose the latter. In
our experience, functional tests are able to cover about 70 percent of the application
code. If you wish to go further and provide more test coverage, then you need to write
unit tests.

 Unit tests can easily simulate error conditions, which is extremely difficult to do
with functional tests (it’s impossible in some instances). Unit tests provide much more
than just testing, as explained in the following sections.

4.1.2 Increasing team productivity

Imagine you’re on a team working on a large application. Unit tests allow you to
deliver quality code (tested code) without having to wait for all the other components
to be ready. On the other hand, functional tests are more coarse grained and need the
full application (or a good part of it) to be ready before you can test it.

4.1.3 Detecting regressions and limiting debugging

A passing unit test suite confirms your code works and gives you the confidence to
modify your existing code, either for refactoring or to add and modify new features.
As a developer, you’ll get no better feeling than knowing that someone is watching
your back and will warn you if you break something.

 A suite of unit tests reduces the need to debug an application to find out why
something is failing. Whereas a functional test tells you that a bug exists some-
where in the implementation of a use case, a unit test tells you that a specific
method is failing for a specific reason. You no longer need to spend hours trying to
find the problem.

55The need for unit tests
4.1.4 Refactoring with confidence

Without unit tests, it’s difficult to justify refactoring, because there’s always a relatively
high risk that you may break something. Why would you chance spending hours of
debugging time (and putting the delivery at risk) only to improve the implementation
or change a method name? Unit tests provide the safety net that gives you the confi-
dence to refactor.

 Let’s move on with our implementation and try to improve it further.

4.1.5 Improving implementation

Unit tests are a first-rate client of the code they test. They force the API under test to
be flexible and to be unit testable in isolation. You usually have to refactor your code
under test to make it unit testable (or use the TDD approach, which by definition
spawns code that can be unit tested; see the next chapter).

 It’s important to monitor your unit tests as you create and modify them. If a unit
test is too long and unwieldy, it usually means the code under test has a design smell
and you should refactor it. You may also be testing too many features in one test

JUnit best practice: refactor
Throughout the history of computer science, many great teachers have advocated
iterative development. Niklaus Wirth, for example, who gave us the now-ancient
languages Algol and Pascal, championed techniques like stepwise refinement.

For a time, these techniques seemed difficult to apply to larger, layered appli-
cations. Small changes can reverberate throughout a system. Project manag-
ers looked to up-front planning as a way to minimize change, but productivity
remained low.

The rise of the xUnit framework has fueled the popularity of agile methodologies
that once again advocate iterative development. Agile methodologists favor writ-
ing code in vertical slices to produce a working use case, as opposed to writing
code in horizontal slices to provide services layer by layer.

When you design and write code for a single use case or functional chain, your
design may be adequate for this feature, but it may not be adequate for the next
feature. To retain a design across features, agile methodologies encourage refac-
toring to adapt the code base as needed.

But how do you ensure that refactoring, or improving the design of existing code,
doesn’t break the existing code? This answer is that unit tests tell you when and
where code breaks. In short, unit tests give you the confidence to refactor.

The agile methodologies try to lower project risks by providing the ability to cope
with change. They allow and embrace change by standardizing on quick iterations
and applying principles like YAGNI (You Ain’t Gonna Need It) and The Simplest
Thing That Could Possibly Work. But the foundation on which all these principles
rest is a solid bed of unit tests.

56 CHAPTER 4 Software testing principles
method. If a test can’t verify a feature in isolation, it usually means the code isn’t flexi-
ble enough and you should refactor it. Modifying code to test it is normal.

4.1.6 Documenting expected behavior

Imagine you need to learn a new API. On one side is a 300-page document describ-
ing the API, and on the other are some examples showing how to use it. Which
would you choose?

 The power of examples is well known. Unit tests are exactly this: examples that
show how to use the API. As such, they make excellent developer documentation.
Because unit tests match the production code, they must always be up to date, unlike
other forms of documentation,

 Listing 4.1 illustrates how unit tests help provide documentation. The test-
TransferWithoutEnoughFunds() method shows that an AccountInsufficientFunds-
Exception is thrown when an account transfer is performed without enough funds.

import org.junit.Test;
public class TestAccount {
 [...]
 @Test(expected=AccountInsufficientFundsException.class)
 public void tranferWithoutEnoughFunds() {
 long balance = 1000;
 long amountToTransfer = 2000;
 Account credit = new Account(balance);
 Account debit = new Account();
 credit.transfer(debit, amountToTransfer);
 }
}

At b we declare the method as a test method by annotating it with @Test and declare
that it must throw the AccountInsufficientFundsException (with the expected
parameter). Next, we create a new account with a balance of 1000 C and the amount
to transfer D. Then we request a transfer of 2000 E. As expected, the transfer
method throws an AccountInsufficientFundsException. If it didn’t, JUnit would fail
the test.

4.1.7 Enabling code coverage and other metrics

Unit tests tell you, at the push of a button, if everything still works. Furthermore, unit
tests enable you to gather code-coverage metrics (see the next chapter) showing, state-
ment by statement, what code the tests caused to execute and what code the tests did
not touch. You can also use tools to track the progress of passing versus failing tests
from one build to the next. You can also monitor performance and cause a test to fail
if its performance has degraded compared to a previous build.

Listing 4.1 Unit tests as automatic documentation

 B

 C

 D
 E

57Test types
4.2 Test types
Figure 4.1 outlines our five categories of software tests. There are other ways of catego-
rizing software tests, but we find these most useful for the purposes of this book.
Please note that this section is discussing software tests in general, not just the automated
unit tests covered elsewhere in the book.

 In figure 4.1, the outermost tests are broadest in scope. The innermost tests are
narrowest in scope. As you move from the inner boxes to the outer boxes, the software
tests get more functional and require that more of the application be present.

 Next, we take a look at the general test types. Then, we focus on the types of
unit tests.

4.2.1 The four types of software tests

We’ve mentioned that unit tests each focus on a distinct unit of work. What about
testing different units of work combined into a workflow? Will the result of the work-
flow do what you expect? How well will the application work when many people are
using it at once? Different kinds of tests answer these questions; we categorize them
into four varieties:

■ Integration tests
■ Functional tests
■ Stress and load tests
■ Acceptance tests

Let’s look at each of the test types, starting with the innermost after unit testing and
working our way out.

INTEGRATION SOFTWARE TESTING

Individual unit tests are essential to quality control, but what happens when different
units of work are combined into a workflow? Once you have the tests for a class up and
running, the next step is to hook up the class with other methods and services. Exam-
ining the interaction between components, possibly running in their target environ-
ment, is the job of integration testing. Table 4.1 describes the various cases under
which components interact.

 Just as more traffic collisions occur at intersections, the points where objects inter-
act are major contributors of bugs. Ideally, you should define integration tests before

Figure 4.1
The five types of tests

58 CHAPTER 4 Software testing principles
you write application code. Being able to code to the test dramatically increases a pro-
grammer’s ability to write well-behaved objects.

FUNCTIONAL SOFTWARE TESTING

Functional tests examine the code at the boundary of its public API. In general, this
corresponds to testing application use cases.

 Developers often combine functional tests with integration tests. For example, a
web application contains a secure web page that only authorized clients can access.
If the client doesn’t log in, then trying to access the page should result in a redirect
to the login page. A functional unit test can examine this case by sending an HTTP
request to the page to verify that a redirect (HTTP status code 302) response code
comes back.

 Depending on the application, you can use several types of functional tests, as
shown in table 4.2.

STRESS TESTING

How well will the application perform when many people are using it at once? Most
stress tests examine whether the application can process a large number of requests

Table 4.1 Testing how objects, services, and subsystems interact

Interaction Test description

Objects The test instantiates objects and calls methods on these objects.

Services The test runs while a servlet or EJB container hosts the application, which may
connect to a database or attach to any other external resource or device.

Subsystems A layered application may have a front end to handle the presentation and a
back end to execute the business logic. Tests can verify that a request
passes through the front end and returns an appropriate response from the
back end.

Table 4.2 Testing frameworks, GUIs, and subsystems

Application type Functional test description

The application uses a
framework.

Functional testing within a framework focuses on testing the frame-
work API (from the point of view of end users or service providers).

The application has a GUI. Functional testing of a GUI verifies that all features can be accessed
and provide expected results. The tests access the GUI directly,
which may in turn call several other components or a back end.

The application is made up
of subsystems.

A layered system tries to separate systems by roles. There may be a
presentation subsystem, a business logic subsystem, and a data
subsystem. Layering provides flexibility and the ability to access the
back end with several different front ends. Each layer defines an API
for other layers to use. Functional tests verify that the API contract
is enforced.

59Test types
within a given period. Usually, you implement this with software like JMeter,1 which
automatically sends preprogrammed requests and tracks how quickly the application
responds. These tests usually don’t verify the validity of responses, which is why we
have the other tests. Figure 4.2 shows a JMeter throughput graph.

 You normally perform stress tests in a separate environment, typically more con-
trolled than a development environment. The stress test environment should be as
close as possible to the production environment; if not, the results won’t be useful.

 Let’s prefix our quick look at performance testing with the often-quoted number-
one rule of optimization: “Don’t do it.” The point is that before you spend valuable
time optimizing code, you must have a specific problem that needs addressing. That
said, let’s proceed to performance testing.

 Aside from stress tests, you can perform other types of performance tests within
the development environment. A profiler can look for bottlenecks in an application,
which the developer can try to optimize. You must be able to prove that a specific bot-
tleneck exists and then prove that your changes remove the bottleneck.

 Unit tests can also help you profile an application as a natural part of develop-
ment. With JUnit, you can create a performance test to match your unit test. You

1 http://jakarta.apache.org/jmeter

Figure 4.2 A JMeter throughput graph

http://jakarta.apache.org/jmeter

60 CHAPTER 4 Software testing principles
might want to assert that a critical method never takes too long to execute. Listing 4.2
shows a timed test.

package com.manning.junitbook2;
import org.junit.Test;

public class ExampleTimedTest {

 @Test(timeout=5000)
 public void someVeryLongTest() {
 [...]
 }
}

The example uses the timeout parameter B on the @Test annotation to set a timeout
in milliseconds on the method. If this method takes more than 5,000 milliseconds to
run, the test will fail.

 An issue with this kind of test is that you may need to update the timeout value
when the underlying hardware changes, the OS changes, or the test environment
changes to or from running under virtualization.

ACCEPTANCE SOFTWARE TESTING

It’s important that an application perform well, but the application must also meet
the customer’s needs. Acceptance tests are our final level of testing. The customer or a
proxy usually conducts acceptance tests to ensure that the application has met what-
ever goals the customer or stakeholder defined.

 Acceptance tests are a superset of all other tests. Usually they start as functional
and performance tests, but they may include subjective criteria like “ease of use” and
“look and feel.” Sometimes, the acceptance suite may include a subset of the tests run
by the developers, the difference being that this time the customer or QA team runs
the tests.

 For more about using acceptance tests with an agile software methodology, visit the
wiki site regarding Ward Cunningham’s fit framework (http://fit.c2.com/).

4.2.2 The three types of unit tests

Writing unit tests and production code takes place in tandem, ensuring that your
application is under test from the beginning. We encourage this process and urge pro-
grammers to use their knowledge of implementation details to create and maintain
unit tests that can be run automatically in builds. Using your knowledge of implemen-
tation details to write tests is also known as white box testing.

 Your application should undergo other forms of testing, starting with unit tests and
finishing with acceptance tests, as described in the previous section.

 As a developer, you want to ensure that each of your subsystems works correctly. As
you write code, your first tests will probably be logic unit tests. As you write more tests
and more code, you’ll add integration and functional unit tests. At any one time, you

Listing 4.2 Enforcing a timeout on a method with JUnit

 B

http://fit.c2.com

61Test types
may be working on a logic unit test, an integration unit test, or a functional unit test.
Table 4.3 summarizes these unit test types.

 Figure 4.3 illustrates how these three flavors of unit tests interact.
 The sliders define the boundaries between the types of unit tests. You need all

three types of tests to ensure your code works. Using this type of testing will increase
your test code coverage, which will increase your confidence in making changes to the
existing code base while minimizing the risk of introducing regression bugs.

 Strictly speaking, functional unit tests aren’t pure unit tests, but neither are they
pure functional tests. They’re more dependent on an external environment than
pure unit tests are, but they don’t test a complete workflow, as expected by pure

Table 4.3 Three flavors of unit tests: logic, integration, and functional

Test type Description

Logic unit test A test that exercises code by focusing on a single method. You can con-
trol the boundaries of a given test method using mock objects or stubs
(see part 2 of the book).

Integration unit test A test that focuses on the interaction between components in their
real environment (or part of the real environment). For example, code
that accesses a database has tests that effectively call the database
(see chapters 16 and 17).

Functional unit test A test that extends the boundaries of integration unit testing to confirm
a stimulus response. For example, a web application contains a secure
web page that only authorized clients can access. If the client doesn’t log
in, then trying to access the page should result in a redirect to the login
page. A functional unit test can examine this case by sending an HTTP
request to the page to verify that a redirect (HTTP status code 302)
response code comes back.

Figure 4.3
Interaction among the three
unit test types: functional,
integration, and logic

62 CHAPTER 4 Software testing principles
functional tests. We put functional unit tests in our scope because they’re often use-
ful as part of the battery of tests run in development.

 A typical example is the StrutsTestCase framework (http://strutstestcase.source-
forge.net/), which provides functional unit testing of the runtime Struts configura-
tion. These tests tell a developer that the controller is invoking the appropriate
software action and forwarding to the expected presentation page, but they don’t con-
firm that the page is present and renders correctly.

 Having examined the various types of unit tests, we now have a complete picture
of application testing. We develop with confidence because we’re creating tests as we
go, and we’re running existing tests as we go to find regression bugs. When a test fails,
we know exactly what failed and where, and we can then focus on fixing each prob-
lem directly.

4.3 Black box versus white box testing
Before we close this chapter, we focus on one other categorization of software tests:
black box and white box testing. This categorization is intuitive and easy to grasp,
but developers often forget about it. We start by exploring black box testing, with
a definition.

DEFINITION Black box test—A black box test has no knowledge of the internal
state or behavior of the system. The test relies solely on the external system
interface to verify its correctness.

As the name of this methodology suggests, we treat the system as a black box; imagine
it with buttons and LEDs. We don’t know what’s inside or how the system operates. All
we know is that by providing correct input, the system produces the desired output.
All we need to know in order to test the system properly is the system’s functional speci-
fication. The early stages of a project typically produce this kind of specification, which
means we can start testing early. Anyone can take part in testing the system—a QA
engineer, a developer, or even a customer.

 The simplest form of black box testing would try to mimic manually actions on the
user interface. Another, more sophisticated approach would be to use a tool for this
task, such as HTTPUnit, HTMLUnit, or Selenium. We discuss most of these tools in the
last part of the book.

 At the other end of the spectrum is white box testing, sometimes called glass box
testing. In contrast to black box testing, we use detailed knowledge of the implemen-
tation to create tests and drive the testing process. Not only is knowledge of a compo-
nent’s implementation required, but also of how it interacts with other components.
For these reasons, the implementers are the best candidates to create white box tests.

 Which one of the two approaches should you use? Unfortunately, there’s no cor-
rect answer, and we suggest that you use both approaches. In some situations, you’ll
need user-centric tests, and in others, you’ll need to test the implementation details of
the system. Next, we present pros and cons for both approaches.

http://strutstestcase.sourceforge.net
http://strutstestcase.sourceforge.net

63Summary
USER-CENTRIC APPROACH

We know that there is tremendous value in customer feedback, and one of our goals
from Extreme Programming is to “release early and release often.” But we’re unlikely
to get useful feedback if we just tell the customer, “Here it is. Let me know what you
think.” It’s far better to get the customer involved by providing a manual test script to
run through. By making the customer think about the application, they can also clar-
ify what the system should do.

TESTING DIFFICULTIES

Black box tests are more difficult to write and run2 because they usually deal with a
graphical front end, whether a web browser or desktop application. Another issue is
that a valid result on the screen doesn’t always mean the application is correct. White
box tests are usually easier to write and run, but the developers must implement them.

TEST COVERAGE

White box testing provides better test coverage than black box testing. On the other
hand, black box tests can bring more value than white box tests. We focus on test cov-
erage in the next chapter.

 Although these test distinctions can seem academic, recall that divide and con-
quer doesn’t have to apply only to writing production software; it can also apply to
testing. We encourage you to use these different types of tests to provide the best
code coverage possible, thereby giving you the confidence to refactor and evolve
your applications.

4.4 Summary
The pace of change is increasing. Product release cycles are getting shorter, and we
need to react to change quickly. In addition, the development process is shifting—
development as the art of writing code isn’t enough. Development must be the art of
writing complete and tested solutions.

 To accommodate rapid change, we must break with the waterfall model where test-
ing follows development. Late-stage testing doesn’t scale when change and swiftness
are paramount.

 When it comes to unit testing an application, you can use several types of unit tests:
logic, integration, and functional unit tests. All are useful during development and
complement each other. They also complement the other software tests that are per-
formed by quality assurance personnel and by the customer.

 In the next chapter, we continue to explore the world of testing. We present best
practices, like measuring test coverage, writing testable code, and practicing test-driven
development (TDD).

2 Black box testing is getting easier with tools like Selenium and HtmlUnit, which we describe in chapter 12.

Part 2

Different testing strategies

This part of the book reveals the various strategies and techniques used in
testing. Here we take a more scientific and theoretical approach to explain the
differences. We describe incorporating mock objects, or stubs, and dive into
the details of in-container testing.

 The first chapter of this part describes different techniques for improving the
quality of your tests—measuring test coverage, practicing test-driven develop-
ment, and writing testable code.

 The sixth chapter of the book is dedicated to stubs. We look into another
solution to isolate the environment and make our tests seamless.

 The seventh chapter starts by explaining what mock objects are. We give a
thorough overview of how to construct and use mock objects. We also give a real-
world example showing not only where mock objects fit best but also how to ben-
efit by integrating them with JUnit tests.

 The last chapter describes a totally different technique: executing tests
inside a container. This solution is different from the previous ones, and just
like them it has its pros and cons. We start by presenting an overview of what
in-container means and how it’s achieved, and at the end of the chapter we
compare the mocks/stubs approach to the in-container approach. Along with
the theoretical benefits, this chapter serves as a good starting point to under-
standing chapters 13 and 16.

Test coverage and
development
I don’t think anybody tests enough of anything.
—James Gosling

In the previous chapters, we introduced testing software and started exploring test-
ing with JUnit. We also presented various test methodologies.

 Now that we’re writing test cases, it’s time to measure how good these tests are
by using a test coverage tool to report what code is exercised by the tests and what
code is not. We also discuss how to write code that’s easy to test. We finish by look-
ing at test-driven development (TDD).

5.1 Measuring test coverage
Writing unit tests gives you the confidence to change and refactor an application.
As you make changes, you run tests, which gives you immediate feedback on new
features under test and whether your changes break existing tests. The issue is that
these changes may still break existing untested functionality.

This chapter covers
■ Measuring test coverage
■ Writing testable code
■ Practicing test-driven development
67

68 CHAPTER 5 Test coverage and development
In order to resolve this issue, we need to know precisely what code runs when you or
the build invokes tests. Ideally, our tests should cover 100 percent of our application
code. Let’s look in more detail at what benefits test coverage provides.

5.1.1 Introduction to test coverage

Using black box testing, we can create tests that cover the public API of an application.
Because we’re using documentation as our guide and not knowledge of the imple-
mentation, we don’t create tests, for example, that use special parameter values to
exercise special conditions in the code.

 One metric of test coverage would be to track which methods the tests call. This
doesn’t tell you whether the tests are complete, but it does tell you if you have a test
for a method. Figure 5.1 shows the partial test coverage typically achieved using only
black box testing.

 You can write a unit test with intimate knowledge of a method’s implementation. If
a method contains a conditional branch, you can write two unit tests, one for each
branch. Because you need to see into the method to create such a test, this falls under
white box testing. Figure 5.2 shows 100 percent test coverage using white box testing.

 You can achieve higher test coverage using white box unit tests because you have
access to more methods and because you can control both the inputs to each method
and the behavior of secondary objects (using stubs or mock objects, as you’ll see in
later chapters). Because you can write white box unit tests against protected, package-
private, and public methods, you get more code coverage.

Figure 5.1
Partial test coverage with
black box tests

Figure 5.2
Complete test coverage
using white box tests

69Measuring test coverage
5.1.2 Introduction to Cobertura

Cobertura is a code coverage tool that integrates with JUnit. Cobertura provides the
following features:

■ Is free and open source
■ Integrates with Ant and Maven; also callable from a command line
■ Generates reports in HTML or XML
■ Sorts the HTML results by various criteria
■ Computes the percentage of code lines and code branches covered for each

class, package, and the entire project

In order to measure test coverage, Cobertura creates instrumented copies of class files
you specify. This process, called byte-code instrumentation, adds byte codes to existing
compiled code to enable logging of what executed byte codes. Instead of, or in addi-
tion to, running the normally compiled unit tests, you run the compiled and instru-
mented tests. Let’s now get started with Cobertura.

 Download Cobertura from http://cobertura.sourceforge.net/ and extract the
archive. Define a COBERTURA_HOME environment variable and add it to the execution
PATH environment variable. The COBERTURA_HOME folder contains several com-
mand-line scripts we use in this section. Although our examples drive Cobertura
from the command line, note that the program also provides Ant tasks.

 We start by compiling our test cases with the following command:

>javac -cp junit-4.6.jar -d uninstrumented src*.java

We instrument our classes with the following command:

>cobertura-instrument --destination instrumented
 uninstrumented\Calculator.class

The --destination parameter specifies where to place the instrumented classes.
The application argument specifies the path to the precompiled classes, in our case,
uninstrumented\Calculator.class.

 Next, we run the unit tests against the instrumented code. Cobertura integrates
with JUnit and Ant, but it’s also tool agnostic and can work with any other testing
framework. To run your tests, you need to place two resources on your CLASSPATH:

■ Cobertura.jar
■ The directory containing the instrumented classes before the directory contain-

ing the uninstrumented classes. You can run the tests from the command line
or Ant, with identical results. For example, the following runs tests from the
command line:

>java -cp junit-4.6.jar;$COBERTURA_HOME\

➥cobertura.jar;instrumented;uninstrumented;
 -Dnet.sourceforge.cobertura.datafile=
 cobertura.ser org.junit.runner.JUnitCore TestCalculator

http://cobertura.sourceforge.net/

70 CHAPTER 5 Test coverage and development
The net.sourceforge.cobertura.datafile property points to a file where Cober-
tura will store the code coverage results. If you don’t specify this property, Cobertura
will create a file called cobertura.ser in the current directory.

5.1.3 Generating test coverage reports

After you run these scripts, you’ll get your instrumented classes in the instrumented
folder and a code coverage file for a given test run. To produce an HTML report, use
the cobertura-report script.

>cobertura-report -–format html --datafile cobertura.ser
 --destination reports src

The destination parameter specifies the output directory for the report. The reports
folder contains the HTML report shown in figure 5.3.

 Cobertura shows code coverage not only by package but also by class. You can
select any of the classes in the report to see the extent to which that particular class
was tested. Figure 5.4 shows the report for one class.

 The report shows good test coverage of the squareRoot method in the Calculator
class. The numbers next to the line number show that the tests called the method
10 times, covering all lines in the method (there’s only one line in this case.) On the
other hand, we have zero executions of the sum method. Overall, we have 67 percent

Figure 5.3 A Cobertura code-coverage report

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

71Measuring test coverage
code coverage of the Calculator class, indicating that developers need to create
more tests.

 Depending on how you compose your application, it might not be possible to reach
all code in the test environment. You may consider refactoring your code to allow for
better coverage in combination with the use of mock objects or stubs.1 Whether you
choose this approach to reach 100 percent code coverage is a policy decision your team
can review through the development cycle.

5.1.4 Combining black box and white box testing

If we can achieve higher test coverage with white box unit tests, and we can generate
reports to prove it, do we need to bother with black box tests?

 If you think about the differences between figure 5.1 and figure 5.2, there’s more
going on than how many methods the tests execute. The black box tests in figure 5.1
are verifying interactions between objects. The white box unit tests in figure 5.2, by
definition, don’t test object interactions. If a white box test does interact with another
object, that object is usually a stub or a mock object designed to produce specific test
behavior (see chapters 6 and 7).

1 You’ll learn about stubs in the next chapter and about mocks in chapter 7.

Figure 5.4 Class code coverage with Cobertura

72 CHAPTER 5 Test coverage and development
 If you want to thoroughly test your application, including how runtime objects
interact with each other, you need to use black box integration tests as well as white
box tests.

 We’ve completed our overview of code coverage and Cobertura to see precisely
which parts of an application unit tests exercise. Let’s now move on to how different
implementation techniques affect how to write tests for an application.

5.2 Writing testable code
This chapter is dedicated to best practices in software testing. We introduced JUnit (in
chapters 1, 2, and 3) and discussed different types of tests (in chapter 4). We’re now
ready to get to the next level: writing code that’s easy to test. Sometimes writing a sin-
gle test case is easy, and sometimes it isn’t. It all depends on the level of complexity of
the application. A best practice avoids complexity as much as possible; code should be
readable and testable. In this section, we discuss some best practices to improve your
architecture and code. Remember that it’s always easier to write easily testable code
than it is to refactor existing code to make it easily testable.

5.2.1 Public APIs are contracts

One of the principles in providing backward-compatible software states says that you
“never change the signature of a public method.” An application code review will
show that most calls are made to public APIs. If you change the signature of a public
method, then you need to change every call site in the application and unit tests.
Even with refactoring wizards in tools like Eclipse, you must always perform this task
with care.

 In the open source world, and for any API made public by a commercial product,
life can get even more complicated—many people use your code, and you should be
careful of the changes you make to stay backward compatible.

 Public methods become the articulation points of an application among compo-
nents, open source projects, and commercial products that usually don’t even know of
one another’s existence.

 Imagine a public method that takes a distance as a double parameter and a black
box test to verify a computation. At some point, the meaning of the parameter changes
from miles to kilometers. Your code still compiles, but the runtime breaks. Without a unit
test to fail and tell you what’s wrong, you may spend a lot of time debugging and talk-
ing to angry customers. This example illustrates that you must test all public methods.
For nonpublic methods, you need to go to a deeper level and use white box tests.

5.2.2 Reduce dependencies

Remember that unit tests verify your code in isolation. Your unit tests should instanti-
ate the class you want to test, use it, and assert its correctness. Your test cases should be
simple. What happens when your class instantiates, directly or indirectly, a new set of
objects? Your class now depends on these classes. In order to write testable code, you

73Writing testable code
should reduce dependencies as much as possible. If your classes depend on many
other classes that need to be instantiated and set up with some state, then your tests
will be complicated—you may need to use some complicated mock-objects solution
(see chapter 6 for mock objects).

 A solution to reducing dependencies is to separate your code between methods
that instantiate new objects (factories) and methods that provide your application
logic. Consider listing 5.1.

class Vehicle {

 Driver d = new Driver();
 boolean hasDriver = true;

 private void setHasDriver(boolean hasDriver) {
 this.hasDriver = hasDriver;
 }
}

Every time we instantiate the Vehicle object, we also instantiate the Driver object.
We’ve mixed the concepts. The solution would be to have the Driver interface passed
to the Vehicle class, as in listing 5.2.

class Vehicle {

 Driver d;
 boolean hasDriver = true;

 Vehicle(Driver d) {
 this.d = d;
 }

 private void setHasDriver(boolean hasDriver) {
 this.hasDriver = hasDriver;
 }
}

This allows us to produce a mock Driver object (see chapter 6) and pass it to the Vehicle
class on instantiation. Furthermore, we can mock any other type of Driver implemen-
tation—JuniorDriver, SeniorDriver, and so on—and pass it to the Vehicle class.

5.2.3 Create simple constructors

By striving for better test coverage, we add more and more test cases. In each of these
test cases, we do the following:

■ Instantiate the class to test
■ Set the class into a particular state
■ Assert the final state of the class

Listing 5.1 Reduce dependencies

Listing 5.2 Pass the Driver to the Vehicle

74 CHAPTER 5 Test coverage and development
By doing work in the constructor (other than populating instance variables), we mix
the first and second points in our list. It’s a bad practice not only from architectural
point of view (we’ll do the same work every time we instantiate our class) but also
because we always get our class in a predefined state. This code is hard to maintain
and test.

5.2.4 Follow the Principle of Least Knowledge

The Law of Demeter, or Principle of Least Knowledge, is a design guideline that states
that one class should know only as much as it needs to know. For example, consider
listing 5.3:

class Car {
 private Driver driver;

 Car(Context context) {
 this.driver = context.getDriver();
 }
}

In this example, we pass to the Car constructor a Context object. This is a violation of
the Law of Demeter, because the Car class needs to know that the Context object has a
getDriver method. If we want to test this constructor, we need to get hold of a valid
Context object before calling the constructor. If the Context object has a lot of vari-
ables and methods, we could be forced to use mock objects (see chapter 7) to simu-
late the context.

 The proper solution is to apply the Principle of Least Knowledge and pass refer-
ences to methods and constructors only when we need to do so. In our example, we
should pass the Driver to the Car constructor, as in the following:

 Car(Driver driver) {
 this.driver = driver;
 }

That illustrates a key concept: Require objects, don’t search for objects, and ask only for objects
that your application requires.

5.2.5 Avoid hidden dependencies and global state

Be careful with global state because global state makes it possible for many clients to
share the global object. This can have unintended consequences if the global object is
not coded for shared access or if clients expect exclusive access to the global object.

 For instance, consider the example in listing 5.4.

public void reserve() {
 DBManager manager = new DBManager();

Listing 5.3 Law of Demeter violation

Listing 5.4 Global state in action

75Writing testable code
 manager.initDatabase();
 Reservation r = new Reservation();
 r.reserve();
}

The DBManager implies a global state. Without instantiating the database first, you
won’t be able to make a reservation. Internally, the Reservation uses the DBManager
to access the database. Unless documented, the Reservation class hides its depen-
dency on the database manager from the programmer because the API doesn’t give us
a clue. Listing 5.5 provides a better implementation.

public void reserve() {
 DBManager manager = new DBManager();
 manager.initDatabase();
 Reservation r = new Reservation (manager);
 r.reserve();
}

In this example, the Reservation object is constructed with a given database man-
ager. Strictly speaking, the Reservation object should be able to function only if it
has been configured with a database manager.

 Avoid global state; when you provide access to a global object, you share not only
that object but also any object to which it refers.

 As Miško Hevery2 says in his blog:

You can live in a society where everyone (every class) declares who their friends
(collaborators) are. If I know that Joe knows Mary but neither Mary nor Joe knows Tim,
then it is safe for me to assume that if I give some information to Joe he may give it to Mary,
but under no circumstances will Tim get hold of it. Now, imagine that everyone (every
class) declares some of their friends (collaborators), but other friends (collaborators which
are singletons) are kept secret. Now you are left wondering how in the world did Tim got
hold of the information you gave to Joe.

Here is the interesting part. If you are the person who built the relationships (code)
originally, you know the true dependencies, but anyone who comes after you is baffled, since
the friends which are declared are not the sole friends of objects, and information flows in
some secret paths which are not clear to you. You live in a society full of liars.

5.2.6 Singletons pros and cons

Although we just discouraged you from using global state, the Singleton3 is a useful
design pattern that ensures a class has only one instance. You can extend the concept

Listing 5.5 Avoiding global state

2 http://misko.hevery.com/about/
3 You can find more on the Singleton pattern in Design Patterns: Elements of Reusable Object-Oriented Software, by

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

http://misko.hevery.com/about/

76 CHAPTER 5 Test coverage and development
of singleton to provide several instances of a class. Most often, the implementation
defines a private constructor and a static variable. For example, the simplest singleton
implementation is

public class Singleton {
 public static final Singleton INSTANCE = new Singleton();
 private Singleton() {}
}

Here, you access the singleton with the static final field INSTANCE. Alternatively, the
class can use lazy initialization to create the instance, for example:

public class Singleton {
 private static Singleton INSTANCE;
 private Singleton() {}
 public static Singleton getInstance() {
 if(INSTANCE == null) {
 INSTANCE = new Singleton();
 }
 return INSTANCE;
 }
}

The Singleton design pattern needs to make sure the object is instantiated only once.
To ensure this, we hide the constructor by making it private. As with a private
method, you can’t call and test a private constructor explicitly. You have a choice: you
can rely on code coverage to check that all private methods are tested, or you change
access modifiers to open the class to explicit testing of those methods.

 The obvious drawback of a singleton is that it introduces global state into your
application. The INSTANCE field in the first example is a global variable. Use this design
pattern with care.

5.2.7 Favor generic methods

Static methods, like factory methods, are useful, but large groups of utility static
methods can introduce issues of their own. Recall that unit testing is testing in isola-
tion. In order to achieve isolation you need some articulation points in your code,
where you can easily substitute your code with the test code. These points use poly-
morphism. With polymorphism (the ability of one object to appear as another object)
the method you’re calling isn’t determined at compile time. You can easily use poly-
morphism to substitute application code with the test code to force certain code pat-
terns to be tested.

 The opposite situation occurs when you use nothing but static methods. Then you
practice procedural programming, and all of your method calls are determined at
compile time. You no longer have articulation points that you can substitute.

 Sometimes the harm of static methods to your test isn’t big, especially when you
choose some method that ends the execution graph, like Math.sqrt(). On the other
hand, you can choose a method that lies in the heart of your application logic. In

77Writing testable code
that case, every method that gets executed inside that static method becomes hard
to test.

 Static code and the inability to use polymorphism in your application affect your
application and tests equally. No polymorphism means no code reuse for both
your application and your tests. This can lead to code duplication in the applica-
tion and tests, something we try to avoid.

5.2.8 Favor composition over inheritance

Many people choose inheritance as a code-reuse mechanism. We think composition
can be easier to test. At runtime, code can’t change an inheritance hierarchy, but we
can compose objects differently. We strive to make our code as flexible as possible at
runtime. This way we can be sure that it’s easy to switch from one state of our objects
to another, and that makes our code easily testable.

 For example, because we consider it bad practice for all servlets to extend
AuthenticatedServlet, we always need to instantiate the credentials for a test user
in our tests. On the other hand, we could add a Credentials instance variable to
those servlets that need it and make our classes easier to test by instantiating the
Credentials variable only when we need it.

5.2.9 Favor polymorphism over conditionals

As mentioned previously, we do only the following in our tests:

■ Instantiate the class to test
■ Set the class into a particular state
■ Assert the final state of the class

Difficulties may arise at any of these points. For example, it could be difficult to instan-
tiate our class if it’s too complex.

 One of the main ways to decrease complexity is to try to avoid long switch and if
statements. Consider listing 5.6.

public class DocumentPrinter {
 [...]
 public void printDocument() {
 switch (document.getDocumentType()) {
 case Documents.WORD_DOCUMENT:
 printWORDDocument();
 break;
 case Documents.PDF_DOCUMENT:
 printPDFDocument();
 break;
 case Documents.TEXT_DOCUMENT:
 printTextDocument();
 break;

Listing 5.6 Example of a bad design with conditionals

78 CHAPTER 5 Test coverage and development
 default:
 printBinaryDocument();
 break;
 }
 }
 [...]
}

This implementation is awful for several reasons. This code is hard to test and
maintain. Every time we want to add a new document type, we add additional case
clauses. If that happens often in your code, you’ll have to change it in every place
that it occurs.

 Every time you see a long conditional statement, think of polymorphism. Polymor-
phism is a natural object-oriented way to avoid long conditionals, by breaking a class
into several smaller classes. Several smaller components are easier to test than one
large complex component.

 In the given example, we can avoid the conditional by creating different document
types like WordDocument, PDFDocument, and XMLDocument, each one implementing a
printDocument() method. This will decrease the complexity of our code and will
make it easier to read.

5.3 Test-driven development
In chapter 3, we designed an application controller and quickly wrote some tests to
validate your design. As we wrote the tests, the tests helped improve the initial design.
As you write more unit tests, positive reinforcement encourages you to write them ear-
lier. As you design and implement, it becomes natural to wonder about how you’ll test
a class. Following this methodology, more developers are making the leap from test-
friendly designs to test-driven development.

DEFINITION Test-driven development (TDD) is a programming practice that
instructs developers to write new code only if an automated test has failed and
to eliminate duplication. The goal of TDD is “clean code that works.”

Let’s move on and see how we can adapt our development lifecycle to enforce the test-
driven development approach.

5.3.1 Adapting the development cycle

When you develop code, you design an application programming interface (API) and
then implement the behavior promised by the interface. When you unit test code, you
verify the promised behavior through a method’s API. The test is a client of the
method’s API, just as your domain code is a client of the method’s API.

 The conventional development cycle goes something like this: code, test, (repeat),
commit. Developers practicing TDD make a seemingly slight but surprisingly effective
adjustment: test, code, (repeat), commit. (More on this later.) The test drives the
design and becomes the method’s first client.

79Test-driven development
 Listing 5.7 illustrates how unit tests can help design the implementation. The get-
BalanceOk method shows that the getBalance method of Account returns the account
balance as a long and that this balance can be set in the Account constructor. At this
point, the implementation of Account is purely hypothetical, but writing the unit tests
allows you to focus on the design of the code. As soon as you implement the class, you
can run the test to prove that the implementation works. If the test fails, then you can
continue working on the implementation until it passes the test. When the test passes,
you know that your code fulfills the contract.

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class TestAccount {
 @Test
 public void getBalanceOk () {
 long balance = 1000;
 Account account = new Account(balance);
 long result = account.getBalance();

 assertEquals(balance, result);
 }
}

When you use the test as the method’s first client, it becomes easier to focus purely on
the API. Writing the tests first provides the following:

■ Means to design the code
■ Documentation as to how the code works
■ Unit tests for the code

Someone new to the project can understand the system by studying the functional test
suite (high-level UML diagrams also help). To analyze a specific portion of the applica-
tion in detail, they can drill down into individual unit tests.

5.3.2 The TDD two-step

Earlier, we said that TDD tweaks the development cycle to go something like test,
code, (repeat), and ship. The problem with this chant is that it leaves out a key step.
It should go more like this: test, code, refactor, (repeat), and ship. The core tenets of
TDD are to

1 Write a failing automatic test before writing new code
2 Eliminate duplication

Eliminating duplication ensures that you write code that’s not only testable but also
maintainable. When you eliminate duplication, you tend to increase cohesion and
decrease dependency. These are hallmarks of code that’s easier to maintain over time.

 Other coding practices have encouraged us to write maintainable code by anticipat-
ing change. In contrast, TDD encourages us to write maintainable code by eliminating

Listing 5.7 Unit tests as a design guide

80 CHAPTER 5 Test coverage and development
duplication. Developers following this practice have found that test-backed, well-
factored code is, by its very nature, easy and safe to change. TDD gives us the confidence
to solve today’s problems today and tomorrow’s problems tomorrow. Carpe diem!

Now that we’ve described the cycle—test, code, refactor, (repeat), and ship—of test-
driven development, we show next how testing fits into development overall.

5.4 Testing in the development cycle
Testing occurs at different places and times during the development cycle. We first
introduce a development lifecycle and then use it as a base for deciding what types of
tests are executed when. Figure 5.5 shows a typical development cycle we’ve used
effectively in both small and large teams.

JUnit best practice: write failing tests first
If you take the TDD development pattern to heart, an interesting thing happens:
before you can write any code, you must write a test that fails. Why does it fail?
Because you have not written the code to make it succeed.

Faced with this situation, most of us begin by writing a simple implementation to
let the test pass. Now that the test succeeds, you could stop and move on to the
next problem. Being a professional, you’d take a few minutes to refactor the imple-
mentation to remove redundancy, clarify intent, and optimize the investment in the
new code. But as long as the test succeeds, technically you’ve finished.

The end game? If you always test first, you’ll never write a line of new code without
a failing test.

Figure 5.5 A typical application development lifecycle using the continuous
integration principle

81Testing in the development cycle
We divide the lifecycle into the following platforms:

■ Development platform—This is where coding happens, on developers’ worksta-
tions. One important rule is usually to commit (aka check in), up to several
times per day, to your Source Control Management (SCM) system (SVN, CVS,
ClearCase, and the like). Once you commit, others can begin using your work.
But it’s important to commit only something that “works.” To ensure this, you
run a local build with Ant or Maven. You can also watch the results of an auto-
mated build based on the latest changes to the SCM repository (see chapters 9,
10, and 11.)

■ Integration platform—This platform builds the application from its various com-
ponents (which may have been developed by different teams) and ensures
that they all work together. This step is extremely valuable, because problems
are often discovered here. It’s so valuable that we want to automate it. It’s
then called continuous integration (see http://www.martinfowler.com/articles/
continuousIntegration.html) and can be achieved by automatically build-
ing the application as part of the build process (more on that in chapter 11
and later).

■ Acceptance platform/stress test platform—Depending on the resources available to
your project, this can be one or two platforms. The stress test platform exercises
the application under load and verifies that it scales correctly (with respect to
size and response time). The acceptance platform is where the project’s cus-
tomers accept (sign off on) the system. It’s highly recommended that the sys-
tem be deployed on the acceptance platform as often as possible in order to get
user feedback.

■ (Pre-)production platform—The preproduction platform is the last staging area
before production. It’s optional, and small or noncritical projects can do with-
out it.

We now show how testing fits in the development cycle. Figure 5.6 highlights the dif-
ferent types of tests you can perform on each platform.

■ On the development platform, you execute logic unit tests (tests that can be exe-
cuted in isolation from the environment). These tests execute quickly, and you
usually execute them from your IDE to verify that any change you’ve brought to
the code has not broken anything. They’re also executed by your automated
build before you commit the code to your SCM. You could also execute integra-
tion unit tests, but they often take much longer, because they need some part of
the environment to be set up (database, application server, and the like). In
practice, you’d execute only a subset of all integration unit tests, including any
new integration unit tests you’ve written.

■ The integration platform usually runs the build process automatically to pack-
age and deploy the application and then executes unit and functional tests.

http://www.martinfowler.com/articles/

82 CHAPTER 5 Test coverage and development
Usually, only a subset of all functional tests is run on the integration platform,
because compared to the target production platform, it’s a simple platform
that lack elements (for example, it may be missing a connection to an exter-
nal system being accessed). All types of unit tests are executed on the integra-
tion platform (logic unit tests, integration unit tests, and functional unit tests).
Time is less important, and the whole build can take several hours with no
impact on development.

■ On the acceptance platform/stress test platform, you reexecute the same tests exe-
cuted by the integration platform; in addition, you run stress tests (perfor-
mance and load tests). The acceptance platform is extremely close to the
production platform, and more functional tests can also be executed.

■ It’s always a good habit to try to run on the (pre-)production platform the tests you
ran on the acceptance platform. Doing so acts as a sanity check to verify that
everything is set up correctly.

Human beings are strange creatures, always tending to neglect details. In a perfect
world, we’d have all four platforms to run our tests on. In the real world, however,
most of the software companies try to skip some of the platforms we listed—or the
concept of testing as a whole. As a developer who bought this book, you already made
the right decision: more tests, less debugging!

 Now, again, it’s up to you. Are you going to strive for perfection, stick to everything
that you learned so far, and let your code benefit from that?

Figure 5.6 The different types of tests performed on each platform of the
development cycle

83Summary
5.5 Summary
This chapter was mainly dedicated to some advanced techniques in unit testing:
checking your test coverage and improving it, designing your code to be easily test-
able, and practicing test-driven development (TDD). These advanced techniques
come naturally once you’ve completed the introduction to testing (chapters 1 and 2)
and have learned about software testing (chapter 3) and software tests (chapter 4).

 The next chapter will take you to the next level of testing your code. This next level
involves using not only JUnit as a testing framework but also including other frame-
works and tools, and it introduces the concept of mocking.

JUnit best practice: continuous regression testing
Most tests are written for the here and now. You write a new feature, and you write
a new test. You see whether the feature plays well with others and whether the
users like it. If everyone is happy, you can lock the feature and move on to the next
item on your list. Most software is written in a progressive fashion: you add one
feature and then another.

Most often, each new feature is built over a path paved by existing features. If an
existing method can service a new feature, you reuse the method and save the
cost of writing a new one. It’s never quite that easy. Sometimes you need to
change an existing method to make it work with a new feature. When this happens,
you need to confirm that all the old features still work with the amended method.

A strong benefit of JUnit is that the test cases are easy to automate. When a
change is made to a method, you can run the test for that method. If that test pass-
es, then you can run the rest. If any fail, you can change the code (or the tests)
until all tests pass again.

Using old tests to guard against new changes is a form of regression testing. Any
kind of test can be used as a regression test, but running unit tests after every
change is your first, best line of defense.

The best way to ensure that regression testing takes place is to automate your
test suites. See part 3 of the book for more about automating JUnit.

Coarse-grained testing
with stubs
And yet it moves.
—Galileo

As you develop your applications, you’ll find that the code you want to test depends
on other classes, which themselves depend on other classes, which then depend on
the environment. For example, you might be developing an application that uses
JDBC to access a database, a Java EE application (one that relies on a Java EE con-
tainer for security, persistence, and other services), an application that accesses a
file system, or an application that connects to some resource using HTTP, SOAP, or
another protocol.

 In the previous chapters, we introduced the JUnit framework. Starting in
this chapter, we look at using JUnit to test an application that depends on exter-
nal resources.

This chapter covers
■ Introducing stubs
■ Using an embedded server in place

of a real web server
■ Unit testing an HTTP connection

with stubs
84

85Introducing stubs
 For applications that depend on a specific runtime environment, writing unit
tests is a challenge. Your tests need to be stable, and when run repeatedly, they need
to yield the same results. You need a way to control the environment in which the
tests run. One solution is to set up the real required environment as part of the tests
and run the tests from within that environment. In some cases, this approach is prac-
tical and brings real benefits (see chapter 8, which discusses in-container testing).
But it works well only if you can set up the real environment on your development
and build platforms, which isn’t always feasible.

 For example, if your application uses HTTP to connect to a web server provided by
another company, you usually won’t have that server application available in your
development environment. Therefore, you need a way to simulate that server so you
can still write and run tests for your code.

 Alternatively, suppose you’re working with other developers on a project. What
if you want to test your part of the application, but the other part isn’t ready? One
solution is to simulate the missing part by replacing it with a fake that behaves the
same way.

 There are two strategies for providing these fake objects: stubbing and using mock
objects. Stubs, the original solution, are still very popular, mostly because they allow
you to test code without changing it to make it testable. This isn’t the case with mock
objects. This chapter is dedicated to stubbing, whereas chapter 7 covers mock objects.

6.1 Introducing stubs
Stubs are a mechanism for faking the behavior of real code or code that isn’t ready
yet. Stubs allow you to test a portion of a system even if the other part isn’t available.
Stubs usually don’t change the code you’re testing but instead adapt to provide seam-
less integration.

DEFINITION A stub is a piece of code that’s inserted at runtime in place of the
real code, in order to isolate the caller from the real implementation. The
intent is to replace a complex behavior with a simpler one that allows inde-
pendent testing of some part of the real code.

Here are some examples of when you might use stubs:

■ When you can’t modify an existing system because it’s too complex and fragile
■ For coarse-grained testing, such as integration testing between different

subsystems

Stubs usually provide high confidence in the tested system. With stubs, you aren’t
modifying the objects under test, and what you are testing is the same as what will exe-
cute in production. A build or developer usually executes tests involving stubs in their
running environment, providing additional confidence.

 On the downside, stubs are usually hard to write, especially when the system
to fake is complex. The stub needs to implement the same logic as the code it’s

86 CHAPTER 6 Coarse-grained testing with stubs
replacing, and that’s difficult to get right for complex logic. Here are some cons
of stubbing:

■ Stubs are often complex to write and need debugging themselves.
■ Stubs can be difficult to maintain because they’re complex.
■ Stubs don’t lend themselves well to fine-grained unit testing.
■ Each situation requires a different stubbing strategy.

In general, stubs are better adapted for replacing coarse-grained portions of code.
 You usually use stubs to replace a full-blown external system such as a file sys-

tem, a connection to a server, a database, and so forth. Stubs can replace a method
call to a single class, but it’s more difficult. (We demonstrate how to do this with
mock objects in chapter 7.)

6.2 Stubbing an HTTP connection
To demonstrate what stubs can do, let’s build some stubs for a simple application that
opens an HTTP connection to a URL and reads its content. Figure 6.1 shows the sam-
ple application (limited to a WebClient.getContent method) opening an HTTP con-
nection to a remote web resource. The remote web resource is a servlet, which
generates an HTML response. The web resource in figure 6.1 is what we called the
“real code” in the stub definition.

 Our goal in this chapter is to unit test the getContent method by stubbing the
remote web resource, as demonstrated in figure 6.2. You replace the servlet web
resource with the stub, a simple HTML page returning whatever you need for the
TestWebClient test case. This approach allows you to test the getContent method
independently of the implementation of the web resource (which in turn could call
several other objects down the execution chain, possibly down to a database).

 The important point to notice with stubbing is that we didn’t modify getContent
to accept the stub. The change is transparent to the application under test. In order to
allow stubbing, the target code needs to have a well-defined interface and allow plug-
ging in of different implementations (a stub, in our case). In the figure 6.1 example,
the interface is the public abstract class java.net.URLConnection, which cleanly iso-
lates the implementation of the page from its caller.

Figure 6.1 The sample application opens an HTTP connection to a remote web resource. The web
resource is the “real code” in the stub definition.

87Stubbing an HTTP connection
Let’s look at a stub in action using the simple HTTP connection example. Listing 6.1
from the example application demonstrates a code snippet opening an HTTP connec-
tion to a given URL and reading the content found at that URL. Imagine the method is
one part of a bigger application that you want to unit test.

[...]
import java.net.URL;
import java.net.HttpURLConnection;
import java.io.InputStream;
import java.io.IOException;

public class WebClient {
 public String getContent(URL url) {
 StringBuffer content = new StringBuffer();
 try {
 HttpURLConnection connection = (HttpURLConnection)
 url.openConnection();
 connection.setDoInput(true);
 InputStream is = connection.getInputStream();
 byte[] buffer = new byte[2048];
 int count;
 while (-1 != (count = is.read(buffer))) {
 content.append(new String(buffer, 0, count));
 }
 } catch (IOException e) {
 return null;
 }

Listing 6.1 Sample method opening an HTTP connection

Figure 6.2 Adding a test case and replacing the real web resource with a stub

 B

 C

 D

88 CHAPTER 6 Coarse-grained testing with stubs
 return content.toString();
 }
}

We start B by opening an HTTP connection using the HttpURLConnection class. We
then read the stream content until there’s nothing more to read C. If an error
occurs, we return null D. One might argue that a better implementation should
throw an exception. But for testing purposes, returning null is fine.

6.2.1 Choosing a stubbing solution

There are two possible scenarios in the example application: the remote web server
(see figure 6.1) could be located outside the development platform (such as on a part-
ner site), or it could be part of the platform where you deploy the application. But in
both cases, you need to introduce a server into your development platform in order to
be able to unit test the WebClient class. One relatively easy solution would be to install
an Apache test server and drop some test web pages in its document root. This is a typ-
ical, widely used stubbing solution.

 But it has several drawbacks, listed in table 6.1.

Fortunately, an easier solution exists using an embedded web server. Because we’re
testing in Java, the easiest solution is to use a Java web server that you can embed in
the test case. You can use the free and open source Jetty server for this exact purpose.
In this book, we use Jetty to set up our stubs. For more information about Jetty, visit
http://www.eclipse.org/jetty/.

 We use Jetty because it’s fast (important when running tests), it’s lightweight, and
your test cases can programmatically control it. In addition, Jetty is a very good web,
servlet, and JSP container that you can use in production. You seldom need this for
most tests, but it’s always nice to use best-of-breed technology.

Table 6.1 Drawbacks of the chosen stubbing solution

Drawback Explanation

Reliance on the environment You need to be sure the full environment is up and running before
the test starts. If the web server is down and you execute the test,
it’ll fail and you’ll spend time debugging the failure. You’ll discover
that the code is working fine and it’s only a setup issue generating
a false failure. When you’re unit testing, it’s important to be able to
control as much as possible of the environment in which the tests
execute, such that test results are reproducible.

Separated test logic The test logic is scattered in two separate locations: in the JUnit
test case and in the test web page. You need to keep both types of
resources in sync for the tests to succeed.

Difficult tests to automate Automating the execution of the tests is difficult because it
involves deploying the web pages on the web server, starting the
web server, and then running the unit tests.

http://www.eclipse.org/jetty/

89Stubbing an HTTP connection
 Using Jetty allows you to eliminate the drawbacks outlined previously: the JUnit test
case starts the server, you write the tests in Java in one location, and automating the
test suite is a nonissue. Thanks to Jetty’s modularity, the real point of the exercise is to
stub only the Jetty handlers and not the whole server from the ground up.

6.2.2 Using Jetty as an embedded server

In order to understand how to set up and control Jetty from your tests, let’s imple-
ment a simple example. Listing 6.2 shows how to start Jetty from Java and how to
define a document root (/) from which to start serving files.

[...]
import org.mortbay.jetty.Server;
import org.mortbay.jetty.handler.ResourceHandler
import org.mortbay.jetty.servlet.Context;

public class JettySample {
 public static void main(String[] args) throws Exception {
 Server server = new Server(8080);

 Context root = new Context(server, "/");
 root.setResourceBase("./pom.xml");
 root.setHandler(new ResourceHandler());

 server.start();
 }
}

We start by creating the Jetty Server object B and specifying in the constructor which
port to listen to for HTTP requests (port 8080). Next, we create a Context object C
that processes the HTTP requests and passes them to various handlers. We map the
context to the already-created server instance and to the root (/) URL. The set-
ResourceBase method sets the document root from which to serve resources. On the
next line, we attach a ResourceHandler handler to the root to serve files from the file
system. Because this handler will return an HTTP 403-Forbidden error if we try to list
the content of a directory, we specify the resource base to be a file. In this example, we
specify the file pom.xml in the project’s directory. Finally, we start the server D.

 If you start the program from listing 6.2 and navigate your browser to http://
localhost:8080, you should be able to see the content of the pom.xml file (see fig-
ure 6.3).

 Figure 6.3 displays the results of running the code in listing 6.2 after opening a
browser on http://localhost:8080.

 Now that you’ve seen how to run Jetty as an embedded server, we show next how to
stub the server’s resources.

Listing 6.2 Starting Jetty in embedded mode—JettySample class

 B

 C

 D

http://localhost:8080
http://localhost:8080
http://localhost:8080

90 CHAPTER 6 Coarse-grained testing with stubs
6.3 Stubbing the web server’s resources
You now know how to easily start and configure Jetty, so let’s focus on the HTTP con-
nection unit test. You’ll write a first test that verifies you can call a valid URL and get
its content.

6.3.1 Setting up the first stub test

To verify that the WebClient works with a valid URL, you need to start the Jetty server
before the test, which you can implement in a test case setUp method. You can also
stop the server in a tearDown method. Listing 6.3 shows the code.

[...]
import java.net.URL;
import org.junit.test;
import org.junit.Before;
import org.junit.After;

public class TestWebClientSkeleton {

 @Before
 public void setUp() {

 }

Listing 6.3 First test to verify that WebClient works with a valid URL

Figure 6.3 Testing the JettySample class in a browser

91Stubbing the web server’s resources
 @After
 public void tearDown() {
 // Stop Jetty.
 }

 @Test
 public void testGetContentOk() throws Exception {
 WebClient client = new WebClient();
 String result = client.getContent(new URL(
 "http://localhost:8080/testGetContentOk"));

 assertEquals ("It works", result);
 }
}

In order to implement the @Before and @After methods, you have two options.
You can prepare a static page containing the text "It works", which you put in the
document root (controlled by the call to context.setResourceBase(String) in list-
ing 6.2). Alternatively, you can configure Jetty to use your own custom Handler that
returns the string "It works" instead of getting it from a file. This is a much more
powerful technique, because it lets you unit test the case when the remote HTTP
server returns an error code to your WebClient client application.

CREATING A JETTY HANDLER

Listing 6.4 shows how to create a Jetty Handler that returns the string "It works".

private class TestGetContentOkHandler extends AbstractHandler {

 @Override
 public void handle(String target, HttpServletRequest request,
 HttpServletResponse response, int dispatch) throws IOException {

 OutputStream out = response.getOutputStream();
 ByteArrayISO8859Writer writer = new ByteArrayISO8859Writer();
 writer.write("It works");
 writer.flush();
 response.setIntHeader(HttpHeaders.CONTENT_LENGTH, writer.size());
 writer.writeTo(out);
 out.flush();
 }

This class creates a handler B by extending the Jetty AbstractHandler class and
implementing a single method, handle. Jetty calls the handle method to forward an
incoming request to our handler. After that, we use the Jetty ByteArrayISO-
8859Writer class C to send back the string "It works", which we write in the HTTP
response D. The last step is to set the response content length to be the length of the
string written to the output stream (this is required by Jetty) and then send the
response E.

 Now that this handler is written, you can tell Jetty to use it by calling context.set-
Handler(new TestGetContentOkHandler()). You’re almost ready to run your test.

Listing 6.4 Create a Jetty Handler that returns "It works" when called

 B

 C

 D

 E

http://localhost:8080/testGetContentOk

92 CHAPTER 6 Coarse-grained testing with stubs
The last issue to solve is the one involving the @Before and @After methods. The
solution shown in listing 6.3 isn’t optimal because JUnit will start and stop the server
for every test method. Even though Jetty is fast, this process isn’t necessary. A better
solution is to start the server only once for all the tests by using the JUnit annotations
we described in the second chapter of the book: @BeforeClass and @AfterClass.
These annotations let you execute code before and after all @Test methods in a class.

WRITING THE TEST CLASS

We can now easily write the test class using the @BeforeClass annotation, as demon-
strated in listing 6.5.

[...]
import java.net.URL;
[...]

public class TestWebClient {

 @BeforeClass
 public static void setUp() throws Exception() {
 Server server = new Server(8080);

 TestWebClient t = new TestWebClient();

 Context contentOkContext = new Context(server, "/testGetContentOk");
 contentOkContext.setHandler(t.new TestGetContentOkHandler());

 server.setStopAtShutDown(true);
 server.start();

 }

 @Test
 public void testGetContentOk() throws Exception {
 WebClient client = new WebClient();
 String result = client.getContent(new URL(

Isolating each test versus performance considerations
In previous chapters, we went to great lengths to explain why each test should run
in a clean environment (even to the extent of using a new class loader instance).
But sometimes there are other considerations to take into account. Performance
is a typical one. In the case of Jetty, even if starting the server takes only 1 second,
once you have 300 tests, it will add an overhead of 300 seconds (5 minutes). Test
suites that take a long time to execute are a handicap; you’ll be tempted not to
execute them often, which negates the regression feature of unit testing. You must
be aware of this tradeoff. Depending on the situation, you may choose to have lon-
ger-running tests that execute in a clean environment or instead tune the tests for
performance by reusing some parts of the environment. In the example at hand, you
use different handlers for different tests, and you can be fairly confident they won’t
interfere with each other.

Listing 6.5 Putting it all together

93Stubbing the web server’s resources
 "http://localhost:8080/testGetContentOk"));
 assertEquals("It works", result);
 }

 @AfterClass
 public static void tearDown() {
 //Empty
 }

 private class TestGetContentOkHandler extends AbstractHandler {
 //Listing 6.4 here.
 }

}

The test class has become quite simple. The @BeforeClass setUp method constructs
the Server object the same way as in listing 6.2. Then come the @Test methods, and
we leave our @AfterClass method empty intentionally because we programmed the
server to stop at shutdown.

 If you run the test in Eclipse, you’ll see the result in figure 6.4—our test passes.
 So far, so good—our tests have been testing the good side of our code. But it seems

logical to test the behavior of what would happen if the server crashed or the applica-
tion deployed in the server crashed. The next section answers exactly those questions.

Figure 6.4 Result of the first working test using a Jetty stub. JUnit starts the server before
the first test, and the server shuts itself down after the last test.

http://localhost:8080/testGetContentOk

94 CHAPTER 6 Coarse-grained testing with stubs
6.3.2 Testing for failure conditions

Now that you have the first test working, let’s see how to test for server failure condi-
tions. The WebClient.getContent(URL) method returns a null value when a failure
occurs. You need to test for this possibility too. With the infrastructure you’ve put in
place, you need to create a new Jetty Handler class that returns an error code and reg-
ister it in the @Before method of the TestWebClientSetup1 class.

 Let’s add a test for an invalid URL—a URL pointing to a file that doesn’t exist. This
case is quite easy, because Jetty already provides a NotFoundHandler handler class for
that purpose. You only need to modify the TestWebClient setUp method as follows
(changes are in bold):

@BeforeClass
public static void setUp() throws Exception {
 Server server = new Server(8080);
 TestWebClient t = new TestWebClient();

 Context contentOkContext = new Context(server, "/testGetContentOk");
 contentOkContext.setHandler(t.new TestGetContentOkHandler());

 Context contentNotFoundContext = new Context(server,
 "/testGetContentNotFound");
 contentNotFoundContext.setHandler(t.new
 TestGetContentNotFoundHandler());

 server.start();
}

Here’s the code for the TestGetContentNotFoundHandler class:

private class TestGetContentNotFoundHandler extends AbstractHandler {
 public void handle(String target, HttpServletRequest request,
 HttpServletResponse response, int dispatch) throws IOException {
 response.sendError(HttpServletResponse.SC_NOT_FOUND);
 }
}

Adding a new test in TestWebClient is also a breeze:

@Test
public void testGetContentNotFound() throws Exception {
 WebClient client = new WebClient();
 String result = client.getContent(new URL(
 "http://localhost:8080/testGetContentNotFound"));
 assertNull(result);
}

In similar fashion, you can easily add a test to simulate the server having trouble.
Returning a 5xx HTTP response code indicates this problem. To do so, you’ll need to
write a Jetty Handler class, using HttpServletResponse.SC_SERVICE_UNAVAILABLE,
and register it in the @Before method of the TestWebClientSetup1 class.

 A test like this would be very difficult to perform if you didn’t choose an embed-
ded web server like Jetty.

http://localhost:8080/testGetContentNotFound

95Stubbing the connection
6.3.3 Reviewing the first stub test

You’ve now been able to fully unit test the getContent method in isolation by stub-
bing the web resource. What have you really tested? What kind of test have you
achieved? You’ve done something quite powerful: you’ve unit tested the method, but
at the same time, you’ve executed an integration test. In addition, not only have you
tested the code logic, but you’ve also tested the connection part that’s outside the
code (through the Java HttpURLConnection class).

 The drawback to this approach is that it’s complex. It can take a Jetty novice half a
day to learn enough about Jetty to set it up correctly. In some instances, you’ll have to
debug stubs to get them to work properly. Keep in mind that the stub must remain
simple and not become a full-fledged application that requires tests and mainte-
nance. If you spend too much time debugging your stubs, a different solution may be
called for.

 In these examples, you need a web server—but another example and stub will be
different and will need a different setup. Experience helps, but different cases usually
require different stubbing solutions.

 The example tests are nice because you can both unit test the code and perform
some integration tests at the same time. But this functionality comes at the cost of
complexity. More solutions that are lightweight focus on unit testing the code without
performing integration tests. The rationale is that although you need integration
tests, they could run in a separate test suite or as part of functional tests.

 In the next section, we look at another solution that can still qualify as stubbing.
It’s simpler in the sense that it doesn’t require you to stub a whole web server. It
brings you one step closer to the mock object strategy, which is described in the fol-
lowing chapter.

6.4 Stubbing the connection
So far, you’ve stubbed the web server’s resources. Next, we stub the HTTP connection
instead. Doing so will prevent you from effectively testing the connection, but that’s
fine because it isn’t your real goal at this point. You want to test your code in isolation.
Functional or integration tests will test the connection at a later stage.

 When it comes to stubbing the connection without changing the code, we benefit
from Java’s URL and HttpURLConnection classes, which let us plug in custom protocol
handlers to process any kind of communication protocol. You can have any call to the
HttpURLConnection class redirected to your own class, which will return whatever you
need for the test.

6.4.1 Producing a custom URL protocol handler

To implement a custom URL protocol handler, you need to call the URL method set-
URLStreamHandlerFactory and pass it a custom URLStreamHandlerFactory. When-
ever the URL openConnection method is called, the URLStreamHandlerFactory class is
called to return a URLStreamHandler. Listing 6.6 shows the code to perform this feat.

96 CHAPTER 6 Coarse-grained testing with stubs
The idea is to call the URL static method setURLStreamHandlerFactory in the JUnit
setUp method. (A better implementation would use a TestSetup class, such that this
is performed only once during the whole test suite execution.)

[...]
import java.net.URL;
import java.net.URLStreamHandlerFactory;
import java.net.URLStreamHandler;
import java.net.URLConnection;
import java.io.IOException;

public class TestWebClient1 {

 @BeforeClass
 public static void setUp() {
 TestWebClient1 t = new TestWebClient1();
 URL.setURLStreamHandlerFactory(t.new StubStreamHandlerFactory());
 }
 private class StubStreamHandlerFactory implements
 URLStreamHandlerFactory {

 public URLStreamHandler createURLStreamHandler(String protocol) {
 return new StubHttpURLStreamHandler();
 }
 }
 private class StubHttpURLStreamHandler extends URLStreamHandler {
 protected URLConnection openConnection(URL url)
 throws IOException {
 return new StubHttpURLConnection(url);
 }
 }
 @Test
 public void testGetContentOk() throws Exception {
 WebClient client = new WebClient();
 String result = client.getContent(new URL("http://localhost"));
 assertEquals("It works", result);
 }
}

We use several (inner) classes (C and D) to be able to use the StubHttpURL-
Connection class. We start by calling setURLStreamHandlerFactory B with our first
stub class, StubStreamHandlerFactory. In StubStreamHandlerFactory, we override
the createURLStreamHandler method C, in which we return a new instance of our sec-
ond private stub class, StubHttpURLStreamHandler. In StubHttpURLStreamHandler, we
override one method, openConnection, to open a connection to the given URL D.

 You could also use anonymous inner classes for conciseness, but that approach
would make the code more difficult to read. Note that you haven’t written the
StubHttpURLConnection class yet, which is the topic of the next section.

Listing 6.6 Providing custom stream handler classes for testing

 B

 C

 D

http://localhost

97Stubbing the connection
6.4.2 Creating a JDK HttpURLConnection stub

The last step is to create a stub implementation of the HttpURLConnection class so you
can return any value you want for the test. Listing 6.7 shows a simple implementation
that returns the string "It works" as a stream to the caller.

[...]
import java.net.HttpURLConnection;
import java.net.ProtocolException;
import java.net.URL;
import java.io.InputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;

public class StubHttpURLConnection extends HttpURLConnection {
 private boolean isInput = true;
 protected StubHttpURLConnection(URL url) {
 super(url);
 }
 public InputStream getInputStream() throws IOException {
 if (!isInput) {
 throw new ProtocolException(
 "Cannot read from URLConnection"
 + " if doInput=false (call setDoInput(true))");
 }
 ByteArrayInputStream bais = new ByteArrayInputStream(
 new String("It works").getBytes());
 return bais;
 }
 public void disconnect() {}
 public void connect() throws IOException {}
 public boolean usingProxy() {
 return false;
 }
}

HttpURLConnection is an abstract public class that doesn’t implement an interface,
so you extend it and override the methods wanted by the stub. In this stub, you
provide an implementation for the getInputStream method because it’s the only
method used by your code under test. Should the code to test use more APIs from
HttpURLConnection, you’d need to stub these additional methods. This is where the
code would become more complex—you’d need to reproduce completely the same
behavior as the real HttpURLConnection. For example, at B, you test that if set-
DoInput(false) has been called in the code under test, then a call to the get-
InputStream method returns a ProtocolException. (This is the behavior of
HttpURLConnection.) Fortunately, in most cases, you need to stub only a few meth-
ods and not the whole API.

Listing 6.7 Stubbed HttpURLConnection class

 B

98 CHAPTER 6 Coarse-grained testing with stubs
6.4.3 Running the test

Let’s run the TestWebClient1 test, which uses the StubHttpURLConnection. Figure 6.5
shows the result of the execution of the test in Eclipse.

 As you can see, it’s much easier to stub the connection than to stub the web
resource. This approach doesn’t bring the same level of testing (you aren’t perform-
ing integration tests), but it enables you to more easily write a focused unit test for the
WebClient logic.

6.5 Summary
In this chapter, we demonstrated how using a stub has helped us unit test code access-
ing a remote web server using the Java HttpURLConnection API. In particular, we
showed how to stub the remote web server by using the open source Jetty server. Jetty’s
embeddable nature lets you concentrate on stubbing only the Jetty HTTP request han-
dler, instead of having to stub the whole container. We also demonstrated a more
lightweight solution by stubbing the Java HttpURLConnection class.

 The next chapter demonstrates a technique called mock objects that allows fine-
grained unit testing, which is completely generic, and (best of all) forces you to write
good code. Although stubs are very useful in some cases, some consider them more a
vestige of the past, when the consensus was that tests should be a separate activity and
shouldn’t modify existing code. The new mock objects strategy not only allows modifi-
cation of code but favors it. Using mock objects is more than a unit testing strategy;
it’s a completely new way of writing code.

Figure 6.5
Result of executing TestWebClient1
(which uses the StubHttpURLConnection)

Testing with mock objects

Programming today is a race between software

 engineers striving to build bigger and better idiot-proof

 programs, and the Universe trying to produce bigger
 and better idiots. So far, the Universe is winning.

—Rich Cook

Unit testing each method in isolation from the other methods or the environment
is certainly a nice goal. How do you perform this feat? You saw in chapter 6 how
the stubbing technique lets you unit test portions of code by isolating them from the
environment (for example, by stubbing a web server, the file system, a database,
and so on). What about fine-grained isolation, like being able to isolate a method
call to another class? Is that possible? Can you achieve this without deploying huge
amounts of energy that would negate the benefits of having tests?

This chapter covers
■ Introducing and demonstrating mock objects
■ Performing different refactorings
■ Practicing on the HTTP connection sample

application
■ Introducing the EasyMock and the JMock

libraries
99

100 CHAPTER 7 Testing with mock objects
 Yes! It’s possible. The technique is called mock objects. Tim Mackinnon, Steve
Freeman, and Philip Craig first presented the mock objects concept at XP2000. The
mock objects strategy allows you to unit test at the finest-possible level and develop
method by method, while providing you with unit tests for each method.

7.1 Introducing mock objects
Testing in isolation offers strong benefits, such as the ability to test code that has not
yet been written (as long as you at least have an interface to work with). In addition,
testing in isolation helps teams unit test one part of the code without waiting for all
the other parts.

 The biggest advantage is the ability to write focused tests that test only a single
method, without side effects resulting from other objects being called from the
method under test. Small is beautiful. Writing small, focused tests is a tremendous
help; small tests are easy to understand and don’t break when other parts of the code
are changed. Remember that one of the benefits of having a suite of unit tests is the
courage it gives you to refactor mercilessly—the unit tests act as a safeguard against
regression. If you have large tests and your refactoring introduces a bug, several tests
will fail; that result will tell you that there’s a bug somewhere, but you won’t know
where. With fine-grained tests, potentially fewer tests will be affected, and they’ll pro-
vide precise messages that pinpoint the exact cause of the breakage.

 Mock objects (or mocks for short) are perfectly suited for testing a portion of code
logic in isolation from the rest of the code. Mocks replace the objects with which your
methods under test collaborate, offering a layer of isolation. In that sense, they’re sim-
ilar to stubs. But this is where the similarity ends, because mocks don’t implement any
logic: they’re empty shells that provide methods to let the tests control the behavior of
all the business methods of the faked class.

 We discuss when to use mock objects in section 7.6 at the end of this chapter, after
we show them in action on some examples.

7.2 Unit testing with mock objects
In this section, we present an application and a test using mock objects. Imagine a
simple use case where you want to be able to make a bank transfer from one account
to another (figure 7.1 and listings 7.1 and 7.2).

 The AccountService class offers services related to Accounts and uses the
AccountManager to persist data to the database (using JDBC, for example). The service
that interests us is materialized by the AccountService.transfer method, which
makes the transfer. Without mocks, testing the AccountService.transfer behavior
would imply setting up a database, presetting it with test data, deploying the code
inside the container (Java EE application server, for example), and so forth. Although
this process is required to ensure the application works end to end, it’s too much work
when you want to unit test only your code logic.

101Unit testing with mock objects
Listing 7.1 presents a simple Account object with two properties: an account ID and
a balance.

[...]
public class Account {
 private String accountId;
 private long balance;
 public Account(String accountId, long initialBalance) {
 this.accountId = accountId;
 this.balance = initialBalance;
 }
 public void debit(long amount) {
 this.balance -= amount;
 }
 public void credit(long amount) {
 this.balance += amount;
 }
 public long getBalance() {
 return this.balance;
 }
}

The AccountManager interface that follows manages the lifecycle and persistence of
Account objects. (We’re limited to finding accounts by ID and updating accounts.)

 [...]
 public interface AccountManager {
 Account findAccountForUser(String userId);
 void updateAccount(Account account);
 }

Listing 7.2 shows the transfer method for transferring money between two accounts.
It uses the AccountManager interface we previously defined to find the debit and
credit accounts by ID and to update them.

Listing 7.1 Account.java

Figure 7.1 In this simple bank account example, we use a mock object to test an account
transfer method.

102 CHAPTER 7 Testing with mock objects
[...]
public class AccountService {
 private AccountManager accountManager;
 public void setAccountManager(AccountManager manager) {
 this.accountManager = manager;
 }
 public void transfer(String senderId, String beneficiaryId, long amount) {
 Account sender = this.accountManager.findAccountForUser(senderId);
 Account beneficiary =
 this.accountManager.findAccountForUser(beneficiaryId);

 sender.debit(amount);
 beneficiary.credit(amount);
 this.accountManager.updateAccount(sender);
 this.accountManager.updateAccount(beneficiary);
 }
}

We want to be able to unit test the AccountService.transfer behavior. For that pur-
pose, we use a mock implementation of the AccountManager interface (listing 7.3).
We do this because the transfer method is using this interface, and we need to test it
in isolation.

[...]
import java.util.HashMap;
public class MockAccountManager implements AccountManager {

 private Map<String, Account> accounts = new HashMap<String, Account>();

 public void addAccount(String userId, Account account) {
 this.accounts.put(userId, account);
 }

 public Account findAccountForUser(String userId) {
 return this.accounts.get(userId);
 }

 public void updateAccount(Account account) {
 // do nothing
 }
}

The addAccount method uses an instance variable to hold the values to return B.
Because we have several account objects that we want to be able to return, we store the
Account objects to return in a HashMap. This makes the mock generic and able to sup-
port different test cases: one test could set up the mock with one account, another test
could set it up with two accounts or more, and so forth.

 In C we implement a method to retrieve the account from the accounts map—
we can retrieve only accounts that have been added before that. The updateAccount

Listing 7.2 AccountService.java

Listing 7.3 MockAccountManager.java

 B

 C

 D

103Unit testing with mock objects
method updates an account but doesn’t return any value D. We do nothing. When
it’s called by the transfer method, it will do nothing, as if the account had been cor-
rectly updated.

 We’re now ready to write a unit test for AccountService.transfer. Listing 7.4
shows a typical test using a mock.

[...]
public class TestAccountService {

 @Test
 public void testTransferOk() {
 MockAccountManager mockAccountManager = new MockAccountManager();
 Account senderAccount = new Account("1", 200);
 Account beneficiaryAccount = new Account("2", 100);
 mockAccountManager.addAccount("1", senderAccount);
 mockAccountManager.addAccount("2", beneficiaryAccount);
 AccountService accountService = new AccountService();
 accountService.setAccountManager(mockAccountManager);
 accountService.transfer("1", "2", 50);

 assertEquals(150, senderAccount.getBalance());
 assertEquals(150, beneficiaryAccount.getBalance());
 }
}

As usual, a test has three steps: the test setup B, the test execution C, and the verifi-
cation of the result D. During the test setup, we create the MockAccountManager object
and define what it should return when called for the two accounts we manipulate (the
sender and beneficiary accounts). We’ve succeeded in testing the AccountService
code in isolation of the other domain object, AccountManager, which in this case didn’t
exist, but which in real life could have been implemented using JDBC.

 At this point in the chapter, you should have a reasonably good understanding of
what a mock is. In the next section, we show you that writing unit tests with mocks
leads to refactoring your code under test—and that this process is a good thing!

JUnit best practices: don’t write business logic in mock objects
The most important point to consider when writing a mock is that it shouldn’t have
any business logic. It must be a dumb object that does only what the test tells it
to do. It’s driven purely by the tests. This characteristic is exactly the opposite of
stubs, which contain all the logic (see chapter 6).

There are two nice corollaries. First, mock objects can be easily generated, as
you’ll see in following chapters. Second, because mock objects are empty shells,
they’re too simple to break and don’t need testing themselves.

Listing 7.4 Testing transfer with MockAccountManager

 B

 C

 D

104 CHAPTER 7 Testing with mock objects
7.3 Refactoring with mock objects
Some people used to say that unit tests should be totally transparent to your code
under test, and that you should not change runtime code in order to simplify testing.
This is wrong! Unit tests are first-class users of the runtime code and deserve the same
consideration as any other user. If your code is too inflexible for the tests to use, then
you should correct the code.

 For example, what do you think of the following piece of code?

[...]
import java.util.PropertyResourceBundle;
import java.util.ResourceBundle;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
[...]
public class DefaultAccountManager implements AccountManager {
 private static final Log LOGGER =
 LogFactory.getLog(AccountManager.class);

 public Account findAccountForUser(String userId) {
 LOGGER.debug("Getting account for user [" + userId + "]");
 ResourceBundle bundle =
 PropertyResourceBundle.getBundle("technical");
 String sql = bundle.getString("FIND_ACCOUNT_FOR_USER");
 // Some code logic to load a user account using JDBC
 [...]
 }
 [...]
}

Does the code look fine to you? We can see two issues, both of which relate to code
flexibility and the ability to resist change. The first problem is that it isn’t possible
to decide to use a different Log object, because it’s created inside the class. For test-
ing, for example, you probably want to use a Log that does nothing, but you can’t.

 As a rule, a class like this should be able to use whatever Log it’s given.
 The goal of this class isn’t to create loggers but to perform some JDBC logic. The

same remark applies to the use of PropertyResourceBundle. It may sound okay right
now, but what happens if you decide to use XML to store the configuration? Again, it
shouldn’t be the goal of this class to decide what implementation to use.

JUnit best practices: test only what can possibly break
You may have noticed that we didn’t mock the Account class. The reason is that
this data access object class doesn’t need to be mocked—it doesn’t depend on
the environment, and it’s simple. Our other tests use the Account object, so they
test it indirectly. If it failed to operate correctly, the tests that rely on Account
would fail and alert us to the problem.

Create
a Log

Retrieve a SQL
command

105Refactoring with mock objects
 An effective design strategy is to pass to an object any other object that’s outside its
immediate business logic. The choice of peripheral objects can be controlled by
someone higher in the calling chain. Ultimately, as you move up in the calling layers,
the decision to use a given logger or configuration should be pushed to the top level.
This strategy provides the best possible code flexibility and ability to cope with
changes. And, as we all know, change is the only constant.

7.3.1 Refactoring example

Refactoring all code so that domain objects are passed around can be time consum-
ing. You may not be ready to refactor the whole application just to be able to write a
unit test. Fortunately, there’s an easy refactoring technique that lets you keep the
same interface for your code but allows it to be passed domain objects that it
shouldn’t create. As a proof, let’s see how the refactored DefaultAccountManager
class could look. See listing 7.5; modifications are shown in bold.

public class DefaultAccountManager implements AccountManager {
 private Log logger;
 private Configuration configuration;

 public DefaultAccountManager() {
 this(LogFactory.getLog(DefaultAccountManager.class),
 new DefaultConfiguration("technical"));
 }
 public DefaultAccountManager(Log logger, Configuration configuration) {
 this.logger = logger;
 this.configuration = configuration;
 }

 public Account findAccountForUser(String userId) {
 this.logger.debug("Getting account for user [" + userId + "]");
 this.configuration.getSQL("FIND_ACCOUNT_FOR_USER");
 // Some code logic to load a user account using JDBC
 [...]
 }
[...]
}

Notice that at B, we swap the PropertyResourceBundle class from the previous list-
ing in favor of a new Configuration interface. This makes the code more flexible
because it introduces an interface (which will be easy to mock), and the implementa-
tion of the Configuration interface can be anything we want (including using
resource bundles). The design is better now because we can use and reuse the Default-
AccountManager class with any implementation of the Log and Configuration
interfaces (if we use the constructor that takes two parameters). The class can be con-
trolled from the outside (by its caller). Meanwhile, we haven’t broken the existing
interface, because we’ve only added a new constructor. We kept the original default

Listing 7.5 Refactoring DefaultAccountManager for testing

 B

106 CHAPTER 7 Testing with mock objects
constructor that still initializes the logger and configuration field members with
default implementations.

 With this refactoring, we’ve provided a trapdoor for controlling the domain
objects from your tests. We retain backward compatibility and pave an easy refactor-
ing path for the future. Calling classes can start using the new constructor at their
own pace.

 Should you worry about introducing trapdoors to make your code easier to test?
Here’s how Extreme Programming guru Ron Jeffries explains it:

My car has a diagnostic port and an oil dipstick. There is an inspection port on the side of
my furnace and on the front of my oven. My pen cartridges are transparent so I can see if
there is ink left.

And if I find it useful to add a method to a class to enable me to test it, I do so. It
happens once in a while, for example in classes with easy interfaces and complex inner
function (probably starting to want an Extract Class).

I just give the class what I understand of what it wants, and keep an eye on it to see
what it wants next.1

IoC makes unit testing a breeze. To prove the point, let’s see how easily we can now
write a test for the findAccountByUser method: 2

public void testFindAccountByUser() {
 MockLog logger = new MockLog();
 MockConfiguration configuration = new MockConfiguration();
 configuration.setSQL("SELECT * [...]");
 DefaultAccountManager am = new DefaultAccountManager(logger,
 configuration);
 Account account = am.findAccountForUser("1234");
 // Perform asserts here
 [...]
}

Design patterns in action: Inversion of Control
Applying the IoC pattern to a class means removing the creation of all object
instances for which this class isn’t directly responsible and passing any
needed instances instead. The instances may be passed using a specific con-
structor, using a setter, or as parameters of the methods needing them. It
becomes the responsibility of the calling code to correctly set these domain
objects on the called class.2

1 Ron Jeffries, on the TestDrivenDevelopment mailing list: http://groups.yahoo.com/group/testdrivendevel-
opment/message/3914.

2 See the Jakarta Avalon framework for a component framework implementing the IoC pattern (http://
avalon.apache.org).

 B
 C

 D

http://groups.yahoo.com/group/testdrivendevelopment/message/3914
http://groups.yahoo.com/group/testdrivendevelopment/message/3914
http://avalon.apache.org
http://avalon.apache.org

107Mocking an HTTP connection
At B, we use a mock logger that implements the Log interface but does nothing. Next,
we create a MockConfiguration instance C and set it up to return a given SQL query
when Configuration.getSQL is called. Finally, we create the instance of Default-
AccountManager D that we test, passing to it the Log and Configuration instances.

 We’ve been able to completely control our logging and configuration behavior
from outside the code to test, in the test code. As a result, our code is more flexible
and allows for any logging and configuration implementation to be used. You’ll see
more of these code refactorings in this chapter and later ones.

 One last point to note is that if you write your test first, you’ll automatically design
your code to be flexible. Flexibility is a key point when writing a unit test. If you test
first, you won’t incur the cost of refactoring your code for flexibility later.

7.4 Mocking an HTTP connection
To see how mock objects work in a practical example, let’s use the simple application
that opens an HTTP connection to a remote server and reads the content of a page. In
chapter 6 we tested that application using stubs. Let’s now unit test it using a mock
object approach to simulate the HTTP connection.

 In addition, you’ll learn how to write mocks for classes that don’t have a Java inter-
face (namely, the HttpURLConnection class). We show a full scenario in which you
start with an initial testing implementation, improve the implementation as you go,
and modify the original code to make it more flexible. We also show how to test for
error conditions using mocks.

 As you dive in, you’ll keep improving both the test code and the sample applica-
tion, exactly as you might if you were writing the unit tests for the same application. In
the process, you’ll learn how to reach a simple and elegant testing solution while mak-
ing your application code more flexible and capable of handling change.

 Figure 7.2 introduces the sample HTTP application.
 This application consists of a simple WebClient.getContent method performing

an HTTP connection to a web resource executing on a web server. We want to be able
to unit test the getContent method in isolation from the web resource.

Figure 7.2 The sample HTTP application before introducing the test

108 CHAPTER 7 Testing with mock objects
7.4.1 Defining the mock objects

Figure 7.3 illustrates the definition of a mock object. The MockURL class stands in for
the real URL class, and all calls to the URL class in getContent are directed to the Mock-
URL class. As you can see, the test is the controller: it creates and configures the behav-
ior the mock must have for this test; it (somehow) replaces the real URL class with the
MockURL class; and it runs the test.

 Figure 7.3 shows an interesting aspect of the mock objects strategy: the need to be
able to swap the mock into the production code. The perceptive reader will have
noticed that because the URL class is final, it’s not possible to create a MockURL class
that extends it.

 In the coming sections, we demonstrate how to perform this feat in a different way
(by mocking at another level). In any case, when using the mock objects strategy,
swapping in the mock instead of the real class is the hard part. This may be viewed as a
negative point for mock objects, because we usually need to modify our code to pro-
vide a trapdoor. Ironically, modifying code to encourage flexibility is one of the stron-
gest advantages of using mocks, as explained in section 7.3.1.

7.4.2 Testing a sample method

The example in listing 7.6 demonstrates a code snippet that opens an HTTP con-
nection to a given URL and reads the content found at that URL. Let’s imagine that
it’s one method of a bigger application that we want to unit test, and let’s unit test
that method.

Figure 7.3 The steps involved in a test using mock objects

109Mocking an HTTP connection
[...]
import java.net.URL;
import java.net.HttpURLConnection;
import java.io.InputStream;
import java.io.IOException;
public class WebClient {
 public String getContent(URL url) {
 StringBuffer content = new StringBuffer();
 try {
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();
 connection.setDoInput(true);
 InputStream is = connection.getInputStream();
 int count;
 while (-1 != (count = is.read())) {
 content.append(new String(Character.toChars(count)));
 }
 } catch (IOException e) {
 return null;
 }
 return content.toString();
 }
}

If an error occurs, we return null. Admittedly, this isn’t the best possible error-
handling solution, but it’s good enough for the moment. (And our tests will give
us the courage to refactor later.)

7.4.3 First attempt: easy method refactoring technique

The idea is to be able to test the getContent method independently of a real HTTP
connection to a web server. If you map the knowledge you acquired in section 7.2, it
means writing a mock URL in which the url.openConnection method returns a mock
HttpURLConnection. The MockHttpURLConnection class would provide an implemen-
tation that lets the test decide what the getInputStream method returns. Ideally,
you’d be able to write the following test:

@Test
public void testGetContentOk() throws Exception {
 MockHttpURLConnection mockConnection = new MockHttpURLConnection();
 mockConnection.setupGetInputStream(
 new ByteArrayInputStream("It works".getBytes()));
 MockURL mockURL = new MockURL();
 mockURL.setupOpenConnection(mockConnection);
 WebClient client = new WebClient();
 String result = client.getContent(mockURL);
 assertEquals("It works", result);
}

Unfortunately, this approach doesn’t work! The JDK URL class is a final class, and
no URL interface is available. So much for extensibility. We need to find another

Listing 7.6 A sample method that opens an HTTP connection

Open an HTTP
connection

Read all
contents

Create a mock
HttpURLConnection

Create a
mock URL

Test the getContent method

Assert the result

110 CHAPTER 7 Testing with mock objects
solution and, potentially, another object to mock. One solution is to stub the URL-
StreamHandlerFactory class. We explored this solution in chapter 6, so let’s find a
technique that uses mock objects: refactoring the getContent method. If you think
about it, this method does two things: it gets an HttpURLConnection object and
then reads the content from it. Refactoring leads to the class shown in listing 7.7
(changes from listing 7.6 are in bold). We’ve extracted the part that retrieved the
HttpURLConnection object.

public class WebClient {
 public String getContent(URL url) {
 StringBuffer content = new StringBuffer();
 try {
 HttpURLConnection connection = createHttpURLConnection(url);
 InputStream is = connection.getInputStream();
 int count;
 while (-1 != (count = is.read())) {
 content.append(new String(Character.toChars(count)));
 }
 }
 catch (IOException e) {
 return null;
 }
 return content.toString();
 }
 protected HttpURLConnection createHttpURLConnection(URL url)
 throws IOException {
 return (HttpURLConnection) url.openConnection();
 }
}

In the listing, we call createHttpURLConnection B to create the HTTP connection.
 How does this solution let us test getContent more effectively? We can now apply a

useful trick, which consists of writing a test helper class that extends the WebClient
class and overrides its createHttpURLConnection method, as follows:

private class TestableWebClient extends WebClient {
 private HttpURLConnection connection;
 public void setHttpURLConnection(HttpURLConnection connection) {
 this.connection = connection;
 }
 public HttpURLConnection createHttpURLConnection(URL url)
 throws IOException {
 return this.connection;
 }
}

In the test, we can call the setHttpURLConnection method, passing it the mock
HttpURLConnection object. The test now becomes the following (differences are
shown in bold):

Listing 7.7 Extracting retrieval of the connection object from getContent

Refactoring B

111Mocking an HTTP connection
@Test
public void testGetContentOk() throws Exception {
 MockHttpURLConnection mockConnection = new MockHttpURLConnection();
 mockConnection.setExpectedInputStream(
 new ByteArrayInputStream("It works".getBytes()));
 TestableWebClient client = new TestableWebClient();
 client.setHttpURLConnection(mockConnection);
 String result = client.getContent(new URL("http://localhost"));
 assertEquals("It works", result);
}

In this code, we configure TestableWebClient B so that the createHttpURLConnection
method returns a mock object. Next, the getContent method is called C.

 This is a common refactoring approach called method factory refactoring, which is
especially useful when the class to mock has no interface. The strategy is to extend
that class, add some setter methods to control it, and override some of its getter meth-
ods to return what we want for the test. In the case at hand, this approach is okay, but
it isn’t perfect. It’s a bit like the Heisenberg uncertainty principle: the act of subclass-
ing the class under test changes its behavior, so when we test the subclass, what are we
truly testing?

 This technique is useful as a means of opening up an object to be more testable,
but stopping here means testing something that’s similar to (but not exactly the same
as) the class we want to test. It isn’t as if we’re writing tests for a third-party library and
can’t change the code—we have complete control over the code to test. We can
enhance it and make it more test friendly in the process.

7.4.4 Second attempt: refactoring by using a class factory

Let’s apply the Inversion of Control pattern, which says that any resource we use needs
to be passed to the getContent method or WebClient class. The only resource we use
is the HttpURLConnection object. We could change the WebClient.getContent signa-
ture to

public String getContent(URL url, HttpURLConnection connection)

This means we’re pushing the creation of the HttpURLConnection object to the caller
of WebClient. But the URL is retrieved from the HttpURLConnection class, and the sig-
nature doesn’t look nice. Fortunately, there’s a better solution that involves creating a
ConnectionFactory interface, as shown in listings 7.8 and 7.9. The role of classes
implementing the ConnectionFactory interface is to return an InputStream from a
connection, whatever the connection might be (HTTP, TCP/IP, and so on). This refac-
toring technique is sometimes called a class factory refactoring.3

3 J. B. Rainsberger calls it Replace Subclasses with Collaborators: http://www.diasparsoftware.com/tem-
plate.php?content=replaceSubclassWithCollaborator.

 B

 C

http://localhost
http://www.diasparsoftware.com/template.php?content=replaceSubclassWithCollaborator
http://www.diasparsoftware.com/template.php?content=replaceSubclassWithCollaborator

112 CHAPTER 7 Testing with mock objects
[...]
import java.io.InputStream;
public interface ConnectionFactory {
 InputStream getData() throws Exception;
}

The WebClient code then becomes as shown in listing 7.9. (Changes from the initial
implementation in listing 7.6 are shown in bold.)

[...]
import java.io.InputStream;

public class WebClient {
 public String getContent(ConnectionFactory connectionFactory) {
 StringBuffer content = new StringBuffer();
 try {
 InputStream is = connectionFactory.getData();
 int count;
 while (-1 != (count = is.read())) {
 content.append(new String(Character.toChars(count)));
 }
 }
 catch (Exception e) {
 return null;
 }
 return content.toString();
 }
}

This solution is better because we’ve made the retrieval of the data content indepen-
dent of the way we get the connection. The first implementation worked only with
URLs using HTTP. The new implementation can work with any standard protocol
(file://, http://, ftp://, jar://, and so forth) or even your own custom protocol.
For example, listing 7.10 shows the ConnectionFactory implementation for HTTP.

[...]
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class HttpURLConnectionFactory implements ConnectionFactory {
 private URL url;
 public HttpURLConnectionFactory(URL url) {
 this.url = url;
 }
 public InputStream getData() throws Exception {
 HttpURLConnection connection =
 (HttpURLConnection) this.url.openConnection();

Listing 7.8 ConnectionFactory.java

Listing 7.9 Refactored WebClient using ConnectionFactory

Listing 7.10 HttpURLConnectionFactory.java

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

113Using mocks as Trojan horses
 return connection.getInputStream();
 }
}

Now we can easily test the getContent method by writing a mock for Connection-
Factory (see listing 7.11).

[...]
import java.io.InputStream;

 public class MockConnectionFactory implements ConnectionFactory {
 private InputStream inputStream;

 public void setData(InputStream stream) {
 this.inputStream = stream;
 }
 public InputStream getData() throws Exception {
 return this.inputStream;
 }
 }

As usual, the mock doesn’t contain any logic and is completely controllable from the
outside (by calling the setData method). We can now easily rewrite the test to use
MockConnectionFactory, as demonstrated in listing 7.12.

[...]
import java.io.ByteArrayInputStream;

public class TestWebClient {

 @Test
 public void testGetContentOk() throws Exception {
 MockConnectionFactory mockConnectionFactory =
 new MockConnectionFactory();
 mockConnectionFactory.setData(
 new ByteArrayInputStream("It works".getBytes()));

 WebClient client = new WebClient();
 String result = client.getContent(mockConnectionFactory);
 assertEquals("It works", result);
 }
}

We’ve achieved our initial goal: to unit test the code logic of the WebClient.get-
Content method. In the process we had to refactor it for the test, which led to a more
extensible implementation that’s better able to cope with change.

7.5 Using mocks as Trojan horses
Mock objects are Trojan horses, but they’re not malicious. Mocks replace real objects
from the inside, without the calling classes being aware of it. Mocks have access to

Listing 7.11 MockConnectionFactory.java

Listing 7.12 Refactored WebClient test using MockConnectionFactory

114 CHAPTER 7 Testing with mock objects
internal information about the class, making them quite powerful. In the examples so
far, we’ve used them only to emulate real behaviors, but we haven’t mined all the
information they can provide.

 It’s possible to use mocks as probes by letting them monitor the method calls the
object under test makes. Let’s take the HTTP connection example. One of the inter-
esting calls we could monitor is the close method on the InputStream. We haven’t
been using a mock object for InputStream so far, but we can easily create one and
provide a verify method to ensure that close has been called. Then, we can call
the verify method at the end of the test to verify that all methods that should
have been called were called (see listing 7.13). We may also want to verify that
close has been called exactly once and raise an exception if it was called more than
once or not at all. These kinds of verifications are often called expectations.

DEFINITION Expectation—When we’re talking about mock objects, an expecta-
tion is a feature built into the mock that verifies whether the external class
calling this mock has the correct behavior. For example, a database connec-
tion mock could verify that the close method on the connection is called
exactly once during any test that involves code using this mock.

To see an example of an expectation, look at listing 7.13.

[...]
import java.io.IOException;
import java.io.InputStream;

public class MockInputStream extends InputStream {
 private String buffer;
 private int position = 0;
 private int closeCount = 0;
 public void setBuffer(String buffer) {
 this.buffer = buffer;
 }
 public int read() throws IOException {
 if (position == this.buffer.length()) {
 return -1;
 }
 return this.buffer.charAt(this.position++);
 }
 public void close() throws IOException {
 closeCount++;
 super.close();
 }
 public void verify() throws java.lang.AssertionError {
 if (closeCount != 1) {
 throw new AssertionError ("close() should "
 + "have been called once and once only");
 }
 }
 }

Listing 7.13 Mock InputStream with an expectation on close

Tell mock what
read method
should return

Count number of
times close is called

Verify
expectations
are met

115Using mocks as Trojan horses
In the case of the MockInputStream class, the expectation for close is simple: we
always want it to be called once. But most of the time, the expectation for closeCount
depends on the code under test. A mock usually has a method like setExpected-
CloseCalls so that the test can tell the mock what to expect.

 Let’s modify the TestWebClient.testGetContentOk test method to use the new
MockInputStream:

[...]

public class TestWebClient {

 @Test
 public void testGetContentOk() throws Exception {
 MockConnectionFactory mockConnectionFactory =
 new MockConnectionFactory();

 MockInputStream mockStream = new MockInputStream();
 mockStream.setBuffer("It works");
 mockConnectionFactory.setData(mockStream);
 WebClient client = new WebClient();
 String result = client.getContent(mockConnectionFactory);

 assertEquals("It works", result);
 mockStream.verify();
 }
}

Instead of using a real ByteArrayInputStream as in previous tests, we now use the
MockInputStream. Note that we call the verify method of MockInputStream at the end
of the test to ensure that all expectations are met. The result of running the test is
shown in figure 7.4.

 The test fails with the message close() should have been called once and
once only.

 Why? Because we haven’t closed the input stream in the WebClient.getContent
method. The same error would be raised if we were closing it twice or more, because
the test verifies that it’s called once and only once.

 Let’s correct the code under test (see listing 7.14).

Figure 7.4 Running TestWebClient with the new close expectation

116 CHAPTER 7 Testing with mock objects
public class WebClient {
 public String getContent(ConnectionFactory connectionFactory)
 throws IOException {
 String result;
 StringBuffer content = new StringBuffer();
 InputStream is = null;
 try {
 is = connectionFactory.getData();
 int count;
 while (-1 != (count = is.read())) {
 content.append(new String(Character.toChars(count)));
 }
 result = content.toString();
 }
 catch (Exception e) {
 result = null;
 }

 // Close the stream
 if (is != null) {
 try {
 is.close();
 }
 catch (IOException e) {
 result = null;
 }
 }
 return result;
 }
}

We now get a nice green bar (figure 7.5).
 There are other handy uses for expectations. For example, if you have a compo-

nent manager calling different methods of your component lifecycle, you might
expect them to be called in a given order. Or, you might expect a given value to be
passed as a parameter to the mock. The general idea is that, aside from behaving the
way you want during a test, your mock can also provide useful feedback on its usage.

Listing 7.14 WebClient closing the stream

Close stream
and return null
if error occurs

Figure 7.5 Working WebClient that closes the input stream

117Introducing mock frameworks
The next section demonstrates the use of some of the most popular open source
mocking frameworks—they’re powerful enough for our needs, and we don’t need to
implement our mocks from the beginning.

7.6 Introducing mock frameworks
So far we’ve been implementing the mock objects we need from scratch. As you can
see, it’s not a tedious task but rather a recurring one. You might guess that we don’t
need to reinvent the wheel every time we need a mock. And you’re right—there are
many good projects already written that can help us facilitate the usage of mocks in
our projects. In this section we take a closer look at two of the most widely used mock
frameworks: the EasyMock and the JMock. We try to rework the example HTTP con-
nection application so that we can demonstrate how to use the two frameworks.

7.6.1 Using EasyMock

EasyMock (http://easymock.org/) is an open source framework that provides useful
classes for mocking objects. To use the framework you need to download the zip
archive from the website of the project, unpack it somewhere, and include the con-
tained easymock.jar in your classpath.

 To show you how easy it is to construct mock objects in your test cases using Easy-
Mock, we revise some of the mocks we constructed in the previous sections. We start
with a simple one: reworking the AccountService test from listing 7.2. See listing 7.15.

[...]
import static org.easymock.EasyMock.createMock;
import static org.easymock.EasyMock.replay;
import static org.easymock.EasyMock.expect;
import static org.easymock.EasyMock.verify;

public class TestAccountServiceEasyMock
{
 private AccountManager mockAccountManager;

 @Before
 public void setUp()
 {
 mockAccountManager = createMock("mockAccountManager",
 AccountManager.class);
 }

 @Test
 public void testTransferOk()
 {
 Account senderAccount = new Account("1", 200);
 Account beneficiaryAccount = new Account("2", 100);

 // Start defining the expectations
 mockAccountManager.updateAccount(senderAccount);
 mockAccountManager.updateAccount(beneficiaryAccount);

Listing 7.15 Reworking the TestAccountService test using EasyMock

 B

 C

 D

 E

 F

http://easymock.org/

118 CHAPTER 7 Testing with mock objects
 expect(mockAccountManager.findAccountForUser("1"))
 .andReturn(senderAccount);
 expect(mockAccountManager.findAccountForUser("2"))
 .andReturn(beneficiaryAccount);

 // we’re done defining the expectations
 replay(mockAccountManager);

 AccountService accountService = new AccountService();
 accountService.setAccountManager(mockAccountManager);
 accountService.transfer("1", "2", 50);

 assertEquals(150, senderAccount.getBalance());
 assertEquals(150, beneficiaryAccount.getBalance());
 }

 @After
 public void tearDown()
 {
 verify(mockAccountManager);
 }
}

As you see, listing 7.15 is pretty much the same size as listing 7.4, but we are spared
the writing of any additional mock classes. We start the listing by defining the imports
from the EasyMock library that we need B. EasyMock relies heavily on the static-
import feature of Java 5+. In C we declare the object that we’d like to mock.
Notice that our AccountManager is an interface. The reason behind this is simple:
the core EasyMock framework can mock only interface objects. In D we call the
createMock method to create a mock of the class that we want. In E, as in listing 7.4,
we create two account objects that we’re going to use in our tests. After that we
start declaring our expectations. With EasyMock we declare the expectations in two
ways. When the method return type is void, we call it on the mock object (as in

F), or when the method returns any kind of object, then we need to use the
expect and andReturn methods from the EasyMock API G. Once we’ve finished
defining the expectations, we need to call the replay method to announce it H.
In I we call the transfer method to transfer some money between the two
accounts, and in J we assert the expected result. The @After method, which gets
executed after every @Test method, holds the verification of the expectations. With
EasyMock we can call the verify method with any mock object , to verify that
the method-call expectations we declared were triggered.

 That was pretty easy, wasn’t it? So how about moving a step forward and revising a
more complicated example? No problem; listing 7.16 shows the reworked WebClient
test from listing 7.12.

 What we’d like is to test the getContent method of the WebClient. For this pur-
pose we need to mock all the dependencies to that method. In this example we have
two dependencies: one is the ConnectionFactory and one is the InputStream. It
looks like there’s a problem because EasyMock can mock only interfaces, and the
InputStream is a class.

 G

 H

 I
 J

 1)

1)

119Introducing mock frameworks
To be able to mock the InputStream class, we’re going to use the Class Extension of
EasyMock. Class Extension is an extension project of EasyMock that lets you generate
mock objects4 for classes and interfaces. You can download it separately from the Easy-
Mock website.

[...]
import static org.easymock.classextension.EasyMock.createMock;
import static org.easymock.classextension.EasyMock.replay;
import static org.easymock.classextension.EasyMock.verify;

public class TestWebClientEasyMock
{
 private ConnectionFactory factory;
 private InputStream stream;

 @Before
 public void setUp()
 {
 factory = createMock(“factory”, ConnectionFactory.class);
 stream = createMock(“stream”, InputStream.class);
 }

JUnit best practices: EasyMock object creation
Here is a nice-to-know tip on the createMock method. If you check the API of Easy-
Mock, you’ll see that the createMock method comes with numerous signatures.
The signature that we use is

createMock(String name, Class claz);

But there’s also

createMock(Class claz);

So which one should you use? The first one is better. If you use the second one and
your expectations aren’t met, then you’ll get an error message like the following:

java.lang.AssertionError:
 Expectation failure on verify:
 read(): expected: 7, actual: 0

As you can see, this message isn’t as descriptive as we want it to be. If we use
the first signature instead, and we map the class to a given name, we get some-
thing like the following:

java.lang.AssertionError:
 Expectation failure on verify:
 name.read(): expected: 7, actual: 0

4 Final and private methods can’t be mocked.

Listing 7.16 Reworking the WebClient test using EasyMock

 B

 C

 D

120 CHAPTER 7 Testing with mock objects
 @Test
 public void testGetContentOk() throws Exception
 {
 expect(factory.getData()).andReturn(stream);
 expect(stream.read()).andReturn(new Integer((byte) 'W'));
 expect(stream.read()).andReturn(new Integer((byte) 'o'));
 expect(stream.read()).andReturn(new Integer((byte) 'r'));
 expect(stream.read()).andReturn(new Integer((byte) 'k'));
 expect(stream.read()).andReturn(new Integer((byte) 's'));
 expect(stream.read()).andReturn(new Integer((byte) '!'));
 expect(stream.read()).andReturn(-1);
 stream.close();

 replay(factory);
 replay(stream);

 WebClient2 client = new WebClient2();
 String result = client.getContent(factory);

 assertEquals("Works!", result);
 }

[...]
 @Test
 public void testGetContentCannotCloseInputStream() throws Exception {
 expect(factory.getData()).andReturn(stream);
 expect(stream.read()).andReturn(-1);
 stream.close();
 expectLastCall().andThrow(new IOException("cannot close"));

 replay(factory);
 replay(stream);
 WebClient2 client = new WebClient2();
 String result = client.getContent(factory);

 assertNull(result);
 }

 @After
 public void tearDown()
 {
 verify(factory);
 verify(stream);
 }
}

We start the listing by importing the objects that we need B. Notice that because we
use the classextensions extension of EasyMock, we now need to import the
org.easymock.classextension.EasyMock object instead of org.easymock.EasyMock.
That’s it! Now we’re ready to create mock objects of classes and interfaces using the
statically imported methods of classextensions. In C, as in the previous listings, we
declare the objects that we want to mock, and in D we call the createMock method to
initialize them.

 In E we define the expectation of the stream when the read method is invoked
(notice that to stop reading from the stream, the last thing to return is -1), and in

 E

 F G

 H

 I

 J

 1)

121Introducing mock frameworks
F we expect the close method to be called on the stream. Now we need to denote
that we’ve finished declaring our expectations; we do this by calling the replay
method G. The rest is invoking the method under test H and asserting the expected
result I.

 We also add another test to simulate a condition when we can’t close the Input-
Stream. We define an expectation where we expect the close method of the stream to
be invoked J, and on the next line we declare that an IOException should be raised
if this call occurs .

 As the name of the framework suggests, using EasyMock is easy, and you should use
it whenever possible. But to make you aware of the entire mocking picture, we’d like
to introduce another framework, so you have a better taste of what mocking is.

7.6.2 Using JMock

So far we showed how to implement our own mock objects and how to use the Easy-
Mock framework. In this section we introduce the JMock framework (http://
jmock.org/), so that we can have a full view of the different mocking techniques. As in
the previous section, we start with a simple example: reworking listing 7.4 by means of
JMock. See listing 7.17.

[...]
import org.jmock.Expectations;
import org.jmock.Mockery;
import org.jmock.integration.junit4.JMock;
import org.jmock.integration.junit4.JUnit4Mockery;

@RunWith(JMock.class)
public class TestAccountServiceJMock
{
 private Mockery context = new JUnit4Mockery();

 private AccountManager mockAccountManager;

 @Before
 public void setUp()
 {
 mockAccountManager = context.mock(AccountManager.class);
 }

 @Test
 public void testTransferOk()
 {
 final Account senderAccount = new Account("1", 200);
 final Account beneficiaryAccount = new Account("2", 100);

 context.checking(new Expectations()
 {
 {
 oneOf(mockAccountManager).findAccountForUser("1");
 will(returnValue(senderAccount));

Listing 7.17 Reworking the TestAccountService test using JMock

1)

 B

 C

 D

 E

 F

 G

 H

 I

http://jmock.org
http://jmock.org

122 CHAPTER 7 Testing with mock objects
 oneOf(mockAccountManager).findAccountForUser("2");
 will(returnValue(beneficiaryAccount));

 oneOf(mockAccountManager).updateAccount(senderAccount);
 oneOf(mockAccountManager)
 .updateAccount(beneficiaryAccount);
 }
 });

 AccountService accountService = new AccountService();
 accountService.setAccountManager(mockAccountManager);
 accountService.transfer("1", "2", 50);

 assertEquals(150, senderAccount.getBalance());
 assertEquals(150, beneficiaryAccount.getBalance());
 }
}

As always, we start the listing by importing all the necessary objects we need B. As you
can see, unlike EasyMock, the JMock framework doesn’t rely on any static import fea-
tures. Luckily enough, the JMock framework provides a JUnit 4 runner5 that will facili-
tate a lot. In C we instruct JUnit to use the JMock runner that comes with the
framework. In D we declare the context Mockery object that will serve us to create
mocks and to define expectations. In E we declare the AccountManager that we’d like
to mock. Just like EasyMock, the core JMock framework provides mocking only of
interfaces. In the @Before method, which gets executed before each of the @Test
methods, we create the mock by means of the context object F. As in any of the previ-
ous listings, we declare two accounts that we’re going to use to transfer money
between G. Notice that this time the accounts are declared final. This is because we
use them in an inner class defined in a different method. In H we start declaring the
expectations by constructing a new Expectations object. In I we declare the first
expectation, each expectation having the following form:

invocation-count (mock-object).method(argument-constraints);
 inSequence(sequence-name);
 when(state-machine.is(state-name));
 will(action);
 then(state-machine.is(new-state-name));

All the clauses are optional, except for the bold ones: invocation-count and mock-
object. We need to specify how many invocations will occur and on which object.
After that, in case the method returns some object, we can declare the return object
by using the will(returnValue()) construction.

 In J we start the transfer from one account to the other, and after that we assert
the expected results . It’s as simple as that! But wait; what happened with the verifi-
cation of the invocation count? In all of the previous examples we needed to verify
that the invocations of the expectations happened the expected number of times.

5 You can see how to implement a custom JUnit runner in appendix B of the book.

 J

 1)

1)

123Introducing mock frameworks
Well, with JMock you don’t have to do that; the JMock JUnit runner takes care of this,
and in case any of the expected calls were not made, the test will fail.

 Following the pattern from the previous section about EasyMock, let’s rework list-
ing 7.12, shown in listing 7.18, showing the WebClient test, this time using JMock.

[...]

@RunWith(JMock.class)
public class TestWebClientJMock
{
 private Mockery context = new JUnit4Mockery()
 {
 {
 setImposteriser(ClassImposteriser.INSTANCE);
 }
 };

 @Test
 public void testGetContentOk() throws Exception
 {
 final ConnectionFactory factory =
 context.mock(ConnectionFactory.class);
 final InputStream mockStream =
 context.mock(InputStream.class);

 context.checking(new Expectations()
 {
 {
 oneOf(factory).getData();
 will(returnValue(mockStream));

 atLeast(1).of(mockStream).read();
 will(onConsecutiveCalls(
 returnValue(new Integer((byte) 'W')),
 returnValue(new Integer((byte) 'o')),
 returnValue(new Integer((byte) 'r')),
 returnValue(new Integer((byte) 'k')),
 returnValue(new Integer((byte) 's')),
 returnValue(new Integer((byte) '!')),
 returnValue(-1)));

 oneOf(mockStream).close();
 }
 });

 WebClient2 client = new WebClient2();
 String result = client.getContent(factory);

 assertEquals("Works!", result);
 }

 @Test
 public void testGetContentCannotCloseInputStream() throws Exception
 {

Listing 7.18 Reworking the TestWebClient test using JMock

 B

 C

 D

 E

 F

 G

 H

124 CHAPTER 7 Testing with mock objects
 final ConnectionFactory factory =
 context.mock(ConnectionFactory.class);
 final InputStream mockStream = context.mock(InputStream.class);

 context.checking(new Expectations()
 {
 {
 oneOf(factory).getData();
 will(returnValue(mockStream));
 oneOf(mockStream).read();
 will(returnValue(-1));
 oneOf(mockStream).close();
 will(throwException(
 new IOException("cannot close")));
 }
 });

 WebClient2 client = new WebClient2();

 String result = client.getContent(factory);

 assertNull(result);
 }
}

Once again, we start the test case by instructing JUnit to use the JMock test runner

B. This will save us the explicit verification of the expectations. To tell JMock to cre-
ate mock objects not only for interfaces but also for classes, we need to set the
imposteriser property of the context C. That’s all; now we can continue creating
mocks the normal way. In D we declare and initialize the two objects we’d like to
create mocks of. In E we start the declaration of the expectations. Notice the fine
way we declare the consecutive execution of the read() method of the stream F
and also the returned values. In G we call the method under test, and in H we
assert the expected result.

 For a full view of how to use the JMock mocking library, we also provide another
@Test method, which tests our WebClient under exceptional conditions. In I we
declare the expectation of the close() method being triggered, and in J we instruct
JMock to raise an IOException when this trigger happens.

 As you can see, the JMock library is as easy to use as the EasyMock one. Whichever
you prefer to use is up to you, as long as you remember that what increases your soft-
ware quality isn’t the framework you use but rather how much you use it.

7.7 Summary
This chapter described a technique called mock objects that lets you unit test code in
isolation from other domain objects and from the environment. When it comes to
writing fine-grained unit tests, one of the main obstacles is to extract yourself from
the executing environment. We’ve often heard the following remark: “I haven’t
tested this method because it’s too difficult to simulate a real environment.” Well, not
any longer!

 I

 J

125Summary
 In most cases, writing mock object tests has a nice side effect: it forces you to
rewrite some of the code under test. In practice, code is often not written well. You
hardcode unnecessary couplings between the classes and the environment. It’s easy to
write code that’s hard to reuse in a different context, and a little nudge can have a big
effect on other classes in the system (similar to the domino effect). With mock objects,
you must think differently about the code and apply better design patterns, like inter-
faces and Inversion of Control.

 Mock objects should be viewed not only as a unit testing technique but also as a
design technique. A new rising star among methodologies called test-driven develop-
ment (TDD) advocates writing tests before writing code. With TDD, you don’t have to
refactor your code to enable unit testing: the code is already under test! (For a full
treatment of the TDD approach, see Kent Beck’s book Test Driven Development: By Exam-
ple.6 For a brief introduction, see chapter 5.)

 Although writing mock objects is easy, it can become tiresome when you need to
mock hundreds of objects. In the following chapters, we present several open source
frameworks that automatically generate ready-to-use mocks for your classes, making it
a pleasure to use the mock objects strategy.

6 Kent Beck, Test Driven Development: By Example (Boston: Addison-Wesley, 2003).

In-container testing

The secret of success is sincerity. Once

 you can fake that you’ve got it made.

—Jean Giraudoux

This chapter examines one approach to unit testing components in an applica-
tion container: in-container unit testing, or integration unit testing. We discuss in-
container testing pros and cons and show what can be achieved using the mock
objects approach introduced in chapter 7, where mock objects fall short, and how
in-container testing enables you to write integration unit tests. Finally, we com-
pare the stubs, mock objects, and in-container approaches we’ve already covered
in this second part of this book.

8.1 Limitations of standard unit testing
Let’s start with the example servlet in listing 8.1, which implements the Http-
Servlet method isAuthenticated, the method we want to unit test.

This chapter covers
■ The drawbacks of mock objects
■ In-container testing
■ Comparing stubs, mock objects, and

in-container testing
126

127The mock objects solution
[...]
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class SampleServlet extends HttpServlet {
 public boolean isAuthenticated(HttpServletRequest request) {
 HttpSession session = request.getSession(false);
 if (session == null) {
 return false;
 }
 String authenticationAttribute =
 (String) session.getAttribute("authenticated");
 return Boolean.valueOf(authenticationAttribute).booleanValue();
 }
}

This servlet, although simple enough, allows us to show the limitation of standard
unit testing. In order to test the method isAuthenticated, we need a valid Http-
ServletRequest. Because HttpServletRequest is an interface, we can’t just call a
new HttpServletRequest. The HttpServletRequest lifecycle and implementation
are provided by the container (in this case, a servlet container.) The same is true for
other server-side objects like HttpSession. JUnit alone isn’t enough to write a test
for the isAuthenticated method and for servlets in general.

DEFINITION Component and container—In this chapter, a component executes in
a container. A container offers services for the components it’s hosting, such as
lifecycle, security, transaction, distribution, and so forth.

In the case of servlets and JSPs, the container is a servlet container like Jetty or Tomcat.
There are other types of containers, for example, EJB, database, and OSGi containers.

 As long as a container creates and manages objects at runtime, we can’t use stan-
dard JUnit techniques to test those objects.

8.2 The mock objects solution
We look at several solutions for in-container testing. The first solution for unit testing
the isAuthenticated method (listing 8.1) is to mock the HttpServletRequest class
using the approach described in chapter 7. Although mocking works, we need to write
a lot of code to create a test. We can achieve the same result more easily using the
open source EasyMock1 framework (see chapter 7), as listing 8.2 demonstrates.

Listing 8.1 Servlet implementing isAuthenticated

1 http://easymock.org/

http://easymock.org

128 CHAPTER 8 In-container testing
[...]
import javax.servlet.http.HttpServletRequest;
import static org.easymock.EasyMock.createStrictMock;
import static org.easymock.EasyMock.expect;
import static org.easymock.EasyMock.replay;
import static org.easymock.EasyMock.verify;
import static org.easymock.EasyMock.eq;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
[...]
public class EasyMockSampleServletTest {

 private SampleServlet servlet;
 private HttpServletRequest mockHttpServletRequest;
 private HttpSession mockHttpSession;

 @Before
 public void setUp() {
 servlet = new SampleServlet();
 mockHttpServletRequest =
 createStrictMock(HttpServletRequest.class);
 mockHttpSession = createStrictMock(HttpSession.class);
 }

 @Test
 public void testIsAuthenticatedAuthenticated() {
 expect(mockHttpServletRequest.getSession(eq(false)))
 .andReturn(mockHttpSession);
 expect(mockHttpSession.getAttribute(eq("authenticated")))
 .andReturn("true");
 replay(mockHttpServletRequest);
 replay(mockHttpSession);
 assertTrue(servlet.isAuthenticated(mockHttpServletRequest));
 }

 @Test
 public void testIsAuthenticatedNotAuthenticated() {
 expect(mockHttpSession.getAttribute(eq("authenticated")))
 .andReturn("false");
 replay(mockHttpSession);
 expect(mockHttpServletRequest.getSession(eq(false)))
 .andReturn(mockHttpSession);
 replay(mockHttpServletRequest);
 assertFalse(servlet.isAuthenticated(mockHttpServletRequest));
 }

 @Test
 public void testIsAuthenticatedNoSession() {
 expect(mockHttpServletRequest.getSession(eq(false))).andReturn(null);
 replay(mockHttpServletRequest);
 replay(mockHttpSession);
 assertFalse(servlet.isAuthenticated(mockHttpServletRequest));
 }

Listing 8.2 Testing a servlet with EasyMock

 B

 C

 D

 E

 F

 G

129In-container testing
 @After
 public void tearDown() {
 verify(mockHttpServletRequest);
 verify(mockHttpSession);
 }
}

We start by importing the necessary classes and methods using Java 5 static imports B.
We use the EasyMock class extensively, which has similar syntax to the JUnit Hamcrest
matchers. Next, we declare instance variables for the objects C we want to mock,
HttpServletRequest and HttpSession. The setUp method annotated with @Before

D runs before each call to @Test methods; this is where we instantiate all of our mock
objects. Next, we implement our tests following this pattern:

1 Set our expectations using the EasyMock API E.
2 Invoke the replay method to finish declaring our expectations F.
3 Assert test conditions on the servlet G.

Finally, at H the @After method (executed after each @Test method) calls the Easy-
Mock verify API I to check whether the mocked objects met all of our pro-
grammed expectations.

 Mocking a minimal portion of a container is a valid approach to testing compo-
nents. But mocking can be complicated and require a lot of code. As with other kinds
of tests, when the servlet changes, the test expectations must change to match. Next,
we look at easing this task.

8.3 In-container testing
Another approach to testing the SampleServlet is to run the test cases where the
HttpsServletRequest and HttpSession objects live, in the container itself. This
avoids the need to mock any objects; we access the objects and methods we need in
the real container.

 For our example, we need HttpServletRequest and HttpSession to be real
objects managed by the container. Using a mechanism to deploy and execute our tests
in a container, we have in-container testing. Next, we see what options are available to
implement in-container tests.

8.3.1 Implementation strategies

We have two architectural choices to drive in-container tests: server-side and client-
side. As we stated previously, we can drive the tests directly by controlling the server-
side container and the unit tests. Alternatively, we can drive the tests from the client
side, as shown in figure 8.1.

 Once the tests are packaged and deployed in the container and to the client, the
JUnit test runner executes the test classes on the client (1). A test class opens a con-
nection via a protocol like HTTP(S) and calls the same test case on the server side (2).
The server-side test case operates on server-side objects, which are normally available
(such as HttpServletRequest, HttpServletResponse, HttpSession, BundleContext,

 H
 I

130 CHAPTER 8 In-container testing
and so on), and tests our domain objects (3). The server returns the result from the
tests back to the client (4), which an IDE or Ant or Maven can gather.

8.3.2 In-container testing frameworks

As you just saw, in-container testing is applicable when code interacts with a con-
tainer and tests can’t create valid container objects (HttpServletRequest in the
previous example).

 Our example uses a servlet container, but there are many different types of con-
tainers: servlet, database, OSGi, SIP, and the like. In all of these cases, we can apply the
in-container testing strategy. In the third part of the book, we present different open
source projects that use this strategy. Table 8.1 lists the types of containers and the test-
ing frameworks we use in later chapters.

 Although the open source world offers other projects, we cover the more mature proj-
ects listed in the table. Next, we compare stubs, mock objects, and in-container testing.

Table 8.1 Containers and testing frameworks

Container type In-container testing framework to use Chapter with detailed description

HTTP container Cactus (for testing servlets, JSPs, tag
libraries, filters, and EJBs)

Chapter 14

HTTP container JSFUnit (for testing JSF components) Chapter 15

OSGi container JUnit4OSGi (for testing OSGi modules) Chapter 16

Database container DBUnit Chapter 17

Figure 8.1
Lifecycle of a typical in-container test

131Comparing stubs, mock objects, and in-container testing
8.4 Comparing stubs, mock objects, and in-container
testing
In this section we compare2 the different approaches we presented to test compo-
nents. This section draws from the many questions in forums and mailing lists asking
about the pros and cons of stubs, mock objects, and in-container testing.

8.4.1 Stubs pros and cons

We introduced stubs as our first out-of-container testing technique in chapter 6. Stubs
work well to isolate a given class for testing and asserting the state of its instances. For
example, stubbing a servlet container allows us to track how many requests were
made, what the state of the server is, or what URLs where requested.

 Using mocks, however, we can test the state of the server and its behavior. When
using mock objects, we code and verify expectations; we check at every step to see
whether tests execute domain methods and how many times tests call these methods.

 One of the biggest advantages of stubs over mocks is that stubs are easier to under-
stand. Stubs isolate a class with little extra code compared to mock objects, which
require an entire framework to function. The drawback of stubs is that they rely on
external tools and hacks, and they don’t track the state objects they fake.

 Going back to chapter 6, we easily faked a servlet container with stubs; doing so
with mock objects would be much harder because we’d need to fake container objects
with state and behavior. Here’s a summary of stubs pros and cons.

 Pros:

■ They’re fast and lightweight.
■ They’re easy to write and understand.
■ They’re powerful.
■ Tests are coarser grained.

 Cons:

■ Specialized methods are required to verify state.
■ They don’t test the behavior of faked objects.
■ They’re time consuming for complicated interactions.
■ They require more maintenance when the code changes.

8.4.2 Mock objects pros and cons

The biggest advantage of mock objects3 over in-container testing is that mocks
don’t require a running container in order to execute tests. Tests can be set up
quickly and run quickly. The main drawback is that the tested components don’t

2 For an in-depth comparison of the stubs and mocks technology, see ”Mocks Aren’t Stubs” by Martin Fowler:
http://martinfowler.com/articles/mocksArentStubs.html.

3 For an in-depth comparison of the mocks and in-container testing, see “Mock Objects vs. In-Container Test-
ing”: http://jakarta.apache.org/cactus/mock_vs_cactus.html.

http://martinfowler.com/articles/mocksArentStubs.html
http://jakarta.apache.org/cactus/mock_vs_cactus.html

132 CHAPTER 8 In-container testing
run in the container in which you’ll deploy them. The tests can’t verify the interac-
tion between components and container. The tests also don’t test the interaction
between the components themselves as they run in the container.

 You still need a way to perform integration tests. Writing and running functional
tests could achieve this. The problem with functional tests is that they’re coarse
grained and test only a full use case—you lose the benefits of fine-grained unit test-
ing. You won’t be able to test as many different cases with functional tests as you will
with unit tests.

 There are other disadvantages to mock objects. For example, you may have many
mock objects to set up, which may prove to be considerable overhead. Obviously, the
cleaner the code (small and focused methods), the easier tests are to set up.

 Another important drawback to mock objects is that in order to set up a test, you
usually must know exactly how the mocked API behaves. It’s easy to know the behavior
of your own API, but it may not be so easy for another API, such as the Servlet API.

 Even though containers of a given type all implement the same API, not all con-
tainers behave the same way. For example, consider the following servlet method:

public void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 response.setContentType("text/xml");
}

This example seems simple enough, but if you run it in Tomcat (http://tomcat.
apache.org/) and in Orion prior to version 1.6.0 (http://www.orionserver.com/),
you’ll notice different behaviors. In Tomcat, the returned content type is text/xml,
but in Orion, it’s text/html.

 This is an extreme example; all servlet containers implement the Servlet API in
pretty much the same way. But the situation is far worse for the various Java EE APIs—
especially the EJB API. Implementers can interpret an API specification differently, and
a specification can be inconsistent, making it difficult to implement. In addition, con-
tainers have bugs; the previous example may have been a bug in Orion 1.6.0.
Although it’s unfortunate, you’ll have to deal with bugs, tricks, and hacks for various
third-party libraries in any project.

 To wrap up this section, we summarize the drawbacks of unit testing with
mock objects:

■ This approach doesn’t test interactions with the container or between the com-
ponents. It doesn’t test the deployment of components.

■ It requires excellent knowledge of the API to mock, which can be difficult
(especially for external libraries).

■ It doesn’t provide confidence that the code will run in the target container.
■ It’s more fine grained, which may lead you to being swamped with interfaces.
■ Like stubs, it requires maintenance when code changes.

http://tomcat.apache.org
http://tomcat.apache.org
http://www.orionserver.com

133Comparing stubs, mock objects, and in-container testing
8.4.3 In-container testing pros and cons

So far, we’ve described the advantages of in-container unit testing. But there are also a
few disadvantages, which we now discuss.

SPECIFIC TOOLS REQUIRED

A major drawback is that although the concept is generic, the tools that implement in-
container unit testing are specific to the tested API, such as Apache Jakarta Cactus for
Java EE testing. If you wish to write integration unit tests for another component
model, chances are such a framework exists. With mock objects, because the concept
is generic, you can test almost any API.

NO GOOD IDE SUPPORT

A significant drawback of most of the in-container testing frameworks is the lack of
good IDE integration. In most cases, you can use Ant or Maven to execute tests, which
also provides the ability to run a build in a continuous integration server (CIS, see chap-
ter 11). Alternatively, IDEs can execute tests that use mock objects as normal JUnit tests.

 We strongly believe that in-container testing falls in the category of integration
testing. This means that you don’t need to execute your in-container tests as often
as normal unit tests and will most likely run them in a CIS, alleviating the need for
IDE integration.

LONGER EXECUTION TIME

Another issue is performance. For a test to run in a container, you need to start and
manage the container, which can be time consuming. The overhead in time (and
memory) depends on the container: Jetty can start in less than 1 second, Tomcat in 5
seconds, and WebLogic in 30 seconds. The startup overhead isn’t limited to the con-
tainer. For example, if a unit test hits a database, the database must be in an expected
state before the test starts (see database application testing in chapter 17). In terms of
execution time, integration unit tests cost more than mock objects. Consequently, you
may not run them as often as logic unit tests.

COMPLEX CONFIGURATION

The biggest drawback to in-container testing is that tests are complex to configure.
Because the application and its tests run in a container, your application must be
packaged (usually as a WAR or EAR file) and deployed to the container. You must then
start the container and run the tests.

 On the other hand, because you must perform these exact same tasks for produc-
tion, it’s a best practice to automate this process as part of the build and reuse it for
testing purposes. As one of the most complex tasks of a Java EE project, providing
automation for packaging and deployment becomes a win-win situation. The need to
provide in-container testing will drive the creation of this automated process at the
beginning of the project, which will also facilitate continuous integration.

 To further this goal, most in-container testing frameworks include support for
build tools like Ant and Maven. This will help hide the complexity involved in build-
ing various runtime artifacts as well as with running tests and gathering reports.

134 CHAPTER 8 In-container testing
8.4.4 In-container versus out-of-container testing

A standard design goal is to separate presentation from business layers. For exam-
ple, you should implement the code for a tag that retrieves a list of customers from a
database with two classes. One class implements the tag and depends on the Taglib
API, whereas the other implements the database access and depends not on the
Taglib API but on database classes like JDBC.

 The separation-of-concerns strategy not only permits the reuse of classes in more
than one context, but it also simplifies testing. You can test the business logic class
with JUnit and mock objects and use in-container testing to validate the tag class.

 In-container testing requires more setup than mock objects but is well worth the
effort. You may not run the in-container tests as often, but they can confirm that your
tags will work in the target environment. Although you may be tempted to skip testing
a component, such as a taglib, reasoning that functional tests will eventually test the
tag as a side effect, we recommend that you fight this temptation. All components benefit
from unit testing. We outline these benefits here:

■ Fine-grained tests can be run repeatedly and tell you when, where, and why
your code breaks.

■ You have the ability to test completely your components, not only for normal
behavior but also for error conditions. For example, when testing a tag access-
ing a database, you should confirm that the tag behaves as expected when the
connection with the database is broken. This would be hard to test in auto-
mated functional tests, but it’s easy to test when you combine in-container test-
ing and mock objects.

8.5 Summary
When it comes to unit testing an application in a container, we’ve shown that standard
JUnit tests come up short. Although testing with mock objects works, it misses some
scenarios like integration tests to verify component interactions in and with a con-
tainer. In order to verify behavior in a container, we need a technique that addresses
testing from an architectural point of view: in-container testing.

 Although complex, in-container testing addresses these issues and provides devel-
opers with the confidence necessary to change and evolve their applications. This
chapter provided the foundation for the last part of this book, where we continue to
explore such testing frameworks.

 Next, we start the third part of this book by integrating JUnit into the build pro-
cess, a tenet of test-driven development.

Part 3

JUnit and the build process

This part of the book deals with a very important aspect in the develop-
ment cycle of every project: the build process. The importance of the build
process is reconsidered more often these days, especially in large projects.
That’s why we dedicate a whole part of this book to integration between JUnit
and two of the most important build tools: Ant and Maven.

 The ninth chapter gives you a quick introduction to Ant and its terminology:
tasks, targets, and builds. We discuss how to start your tests as part of your Ant
build lifecycle, and we also show how to produce some fancy reports with the
results of the JUnit execution. This chapter serves as a basis for most of the rest
of the book, because you need a good knowledge of Ant to be able to grasp all of
the Ant integration sections in the latter chapters.

 The tenth chapter guides you through the same concepts, but this time by
means of another popular tool called Maven. We show you how to include the
execution of your tests in the Maven build lifecycle and how to produce nice
HTML reports by means of some of the Maven plug-ins.

 The last chapter in this part of the book is devoted to continuous integration
(CI) tools. This practice is highly recommended by extreme programmers and
helps you maintain a code repository and automate the build on it. This is help-
ful in building large projects that depend on several other projects that change
often (as any open source project does).

Running JUnit tests
from Ant

It’s supposed to be automatic, but

 you still have to press the button.

—John Brunner

In this chapter, we look at Apache Ant1 or Ant for short, a free and open source
build tool with direct support for JUnit. You can use Ant with any Java program-
ming environment. We show you how to be more productive with JUnit by run-
ning tests as part of the build. We also show you how to set up your environment
to build Java projects, manage JAR file dependencies, execute JUnit tests, and gen-
erate JUnit reports.

This chapter covers
■ Introducing Ant and Ivy
■ Running Ant JUnit tasks
■ Creating reports

1 http://ant.apache.org/
137

http://ant.apache.org

138 CHAPTER 9 Running JUnit tests from Ant
9.1 A day in the life
For unit tests to be effective, they must be part of the development routine. Most
development cycles begin by checking out code from the source code repository.
Before making any changes, prudent developers first run all unit test suites. Many
teams have a rule that all unit tests in the repository must pass. Before starting any
development, you should check to make sure all tests pass. You should always be sure
that your work starts from a known stable baseline.

 The next step is to write the code for a new use case (or modify an existing one.) If
you’re a test-driven development (TDD) practitioner, you’ll start by writing new tests
for the use case (for more about TDD, see chapter 5). In general, the tests will show
that your use case isn’t supported by not compiling or failing when executed. Once
you write the code to implement (correctly) the use case, the tests pass, and you can
check in your code. Non-TDD practitioners implement the use case first and then
write the tests. Once the tests pass, the developer checks in the code.

 Before you move on to code the next feature, you should have tests to prove the
feature works. After you implement the feature, you can run the tests for the entire
project, ensuring that the new feature didn’t break any existing tests. If the existing
code needs to change to accommodate the new feature, you should update the tests
first and then make the changes.

 If you test rigorously, both to help you write new code (TDD) and to ensure exist-
ing code works with new features (regression testing2), you must continually run the
unit tests as a normal part of the development cycle. You need to be able to run these
tests automatically and effortlessly throughout the day.

 In chapter 1, section 1.4, we discussed running JUnit from the command line. Run-
ning a single JUnit test case against a single class isn’t difficult. But it isn’t practical to
run continuous tests in a project with hundreds or even thousands of classes.

 A project that’s fully tested can have as many test classes as production classes. You
can’t expect developers to run an entire set of regression tests every day manually.
Therefore, you need a way to run tests easily and automatically.

 Because you’re writing so many tests, you need to write and run tests in the most
effective way possible. Ant is the de facto standard tool for building Java applications;
it’s an excellent tool for managing and automating JUnit tests.

9.2 Running tests from Ant
Compiling and testing a single class, like the DefaultController class from chapter 3,
isn’t difficult. Compiling a larger project with multiple classes can be a huge headache
if your only tool is the javac command-line compiler. When the number of classes
goes up, more classes need to be on the compiler classpath. Usually, in any one build
you’ll have changed only a few classes, which leads us to the issue of minimizing how

2 For more about regression testing, see chapter 4.

139Introducing and installing Ant
much to rebuild. Rerunning your JUnit tests by hand after each build can be equally
inconvenient for the same reasons.

 Ant can solve both problems. Ant is not only an essential tool for building applica-
tions but also a great way to run your JUnit tests.

9.3 Introducing and installing Ant
One reason for Ant’s popularity is that it’s more than a tool: Ant is a framework for
running code. In addition to using Ant to configure and launch a Java compiler, you
can use it to copy files, run JUnit test suites, and create reports.

 You configure Ant through an XML document called a build file, which is named
build.xml by default. The Ant build file describes each task that you want to perform
in your project. A build file can have several targets, or entry points, so that you can
run a single target or chain several targets together. Let’s look at using Ant to run tests
automatically as part of the build. If you don’t have Ant installed, see the following
sidebar. For full details, consult the Ant manual (http://ant.apache.org/manual/).

 Now that you’re familiar with Ant and have it installed, let’s get started with
a project.

Installing Ant on Windows
To install Ant on Windows:

1 Unzip the zip distribution file to a local directory (for example, C:\Ant). In this
directory, Unzip creates a subdirectory for the Ant distribution, for example,
C:\Ant\apache-ant-1.8.0.

2 Add an ANT_HOME variable to your environment with this directory as the value,
for example:

Variable name: ANT_HOME
Variable value: C:\Ant\apache-ant-1.8.0

3 Edit your PATH environment variable to include the %ANT_HOME%\bin folder:

Variable name: PATH
Variable value: %ANT_HOME%\bin;%PATH%

4 We recommend that you specify the location of your Java Development Kit
(JDK) as the JAVA_HOME environment variable:

Variable name: JAVA_HOME
Variable value: C:\jdk1.6.0_14

This value, like the others, may vary depending on where you installed the JDK
on your system.

5 To enable Ant’s JUnit task, copy the file junit.jar to the %ANT_HOME%\lib
folder. Ant will add the JAR file to the classpath for your build. We look at other
options later.

http://ant.apache.org/manual

140 CHAPTER 9 Running JUnit tests from Ant
9.4 Ant targets, projects, properties, and tasks
When you build a project, you often want to produce more than binary code. For a
distribution, you may also want to generate Javadocs. For an internal development
build, you might skip Javadoc generation. At times, you may want to run a build from
scratch. You may also want to compile only the classes that have changed. To help you
manage the build process, a build file may have several targets, encapsulating the dif-
ferent tasks needed to create your application and related resources.

 To make the build files easier to configure and reuse, Ant lets you define property
elements (similar to a constant in programming, or a final field in Java). The core Ant
concepts are as follows:

■ Build file—Each build file is usually associated with a particular development
project. Ant uses the project XML tag as the root element in a build file to
define the project. It also lets you specify a default target, so you can run Ant
without any parameters.

■ Target—When you run Ant, you can specify one or more targets to execute.
Targets can optionally declare dependencies on other targets. If you ask Ant to
run one target, Ant will execute its dependent targets first. This lets you cre-
ate, for example, a distribution target that depends on other targets, like
clean, compile, javadoc, and war.

■ Property elements—Because many of the targets within a project share the same
settings, Ant lets you create property elements to encapsulate specific settings
and reuse them throughout a build file. To refer to a property in a build file,
you use the notation ${property}. To refer to the property named target.dir,
you’d write ${target.dir}.

Installing Ant on UNIX (Bash)
To install Ant on UNIX (or Linux), follow these steps:

1 Untar the Ant tarball to a local directory (for example, /opt/ant). In this direc-
tory, tar creates a subdirectory for the Ant distribution, for example, /opt/
ant/apache-ant-1.7.1.

2 Add this directory to your environment as ANT_HOME, for example:

export ANT_HOME=/opt/ant/apache-ant-1.8.0

3 Add the ANT_HOME/bin folder to your system’s command path:

export PATH=${PATH}:${ANT_HOME}/bin

4 We recommend that you specify the location of your JDK as the JAVA_HOME
environment variable:

export JAVA_HOME=/usr/java/jdk1.6.0_14/

5 To enable Ant’s JUnit task, copy the file junit.jar to the ${ANT_HOME}/lib
folder. Ant will add the JAR file to the classpath for your build. We look at
other options later.

141Ant targets, projects, properties, and tasks
As we mentioned, Ant isn’t so much a tool as a framework for running tools. You can
use property elements to set the parameters a tool needs and a task to run that tool. A
great number of tasks come bundled with Ant, but you can also write your own custom
tasks. For more about developing with Ant, we recommend reading Ant in Action3 and
exploring the Ant website.

 Listing 9.1 shows the start of the build file for the example project from chapter 3.
This segment of the build file sets the default target and the properties your targets
and tasks will use.

 <project name="example" default="test">
 <property file="build.properties"/>
 <property name="src.dir" location="src"/>
 <property name="src.java.dir" location="${src.dir}/java"/>
 <property name="src.test.dir" location="${src.dir}/test"/>
 <property name="target.dir" location="target"/>
 <property name="target.classes.java.dir"
 location="${target.dir}/classes/java"/>
 <property name="target.classes.test.dir"
 location="${target.dir}/classes/test"/>
[...]

The listing starts B by giving the project the name example and setting the default
target to test. The test target appears in listing 9.3.

 Next, we include the build.properties file C. Because programmers may store JAR
files in different locations, it’s a good practice to use a build.properties file to define
their locations. Many open source projects provide a sample build.properties file you
can copy and edit to match your environment.

 We use the property Ant task to define the directories for production and test
source code D as well as the location of the directories for compiled production and
test code E. It’s a good practice to define source and test directories in separate loca-
tions for both source and compiled code. In our example, we end up with four prop-
erty definitions. Splitting out compiled production and test code makes it easy to
build other artifacts such as JAR files because all compiled production code is rooted
in its own directory.

 An important aspect of Ant properties is that they’re immutable. Once you set a
property value, you can’t change it. If you try to redefine the value with another prop-
erty element, Ant ignores the request.

9.4.1 The javac task

For simple projects, running the javac compiler from the command line is easy
enough. For products with multiple packages and source directories, the configura-
tion of the javac compiler becomes more complicated. The javac Ant task allows a

3 http://manning.com/loughran/

Listing 9.1 Start of an Ant build file

 B C

 D

 E

http://manning.com/loughran

142 CHAPTER 9 Running JUnit tests from Ant
build file to invoke the compiler so you no longer need to rely on the command
line. Ant provides a task for almost all build-related jobs that you’d otherwise do on
the command line, including dealing with repositories like CVS. You can also find
tasks not defined by Ant itself that deal with just about anything. We mentioned
CVS, but if you’re using Subversion for revision control, you can use SvnAnt4 out of
the Subclipse project.

 A standard practice is to create compile targets in your build file to invoke the Ant
javac task to compile production and source code. The javac task lets you set all com-
piler options, such as the source and destination directories, through task attributes.

 Listing 9.2 shows the production and test compile targets that call the Java compiler.

<target name="compile.java">
 <mkdir dir="${target.classes.java.dir}"/>
 <javac destdir="${target.classes.java.dir}">
 <src path="${src.java.dir}"/>
 </javac>
</target>

<target name="compile.test" depends="compile.java">
 <mkdir dir="${target.classes.test.dir}"/>
 <javac destdir="${target.classes.test.dir}">
 <src path="${src.test.dir}"/>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 </classpath>
 </javac>
</target>

<target name="compile" depends="compile.java, compile.test"/>

First, we declare the target compile.java B to make sure that the destination direc-
tory exists C and compile the production sources D. Ant resolves the property
target.classes.java.dir set at the top of the build file (in listing 9.1) and inserts
it in place of ${target.classes.java.dir}. The mkdir task creates a directory C,
but if it already exists, Ant continues quietly. The build then calls the Java compiler
with javac, giving it the destination D and source E directories.

 The compile.test target has a dependency on the compile.java target, spec-
ified with the depends attribute F (depends="compile.java"). When you call
the compile.test target, if Ant hasn’t called the compile.java target yet, it does
so immediately.

 You may have noticed that you don’t explicitly add the JUnit JAR to the classpath.
Remember that when you installed Ant, you copied the JUnit JAR file to the
${ANT_HOME}/lib directory in order to use the junit Ant task. Because junit.jar is

4 http://subclipse.tigris.org/svnant.html

Listing 9.2 The build file compile targets

 B
 C D

 E

 F

 G

 H

http://subclipse.tigris.org/svnant.html

143Ant targets, projects, properties, and tasks
already on your classpath, you don’t need to specify it in the javac task to compile
your tests.

 You need to add a nested classpath element G in order to add the production
classes you just compiled to the classpath because the test classes call the produc-
tion classes.

 Last, we have a compile target H that depends on the compile.java and compile.
test targets.

9.4.2 The JUnit task

In chapter 3, we ran the DefaultController tests manually. To test changes, we had
to do the following:

■ Compile the source code.
■ Run the TestDefaultController test case against the compiled classes.

We can get Ant to perform both steps as part of the same build target. Listing 9.3
shows the test target.

<target name="test" depends="compile">
 <junit printsummary="yes" haltonerror="yes" haltonfailure="yes"
 fork="yes">
 <formatter type="plain" usefile="false"/>
 <test name="junitbook.example.TestDefaultController"/>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 <pathelement location="${target.classes.test.dir}"/>
 </classpath>
 </junit>
</target>

We declare the test target and define it to depend on the compile target B. If we ask
Ant to run the test target, it’ll run the compile target before running the test target
(unless Ant has already called compile). The only task defined in this target is to call
junit C. The junit printsummary attribute causes the task to print a one-line sum-
mary at the end of the test. Setting fork to yes forces Ant to use a separate Java Virtual
Machine for each test. Although this is a performance hit, it’s a good practice if you’re
worried about interference between test cases. The haltonfailure and haltonerror
attributes direct the build to stop if any test returns an error or a failure. In Ant, an
error is an unexpected error, like an exception, whereas a failure is a failed assert call.
We configure the junit task formatter to use plain text and output the test result to
the console D. The test name attribute defines the class name of the test to run E.
Finally, we extend the classpath to use for this task to include the production and test
classes we just compiled F.

 This makes up our first test target; next, we run the Ant build.

Listing 9.3 The build file test target

 B
 C

 D

 E

 F

144 CHAPTER 9 Running JUnit tests from Ant
9.5 Putting Ant to the task
Now that you’ve assembled the build file, you can run it from the command line by
changing to your project directory and typing ant. Figure 9.1 shows the Ant con-
sole output.

 We can now build and test the project at the same time. If any of the tests fail, the
haltonfailure and haltonerror settings will stop the build, bringing the problem to
our attention.

So far, we’ve looked at one way to execute tests with Ant. We now look at another
aspect of the build process: dependency management. In order to automate manage-
ment of dependencies for Ant projects, we introduce and use the Apache Ivy5 project.

Running the junit optional task
The junit task is an optional component bundled in Ant’s ant-junit.jar file, which
should already be in your ${ANT_HOME}/lib directory. Ant doesn’t bundle a copy
of JUnit, so you must ensure that junit.jar is on your classpath or in the
${ANT_HOME}/lib directory. The ant-junit.jar file contains the task itself. For more
information on installing Ant, see section 9.3, “Introducing and installing Ant.” If
you have any trouble running the Ant build files presented in this chapter, make
sure the ant-junit.jar file is in the ${ANT_HOME}/lib folder and junit.jar is either on
your classpath or in the ${ANT_HOME}/lib folder.

5 http://ant.apache.org/ivy/

Figure 9.1 Running the build file from the command line

http://ant.apache.org/ivy

145Dependency management with Ivy
9.6 Dependency management with Ivy
When your project is small, it can be easy to deal with the JAR files your code depends
on. In our previous example, we depended on only one JAR file, junit.jar. For larger
projects, your build may end up depending on dozens of libraries. These dependen-
cies can trip up new developers or downstream developers of the project. Having to
know what the JAR dependencies are and where to get them on the web should not be
an impediment to developers using your project.

 The Apache Maven project first introduced dependency management for Java
projects (see the next chapter for coverage of the Maven build tool.) Maven depen-
dency management is based on the concept of one or more (internet, network, or
local) repositories containing JARs from many projects from all over the open
source world. The developer lists dependencies for a project in a configuration file
and lets Maven download the right files to a local repository cache on your
machine. You can then add the JARs to your classpath based on their location in
the local repository.

 Apache Ivy6 is a popular open source dependency management tool (used for
recording, tracking, resolving, and reporting dependencies), focusing on flexibility
and simplicity. Although available as a standalone tool, Ivy works particularly well with
Ant, providing a number of powerful Ant tasks ranging from dependency resolution
to reporting and publication. It’s out of the scope of this book to cover Ivy in depth,
but we rework our build file with dependency management using Ivy.

 The installation of Ivy is straightforward; download the zip file from the website,
extract it, and copy the ivy-vvv.jar (where vvv stands for the Ivy version) to the
${ANT_HOME}/lib directory.

 Ivy works in the same manner as Maven and even uses Maven repositories for
resolving and downloading dependencies. You specify the dependencies for your proj-
ect in a file named, by default, ivy.xml. Ivy will download all the dependencies listed in
the ivy.xml file into a local cache directory.

 Listing 9.4 shows the build file with changes highlighted in bold.

<project name="example" default="test"
 xmlns:ivy=”antlib:org.apache.ivy.ant”>
 <property file="build.properties"/>

 [...]
 <ivy:retrieve file="./ivy.xml" sync="true"/>

 <property name="junit.jar" location="lib/junit-4.6.jar"/>
 [...]

 <target name="compile.test" depends="compile.java">
 <mkdir dir="${target.classes.test.dir}"/>
 <javac destdir="${target.classes.test.dir}">

6 http://ant.apache.org/ivy/

Listing 9.4 Adding the Ivy changes to the build file

 B

 C

 D

http://ant.apache.org/ivy

146 CHAPTER 9 Running JUnit tests from Ant
 <src path="${src.test.dir}"/>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 <pathelement location=”${junit.jar}”/>
 </classpath>
 </javac>
 </target>
 [...]

 <target name="test" depends="compile">
 <junit printsummary="yes" haltonerror="yes" haltonfailure="yes"
 fork="yes">
 <formatter type="plain" usefile="false"/>
 <test name="junitbook.example.TestDefaultController"/>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 <pathelement location="${target.classes.test.dir}"/>
 <pathelement location=”${junit.jar}”/>
 </classpath>
 </junit>
 </target>
 [...]

We start by declaring the ivy namespace B and calling the Ivy Ant task to retrieve the
dependencies listed in the ivy.xml file from the public repository C. After we retrieve
the junit.jar with Ivy, the archive is in the lib folder of our project. Next, we define the
junit.jar property to point to the JAR file we just downloaded D. We include the JAR
in the classpath of the javac task E and in the classpath of the junit task F. We no
longer need the junit.jar in the ${ANT_HOME}/lib folder, so we can delete it.

 The file ivy.xml defines the project dependencies as shown in listing 9.5.

<ivy-module version="2.0">
 <info organisation="junitbook" module="example-ivy"/>
 <dependencies>
 <dependency org="junit" name="junit" rev="4.6"/>
 </dependencies>
</ivy-module>

First, the root tag ivy-module B defines the version of Ivy we want to use (in this case
2.0). Then, the info tag C defines the organization and the module name for which
we’re defining dependencies. Finally, the dependencies nested element D is where
we specify our dependencies. Our module has only one dependency listed: JUnit.

 Invoking Ant again gives us the same result (figure 9.2) as when junit.jar was in
the ${ANT_HOME}/lib folder, but this time we see Ivy invoked and resolve the proj-
ect dependencies.

 In the next section, we try out another kind of report.

Listing 9.5 The ivy.xml file with the listed dependencies

 E

 F

 B
 C

 D

147Creating HTML reports
9.7 Creating HTML reports
The console output from figure 9.1 might be acceptable when you’re running tests
interactively, but you can’t use the output if you want to examine the results later. A
(cron) job or a continuous integration server (see chapter 11) might run the tests
automatically every day such that the console output might not be available.

 The junit task can produce XML documents detailing the results of various test
runs. Another optional Ant task, junitreport, transforms this XML into HTML using
an XSL stylesheet. The result is a report you can view with any web browser. Figure 9.3
shows a report page for the example project.

 Listing 9.6 shows the changes necessary (in bold) to the build file to generate
this report.

<project name="example" default="test">
[...]
 <property name="target.report.dir" location="${target.dir}/report"/>
[...]

Listing 9.6 Adding a JUnitReport task to the build file

Figure 9.2 Ant output with Ivy at work

 B

148 CHAPTER 9 Running JUnit tests from Ant
 <target name="test" depends="compile">
 <mkdir dir="${target.report.dir}"/>
 <junit printsummary="yes" haltonerror="yes" haltonfailure="yes"
 fork="yes">
 <formatter type="xml"/>
 <test name="junitbook.example.TestDefaultController"
 todir="${target.report.dir}"/>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 <pathelement location="${target.classes.test.dir}"/>
 </classpath>
 </junit>
 </target>
 <target name="report" depends="test">
 <mkdir dir="${target.report.dir}/html"/>
 <junitreport todir="${target.report.dir}">
 <fileset dir="${target.report.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report todir="${target.report.dir}/html"/>
 </junitreport>
 </target>
</project>

First, we define a property for the location where the report will be generated B and
then create that directory C. We modify the junit task to output the test results as

Figure 9.3 Ant JUnit HTML report

 C

 D

 E

 F
 G

 H

 I

 J

149Batching tests
XML D instead of plain text. The junitreport transforms the XML test results into an
HTML report using XSL. We change the junit task to create an XML report file in the
${target.report.dir} directory E and then create a new report target that generates
the HTML report F.

 We begin the report target by creating the directory where the HTML report will
be generated G. We call the junitreport task to create the report H. The task scans
the XML test results specified as an Ant fileset I and generates the HTML report to
our specified location J.

 The next step is learning how to batch tests. 7

9.8 Batching tests
Our current build file calls the junit task through the test target to invoke specific
test cases. Although this is fine for a small set of test classes, it may become unwieldy
for larger sets of classes. One way to remedy this situation is to group tests together in
a test suite and invoke the test suite from Ant.

 Alternatively, you can direct Ant to batch tests together by using wildcards to find
tests by class names. The batchtest element uses a fileset with wildcards to find test
classes, as shown in listing 9.7 (with changes from listing 9.4 in bold).

<project name="example" default="test">
 [...]
 <target name="test" depends="compile">
 <mkdir dir="${target.report.dir}"/>
 <property name="tests" value="Test*"/>
 <junit printsummary="yes" haltonerror="yes" haltonfailure="yes"
 fork="yes">
 <formatter type="plain" usefile="false"/>
 <formatter type="xml"/>

The future of JUnit reports
The Ant junit task produces XML output containing detailed results of the exe-
cution of JUnit tests. This task isn’t the only tool to produce XML documents of
this format; so does Maven’s Surefire plug-in. Several tools also consume this
format in addition to junitreport, like maven-surefire-reports, and different
CI servers.

As of Ant 1.7.1, the generated HTML reports don’t list skipped tests because Ant
doesn’t use JUnit 4 features. Note that in the previous version of JUnit there was
no special status for skipped tests. We should expect the XML schema for JUnit
reports to evolve, a topic currently under discussion on the Apache Ant7 wiki.

7 http://wiki.apache.org/ant/Proposals/EnhancedTestReports

Listing 9.7 Using batchtest to find test cases

 B

http://wiki.apache.org/ant/Proposals/EnhancedTestReports
Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

150 CHAPTER 9 Running JUnit tests from Ant
 <batchtest todir="${target.report.dir}">
 <fileset dir="${src.test.dir}">
 <include name="**/${tests}.java"/>
 <exclude name="**/Test*All.java"/>
 </fileset>
 </batchtest>
 <classpath>
 <pathelement location="${target.classes.java.dir}"/>
 <pathelement location="${target.classes.test.dir}"/>
 </classpath>
 </junit>
 </target>
 [...]
 <target name="clean">
 <delete dir="${target.dir}"/>
 </target>
</project>

The tests property defines B the class name pattern used by the batchtest element

C later in the listing. Defining this property allows us to override it from the com-
mand line or by another property definition. This allows us, for instance, to run a sin-
gle test case or provide a value that runs a narrower set of tests. This technique
provides us a shortcut to run the test for any given class we’re working on while leav-
ing the default value to execute the full set of tests. The following example executes
only the TestDefaultController test case:

ant –Dtests=TestDefaultController test

The batchtest element C makes the test target and our build more flexible. It’s
always a good practice to include a clean target to remove all build-generated files.
Doing so lets us build from first principles (in our case, Java source files), removing
potential side effects from obsolete classes. Typically, a dist (for distribution) target
generates all project distributable files and depends on the clean target.

 You should give thought to your test class names such that you can match them
using a reasonable pattern. Depending on your language background, you may
choose to prefix or postfix your class names with Test or TestCase, for example,
DatabaseAccessorTest.

Are automated unit tests a panacea?
In brief, no. Although automated tests can find a significant number of bugs, man-
ual testing is still required to find as many bugs as possible. In general, automated
regression tests catch 15–30 percent of all bugs found; manual testing finds the
other 70–85 percent.

Are you sure about that?
Some test-first enthusiasts are now reporting remarkably low numbers of bug
counts, approximately one to two per month or fewer. Formal studies need to sub-
stantiate these reports. Your mileage will definitely vary.

 C

151Summary
9.9 Summary
In this chapter, we introduced Apache Ant, one of the best tools for building Java
software. We looked at the basics of an Ant build file and described key tasks: javac
junit and junitreport. These tasks allow you to compile Java code, run JUnit tests,
and create HTML test reports. We also introduced Apache Ivy to manage with ease
your project’s JAR file dependencies. Ivy resolves and downloads JAR file dependen-
cies for your build.

 In the following chapters, we continue to explore the continuous integration par-
adigm with Maven, another tool for building software. We start with core Maven con-
cepts and explore two important plug-ins: maven-surefire and maven-surefire-
report. We also look at how Maven handles dependency management in compari-
son to Ivy.

Running JUnit tests
from Maven2

The conventional view serves to protect

 us from the painful job of thinking.

—John Kenneth Galbraith

In this chapter we discuss and reveal another common build system tool called
Maven. We show you how Maven differs from Ant. We also present a brief introduc-
tion to this build system, which will be useful if you’re new to it or need a way to
start your tests continuously.

 People sometimes come to Maven thinking that it will be something like Ant.
Once they discover that it’s totally different, they get frustrated. Don’t worry; you’re
not alone. This is why we spend the first few pages of this chapter explaining what’s
most essential in order to understand Maven: how it’s different from Ant. After

This chapter covers
■ Introduction to Maven
■ Dependency management the Maven way
■ Maven Surefire plug-in
■ Maven Surefire Report plug-in
152

153Maven’s features
that, we present some real-world examples of compiling your test cases and running
them as well as producing fancy reports.

 By the end of this chapter, you’ll know how to set up your environment on your
machine to build Java projects with Maven, including managing their dependencies,
executing JUnit tests, and generating JUnit reports.

10.1 Maven’s features
Once you’ve used Ant on several projects, you’ll notice that projects almost always
need the same Ant scripts (or at least a good percentage of them). These scripts are
easy enough to reuse through cutting and pasting, but each new project requires a bit
of fussing to get the Ant buildfiles working just right. In addition, each project usually
ends up having several subprojects, each of which requires you to create and maintain
an Ant buildfile. Maven (http://maven.apache.org/) picks up where Ant leaves off,
making it a natural fit for many teams. Like Ant, Maven is a tool for running other
tools, but Maven is designed to take tool reuse to the next level. If Ant is a source-
building framework, then Maven is a source-building environment.

 In order to understand better how Maven works, you need to understand the key
points (principles) behind Maven. Maven was designed to take the build systems to
the next level, beyond Ant. You need to become familiar with the things that the
Maven community didn’t like in Ant and how it tried to avoid them in designing
Maven, that is, the core reason for starting Maven as a whole new project.

 From the beginning of the Maven project, certain ground rules were in place for
the entire software architecture of the project. These rules aim to simplify develop-
ment with Maven and to make it easier for developers to implement the build system.
One of the fundamental ideas of Maven is that the build system should be as simple as
possible—software engineers should not spend a lot of time implementing the build
system. It should be easy enough to start a new project from scratch and then rapidly
begin developing the software, not spend valuable time designing and implementing
a build system.

 In this section we describe each of the core Maven principles in detail, and we
explain what they mean to us, from a developer’s point of view.

10.1.1 Convention over configuration

This feature is a software design principle that aims to decrease the number of config-
urations a software engineer needs to make, in favor of introducing a number of con-
ventional rules that the developers need to follow. This way you, as a developer, can
skip the tedious configuration required for every single project, and you can focus on
the more important parts of your work.

 Convention over configuration is one of the strongest principles of the Maven proj-
ect. As an example of its application, let’s look at the directory structure of the build
process. When the Maven project was started, some of the initial Maven developers
noticed that for every Ant buildfile, the person who writes the buildfile has to design

http://maven.apache.org

154 CHAPTER 10 Running JUnit tests from Maven2
the directory structure: declare the source directories, the build directories, and many
other directories needed for the build itself. And although the Ant community tries to
imply some directory names and directory structure, there’s still no official specifica-
tion (convention) of how a directory should be named. For instance, many people
declare the target.dir property to denote the directory that holds their compiled
classes, whereas others may be accustomed to using the build.dir property and it
seems unnatural to them to use target.dir. Also, many people place their source
code in the src/ directory, but others put it in the src/java/ directory. The Maven team
decided that instead of allowing the software engineers to choose the build structure
every time themselves, they’d introduce a convention for this. This resulted in what’s
now called the “Maven convention of directory structure.” With Maven, instead of
defining all the directories you need, they’re defined for you. For example, the src/
main/java/ directory is the Maven convention for where the Java code for the project
resides, src/main/test/ is where the unit tests for the project reside, target is the build
directory, and so on. And it isn’t just the directory structure. Later on when we discuss
the plug-ins themselves, you’ll see how every plug-in has a default state already
defined, so you don’t need to define it again.

 That sounds great, but aren’t we losing some of the flexibility of the project? What
if we want to use Maven, and our source code resides in another directory? Maven is
great at this. It provides the convention, but you still can, at any point, override the
convention and use the configuration of your choice.

10.1.2 Strong dependency management

This is the second key point that Maven introduced. At the time the project was
started, the de facto build system for Java projects was Ant. With Ant you have to dis-
tribute the dependencies of your project with the project itself. Maven introduced
the notion of a central repository—a location on the internet where all kinds of arti-
facts (dependencies) are stored. The Maven build tool resolves them by reading your
project’s build descriptor, downloading the necessary versions of the artifacts, and
then including them in the classpath of your application. This way you only need to
list your dependencies in the dependencies section of your build descriptor, as
shown here:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.5</version>
 </dependency>
 <dependency>
 <groupId>jmock</groupId>
 <artifactId>jmock</artifactId>
 <version>1.0.1</version>
 </dependency>
</dependencies>

155Maven’s features
Then you’re free to build the software on any other machine. There’s no need to bun-
dle the dependencies with your project and so forth.

 But Maven introduced also the concept of the local repository. This is a directory on
your hard disk (~/.m2/repository/ on UNIX and C:\Documents and Settings\<User-
Name>\.m2\repository\ on Windows) where Maven keeps the artifacts that it has just
downloaded from the central repository. Also, after you’ve built your project, your arti-
facts are installed in the local repository for later use by some other projects—simple
and neat.

10.1.3 Maven build lifecycles

Another strong principle in Maven is the build lifecycle. The Maven project is built
around the idea of defining the process of building, testing, and distributing a partic-
ular artifact. Maven projects can produce only one artifact. This way we can use Maven
for building the project’s artifact, or cleaning the project’s directory structure, or gen-
erating the project’s documentation. The activities we use Maven for define the three
built-in lifecycles of Maven:

■ Default—For generating the project’s artifact
■ Clean—For cleaning the project
■ Site—For generating the project’s documentation

Each of these lifecycles comprises several phases, and in order to pass through a cer-
tain lifecycle, the build must follow its phases.

 Here’s a list of all the phases of the default lifecycle:

■ Validate—Validate that the project is correct and all necessary information
is available.

■ Compile—Compile the source code of the project.
■ Test—Test the compiled source code using a suitable unit-testing framework.

These tests should not require the code to be packaged or deployed.
■ Package—Package the compiled code in its distributable format, such as a JAR.
■ Integration test—Process and deploy the package if necessary into an environ-

ment where integration tests can be run.
■ Verify—Run any checks to verify that the package is valid and meets quality

criteria.
■ Install—Install the package into the local repository for use as a dependency in

other projects locally.
■ Deploy—In an integration or release environment, copy the final package to the

remote repository for sharing with other developers and projects.

If you remember, with Ant we had targets with almost the same names. And yes, the
targets in Ant are the analogue of the phases in Maven, with one exception. In Ant
you write the targets and you specify which target depends on which other target.
With Maven, we see again the convention-over-configuration principle here. These

156 CHAPTER 10 Running JUnit tests from Maven2
phases are already defined for us in the order in which we listed them. And Maven
invokes these phases in a strict order: they get executed sequentially in the order
listed to complete the lifecycle. This means that if you invoke any of them, for exam-
ple, if you type

mvn compile

on the command line in your project’s home directory, Maven will first validate the
project and then try to compile the sources of your project.

 One last thing—it’s useful to think of all these phases as extension points. At any
moment you can attach additional Maven plug-ins to the phases and orchestrate the
order and the way these plug-ins are executed.

10.1.4 Plug-in-based architecture

The last feature of Maven that we’ll mention is its plug-in-based architecture. At the
beginning of this chapter, we said that Ant is a source-building framework and Maven
is a source-building environment. More specifically, Maven is a plug-in, execution,
source-building environment. The core of the project is small, but the architecture of
the project allows multiple plug-ins to be attached to the core, and so Maven builds an
environment where different plug-ins can get executed.

 Each of the phases in a given lifecycle has a number of plug-ins attached to that
phase, and Maven invokes them when passing through the given phase in the order in
which the plug-ins are declared. Here are some of the core Maven plug-ins:

■ Clean plug-in—Cleans up after the build
■ Compiler plug-in—Compiles Java sources
■ Deploy plug-in—Deploys the built artifact to the remote repository
■ Install plug-in—Installs the built artifact into the local repository
■ Resources plug-in—Copies the resources to the output directory for inclusion in

the JAR
■ Site plug-in—Generates a site for the current project
■ Surefire plug-in—Runs the JUnit tests in an isolated classloader
■ Verifier plug-in—Useful for integration tests; verifies the existence of certain

conditions

Apart from these core Maven plug-ins, there are also dozens of other Maven plug-ins
for every kind of situation you may need—WAR plug-in, Javadoc plug-in, AntRun plug-
in—you name it.

 Plug-ins are declared in the plugins section of your build configuration file,
for instance:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.cactus</groupId>

157Maven’s features
 artifactId>cactus.integration.maven2</artifactId>
 <version>1.8.1-SNAPSHOT</version>
 </plugin>
 </plugins>
 </build>

As you can see, every plug-in declaration specifies groupId, artifactId, and ver-
sion. With this the plug-ins look like dependencies, don’t they? Yes, they do, and
they’re handled the same way—they’re downloaded into your local repository the
same way dependencies are. When specifying a plug-in, the groupId and version are
optional parameters; if you don’t declare them, Maven will look for a plug-in with
the specified artifactId and one of the following groupIds: org.apache.maven.
plugins or org.codehaus.mojo. The version is optional. If you’re using a Maven
version pre-2.0.9, Maven will try to download the latest version available. But as of
Maven version 2.0.9, the versions of most plug-ins are locked down in the Super
POM, so it won’t download the latest version anymore. Locking down plug-in ver-
sions is highly recommended to avoid autoupdating and nonreproducible builds.

 Tons of additional plug-ins are available outside the Maven project but can be used
with Maven. The reason for this is that it’s extremely easy to write plug-ins for Maven.

10.1.5 The Maven Project Object Model

If you remember, Ant has a buildfile, by default named build.xml, that holds all of the
information for our build. In that buildfile we specify all the things that we want to
accomplish in the form of tasks and targets.

 What’s the analogue in Maven of Ant’s build.xml? Maven also has a build descrip-
tor that’s by default called pom.xml, shortened from Project Object Model (POM). In
contrast to Ant, in Maven’s project descriptor we don’t specify the things we want to
do; we specify general information for the project itself, as in listing 10.1.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.junitbook</groupId>
 <artifactId>example-pom</artifactId>
 <packaging>jar</packaging>
 <version>2.0-SNAPSHOT</version>
</project>

It looks simple, doesn’t it? But one big question arises at this moment: “How is even
Maven capable of building our source code with so little information?”

 The answer lies in the inheritance feature of the pom.xmls: every simple pom.xml
inherits most of its functionality from a Super POM. As in Java, where every object
inherits certain methods from the java.lang.Object object, the Super POM empow-
ers each of our pom.xmls with the Maven features.

 You see the similarity between Java and Maven. This analogue goes even further:
Maven pom.xmls can inherit from each other, just as in Java some classes can act as

Listing 10.1 Simple pom.xml

158 CHAPTER 10 Running JUnit tests from Maven2
parents for others. For instance, if we want to use the pom from listing 10.1 for our
parent, all we have to do is change its packaging value to pom. Parent and aggregation
(multimodule) projects can have only pom as a packaging value. We also need to
define in our parent the child modules, as shown in listing 10.2.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.junitbook</groupId>
 <artifactId>example-pom</artifactId>
 <packaging>pom</packaging>
 <version>2.0-SNAPSHOT</version>

 <modules>
 <module>example-module</module>
 </modules>
</project>

This listing is an extension of listing 10.1. We declare that this pom is an aggregation
module by declaring the package to be of pom type B and adding a modules section

C. The modules section lists all the child modules that our module has, by providing
the relative path to the project directory (example-module).

 Listing 10.3 shows the child pom.xml.

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.manning.junitbook</groupId>
 <artifactId>example-pom</artifactId>
 <version>2.0-SNAPSHOT</version>
 </parent>
 <artifactId>example-child</artifactId>
</project>

Remember that this pom.xml resides in the directory that the parent pom.xml has
declared (example-module).

 There are two things are worth noticing here. First, because we inherit from some
other pom, there’s no need to specify groupId and version for the child pom; Maven
expects they’re the same as the parent’s.

 Going with the similarity to Java, it seems reasonable to ask, “What kind of objects
can poms inherit from their parents?” Here’s a list of all the elements that a pom can
inherit from its parent:

■ Dependencies
■ Developers and contributors
■ Plug-in lists
■ Reports lists

Listing 10.2 Child modules for parent pom.xml

Listing 10.3 Pom.xml that inherits the parent pom.xml

 B

 C

159Setting up a Maven project
■ Plug-in executions with matching IDs
■ Plug-in configurations

And again, each of these elements specified in the parent pom get automatically speci-
fied in the child pom.

 We discuss the poms further in the upcoming sections.

10.2 Setting up a Maven project
Now that you’ve seen the differences between Ant and Maven, it’s time to move
on and start building our projects with Maven. But first, let’s examine the installa-
tion process.

Let’s navigate to the c:\junitbook2\ directory. This is our work directory, and here we
set up the Maven examples. Type the following on the command line:

mvn archetype:create -DgroupId=com.manning.junitbook

➥-DartifactId=maven-sampling -DarchetypeArtifactid=maven-artifact-mojo

After you press Enter and wait for appropriate artifacts to download, you should see a
directory named maven-sampling being created. If you look inside that directory, you
should see the directory structure being created, as shown in figure 10.1.

 What happened here? We invoked the maven-archetype-plugin from the com-
mand line and told it to create a new project from scratch with the given parameters.
As a result, this Maven plug-in created a new project with a new directory structure,
following the convention of the directory structure. Further, it created a sample
App.java class with a main method and a corresponding AppTest.java file that’s a unit
test for our application. Now, most likely, after looking at this directory structure,
you’re quite familiar with which files stay in src/main/java and which files stay in src/
test/java.

Installing Maven
Installing Maven is a three-step process:

1 Download the latest distribution from http://maven.apache.org/ and unzip/
untar it in the directory of your choice (for example, C:\maven on Windows or
/opt/maven on UNIX).

2 Define an M2_HOME environment variable pointing to where you’ve installed
Maven.

3 Add M2_HOME\bin (M2_HOME/bin on UNIX) to your PATH environment variable
so that you can type mvn from any directory.

You’re now ready to use Maven. The first time you execute a plug-in, make sure
your internet connection is on, because Maven will automatically download from
the web all the third-party JARs the plug-in requires.

http://maven.apache.org

160 CHAPTER 10 Running JUnit tests from Maven2
But it gets even more automated. The Maven plug-in also generated a pom.xml file
for us. Let’s open it and examine the different parts of the descriptor, shown in list-
ing 10.4.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.junitbook</groupId>
 <artifactId>maven-sampling</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>maven-sampling</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Listing 10.4 Pom.xml for the maven-sampling project

Figure 10.1
Directory structure after creating the project

http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org</url

161Setting up a Maven project
This is the build descriptor for our project. It starts with a global <project> tag with
the appropriate namespaces, inside which we place all of our components:

■ modelVersion—The model version of the pom being used. Currently the only
supported version is 4.0.0.

■ groupId—The group ID of our project. Notice that this is the value that we pro-
vided on the command line when invoking Maven. The groupId acts as the Java
packaging in the filesystem; it groups together different projects from one orga-
nization, company, group of people, and so on.

■ artifactId—The artifact ID of our project. Again, the value here is the one we
specified on the command line. The artifactId represents the name the proj-
ect is known by.

■ packaging—What kind of artifact packaging will our project use? We specify
here jar, but it also could be pom, ear, or war.

■ version—The current version of our project (or our project’s artifact). Notice
the –SNAPSHOT ending. This ending denotes that this artifact is still in develop-
ment mode; we haven’t released it yet.

■ dependencies—This section is used to list the dependencies.

Now that we have our project descriptor, let’s improve it a little, as shown in listing 10.5.
First, we need to change the version of the JUnit dependency, because we’re using 4.6,
and the one that the plug-in generated is 3.8.1. After that, we can make some additional
information in the pom.xml more descriptive, like adding a developers section. This
information not only makes the pom.xml more descriptive, but it will also be included
later on when we build the website.

<developers>
 <developer>
 <name>Petar Tahchiev</name>
 <id>ptahchiev</id>
 <organization>Apache Software Foundation</organization>
 <roles>
 <role>Java Developer</role>
 </roles>
 </developer>
 <developer>
 <name>Gary Gregory</name>
 <id>ggregory</id>
 <organization>Apache Software Foundation</organization>
 <roles>
 <role>Java Developer</role>
 </roles>
 </developer>
 <developer>
 <name>Felipe Leme</name>
 <id>felipeal</id>
 <organization>Apache Software Foundation</organization>

Listing 10.5 Additional metadata for the pom.xml

162 CHAPTER 10 Running JUnit tests from Maven2
 <roles>
 <role>Java Developer</role>
 </roles>
 </developer>
</developers>

Listing 10.6 continues the previous one, showing the organization, description,
and inceptionYear elements.

<description>
 "JUnit in Action II" book, the sample project for the "Running Junit
 tests from Maven" chapter.
</description>
<organization>
 <name>Manning Publications</name>
 <url>http://manning.com/</url>
</organization>
<inceptionYear>2008</inceptionYear>

Now let’s move on and start developing our software. We want to use our favorite Java
IDE: Eclipse or IntelliJ IDEA. No problem—Maven offers additional plug-ins to import
the project into our favorite IDE. For instance, we use Eclipse to show you how this
import happens. Again, open a terminal and navigate to the directory that contains
your project descriptor (pom.xml). Once there, type the following and hit Enter:

mvn eclipse:eclipse -DdownloadSources=true

This will invoke the maven-eclipse-plugin, which, after downloading the necessary
artifacts, will produce the two files (.project and .classpath) that Eclipse needs in
order to recognize your project as an Eclipse project. The downloadSources parame-
ter that we specify in the command line is optional. By using it we instruct the plug-in
to also download source attachments. You can also download the Javadoc attachments
by setting the optional downloadJavadocs parameter to true on the command line.
Now you can import your project into Eclipse and examine it; you’ll notice that all of
the dependencies that are listed in the pom.xml file are now added to your build-
path. Amazing, isn’t it?

 To continue, let’s generate some documentation for the project. But wait a sec-
ond, how are we supposed to do that? We don’t have any files to generate the docu-
mentation from. This is another one of Maven’s great features—with the little
configuration and description that we have, we can produce a fully functional website
skeleton. Type

mvn site

on the command line where your pom.xml is. Maven should start downloading its
plug-ins, and after their successful installation, it will produce the nice website you see
in figure 10.2.

Listing 10.6 Description elements for the pom.xml

http://manning.com/</url

163Introduction to Maven plug-ins
This website is generated in Maven’s build directory—another convention. Maven
uses the target/ directory for all the needs of the build itself. The convention contin-
ues even beneath this directory: source code is compiled in the target/classes/ direc-
tory, and the documentation is generated in target/site/.

 After you examine the project, you’ll probably notice that this website is more like
a skeleton of a website. That’s true, but remember that we entered only a small
amount of data to begin with. We could enter more data and web pages in the src/site
directory, and Maven will include it in the website, generating full documentation.

10.3 Introduction to Maven plug-ins
So far, so good. You’ve seen what Maven is and how to use it to start a project from
scratch. You’ve also seen how to generate the project’s documentation and how to
import our project in Eclipse.

 To continue, we can get the source code from the first part of the book and place
it in the src/main/java directory, where Maven expects it to be. Also, we can get the
tests for the sampling project and place them in the src/test/java directory (again a
convention). Now it’s time to invoke Maven and instruct it to compile the source code
and tests and also to execute the tests.

 But first we need to clean the project from our previous activities:

mvn clean

Figure 10.2 Maven produces nice website documentation for the project.

164 CHAPTER 10 Running JUnit tests from Maven2
This will cause Maven to go through the clean phase and invoke all of the plug-ins
that are attached to this phase, in particular the maven-clean-plugin, which will
delete the target/ directory, where our generated site resides.

10.3.1 Maven Compiler plug-in

Like any other build system, Maven is supposed to build your projects—compile your
software and package in an archive. As we mentioned at the beginning of the chapter,
every task in Maven in done by an appropriate plug-in, the configuration of which
happens in the <plugins> section of our project descriptor. To compile your source
code, all you need to do is invoke the compile phase on the command line:

mvn compile

This will cause Maven to execute all of the plug-ins that are attached to the compile
phase (in particular it will invoke the maven-compiler-plugin). But before invok-
ing the compile phase, as already discussed, Maven will go through the validate
phase and will download all of the dependencies that are listed in the pom.xml and
include them in the classpath of the project. Once the compilation process is com-
pleted, you can go to the target/classes/ directory, and you should see the compiled
classes there.

 Let’s move on and try to configure the Compiler plug-in. Notice the italics in
the previous sentence? Yeah, that’s right—we’ll escape from the convention-over-
configuration principle and will try to configure the Compiler plug-in.

 So far, we’ve used the conventional Compiler plug-in, and everything worked well.
But what if we need to include the –source and –target attributes in the compiler
invocation to generate class files for a specific version of the JVM? We should add the
lines in listing 10.7 to the <build> section of our buildfile.

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.4</source>
 <target>1.4</target>
 </configuration>
 </plugin>
 </plugins>
</build>

This is a general way to configure each one of your Maven plug-ins; you enter a
<plugins> section into your <build> section. There you list each of the plug-ins that
you want to configure. In our case, it’s the maven-compiler-plugin. You need to
enter the configuration parameters in the plug-in’s configuration section. You can
get a list of parameters for every plug-in from the Maven website.

Listing 10.7 Configuring the maven-compiler-plugin

165Introduction to Maven plug-ins
 As you can see in the declaration of the maven-compiler-plugin in the previous
listing, we haven’t set the groupId parameter. That’s because the maven-compiler-
plugin is one of the core Maven plug-ins that has a org.apache.maven.plugins
groupId, and as we mentioned at the beginning of the chapter, plug-ins with such
a groupId can skip it.

10.3.2 Maven Surefire plug-in

Ant uses the javac task to compile the tests that we’ve selected, the same way Maven uses
the maven-compiler-plugin to compile all of the source code that’s in src/main/java/.
The same thing happens with the process of unit testing your project; Ant uses the junit
task and executes the test cases that we’ve selected, whereas Maven uses—guess what?—
a plug-in. The Maven plug-in that executes the unit tests is called maven-surefire-plugin.
Notice the italics in the previous sentence; the Surefire plug-in is used to execute the
unit tests for your code, but these unit tests aren’t necessarily JUnit tests. There are also
other frameworks for unit testing, and the Surefire plug-in can execute their tests, too.

 The conventional way to start the maven-surefire-plugin is simple. All you need to
do is invoke the test phase of Maven. This way Maven will first invoke all of the phases
that are supposed to come before the test phase (validate and compile phases) and
then invoke all of the plug-ins that are attached to the test phase, thus invoking the
maven-surefire-plugin. So by calling

mvn clean test

Maven first cleans the target/ directory, then compiles the source code and the tests,
and finally executes all of the tests that are in the src/test/java directory (remember
the convention). The output should be similar to that shown in figure 10.3.

 That’s great, but what if we don’t want to execute all of our tests? What if we want
to execute only a single test case? Well, this is something unconventional, so we need to
configure the maven-surefire-plugin to do it. Hopefully there’s a parameter for the
plug-in that allows us to specify a pattern of test cases that we want to be executed. The
configuration of the Surefire plug-in is done in the same way as the configuration of
the Compiler plug-in, and it’s shown in listing 10.8.

<build>
 <plugins>
 [...]
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <includes>**/Test*.java</includes>
 </configuration>
 </plugin>
 [...]
 </plugins>
</build>

Listing 10.8 Configuration of the maven-surefire-plugin

166 CHAPTER 10 Running JUnit tests from Maven2
As you can see, we’ve specified the includes parameter to denote that we want only the
test cases matching the given pattern to be executed. Yes, but how do we know what
parameters the maven-surefire-plugin accepts? No one knows all the parameters by
heart, but you can always consult the maven-surefire-plugin documentation (and
any other plug-in documentation) on the Maven website (http://maven.apache.org/).

10.3.3 HTML JUnit reports with Maven

As you saw in the previous chapter, Ant has a task for generating nice reports out of
JUnit’s XML output. The same thing applies for Maven. And because Maven, by
default, produces plain and XML-formatted output (by convention it goes into the tar-
get/surefire-reports directory), we don’t need any other configuration to produce
HTML Surefire Reports for the JUnit tests.

 As you’ve already guessed, the job for producing these reports is done by a Maven
plug-in. The name of the plug-in is maven-surefire-report-plugin, and by default,
it isn’t attached to any of the core phases that we already know (many people don’t
need HTML reports every time they build their software). This means that we can’t

Figure 10.3 Execution of JUnit tests with Maven2

http://maven.apache.org

167The bad side of Maven
invoke it by running a certain phase (as we did with both the Compiler plug-in and
the Surefire plug-in), but instead we have to call it directly from the command line:

mvn surefire-report:report

When we do so, Maven will try to compile the source files and the test cases and then
invoke the Surefire plug-in to produce the plain text and XML-formatted output of
the tests. After that the Surefire Report plug-in will try to transform all of the XML
reports from the target/surefire-reports/ directory into an HTML report that will be
placed in the target/site directory (remember that the convention for the directory is
to keep all of the generated documentation of the project, and the HTML reports are
considered documentation).

 If you try to open the generated HTML report, it should look something like the
one shown in figure 10.4.

 In the next section, we cover some of Maven’s weaker points.

10.4 The bad side of Maven
So far, we’ve discussed Maven as the tool that’s going to take the place of Ant. But as
with all other things in life, it’s not all a bed of roses. Maven has its bad sides, too.
Before you get too excited, just think about it. Maven has been out since 2002, and
still Ant is the de facto standard for building software.

Figure 10.4 HTML report from the Maven Surefire Report plug-in

168 CHAPTER 10 Running JUnit tests from Maven2
 All of the people who’ve used Maven agree that it’s easy to start up with it. And the
idea behind the project is amazing. But things seem to break when you need to do
some of the unconventional things.

 What’s great about Maven is that it will set up a frame for you and will constrain
you to think inside that frame—to think the Maven way and do things the Maven way.
When you work with Maven for a certain period of time, you’ll inevitably need to copy
a file from one place to another. We think you’ll be surprised to see that there’s no
copy plug-in in Maven, in contrast with Ant, which has the copy task. You have to deal
with the situation, and if you investigate further and think “the Maven way,” it may
turn out that you never needed to copy that file.

 In most cases Maven won’t let you do any nonsense. It will restrict you and show
you the way things need to be done. Ant works the other way: it’s a powerful tool, and
you can do whatever you need to do. But it can be dangerous in inappropriate hands.
And again, it’s up to you to decide which of these tools you want to use. Some compa-
nies hire build engineers, who are considered to have the appropriate knowledge, so
for them Ant is no danger at all—it’s just a powerful tool.

 To finish this chapter we’ll tell you a story. We have a friend who once had a job
interview.

 “Well, is it possible for Ant to do …?” he was asked.
 Without even letting the interviewer to finish his sentence, my friend replied,
 “Yes, it is.”
 We’re not sure what his answer would have been if he’d been asked about Maven.

10.5 Summary
In this chapter we briefly introduced you to what Maven is and how to use it in a devel-
opment environment to build your source code. We discussed in detail all of the fea-
tures of Maven that make it unique compared to any other build system. We also
looked at two of Maven’s plug-ins in detail: the Compiler plug-in and the Surefire
plug-in. With this information you should be able not only to start and execute your
tests but also to produce nice HTML reports of the test results.

 In the next chapter we close the automation part of the book, by introducing
different continuous integration build tools, such as CruiseControl and Hudson.
We show you the benefits of using such tools and also how to install and configure
these tools.

Continuous
integration tools

Life is a continuous exercise in

creative problem solving.

—Michael J. Gelb

In the two previous chapters we described ways to execute our tests automatically
by using tools such as Ant and Maven. Our tests were then triggered by the build.
Now it’s time to go to the next level: automatically executing the build and the tests
at a regular interval by using some other popular tools. In this chapter we intro-
duce the paradigm of continuous integration and show you how to schedule your
project to be built automatically in a certain timeframe.

11.1 A taste of continuous integration
Integrating the execution of JUnit tests as part of your development cycle—code :
run : test : code (or test : code : run : test if you’re test-first inclined)—is an important

This chapter covers
■ Practicing continuous integration
■ Introduction to CruiseControl
■ Introduction to Hudson
169

170 CHAPTER 11 Continuous integration tools
concept in the sense that JUnit tests are unit tests, that is, they test a single component
of your project in isolation. A great many of the projects out there, however, have mod-
ular architecture, where different developers on the team work on different modules of
the project. Each developer takes care of developing their own module and their own
unit tests to make sure their module is well tested.

 Modules interact with each other, so we need to have all the different modules
assembled to see how they work together. In order for the application to be test
proven, we need another sort of test: integration or functional tests. As you already
saw in chapter 3, these tests test the interaction between different modules.

 But almost always integration tests are time consuming, and as a single developer
you may not have all the modules built on your machine. Therefore, it makes no sense
to run all the integration tests during development. That’s because at development
we’re focused on only our module, and all we want to know is that it works as a single
unit. During development we care mostly that if we provide the right input data, the
module not only behaves as expected but also produces the expected result.

 Test-driven development taught us to test early and test often. Executing all our
unit, integration, and functional tests every time we make a small change would slow
us immensely. To avoid this, we execute at development time only the unit tests—as
early and as often as reasonable. What happens to the integration tests?

11.1.1 Continuous integration testing

Integration tests should be executed independently from the development process.
The best way is to execute them at a regular interval (say, 15 minutes). This way, if
something gets broken, you’ll hear about it within 15 minutes, and there’s a better
chance for you to fix it.

DEFINITION1 Continuous integration (CI)—Continuous integration is a software
development practice whereby members of a team integrate their work fre-
quently. Usually each person integrates at least daily, leading to multiple inte-
grations per day. Each integration is verified by an automated build (including
a test) to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and allows
for the development of cohesive software more rapidly.

To get the integration tests executed at a regular interval, we also need to have the
modules of the system prepared and built. After the modules are built and the inte-
gration tests are executed, we’d like to see the results of the execution as quickly
as possible.

1 This definition is taken from a marvelous article by Martin Fowler and Matthew Foemmel. It can be found
here: http://www.martinfowler.com/articles/continuousIntegration.html.

http://www.martinfowler.com/articles/continuousIntegration.html

171A taste of continuous integration
 We need a software tool to do all of the following steps automatically:

1 Check out the project from the source control system.
2 Build each of the modules and execute all of the unit tests to verify that the dif-

ferent modules work as expected in isolation.
3 Execute integration tests to verify that the modules integrate with each other in

the expected way.
4 Publish the results from the tests executed in step 3.

Several questions may arise at this point. First, what’s the difference between a human
executing all these steps and a tool doing so? The answer is, there’s no difference and
there shouldn’t be! Apart from the fact that no one can bear doing such a job, if you
take a close look at the first item in the list, you’ll see that we check out the project
from the source control system. We do that as if we were new members of the team
and just started with the project—with a clean checkout in an empty folder. Then,
before moving on, we want to make sure that all of the modules work properly in iso-
lation, because if they don’t, it makes little sense to test whether they integrate well
with the other modules. The last step in the proposed scenario is to notify the devel-
opers about the test results. The notification could be done with an email, or an ICQ
message, or by publishing the reports from the tests on a web server.

 This overall interaction is shown in figure 11.1. The CI tool interacts with the
source control system to get the project (1). After that it uses the build tool that your
project is using, builds your project, and executes different kinds of tests (2 and 3).
Finally (4), the CI tool publishes the results and blows the whistle so that everybody
can see them.

 The four steps are general and could be greatly improved. For instance, it would
be better to check to see if any changes have been made in the source control system

Figure 11.1 Continuous integration scheme

172 CHAPTER 11 Continuous integration tools
before we start building. Otherwise, we waste the CPU power of our machine, knowing
for sure that we’ll get the same results.

 Now that we agree that we certainly need a tool to continuously integrate our proj-
ects, let’s see which open source solutions we might want to use (there’s no sense in
reinventing the wheel when there are good tools already made for us).

11.2 CruiseControl to the rescue
The first open source2 project we’re going to look at is called CruiseControl (CC)
(http://cruisecontrol.sourceforge.net/) and is currently the de facto standard when it
comes to continuous build process. This project was created by a company called
ThoughtWorks and was the first continuous integration server available.

11.2.1 Getting started with CruiseControl

The first thing to do before we can start building our code continuously is to manage
our resources. By this we mean finding a suitable host machine for our CruiseControl
server. We need to manage the resources we have in such manner as to dedicate a sep-
arate machine to continuous integration. We may not need this at the beginning, but
with time our project will get bigger, and the CI build will take longer, so it’s always
better to have a separate machine for the integration build.

 Another good practice is to create an ad hoc user on the host machine for the CC
server. This user will have the right permissions to start the continuous server and exe-
cute the builds.

 Once you find the host for the CruiseControl server, it’s time to install it. The
installation procedure is pretty simple. You go to the CruiseControl website (http://
cruisecontrol.sourceforge.net/) and download the zip distribution of your choice. As
this book is being written, the latest version of CruiseControl is 2.8.3, and we use the
binary distribution.

 Once you download the distribution, you need to extract it into a folder (probably
the best place to extract the zip is in the home directory of the CC user you just cre-
ated), which from now on we refer to as $CC_HOME. In the $CC_HOME directory, you
should see the content we shown in table 11.1.

 There are several things to notice in the folder structure within the $CC_HOME
folder. As you can see, the CruiseControl package comes with an Apache Ant distribu-
tion. But this doesn’t mean that you can’t use Maven as a build system. You can use
whichever one you like best. We talk further on this topic later on.

 Another thing that’s worth mentioning is the projects folder. This folder is where
you store the projects you want to build continuously. If you look in that folder you’ll
see a sample project called connectfour. This is a checked-out project, so before mov-
ing on it’s good to take a brief look at it.

2 The CruiseControl framework is distributed under its own BSD-style license. The software is an OSI-certified
open source solution.

http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

173CruiseControl to the rescue
Now that we’ve found a host for our CruiseControl installation and we’ve seen how
the project is structured, let’s start using it by setting up a project to build.

11.2.2 Setting up a sample project

Setting up a project in CruiseControl is straightforward. You need to do only
three things:

■ Check out your project in the projects folder.
■ Configure CruiseControl for the project’s build.
■ Start CruiseControl.

Let’s look at these steps one by one.
 Usually we keep the source in a central repository using a source control system,

and that system has responsibility for managing the version of your software. If you’re
using Subversion as your revision control system, you can easily check out your project
by first navigating to the $CC_HOME\projects folder and then executing the following
command there:

svn co http://url.of.your.repository.here/ theNameOfMyProject

You need to specify the URL of your source repository and also the name of the folder
in which to check out the project. Then Subversion will check out a local copy of your
project in the theNameOfMyProject folder.

11.2.3 The CruiseControl config file explained

Now that we have the project checked out in the projects folder, it’s time to configure
CruiseControl to build it the way we want. The configuration itself is done with a file

Table 11.1 Default content of the $CC_HOME folder

File/folder Used for

apache-ant-distribution Distribution of the Apache Ant project that comes bundled with the
CruiseControl server distribution. You could choose to use this distri-
bution or any later version.

docs Documentation of the CruiseControl project.

lib Various third-party libraries for the project.

logs The logs of the continuous builds.

projects The projects you build continuously. By default there’s a sample proj-
ect already set up in this folder called connectfour.

webapp Used to store a GUI to the build server.

config.xml The main configuration file of CruiseControl.

cruisecontrol script This .bat or .sh script (depending on the architecture you’re using) is
used to start CruiseControl.

http://url.of.your.repository.here

174 CHAPTER 11 Continuous integration tools
called config.xml. You can find the config script in the $CC_HOME folder, and if you
look at it, you should see something like listing 11.1.

<cruisecontrol>
 <project name="connectfour">

 <listeners>
 <currentbuildstatuslistener
 file="logs/${project.name}/status.txt"/>
 </listeners>

 <bootstrappers>
 <antbootstrapper
 anthome="apache-ant-1.7.0"
 buildfile="projects/${project.name}/build.xml"
 target="clean" />
 </bootstrappers>

 <modificationset quietperiod="30">

 <!-- touch any file in connectfour project to trigger a build -->
 <filesystem folder="projects/${project.name}"/>

 </modificationset>

 <schedule interval="300">
 <ant anthome="apache-ant-1.7.0"
 buildfile="projects/${project.name}/build.xml"/>
 </schedule>

 <log>
 <merge dir="projects/${project.name}/target/test-results"/>
 </log>

 <publishers>
 <onsuccess>
 <artifactspublisher
 dest="artifacts/${project.name}"
 file="projects/${project.name}/target/${project.name}.jar"/>
 </onsuccess>
 </publishers>

 </project>
</cruisecontrol>

This config file describes the build for the connectfour project. We’ll walk through it
and explain what the different parts mean, so that later you can modify the script with
your project’s configurations.

 We start with a global cruisecontrol tag b, which is required, and inside that
global tag we list all the projects we want to build C. We can have multiple projects
being built, but that means that we must give all the projects a distinct name (using
the name attribute of the project tag).

Listing 11.1 CruiseControl’s config.xml

 B
 C

 D

 E
 F

 G

 H

 I

 J

175CruiseControl to the rescue
 The listeners element D is used mainly to enlist different pluggable listener
instances. These listeners are notified of every project build event (like the start or
end of the project). For instance, in our config.xml we define a currentbuild-
statuslistener, which we use to write the project’s statuses in a file, specified by
the file attribute.

 Listeners in CruiseControl are interesting creatures, so we’d like here to spend a
few lines on them. As you’ve probably noticed, building the project on a regular
schedule wastes a lot of resources. CruiseControl is smart in that it doesn’t fire a new
build unless it detects some changes in the source control system. Otherwise, the
build would be pointless, because we’d get the same results. But how do we distinguish
whether the CruiseControl server was up and skipped the build because there were no
changes in the source control system or the server was down? The solution is the lis-
teners. You can configure CruiseControl’s listeners to log everything in a file, some-
where on the filesystem. The upside is that the events that activate the listeners are
triggered regardless of the state of the source control system. This way you can keep
track of whether a build was attempted.

 The next thing in our config.xml is the bootstrappers element E. This is a con-
tainer element to define some actions that need to be taken before the build is exe-
cuted. Again, the bootstrappers are run regardless of whether a build is necessary or
not. In our config file we’ve specified an antbootstrapper F that will invoke the
clean target of our project’s build descriptor and will clean all the resources we’ve
used during the previous build.

 The modificationset element G defines the sets of files and folders that Cruise-
Control will monitor for changes. One thing to remember here is that the build is
attempted only when a change is detected on any of the sets listed in the modifica-
tionset element.

 The schedule element H is the one that schedules the build. The interval
parameter specifies the build time interval (in seconds), and inside the schedule ele-
ment we list the type of build system we’re using. We need to specify the home folder
of the build system and also the buildfile to execute. In our config file we’ve specified
Ant, but you can use Maven without any problems as well.

 The log section I is optional and is used to specify where the logs of the execu-
tion should be stored. The merge element inside it tells CruiseControl which logs of
the build execution are valuable and should be stored in the log directory of the
CruiseControl execution. In our example, we only care about the .xml files from the
JUnit execution, so we’re going to store them in the log folder.

 The last section is the publishers section J, and it’s used to make the final steps
of the scheduled build. The same ways the bootstrappers are executed every time
before the build, the publishers are executed every time after the build, regardless of the
result of the build. In publishers we can specify what whistles are blown as the build
finishes. It could be sending an email, publishing the produced artifacts somewhere
on the internet, or posting a message on the Jabber Messenger. In the example shown

176 CHAPTER 11 Continuous integration tools
previously, we publish the result from the build (the .jar file from the target folder)
into the artifacts folder. We do that only if the result from the execution is successful
(see the onsuccess element).

 So far, so good—we’re able to start CruiseControl, and according to the config-
uration in the listing, it will build our project every 300 seconds (if there’s a change
in the source control system). So let’s do it. Navigate to the $CC_HOME folder and
start the CruiseControl server by issuing the following command:

cruisecontrol.bat

Or in case of UNIX,3 execute

./cruisecontrol.sh

CruiseControl will be executed and will look for the config.xml file to read. If you’ve
done everything right, after execution you should see something similar to figure 11.2.

 Now it’s time to make a change in the repository, and hopefully after 300 seconds
you’ll see the build being executed again.

 Here’s an interesting question: how often should you build your projects? This is a
tough question, and it all depends on you and on the time you need to make a new
build. It makes little sense to make a build every minute when you need more than a
minute to execute the build itself. Keep in mind that this is a book about software test-
ing, and we all propagate a lot of testing, using not only JUnit but also all kinds of inte-
gration and functional testing tools. This means that production builds tend to be
time consuming.

3 You need to check to make sure that the .sh script has executable modifiers set.

Figure 11.2 Executing CruiseControl for the first time

177CruiseControl to the rescue
CruiseControl also provides a way to control your scheduled builds through a nice
GUI, by starting a Jetty instance. By default, this Jetty instance is started on port 8080,
but you can change it (in case that port is already taken). To do so you need to
change the port property in your jetty.xml file in the etc folder. For our purposes we
start CC on port 8888. You can check the GUI by visiting http://localhost:8888/
cruisecontrol/ in a browser. You should be able to see something like the screen dis-
played in figure 11.3. As you can see, there some nice details on how many builds
were iterated, some detailed statistics on how many of them failed, and, of course, the
JUnit logs. There’s also an RSS feed that you could subscribe to, to get the results
from the execution.

 Let’s move on. Some things are working, but currently the way they are doesn’t
give us much data. If we look in the console or the GUI, we can see that the build is
going well, but it’s a tedious task to look there all the time. What if we had some way to
get the results from the execution directly into our email or, even better, get the email
from CruiseControl only in case things go bad?

 This is possible, and all we have to do is add another publisher in our config.xml.
The section we want to add is shown in listing 11.2.

<htmlemail
 mailhost="your.company.smtp.host"
 returnaddress=”cruisecontrol@yourcompany.com”
 buildresultsurl="http://localhost:8888/buildresults/connectfour/"
 css="/home/peter/my-very-own-css/cruisecontrol.css"
 logdir="logs/connectfour">
 <map alias="developers" address="connectfour-team@mycompany.com" />
 <map alias="manager" address="boss@mycompany.com" />

Listing 11.2 CruiseControl’s htmlemail notification

Figure 11.3 CruiseControl control panel in the browser

 B C

 D

 E

http://localhost:8888/cruisecontrol/
mailto:cruisecontrol@yourcompany.com%E2%80%9D
http://localhost:8888/buildresults/connectfour
mailto:team@mycompany.com
mailto:boss@mycompany.com
http://localhost:8888/cruisecontrol/

178 CHAPTER 11 Continuous integration tools
 <always address="manager" />
 <failure address="developers" reportWhenFixed="true" />
</htmlemail>

The htmlemail publisher defines the notification emails to be sent. We start by
defining the mailhost to use for sending the emails B and also from what address
the emails are coming C. These two, along with the buildresultsurl parameter (the
location at which our build results reside), are required. All the rest of the parame-
ters are optional. We’re able to specify a custom CSS stylesheet D and the path to our
logs E.

 The last touch would be to create aliases to which persons the notifications should
go. We use the map element to map the alias to an email. After that, we specify on what
occasion we want those guys to receive email notifications. By default, CruiseControl
delivers notification on both success and failure. But that’s too much information for
the development team, and that’s why we’ve listed them to receive only emails on fail-
ure and when the problems get fixed.

 Now it’s time to restart the CruiseControl server and break the build on purpose.
Commit something that’s breaking the build! In only 300 seconds, you should get an
email, looking like the one shown in figure 11.4.

 As you can see, the report gives you information on not only which JUnit test failed
but also the last guy to make a commit in the source control system. It’s pretty easy to
determine which member of the team gets the blame for breaking the integration.

 CruiseControl has a pluggable architecture, and as you saw, you can plug different
listeners, or bootstrappers, to do things before, during, or after the build execution.
You can also specify different publishers for different ways of notifying the results
from the build execution. Along with the htmlemail method we already covered,
there’s a publisher to send an instant message on Yahoo! Messenger or on Jabber Mes-
senger or by posting the results on a blog and collecting them through an RSS feed.

Figure 11.4 Email notification from CruiseControl server

179Another neat tool—Hudson
Let’s move on and take a look at another continuous integration server called Hud-
son. After we’ve covered both of them, you can compare them and choose whichever
one you want to use.

11.3 Another neat tool—Hudson
As we mentioned in the beginning of the chapter, CruiseControl was probably one of
the first continuous integration servers available. But there are a whole bunch of other
software tools out there, trying to compete with CruiseControl by introducing some
interesting new features. Some of those tools aren’t even free (like AntHill Pro, Hud-
son, or Cruise4), and those include not only the product you purchase but also training
and support.

 For the sake of completeness, we need to cover another tool. This way you can
choose whichever tool you like. Remember, your software quality will improve not
from the tool you choose to use but rather from the fact that you decided to practice
continuous integration!

11.3.1 Introducing Hudson

Hudson (http://hudson-ci.org/) is an open source project for continuous build. Like
any other software for continuous build, it’s based on the idea of being able to contin-
uously poll the source code from the source control system and, in case it detects
changes, to fire up a build. Why do we cover it in this chapter? First, because it has
become popular, and second, because it’s very different from CruiseControl.

11.3.2 Installation

Before installing Hudson, make sure you have J2SE version 1.5 or higher already
installed. Also make sure your JAVA_HOME environment variable points to where you’ve
installed Java.

 The installation procedure itself is easy. You go to the project’s website and down-
load the latest version of Hudson. At the time this book is being written, the latest ver-
sion is 1.352. The Hudson distribution comes as a single WAR file, as opposed to
CruiseControl, where the distribution is a zip. You don’t need to extract the WAR file,
because Hudson comes with a Winstone servlet container. You can start the server
from the command line with the following command:

java –jar hudson.war --httpPort=8888

Note first that we start Hudson on a port other than 8080 (simply because the exam-
ples in the book require this port to be free), and second, if you start Hudson this way,
all of your logs will go to the console.

 In order to start using the server, you need to navigate to http://localhost:8888/. If
no errors occur, you should see something similar to what is shown in figure 11.5.

4 Cruise and CruiseControl aren’t the same! Although they both originated from the same company, Thought-
Works, CruiseControl was open sourced and is free to use. Cruise is still commercial software.

http://hudson-ci.org
http://localhost:8888

180 CHAPTER 11 Continuous integration tools
There’s also a way to specify different command-line parameters, such as the one to
redefine the port on which the server is started or the root under which the applica-
tion is started.

 Also, if you don’t want to use the Winstone servlet container, you can use any other
servlet container you want. If you stick with that solution, you’ll be forced to follow the
installation procedures specific to the servlet container you use.

11.3.3 Configuring Hudson

Hudson’s advantage over CruiseControl is easier configuration, which is done
through the web interface. Once you’ve installed Hudson, it’s time to start the config-
uration. Open a browser and navigate to http://localhost:8888/. You should see the
Hudson welcome screen, and there should be a Manage Hudson link on the left side.
Click it, and you’ll be given a list of additional links leading to the parts of the installa-
tion you want to configure. Click Configure System, and it will open a web page simi-
lar to the one shown in figure 11.6.

 As you already saw, Hudson, in contrast to CruiseControl, comes with no Ant
installation, so the tool needs to know where you’ve installed Ant, Maven, JDK, and
the like. You need to specify this information on the configuration page shown in
figure 11.6.

 The first line on the configuration page is Home Directory. The home directory of
Hudson is an interesting creature, so we devote a subsection to it.

HUDSON HOME DIRECTORY

The home directory of Hudson is used to maintain the source, perform builds, and
hold some archives. By default it’s located in $USER_HOME/.hudson ($USER_HOME
is interpreted as /home/<username> in UNIX systems and as C:\Documents and
Settings\<username>\ in Windows).

Figure 11.5 Hudson initial startup screen

http://localhost:8888

181Another neat tool—Hudson
You can change the default location of the Hudson home directory either by set-
ting the HUDSON_HOME environment variable or by setting the HUDSON_HOME servlet-
container property.

 If you take a sneak peek in the HUDSON_HOME directory, you should see a folder
structure similar to the one shown in listing 11.3.

[HUDSON_HOME]
 +- config.xml (hudson root configuration)
 +- fingerprints (stores fingerprint records)
 +- plugins (stores plugins)
 +- jobs
 +- [JOBNAME] (sub directory for each job)
 +- config.xml (job configuration file)
 +- workspace (working directory for the version control
 system)
 +- latest (symbolic link to the last successful build)
 +- builds
 +- [BUILD_ID] (for each build)
 +- build.xml (build result summary)
 +- log (log file)
 +- changelog.xml (change log)

Inside the home directory, Hudson keeps a configuration file B, various plug-ins C,
and all the jobs that it runs D. The jobs, as they’re known in Hudson, are different
projects that you build. Each job can have multiple builds, so you can easily follow
which one failed and the cause for the failure.

 Moving forward in the configuration page, there are also some options to specify
the path to your Ant installation (in case the project you want to build uses Ant) or

Listing 11.3 Hudson home directory folder structure

Figure 11.6 Hudson configuration screen

 B

 C

 D

182 CHAPTER 11 Continuous integration tools
your Maven installation (in case your project is being built by Maven). You can also
specify a JDK installation, a CVS installation, and email notification installations (such
as the email server, username, and password). Take note here that you don’t specify
the path to your build.xml files, but instead you point to the place where Ant was
installed, so that later on Hudson can to talk to that Ant installation and issue the
ant –f build.xml command.

11.3.4 Configuring a project in Hudson

Now that you’ve configured Hudson to find the installations of Ant, Maven, and the
others, you can move on and configure a new job. To configure a new job with Hud-
son, first navigate to the main screen and select the New Job link from the list on the
left side. After that you’ll be presented with a sample form to fill in. You need to spec-
ify a name for the job, and make sure you choose one of the presented build options.
If your build is Maven2-based, make sure you select Build A Maven2 Project; other-
wise, go with the Build A Free-style Software Project option. Click OK, and you’ll be
presented the job-configuration screen shown on figure 11.7.

 Here you’re given the ability to configure the way you want to build your job. You
use the first lines to specify or change the name and the description of the job. After
that are some options regarding the source control management (SCM) system you
use (Subversion, CVS, and the like).

 The next section tunes the settings for the build triggers—on what occasion you
want to trigger your build. You’re presented with several options: poll the SCM sys-
tem to check whether a build is needed, build the project periodically, build it after
some dependent projects were built, and so on. Let’s select the Poll The SCM trig-
ger; a field opens where we need to specify on what interval of time we want the poll
to happen. This field uses a nice syntax that follows the syntax of the UNIX cron
tool. We’d like to have our project executed every hour, so we specify @hourly in the

Figure 11.7 Job-configuration screen in Hudson

183Another neat tool—Hudson
field. You can learn more about the cron syntax if you click the corresponding ques-
tion mark next to the trigger.

 The next section deals with invoking the build itself. You can specify to execute a
shell script, a Windows batch file, an Ant build file, or a Maven build file. On any of
these you can specify any parameters, targets, goals, and so on. You can also arrange
multiple build steps, such as first invoking a shell script and then running Ant. There’s
also the option to rearrange all these steps by dragging and dropping.

 The last section configures the post-build triggers. The options listed there will
help you publish the artifact, publish the Javadoc, build some other project, send an
email with the build results, or anything else you need. There’s also the option to
select multiple triggers.

 After doing all this, you should save the job configuration. This will lead you to the
project’s home page (shown in figure 11.8).

 From the job’s home page you can keep track of the current job. From the menu
on the left side, you can choose to see the changes someone has made on the job,
inspect the workspace of the job, delete the project, configure it, or schedule another
build. You can also subscribe to the build results RSS feeds.

 We don’t want to wait another hour for the build to be triggered, so let’s execute
it right now. On the job’s home page, click the Build Now link and wait for the build
to finish.

 Now you can see the results of the build execution on the job’s home page. You
can see not only when the last build was run, but also when the last successful build
happened. Clicking any build number lets you explore the build itself: which mod-
ules were built, which tests failed or succeeded, and, most important, why (see fig-
ure 11.9).

 Once you spend some time using Hudson, you’ll probably find it a lot easier to
use. Its entire configuration is done through a nice web interface, and it’s relatively

Figure 11.8 Hudson job home page

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

184 CHAPTER 11 Continuous integration tools
easy to do. But the nicest thing is that the web interface is intuitive. That’s why we
don’t cover Hudson in detail. Another reason for this is that Hudson is currently
undergoing rapid development. It’s a mature project with a large community of devel-
opers who constantly improve the codebase. From that point of view, it’ll be interest-
ing to see how the project will evolve in time.

11.4 Benefits of continuous integration
In general, the software tests are there to help you find your own errors. You exe-
cute the unit tests every time you make any changes on the code you develop. This
way, they cover your back and will alert you whenever you introduce a new bug into
the system.

 The continuous integration servers have exactly the same purpose: they cover your
back and alert you the moment you break the integration with the other modules of
the system. And because you can’t run the CI tools manually every time you make a
small change in the system, they run on a separate host and try to continuously inte-
grate your software. But again, they protect you and will alert you to a change that
breaks the integration.

 We’ve heard many excuses from people as to why you shouldn’t use CI tools, and
the winner is this one: “I don’t see the profit in using it.” And usually this comes from
people who’ve never used a CI server.

 We all make errors—face it! You and we, and everybody else—it’s human to err.
And no matter how good you are, you’ll sometimes make a mistake and introduce a
bug into the system. Knowing this, it seems reasonable to have something notify you
when those errors occur. The software tests and CI tools are exactly this. Once you start
using a CI tool, no matter which one—CruiseControl or Hudson or anything else—
you’ll see how good it is to know that something is watching your back and that an
empty mailbox means that nothing is broken.

Figure 11.9 Hudson build results

185Summary
 To sum up we’d say:

■ CI tools—Free
■ Installation and configuration—A couple of hours work
■ Knowing your build is well integrated—Priceless

11.5 Summary
In this chapter we looked at two of the most popular CI tools: CruiseControl and Hud-
son. As you probably noticed, they’re totally different. So why do we cover those tools?

 The reason is to make you understand that continuous integration is an impor-
tant concept in the modern software development lifecycle and that it makes abso-
lutely no difference which tool you use, but it makes a great difference whether you
use CI or not.

 With this chapter we close the part of the book that deals with integrating JUnit
with the build process. You should now be ready to run your build and execute your
tests with Ant or Maven and also to set up a continuous integration build and execute
your builds and tests on a scheduled basis.

 This way you have JUnit tests that protect your modules from new bugs, and you
also have a workspace where you continuously execute your build and run your tests
to see if anything got broken during the integration. You’re now fully automated and
ready to move on with the next chapters.

 The next part of the book deals with testing different layers of your application.
We look at some examples of how to execute tests against the presentation layer and
also against the database and persistence layers. We show how to test your GUI compo-
nents, and you can include those tests and run them in the continuous integration
environment you just learned about. Let’s move on!

Part 4

JUnit extensions

This last part of the book deals with different kinds of JUnit extensions. We
cover all types of external projects that try to extend JUnit to the point where
the testing framework falls short. They test different aspects and layers of an
enterprise application.

 We start by introducing the HTMLUnit and Selenium projects in chapter 12.
We show you how to test your presentation layer with these projects. We go into
details of not only how to set up your projects but also some best practices in test-
ing your presentation layer. Chapter 13 is dedicated, again, to testing your front
end. In that chapter we discuss how to test the Ajax part of your application. We
also introduce the JsUnit project and give some special hints on testing a Google
Web Toolkit (GWT) application.

 Chapters 14 and 15 are dedicated to testing your server-side Java code. Chap-
ter 14 introduces the Cactus project, which focuses on testing your Java EE core
components (JSPs, servlets, EJBs, and the like). Chapter 15 describes the JSFUnit
project, which tests your JSF-based applications.

 Chapter 16 is a small chapter that concentrates on testing component-oriented
applications. We describe various techniques for testing your OSGi services.

 Chapters 17 and 18 are both dedicated to testing the persistence layer. These
chapters talk about the DBUnit project and give recipes for testing the JPA part of
an application.

 The last chapter describes how to create your own extensions by means of the
Unitils and JUnit-addons projects.

Presentation-layer testing
If debugging is the process of removing
 software bugs, then programming must

 be the process of putting them in.
—Edsger Dijkstra

Simply stated, presentation-layer testing means finding bugs in the graphical user
interface (GUI) of an application. Finding errors here is as important as finding
errors in other application tiers. A bad user experience can cost you a customer or
discourage a web surfer from visiting your site again. Furthermore, bugs in the user
interface may cause other parts of the application to malfunction.

 Because of its nature and interaction with a person, GUI testing presents unique
challenges and requires its own set of tools and techniques. This chapter covers
testing web application user interfaces.

 We address here what can be objectively, or programmatically, asserted about
the GUI. Outside the scope of this discussion are whether the choice of subjective

This chapter covers
■ Introducing presentation-layer testing
■ Testing with HtmlUnit
■ Testing with Selenium
189

190 CHAPTER 12 Presentation-layer testing
elements like fonts, colors, and layout cause an application to be difficult or impossi-
ble to use.

 What we can test is the content of web pages to any level of detail (we could
include spelling), the application structure or navigation (following links to their
expected destination, for example), and the ability to verify user stories with accep-
tance tests.1 We can also verify that the site works with required browsers and operat-
ing systems.

12.1 Choosing a testing framework
We look at two free open source tools to implement presentation-layer tests within
JUnit: HtmlUnit and Selenium.

 HtmlUnit is a 100 percent Java headless browser framework that runs in the same
virtual machine as your tests. Use HtmlUnit when your application is independent of
operating system features and browser-specific implementations not accounted for by
HtmlUnit, like JavaScript, DOM, CSS, and so on.

 Selenium drives various web browsers programmatically and checks the results
from JUnit. Selenium also provides a simple IDE to record and play back tests and can
generate test code. Use Selenium when you require validation of specific browsers and
operating systems, especially if the application takes advantage of or depends on a
browser’s specific implementation of JavaScript, DOM, CSS, and the like. Let’s start
with HtmlUnit.

12.2 Introducing HtmlUnit
HtmlUnit is an open source Java headless browser framework. It allows tests to imitate
programmatically the user of a browser-based web application. HtmlUnit tests don’t
display a user interface. The framework lets you test all aspects of a web application.
We describe here the most common tasks; for the rest, you’ll find the API quite intui-
tive and easy to use.

 In the remainder of this HtmlUnit section when we talk about “testing with a
web browser,” it’s with the understanding that we’re testing by emulating a spe-
cific web browser.

 To install HtmlUnit, see appendix E, “Installing software.”

12.2.1 A live example

Let’s jump in with the example in listing 12.1. You can test now, assuming you can con-
nect to the internet. The test will go to the HtmlUnit website, navigate the Javadoc,
and make sure a class has the proper documentation.

1 Extreme programming acceptance tests: http://www.extremeprogramming.org/rules/functionaltests.html

http://www.extremeprogramming.org/rules/functionaltests.html

191Writing HtmlUnit tests
[...]
public class JavadocPageTest {

@Test
public void testClassNav() throws IOException {
 WebClient webClient = new WebClient();
 HtmlPage mainPage = (HtmlPage) webClient.getPage(
 "http://htmlunit.sourceforge.net/apidocs/index.html");
 HtmlPage packagePage = (HtmlPage) mainPage.getFrameByName(
 "packageFrame").getEnclosedPage();
 HtmlPage bVerPage = packagePage.getAnchorByHref(
 "com/gargoylesoftware/htmlunit/BrowserVersion.html").click();
 HtmlParagraph p = (HtmlParagraph) bVerPage.getElementsByTagName(
 "p").item(0);
 Assert.assertTrue("Unexpected text", p.asText().startsWith(
 "Objects of this class represent one specific version of a given"));
 webClient.closeAllWindows();
}
}

Let’s step through the example. We always start by creating an HtmlUnit web client

b, which gives us an Internet Explorer 7 web client by default. We get to the home
page from the web client C and then to the list of classes on the page in the bottom-
left frame D. Next, we get the link for the class we’re interested in and click it as a
user would E. This gives us a new page for the link we clicked, which we then query
for the first paragraph element F. Finally, we check that the paragraph starts with the
text we expect should be there G and release resources H.

 This example covers the basics: getting a web page, navigating the HTML object
model, and asserting results. You’ll notice a lack of standard JUnit assertions in the
code that navigates the HTML model. If HtmlUnit doesn’t find an element or encoun-
ters a problem, it will throw an exception on our behalf.

12.3 Writing HtmlUnit tests
When you write an HtmlUnit test, you write code that simulates the action of a user sit-
ting in front of a web browser: You get a web page, enter data, read text, and click but-
tons and links. Instead of manually manipulating the browser, you programmatically
control an emulated browser. At each step, you can query the HTML object model and
assert that values are what you expect. The framework will throw exceptions if it
encounters a problem, which allows your test cases to avoid checking for these errors,
thereby reducing clutter.

12.3.1 HTML assertions

As you’re familiar with by now, JUnit provides a class called Assert to allow tests to fail
when they detect an error condition. Assert is the bread and butter of any unit test.

 HtmlUnit provides a class in the same spirit called WebAssert, which contains
standard assertions for HTML like assertElementPresent, assertLinkPresent, and

Listing 12.1 Our first HtmlUnit example

 B

 C

 D

 E

 F
 G

 H

http://htmlunit.sourceforge.net/apidocs/index.html

192 CHAPTER 12 Presentation-layer testing
assertTextPresent. HtmlUnit itself uses WebAssert notNull extensively to guard
against null parameters. Make sure to check the WebAssert class before you write
code that may duplicate its functionality.

 If a method you need is absent, you should consider creating your own assert class
for additional HTML assertions. You should also consider creating an application-
specific assertion class to reuse across your unit tests. Remember, code duplication is
the enemy.

12.3.2 Testing for a specific web browser

HtmlUnit, as of version 2.7, supports the browsers shown in table 12.1.

By default, WebClient emulates Internet Explorer 7. In order to specify which browser
to emulate, you provide the WebClient constructor with a BrowserVersion. For exam-
ple, for Firefox 3 use

WebClient webClient = new WebClient(BrowserVersion.FIREFOX_3);

12.3.3 Testing more than one web browser

You’ll probably want to test your application with the most common version of
Internet Explorer and Firefox. For our purposes, we define our test matrix to be all
HtmlUnit-supported web browsers.

 Listing 12.2 uses the JUnit Parameterized feature to drive the same test with all
browsers in our text matrix.

[...]
@RunWith(value = Parameterized.class)
public class JavadocPageAllBrowserTest {

 private BrowserVersion browserVersion;

 @Parameters
 public static Collection<BrowserVersion[]> getBrowserVersions() {
 return Arrays.asList(new BrowserVersion[][]{
 {BrowserVersion.FIREFOX_2},

Table 12.1 HtmlUnit-supported browsers

Web browser and version HtmlUnit BrowserVersion constant

Firefox 2 (deprecated) BrowserVersion.FIREFOX_2

Firefox 3 BrowserVersion.FIREFOX_3

Internet Explorer 6 BrowserVersion.INTERNET_EXPLORER_6

Internet Explorer 7 BrowserVersion.INTERNET_EXPLORER_7

Internet Explorer 8 BrowserVersion.INTERNET_EXPLORER_8

Listing 12.2 Testing for all HtmlUnit-supported browsers

 B

 C

 D

193Writing HtmlUnit tests
 {BrowserVersion.FIREFOX_3},
 {BrowserVersion.INTERNET_EXPLORER_6},
 {BrowserVersion.INTERNET_EXPLORER_7}});
 }

 public JavadocPageAllBrowserTest(BrowserVersion browserVersion) {
 this.browserVersion = browserVersion;
 }

 @Test
 public void testSearchPage() throws Exception {
 WebClient webClient = new WebClient(this.browserVersion);
 // same as before...
 }
}

Based on our previous example, we made the following changes: We used the
Parameterized JUnit test runner b. We added a BrowserVersion instance variable

C to track the browser context. We added the method getBrowserVersions D
to return a list of BrowserVersion objects corresponding to the browsers we want to
test. The signature of this method must be @Parameters public static java.util.
Collection, without parameters. The Collection elements must be arrays of identi-
cal lengths. This array length must match the number of arguments of the only pub-
lic constructor. In our case, each array contains one element because the public
constructor has one argument.

 Now let’s step through the test. JUnit calls the static method getBrowserVersions

C. JUnit loops for each array in the getBrowserVersions collection D. JUnit calls the
only public constructor E. If there’s more than one public constructor, JUnit will
throw an assertion error. JUnit calls the constructor with an argument list built from
the array elements. In our case, JUnit calls the one argument constructor with the only
element in the array. JUnit then calls each @Test method F as usual. We repeat the
process for the next array in the getBrowserVersions collection D.

 When you compare the test results with the previous example, you’ll see that
instead of running one test, the parameterized JUnit test runner ran the same method
four times, once for each value in our @Parameters collection.

12.3.4 Creating standalone tests

You may not always want to use actual URL addressed pages as test fixtures, HTTP,
files, or otherwise. Next, we show you how to embed and run HTML in the unit test
code itself.

 The framework allows you to plug a mock2 HTTP connection into a web client. In
listing 12.3, we set up a mock connection with a default HTML response string. The
test can then get this default page by using any URL value.

2 See chapter 7, “Testing with mock objects.”

 E

 F

194 CHAPTER 12 Presentation-layer testing
[...]
public class InLineHtmlFixtureTest {

@Test
public void testInLineHtmlFixture() throws Exception {
 final String expectedTitle = "Hello 1!";
 String html = "<html><head><title>" + expectedTitle +
 "</title></head></html>";
 WebClient webClient = new WebClient();
 MockWebConnection conn = new MockWebConnection();
 conn.setDefaultResponse(html);
 webClient.setWebConnection(conn);
 HtmlPage page = webClient.getPage("http://page");
 Assert.assertEquals(expectedTitle, page.getTitleText());
 webClient.closeAllWindows();
}
[...]

We start by defining our expected HTML page title and HTML test fixture. Then we
create the web client, a MockWebConnection b, and install the HTML fixture as the
default response for the mock connection C. We can then set the web client’s con-
nection to our mock connection D. We’re now ready to go, and we get the test page.
Any URL will do here because we set up our HTML fixture as the default response.
Finally we check that the page title matches our HTML fixture.

 To configure a test with multiple pages, you call one of the MockWebConnection
setResponse methods for each page. The code in listing 12.4 sets up three web pages
in a mock connection.

@Test
public void testInLineHtmlFixtures() throws Exception {
 WebClient webClient = new WebClient();
 final URL page1Url = new URL("http://Page1/");
 final URL page2Url = new URL("http://Page2/");
 final URL page3Url = new URL("http://Page3/");

 MockWebConnection conn = new MockWebConnection();
 conn.setResponse(page1Url,
 "<html><head><title>Hello 1!</title></head></html>");
 conn.setResponse(page2Url,
 "<html><head><title>Hello 2!</title></head></html>");
 conn.setResponse(page3Url,
 "<html><head><title>Hello 3!</title></head></html>");
 webClient.setWebConnection(conn);

 HtmlPage page1 = webClient.getPage(page1Url);
 Assert.assertEquals("Hello 1!", page1.getTitleText());

 HtmlPage page2 = webClient.getPage(page2Url);
 Assert.assertEquals("Hello 2!", page2.getTitleText());

Listing 12.3 Configuring a standalone test

Listing 12.4 Configuring a test with multiple page fixtures

 B

 C

 D

 B

 C

 D

http://page
http://Page1
http://Page2
http://Page3

195Writing HtmlUnit tests
 HtmlPage page3 = webClient.getPage(page3Url);
 Assert.assertEquals("Hello 3!", page3.getTitleText());
 webClient.closeAllWindows();
}

This example installs three pages b in the mock connection and tests getting each
page C and verifying each page title D.

12.3.5 Navigating the object model

HtmlUnit provides an object model that parallels the HTML object model. You’ll use it
to navigate through your application’s web pages. Let’s explore it now.

 To get to an HTML page, you always start with a WebClient and call getPage:

WebClient webClient = new WebClient();
HtmlPage page = (HtmlPage) webClient.getPage("http://www.google.com");

HtmlPage is HtmlUnit’s model of an HTML page returned from a server. Once you
have a page, you access its contents in one of three ways:

■ Call methods reflecting specific HTML concepts like forms, anchors, and frames.
■ Call methods that address HTML elements by references using names and IDs.
■ Call methods using XPath, a web standard for addressing XML document nodes.

Let’s now look at each technique.

12.3.6 Accessing elements by specific element type

The HtmlPage API provides methods reflecting the HTML element model: for anchors,
getAnchorByName, getAnchors, and others; for a body, getBody; for forms, getForm-
ByName, getForms; for frames, getFrameByName, getFrames; for meta tags, getMeta-
Tags. We explore specifically how to work with form and frame elements in the
following sections.

12.3.7 Accessing elements by name versus index

This discussion applies to all methods that return a List: getAnchors, getForms, and
getFrames. You should consider the implication of addressing these lists with indexes.
For example, consider the following snippet:

HtmlForm form = page.getForms().get(0);

The index access creates an assumption in your test that the HTML form you want to
test will always be the first form in the list. If the page changes and the search form
changes position, your test will fail, even though the page’s functionality may not have

Common pitfall
Don’t forget the trailing slash (/) in the URL; “http://Page1/” will work but “http://
Page1” won’t be found in the mock connection and will therefore throw an exception.

http://Page1/
http://Page1
http://Page1
http://www.google.com

196 CHAPTER 12 Presentation-layer testing
changed. By addressing the form by index, you’re explicitly testing the form order on
the page. Address an element only through a list index if you want to test the order of
an element in that list.

 To make the code resistant to list-order change, replace

HtmlForm form = page.getForms().get(0);

with

HtmlForm form = page.getFormByName("f");

Well, you might say, now you have a dependency on the form name “f” instead of on
form position 0. The benefit is that when you change the form order on a page, the
form name doesn’t have to change, but the form index must change.

 Lists are useful when the order of its elements matter. You may want to assert that
an anchor list is alphabetical or that a product list is in ascending price order.

12.3.8 Accessing elements with references

As you just saw, HtmlPage allows you to get specific elements by name. HtmlPage also
lets you get to any element by name, ID, or access key with any of the methods starting
with getElementBy such as getElementById, getElementsByName, and others. These
methods allow you to ask generic questions about the HTML model. For example,
when we wrote

HtmlForm form = page.getFormByName("f");

we ask specifically for a form named “f”. We can also write

HtmlForm form = (HtmlForm) page.getElementsByName("f").get(0);

which asks for all elements named “f” and then asks for the first element of that list.
Note two changes in the code: First, we cast the result to the desired type unless we
can work with an HtmlElement. Second, because element names aren’t unique in a
page, getElementsByName returns a list of HtmlElement, which is why we have the call
to get.

 If you can address the desired element by ID, you can use getElementById and do
away with the get call.

 Calling get introduces some brittleness to this test because we’re introducing a
dependency on the list order. If we wanted a more resilient test, and the element
didn’t contain an ID, we’d need to resort to one of the following:

■ Traverse the list until we find the right element.
■ Use getChildren or getChildNodes to navigate down to the desired element.

Neither option is appealing, so the lesson here is to use HTML IDs if you can. This will
allow you to create tests that are more resistant to change.

 In general, for each HTML {Element}, there’s a class called Html{Element}, for
example, HtmlForm. Some class names are more explicit than their HTML element

197Writing HtmlUnit tests
names: for the HTML element “a”, the class is HtmlAnchor; for “h1”, the class is
HtmlHeading1.

12.3.9 Using XPath

Use XPath3 for complex searches to reduce test code complexity. XPath is a language
specified by the W3C for querying nodes in an XML document. We won’t cover the
XPath language itself here; we focus on its usage in HtmlUnit to perform two types of
tasks: getting to a specific element and gathering data.

ACCESSING ELEMENTS WITH XPATH

You call one of two methods to run an XPath query: getByXPath returns a list of ele-
ments and getFirstByXPath returns a single element. Because DomNode implements
both methods, it’s accessible not only to HtmlPage but to all DomNode subclasses,
which include the HTML classes.

 Knowing which XPath expression to use can involve a lot of trial and error. Fortu-
nately, you can inspect any website with XPath Checker4 or Firebug,5 free open source
Firefox add-ons, and create an XPath from the current selection. For example, to
access the text input field on Google’s home page, use /html/body/center/form/
table/tbody/tr/td[2]/input[2].

 Note that expressions generated automatically from such tools usually suffer from
the same indexing issue we discussed earlier in section 12.3.7 “Accessing elements by
name versus index.” By inspecting the code, you can create the following expression,
which is more resilient to changes in the page:

//input[@name='q']

We all know there’s no such thing as a free lunch,6 and this expression’s gain in page-
change resilience and brevity comes with a small performance price: XPath must find
all input elements on the page that match the criteria [@name='q'] and then give us
the first one. This is in contrast to the first expression, which drills down to a known
spot in the page or fails along the way if an element is missing. To run this XPath
query, the call is

page.getFirstByXPath("//input[@name='q']");

We look next at a powerful XPath feature supported by the HtmlUnit API: the ability
to collect data.

DATA GATHERING WITH XPATH

An extremely powerful feature of XPath is its ability to return a set of nodes. This fea-
ture allows us to perform, with one expression, a query that returns a data set. This is

3 XPath 1.0: http://www.w3.org/TR/xpath
4 XPath Checker: http://slesinsky.org/brian/code/xpath_checker.html
5 Firebug: http://getfirebug.com/
6 TANSTAAFL: http://en.wikipedia.org/wiki/TANSTAAFL

http://www.w3.org/TR/xpath
http://slesinsky.org/brian/code/xpath_checker.html
http://getfirebug.com
http://en.wikipedia.org/wiki/TANSTAAFL

198 CHAPTER 12 Presentation-layer testing
a great way to gather values on a page, whether or not the values are formally present
in a list-like structure like an HTML table, list, or form.

 For example, this expression returns an anchor list from the Java 6 Javadoc page
for all package names:

//a[contains(@href, 'package-frame.html') and @target='packageFrame']

To see this XPath expression in action, go to the Java 6 Javadoc page:

client = new WebClient();
mainPage = (HtmlPage) client.getPage

➥("http://java.sun.com/javase/6/docs/api/index.html");

Then go to the package list page:

HtmlPage packageListPage = (HtmlPage) mainPage.getFrameByName

➥("packageListFrame").getEnclosedPage();

From that page, we can gather all links that point to a Java package:

List<DomNode> anchors = (List<DomNode>) packageListPage.getByXPath

➥("//a[contains(@href, 'package-frame.html') and @target='packageFrame']");

Beware that there’s an XPath version 1.07 and 2.08 specification. HtmlUnit includes
the Apache Xalan XPath implementation, which supports only 1.0. If you want to use
XPath 2.0 features, you need to get an XPath 2.0 engine, which usually means an XSL
2.0 engine, like Saxon. You’ll also need to write some code, an advanced endeavor.

12.3.10Test failures and exceptions

Tests check for error conditions with the JUnit Assert class and the HtmlUnit Web-
Assert class and by letting the HtmlUnit API throw unchecked exceptions. We already
covered the WebAssert class in section 12.3.1, “HTML assertions.” For example, if you
query for a form with an invalid name by calling HtmlPage getFormByName, you’ll get
the exception

com.gargoylesoftware.htmlunit.ElementNotFoundException:

➥elementName=[form] attributeName=[name] attributeValue=[unknown_element]

If you call WebClient getPage and the page doesn’t exist, you’ll get the exception

java.net.UnknownHostException: unknown_page

HtmlUnit defines exceptions like ElementNotFoundException in the package
com.gargoylesoftware.htmlunit. To verify that a method throws an expected
exception, annotate the method with the expected attribute:

@Test(expected = ElementNotFoundException.class)

Because these exceptions are all unchecked, you don’t have to throw them from
your methods, but you’ll need to remember to catch them if you want to examine

7 XPath 1.0: http://www.w3.org/TR/1999/REC-xpath-19991116
8 XPath 2.0: http://www.w3.org/TR/xpath20/

http://java.sun.com/javase/6/docs/api/index.html
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath20

199Writing HtmlUnit tests
the particular state of a failure. For example, the exception ElementNotFound-
Exception contains specific information as to what exactly caused the failure: the
name of the element, the name of attribute, and the attribute value.

 Although not explicitly documented in the WebAssert Javadoc, WebAssert meth-
ods will throw exceptions for unexpected conditions. Many WebAssert methods throw
ElementNotFoundException.

JAVASCRIPT AND SCRIPTEXCEPTION

By default, all JavaScript errors will throw a ScriptException and cause your unit test
to fail. This may not be acceptable, especially if you’re testing integration with third-
party sites or if the exception is due to a shortcoming in the Mozilla JavaScript library
or in HtmlUnit itself. You can avoid aborting your unit test on a JavaScript error by
calling setThrowExceptionOnScriptError on a web client:

webClient.setThrowExceptionOnScriptError(false);

LOGGING

You’ll notice that HtmlUnit logs warnings on the console whenever it encounters
problems. To disable these messages, you need to tell the logger to skip warnings and
report only severe problems. The following example sets all HtmlUnit loggers to the
severe level:

@BeforeClass
public static void setUpLogging() {
 Logger.getLogger("com.gargoylesoftware.htmlunit").setLevel(Level.SEVERE);
}

HtmlUnit uses Apache Commons Logging to do its logging, which in turns uses the
JRE logging facility by default. Our example reconfigures a JRE Logger instance
directly. Apache Commons Logging doesn’t allow you to reconfigure logs generically;
you must do so with the actual log implementation.

12.3.11 Application and internet navigation

You can navigate through an application and the web in general by getting an HTML
page and then clicking a link or clicking a user interface element like a button. The
API can perform all forms of navigation. Let’s look at various types of navigation.

PAGE NAVIGATION

Getting a page is done with the WebClient getPage() methods. You can get a page by
URL or URL string, for example:

WebClient webClient = new WebClient();
webClient.setThrowExceptionOnScriptError(false);
HtmlPage page = (HtmlPage) webClient.getPage("http://www.google.com");
HtmlPage page2 = (HtmlPage) webClient.getPage

➥(new URL("http://www.yahoo.com"));

If a page is absent or isn’t reachable, the API throws an exception. See section 12.3.10,
“Test failures and exceptions.”

http://www.google.com
http://www.yahoo.com

200 CHAPTER 12 Presentation-layer testing
CLICK NAVIGATION

The click and dblClick methods conveniently navigate through a link or any click-
able user interface element. For example, continuing from the previous example, we
enter a web query and click the Search button:

HtmlForm form = page.getFormByName("f");
HtmlTextInput queryText = (HtmlTextInput) form.getInputByName("q");
queryText.setValueAttribute("Manning Publications Co.");
HtmlSubmitInput searchButton = (HtmlSubmitInput) form.getInputByName("btnG");
HtmlPage resultPage = (HtmlPage) searchButton.click();

You can call the click and dblClick methods on all classes descending from Html-
Element. Click methods simulate clicking an element (remember, HtmlUnit is an
emulator) and return the page in the window that has the focus after the element has
been clicked.

 The HTML 4.01 specification9 defines clickable HTML elements. HtmlElement is
the base class for all HTML elements except frame and iframe.

 See the HtmlElement Javadoc10 or select HtmlElement in Eclipse and hit F4 to dis-
play the class hierarchy.

KEYBOARD NAVIGATION

To simulate the user hitting the Enter key instead of clicking the Search button,
replace getting and clicking the search button with the following:

HtmlPage resultPage = (HtmlPage) queryText.type('\n');

You can code the Enter key with the '\n' character. You can also simulate the user
tabbing around the page with the HtmlPage methods tabToNextElement and tabTo-
PreviousElement. Hitting the Enter key or any key may not be enough or the right
process to test. You can set the focus to any element with the HtmlPage method set-
FocusedElement. Be aware that this will trigger any onfocus and onblur event han-
dlers. Let’s now put these concepts together with another example and test forms.

12.3.12 Testing forms with HtmlUnit

HTML form support is built into the HtmlPage API, where form elements can be
accessed with getForms (returns List<HtmlForm>) to get all form elements and get-
FormByName to get the first HtmlForm with a given name. You can call one of the Html-
Form getInput methods to get HTML input elements and then simulate user input
with setValueAttribute.

 The following example focuses on the HtmlUnit mechanics of driving a form.
First, we create a simple page to display a form with an input field and Submit button.
We include form validation via JavaScript alerts in listing 12.5 as a second path to test.
The section “Testing JavaScript alerts” describes this in more detail.

9 http://www.w3.org/TR/html401/
10 http://htmlunit.sourceforge.net/apidocs/com/gargoylesoftware/htmlunit/html/HtmlElement.html

http://www.w3.org/TR/html401
http://htmlunit.sourceforge.net/apidocs/com/gargoylesoftware/htmlunit/html/HtmlElement.html

201Writing HtmlUnit tests
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
function validate_form(form) {
 if (form.in_text.value=="") {
 alert("Please enter a value.");
 form.in_text.focus();
 return false;
 }
}
</script>
<title>Form</title></head>
<body>
<form name="validated_form" action="submit.html"

➥onsubmit="return validate_form(this);" method="post">
 Value:
 <input type="text" name="in_text" id="in_text" size="30"/>
 <input type="submit" value="Submit" id="submit"/>
</form>
</body>
</html>

This form looks like figure 12.1 when
you click the button without input.

 We test normal user interaction with
the form in listing 12.6.

@Test
public void testForm() throws IOException {
 WebClient client = new WebClient();
 HtmlPage page = (HtmlPage)
 client.getPage("file:src/main/webapp/formtest.html");
 HtmlForm form = page.getFormByName("validated_form");
 HtmlTextInput input =(HtmlTextInput) form.getInputByName("in_text");
 input.setValueAttribute("typing...");
 HtmlSubmitInput submitButton = (HtmlSubmitInput)
 form.getInputByName("submit");
 HtmlPage resultPage = (HtmlPage) submitButton.click();
 WebAssert.assertTitleEquals(resultPage, "Result");
 // more asserts...
}

Listing 12.5 Example form page

Listing 12.6 Testing a form

Figure 12.1 Sample form and alert

 B

 C

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

202 CHAPTER 12 Presentation-layer testing
Let’s work through this example. We create the web client, get the page containing
the form, and get the form. Next, we get the input text field from the form, emulate
the user typing in a value b, and then get and click the Submit button C. We get a
page back from clicking the button, and we make sure it’s the expected page.

 If at any step, the framework doesn’t find an object, the API throws an exception
and the test automatically fails. This allows you to focus on the test and let the frame-
work handle failing your test if the page or form isn’t as expected. The section “Test-
ing JavaScript alerts” completes this example.

12.3.13 Testing frames

HTML frame support is built into the HtmlPage API, where frames can be accessed
with getFrames (returns List<FrameWindow>) to get all iframes and frames and get-
FrameByName to get the first iframe or frame with a given name. You then call
FrameWindow getEnclosedPage to get the HTML page in that frame. Listing 12.7 navi-
gates through the Java 6 Javadoc.

@Test
public void testFramesByNames() throws IOException {
 WebClient webClient = new WebClient();
 HtmlPage mainPage = (HtmlPage)
 webClient.getPage("http://java.sun.com/javase/6/docs/api/index.html");

 // Gets page of the first Frame (upper left)
 HtmlPage packageListPage = (HtmlPage)
 mainPage.getFrameByName("packageListFrame").getEnclosedPage();
 packageListPage.getAnchorByHref("java/lang/package-
 frame.html").click();

 // get page of the Frame named 'packageFrame' (lower left)
 HtmlPage packagePage = (HtmlPage)
 mainPage.getFrameByName("packageFrame").getEnclosedPage();
 packagePage.getAnchors().get(1).click();

 // get page of the Frame named 'classFrame' (right)
 HtmlPage classPage = (HtmlPage)
 mainPage.getFrameByName("classFrame").getEnclosedPage();
 webClient.closeAllWindows();
}

This example uses getFrameByName to get frames and then calls getEnclosedPage.
Unit tests can use the list API getFrames as well, but we point you to the issues discussed
in section 12.3.7, “Accessing elements by name versus index,” earlier in this chapter.

 The intermediary FrameWindow returned by getFrameByName isn’t used in this
example. Note that it represents the actual web window for a frame or iframe and pro-
vides APIs to dig deeper through the GUI such as getFrameElement, which returns a
BaseFrame. BaseFrame in turn provides access to attributes like longdesc, noresize,
scrolling, and so on.

Listing 12.7 Page navigation through frames

http://java.sun.com/javase/6/docs/api/index.html

203Writing HtmlUnit tests
 By now, you should have the hang of using the API, so let’s move on to JavaScript,
CSS, and other topics.

12.3.14 Testing JavaScript

HtmlUnit processes JavaScript automatically. Even when, for example, HTML is gener-
ated with Document.write(), you follow the usual pattern: call getPage, find an ele-
ment, call click on it, and check the result.

 You can toggle JavaScript support on and off in a web client by calling set-
JavaScriptEnabled. HtmlUnit enables JavaScript support by default. You can also set
how a long a script is allowed to run before being terminated with setJavaScript-
Timeout and passing it a timeout in milliseconds.

 To deal with JavaScript alert and confirm calls, you can provide the framework with
callbacks routines. We explore these next.

TESTING JAVASCRIPT ALERTS

Your tests can check which JavaScript alerts have taken place. We reuse our form
example from section 12.3.12, “Testing forms with HtmlUnit,” which includes
JavaScript validation code to alert the user of empty input values.

 The test in listing 12.8 loads our form page and checks calling the alert when the
form detects an error condition. In a second example, we enhance our existing test
from section 12.3.12 to ensure that normal operation of the form doesn’t raise any
alerts. Our test will install an alert handler that gathers all alerts and checks the result
after the page has been loaded. The stock class CollectingAlertHandler saves alert
messages for later inspection.

@Test
public void testFormAlert() throws IOException {
 WebClient webClient = new WebClient();
 CollectingAlertHandler alertHandler = new CollectingAlertHandler();
 webClient.setAlertHandler(alertHandler);
 HtmlPage page = (HtmlPage)
 webClient.getPage("file:src/main/webapp/formtest.html");
 HtmlForm form = page.getFormByName("validated_form");
 HtmlSubmitInput submitButton = (HtmlSubmitInput)
 form.getInputByName("submit");
 HtmlPage resultPage = (HtmlPage) submitButton.click();
 assertEquals(resultPage.getTitleText(), page.getTitleText());
 assertEquals(resultPage, page);
 List<String> collectedAlerts = alertHandler.getCollectedAlerts();
 List<String> expectedAlerts =
 Collections.singletonList("Please enter a value.");
 assertEquals(expectedAlerts, collectedAlerts);
 webClient.closeAllWindows();
}

Let’s work through the example: We start by creating the web client and alert han-
dler b, which we install in the web client C. Next, we get the form page, get the

Listing 12.8 Asserting expected alerts

 B

 C

 D

 E

204 CHAPTER 12 Presentation-layer testing
form object, get the Submit button, and click it D. This invokes the JavaScript,
which calls the alert. Clicking the button returns a page object, which we use to
check that the page has not changed by comparing current and previous page titles.
We also check that the page has not changed by comparing current and previous
page objects. Note that this comparison uses Object equals, so we’re really asking
whether the page objects are identical. This might not be a great test if a future ver-
sion of the framework implements equals in an unexpected manner. Finally, we get
the list of alert messages that were raised E, create a list of expected alert messages,
and compare the expected and actual lists.

Next, listing 12.9 rewrites the original form test to make sure that normal operation
raises no alerts.

@Test
public void testFormNoAlert() throws IOException {
 WebClient webClient = new WebClient();
 CollectingAlertHandler alertHandler = new CollectingAlertHandler();
 webClient.setAlertHandler(alertHandler);
 HtmlPage page = (HtmlPage)
 webClient.getPage("file:src/main/webapp/formtest.html");
 HtmlForm form = page.getFormByName("validated_form");
 HtmlTextInput input = (HtmlTextInput) form.getInputByName("in_text");
 input.setValueAttribute("typing...");
 HtmlSubmitInput submitButton = (HtmlSubmitInput)
 form.getInputByName("submit");
 HtmlPage resultPage = (HtmlPage) submitButton.click();
 WebAssert.assertTitleEquals(resultPage, "Result");
 assertTrue("No alerts expected",
 alertHandler.getCollectedAlerts().isEmpty());
 webClient.closeAllWindows();
}

The differences with the original test are that at the beginning of the test b we
install a CollectingAlertHandler in the web client, we simulate a user entering a
value C, and at the end of the test we check that the alert handler’s list of mes-
sages is empty D.

 To customize the alert behavior, you need to implement your own AlertHandler.
Listing 12.10 will cause your test to fail when a script raises the first alert.

JUnit tip
When using any assertion that use the equals methods, make sure you under-
stand the semantics of the equals implementation of the objects you’re compar-
ing. The default implementation of equals in Object returns true if the objects
are the same.

Listing 12.9 Asserting no alerts under normal operation

 B

 C

 D

205Writing HtmlUnit tests
client.setAlertHandler(new AlertHandler() {
 public void handleAlert(final Page page, final String message) {
 fail("JavaScript alert: " + message);
 }
});

You can apply the same principles to test JavaScript confirm calls by installing a con-
firm handler in the web client with setConfirmHandler.

12.3.15 Testing CSS

You can toggle CSS support on and off in a web client by calling setCssEnabled. By
default, HtmlUnit enables CSS support.

 When calling APIs, the standard HtmlUnit behavior is to throw an exception when
encountering a problem. In contrast, when HtmlUnit detects a CSS problem, it
doesn’t throw an exception; instead, it reports problems to the log through the
Apache Commons Logging11 library. You can customize this behavior in a WebClient
with an org.w3c.css.sac.ErrorHandler. Two ErrorHandler implementations are
provided with HtmlUnit:

■ DefaultCssErrorHandler is the default handler and logs all CSS problems.
■ SilentCssErrorHandler ignores all CSS problems.

To install an error handler, use the setCssErrorHandler method on a web client. For
example, the following causes all CSS problems to be ignored:

webClient.setCssErrorHandler(new SilentCssErrorHandler());

If you want any CSS problem to cause test failures, create an error handler that always
rethrows the CSSException it’s given.

12.3.16 SSL errors

You’ll find that many websites have expired or incorrectly configured SSL certifi-
cates. By default, the Java runtime throws exceptions if it detects errors. If this gets
in the way of your testing, you can call WebClient.setUseInsecureSSL(true) to
allow the test to proceed. Using this API causes HtmlUnit to use an insecure SSL han-
dler, which trusts everyone.

 Now, that we’ve covered testing from the client point of view, let’s go to the
server side and examine how HtmlUnit can be used for in-container testing with
the Cactus framework.

Listing 12.10 Custom alert handler

11 Apache Commons Logging: http://commons.apache.org/logging/

http://commons.apache.org/logging

206 CHAPTER 12 Presentation-layer testing
12.4 Integrating HtmlUnit with Cactus
Cactus12 is a free, open source test framework for unit testing server-side Java code
including servlets, EJBs, and much more. Chapter 14, “Server-side Java testing with
Cactus,” discusses Cactus in detail.

 Where does HtmlUnit fit in? Let’s look at the various opportunities to test an appli-
cation from the inside out:

■ JUnit can test the data tier.
■ Cactus testing takes place in the business middle tier by extending JUnit.
■ HtmlUnit lives in the presentation tier.

In the standard HtmlUnit unit test scenario, HtmlUnit drives the test. More specifi-
cally, JUnit invokes your unit test classes and methods, from which you call HtmlUnit
to emulate a web browser to test your application.

 Cactus unit testing manages a different interaction; Cactus calls your HtmlUnit
unit tests at just the right time to verify that the web pages returned to the client. The
main difference here is that HtmlUnit unit testing takes place in-container instead of
through an emulated web client.

 To install HtmlUnit in Cactus, see appendix E. For details on managing Cactus
tests with tools like Ant and Maven, we refer you to chapter 14.

12.4.1 Writing tests in Cactus

Because HtmlUnit tests normally work with HtmlPage objects, we need to plug into
the Cactus test execution at the point where a page is about to be returned to the
client. Cactus tests for Java-based code like servlets are subclasses of org.apache.
cactus.ServletTestCase. If the test class contains a method whose name starts
with end, Cactus will call this method with a WebResponse, which contains the con-
tents of the server’s response. Take great care to import the appropriate Web-
Response class for your tests, because three variations are supported:

■ com.meterware.httpunit.WebResponse for HtmlUnit 1.6
■ com.gargoylesoftware.htmlunit.WebResponse for HtmlUnit 2.7
■ org.apache.cactus.WebResponse for Cactus itself

Your boilerplate test class should look like listing 12.11.

[...]
public class HtmlUnitServletTestCase extends ServletTestCase {
 public static Test suite() {
 return new TestSuite(HtmlUnitServletTestCase.class);
 }

12 Cactus site: http://jakarta.apache.org/cactus/

Listing 12.11 Boilerplate HtmlUnit ServletTestCase subclass

http://jakarta.apache.org/cactus

207Integrating HtmlUnit with Cactus
 public HtmlUnitServletTestCase(String name) {
 super(name);
 }

 public void end(WebResponse webResponse) {
 // asserts
 }

 public void test() throws ServletException {
 SampleServlet servlet = new SampleServlet();
 servlet.init(this.config);
 // asserts
 }
}

There are a couple of things to note in this example:

■ The ServletTestCase provides the following instance variables for your use:

AbstractServletConfigWrapper config
AbstractHttpServletRequestWrapper request
HttpServletResponse response
HttpSession session

■ The test method creates the servlet to test and initializes it.
■ Cactus integrates with JUnit 3; it doesn’t provide JUnit 4 niceties.

Next, let’s create the simple servlet in listing 12.12.

[...]
public class SampleServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello
 World</title></head><body><p>Hello World</p></body></html>");
 }
}

This servlet returns an HTML document with a title and a single paragraph. The next
step is to flesh out our end method; we need to get an HtmlPage from the WebResponse
argument and validate its contents. Getting an HtmlPage from a WebResponse requires
parsing the HTML. To do so, we use the HtmlUnit HTMLParser class:

Cactus tip
If your test class doesn’t contain a begin method, the end method name must be
end. If your test class includes a begin method, the end method name must match,
for example, beginFoo and endFoo; otherwise the end method won’t be called.

Listing 12.12 A simple servlet

208 CHAPTER 12 Presentation-layer testing
public void end(WebResponse webResponse) throws IOException {
 WebClient webClient = new WebClient();
 HtmlPage page = HTMLParser.parse(webResponse,
 webClient.getCurrentWindow());
 WebAssert.assertTitleEquals(page, "Hello World");
 webClient.closeAllWindows();
}

We create a WebClient only to fulfill the needs of the HTMLParser API, which requires
a WebWindow, which the WebClient holds.

Once you have an HtmlPage, you’re back to using the standard HtmlUnit API.
 We’ve finished covering HtmlUnit for this chapter; the API is intuitive and straight-

forward, so we invite you to explore the rest on your own. Let’s now look at Selenium,
a testing framework that differs from HtmlUnit in a fundamental way: instead of emu-
lating a web browser, Selenium drives a real web browser process.

12.5 Introducing Selenium
Selenium13 is a free open source tool suite used to test web applications. Sele-
nium’s strength lies in its ability to run tests against a real browser on a specific
operating system. This is unlike HtmlUnit, which emulates the browser in the same
VM as your tests. This strength comes at a cost: the complexity of setting up and
managing the Selenium runtime. Although Selenium provides many components,
we consider the following components: the Selenium Remote Control (RC) server,
IDE, and client driver API.

 The Selenium IDE is a Firefox add-on used to record, play back, and generate tests
in many languages, including Java. The Selenium client driver API is what tests call to
drive the application; it communicates to the remote control server, which in turns
drives the web browser.

 The client driver connects to the server over TCP/IP; the server doesn’t need to
run in the JVM or even on the same physical machine. Selenium recommends14 run-
ning the server on many different machines, with different operating systems and
browser installations. A test connects to a server by specifying a hostname and port
number to the DefaultSelenium class.

 Figure 12.2 shows the main Selenium IDE (1.0 Beta 2) window. The IDE generates
code against the client driver API but doesn’t support change management. You

Cactus tip
In Cactus, you don’t use getPage to get an HtmlPage. Instead, you parse it from
the WebResponse with HTMLParser.parse.

13 Selenium site: http://seleniumhq.org/
14 Selenium Server setup: http://seleniumhq.org/documentation/remote-control/languages/java.html

http://seleniumhq.org
http://seleniumhq.org/documentation/remote-control/languages/java.html

209Introducing Selenium
should consider the IDE a one-way, use-once tool you use to get started for any given
test case. You must handle any change in the application by manually changing the
generated tests.

 To use the IDE, start by choosing a language (in the menu Options > Format >
Format Java (JUnit)), click the red record button, use the browser as a user would,
and click the record button again to stop. Because the IDE records everything you do,
you should plan in advance which user stories you
want to verify and create one or more test cases
for each. At any point in the recording, you can
ask the IDE to generate an assertion from the
browser’s context menu; the current web page
selection determines the choices. Figure 12.3
shows an example context menu.

 To install Selenium, see appendix E, “Install-
ing software.” Once you’ve done that, we can
start generating Selenium tests.

Figure 12.2 The main Selenium IDE window

Figure 12.3 Selenium IDE context menu

210 CHAPTER 12 Presentation-layer testing
12.6 Generating Selenium tests
The Selenium IDE is a great way to get up and running fast. Before you record a test,
edit the package name and class name in the IDE Source pane to match the directory
and Java filename you desire. Note that the generated code is JUnit 3 code, and as
such it subclasses the Selenium class SeleneseTestCase.

12.6.1 A live example

The same user interaction as in our first HtmlUnit test generated the following exam-
ple. Go to Google, enter a query, and click to go to the expected site. Listing 12.13
shows our first Selenium example.

[...]
public class FirstTestJUnit3 extends SeleneseTestCase {
 @Override
 public void setUp() throws Exception {
 setUp("http://www.google.com/", "*iexplore");
 }

 public void testSearch() throws Exception {
 selenium.open("/");
 assertEquals("Google", selenium.getTitle());
 selenium.type("q", "Manning Publishing Co.");
 selenium.click("btnG");
 selenium.waitForPageToLoad("30000");
 assertEquals("Manning Publishing Co. - Google Search",
 selenium.getTitle());
 selenium.click("link=Manning Publications Co.");
 selenium.waitForPageToLoad("30000");
 assertEquals("Manning Publications Co.", selenium.getTitle());
 }
}

First, the setUp method b calls the superclass’s setUp method with the base URL for
the tests and the browser launcher to use, in this case, Internet Explorer (see sec-
tion 12.8 1, “Testing for a specific web browser” for other settings). This initializes
the selenium instance variable to a DefaultSelenium instance.

 In the test method, we start by opening the home page C. Next, we set the value of
the input field D, as if a user had typed it in, and we click the Search button E. The
click argument is a Selenium locator, which here is the button name (more on the
locator concept later). We wait for the new page to load and assert the opened page’s
title. Then, we click a link F using a Selenium link locator. Again, we wait for the new
page to load and assert the opened page’s title.

 Selenium tests subclass SeleneseTestCase, which in turn subclasses JUnit’s Test-
Case class. You’ll note that methods aren’t annotated; Selenium-generated tests are
JUnit 3 tests.

Listing 12.13 Our first Selenium example

 B

 C D

 E

 F

http://www.google.com

211Running Selenium tests
 The immediate issue raised by running within the JUnit 3 framework is the perfor-
mance of a test class. Each time JUnit calls a test method, JUnit also calls the setUp and
tearDown methods; this means starting and stopping a web browser, which is slow. We
remedy this performance problem in section 12.7.2, “Running Selenium tests with
JUnit 4.”

 Another issue to consider when using the Selenium IDE is that you’re recording
tests in Firefox 3. If your browser requirements are different from Firefox 3, what you
recorded may not play back the same in a different browser. Web pages can behave
differently, sometimes in a subtle manner, from browser to browser. In addition,
pages can contain scripts to customize behavior based on the host browser. Server-
side code can customize replies based on the agent making the request. Consider
these issues before generating code from Firefox with the Selenium IDE; you may
need to write the tests from scratch, a la HtmlUnit, if your application has code paths
for a non-Firefox browser, such as Internet Explorer or Safari.

 Next, we look at what it takes to run Selenium tests.

12.7 Running Selenium tests
Now that you know the basic concepts surrounding a Selenium test case, we describe
the setup and mechanics of running Selenium tests: managing a Selenium server and
integrating Selenium with JUnit 4.

12.7.1 Managing the Selenium server

To run Selenium tests, you must use the Selenium server included in the Selenium
Remote Control download.

To start the server manually, open a command-line window in the server directory, for
example: selenium-remote-control-1.0-beta-2\selenium-server-1.0-beta-2. Assuming the
JVM is on your PATH, type the following:

java -jar selenium-server.jar

You’ll see, for example:

22:14:11.367 INFO - Java: Sun Microsystems Inc. 11.2-b01
22:14:11.382 INFO - OS: Windows XP 5.1 x86
22:14:11.382 INFO - v1.0-beta-2 [2571], with Core v1.0-beta-2 [2330]
22:14:11.539 INFO - Version Jetty/5.1.x
22:14:11.554 INFO - Started HttpContext[/selenium-server/driver,/
 ➥selenium-server/driver]

Selenium: under the hood
The Selenium server launches the web browser and acts as a proxy server to your
tests; the server then runs the tests on your behalf. This architecture works for any
browser and operating system combination; you can also use it to test Ajax appli-
cations. This proxy server setup is why you may get certificate warnings.

212 CHAPTER 12 Presentation-layer testing
22:14:11.554 INFO - Started HttpContext[/selenium-server,/selenium-server]
22:14:11.554 INFO - Started HttpContext[/,/]
22:14:11.570 INFO - Started SocketListener on 0.0.0.0:4444
22:14:11.585 INFO - Started org.mortbay.jetty.Server@109a4c

You’re now ready to run tests. When you run tests, you’ll see two browser windows
open and close. The first will contain the tested application; the second will display
commands sent to the browser and log entries if you have logging enabled.

 If you’re building with Ant or Maven, you can manage the lifecycle of the Sele-
nium server from these tools. We recommend that you manage the server from the
test class or suite directly, as we show next. This allows you, as a developer, to run
the tests directly from the command line or an IDE like Eclipse.

12.7.2 Running Selenium tests with JUnit 4

The Selenium requirement for JUnit is version 3; as of Selenium version 1.0 Beta 2,
there’s no out-of-the-box integration with JUnit 4. This is a problem because the
performance associated with a default SeleneseTestCase is bad; JUnit starts and
stops a browser around each test method invocation through the setUp and tear-
Down methods.

 We present a two-stage solution to this problem by first managing a server for all
test methods in a given class and then managing a server for all classes in a test suite.
To do so, you’ll need to add the server JAR file to your classpath, for example, sele-
nium-remote-control-1.0-beta-2\selenium-server-1.0-beta-2\selenium-server.jar.

 In our first solution, JUnit starts and stops the server once per class run in the
@BeforeClass and @AfterClass methods, as listing 12.14 demonstrates.

[...]
public class ManagedSeleniumServer {
 protected static Selenium selenium;

 private static SeleniumServer seleniumServer;

 @BeforeClass
 public static void setUpOnce() throws Exception {
 startSeleniumServer();
 startSeleniumClient();
 }

 public static void startSeleniumClient() throws Exception {
 selenium = new DefaultSelenium("localhost", 4444, "*iexplore",
 "http://www.google.com/");
 selenium.start();
 }

 public static void startSeleniumServer() throws Exception {
 seleniumServer = new SeleniumServer();
 seleniumServer.start();
 }

Listing 12.14 Managing the Selenium server from a test

 B

 C

 D

http://www.google.com

213Running Selenium tests
 public static void stopSeleniumClient() throws Exception {
 if (selenium != null) {
 selenium.stop();
 selenium = null;
 }
 }

 public static void stopSeleniumServer() throws Exception {
 if (seleniumServer != null) {
 seleniumServer.stop();
 seleniumServer = null;
 }
 }

 @AfterClass
 public static void tearDownOnce() throws Exception {
 stopSeleniumClient();
 stopSeleniumServer();
 }
}

Let’s examine this code. The test manages two static variables: a Selenium client driver

b and a Selenium server C. The @BeforeClass method starts the Selenium server
and then the Selenium client D. The @AfterClass method stops the client and then
the server E. We can now run tests from ManagedSeleniumServer subclasses, as this
next example demonstrates.

 This class doesn’t subclass SeleneseTestCase to avoid inheriting its setUp and
tearDown methods, which respectively start and stop a web browser. If you want to sub-
class SeleneseTestCase, make sure you override the setUp and tearDown methods to
do nothing. Let’s look at an example of a managed test:

public class ManagedTestJUnit4v2 extends ManagedSeleniumServer {
 @Test
 public void testSearch() {
 // test...
 }
}

As a ManagedSeleniumServer subclass, this class needs only test methods. JUnit will
call the @BeforeClass methods declared in superclasses before those of the current
class and will call the @AfterClass methods in superclasses after those of the cur-
rent class.

 If you aren’t going to manage a Selenium server farm for different browsers and
operating systems, using this class as a superclass for tests offers a simple solution to
get you up and running managing the Selenium server within your tests and VM.

 The drawback to this approach is that JUnit starts and stops the Selenium server
for each test class. To avoid this, you could create a test suite with first and last test
classes that start and stop the server, but you’ll need to remember to do this for each
suite, and you’ll also need to share the Selenium server through what amounts to a
global variable. We take care of this problem next.

 E

214 CHAPTER 12 Presentation-layer testing
 Our second solution, in listing 12.15, creates a JUnit Suite class to manage a Sele-
nium server. This custom suite will start the Selenium server, run all the test classes in
the suite, and then stop the server.

[...]
public class ManagedSeleniumServerSuite extends Suite {
 private static SeleniumServer seleniumServer;

 public static void startSeleniumServer() throws Exception {
 ManagedSeleniumServerSuite.stopSeleniumServer();
 seleniumServer = new SeleniumServer();
 seleniumServer.start();
 }

 public static void stopSeleniumServer() {
 if (seleniumServer != null) {
 seleniumServer.stop();
 seleniumServer = null;
 }
 }

 public ManagedSeleniumServerSuite(Class<?> klass, Class<?>[]
 suiteClasses) throws InitializationError {
 super(klass, suiteClasses);
 }

 public ManagedSeleniumServerSuite(Class<?> klass, List<Runner>
 runners) throws InitializationError {
 super(klass, runners);
 }

 public ManagedSeleniumServerSuite(Class<?> klass, RunnerBuilder
 builder) throws InitializationError {
 super(klass, builder);
 }

 public ManagedSeleniumServerSuite(RunnerBuilder builder, Class<?>
 klass, Class<?>[] suiteClasses) throws InitializationError {
 super(builder, klass, suiteClasses);
 }

 public ManagedSeleniumServerSuite(RunnerBuilder builder, Class<?>[]
 classes) throws InitializationError {
 super(builder, classes);
 }

 @Override
 public void run(final RunNotifier notifier) {
 EachTestNotifier testNotifier = new EachTestNotifier(notifier,
 this.getDescription());
 try {
 ManagedSeleniumServerSuite.startSeleniumServer();
 Statement statement = this.classBlock(notifier);
 statement.evaluate();

Listing 12.15 A test suite to manage a Selenium server

 B

 C

 D

 E

 F

215Writing Selenium tests
 } catch (AssumptionViolatedException e) {
 testNotifier.fireTestIgnored();
 } catch (StoppedByUserException e) {
 throw e;
 } catch (Throwable e) {
 testNotifier.addFailure(e);
 } finally {
 ManagedSeleniumServerSuite.stopSeleniumServer();
 }
 }
}

The key to this class is our implementation of the run method E. We clone the
method from the superclass and insert calls to our methods to start F and stop G
the Selenium server. The startSeleniumServer b and stopSeleniumServer C
methods are straightforward enough. The rest of the code consists of duplicating con-
structors from the superclass D. This allows us to write our test suite simply and suc-
cinctly as follows:

@RunWith(ManagedSeleniumServerSuite.class)
@SuiteClasses({
 UnmanagedFirstTestJUnit3.class, UnmanagedFirstTestJUnit4.class })
public class ManagedExampleSuiteTest {}

Each test class in the suite is responsible for connecting to the local server. Check that
classes, like UnmanagedFirstTestJUnit4, connect to the server with the hostname
"localhost" and the default port 4444. You can further enhance the suite to custom-
ize these settings.

 Now that we can generate and run Selenium tests, let’s focus on writing our own.

12.8 Writing Selenium tests
With an efficient test infrastructure in place, we can now explore writing individual
tests with Selenium. We look at how to test for multiple browsers and how to navigate
the object model, and we work through some example tests.

12.8.1 Testing for a specific web browser

Selenium, as of version 1.0 Beta 2, supports the browser launch strings shown in
table 12.2.

Table 12.2 Selenium browser launcher strings

Web browser
SeleneseTestCase and DefaultSelenium

browser strings

Chrome *googlechrome

Firefox *firefox

Firefox *firefoxproxy

 G

216 CHAPTER 12 Presentation-layer testing
If you don’t call SeleneseTestCase’s setUp(String,String), the default web browser
launch string used on Windows is *iexplore, and it’s *firefox for all other operating
systems. If you use the class DefaultSelenium, you must provide a browser launch
string, for example: 1516

selenium = new DefaultSelenium("localhost", 4444, "*iexplore",
 "http://www.google.com/");

Note that experimental17 browser launchers exist for elevated security privileges and
proxy injection.

12.8.2 Testing multiple browsers

We can apply the same JUnit @Parameterized feature we used with HtmlUnit in order
to run the same test class with more than one browser. In listing 12.16, we rework our
previous example with class-level and instance-level JUnit initialization in order to
combine the ability to run all tests with one client driver instance and then repeat the
test for different browsers.

[File 1]
@RunWith(ManagedSeleniumServerSuite.class)
@SuiteClasses({UnmanagedAllBrowsersTest.class})
public class ManagedAllBrowsersSuiteTest {}

Firefox Chrome URL15 *chrome

Internet Explorer *iexplore

Internet Explorer HTML
application16

*iehta

Internet Explorer *iexploreproxy

Opera *opera

Safari *safari

Specific executable c:\\path\\to\\a\\browser.exe”

15 Chrome URL: https://developer.mozilla.org/En/XUL
16 IE HTML application: http://msdn.microsoft.com/en-us/library/ms536496(VS.85).aspx
17 Experimental browser launchers: http://seleniumhq.org/documentation/remote-control/experimental.html

Listing 12.16 Running the test class for multiple browsers

Table 12.2 Selenium browser launcher strings (continued)

Web browser
SeleneseTestCase and DefaultSelenium

browser strings

http://www.google.com
https://developer.mozilla.org/En/XUL
http://msdn.microsoft.com/en-us/library/ms536496
http://seleniumhq.org/documentation/remote-control/experimental.html

217Writing Selenium tests
[File 2]
@RunWith(value = Parameterized.class)
public class UnmanagedAllBrowsersTest {
 private static Map<String, Selenium> SeleniumMap;

 @Parameters
 public static Collection getBrowsers() {
 return Arrays.asList(new String[][]{{"*iexplore"}, {"*firefox"}});
 }

 private static Selenium getSelenium(String key) {
 Selenium s = getSeleniumMap().get(key);
 if (s != null) {
 return s;
 }
 stopDrivers(); // only let one driver run
 s = new DefaultSelenium("localhost", 4444, key, "http://

www.google.com/");
 getSeleniumMap().put(key, s);
 s.start();
 return s;
 }

 private static Map<String, Selenium> getSeleniumMap() {
 if (SeleniumMap == null) {
 SeleniumMap = new HashMap<String, Selenium>();
 }
 return SeleniumMap;
 }

 @AfterClass
 public static void stopDrivers() {
 for (Selenium s : getSeleniumMap().values()) {
 s.stop();
 }
 SeleniumMap = null;
 }

 private String browserStartCommand;
 private Selenium selenium;

 public UnmanagedAllBrowsersTest(String browserStartCommand) {
 this.browserStartCommand = browserStartCommand;
 }

 @Before
 public void setUp() throws Exception {
 this.selenium = getSelenium(this.browserStartCommand);
 }

 @Test
 public void testGoogleSearch() {
 this.selenium.open("/");
 SeleneseTestCase.assertEquals("Google", this.selenium.getTitle());
 this.selenium.type("q", "Manning Publishing Co.");
 this.selenium.click("btnG");
 this.selenium.waitForPageToLoad("30000");

 B

 C
 D

 E

 F

 G

 H

 I

http://www.google.com
http://www.google.com

218 CHAPTER 12 Presentation-layer testing
 SeleneseTestCase.assertEquals("Manning Publishing Co. - Google
 Search", this.selenium.getTitle());
 this.selenium.click("link=Manning Publications Co.");
 this.selenium.waitForPageToLoad("30000");
 SeleneseTestCase.assertEquals("Manning Publications Co.",
 this.selenium.getTitle());
 }
}

Let’s examine this more complex setup. The test class is annotated with @Run-
With(value = Parameterized.class) b, which directs JUnit to run the test class as
many times as there are values returned from our @Parameters method getBrowsers

D. By contract with JUnit, this method must return a Collection of arrays; in our
case, we return a list of browser launch strings, one for each browser we want to test.

 JUnit will run all test methods with the test class initialized with "*iexplore" and
then do it all over again with "*firefox". You’ll need to have both browsers installed
on your machine for this to work.

 Let’s walk through this JUnit subtlety more carefully. When running the test class,
JUnit creates test class instances for the cross product of the test methods and the test
collection elements. One instance of the class is created for "*iexplore" and for a sin-
gle @Test method in the class. JUnit runs that @Test method and repeats the process
for all @Test methods in the class. JUnit then repeats that whole process with "*fire-
fox" and so on for all elements in the @Parameters collection D.

 We no longer have a @BeforeClass method; instead we use a @Before method I
to initialize the selenium instance variable H for each test method. The selenium
instance variable gets its value from a lazy-initialized static variable C. This can work
only by using a @Before method and lazy initializing our client driver. Remember, we
want our test class to reuse the same driver instance for each test method in a given
parameterized run.

 We have an @AfterClass method G to clean up the driver at the end of the class
run. Even though we use a static Map C to save our driver across test runs, there’s only
one driver in the map at any given time. The getSelenium method E can safely stop

F the current driver when creating a new driver because we know that JUnit finished
one of its parameterized runs.

 Now that you know how to run tests efficiently for a browser suite, let’s survey the
API used to navigate an application.

12.8.3 Application and internet navigation

Unlike HtmlUnit, there’s no Selenium HTML object model to navigate; instead, you
call the com.thoughtworks.selenium.Selenium interface, using a locator string to
address elements (see section 12.8.4, “Accessing elements with references”). This
interface contains more than 140 methods and provides all of the services and setting
toggles needed to write tests. Although there’s no object model per se, the API pro-
vides some methods to work with certain types of elements. For example, getAll-
Fields returns the IDs of all input fields on a page.

219Writing Selenium tests
 Here’s a brief sample of how tests can manipulate page elements:

■ Call click and doubleClick to click an element and get the resulting page.
■ Call check and uncheck to toggle a radio button or check box.
■ Call type to set the value of an input field.

We now look at the different ways to access elements.

12.8.4 Accessing elements with references

In our first example, we saw HTML elements referred to by locators. Selenium pro-
vides a String format to address elements with different schemes. The two locators we
saw are the default scheme, id, and link used to find anchor elements. The format for
API arguments that take a locator is LocatorType=Argument. Table 12.3 describes the
different locators and their formats.

To get the value of a field, for example, you’d write

String actualMsg = selenium.getText("name=serverMessage");

If you run into XPath cross-browser compatibility issues, you can either refactor tests
with browser-specific XPath expressions or call allowNativeXpath(false) to force
expressions to be evaluated in Selenium’s JavaScript library.

12.8.5 Failing tests with exceptions

Although a generated test method throws an exception, it doesn’t throw any checked
exceptions, nor do APIs you use to write tests. The generated code and APIs throw
unchecked exceptions to make sure your tests fail under the proper conditions. Even

Table 12.3 Locators and their formats

Locator type Argument Example

css W3C CSS2 and CSS3 selectors css=a[href="#AnId"]

dom JavaScript expression dom=document.forms['f1'].intxt

id @id attribute id=AnId

identifier @id attribute or the first element
where the @name attribute
equals id

identifier=AnId

link Anchor element matching the text link=I’m feeling lucky

name First element with the @name
attribute

name=lucky

ui Uses a Selenium UI-Element ui=loginPages::loginButton()

xpath XPath expression xpath=//*[text()="lucky"]

220 CHAPTER 12 Presentation-layer testing
though Selenium defines SeleniumException and SeleniumCommandTimedOut-

Exception as unchecked exceptions, some APIs also throw RuntimeException.
 Let’s now look at various examples of using the API and navigating an application.

12.8.6 Testing forms with Selenium

The API doesn’t provide explicit support for forms; instead, you work with forms as
you would any other elements, calling APIs for typing, clicking, and pressing keys.

 The following example recasts the HtmlUnit example from the “Testing forms
with HtmlUnit” section to the Selenium API. To remind you, in the HtmlUnit section,
we created a simple page to display a form with an input field and a Submit button.
We included form validation via JavaScript alerts in the example as a second path to
test, as described in the section “Testing JavaScript alerts.”

 We test normal user interaction with the form as follows:

@Test
public void testForm() throws IOException {
 selenium.open("file:///C:/path/to/src/main/webapp/formtest.html");
 selenium.type("id=in_text", "typing...");
 selenium.click("id=submit");
 SeleneseTestCase.assertEquals("Result", selenium.getTitle());
}

Let’s step through the example. We open the form page, type in a value, and click the
Submit button to go to the next page. Finally, we make sure we land on the right page.

 If at any step Selenium can’t find an object, the framework throws an exception
and your test automatically fails. This allows you to focus on the test and let the frame-
work handle failing your test if the page or form is not as expected.

12.8.7 Testing JavaScript alerts

A test can check to see whether a JavaScript alert has taken place. We reuse our form
example from section 12.3.12, “Testing forms with HtmlUnit,” which includes
JavaScript validation code to alert the user of empty input values.

 The following test loads our form page and checks that the browser raised the alert
when the error condition occurred. The key method is getAlert, which returns the
most recent JavaScript alert message. Calling getAlert has the same effect as clicking
OK in the dialog box.

@Test
public void testFormAlert() throws IOException {
 selenium.open("file:///C:/path//to/src/main/webapp/formtest.html");
 String title = selenium.getTitle();
 selenium.click("id=submit");
 SeleneseTestCase.assertEquals("Please enter a value.",
 selenium.getAlert());
 SeleneseTestCase.assertEquals(title, selenium.getTitle());
}

 B

221Writing Selenium tests
Let’s look at this example. We open the form page, save the current page title, and click
the Submit button. This raises the alert because we didn’t type in a value. Next, we call
getAlert b to check whether the code raised the correct alert. Finally, we make sure
we’re still on the same page by comparing the new page title with the saved title.

We don’t need to create a test to check whether an alert has taken place during nor-
mal operation of our page. If the test generates an alert but getAlert doesn’t con-
sume it, the next Selenium action will throw a SeleniumException, for example:

com.thoughtworks.selenium.SeleniumException:

➥ERROR: There was an unexpected Alert! [Please enter a value.]

12.8.8 Capturing a screen shot for a JUnit 3 test failure

Selenium provides the ability to capture a screen shot at the time of failure to sub-
classes of SeleneseTestCase. Selenium disables this feature by default; to enable it,
call setCaptureScreenShotOnFailure(true). By default, the screen shot is written to
a PNG file in the Selenium server directory with the same name as the test name given
to the SeleneseTestCase String constructor.

12.8.9 Capturing a screen shot for a JUnit 4 test failure

To access this feature from a JUnit 4 test case, you’ll need to modify the search exam-
ple as shown in listing 12.17.

private void captureScreenshot(Throwable t) throws Throwable {
 if (selenium != null) {
 String filename = this.getClass().getName() + ".png";
 try {
 selenium.captureScreenshot(filename);
 System.out.println("Saved screenshot " + filename + " for " +
 t.toString());
 } catch (Exception e) {
 System.err.println("Exception saving screenshot " + filename +
 " for " + t.toString() + ": " + e.toString());
 e.printStackTrace();
 }
 throw t;
 }
}

Selenium tip
As of version Selenium 1.0 Beta 2, JavaScript alerts won’t pop up a visible alert
dialog box. JavaScript alerts generated from a page’s onload event handler aren’t
supported. If this happens, JavaScript will open a visible dialog box, and Selenium
will wait until someone clicks the OK button.

Listing 12.17 Capturing a screen shot on JUnit 4 test failure

 B

 C

222 CHAPTER 12 Presentation-layer testing
public void testSearch() {
 // Same as before...
}

@Test
public void testSearchOnErrSaveScreen() throws Throwable {
 try {
 this.testSearch();
 } catch (Throwable t) {
 this.captureScreenshot(t);
 }
 }

We’ve added a new method called captureScreenshot b, which takes a Throwable
argument and calls the Selenium captureScreenshot method C. We refactored our
test method by creating a new method testSearchOnErrSaveScreen D, removing
@Test from testSearch, and adding it to the new method instead.

 To avoid repeating this code pattern in every method that wants to capture a screen
shot on failure requires extending JUnit, which is beyond the scope of this section.

 This concludes our Selenium survey; next, we contrast and compare HtmlUnit and
Selenium before presenting our chapter summary.

12.9 HtmlUnit versus Selenium
Here’s a recap of the similarities and differences you’ll find between HtmlUnit
and Selenium.

 The similarities are that both are free and open source and both require Java 5 as
the minimum platform requirement.

 The major difference between the two is that HtmlUnit emulates a specific web
browser, whereas Selenium drives a real web browser process. When using Sele-
nium, the browser itself provides support for JavaScript. In HtmlUnit 2.7, Mozilla’s
Rhino18 1.7 Release 2 engine provides JavaScript support, and specific browser
behavior is emulated.

18 Mozilla Rhino: http://www.mozilla.org/rhino/

Use HtmlUnit when
Use HtmlUnit when your application is independent of operating system features
and browser-specific implementations not accounted for by HtmlUnit, like Java-
Script, DOM, SCC, and so on.

Use Selenium when
Use Selenium when you require validation of specific browsers and operating sys-
tems, especially if the application takes advantage of or depends on a browser’s
specific implementation of JavaScript, DOM, CSS, and the like.

 D

http://www.mozilla.org/rhino

223Summary
The HtmlUnit pros are that it’s a 100 percent Java solution, it’s easy to integrate in a
build process, and Cactus can integrate HtmlUnit code for in-container testing, as can
other frameworks. HtmlUnit provides an HTML object model, which can validate web
pages to the finest level of detail. HtmlUnit also supports XPath to collect data; Sele-
nium XPath support is limited to referencing elements.

 The Selenium pros are that the API is simpler and drives native browsers, which
guarantees that the behavior of the tests is as close as possible to a user installation.

12.10 Summary
In this chapter, we examined presentation-layer testing and explored the use of
two free open source tools to test the user interface of a web application: Html-
Unit and Selenium.

 HtmlUnit is a 100 percent Java solution with no external requirements; it offers a
complete HTML object model, which, although creating rather verbose test code,
offers great flexibility.

 Selenium is a more complex offering; it includes a simple IDE and many comple-
mentary components. The IDE generates test code but doesn’t maintain it. The
strength of the product comes from its architecture, which allows the embeddable
Selenium Remote Control server to control different browsers on assorted operating
systems. The Selenium API is much simpler and flatter than with HtmlUnit, resulting
in more concise test code.

 Use HtmlUnit when your application is independent of operating system features
and browser-specific implementations of JavaScript, DOM, CSS, and so on.

 Use Selenium when you require validation of specific browsers and operating sys-
tems, especially if the application takes advantage of or depends on a browser’s spe-
cific implementation of JavaScript, DOM, CSS, and so on.

 In the next chapter, we add a layer of complexity by considering Ajax technologies
in our applications and test cases.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

Ajax testing
Should array indices start at 0 or 1?
My compromise of 0.5 was rejected without,

I thought, proper consideration.
—Stan Kelly-Bootle

This chapter covers testing Ajax applications. It’s a continuation of chapter 12,
which discusses presentation-layer testing in general and introduces two of the
libraries and tools used in this chapter: HtmlUnit and Selenium. As in the previous
chapter, our goal is finding bugs in the graphical user interface of an application.
We describe a divide-and-conquer approach by breaking up tests into three groups:
functional testing, testing client-side scripts, and testing server services. We present

This chapter covers
■ Introducing Ajax testing
■ Testing the Ajax stack
■ Testing JavaScript
■ Testing server services
■ Testing Google Web Toolkit

applications
224

225Why are Ajax applications difficult to test?
the technologies relevant to testing each tier. We end by looking at the unique testing
challenges presented by Google Web Toolkit (GWT) applications. We start by review-
ing Ajax and why testing is difficult.

13.1 Why are Ajax applications difficult to test?
In 2005, the article “A New Approach to Web Applications”1 coined the term Ajax
to describe the architecture of a new generation of web applications like Google
Maps2 and Google Suggest.3 These new applications were richer, more interactive,
and more responsive than their predecessors. Critical to the user experience, they
left behind the need to constantly reload or refresh an entire web page to keep any
portion of its information updated. Although still browser based, these applications
started to give the web the look and feel of what had been strictly the domain of
desktop applications.

 Although Ajax is often associated with its all-uppercase sibling AJAX, the acronym,
it’s today much more than Asynchronous JavaScript and XML. You build an Ajax appli-
cation by combining the following technologies: CSS, DOM, JavaScript, server-side
scripting, HTML, HTTP, and web remoting (XMLHttpRequest).

 Beyond its associated technologies, Ajax reflects the mindset of a new breed of web
applications built on standards and designed to give users a rich and interactive expe-
rience. In this chapter, we study how to test these applications.

 To understand the challenge of testing an Ajax application, let’s look at a web-
classic interaction and then step through the stages of an Ajax application interaction.

13.1.1 Web-classic interaction

In a web-classic interaction, the user opens the browser on a page, and each time the
page needs data, it asks the server for a new page. Figure 13.1 illustrates this process.

13.1.2 Ajax interaction

In an Ajax application, the page communicates with the server to get data for the
part of the page that needs updating and then updates only that part of the page.
Figure 13.2 illustrates this process.

 The user starts by opening an Ajax application’s start page in a browser; this
causes the HTML page to load. The browser displays the HTML using any associated
CSS and runs client-side JavaScript code to set up the page’s event handlers. The
page is now ready to respond to user interactions. The user interacts with the page,
triggering a JavaScript event handler. In an application like Google Suggest, each
keystroke creates a server request for a list of suggestions that are displayed in a
drop-down list box. The JavaScript event handler builds an XHR object and calls the
server with a specific request using HTTP. The XHR object includes a JavaScript

1 http://www.adaptivepath.com/ideas/essays/archives/000385.php
2 http://maps.google.com/
3 http://www.google.com/webhp?complete=1&hl=en

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://maps.google.com
http://www.google.com/webhp?complete=1&hl=en

226 CHAPTER 13 Ajax testing
callback function the browser will invoke when results are ready. The server pro-
cesses the request and returns a response using HTTP. The browser invokes the XHR
callback and uses the data returned by the server, in the form of XML or text, to
update the page in the browser. In order to update the page, the callback function
uses the DOM API to modify the model, which the browser displays immediately.

Figure 13.1 New pages are downloaded for each interaction in a web-classic application.

Figure 13.2 Relevant portions of a page downloaded for each Ajax web application interaction

227Testing patterns for Ajax
13.1.3 A brave new world

This interaction is quite different from the web-classic architecture where a page is
loaded, a user interacts with the page causing another page to load, and then the cycle
repeats. With Ajax, the page is loaded once, and everything happens within that page.
JavaScript code runs in the page to perform I/O with the server and updates the in-
memory DOM of the page, which the browser displays to the user.

13.1.4 Testing challenges

The challenge in writing tests for the application interaction described previously is
the asynchronous aspect of HTTP communications and the DOM manipulation by
JavaScript code. The difficulty is how to drive a self-changing application when those
changes are asynchronous to the test itself.

 In addition to testing the traditional page state described in chapter 12, you should
also test an Ajax application’s best practices. Tests should exercise features4 like drag
and drop, form validation and submission, event handling, back button, refresh but-
ton, undo and redo commands, fancy navigation, state management and caching, and
user friendliness (latency, showing progress, timing out, and multiple clicks).

 Further complicating matters, different implementations of Ajax component tech-
nologies like JavaScript, DOM, and XMLHttpRequest exist in different browsers from
different vendors. Although various free and open source libraries abstract these dif-
ferences away, an application is nonetheless more complicated to test. You may want
to ensure test coverage for all code paths for all supported browsers on all supported
operating systems.

 Next, we split up testing this complex application stack into more manageable tiers
through functional testing, testing client-side scripts, and testing server services.

13.2 Testing patterns for Ajax
Before we jump into test code, we survey the testing patterns we use to verify the vari-
ous aspects of an Ajax application. We can orchestrate testing with three types of tests:

■ Functional testing drives the whole application from the client-browser and
usually ends up exercising all application layers.

■ Client-side script unit testing covers the JavaScript scripts running in the
browser. The application page hosting the script isn’t tested.

■ Service testing verifies services provided by the server and accessed from
JavaScript XHR objects.

Let’s look at these types of tests in more detail before we turn to implementation.

13.2.1 Functional testing

Functional testing drives the whole application from the client browser and usually
ends up exercising all application layers. As we discussed in chapter 12, a functional

4 See Ajax in Action: http://www.manning.com/crane/.

http://www.manning.com/crane

228 CHAPTER 13 Ajax testing
test simulates a user and checks the state of visited web pages. You can choose to have
the tests emulate a web browser (HtmlUnit) or drive a live web browser (Selenium.)
As always with browser-emulation software, the key is how well it supports JavaScript.

13.2.2 Client-side script unit testing

Here we divide the scripts into two piles: the ones that use XHR to manipulate a DOM
and the ones that don’t.

 Although we can test some script functions and libraries independently from their
hosting page where scripts call XHR objects and modify the DOM of the current page,
we need a JavaScript engine and browser; the browser in turn may be emulated or live.
For these scripts, we should use a functional test.

 For other scripts, we’re testing a library of functions, and we prefer to deliver these
functions in standalone files as opposed to embedded in HTML pages.

 We can test all scripts through functional tests of the pages that call on them, but
we want to provide a lighter-weight test pass that’s more along the line of a true unit
test. Heavier-weight and slower functional tests using web browsers should ideally be
reserved for when scripts can’t be otherwise verified.

 Let’s look at JavaScript unit testing. What should you look for in a JavaScript test-
ing framework? From the TDD point of view, the most important feature is the ability
to automate tests. We must be able to integrate JavaScript testing in our Ant or Maven
build. Second, we want the ability to run the tests from JUnit. You’ll find many
JavaScript frameworks that provide for creating and running tests by embedding test
invocation in an HTML page (JsUnit,5 JsUnitTest,6 script.aculo.us7), whereas others do
it all from JavaScript (RhinoUnit).8 The best integration for our purposes must
include support for JUnit. Although JUnit or Ant integration can be custom coded for
a specific JavaScript testing framework, JsUnit provides this functionality out of the
box. JsUnit is a free, open source framework integrated with JUnit that goes one step
further by providing advanced Selenium-type distributed configuration options.

 JsUnit is to JavaScript testing what Selenium is to web application testing. JsUnit
allows you to test JavaScript, from JUnit, by controlling a web browser process on a
local or remote machine. We discuss JsUnit in action in the section “JavaScript testing
with JsUnit.”

13.2.3 Service testing

Service testing verifies services provided by the server and accessed from JavaScript
XHR objects. The HTML page and JavaScript aren’t tested. Because HTTP is the stan-
dard used by XHR objects to communicate with the server, we can use any HTTP client
to test the service independently of XHR and the browser. Free, open source Java

5 http://www.jsunit.net/
6 http://jsunittest.com/
7 http://script.aculo.us/
8 http://code.google.com/p/rhinounit/

http://www.jsunit.net
http://jsunittest.com
http://script.aculo.us
http://code.google.com/p/rhinounit

229Functional testing
HTTP libraries suitable for unit testing include HtmlUnit, HttpUnit, and Apache
Commons HttpClient. We examine HttpClient in action in the section “Testing ser-
vices with HttpClient.”

 In this chapter, we test server services for Ajax applications, which we distinguish from
testing web services, a different web standard.

 We now examine each technique in more detail with implementation examples.
We start with functional testing with Selenium and HtmlUnit.

13.3 Functional testing
We now look at testing the application stack by continuing our demonstration of Sele-
nium and HtmlUnit started in the previous chapter on presentation layer testing. We
show you how to use Selenium and HtmlUnit to write the same kind of tests. We show
how to deal with the asynchronous aspect of an Ajax application before going on to
test specific components that make up the stack, such as JavaScript libraries and
server-provided services (as opposed to web services). The key aspect of writing tests
for an Ajax application is to know when an action causes a change in the DOM. We
show how to do this and create functional tests using Selenium and then HtmlUnit.

13.3.1 Functional testing with Selenium

If you’re not familiar with Selenium, please consult the previous chapter to get an
understanding of the fundamentals we build on here. We pick up Selenium where we
left off, this time testing Ajax, a more advanced task.

 Once a page is loaded in the browser, Selenium sees that version of the page. To
see the updated DOM, you must use a different API than what we showed you in the
previous chapter.

 Let’s take as an example the form in figure 13.3. When you click the Get Message
button, the page queries the server and returns a simple text message: Hello World.
JavaScript code then updates the DOM with the message, and the browser displays the
input field value, as you can see in the screenshot.

 Listing 13.1 shows the HTML source for the page, which includes the JavaScript to
perform the HTTP XML Request.

Figure 13.3 A simple Ajax form

230 CHAPTER 13 Ajax testing
<html>
<body>
<script type="text/javascript">
function newXHR() {
 if (window.XMLHttpRequest) {
 return new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 return new ActiveXObject("Microsoft.XMLHTTP");
 } else {
 alert("This browser does not support XMLHTTP.");
 }
}
function setMessage() {
 var xhr = newXHR();
 xhr.onreadystatechange=function() {
 if(xhr.readyState == 4) {
 document.helloForm.serverMessage.value=xhr.responseText;
 }
 }
 xhr.open("GET","hello-world.asp", true);
 xhr.send(null);
}
</script>
<form name="helloForm"><input value="Get Message" type="button"
 name="getMsgBtn" onclick="setMessage();" /> Message: <input
 type="text" name="serverMessage" /></form>
</body>
</html>

Let’s examine the key elements in the HTML. The form F defines a button, which
when clicked invokes the JavaScript function setMessage C. The first thing the set-
Message function does is call newXHR b, which creates a new HTTP XML request
object. setMessage then calls the server E and updates the DOM D when the
response is ready.

 The following shows the server-side source for this example (hello-world.asp).

<%
response.expires=-1
response.write("Hello World")
%>

The response is the string "Hello World" b. To run this example locally with IIS,
you’ll need to create a virtual directory for the example webapp directory and use the
IIS Permission Wizard to grant it default rights.

 In order to test the form and check that the message is what we expect it to be, we
use the same JUnit scaffolding from the previous chapter and first set up a test suite to
manage the Selenium server:

[...]
@RunWith(ManagedSeleniumServerSuite.class)
@SuiteClasses({ UnmanagedFormTester.class })

Listing 13.1 testform.html—a simple form (client)

 B

 C

 D

 E
 F

 B

231Functional testing
public class ManagedFormTest {
 // See annotations.
}

This code shows the test suite ManagedFormTest that runs the test case Unmanaged-
FormTester containing the @Test methods. The JUnit test runner ManagedSelenium-
ServerSuite manages the Selenium server and drives the unit test.

 Without knowing anything about Ajax, you might create the test method test-
FormNo in listing 13.2.

/**
 * Tests a form. The Selenium server must be managed elsewhere.
 * To test the form in IE, create a virtual directory in IIS and point your
 * browser and tests to http://localhost/webapp/formtest.html
*/
public class UnmanagedFormTester {
 private static final String APP_WINDOW =
 "selenium.browserbot.getCurrentWindow()";

 private static final String EXPECTED_MSG = "Hello World";

 /**
 * The directory /ch13-ajax/src/main/webapp has been configured as
 * an IIS virtual directory for this test.
 */
 private static final String TEST_URL = "http://localhost/webapp/";

 private static final String TEST_PAGE = "formtest.html";

 private static Selenium selenium;

 @BeforeClass
 public static void setUpOnce() throws Exception {
 selenium = new DefaultSelenium("localhost", 4444, "*iexplore",
 TEST_URL);
 selenium.start();
 }

 @AfterClass
 public static void tearDownOnce() throws Exception {
 if (selenium != null) {
 selenium.stop();
 }
 selenium = null;
 }

 @Test
 public void testFormNo() throws IOException {
 selenium.open(TEST_PAGE);
 selenium.click("name=getMsgBtn");
 String actualMsg = selenium.getText("name=serverMessage");
 // The message is not there!
 Assert.assertFalse(EXPECTED_MSG.equals(actualMsg));
 }
}

Listing 13.2 UnmanagedFormTester.java bad test method

 B

 C

http://localhost/webapp/formtest.html
http://localhost/webapp

232 CHAPTER 13 Ajax testing
All is well from the beginning of the file UnmanagedFormTester.java until the call to
getText b. The call takes a Selenium locator to retrieve the content of the element
named serverMessage. The return value is the empty string C because the DOM
model in the object model isn’t up to date. Perhaps we need to wait for the server to do
its work and the result to come back. Calling waitForPageToLoad doesn’t work because
the code doesn’t reload the page. Recall that this is an Ajax application; pages don’t
reload. Calling Thread.sleep after clicking the button doesn’t work either. Fortu-
nately, Selenium provides a single powerful API for this purpose: waitForCondition.
Here it is in action in the class UnmanagedFormTester:

@Test
public void testFormWithJavaScript() throws IOException {
 selenium.open(TEST_PAGE);
 selenium.click("name=getMessageButton");
 selenium.waitForCondition(APP_WINDOW +
 ".document.helloForm.serverMessage.value=='" + EXPECTED_MSG + "'",
 "1000");
}

Alternatively, without the refactoring, the JavaScript expression in the first argument
to waitForCondition reads:

selenium.browserbot.getCurrentWindow().document.helloForm.serverMessage.
value == 'Hello World'

The waitForCondition method waits for a given condition to become true or a time-
out to expire. The method takes two arguments: the first is JavaScript code where the
last expression must evaluate to a Boolean; the second is a timeout String expressed
in milliseconds.

The art of testing Ajax with Selenium is about embedding JavaScript in your JUnit
code. This can be confusing because you’re embedding JavaScript in Java, but it’s
what’s required because the Selenium server controlling the web browser will run the
JavaScript for you. In contrast, let’s go back to HtmlUnit and see how this test looks in
that framework.

Wait for condition API tip
In order for JavaScript to access the application window, you must use the follow-
ing expression:

selenium.browserbot.getCurrentWindow()

For example, to get to the document, use

selenium.browserbot.getCurrentWindow().document

233Functional testing
13.3.2 Functional testing with HtmlUnit

We return now to testing with HtmlUnit, which we document in chapter 12. Though
the HtmlUnit API is more verbose than that of Selenium, you write tests entirely in
Java. Listing 13.3 tests the form with HtmlUnit.

public class AjaxFormTest {

private static final String EXPECTED_MSG = "Hello World";

private static final String TEST_URL =
 "http://localhost/webapp/formtest.html";

@Test
public void testAjaxForm() throws IOException {
 WebClient webClient = new WebClient();
 try {
 webClient.setAjaxController(new
 NicelyResynchronizingAjaxController());
 HtmlPage page = (HtmlPage) webClient.getPage(TEST_URL);
 HtmlButtonInput button = (HtmlButtonInput)
 page.getFirstByXPath("/html/body/form/input[1]");
 HtmlPage newPage = button.click();
 HtmlInput reply = (HtmlInput)
 newPage.getFirstByXPath("/html/body/form/input[2]");
 Assert.assertTrue(EXPECTED_MSG.equals(reply.asText()));
 } finally {
 webClient.closeAllWindows();
 }
}
}

Let’s walk through this example. As usual, we start by creating an HtmlUnit web client
and getting the application’s start page C. We get our button, we click it, and the
result is a new page D. From this page, we get the entry field that was updated
through the DOM by the XHR call and assert that the contents are what we expect E.

 The general pattern with HtmlUnit is to get a page, find the element, click it, and
check the resulting page contents.

 Because the test thread can finish before HtmlUnit reads the Ajax response from
the server, you must synchronize the test code with the response to guarantee predict-
able results from run to run. Although a simple approach is to sleep the thread for a
while, HtmlUnit provides APIs to guarantee that Ajax tests are synchronous and pre-
dictable. This example illustrates this with the call to setAjaxController b.

 The setAjaxController method and the NicelyResynchronizingAjaxController
class work together to turn asynchronous Ajax calls into synchronous Ajax calls.
The class NicelyResynchronizingAjaxController is the only subclass of the Ajax-
Controller class delivered with HtmlUnit. By default, a web client initializes itself with
an instance of AjaxController, which leaves Ajax calls asynchronous.

Listing 13.3 Testing the same form with HtmlUnit

 B

 C

 D

 E

http://localhost/webapp/formtest.html

234 CHAPTER 13 Ajax testing
If you want finer-grained control over the behavior of tests, the framework provides
experimental9 APIs to wait for various JavaScript tasks to complete. The method wait-
ForBackgroundJavaScript waits for all background JavaScript tasks to complete exe-
cution, defined as tasks scheduled for execution via window.setTimeout, window.
setInterval, and asynchronous XMLHttpRequest. For example, you call waitFor-
BackgroundJavaScript after an action invokes a script with a timeout in milliseconds:

HtmlPage newPage = button.click();
int jobs = this.webClient.waitForBackgroundJavaScript(1000);

The return value is the number of jobs still executing or scheduled for execution. If
you have an idea of when your background JavaScript is supposed to start executing,
but you’re not necessarily sure how long it will take to execute, use the method
waitForBackgroundJavaScriptStartingBefore. You should use the wait methods
instead of the methods internal to HtmlUnit provided by JavaScriptJobManager.

 You’ve now seen how to create functional tests with Selenium and HtmlUnit.
Although this can prove that an application works from the perspective of a client, it
doesn’t assert the quality of the underlying building blocks. It’s now time to dive
deeper into testing by dealing with testing these building blocks: JavaScript and server
services. We start with JavaScript.

13.4 JavaScript testing
Here, you face the same choice you had between HtmlUnit and Selenium: do you
want to emulate a browser or drive a live browser? We look next at two JavaScript
testing frameworks, RhinoUnit and JsUnit. RhinoUnit is like HtmlUnit, a 100 per-
cent Java solution, and JsUnit is akin to Selenium in that it drives local or remote
web browsers. To wrap up JavaScript testing, we use JSLint to check our code against
best practices.

13.4.1 JavaScript testing with RhinoUnit

RhinoUnit allows you to run JavaScript unit tests from Ant. You write unit tests in
JavaScript and invoke them from Ant with the help of the Java Scripting Framework
and the Mozilla Rhino JavaScript engine included in Java 6. If you’re on an older ver-
sion of Java, you’ll need the Apache Bean Scripting Framework10 (BSF) and the
Mozilla Rhino JavaScript engine as documented in appendix E, “Installing software.”

HtmlUnit tip
Create predictable tests by synchronizing Ajax calls. To do so, set the web client’s
Ajax controller to an instance of NicelyResynchronizingAjaxController:

webClient.setAjaxController(new NicelyResynchronizingAjaxController());

9 HtmlUnit 2.5 Javadoc warns that these APIs may change behavior or may not exist in future versions.
10 http://jakarta.apache.org/bsf/

http://jakarta.apache.org/bsf

235JavaScript testing
As a bonus, RhinoUnit includes JSLint,11 which allows you to check from Ant that your
JavaScript code follows best practices. Download and unzip RhinoUnit.12 If you’re on
Java 6, you’ve finished; if not, some additional steps are documented in appendix E.

 Let’s create a simple function to test; the following code defines a factorial func-
tion (factorial.js.)

function factorial(n) {
 if ((n === 0) || (n === 1)) {
 return 1;
 }
 return n * factorial(n - 1);
}

The following JavaScript unit tests the factorial function (test-example.js.)

eval(loadFile("src/main/webapp/factorial.js"));
testCases(test,
 function test15() {
 assert.that(factorial(15), eq(1307674368000));
 },

 function test16() {
 assert.that(factorial(16), eq(20922789888000));
 }
);

We start the test by including the library of functions we want to test b with a call to
eval. Note that the path to the file is relative to where we’re running the test from; in
this case, it’s the project’s root directory. Next, we must call testCases, passing in test
as the first variable C, followed by our test functions. You can pass in any number of
functions; note the comma separating the test functions. For this simple test, we call
our factorial function from two different tests and make sure that the computation
results in the expected value D E, for example, checking that calling factorial(15)
yields 1307674368000 D. The assert.that call is how to make an assertion in Rhi-
noUnit. The first value is the value we’re testing, the actual value; the second value, the
predicate, defines the actual test. Here we use eq to test for equality to its argument,
1307674368000. The general format is

assert.that(actual, predicate)

The RhinoUnit site lists13 the functions you can use in addition to eq; these are the
most widely used:

■ The function eq(expected) uses === to compare actual and expected values.
■ The function matches(regExp) tests the actual value against the given regu-

lar expression.

11 http://www.JSLint.com/
12 http://code.google.com/p/rhinounit/
13 http://code.google.com/p/rhinounit/wiki/APIDescription

 B
 C

 D

 E

http://www.JSLint.com
http://code.google.com/p/rhinounit
http://code.google.com/p/rhinounit/wiki/APIDescription

236 CHAPTER 13 Ajax testing
■ The function isTrue(message) tests that the actual value is true, displaying an
optional message if it isn’t.

■ The function isFalse(message) tests that the actual value is false, displaying
an optional message if it isn’t.

■ The function not(predicate) inverts the predicate.
■ The function isNull(message) tests that the actual value is null, returning the

message if it isn’t.

The following example shows how to match regular expressions:

var actual = "JUnit in Action";
assert.that(actual, matches(/in/));
assert.that(actual, not(matches(/out/)));

The example calls the match function first to assert that “in” is in the test string b and
then to check that “out” isn’t C.

 The assert object contains other useful functions: fail is like the JUnit fail
method. The various mustCall functions check that the tests causing the given func-
tions have or have not been invoked.

 In order to run the tests, you’ll need an Ant build script. Listing 13.4 is the sample
build script used to run our examples.

<project name="ch13-ajax-rhinounit" basedir="." default="run-all-tests">

<target name="run-all-tests" depends="run-unit-tests, run-js-lint" />

<property name="src.dir" value="src/main/webapp" />
<property name="test.dir" value="src/test/webapp" />
<property name="rhinounit.dir" value="rhinounit_1_2_1" />
<property name="rhinounit.src" value="${rhinounit.dir}/src" />
<property name="JSLint.src" value="${rhinounit.dir}/JSLint" />

<!-- Requires Java 6 or Java 5 + BSF -->
<scriptdef name="rhinounit" src="${rhinounit.src}/rhinoUnitAnt.js"
language="javascript">
 <attribute name="options" />
 <attribute name="ignoredglobalvars" />
 <attribute name="haltOnFirstFailure" />
 <attribute name="rhinoUnitUtilPath" />
 <element name="fileset" type="fileset" />
</scriptdef>

<target name="run-unit-tests">
 <rhinounit options="{verbose:true, stackTrace:true}"
ignoredglobalvars="rhinounit"
rhinoUnitUtilPath="${rhinounit.src}/rhinoUnitUtil.js">
 <fileset dir="${test.dir}">
 <include name="*.js" />
 </fileset>
 </rhinounit>
</target>

Listing 13.4 Ant build.xml for JavaScript unit tests

 B
 C

 B

 C

 D

237JavaScript testing
<scriptdef name="JSLintant" src="${JSLint.src}/JSLintant.js"
language="javascript">

 <attribute name="options" />
 <attribute name="JSLintpath" />
 <element name="fileset" type="fileset" />
</scriptdef>

<target name="run-js-lint">
 <JSLintant options="{eqeqeq : true, white: true, plusplus : false,
bitwise : true, evil: true, passfail: false}"
JSLintpath="${JSLint.src}/fullJSLint.js">
 <fileset dir="${src.dir}" />
 </JSLintant>
</target>

</project>

We start our Ant script by defining properties for the locations of directories and files

b relative to where we run the Ant build. Next, we define a rhinounit Ant script C
and its arguments by loading its source from rhinoUnitAnt.js. We call the script D with
a fileset pointing to our JavaScript unit test source, where we include all files with the
js extension. In the same way that we defined a script for rhinounit and ran our tests,
we define a script for JSLint E to help us detect scripting issues, and we finish by run-
ning this JSLint script F on our source directory. For more on JSLint, please see sec-
tion 13.6, “Checking best practices with JSLint.”

This takes care of JavaScript unit testing in the build file; please consult the Rhino-
Unit14 website for additional documentation. Next, we look at the alternative to
RhinoUnit and browser emulation with JsUnit, a framework that drives a web browser
á la Selenium.

13.4.2 JavaScript testing with JsUnit

JsUnit15 is a JavaScript unit-testing framework written in JavaScript and in Java. We use
it from Ant to drive a web browser in order to validate the same JavaScript we just
tested in the previous section. JsUnit is similar to Selenium in that it controls a web
browser and the tests run in that browser’s JavaScript engine.

RhinoUnit tip
When you invoke the rhinounit Ant script, make sure you point the rhino-
UnitUtilPath argument to the location of the rhinoUnitUtil.js file, for example:

rhinoUnitUtilPath="${rhinounit.src}/rhinoUnitUtil.js"

14 RhinoUnit: http://code.google.com/p/rhinounit/
15 http://www.jsunit.net/

 E

 F

http://code.google.com/p/rhinounit
http://www.jsunit.net

238 CHAPTER 13 Ajax testing
 Let’s start by showing how to run a test from JsUnit and then automating the test
from Ant. The source code for this chapter includes a copy of JsUnit; for details please
see appendix E.

13.4.3 Writing JsUnit tests

You write a JsUnit test by creating an HTML page containing JavaScript test functions.
You then run the test from a web browser. You use HTML only as the container for the
JavaScript. Listing 13.5 is our factorial test.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JsUnit Factorial Tests - Chapter 13</title>
 <link rel="stylesheet" type="text/css"
 href="../../../jsunit/css/jsUnitStyle.css">
 <script type="text/javascript"
 src="../../../jsunit/app/jsUnitCore.js"></script>
 <script type="text/javascript"
 src="../../../src/main/webapp/factorial.js"></script>
 <script type="text/javascript">

 function test15() {
 assertEquals(factorial(15), 1307674368000);
 }

 function testRegEx() {
 var actual = "JUnit in Action";
 assertTrue(actual, /in/.test(actual));
 assertFalse(actual, /out/.test(actual));
 }

 </script>
</head>
<body>
 <h1>JsUnit Chapter 13 Tests</h1>
 <p>This page contains tests for the Chapter 13 examples.</p>
 <p>To see the tests, view the source for this page.</p>
</body>
</html>

You define the JsUnit test in the HTML head element and start with the references
needed to bring in the JsUnit framework b and the JavaScript code to test C.

Listing 13.5 jsFactorialTests.html

JsUnit tip
The references in the link href and script src attributes are relative to the loca-
tion of the HTML test file.

 B

 C

 D

 E

http://www.w3.org/TR/html4/loose.dtd

239JavaScript testing
A JavaScript script element defines the test functions for our factorial D and regular
expression E tests. As with JUnit 3, we define test functions with the function name
prefix test. The set of JsUnit assert functions is smaller than the set of JUnit assert
methods and is listed here. Like JUnit, the API defines a version of assert functions
with and without a message argument. The square brackets in the following list
denote that the argument is optional.

■ assert([message,] booleanValue)
■ assertTrue([message,] booleanValue)
■ assertFalse([message,] booleanValue)
■ assertEquals([message,] expectedValue, actualValue)
■ assertNotEquals([message,] expectedValue, actualValue)
■ assertNull([message,] value)
■ assertNotNull([message,] value)
■ assertUndefined([message,] value)
■ assertNotUndefined([message,] value)
■ assertNaN([message,] value)
■ assertNotNaN([message,] value)
■ fail(message)

Like JUnit, JsUnit lets you use setUp and tearDown functions. JsUnit calls your
setUp function before each test function and your tearDown function after each
test function.

 JsUnit supports an equivalent to @BeforeClass if you define a function called set-
UpPage. JsUnit calls setUpPage once after the page is loaded but before it calls any test
functions. When your setUpPage function ends, it must set the variable setUpPage-
Status to 'complete' to indicate to JsUnit that it can proceed to execute the page.

13.4.4 Writing JsUnit test suites

As in JUnit, you can group JsUnit tests into a suite of related tests. Listing 13.6 wraps
our previous test page into a test suite.

JsUnit versus JUnit
JsUnit differs from JUnit in that JsUnit doesn’t define the order of test function
invocation; in JUnit, the order of methods in the source file defines the invoca-
tion order.

In addition, although JUnit creates a new test object instance to invoke each
method, JsUnit doesn’t use a corresponding action, like reloading the page, which
means that JsUnit preserves page-variable values across test function invocations.

240 CHAPTER 13 Ajax testing
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JsUnit Test Suite - Chapter 13</title>
 <link rel="stylesheet" type="text/css"
 href="../../../jsunit/css/jsUnitStyle.css">
 <script type="text/javascript"
 src="../../../jsunit/app/jsUnitCore.js"></script>
 <script type="text/javascript">
 function suite() {
 var newsuite = new JsUnitTestSuite();
 newsuite.addTestPage(
 "../src/test/webapp/jsFactorialTests.html");
 return newsuite;
 }
 </script>
</head>
<body>
 <h1>JsUnit Test Suite for Chapter 13</h1>
 <p>This page contains a suite of tests for testing JsUnit.</p>
 <p>To see the tests, view the source for this page.</p>
</body>
</html>

To define a test suite, create a function called suite b, which returns a JsUnitTestSuite
object. You then build up a suite object by adding test pages or other suite objects. In
our example, we add one page C, the page we previously defined by calling the addTest-
Page function. The rest of the code in this HTML page is the same as our previous exam-
ple with the exception that we don’t need to refer to our JavaScript factorial library.

To add a test suite to another test suite, create a new JsUnitTestSuite object, and call
the addTestSuite API. This allows you to organize your tests just as you can in JUnit.
Listing 13.7 defines and adds two test suites to a main test suite.

function featureASuite() {
 var result = new JsUnitTestSuite();
 result.addTestPage("../tests/featureA/Test1.html");
 result.addTestPage("../tests/featureA/Test2.html");
 return result;
}

Listing 13.6 jsUnitTestSuite.html

JsUnit addTestPage tip
The addTestPage argument is a location relative to the test runner page you’ll use.
In our examples, we use the test runner jsunit/testRunner.html.

Listing 13.7 Building a JsUnit test suite

 B

 C

http://www.w3.org/TR/html4/loose.dtd

241JavaScript testing
function featureBSuite() {
 var result = new JsUnitTestSuite();
 result.addTestPage("../tests/featureB/Test1.html");
 result.addTestPage("../tests/featureB/Test2.html");
 return result;
}

function suite() {
 var newsuite = new JsUnitTestSuite();
 newsuite.addTestSuite(featureASuite());
 newsuite.addTestSuite(featureASuite());
 return newsuite;
}

We now show you how to run the tests manually during development and then
through Ant for builds.

13.4.5 Running JsUnit tests manually

To run your tests manually, open a web browser on jsunit/testRunner.html, enter into
the file entry field a URL (file:// or http://) or file reference (c:\path\to\a\file) to an
HTML test page for a test or a suite, and click the Run button. In figure 13.4, we show
the result of running our test suite with the familiar green bar.

Figure 13.4 The JsUnit test runner

242 CHAPTER 13 Ajax testing
You can run a self-test on JsUnit itself by running the test suite jsunit/tests/jsUnitTest-
Suite.html. The result will show you the green bar with 90 successful tests.

Now that we have a manual way to run tests, let’s move on to automating tests with Ant.

13.4.6 Running JsUnit tests with Ant

JsUnit includes the file jsunit/build.xml, which you can use as a template to call JsUnit
tests from Ant. The Ant build file will manage web browsers, invoke tests, and cre-
ate reports.

Listing 13.8 shows the build.xml file that excerpts invoke our test suite.

<?xml version="1.0" encoding="utf-8"?>
<project name="JsUnit" default="standalone_test" basedir=".">
 <property name="jsunit.dir" value="jsunit"/>

 <property name="browserFileNames"
 value="c:\program files\internet explorer\iexplore.exe"/>

 <property id="logsDirectory" name="logsDirectory" value="logs"/>

 <property id="timeoutSeconds" name="timeoutSeconds" value="60"/>

 <property id="url" name="url"
value="http://localhost:8080/jsunit/jsunit/testRunner.html?testPage=http://
 localhost:8080/jsunit/src/test/webapp/jsUnitTestSuite.html"/>

 <property name="bin" location="${jsunit.dir}/java/bin"/>
 <property name="lib" location="${jsunit.dir}/java/lib"/>
 <property name="loggingPropertiesFile" location="logging.properties"/>

 <path id="classpath">
 <fileset dir="${lib}">
 <include name="*.jar"/>
 <include name="*/*.jar"/>
 </fileset>

JsUnit tip: Status Aborted or tests time out
JsUnit doesn’t give you much feedback when something goes wrong. If you see
Aborted in the JsUnit Status field, check your paths starting with link href and
script src and then addTestPage.

JsUnit tip: Java 6 runtime requirement
The version of JsUnit tested here, version 2.2, will run only with Java 6 or greater.
If you use an earlier version of Java you will see the error java.lang.Unsupported-
ClassVersionError: Bad version number in .class file.

Listing 13.8 JsUnit build.xml excerpts

 B

 C

 D

 E F

 G

243JavaScript testing
 <fileset dir="${bin}">
 <include name="jsunit.jar"/>
 </fileset>
 </path>

 <target name="standalone_test"
 description="Runs tests on the local machine">
 <junit showoutput="true" haltonerror="true" haltonfailure="true">
 <formatter type="plain" usefile="false"/>
 <classpath refid="classpath"/>
 <sysproperty key="java.util.logging.config.file"
 value="${loggingPropertiesFile}"/>
 <sysproperty key="browserFileNames"
 value="${browserFileNames}"/>
 <sysproperty key="description" value="${description}"/>
 <sysproperty key="closeBrowsersAfterTestRuns"
 value="${closeBrowsersAfterTestRuns}"/>
 <sysproperty key="logsDirectory" value="${logsDirectory}"/>
 <sysproperty key="port" value="${port}"/>
 <sysproperty key="resourceBase" value="${resourceBase}"/>
 <sysproperty key="timeoutSeconds" value="${timeoutSeconds}"/>
 <sysproperty key="url" value="${url}"/>
 <test name="net.jsunit.StandaloneTest"/>
 </junit>
 </target>

 <target name="jsunit_self_test"
 description="Runs JsUnit self-tests on the local machine">
 <junit showoutput="true" haltonerror="true" haltonfailure="true">
 <formatter type="plain" usefile="false"/>
 <classpath refid="classpath"/>
 <sysproperty key="java.util.logging.config.file"
 value="${loggingPropertiesFile}"/>
 <sysproperty key="browserFileNames"
 value="${browserFileNames}"/>
 <sysproperty key="description" value="${description}"/>
 <sysproperty key="closeBrowsersAfterTestRuns"
 value="${closeBrowsersAfterTestRuns}"/>
 <sysproperty key="logsDirectory" value="${logsDirectory}"/>
 <sysproperty key="port" value="${port}"/>
 <sysproperty key="resourceBase" value="${resourceBase}"/>
 <sysproperty key="timeoutSeconds" value="${timeoutSeconds}"/>
 <sysproperty key="url"
 value="http://localhost:8080/jsunit/jsunit/
 testRunner.html?testPage=http://localhost:8080/jsunit/
 jsunit/tests/jsUnitTestSuite.html"/>
 <test name="net.jsunit.StandaloneTest"/>
 </junit>
 </target>

</project>

We start our build.xml file by defining the location of the JsUnit installation directory

b; in this case, it’s a subdirectory of the directory containing our example build.xml.
Then we define which web browsers JsUnit will use to test our code with the property
browserFileNames C. This property is a comma-separated list of browser executable

 H

 I

http://localhost:8080/jsunit/jsunit/testRunner.html?testPage=localhost:8080/jsunit/jsunit/tests/jsUnitTestSuite.html
http://localhost:8080/jsunit/jsunit/testRunner.html?testPage=localhost:8080/jsunit/jsunit/tests/jsUnitTestSuite.html

244 CHAPTER 13 Ajax testing
paths. Next, we define logsDirectory D to hold the directory location for test report
XML files. The property timeoutSeconds E is a timeout in seconds to wait for a test
run to complete; if absent, the default value is 60 seconds. The url property F defines
which test runner to use and which test or test suite it should invoke. It’s worth breaking
down this URL into its component parts. The example URL is http://localhost:8080/
jsunit/jsunit/testRunner.html?testPage=http://localhost:8080/jsunit/src/test/webapp/
jsUnitTestSuite.html.

 The URL starts with http://localhost:8080 because we’re running our tests locally.
The next segment, jsunit, specifies the jsunit servlet and from there the location to
the JsUnit stock test runner, relative to build.xml, which is jsunit/testRunner.html.
All of this yields the first part of the URL: http://localhost:8080/jsunit/jsunit/test-
Runner.html. The testPage URL parameter points to the test page or suite page to
run. It too starts with the same local server plus the jsunit servlet prefix and is fol-
lowed by the path to the test suite page relative to where the test is run. Put it all
together and we have the complete URL.

 Next, we give Ant all of the JAR files needed to run JsUnit G, and then we can pro-
ceed to running our test with the target standalone_test H, which we invoke from
the command line in the build.xml directory with a simple call to Ant by typing the
following in a console:

ant standalone_test

Ant starts, and you’ll see the web browser open, run the tests in the test runner page,
and close. You’ll also see a couple of pages of Ant and JsUnit output on the console
detailing the test run, too much to reproduce here. We can look for the next-to-last
line of Ant output for the familiar BUILD SUCCESSFUL message.

 You can even add to your test run the JsUnit self-tests as a sanity check by adding
the target jsunit_self_test I to your Ant invocation:

ant jsunit_self_test standalone_test

For the self-test to work in your build, make sure that your jsunit_self_test target
points to the JsUnit test suite located in jsunit/tests/jsUnitTestSuite.html, as our
example build.xml does.

 We wrap up this section by noting that more advanced test configurations are pos-
sible with JsUnit because it provides support for driving farms of JsUnit servers. A
JsUnit server is what allows tests to be performed from Ant; it acts under the covers of
our examples to drive web browsers on the local machine or on remote machines and
also creates the result logs.

JsUnit Firefox tip: permission denied
If you get a permission denied error in Firefox, set the security.fileuri.
strict_origin_policy to false.

http://localhost:8080/jsunit/jsunit/testRunner.html?testPage
http://localhost:8080/jsunit/src/test/webapp/jsUnitTestSuite.html
http://localhost:8080
http://localhost:8080/jsunit/jsunit/testRunner.html
http://localhost:8080/jsunit/jsunit/testRunner.html
http://localhost:8080/jsunit/jsunit/testRunner.html?testPage
http://localhost:8080/jsunit/src/test/webapp/jsUnitTestSuite.html

245Checking best practices with JSLint
13.5 RhinoUnit versus JsUnit
Should you use RhinoUnit or JsUnit? The answer to this question is quite similar to
the HtmlUnit versus Selenium question, which we presented in the previous chapter.
The similarity is that both are free and open source.

 The major difference between the two is that RhinoUnit emulates a web browser,
whereas JsUnit drives a real web browser process. When using JsUnit, the browser
itself provides support for JavaScript. In RhinoUnit, Java 6 or Apache BSF plus the
Mozilla Rhino16 engine provide JavaScript support.

 The RhinoUnit pros are that it’s a 100 percent Java solution and is easy to integrate
in a build process. The JsUnit pros are that it drives native browsers and can manage a
farm of JsUnit test servers.

You’ve seen how to test client-side scripts with RhinoUnit and JsUnit. Next, we show
how you can check best practices with JSLint.

13.6 Checking best practices with JSLint
We now move on to checking our code for best practices with JSLint.17 As we did for
the unit-testing script, we use scripts to define and run JSLint from Ant:

<scriptdef name="JSLintant" src="${JSLint.src}/JSLintant.js"
 language="javascript">
 <attribute name="options" />
 <attribute name="JSLintpath" />
 <element name="fileset" type="fileset" />
</scriptdef>

<target name="run-js-lint">
 <JSLintant options="{eqeqeq : true, white: true, plusplus : false,
bitwise : true, evil: true, passfail: false}"
JSLintpath="${JSLint.src}/fullJSLint.js">
 <fileset dir="${src.dir}" />
 </JSLintant>
</target>

16 http://www.mozilla.org/rhino/

Use RhinoUnit when
Use RhinoUnit when your application is independent of operating system features
and browser-specific implementations of JavaScript, DOM, CSS, and so on.

Use JsUnit when
Use JsUnit when you require validation of specific browsers and operating systems,
especially if the application takes advantage of or depends on a browser’s specific
implementation of JavaScript, DOM, CSS, and so on.

17 JSLint: http://www.JSLint.com/

 B

 C

http://www.mozilla.org/rhino
http://www.JSLint.com

246 CHAPTER 13 Ajax testing
We start by defining an Ant script for JSLint b and then call the script C and pass it
the source location to our JavaScript library directory.

 You run this example script by typing ant on the command line in the ch13-ajax-
rhinounit directory for this chapter example, which displays the results shown in list-
ing 13.9.

Buildfile: build.xml

run-unit-tests:
[rhinounit] Testsuite: test-all-valid.js
[rhinounit] Tests run: 17, Failures: 0, Errors: 0
[rhinounit]
[rhinounit] Testsuite: test-example.js
[rhinounit] Tests run: 2, Failures: 0, Errors: 0
[rhinounit]

run-js-lint:
[JSLintant] Attribute options = {eqeqeq : true, white: true, plusplus :
false, bitwise : true, evil: true, passfail: false}
[JSLintant] JSLint: No problems found in ch13-
rhinounit\src\main\webapp\factorial.js

run-all-tests:

BUILD SUCCESSFUL
Total time: 0 seconds

JSLint is quite verbose and comprehensive in its output; please see the JSLint18 website
for details.

 We started by looking at functional testing from the client perspective. Next, we
dove into testing one of the underlying building blocks of an Ajax application: client-
side scripts with RhinoUnit and JsUnit. We also checked these scripts for best practices
with JSLint. Next, we move to the server side and another building block: testing
server-side services with HttpClient.

JSLint tip
When you invoke the JSLintant Ant script, make sure you point the JSLintpath
argument to the location of the full JSLint.js file, for example:

JSLintpath="${JSLint.src}/fullJSLint.js"

Listing 13.9 Ant build results

18 http://www.JSLint.com/

http://www.JSLint.com

247Testing services with HttpClient
13.7 Testing services with HttpClient
The idea behind testing the application services layer separately is to validate each ser-
vice independently from HTML, JavaScript, and DOM and how the application uses
the data. An application calls a service from JavaScript through the XMLHttpRequest
object. Here, we use XMLHttpRequest to refer to the standard JavaScript XMLHttp-
Request object and to the Microsoft ActiveX XMLHTTP objects Microsoft.XMLHTTP
and Msxml2.XMLHTTP. Our goal is to emulate an XMLHttpRequest object by using
HTTP as the transport mechanism and XML and JSON as example data formats. We
use the Apache Commons HttpClient to provide HTTP support, Java’s built-in XML
support, and jslint4java to check that JSON documents are well formed.

13.7.1 Calling an XML service

To simplify this example, we’ve made the chapter’s example webapp directory an IIS
virtual directory so that we can run the unit tests from Ant locally. A production Ant
build would start and stop a web container like Jetty around the unit test invocations.
Our first XML service test in listing 13.10 makes sure that we’re getting back from the
server the expected XML document. A second test validates the document.

@Test
public void testGetXmlBasicCheck() throws IOException {
 HttpClient httpClient = new HttpClient();
 GetMethod get = new GetMethod(
 "http://localhost/ch13personal/personal.xml");
 String responseString;
 try {
 httpClient.executeMethod(get);
 InputStream input = get.getResponseBodyAsStream();
 responseString = IOUtils.toString(input, "UTF-8");
 } finally {
 get.releaseConnection();
 }
 Assert.assertTrue(responseString, responseString.startsWith(
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"));
 // more...
}

The test starts by creating an Apache Commons HttpClient b and defining the
HTTP GET method C with a URL for our XML document fixture. The URL specified in
the GetMethod constructor is application specific and must include parameters if
appropriate for a given test. The test then executes the HTTP GET method D and
reads the data back from the server. Note the use of the Apache Commons IO API
IOUtils.toString to read the response stream in a string as a one-liner E. The code
does this synchronously, unlike a standard Ajax application. We then guarantee that
HttpClient resources are freed by calling releaseConnection from a finally block

F. We can now check that the data from the server is as expected. For this first test, all

Listing 13.10 An XML service test

 B
 C

 D

 E

 F

 G

http://localhost/ch13personal/personal.xml

248 CHAPTER 13 Ajax testing
we do is a simple string comparison of the start of the document G. You could also
use Java regular expressions to do some further XML string-based checks; next, we use
an important XML feature: XML validation.

13.7.2 Validating an XML response

If you can parse an XML document, you know that it’s well formed, meaning that the
XML syntax is obeyed, nothing more. XML provides a standard called XML Schema,
which you use to define a vocabulary of XML, specifying which elements and attributes
make up a valid document. In this next example, the schema is stored in a file called
personal.xsd. Listing 13.11 uses the standard Java XML APIs to validate the XML docu-
ment returned from a server call against an XML Schema.

@Test
public void testGetXmlAndValidateXmlSchema() throws
 IOException, ParserConfigurationException, SAXException {
 HttpClient httpClient = new HttpClient();
 GetMethod get = new GetMethod(
 "http://localhost/ch13personal/personal.xml");
 Document document;
 try {
 httpClient.executeMethod(get);
 InputStream input = get.getResponseBodyAsStream();
 // Parse the XML document into a DOM tree
 DocumentBuilder parser = DocumentBuilderFactory
 .newInstance().newDocumentBuilder();
 document = parser.parse(input);
 } finally {
 get.releaseConnection();
 }

 // Create a SchemaFactory capable of understanding XSD schemas
 SchemaFactory factory = SchemaFactory.newInstance(
 XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // Load the XSD schema in a Schema instance
 Source schemaFile = new StreamSource(new File(
 "src/main/webapp/personal.xsd"));
 Schema schema = factory.newSchema(schemaFile);

 // Create a Validator, which we use to validate the document
 Validator validator = schema.newValidator();
 validator.validate(new DOMSource(document));
}

This example starts as the previous one did, but after the test executes the HTTP GET
method, we read the server response directly with an XML parser b. If the DOM docu-
ment parses successfully, we know the document is well formed, a nice sanity check. If
we don’t get a valid XML document from the server, we might have a server error mes-
sage in the response or a bug in server-side XML document generation. We can now
move to the meat of the test, XML validation. We create a schema factory for the kind

Listing 13.11 A validating XML service test

 B

 C

 D

 E

http://localhost/ch13personal/personal.xml

249Testing services with HttpClient
of grammar to use, in our case, XML Schema C, and load the XSD schema file in a
Schema instance D. Finally, we can create an XML Validator for our schema and vali-
date the DOM document E. At this point, we know that our document is valid and
well formed.

 The next step would be to check that the application data is as expected. The DOM
document API can be painful to use, so at this point you have several options. The
JDOM19 API is a friendlier interface to XML than DOM. You can use Java’s XPath20 sup-
port to check the contents of a document. You can also use Sun’s JAXB21 framework,
although it’s not trivial, to transform XML into POJOs.

 Next, let’s consider JSON as the data format.

13.7.3 Validating a JSON response

JSON22 (JavaScript Object Notation) is a data-interchange language based on a subset
of the JavaScript Programming Language, Standard ECMA-262 3rd Edition, December
1999.23 Applications use JSON instead of XML as their data format because it’s text
based and easy for people and machines to read and understand. In this first example
in listing 13.12, we show a simple check of a JSON document.

private static final String URL_FIXTURE =
 "http://localhost/ch13personal/glossary.json";

@Test
public void testGetJsonBasicCheck() throws IOException {
 HttpClient httpClient = new HttpClient();
 GetMethod get = new GetMethod(URL_FIXTURE);
 String responseString;
 try {
 httpClient.executeMethod(get);
 InputStream input = get.getResponseBodyAsStream();
 responseString = IOUtils.toString(input, "UTF-8");
 } finally {
 get.releaseConnection();
 }
 String responseNoWs =
 StringUtils.deleteWhitespace(responseString);
 String response1Line = "{ \"glossary\": { \"title\":
 ➥\"example glossary\", \"GlossDiv\": { \"title\": \"S\",
 ➥\"GlossList\": { \"GlossEntry\": { \"ID\": \"SGML\", \"SortAs\":
 ➥\"SGML\", \"GlossTerm\": \"Standard Generalized Markup Language\",
 ➥\"Acronym\": \"SGML\", \"Abbrev\": \"ISO 8879:1986\", \"GlossDef\": {
 ➥\"para\": \"A meta-markup language, used to create markup languages

19 http://www.jdom.org/
20 http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/package-summary.html
21 https://jaxb.dev.java.net/
22 http://www.json.org/
23 http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

Listing 13.12 A JSON service test

 B

http://localhost/ch13personal/glossary.json
http://www.jdom.org
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/package-summary.html
https://jaxb.dev.java.net
http://www.json.org
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

250 CHAPTER 13 Ajax testing
 ➥such as DocBook.\", \"GlossSeeAlso\": [\"GML\", \"XML\"] },
 ➥\"GlossSee\": \"markup\" } } } } }";
 String response1LineNoWs =
 StringUtils.deleteWhitespace(response1Line);
 Assert.assertTrue(responseString,
 responseNoWs.equals(response1LineNoWs));
 }

In this test, we perform the same steps as our first XML example: we create an Http-
Client, an HTTP GET method that we execute, and then read the results from the
server into a String b. Unlike XML, JSON has no APIs to support checks for well-
formed and valid documents. We strip whitespaces from our JSON document fixture,
the server response, and compare the two C. Although this check is brute force, we
use it to provide a simple check that’s free of formatting issues. The Apache Commons
Lang API StringUtils.deleteWhitespace performs the whitespace removal.

 The next-best thing we can do is implement a well-formed check by parsing the
document. Although www.json.org lists many libraries, including Java libraries to parse
JSON, we use the JSLint wrapper jslint4java24 to go beyond a simple well-formed check.
As you saw earlier in the RhinoUnit section, JSLint provides lint-style reporting for
JavaScript. In listing 13.13, we call JSLint through jslint4java and check its results.

@Test
public void testGetJsonAndValidate() throws IOException,
 ParserConfigurationException, SAXException {
 HttpClient httpClient = new HttpClient();
 GetMethod get = new GetMethod(URL_FIXTURE);
 String responseString;
 try {
 httpClient.executeMethod(get);
 InputStream input = get.getResponseBodyAsStream();
 responseString = IOUtils.toString(input, "UTF-8");
 } finally {
 get.releaseConnection();
 }
 JSLint JSLint = new JSLint();
 List<Issue> issues = JSLint.lint(URL_FIXTURE, responseString);
 StringBuilder builder = new StringBuilder();
 String eol = System.getProperty("line.separator");
 for (Issue issue : issues) {
 builder.append(issue.toString());
 builder.append(eol);
 }
 Assert.assertEquals(builder.toString(), 0, issues.size());
}

Our test starts as usual, and we check for results using a JSLint object b. We don’t
provide options in this example, but the JSLint class provides an addOption method

24 jslint4java site: http://code.google.com/p/jslint4java/

Listing 13.13 A JSON service test with JSLint

 C

 B

 C

 D

 E

http://www.json.org
http://code.google.com/p/jslint4java

251Testing Google Web Toolkit applications
to support the underlying JSLint options. The test calls the lint method by specify-
ing two arguments: a String describing the source location and another String for
the JavaScript code to check, in this case, a JSON document C. The test uses the lint
results to create a message String D used in the Assert call. If there’s a problem, the
test provides the assertEquals call E with a full description of all issues JSLint found.

 You’ll notice that jslint4java is always behind JSLint in terms of features and fixes.
This is because jslint4java embeds JSLint (fullJSLint.js) in its JAR file. If you need to use
a newer or different version of JSLint in jslint4java, you’ll need to download jslint4java,
drop in the version of JSLint (fullJSLint.js) you need on top of the existing one, and
rebuild jslint4java.

 In this section, you’ve seen how to validate server-side services that participate in
an Ajax application independently of the pages and code using them. We’ve used
Apache Commons HttpClient as our HTTP communication library, Java’s XML APIs,
and JSLint through jslint4java. We’ve separated our tests along the boundary of the
Ajax architecture.

 We’ve now tested the full Ajax application stack. Let’s now consider a different way
to build, run, and test an Ajax application with the Google Web Toolkit.

13.8 Testing Google Web Toolkit applications
The Google Web Toolkit (GWT)25 is a free, open source framework used to create
JavaScript frontends to web applications. GWT application development has a twist,
though: you write your applications in Java. To this end, Google provides the Google
Plug-in for Eclipse; you develop and test in Java, and when your application is ready
for deployment, GWT translates your Java into JavaScript. GWT allows you to run and
test your application in hosted mode, which runs in Java, and in web mode, where you
application is translated to JavaScript and then is run in a browser.

13.8.1 Choosing a testing framework for a GWT application

GWT supports JUnit with the GWTTestCase and GWTTestSuite classes, which both
extend the JUnit TestCase class. GWT normally integrates with JUnit 3.8.2 and works
with 4.6. GWT includes junitCreator, a program used to generate empty GWT test cases
for a given GWT module. As a bonus, GWT can also benchmark your application. Because
Java and JavaScript aren’t the same, you should test in both hosted and web modes.

 It’s important to understand that GWTTestCase doesn’t account for testing the user
interface of an application. You use GWTTestCase to test the asynchronous portions of
the application normally triggered by user actions. This means that you must factor
your application and test cases with this element in mind. You can think of GWT tests
as integration tests. The tests can’t rely on any user interface element driving the
application. Testing the GUI requires using the techniques presented in this and the
previous chapters; you can create functional GUI tests with Selenium or HtmlUnit.

25 http://code.google.com/webtoolkit/

http://code.google.com/webtoolkit

252 CHAPTER 13 Ajax testing
Let’s first look at how to create a GWTTestCase manually before we show how to use
junitCreator. The example we use in this section is adapted from the GWT Stock-
Watcher example26 and extended with an RPC. Figure 13.5 shows what the application
looks like running in hosted mode.

 Our example tests the StockWatcher remote procedure call (RPC) to get stock
price information for an array of stock symbols. We focus on RPC, because it’s the
heart of GWT JUnit testing.

GWTTestCase tip
You use the GWTTestCase class to test the application logic of the web client, not
the user interface. Although seemingly an obstacle, this forces you to factor your
GWT application cleanly between code for user interaction and application logic.
This is a design best practice that you should follow.

26 http://code.google.com/webtoolkit/

Figure 13.5
Running StockWatcher in
hosted mode

http://code.google.com/webtoolkit

253Testing Google Web Toolkit applications
13.8.2 Creating a GWTTestCase manually

We start our asynchronous GWT RPC example test in familiar GWT territory with list-
ing 13.14, where the refreshWatchList method performs a standard GWT RPC call.

void refreshWatchList() {
 // Initialize the service proxy.
 if (this.stockPriceSvc == null) {
 this.stockPriceSvc = GWT.create(StockPriceService.class);
 }

 // Set up the callback object.
 AsyncCallback<StockPrice[]> callback =
 new AsyncCallback<StockPrice[]>() {
 public void onFailure(Throwable caught) {
 StockWatcher.this.setLastRefreshThrowable(caught);
 }

 public void onSuccess(StockPrice[] result) {
 StockWatcher.this.updateTable(result);
 }
 };

 // Make the call to the stock price service.
 this.stockPriceSvc.getPrices(
 this.getStocks().toArray(new String[0]), callback);
}

The implementation of refreshWatchList follows the standard pattern for GWT RPC;
the method creates a new StockPriceService instance b and defines the service call-
back. The callback defines two methods; in onFailure C we save the given exception,
and in onSuccess D, which is typed for our application model (StockPrice[]), we
update the application. Next, we call service’s getPrices method E with input data
and our callback. The key point to remember is that the call to the getPrices method
is asynchronous, so the call to refreshWatchList is also asynchronous. Next, we test
this method with a unit test.

 To create a GWT test case, you start by creating a subclass of GWTTestCase, along
the lines of listing 13.15.

[...]
public class StockWatcherTest extends GWTTestCase {

@Override
public String getModuleName() {
 return "com.google.gwt.sample.stockwatcher.StockWatcher";
}

public void testStockPrices() {
 final StockWatcher stockWatcher = new StockWatcher();
 final ArrayList<String> stocks = stockWatcher.getStocks();

Listing 13.14 The asynchronous RPC call

Listing 13.15 StockWatcherTest.java—testing GWT RPC

 B

 C

 D

 E

 B

 C

254 CHAPTER 13 Ajax testing
 stocks.add("S1");
 stocks.add("S2");
 stocks.add("S3");
 stockWatcher.refreshWatchList();
 Timer timer = new Timer() {
 private void assertStockPrice(FlexTable stocksFlexTable,
 int row, String price, String change) {
 assertEquals(price, stocksFlexTable.getText(row, 1));
 assertEquals(change, stocksFlexTable.getText(row, 2));
 }

 @Override
 public void run() {
 Throwable lastRefreshThrowable =
 stockWatcher.getLastRefreshThrowable();
 if (lastRefreshThrowable != null) {
 this.throwUnchekedException(lastRefreshThrowable);
 }
 FlexTable stocksFlexTable = stockWatcher.getStocksFlexTable();
 assertEquals("Symbol", stocksFlexTable.getText(0, 0));
 assertEquals("Price", stocksFlexTable.getText(0, 1));
 assertEquals("Change", stocksFlexTable.getText(0, 2));
 this.assertStockPrice(stocksFlexTable, 1,
 "101.00", "+0.01 (+0.01%)");
 this.assertStockPrice(stocksFlexTable, 2,
 "102.00", "+0.02 (+0.02%)");
 this.assertStockPrice(stocksFlexTable, 3,
 "103.00", "+0.03 (+0.03%)");
 StockWatcherTest.this.finishTest();
 }

 private void throwUnchekedException(
 Throwable lastRefreshThrowable) {
 String msg = lastRefreshThrowable.toString();
 if (lastRefreshThrowable instanceof StatusCodeException) {
 msg = "HTTP status code " + ((StatusCodeException)
 lastRefreshThrowable).getStatusCode() + ": " + msg;
 }
 throw new IllegalStateException(msg, lastRefreshThrowable);
 }
 };
 this.delayTestFinish(5000);
 timer.schedule(100);
}
}

A GWT test case must extend the GWT class GWTTestCase b and implement a method
with the signature public String getModuleName() to return the name of the module
being tested C. We start the test method by instantiating the model class and initializ-
ing it with input data D, the three stock symbols "S1", "S2", and "S3". Next, we call
the refreshWatchList method in listing 13.14, which performs the asynchronous
RPC E.

 We need to allow the test method to complete while allowing assertions to run. To
do so, we use a GWT Timer F to schedule our assertions. Our Timer’s run method

 D

 E

 F

 G

 H

 I

 J

 1)

 1 !

255Testing Google Web Toolkit applications
starts by checking that the stock watcher RPC was able to run in the first place. We do
this by checking to see whether the asynchronous callback caught an exception G.
This arrangement is helpful in determining an incorrect test setup, in particular as it
relates to the classpath and module file (see the tip in the section on running tests). If
no exception is present, the validity checks on the StockWatcher object can proceed.
We check that table headers are still there H and then check the contents of the table

I for values we expect to be returned from the service. In this test, we changed the
stock GWT example to return predictable values instead of randomly generated val-
ues. If the test calls the GWTTestCase finishTest J method before the delay period
expires, then the test succeeds.

 Now that the Timer object is in place, we call delayTestFinish to tell GWT to
run this test in asynchronous mode . You give the method a delay period in milli-
seconds much longer than what is expected to run the test setup, do the RPC, and
perform the assertions. When the test method exits normally, GWT doesn’t mark
the test as finished; instead, the delay period starts. During the delay period, GWT
checks for the following:

1 If the test calls the GWTTestCase finishTest method before the delay period
expires, then the test succeeds.

2 If an exception propagates to GWT, then the test fails with that exception.
3 If the delay period expires and neither of the previous conditions is true, then

the test fails with a TimeoutException.
4 The last task in the test is to get the job off and running with a call to the

Timer’s schedule method . The argument is a delay in milliseconds, after
which control returns to the caller.

We just examined asynchronous testing in GWT; next, we show how to use junit-
Creator to create starter tests and how to run the tests.

13.8.3 Creating a GWTTestCase with junitCreator

The junitCreator utility allows you to create a GWTTestCase based on a module to
which you then add your own test methods. junitCreator is a good place to get started
on your first GWT test. For subsequent tests, you may prefer to clone a template class
or write test case classes from scratch. junitCreator also creates Eclipse launch config-
urations and command-line scripts for hosted and web modes. To get your command
processor to find junitCreator and other GWT programs, remember to add GWT to
your path. Here’s a sample invocation for our example:

junitCreator -junit /java/junit4.6/junit-4.6.jar -module
com.google.gwt.sample.stockwatcher.StockWatcher -eclipse ch13-gwt-
StockWatcher com.google.gwt.sample.stockwatcher.client.StockWatcherTest

The (abbreviated) console output is as follows:

Created file
 test\com\google\gwt\sample\stockwatcher\client\StockWatcherTest.java

1)

1 !

256 CHAPTER 13 Ajax testing
Created file StockWatcherTest-hosted.launch
Created file StockWatcherTest-web.launch
Created file StockWatcherTest-hosted.cmd
Created file StockWatcherTest-web.cmd

The .launch files are Eclipse launch configurations and the .cmd files are command-
line scripts. Use these files to invoke the generated test case in web or hosted mode.
You may need to adapt the scripts for your location of the JUnit and GWT .jar files.

13.8.4 Running test cases

Using Eclipse, running a test is easy. You
right-click a test case class and choose
Run As or Debug As and then choose
GWT JUnit Test to run the test in hosted
mode or GWT JUnit Test (Web Mode) to
run the test in web mode, as shown in
figure 13.6.

 To use Ant, you need to make sure
your build file points to the GWT SDK. Using a GWT example build file as a template,
edit the gwt.sdk property to point to the GWT directory.

13.8.5 Setup and teardown

A GWTTestCase subclass can override the JUnit methods setUp and tearDown with the
following restrictions:

■ You can’t call GWT JavaScript Native Interface (JSNI) methods.
■ You can’t call code that depends on deferred binding, which includes most of

the UI library.

GWT 1.5 remedies these issues by the addition of two methods available for overriding:

■ gwtSetUp runs before each test case method.
■ gwtTearDown runs after each test case method.

13.8.6 Creating a test suite

The benefit of using a test suite with GWT goes beyond grouping related tests
together. A performance gain is possible by using a GWT test suite. GWT sorts test cases
in a suite by module name as returned by getModuleName. This causes all tests with the
same module name to run one after the other.

 To create a test suite, you can start with the Eclipse JUnit Test Suite Wizard. For
example, to create a test suite that includes all test cases in a package, go to the Pack-
ages view, right-click a package, and choose New and then Other. In the New dialog
box, open the JUnit node and choose JUnit Test Suite. Listing 13.16 shows the gener-
ated code with two changes we explain next.

Figure 13.6 Running a test

257Summary
public class AllTests extends GWTTestSuite {

 public static Test suite() {
 TestSuite suite = new TestSuite(
 "com.google.gwt.sample.stockwatcher.client.AllTests");
 // $JUnit-BEGIN$
 suite.addTestSuite(StockPriceTest.class);
 suite.addTestSuite(StockWatcherTest.class);
 // $JUnit-END$
 return suite;
 }

}

We made the class extend GWTTestSuite b to make this suite a GWT test suite. We
also replaced the String in the TestSuite constructor with the class name of the gen-
erated class C. This allows us to double-click the class name in the JUnit view and
jump to an editor for that test suite. The rest is standard JUnit code; we call addTest-
Suite with a class object to add a test case to the suite.

13.8.7 Running a test suite

In addition to the requirements for running a GWT test case, you must configure a
GWT test suite with more memory than the default settings allocate. Configure the
Java VM running the tests with at least 256 megabytes of RAM. With the Sun JVM, use
the following option: -Xmx256M. You must also add to the classpath the source directo-
ries for application and test code.

 To wrap up GWT testing, recall that GWT test cases verify the asynchronous aspects
of your application, not the user interface. To test the GUI, use functional tests with
Selenium or HtmlUnit.

 Although we’ve finished our brief tour of GWT testing, it’s worth noting that GWT
includes the Speed Tracer tool to help you identify and fix performance problems by
visualizing instrumentation data taken from the browser.

13.9 Summary
In this chapter, we built on what you learned in chapter 12 about testing the presenta-
tion layer of applications, specifically as it relates to Ajax applications.

 We showed that Ajax applications use many technologies layered in broad tiers:
HTML and JavaScript are used on the client; HTTP, XML, and JSON provide communi-
cation and data services; and the server side is viewed as a black box implementing ser-
vices accessed over the internet with HTTP.

 We divided our testing strategies along similar patterns. We used functional tests
for the whole application stack as it appears to a user by driving and testing the appli-
cation with HtmlUnit and Selenium. We isolated JavaScript into libraries and tested
those independently with RhinoUnit and JsUnit. We validated server-side XML and
JSON services using Apache Commons HttpClient, JSLint, and jslint4java.

Listing 13.16 A GWT test suite

 B

 C

258 CHAPTER 13 Ajax testing
 You use RhinoUnit when your application is independent of operating system fea-
tures and browser-specific implementations of JavaScript, DOM, CSS, and the like. You
use JsUnit when you require validation of specific browsers and operating systems,
especially if the application takes advantage of or depends on a browser’s specific
implementation of JavaScript, DOM, CSS, and so on.

 Finally, we looked at the unique challenge posed by GWT, a framework that trans-
lates your Java code to JavaScript.

 This chapter concludes our survey of user interface testing, and we now move to
the server side and testing with Cactus.

Server-side Java
testing with Cactus

Good design at good times.

 Make it run, make it run right.

—Kent Beck,
 Test Driven Development:

 By Example

In the second part of the book we explained what mock objects are and how to
benefit from using them. We also described different techniques for unit testing
your server-side code, and we even compared these techniques against each
other. The one thing that you should be aware of now is that there is no absolute
truth—the best techniques to use depend on the situation you’re currently in.
For example, in most cases you might find server-side testing with mocks and

This chapter covers
■ Drawbacks of mock objects
■ Testing inside the container

with Cactus
■ How Cactus works
■ Integrating Cactus with other

projects, including Ant and Maven
259

260 CHAPTER 14 Server-side Java testing with Cactus
stubs sufficient, but as you saw, this technique suffers some significant drawbacks.
That’s why we cover the in-container testing approach deeper in the book. Further-
more, this chapter focuses on the in-container testing methodologies by means of
one of the most popular in-container testing frameworks: Cactus. We start by intro-
ducing the Cactus framework and then show you some real-world examples of how
to use Cactus.

 We begin by explaining what’s so special about Cactus and the order of execution
of Cactus tests. We then build a sample application that uses some components from
the Java EE spec, and we write the tests for those components with the help of Cactus.
The next step is to execute those tests; we show a sample integration between Cactus
and some of the most popular build tools (Ant and Maven). But we go a bit further
than that: we demonstrate the tight integration between Cactus and other projects,
such as Cargo and Jetty. So let’s start!

14.1 What is Cactus?
Cactus is an open source framework (http://jakarta.apache.org/cactus/) for in-
container testing server-side Java code (mostly Java EE components in the current ver-
sion of Cactus). It’s an extension of JUnit that was created by Vincent Massol in 1998.

 Before we go any further, I’d like to clarify the definitions just mentioned. When
we say Cactus is a framework, we mean that it provides an API that you have to extend in
order to use it.

 Also, in-container means that (as you’ll see later in the chapter) the tests get exe-
cuted inside the virtual machine of the container. And finally, Cactus is an extension of
JUnit for two reasons: First, it extends JUnit by empowering it with new functionality
(Cactus makes JUnit tests get executed inside the container, something which other-
wise wouldn’t be possible). And second, Cactus’s API extends JUnit’s API; in low-level
software engineering terms, it extends some of JUnit’s classes and overrides some of
JUnit’s methods.

 Let’s see Cactus in action. In later sections, we explain in more detail how it works.

14.2 Testing with Cactus
This section is somewhat theoretical. You need this knowledge before you experiment
with a sample application, because Cactus is different from the normal unit testing
frameworks. Cactus executes the tests inside the container, which on its own raises a
lot of questions, so we try to answer all of them here.

14.2.1 Java components that you can test with Cactus

As we mentioned in the previous section, the Cactus project is used for testing the
core Java EE components (JSPs, tag libraries, servlets, filters, and EJBs). What’s worth
mentioning is that this is the only focus of the Cactus project. It doesn’t test any spe-
cific framework (look at the next chapter if your application is framework specific),
because it isn’t intended to do so. A lot of the emails that come from the Cactus

http://jakarta.apache.org/cactus

261Testing with Cactus
mailing list ask if people can use Cactus for testing an application based on a spe-
cific framework (like Struts, JSF, or Spring). There are quite a few tools dedicated to
such testing, and we cover some of them later in the book. Most of those tools are
based on Cactus and require Cactus in their classpath, but again Cactus is designed
for in-container testing of the components from the Java EE spec.

14.2.2 General principles

Because Cactus is an extension of JUnit, every Cactus test is a JUnit test by itself.
The reverse isn’t true; most of the JUnit tests are Cactus tests. So what distinguishes
the Cactus tests from the JUnit tests? You need to stick to a couple of rules in order
to use Cactus.

 We already discussed in chapter 8 what in-container testing means. Back then, we
had a web application that uses servlets. We want to unit test the isAuthenticated
method in listing 14.1 from a SampleServlet servlet.

[...]
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class SampleServlet extends HttpServlet {
 public boolean isAuthenticated(HttpServletRequest request) {
 HttpSession session = request.getSession(false);
 if (session == null) {
 return false;
 }
 String authenticationAttribute =
 (String) session.getAttribute("authenticated");

 return Boolean.valueOf(authenticationAttribute).booleanValue();
 }
}

In order to be able to test this method, we need to get hold of a valid HttpServlet-
Request object. Unfortunately, it isn’t possible to call new HttpServletRequest to cre-
ate a usable request. The lifecycle of HttpServletRequest is managed by the container.
JUnit alone isn’t enough to write a test for the isAuthenticated method.

 So what must we do in order to obtain a valid HttpServletRequest? Wouldn’t it be
perfect if we had an HttpServletRequest object already instantiated in our test cases?
And how can we achieve this? What if we always had to extend a certain class that takes
care of providing us the server-side objects that are otherwise managed by the con-
tainer (such as HttpServletRequest)? Listing 14.2 shows a corresponding Cactus test
that tests the given servlet.

Listing 14.1 Sample of a servlet method to unit test

262 CHAPTER 14 Server-side Java testing with Cactus
[...]
import org.apache.cactus.ServletTestCase;
import org.apache.cactus.WebRequest;

public class TestSampleServletIntegration extends ServletTestCase {
 private SampleServlet servlet;

 protected void setUp() {
 servlet = new SampleServlet();
 }

 public void testIsAuthenticatedAuthenticated() {
 session.setAttribute("authenticated", "true");
 assertTrue(servlet.isAuthenticated(request));
 }

 public void testIsAuthenticatedNotAuthenticated() {
 assertFalse(servlet.isAuthenticated(request));
 }

 public void beginIsAuthenticatedNoSession(WebRequest request) {
 request.setAutomaticSession(false);
 }

 public void testIsAuthenticatedNoSession() {
 assertFalse(servlet.isAuthenticated(request));
 }
}

Now you’re probably asking, ”At what place do the session B and request C objects
get declared and initialized?” The answer is straightforward—they come from the base
class, ServletTestCase, which is part of the Cactus API.

 As you can see, the Cactus test case meets all of our requirements. It gives us access
to the container objects, inside our JUnit test cases. As you can see from the previous
listing, writing a Cactus test case involves several key points:

■ The Cactus test case must extend one of the following, depending on what type
of component you’re testing: ServletTestCase, JSPTestCase, or FilterTest-
Case. This is a rule: because Cactus extends the 3.8.x version of JUnit, your test
cases always have to extend one of the latter classes.

■ The Cactus framework exposes the container objects (in this case the Http-
ServletRequest and HttpSession objects) to your tests, making it easy and
quick to write unit tests.

■ You get a chance to implement two new methods: beginXXX and endXXX. These two
new methods are executed on the client side, and you can use them to place cer-
tain values in the request object or to get certain values from the response object.

■ In order for Cactus to expose the container objects, Cactus needs to get them from
the JVM they live in, and because the container is the only one managing the life-
cycle of these objects, Cactus tests need to interact directly with the container. This
leads us to the conclusion that Cactus tests must be deployed inside the container.

Listing 14.2 Using Cactus to unit test SampleServlet

 B

 C

263Testing with Cactus
The last of these points tells us that Cactus tests live in the container JVM. This brings
us to the next issue: if Cactus tests live in the container JVM, how are they executed?
Also, how do we see the result from their execution?

14.2.3 How Cactus works

Before we rush into the details, you need to understand a bit more about how Cactus
works. The lifecycle of a Cactus test is shown in figure 14.1.

 Let’s look at the steps in using the TestSampleServletIntegration Cactus test
from listing 14.2. Say, now we have a sample servlet that we want to test and also a
test written for that particular servlet. What we need to do now is package the serv-
let and the test, along with the necessary Cactus libraries, and deploy the package in
the server. Once we start the server, we have the test and the servlet in both:
deployed in the container and in our workspace on the client side. You can submit
the client-side Cactus test to a JUnit test runner, and the runner starts the tests.

EXECUTING CLIENT-SIDE AND SERVER-SIDE STEPS

The lifecycle comprises steps that are executed on the client side and others that are
executed on the server side (inside the container JVM). Client side refers to the JVM in
which you started the JUnit test runner.

 On the client side, the Cactus logic is implemented in the YYYTestCase classes that
your tests extend (where YYY can be Servlet, Jsp, or Filter). More specifically,
YYYTestCase overrides JUnit TestCase.runBare, which is the method called by the
JUnit test runner to execute one test. By overriding runBare, Cactus can implement its
own test logic, as described later.

 On the server side, the Cactus logic is implemented in a proxy redirector (or redirector
for short).

Figure 14.1 Lifecycle of a Cactus test

264 CHAPTER 14 Server-side Java testing with Cactus
STEPPING THROUGH A TEST

For each test (testXXX methods in the YYYTestCase classes), the six steps shown in
figure 14.2 take place. Let’s step through them.

1 Execute beginXXX. If there is a beginXXX method, Cactus executes it. The
beginXXX method lets you pass information to the redirector. The TestSam-
pleServletIntegration example extends ServletTestCase and connects to
the Cactus servlet redirector. The servlet redirector is implemented as a servlet;
this is the entry point in the container. The Cactus client side calls the servlet
redirector by opening an HTTP connection to it. The beginXXX method sets up
HTTP-related parameters that are set in the HTTP request received by the serv-
let redirector. This method can be used to define HTTP POST/GET parameters,
HTTP cookies, HTTP headers, and so forth.

Here’s an example:

public void beginXXX(WebRequest request) {
 request.addParameter("param1", "value1");
 request.addCookie("cookie1", "value1");
 [...]
}

In the TestSampleServletIntegration class, we’ve used the beginXXX method
to tell the redirector not to create an HTTP session (the default behavior cre-
ates one):

public void beginIsAuthenticatedNoSession(WebRequest request) {
 request.setAutomaticSession(false);
}

2 Open the redirector connection. The YYYTestCase opens a connection to its redi-
rector. In this case, the ServletTestCase code opens an HTTP connection to
the servlet redirector (which is a servlet).

3 Create the server-side TestCase instance. The redirector creates an instance of
the YYYTestCase class. Note that this is the second instance created by Cactus;
the first one was created on the client side (by the JUnit TestRunner). Then the
redirector retrieves container objects and assigns them in the YYYTestCase
instance by setting class variables.

In the servlet example, the servlet redirector creates an instance of Test-
SampleServletIntegration and sets the following objects as class variables in it:
HttpServletRequest, HttpServletResponse, HttpSession, and others. The
servlet redirector is able to do this because it’s a servlet. When it’s called by the
Cactus client side, it has received a valid HttpServletRequest, HttpServlet-
Response, HttpSession, and other objects from the container and is passing
them to the YYYTestCase instance. It acts as a proxy/redirector (hence its name).

The redirector then starts the test (see step 4). Upon returning from the test,
it stores the test result in the ServletConfig servlet object along with any
exception that might have been raised during the test, so the test result can

265Testing servlets and filters
later be retrieved. The redirector needs a place to temporarily store the test
result because the full Cactus test is complete only when the endXXX method has
finished executing (see step 5).

4 Call setUp, testXXX, and tearDown on the server. The redirector calls the JUnit
setUp method of YYYTestCase, if there is one. Then it calls the testXXX
method. The testXXX method calls the class/methods under test, and finally
the redirector calls the JUnit tearDown method of the TestCase, if there is one.

5 Execute endXXX on the client. Once the client side has received the response
from its connection to the redirector, it calls an endXXX method (if it exists).
This method is used so that your tests can assert additional results from the
code under test. For example, if you’re using a ServletTestCase, FilterTest-
Case, or JspTestCase class, you can assert HTTP cookies, HTTP headers, or the
content of the HTTP response:

public void endXXX(WebResponse response) {
 assertEquals("value", response.getCookie("cookiename").getValue());
 assertEquals("...", response.getText());
 [...]
}

6 Gather the test result. In step 3, the redirector saves the test result in a variable
stored with the ServletConfig object. The Cactus client side now needs to
retrieve the test result and tell the JUnit test runner whether the test was suc-
cessful, so the result can be displayed in the test runner GUI or console. To do
this, the YYYTestCase opens a second connection to the redirector and asks it
for the test result.

This process may look complex at first glance, but this is what it takes to be able to get
inside the container and execute the test from there. Fortunately, as users, we’re
shielded from this complexity by the Cactus framework. You can use the provided Cac-
tus frontends to start and set up the tests.

 Now that you’ve seen what Cactus tests are and how they work, let’s take a closer
look at more component-specific tests.

14.3 Testing servlets and filters
As you already saw, Cactus is designed for testing the core components from the
Java EE spec. This testing, however, has some component-specific characteristics. In
this section we explore these characteristics.

 When you unit test servlet and filter code, you must test not only these objects but
also any Java class calling the Servlet/Filter API, the JNDI API, or any backend ser-
vices. Starting from this section, we build a real-life sample application that will help
demonstrate how to unit test each of the different kinds of components that make
up a full-blown web application. This section focuses on unit testing the servlet and
filter parts of that application. Later subsections test the other common components
(JSPs and EJBs).

266 CHAPTER 14 Server-side Java testing with Cactus
14.3.1 Presenting the Administration application

The goal of this sample Administration application is to let administrators perform
database queries on a relational database. Suppose the application it administers
already exists. Administrators can perform queries such as listing all the transactions
that took place during a given time interval, listing the transactions that were out of
service level agreement (SLA), and so forth. We set up a typical web application archi-
tecture (see figure 14.2) to demonstrate how to unit test each type of component (fil-
ter, servlet, JSP, and EJB).

 The application first receives from the user an HTTP request containing the SQL
query to execute. The request is caught by a security filter that checks whether the
SQL query is a SELECT query (to prevent modifying the database). If not, the user
is redirected to an error page. If the query is a SELECT, the AdminServlet servlet is
called. The servlet performs the requested database query and forwards the results to
a JSP page, which displays the results. The page uses JSP tags to iterate over the
returned results and to display them in HTML tables. JSP tags are used for all the
presentation logic code. The JSPs contain only layout/style tags (no Java code in
scriptlets). We start by unit testing the AdminServlet servlet. Then, in the following
subsections, we test the other components of the Administration application.

14.3.2 Writing servlet tests with Cactus

In this section, we focus on using Cactus to unit test the AdminServlet servlet (see fig-
ure 14.2) from the Administration application.

 Let’s test AdminServlet by writing the tests before we write the servlet code. This
strategy is called test-driven development, or test first, and it’s efficient for designing
extensible and flexible code and making sure the unit test suite is as complete as pos-
sible. (See chapter 4 for an introduction to TDD.)

Figure 14.2 The sample Administration application. We use it as a base sample in this
chapter to see how to unit test servlets, filters, JSPs, taglibs, and database applications.

267Testing servlets and filters
Before we begin coding the test, let’s review the requirement for AdminServlet. The
servlet should extract the needed parameter containing the command to execute
from the HTTP request (in this case, the SQL command to run). Then it should fetch
the data using the extracted command. Finally, it should pass the control to the JSP
page for display, passing the fetched data. Let’s call the methods corresponding to
these actions getCommand, executeCommand, and callView, respectively.

DESIGNING THE FIRST TEST

Listing 14.3 shows the unit tests for the getCommand method. Remember that we
haven’t yet written the code under test. The AdminServlet class doesn’t exist, and our
code doesn’t compile (yet).

[...]
import javax.servlet.ServletException;
import org.apache.cactus.ServletTestCase;
import org.apache.cactus.WebRequest;

public class TestAdminServlet extends ServletTestCase {

 public void beginGetCommandOk(WebRequest request) {
 request.addParameter("command", "SELECT...");
 }

 public void testGetCommandOk() throws Exception {
 AdminServlet servlet = new AdminServlet();
 String command = servlet.getCommand(request);
 assertEquals("SELECT...", command);
 }

 public void testGetCommandNotDefined {
 AdminServlet servlet = new AdminServlet();
 try {
 servlet.getCommand(request);
 fail("Command should not have existed");
 } catch (ServletException expected) {
 assertTrue(true);
 }
 }
}

This is a typical Cactus test case. We extended the ServletTestCase B, because the
component that we want to test is a servlet. We also set a request parameter in
the beginXXX method C that we assert to be present in the testXXX method D.

 Once we’ve written the test case, we can go on and implement the bare minimum
of code that will allow us to compile the project. We need to implement a sample serv-
let with a getCommand method. Listing 14.4 shows the code.

Listing 14.3 Designing and testing the getCommand method

 B

 C

 D

268 CHAPTER 14 Server-side Java testing with Cactus
[...]
public class AdminServlet extends HttpServlet {

 public String getCommand(HttpServletRequest request)
 throws ServletException {
 return null;
 }
}

This is the minimum code that allows the TestAdminServlet to compile successfully.
 The code compiles okay, but there’s one more thing that we have to think about.

What you probably notice at this point is that if this test gets executed it will fail,
because of the null object that we return. Tests are used to prevent us from making
mistakes. That said, we always have to ensure that tests fail if we provide corrupt data,
as in the previous example. At this point, we need to ensure that the error is reported
successfully. And after that, when we implement the code under test, the tests should
succeed, and we’ll know we’ve accomplished something. It’s a good practice to ensure
that the tests fail when the code fails.

But let’s get back to the test. Listing 14.5 shows the code for getCommand. It’s a mini-
mal implementation that passes the tests.

[...]
public String getCommand(HttpServletRequest request)
 throws ServletException {

 String command = request.getParameter(COMMAND_PARAM);

 if (command == null) {
 throw new ServletException("Missing parameter ["
 + COMMAND_PARAM + "]");
 }
 return command;
}
[...]

Listing 14.4 Minimum code to make the TestAdminServlet compile

JUnit best practice: always verify that the test fails when it should fail
It’s a good practice to always verify that the tests you’re writing work. Be sure a
test fails when you expect it to fail. If you’re using the test-driven development
methodology, this failure happens as a matter of course. After you write the test,
write a skeleton for the class under test (a class with methods that return null or
throw runtime exceptions). If you try to run your test against a skeleton class, it
should fail. If it doesn’t, fix the test (ironically enough) so that it does fail! Even
after the case is fleshed out, you can vet a test by changing an assertion to look
for an invalid value that should cause it to fail.

Listing 14.5 Implementation of getCommand that makes the tests pass

269Testing servlets and filters
The code in this listing is a simple implementation, but it’s enough for our needs. We
want our code not only to compile but also to pass the tests.

FINISHING THE CACTUS SERVLET TESTS

At the beginning of the previous subsection, we mentioned that we need to write
three methods: getCommand, executeCommand, and callView. We implemented
getCommand in listing 14.5. The executeCommand method is responsible for obtain-
ing data from the database. We defer this implementation until section 14.5, “Test-
ing EJBs.”

 That leaves the callView method, along with the servlet’s doGet method, which
ties everything together by calling our different methods. One way of designing the
application is to store the result of the executeCommand method in the HTTP servlet
request. The request is passed to the JSP by the callView method (via servlet for-
ward). The JSP can then access the data to display by getting it from the request (possi-
bly using a useBean tag). This is a typical MVC Model 2 pattern used by many
applications and frameworks.

 We still need to define what objects executeCommand will return. The BeanUtils
package in the Apache Commons (http://commons.apache.org/beanutils/) includes
a DynaBean class that can expose public properties, like a regular JavaBean, but we
don’t need to hardcode getters and setters. In a Java class, we access one of the dyna
properties using a map-like accessor:

DynaBean employee = ...
String firstName = (String) employee.get("firstName");
employee.set("firstName", "Petar");

The BeanUtils framework is nice for the current use case because we retrieve arbi-
trary data from the database. We can construct dynamic JavaBeans (or DynaBeans)
that we use to hold database data. The mapping of a database to DynaBeans is covered
in the last section.

JUnit best practice: use TDD to implement The Simplest Thing That Could
Possibly Work
The Simplest Thing That Could Possibly Work is an Extreme Programming (XP)
principle that says overdesign should be avoided, because you never know what
will be used effectively. XP recommends designing and implementing the minimal
working solution and then refactoring mercilessly. This is in contrast to the monu-
mental methodologies, which advocate fully designing the solution before starting
development. When you’re developing using the TDD approach, the tests are writ-
ten first—you only have to implement the bare minimum to make the test pass in
order to achieve a fully functional piece of code. The requirements have been fully
expressed as test cases, and you can let yourself be led by the tests when you’re
writing the functional code.

http://commons.apache.org/beanutils
Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

270 CHAPTER 14 Server-side Java testing with Cactus
TESTING THE CALLVIEW METHOD

We have enough in place now that we can write the tests for callView, as shown in list-
ing 14.6.

 To make the test easier to read, we create a createCommandResult private method.
This utility method creates arbitrary DynaBean objects, like those that will be returned
by executeCommand. In testCallView, we place the DynaBeans in the HTTP request
where the JSP can find them.

[...]
public class TestAdminServlet extends ServletTestCase {
[...]
 private Collection createCommandResult() throws Exception {
 List results = new ArrayList();

 DynaProperty[] props = new DynaProperty[] {
 new DynaProperty("id", String.class),
 new DynaProperty("responsetime", Long.class)
 };
 BasicDynaClass dynaClass = new BasicDynaClass("requesttime",
 null, props);

 DynaBean request1 = dynaClass.newInstance();
 request1.set("id", "12345");
 request1.set("responsetime", new Long(500));
 results.add(request1);
 DynaBean request2 = dynaClass.newInstance();
 request1.set("id", "56789");
 request1.set("responsetime", new Long(430));
 results.add(request2);

 return results;
 }

 public void testCallView() throws Exception {
 AdminServlet servlet = new AdminServlet();
 // Set the result of the execution of the command in the
 // HTTP request so that the JSP page can get the data to
 // display
 request.setAttribute("result", createCommandResult());
 servlet.callView(request);
 }
}

There’s nothing we can verify in testCallView, so we don’t perform any asserts there.
The call to callView forwards to a JSP. But Cactus supports asserting the result of the
execution of a JSP page. We can use Cactus to verify that the JSP will be able to display
the data that we created in createCommandResult. Because this would be JSP testing,
we show how it works in section 14.4 (“Testing JSPs”).

 Listing 14.7 shows the callView method that we use to forward the execution to
the JSP in order to display the results.

Listing 14.6 Unit tests for callView

271Testing servlets and filters
[...]
public class AdminServlet extends HttpServlet {
[...]
 public void callView(HttpServletRequest request) {
 request.getRequestDispatcher("/results.jsp")
 .forward(request, response);
 }
}

We don’t have a test yet for the returned result, so not returning anything is enough.
That will change once we test the JSP.

TESTING THE DOGET METHOD

Let’s design the unit test for the AdminServlet doGet method. To begin, we need
to verify that the test results are put in the servlet request as an attribute. Here’s
how to do that:

Collection results = (Collection) request.getAttribute("result");
assertNotNull("Failed to get execution results from the request",
results);
assertEquals(2, results.size());

This code leads to storing the command execution result in doGet. But where do we
get the result? Ultimately, from the execution of executeCommand—but it isn’t imple-
mented yet. The typical solution to this kind of deadlock is to have an execute-
Command that does nothing in AdminServlet. Then, in our test, we can implement
executeCommand to return whatever we want:

AdminServlet servlet = new AdminServlet() {
 public Collection executeCommand(String command) throws Exception {
 return createCommandResult();
 }
};

We can now store the result of the test execution in doGet:

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException {
 try {
 Collection results = executeCommand(getCommand(request));
 request.setAttribute("result", results);
 } catch (Exception e) {
 throw new ServletException("Failed to execute command", e);
 }
}

Notice that we need the catch block because the servlet specification says doGet must
throw a ServletException. Because executeCommand can throw an exception, we
need to wrap it into a ServletException.

Listing 14.7 Implementation of callView that makes the test pass

272 CHAPTER 14 Server-side Java testing with Cactus
 If you run this code, you’ll find that you’ve forgotten to set the command to exe-
cute in the HTTP request as a parameter. You need a beginDoGet method to do that,
such as this:

public void beginDoGet(WebRequest request) {
 request.addParameter("command", "SELECT...");
}

With this method we’re ready to complete the test.
 The doGet code is shown in listing 14.8.

[...]
public class AdminServlet extends HttpServlet {
[...]
 public Collection executeCommand(String command) throws Exception {
 throw new RuntimeException("not implemented");
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException {
 try {
 Collection results = executeCommand(getCommand(request));
 request.setAttribute("result", results);

 } catch (Exception e) {
 throw new ServletException("Failed to execute command", e);
 }
 }
 }

There are two points to note. First, the call to callView isn’t present in doGet; the tests
don’t yet mandate it. (They will, but not until we write the unit tests for our JSP.)

 Second, we throw a RuntimeException object if executeCommand is called B. We
could return null, but throwing an exception is a better practice. An exception
clearly states that we haven’t implemented the method. If the method is called by mis-
take, there won’t be any surprises.

Listing 14.8 Implementation of doGet that makes the tests pass

JUnit best practice: throw an exception for methods that aren’t implemented
When you’re writing code, there are often times when you want to execute the
code without having finished implementing all the methods. For example, if you’re
writing a mock object for an interface and the code you’re testing uses only one
method, you don’t need to mock all methods. A good practice is to throw an excep-
tion instead of returning null values (or not returning anything for methods with
no return value). There are two good reasons: doing this states clearly to anyone
reading the code that the method isn’t implemented, and it ensures that if the
method is called, it will behave in such a way that you can’t mistake skeletal
behavior for real behavior.

 B

273Testing JSPs
So far, we’ve discussed the Administrator application and shown how to test one part
of it, the servlet part. Now it’s time to move on and concentrate on probably the most
difficult-to-test part of the application, the frontend.

14.4 Testing JSPs
In this section, we continue with the Administration application we introduced in the
previous section. Here, we concentrate on testing the view components—namely
the JavaServer Pages (JSPs).

14.4.1 Revisiting the Administration application

We call the application by sending an HTTP request (from our browser) to the Admin-
Servlet (figure 14.2). We pass a SQL query to run as an HTTP parameter, which is
retrieved by the AdminServlet. The security filter intercepts the HTTP request and
verifies that the SQL query is harmless (it’s a SELECT query). Then, the servlet executes
the query on the database, stores the resulting objects in the HTTP Request object,
and calls the Results View page. The JSP takes the results from the Request and dis-
plays them, nicely formatted, using custom JSP tags from our tag library.

14.4.2 What is JSP unit testing?

First, let’s remove any doubt: what we call unit testing a JSP isn’t about unit testing the
servlet that’s generated by the compilation of the JSP. We also assume that the JSP is
well designed, which means there’s no Java code in it. If the page must handle any
presentation logic, the logic is encapsulated in a JavaBean or in a taglib. We can per-
form two kinds of tests to unit test a JSP: test the JSP page itself in isolation and/or test
the JSP’s taglibs.

 We can isolate the JSP from the backend by simulating the JavaBeans it uses and
then verifying that the returned page contains the expected data. We use Cactus to
demonstrate this type of test. Because mock objects (see chapter 7) operate only on
Java code, we can’t use a pure mock objects solution to unit test our JSP in isolation.
We could also write functional tests for the JSP using a framework such as HttpUnit.
But doing so means going all the way to the backend of the application, possibly to
the database. With a combination of Cactus and mock objects, we can prevent call-
ing the backend and keep our focus on unit testing the JSPs themselves. We can also
unit test the custom tags used in the JSP.

14.4.3 Unit testing a JSP in isolation with Cactus

The strategy for unit testing JSPs in isolation with Cactus is defined in figure 14.3.
 Here’s what happens. The Cactus test case class must extend ServletTestCase (or

JspTestCase):

1 In the testXXX method (called by Cactus from inside the container), we cre-
ate the mock objects that will be used by the JSP. The JSP gets its dynamic

274 CHAPTER 14 Server-side Java testing with Cactus
information either from the container-implicit object (HttpServletRequest,
HttpServletResponse, or ServletConfig) or from a taglib.

2 Still in testXXX, we perform a forward to call the JSP under test. The JSP then
executes, getting the mock data set up in step 1.

3 Cactus calls endXXX, passing to it the output from the JSP. This allows us to assert
the content of the output and verify that the data we set up found its way to the
JSP output, in the correct location on the page.

14.4.4 Executing a JSP with SQL results data

Let’s see some action on the Administration application. In the servlet section
(“Testing servlets and filters”), we defined that the results of executing the SQL
query would be passed to the JSP by storing them as a collection of DynaBean objects
in the HttpServletRequest object. Thanks to the dynamic nature of DynaBeans, we
can easily write a generic JSP that will display any data contained in the DynaBeans.
DynaBeans provide metadata about the data they contain. We can create a generic
table with columns corresponding to the fields of the DynaBeans, as shown in list-
ing 14.9.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix="c" uri="http://jakarta.apache.org/taglibs/core" %>
<%@ taglib prefix="d" uri="/dynabeans" %>

<html>
 <head>
 <title>Results Page</title>
 </head>
 <body bgcolor="white">
 <table border="1">
 <d:properties var="properties"
 item="${requestScope.results[0]}"/>

 <tr>
 <c:forEach var="property" items="${properties}">

Listing 14.9 Results View JSP (results.jsp)

Figure 14.3
Strategy to unit test JSPs with Cactus

http://jakarta.apache.org/taglibs/core

275Testing JSPs
 <th><c:out value="${property.name}"/></th>
 </c:forEach>
 </tr>

 <c:forEach var="result" items="${requestScope.results}">
 <tr>
 <c:forEach var="property" items="${properties}">
 <td><d:getProperty name="${property.name}"
 item="${result}"/></td>
 </c:forEach>
 </tr>
 </c:forEach>
 </table>
 </body>
</html>

We use both JSTL tags and custom taglibs to write the JSP. The JSTL tag library is a
standard set of useful and generic tags. It’s divided into several categories (core, XML,
formatting, and SQL). The category used here is the core, which provides output, man-
agement of variables, conditional logic, loops, text imports, and URL manipulation.

 We also write two custom tags, <d:properties> and <d:getProperty>, which are
used to extract information from the DynaBeans. <d:properties> extracts the name
of all properties of a DynaBean, and <d:getProperty> extracts the value of a given
DynaBean property.

 There are two reasons for writing these custom tags. The primary reason is that it
isn’t possible to extract DynaBean information without (ouch!) embedding Java code
in the JSP (at least not with the current implementation of the JSTL tags and the Dyna-
Bean package). The second reason is that it gives us a chance to write and unit test cus-
tom taglibs of our own.

WRITING THE CACTUS TEST

Now let’s write a Cactus ServletTestCase for the JSP. The callView method from the
AdminServlet forwards control to the Results View JSP, as shown in listing 14.10.

 Listing 14.10 shows a unit test for callView that sets up the DynaBean objects in the
Request, calls callView, and then verifies that the JSP output is what we expect.

[...]
public class TestAdminServlet extends ServletTestCase {
 private Collection createCommandResult() throws Exception {
 List results = new ArrayList();

 DynaProperty[] props = new DynaProperty[] {
 new DynaProperty("id", String.class),
 new DynaProperty("responsetime", Long.class)
 };
 BasicDynaClass dynaClass = new
 BasicDynaClass("requesttime",null,props);

Listing 14.10 TestAdminServlet.java: unit tests for results.jsp

 B

276 CHAPTER 14 Server-side Java testing with Cactus
 DynaBean request1 = dynaClass.newInstance();
 request1.set("id", "12345");
 request1.set("responsetime", new Long(500));
 results.add(request1);

 DynaBean request2 = dynaClass.newInstance();
 request2.set("id", "56789");
 request2.set("responsetime", new Long(430));
 results.add(request2);

 return results;
 }

 public void testCallView() throws Exception {
 AdminServlet servlet = new AdminServlet();
 request.setAttribute("results", createCommandResult());
 servlet.callView(request, response);
 }
 public void endCallView(com.meterware.httpunit.WebResponse response)
 throws Exception {
 assertTrue(response.isHTML());
[...]
 assertEquals("12345",
 response.getTables()[0].getCellAsText(1, 0));
 assertEquals("500",
 response.getTables()[0].getCellAsText(1, 1));
 assertEquals("56789",
 response.getTables()[0].getCellAsText(2, 0));
 assertEquals("430",
 response.getTables()[0].getCellAsText(2, 1));
 }
}

We start by defining the createCommand method B, which puts several DynaBeans
in the request C. Then in the testCallView D method (remember that it’s exe-
cuted on the server side) we instantiate the servlet to test E, set the DynaBeans in
the request E, and call the JSP F to display the result. The endCallView G,
which is executed on the client side, has a com.meterware.httpunit.WebResponse
parameter, holding the response from the server. In H we assert different state-
ments against the response of the server, in order to verify that the JSP displays the
results properly.

 We use the Cactus HttpUnit integration in the endCallView method to assert the
returned HTML page. When Cactus needs to execute the endXXX method, first it
looks for an endXXX (org.apache.cactus.WebResponse) signature. If this signature
is found, Cactus calls it; if it isn’t, Cactus looks for an endXXX (com.meterware.
httpunit.WebResponse) signature, and if it’s available, calls it. Using the org.apache.
cactus.WebResponse object, we can perform asserts on the content of the HTTP
response, such as verifying the returned cookies, the returned HTTP headers, or the
content. The Cactus org.apache.cactus.WebResponse object supports a simple API.
The HttpUnit web response API (com.meterware.httpunit.WebResponse) is much
more comprehensive. With HttpUnit, we can view the returned XML or HTML pages

 C

 D
 E

 F

 G

 H

277Testing EJBs
as DOM objects. In listing 14.10, we use the provided HTML DOM to verify that the
returned web page contains the expected HTML table.

 In this section we described how to test the frontend of the Administrator applica-
tion. What we’re still missing is a few pages that will reveal to us how to unit test the
AdministratorBean EJB, which executes our queries on the database. The secrets of
EJB testing are covered in the next section.

14.5 Testing EJBs
Testing EJBs has a reputation of being a difficult task. One of the main reasons is that
EJBs are components that run inside a container. You need to either abstract out the
container services used by your code or perform in-container unit testing. In this sec-
tion, we demonstrate different techniques that can help you write EJB unit tests. We
also continue developing our Administrator application, showing you the module that
executes the SQL queries.

 The architecture of the Administrator application goes like this: The command to
be executed gets through the filter, which determines whether it’s a SELECT query.
After that, the AdminServlet eventually receives the command/query.

 The execution flow starts in the AdminServlet doGet method. It receives the HTTP
requests and calls the getCommand method to extract the SQL query from it. It then
calls executeCommand to execute the database call (using the extracted SQL query)
and return the results as a Collection. The results are then put in the HTTP request
(as a request attribute) and, at last, doGet calls callView to invoke the JSP page that
presents the results to the user. So far, we’ve given no implementation of the execute-
Command method. The idea behind it would be to call a given EJB, which would execute
the query on a given database. One simple implementation of the executeCommand
method would be as follows:

public Collection executeCommand(String command) throws Exception {
 Context context = new InitialContext();
 IAdministratorLocal administrator = (IAdministratorLocal)
 context.lookup(“AdministratorBean”);
 return administrator.execute(command);
}

The EJB itself is shown in listing 14.11.

[...]

@Stateless
public class AdministratorBean implements IAdministratorLocal {

 public Collection execute(String sql) throws Exception {
 Connection connection = getConnection();
 // For simplicity, we'll assume the SQL is a SELECT query
 ResultSet resultSet =
 connection.createStatement().executeQuery(sql);
 RowSetDynaClass rsdc = new RowSetDynaClass(resultSet);

Listing 14.11 AdministratorEJB

 B
 C

278 CHAPTER 14 Server-side Java testing with Cactus
 resultSet.close();
 connection.close();
 return rsdc.getRows();
 }

 private Connection getConnection()
 throws NamingException, SQLException {
 //RETURN SOME DATABASE CONNECTION
 }
}

We call the execute method from the servlet with the given query; there we try to
obtain a valid connection and execute the query B. After that we create a RowSet-
DynaClass object from the ResultSet C, and we return its rows D.

 In order to test the EJB with Cactus, we have to instantiate it and then assert against
the result of the execution. We can use, again, mock objects to simulate the JNDI
lookup, but this approach is unnecessarily complicated, so we won’t list it here. Let’s
look at the test case for the EJB in listing 14.12, and then we’ll go through it and dis-
cuss it.

[...]
public class TestAdministratorEJB extends ServletTestCase {

 private IAdministratorLocal administrator;

 public void setUp() throws Exception {
 Properties properties = new Properties();
 properties.put("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 properties.put("java.naming.factory.url.pkgs",
 "org.jboss.naming rg.jnp.interfaces");

 InitialContext ctx = new InitialContext(properties);

 administrator = (IAdministratorLocal) ctx.lookup(
 "ch14-cactus-ear-cactified/"
 +AdministratorBean.class.getSimpleName()
 +"/local");

 }

 public void testExecute() throws Exception {
 String sql = "SELECT * FROM CUSTOMER";
 Collection result = administrator.execute(sql);

 Iterator beans = result.iterator();
 assertTrue(beans.hasNext());
 DynaBean bean1 = (DynaBean) beans.next();
 assertEquals(bean1.get("Id"), new Integer(1));
 assertEquals(bean1.get("name"), "John Doe");
 assertTrue(!beans.hasNext());
 }
}

Listing 14.12 Test case for AdministratorEJB

 D

 B

 C

 D

279What is Cargo?
At B we start by initializing the context in the setUp method (remember that this
method is called before each test method), and we get hold of a valid IAdministrator-
BeanLocal instance from the JNDI C. Then in each test method we invoke the methods
on the EJB with different parameters and assert the validity of the result D.

 So far, we’ve covered what you need in order to write Cactus test cases. Before we
rush into the section that deals with execution of our Cactus tests, it’s essential that
you get familiar with a project called Cargo. The tight integration between Cargo and
Cactus is one of the new features that facilitate running your tests.

14.6 What is Cargo?
What we’ve seen so far is pretty much the bulk of how to write Cactus tests cases. At
the beginning of the chapter, we mentioned that Cactus test cases are executed inside
the container. In this section and in the ones that follow we focus on how to integrate
execution of Cactus tests in your build lifecycle. In order to keep the Extreme Pro-
gramming principles, you need to execute the tests every time you make a build. This
requires a tight integration between Cactus and the build system—Ant or Maven. But
before we jump into that integration, you need to become familiar with a project they
both rely on: Cargo.

 Cargo (http://cargo.codehaus.org/) is an open source project started, again, by
Vincent Massol in 2004. The aim of the project is to automate container management
in a generic way so that we could use the same mechanism to start and deploy a WAR
file with Tomcat as we could with WebLogic or almost any other application server. It
provides an API around most of the existent Java EE containers for managing those
containers (starting, stopping, and deploying). But Cargo is a bit more than just an
API, and that’s where its strength comes from; it provides Ant tasks and Maven (1.x
and 2.x) plug-ins for facilitating the management of those containers.

 After this brief introduction to the secrets of Cargo you’re probably asking your-
self, what’s the connection between Cargo and Cactus? The Cactus team realizes that
the idea behind the project is great, but it seems as though there’s too much of a
burden regarding the process of executing the tests. Once written, the tests need to
be packaged in a WAR or EAR archive; then the application descriptors need to be
patched with the appropriate redirectors. After that, before the execution gets
started, the archive needs to be deployed in a container that’s already started. You’ve
probably already noticed the three italicized words in the previous sentence. And
you’ve probably already guessed that the main idea of the Cactus development team
was to hide all the complexity regarding the management of the container by means
of Cargo.

 This gives us full automation. If we use Cargo’s Ant tasks (or Maven plug-ins)
to start the container, then deploy the WAR/EAR in it, and then stop the con-
tainer we have achieved the Extreme Programming principles of continuous integra-
tion. Our build is fully automated, isn’t it? That’s all true, but deploying the archive
with the tests by itself doesn’t do anything magical—we still need to figure out a

http://cargo.codehaus.org

280 CHAPTER 14 Server-side Java testing with Cactus
way to trigger the execution of the tests when the archive is deployed. We also
need a way to prepare the archive for deployment. This is all part of the tight inte-
gration between Cactus and the various build systems. We deal with this integra-
tion in subsequent chapters.

14.7 Executing Cactus tests with Ant
The first way to fire up Cactus tests that we’re going to show seems to be the most
common one. Using Ant is easy and straightforward. If you’re new to Ant, we’d like
to recommend to you Ant in Action, by Steve Loughran and Erik Hatcher—a mar-
velous book. Also, before you read this section, please make sure you’ve already
read chapter 8.

14.7.1 Cactus tasks to prepare the archive

Cactus comes bundled with two kinds of Ant tasks: the first one will facilitate you in
preparing the archive (WAR or EAR) to hold the test cases, and the second will
invoke the tests. We go through these tasks one after the other and show you how
to use them.

 The process of preparing the archive for executing the tests is called cactification.
This term was introduced by the Cactus team. Imagine you have at some point an
archive (a WAR or EAR file), which is the application that you want to deploy. The cac-
tification process includes adding the required JARs into the lib folder of the archive
and also patching the web.xml to include desired Cactus redirectors.

 According to the type of archive that you want to cactify, there are two different
tasks that you may want to use: cactifywar and cactifyear. Before we rush into
describing these tasks, let’s first take a minute to focus on the build.xml skeleton that
we use for our presentation purposes (see listing 14.13).

<project name="Cactus sample tests" basedir="."
 xmlns:ivy="antlib:org.apache.ivy.ant">

<target name="init" depends="">
 [...]
 <property name="target.dir" location="${basedir}/target"/>
 <property name="classes.dir" location="${target.dir}/classes"/>
 [...]

 <ivy:configure file="ivysettings.xml" />
 <ivy:retrieve file="ivy.xml" sync="true"/>

 <path id="compile.cp">
 <fileset dir="${lib.dir}">
 <include name="*.*"/>
 </fileset>
 </path>
 </target>

Listing 14.13 Build.xml skeleton to execute the Cactus tests

 B

 C

 D

281Executing Cactus tests with Ant
 <target name="prepare" depends="init">
 <mkdir dir="${target.dir}"/>
 [...]
 <mkdir dir="${lib.dir}"/>
 </target>

 <target name="load.tasks" depends="init, prepare">
 <taskdef resource="cactus.tasks" classpathref="compile.cp"/>
 </target>

 <target name="compile" depends="init,prepare">
 <javac srcdir="${src.dir}" destdir="${classes.dir}"
 classpathref="compile.cp"/>
 </target>

 <target name="prepareJar" depends="init,prepare">
 <jar jarfile="${target.dir}/ch14.ejb3">
 <fileset dir="${classes.dir}"/>
 </jar>
 </target>

 <target name="prepareWar" depends="init,prepare">
 <war destfile="${target.dir}/ch14.war"
 webxml="${basedir}/src/webapp/WEB-INF/web.xml">
 <classes dir="${classes.dir}"/>
 </war>
 </target>

 <target name="packageEar" depends="init,compile, prepareJar,
prepareWar">
 <ear destfile="${target.dir}/ch14.ear"
 appxml="${app.dir}/application.xml">
 <fileset dir="${target.dir}" includes="*.jar,*.war"/>
 </ear>
 </target>
[...]
</project>

This Ant descriptor is pretty simple. As you can see, one of the first things to do is
declare some properties in the init target B. We use these properties later in the
script. In this target we also resolve the additional dependencies with Ivy C and con-
struct a classpath refid D. The prepare target prepares the folder structure for the
build E, and after that we use the taskdef task F to define the external tasks
(remember that cactifyXXX and cargo tasks are external tasks that come with Cac-
tus/Cargo; they aren’t part of the official Ant tasks). Then we compile our code G
and produce either a JAR file containing the EJBs H or a WAR file I containing the
servlets (depending on what part of the code we test). We might use also a separate
target to produce the EAR file J that we will need.

 Now that you’re familiar with the structure of the build.xml, it’s time to focus on
the first set of tasks that Cactus provides.

THE CACTIFYWAR TASK

This task is used when your application is a WAR file and you want to cactify it. The
cactifywar task extends the built-in war Ant task so it also supports all attributes and

 E

 F

 G

 H

 I

 J

282 CHAPTER 14 Server-side Java testing with Cactus
nested elements that the war task supports. Nothing explains better than an example,
so let’s start the test cases from this chapter using Ant. We walk through the build.xml
in listing 14.14 and then discuss it.

 <target name="cactifywar" depends="init,load.tasks, prepareWar">
 <cactifywar srcfile="${target.dir}/ch14.war"
 destfile="${target.dir}/ch14-cactified.war"/>
 </target>

In the cactifywar target we call the cactifywar task, which we imported in the first
steps (in the load.tasks target). As you can see, the cactifywar task takes the follow-
ing parameters: srcfile, destfile, and a list of redirectors we want to define. There’s
a bunch of other, nonrequired parameters, all of which are perfectly documented on
the Cactus website (http://jakarta.apache.org/cactus), where you can find additional
help. Also, once again, because the cactifywar task extends the war task, you can pass
all the parameters for the war task to it—they’re all valid.

 In the srcfile attribute you specify the archive file of the application that you
want to cactify. The important thing to notice here is that you may need to specify not
only the name of the file but also the destination path to it. In the destfile parame-
ter, you specify the name of the cactified file to produce.

 You also may want to describe a list of redirectors in the cactifywar task. This list
of redirectors describes URL patterns to map the Cactus test redirectors to the nested
elements filterredirector, jspredirector, and servletredirector. If you don’t
specify those elements, the test redirectors will be mapped to the default URL pattern.

 After executing the target with

ant cactifywar

we should get the desired cactified archive, which we can examine.

THE CACTIFYEAR TASK

The cactifyear task is the analogue of the cactifywar task, but instead it’s used to
cactify EAR applications. It’s a bit different from cactifywar, because in most cases
EAR applications contain a WAR archive that needs to be cactified. The cactifyear
task is, again, an external task that comes from the Cactus team and extends the Ant
ear task. This way it accepts all of the parameters that are valid for the ear task.

 Let’s now execute our tests from an EAR archive (listing 14.15), and then we’ll walk
through the example application and discuss the different aspects.

 <cactifyear srcfile="${target.dir}/ch14.ear"
 destfile="${target.dir}/ch14-cactified.ear">
 <cactuswar srcfile="${target.dir}/ch14.war"
 mergewebxml="${src.webapp.dir}/WEB-INF/web.xml"
 context="/">

Listing 14.14 Build.xml to present cactifywar task

Listing 14.15 Build.xml to present cactifyear task

 B

http://jakarta.apache.org/cactus

283Executing Cactus tests with Ant
 <classes dir="${classes.dir}">
 <include name="Test*.class"/>
 </classes>
 <fileset dir="${src.webapp.dir}">
 <include name="*.jsp"/>
 </fileset>
 <lib dir="${lib.dir}">
 <include name="commons-beanutils*.jar"/>
 </lib>
 </cactuswar>
 </cactifyear>

Once again, we use the build.xml skeleton from listing 14.13, and here we list the tar-
get that’s responsible for the cactification of the already packaged EAR file.

 As you can see, the cactifyear task accepts the srcfile and destfile parame-
ters again B. Their meaning here is exactly the same as for the cactifywar task.
The new component here is a cactuswar nested element. This element has all the
parameters of the cactifywar task except the destfile parameter. The web applica-
tion will always be named cactus.war and placed in the root of the EAR. We also add
the commons-beanutils.jar file to the web application C, because our servlet and fil-
ter test cases need it.

 Once we execute with

ant cactifyear

we get the cactified archive, which we can examine.

THE CACTUS TASK

Because the other Cactus-related tasks are external Ant tasks that extend some of the
internal Ant tasks, this concept is also valid for the cactus task. The cactus task is
used to execute the Cactus tests, and because every Cactus test is a pure JUnit test,
you’ve probably already figured out what task the cactus task extends. That’s right—
the cactus task extends the junit task. This way, all the parameters that the junit
task accepts are also valid for the cactus task.

 Listing 14.16 extends listing 14.13 with the cactus task that executes the tests from
the EAR archive.

[...]
 <target name="test" depends="init,cactifyear">
 <cactus earfile="${target.dir}/ch14-cactified.ear"
 printsummary="yes">
 <classpath>
 <path refid="compile.cp"/>
 <pathelement location="${classes.dir}"/>
 <pathelement location="${test.classes.dir}"/>
 </classpath>
 <containerset>
 <cargo containerId="${jboss.container.id}"

Listing 14.16 The test target to demonstrate the cactus task

 C

 B

 C

 D

284 CHAPTER 14 Server-side Java testing with Cactus
 output="${logs.dir}/output.log"
 log="${logs.dir}/cargo.log" home="${jboss.home}">
 <configuration>
 <property name="cargo.servlet.port" value="8080"/>
 <property name="cargo.logging" value="low"/>
 <deployable type="ear" file="${target.dir}/ch14-
cactified.ear"/>
 </configuration>
 </cargo>
 </containerset>

 <formatter type="plain"/>
 <batchtest todir="${reports.dir}">
 <fileset dir="${src.dir}/cactus/">
 <include name="**/Test*.java"/>
 </fileset>
 </batchtest>
 </cactus>
 </target>
[...]

As you can see, the cactus task is used in connection with the cargo tasks (this is why
we introduced Cargo a while ago). With the one declaration in the listing, we’ve
defined all the necessary information to start and execute tests and stop the container.

 The warfile/earfile parameter B is used to specify the name of an archive file
that we’re going to deploy. This has to be the name of our cactified WAR/EAR file that
holds our test cases as well as the classes that we want to test (it’s the result of the cor-
responding cactify task). It’s also obligatory to add a containerset nested element

C. In this nested element we specify a number of cargo tasks D, which will define the
containers in which to execute our tests. When we say that we specify cargo tasks, we
mean it—these are pure cargo tasks, and they can take any parameter that a normal
cargo task can take: proxy, timeout, server port, and so on.

 In the given cargo tasks we have to specify the ID of the containers, the configura-
tion of the containers, and the deployable (the cactified archive that contains our test
cases). Cargo tasks can work with installed local or remote instances of a container;
you need only specify the home directory of that container. But there’s more; these
tasks also let you specify the so-called ZipURLInstaller. In this installer you specify a
URL to a given container archive, and Cargo will download the given container from
there, extract the container from the archive, start the container, and deploy the given
deployable. Then Cactus will execute the tests inside the container, and Cargo will
stop the container. That’s a fully automated cycle, and the Cactus project comes with
several sample applications that use this automation.

 Our application is done; not only this, but it’s also well tested using Cactus. You
already saw how to execute your tests with Ant, so it’s time to show one final way to
execute the given tests, this time using another build tool: Maven.

285Executing Cactus tests with Maven2x
14.8 Executing Cactus tests with Maven2x
Another common approach for executing your Cactus tests is including them in your
Maven1 build.

 Many people use Maven as their build system, and until version 1.8.1 of Cactus,
the only way of executing Cactus tests with Maven was calling the Ant plug-in for
Maven and executing the tests via Ant. The latest version of Cactus, however, con-
tains a cactus-maven2 plug-in that significantly facilitates the cactification process.
The Cactus Maven plug-in consists of two MOJOs (Maven POJOs, or plain old Java
objects) you can use for cactification of a WAR or EAR.

 Let’s walk through the examples and see how to use them.

14.8.1 Maven2 cactifywar MOJO

Listing 14.17 shows a common pom.xml file that we enhance later.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.junitbook2</groupId>
 <artifactId>ch14-cactus</artifactId>
 <packaging>jar</packaging>
 <version>2.0-SNAPSHOT</version>
</project>

This is a basic pom.xml, and we can use it for all our purposes: compile our source
code and package our application in a WAR archive. There’s nothing fancy here; we’re
just using the corresponding plug-ins of Maven. After executing the build with

mvn package

we should see the resulting archive and can examine its accuracy. Now we can add the
Cactus plug-ins to prepare the archive for deployment.

 The Cactus plug-in is nothing more than a declaration of several other plug-ins, in
the correct order. We now show how to declare these plug-ins. The next three listings
(14.18, 14.19, and 14.20) should be considered one big listing, but for the sake of
readability, we’ve split them into three.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.cactus</groupId>
 <artifactId>ca ctus.integration.maven2</artifactId>
 <version>1.8.1</version>

1 From now on, whenever we discuss the term Maven, we mean the Maven2 project, because the authors of this
book consider Maven1 a dead technology.

Listing 14.17 Sample pom.xml for running the Cactus tests

Listing 14.18 Build section of the pom.xml to enable Cactus tests execution

 B

286 CHAPTER 14 Server-side Java testing with Cactus
 <configuration>
 <srcFile>${project.build.directory}/${pom.artifactId}-
 ${pom.version}.war</srcFile>
 <destFile>${project.build.directory}/${pom.artifactId}-
 cactified.war</destFile>
 <testClasses>
 <directory>target/test-classes</directory>
 <includes>
 <include>**/**Test*.class</include>
 </includes>
 </testClasses>
 <libDependencies>
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 </dependency>
 </libDependencies>
 </configuration>
 <executions>
 <execution>
 <id>cactus-cactifywar</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>cactifywar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <!-— Continue with listing 14.19 here -->

As we mentioned already, all we do is define three plug-ins, one after another in
the correct order. The first one is the cactus.integration.maven2 plug-in B. We
use it for cactification of the WAR file we got from the previous listing. Again, as in
the cactifywar task, we specify srcfile and destfile parameters C. We also spec-
ify which test classes to include D and which libraries to include in the WEB-INF/
lib folder E. In this case, we want only the commons-beanutils, because our tests
use it.

 It’s important to specify the execution order of the plug-ins. In Maven we specify
the execution order by attaching every plug-in goal to a single phase. For instance, in
the listing we attached our plug-in’s cactifywar goal to the pre-integration-test phase

F. This phase, as its name implies, is executed by Maven just before the integration-
test phase (in which we’re going to execute our tests). This is perfect, because we want
our package cactified before we execute our tests.

 Listing 14.19 displays the second plug-in.

 <!—-We continue from listing 14.18 -->
 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>

Listing 14.19 Continuation of the plug-in declarations from listing 14.18

 C

 D

 E

 F

 G

287Executing Cactus tests with Maven2x
 <version>1.0-beta-2</version>
 <executions>
 <execution>
 <id>start-container</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start</goal>
 </goals>
 </execution>
 <execution>
 <id>stop-container</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <wait>false</wait>
 <timeout>20000</timeout>
 <container>
 <containerId>tomcat5x</containerId>
 <zipUrlInstaller>
 <url>http://apache.speedbone.de/tomcat/
 tomcat-5/v5.5.25/bin/apache-tomcat-5.5.27.zip</url>
 <installDir>${basedir}/install</installDir>
 </zipUrlInstaller>
 </container>
 <configuration>
 <deployables>
 <deployable>
 <location>cactifiedByMaven2.war</location>
 <pingURL>http://localhost:8080/test/</pingURL>
 <properties>
 <context>/test</context>
 </properties>
 </deployable>
 </deployables>
 </configuration>
 </configuration>
 </plugin>
 <!-—Continue with listing 14.20 here -->

The next plug-in declaration is for the cargo-maven2-plugin, which we use to
declare the containers to execute our tests in G. As you can see, we attach its start
goal to the pre-integration-test phase to start the container before we execute the
tests H. But wait a second; didn’t we attach the cactifywar goal to the same phase?
What will be the execution order here? In this case, we need two different goals
attached to the same phase, because we have more than one thing to do before the
integration phase of Maven. In this situation, the cactus plug-in will execute first,
because it’s declared right before the cargo plug-in. And here you can see why we
insisted that the order of declaration of the plug-ins in the <build> section is so

 H

 I

http://apache.speedbone.de/tomcat
http://localhost:8080/test/</pingURL

288 CHAPTER 14 Server-side Java testing with Cactus
important. This way we first prepare the cactified archive for deployment, and then
we start the container with this archive as a deployable. We also attach this plug-in’s
stop goal with the post-integration-test phase I. This is normal; we need to stop the
container once the tests are executed.

 Listing 14.20 displays the third plug-in: the maven-surefire-plugin.

 <!—We continue from listing 14.19-->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>surefire-it</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <systemProperties>
 <property>
 <name>cactus.contextURL</name>
 <value>http://localhost:8080/test/</value>
 </property>
 </systemProperties>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The last plug-in declaration is for the maven-surefire-plugin J. As you already saw
in chapter 10, this Maven plug-in is responsible for executing JUnit tests. Because
every Cactus test is also a JUnit test, we can use this plug-in to execute our Cactus tests.
There are a couple of things to notice in its declaration. As you can see, we declare the
skip parameter with true . That’s because the Surefire plug-in is by default
attached to the test phase. We surely don’t want it attached to this phase, so we declare
the skip parameter to true, which will cause the plug-in to skip the execution. Fur-
ther in the declaration we attach the test goal with the integration-test phase
(where we want it to be), and we declare the skip parameter with false . This will
cause the plug-in to execute the tests in the integration-test phase, just as we want it to
happen. There’s also one thing to remember: whenever you execute Cactus tests, you
always have to specify cactus.contextURL . The Cactus Ant task does it for you, but
the Surefire plug-in doesn’t, so that’s what we do in the last part.

Listing 14.20 Continuation of the plug-in declarations from listing 14.19

 J

 1)

 1 !

 1 @

 1 #

1)

1 !
1 @

1 #

http://localhost:8080/test/</value

289Executing Cactus tests with Maven2x
14.8.2 Maven2 cactifyear MOJO

To execute Cactus tests from an EAR file, we have to follow the same procedure as
for the WAR file, except for the cactification of the archive. That’s why we cover
the cactifyear Cactus plug-in in this section. Listing 14.21 cactifies our example
EAR package.

<plugin>
 <groupId>org.apache.cactus</groupId>
 <artifactId>cactus.integration.maven2</artifactId>
 <version>1.8.1</version>
 <configuration>
 <srcFile>target/${pom.artifactId}-${pom.version}.ear</srcFile>
 <destFile>${project.build.directory}/${pom.artifactId}-
 cactified.ear</destFile>

 <cactusWar>
 <context>/</context>
 <testClasses>
 <directory>target/test-classes</directory>
 <includes>
 <include>**/*Test*.*</include>
 </includes>
 </testClasses>
 <version>2.3</version>
 </cactusWar>
 </configuration>
 <executions>
 <execution>
 <id>cactus-cactifyear</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>cactifyear</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This declaration seems simple enough. All we have to do here is provide the srcfile
and destfile parameters B. In the <cactusWar> section C, we describe parameters
related to the WAR application inside our EAR file, such as the context of the applica-
tion D, which test classes to include E, and which version of the web.xml will be used

F. In G we attach the plug-in to the pre-integration phase of Maven. The rest of the
pom.xml is the same as the one in the previous section, so we won’t discuss it further.

 Now we move on and show you one other way of executing your Cactus tests. This
time we use Jetty as an embedded container. Jetty is not only a servlet container, but it
also provides you with an API for manipulating the container. This API is used by Cac-
tus to fire up the container for you, execute the tests, and then stop the container—all
with a single command.

Listing 14.21 cactifyear Cactus plug-in declaration

 B

 C

 D

 E

 F

 G

290 CHAPTER 14 Server-side Java testing with Cactus
14.9 Executing Cactus tests from the browser
We know several different ways to execute JUnit tests. We looked at executions
through JUnit’s own test runner, with the Ant and Maven test runners, and also
through Jetty. As you already know, Cactus tests are also JUnit tests, so the question,
“What is the analogue of the JUnit text test runner for Cactus?” seems valid and rea-
sonable. JUnit’s test runner communicates directly with the JVM in which the execu-
tion takes place and gets the result from there. Cactus tests are executed in the server
JVM, so we need to find a way to communicate with the server (tell it to invoke the
tests and get the results).

 The easiest way to communicate with the server is via a browser. In order to do this,
we need to take care of a couple of things.

 First, we need to declare the ServletTestRunner servlet in the application’s
web.xml. The declaration is shown in listing 14.22.

[...]
<servlet>
 <servlet-name>ServletTestRunner</servlet-name>
 <servlet-class>
 org.apache.cactus.server.runner.ServletTestRunner
 </servlet-class>
</servlet>
[...]
<servlet-mapping>
 <servlet-name>ServletTestRunner</servlet-name>
 <url-pattern>/ServletTestRunner</url-pattern>
</servlet-mapping>
[...]

Once it’s declared, we’re going to use this servlet in our URL in the browser to tell
the server to invoke the tests. We need to call the server with the following request
in the browser:

http://server:port/mywebapp/ServletTestRunner?suite=mytestcase

Here you need to replace server, port, mywebapp, and mytestcase with the correct
values of your server address, port number, context, and the fully qualified name (that
is, with packages) of your TestCase class containing a suite() method.

 After executing the given URL in the browser, the server should respond with the
result shown in figure 14.4.

 If you see a blank page, click the View Source option of your browser. It means
your browser doesn’t know how to display XML data. Okay, that’s nice, but what if
you want HTML instead of XML? Don’t worry; there’s a solution. Grab the XSLT
stylesheet that comes with Cactus (cactus-report.xsl, based on the stylesheet used by

Listing 14.22 ServletTestRunner declaration

http://server:port/mywebapp/ServletTestRunner?suite=mytestcase

291Summary
the <junitreport> Ant task), and drop it in your web app (in the root directory, for
example). Then, open a browser and type

http://server:port/mywebapp/ServletTestRunner?suite=

➥mytestcase&xsl=cactus-report.xsl.

The .xsl stylesheet will generate the HTML report you’re familiar with, so you can view
it from within your browser.

14.10 Summary
When it comes to unit testing container applications, pure JUnit unit tests come up
short. A mock objects approach (see chapter 7) works fine and should be used. But it
misses a certain number of tests—specifically integration tests, which verify that com-
ponents can talk to each other, that the components work when run inside the con-
tainer, and that the components interact properly with the container. In order to
perform these tests, an in-container testing strategy is required.

 In the realm of Java EE components, the de facto standard framework for in-
container unit testing is Jakarta Cactus. In this chapter, we ran through some sim-
ple tests using Cactus, in order to get a feel for how it’s done. We also discussed
how Cactus works, so we’re now ready to in-container test our Java EE applications.

 Testing the components from the Java EE spec is nice, but it isn’t the whole picture.
Most of our applications are heavily framework based. In the next chapters, we
explore one of the most widely used MVC frameworks, JSF. We also introduce the
JSFUnit project, which will let you test your JSF application inside the container.

Figure 14.4 XML result in the browser from Cactus tests

http://server:port/mywebapp/ServletTestRunner?suite=

Testing JSF applications

The first 90% of the code accounts for the

 first 10% of the development time. The

 remaining 10% of the code accounts for
 the other 90% of the development time.

—Tom Cargill

The Cactus framework we introduced in chapter 14 is great for testing most of the
Java EE specifications. On a daily basis, the majority of Java developers write Java EE
applications, all of which are based on the Java EE spec.

 In this chapter we take a closer look at the newest member of the Java EE spec—
the JavaServer Faces (JSF) technology. It’s a standard specification developed
through the Java Community Process (JCP) for building Java web-based user inter-
faces. We start the chapter by explaining what JSF is, the problems of testing JSF

This chapter covers
■ The problems of testing JSF applications
■ Mock solution of the problems
■ JSF unit/integration testing using JSFUnit
■ JSF performance testing with JSFUnit
292

293Introducing JSF
applications, and how to use the JSFUnit project to solve them. We then implement a
sample MusicStore application and demonstrate the power of JSFUnit.

15.1 Introducing JSF
Apart from the specification we mentioned, people refer to JSF1 as the implementa-
tion of this specification: a server-side, user-interface, component framework for Java
technology–based applications. This means that different organizations can imple-
ment the specification and produce different frameworks, all compatible with the
specification. Some of the most popular implementations are Apache MyFaces (http://
myfaces.apache.org/) and Sun’s Mojarra JSF reference implementation.

 In this book, we use the Apache MyFaces implementation because we consider it
the most robust.

 Figure 15.1 shows an architectural overview of a sample JSF application. The JSF
framework was intended to simplify development of web application. For this reason
it’s designed to get developers to think in terms of components, managed beans, page
navigations, and so on, and not in terms of technical details such as request, response,
session, and the like.

1 If you’re new to the JavaServer Faces technology, we highly recommend JavaServer Faces in Action, by Kito Mann.

Figure 15.1 Architectural overview of a JSF application

http://myfaces.apache.org
http://myfaces.apache.org

294 CHAPTER 15 Testing JSF applications
JSF handles most of the complexity that you might encounter during development of
a web application. JSF also handles the user clicking a web browser button and send-
ing a request to the server. This request needs to be translated in a way that your appli-
cation can understand. The JSF framework is also responsible for translating and
visualizing responses from the application in a way that the browser can display. The
framework provides a large number of tag libraries that developers can use to visualize
absolutely anything.

 Next, we introduce a sample JSF application. In the course of the implementation
we explain the different parts of the application, and further in the chapter we test
our sample application.

15.2 Introducing the sample application
In the previous section we described the parts of a typical JSF application. We now
introduce a real application, the MusicStore application, which we refine and test
throughout this chapter.

 The MusicStore is a simple JSF application that presents different kinds of music
albums, which the user can navigate through and purchase. We start the implementa-
tion with a simple POJO (plain old Java object) representing an Album. The implemen-
tation is shown in listing 15.1.

[...]

public class Album {
 private String name = null;
 private String author = null;
 private double price = 0;
 private int year = 0;
 private String style = null;
 private String imageURL = null;

 public Album(String name,
 String author,
 double price,
 int year,
 String style,
 String imageURL) {
 this.name = name;
 this.author = author;
 this.price = price;
 this.year = year;
 this.style = style;
 this.imageURL = imageURL;
 }

//Getters and setter go here...
}

Listing 15.1 Album.java POJO object

 B

 C

295Introducing the sample application
As you can see, the implementation is simple. The Album is a simple POJO that con-
tains several properties B: the name of the album, author of the album, and so on.
We have also added getters and setters for those properties and a constructor C to
instantiate different albums.

 Listing 15.2 shows a manager class used to manipulate the albums.

[...]
public class AlbumManager {
 final static List<Album> albums = new ArrayList<Album>();
 static {
 albums.add(new Album(...));
 albums.add(new Album(...));
 albums.add(new Album(...));
 albums.add(new Album(...));
 albums.add(new Album(...));
 }

 public static List<Album> getAvailableAlbums() {
 return albums;
 }

 public static Album getAlbumByTitle(String title) {
 for (Album album : albums) {
 if (album.getName().equals(title)) {
 return album;
 }
 }
 return null;
 }
}

The MusicStore application focuses only on JSF. We avoid additional layers such as
interacting with a database. That’s why we start the implementation with a declaration
and initialization of a list of five hardcoded Albums B. Normally we’d invoke a data-
base layer to get these albums, but for the sake of simplicity, we use hardcoded values.
To keep the code listing simple and readable, we removed the Album declarations.
Next, we implement a number of methods: one for retrieving all the available albums

C and another for finding an album by title D.
 Listing 15.3 implements the bean that communicates with the frontend.

[...]
public class ListAvailableAlbumsBean {

 private List<Album> albums = new ArrayList<Album>();

 public List<Album> getAlbums() {
 this.albums = AlbumManager.getAvailableAlbums();

 return albums;
 }

Listing 15.2 The AlbumManager performs different operations on Albums

Listing 15.3 ListAvailableAlbumsBean implementation

 B

 C

 D

 B

 C

296 CHAPTER 15 Testing JSF applications
 public void setAlbums(List<Album> albums) {
 this.albums = albums;
 }
}

Listing 15.4 describes the bean for our application. For every attribute we want to dis-
play in the frontend, we specify a corresponding property of the bean B. Depending
on whether you only read or also write in your property, every property needs to have
a getter method C and a setter method D. JSPs interact with this bean, and the bean
itself interacts with the AlbumManager. Before this bean can expose itself to the JSPs,
we need to configure the bean in a configuration file called faces-config.xml.

<faces-config>
[...]
 <application>
 <view-handler>
 com.sun.facelets.FaceletViewHandler
 </view-handler>
 </application>
 <managed-bean>
 <managed-bean-name>
 listAlbumsBean
 </managed-bean-name>
 <managed-bean-class>
 com.manning.junitbook.ch15.beans.ListAvailableAlbumsBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
[...]
</faces-config>

We start with an application declaration B, which contains some information that’s
global for the whole application (like the view handlers, the locale parameters, and so
on). The managed-bean declaration C is used to expose our beans to the JSPs. Notice
the managed-bean-name declaration D; this name will be used in the JSP to reference
the bean with a class defined in the managed-bean-class declaration.

 The only thing that we’re missing to have the full picture of the MusicStore appli-
cation is the page to display all the albums available. We show this in listing 15.5.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:c="http://java.sun.com/jstl/core">
 <body>
 <h:form id="list_albums">

 [...]

Listing 15.4 faces-config.xml to configure our beans

Listing 15.5 The JSP to display all the available albums

 D

 B

 C

 D

 B

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jstl/core

297Introducing the sample application
 <table border='1'>
 <th>Name</th>
 <th>Author</th>
 <th>Year</th>
 <th>Price</th>
 <c:forEach var="album" items="#{listAlbumsBean.albums}">
 <tr>
 <td>
 <h:commandLink
 action="#{albumDetailsBean.showAlbumDetails}">

 <h:outputText value="${album.name}" />
 <f:param name="albumName" value="#{album.name}" />
 </h:commandLink></td>
 <td>${album.author}</td>
 <td>${album.year}</td>
 <td>$ ${album.price}</td>
 </tr>
 </c:forEach>
 </table>
 </h:form>
 </body>
</html>

We need to import the tag libraries that we want to use in this JSP B. All that our JSP is
doing is iterating over all the albums C and displaying the information for every
album that we want. We use the standard JSTL tag libraries C as well core JSF tag
libraries D.

 The JSP contains a link that to a managed bean we haven’t defined yet:

<h:commandLink action="#{albumDetailsBean.showAlbumDetails}">
 [...]
</h:commandLink>

We want to implement the following: the list_albums.jsp presents all the albums to the
user, and on clicking the name of an album you’re redirected to a page that displays
the album details. The new page then allows you to purchase the album or navigate
back to the listing page.

 Listing 15.6 gives the code for the bean that displays the details for the
selected album.

[...]
public class AlbumDetailsBean {

 private String status = null;

 private HttpServletRequest request = null;

 private Album album = null;

 public String showAlbumDetails() {
 HttpServletRequest request = getRequest();

Listing 15.6 AlbumDetailsBean implementation

 C

 D

 B

 C

 D

298 CHAPTER 15 Testing JSF applications
 String name = request.getParameter("albumName");

 if (name == null) {
 return "";
 }

 setAlbum(AlbumManager.getAlbumByTitle(name));

 return "showAlbumDetails";
 }

 protected HttpServletRequest getRequest() {
 if (this.request == null) {
 return (HttpServletRequest)
 FacesContext.getCurrentInstance()
 .getExternalContext().getRequest();
 } else {
 return this.request;
 }
 }

 public String cancel() {
 return "cancel";
 }

 public void purchase() throws InterruptedException {
 Thread.sleep(1500);
 // empty implementation
 System.out.println("Here we must implement the purchase logic.");
 }

 //Additional getters and setters follow.
}

The bean tracks the request B and the album that the user has selected C. The
method that’s called when the user clicks the name of a given album is showAlbum-
Details D. In this method, we get the request and extract a parameter with the name
"albumName" E. Then we use the AlbumManager to extract the Album object F. Pay
attention to the way we extract the request G; if the attribute of the bean is null, we
get it from the FacesContext object. In the next section, we mock the request object
and set it as an attribute to the bean. The last method is the purchase method H; we
call this method when a user wants to purchase a given album. For simplicity, we pro-
vide an empty implementation. Notice that we stop the execution exactly for a second
and a half because we want to simulate that this method is time consuming, which we
address when we write performance tests in the last section of this chapter.

 Now let’s move on to the JSP that provides the details for the bean (shown in list-
ing 15.7).

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:rich="http://RichFaces.org/rich"

Listing 15.7 album_details.jsp presenting the details for a given product

 E

 F

 G

 H

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://RichFaces.org/rich

299Introducing the sample application
 xmlns:a4j="http://RichFaces.org/a4j"
 xmlns:c="http://java.sun.com/jstl/core">

<head>
<title>Album details</title>
</head>
<body>
<h:form id="view_details">
 Details for album '#{albumDetailsBean.album.name}':
 <table border='1'>
 <tr><td>
 <table>
 <tr><td>Title: #{albumDetailsBean.album.name}</td></tr>
 <tr><td>Year: #{albumDetailsBean.album.year}</td></tr>
 <tr><td>Style: #{albumDetailsBean.album.style}</td></tr>
 <tr><td>Author: #{albumDetailsBean.album.author}</td></tr>
 <tr><td>Price: $ #{albumDetailsBean.album.price}</td></tr>
 <tr><td>
 <rich:panel bodyClass="rich-laguna-panel-no-header">
 <a4j:commandButton id="PurchaseButton"
 value="Purchase" reRender="rep"
 action="#{albumDetailsBean.purchase}">

 <a4j:actionparam id="status" name="status"
 value="Successfully purchased:
 #{albumDetailsBean.album.name}"
 assignTo="#{albumDetailsBean.status}"/>
 </a4j:commandButton>
 <rich:spacer width="20" />
 <a4j:commandButton value="Cancel" reRender="rep"
 action="#{albumDetailsBean.cancel}"/>
 </rich:panel>
 <rich:spacer height="1" />
 <rich:panel bodyClass="rich-laguna-panel-no-header">
 <h:outputText id="rep" name="rep"
 value="#{albumDetailsBean.status}" />
 </rich:panel>
 </td></tr>
 </table>
 </td>
 <td></td></tr>
 </table>
 </h:form>
</body>
</html>

This JSP is implemented using the RichFaces tag libraries. This JSP lists all details
for the selected album B. We have two button declarations: the Purchase button

C and the Cancel button D. We use RichFaces components to declare these but-
tons and to implement Ajax behavior. Notice the reRender attribute in the defini-
tion: this attribute holds the ID of another component that needs to be rerendered
when we get the response from the server. In our case, the rerendered component
is a text component that displays the status of the purchase E.

 B

 C

 D

 E

http://RichFaces.org/a4j
http://java.sun.com/jstl/core

300 CHAPTER 15 Testing JSF applications
We’re finished; the MusicStore application is now complete. In order to see it in
action, you have to get the book source code online. We’ve provided a Maven script
with a configured Jetty plug-in; all you have to do is go to the command line, navi-
gate to the folder that contains the pom.xml file for the project, and invoke the
Jetty plug-in:

 > mvn jetty:run –Pjetty

The Jetty servlet container will start, and if you navigate to http://localhost:8080/
ch15-jsfunit/, you should be able to see the application in action (figure 15.2).

 The first image displays all the available albums, and if you click any given album,
you should see the second part of the figure, where you can see the details for the
album and purchase it.

 Moving on, in the next sections we describe how to test the various parts of
this application.

15.3 Typical problems when testing JSF applications
As you’ve seen so far, JSF applications typically consist of POJOs (called managed
beans) and some frontend JSPs. Here, our managed beans are simple and therefore
easy to unit test. So why are JSF applications hard to test?

 Indeed, the managed beans are easy to unit test, but the hard part comes when you
want to include interaction with a container in your tests. Normally tests give you the
security you need to mercilessly refactor your application. They provide you with con-
fidence that you haven’t introduced a new bug into the system.

 What could possibly break in a normal JSF application? Here’s list of typical prob-
lems that might occur in a JSF application:

■ Managed bean problems
■ Managed bean method problems
■ Faces-config.xml typos
■ Improper interface implementation
■ Missing getter/setter methods

Figure 15.2 The two screens of the MusicStore application

http://localhost:8080/ch15-jsfunit/
http://localhost:8080/ch15-jsfunit/

301Strategies for testing JSF applications
■ Duplicate managed bean declarations
■ Various JSF tag problems
■ Wrong-navigation problems

JSFUnit static analysis can solve all of these problems, as demonstrated in listing 15.8.

[...]
public class FacesConfigTestCase extends AbstractFacesConfigTestCase {

 private static Set<String> paths = new HashSet<String>()
 {
 {
 add("src/main/webapp/WEB-INF/faces-config.xml");
 }
 };

 public FacesConfigTestCase()
 {
 super(paths);
 }
}

First, we extend the JSFUnit class AbstractFacesConfigTestCase B, and then we cre-
ate a Set of Strings to hold the paths to our faces-config.xml files C and call the
constructor of the base class with the Set D. JSFUnit will parse the config files we’ve
specified, and it will check the following:

■ That all of our session and application scope beans are serializable
■ That all of our managed beans are in a valid scope
■ Whether we have missing managed beans
■ Whether we’re using the right faces.config class inheritance
■ For missing setter methods and for duplicate managed beans

Next, we create tests.

15.4 Strategies for testing JSF applications
The problems that might occur when developing JSF applications have different
approaches for solving them. Let’s try to categorize the various ways to test a
JSF application.

15.4.1 Black box approach

This is probably the most straightforward approach.2 With JSF applications, a form of
black box testing would be to open a web browser and start clicking pages to verify
that everything works as expected. One way to automate black box testing would be to

Listing 15.8 Static analysis for your faces-config.xml

2 We highly recommend you read chapter 5 before continuing with this section.

 B

 C

 D

302 CHAPTER 15 Testing JSF applications
use tools such as Selenium, HttpUnit, or HtmlUnit (see chapters 12 and 13). The
point is that in most cases using plain Selenium or HtmlUnit to test your JSF applica-
tion falls short in several ways. It’s hard to validate expected HTML (which can be com-
plicated by the use of Ajax), and in case you succeed, your tests may fail on minor
HTML changes.

15.4.2 Mock objects to the rescue

Another approach you might take in order to test the MusicStore application is the
white box approach. In this case you test only the server-side classes using mocks,3

without running the whole application in a container.
 The managed beans are so simple that to test them you don’t need any kind of

mocking. The problems appear when you want to involve objects like FacesContext,
which you normally don’t have access to. You can mock those objects, as well as
HttpServletRequest, HttpServletResponse, and some other objects, using the tech-
niques described in chapter 7.

 For example, let’s test the showAlbumDetails method of the AlbumDetailsBean
from listing 15.6 using the JMock library. This method extracts a parameter from the
request, so we need to mock the request and pass different values for the parameter,
as shown in listing 15.9.

[...]
public class TestAlbumDetailsBeanMock {

 private Mockery context = new JUnit4Mockery();

 private HttpServletRequest mockRequest;

 @Before
 public void setUp() {
 mockRequest = context.mock(HttpServletRequest.class);
 }

 @Test
 public void testShowAlbumDetailsRealAlbum() {
 context.checking(new Expectations() {
 {
 oneOf(mockRequest).getParameter("albumName");
 will(returnValue("Achtung Baby"));
 }
 });

 AlbumDetailsBean albumDetailsBean = new AlbumDetailsBean();
 albumDetailsBean.setRequest(mockRequest);

 String forwardString = albumDetailsBean.showAlbumDetails();

3 You can learn more about mocks in chapter 7.

Listing 15.9 Testing the AlbumDetailsBean using JMock

 B

 C

 D

 E

 F
 G

 H

303Strategies for testing JSF applications
 assertEquals("The return string must match 'showAlbumDetails'",
 forwardString, "showAlbumDetails");

 assertNotNull("The album must not be null",
 albumDetailsBean.getAlbum());
 assertEquals("The author must be U2",
 albumDetailsBean.getAlbum().getAuthor(), "U2");
 assertEquals("The year of the album must be 1991",
 albumDetailsBean.getAlbum().getYear(), 1991);
 }

 @Test
 public void testShowAlbumDetailsNoParameterAlbum() {
 context.checking(new Expectations() {
 {
 oneOf(mockRequest).getParameter("albumName");
 will(returnValue(null));
 }
 });

 AlbumDetailsBean albumDetailsBean = new AlbumDetailsBean();
 albumDetailsBean.setRequest(mockRequest);

 String forwardString = albumDetailsBean.showAlbumDetails();
 assertEquals(forwardString, "");
 assertNull("The album must be null",
 albumDetailsBean.getAlbum());
 }

 @Test
 public void testShowAlbumDetailsNoRealAlbum() {
 context.checking(new Expectations() {
 {
 oneOf(mockRequest).getParameter("albumName");
 will(returnValue("No-real-album"));
 }
 });

 AlbumDetailsBean albumDetailsBean = new AlbumDetailsBean();
 albumDetailsBean.setRequest(mockRequest);

 String forwardString = albumDetailsBean.showAlbumDetails();
 assertEquals("The return string must match 'showAlbumDetails'",
 forwardString, "showAlbumDetails");
 assertNull("The album must be null", albumDetailsBean.getAlbum());
 }
}

This test should be simple if you’ve already read chapter 7. We start by defining the
Mockery context B and the object that we want to mock C. After that, in the @Before
method we initialize the request object to be ready for usage D. The next step defines
several test methods, each of which will test the showAlbumDetails method by specify-
ing a different parameter in the request. For each of those methods we define the
expectations E, initialize AlbumDetailsBean F, set the mock request to the bean G,
and execute the method under test H. The final test is to perform the assertions that
we want I.

 I

304 CHAPTER 15 Testing JSF applications
 Although this kind of testing is easy, the drawback is that only the server-side
logic is tested. These tests don’t test the interaction with the HTML pages. Next we
look at a non-trivial case, when you want to execute your tests inside the container
and test all layers.

15.5 Testing the sample application with JSFUnit
The JSFUnit framework builds on Cactus,4 which we discussed in the previous chapter,
so the lifecycle of a sample test is the same. JSFUnit provides an API to gain access to all
of the JSF-related objects in your tests.

 Let’s start with simple a JSFUnit test-case example, shown in listing 15.10.

public class TestListAvailableAlbumsBean
 extends org.apache.cactus.ServletTestCase {

 public void testInitialPage()
 throws IOException, SAXException {
 JSFSession jsfSession = new JSFSession("/");

 JSFServerSession server = jsfSession.getJSFServerSession();

 assertEquals("/list_albums.jsp", server.getCurrentViewID());

 UIComponent label = server.findComponent("list_albums_label");
 assertEquals(label.getParent().getId(), "list_albums");

 assertEquals(5, ((List<Album>)
 server.getManagedBeanValue(
 "#{listAlbumsBean.albums}")).size());
 }
}

As with Cactus, we create a test case by extending the Cactus ServletTestCase class B.
Because Cactus extends JUnit 3, our test-case class needs to contain one or more testX
(where X is user defined) methods C. In these test methods we perform the testing,
using the JSFUnit API. In the example, we create a JSFSession object D, which points
to the root of our application. From the JSFSession object, we get two important
objects: JSFServerSession E and JSFClientSession. We use the JSFClientSession
to emulate the browser and test the HTML; the JSFServerSession is used to gain access
to the JSF state and invoke operations on the managed beans. We check that the viewID
is correct F and that the managed bean always returns a list of Albums of size 5 G.

 Testing JSF with JSFUnit looks much like testing with Cactus, but calls the API for
testing the JSF components. Because JSFUnit is built on Cactus, we have the same fea-
tures as we have with Cactus (including the beginX and endX methods we already cov-
ered in chapter 14). JSFUnit tests are executed the same way as Cactus tests. JSFUnit
requires JDK 1.5+ and one of the following JSF implementations: MyFaces (1.1.x or
1.2.x) or Sun JSF RI (2.0.0-PR, 1.2.x, or 1.1.x.).

4 We strongly encourage you to go back and read chapter 14 if you skipped it and then come back to this chapter.

Listing 15.10 First JSFUnit test

 B

 C
 D

 E

 F

 G

305Testing the sample application with JSFUnit
To execute the tests you can use Ant or Maven (see chapter 14), or you can execute
your tests from a browser.

15.5.1 Executing a JSFUnit test from a browser

To execute tests from a browser, place the cactus-report.xsl file that comes with the
Cactus distribution in the root of your web application. After you package the applica-
tion, deploy it to a servlet container and use a URL like the following:

http://localhost:8080/ch15-jfsfunit/ServletTestRunner?suite=com.manning.
junitbook.ch15.beans.TestListAvailableAlbumsBean&xsl=cactus-report.xsl

You’ll see the results of the test execution, as shown in figure 15.3.
 Now let’s talk a little about Ajax.

15.5.2 Testing Ajax using JSFUnit

The Ajax elements of an application are scary for most developers to test. But as you
saw in chapter 13, it isn’t that hard to test Ajax. In this section we focus on testing the
Ajax layer of our application, this time using JSFUnit.

 Listing 15.11 shows the album_details.jsp page of our MusicStore application,
which will allow us to purchase a given album.

...
<td>
 <rich:panel bodyClass="rich-laguna-panel-no-header">
 <a4j:commandButton id="PurchaseButton"
 value="Purchase" reRender="rep"
 action="#{albumDetailsBean.purchase}">
 <a4j:actionparam id="status" name="status"
 value="Successfully purchased:
 #{albumDetailsBean.album.name}"
 assignTo="#{albumDetailsBean.status}"/>
 </a4j:commandButton>
 <rich:spacer width="20" />

Listing 15.11 album_details.jsp

Figure 15.3 Results from the execution of our JSFUnit tests in a browser

 B

 C

 D

http://localhost:8080/ch15-jfsfunit/ServletTestRunner?suite=com.manning.junitbook.ch15.beans.TestListAvailableAlbumsBean&xsl=cactus-report.xsl

306 CHAPTER 15 Testing JSF applications
 <a4j:commandButton value="Cancel" reRender="rep"
 action="#{albumDetailsBean.cancel}"/>
 </rich:panel>
 <rich:spacer height="1" />
 <rich:panel bodyClass="rich-laguna-panel-no-header">
 <h:outputText id="rep" name="rep"
 value="#{albumDetailsBean.status}" />
 </rich:panel>
</td>
...

Although we already covered this page in listing 15.7, let’s review it briefly. In our JSP,
we use the RichFaces and Ajax4jsf tag libraries to implement the desired Ajax behavior.
We start by defining two rich:panel components B and E to hold the rest of our
components. In the first panel, we put a commandButton to submit the form to the bean
specified in the action parameter C. The command button also submits a status
parameter to the bean D. Notice the reRender parameter of the commandButton. This
attribute specifies an ID of another component that needs to be rerendered. In our
case, we specify an outputText F. You can see the screen for this JSP in figure 15.2.

 Now let’s implement some tests for this Ajax scenario. JSFUnit relies heavily on the
HtmlUnit headless browser. You can use the JSFClientSession and click anything,
regardless of the fact that the request to the bean will be submitted via JavaScript. The
code for these tests is shown in listing 15.12.

[...]
public class TestPurchaseAlbum extends ServletTestCase {
 public static Test suite() {
 return new TestSuite(TestPurchaseAlbum.class);
 }

 public void testCommandButton() throws IOException, SAXException {
 JSFSession jsfSession = new JSFSession("/album_details.jsp");

 JSFServerSession server = jsfSession.getJSFServerSession();
 JSFClientSession client = jsfSession.getJSFClientSession();

 client.click("PurchaseButton");

 Object userBeanValue = server.getManagedBeanValue(
 "#{albumDetailsBean.status}");

 assertEquals("Successfully purchased: ", userBeanValue);

 String spanContent =((HtmlPage) client.getContentPage())
 .getElementsByTagName("span").item(0).getTextContent();

 assertEquals(spanContent, "Successfully purchased:");
 }
}

As usual, we start the implementation by declaring a test case by extending the Servlet-
TestCase B. In the test method C we obtain a JSFServerSession object and extract
the JSFServerSession/JSFClientSession D. Then we click the "PurchaseButton"

Listing 15.12 Testing the Ajax components from the album_details.jsp

 E

 F

 B

 C

 D

 E

 F

 G

 H

 I

307Using HtmlUnit with JSFUnit
RichFaces button E. At F we extract the value of the status parameter of the managed
bean and assert its value G. On the client side, we also get the value of the span element
on the page H and assert its content I.

 The JSFUnit project provides tight integration with the RichFaces project; if you
find this treatment brief, you can use the RichFacesClient JSFUnit class. RichFaces-
Client provides methods for testing drag-and-drop behavior, sliders, calendars, and
other JSF widgets.

15.6 Using HtmlUnit with JSFUnit
In this section, we show how JSFUnit and HtmlUnit can work together.

 Chapter 12 shows how to get to an HtmlUnit HtmlPage to start testing a page,
for example:

WebClient webClient = new WebClient();
 webClient.setThrowExceptionOnScriptError(false);
 HtmlPage searchPage = (HtmlPage)
webClient.getPage("http://www.google.com");

Listing 15.13 shows how to use HtmlUnit in a JSFUnit test:

[...]
public class TestListAvailableAlbumsWithHTMLUnit
 extends ServletTestCase {

 public void testIntialPage() throws IOException {
 JSFSession jsfSession = new JSFSession("/");
 JSFClientSession client = jsfSession.getJSFClientSession();

 HtmlPage page = (HtmlPage)client.getContentPage();
 HtmlTable table = (HtmlTable)
 page.getFirstByXPath("/html/body/form/table");

 assertNotNull("table should not be null",table);
 assertEquals(6, table.getRowCount());

 HtmlAnchor link = table.getRow(1).getCell(0)
 .getFirstByXPath("a");

 assertNotNull("link should not be null", link);

 HtmlPage newPage = link.click();

 assertEquals(newPage.getTitleText(), "Album details");
 }
}

We start our test case again by extending the Cactus ServletTestCase class B. In our
test C, we create a new JSFSession object with the request URL that we want to
invoke. From the jsfSession object, we get a JSFClientSession D. From the client
object, we get an HtmlTable using an XPath expression reflecting the DOM tree struc-
ture of our document E. We assert that the table isn’t null and that the number of

Listing 15.13 Using HtmlUnit in a JSFUnit test

 B

 C
 D

 E

 F

 G

 H

 I

http://www.google.com

308 CHAPTER 15 Testing JSF applications
rows is six (we have five rows for the hardcoded albums and one for the header).
From the table we retrieve the second row, the first cell out of it, and an HTMLAnchor
out of the cell F. Again, we assert that the link isn’t null G, and we click it H. The
last assertion I compares the title of the page that we got from clicking the link
object; we want to make sure that we’re taken to the new page.

15.7 Performance testing for your JSF application
JSFUnit provides the option to test the performance of an application. Going back to
our MusicStore application, we’d like to ensure that the purchase method of our
AlbumDetailsBeam is always executed in less than a second and a half. Although JUnit
4.5 provides the @Test annotation timeout parameter, when it comes to testing web
applications this parameter isn’t sufficient. In most cases, we want to time different
phases of the application. JSFUnit provides the JSFTimer class to time the execution of
a given phase of an application, as demonstrated in listings 15.14 and 15.15.

//web.xml
<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/timer-config.xml</param-value>
</context-param>

//timer-config.xml
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config>
 <lifecycle>
 <phase-listener>
 org.jboss.jsfunit.framework.JSFTimerPhaseListener
 </phase-listener>
 </lifecycle>
</faces-config>

We declare a new context parameter with a value pointing to the timer-config.xml
file, which holds the declaration for the timer.

 Listing 15.15 shows how to use the timer.

[...]
public class TestPerformanceOfPurchaseBean extends ServletTestCase {

 public void testPerformance() throws IOException {
 JSFSession jsfSession = new JSFSession("/album_details.jsp");

 JSFClientSession client = jsfSession.getJSFClientSession();

 client.click("PurchaseButton");

Listing 15.14 Enabling the JSFTimer for our application

Listing 15.15 Performance test for purchasing an album

 B

 C
 D

 E

 F

http://java.sun.com/dtd/web-facesconfig_1_1.dtd

309Summary
 JSFTimer timer = JSFTimer.getTimer();
 assertTrue("Total time to get the response should not be
 more than 1600 ms.", timer.getTotalTime() < 1600);

 PhaseId appPhase = PhaseId.INVOKE_APPLICATION;
 assertTrue("Execution should not be more than 1600 ms.",
 timer.getPhaseTime(appPhase) < 1600);
 }
}

We start by creating a new test case B and a test method C. We get a valid JSFSession

D and get its JSFClientSession E. Next, we click the PurchaseButton to initiate a
request to the managed bean F. We create a JSFTimer to measure the execution time

G, and we assert that the totalTime of the execution is less than 1600 milliseconds H.
 We can also measure the execution time against some specific Phase I. The JSFUnit

API provides for timing the execution interval upon any of the standard JSF phases:

■ RESTORE_VIEW
■ APPLY_REQUEST_VALUES
■ PROCESS_VALIDATIONS

■ UPDATE_MODEL_VALUES
■ INVOKE_APPLICATION
■ RENDER_RESPONSE

As we explained in chapters 3 and 4, the main benefit from the test cases is that they
serve as a shield. Once you have your test cases written, you can proceed and refactor
your application mercilessly, and you’re assured that as long as the tests pass and the
bar is green, everything is okay. In this sense, performance testing is important. You
can write your tests and assert that the execution of a given method always takes less
than a given time barrier. Now you’re free to improve the logic behind that method,
and you’ll always be sure that the invocation of the given URL will take no more time
than the time barrier allows.

15.8 Summary
Testing JSF applications requires preparation. Black box testing is brittle, limited, and
hard to perform. The white box approach (mocking approach) also has its disadvan-
tages; mock tests are always fine grained, which means that the interaction among the
different components isn’t tested well. Also, once written, the tests need to be rewrit-
ten in case of small cosmetic changes to the application.

 JSFUnit, on the other hand, builds on the Cactus project and uses the in-
container testing strategy. JSFUnit provides static and performance analysis mecha-
nisms to fully inspect our applications. In this chapter we also showed how to test
RichFaces Ajax components.

 Starting with chapter 12, we discussed the challenges encountered when testing the
frontend layer of a sample Java EE application. In the next chapter, we talk about one
of the most recent booms in the Java world, OSGi, and the modularity that it provides.

 G
 H

 I

Testing OSGi components

Theory is when you know something, but it doesn’t

work. Practice is when something works, but you

don’t know why. Programmers combine theory and
practice: Nothing works and they don’t know why.

—Anonymous

So far, we’ve been testing everything from the Java EE spec. All the Java EE compo-
nents that we’ve dealt with (JSPs, tag libraries, servlets, filters, EJBs, and so on) have
been available for a long time. In this chapter we discuss a technology that became
popular relatively recently and is getting more popular every day: OSGi.

 We start the chapter by introducing OSGi1 We then walk through the basic OSGi
concepts and provide easy-to-grasp examples by means of the calculator application

This chapter covers
■ The OSGi dynamic module system
■ Mock testing of your modules
■ In-container testing of your modules

1 OSGi is a registered trademark of the OSGi Alliance.
310

311Introducing OSGi
from chapter 1. In the second part of the chapter, we show how to test our OSGi calcu-
lator bundle by introducing the JUnit4OSGi framework.

16.1 Introducing OSGi
The term OSGi2 usually refers to two things: the OSGi alliance (http://osgi.org/) and
the OSGi service platform.

 The OSGi alliance is an organization of companies started in late March 1999. The
initial companies involved in the alliance included Sun Microsystems, Ericsson, IBM,
and others. The idea was to create a standards organization for defining specifications
for a Java-based service platform, which could also be remotely managed. This plat-
form consists of multiple bundles (aka modules) that can be installed, started,
stopped, updated, and uninstalled remotely and dynamically. These operations can be
performed at runtime without an application restart.

 The specification this alliance deals with is the OSGi service platform, which
defines a component and service model. All implementations of the OSGi framework
need to provide an environment for the applications to run in. Applications comprise
smaller components called bundles. A bundle is the smallest organization unit in
OSGi—a collection of classes, resources, and configuration files, in which the bundle
declares its dependencies. The key mission of a bundle is to declare and use services.
The OSGi service platform provides a context where all the running services are regis-
tered. This bundle context is injected into every bundle during its startup.

 The lifecycle of a given OSGi service is shown in figure 16.1.

2 For a complete reference to OSGi we recommend OSGi in Action, by Richard S. Hall, Karl Pauls, Stuart
McCulloch, and David Savage (Manning Publications, 2010).

Figure 16.1
Lifecycle phases of an
OSGi bundle

http://osgi.org
Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

312 CHAPTER 16 Testing OSGi components
As we mentioned, a bundle can be in different states. The lifecycle layer defines the
following six states:

■ INSTALLED: The bundle has been installed in the OSGi container.
■ RESOLVED: All package requirements are fulfilled and the bundle is ready to

be started.
■ STARTING: The bundle is in the process of starting.
■ ACTIVE: The bundle has started.
■ STOPPING: The bundle is in the process of stopping. After this, the bundle will

be in the RESOLVED state.
■ UNINSTALLED: OSGi has removed the bundle from the container.

It may seem a bit confusing now, but the example we provide will clear things up, so
let’s move on and implement our first OSGi service.

16.2 Our first OSGi service
In the first chapter of the book, we implemented a simple calculator application.
That application was simple enough to demonstrate the basic concepts of unit test-
ing. We take the same approach in this chapter. We implement the calculator
application as an OSGi service. We also implement a sample client for that service
and a test bundle for the client. Finally, we install the three bundles in the Apache
Felix environment.

The implementation of our calculator service starts with the interface in listing 16.1.
Every OSGi service is defined by an interface.

Apache Felix—open source implementation of the service platform
The OSGi alliance defines a number of specifications for the OSGi service plat-
form. The implementation of these specifications can be done by anyone. In this
chapter, we use the Apache Software Foundation implementation Apache Felix
(http://felix.apache.org/). The installation of the Felix project is easy. Start by
downloading the latest distribution. Extract the archive and create an environ-
ment variable called FELIX_HOME pointing to the Felix folder. The Felix folder
should contain the following:

■ bin—This folder contains only one JAR file, called felix.jar. This JAR is used to
instantiate the Felix console to remotely operate the different services.

■ bundle—This folder contains the various Felix bundles.
■ conf—This folder contains the Felix configuration file.
■ doc—This folder contains the documentation.

http://felix.apache.org

313Our first OSGi service
[...]
public interface CalculatorService {

 public double[] parseUserInput(String str)
 throws NumberFormatException;

 public double add(double... numbers);

 public double multiply(double... numbers);

 public void printResult(double result);
}

The interface defines the four methods we want to implement in our service. The first
one B parses a line of user input. The user is supposed to input several numbers sep-
arated by spaces, and this method parses the input as numbers. The add method C
sums all the given numbers and returns the result. There is also a multiply method

D, which multiplies numbers and returns the result. The printResult method E
prints a given result number.

 As we already discussed, every OSGi service exposes a certain interface to other ser-
vices. Your services must provide an interface and implement it.

 Listing 16.2 contains the implementation of the interface in listing 16.1.

[...]
public class CalculatorImpl implements CalculatorService {

public double add(double... numbers) {
 double result = 0;
 for (double number:numbers)
 result+=number;
 return result;
}

public double multiply(double... numbers) {
 double result = 1;
 for (double number:numbers)
 result*=number;
 return result;
}

public double[] parseUserInput(String str)
 throws NumberFormatException {
 String[] numbers = str.split(" ");
 double[] result = new double[numbers.length];
 for (int i=0;i<numbers.length;i++) {
 result[i] = Double.parseDouble(numbers[i]);
 }
 return result;
}

Listing 16.1 CalculatorService interface

Listing 16.2 Implementation of CalculatorService interface

 B

 C

 D

 E

314 CHAPTER 16 Testing OSGi components
public void printResult(double result) {
 System.out.println("The result is: " + result);
}

}

This listing declares a class that implements the interface in listing 16.1. The details of
the implementation aren’t relevant to OSGi, so we’ll skip it.

 There’s no big difference between testing OSGi services and POJOs. You can reuse
the test from chapter 1 and include it in a build, as we show in part 3 of this book. This
chapter doesn’t cover unit testing alone; it covers integration testing of OSGi services.
Before we continue discussing the integration testing of the service that we just imple-
mented, we create a bundle to hold our service and install the service with Apache
Felix, an open source implementation of the OSGi R4 Service Platform.

 To create the bundle we need an implementation of the BundleActivator inter-
face to register and unregister the service, as shown in listing 16.3.

[...]
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class CalculatorBundleActivator implements BundleActivator {

 public void start(BundleContext bundleContext) throws Exception {
 System.out.println("Starting calculator service ...");
 bundleContext.registerService(
 CalculatorService.class.getName(), new CalculatorImpl(), null);
 }

 public void stop(BundleContext bundleContext) throws Exception {
 System.out.println(“Stopping calculator service ...”);

 }
}

We start by importing the required classes B from felix.jar in the FELIX_HOME bin/
directory. Next, we declare our class to implement the BundleActivator interface C.
In D and F, we implement the required start and stop methods, which define how
the bundle will behave once it’s started or stopped. In the start method, we register
the CalculatorService interface with the given BundleContext E. By doing so we
notify the framework of our service, and our next step is to expose the interface to
other services.

 Our stop method F doesn’t need to do anything because Felix automatically
unregisters the service when it stops.

 To expose our calculator service so that it can be used by other services, we need to
include it in a bundle: a JAR file containing all of our classes and the MANIFEST.MF file
shown in listing 16.4.

Listing 16.3 CalculatorBundleActivator

 B

 C

 D

 E

 F

315Our first OSGi service
Bundle-Name: Calculator
Bundle-Description: A sample calculator bundle that registers the
calculator service
Bundle-Vendor: Apache Felix
Bundle-Version: 1.0.0
Bundle-Activator: com.manning.junitbook.ch16.CalculatorBundleActivator
Export-Package: com.manning.junitbook.ch16.service
Import-Package: org.osgi.framework

Every OSGi bundle is a JAR file, and what distinguishes the JAR as an OSGi bundle is
the MANIFEST.MF file. In the MANIFEST.MF file, we specify different kinds of metadata
for our bundle. The first few lines provide the name, description, vendor, and version
of the bundle B. The Bundle-Activator C specifies the full name of the Activator
class (the one that implements BundleActivator). As we already mentioned, a bundle
can export services. Which package is exported is specified in the Export-Package
clause D. A bundle can also use and demand services; we specify which services we
use with the last clause. There we define the packages that are needed by our service

E. You can specify multiple values separated by commas.
 The final step is to compile the source code and produce the bundle (the JAR file).

Open a shell, navigate to the ch16-osgi\calculator-service folder, and type in the com-
mand to use Maven

mvn clean install

or the command to use Ant

ant

The result should be the same: a JAR file containing the classes and the MANIFEST.MF
file in a META-INF folder.

 Now that we have the bundle JAR that contains our service, we use the Felix con-
sole and install the bundle. Navigate to the FELIX_HOME directory and execute the
following command:

java –jar bin/felix.jar

You’ll see the following:

Welcome to Felix.
=================

->

The Felix console is up and running, and you can now manage your services. The
first thing you can do from here is list all the services that are installed. Type in
the command

-> ps

For a complete list of all the commands you can use, type in the help command:

-> help

Listing 16.4 Manifest file for the calculator bundle

 B

 C

 D
 E

316 CHAPTER 16 Testing OSGi components
We now install our calculator-service bundle. We first copy the JAR file to the
FELIX_HOME/bundle folder. Next, we use the install command:

-> install file:bundle/calculator-service.jar

A BundleID will be assigned to our bundle. We use that BundleID to manage our bundle.
 Start the service with the following command

-> start [BundleID]

where [BundleID] is a placeholder for your bundle ID.
 We’ve installed the bundle and started it. The bundle is now running and

exports the service as an API. Next, we create a sample client application for our
CalculatorService.

16.2.1 The sample application

The idea behind the client application is to demonstrate how to make another bundle
that uses the first one, the CalculatorService. We start by implementing the Bundle-
Activator to override the behavior on start and stop. See listing 16.5.

[...]
import com.manning.junitbook.ch16.service.CalculatorService;

public class ClientBundleActivator implements BundleActivator {

 public void start(BundleContext context) throws Exception {

 ServiceReference reference = context.getServiceReference(
 CalculatorService.class.getName());

 if (reference != null) {

 CalculatorService calculator = (CalculatorService)
 context.getService(reference);

 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));

 System.out.println("Enter operation (add or multiply):");
 String operation = in.readLine();

 System.out.println("Enter several numbers
 separated with a space:");
 String line = in.readLine();

 double[] numbers = calculator.parseUserInput(line);

 if (operation.equals("add")) {
 calculator.printResult(calculator.add(numbers));
 } else if (operation.equals("multiply")) {
 calculator.printResult(calculator.multiply(numbers));
 } else {

Listing 16.5 ClientBundleActivator implementation

 B

 C

 D

 E

 F

 G

 H

 I

 J

317Our first OSGi service
 throw new UnsupportedOperationException(
 "Unknown command: " + operation);
 }
 context.ungetService(reference);
 }
 else {
 System.out.println("Calculator service is
 not installed or not started ...");
 }
 }

 public void stop(BundleContext context) {}
}

This client reads several lines of user input. The first line must contain the operation
the user wants to perform, and the next line should be in the form of several numbers
separated by spaces. The client first invokes the parseUserInput method and with the
result calls the corresponding add/multiply and print methods of the service we
already installed and prints the result on the screen.

 The client then imports the necessary classes B. Notice that this time we also
import the service from the previous listings. Keep that in mind when it comes to
describing services in the MANIFEST file. At C we implement the BundleActivator
interface and its two methods at D and . At E we get a ServiceReference from
the context using our service’s class name. If this reference isn’t null, we get the
CalculatorService interface from the context at F, by providing the reference to
the service we already have. At G we read two lines of user input from the command
line. The first line contains the operation we want to perform (add or multiply), and
the second line contains a set of numbers separated by spaces. At H we call the
parseUserInput method, and depending on the operation we call either the add
method I or the multiply method J, or we throw an UnsupportedOperation-
Exception if the command is unknown . The last step is to “unget” the service, at .

 Let’s see this client application in action. We need to package it in a bundle with
a corresponding manifest file. Listing 16.6 contains the MANIFEST.MF file for the cli-
ent application.

Bundle-Name: Calculator client
Bundle-Description: A bundle that uses the calculator service if it finds
it at startup
Bundle-Vendor: Apache Felix
Bundle-Version: 1.0.0
Bundle-Activator: com.manning.junitbook.ch16.client.ClientBundleActivator
Import-Package: junit.framework, org.osgi.framework,
com.manning.junitbook.ch16.service

The only things different from the previous manifest file are the name of the bundle
and the activator class. Notice that we also specify in the Import-Package directive a
few more packages:

Listing 16.6 MANIFEST.MF for the client application

 1)

 1 !

 1 @

1 @

1) 1 !

318 CHAPTER 16 Testing OSGi components
■ junit.framework—We need this package because we have some tests to exe-
cute in the Felix service platform. More on this later in the chapter.

■ com.manning.junitbook.ch16.service—We use the service that’s already
installed, so we need to specify its package here.

The one thing that’s left is to navigate on the command line to the ch16-osgi/calcula-
tor-client folder from the source code of the book and invoke the appropriate Ant or
Maven script. You do this the exact same way we already showed—no matter what
script you use, the result should be identical.

 Get the JAR file that’s generated from the build and copy it to the FELIX_HOME/
bundle folder. Go to the Felix command-line tool and invoke the two commands for
installing and starting the bundle:

-> install file:bundle/calculator-client.jar

-> start [BundleID]

Again, you need to remember the assigned BundleID for this bundle and specify it
when starting the bundle. If you don’t remember it, use the ps command to find it.

 Once the bundle is started, you will be asked to enter an operation and numbers
separated by spaces.

 Our client application implementation is so simple that we skipped data validation
and exception handling. What happens if we were to enter a blank line or a random
string? An exception would be raised, something we don’t want to happen.

 How do we test that the client application behaves in the expected way? We need
to have some kind of integration tests that we execute inside the service platform (just
like in chapter 14 where we executed Cactus tests inside the servlet container). That’s
exactly what we do next. In the next section, we introduce an OSGi testing framework
called JUnit4OSGi; we also write some tests with that framework and include them in a
separate test bundle.

16.3 Testing OSGi services
When it comes to testing OSGi services, we can apply the same categorization that
we made in the second part of the book. The normal JUnit tests that you already
know how to write would exercise each of your services on its own. Our attention is
mainly focused on the integration tests that test the interaction between the differ-
ent services. So for implementing integration tests there are different approaches
that you might take; we already covered those different approaches in the second
part of the book, and they include black box testing, using mock objects, and in-
container testing.

 As for black box testing, there isn’t much you can do. A form of black box testing
would be to get an OSGi container, install your services there, and hand it to someone
to start playing around and test it “in the black.”

 We take a closer look at the other two approaches in the next sections.

319Testing OSGi services
16.3.1 Mock objects

Now that we have our services written, let’s examine them. The calculator service
exposes an API used by the CalculatorClient service to compute some sums or mul-
tiplications. The CalculatorClient service, on the other hand, reads some data input
from the command line. This means that if we write a test for this service and invoke
it, we have to enter some data on the command line, and because there’s no restric-
tion on the data that we can enter, there’s no way to specify our assertions. There’s
also no way to automate those tests, because we always have to have someone entering
data on the command line when the tests are executed. The solution for this problem
is simple: refactoring.

 We need to refactor the ClientBundleActivator in such a way that it allows it to
be easily testable. Listing 16.7 shows the refactored class, where the changed lines are
marked in bold.

[...]
public class ClientBundleActivator implements BundleActivator {

 private String operation = null;
 private String userNumberInput = null;
 private double result = 0;

 public void start(BundleContext context) throws Exception {
 if (operation==null || userNumberInput==null) {
 initUserInput();
 }

 ServiceReference reference = context.getServiceReference(
 CalculatorService.class.getName());

 if (reference != null) {

 CalculatorService calculator = (CalculatorService)
 context.getService(reference);

 double[] numbers = calculator.parseUserInput(
 getUserNumberInput());

 if (getOperation().equals("add")) {
 result = calculator.add(numbers);
 } else if (getOperation().equals("multiply")) {
 result = calculator.multiply(numbers);
 } else {
 throw new UnsupportedOperationException(
 "Unknown command: " + getOperation());
 }

 calculator.printResult(result);
 context.ungetService(reference);
 } else {
 System.out.println("Calculator service
 is not installed or not started ...");
 }
 }

Listing 16.7 Refactored ClientBundleActivator to enable testability

 B

 C

 D

 E

 F

320 CHAPTER 16 Testing OSGi components
 public void initUserInput() {
 BufferedReader in = null;

 try {
 in = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Enter operation (add or multiply):");
 operation = in.readLine();

 System.out.println("Enter several
 numbers separated with a space:");
 userNumberInput = in.readLine();
 } catch (IOException ex) {
 System.err.println("Error reading from the reader.");
 ex.printStackTrace();
 }
 finally
 {
 try {
 in.close();
 } catch (IOException e) {
 System.err.println("Error closing the reader.");
 e.printStackTrace();
 }
 }
 }
 // Getters and setters...
}

We start by extracting all the data the user normally enters on the command line (the
operation and the numbers separated by spaces) as instance variables to the class B.
We extract the result from the computation as a local variable C, and we provide
getters and setters for both B and C. This gives us the opportunity to set those
parameters before we start the ClientBundleActivator as well as to assert the
expected result. Next, in the start method we add a check to see if the user data has
been set up D, and in case it hasn’t we call the initUserInput method G. As you can
see in E, everywhere in our code that we want to use the user data, we use the getter
methods of the class. At this point we’re sure that this data will be set up, either by the
setter methods or by the initUserInput method, which reads the data from the com-
mand line. In F we check the command we want to issue and call the corresponding
method in the CalculatorService accordingly. Notice that the result is this time kept in
a local variable, to which we have access through the getter methods.

 The initUserInput method G is called when we have no user data defined
through the setter methods. This method has the responsibility for reading the oper-
ation we want to issue H as well as the numbers on which we want to issue the com-
mand I.

 Now that we’ve refactored the ClientBundleActivator class, we can test it. The
class contains one entry-point method called start, which we want to unit test. In
order to do this we must obtain a valid BundleContext object, because the method
defines it as a parameter. BundleContext itself is an interface, so we have no way
to instantiate.

 G

 H

 I

321Testing OSGi services
 Chapter 7 introduced mock objects, and we saw mock objects frameworks that can
produce fake instances of interfaces that we can use in tests. That’s exactly what we’re
going to do in listing 16.8.

[...]
public class TestClientCalculatorServiceMock {

 private Mockery context = new JUnit4Mockery();

 private BundleContext mockBundleContext;

 private ServiceReference mockServiceReference;

 @Before
 public void setUp() {
 mockBundleContext = context.mock(BundleContext.class);
 mockServiceReference = context.mock(ServiceReference.class);
 final CalculatorImpl service = new CalculatorImpl();

 context.checking(new Expectations()
 {
 {
 oneOf(mockBundleContext).getServiceReference(
 CalculatorService.class.getName());
 will(returnValue(mockServiceReference));

 oneOf(mockBundleContext).getService(mockServiceReference);
 will(returnValue(service));

 oneOf(mockBundleContext).ungetService(mockServiceReference);
 }
 });
 }

 @Test
 public void testAddMethod() throws Exception {
 ClientBundleActivator activator = new ClientBundleActivator();
 activator.setOperation("add");
 activator.setUserNumberInput("1 2 3 4 5 6 7 8 9");
 activator.start(mockBundleContext);
 assertEquals("The result is not the same as expected",
 activator.getResult(), 45, 0);
 }

 @Test
 public void testMultiplyMethod() throws Exception {
 ClientBundleActivator activator = new ClientBundleActivator();
 activator.setOperation("multiply");

 activator.setUserNumberInput("1 2 3 4 5 6 7 8 9");
 activator.start(mockBundleContext);
 assertEquals("The result is not the same as expected",
 activator.getResult(), 362880, 0);
 }
}

Listing 16.8 Mock test for the CalculatorService

 B

 C

 D

 E

 F

 G
 H

 I

 J

 1)

322 CHAPTER 16 Testing OSGi components
We start by creating a new JUnit test case B that will exercise our CalculatorService.
Just as we did in chapter 6, we define the Mockery context C and the objects that we
want to mock D. The @Before method executes before every test method, so that’s
where we create the mock objects E. At F, we define the expectation for the mock
objects. We got lucky—these expectations turn out to be the same for both tests,
which is why we can extract them to the @Before method. We first call the get-
ServiceReference on the mockBundleContext, and after that we call the getService
on the same object, passing the ServiceReference we already have. Finally, we call the
ungetService method on the mockBundleContext.

 We have two tests: one to test the add method of the service G and another to test
the multiply method . Those tests have the same structure: We first get a new
instance of the ClientBundleActivator class H and then set the parameters using
the setter methods on the class I. The last step is to invoke the start method with
our fake object J and assert that the expected results are good.

 As you can see, using mock objects to test our service requires quite a bit of prepa-
ration. We need to take care of the proper instantiation and configuration of the
mock objects.

 The next section introduces the JUnit4OSGi project, which implements an in-
container strategy for testing the CalculatorClient service.

16.4 Introducing JUnit4OSGi
The JUnit4OSGi framework is a simple OSGi testing framework that comes from the
iPOJO subcomponent of the Apache Felix project. You can download the JARs from
the website of the project, or if you’re using Maven, you can declare them as depen-
dencies in your Maven project.

 To use the framework you’ll need several JAR files. The bare minimum you need
is this:

■ org.apache.felix.ipojo-1.4.0.jar
■ org.apache.felix.ipojo.handler.extender-1.4.0.jar
■ org.apache.felix.ipojo.junit4osgi-1.0.0.jar
■ org.apache.felix.ipojo.junit4osgi.felix-command-1.0.0.jar

Place these files in the sample folder FELIX_HOME/bundles/junit4osgi. Then install
them one by one with the Felix command-line tool. Once they’re installed and
started, you’ll get the chance to use one extra command on the command line:

-> junit [BundleID]

This command will invoke all the JUnit and JUnit4OSGi tests that are present in the
bundle with the given [BundleID] and are listed in the manifest descriptor.

 Let’s start implementing our first test cases. Listing 16.9 shows the JUnit4OSGi test
case that tests the CalculatorService application.

1)

323Introducing JUnit4OSGi
[...]
import org.apache.felix.ipojo.junit4osgi.OSGiTestCase;
import org.osgi.framework.ServiceReference;
import com.manning.junitbook.ch16.service.CalculatorService;

public class TestClientActivator extends OSGiTestCase {

 public void testServiceAvailability() {
 ServiceReference ref =
 context.getServiceReference(CalculatorService.class.getName());
 assertNotNull("Assert Service Availability", ref);
 }

 public void testParseUserCorrectInput() {
 ServiceReference ref =
 context.getServiceReference(CalculatorService.class.getName());
 assertNotNull("Assert Availability", ref);
 CalculatorService cs = (CalculatorService)
 context.getService(ref);
 double[] result = cs.parseUserInput("11.5 12.2 13.7");
 assertNotNull("Result must not be null", result);
 assertEquals("Result must be 11.5", 11.5, result[0]);
 assertEquals("Result must be 12.2", 12.2, result[1]);
 assertEquals("Result must be 13.7", 13.7, result[2]);
 }

 public void testParseUserIncorrectInput() {
 ServiceReference ref =
 context.getServiceReference(CalculatorService.class.getName());
 assertNotNull("Assert Availability", ref);
 CalculatorService cs = (CalculatorService)
 context.getService(ref);

 try {
 double[] result = cs.parseUserInput("THIS IS A RANDOM STRING TO
 TEST EXCEPTION HANDLING");
 fail("A NumberFormatException was
 supposed to be thrown but was not");
 } catch (NumberFormatException nex) {
 assertTrue(true); //this is the normal execution flow
 }
 }

 public void testAddMethod() {
 assertTrue("Check availability of the service",
 isServiceAvailable(CalculatorService.class.getName()));
 CalculatorService cs = (CalculatorService)
 getServiceObject(CalculatorService.class.getName(), null);
 double[] numbers = cs.parseUserInput("1.2 2.4");
 assertNotNull("Result from parseUserInput must not be null",
 numbers);
 double result = cs.add(numbers);
 assertNotNull("Result from add must not be null", result);
 assertEquals("Result must be 3.6", 3.6, result);
 }
}

Listing 16.9 JUnit4OSGi test for our CalculatorService application

 B

 C D

 E

 F

 G

 H

 I

 J

 1)

324 CHAPTER 16 Testing OSGi components
The listing starts by importing the necessary classes B. Remember that every external
package you use needs to be declared in the MANIFEST.MF file of the bundle. Every
JUnit4OSGi test case needs to extend from the OSGiTestCase class C. The JUnit4OSGi
framework is a JUnit 3.x extension, so you need to follow the JUnit 3.x rules for writing
test cases.

 We start our first test method at D and get a ServiceReference of the service
we wrote and deployed E. We get the ServiceReference from the context object
that JUnit4OSGi provides us. The framework gives us the access to the Bundle-
Context to check the status of the given service, something that we do in F. By
asserting the ServiceReference isn’t null, we make sure that the service is installed
and started correctly.

 The following test methods test the service methods; by having the service refer-
ence we can get hold of the service itself (at G) and invoke different methods (at H)
to see that it behaves the expected way I. We also test the exceptional case to provide
a random string (at J), and we catch the NumberFormatException that we expect to
be raised .

 It’s a best practice to separate all your junit-osgi tests in a separate bundle, and
that’s what we’re going to do. Go to the calculator-test folder of the source code of the
book, and use Maven or Ant to package the bundle that contains the test from the pre-
vious listing. After you’ve done this, copy the resultant JAR file and paste it in the
FELIX_HOME/bundle folder so that it’s easy to install. The next step is to install and
start the service in the bundle the way we described at the beginning of the chapter.

 Our final step is to call the test inside the container

-> junit [BundleId]

replacing the BundleId with the number assigned to your module. If you’re using the
source code for the book and there are no errors, the result should be the same as this:

Executing [Client activator tests]
....1
Time: 0

OK (4 tests)

As we already mentioned, the junit command is currently available only for the
Apache Felix implementation of OSGi. So how can we run our tests if we use any of
the other implementations of OSGi? In that case we have to use the GUI runner that
comes with the JUnit4OSGi project.

 To use the GUI runner, you need to install and start the org.apache.felix.ipojo.
junit4osgi.swing-gui.jar bundle. After the bundle is started, you’ll see a Java pop-up
that lets you select the bundles that contain JUnit tests. You can select as many as you
want, and after clicking the Execute button you should see the result: a green bar for
passing tests and a red bar for failing tests (see figure 16.2).

 This example of executing unit tests through the GUI runner concludes our look
at JUnit4OSGi and this chapter on OSGi.

1)

325Summary
16.5 Summary
In this chapter, we discussed testing OSGi bundles, a technology that is getting more
and more popular. We introduced the technology and its key concepts, the bundle
and service. You should also be able to test all your OSGi bundles using JUnit4OSGi
and to apply different techniques for testing your bundles, like testing with mock
objects, integration testing, and so on.

 In the following chapters, we begin to study the backend layer of applications. The
remaining chapters are concerned with database interactions. We show you different
techniques for testing Hibernate and JPA as well as integration testing of your data
access layer.

Figure 16.2 Executing the JUnit tests with the GUI runner

Testing database access

Dependency is the key problem in software

 development at all scales.... Eliminating

 duplication in programs eliminates dependency.
—Kent Beck,

 Test-Driven Development: By Example

The persistence layer (or, roughly speaking, the database access code) is undoubtedly
one of the most important parts of any enterprise project. Despite its importance,
the persistence layer is hard to unit test, mainly because of the following issues:

■ Unit tests must exercise code in isolation; the persistence layer requires
interaction with an external entity, the database.

■ Unit tests must be easy to write and run; code that accesses the database can
be cumbersome.

■ Unit tests must be fast to run; database access is relatively slow.

This chapter covers
■ Challenges of database testing
■ Introduction to DbUnit
■ Advanced DbUnit techniques
■ DbUnit best practices
326

327The database unit testing impedance mismatch
We call these issues the database unit testing impedance mismatch, in reference to
the object-relational impedance mismatch (which describes the difficulties of using
a relational database to persist data when an application is written using an object-
oriented language).

 The database-testing mismatch can be minimized using specialized tools, one of
them being DbUnit. In this chapter, we show how DbUnit can be used to test database
code, and we not only describe its basic concepts but also present techniques that
make its usage more productive and the resulting code easier to maintain.

17.1 The database unit testing impedance mismatch
Let’s take a deeper look at the three issues that compose the database unit testing
impedance mismatch.

17.1.1 Unit tests must exercise code in isolation

From a purist point of view, tests that exercise database access code can’t be con-
sidered unit tests because they depend on an external entity, the almighty data-
base. What should they be called then? Integration tests? Functional tests? Non-
unit unit tests?

 Well, the answer is, there is no secret formula! In other words, database tests can fit
into many categories, depending on the context.

 Pragmatically speaking, though, database access code can be exercised by both
unit and integration tests:

■ Unit tests are used to test classes that interact directly with the database (like
DAOs). Such tests guarantee that these classes execute the proper SQL state-
ments, assemble the right objects, and so on. Although these tests depend on
external entities (such as the database and/or persistence frameworks), they
exercise classes that are building blocks in a bigger application (and hence
are units).

■ Similarly, unit tests can be written to test the upper layers (like façades), without
the need to access the database. In these tests, the persistence layer can be emu-
lated by mocks or stubs.

■ Even with both layers (persistence and upper) unit tested aside, it’s still neces-
sary to write integration tests that access the database, because some situations
can arise only in end-to-end scenarios (like the dreaded lazy-initialization
exception that frequently haunts JPA applications).1

Despite the theoretical part of the issue, there’s still a practical question: can’t the data
present in the database get in the way of the tests?

1 If you don’t have a clue as to what we’re talking about, don’t panic! JPA testing and its issues will be explained
in detail in the next chapter.

328 CHAPTER 17 Testing database access
 Yes, it can, so before you run the tests, you must assure that the database is in a
known state. Fortunately, there are plenty of tools that can handle this task, and in this
chapter we analyze one of them, DbUnit.

17.1.2 Unit tests must be easy to write and run

It doesn’t matter how much a company, project manager, or technical leader praises
unit tests; if they’re not easy to write and run, developers will resist writing them.
Moreover, writing code that accesses the database isn’t the sexiest of tasks. One would
have to write SQL statements, mix many levels of try-catch-finally code, convert SQL
types to and from Java, and so on.

 Therefore, in order for database unit tests to thrive, it’s necessary to alleviate the
database burden on developers. Luckily again, there are tools that provide such allevi-
ation, and DbUnit is one of them.

17.1.3 Unit tests must be fast to run

Let’s say you’ve overcome the first two issues and have a nice environment, with
hundreds of unit tests exercising the objects that access the database, and where a
developer can easily add new ones. All seems nice, but when a developer runs the
build (and they should do that many times a day, at least after updating their work-
space and before submitting changes to the source control system), it takes 10 min-
utes for the build to complete, 9 of them spent in the database tests. What should
you do then?

 This is the hardest issue, because it can’t always be solved. Typically, the delay is
caused by the database access per se, because the database is probably a remote
server, accessed by dozens of users. A possible solution is to move the database
closer to the developer, by either using an embedded database (if the application
uses standard SQL that enables a database switch) or locally installing lighter ver-
sions of the database.

DEFINITION Embedded database—An embedded database is a database that’s
bundled within an application instead of being managed by external servers
(which is the typical scenario). A broad range of embedded databases is avail-
able for Java applications, most of them based on open source projects, such
as HSQLDB (http://hsqldb.org), H2 (http://h2database.com), Derby (http://
db.apache.org/derby), and Java DB (http://developers.sun.com/javadb).
Notice that the fundamental characteristic of an embedded database is that
it’s managed by the application and not the language it’s written in. For
instance, both HSQLDB and Derby support client/server mode (besides the
embedded option), although SQLite (which is a C-based product) could also
be embedded in a Java application.

In the following sections, we show how DbUnit (and, to a lesser degree, embedded
databases) can be used to solve the database unit testing impedance mismatch.

http://hsqldb.org
http://h2database.com
http://db.apache.org/derby
http://db.apache.org/derby
http://developers.sun.com/javadb

329Introducing DbUnit
17.2 Introducing DbUnit
DbUnit (http://www.dbunit.org) is a JUnit2 extension created by Manuel LaFlamme in
2002, when Java Unit testing was still in its infancy and there was no framework focused
on database testing. At about the same time, Richard Dallaway wrote an online article
titled “Unit testing database code” (http://dallaway.com/acad/dbunit.html), which
inspired the creation of DbUnit.

 Since then, DbUnit has became the de facto Java framework for database testing,
and its development has had its up and downs. After a period of high activity, when
most of its codebase was created, it faced a long drought. Fortunately, though, new
developers jumped in and, during the time this book was written, several new versions
have been cut, providing many improvements and bug fixes.

 Although DbUnit comprises hundreds of classes and interfaces, DbUnit usage
roughly consists of moving data to and from the database, and that data is represented
by datasets (more specifically, classes that implement the IDataSet interface).

 In the following subsections, we examine the basic usage of datasets and some
other DbUnit artifacts.

17.2.1 The sample application

Throughout this chapter, we use DbUnit to unit test the persistence layer of a Java
application. In order to simplify, this layer consists of only the interface defined in list-
ing 17.1.

public interface UserDao {
 long addUser(User user) throws SQLException;
 User getUserById(long id) throws SQLException;
}

The DAO implementation (using plain JDBC) isn’t shown here but is available for down-
load at the book’s website. The User object is a simple POJO,3 described in listing 17.2.

public class User {
 private long id;
 private String username;
 private String firstName;
 private String lastName;
 // getters and setters omitted
}

The User object will be mapped in the database by the users table, which can be cre-
ated using the SQL statement shown in listing 17.3.

2 Although it can be used without JUnit.

Listing 17.1 DAO interface used in the examples

Listing 17.2 Domain model used in the examples

3 Plain old Java object.

http://www.dbunit.org
http://dallaway.com/acad/dbunit.html

330 CHAPTER 17 Testing database access
CREATE TABLE users (
 id INTEGER GENERATED BY DEFAULT AS IDENTITY(START WITH 1),
 username VARCHAR(10),
 first_name VARCHAR(10),
 last_name VARCHAR(10))

Finally, the examples will use HSQLDB as the database, because it’s Java based and
doesn’t require any further configuration. HSQLDB is also flexible: it can be run as cli-
ent/server or embedded, using disk or memory. The simplest—and fastest—mode is
as an in-memory embedded database, and that’s the mode used in the examples.

17.2.2 Setting up DbUnit and running the sample application

DbUnit itself comprises just one JAR (dbunit.jar), and the only required external
dependency is the logging framework, SLF4J (Simple Logging Façade for Java).
SLF4J requires two JARs: slf4j-api.jar (which contains only the framework interfaces)
and an implementation, such as slf4j-nop.jar (which doesn’t log anything; we talk
more about logging later on). Of course, because DbUnit will connect to a data-
base, it’s also necessary to add the JDBC driver to the classpath; in the sample appli-
cation, it’s hsqldb.jar.

 The sample application is available in two flavors: Maven and Ant. To run the tests
on Maven, type 'mvn clean test'. Similarly, to use Ant instead, type 'ant clean
test'. The application is also available as two Eclipse projects, one with the required
libraries (under the lib directory) and another with the project itself.

17.3 Using datasets to populate the database
Let’s start by writing a unit test for the getUserById() method.

 First, we need to analyze what the method does: it fetches data from the relational
database, creates a Java object, populates that object with the fetched data, and then
returns the object.

 Consequently, our test case must prepare the database with the proper data, run
the code being tested, and verify that the object returned contains the expected data.
The latter two steps can be done with trivial Java code, whereas the former needs
interaction with a database—that’s where DbUnit is handy.

 Data in DbUnit is represented by a dataset (interface org.dbunit.dataset.
IDataSet), and DbUnit provides dozens of different IDataSet implementations, the
most common ones being XmlDataSet and FlatXmlDataset. In our example, we
need to insert a row in the table users with the values id=1, username=ElDuderino,
firstName=Jeffrey, and lastName=Lebowsky. Let’s see how this data could be repre-
sented on these two different dataset implementations, first in the XmlDataSet for-
mat (listing 17.4).

Listing 17.3 SQL script that creates the users table

331Using datasets to populate the database
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "dataset.dtd">
<dataset>
 <table name="users">
 <column>id</column>
 <column>username</column>
 <column>first_name</column>
 <column>last_name</column>
 <row>
 <value>1</value>
 <value>ElDuderino</value>
 <value>Jeffrey</value>
 <value>Lebowsky</value>
 </row>
 </table>
</dataset>

The XmlDataSet format is self-described, but it has two problems. First, it’s verbose. As
you can see in the previous example, a simple row in a table required 16 lines of XML
code. The advantage of this format is that it follows a well-defined DTD (available
inside DbUnit’s JAR), which could avoid problems caused by bad XML syntax. But that
brings up the second issue: DbUnit doesn’t validate the DTD (that DOCTYPE line could
be removed or even changed to any garbage, and the result would be the same).

 Although the lack of XML validation is a DbUnit bug, the verboseness of the for-
mat is a design option. A much simpler option is to use FlatXmlDataSet, where each
line describes a row in the database. Listing 17.5 shows the same dataset using the flat
XML format.

<?xml version="1.0"?>
<dataset>
 <users id="1" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
</dataset>

The FlatXmlDataSet format is much clearer and easier to maintain,4 so we use it in
our examples. Listing 17.6 shows our first test case.

[...]
public class UserDaoJdbcImplTest {

 private static UserDaoJdbcImpl dao = new UserDaoJdbcImpl();
 private static Connection connection;
 private static HsqldbConnection dbunitConnection;

Listing 17.4 XmlDataSet representation of users table

Listing 17.5 FlatXmlDataSet representation of users table (user.xml)

4 This format has its issues as well, which we will cover later in the chapter.

Listing 17.6 Initial test case for UserDaoJdbcImpl (UserDaoJdbcImplTest)

 B

332 CHAPTER 17 Testing database access
 @BeforeClass
 public static void setupDatabase() throws Exception {
 Class.forName("org.hsqldb.jdbcDriver");
 connection = DriverManager.getConnection(
 "jdbc:hsqldb:mem:my-project-test;shutdown=true");
 dbunitConnection = new HsqldbConnection(connection,null);
 dao.setConnection(connection);
 dao.createTables();
 }

 @AfterClass
 public static void closeDatabase() throws Exception {
 if (connection != null) {
 connection.close();
 connection = null;
 }
 if (dbunitConnection != null) {
 dbunitConnection.close();
 dbunitConnection = null;
 }
 }

 protected IDataSet getDataSet(String name) throws Exception {
 InputStream inputStream = getClass().getResourceAsStream(name);
 assertNotNull("file"+name+" not found in classpath", inputStream);
 Reader reader = new InputStreamReader(inputStream);
 FlatXmlDataSet dataset = new FlatXmlDataSet(reader);
 return dataset;
 }

 @Test
 public void testGetUserById() throws Exception {
 IDataSet setupDataSet = getDataSet("/user.xml");
 DatabaseOperation.CLEAN_INSERT.execute(dbunitConnection,
 setupDataSet);
 User user = dao.getUserById(1);
 assertNotNull(user);
 assertEquals("Jeffrey", user.getFirstName());
 assertEquals("Lebowsky", user.getLastName());
 assertEquals("ElDuderino", user.getUsername());
 }

}

Our test case B doesn’t need to extend any DbUnit or JUnit class. Although it
doesn’t sound like a big deal in this example, being forced to extend a superclass
could be a big limitation in real life, especially if you use different testing frame-
works such as TestNG.5

 Remember that test methods (such as C and E) are still code, and hence “real
code” best practices should be applied to them as well. In particular, because opening
a database connection can be an expensive operation (in terms of time and number

5 Such testing framework independence is a DbUnit 2.2+ feature; before that release, all classes had to extend
DatabaseTestCase, which would make it hard to use DbUnit with TestNG.

 C

 D

 E

 F

 G

 H

333Using datasets to populate the database
of concurrent connections), it’s a good practice to open it at the beginning of the
tests and close it at the end. Alternatively, if a connection pool was used instead, these
methods could be defined at @Before/@After, respectively.

 At D, connection is a just a regular JDBC connection (java.sql.Connection),
but dbunitConnection is a DbUnit IDatabaseConnection instance. DbUnit uses
IDatabaseConnection to encapsulate access to the database, and it provides imple-
mentations for the most common databases. The advantage of using a specialized
IDatabaseConnection implementation (HsqldbDatabaseConnection in this case)
rather than the generic one (DatabaseConnection) is that it can handle nuances spe-
cific to that database, like conversion between nonstandard SQL types and Java classes.

 Notice that in this example, both connection and dbunitConnection were created
using hardcoded values; in real projects, a better practice would be to define these set-
tings externally, such as in a property file. That would allow the same tests to be run in
different environments, such as using alternate databases or getting the connection
from a pooled data source. Getting an IDataSet from an XML file is so common that
it deserves its proper method F. It’s also a good practice to load these XML files as
resources in the classpath, instead of physical files in the operating system. And if the
file isn’t found in the classpath (which is a common scenario when you’re writing the
test cases—you might have forgotten to create the file or misspelled its name), get-
ResourcesAsStream()returns null (instead of throwing a resource-not-found excep-
tion), which in turn would cause a NullPointerException in the caller method.
Because an NPE is a sure bet to cause a lot of headaches, adding an assertNotNull()

G with a meaningful message is a one-liner that can save you time troubleshooting.
 Finally, H the DbUnit job is effectively performed. We have a dataset (setupData-

Set) with the data we want to insert and a connection to the database (dbunit-
Connection). All that’s left is the class responsible to do the dirty work, and that’s
DatabaseOperation or, more precisely, one of its subclasses. In this case, we use
CLEAN_INSERT, which first deletes all rows from all tables defined in dataset and then
inserts the new ones. See the next section for more details about DatabaseOperation
and its implementations.6

 A final note about transactions: in order to keep this example simple, we aren’t
dealing with transactions at all, and every database operation is done in one transac-
tion (using JDBC’s autocommit feature). Although this simplification is fine here, usu-
ally the test cases must be aware of the transaction semantics. For instance, a
transaction could be started before the test (using a @Before method) and committed
afterwards (using @After), the test cases could explicitly set the autocommit property
(particularly if the connections were obtained from a pool), and so on. The exact
approach depends on many factors, like the type of test (unit or integration) being
written and the underlying technologies used in the code tested (like pure JDBC or
ORM frameworks).6

6 Chapter 18 offers more detailed insight on transactions in JPA-based test cases.

334 CHAPTER 17 Testing database access
Now let’s look at DatabaseOperation in detail.

17.3.1 DatabaseOperation dissected

DatabaseOperation is the class used to send datasets to the database. Although
DbUnit makes good use of interfaces and implementations, DatabaseOperation is
one of the few concepts that isn’t defined by an interface. Instead, it’s defined as an
abstract class with an abstract method (execute(), which takes as parameters a dataset
and a database connection). The reason for such different design is to facilitate its
use, because the abstract class also defines constants for its implementations (DbUnit
was created on Java 1.3/1.4 when there was no native enum), so the operations can be
executed with just one line of code, as we saw in the first example.

 The implementations provided by DatabaseOperation as static fields are as follows:

■ UPDATE—Update the database with the dataset content. It assumes the rows in
the dataset already exist in the database (that is, the database contains rows with
the same primary keys as the rows in the dataset); if they don’t exist, DbUnit will
throw an exception.

■ INSERT—Insert the dataset rows in the database. Similarly to UPDATE, DbUnit
will throw an exception if any row already exists. Because rows are inserted in
the order in which they appear in the dataset, care must be taken when
tables have foreign keys: rows must be defined in the dataset using the right
insertion order.

■ REFRESH—This is a mix of INSERT and UPDATE: rows that exist in the dataset but
not in the database are inserted, but rows that exist in both are updated.

■ DELETE—Delete from the database only the rows present in the dataset, in the
reverse order in which they appear in the dataset.

Best practice: define a superclass for your database tests
The UserDaoJdbcImplTest class in listing 17.6 defines four methods, but only one
is effectively a test case—the other three are helpers used in the testing infrastruc-
ture. As you add more test cases, the proportion tends to revert, although it’s com-
mon to add more helper methods as well. These helpers can typically be reused by
other test classes.

Consequently, it’s good practice to create a superclass that defines only these
infrastructure methods and then make the real test classes extend this super-
class. This best practice applies not only to DbUnit-based tests but also to test-
ing in general.

The class in the listing 17.6 example could be refactored into two classes, an
AbstractDbUnitTestCase superclass (with methods setupDatabase(), close-
Database(), and getDataSet()) and the UserDaoJdbcImplTest properly speak-
ing (which for now contains only testGetUserById()). The next example will use
this technique.

335Asserting database state with datasets
■ DELETE_ALL—Delete from the database all rows from each table present in the
dataset. Although it’s an aggressive approach in many cases (such as when
the database is shared by many developers or it contains data that shouldn’t
be deleted), it’s the simplest way to guarantee the state of the database
(because sometimes the database might contain data that isn’t deleted by
DELETE and hence can interfere in the test results).

■ TRUNCATE—Same purpose as DELETE_ALL, but faster, because it uses the SQL’s
TRUNCATE TABLE. The only drawback is that not all databases support such
SQL operation.

■ CLEAN_INSERT—Composite operation, first calls DELETE_ALL, then INSERT, using
the same dataset.

■ TRANSACTION(operation)—Not exactly a field but a method. It creates a Data-
baseOperation that will wrap another operation inside a database transaction.
It’s particularly useful in cases where tables have circular dependency and rows
can’t be inserted outside a transaction with deferred constraints.

■ CLOSE_CONNECTION(operation)—Another wrapper, it executes the operation
and then automatically closes the connection. This can be useful in tear-
down methods.

■ NONE—An empty operation that does nothing.

That’s it; we wrote our first DbUnit test case and set the foundation for most of the
tests to come.

17.4 Asserting database state with datasets
Another common use of datasets is to assert that the database has the right data after
an insert or update. Back to our DAO example: we need a test case for the addUser()
method, and the workflow for this test is the opposite from getUserById()’s test.
Here we first create a User object, ask our DAO to persist it, then use a DbUnit dataset
to assert that the data was properly inserted. The code snippet in listing 17.7 is our
first attempt at such a test case.

[...]
import org.dbunit.Assertion;
[...]
public class UserDaoJdbcImplTest extends AbstractDbUnitTestCase {
 [...]
 @Test
 public void testAddUser() throws Exception {
 User user = new User();
 user.setFirstName("Jeffrey");
 user.setLastName("Lebowsky");
 user.setUsername("ElDuderino");
 long id = dao.addUser(user);
 assertTrue(id>0);

Listing 17.7 Test case for addUser() method

 B

 C

 D

336 CHAPTER 17 Testing database access
 assertEquals(id, user.getId());
 IDataSet expectedDataSet = getDataSet("/user.xml");
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEquals(expectedDataSet, actualDataSet);
 }
}

We start by extending the DbUnit class AbstractDbUnitTestCase B. The @Test
method testAddUser() first creates and populates a User object C.

 Next, we ask DAO to persist the User object and check that it generates a valid
ID D (a positive value, in this case) and that the returned ID matches the object.
Such checking is important in situations where the caller needs to use the new ID
(for instance, in a web page that generates a link to edit the newly created object).
It may sound trivial and redundant in this case, but you’d be surprised by how
often the ID isn’t set correctly in more complex combinations (like multilayered
applications with Spring managing transactions and Hibernate being used as the
persistence layer).

 At E we use the same dataset (user.xml) and same method (getDataSet()) as the
previous example—it’s always a good practice to reuse code and testing artifacts. At F
IDatabaseConnection.createDataSet() returns a dataset containing all tables (with
all rows) in the database. Finally, at G Assertion.assertEquals() compares both
datasets, and if a discrepancy is found, it fails with the proper message. Notice that we
did not statically import this method. Because both JUnit’s Assert and DbUnit’s
Assertion have assertEquals() methods, if you static import both, chances are a call
to assertEquals() will reference the wrong one.

[...]
import static EntitiesHelper.*;
[...]
public class UserDaoJdbcImplTest extends AbstractDbUnitTestCase {
 [...]

Best practice: use a helper class to create and assert object instances
In the previous example, testGetUserById() fetched an object from the database
and asserted its attributes, but testAddUser() did the opposite (instantiated a
new object, filled its attributes, and then inserted it in the database). As your test
cases grow, more and more tests will need to do the same. To avoid the DRY (don’t
repeat yourself) syndrome, it’s better to create a helper class containing methods
and constants for these tasks. Doing so improves reuse in the Java classes and
facilitates maintenance of dataset files. If you use Java 5 and static imports,
accessing members in this helper class is simple. Listing 17.8 shows a revised ver-
sion of testAddUser() using this practice.

Listing 17.8 Revised version of testAddUser(), using a helper class

 E
 F

 G

 B

337Asserting database state with datasets
 @Test
 public void testAddUser() throws Exception {
 User user = newUser();
 long id = dao.addUser(user);
 [...]
 }
}
[...]
public final class EntitiesHelper {

 public static final String USER_FIRST_NAME = "Jeffrey";
 public static final String USER_LAST_NAME = "Lebowsky";
 public static final String USER_USERNAME = "ElDuderino";

 public static User newUser() {
 User user = new User();
 user.setFirstName(USER_FIRST_NAME);
 user.setLastName(USER_LAST_NAME);
 user.setUsername(USER_USERNAME);
 return user;
 }
 public static void assertUser(User user) {
 assertNotNull(user);
 assertEquals(USER_FIRST_NAME, user.getFirstName());
 assertEquals(USER_LAST_NAME, user.getLastName());
 assertEquals(USER_USERNAME, user.getUsername());
 }

The newUser() method is statically imported B and called C in the helper class F.
The helper class itself D provides an assertUser() method G (used by testGet-
UserById()); it uses constants E to define the User attributes.

17.4.1 Filtering data sets

The method IDatatabaseConnection.createDataSet() returns a dataset represent-
ing the whole database. This is fine in our example, where the database has only one
table and the database access is fast (because it’s an embedded database). In most
other cases, though, it would be overkill—either the test would fail because it would
return tables that we’re not interested in or it would be slow to run.

 The simplest way to narrow the field is by filtering the tables returned by create-
DataSet(), by passing an array containing the name of the tables that should be
returned. Applying that change to the previous example, we have the following:

 IDataSet actualDataSet = dbunitConnection.createDataSet(
 new String[] { "users" });

A similar approach is to use a FilteredDataSet to wrap the dataset containing the
full database:

 IDataSet actualDataSet = dbunitConnection.createDataSet();
 FilteredDataSet filteredDataSet = new FilteredDataSet(
 new String[] {"users"}, actualDataSet);

 C

 D

 E

 F

 G

338 CHAPTER 17 Testing database access
A FilteredDataSet decorates a given dataset using an ITableFilter, which in turn is
a DbUnit interface that defines which tables belongs to a dataset and in what order
they should be retrieved. In the previous example, the constructor implicitly creates a
SequenceTableFilter, which returns the tables in the order defined by the array
passed as a parameter.

 Finally, a third option is to use a QueryDataSet, where you explicitly indicate which
table should be present in the dataset. The next example returns a dataset that has the
exact same contents as the previous example:

QueryDataSet actualDataSet = new QueryDataSet(dbunitConnection);
actualDataSet.addTable("users");

Comparing the three options, the overloaded createDataSet() is obviously simpler
in this case. But the other options have their usefulness in different scenarios:

■ QueryDataSet is more flexible, because you can also provide the query that will
be used to populate the dataset (if you don’t provide one, it assumes SELECT *
FROM table_name). Using a query, you can narrow the field even more, by select-
ing only the rows the test case is interested in, which is useful when the database
contains a lot of data, for example:

QueryDataSet actualDataSet = new QueryDataSet(dbunitConnection);
actualDataSet.addTable("users",
 "select * from users where id = " + id);

■ FilteredDataSet can be used with any ITableFilter, such as a filter that
returns tables in the right foreign-key dependency order (as will be shown in
section 17.6).

17.4.2 Ignoring columns

If you run the previous test method alone, it will pass. But if you append it to the exist-
ing UserDaoJdbcImplTest class and run the whole class, it will fail:

junit.framework.AssertionFailedError: row count (table=users) expected:<1>

➥but was:<2>
 at junit.framework.Assert.fail(Assert.java:47)

This is a common problem when using DbUnit—and one of the most annoying. A
test case passes when it’s run alone but fails when run as part of a suite. In this par-
ticular case, our user.xml dataset has only one row, and this is what we assume the
database should contain after we insert the User object. When many tests are run, it
fails because the database contains something else. Where does the extra row come
from? From the previous test (testGetUserById()) execution, because that method
also inserted a row. We could say the culprit is the previous test, which did not
clean itself up.7 It’s the test case’s responsibility to make sure the database is in a

7 The DbUnit documentation states: “Good setup don’t need cleanup” and you “should not be afraid to leave
your trace after a test.” This isn’t always true, though, as you’ll see in section 17.8.

339Asserting database state with datasets
known state before the test is run. This is achieved by using the same dataset and a
DELETE_ALL operation:

IDataSet setupDataSet = getDataSet("/user.xml");
DatabaseOperation.DELETE_ALL.execute(dbunitConnection, setupDataSet);

If we add this code and run the whole test again, the test fails:

junit.framework.AssertionFailedError: value (table=users, row=0, col=id):

➥expected:<1> but was:<2>
 at junit.framework.Assert.fail(Assert.java:47)
 at org.dbunit.Assertion.assertEquals(Assertion.java:147)
 at org.dbunit.Assertion.assertEquals(Assertion.java:80)

Now the number of rows is correct (because we deleted all rows from the users table
before running the test), but the ID of the inserted row doesn’t match what we expect.
This is another common problem, and it happens frequently when the database gen-
erates the ID. Although we cleaned up the rows, we didn’t reset the primary key gener-
ation, so the next row inserted has an ID of 2 and not 1 as we expected.

 There are many solutions for this issue, ranging from simple (like ignoring the
ID column in the comparison) to sophisticated (like taking control of how IDs are
generated—we show this approach in the next chapter). For now, let’s just ignore
the ID column, using the method Assertion.assertEqualsIgnoreCols() instead of
Assertion.assertEquals():

Assertion.assertEqualsIgnoreCols(expectedDataSet, actualDataSet, "users",
 new String[] { "id" });

Listing 17.9 shows the full method for our new test case.

[...]
public class UserDaoJdbcImplTest extends AbstractDbUnitTestCase {
 @Test
 public void testAddUserIgnoringIds() throws Exception {
 IDataSet setupDataSet = getDataSet("/user.xml");
 DatabaseOperation.DELETE_ALL.execute(dbunitConnection, setupDataSet);
 User user = newUser();
 long id = dao.addUser(user);
 assertTrue(id>0);
 IDataSet expectedDataSet = getDataSet("/user.xml");
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEqualsIgnoreCols(expectedDataSet, actualDataSet,
 "users", new String[] { "id" });
 }
}

Although ignoring the column is the simplest approach to the problem (in the sense
that it doesn’t require any advanced technique), it introduces a maintenance bug:
now it’s necessary to keep both the dataset file (user.xml) and the Java class (which

Listing 17.9 Second approach for testAddUser()

340 CHAPTER 17 Testing database access
has references to both the users table and the ID column) in sync. In the next section
we examine a better (although not yet optimal) approach, where the database infor-
mation (table and column names) is contained just in the dataset file.

17.5 Transforming data using ReplacementDataSet
DbUnit provides a simple yet powerful IDataSet implementation called Replacement-
DataSet. In the following sections, we explore how it can be used to solve some com-
mon problems.

17.5.1 Using ReplacementDataSet to handle the different IDs issue

Let’s try a different approach for the “same dataset, different IDs” issue. Instead of
ignoring the ID column, couldn’t we dynamically change a dataset value before the
test case uses it?

 Changing the data inside a dataset would be quite complicated. Fortunately,
though, DbUnit provides the ReplacementDataSet class, which decorates an existing
dataset to dynamically replace tokens, according to your needs.

 Back to our problem: first we need to change the dataset XML file, by replacing
the hardcoded IDs by a token (we used [ID] in this case, but it could anything, as
long as that string doesn’t occur somewhere else in the dataset). Listing 17.10
shows the new XML.

<?xml version="1.0"?>
<dataset>
 <users id="[ID]" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
</dataset>

Next, we change the test case class, with the changed (and new) methods shown in
listing 17.11.

[...]
public class AbstractDbUnitTestCase {
[...]
 protected IDataSet getReplacedDataSet(IDataSet originalDataSet, int id)
 throws Exception {
 ReplacementDataSet replacementDataSet =
 new ReplacementDataSet(originalDataSet);
 replacementDataSet.addReplacementObject("[ID]", id);
 return replacementDataSet;
 }

 protected IDataSet getReplacedDataSet(String name, int id)
 throws Exception{
 IDataSet originalDataSet = getDataSet(name);

Listing 17.10 user-token.xml, a dataset that uses a token for IDs

Listing 17.11 Changes on UserDaoJdbcImplTest to handle dynamic IDs

 B

 C

 D

341Transforming data using ReplacementDataSet
 return getReplacedDataSet(originalDataSet, id);
 }
}
[...]
public class UserDaoJdbcImplTest extends AbstractDbUnitTestCase {
 [...]
 @Test
 public void testGetUserByIdReplacingIds() throws Exception {
 long id = 42;
 IDataSet setupDataset = getReplacedDataSet("/user-token.xml", id);
 DatabaseOperation.INSERT.execute(dbunitConnection, setupDataset);
 User user = dao.getUserById(id);
 assertUser(user);
 }
 @Test
 public void testAddUserReplacingIds() throws Exception {
 IDataSet setupDataSet = getDataSet("/user-token.xml");
 DatabaseOperation.DELETE_ALL.execute(dbunitConnection,
 setupDataSet);
 User user = newUser();
 long id = dao.addUser(user);
 assertTrue(id>0);
 IDataSet expectedDataSet = getReplacedDataSet(setupDataSet, id);
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEquals(expectedDataSet, actualDataSet);
 }
}

In the first getReplacedDataSet() utility method, the ReplacementDataSet con-
structor B takes as a parameter the dataset it’s decorating. Notice that the original
dataset remains intact, and the method returns a new dataset. Next, we define what
must be replaced C, using addReplacementObject() (the API also provides an add-
ReplacementSubstring() method, but addReplacementObject() is the most com-
mon option). The second getReplacedDataSet() utility method gets a dataset D
and calls the first getReplacedDataSet() method we defined E.

 In the first test, the value of the ID F doesn’t matter, as long as the same value is
used in both places (getReplacedDataSet() and getUserById()). Next, we call G
the new method, which reads the original XML file and returns a dataset with the [ID]
dynamically replaced.

 In the second test, we use DELETE_ALL H to clean up the database; note that
the IDs are irrelevant. But if we used another DatabaseOperation (like DELETE),
we’d need to use a decorated dataset here as well. For the next part of the test I,
we need to use a decorated dataset in the assertion; we use the ID returned by the
DAO itself. If the test still fails because of a wrong ID, then something is wrong with
the DAO class.

 Next, let’s look at how DbUnit handles NULL values.

 E

 F

 G

 H

 I

342 CHAPTER 17 Testing database access
17.5.2 Handling NULL values

Another situation where a ReplacementDataSet is useful is to represent NULL values
(SQL’s NULL, not Java’s null) in a dataset. The way DbUnit handles NULL in FlatXml-
DataSet files is tricky and deserves clarification:

1 If a column exists in the database but is missing in an XML line, then the value
of that column (for that row in the dataset) is assumed to be NULL.

2 But that applies only if the column was present in the first line of XML. DbUnit
uses the first line to define which columns a table is made of.

3 This is true unless the database columns are defined in a DTD!

It’s frustrating to spend hours trying to figure out why your test case is failing, just to
realize you were caught by a DbUnit idiosyncrasy.8 Let’s try to make it clearer with a
naive example, where we have two XML files with the exact same lines but in different
order (as shown by listings 17.12 and 17.13).

<?xml version="1.0"?>
<dataset>
 <users id="1" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
 <users id="2" username="TheStranger"/>
</dataset>

Best practice: don’t hardcode values
This example uses hard coded 1s in method calls:

IDataSet setupDataset =
 getReplacedDataSet("/user-token.xml", 1);
DatabaseOperation.INSERT.execute(dbunitConnection,
 setupDataset);
User user = dao.getUserById(1);

If you didn’t write that code (or even if you wrote it a long time ago), the following
questions might pop up in your mind: What does the 1 in the first line stands for?
Is that method replacing just one line? Does it sound like that 1 is directly related
to the 1 in the third line? Now take a look back at the testGetUserById() method
from the previous listing. Would you have the same doubts? This example illus-
trates how a subtle change (which costs just a few seconds of a developer’s time)
makes code much more understandable (and consequently easier to maintain).
Create variables or constants whenever appropriate, even if the variable will be
used only once.

8 This situation has improved in more recent versions of DbUnit. Although the idiosyncrasy still exists, at least
now DbUnit is aware of the problems it can cause and logs a warning message whenever it finds a line in the
XML file with different columns than the first one.

Listing 17.12 user-ok.xml, where the first line has all columns

343Transforming data using ReplacementDataSet
<?xml version="1.0"?>
<dataset>
 <users id="2" username="TheStranger"/>
 <users id="1" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
</dataset>

Now let’s write a test case (listing 17.14) that does the following:

1 It uses the first dataset (user-ok.xml) to populate the database. Because the sec-
ond line doesn’t have the first_name and last_name attributes, DbUnit inserts
NULL in the equivalent database columns.

2 Then it compares the database contents with the contents of both datasets
(user-ok.xml and user-reverted.xml).

Because both datasets contain the same lines (but in different order), both tests
should pass, but the user-reverted.xml assertion fails, complaining that the dataset
expected two columns but the database contained four:

junit.framework.ComparisonFailure: column count

➥(table=users, expectedColCount=2, actualColCount=4) expected:

➥<[[id, username]]> but was:<[[FIRST_NAME, ID, LAST_NAME, USERNAME]]>
 at org.dbunit.Assertion.assertEquals(Assertion.java:244)
 at org.dbunit.Assertion.assertEquals(Assertion.java:204)
 at org.dbunit.Assertion.assertEquals(Assertion.java:186)

The reason for such failure is item 2: DbUnit uses the content of the first line to
define how many columns it is expecting thereafter.

[...]
public class NULLTest extends AbstractDbUnitTestCase {
 @Test
 public void testNULL() throws Exception {
 IDataSet okDataset = getDataSet("/user-ok.xml");
 DatabaseOperation.CLEAN_INSERT.execute(dbunitConnection, okDataset);
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 assertEquals(okDataset, actualDataSet);
 IDataSet revertedDataSet = getDataSet("/user-reverted.xml");
 Assertion.assertEquals(revertedDataSet, actualDataSet);
 }
}

There are many ways to resolve this issue. The two most common ones are

■ Using a ReplacementDataSet
■ Using a DTD

Let’s look at both in detail.

Listing 17.13 user-reverted.xml, where the first line is incomplete

Listing 17.14 Test case that demonstrates the missing column issue

344 CHAPTER 17 Testing database access
USING A REPLACEMENTDATASET

We already used a ReplacementDataSet to replace the [ID] token; we could reuse the
same dataset to also replace NULL values. All we need is to define a new token (say,
[NULL]) and add another replacement role:

 replacementDataSet.addReplacementObject("[NULL]", null);

Listing 17.15 shows all relevant changes, with comments.

[...]
public class AbstractDbUnitTestCase {
[...]
 protected IDataSet getReplacedDataSet(IDataSet originalDataSet, long id)
 throws Exception {
 ReplacementDataSet replacementDataSet = new
 ReplacementDataSet(originalDataSet);
 replacementDataSet.addReplacementObject("[ID]", id);
 replacementDataSet.addReplacementObject("[NULL]", null);
 return replacementDataSet;
 }
}

[...]
public class NULLTest extends AbstractDbUnitTestCase {
 @Test
 public void testNULLReplacementDataset() throws Exception {
 IDataSet okDataSet = getDataSet("/user-ok.xml");
 DatabaseOperation.CLEAN_INSERT.execute(dbunitConnection, okDataSet);
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEquals(okDataSet, actualDataSet);
 IDataSet revertedDataSet = getReplacedDataSet("/user-replacement.xml",
 -1);
 IDataSet sortedDataSet = new SortedDataSet(revertedDataSet);
 Assertion.assertEquals(sortedDataSet, actualDataSet);
 }
}

This is the same method we used before; we just added a new replacement role
here B.

 In C, in order to simplify, we’re using the method that expects an ID and passing a
bogus value (-1), because it won’t be replaced anyway (as the dataset doesn’t have any
[ID] token). Ideally, though, getReplacedDataSet() should be overloaded to handle
the situation where the ID isn’t necessary. Better yet, the tokens to be replaced
shouldn’t be passed as parameters (we look at how to do that later, in section 17.7.3).

 If in E we compared actualDataSet against revertedDataSet (which is the origi-
nal XML file with the proper [NULL] tokens replaced), the assertion would still fail.
Although this time the number of columns is correct, the order would be reverted;
the database query would return rows 1 and 2, whereas the dataset defines the order
as 2 and 1. In order to solve this issue without changing the order in the dataset

Listing 17.15 ReplacementDataSet approach to the missing column issue

 B

 C
 D

 E

345Transforming data using ReplacementDataSet
(whose wrong order is the whole purpose of the example), we wrapped the dataset in
a SortedDataSet D, which returns a new dataset with the tables sorted by the order
in which its columns were defined in the database. In this example, it would sort first
by ID, which is the first column in the CREATE TABLE statement. If any two or more
lines had the same ID (which isn’t the case here, because ID is the primary key), then
it would sort them by username (the second column), first_name (third column),
and so on.

USING A DTD
You can explicitly define the database structure (instead of letting DbUnit implicitly
“guess” it when it reads the XML first line) in a DTD and add that DTD to the dataset
header, as shown in listings 17.16 and 17.17.

<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "target/test-classes/user.dtd">
<dataset>
 <users id="2" username="TheStranger"/>
 <users id="1" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
</dataset>

<!ELEMENT dataset (users*)>
<!ATTLIST users
 id CDATA #REQUIRED
 username CDATA #REQUIRED
 first_name CDATA #REQUIRED
 last_name CDATA #REQUIRED
>

Notice the odd location (target/test-classes/) of the user.dtd file; that’s the relative
directory where our test artifacts are compiled. Unfortunately, DbUnit supports only
physical locations, so the DTD path must be relative to the project’s root directory or
an absolute path in the filesystem. Ideally, DbUnit should support looking up the
DTDs in the classpath.

 Once user-reverted.xml is changed, the method testNULL() can be run again
(without any change) and will succeed.

 Both approaches have their advantages and disadvantages. Using a DTD adds more
validation to the datasets (which can prevent other errors), at the cost of a more com-
plicated initial setup (creating the DTD, making sure it’s in the right place, and so on).
On the other hand, using [NULL] makes the datasets clearer, because its presence
explicitly indicates that a value is NULL. It also has a setup cost, but if you’re already
using a ReplacementDataSet, that cost is minimal (just one more line of code).
Hence, the decision depends more on the project context and personal preferences
than on the technical merits of the approach per se.

Listing 17.16 New version of user-reverted.xml, with DTD declaration

Listing 17.17 user.dtd

346 CHAPTER 17 Testing database access
LOGGING
Earlier on we said that DbUnit would warn us about the missing column in the XML
issue, but if you run the testNULL() method, it fails without any warning. If that hap-
pens, it means DbUnit logging is somehow disabled.

 There’s no API or DbUnit configuration file to explicitly enable logging. Instead,
you must configure SLF4J in your project. It isn’t the intent of this book to explain how
SLF4J works or why the DbUnit chose this tool (until release 2.2, DbUnit used no log-
ging framework at all). Briefly, you need to add to the project’s classpath a JAR con-
taining a real SL4J implementation. In our cases we didn’t see any log because the
project’s Ant script is explicitly using sl4j-nop.jar, which doesn’t log anything (this is
also the default implementation included in your Maven project if you just add
DbUnit as a project dependency).

 If your project already uses a logging framework (like log4j or Java’s java.util.
logging), chances are there’s an SLF4J provider for that framework, so you can just
include its JAR (such as sl4j-log4j12.jar) in the classpath. If you don’t use any logging
framework, the easiest solution (the one that requires no extra configuration) is to
add sl4j-simple.jar. This provider sends info messages to System.out, sends warnings
and errors to System.err, and ignores all other logging levels (like debug and trace).

 Adding sl4j-simple.jar to the classpath and running the test case again, we get the
aforementioned warning:

474 [main] WARN org.dbunit.dataset.xml.FlatXmlProducer - Extra columns on

➥line 2. Those columns will be ignored.
474 [main] WARN org.dbunit.dataset.xml.FlatXmlProducer - Please add the

➥extra columns to line 1, or use a DTD to make sure the value of those

➥columns are populated or specify 'columnSensing=true' for your

➥FlatXmlProducer.
474 [main] WARN org.dbunit.dataset.xml.FlatXmlProducer - See FAQ for more

➥details.

Whenever you’re facing problems that sound like a DbUnit bug or usage issue, try
enabling the lower logging levels9 like debug or trace. DbUnit will output a lot of
debugging information, which will hopefully help you resolve the issue.

17.6 Creating datasets from existing database data
So far in the examples, we created dataset XML files from scratch, in a bottom-up
approach. This is the ideal situation when you’re doing pure TDD, but often you need
to create these files from the data already in the database.

 For instance, you might be working on a big project, where the database develop-
ment is done by a separate team of DBAs and a QA team maintains a database instance
full of testing data. Typically in these situations, your Java code (and test cases) will
have to deal with complex scenarios, like tables with dozens of columns and many for-
eign key relationships. It would be unpractical and error prone to create the datasets

9 Notice that you’ll need a better SL4J implementation than sl4j-simple in this case.

347Advanced techniques
from scratch, so you can leverage the existing data to create the initial files and then
prune the data your test cases don’t need.

 Even if your project is simpler and you can create the XML files from scratch in
your typical development cycle, you may face bugs that are hard to reproduce in a test
case. For instance, the user accesses a web application, executes a couple of inserts
and updates, and then a page displays a table with incorrect data. In this case, instead
of trying to reproduce all steps through code in your test case, you could just manually
reproduce the steps, then export the relevant database contents to a dataset, and
reproduce only the buggy method call in the test case.

 In its simplest form, exporting a dataset is a straightforward task: all you need to do
is create a dataset object containing the data you want to export (for instance, using
DatabaseConnection.createDataset() to export the whole database or a Query-
DataSet to narrow the data) and then call a static method from the dataset format
class (like FlatXmlDataSet):

IDataSet fullDataSet = dbunitConnection.createDataSet();
FileOutputStream xmlStream = new FileOutputStream("full-database.xml");
FlatXmlDataSet.write(fullDataSet, xmlStream);

Similarly, you could also generate the dataset’s DTD:

FileOutputStream dtdStream = new FileOutputStream("full-database.dtd");
FlatDtdDataSet.write(fullDataSet, dtdStream);

This simple approach works fine most of the time, but it has a drawback: the tables
in the dataset are created in no particular order. Therefore, if one table has a for-
eign key constraint with another table, and they’re generated in the wrong order,
attempts to insert the dataset into the database will mostly likely fail (because of
constraint violations).

 Fortunately, the solution for this problem is also simple; all it takes is to wrap the
dataset in a FilteredDataSet that uses a DatabaseSequenceFilter, which in turn will
return the tables in the right order:

IDataSet fullDataSet = dbunitConnection.createDataSet();
ITableFilter filter = new DatabaseSequenceFilter(dbunitConnection);
FilteredDataSet filteredDatSet = new FilteredDataSet(filter, fullDataSet);
FileOutputStream xmlStream = new FileOutputStream("full-database.xml")
FlatXmlDataSet.write(fullDataSet, xmlStream);

17.7 Advanced techniques
In this section, we analyze techniques that make DbUnit usage easier to understand
and maintain. These techniques don’t employ any particular DbUnit feature, just
advanced Java and JUnit APIs.

17.7.1 DbUnit and the Template Design Pattern

If you look at the previous examples from a higher level, you might realize they all fol-
low the same workflow:

348 CHAPTER 17 Testing database access
1 Prepare the database, using a dataset XML file.
2 Develop some Java code for the test.
3 (Optionally) Compare the state of the database with another dataset file.

Going further, only step 2 is specific for each test; steps 1 and 3 are the same (except
for the XML file locations) for all tests. In the examples so far, we achieved a level of
reuse by delegating part of step 1 to helper methods (like getDataSet() and get-
ReplacedDataSet()), but we can improve reuse even more if we use the Template
Design Pattern.

Back to our example: the template is the workflow we just described, where a super-
class defines the skeleton and takes care of steps 1 and 3, and the subclasses are
responsible for step 2. 10

 The most common—and simpler—way to implement the template pattern in Java
is through an abstract superclass that implements the template and defines abstract
methods for the steps the subclasses must implement. This isn’t a good approach in our
case, because it would allow each subclass to have only one test method, which in turn
would require dozens or even hundreds of test classes in a typical project.

 A second approach is to create an interface that defines the steps the template
method isn’t responsible for and receive an implementation (which is typically an
anonymous class) of that interface as parameter. This is the approach the Spring
Framework uses in its templates (like JdbcTemplate and HibernateTemplate), and it’s
the approach used in listing 17.18.

[...]
public class UserDaoJdbcImplTemplatePatternTest extends

AbstractDbUnitTestCase {
 protected interface TemplateWorker {
 long getId();
 void doIt() throws Exception;
 String getSetupDataSet();
 String getAssertDataSet();
 }

Design patterns in action: Template Method
The Template (or Template Method) is a behavioral design pattern described in
the classic GoF10 book. In this pattern, a superclass defines the overall skele-
ton of an algorithm (that is, the template) but leaves some details to be filled
in by subclasses.

10 See Design Patterns: Elements of Reusable Object-Oriented Software, by Eric Gamma et al (the Gang of Four).

Listing 17.18 UserDaoJdbcImplTest using the Template Design Pattern

 B

349Advanced techniques
 protected void runTemplateTest(TemplateWorker worker)
 throws Exception {
 IDataSet setupDataSet = getReplacedDataSet(worker.getSetupDataSet(),
 worker.getId());
 DatabaseOperation.CLEAN_INSERT
 .execute(dbunitConnection, setupDataSet);
 worker.doIt();
 String comparisonDataSetName = worker.getAssertDataSet();
 if (comparisonDataSetName != null) {
 IDataSet expectedDataSet = getReplacedDataSet(comparisonDataSetName,
 worker.getId());
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEquals(expectedDataSet, actualDataSet);
 }
 }

 @Test
 public void testGetUserById() throws Exception {
 final long id = 42; // value here does not matter
 TemplateWorker worker = new TemplateWorker() {
 public void doIt() throws Exception {
 User user = dao.getUserById(id);
 assertUser(user);
 }
 public String getSetupDataSet() { return "/user-token.xml"; }
 public String getAssertDataSet() { return null; }
 public long getId() { return id; }
 };
 runTemplateTest(worker);
 }

 @Test
 public void testAddUser() throws Exception {
 TemplateWorker worker = new TemplateWorker() {
 private long id = -1;
 public void doIt() throws Exception {
 User user = newUser();
 id = dao.addUser(user);
 assertTrue(id>0);
 }
 public String getSetupDataSet() { return "/empty.xml"; }
 public String getAssertDataSet() { return "/user-token.xml"; }
 public long getId() { return id; }
 };
 runTemplateTest(worker);
 }
}

We start by defining the interface TemplateWorker B, which will be implemented as
an inner class by the test cases that use the template method. In the template method
runTemplateTest C, notice that D, E, and F match the three workflow steps
described previously.

 In the first test method, testGetUserById(), it isn’t necessary to check the data-
base state after this test case is run, so null is returned G.

 C

 D
 E

 F

 G

 H

350 CHAPTER 17 Testing database access
 In the second test method testAddUser(), we use CLEAN_INSERT to prepare the
database; in this test case we opted for a total cleanup with "/empty.xml" H, a dataset
that contains all tables used by the test cases (its content is shown in listing 17.19).

<?xml version="1.0"?>
<dataset>
 <users/>
</dataset>

The problem with this approach is that it’s too verbose and unnatural, because we
have to create an inner class on each test method and do the work inside that class
(instead of inside the method). In the next section we show a much cleaner approach.

17.7.2 Improving reuse through custom annotations

Since their introduction to the Java language, annotations have grown in popularity
and are used by many development tools, such as JUnit itself (we’ve been using JUnit
annotations, such as @Test, throughout this book). What most developers don’t real-
ize, though, is that they don’t need to limit themselves to using third-party annota-
tions; they can create their own project-specific annotations. Although Joshua Bloch
preaches the opposite in Effective Java Second Edition,11 we believe that custom annota-
tions can boost a project’s productivity, particularly in the test-cases arena.

 That being said, let’s use custom annotations as a third approach to the template
pattern implementation. The idea is to clear the noise out of the test method and let
it focus on step 2. We use annotations to pass the information necessary to complete
steps 1 and 3. Listing 17.20 shows the custom annotation, and listing 17.21 shows the
new test methods.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface DataSets {

 String setUpDataSet() default "/empty.xml";
 String assertDataSet() default "";
}

This listing defines an annotation called DataSets. The annotation attribute setUp-
DataSet B defines the dataset used to prepare the database. If not specified, the
default value is "/empty.xml", which will clean up the entire database.

 Similarly, assertDataSet() defines the dataset that will be used to check the data-
base state after the test is executed. Because not all test cases must check that (typi-
cally, test cases for methods that load data don’t), the default is "" C, which in our
case means no dataset. (Notice that the meaning of an annotation value is relevant to

Listing 17.19 empty.xml, dataset used to clean up the database

11 Item 35, page 175: “Most programmers will have no need to define annotation types.”

Listing 17.20 Custom annotation @DataSets

 B
 C

351Advanced techniques
the classes that will use the annotation. Because it isn’t possible to use null, we use the
empty string to indicate no dataset.)

[...]
public class UserDaoJdbcImplAnnotationTest extends
 AbstractDbUnitTemplateTestCase {
 @Test
 @DataSets(setUpDataSet="/user-token.xml")
 public void testGetUserById() throws Exception {
 User user = dao.getUserById(id);
 assertUser(user);
 }
 @Test
 @DataSets(assertDataSet="/user-token.xml")
 public void testAddUser() throws Exception {
 User user = newUser();
 id = dao.addUser(user);
 assertTrue(id>0);
 }
}

Compare this new test class with the previous example (listing 17.19). You barely
notice the template pattern being used.

 The magic is done by the AbstractDbUnitTemplateTestCase, which extends
AbstractDbUnitTestCase and uses a custom TestRunner; this TestRunner intercepts
the test methods12 and plays the template role. Listing 17.22 shows this new superclass.

[...]
@RunWith(AbstractDbUnitTemplateTestCase.DataSetsTemplateRunner.class)
public abstract class AbstractDbUnitTemplateTestCase extends

AbstractDbUnitTestCase {

 protected static long id;

 public static class DataSetsTemplateRunner extends JUnit4ClassRunner {

 public DataSetsTemplateRunner(Class<?> klass) throws
 InitializationError {
 super(klass);
 }

 @Override
 protected void invokeTestMethod(Method method,
 RunNotifier notifier) {
 setupDataSet(method);
 super.invokeTestMethod(method, notifier);
 assertDataSet(method);
 }

Listing 17.21 UserDaoJdbcImplTest using custom annotations

Listing 17.22 New superclass, AbstractDbUnitTemplateTestCase

12 This technique is explained in more detail in appendix B.

 B

 C

 D

352 CHAPTER 17 Testing database access
 private void setupDataSet(Method method) {
 DataSets dataSetAnnotation = method.getAnnotation(DataSets.class);
 if (dataSetAnnotation == null) {
 return;
 }
 String dataSetName = dataSetAnnotation.setUpDataSet();
 if (! dataSetName.equals("")) {
 try {
 IDataSet dataSet = getReplacedDataSet(dataSetName, id);
 DatabaseOperation.CLEAN_INSERT.execute(dbunitConnection,
 dataSet);
 } catch (Exception e) {
 throw new RuntimeException("exception inserting dataset " +
 dataSetName, e);
 }
 }
 }

 private void assertDataSet(Method method) {
 DataSets dataSetAnnotation =
 method.getAnnotation(DataSets.class);
 if (dataSetAnnotation == null) {
 return;
 }
 String dataSetName = dataSetAnnotation.assertDataSet();
 if (! dataSetName.equals("")) {
 try {
 IDataSet expectedDataSet = getReplacedDataSet(dataSetName, id);
 IDataSet actualDataSet = dbunitConnection.createDataSet();
 Assertion.assertEquals(expectedDataSet, actualDataSet);
 } catch (Exception e) {
 throw new RuntimeException("exception asserting dataset " +
 dataSetName, e);
 }
 }
 }
 }
}

The dirty work is done by DataSetsTemplateRunner B, a static inner class. Abstract-
DbUnitTemplateTestCase itself does almost nothing other than using @RunWith to
drive the test.

 The variable id C can’t be passed around in annotations, because it can have
dynamic values (like in testAddUser()), and annotations can receive only literals
(because they’re defined at compile time), so it must be shared among test cases.
Such an approach might annoy purists, but keeping state in tests is not only accept-
able in some cases but often is the best approach for a given problem. The state
(id) in this case is passed around only to solve an issue caused by the way the tests
are executed.

 The template method invokeTestMethod() D defines the three steps of the work-
flow described earlier. First, the annotation is read E and the dataset is used only if
the annotation value isn’t an empty string F.

 E

 F

353Advanced techniques
17.7.3 Using Expression Language in datasets

Our getReplacedDataSet() method has two issues: it requires passing the tokens to
be replaced (like id) as parameters and then explicitly calls addReplacementObject()
for each token.

 If later on we create a test case where it’s necessary to replace two ids, and we know
they will be generated in sequence, the method is

 IDataSet dataSet = getReplacedDataSet(dataSetName, id, id+1);

The method changes to

public static IDataSet getReplacedDataSet(IDataSet originalDataSet,
 long id, long id2) {
 [...]
 replacementDataSet.addReplacementObject("[ID2]", id2);
 [...]
}

And the dataset XML would have both [ID] and [ID2]:

<dataset>
 <users id="[ID]" ... />
 <users id="[ID2]" ... />
</dataset>

That looks like an ugly hack, not to mention the changes to DataSetsTemplate-
Runner. A much cleaner approach would be to figure out the tokens dynamically,
where the following apply:

■ Values to be replaced aren’t passed by parameter but added to a context.
■ Tokens are evaluated so that values in the context are replaced dynamically. It’s

better yet if the syntax allows basic operations, like [ID+1].

Fortunately, there’s a standard Java technology that fits perfectly in this description,
the Expression Language (EL).

 EL has been around in Java for many years and has made steady progress toward
being an integral part of the platform: first as part of JSP tag attributes on JSTL 1.0 and
JSF 1.0, then available anywhere inside a JSP 2.0 page, and finally as a standalone Java
API (javax.el). Besides the standard Java EL, many open source projects offer alterna-
tive EL libraries, like OGNL (http://ognl.org) and Marmalade (http://marmalade.
codehaus.org).

 Using EL, the same dataset would be expressed as

<dataset>
 <users id="${id}" ... />
 <users id="${id+1}" ... />
 </dataset>

And the getReplacedDataSet () would not require id parameters anymore; instead,
the id would be bound to the EL context:

http://ognl.org
http://marmalade.codehaus.org
http://marmalade.codehaus.org

354 CHAPTER 17 Testing database access
getContext().bind("id", id);
IDataSet dataSet = getReplacedDataSet(dataSetName);

Listing 17.23 shows the changes necessary to support EL. Notice that, despite EL being
a standard API, it’s still necessary to create an ELContext implementation (ELContext-
Impl, in our example), and that isn’t a trivial task (because of lack of documentation).
It’s out of the scope of this book to explain how that class was implemented (although
the code is available for download), but a quick explanation can be found at the
author’s blog (http://weblogs.java.net/blog/felipeal/).

[...]
public abstract class AbstractDbUnitELTemplateTestCase [...] {
[...]
 private static ELContextImpl context;
 @Override
 protected void invokeTestMethod(Method method, RunNotifier notifier) {
 context = new ELContextImpl();
 context.bind("id", id);
 setupDataSet(method);
 super.invokeTestMethod(method, notifier);
 context.bind("id", id);
 assertDataSet(method);
 }
 protected static ELContextImpl getContext() {
 return context;
 }
 public static IDataSet getReplacedDataSet(String name) throws Exception {
 [...]
 final FlatXmlDataSet dataSet = new ELAwareFlatXmlDataSet(reader);
 [...]
 }

 private static class ELAwareFlatXmlDataSet extends FlatXmlDataSet {
 [...]
 @Override
 public void row(Object[] values) throws DataSetException {
 final ELContextImpl context = getContext();
 if (context != null) {
 ExpressionFactory factory = context.getFactory();
 int i = 0;
 for (Object value : values) {
 String stringValue = ""+value;
 Object newValue;
 if (stringValue.startsWith("${") &&
 stringValue.endsWith("}")) {
 ValueExpression converted = factory.createValueExpression(
 context, stringValue, Object.class);
 newValue = converted.getValue(context);
 } else {
 newValue = value;
 }

Listing 17.23 New AbstractDbUnitELTemplateTestCase that supports EL

 B

 C

 D

 E

 F

 G

 H

 I

 J

http://weblogs.java.net/blog/felipeal

355Advanced techniques
 values[i++] = newValue;
 }
 } else {
 throw new IllegalStateException("No context on thread");
 }
 super.row(values);
 }
 }

We start by creating a new EL context object B before each test and making it avail-
able through the method getContext()E, so the test cases could bind more objects
to the context as needed. Using the EL context, the id is bound C before the setup
dataset is read and bound again D before the assert dataset is read. This is necessary
because the test case might have changed the id (like on testAddUser()), and the id
is represented by a primitive type (if it was a mutable object, this second bind would
not be necessary).

 In the method getReplacedDataSet() F, the only relevant change (aside from
the absence of the id parameter) is that it now uses a custom dataset (ELAware-
FlatXmlDataSet).

 In the class ELAwareFlatXmlDataSet G, we override the method row(), such that
it passes each dataset value to the EL engine for evaluation. The code at H shows a
subtle trick: instead of passing the EL context as a parameter to ELAwareFlatXmlData-
Set constructor, it’s accessed with a call to getContext(). This is necessary because
row() is used during XML parsing, and FlatXmlDataSet parses the XML in the con-
structor. This is a bad practice on DbUnit’s part—a constructor shouldn’t call meth-
ods that can be overridden by subclasses.

 We note the optimization at I: if the value isn’t enclosed in ${}, there’s no need
to evaluate it.

 Finally, we get to where the EL engine does its job of evaluating the expression J,
according to the values bound in the context.

 Listing 17.24 shows the new test case. Notice that the only differences from the
previous version (listing 17.20) are the superclass and the dataset being used (which is
shown in listing 17.25).

[...]
public class UserDaoJdbcImplAnnotationTest extends

AbstractDbUnitELTemplateTestCase {
 @Test
 @DataSets(setUpDataSet="/user-EL.xml")
 public void testGetUserById() throws Exception {
 User user = dao.getUserById(id);
 assertUser(user);
 }
 @Test
 @DataSets(assertDataSet="/user-EL.xml")

Listing 17.24 UserDaoJdbcImplELTest using custom annotations

356 CHAPTER 17 Testing database access
 public void testAddUser() throws Exception {
 User user = newUser();
 id = dao.addUser(user);
 assertTrue(id>0);
 }
}

<?xml version="1.0"?>
<dataset>
 <users id="${id}" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
</dataset>

Now that we’ve covered some of the advanced techniques you can use with DbUnit,
we look next at best practices that are specific to database access testing.

17.8 Database access testing best practices
Throughout this chapter, we described in detail best practices that apply to our exam-
ples. In this final section, we present additional best practices.

17.8.1 Use one database per developer

When you run a database test case, the test can leave the database in an unknown
state. Furthermore, the actions of other users can affect the test results. One solution
to this problem is to have each developer and build machine use their own database.

 If you’re fortunate enough to be developing an application that can be run in dif-
ferent database products (for instance, if it uses only standard SQL statements or if the
SQL is managed by an ORM tool), then the best approach is to use an embedded data-
base. Not only would each developer would have their own instance, but the database
access would be fast.

 If the embedded database approach isn’t possible, then you should try to install a
matching database in each developer’s machine (many database vendors, such as Ora-
cle, provide a light version of their product, a good option for this approach).

 If neither the embedded nor the light database is possible, then try to allocate
one database instance for each developer in the database server. In the worst case,
if not even that is possible (too many instances could be costly in resources or in
license fees), allocate a few instances to be used for test cases and a few others for
regular development.

17.8.2 Make sure the target database is tested

If you can implement the embedded database approach, but the final application will
be deployed in another database product, make sure the application is tested against
the target database. A reasonable approach is to let the developers use the embedded
database but have a daily or continuous build use the target database.

Listing 17.25 user-EL.xml, dataset that uses EL syntax for tokens

357Database access testing best practices
 Don’t make the mistake of assuming databases can be substituted at will; there are
always incompatibilities, even if you use an ORM tool. The sooner you catch these
issues, the better.

17.8.3 Create complementary tests for loading and storing data

As the old sayings goes, “everything that goes up must come down.” If you write a test
case that verifies an object is correctly stored in the database, chances are you should
write the test that asserts it’s loaded correctly. And if you keep that in mind when you
write one of them, it makes it easy to write the other one; you could reuse the same
dataset or even write special infrastructure to handle both.

17.8.4 When writing load test cases, cover all the basic scenarios

All versions of testGetUserById() used in this chapter covered just one scenario: the
database contained a row with the tested ID and only that row. That was enough for
the purpose of describing the techniques, but in a real project you should test other
scenarios, such as testing an ID that doesn’t exist in the database, testing an empty
database, testing when more than one row is available, and testing joins when multiple
rows are available.

 The last scenario deserves special attention, because it’s a common issue when you
use an ORM tool and you’re testing a method that uses a complex query where one or
more tables are selected using a join. Let’s say a User object has a List<Telephone>
relationship, the Telephone class is mapped to a telephones table with a foreign key to
the users table, you’re using JPA in the persistence layer, and the getUserById() must
do a join fetch to get all telephones in just one query (if you aren’t familiar with these
concepts, don’t worry; we explain them better in chapter 18). You write just one test
case, where the dataset contains only one row in both users and telephone rows, and
you implement the JPA query as something like "from User user left join fetch
user.telephones where user.id = ?". Your test case passes, so you commit your code.
Then once the application is in production, and a user happens to have more than
one telephone, your code returns two users for the query. After half a day of debug-
ging, you figure out the fix would be to change the query to "select distinct(user)
from User user left join fetch user.telephones where user.id = ?". Had your ini-
tial test case covered more than the canonical scenario, you wouldn’t have had this
bug. This particular issue is common.

17.8.5 Plan your dataset usage

As your application grows and you write more database test cases, your datasets
become hard to manage. If you have 20 dataset XML files containing a particular
table, and that table changes, then you have to change 20 XML files. This is prob-
ably the biggest DbUnit drawback, and unfortunately it’s a problem without a
clear solution.

358 CHAPTER 17 Testing database access
 The best “practice” here is to be aware of this problem and plan in advance. With
this in mind, the following techniques can mitigate the problem:

■ Use the same dataset for loading/storing an object.
■ Keep datasets small, restricting the tables and columns compared.
■ If you always use the same values for the same objects (as described in “Best

practice: use a helper class to create and assert object instances”), at least you
can apply the changes with just one search-and-replace command. Or, in a
more sophisticated approach, you could keep smaller XML files for groups of
objects and then use XML include or CompositeDataSet to join them. Keep in
mind, though, that any of these approaches brings more complexity to the test
cases, and you might end up with something that’s harder to maintain than a
good, old search and replace.

17.8.6 Test cleanup

In all examples so far, the test cases set up the database but didn’t bother to clean it up
after they did their job. This is typically a good practice and is indeed one of the best
practices endorsed by DbUnit.

 Notice our emphasis on the typically, though. The problem of not cleaning up the
database after the test is done is that a test case could make another test’s life misera-
ble if it inserts data that’s hard to be cleaned, like rows with foreign keys. Back to the
users/telephones tables example, let’s say a test case adds one row to each table, with
the telephones row having a foreign key to users, and this test case doesn’t clean up
these rows after it’s run. Then a second test case is going to use the same users row,
but it doesn’t care about the telephones table. If this test tries to remove the users row
at setup, it will fail because of a foreign key violation.

 So, long story short, although typically a good setup doesn’t need cleanup, it
doesn’t hurt to clean up, especially when the test case inserts rows with foreign
key constraints.

17.9 Summary
The persistence layer is undoubtedly one of the most important parts of any enter-
prise application, although testing it can be a challenge: test cases must be agile, but
database characteristics make them bureaucratic. Although JUnit itself doesn’t have
an answer to this problem, many tools do. In this chapter, we used DbUnit to validate
an application’s database access.

 DbUnit is a stable and mature project, comprising a few dozen interfaces, imple-
mentations, and helpers. Despite this high number of classes, DbUnit usage is rela-
tively simple, because it consists of setting up the database before a test is run and
comparing its state afterwards.

 Although DbUnit is a great tool, it’s a low-level library, which provides the basic
blocks for database testing. To use it efficiently, it’s necessary to define infrastructure
classes and methods that at the same time leverage DbUnit strengths and provide

359Summary
reuse throughout the project. With creativity, experience, and planning, it’s possible
to write DbUnit tests in an efficient and enjoyable way.

 In this chapter, we demonstrated through progressive examples how to use DbUnit
to populate the database before tests, assert the database contents after the tests, create
datasets from existing databases, and use advanced APIs to make tests easier to write
and maintain. In the next chapter, we show how to extend these techniques to JPA-
based applications, and in chapter 19 we cover tools that enhance JUnit, including
Unitils, which provides some of this chapter’s techniques out of the box.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

Testing JPA-based
 applications
Unfortunately we need to deal with the object relational (O/R)
 impedance mismatch, and to do so you need to understand

 two things: the process of mapping objects to relational
 databases and how to implement those mappings.

—Scott W. Amber, Mapping Objects to Relational
Databases: O/R Mapping In Detail

Most Java applications need to store data in persistent storage, and typically this
storage is a relational database. There are many approaches to persisting the data,
from executing low-level SQL statements directly to more sophisticated modules
that delegate the task to third-party tools.

This chapter covers
■ Multilayered application testing
■ Using DbUnit to test JPA applications
■ JPA mapping tests
■ Testing JPA-based DAOs
■ Verifying JPA-generated schema
360

361Testing multilayered applications
 Although discussing the different approaches is almost a religious matter, we
assume it’s a good practice to abstract data persistence to specialized classes, such as
DAOs. The DAOs themselves can be implemented in many different ways:

■ Writing brute-force SQL statements (such as the UserDaoJdbcImpl example in
chapter 17)

■ Using third-party tools (like Apache iBATIS or Spring JDBC templates) that facil-
itate JDBC programming

■ Delegating the whole database access to tools that map objects to SQL (and
vice-versa)

Over the last few years, the third approach has become widely adopted, through the
use of ORM (object-relational mapping) tools such as Hibernate and Oracle TopLink.
ORM became so popular that JCP (Java Community Process, the organization responsi-
ble for defining Java standards) created a specification1 to address it, the JPA (Java Per-
sistence API). JPA, as the name states, is just an API; in order to use it, you need an
implementation. Fortunately, most existing tools adhere to the standard, so if you
already use an ORM tool (such as Hibernate), you could use it in JPA mode, that is,
using the Java Persistence APIs instead of proprietary ones.

 This chapter consists of two parts. First, we show how to test layers that use DAOs in
a multilayered application. Then we explain how to test the JPA-based DAO (data
access object) implementation, using DbUnit.2

 And although this chapter focuses on JPA and Hibernate, the ideas presented here
apply to other ORM tools as well.

18.1 Testing multilayered applications
By multilayered (or multitiered) application we mean an application whose structure
has been divided in layers, with each layer responsible for one aspect of the applica-
tion. A typical example is a three-tiered web application comprising of presentation,
business, and persistence layers.

 Ideally, all of these layers should be tested, both in isolation (through unit tests)
and together (through integration tests). In this section, we show how to unit test the
business layer without depending on its lower tier, the persistence layer. But first, let’s
look at the sample application.

18.1.1 The sample application

The examples in this chapter test the business and persistence layers (presentation
layer testing was covered in chapter 11) of an enterprise application. The persistence
layer comprises a User object and an UserDao interface, similar to those defined in

1 Some people may argue that two standards already existed before JPA: EJB entities and JDO. Well, EJB entities
were too complicated, and JDO never took off.

2 And in this aspect, this chapter is an extension of chapter 17; if you aren’t familiar with DbUnit, we recom-
mend you read that chapter first.

362 CHAPTER 18 Testing JPA-based applications
chapter 17, but with a few differences: a new method (removeUser())on UserDao, the
User object now has a one-to-many relationship with a Telephone object, and both of
these classes are marked with JPA annotations, as shown in listing 18.1.

@Entity
@Table(name="users")
public class User {

 @Id @GeneratedValue(strategy=GenerationType.AUTO)
 private long id;

 private String username;

 @Column(name="first_name")
 private String firstName;

 @Column(name="last_name")
 private String lastName;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="user_id")
 @ForeignKey(name="fk_telephones_users")
 private List<Telephone> telephones = new ArrayList<Telephone>();

 // getters and setters omitted
}

@Entity
@Table(name="phones")
public class Telephone {

 public static enum Type {
 HOME, OFFICE, MOBILE;
 }

 @Id @GeneratedValue(strategy=GenerationType.AUTO)
 private long id;
 private String number;
 private Type type;
 // getters and setters omitted

}

This chapter’s sample application also has a business layer interface (UserFacade,
defined in listing 18.2), which in turn deals with DTOs (data transfer objects), not
the persistent objects directly. Therefore, we need a UserDto class (also defined in
listing 18.2).

public interface UserFacade {
 UserDto getUserById(long id);
}

Listing 18.1 User and Telephone class definitions

Listing 18.2 Business layer interface (UserFacade) and transfer object (UserDto)

363Testing multilayered applications
public class UserDto {
 private long id;
 private String username;
 private String firstName;
 private String lastName;
 // getters and setters omitted
}

Finally, because the persistence layer will be developed using JPA, a new implementa-
tion (UserDaoJpaImpl) is necessary, and its initial version is shown in listing 18.3.3

public class UserDaoJpaImpl implements UserDao {

 private EntityManager entityManager; // getters and setters omitted

 public void addUser(User user) {
 entityManager.persist(user);
 }

 public User getUserById(long id) {
 return entityManager.find(User.class, id);
 }

 public void deleteUser(long id) {
 String jql = "delete User where id = ?";
 Query query = entityManager.createQuery(jql);
 query.setParameter(1, id);
 query.executeUpdate();
 }

}

The sample application is available in two flavors, Maven and Ant. To run the tests on
Maven, type 'mvn clean test'. Similarly, to use Ant instead, type 'ant clean test'.
The application is also available as two Eclipse projects, one with the required libraries
(under the lib directory) and another with the project itself.

18.1.2 Multiple layers, multiple testing strategies

Because each application layer has different characteristics and dependencies, the lay-
ers require different testing strategies. If your application has been designed to use
interfaces and implementations, it’s possible to test each layer in isolation, using
mocks or stubs to implement other layers’ interfaces.

 In our example, the business layer façade (listing 18.4) will be tested using Easy-
Mock as the implementation of the DAO interfaces, as shown in listing 18.5.

Listing 18.3 Initial implementation of UserDao using JPA

3 The astute reader might be wondering why we listed UserDaoJpaImpl in this chapter but omitted
UserDaoJdbcImpl in chapter 17. The reason is that the JPA implementation is much simpler, just a few lines
of nonplumbing code.

364 CHAPTER 18 Testing JPA-based applications
[...]
public class UserFacadeImpl implements UserFacade {

 private static final String TELEPHONE_STRING_FORMAT = "%s (%s)";
 private UserDao userDao; // getters and setters omitted

 public UserDto getUserById(long id) {
 User user = userDao.getUserById(id);
 UserDto dto = new UserDto();
 dto.setFirstName(user.getFirstName());
 dto.setLastName(user.getLastName());
 dto.setUsername(user.getUsername());
 List<String> telephoneDtos = dto.getTelephones();
 for (Telephone telephone : user.getTelephones()) {
 String telephoneDto =
 String.format(TELEPHONE_STRING_FORMAT,
 telephone.getNumber(), telephone.getType());
 telephoneDtos.add(telephoneDto);
 }
 return dto;
 }

}

[...]
import static org.easymock.EasyMock.*;
import static EntitiesHelper.*;

public class UserFacadeImplTest {

 private UserFacadeImpl facade;
 private UserDao dao;

 @Before
 public void setFixtures() {
 facade = new UserFacadeImpl();
 dao = createMock(UserDao.class);
 facade.setUserDao(dao);
 }

 @Test
 public void testGetUserById() {
 int id = 666;
 User user = newUserWithTelephones();
 expect(dao.getUserById(id)).andReturn(user);
 replay(dao);
 UserDto dto = facade.getUserById(id);
 assertUser(dto);
 }

}

Before the test is run, we prepare the fixtures B that will be used in the test methods,
the object being tested C, and a mock D. Even if you have only one test method (as is

Listing 18.4 Façade implementation (UserFacadeImpl)

Listing 18.5 Unit test for UserFacadeImpl

 B C

 D

 E

 F

 G
 H

365Testing multilayered applications
the case in this example), eventually more will be added, so it’s worth having such a
setup method from the beginning.

 Then, on the test case we create a User object E and set the mock expectation F
to return it when requested (see more about mock expectations in chapter 6). Notice
that newUser() belongs to EntitiesHelper, which provides methods to create new
entities (like User) and assert the properties of existing ones (EntitiesHelper was
introduced in chapter 17, and new methods are added in this chapter; the full code
isn’t listed here but is available for download).

 Finally, on G the method being tested is called, and the result is checked on H
(which is another method defined in EntitiesHelper).

 This test case seems pretty much complete, and it almost is, except that it exercises
only the best-case scenario. But what if the DAO didn’t find the request user? To be
complete, the test cases must also exercise negative scenarios. Let’s try to add a new
test case that simulates the DAO method returning null:4

@Test
public void testGetUserByIdUnknownId() {
 int id = 666;
 expect(dao.getUserById(id)).andReturn(null);
 replay(dao);
 UserDto dto = facade.getUserById(id);
 assertNull(dto);
}

Running this test, we get the dreaded NPE (NullPointerException):

java.lang.NullPointerException
 at com.manning.junitbook.ch18.business.UserFacadeImpl.getUserById
 ➥(UserFacade Impl.java:49)
 at com.manning.junitbook.ch18.business.UserFacadeImplTest.testGetUserById
 ➥UnkownId(UserFacadeImplTest.java:51)

This makes sense, because the Facade method isn’t checking to see if the object
return by the DAO is null. It could be fixed by adding the following lines after the
user is retrieved from the DAO:

 if (user == null) {
 return null;
 }

Once this test case is added and the method fixed, our Facade is complete and fully
tested, without needing a DAO implementation.

 Such separation of functionalities in interfaces and implementations greatly
facilitates the development of multilayered applications, because each layer can be

4 How do we know the DAO returns null in this case? And who defined what the Facade should return? What
happens in these exceptional cases should be documented in the DAO and Facade methods’ Javadoc, and
the test cases should follow that contract. In our example, we don’t document that on purpose, to show how
serious that lack of documentation can be. Anyway, we’re returning null in both cases, but another approach
could be throwing an ObjectNotFoundException.

366 CHAPTER 18 Testing JPA-based applications
developed in parallel, by different teams. Using this approach, the whole business
layer could be developed and unit tested without depending on the persistence
layer, which would free the business developers from database worries. It’s still nec-
essary to test everything together though, but that could be achieved through inte-
gration tests. A good compromise is to write many small (and fast) unit tests that
extensively exercise individual components and then a few (and slower) integra-
tion tests that cover the most important scenarios.

 Similarly, we could test the persistence layer using mocks for the JPA interfaces. But
this approach isn’t recommended, because mocks only emulate API calls, and that
wouldn’t be enough, for a few reasons. First, the API is part of JPA-based development;
it’s still necessary to annotate classes and provide configuration files. Second, even if
the JPA part is correctly configured, there are still third parties involved: the JPA ven-
dor (like Hibernate), the vendor’s driver (such as HibernateDialect implementa-
tions) for the database being used, not to the mention the database itself. Many things
could go wrong (like vendor or drivers bugs, the use of table names that are illegal for
a given database, transaction issues, and the like) at runtime that wouldn’t be
detected by using mocks for testing.

For the persistence layer, it’s important to test real access to the database, as we dem-
onstrate in the next section.

18.2 Aspects of JPA testing
When you use JPA (or any other ORM software) in your application, you’re delegating
the task of persisting objects to and from the database to an external tool. But in the
end, the results are the same as if you wrote the persistence code yourself. So, in its

Who let the transactions out?
In a JPA-based application, it’s paramount to start and commit transactions, and
the methods that use an EntityManager have two options: either they handle the
transactions themselves, or they rely on the upper layers for this dirty job. Typical-
ly, the latter option is more appropriate, because it gives the caller the option to
invoke more than one DAO method in the same transaction. Looking at our exam-
ples, UserDaoJpaImpl follows this approach, because it doesn’t deal with transac-
tion management. But if you look at its caller, UserFacadeImpl, it doesn’t handle
transactions either! So, in our application example, who is responsible for transac-
tion management?

The answer is the container. In our examples, we’re showing pieces of an applica-
tion. But in a real project, these pieces would be assembled by a container, like a
Java EE application server or Spring, and this container would be responsible for
wrapping the Facade methods inside a JPA transaction and propagating it to the
DAO object. In our DAO test cases, we play the role of the container and explicitly
manage the transactions.

367Aspects of JPA testing
essence, JPA testing isn’t much different than testing regular database access code, and
hence most of the techniques explained in chapter 17 apply here. A few differences
and caveats are worth mentioning though, and we cover them in the next subsections.
But first, let’s consider some aspects of JPA testing.

WHAT SHOULD BE TESTED?
JPA programming could be divided in two parts: entities mapping and API calls. Ini-
tially, you need to define how your objects will be mapped to the database tables, typi-
cally through the use of Java annotations. Then you use an EntityManager object to
send these objects to or from the database: you can create objects, delete them, fetch
them using JPA queries, and so on.

 Consequently, it’s a good practice to test these two aspects separately. For each per-
sistent object, you write a few test cases that verify that they’re correctly mapped (there
are many caveats on JPA mapping, particularly when dealing with collections). Then
you write separate unit tests for the persistence code itself (such as DAO objects). We
present practical examples for both tests in the next subsections.

THE EMBEDDED DATABASE ADVANTAGE

As we mentioned in section 17.1.3, unit tests must be fast to run, and database access
is typically slow. A way to improve the access time is to use an in-memory embedded
database, but the drawback is that this database might not be totally compatible with
the database the application uses.

 But when you use JPA, database compatibility isn’t an issue—quite the opposite.
The JPA vendor is responsible for SQL code generation,5 and vendors typically sup-
port all but the rarest databases. It’s perfectly fine to use a fast embedded database
(like HSQLDB or its successor, H2) for unit tests. Better yet, the project should be set
in such a way that the embedded database is used by default, but databases could be
easily switched. That would take advantage of the best of both worlds: developers
would use the fast mode, whereas official builds (like nightly and release builds)
would switch to the production database (guaranteeing the application works in the
real scenario).

COMMITMENT LEVEL

JPA operations should happen inside a transaction, which typically also translates to a
vendor-specific session. A lot of JPA features and performance depends on the transac-
tion/session lifecycle management: objects are cached, new SQL commands are issued
on demand to fetch lazy relationships, update commands are flushed to the database,
and so on.

 On the other hand, committing a transaction is not only an expensive operation,
but it also makes the database changes permanent. Because of that, there’s a tendency

5 This is the ideal scenario; some applications might still need to manually issue a few SQL commands because
of JPA bugs or performance requirements. These cases are rare, though, and they could be handled separately
in the test cases.

368 CHAPTER 18 Testing JPA-based applications
for test cases to roll back the transaction on teardown, and many frameworks (such as
Spring TestContext) follow this approach.

 So what is the better approach, to commit or not? Again, there’s no secret ingredi-
ent, and each approach has its advantages. We, in particular, prefer the commit
option, because of the following aspects:

■ If you’re using an embedded database, speed isn’t an issue. You could even re-
create the whole database before each test case.

■ As we mention in section 18.8.5, test cases can do cleanup on teardown when
necessary. And again, when using an embedded database, the cleanup is a
cheap operation.

■ If you roll back the transaction, the JPA vendor might not send the real SQL
to the database (for instance, Hibernate issues the SQL only at commit or if
session.flush() is explicitly called). There might be cases where your test
case passes, but when the code is executed in real life, if fails.

■ In some situations, you want to explicitly test how the persistent objects will
behave once outside a JPA transaction/session.

For these reasons, the test cases in this chapter manually handle the transac-
tion’s lifecycle.

 Now, without further ado, let’s start testing it.

18.3 Preparing the infrastructure
Okay, we lied: before our first test, we need some more ado! More specifically, we
need to define the infrastructure classes that our real test case classes will extend
(remember section 17.3’s best practice: define a superclass for your database tests).
Figure 18.1 shows the class diagram for such infrastructure.

Figure 18.1 Class diagram of the testing infrastructure

369Preparing the infrastructure
The infrastructure class hierarchy depicted in figure 18.1 is quite similar to the one
used in chapter 17. The only difference is the root class, AbstractJpaTestCase, which
is shown in listing 18.6.

[...]

public abstract class AbstractJpaTestCase {

 private static EntityManagerFactory entityManagerFactory;
 protected static Connection connection;
 protected EntityManager em;

 @BeforeClass
 public static void setupDatabase() throws Exception {
 entityManagerFactory =
 Persistence.createEntityManagerFactory("chapter-18");
 connection = getConnection(entityManagerFactory);
 }

 @AfterClass
 public static void closeDatabase() throws Exception {
 if (connection != null) {
 connection.close();
 connection = null;
 }
 if (entityManagerFactory != null) {
 entityManagerFactory.close();
 }
 }

 @Before
 public void setEntityManager() {
 em = entityManagerFactory.createEntityManager();
 }

 @After
 public void closeEntityManager() {
 em.close();
 }

 public static Connection getConnection(Object object) throws Exception {
 Connection connection = null;
 if (object instanceof EntityManagerFactoryImpl) {
 EntityManagerFactoryImpl impl = (EntityManagerFactoryImpl) object;
 SessionFactory sessionFactory = impl.getSessionFactory();
 if (sessionFactory instanceof SessionFactoryImpl) {
 SessionFactoryImpl sfi = (SessionFactoryImpl) sessionFactory;
 Settings settings = sfi.getSettings();
 ConnectionProvider provider = settings.getConnectionProvider();
 connection = provider.getConnection();
 }
 }
 return connection;
 }

Listing 18.6 Root class of testing infrastructure, AbstractJpaTestCase

 B

 C

 D

 E

 F

 G

370 CHAPTER 18 Testing JPA-based applications
 protected void beginTransaction() {

 em.getTransaction().begin();
 }

 protected void commitTransaction() {
 em.getTransaction().commit();
 }

 protected void commitTransaction(boolean clearContext) {
 commitTransaction();
 if (clearContext) {
 em.clear();
 }
 }
}

The first step is to create an EntityManagerFactory, and as this is an expensive opera-
tion, it’s done only once, using the @Before annotation. Notice that this initialization
doesn’t contain any information about the JPA provider (Hibernate) or database
(HSQLDB) used in the test case. That information is defined in the persistence.xml
and hibernate.properties files (shown in listings 18.7 and 18.8, respectively).

Although when you use JPA you don’t need to deal with low-level JDBC interfaces
directly, DbUnit needs a database connection. You could define the JDBC settings
for this connection in a properties file, but that would be redundant; it’s better
to extract the JDBC connection from JPA’s entity manager. Also notice that such
reuse is the reason why this chapter’s AbstractJpaDbUnitTestCase (which isn’t
shown here either, but is the same as chapter’s 17 AbstractDbUnitTestCase) extends
AbstractJpaTestCase, and not vice versa. If @BeforeClass methods didn’t have to
be static, such reversal of fortune wouldn’t be necessary: AbstractJpaDbUnitTest-
Case could define a protected getConnection() method, which in turn would be
overridden by AbstractJpaTestCase.

Don’t forget to close at @After what you opened at @Before!

The EntityManager, which is the object effectively used by the test cases, is created
before each test method and closed thereafter. This is the way JPA is supposed to be
used, and this object creation is cheap.

Unfortunately, there’s no standard way to extract the JDBC Connection from the JPA
EntityManagerFactory, so it’s necessary to use proprietary APIs from the chosen
JPA vendors.

Because our test cases will manually manage transactions, it’s convenient to create
helper methods for this task.

Similarly, some test cases will test how objects behave outside the JPA context, so we
define an overloaded commitTransaction(), which also clears the context.

The JPA configuration is quite simple: persistence.xml (listing 18.7) only defines a per-
sistence-unit name, and the vendor-specific configuration is defined in hibernate.prop-
erties (listing 18.8). Such a split is a good practice, because if the test cases must change

 H

 I

 J

B

C

D

FE,

G

IH,

J

371Testing JPA entities mapping
any configuration (as you’ll see later on), we could create a new hibernate.properties
file in the test directories, without interfering with the artifacts used by the production
code. Notice also that we set the property hibernate.hbm2ddl.auto to update, so the
test cases don’t need to create the database tables (Hibernate will automatically create
or update the database schema as needed).

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="chapter-18">
 <!-- properties are loaded from a separate file, and classes are
 scanned through annotations -->
 </persistence-unit>

</persistence>

hibernate.hbm2ddl.auto=update
hibernate.show_sql=false
hibernate.dialect=org.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:mem:my-project-test;shutdown=true

As a final note, some frameworks—such as Spring and Unitils (which we cover in the
next chapter)—already provide a similar setup. So even though this infrastructure is
based on real projects (it was not created for the book samples), provides flexibility
(and can be adapted to your project needs), and is simple enough (just a few classes),
you might prefer—or it might be more suitable for your project—to use such frame-
works instead.

 Now that the infrastructure is set, let’s move on to our tests, starting with the JPA
entity mapping tests.

18.4 Testing JPA entities mapping
The first step in JPA development is mapping your objects to tables. Although JPA does
a good job of providing default values for most mappings, it’s still necessary to tune it
up, typically through the use of Java annotations. And as you annotate the persistent
classes, you want to be sure they’re correctly mapped, so you write test cases that exer-
cise the mapping alone (without worrying about how your final code is going to call
the JPA API).

 You might be wondering whether these tests are necessary. What could be wrong?
 Unfortunately, despite the fact that JPA is a powerful and helpful tool, many

things could be wrong in the mappings, and the sooner you figure it out, the better,
for instance:

Listing 18.7 JPA configuration (persistence.xml)

Listing 18.8 Hibernate-specific configuration (hibernate.properties)

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencepersistence_1_0.xsd

372 CHAPTER 18 Testing JPA-based applications
■ Some table or column name (like user, role, or group) might be a reserved
word in the chosen database.

■ If you don’t set the relationship annotations (like @OneToMany) correctly, JPA
will create many weird mappings, sometimes even unnecessary tables.

■ When dependent objects must be persisted automatically, it’s important to ver-
ify that the proper cascade options have been set.

Not to mention the mother of all reasons why you write unit tests: you need to some-
how verify that JPA is persisting/restoring your objects! Without the entity mapping
tests, you’d have to either rely on your IDE or manually test it using the main()
method of some hacky class.

 In order to avoid these issues, it’s a good practice to write a couple (at least two:
one for loading, another for saving) of unit tests for each primary persistent entity in
the system. You don’t need to write tests for all of them, though. Some entities are too
simple or can be indirectly tested (like the Telephone entity in our examples).

 Also, because the load and save tests are orthogonal, they should use the same
dataset whenever possible, to facilitate maintenance; listing 18.9 shows the dataset
used in the user entity mapping tests (listing 18.10).

<?xml version="1.0"?>
<dataset>
 <users id="${id}" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />
 <phones id="${phoneId}" user_id="${id}" type="0" number="481 516-2342"/>
 <phones id="${phoneId+1}" user_id="${id}" type="2"
 number="108 555-6666"/>
</dataset>

Notice that the IDs are dynamically defined using EL expressions, so the test cases suc-
ceed regardless of the order in which they’re executed.

[...]
public class EntitiesMappingTest extends AbstractJpaDbUnitELTemplateTestCase

{

 @Test
 @DataSets(setUpDataSet="/user-with-telephone.xml")
 public void testLoadUserWithTelephone() {
 beginTransaction();
 User user = em.find(User.class, id);
 commitTransaction();
 assertUserWithTelephone(user);
 id++; phoneId+=2;
 }

 @Test
 @DataSets(assertDataSet="/user-with-telephone.xml")

Listing 18.9 Dataset file for User and Telephone tests, user-with-telephone.xml

Listing 18.10 Entity mapping unit tests for User and Telephone classes

 B
 C

 D
 E

 F

373Testing JPA entities mapping
 public void testSaveUserWithTelephone() throws Exception {
 User user = newUserWithTelephone();
 beginTransaction();
 em.persist(user);
 commitTransaction();
 }

As explained earlier, we opted for manual transaction control, so the test case explic-
itly starts and finishes the transaction.

Because we’re testing the entity mappings and not the real persistence layer code such
as DAO implementations, we deal with the persistence manager directly.

Once the object is read from the database, we assert that it has the expected values,
using our old friend EntitiesHelper F; id and phoneId (which are defined in the
superclass and have the initial value of 1) are updated to reflect the objects that were
loaded from the database. If they aren’t updated, the next test case could fail (if it
saves objects, which is the case in our example).

The test case for saving an entity is pretty much orthogonal to the load entity test case;
nothing new here.

Although these tests run fine and pass, the way the IDs (id and phoneId) are handled
is far from elegant and presents many flaws. For instance, if a test case fails, the IDs
aren’t updated, and then other tests running after it will fail as well. Sure, a try/
finally block would fix this particular issue, but that would make the test even uglier
and more verbose. Another problem is that testSaveUserWithTelephone() doesn’t
update the IDs (because its dataset assertion would fail), so a third test case would
probably fail.

 What should we do to solve these ID issues? Well, don’t throw the book away
(yet)—a solution for this problem follows.

18.4.1 Integrating test cases with JPA ID generators

In JPA, every persistent entity needs an ID, which is the equivalent of a primary key.
When a new entity is persisted, the JPA engine must set its ID, and how its value is deter-
mined depends on the mapping. For instance, our User class has the following mapping:

 @Id @GeneratedValue(strategy=GenerationType.AUTO)
 private long id;

The @Id annotation indicates this attribute represents the entity’s primary key, and
@GeneratedValue defines how its value is obtained when the entity is persisted. AUTO in
this case means we left the decision to the JPA vendor, which will pick the best strate-
gies depending on what the target database supports. Other values are IDENTITY (for
databases that support autogenerated primary keys), SEQUENCE (uses database sequences,
where supported), and TABLES (uses one or more tables only for the purpose of
generating primary keys). A fifth option would be omitting @GeneratedValue, which
means the user (and not the JPA engine) is responsible for setting the IDs. In most cases,
AUTO is the best choice; it’s the default option for the @GeneratedValue annotation.

 G

DB,

C

E

G

374 CHAPTER 18 Testing JPA-based applications
 Back to our test cases, the dataset files contain references to the ID columns (both
as primary key in the users table and foreign key on telephones), and because we’re
using the same dataset for both load and save, the ID values must be defined dynami-
cally at the time the test is run. If we used distinct datasets, the IDs wouldn’t matter on
the load test (because JPA wouldn’t be persisting entities, only loading them), and for
the save tests, we could ignore them. The problem with this option is that it makes it
harder to write and maintain the test cases. It would require two datasets and also
changes in the DataSetsTemplateRunner.assertDataSet() method in order to
ignore the ID columns. Because our goal is always to facilitate long-term maintenance,
we opted for using the same dataset, and hence we need a solution for the ID synchro-
nization problem.

 Listing 18.10 tried to solve the problem the simplest way, by letting the test case
update the IDs, but that approach had many issues. A better approach is to integrate
the dataset ID’s maintenance with the JPA’s entity ID’s generation, and there are two
ways to achieve such integration: taking control of ID generation or being notified of
the generated IDs.

 Generating IDs for persistent objects isn’t a simple task, because there are many
complex aspects to be taken into account, such as concurrent ID generation in dif-
ferent transactions. Besides, when you use this approach, your test cases won’t be
reflecting the real application scenario (and hence they could hide potential prob-
lems). For these reasons, we choose the second approach: being notified of the gen-
erated IDs.

 Using pure JPA, it’s possible to define a listener for entity lifecycle events (like
object creation, update, and deletion). But this approach doesn’t work well in our
case, because these events don’t provide a clear way to obtain the ID of the saved
objects. A better solution is to use vendor-specific extensions.

 Hibernate provides its own API for lifecycle events, with listeners for many pre and
post events. In particular, it provides a PostInsertEventListener interface with an
onPostInsert(PostInsertEvent event) method, and the event itself contains a refer-
ence to both the entity inserted and the generated ID.

 The PostInsertEventListener API solves part of our problem: our test cases
now can be notified of the IDs generated for each object. Good, but now what? Well,
the answer relies on our good, old friend EL (Expression Language, introduced in
chapter 17, section 17.7.3). So far, we’ve been using simple variable resolution (like
${id}) on our datasets. But EL also supports function resolution, so we could have a
function that returns an ID for a given class and then use a PostInsertEvent-
Listener to set the values returned by the function. Let’s start with the new dataset,
shown in listing 18.11.

<dataset>
 <users id="${db:id('User')}" username="ElDuderino"
 first_name="Jeffrey" last_name="Lebowsky" />

Listing 18.11 New version of user-with-telephone.xml dataset, using EL functions

375Testing JPA entities mapping
 <phones id="${db:id('Telephone')}" user_id="${db:id('User')}" type="0"
 number="481 516-2342"/>
</dataset>

Instead of using hardcoded IDs for each class (like ${id} and ${phoneId}), this new
version uses a generic ${db:id('ClassName')} function, which is much more flexi-
ble. The db:id() function then returns the respective ID for a given class, which is
either the value defined by the Hibernate listener or 1 by default (which means no
entity has been generated by JPA for that class. In this case the value doesn’t matter,
but using 1 makes it easier to debug in case of errors). To add support for this func-
tion, first we need to change ELContextImpl to support function mapping, as shown
in listing 18.12.

[...]
public final class ELContextImpl extends ELContext {
[...]
 private FunctionMapper functionMapper = new ELFunctionMapperImpl();
[...]
 @Override
 public FunctionMapper getFunctionMapper() {
 return functionMapper;
 }
[...]
}

The ID function itself is defined at ELFunctionMapperImpl, shown in listing 18.13.

[...]
public class ELFunctionMapperImpl extends FunctionMapper {

 private static final Map<String, Method> METHODS =
 new HashMap<String, Method>();
 private static final Map<String,Long> IDS = new HashMap<String, Long>();
 private static final int INITIAL_ID = 1;

 static {
 for (Method method : ELFunctionMapperImpl.class.getDeclaredMethods()) {
 int modifiers = method.getModifiers();
 String name = method.getName();
 if (Modifier.isStatic(modifiers) && name.startsWith("db_")) {
 METHODS.put(name.replace('_', ':'), method);
 }
 }
 }

 @Override
 public Method resolveFunction(String prefix, String localName) {
 return METHODS.get(prefix+":"+localName);
 }

Listing 18.12 Changes to ELContextImpl to support the id function

Listing 18.13 Custom EL functions (ELFunctionMapperImpl)

 B

 C

 D

376 CHAPTER 18 Testing JPA-based applications
 public static long db_id(String className) {
 long id;
 if (IDS.containsKey(className)) {
 id = IDS.get(className);
 } else {
 id = INITIAL_ID;
 }
 return id;
 }

 public static void setId(String className, long newId) {
 if (! IDS.containsKey(className)) {
 IDS.put(className, newId);
 }
 }

 public static void resetIds() {
 IDS.clear();
 }

 public static long getId(Class<?> clazz) {
 return db_id(clazz.getSimpleName());
 }

}

This defines the value returned by the ID function when no ID was set for a given class.

This initializes the map of static methods that define EL functions. To facilitate the
mapping, these methods starts with db_.

resolveFunction() is part of the EL API and is used to map an EL function (such as
db:id) to a Java method (db_id(), in this case). It returns the method defined at C.

This is the id function properly speaking, which returns either the initial ID or the
value present in the ID’s map.

Our custom Hibernate listener calls this method every time a new entity is generated,
but only the first value is saved in the ID’s map; the other values are calculated by the
dataset, using this base ID when necessary (such as ${db:id('Telephone')+1}, if the
dataset has two telephone rows). Notice that this mechanism assumes IDs are gener-
ated in sequence, which is true most of the time, but not always. If that doesn’t apply
in your case (for instance, if you’re using a generation strategy based on UUIDs),
you’ll need a different (and more complex) approach to represent multiple IDs, like
using a sequence parameter in the id function: ${db:id('Telephone',1)} would
return the first generated ID, ${db:id(´Telephone',2)} would return the second,
and so on. Then instead of keeping a single ID in the map, you’d keep a list of the gen-
erated IDs for each class.

The ID map must be reset before each method, so load methods always start with id=1
(or whatever value is defined at B).

This is the helper method used by test cases that need to know the base ID for a
given class.

 E

 F

 G

 H

B

C

D

E

F

G

H

377Testing JPA entities mapping
The next step is the Hibernate integration. But first we need a listener, as defined in
listing 18.14.

import org.hibernate.event.PostInsertEvent;
import org.hibernate.event.PostInsertEventListener;

public class ELPostInsertEventListener implements PostInsertEventListener {

 public void onPostInsert(PostInsertEvent event) {
 String className = event.getEntity().getClass().getSimpleName();
 Long id = (Long) event.getId();
 ELFunctionMapperImpl.setId(className, id);
 }

}

In order to simplify the datasets, only the simple name B of the class is used, not the
whole fully qualified name (otherwise, the datasets would need something like
${db:id('com.manning.jia.chapter18.model.User')}). If your project has more
than one class with the same name (but in different packages), then you’ll need some
workaround here, but keeping the simple class name should be enough most of the
time (and having multiple classes with the same name isn’t a good practice anyway).

 Next, we change hibernate.properties to add the custom listener, by including the
following property:

hibernate.ejb.event.post-insert=
 ➥org.hibernate.ejb.event.EJB3PostInsertEventListener,
 ➥com.manning.jia.chapter18.hibernate.ELPostInsertEventListener

Notice that when you set the listeners for a lifecycle event in the properties, you’re
defining all listeners, not just adding new ones. Therefore, it’s recommended to keep
the default Hibernate listeners. But Hibernate doesn’t clearly document what these
listeners are, so you need to figure that out by yourself, and one way of doing that is by
changing the setEntityManager(), as shown in listing 18.15.

[...]
public abstract class AbstractJpaTestCase {
[...]
 @Before
 public void setEntityManager() {
 em = entityManagerFactory.createEntityManager();
 // change if statement below to true to figure out the Hibernate
 // listeners
 if (false) {
 Object delegate = em.getDelegate();
 SessionImpl session = (SessionImpl) delegate;
 EventListeners listeners = session.getListeners();
 PostInsertEventListener[] postInsertListeners =
 listeners.getPostInsertEventListeners();

Listing 18.14 Custom Hibernate event listener (ELPostInsertEventListener)

Listing 18.15 Changes on setEntityManager() to show Hibernate listeners

 B

378 CHAPTER 18 Testing JPA-based applications
 for (PostInsertEventListener listener : postInsertListeners) {
 System.out.println("Listener: " + listener.getClass().getName());
 }
 }
 }
}

Finally, it’s necessary to change the test case classes: first the infrastructure classes (as
shown in listing 18.16) and then the test methods themselves (listing 18.17).

[...]
public abstract class AbstractJpaDbUnitELTemplateTestCaseJUnit
 extends AbstractJpaDbUnitTestCase {

 @Override
 protected void invokeTestMethod(Method method, RunNotifier notifier) {
 context = new ELContextImpl();
 ELFunctionMapperImpl.resetIds();
 setupDataSet(method);
 super.invokeTestMethod(method, notifier);
 assertDataSet(method);
 }
}

Although not shown here, superclass AbstractJpaDbUnitTestCase also changed; it
doesn’t need to keep track of the IDs anymore, so id and phoneId were removed.

This method now is also simpler than before. Instead of binding the id variable to
the EL context before and after invoking the test, it resets the ID’s map before each
test is run.

[...]
public class EntitiesMappingTest extends
 AbstractJpaDbUnitELTemplateTestCase {

 @Test
 @DataSets(setUpDataSet="/user-with-telephone.xml")
 public void testLoadUserWithTelephone() {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 User user = em.find(User.class, id);
 commitTransaction();
 assertUser(user,true);
 }

 @Test
 @DataSets(assertDataSet="/user-with-telephone.xml")
 public void testSaveUserWithTelephone() throws Exception {
 User user = newUser(true);
 beginTransaction();
 em.persist(user);

Listing 18.16 Changes on AbstractJpaDbUnitELTemplateTestCase

Listing 18.17 New version of EntitiesMappingTest using JPA ID’s integration

 B

 C

B

C

 B

 C

379Testing JPA-based DAOs
 commitTransaction();
 }

}

Because IDs aren’t tracked by a superclass anymore, it’s necessary to ask ELFunction-
MapperImpl B to get the ID on testLoadUserWithTelephone(). Test case testSave-
UserWithTelephone() C, on the other hand, was not changed, because it doesn’t use
the IDs directly (only in the dataset).

18.5 Testing JPA-based DAOs
Once you’re assured the persistence entities are correctly mapped, it’s time to test the
application code that effectively uses JPA, such as DAOs. The test cases for JPA-based
DAOs are similar to the entity mapping tests you saw in the previous section; the main
difference (besides the fact that you use DAO code instead of direct JPA calls) is that
you have to cover more scenarios, paying attention to some tricky issues.

 Let’s start with the simplest cases, the same cases for getUserById() and addUser()
we implemented in chapter 17 (where the DAOs were implemented using pure JDBC),
plus a test case for testRemoveUser(). The test cases are shown in listing 18.18, and the
initial DAO implementation was shown in listing 18.4.

[...]
public class UserDaoJpaImplTest extends AbstractJpaDbUnitELTemplateTestCase {

 UserDaoJpaImpl dao;

 @Before
 public void prepareDao() {
 dao = new UserDaoJpaImpl();
 dao.setEntityManager(em);
 }

 @Test
 @DataSets(setUpDataSet="/user.xml")
 public void testGetUserById() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 User user = dao.getUserById(id);
 commitTransaction();
 assertUser(user);
 }

 @Test
 @DataSets(assertDataSet="/user.xml")
 public void testAddUser() throws Exception {
 beginTransaction();
 User user = newUser();
 dao.addUser(user);
 commitTransaction();
 long id = user.getId();

Listing 18.18 Initial version of UserDaoJpaImplTest

380 CHAPTER 18 Testing JPA-based applications
 assertTrue(id>0);
 }

 @Test
 @DataSets(setUpDataSet="/user.xml",assertDataSet="/empty.xml")
 public void testDeleteUser() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 dao.deleteUser(id);
 commitTransaction();
 }
}

Compare this test case with chapter 17’s latest version (listing 17.24) of the equivalent
test; they’re almost the same, the only differences being the pretest method prepare-
Dao() (which instantiates a DAO object and sets its EntityManager), the local variable
representing the user’s ID (because of the Hibernate ID generation integration we dis-
cussed in the previous section), and the transaction management calls.

 But now the User object could also have a list of telephones; it’s necessary, then, to
add analogous test cases to handle this scenario, as shown in listing 18.19. Note that if
the User/Telephone relationship was mandatory (and not optional), the new tests
would replace the old ones (instead of being added to the test class).

[...]
public class UserDaoJpaImplTest extends AbstractJpaDbUnitELTemplateTestCase {
[...]
 @Test
 @DataSets(setUpDataSet="/user-with-telephone.xml")
 public void testGetUserByIdWithTelephone() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 User user = dao.getUserById(id);
 commitTransaction();
 assertUserWithTelephone(user);
 }

 @Test
 @DataSets(assertDataSet="/user-with-telephone.xml")
 public void testAddUserWithTelephone() throws Exception {
 beginTransaction();
 User user = newUserWithTelephone();
 dao.addUser(user);
 commitTransaction();
 long id = user.getId();
 assertTrue(id>0);
 }

 @Test
 @DataSets(setUpDataSet="/user-with-telephone.xml",
 assertDataSet="/empty.xml")

Listing 18.19 New test cases on UserDaoJpaImplTest to handle user with telephone

381Testing JPA-based DAOs
 public void testDeleteUserWithTelephone() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 dao.deleteUser(id);
 commitTransaction();
 }

}

Running these tests will expose the first bug in the DAO implementation, because
testDeleteUserWithTelephone() fails with a constraint violation exception. Although
the user row was deleted, its telephone wasn’t. The reason? Cascade deletes are taken
into account only when the EntityManager’s remove() method is called, and our DAO
used a JPA query to delete the user. The fix is shown in listing 18.21.

 Regardless of this delete issue, the tests presented so far cover only the easy scenar-
ios: saving, loading, and deleting a simple user, with or without a telephone. It’s a
good start but not enough; we need to test negative cases as well.

 For the addUser() method, the only negative case is receiving a null reference.
It’s always a good practice to check for method arguments and throw an Illegal-
AccessArgumentExeption if they don’t comply. The getUserById() method has at
least two negative cases: handling an ID that doesn’t exist in the database and load-
ing from an empty database. In our sample application, a null reference should be
returned in these cases (but another valid option would be to throw an exception).
Negative cases for removeUser() would be the same as for getUserById(), and in
our example they don’t need to be tested because nothing happens when the user
doesn’t exist (if an exception should be thrown, we should exercise these scenarios).
Listing 18.20 adds these new tests.

[...]
public class UserDaoJpaImplTest extends AbstractJpaDbUnitELTemplateTestCase {
[...]
 @Test(expected=IllegalArgumentException.class)
 public void testAddNullUser() throws Exception {
 dao.addUser(null);
 }

 @Test
 public void testGetUserByIdOnNullDatabase() throws Exception {
 getUserReturnsNullTest(0);
 }

 @Test
 @DataSets(setUpDataSet="/user.xml")
 public void testGetUserByIdUnknownId() throws Exception {
 getUserReturnsNullTest(666);
 }

 private void getUserReturnsNullTest(int deltaId) {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class)+deltaId;

Listing 18.20 New test cases for negative scenarios

382 CHAPTER 18 Testing JPA-based applications
 User user = dao.getUserById(id);
 commitTransaction(true);
 assertNull(user);
 }
}

Notice that the workflow for getUserById() negative cases is the same for both sce-
narios, so we used a private helper method (getUserReturnsNullTest()) on both.

 Now we have a fully tested DAO implementation, right? Well, not really. Once you
put this code into production (or hand it to the QA team for functional testing), a few
bugs are bound to happen.

 To start with, the first time someone calls UserFacade.getUserById() (which in
turn calls the DAO method; see listing 18.4) on a user that has at least one telephone
and tries to call user.getTelephones(), the following exception will occur:

org.hibernate.LazyInitializationException: failed to lazily initialize
 ➥a collection of role: com.manning.jia.chapter18.model.User.telephones,
 ➥no session or session was closed
 at org.hibernate.collection.AbstractPersistentCollection.throwLazy
 ➥InitializationException(AbstractPersistentCollection.java:358)
 at org.hibernate.collection.AbstractPersistentCollection.
 ➥throwLazyInitializ ationExceptionIfNotConnected
 ➥(AbstractPersistentCollection.java:350)
 at org.hibernate.collection.AbstractPersistentCollection.
 ➥readSize(Abstract PersistentCollection.java:97)
 at org.hibernate.collection.PersistentBag.size(PersistentBag.java:225)
 at com.manning.jia.chapter18.model.EntitiesHelper.
 ➥assertUserWithTelephones(EntitiesHelper.java:39)
 at com.manning.jia.chapter18.model.EntitiesHelper.assertUserWithTelephone
 ➥(EntitiesHelper.java:29)
 at com.manning.jia.chapter18.dao.UserDaoJpaImplTest.testGetUserByIdWith
 ➥Telephone(UserDaoJpaImplTest.java:62)

When that happens, you, the developer, are going to curse Hibernate, JPA, ORM, and
(with a higher intensity) this book’s authors: you followed our advice and created
unit tests for both the Façade and DAO classes in isolation, but once one called the
other in real life, a JPA exception arose! Unfortunately, situations like these are com-
mon. Just because you wrote test cases, it doesn’t mean your code is bug free. But on
the bright side, because you have a test case, it’s much easier to reproduce and fix the
issue. In this case, the exception is caused because the User/Telephone relationship
is defined as lazy, which means the telephones were not fetched by the JPA queries
and are loaded on demand when getTelephones() is called. But if that method is
called outside the JPA context, an exception is thrown. So, to simulate the problem in
the test case, we change testGetUserByIdWithTelephone() to clear the context after
committing the transaction:

 @Test
 @DataSets(setUpDataSet="/user-with-telephone.xml")
 public void testGetUserByIdWithTelephone() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);

383Testing JPA-based DAOs
 User user = dao.getUserById(id);
 commitTransaction(true);
 assertUserWithTelephone(user);
 }

Running the test case after this change fails because of the same exception our poor
user faced in the real application. The solution then is to fix the JPA query to eagerly
fetch the telephones, as shown here:

 public User getUserById(long id) {
 String jql = "select user from User user left join fetch " +
 "user.telephones where id = ?";
 Query query = entityManager.createQuery(jql);
 query.setParameter(1, id);
 return (User) query.getSingleResult();
 }

Such a change allows testGetUserByIdWithTelephone() to pass, but now testGet-
UserByIdOnNullDatabase() and testGetUserByIdUnknownId() fail:

javax.persistence.NoResultException: No entity found for query
 at org.hibernate.ejb.QueryImpl.getSingleResult(QueryImpl.java:83)
 at com.manning.jia.chapter18.dao.UserDaoJpaImpl.
 ➥getUserById(UserDaoJpaImpl.java:45)

Let’s change the method again, using getResultList() instead of getSingle-
Result():

 public User getUserById(long id) {
 String jql = "select user from User user left join fetch " +
 "user.telephones where id = ?";
 Query query = entityManager.createQuery(jql);
 query.setParameter(1, id);
 @SuppressWarnings("unchecked")
 List<User> users = query.getResultList();
 // sanity check
 assert users.size() <= 1 : "returned " + users.size() + " users";
 return users.isEmpty() ? null : (User) users.get(0);
 }

Although the change itself is simple, this issue illustrates the importance of negative
tests. If we didn’t have these tests, the lazy-initialization fix would have introduced a
regression bug!

 Once these two fixes are in place, the application will run fine for awhile, until a
user has two or more telephones, which would cause the following exception:

java.lang.AssertionError: returned 2 users
 at com.manning.jia.chapter18.dao.UserDaoJpaImpl.getUserById
 ➥(UserDaoJpaImpl.java:49)
 at com.manning.jia.chapter18.dao.UserDaoJpaImplTest.
 ➥testGetUserByIdWithTelephones(UserDaoJpaImplTest.java:114)

What’s happening now is that a query that was supposed to return one user is return-
ing two—weird!

384 CHAPTER 18 Testing JPA-based applications
 But again, because the testing infrastructure is already in place, it’s easy to repro-
duce the problem. All we have to do is add a new testGetUserByIdWithTelephones()
method:6

 @Test
 @DataSets(setUpDataSet="/user-with-telephones.xml")
 public void testGetUserByIdWithTelephones() throws Exception {
 beginTransaction();
 long id = ELFunctionMapperImpl.getId(User.class);
 User user = dao.getUserById(id);
 commitTransaction(true);
 assertUserWithTelephones(user);
 }

What about the issue itself? The solution is to use the distinct keyword in the query,
as shown here:

jql = "select distinct(user) from User user left join fetch " +
 "user.telephones where id = ?";

Notice that having both testGetUserByIdWithTelephone() and testGetUserById-
WithTelephones() methods is redundant and would make the test cases harder to
maintain. Once we add testGetUserByIdWithTelephones(), we can safely remove
testGetUserByIdWithTelephone() and its companion helpers newUserWithTele-
phone() and assertUserWithTelephone(), which would be replaced by newUser-
WithTelephones() and assertUserWithTelephones(), respectively.

 Listing 18.21 shows the final version of UserDaoJpaImpl, with all issues fixed.

[...]
public class UserDaoJpaImpl implements UserDao {
 public void addUser(User user) {

 if (user == null) {
 throw new IllegalArgumentException("user cannot be null");
 }
 entityManager.persist(user);
 }
 public User getUserById(long id) {

 String jql = "select distinct(user) from User user left join fetch " +
 "user.telephones where id = ?";
 Query query = entityManager.createQuery(jql);
 query.setParameter(1, id);
 @SuppressWarnings("unchecked")
 List<User> users = query.getResultList();
 // sanity check assertion

6 We also need a new assertUserWithTelephones() method on EntitiesHelper and a new user-with-
telephones.xml dataset, but because they’re very similar to the existing method and dataset, they aren’t
shown here.

Listing 18.21 Final (and improved) version of UserDaoJpaImpl

385Testing foreign key names
 assert users.size() <= 1 : "returned " + users.size() + " users";
 return users.isEmpty() ? null : (User) users.get(0);
 }

 public void deleteUser(long id) {
 User user = entityManager.find(User.class, id);
 entityManager.remove(user);
 }
}

18.6 Testing foreign key names
When the first version of testDeleteUserWithTelephone() failed, the error mes-
sage was

Integrity constraint violation FKC50C70C5B99FE3B2 table:

➥PHONES in statement [delete from users where id=?]

Because we’re just starting development, it’s easy to realize that the violated con-
straint is the telephones foreign key on the users table. But imagine on down the
road you face a bug report with a similar problem—would you know what con-
straint FKC50C70C5B99FE3B2 refers to?

 By default, Hibernate doesn’t generate useful names for constraints, so you get
gibberish like FKC50C70C5B99FE3B2. Fortunately, you can use the @ForeignKey anno-
tation to explicitly define the FK names, as we did in the User class (see listing 18.1).
But as more entities are added to the application, it’s easy for a developer to forget
to use this annotation, and such a slip could stay undetected for months, until the
application is hit by a foreign key violation bug (whose violated constraint would be
a mystery).

 As you can imagine, there’s a solution for this problem: writing a test case that ver-
ifies that all generated foreign keys have meaningful names. The skeleton for this test
is relatively simple: you ask Hibernate to generate the schema for your application as
SQL statements and then check for invalid foreign key names. The tricky part is how
to generate the SQL code in a string, using only the project JPA settings. We present a
solution in the listing below, and although it isn’t pretty, it gets the work done.7 Any-
way, let’s look at the test case by itself first, in listing 18.22.

[...]
public class SchemaTest extends AbstractJpaTestCase {

 @Test
 public void testForeignKeysNames() {
 SqlHandler handler = new SqlHandler() {
 public void handle(String sql) {

7 We could do further diligence and present a more elegant solution, because this is a book (and hence edu-
cational). But when you’re writing unit tests in real life, many times you have to be pragmatic and use a quick-
and-dirty solution for a given problem, so we decided to take this approach here as well.

Listing 18.22 Test case for Hibernate-generated database schema (SchemaTest.java)

 B

 C

386 CHAPTER 18 Testing JPA-based applications
 assertForeignKeysDoesNotHaveFunnyNames(sql);
 }
 };
 analyzeSchema(handler);
 }

 private static final String FK_LINE_REGEXP =
 "alter table (.*) add constraint (.*) foreign key .*";
 private static final Pattern FK_LINE_PATTERN =
 Pattern.compile(FK_LINE_REGEXP);
 private static final Matcher FK_LINE_MATCHER =
 FK_LINE_PATTERN.matcher("");
 private static final String FK_REGEXP = "fk_[a-z]+_[a-z]+$";
 private static final Pattern FK_PATTERN = Pattern.compile(FK_REGEXP);
 private static final Matcher FK_MATCHER = FK_PATTERN.matcher("");

 private void assertForeignKeysDoesNotHaveFunnyNames(String sql) {
 String[] lines = sql.split("\n");
 StringBuilder buffer = new StringBuilder();
 for (String line : lines) {
 FK_LINE_MATCHER.reset(line);
 if(FK_LINE_MATCHER.find()) {
 String table = FK_LINE_MATCHER.group(1);
 String fk = FK_LINE_MATCHER.group(2);
 if (! isValidFk(fk)) {
 buffer.append(table).append("(").append(fk).append(") ");
 }
 }
 }
 String violations = buffer.toString();
 if (violations.length() > 0) {
 fail("One or more tables have weird FK names: " + violations);
 }
 }

 private boolean isValidFk(String fk) {
 FK_MATCHER.reset(fk);
 return FK_MATCHER.find();
 }

}

Although we’re testing only foreign key names, we could test other aspects of the gen-
erated schema, so we create a generic SchemaTest class.

The test case method by itself is quite simple: it calls the superclass analyzeSchema()
method (described shortly), passing as a parameter an inner class that will do the job.

This regular expression is used to identify whether a line defines a foreign key.

This regular expression is used to extract the foreign key name.

The SQL representing the schema generation is parsed in two levels: first, split() is
used to break the lines, and then a regular expression D checks for lines that define a
foreign key. We could use only one regular expression to handle both, but the result
would be more complex.

 D

 E

 F

 G

 H

 I

B

C

D

E

F

387Testing foreign key names
Once we find an invalid foreign key, we buffer it and fail later, with the failure message
containing all violations. Although it would be simpler to fail right away, this approach
is more helpful, because it requires just one run to spot all invalid names.

The meaning of a valid foreign key is up to the project. In our case, we define that it
has to start with FK_ and have two names (which should represent the tables involved
in the relationship) separated by an underscore (_).

This test case relies on a new infrastructure method, analyzeSchema(), which is
defined in AbstractJpaTestCase; listing 18.23 shows all changes required to imple-
ment it.

[...]
public abstract class AbstractJpaTestCase {
[...]
 protected void analyzeSchema(SqlHandler handler) {
 ConfigurationCreator cfgCreator = new ConfigurationCreator();
 Configuration cfg = cfgCreator.createConfiguration();
 SchemaExport export = new SchemaExport(cfg);

 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
 PrintStream oldOut = System.out;
 PrintStream newOut = new PrintStream(outputStream);
 System.setOut(newOut);
 try {
 export.create(true, true);
 String sql = outputStream.toString();
 handler.handle(sql);
 } finally {
 System.setOut(oldOut);
 newOut.close();
 }
 }

 protected interface SqlHandler {
 void handle(String sql);
 }

 private class ConfigurationCreator extends JPAConfigurationTask {
 @Override
 protected Configuration createConfiguration() {
 return super.createConfiguration();
 }
}

analyzeSchema() is based on the Template Design Pattern (see section 17.7.1). It
knows how to create a Java string containing the database schema but doesn’t
know what to do with it, so it passes this string to a SqlHandler, which was passed
as a parameter.

SchemaExport is the Hibernate class (part of the Hibernate Tools project) used to
export the schema. It requires a Hibernate Properties object, which unfortunately

Listing 18.23 Changes on AbstractJpaTestCase to support analyzeSchema()

HG,

I

 B

 C

 D

 E

B

C

388 CHAPTER 18 Testing JPA-based applications
can’t be obtained from EntityManager or EntityManagerFactory, the objects our test
case has references to. To overcome this limitation, we need our first hack: using an
Ant task (JPAConfigurationTask), which is also part of Hibernate Tools.

This is where the schema is effectively generated. The problem is, SchemaExport
either exports it to the system output or to a file. Ideally, it should allow the schema to
be exported to a Writer or OutputStream object, so we could pass a StringWriter as
a parameter to this method. Because this isn’t the case, we have to use a second hack:
replace the System.out when this method is executed and then restore it afterwards.
Yes, we know this is ugly, but we warned you.

A final hack: because JPAConfigurationTask’s createConfiguration() method is
protected, our test case won’t have access to it, so we create a subclass and override
that method, making it accessible to classes in the same package.

18.7 Summary
Using ORM tools (such as Hibernate and JPA) greatly simplifies the development of
database access code in Java applications. But regardless of how great the technology
is or how much it automates the work, it’s still necessary to write test cases for code
that uses it.

 A common practice among Java EE applications is to use Façades and DAOs in the
business and persistence layers (respectively). In this chapter, we showed how to test
these layers in isolation, using mocks as DAO implementation.

 We also showed how to leverage DbUnit and advanced techniques to effectively
test the JPA-based persistence layer, first testing the entity mappings and then the
DAOs, properly speaking. We also demonstrated how to use JPA-generated IDs in your
DbUnit datasets.

 And although JPA testing is an extension of database testing (which was covered in
chapter 17), it has its caveats, such as lazy initialization exceptions, duplicated objects
returned in queries, cascade deletes, and generation of weird constraint names. The
examples in this chapter demonstrated how to deal with such issues.

D

E

JUnit on steroids

Make everything as simple as

 possible, but not simpler.

—Albert Einstein

Throughout this final part of the book, we’ve analyzed tools focused on testing spe-
cific technologies, such as AJAX applications and database access. In this final chap-
ter, we evaluate tools that don’t fit a particular niche but rather facilitate overall test
development by providing helper methods and plumbing infrastructure. By using
such tools, the developer can focus on the real functionality being tested, which
can greatly improve productivity.

 Functionally speaking, we analyze tools that automate mock usage, provide a
wider number of assertion methods, use reflection to access private members of
tested objects, and make DbUnit usage easier. Because these tools provide generic

This chapter covers
■ Transparent mocks utilization
■ Out-of-the-box DbUnit integration
■ Extended assertion capabilities
■ Bypassing encapsulation through

reflection
389

390 CHAPTER 19 JUnit on steroids
testing support, many of these features are provided by more than one tool. Such fea-
ture overlap might sound redundant (the classic NIH1 syndrome), but this diversity
allows you to choose the most appropriate tool for your needs.

19.1 Introduction
Let’s take a brief look at the tools analyzed and how to run this chapter’s examples. All
of these tools are open source projects; some are active and mature, and others have
been stalled in development for quite awhile.

19.1.1 Tools overview

Following are descriptions of all tools analyzed in this chapter.

UNITILS

Unitils (http://unitils.org) is a library that provides plumbing infrastructure for many
types of testing needs, such as database access, mocks usage, and Spring integration.
Although it’s a relatively new framework (created at the end of 2006), it’s a mature
project and has been designed from the ground up with modern testing concepts in
mind. It’s framework agnostic (works with JUnit 3.x, JUnit 4.x, and TestNG), its fea-
tures are offered as modules (which provides room for extensibility), and it makes
heavy use of Java annotations.

JUNIT-ADDONS

Created in 2002, JUnit-addons is the oldest tool analyzed in this chapter. As the web-
site (http://sourceforge.net/projects/junit-addons) states, “JUnit-addons is a collec-
tion of helper classes for JUnit.” Sounds quite simple, and indeed it is. But despite its
simplicity and the fact that its development has pretty much stalled (the last version
was released in 2003!), it’s still a useful tool, especially for projects based on JUnit 3.x,
because many of the features it provides are already available on JUnit 4.x.

FEST
FEST (http://fest.easytesting.org) stands for Fixtures for Easy Software Testing, and as
the name implies, it’s another library providing a useful testing infrastructure. Simi-
larly to Unitils, FEST also works with JUnit or TestNG2 and is based on modules.
Although most of the modules provide functionalities already offered by other tools,
they do it in different ways, which might sound more natural for developers used to
the JMock style of declarations, more specifically, to the fluent interface style, as
defined at http://martinfowler.com/bliki/FluentInterface.html. But regardless of
these overlapping features, it offers a module (FEST Swing) that’s quite unique,
because it provides support for GUI testing.

1 Not Invented Here
2 The project was initialized under the name TestNG-Abbot.

http://unitils.org
http://sourceforge.net/projects/junit-addons
http://fest.easytesting.org
http://martinfowler.com/bliki/FluentInterface.html

391Transparent mock usage
MYCILA TESTING FRAMEWORK

Mycila (http://code.google.com/p/mycila) is an umbrella for many subprojects, each
one focused on particular needs, such as testing. It’s the latest offspring of this new
breed of general-purpose testing libraries (which also includes Unitils and FEST), and
at the time this chapter was written it was still in its infancy. Although all of its features
we analyze in this chapter are provided by other tools, this project also offers unique
features, such as a module to test Guice3-based applications; if it fulfills its ambitious
goal of providing “Powerful projects for everyday needs!” it could be another valuable
asset in the toolbox.

19.1.2 Running the examples

The test cases for this sample application are available in two flavors: Maven and Ant.
To run the tests on Maven, run mvn clean test. Similarly, to run them using Ant, type
ant clean test. Some of these tools might require esoteric dependencies at runtime
(for instance, Unitils database support uses Spring for transaction management), but
all such dependencies are commented in the build.xml file. The application is also
available as two Eclipse projects, one with the required libraries and another with the
project itself.

 Now that all introductions have been made, let’s get down to business.

19.2 Transparent mock usage
When you use mocks in your test cases,4 the test method is typically structured
as follows:

1 Create an instance of the object being tested.
2 Create mock instances for dependent objects, and inject them into the

tested object.
3 Set mock expectations.
4 Call the method being tested.
5 Optionally, verify mock expectations.

You could manually write these five steps in every test (that’s the approach we’ve taken
so far, in chapters 6 and 16), but as you learned in chapter 17 (section 17.7.1), such
repetitive workflow is a strong candidate for refactoring through the Template Design
Pattern. Only steps 3 and 4 are test specific; all other steps are pretty much the same
for all tests.

 In this section, we analyze three tools that provide infrastructure for transparent
mock usage, and we refactor the existing UserFacadeImplTest (originally defined in
listing 18.5) to use each of them.

3 Guice (http://code.google.com/p/google-guice) is “a lightweight dependency injection framework for Java
5 and above, brought to you by Google.” In other words, it’s the simplified Google-based version of Spring.

4 Mocks are explained in more detail in chapter 7.

http://code.google.com/p/mycila
http://code.google.com/p/google-guice

392 CHAPTER 19 JUnit on steroids
19.2.1 Unitils EasyMock support

Before we dig into Unitils mock support, let’s first see how Unitils works so we can
configure it properly.

 Unitils is configured through standard Java properties (those defined by a pair of
strings in the form name=value), and these properties can be defined in three distinct
files. The first file is called unitils-default.properties, and it’s provided on Unitils’ JAR.5

As the name implies, it provides default values for most of the properties, so Unitils
could be used out of the box without custom configuration. But default properties
aren’t always enough—if they were, there’d be no need for properties at all—so Unit-
ils allows project-specific properties to be overridden in a unitils.properties file, which
should be available either in the classpath or in the user’s home directory.6 Finally,
Unitils also allows each developer to override the properties in a user-specific file
called unitils-locals.properties,7 which should also be present in the classpath or user’s
home directory.

 This configuration mechanism allows a high degree of flexibility, which can be
dangerous. If tests rely too heavily on the user-specific properties, they might be hard
to reproduce. Ideally, the whole test suite should be runnable using only the project-
specific properties, and the user-specific ones should be used only in some particular
cases, like when each user has its own testing database.

 That being said, each module has its own properties, and even which modules are
available are defined by a property, unitils.modules, which by default includes all
modules. For our mock example (listing 19.1), it isn’t necessary to change any proper-
ties, although the mock configuration is quite extensive (two modules are involved, as
you can see in the listing).

[...]

import static com.manning.junitbook.ch19.model.EntitiesHelper.*;
import static org.unitils.easymock.EasyMockUnitils.replay;
import static org.easymock.EasyMock.expect;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.unitils.UnitilsJUnit4TestClassRunner;
import org.unitils.easymock.annotation.Mock;
import org.unitils.inject.annotation.InjectIntoByType;
import org.unitils.inject.annotation.TestedObject;

import com.manning.junitbook.ch19.dao.UserDao;
import com.manning.junitbook.ch19.model.User;
import com.manning.junitbook.ch19.model.UserDto;

5 The contents of this file are also documented online, at http://unitils.org/unitils-default.properties.
6 The home directory is defined by the Java system property user.home.
7 The name of this file is defined itself by a property, so it could have any name, as long as the name property

is changed in unitils.properties.

Listing 19.1 UserFacadeImpl test refactored to use Unitils mock support

 B

http://unitils.org/unitils-default.properties

393Transparent mock usage
@RunWith(UnitilsJUnit4TestClassRunner.class)
public class UserFacadeImplUnitilsTest {

 @TestedObject
 private UserFacadeImpl facade;

 @Mock
 @InjectIntoByType
 private UserDao dao;

 @Test
 public void testGetUserById() {
 int id = 666;
 User user = newUserWithTelephones();
 expect(dao.getUserById(id)).andReturn(user);
 replay();
 UserDto dto = facade.getUserById(id);
 assertUser(dto);
 // verify();
 }

}

In order to use Unitils, first the test class must either extend the superclass that pro-
vides support for the testing framework being used (like UnitilsJUnit4) or annotate
it with the proper JUnit runner; in this example, we opted for the latter C. The next
step is to declare fields representing the object being tested and the mocks; Unitils
provides annotations for both, as shown in D. Notice that the @Mock annotation will
create an EasyMock mock; although Unitils mock support is provided through mod-
ules, currently only EasyMock is available. Next comes the test method itself E, whose
content is pretty much the same as before; the only differences are that it uses Unitils’
replay() method instead of EasyMock’s (that’s why in B we statically imported any
methods explicitly, instead of using *) and it isn’t necessary to call verify() (Unitils
will automatically do that after the test is run, although such behavior could also be
changed by modifying a property).

 Compare this example with chapter 18’s (shown in listing 18.5). Although the core
of the class (the test method itself) is the same, this new example requires much less
setup. It might not sound like a big difference in these two simple examples, but in a
real project, with dozens or even hundreds of such test cases, such small local
improvement results in a big gain in the global productivity.

 Behind the scenes, Unitils uses two modules, inject and easymock. Because we
didn’t configure anything, Unitils loaded all modules. The default value for the mod-
ules property is

unitils.modules=database,dbunit,hibernate,mock,easymock,inject,spring,jpa

If this property isn’t overridden, Unitils will load all modules, which means more
implicit setup methods need to be called before and after each test. If you don’t need
all modules, set this property with just the necessary ones. In our example, it would be

unitils.modules=easymock,inject

 C

 D

 E

394 CHAPTER 19 JUnit on steroids
If you forget to include a module, Unitils won’t instantiate the attributes that use
annotations from that module, and the test case will eventually throw an excep-
tion. For instance, if the easymock module was not included, the dao reference
wouldn’t be set, and the expect(dao.getUserById(id)) statement would throw a
NullPointerException.

 Besides configuring which modules are used, you can also change some module
behavior through module-specific properties. For instance, to disable calls to Easy-
Mock’s verify() after the test cases are run, you set EasyMockModule.autoVerify-
AfterTest.enabled to false. It’s also possible to set the mock behavior mode
(lenient or strict), even if the order of calls should be taken into account.

 Another interesting Unitils feature is the @Dummy concept. Attributes annotated
with @Dummy behave similarly to those annotated with @Mock, except that you don’t
need to set expectations: all method calls will return default values (such as 0 for
methods that return an int). These dummies are convenient for cases where your
tested objects need a valid reference to another object, but the behavior of that object
is irrelevant for the test case where it’s used.

19.2.2 FEST-Mocks

Listing 19.2 shows the same example using FEST-Mocks.

[...]

import static org.easymock.EasyMock.*;
import org.fest.mocks.EasyMockTemplate;

import org.junit.Before;
import org.junit.Test;

import com.manning.junitbook.ch19.dao.UserDao;
import com.manning.junitbook.ch19.model.User;
import com.manning.junitbook.ch19.model.UserDto;

public class UserFacadeImplFESTTest {

 private UserFacadeImpl facade;
 private UserDao dao;

 @Before
 public void setFixtures() {
 facade = new UserFacadeImpl();
 dao = createMock(UserDao.class);
 facade.setUserDao(dao);
 }

 @Test
 public void testGetUserById() {
 final int id = 666;
 final User user = newUserWithTelephones();
 new EasyMockTemplate(dao) {
 @Override

Listing 19.2 UserFacadeImpl test refactored to use FEST-Mocks

 B

 C

 D

395Transparent mock usage
 protected void expectations() throws Throwable {
 expect(dao.getUserById(id)).andReturn(user);
 }
 @Override
 protected void codeToTest() throws Throwable {
 UserDto dto = facade.getUserById(id);
 assertUser(dto);
 }
 }.run();
 }

FEST-Mocks doesn’t require the test class B to extend any class or to use any special
runner; as a drawback, it’s necessary to manually instantiate the mocks and objects
being tested C. All it does is provide an abstract template class that must be extended
on each test case D, which in turn must explicitly set the expectations and run the
code to be tested. Then when the method run() is called E, it executes a workflow
similar to that described at the beginning of this section (the main difference is that
the verify step isn’t optional, and verify() is always called).

 Overall, FEST-Mocks is a bit convoluted, because it explicitly uses the Template
Design Pattern, but in a complex way. Its creators claim that separating the mock’s
expectation and code being tested makes the test case clear. Although we agree that
the result is clear to read, it seems less natural and more verbose to develop.

19.2.3 Mycila

Mycila mock support is similar to Unitils in the way that you mark your mock attri-
butes with annotations. Unlike Unitils, however, you still need to do some manual
setup in a @Before method, such as creating the objects being tested and calling the
Mycila initialization method. Listing 19.3 shows our example converted to Mycila.

[...]

import static com.manning.junitbook.ch19.model.EntitiesHelper.*;
import static org.easymock.EasyMock.*;

import org.junit.Before;
import org.junit.Test;

import com.manning.junitbook.ch19.dao.UserDao;
import com.manning.junitbook.ch19.model.User;
import com.manning.junitbook.ch19.model.UserDto;
import com.mycila.testing.core.TestSetup;
import com.mycila.testing.plugin.easymock.Mock;

public class UserFacadeImplMycilaEasyMockTest {

 private UserFacadeImpl facade;

 @Mock
 private UserDao dao;

Listing 19.3 UserFacadeImpl test refactored to use Mycila EasyMock plug-in

 E

 B

 C

396 CHAPTER 19 JUnit on steroids
 @Before
 public void setFixtures() {
 facade = new UserFacadeImpl();
 TestSetup.setup(this);
 facade.setUserDao(dao);
 }

 @Test
 public void testGetUserById() {
 int id = 666;
 User user = newUserWithTelephones();
 expect(dao.getUserById(id)).andReturn(user);
 replay(dao);
 UserDto dto = facade.getUserById(id);
 assertUser(dto);
 verify(dao);
 }
}

As you can see on B, Mycila doesn’t require any special inheritance or custom run-
ner, which forces the test case to explicitly call its TestSetup.setup() in a @Before
method D. That method then scans the test class looking for @Mock annotations and
does the proper EasyMock setup when they’re found, such as in C. Notice that each
test case statement that requires a reference to these mocks (like the dependency
injection defined in E) must be executed after TestSetup.setup() is called. Mock
injection is the only mock support Mycila provides; the test method itself F is respon-
sible for calling replay() and verify() in the mocks.

 Mycila also supports other mock frameworks, such as JMock (also analyzed in chap-
ter 6) and Mockito (http://mockito.org). Listing 19.4 shows the same example using
the JMock plug-in.

[...]

import static com.manning.junitbook.ch19.model.EntitiesHelper.*;

import org.jmock.Expectations;
import org.jmock.Mockery;
import org.junit.Before;
import org.junit.Test;

import com.manning.junitbook.ch19.dao.UserDao;
import com.manning.junitbook.ch19.model.User;
import com.manning.junitbook.ch19.model.UserDto;
import com.mycila.testing.core.TestSetup;
import com.mycila.testing.plugin.jmock.Mock;
import com.mycila.testing.plugin.jmock.MockContext;

public class UserFacadeImplMycilaJMockTest {

 private UserFacadeImpl facade;

 @MockContext
 private Mockery context;

Listing 19.4 UserFacadeImpl test refactored to use Mycila JMock plug-in

 D
 E

 F

 B

 C

http://mockito.org

397DbUnit integration
 @Mock
 private UserDao dao;

 @Before
 public void setFixtures() {
 facade = new UserFacadeImpl();
 TestSetup.setup(this);
 facade.setUserDao(dao);
 }

 @Test
 public void testGetUserById() {
 final int id = 666;
 final User user = newUserWithTelephones();
 context.checking(new Expectations() {{
 one(dao).getUserById(id);
 will(returnValue(user));
 }});
 UserDto dto = facade.getUserById(id);
 assertUser(dto);
 context.assertIsSatisfied();
 }

}

This new example is similar to the previous one; the test setup E is even exactly the
same. The only differences are the dao reference D being marked with a @Mock anno-
tation defined in another package B, the need for a Mockery object C, and the way
expectations are set and verified (F and G respectively).

 So, given the mock support offered by these three tools, which one should you use
in your project? If you’re looking for transparent EasyMock usage, Unitils is clearly
the best option, because it requires less effort in the test cases (no setup or calls to ver-
ify) and is highly configurable. But if you need to use JMock or prefer a clear separa-
tion between expectations and tested code, then Mycila or FEST, respectively, is the
more suitable option.

19.3 DbUnit integration
In chapter 17 we presented an in-house framework that uses Java annotations to
facilitate usage of DbUnit datasets in test cases. Wouldn’t it be nice if such a frame-
work was offered out of the box? Well, guess what? Unitils’ dbunit module pro-
vides exactly that!

 Unitils provides four modules related to database testing: database, dbunit,
hibernate, and jpa. The database module is mainly responsible for providing a data-
base connection that will be used by tests and managing transactions, although it
offers other features, such as a database maintainer that can be used to synchronize
the developer’s databases. Then the dbunit module scans the test class for annota-
tions that define which DbUnit datasets should be used on each test. Finally, the
hibernate and jpa modules can be used to inject the necessary ORM classes (such as

 D

 E

 F

 G

398 CHAPTER 19 JUnit on steroids
Hibernate’s Session or JPA’s EntityManager) into the test cases, which can also be
done through the use of annotations.

 The dbunit module works similarly to the infrastructure provided in chapter 17:
you mark the test methods with annotations (@DataSet and/or @ExpectedDataSet),
and Unitils takes care of preparing the database or asserting its content with the data-
set defined by these annotations. The main differences are where the datasets are
located (relative to the class’s package directory in the classpath) and also the fact that
the annotations could be defined at class or method levels (class level is useful when
many methods use the same dataset; individual methods could then override it by
using the annotation again with different values).

 In chapter 17 we used DbUnit to test a JDBC-based DAO, and in chapter 18 we used
it to test a JPA-based DAO that used Hibernate as the JPA implementation. Let’s rewrite
these two test cases using Unitils, starting with the JDBC version in listing 19.5.

[...]

import static com.manning.junitbook.ch19.model.EntitiesHelper.*;
import static org.junit.Assert.*;

import java.sql.Connection;
import java.sql.SQLException;

import javax.sql.DataSource;

import org.junit.Test;
import org.unitils.UnitilsJUnit4;
import org.unitils.database.annotations.TestDataSource;
import org.unitils.dbunit.annotation.DataSet;
import org.unitils.dbunit.annotation.ExpectedDataSet;

public class UserDaoJdbcImplTest extends UnitilsJUnit4 {

 private UserDaoJdbcImpl dao = new UserDaoJdbcImpl();

 @TestDataSource
 void setDataSource(DataSource ds) throws SQLException {
 Connection connection = ds.getConnection();
 dao.setConnection(connection);
 dao.createTables();
 }

 @Test
 @DataSet("user.xml")
 public void testGetUserById() throws Exception {
 long id = 1;
 User user = dao.getUserById(id);
 assertUser(user);
 }

 @Test
 @DataSet("user.xml")
 public void testGetUserByIdUnknowId() throws Exception {
 long id = 2;

Listing 19.5 Refactored UserDaoJdbcImplTest using Unitils

 B

 C

 D

399DbUnit integration
 User user = dao.getUserById(id);
 assertNull(user);
 }

 @Test
 @ExpectedDataSet("user.xml")
 public void testAddUser() throws Exception {
 User user = newUser();
 dao.addUser(user);
 long id = user.getId();
 assertTrue(id>0);
 }

}

In the mock example we used a custom runner to provide Unitils integration; this
time we opt to extend in B the proper Unitils superclass. The next step is to signal
the database module that the test case needs a data source (which in turn will be used
to configure the DAO); that’s accomplished through the @TestDataSource annota-
tion, which could be used in an attribute or a method. In our case, we use it in a
method C, because it’s necessary to pass the database connection to the DAO and call
the DAO to create the database tables;8 otherwise, the dbunit module will fail when it
tries to load the datasets.

 Then in D we have tests that load data from the database, so we use the @DataSet
annotation to define a dataset that will be used to prepare the database before the
test. Notice that the name "user.xml" refers to a dataset file located in the classpath
within the same directory structure as the test class package (in our example, com/
manning/junitbook/ch19/dao/user.xml). The content of this file is the same as the
one listed in chapter 17, listing 17.5. Finally, on E we have a test case where data is
inserted into the database and DbUnit is used to compare the results; we use
@ExpectedDataSet in this case.

 The JPA example is pretty much the same; the main difference is the code to set up
the EntityManager and the DAO. Listing 19.6 shows the new test case, focusing on test
setup and showing only one test method.

[...]

import static com.manning.junitbook.ch19.model.EntitiesHelper.*;
import static org.junit.Assert.*;

import java.sql.Connection;
import java.sql.SQLException;

import javax.sql.DataSource;

8 If we weren’t using an embedded database but rather a developer database with the tables already created,
then we could use @TestDataSource in a DataSource attribute and use a @Before method to pass the
connection to the DAO.

Listing 19.6 Relevant changes to UserDaoJpaImplTest

 E

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

400 CHAPTER 19 JUnit on steroids
import org.junit.Test;
import org.unitils.UnitilsJUnit4;
import org.unitils.database.annotations.TestDataSource;
import org.unitils.dbunit.annotation.DataSet;
import org.unitils.dbunit.annotation.ExpectedDataSet;

import com.manning.junitbook.ch19.model.User;

public class UserDaoJpaImplTest extends UnitilsJUnit4 {

 @JpaEntityManagerFactory(persistenceUnit="chapter-19")
 @PersistenceContext
 EntityManager em;

 private final UserDaoJpaImpl dao = new UserDaoJpaImpl();

 @Before
 public void prepareDao() {
 dao.setEntityManager(em);
 }

 @Test
 @DataSet("user.xml")
 public void testGetUserById() throws Exception {
 long id = 1;
 User user = dao.getUserById(id);
 assertUser(user);
 }
[...]
}

The only differences in this test case are that in B two annotations are used to mark
the EntityManager (which will be injected by Unitils before the tests are run), and
then in C the EntityManager is passed to our DAO. At D we have the test method
itself; notice that it’s identical to the same test method in listing 19.5 (even though the
DAO implementation is different) and similar to chapter’s 18 test, except that in this
new example it isn’t necessary to manage the transaction, because Unitils does that
automatically for us.9

 Besides the test classes themselves, it’s necessary to set the database connection on
unitils.properties, as shown in listing 19.7.

database.driverClassName=org.hsqldb.jdbcDriver
database.url=jdbc:hsqldb:mem:my-project-test;shutdown=true
database.dialect=hsqldb
database.schemaNames=PUBLIC
unitils.modules=database,jpa,dbunit

The database information is set on B, and C lists the modules used in these tests.
Notice that C could be omitted, because by default Unitils uses all modules.

9 Unitils starts a transaction before each test and commits it afterward, although it could be configured to roll
back instead (through the DatabaseModule.Transactional.value.default property).

Listing 19.7 unitils.properties settings for the DbUnit examples

 B

 C

 D

 B

 C

401Assertions made easy
 As shown in these examples, Unitils DbUnit support is similar to the framework
developed in chapter 17, although each has its pros and cons. For instance, Unitils
allows you to use merged datasets, whereas the in-house framework provides EL sup-
port. Another major difference is that Unitils automatically manages the transaction.

 From the tools analyzed, Unitils is the only one currently supporting DbUnit,
although Mycila seems to have plans to provide a DbUnit plug-in in the near future.

19.4 Assertions made easy
Having a powerful toolbox of assertion methods readily available is an important asset
in test case development. Why? For two main reasons: productivity and clarity.

 When you’re writing a test case, your focus is on the test case logic; assertions are
just an accessory. For example, if you need to assert that a variable is greater than a
certain number, your first instinct is to write something like assertTrue(x>42). Such
assertions work fine when the condition holds true, but when it fails, all you get is a
junit.framework.AssertionFailedError: null message, which is far from clear. A
second approach would be to include a message in the assertion, such as assert-
True("X should be greater than 42, but it is "+x, x>42). Sure, the clarity is
improved but at the cost of productivity: you now need to create a long string, which
contains the name of the variable (X), the operand (greater), and the current value
concatenated, which is not only boring but also error prone. A better approach would
be to have an assertion method specialized in comparisons, which would make it as
simple as assertGreaterThan(x, 42).

 JUnit provides a handful of assertions out of the box through the org.junit.
Assert class, and although such features cover the basic needs, they come up short
in some particular cases, such as comparing collections or properties in a JavaBean
(not to mention the example in the previous paragraph). Fortunately, many third-
party libraries provide complementary assertions, and in this section we analyze a
few of them.

19.4.1 JUnit-addons assertions package

JUnit-addons provides a bunch of XXXAssert classes (such as ListAssert and
FileAssert) in the junitx.framework package, and each of them provides static
methods aimed to assert specific objects. Although some of the assertion features
they offer are now present in JUnit 4.x,10 some are still surprisingly missing. For
instance, JUnit’s Assert class provides assertTrue(), assertFalse(), and assert-
Equals() methods, but there isn’t an assertNotEquals() method, which is pro-
vided by JUnit-addons’ Assert.

 Let’s start with our prologue example, comparing a variable to a number. For that
purpose, JUnit-addons offers the ComparableAssert class, which provides methods to

10 Such as the AssertArray class, whose methods provides the same functionality as Assert.assert-
ArrayEquals().

402 CHAPTER 19 JUnit on steroids
assert objects implementing java.lang.Comparable (numbers happen to be a subset
of such objects). For instance, to assert that a variable x is greater than 42, we’d write

ComparableAssert.assertGreater(42, x);

And in the case of failure, the message would be

junit.framework.AssertionFailedError: expected greater than:<42> but was:<23>

The next interesting class is ListAssertions, which, as the name implies, provides
methods to verify lists. More specifically, it has only two methods: assert Equals
(List, List) and assertContains(List, Object).11 Before we see them in action,
let’s define a few List fixtures:

 List<Integer> LIST1 = Arrays.asList(4, 8, 15, 16, 23, 42);
 List<Integer> LIST2 = Arrays.asList(108);
 List<Integer> LIST3 = Arrays.asList(4, 8, 15, 16, 42, 23);
 List<Integer> LIST4 = Arrays.asList(4, 8, 15, 16, 108, 23);

The first list (LIST1) contains six random numbers and is the list that will be com-
pared with a list with a different number of elements (LIST2), a list with the same ele-
ments but in a different order (LIST3), and a list with the same number of elements
but some different ones (LIST4).

 If you used JUnit’s assertEquals() method to compare LIST1 and LIST4, the mes-
sage would be

java.lang.AssertionError: expected:<[4, 8, 15, 16, 23, 42]> but was:

➥<[4, 8, 15, 16, 108, 23]>

Although the message contains a clear description of the list’s content, it’s not easy to
realize why they aren’t equal. The reason is that JUnit’s assertEquals() method treats
the list as any other object, delegating its message formatting to Java’s String class.

 If we used the JUnit-addons alternative (ListAssert.assertEquals()) instead,
the result would be

junit.framework.AssertionFailedError: expecting <42> in

➥<4, 8, 15, 16, 108, 23>

That’s a better message, although it doesn’t inform us as to where the lists are differ-
ent, only that one element is missing. The way the method works, it would fail to
detect that LIST1 and LIST3 are different, because they have the same elements but in
different order. It sounds like a bug, but it’s a design decision, as stated in the Javadoc:
“Asserts that two lists are equal (the order is not relevant).”12 If the lists have different
sizes (like LIST1 and LIST2), the message is even more confusing:

junit.framework.AssertionFailedError: expecting <4> in <108>

11 Technically speaking, it provides four methods, because each assert method has an overloaded version that
also takes a message.

12 It’s still a conceptual bug; such behavior would make more sense comparing sets.

403Assertions made easy
So, long story short, ListAssert.assertEquals() isn’t that much better than JUnit’s
cousin. You’ll see better options for list comparison, but don’t throw the JAR away yet,
because it provides the useful assertContains() method. For instance, calling List-
Assert.assertContains(LIST1, 666) would result in

junit.framework.AssertionFailedError: expecting <666>

➥in <4, 8, 15, 16, 23, 42>

JUnit-addons offers a couple more assertion classes, such as FileAssert (which pro-
vides methods to compare contents of text and even binary files), NamingAssert (for
JNDI-related assertions), StringAssert (which contain assert methods for String’s
own methods, such as assertStartsWith()), and even ObjectAssert (which con-
tains methods such as assertInstanceOf()). These classes are pretty straightfor-
ward—simple, but quite useful for what they offer.

19.4.2 Unitils’ ReflectionAssert

Unitils has only one class that provides extended assertions: org.unitils.reflection-
assert.ReflectionAssert. That class is powerful, though, because it knows how to
compare many types of objects, from simple JavaBeans to collections and Hibernate
proxies, using reflection. More specifically, it uses reflection to compare the value of
each field and offers options to harden or relax the comparison (for instance, compar-
ing only fields when a value isn’t null or ignoring dates).

 ReflectionAssert contains literally dozens of methods, and their usage isn’t triv-
ial. Some methods are named similarly (like assertLenEquals() and assertLenient-
Equals(); the former is deprecated and calls the latter); many methods take as a
parameter an array of ReflectionComparatorMode (which is an enum that defines the
comparison behavior); and the array is a vararg (which means the method also works
without that parameter!). That being said, let’s start with the class’s main method,
assertReflectionEquals().

 The full signature13 of this method is assertReflectionEquals(Object expected,
Object actual, ReflectionComparatorMode... modes). Because the modes parame-
ter uses a vararg, it’s optional, so if you don’t pass a comparator mode, it does a strict
comparison in all fields. For instance, having two User objects (as defined in listing
19.1), with the difference being that user1’s username field is null, calling assert-
ReflectionEquals(user1, user2) would result in the following:

junit.framework.AssertionFailedError: Found following differences:

 username
 => null
 => "ElDuderino"

13 Here, and throughout this whole chapter, we’re ignoring the most complete version that also takes a message,
because it isn’t relevant to what’s being explained.

404 CHAPTER 19 JUnit on steroids
--- Difference details ---

 => User<id=0, username=null, firstName="Jeffrey", lastName="Lebowsky",
telephones=[]>

 => User<id=0, username="ElDuderino", firstName="Jeffrey",
lastName="Lebowsky", telephones=[]>

username => null
username => "ElDuderino"

Not only did it find the difference, but it printed both brief and detailed messages of
what went wrong (and all assertion methods from this class behave this way).

 If you want to ignore the fields that are null, you need to pass the Reflection-
ComparatorMode.IGNORE_DETAILS mode as a parameter, such as assertReflection-
Equals(user1, user2, IGNORE_DETAILS). Be aware that the order is important
here, because fields are ignored only when their value is null in the expected param-
eter. Calling assertReflectionEquals(user2, user1, IGNORE_DETAILS) with these
same User instances would fail, whereas assertReflectionEquals(user1, user2,
IGNORE_DETAILS) would pass.

 The other two comparison modes are LENIENT_DATES, which ignores in the
comparison any field that’s a java.util.Date, and LENIENT_ORDER, which is rele-
vant only when comparing collections. Because the lenient comparison is common,
most of the ReflectionAssert assertReflectionXXX() methods offer a counter-
part called assertLenientXXX() that automatically includes IGNORE_DETAILS and
LENIENT_ORDER, such as assertLenientEquals(Object expect, Object actual).
The idea behind this behavior is that in many cases the functionality being tested
doesn’t fill every field of an object, and having to compare all of them would
require a lot more work. That’s particularly useful in database access tests, such as
in a getLoginAndPassword() method where the user’s table has dozens of fields but
only two of them are filled and need to be compared.

 These methods can also be used to compare collections. For instance, using the
lists defined a few examples ago and calling assertReflectionEquals(LIST1, LIST4)
results in the following:

junit.framework.AssertionFailedError: Found following differences:

 [4]
 => 23
 => 108
 [5]
 => 42
 => 23

--- Difference details ---

 => [4, 8, 15, 16, 23, 42]
 => [4, 8, 15, 16, 108, 23]

[4] => 23
[4] => 108

405Assertions made easy
[5] => 42
[5] => 23

This message might look cryptic at first sight, but it’s pretty straightforward: it says that
elements on indexes 4 and 5 are different (23 instead of 108, and 42 instead of 23,
respectively). If the order of the elements isn’t important, you could pass
LENIENT_ORDER as parameter or call assertLenientEquals() instead. The message in
this case would be slightly different, though, as shown here:

junit.framework.AssertionFailedError: Found following differences:

 [5,4]
 => 42
 => 108

--- Difference details ---

 => [4, 8, 15, 16, 23, 42]
 => [4, 8, 15, 16, 108, 23]

[5,4] => 42
[5,4] => 108

Here it shows that these lists have only one element that’s different, although they’re
different in distinct locations (indexes 5 and 4, respectively).

 Overall, ReflectionAssert is a powerful class. Once you break the learning curve
barrier, you get a valuable tool for your day-to-day assertions.

19.4.3 FEST Fluent Assertions Module

FEST Fluent Assertions Module (also called FEST-Assert) provides custom assertion
for many types of objects, such as collections, strings, exceptions, files, Big-
Decimals, and even BufferedImages. And not only does it supports a great variety
of objects, but the assertions are expressed in a different syntax, similar to the
Hamcrest syntax (described in chapter 3) but even more natural, because the asser-
tion methods can be chained.

 The entry point for the assertions is the method assertThat(actual) from the
org.fest.assertions.Assertions class. That method is overloaded a dozen times,
each with a different type for the actual parameter and returning the proper asser-
tion class for that type. Sound confusing? It’s quite clever and simple (once you get
used to it), so let’s use the x > 42 example to make it clear. Assuming a variable x of
type int, that assertion would be

Assertions.assertThat(x).isGreaterThan(42);

And the result would be

java.lang.AssertionError: actual value:<23> should be greater than:<42>

Behind the scenes, all Assertions.assertThat() methods return a subclass of
Assert, in this case an IntAssert (because x is an int), which has methods such as

406 CHAPTER 19 JUnit on steroids
isGreaterThan(int). These methods, in turn, also return IntAsserts, allowing many
calls to be chained, as follows:

Assertions.assertThat(x).isGreaterThan(42).isLessThan(108);

You can make this easier to read if you static import Assertions and split the methods
one per line:

assertThat(x).isGreaterThan(42)
 .isLessThan(108) ;

All asserts have common methods, like as(String description), which can be used
to describe the actual object. In the previous example, we could describe it as "X":

assertThat(x).as("X").isGreaterThan(42)
 .isLessThan(108);

And the message would be

java.lang.AssertionError: [X] actual value:<23> should be greater than:<42>

Overall, FEST-Assert assertions are easy to use and straightforward, especially when
using an IDE with autocompletion. But for comparison purposes, here are some
examples of collection assertions, similar to the ones we looked at so far (using
other tools).

■ Comparing collections contents (assertThat(LIST1).isEqualTo(LIST4)):
java.lang.AssertionError: expected:<[4, 8, 15, 16, 108, 23]>

but was:

<[4, 8, 15, 16, 23, 42]>

■ Checking that a list has a given element (assertThat(LIST1).contains(666)):
java.lang.AssertionError: collection:<[4, 8, 15, 16, 23, 42]>

does not contain element(s):

<[666]>

■ Checking that a list has many given elements (assertThat(LIST1).con-
tains(108, 666)):
java.lang.AssertionError: collection:<[4, 8, 15, 16, 23, 42]>

does not contain element(s):

<[108, 666]>

■ Asserting that a collection doesn’t have duplicates (assertThat(Arrays.
asList(42,42)).doesNotHaveDuplicates()):
java.lang.AssertionError: collection:<[42,42]>

contains duplicate(s):

[42]>

407Using reflection to bypass encapsulation
19.4.4 Mycila extend assertions

Mycila also provides a module for assertions, which uses a Hamcrest-like style similar
to FEST, as shown in the examples at the project’s wiki page (http://code.google.com/
p/mycila/wiki/ExtendedAssertions). Unfortunately though, this module was not
widely available at the time the book was written, so we had to skip it. But it’s a project
that’s worth watching.

 As you can see in this section, custom assertions are provided by many tools. What-
ever your assertion needs are, most likely one (or more) of these tools supports it. And
by using them, you can easily increase the productivity and/or clarity of the failure
messages. The gain might sound small, but every small improvement adds up when
you write hundreds or even thousands of test cases.

19.5 Using reflection to bypass encapsulation
Ideally, test cases should not know anything about the internal state of the test
objects. But the truth is, even in a perfect world where classes were designed with
good encapsulation and testability in mind, sometimes it’s still necessary to bypass
encapsulation and access internal members. With the advent of dependency injec-
tion (DI) containers such as Spring and Java EE 5 application servers, it’s common to
have attributes defined as private without any getter or setter, only a Java annotation
(like @Resource or @Autowired), which is the hint for the container to inject the
dependency at runtime.

 When fields of tested objects are private, most likely they will be accessed through
reflection later on by some framework class. So, instead of complaining about privacy
concerns, why don’t you play by the same rules and use reflection to access these fields
in the test cases?

 For instance, the UserFacadeImpl object defined in listing 19.4 has a private refer-
ence to a UserDao, and so far this reference could be set only through a public
setUserDao() method. But if that method isn’t available, we could use reflection to
access it instead. In this section we show how to do so, first using an in-house utility
class and then analyzing two tools that provide such features for free.

19.5.1 In-house alternative

If you eventually need to set a private field in an object being tested, your first attempt
might be using the reflection API directly in the test method. This isn’t a good
approach, though, because the API is cumbersome to use, and most likely such a need
will arise in other test cases. In situations like this, it’s better to add a new method to
an existing utility class or create a new one if none exists yet. This particular method
requires three parameters: a reference to the object whose field will be set, the name
of the field, and its new value. And because you’ll probably need to get the value of
the field at some point, why not add a helper method for that as well? Listing 19.8
shows these two methods.

http://code.google.com/p/mycila/wiki/ExtendedAssertions
http://code.google.com/p/mycila/wiki/ExtendedAssertions

408 CHAPTER 19 JUnit on steroids
[...]

import java.lang.reflect.Field;

public class TestingHelper {

 public static void set(Object object, String fieldName,
 Object newValue) {
 Field field = getField(object.getClass(), fieldName);
 try {
 field.set(object, newValue);
 } catch (IllegalAccessException e) {
 throw new RuntimeException(
 "Could not set value of field '" + fieldName +
 "' on object " + object + " to " + newValue, e);
 }
 }

 public static <T> T get(Object object, String fieldName) {
 Field field = getField(object.getClass(), fieldName);
 Object value;
 try {
 value = field.get(object);
 } catch (IllegalAccessException e) {
 throw new RuntimeException("Could not get value of field '" +
 fieldName + "' from object " + object, e);
 }
 @SuppressWarnings("unchecked")
 T castValue = (T) value;
 return castValue;
 }

 private static Field getField(Class<?> clazz, String fieldName) {
 Class<?> tmpClass = clazz;
 do {
 for (Field field : tmpClass.getDeclaredFields()) {
 String candidateName = field.getName();
 if (! candidateName.equals(fieldName)) {
 continue;
 }
 field.setAccessible(true);
 return field;
 }
 tmpClass = tmpClass.getSuperclass();
 } while (clazz != null);
 throw new RuntimeException("Field '" + fieldName +
 "' not found on class " + clazz);
 }
}

This class provides two helper methods B, set() and get(), whose implementation
follows the same workflow: get a reference to a java.lang.reflect.Field C, do some-
thing with it D, and convert E any reflection API exceptions to a RuntimeException so

Listing 19.8 Initial implementation of TestingHelper using the reflection API directly

 B
 C

 D

 E

 F

 G

 H

 I

 J

409Using reflection to bypass encapsulation
callers don’t need to worry about checked exceptions. get() also runs the extra Java 5
mile and casts the result F to the expected type, so callers don’t need an explicit cast
when assigning it to a variable.14

 The dirtiest part is getting the Field reference G; this method has to scan all
methods of the object’s class H and its superclass J, and once the method is found, it
must be made accessible I.

 Going back to our UserFacadeImpl example, once it doesn’t offer a setter for
UserDao and these new helper methods are available, we could rewrite the facade.
setUserDao(dao) statement on UserFacadeImplTest.setFixtures() (defined in list-
ing 19.5) as

TestingHelper.set(facade, "userDao", dao);

Anyway, the fact that such access is allowed or not by default is out of the scope of the
book. Even if the JVM had a more strict default behavior, you could still configure the
SecurityManager to lower the restrictions in your test case environment.

14 This might sound like black magic, but what happens is that the compiler knows what type is expected and
does the proper casting (because the method returns a parameterized type, <T>). That doesn’t eliminate
ClassCastExceptions at runtime, but it does make the code cleaner, which is particularly welcome in test
cases (in fact, many tools analyzed in the book, such as EasyMock and FEST, use this trick).

Bypassing encapsulation, or how I learned to stop worrying
and love reflection
One of the first things you learn when studying object-oriented languages is that
they’re built on three pillars: encapsulation, inheritance, and polymorphism. And
encapsulation best practice dictates that attributes should be defined as private
and accessed only through getters and setters. As a good student and disciplined
developer, you follow that practice and happily declare all your object fields as pri-
vate, using a few hotkeys from your favorite IDE to generate those boring getters
and setters. Then after a hard day at the office, you decide to read a few more
pages of this book at home to relax, when you read something disturbing: those
tightly encapsulated fields that you protected with so much care can be easily
accessed throughout reflection! Your whole world falls apart, and your first
instinct is to sell all your Java books and buy Y2K survival kits with the few bucks
you get from the sale. Well, if that happens to you, please go back to the couch
and relax again: you can only bypass encapsulation if you grant the permissions to
the JVM to do so. More specifically, when you call methods such as Field.set-
Accessible(true), the JVM will first check with the SecurityManager to see if
the calling method has permission to change the accessibility rules. You could
argue that the permission is granted by default and hence the fields are wide
open, but the truth is that such behavior is convenient most of the times, at least
in the Java SE environment.

410 CHAPTER 19 JUnit on steroids
19.5.2 JUnit-addons

Junit-addons’ PrivateAccessor class provides methods similar to the ones we imple-
mented from scratch in the previous section. The only differences are the name (get-
Field() and setField(), instead of get() and set()); how they’re implemented
(although the logic is the same, they use for instead of while); and the fact that get-
Field() doesn’t return a parameterized value (because JUnit-addons predates Java 5).

 Using PrivateAccessor directly, we’d rewrite our set DAO statement at setFix-
tures() as

PrivateAccessor.setField(facade, "userDao", dao);

Although using PrivateAccessor directly is fine, it has three drawbacks: getField()
isn’t parameterized (so you’d need to cast its returned value on each test case), the
caller would have to check for NoSuchFieldException, and you’d have to add a direct
dependency on a third-party tool on all test cases (which would make it harder to
switch to another tool later on). A better approach would be to use PrivateAccessor
indirectly in the TestingHelper methods, rather than in the test cases themselves, as
shown in listing 19.9.

[...]

import junitx.util.PrivateAccessor;

public class TestingHelperJUnitAddons {

 public static void set(Object object, String fieldName,
 Object newValue) {
 try {
 PrivateAccessor.setField(object, fieldName, newValue);
 } catch (Exception e) {
 throw new RuntimeException("Could not set value of field '" +
 fieldName + "' on object " + object + " to " + newValue, e);
 }
 }

 public static <T> T get(Object object, String fieldName) {
 try {
 Object value = PrivateAccessor.getField(object, fieldName);
 @SuppressWarnings("unchecked")
 T castValue = (T) value;
 return castValue;
 } catch (NoSuchFieldException e) {
 throw new RuntimeException("Could not get value of field '" +
 fieldName + "' from object " + object, e);
 }
 }

PrivateAccessor also provides a few more methods, such as invoke() (to invoke any
instance or static method), and overloaded versions of getField() and setField() to
deal with static methods.

Listing 19.9 TestingHelper refactored to use JUnit-addons

411Using reflection to bypass encapsulation
19.5.3 FEST-Reflect

FEST-Reflect offers helper classes to access all sorts of Java entities, such as fields, meth-
ods, constructors, and even inner classes. And as is the case with all other FEST mod-
ules, it follows the fluent interface approach, this time using org.reflect.core.
Reflection as the entry point. For instance, to create an instance of a User object, you
use the constructor() method:

User user = Reflection.constructor().in(User.class).newInstance();

Behind the scenes, constructor() returns a TargetType object, whose method in()
returns an Invoker, which in turn creates the actual User instance through the new-
Instance() method. All these methods use parameterized arguments and return val-
ues (similar to the get() method in listing 19.9), so the result can be used without an
explicit cast. The only catch is that most of the time you must pass the expected class as
a parameter somewhere in the chain; for instance, to use FEST to set our DAO, it would
be necessary to explicitly indicate that the field is of type UserDao, as shown here:

Reflection.field("userDao").ofType(UserDao.class).in(facade).set(dao);

Because of such requirements, TestingHelper couldn’t be rewritten using FEST with-
out changing its signature to include the field class (as shown in listing 19.10), which
would also require a change in the set DAO statement:

TestingHelperFESTReflect.set(facade, "userDao", UserDao.class, dao);

[...]

import org.fest.reflect.core.Reflection;

public class TestingHelperFESTReflect {

 public static <T> void set(Object object, String fieldName,
 Class<T> fieldClass, T newValue) {
 Reflection.field(fieldName).ofType(fieldClass).in(object).set(newValue);
 }

 public static <T> T get(Object object, String fieldName,
 Class<T> fieldClass) {
 return Reflection.field(fieldName).ofType(fieldClass).in(object).get();
 }
}

Given these two alternatives, the choice again depends on personal style: FEST-
Reflect is more powerful and follows a more natural syntax than its JUnit-addons
counterpart, at the cost of being more complex (its syntax is less natural for develop-
ers who are not used to it) and requiring one more piece of information (the type of
the field being accessed).

Listing 19.10 TestingHelper refactored to use FEST-Reflect

412 CHAPTER 19 JUnit on steroids
19.6 Summary
In this chapter we analyzed a few tools that complement JUnit, provide additional fea-
tures, or make some tasks more productive.

 We learned three different ways to use mocks in our test cases in a more productive
way, how to leverage DbUnit usage through third-party annotations, many custom
assertions that cover a wide variety of object comparisons, and how to access private
fields without dealing with the low-level reflection API directly.

 Some of the features analyzed were offered by more than one tool, which might
make it hard to decide which one to use. Although we described the pros and cons of
each option, typically the best option depends on the project’s needs and your per-
sonal style. What is most important, though, is to be aware that such tools exist, so you
can evaluate them early in the project. The sooner such tools are used, the more time
is saved because of productivity gains.

appendix A:
Differences between

 JUnit 3 and JUnit 4

As you’ve probably seen, the new 4.x version of JUnit is a completely new
framework. It’s more of a totally new project than a bug-fixing improvement of
the old one. But it still deals with unit testing your Java code. That said, we will
try to define all the differences between the latest version of JUnit and the 3.x
version.

A.1 Global changes
This section discusses the changes in the requirements for using JUnit.

This appendix covers
■ Changes between version 3.x and 4.x of JUnit
■ API changes
■ New features in JUnit 4.x
413

Andrey
Note
Marked set by Andrey

414 APPENDIX A Differences between JUnit 3 and JUnit 4
A.1.1 JDK required

JUnit 4 uses a lot from Java 5 annotations, generics, and static import features.
Although the JUnit 3.x version can work with JDK 1.2+, this usage requires that the
new version of JUnit be used with Java 5 or higher.

A.1.2 Backward/forward compatibility

All of the JUnit 4.x test runners are able to execute JUnit 3.x tests with no modification
whatsoever. But what about executing JUnit 4.x tests with the JUnit 3.x test runner?
Now this is a trickier one, but it’s absolutely necessary to support so that external tools
such as Ant or Eclipse can work with JUnit without needing an update.

 The key is to use the JUnit4TestAdapter and wrap all of your tests like the one
shown in listing A.1.

[...]
import junit.framework.JUnit4TestAdapter;

public class TestJUnit4Tests extends TestCase {
 public static junit.framework.Test suite() {
 return new JUnit4TestAdapter(SampleTest.class);
 }
}

It’s that simple. At B you need to pass your JUnit 4.x tests to the JUnit4TestAdapter,
and they immediately get converted to JUnit 3.x tests so that they can be run with the
JUnit 3.x runners.

A.2 Changes in the API
The changes listed here concern the inner structure of JUnit: all the new features
added to the API that we need to know.

A.2.1 Package structure

The new version of JUnit is built on the idea of backward compatibility. The develop-
ers wanted to make sure that you, as a software developer, are able to execute any
JUnit 3.x test case with the JUnit 4.x library in your classpath. That’s why they included
all the new features in a new package, org.junit. The old package, junit.framework,
is also bundled in the distribution.

A.2.2 Constructors

If you’re maintaining tests written prior to JUnit 3.8.1, your class needs a String con-
structor, for example:

public CalculatorTest(String name) { super(name); }

This is no longer required with JUnit 3.8.1 and later.

Listing A.1 JUnit4TestAdapter to wrap your JUnit 4.x tests

 B

415Annotations and static imports added
A.2.3 Extending TestCase

In the new version of JUnit, your test cases no longer need to extend the junit.
framework.TestCase class. Instead, any public class with a zero-argument public
constructor can act as a test class.

A.2.4 Test method names

In the new version of JUnit, test names no longer need to follow the testXXX pattern.
Instead, any method that you want to be considered a test method should be anno-
tated with the @Test annotation. For instance, the method shown in listing A.2 is a
valid test method.

@Test
public void substract () {
 assertEquals(2, 5-3);
}

A.3 Annotations and static imports added
JUnit 4.x is based on annotations, a concept introduced in JDK 1.5 along with static
imports and some other features. This section lists those changes to the JUnit API.

A.3.1 @Before and @After annotations

If you remember, with JUnit 3.x we used to override the setUp() and tearDown()
methods when we extended the junit.framework.TestCase class. These methods (or
fixtures, as they’re called) are executed right before/after each of the tests gets exe-
cuted. Their purpose is to execute some common logic before or after each of the
tests. As we already mentioned (several times, at least), in JUnit 4.x you no longer
extend the junit.framework.TestCase class. So how can we execute some common
logic before/after each of the tests?

 The answer is again (guess what?) an annotation. You can annotate any of the
methods you want to execute before your tests with the @Before annotation. And you
can have as many annotated methods as you want. In the 3.x version of JUnit, you can
have only one setUp() and only one tearDown() method (the method name restricts
you). But in the 4.x version of the framework, the declaration shown in listing A.3 is
pretty normal.

public class CalculatorTest {
[...]

 @Before
 public void initializeMocks() { ... }

Listing A.2 Test method annotations in JUnit 4.x

Listing A.3 @Before and @After annotations in action

416 APPENDIX A Differences between JUnit 3 and JUnit 4
 @Before
 public void prepareFilesForReading() { ... }
[...]
}

WARNING Indeed, you can have as many @Before and @After annotated
methods as you want, but be aware that nothing is specified about the order
of execution of these methods. There is no guarantee, whatsoever, that any of
the @Before methods will be executed before/after the other ones.

Also, there’s one possible pitfall. If you have several test classes that extend
from a common superclass, what will be the order of execution of the
@Before and @After methods? The answer is that @Before methods in the
superclass get executed earlier than the ones in the subclasses. The @After
methods, on the contrary, have a mirrored execution; the @After methods in
the subclass get executed first.

You need to remember that the @Before annotated methods must be public by signa-
ture and return void.

 The same thing applies to the @After annotated methods.

A.3.2 @BeforeClass and @AfterClass annotations

One of the features that people wanted most from JUnit is the ability to execute some
common logic before/after a whole set of tests. For instance, if your setUp() or tear-
Down() methods consume a lot of resources (like opening a connection to a database
or creating some file structure), you’ll find it useful to have a way of executing the
setUp() or tearDown() methods not before every test but instead before a whole set of tests.

 JUnit 4.x offers such an option with the @BeforeClass and @AfterClass annota-
tions. Just like the @Before and @After annotations that we already covered, you can
annotate any of your methods with the @BeforeClass and @AfterClass annotations.
In listing A.4 we show how to use these annotations in your tests.

[...]
public class CalculatorTest {

 @BeforeClass
 public static void setupFileStructure() { ... }

 @AfterClass
 public static void cleanupFileStructure() { ... }
}

There are several things to notice here. First of all, you can add as many @BeforeClass
and @AfterClass annotated methods as you want. Again, the same condition applies
as with the @Before/@After annotated methods; no guarantee whatsoever is given for
the order of execution. One more thing to notice is that the methods that are anno-
tated with @BeforeClass and @AfterClass must not only be public and return void
type but also be static.

Listing A.4 @BeforeClass and @AfterClass annotations in action

417Annotations and static imports added
A.3.3 Differences in ignoring a test

Sometimes, because of a system reconfiguration or a change of client requirements,
you need to skip the execution of a certain test method. In the 3.x version of JUnit,
the only way to do that is to comment the whole test method or rename the method.
This way, if you start commenting your test methods, you get no detailed statistics of
how many methods were skipped during test execution.

 This is significantly improved in JUnit 4.x, by the introduction of the @Ignore
annotation. You can use it to annotate any of your test methods, with the result that
this method will be skipped at the time of test execution. The best part is that at the
end of the execution you get detailed statistics of not only how many of your tests were
successful or failed but also the number of the skipped tests.

 One last thing—from version 4.3 on of JUnit, you can annotate not only test
methods but also the whole class with @Ignore. As a result, all of the tests in that
class will be skipped.

A.3.4 Static imports

As mentioned already, your test cases no longer need to extend the junit.frame-
work.TestCase class, whereas in the previous versions of JUnit the assert methods
would come from the junit.framework.TestCase class that you used to extend. The
question that you’ll ask now is, “How on earth do I get the assert methods in my class?”

 The answer to this question is one of the new features of Java 5: static imports.
With Java’s static imports, you can write the code shown in listing A.5.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class CalculatorTest {

 @Test
 public void add() {
 assertEquals(60, 50+10);
 }
}

At B we use the static import feature to import one of the assert methods we need,
and later on, at C, we call it.

A.3.5 Exception testing

One of the most important aspects of unit testing is the ability to test exceptional situ-
ations in your code. You need to make sure that whenever an exception is thrown, it’s
handled properly. In listing A.6 you can see how exception handling is done in the
previous version of JUnit.

Listing A.5 Static imports in action

 B

 C

418 APPENDIX A Differences between JUnit 3 and JUnit 4
public void testDivisionByZero() {
 Calculator c = new Calculator();
 try {
 c.divide(5,0);
 fail("Exception should have been raised, but was not");
 } catch (ArithmeticException expected) {
 assertTrue("Sanity check", true);
 }
}

Basically, what you do is surround the troublesome code with a try-catch block B and
after that deliberately fail the test C if the exception was not thrown. A good practice
is also to place a dummy assert in the catch clause D just to make sure you always pass
through the catch clause.

 In JUnit 4 we have a better solution for handling exceptional situations than we
had in JUnit 3. Every time you want to make sure that an exception is thrown, you can
use an expected parameter with the @Test annotation. Listing A.7 shows you how to
ensure that an Arithmetic exception is thrown.

[...]
public class CalculatorTest {

 @Test(expected=ArithmeticException.class)
 public void testDivisionByZero() {
 Calculator c = new Calculator();
 c.divide(5, 0);
 }
}

As you can see in B, we’ve added the expected attribute to the @Test annotation to
denote that this method is supposed to throw an exception of the provided type.

A.3.6 Timeout testing

Another parameter you can add to the @Test annotation is the timeout parameter.
This feature was also missing in the “old” JUnit. With this parameter, you can specify a
value in milliseconds that you expect to be the upper limit of the time you spend exe-
cuting your test. What happens when the time runs out? An exception will be raised,
and the test will marked as failed, telling you that the test couldn’t finish execution in
the given Test timeout parameter. Listing A.8 shows you how to use the timeout
parameter of the @ annotation.

Listing A.6 Exception handling the old 3.x way

Listing A.7 Exception handling with the expected parameter of the @Test annotation

 B

 C D

 B

419New JUnit runners
public class CalculatorTest {

 @Test(timeout=5000)
 public void testSomethingTimeConsuming() {
 [...]
 }
}

A.4 New JUnit runners
This section briefly covers some of the new JUnit runners included in JUnit 4.x.

A.4.1 Test runners

The 3.x version of JUnit comes with Swing and AWT test runners that are no longer
part of the JUnit distribution. The test runner façade that you can use to start your
tests from the console is now called org.junit.JUnitCore.

 With no GUI test runners included in the distribution, the only way to glimpse the
old green bar is to use your favorite IDE; they all have JUnit 4.x support.

A.4.2 Test suites

The old way of constructing sets of your tests involved writing a suite() method and
manually inserting all the tests that you want to be present in the suite. Because the
new version of JUnit is annotation oriented, it seems somehow logical that the con-
struction of suites is also done by means of annotation. Further, the suite construction
is done not by one annotation but by two annotations: the @RunWith and @Suite-
Classes annotations.

 The first annotation lets you define test runners that you can use to run your tests.
The @RunWith annotation accepts a parameter called value, where you need to specify
the test runner to run your suite: Suite.class. This test runner is included with JUnit,
along with some other runners. But in this annotation you can also specify a custom
runner. You can find out how to implement your own JUnit runners in appendix B.

 The second annotation declares all the tests that you want to include in the suite.
You list the classes that hold your tests in the value parameter of the @SuiteClasses
annotation.

 Listing A.9 shows how to construct test suites in JUnit 4.x.

@RunWith(value=Suite.class)
@SuiteClasses(value={CalculatorTest.class, ComputerTest.class})
public class CalculatorTests {
 [...]
}

Some people find the way test suites are done in JUnit 4.x unnatural, and indeed, at
first sight it is. But once you start writing tests, you’ll see that there’s nothing unnatural

Listing A.8 Timeout parameter in the @Test annotation

Listing A.9 Constructing test suites with JUnit 4.x

420 APPENDIX A Differences between JUnit 3 and JUnit 4
in the way things are done. Remember that you can include the @BeforeClass and
@AfterClass annotated methods in the suite. This wasn’t possible with the 3.x versions
of JUnit.

A.4.3 Parameterized tests

As you saw, the @RunWith annotation lets you define a test runner to use. The Suite
test runner that we already presented lets you run your test cases in a suite.
Another test runner that’s bundled with the JUnit distribution is the Parameterized
test runner. This test runner lets you run the same tests with different input test
data. We know that an example is worth several pages of explanation, so listing A.10
shows the example.

@RunWith(value=Parameterized.class)
public class SquareRootTest {

 private int expected;
 private int actual;

 @Parameters
 public static Collection data() {
 return Arrays.asList(new Object[][] {
 { 1, 1 },
 { 2, 4 },
 { 3, 9 },
 { 4, 16 },
 { 5, 25 },
 });
 }

 public SquareRootTest(int expected, int actual) {
 this.expected = expected;
 this.actual = actual;
 }

 @Test
 public void squareRoot() {
 Calculator calculator = new Calculator();
 assertEquals(expected, calculator.squareRoot(actual));
 }
}

Imagine that we have a squareRoot method in our Calculator class that we want to
test. This listing demonstrates how to test this method with different input test data. We
start by declaring the use of the Parameterized test runner at B. Then, at C, we
define the static data() method that we annotate with @Parameters, denoting that this
method returns the actual test data for our test. This test data is made from a
java.util.List, and each element of the List is a two-dimensional array, the ele-
ments of which will be used to make a new instance of the SquareRootTest. At D we fill
in the test data and return it. At E we start the test method, and inside it we instantiate

Listing A.10 Parameterized test runner in action

 B

 C

 D

 E

 F

421New assertions and assumptions
the Calculator object. After that, at F we assert the correctness of the result of the
Calculator’s squareRoot() method with all of the test data.

 If you run this example, you’ll get a result like what you’d see if you’d just run five
distinct assertions like the following:

assertEquals(1, calculator.squareRoot (1));
assertEquals(2, calculator.squareRoot (4));
assertEquals(3, calculator.squareRoot (9));
assertEquals(4, calculator.squareRoot (16));
assertEquals(5, calculator.squareRoot (25));

A.5 New assertions and assumptions
This final section deals with the new assertion and assumption mechanisms intro-
duced in JUnit 4.x. It also reveals the integration between JUnit and the Hamcrest
matcher—something that allows you to write useful match statements to simplify
your assertions.

A.5.1 Hamcrest assertions

In version 4.4 of JUnit, the Hamcrest assertion mechanism was incorporated. The
Hamcrest assertion mechanism was introduced in JMock and provides a new, robust,
fluent API for assertions. With Hamcrest assertions, you’re able to write more readable
and flexible test assertions like these in listing A.11.

[...]
import org.junit.Test;
import static org.junit.Assert.*;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.CoreMatchers.not;

public class CalculatorTest {

 @Test
 public void squareRoot() {
 Calculator c = new Calculator();
 assertThat(2, is(c.squareRoot(4)));
 assertThat(3, is(not(c.squareRoot(4))));
 }
}

The org.hamcrest.CoreMatchers and org.junit.matchers.JUnitMatchers pack-
ages are distributed with JUnit and contain numerous matchers. The Hamcrest match-
ers that come with JUnit are the first third-party classes included in JUnit.

 If you find them insufficient, you can always get the full Hamcrest project from the
internet and use any of those matchers with JUnit.

Listing A.11 Hamcrest assertions in JUnit 4.4+

422 APPENDIX A Differences between JUnit 3 and JUnit 4
A.5.2 Assumptions

As a developer, you always strive to execute your tests against various scenarios. But
sometimes you have no control over the environment the tests are run in, as in the case
when the test depends on the operating system path-separator character (in Windows
it is \ and in UNIX it is /). This may mandate that your test cases run in Windows boxes
and not in Linux boxes. It would be good if you could make an assumption as to what
the character separator is and execute the tests only if your assumption is correct.

 With the 4.4 release of JUnit, assumptions were introduced. assumeThat is the nat-
ural way in JUnit to run a given test against assumptions you make. You can assume
that a given condition is set and then assert that the tests pass. Consider listing A.12.

[...]
import java.io.File;

import org.junit.Test;
import static org.junit.Assert.*;
import static org.junit.Assume.*;
import static org.hamcrest.CoreMatchers.is;

public class PathSeparatorTest {

 @Test
 public void pathSeparatorIsOK() {
 assumeThat(File.separatorChar, is('/'));
 assertThat((new FileManager()).getDBConfFile().getPath(),
 is("conf/db.cfg"));
 }
}

As you can see, we use the assumeThat method to make sure the file separator is UNIX
style B and then assert that the database configuration file path is correct C. What
happens if the assumption is wrong, and we’re running the tests on a Windows box?
Our tests are marked as passing, regardless of the assertions we make!

A.5.3 New assertions

The assertXXX methods in JUnit 3.x are thorough enough, but they lack any method
to compare equality of arrays. Two methods with these signatures

assertEquals(Object[] expected, Object[] actual)
assertEquals(String message, Object[] expected, Object[] actual)

were added to the JUnit 4.0 framework to help with that task. These methods, given
two arrays, start by checking the sizes of the arrays. If the sizes are the same, they will
call the equals() method on each of the elements.

 In version 4.3 these two methods were deprecated in the way they’re used, and a
whole new bunch of methods named assertArrayEquals() were introduced.

Listing A.12 Assumptions in JUnit

 B C

423New assertions and assumptions
 From version 4.6 on of the JUnit framework, you can use a convenient new method
for testing the equality of two arrays of doubles:

assertArrayEquals(double[]first ,double[] second, double delta);

This compares every element of the first element with the corresponding element of
the second array using the given delta.

A.5.4 Assertion errors

When you test with the 3.x version of JUnit, and any part of your assert is wrong, you
get a junit.framework.AssertionFailedError message. With the new version of
JUnit, that’s no longer true, and in case of wrong assertions you see the java.lang.
AssertionError message. The java.lang.AssertionError class was introduced in
JDK 1.4.

appendix B:
Extending the JUnit

API with custom
 runners and matchers

As we already discussed in chapter 2, the backbone of JUnit consists of three
classes—TestClass, Runner, and Suite—the latter one being a Runner itself. This
means that once we understand how those classes operate, we can write whatever
tests we need with JUnit. If you find JUnit insufficient for your testing needs, you
can extend the JUnit API with custom classes. Since JUnit is open source you can
rebuild or extend. There is no obvious benefit in extending the TestClass class.

This appendix covers
■ Introducing the Interceptor pattern
■ Implementing custom runners for JUnit
■ Implementing custom matchers for JUnit
424

425Implementing a custom runner
On the other hand, the Runner class is especially designed to be easily extensible for
our needs.

 This appendix gives a brief introduction to how to extend the JUnit API with
custom Runner objects. It also describes how to extend the Hamcrest API with cus-
tom matchers so that we eventually customize not only our runners but also our
assert calls.

B.1 Introducing the Interceptor pattern
So far in the book, we’ve gotten to know a lot of design patterns: the Controller, the
Façade, Inversion of Control, and so on. Now it’s time to look at another one: the
Interceptor pattern.

Imagine you’re designing an application for a group of developers. You want them to
plug their code into your application as painlessly as possible, and at the same time
you don’t want them to change it. What can you do? You can provide some points in
your application where the developers can intercept the invocation of the program
and introduce their own logic. Others don’t need to change your code; they can sim-
ply plug their code into your framework.

B.2 Implementing a custom runner
Let’s start implementing our own custom runner. As you might have already
guessed, we want to develop a custom runner that implements the Interceptor pat-
tern we just discussed.

 We want to define an Interceptor interface, which will be implemented by the
various interceptors that we have. That’s why we start with the Interceptor interface,
shown in listing B.1.

Design patterns in action: Interceptor
The Interceptor pattern can be described as a method that intercepts a business
method invocation. The pattern usually consists of several objects. The first one is
an Interceptor interface that defines one or more methods that your interceptors
will implement. The next is a Delegate object that holds a list of interceptors. The
Delegate object is called at the intercepting points of your application, and it
invokes the interceptors one after another.

Here are some interesting features of the Interceptor pattern:

■ It propagates extensibility and flexibility.
■ It enables separation of concerns.
■ It increases reusability.
■ If not used properly, security issues might occur.

426 APPENDIX B Extending the JUnit API with custom runners and matchers
[...]
public interface Interceptor {

 public void interceptBefore();

 public void interceptAfter();
}

We use this generic interface to define the two methods B in which we define our
custom logic to plug into the program execution. Notice that our interceptor meth-
ods don’t accept any parameters. The normal way of implementing the Interceptor
pattern would be to call the interceptor methods with some kind of a context object,
so that these methods could monitor and gain access to our application. This can also
allow our application to get some feedback from the execution of the interceptor
methods. But for our needs it’s sufficient to implement the interceptor methods with
no input parameters.

 After release 4.5, tests in JUnit are executed in a block of statements. That block of
statements contains all the features a test might have attached: @Before/@After meth-
ods, timeout seconds, ignore features, and the like. Based on these features, different
kinds of actions are performed. The tricky part is that the @Before/@After methods
are very near the border of the block, and the actual execution of the test is the core
of the block of statements (see listing B.2).

 Our idea is to wrap the block of statements in another statement that we imple-
ment (InterceptorStatement) and pass this statement to the custom runner we
write. The custom runner invokes the block of statements, which reaches our state-
ment at some point, and then our statement starts executing the interceptors we’ve
defined. Then our statement invokes the wrapped block of statements in order to pro-
ceed with the execution in a normal manner. This way, we serve the Interceptor-
Statement as the delegate object of the Interceptor pattern.

 Moving on, listing B.2 presents the InterceptorStatement we use for our
own runner.

[...]
import org.junit.runners.model.Statement;

 public class InterceptorStatement extends Statement {

 private final Statement invoker;
 private List<Interceptor> interceptors =
 new ArrayList<Interceptor>();

 public InterceptorStatement(Statement invoker) {
 this.invoker = invoker;
 }

Listing B.1 Interceptor interface defining the methods for any of our interceptors

Listing B.2 InterceptorStatement that wraps the original statement

 B

 B C

 D

 E

427Implementing a custom runner
 @Override
 public void evaluate() throws Throwable {
 for (Interceptor interceptor:interceptors) {
 interceptor.interceptBefore();
 }

 invoker.evaluate();

 for (Interceptor interceptor:interceptors) {
 interceptor.interceptAfter();
 }
 }

 public void addInterceptor(Interceptor interceptor) {
 interceptors.add(interceptor);
 }
}

As we already discussed, after JUnit 4.5 every test is executed by a block of statements.1

Here we create our InterceptorStatement by extending the Statement object B,
and we override the evaluate method F. Our statement holds a statement to invoke

C and a list of Interceptor implementations D that were added to it J. In the con-
structor we initialize the invoker statement E that we’re wrapping. The evaluate
method F implements the entire logic of the statement; it iterates over all the inter-
ceptors and invokes their interceptBefore method G. Next we invoke the evaluate
method of the wrapped statement object H and again iterate over all the interceptors,
this time to invoke the interceptAfter method I.

 Now that we’ve prepared the InterceptorStatement object, it’s time to move
on and implement the real heart of the custom JUnit runner that we’re making. We
do this by extending the BlockJUnit4ClassRunner class, as shown in listing B.3,
which was added in version 4.5 of the JUnit framework to help people create cus-
tom runners.

[...]
import org.junit.runners.BlockJUnit4ClassRunner;

public class InterceptorRunner extends BlockJUnit4ClassRunner {

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.TYPE)
 public @interface InterceptorClasses {

 public Class<?>[] value();

 }

 public InterceptorRunner(Class<?> clazz) throws InitializationError {
 super(clazz);
 }

1 For more on this topic you can read an article by Kent Beck here: http://threeriversinstitute.org/
TwoMoreImplementationPatterns.htm.

Listing B.3 Custom JUnit runner—InterceptorRunner

 F

 G

 H

 I

 J

 B

 C

 D

 E

http://threeriversinstitute.org/TwoMoreImplementationPatterns.htm.
http://threeriversinstitute.org/TwoMoreImplementationPatterns.htm.

428 APPENDIX B Extending the JUnit API with custom runners and matchers
 @Override
 public Statement methodInvoker(FrameworkMethod method, Object test) {
 InterceptorStatement statement = new InterceptorStatement(
 super.methodInvoker(method, test));
 InterceptorClasses annotation = test.getClass().getAnnotation(
 InterceptorClasses.class);
 Class<?>[] klasez = annotation.value();
 try {
 for (Class<?> klaz : klasez) {
 statement.addInterceptor((Interceptor) klaz.newInstance());
 }
 }
 catch (IllegalAccessException ilex) {
 ilex.printStackTrace();
 }
 catch (InstantiationException e) {
 e.printStackTrace();
 }
 return statement;
 }
}

As we just said, in order to implement a custom JUnit runner we need to extend the
BlockJUnit4ClassRunner B. In our custom runner we also declare an annotation
called @InterceptorClasses at C, which we use to hold the implementations of the
Interceptor interface that we want to plug into our execution. Our @Interceptor-
Classes annotation defines a value() method, to return the classes that it holds at

D. In E we define the constructor that we must have, and in F we override the
methodInvokerStatement method. We start the method by creating an instance of our
InterceptorStatement at G.

 Notice that the InterceptorStatement we wrote in listing B.2 accepts a statement
to wrap around. We create this statement by calling the super.methodInvoker method
with parameters: our test method and the test class. This creates a Statement one level
closer to the core of the statement block. And because the core of the statement block
is the test itself, we wrap the test in our custom statement.

 At H we obtain the @InterceptorClasses annotation, which must be defined
for the test class. Then, in I, we get all the classes that the annotation holds, iter-
ate over the collection of classes, and add them to the InterceptorStatement object
at J. The last step is to return our ready-made InterceptorStatement object .

 Our custom JUnit runner is finished! But in order to use it we need some sample
implementations of the Interceptor interface. Here comes the real question: “What
kind of events do we want to plug into the execution of the tests?”

 One of the simplest implementations that could possibly come to mind is a logging
implementation; we log a message before and after execution of every test. Listing B.4
contains the code for this interceptor.

 F

 G

 H I

 J

 1)

1)

429Implementing a custom runner
[...]
public class SampleLoggingInterceptor implements Interceptor {

 public void interceptBefore() {
 System.out.println("Before-test");
 }

 public void interceptAfter() {
 System.out.println("After-test");
 }
}

This implementation is simple, but it’s enough for what we currently need. The code
implements the Interceptor interface B (to make it a valid interceptor according
to our terms) and gives body to the interceptBefore C and interceptAfter meth-
ods D.

 We use our interceptor in conjunction with our InterceptorRunner. And we
use our JUnit runner just like we use any other JUnit runner. Let’s examine it in
listing B.5.

[...]

@RunWith(InterceptorRunner.class)
@InterceptorClasses(value = { SampleLoggingInterceptor.class })
public class TestCustomRunnerWithLoggingInterceptor {
 @Before
 public void setUp() {
 System.out.println("Real before");
 }

 @Test
 public void testDummy() {
 assertTrue(true);
 System.out.println("Some text for test purpose");

 }

 @After
 public void tearDown() {
 System.out.println("Real after");
 }
}

The test case we provide starts with the @RunWith annotation. With this annotation we
indicate which JUnit runner we want to execute our tests; in this case we want the
InterceptorRunner that we just implemented B. We also provide an @Interceptor-
Classes annotation to hold the interceptors we want to plug into our execution C.
Then we start implementing our test case. In this scenario we have only one test
method, defined just for testing purposes D.

Listing B.4 First interceptor—SampleLoggingInterceptor

Listing B.5 Executing a test case using our custom runner

 B

 C D

 B

 C

 D

430 APPENDIX B Extending the JUnit API with custom runners and matchers
 The results from the execution are shown here:

Real before
Before-test
Some text for test purpose
After-test
Real after

What’s obvious is that the @Before methods are executed before the intercept-
Before method of the interceptor, and the @After methods are executed after the
interceptAfter method. We’ll use this feature shortly.

 But let’s move on and make another interceptor, this time more valuable than just
logging some text to the screen. Listing B.6 shows a sample interceptor that’s used for
timing purposes.

[...]
public class SampleTimingInterceptor implements Interceptor {
 Timer timer = new Timer();

 public void interceptBefore() {
 System.out.println("Interceptor started.");
 timer.start();
 }

 public void interceptAfter() {
 timer.stop();
 System.out.println("Interceptor ended.”
 + “The test executed for " + timer.time());
 }

 class Timer {
 private long nanoStart = 1;
 private long nanoEnd = 0;

 void start() {
 nanoStart = System.nanoTime();
 }

 void stop() {
 nanoEnd = System.nanoTime();
 }

 long time() {
 return nanoEnd - nanoStart;
 }
 }
}

Again, for this interceptor to be a valid interceptor according to our terms, it needs
to implement the Interceptor interface B. In C we declare a local timer vari-
able of type Timer, which we use to time the execution of the test method. The

Listing B.6 Second interceptor—SampleTimingInterceptor

 B

 C

 D
 E

431Implementing a custom runner
interceptBefore method starts the timer D, and the interceptAfter method
stops it and prints the execution time on the screen E.

 Now we need a test case for this interceptor. And here it comes—listing B.7.

[...]
@RunWith(InterceptorRunner.class)
@InterceptorClasses(SampleTimingInterceptor.class)
public class TestCustomRunnerWithTimingInterceptor {
 @Before
 public void longSetUp() throws InterruptedException {
 Thread.sleep(1000);
 }

 @Test
 public void testDummy() throws InterruptedException {
 Thread.sleep(2000);
 assertTrue(true);
 }

 @After
 public void longTearDown() throws InterruptedException {
 Thread.sleep(1000);
 }
}

We take the same approach as we used for the last interceptor test case: declare the
runner we use with the @RunWith annotation B and specify at C which interceptor
classes we use by means of the @InterceptorClasses annotation.

 You might be wondering why we need these interceptors; they simply execute some
common logic before/after the tests (the same way the @Before/@After methods do).
The point is that sometimes it’s hard to determine how much time is required for a
test method to execute. In our case we have the longSetUp() and longTearDown()
methods (at D), which also could take a lot of time, thus making it harder to deter-
mine the execution time of the testDummy() method itself. Because our timing
interceptor keeps track of the execution time for the test methods only (the
interceptBefore method is executed after the @Before methods, and intercept-
After is executed before the @After methods), this makes it a perfect candidate to
solve our problem.

 Upon executing the test case, we should see something like the following in
the console, despite the fact that the JUnit runner might show a different value
(figure B.1).

Interceptor started.
Interceptor ended. The test executed for 2 sec.

Listing B.7 Test case for the timing interceptor

 B
 C

 D

432 APPENDIX B Extending the JUnit API with custom runners and matchers
B.3 Implementing a custom matcher
As you write more and more tests, you’ll see that sometimes it’s difficult to read an
assert statement at first glance. For instance, consider this one:

assertTrue(user.getContext().getPassword().size() >= 6
 && containsADigit(user.getContext().getPassword()));

No matter how familiar you are with the code, you’ll always need a few seconds to
understand the assert statement. One way to simplify it is by introducing a new
method (like the containsADigit method we added). Another way is to add Ham-
crest matchers; that will greatly simplify the assert statement. But we might use this
assert statement a lot in our tests, and it’s very cumbersome to copy and paste the
same long assert everywhere. Wouldn’t it be great if there was a way to implement a
custom Hamcrest matcher, so that the assert statement would be simplified?

 Fortunately, there is a way, and that’s exactly what we show next. We start by imple-
menting a simple matcher that checks whether a given string is null or empty. Listing
B.8 shows the code for the matcher.

[...]
import org.hamcrest.BaseMatcher;
import org.hamcrest.Description;
import org.hamcrest.Factory;
import org.hamcrest.Matcher;

public class IsNotNullOrEmpty extends BaseMatcher<String> {

 public boolean matches(Object string) {
 String str = (String) string;
 return (str != null) && !str.equals("");
 }

Listing B.8 Our first Hamcrest matcher implementation

Figure B.1 The JUnit test runner shows that it takes 4.375 seconds to execute the whole test (with
@Before and @After methods).

 B

 C

433Implementing a custom matcher
 public void describeTo(Description description) {
 description.appendText("a string that is not null and not empty");
 }

 @Factory
 public static <T> Matcher<String> isNotNullOrEmpty() {
 return new IsNotNullOrEmpty();
 }

 @Factory
 public static <T> Matcher<String> notNullOrEmpty() {
 return new IsNotNullOrEmpty();
 }

}

Basically, if we want to create a custom matcher, we need to extend one of the two
classes BaseMatcher<T> or TypeSafeMatcher<T>. In this listing, we extend the first
one B. Next, we override the matches method C, and we implement our logic on
what occasion the matcher will match the conditions; our condition is matched suc-
cessfully if the string parameter to which it is applied is not null and is different from
an empty string.

 Here comes the difference between BaseMatcher<T> and TypeSafeMatcher<T>. As
you’ll see later, if you extend TypeSafeMatcher<T>, then you’ll have to override
another method with the signature

protected boolean matchesSafely(T item);

This means that the method that has to implement our logic can never accept a null
object. It will always accept a parameter of type T, which has already been checked for
null value and can never be null. We want to implement this check, however, so we
stick with the BaseMatcher<T> class.

 In D we append a description for the matcher. This description is used in our test
cases in case the matcher can’t match the condition. In E we provide two factory
methods (denoted by the @Factory annotation). We call these methods from our test
cases to create an instance of our matcher. We provide two methods, only for readabil-
ity purposes; sometimes it will be more readable to call one of them and sometimes
the other.

 Listing B.9 shows the corresponding test class that uses our test methods.

[...]

import static com.manning.junitbook.appD.custom.matchers
 .IsNotNullOrEmpty.isNotNullOrEmpty;
import static com.manning.junitbook.appD.custom.matchers
 .IsNotNullOrEmpty.notNullOrEmpty;

public class TestStringIsNullUsingMatcher {

 @Test(expected=java.lang.AssertionError.class)
 public void testIsNotNullOrEmptyButIsNull() {

Listing B.9 Test class to demonstrate the IsNotNullOrEmpty matcher

 D

 E

 B

 C

434 APPENDIX B Extending the JUnit API with custom runners and matchers
 String str = null;

 assertThat(str, isNotNullOrEmpty());
 assertThat(str, is(notNullOrEmpty()));
 }

 @Test(expected=java.lang.AssertionError.class)
 public void testIsNotNullOrEmptyButIsEmpty() {
 String str = "";

 assertThat(str, isNotNullOrEmpty());
 assertThat(str, is(notNullOrEmpty()));
 }

 @Test
 public void testIsNotNullOrEmptyIsNotNull() {
 String str = "test";
 assertThat(str, isNotNullOrEmpty());
 assertThat(str, is(notNullOrEmpty()));
 }
}

All we need to do is use the static import feature of Java 1.5 and import the matcher
that we want to use B. After that, we implement three test methods using the custom
matcher we just implemented. The first two deliberately test failing conditions, and we
denote this with the expected parameter of the @Test annotation C. We also use the
two factory methods D, the second one in conjunction with one of the core matchers
of Hamcrest.

 Now we demonstrate another example of making a custom matcher, this time by
using TypeSafeMatcher<T>. For this case, we implement a custom Hamcrest matcher,
which checks to see if a given password is valid. We consider the password to be valid if
it’s longer than six characters, contains a digit, and also contains a special symbol (any
of the following: !, ", #, $, %, &, ', (,), *, +, -, ., /).

 Listing B.10 shows our custom Hamcrest matcher.

[...]
public class IsStrongPassword extends TypeSafeMatcher<String> {
 @Override
 public boolean matchesSafely(String str) {
 return containsSpecialSymbol(str)
 && containsDigit(str)
 && str.length() >= 6;
 }

 private boolean containsDigit(String str) {
 for (char ch : str.toCharArray()) {
 if (Character.isDigit(ch)) {
 return true;
 }
 }
 return false;
 }

Listing B.10 IsStrongPassword custom matcher

 D

 B

 C

 D

435Implementing a custom matcher
 private boolean containsSpecialSymbol(String str) {
 for (char ch : str.toCharArray()) {
 if (((int) ch) <= 47 && ((int) ch) >= 33) {
 return true;
 }
 }
 return false;
 }

 public void describeTo(Description description) {
 description.appendText("string that contains”
 + "a digit, a special character and is at least 6 symbols");
 }

 @Factory
 public static <T> Matcher<String> isStrongPassword() {
 return new IsStrongPassword();
 }

 @Factory
 public static <T> Matcher<String> strongPassword() {
 return new IsStrongPassword();
 }
}

We start the implementation of our custom matcher by extending the TypeSafe-
Matcher class B. This is the second way to create a matcher.

 In C we override the matchesSafely method and implement our code logic on
what occasion the matcher should match the condition. In our case, the condition is
that the password be longer than six characters and contain a digit and a special sym-
bol. D and E are two helper methods that we use to validate the password.

 The matchesSafely method will never accept a null value. If that occurs, the
matcher will throw a java.lang.AssertionFailedError exception—something that
we strive for (a password can never be null).

 The describeTo method F appends a description for our matcher to show in the
log in case the condition does not match. Next, in G and H we provide two static
factory methods that construct an instance of our matcher. We provide two meth-
ods instead of one because sometimes it’s more readable to use one name rather
than the other.

 Let’s see our matcher in action! It’s time to create a test case and use the
matcher. Listing B.11 shows the code. The results from the execution are shown in
figure B.2.

 E

 F

 G

 H

436 APPENDIX B Extending the JUnit API with custom runners and matchers
[...]
import static org.hamcrest.core.Is.is;
import static com.manning.junitbook.appD.custom.matchers.
 IsStrongPassword.isStrongPassword;
import static com.manning.junitbook.appD.custom.matchers.
 IsStrongPassword.strongPassword;

public class TestIsPasswordStrongUsingMatcher {

 @Test
 public void testIsPasswordStrongIsStrong() {
 final String pass = "!abcde0";

 assertThat(pass, isStrongPassword());
 assertThat(pass, is(strongPassword()));
 }

 @Test(expected = java.lang.AssertionError.class)
 public void testIsPasswordStrongTooShort() {
 final String shortPass = "abcde";

Listing B.11 Test case using our custom matcher

Figure B.2 Results from executing the tests, including the custom matcher

 B

 C

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

437Implementing a custom matcher
 assertThat(shortPass, isStrongPassword());
 assertThat(shortPass, is(strongPassword()));
 }

 @Test(expected = java.lang.AssertionError.class)
 public void testIsPasswordStrongContainsNoSpecialCharacter() {
 final String noSpecialCharacterPass = "abcdef0";

 assertThat(noSpecialCharacterPass, isStrongPassword());
 assertThat(noSpecialCharacterPass, is(strongPassword()));
 }

 @Test(expected = java.lang.AssertionError.class)
 public void testIsPasswordStrongContainsNoDigit() {
 final String noDigitPass = "abcdef!";

 assertThat(noDigitPass, isStrongPassword());
 assertThat(noDigitPass, is(strongPassword()));
 }

 @Test(expected = java.lang.AssertionError.class)
 public void testIsPasswordStrongIsNull() {
 final String nullPass = null;

 assertThat(nullPass, isStrongPassword());
 assertThat(nullPass, is(strongPassword()));
 }

}

In B we import the matchers that we want to use as static imports. Notice that we
import our matchers the exact same way as we would any of the Hamcrest core match-
ers. Then we can use any of them, again as we would any Hamcrest matcher C.

 The code is nice and clear now, isn’t it?

appendix C:
The source code for

the book

This appendix gives an overview of the book’s source code, where to find it, how to
install it, and how to run it. When we were writing this book, we decided to donate
all of the book’s source code to the Apache Software Foundation, because we used
many Apache frameworks in the making of this book. Therefore, we’ve made our
source code available as open source on SourceForge at http://junitbook.sourceforge.
net/junit2/.

 We’re also committed to maintaining this source code and fixing it if bugs are
found, as a standard open source project. In addition, a Manning author forum has
been set up for discussing the code at http://www.manning-sandbox.com/forum.
jspa?forumID=502.

This appendix covers
■ Installing the book’s source code
■ Software versions required
■ Directory structure conventions
438

http://junitbook.sourceforge.net/junit2/
http://www.manning-sandbox.com/forum.jspa?forumID=502
http://www.manning-sandbox.com/forum.jspa?forumID=502
http://junitbook.sourceforge.net/junit2/

439Source code overview
C.1 Getting the source code
There are two possibilities for getting the source code on your local machine:

■ Download a released version from http://sourceforge.net/project/showfiles.
php?group_id=68011 and unzip it somewhere on your hard drive.

■ Use an SVN client and get the source from SVN HEAD. Getting the source from
SVN is explained at http://sourceforge.net/svn/?group_id=68011. Either way,
place the source code in a local directory named junitbook2/ (for example,
C:\junitbook2 on Windows or /opt/junitbook2 on UNIX).

C.2 Source code overview
Once you put the source code in the junitbook2/ directory, you should have the
directory structure shown in figure C.1. Each directory represents the source code for
a chapter of the book (except the repository/ directory, which contains external JARs
required by the chapter projects). The mapping between chapter names and direc-
tory names is listed in table C.1.

 Each directory maps directly to a project. A project is a way to regroup Java
sources, test sources, configuration files, and so on under a single location. A project

Figure C.1 Directory structure for the source code, shown here in Windows Explorer. (Note that
the directory and file icons are decorated by the TortoiseSVN client.)

http://sourceforge.net/project/showfiles
http://sourceforge.net/svn/?group_id=68011

440 APPENDIX C The source code for the book
also has a build, which lets you perform various actions such as compiling the code,
running the tests, and generating the Javadoc. We use various build tools (Ant and
Maven) for the different projects, as explained in the chapter matching each project.

C.3 External libraries
You may have noticed a directory named repository/ in figure C.1. It contains the dif-
ferent external libraries (JARs) that all the other projects need in order to compile
and run. As a convenience, we make them readily available to prevent you from hav-
ing to fish for them all over the Net.

C.4 JAR versions
Table C.2 lists the versions of all external JARs and applications used in the projects.
We recommend using these versions when you try the book examples.

Table C.1 Mappings between chapter names and source directory names

Chapter name Directory name

Chapter 1: JUnit jump-start junitbook2/ch01-jumpstart/

Chapter 2: Exploring core JUnit junitbook2/ch02-internals/

Chapter 3: Mastering JUnit

Chapter 4: Software testing principles

Chapter 5: Test coverage and development junitbook2/ch05-coberturra/

Chapter 6: Coarse-grained testing with stubs junitbook2/ch06-stubs/

Chapter 7: Testing with mock objects junitbook2/ch07-mocks/

Chapter 8: In-container testing junitbook2/ch08-incontainer/

Chapter 9: Running JUnit tests from Ant junitbook2/ch09-ant/

Chapter 10: Running JUnit tests from Maven2 junitbook2/ch10-maven/

Chapter 11: Continuous integration tools

Chapter 12: Presentation-layer testing junitbook2/ch12-gui/

Chapter 13: Ajax testing junitbook2/ch13-ajax/

Chapter 14: Server-side Java testing with Cactus junitbook2/ch14-cactus/

Chapter 15: Testing JSF applications junitbook2/ch15-jsfunit/

Chapter 16: Testing OSGi components junitbook2/ch16-osgi/

Chapter 17: Testing database access junitbook2/ch17-dbunit/

Chapter 18: Testing JPA-based applications junitbook2/ch18-jpa/

Chapter 19: JUnit on steroids junitbook2/ch19-steroids/

441Directory structure conventions
C.5 Directory structure conventions
For each project, we followed the directory conventions listed in table C.3.

Table C.2 External JAR/application versions (sorted in alphabetical order)

External project name Version Project URL

Ant 1.7.1 http://ant.apache.org/

Cactus 1.8.1 http://jakarta.apache.org/cactus

Commons BeanUtils http://commons.apache.org/

Commons Collections http://commons.apache.org/

Commons HttpClient http://commons.apache.org/

Commons Logging http://commons.apache.org/

DBUnit 1.5.5 http://dbunit.sourceforge.net/

EasyMock 1.0 http://easymock.org/

Eclipse 3.5.2 http://eclipse.org/

HttpUnit 1.5.3 http://httpunit.sourceforge.net/

Jakarta Taglibs/JSTL 1.0.2 http://jakarta.apache.org/taglibs/

JBoss 4.2.1 http://jboss.org/

Jetty 7.0.0.pre5 http://jetty.mortbay.org/

JUnit 4.6 http://junit.org/

Maven 2.0.10 http://maven.apache.org/

MockObjects 0.09 http://mockobjects.com/

ServletAPI 2.5 http://repo1.maven.org/maven2/javax/servlet/

Tomcat 6.0.14 http://tomcat.apache.org/

Table C.3 Directory structure conventions

Directory name Explanation

<project name>/src/main/java Java runtime sources.

<project name>/src/test/java Java test sources.

<project name>/src/main/webapp Web app resources (JSPs, web.xml, taglibs, and so on).

<project name>/src/main/conf Configuration files (if any).

<project name>/target Directory created by the build process (Ant or Maven) to
store generated files and temporary files. It can be safely
deleted, because it’s re-created by the build.

http://ant.apache.org
http://jakarta.apache.org/cactus
http://commons.apache.org
http://commons.apache.org
http://commons.apache.org
http://commons.apache.org
http://dbunit.sourceforge.net
http://easymock.org
http://eclipse.org
http://httpunit.sourceforge.net
http://jakarta.apache.org/taglibs
http://jboss.org
http://jetty.mortbay.org
http://junit.org
http://maven.apache.org
http://mockobjects.com
http://repo1.maven.org/maven2/javax/servlet
http://tomcat.apache.org

appendix D:
JUnit IDE integration

In this appendix, you’ll get to know the two most popular Java IDEs: the Eclipse IDE
and the NetBeans IDE. We cover installation procedures, configuration, and how to
run the book’s source code from within the IDEs.

D.1 JUnit integration with Eclipse
This section serves as a quick start to get you up and running with Eclipse and with
the integrated JUnit.

This appendix covers
■ Installing Eclipse and NetBeans
■ Setting up the book’s source code in Eclipse

and NetBeans
■ Running JUnit tests in Eclipse and NetBeans
442

443JUnit integration with Eclipse
D.1.1 Installing Eclipse

Installing Eclipse is very simple; the process consists of downloading Eclipse from
http://eclipse.org/ and then unzipping it to somewhere on your hard drive. We rec-
ommend downloading Eclipse 3.2 or greater. In the remainder of this appendix, we
assume Eclipse is installed in [ECLIPSE_HOME] (for example, C:\eclipse-3.2).

D.1.2 Setting up Eclipse projects from the source

It’s extremely easy to set up an Eclipse project, because we provide the Eclipse project
files with the book’s source code distribution. Please refer to appendix C, “The source
code for the book,” for directory structure organization and project names.

 The first Eclipse project to import corresponds to the ch01-jumpstart/ directory.
This project contains the source code for the first chapter of the book. To import this
project, select File > Import and then select Existing Project Into Workspace. Point
the Project Content to the ch01-jumpstart/ directory on your hard disk.

 Repeat the process for all the proj-
ects you wish to see in your Eclipse
workspace. If you import all the proj-
ects, you should end up with the work-
space shown in figure D.1.

D.1.3 Running JUnit tests from Eclipse

To run a JUnit test in Eclipse, select the
Java perspective (), click the test
class to execute, click the Run As icon
arrow (), and select JUnit Test. Fig-
ure D.2 shows what you get if you run
the TestWebClient1 test case found in
the ch05-stubs Eclipse project from
chapter 5.

 For full details on how to run JUnit
tests from Eclipse, please see the inte-
grated Eclipse Help: Click Help > Help
Contents. Then, in the Help browser,
select the following topic: Java Develop-
ment User Guide > Getting Started >
Basic Tutorial > Writing And Running
JUnit tests.

Figure D.1 Eclipse workspace when all the book
projects have been imported

http://eclipse.org

444 APPENDIX D JUnit IDE integration
D.1.4 Running Ant scripts from Eclipse

Before running Ant scripts, make sure you’ve added the Ivy ivy.jar library to your Ant
classpath (it’s needed by our Ant scripts). To do so, select Window > Preferences, choose
Ant > Runtime in the Preferences dialog box, and add the JAR, as shown in figure D.3.

Figure D.2 Running the TestWebClient1 test case in Eclipse using the built-in JUnit plug-in

Figure D.3 Adding the JDK ivy-[version].jar to the Ant classpath in Eclipse

445JUnit integration with Eclipse
To execute a target from an Ant buildfile, first tell Eclipse to display the Ant view by
clicking the Window > Show View menu item and selecting Ant. Figure D.4 shows
the result.

 Then, click the icon to add a buildfile to the Ant view. For example, add the
build.xml file from the ch06-stubs project. The Ant view now lists all the Ant targets it
has found in the build.xml file, highlighting the default target (see figure D.5).

 To execute a target, select it and click the button. Figure D.6 shows the result of
executing the compile target. Note that Eclipse captures the Ant output and displays
it in the console view at the bottom right of the figure.

Figure D.4 Eclipse displays the Ant view.
Figure D.5 The Ant view displays all the Ant
targets found in build.xml.

Figure D.6 Result of executing the compile Ant target for the ch09-ant project

446 APPENDIX D JUnit IDE integration
For full details on how to run Ant scripts from Eclipse, please see the integrated
Eclipse Help; click Help > Help Contents. Then, in the Help browser, select the fol-
lowing topic: Workbench User Guide > Getting Started > Ant & External Tools Tuto-
rial > Eclipse Ant Basics.

D.2 Introducing the JUnitMAX Eclipse plug-in
Kent Beck, one of the creators of JUnit, started another Eclipse plug-in called JUnitMAX
(http://www.threeriversinstitute.org/junitmax/subscribe-w-infinitest.html). JUnitMAX
requires a $2 monthly subscription, but it offers quite a few features that you might
find interesting.

 Let’s take another look at the very first test case that we introduced in this book
(listing D.1).

public class CalculatorTest {
 @Test
 public void add() {
 Calculator calculator = new Calculator();
 double result = calculator.add(10, 50);
 assertEquals(60, result, 0);
 }
}

D.2.1 Integrated in your development cycle

One of the main features of JUnitMAX is that it’s tightly integrated in your develop-
ment cycle. For instance, let’s get an Eclipse with JUnitMAX installed and type in the
code from listing D.1. Now let’s deliberately introduce an error inside the test. After
you press Ctrl+S to save your file, Eclipse will compile it, and JUnitMAX will run the
test for you, showing you the error we just introduced (figure D.7).

 The test errors and failures are shown as compilation problems. You can also see
them on a project level in the package explorer; this way the risk of missing them and
committing broken tests is almost zero.

 Now it’s time to fix the error and save the document. The result is shown in fig-
ure D.8.

 You see that the plug-in ran our test again and flagged it with a blue icon to denote
that it passed.

Listing D.1 The CalculatorTest case

Figure D.7 Introducing an error in our test case causes JUnitMAX to execute the tests and report the
error as a red marker at the beginning of the line.

http://www.threeriversinstitute.org/junitmax/subscribe-w-infinitest.html

447JUnit integration with NetBeans
JUnitMAX runs your tests during development time, thus saving you the time required
to explicitly run your tests through a separate interface—Ant, Maven, or some other
graphic runner.

D.2.2 Execution order

Another neat feature of this JUnit plug-in is the special order in which different tests
are executed.

 Tests don’t fail at random. Recently failed tests are more likely to fail again. When
you execute your tests with the JUnitMAX plug-in, it will take note of this and will run
your recently failed tests first. This way, you get valuable feedback on the status of your
tests very early in the running phase. The plug-in also executes your short tests before
longer ones, again giving you valuable information early.

D.2.3 Reverting to last stable version

One of the most annoying problems is someone committing code in the source repos-
itory that breaks existing functionality—obviously he forgot to run his set of tests. We
can detect possible problems early by using a continuous integration system like the
ones we explored in chapter 10. Obviously, we need some time to see why the things are
breaking down. But how do we know what the last stable version of a test was? How do
we easily revert to the last version of our test case in which all the tests passed?

 One way is to check your version control logs. The JUnitMAX plug-in, however,
offers an easier solution to this problem. You right-click your test in the package
explorer of Eclipse and select the Revert To Last Green item. Nice, isn’t it?

D.3 JUnit integration with NetBeans
This section serves as a reference guide to how to work with the NetBeans IDE and
how to write, execute, and compose JUnit tests from within NetBeans.

D.3.1 Installing NetBeans

NetBeans installation requires several steps. First, you need to go to the download sec-
tion of the NetBeans website (http://www.netbeans.org/downloads/index.html). You
need to select from the upper-right corner of the page the platform on which you’ll
install the software as well as the type of installation you want. In this book we use the
6.5 version of the NetBeans project installed on Windows.

Figure D.8
Our test passes when we fix
the error and save the file.

http://www.netbeans.org/downloads/index.html

448 APPENDIX D JUnit IDE integration
 The second step consists of downloading the appropriate installer (for Windows
machines it’s an .exe wizard, and for UNIX it’s an .sh script). The last step is to follow
the wizard and actually install the software.

D.3.2 Setting up NetBeans projects from the source

Luckily enough, the NetBeans IDE recognizes the Eclipse configuration files, so you
can easily import any Eclipse project into NetBeans and start working. We used the
Eclipse IDE to develop the software that comes with the book, so if you want to import
it, all you have to do is follow these steps:

1 Click File > Import Project > Eclipse Project.
2 In the wizard that appears, browse to the folder that contains the workspace

with all the chapter projects.
3 Select the projects that you want to import (figure D.9).

Figure D.9 Import Eclipse projects into NetBeans.

449JUnit integration with NetBeans
D.3.3 Running JUnit tests from NetBeans

Once you import the projects into your workspace, we can demonstrate how to run
some of the tests there. Before we do that, there are several things to consider.

 First, take a closer look at any of the projects. You’ll see something like the tree
shown in figure D.10.

 These compilation problems are due to the fact that NetBeans, unlike Eclipse,
explicitly keeps two separate directories: one for the source files and one for the
test-source files. For each of these folders NetBeans keeps a different set of libraries
to include in the classpath. As you see in the figure, NetBeans detects src\test\java as
a source folder, and the source-folder classpath probably doesn’t contain the JUnit
JAR file. To see all the libraries that are included in the classpath, right-click your
project, choose Properties, and in the box that appears choose the Libraries tag
from the left tree. As you will see, the Compile Tests tab contains the JUnit JAR, so
indeed the compilation problems were caused by the fact that NetBeans recognizes
the folder as a source folder and not as a source-test folder.

 To solve this problem, again right-click your project, choose Properties, and in the
Sources tag remove your src\test\java folder from the Source Package Folders list and
add it to the Test Package Folders list. The final setup should look like the one shown
in figure D.11.

 To execute a JUnit test from within NetBeans, you need to make sure the test
resides in the correct folder (the test-source folder). Unlike Eclipse, NetBeans will
never execute a JUnit test if it resides in the source folder (if your class resides in the
source folder and you try to execute it, NetBeans will start looking for a main
method instead of running the class as a test). Given that you already made sure all
of your tests are located in the test-source folder, you have several options. Either
right-click inside the class and choose Run File (Shift+F6), or right-click the file
inside the Projects view and select Run File, or simply press Shift+F6. No matter what
method you use, the result should be similar to the screen shown in figure D.12.

Figure D.10
Compilation problems with NetBeans

450 APPENDIX D JUnit IDE integration
Figure D.11 Resolved source folders

Figure D.12 Result from executing a sample JUnit test case

451JUnit integration with NetBeans
D.3.4 Running Ant scripts from NetBeans

To run an Ant script from NetBeans, first you need to open the Files perspective. You
can do that by choosing the Window > Files menu. Then navigate to your project and
right-click the build.xml. There should be Run Target item in the context menu.
From there you can choose the targets that you want to execute. You can also specify
which of the targets should be your default target.
If you want to add additional libraries to the Ant installation, it’s good to know
that NetBeans uses its own Ant installation. You can add your additional JAR files
in the lib/ folder of the NetBeans Ant installation (normally this would be
[NETBEANS_INSTALLATION]/java2/ant/lib).

 Figure D.13 shows the output of the execution of an Ant build script in NetBeans.

Figure D.13 Results from executing the Ant script in NetBeans

appendix E:
Installing software

E.1 Installing HtmlUnit
Download HtmlUnit from http://htmlunit.sourceforge.net/ and unzip it to your
local drive. In our examples, we have unzipped it to C:\Java\htmlunit-2.7.

E.1.1 Standard configuration

Add all JAR files to the classpath except for the three XML libraries: XML-APIs,
Xalan, and Xerces. Starting with version 1.4.2, Java ships with an XML parser
and transformer (Apache Xalan). Because HtmlUnit ships with XML-APIs, Xalan,

This appendix covers
■ Installing HtmlUnit
■ Configuring Cactus with HtmlUnit
■ Installing Selenium
■ Installing RhinoUnit
■ Installing JsUnit
452

http://htmlunit.sourceforge.net

453Installing HtmlUnit
and Xerces, the version of these libraries must override the default Java versions
through the Java-endorsed mechanism.1, 2

 Move all XML libraries to a subdirectory of HTmlUnit-2.7/lib called endorsed. For
example, the lib directory should contain the following files:

commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-httpclient-3.1.jar
commons-io-1.4.jar
commons-lang-2.4.jar
commons-logging-1.1.1.jar
cssparser-0.9.5.jar
htmlunit-2.7.jar
htmlunit-core-js-2.7.jar
nekohtml-1.9.14.jar
sac-1.3.jar
serializer-2.7.1.jar

The directory lib/endorsed should contain these files:

xalan-2.7.1.jar
xercesImpl-2.9.1.jar
xml-apis-1.3.04.jar

Your classpath must list all JAR files in lib. In addition, you must add the following to
your Java VM invocation:

-Djava.endorsed.dirs=C:\Java\htmlunit-2.7\lib\endorsed

If you’re lucky enough to develop on Java 6, your command line classpath doesn’t
need to list each HtmlUnit JAR file; instead, it can contain

C:\Java\htmlunit-2.7\lib*

Starting with Java 6, at last you can use * to include all JAR files in a directory.

E.1.2 Eclipse configuration

In Eclipse, you must set up a JRE as shown in figure E.1.
 The two key items in this JRE configuration are as follows:

■ Default VM Arguments sets the endorsed path to our HtmlUnit lib/endorsed
directory.

■ JRE System Libraries lists the HtmlUnit lib/endorsed JAR files first.

Eclipse will automatically set up all other entries in the JRE System Libraries list.

1 For Java 5, see http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html.
2 For Java 6, see http://java.sun.com/javase/6/docs/technotes/guides/standards/.

http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html
http://java.sun.com/javase/6/docs/technotes/guides/standards

454 APPENDIX E Installing software
E.2 Configuring Cactus with HtmlUnit
HtmlUnit integration requires Cactus version 1.8 or greater and a container such as
Tomcat or Jetty. Depending on which container you pick, and the version of Cactus
and HtmlUnit, you might have to adjust your installation.

 Because Cactus 1.8.1 ships with HtmlUnit 1.6, you may want to update Cactus to
HtmlUnit 2.7 by copying the HtmlUnit JAR files over the ones provided by Cactus
and deleting htmlunit-1.6.jar. The HtmlUnit 2.7 HTML parser depends on the
Xerces and Xalan classes, so make sure you also make these JAR files available to
your web application or container.

 Chapter 12 introduces writing HtmlUnit tests in the Cactus framework and chap-
ter 14 dives into the details. For the details regarding the installation and manage-
ment of applications and tests within particular containers, we refer you to the
Cactus documentation. We wrote the examples in this chapter with Tomcat 6.0.18
and Cactus 1.8.1, and setup is per the Cactus installation guide.3

3 For Cactus and Tomcat setup, see http://jakarta.apache.org/cactus/integration/howto_tomcat.html.

Figure E.1 Setting up a JRE in Eclipse for HtmlUnit

http://jakarta.apache.org/cactus/integration/howto_tomcat.html

455Installing JsUnit
E.3 Installing Selenium
Download Selenium Remote Control (Selenium RC) from http://seleniumhq.org/
download/, unzip it to your local drive, and add the Selenium Java client driver to
your classpath. As of this writing, the current Selenium version is 1.0 Beta 2, and the
client JAR file is selenium-remote-control-1.0-beta-2\selenium-java-client-driver-1.0-
beta-2\selenium-java-client-driver.jar.

E.4 Installing RhinoUnit
RhinoUnit is a library of scripts used to run JavaScript unit tests from Ant, tested
here with Ant 1.7.1. If you’re running Java 6 or later, you don’t need any additional
setup because Java 6 includes the Java Scripting Framework (http://jakarta.apache.
org/bsf/) and the Mozilla Rhino JavaScript engine. So, for Java 5 and earlier, use
the following steps.

 The Ant script task is an optional task package with the core tasks. It requires
Apache BSF, which you can download from http://jakarta.apache.org/site/down-
loads/downloads_bsf.cgi. Unzip the download and copy the file bsf-2.4.0\lib\bsf.jar to
one of the Ant locations used for optional tasks as documented in Ant (http://
ant.apache.org/manual/install.html#optionalTasks), for example, in ANT_HOME/lib
to make the JAR file available to all Ant users and builds.

 Next, get the Mozilla Rhino JavaScript (http://www.mozilla.org/rhino/) engine
from http://www.mozilla.org/rhino/download.html. For Java 5, copy the file js.jar; for
Java 1.4.2, copy the file js-1.4.jar to an Ant location used for optional tasks.

 Apache BSF uses Apache Commons Logging, which has been included with Ant
since version 1.6. If you must use a version of Ant older than 1.6.x, you can download
Apache Commons Logging from http://commons.apache.org/logging/ and copy
commons-logging-1.1.1.jar to an Ant location used for optional tasks.

E.5 Installing JsUnit
You can find JsUnit at http://jsunit.net/. We’ve included in the source for chap-
ter 13 the build for version 2.2. This build is located in the jsunit directory in
the chapter 13 source.

http://seleniumhq.org/download/
http://jakarta.apache.org/bsf
http://jakarta.apache.org/bsf
http://jakarta.apache.org/site/down-loads/downloads_bsf.cgi
http://jakarta.apache.org/site/down-loads/downloads_bsf.cgi
http://ant.apache.org/manual/install.html#optionalTasks
http://ant.apache.org/manual/install.html#optionalTasks
http://www.mozilla.org/rhino
http://www.mozilla.org/rhino/download.html
http://commons.apache.org/logging
http://jsunit.net
http://seleniumhq.org/download/

index
Symbols

@After 31, 38, 370, 415
@AfterClass 31, 38, 92, 416
@Before 31, 38, 122, 370, 415
@BeforeClass 31, 38, 92, 416
@DataSet 350, 398
@Dummy 394
@ExpectedDataSet 398–399
@ForeignKey 385
@GeneratedValue 373
@Id 373
@Ignore 47, 417
@InterceptorClasses 428
@Mock 393, 396
@Parameters 18, 192–193, 217–

218, 420
@RunWith 18, 429, 431
@SuiteClasses 22
@Test 11, 15–16, 31, 34, 44, 122,

418
@TestDataSource 399
$CC_HOME content table 173
$CC_HOME start

command 176

A

AbstractDbUnitELTemplate-
TestCase 354

AbstractDbUnitTemplate-
TestCase 351

AbstractDbUnitTestCase 340,
344

AbstractJpaDbUnitTestCase 370

AbstractJpaTestCase 370, 387
Account.java 101
AccountService 100
AccountService.java 102
ActiveXObject, Ajax 230
add 6
addAccount 102
Administration application

Cactus 266
testing JSPs 273

Administrator application
architecture 277

AdminServlet, doGet 271
agile methodologies 55
Ajax 306

architecture 225
challenges 225
CSS 225
experimental 234
functional testing 227, 229–

234
HttpClient 247
interaction 225
JDOM 249
NicelyResynchronizingAjax-

Controller 234
synchronizing 233
testing 225–227
testing patterns 227–229
timeout 232
waitForBackgroundJavaScript

234
Ajax4jsf 306
AjaxController 233
album_details.jsp 298, 305–306
Album.java 294

AlbumDetailsBean 297
JMock testing 302

AlbumManager 295
AlertHandler 204
alerts

asserting 203
asserting none 204
custom handler 205
JavaScript 203, 220

allOf matcher 49
annotations

custom 350
EL test 355
UserDaoJdbcImplTest 351

Ant 137, 391
build file 139–140
build script 236
default target 141
Eclipse integration 444
installing 139–140
Java apps, and 138
JsUnit 242
NetBeans integration 451
property elements 140–143
running build file 144
running tests from 138–139
targets 140

Ant in Action 141
anyOf matcher 49
Anything matcher 49
Apache Ant. See Ant
Apache Commons 250

HttpClient 247
IO 247

Apache Felix. See Felix
Apache Ivy. See Ivy
457

INDEX458
API contract 5
Application Controller 26
applications, multilayered 366
archives, Cactus and 280
artifactId 161
assert 15, 17

cumbersome 47
sample table 15
simplify declaration 48

Assert class 15
HtmlUnit 191

assert statements 38
assertArrayEquals 16
assertArrayNotEquals 15
assertContains(List, Object) 402
assertEquals 11, 16, 38
assertGreater 402
assertions

BigDecimals 405
BufferedImages 405
clarity in testing 401
collections 405
custom extensions 407
entry point 405
errors 423
exceptions 405
files 405
Hamcrest 421
Mycila 407
new JUnit 422
RhinoUnit 235
testing 401–407
third-party 401
Unitils 403

assertNotEquals 401
assertNotNull 16
assertNotSame 15
assertNotTrue 15
assertReflectionEquals 404
assertSame 16, 38
assertStartsWith 403
assertThat 48, 405
assertTrue 16
assumptions 422
automatic test

creating 30, 40
suite 38

B

backwards compatible 72
base class

implementation 28
table of components 30

batchtest 149

Bean Scripting Framework,
Ajax 234

BeanUtils 269
beginXXX 262
best practices 8

always specify a reason for
skipping a test 47

always verify that the test fails
when it should fail 268

assertions helper 336
choose meaningful test

method names 34
continuous regression

testing 83
create complementary

tests 357
database testing 356–358
database tests 334
don’t hardcode values 342
don’t write business locic in

mock objects 103
EasyMock object creation 119
explain the failure reason in

assert calls 36
JSLint 245
let the test improve the

code 43, 45
make exception tests easy to

read 45
make sure target database is

tested 356
one database per

developer 356
one unit test equals one @Test

method 38
plan your dataset usage 357
refactor 55
same package, separate

directories 51
test anything that could possi-

bly fail 40
test cleanup 358
test only what can possibly

break 104
throw an exception for meth-

ods that aren’t
implemented 272

unit test one object at a
time 33

use TDD XP principles 269
when writing load test

cases 357
write failing tests first 80

black box testing 62
approaches 62

combining with white box
testing 71

coverage 68
JSF 301
vs. white box 62–63

bootstrappers 175
branches 45
browserbot 232
browsers 225

Ajax testing challenges 227
BSF. See Bean Scripting

Framework
build descriptor,

namespaces 161
build file 139–140

Ant 139
properties 141

build lifecycles 155
build phases 155
build.dir 154
build.xml 139

cactifyear 282
cactifywar 282
Cactus 280

buildresultsurl 178
BundleActivator 314
BundleContext 314
BundleID 316
business layer

interface 362
testing 361
unit testing 366

C

cactification 280
cactifyear 282
cactifywar 281
cactifyXXX 281
parameters 282

Cactus
Administration

application 266
AdminServlet 266
Ant integration 280–284
browser integration 290
Cactus tests vs. JUnit tests 261
cactus-report.xsl 290
callView 269, 271
Cargo and 279
client-side logic 263
configuring with

HtmlUnit 454
doGet 271
getCommand 267–268

INDEX 459
Cactus (continued)
HtmlPage, getting 208
HtmlUnit 206
HtmlUnit code

integration 223
introduction 260
isAuthenticated 261
Java component testing 260
JSP tests 273, 277
matching begin to end

method 207
Maven integration 285–289
plug-ins for Maven2 285
pom.xml 285
SampleServlet 262
servlet tests 266
ServletException 271
ServletTestCase 262, 275
ServletTestRunner 290
simple servlet 207
test case requirements 262
test lifecycle 263
TestAdminServlet 268
testCallView 270
testing 260–265
testing EJBs 277–279
testing servlets and

filters 265–273
unit testing JSPs 273
writing tests in 206

cactus task 283
Calculator 18
Calculator class 11, 312
calculator class creation 6–8
CalculatorBundleActivator 314
CalculatorService

interface 313
mock test 321
OSGi test 323
sample client app 316

CalculatorTest 22
test case 15

CalculatorTest program 7, 11
Cargo 279

Ant tasks 284
cargo task 284
central repository 154
CI. See continuous integration
Class Extension 119
class factory 111
clean 150
ClickableElement 200
ClientBundleActivator 316, 322

refactored 319
closeTo matcher 50

Cobertura 69–70
cobertura.ser 70
cobertura-report script 70
code

change resistant 104
flexibility 104–105
scaffolding 8
source code for book 439
testing 7

code coverage metrics 56
code smell 45
coding strategies 42
Collection 18
combining test methods 37–38
Common Public License 4
ComparableAssert 401
compile

Maven build phase 155
targets 142

compile.java 142
compile.test 142
Compiler plug-in 164
components 127

testing with Cactus 260
composition vs. inheritance 77
conditional statement 78
conditionals vs.

polymorphism 77
config.xml 174
connectfour 172
ConnectionFactory 112
console test runner 12
constructors

Car 74
simple, creating 73
working in 74

containers 127
continuous integration 279
executing test from 265
Java EE 279
management 279
transaction management 366
types of 127

containsString matcher 50
continuous integration 169–

172
benefits 184–185
containers 279
definition 170
module-first testing 171
modules and 170
scheme 171
software tool goals 171
vs. human execution 171

contracts 40, 72, 79

Controller 26–27
controller 26–30

Ajax 233
Controller pattern 25
convention over

configuration 153
CruiseControl 172–179

ad hoc user 172
build execution

frequency 176
build system 172
config file 173
control panel 177
email notification 178
execution result delivery 177
htmlemail notification 177
installation 172
notification aliases 178
sample project 173
website URL 172

CSS
Ajax and 225
testing 205

D

DAOs 399
debugging 380
implementation

approaches 361
JPA-based 379
lazy initialization 382
negative scenarios tests 381
testing 335
testing exceptions 382

data transfer objects 362
database

constraint 385
embedded 328
transactions 333

database container 130
database testing

best practices 356, 358
challenges 327–328
DAOs 327
integration tests 327
upper layers 327

datasets, asserting database
state 335–340

DbUnit 370
addUser 335
advanced techniques 347–

356
annotations 397
Assertion 336

INDEX460
DbUnit (continued)
avoiding repetition with

Template Method 347–
352

best practices 332
CLEAN INSERT 335
CLOSE CONNECTION

(operation) 335
connection 333
DAO interface 329
DatabaseOperation class 334
DatabaseSequenceFilter 347
datasets 330–335, 339, 374,

397
defining primary keys

dynamically 340
DELETE 334
DELETE ALL 335
dependencies 330
dynamic IDs 340
EL integration 353–356
EL support 354
empty.xml 350
example domain model 329
exporting dataset 347
FilteredDataSet 337, 347
handling NULL 342–345
ignoring columns 338
ignoring primary keys 339
importing from

database 346–347
INSERT 334
introduction 329–330
issues 331, 338, 342
logging 346
missing column issue 343
NONE 335
QueryDataSet 338
REFRESH 334
ReplacementDataSet 340, 344
sample application 329
SequenceTableFilter 338
Template Design Pattern 348
testAddUser 336, 339
testGetUserById 332
third-party tools 389, 397–401
trade-offs 345
TRANSACTION(operation)

335
transforming data 340–346
TRUNCATE 335
unitils.properties 400
UPDATE 334
user.dtd 345
user.xml 331

UserDaoJdbcImpl 331
user-EL.xml 356
user-ok.xml 342
user-reverted.xml 343, 345
users table 330–331
user-token.xml 340
using DTDs 345

Decorator pattern 338, 341
DefaultAccountManager 105
DefaultController 46

testing 30
DefaultSelenium 208
delta parameter 12
dependencies 161

reducing 72
separating code 73

dependency management 145,
154

repositories 145
deploy, Maven build phase 155
Design by Contract 5
design patterns

Controller 25
Decorator 338, 341
DTO 362
Façade 20
Inversion of Control 28, 106
Singleton 75
Template Method 348, 391,

395
development cycle 71, 169
development lifecycle

platforms 81–82
integration platform 81

development routine 138
directory structure

conventions for book 441
separate but equal 51

Document Object Model. See
DOM

doGet, test code 272
DOM 225

Ajax 226, 229–230, 233, 249
scripts 228

domain object 32
passing 105
trapdoor for controlling 106

don’t repeat yourself 336
doubles 6
DRY. See don’t repeat yourself
DTOs. See data transfer objects
dummy test method 31
duplication, eliminating 79
DynaBeans, JSPs and 274

E

EasyMock 117, 363
testing a servlet with 128
third-party tools 392

Eclipse 162, 212
Ant integration 444
code generation 256
Google Plug-in 251
installation 443
JUnit integration 442
JUnit test suite wizard 256
JUnitMAX 446
launch configuration 255
running JUnit tests from 443
testing with 256

EJB API 132
EJBs

AdministratorEJB 277
testing 277

EL. See Expression Language
ELContextImpl 354
ElementNotFoundException

198
embedded database 328, 367

cleanup 368
commit option 368
JavaScript 232
unit testing with 367

embedded web server 88
Jetty 89

encapsulation
bypassing in tests 407–411
reflection and 409

endsWith matcher 50
endXXX 274, 276
EntitiesHelper 336, 365, 373
EntityManager 366, 380, 399
EntityManagerFactory 370
environment 85

source-building 153
eq function 235
equals 204
equalToIgnoringCase

matcher 50
equalToIgnoringWhiteSpace

matcher 50
ErrorHandler, HtmlUnit 205
ErrorResponse 29
exception handling 40–45
exceptional conditions,

handling 41
exceptions

failing tests with 219
JavaScript 199

INDEX 461
exceptions (continued)
testing and JUnit 417
testing for 198

expectations 114
with EasyMock 118

expected behavior 56
Expression Language 353

ELFunctionMapperImpl 375
ID solution 374
integrating with DbUnit 354–

356
introduction 353

Extreme Programming rules 40,
43

The Simplest Thing That
Could Possibly Work 269

F

façade 20
Façade pattern 20
faces-config.xml 296
FacesContext 298
factorial function 235

tests 238
failing automatic tests 79
failure conditions, testing for 94
feature

core 6
overlap 390
program 6

Felix
bundle installation 315
bundles 312
junit command 324

FEST
accessing private members 411
assertions 405–406
EasyMock support 394–395
Fluent Assertions Module 405
introduction 390

FEST-Assert. See FEST, Fluent
Assertions Module

FEST-Mocks 394
FEST-Reflect 411

TestingHelper 411
FileAssert 403
fine-grained isolation 99
Firefox 211

JsUnit 244
JUnit tests 218
Selenium 208

foreign keys 385
forms

Ajax 231

example page 201
Selenium and 220
testing 200–201
validation 200

frames, testing 202
framework

Cactus 260
for Java 4
source-building 153

Front Controller 26
functional tests 54

Ajax 229, 233
as performance integration

tests 132
Selenium 229

functional unit test 61

G

generic methods 76
getAlert 220
getContent 86, 110
getHandler 32
getTestParameters 18
glass box testing 62
global state 74
Google Web Toolkit

asynchronous mode 255
callback 253
design 252
finish test 255
GWTTestCase 253–254
introduction 251–257
junitCreator 252
methods for overriding 256
remote procedure call 253
running a test suite 257
schedule 255
test case 253
test framework 251
test suite 256
TimeoutException 255

greaterThan matcher 50
greaterThanOrEqual

matcher 50
green bar 20

test run 20
groupId 161
Guice 391
GWT. See Google Web Toolkit
GWTTestCase 254

code generation 255
restrictions 256

H

haltonerror 143
haltonfailure 143
Hamcrest 47–48

assertions 421
extensible 50
matcher 432, 434
matchers 47–51

handler, adding 32
hasEntry matcher 50
hasItem matcher 50
hasItems matcher 50
hasKey matcher 50
hasProperty matcher 50
hasValue matcher 50
Heisenberg uncertainty

principle 111
Hevery, Miško 75
hibernate.properties 370
hidden dependencies 74
Hollywood Principle 28
HTML

focus 200
id 196
page title 221
parsing 208
reports 147–149

HTMLAnchor 308
htmlemail 178
HtmlPage

content access 195
frame support 202

HtmlUnit
Assert 191
Cactus and 206–208
Cactus integration 454
description 190
Eclipse configuration 453
element name 195
element reference 196
element types 195
example 191
exceptions 198
form testing 233
introduction 190–191
JavaScript and 203
JavaScriptJobManager 234
JSFUnit and 307
logging 199
navigation 199
object model 195
recommendation 222
standalone tests 193
standard configuration 452

INDEX462
HtmlUnit (continued)
synchronizing Ajax calls 234
testing for supported

browsers 192
testing multiple browsers 192
trailing slash 195
UnknownHostException 198
vs. Selenium 222
web browsers 192
web client 233
writing tests 191–205
XPath and 197

HTTP connection
HtmlUnit 193
mocking 107–113
sample 107–108
stubbing example 87

HTTP container 130
HttpClient 247–251
HttpServletRequest,

mocking 127
HttpUnit 276
HttpURLConnection 97
HttpURLConnectionFactory

112
Hudson 179–184

build triggers 182
configuration screen 181
configuring 180
home directory 180
installation 179
job home page 183
job-configuration screen 182
jobs 181
post-build triggers 183
project configuration 182
startup screen 180
website URL 179

I

ID
ELContextImpl 375
generators, testing 373
synchronization problem 374

IDEs
Eclipse 212
Selenium 208

iframes 202
IIS 247
impedance mismatch 327
Import-Package 317
in-container testing 126, 129–

130
Cactus 260

comparison with other
approaches 131–134

complex configuration 133
frameworks 130
implementation

strategies 129
longer execution time 133
mock objects solution 127–

129
mock objects, pros and

cons 131–132
no good IDE support 133
specific tools required 133
stubs, pros and cons 131
typical lifecycle 130
vs. out-of-container

testing 134
inheritance vs. composition 77
InputStream

expectation for close 115
mocking 114

install, Maven build phase 155
instanceOf matcher 49
integration test

Maven build phase 155
post-test 288
pre-test 286

integration unit test 61, 126,
366

testing interval 170
IntelliJ IDEA 162
Interceptor pattern 425
InterceptorRunner 427
interceptors

SampleLoggingInterceptor
429

SampleTimingInterceptor
430

test case 431
InterceptorStatement 426
interface 5

fluent 390, 411
Internet Explorer, and JUnit

tests 218
Internet Information Services.

See IIS
invalid URL, test for 94
Inversion of Control 28

applying to class 106
invocation-count 122
IOC. See Inversion of Control
is matcher 49
isAuthenticated 127
isCompatibleType matcher 49
isFalse function 236

isGreaterThan 406
isLessThan 406
isNull function 236
isTrue function 236
Ivy

adding to build file 145
dependency management

with 145–146
installation 145

ivy.xml 146
ivy-module 146

J

Jakarta Cactus. See Cactus
JARs, external versions 440
Java 5, annotations 350
Java 6 234

JsUnit 242
Java Community Process. See JCP
Java EE

application server 100
bypassing encapsulation 407
Cactus in-container

testing 261
containers 279
spec 292

Java EE container 366
for security 84

Java Persistence API 361, 385
commitment level 367
embedded database 367
entities mapping 371
ID integration 378
mapping, caveats 371
query, duplicated objects 383
Telephone class

definition 362
test case classes 378
testing DAOs 379
testing foreign keys 385
testing ID generators 373–

379
testing infrastructure 368–

371
testing strategies 367
testing transactions 373,

401
transaction management 366
transactions 367
User class definition 362
UserDao implementation 363
UserFacadeImpl 364

javac 141
Javadocs 140

INDEX 463
JavaScript
Ajax and 225, 228
alerts 203, 220–221
embedded database 232
event handler 225
failure 199
JsUnit 237
RhinoUnit 234
test functions 239
testing 203, 234–244

JavaScript Object Notation. See
JSON

JavaServer Faces. See JSF
JavaServer Pages. See JSPs
JCP 292
JDK, JUnit and 414
Jeffries, Ron 106
Jetty 89, 95, 177

Handler 91
JettySample 89

testing in browser 90
JMeter 59
JMock 117, 121, 396

mocking library 124
testing with 302

JPA. See Java Persistence API
JSF

application testing 301
black box testing 301
introduction 293–294
mocks and 302
performance testing 308
phases 309
sample application 294
static analysis 301
typical testing problems 300

JSFClientSession 304
JSFSession 304
JSFTimer 308–309
JSFUnit 301

Ajax testing 305
browser tests 305
HtmlUnit and 307
performance testing 308
RichFaces and 307
testing with 304

JSLint 245, 250
Ant 246
JSLintant 246
lint 251
RhinoUnit 235

JSLint4java, XML validation 250
JSON 247

JSLint 250
validating response 249

JSPs 273, 297
Cactus servlet test case 275
DynaBeans and 274
RichFaces and 299
unit testing 273

JsUnit 228
Aborted 242
addTestPage 240
addTestSuite 240
Ant 242
BUILD SUCCESSFUL 244
build.xml 242
console 244
Firefox tip 244
installation directory 243
installing 455
introduction 237
invocation order 239
jsunit_self_test 244
JsUnitTestSuite 240
jsUnitTestSuite.html 244
link href 238
log 244
recommendation 245
script src 238
server farm 244
setUp 239
setUpPage 239
setUpPageStatus 239
Status 242
suite 240
tearDown 239
test runner 241
test suites 239
testing manually 241
testRunner.html 240
tests 238
timeout 242
URL 244
vs. JUnit 239
vs. RhinoUnit 245

JsUnitTest 228
JsUnitTestSuite 240
JUnit 4–5

annotations 415
API changes 414
assertion errors 423
assumptions 422
benefits 13
Cactus 260
compatibility 414
constructors 414
custom matcher 432
design goals 9
download site 9

Eclipse integration 442
equals methods 204
exception testing 417
features 10–13
ignoring a test 417
jar 9
NetBeans integration 447
new assertions 421–422
overview 15–17
package structure

changes 414
reports with Maven 166
reports, future of 149
runners 419–421
setting up 9–10
static imports 415, 417
test method names 415
test runner 193, 419
test suites 419
third-party tools 390–391
version changes 413
vs. JsUnit 239

JUnit 3.x 413
JUnit 4.x 413
JUnit task 143
junit task, optional

component 144
junit.jar 145
junit-4.6 9
JUnit4OSGi 322

CalculatorService test 323
GUI runner 324
JUnit 3.x rules 324

JUnit4TestAdapter 414
JUnit-addons

accessing private members 410
assertions 401–403
introduction 390
list assertion 402
TestingHelper 410

junitCreator 255
JUnitMAX 446
junitreport 147

K

keyboard, navigation 200

L

Law of Demeter 74
lazy initialization

DAOs 382
exception 327

INDEX464
LENIENT_DATES 404
LENIENT_ORDER 404
lessThan matcher 50
lessThanOrEqual matcher 50
libraries, repository 440
List 49
ListAssertions 402
ListAvailableAlbumsBean 295
listeners 175

ELPostInsertEventListener
377

Hibernate 374, 376
setEntityManager and 377

local repository 155
locators, Selenium 219
log 175
logic unit test 61

M

managed-bean-class 296
ManagedSeleniumServer 213
MANIFEST.MF

calculator 315
for client app 317

mapping, unit tests 372
matchers 47, 49

BaseMatcher 433
custom 432, 436
Hamcrest 432
IsNotNullOrEmpty 433
IsStrongPassword 434
TypeSafeMatcher 433

matches function 235
matchesSafely 435
Maven 391

build directory 163
build lifecycles 155
build phases 155
Cactus tests and 285
Compiler plug-in 164
constraint framework 168
convention over

configuration 153
dependency

management 154
features 153–159
HTML JUnit reports and 166
installation steps 159
key principles 153
plug-ins, introduction 163–

167
plug-ins, list 156
Project Object Model 157
pros and cons 167

setting up project 159–163
Surefire plug-in 165
website URL 153, 166

Maven2 285
cactifyear 289
cactifywar 285
Cactus plug-in 1 285
Cactus plug-in 2 286
Cactus plug-in 3 288
cargo-maven2-plugin 287
maven-surefire-plugin 288
pre-integration phase 289

maven-compiler-plugin 164
configuring 164

maven-eclipse-plugin 162
maven-sampling 159

pom.xml for 160
maven-surefire-plugin 165
maven-surefire-report-

plugin 166
method factory 111
methodInvokerStatement 428
Microsoft

Msxml2.XMLHTTP 247
XMLHTTP 230, 247

mock frameworks 117–124
mock objects 68, 71, 85, 100

as probes 114
as Trojan horses 113–117
defining 108
Driver 73
for refactoring 110
HTTP connection 107
isolation testing 100
JDBC logic 104
refactoring with 104–107
sample application 100
swapping into production

code 108
testing persistence layer 366
unit testing with 100–103

MockAccountManager 103
MockConnectionFactory 113
MockInputStream 115
mock-object 122
mocks

FEST-Mocks 394
JSF and 302
Mycila 395
pros and cons 397
test method structure 391
transparent usage 391–397

MockURL 108
MockWebConnection 194
modelVersion 161

modificationset 175
modules 158

exceptions 394
specific properties 394

MOJOs 285
monumental

methodologies 269
multilayered applications 361

testing negative scenarios 365
testing strategies 363
testing with mocks 363–365

MusicStore application 294
Mycila

assertions 407
EasyMock support 395–397
introduction 391

MyFaces 293

N

NamingAssert 403
navigation

click 200
frames 202
keyboard 200
page 199
Selenium 218

negative tests 383
NetBeans

Ant integration 451
JUnit integration 447

NicelyResynchronizingAjax-
Controller 233

not function 236
not matcher 49
notNullValue matcher 50
NULLTest 343
nullValue matcher 50

O

object model 195
ObjectAssert 403
object-relational mapping,

tools 361
objects

interaction testing 71
rules 74

onblur 200
onfocus 200
onload 221
optimization 59
ORM. See object-relational

mapping

INDEX 465
OSGi
alliance 311
bundle 311
bundle states 312
CalculatorService 312
framework 311
in-container testing 322
introduction 311–312
lifecycle of service 311
mock object testing 319
service interface 313
service sample 312
testing services 318

P

package, Maven build phase 155
packaging 161
page

HTML 199
navigation through

frames 202
tests and 219

Page Controller 26
Parameterized 17
parameters, sets 17
patterns, Interceptor 425
performance tests 59

Selenium 211
persistence layer

issues with 326
testing 361
testing with mocks 366

persistence.xml 370
plug-ins

cactifyear 289
execution order 287
JMock 396
Maven, list of 156

polymorphism 76, 78
vs. conditionals 77

POM. See Project Object Model
pom.xml 157

child modules 158
description elements 162
inheritance features 157
metadata for 161

poms, elements inherited from
parent 158

Principle of Least Knowledge 74
printsummary 143
PrivateAccessor 410
procedural programming 76
Project Object Model 157
property elements 140

ProtocolException 97
proving component works 4–5
public methods, signature

changes 72
publishers 175

R

red bar 20
redirector 263

application descriptors 279
cactification 282
servlet 264

Refactor, definition 37
refactoring 55, 67

example 105
improving

implementation 55
method factory 111

reflection 9
encapsulation and 409
for bypassing

encapsulation 407
reflection API, accessing private

members 408
ReflectionAssert 403–405
releaseConnection 247
Request 26–27
RequestHandler 26–27, 32

testing 34
Response 26–27
RhinoUnit 228

fail 236
functions 235
installing 455
JavaScript testing 234
JSLint 235
mustCall 236
path 235, 237
recommendation 245
rhinoUnitAnt.js 237
testCases 235
vs. JsUnit 245

RichFaces
JSFUnit and 307
JSP and 299

Runner 16–17
runners

custom 425, 429
InterceptorRunner 427
JUnit4OSGi 324

runtime, compiler
confirmation 6

RuntimeException,
Selenium 220

S

sameInstance matcher 50
SampleExceptionHandler 41
SampleResponse, refactored 39
schedule 175
SchemaTest.java 385
screen shot 221
ScriptException, HtmlUnit 199
SecurityManager 409
SeleneseTestCase 210

setUp 216
subclassing 213

Selenium 228
description 190
example 210
forms 220
IDE 208
installing 455
introduction 208
Junit 4 and 212
launcher strings 215
locator string 218
locators 219
managed 231
navigation 218
performance 211–212
performance drawback 213
proxy injection 216
recommendation 222
running tests 211–215
security 216
server management 211–212
Suite class and 214
supported browsers 215
test generation 210
testing Ajax 229
vs. HtmlUnit 222
waitForCondition 232
writing tests 215–222

SeleniumCommandTimedOut-
Exception 220

SeleniumException 220–221
separate-but-equal filing

system 51
ServiceReference 324
services, independent

validation 247
Servlet API 132
ServletConfig 264
ServletTestCase

HtmlUnit boilerplate 206
instance variables 207

setAjaxController 233
setUp 211

INDEX466
setup logic, factorizing 36
signature 34
Singleton pattern 75
singletons, pros and cons 75
software tests, types 57

acceptance tests 60
functional tests 58
integration tests 57
stress tests 58

SourceForge 4
Spring 371
SSL, errors 205
standalone tests

configuring 194
HtmlUnit 193

startWith matcher 50
static import 11, 118

JUnit and 417
stepwise refinement 55
StringAssert 403
StrutsTestCase 62
stubbing 85

connection 95–98
drawbacks 88
HTTP connection 86–89
remote web resource 86
solutions 88
web server resources 90–95

StubHttpURLConnection 98
stubs 68, 85–86

cons 86
definition 85
setting up test 90
test review 95

Suite 16–17, 21, 214
composing from test

classes 22
of suites 22

suite, composing tests with 21–
23

Super POM 157
Surefire plug-in 165

T

Taglib API 134
target.dir 154
targets 139–140

compile 142
compile.java 142
compile.test 142
test 143

TDD. See test-driven develop-
ment

tearDown 211

Template Method pattern 348
test calculator class 6
test case 16
test classes 11, 14, 16–17

placement 33
public 11
writing 92

test coverage 68
complete 68
measuring 67–72
reports, generating 70
with white box testing 68

Test Driven Development: By
Example 125

test objects 32
test runners 14, 16, 19–20

Cactus 263
custom 20
default 20
JsUnit 241
JUnit 4, table 19
JUnit38ClassRunner 19
Parameterized 19
Suite 19

test suite 14, 16
benefits 100
Google Web Toolkit 256
JsUnit 239
Selenium 230

test target 143
test types 57–62
test, Maven build phase 155
testable code, writing 72–78
TestAccountService

with EasyMock 117
with JMock 121

testAdd 8, 15
TestAdminServlet.java 275
TestCase 16, 415
TestCase class 11
TestDefaultController 33, 36
testDeleteUserWithTelephone

381
test-driven development 78–

80
adapting cycle 78
Cactus and 266
definition 78
development cycle 78
development lifecycle 80
JUnit best practice 269
test, code, refactor 79
two-step 79

testform.html 230
testFormNo 231

testGetUserByIdWithTelephone
382

test-infected 4
testing

assertions 401
automatically 4
black box vs. white box 63
by hand 40
class factory 111
controller package 50
for exceptions 44–45
framework, choosing 190
HtmlUnit 233
ignoring in JUnit 417
in isolation 100, 102
JavaScript frameworks for 234
method refactoring 109
multiple classes 138
multiple web browsers 216
patterns, Ajax 227
repetitive 4
services 228
solution, elegant 107
strategies 366
three steps 103
timeout 418
tools 389

TestingHelper
accessing private members 408
FEST-Reflect 411
JUnit-addons 410
reflection API 408

TestingHelperFESTReflect 411
TestingHelperJUnitAddons 410
testProcessRequest 35

improving 38
testProcessRequestAnswers-

ErrorResponse 42
testProcessRequestException-

Handler 42
TestRunner 264
tests 3, 17

automated 6
batching 149–150
Cactus servlet tests 266
Cactus vs. JUnit 261
diagnostic 40
failure 7
fine-grained 134
incremental 5
isolation vs. performance 92
JsUnit 238
JUnit, from NetBeans 449
negative 383
parameterized 17–19, 420

INDEX 467
tests (continued)
patterns 35
programmer 5
with multiple page

fixtures 194
writing first 107

testSaveUserWithTelephone 373
TestWebClient

with close expectation 115
with JMock 123

TestWebClient1 98
testXXX 273

six steps 264
testXXX pattern 11
testXXXYYY 34
text test runner 9
The Simplest Thing That Could

Possibly Work 55, 269
third-party tools 390–391
time barrier 46
timeout 46, 60

Ajax 232
testing 418

timeout tests 45–47
try/catch block 8

U

undocumented exceptions 44
unit of work 5
unit test method 11
unit testing

Ajax 228
benefits 134
client-side scripts 228
impedance mismatch 327
in-container 126
JSPs 273
limitations of standard

tests 126–127
objective 32
with IoC 106

unit testing framework 8–9
rules 8–9

unit tests 5
as automatic

documentation 56
code in isolation 327
coverage improvement 54
ease of dev and use 328
executing 165
fast to run 328
productivity improvement 54
protect against regression 100
protected methods 51

refactoring with
confidence 55

regressions and debugging 54
success rate 150
two for each persistent

entity 372
types 60–61
vs. functional tests 54
when to execute 170
why necessary 54–56

Unitils 371
assertions 403–405
database testing modules 397
DbUnit integration 397–401
dummies 394
EasyMock support 392–394
introduction 390
modules 392–393
properties 392
UserFacadeImpl 392

unitils.properties 400
UNIX, cron tool 182
updateAccount 102
URL

HtmlUnit 193
protocol handler, custom 95

URLStreamHandler 95
user-centric approach 63
UserDaoJdbcImplAnnotation-

Test 355
UserDaoJdbcImplTemplate-

PatternTest 348
UserDaoJdbcImplTest 331, 335–

336, 339
Unitils and 398

UserDaoJpaImpl 366
final version 384

UserDaoJpaImplTest 379
UserFacade 382
UserFacadeImpl

FEST-Mocks and 394
JMock and 396
Mycila and 395
Unitils mock support 392

UserFacadeImplFESTTest 394
UserFacadeImplMycilaEasy-

MockTest 395
UserFacadeImplTest 391
user-with-telephone.xml 372,

374

V

validate, Maven build phase 155
validation, form 200

verify, Maven build phase 155
version 161

reverting to last stable 447

W

waitForCondition 232
web browsers

HtmlUnit 192
testing multiple 216

WebAssert 191, 198
Web-classic interaction 225
WebClient 195

closing input stream 116
refactoring 112–113
with EasyMock 119

white box testing 60, 62
combining with black box

testing 71
coverage 68
unit tests 68, 71

Winstone 179

X

XML
response, validating 248
service, calling 247
validation 250
vocabulary 248
well formed 248

XML Schema 248
XMLHttpRequest 225

callback 226
form testing 233
scripts 228

XPath
accessing elements with 197
data gathering 197
HtmlUnit 197
query 197

xUnit 4

Y

YAGNI. See You Ain’t Gonna
Need It

You Ain’t Gonna Need It 55
YYYTestCase 263

six steps 264

Z

ZipURLInstaller 284

J
Unit is the leading Java unit testing framework and its ver-
sion 4.8 signifi cantly improves the Java development process.
Designed for productivity, it has extensions for newer appli-

cation styles—like Ajax and HTML-based presentation layers—
and for application frameworks like EJB and OSGi.

JUnit in Action, Second Edition is an entirely revised and up-to-
date guide to unit testing Java applications. It provides tech-
niques for solving real-world problems such as using mocks for
testing isolation, in-container testing for Java EE and database
applications, and test automation. In an example-driven style,
it covers JUnit 4.8 innovations such as the new annotations that
simplify test writing, improved exception handling, and the new
assertion methods. Along the way, you’ll learn to integrate JUnit
with other important open source frameworks and tools.

What’s Inside
Introduction to unit testing
Blends JUnit with TDD, BDD, Continuous Integration, and
other best practices
Unit testing of database and web applications

Petar Tahchiev is a soft ware engineer with HP and the Jakarta
Cactus lead developer. Felipe Leme is a JCP member and con-
tributor to DbUnit and Cactus. Gary Gregory is a Java developer
with 20+ years of experience who currently develops application
servers for legacy integration. Vincent Massol was the author of
the fi rst edition of JUnit in Action.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/JUnitinActionSecondEdition

$49.99 / Can $62.99 [INCLUDING eBOOK]

JUnit in Action Second Edition

JAVA

Tahchiev Leme Massol Gregory

“Th e defi nitive guide, not
 just for JUnit, but unit
 testing in general.”
 —Tyson S. Maxwell, Raytheon

“I recommend this book to
 anyone who is serious about
 testing with JUnit.”
 —Robert Hanson
 Author of GWT in Action

“Gives a solid foundation for
 unit testing, especially with
 Ant/Maven and Eclipse.”
 —Doug Warren
 Java Web Services

“Th is book shows how to
 test it all—leaves no stone
 unturned!”
 —John Griffi n, Coauthor of
 Hibernate Search in Action

M A N N I N G

SEE INSERT

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

	Front cover
	brief contents
	contents
	preface
	preface to the first edition
	acknowledgments
	Petar Tahchiev
	Felipe Leme
	Vincent Massol
	Gary Gregory

	about this book
	Roadmap
	Code conventions
	Code downloads
	Author Online
	About the title

	about the authors
	about the cover illustration
	Part 1 – JUnit essentials
	JUnit jump-start
	1.1 Proving it works
	1.2 Starting from scratch
	1.3 Understanding unit testing frameworks
	1.4 JUnit design goals
	1.5 Setting up JUnit
	1.6 Testing with JUnit
	1.7 Summary

	Exploring core JUnit
	2.1 Exploring core JUnit
	2.2 Running parameterized tests
	2.3 JUnit test runners
	2.3.1 Test runner overview
	2.3.2 The JUnitCore façade
	2.3.3 Custom test runners

	2.4 Composing tests with a suite
	2.4.1 Composing a suite of test classes
	2.4.2 Composing a suite of suites
	2.4.3 Suites, IDEs, Ant, and Maven

	2.5 Summary

	Mastering JUnit
	3.1 Introducing the controller component
	3.1.1 Designing the interfaces
	3.1.2 Implementing the base class

	3.2 Let’s test it!
	3.2.1 Testing the DefaultController
	3.2.2 Adding a handler
	3.2.3 Processing a request
	3.2.4 Improving testProcessRequest

	3.3 Testing exception handling
	3.3.1 Simulating exceptional conditions
	3.3.2 Testing for exceptions

	3.4 Timeout testing
	3.5 Introducing Hamcrest matchers
	3.6 Setting up a project for testing
	3.7 Summary

	Software testing principles
	4.1 The need for unit tests
	4.1.1 Allowing greater test coverage
	4.1.2 Increasing team productivity
	4.1.3 Detecting regressions and limiting debugging
	4.1.4 Refactoring with confidence
	4.1.5 Improving implementation
	4.1.6 Documenting expected behavior
	4.1.7 Enabling code coverage and other metrics

	4.2 Test types
	4.2.1 The four types of software tests
	4.2.2 The three types of unit tests

	4.3 Black box versus white box testing
	4.4 Summary

	Part 2 – Different testing strategies
	Test coverage and development
	5.1 Measuring test coverage
	5.1.1 Introduction to test coverage
	5.1.2 Introduction to Cobertura
	5.1.3 Generating test coverage reports
	5.1.4 Combining black box and white box testing

	5.2 Writing testable code
	5.2.1 Public APIs are contracts
	5.2.2 Reduce dependencies
	5.2.3 Create simple constructors
	5.2.4 Follow the Principle of Least Knowledge
	5.2.5 Avoid hidden dependencies and global state
	5.2.6 Singletons pros and cons
	5.2.7 Favor generic methods
	5.2.8 Favor composition over inheritance
	5.2.9 Favor polymorphism over conditionals

	5.3 Test-driven development
	5.3.1 Adapting the development cycle
	5.3.2 The TDD two-step

	5.4 Testing in the development cycle
	5.5 Summary

	Coarse-grained testing with stubs
	6.1 Introducing stubs
	6.2 Stubbing an HTTP connection
	6.2.1 Choosing a stubbing solution
	6.2.2 Using Jetty as an embedded server

	6.3 Stubbing the web server’s resources
	6.3.1 Setting up the first stub test
	6.3.2 Testing for failure conditions
	6.3.3 Reviewing the first stub test

	6.4 Stubbing the connection
	6.4.1 Producing a custom URL protocol handler
	6.4.2 Creating a JDK HttpURLConnection stub
	6.4.3 Running the test

	6.5 Summary

	Testing with mock objects
	7.1 Introducing mock objects
	7.2 Unit testing with mock objects
	7.3 Refactoring with mock objects
	7.3.1 Refactoring example

	7.4 Mocking an HTTP connection
	7.4.1 Defining the mock objects
	7.4.2 Testing a sample method
	7.4.3 First attempt: easy method refactoring technique
	7.4.4 Second attempt: refactoring by using a class factory

	7.5 Using mocks as Trojan horses
	7.6 Introducing mock frameworks
	7.6.1 Using EasyMock
	7.6.2 Using JMock

	7.7 Summary

	In-container testing
	8.1 Limitations of standard unit testing
	8.2 The mock objects solution
	8.3 In-container testing
	8.3.1 Implementation strategies
	8.3.2 In-container testing frameworks

	8.4 Comparing stubs, mock objects, and in-container testing
	8.4.1 Stubs pros and cons
	8.4.2 Mock objects pros and cons
	8.4.3 In-container testing pros and cons
	8.4.4 In-container versus out-of-container testing

	8.5 Summary

	Part 3 – JUnit and the build process
	Running JUnit tests from Ant
	9.1 A day in the life
	9.2 Running tests from Ant
	9.3 Introducing and installing Ant
	9.4 Ant targets, projects, properties, and tasks
	9.4.1 The javac task
	9.4.2 The JUnit task

	9.5 Putting Ant to the task
	9.6 Dependency management with Ivy
	9.7 Creating HTML reports
	9.8 Batching tests
	9.9 Summary

	Running JUnit tests from Maven2
	10.1 Maven’s features
	10.1.1 Convention over configuration
	10.1.2 Strong dependency management
	10.1.3 Maven build lifecycles
	10.1.4 Plug-in-based architecture
	10.1.5 The Maven Project Object Model

	10.2 Setting up a Maven project
	10.3 Introduction to Maven plug-ins
	10.3.1 Maven Compiler plug-in
	10.3.2 Maven Surefire plug-in
	10.3.3 HTML JUnit reports with Maven

	10.4 The bad side of Maven
	10.5 Summary

	Continuous integration tools
	11.1 A taste of continuous integration
	11.1.1 Continuous integration testing

	11.2 CruiseControl to the rescue
	11.2.1 Getting started with CruiseControl
	11.2.2 Setting up a sample project
	11.2.3 The CruiseControl config file explained

	11.3 Another neat tool-Hudson
	11.3.1 Introducing Hudson
	11.3.2 Installation
	11.3.3 Configuring Hudson
	11.3.4 Configuring a project in Hudson

	11.4 Benefits of continuous integration
	11.5 Summary

	Part 4 – JUnit extensions
	Presentation-layer testing
	12.1 Choosing a testing framework
	12.2 Introducing HtmlUnit
	12.2.1 A live example

	12.3 Writing HtmlUnit tests
	12.3.1 HTML assertions
	12.3.2 Testing for a specific web browser
	12.3.3 Testing more than one web browser
	12.3.4 Creating standalone tests
	12.3.5 Navigating the object model
	12.3.6 Accessing elements by specific element type
	12.3.7 Accessing elements by name versus index
	12.3.8 Accessing elements with references
	12.3.9 Using XPath
	12.3.10 Test failures and exceptions
	12.3.11 Application and internet navigation
	12.3.12 Testing forms with HtmlUnit
	12.3.13 Testing frames
	12.3.14 Testing JavaScript
	12.3.15 Testing CSS
	12.3.16 SSL errors

	12.4 Integrating HtmlUnit with Cactus
	12.4.1 Writing tests in Cactus

	12.5 Introducing Selenium
	12.6 Generating Selenium tests
	12.6.1 A live example

	12.7 Running Selenium tests
	12.7.1 Managing the Selenium server
	12.7.2 Running Selenium tests with JUnit 4

	12.8 Writing Selenium tests
	12.8.1 Testing for a specific web browser
	12.8.2 Testing multiple browsers
	12.8.3 Application and internet navigation
	12.8.4 Accessing elements with references
	12.8.5 Failing tests with exceptions
	12.8.6 Testing forms with Selenium
	12.8.7 Testing JavaScript alerts
	12.8.8 Capturing a screen shot for a JUnit 3 test failure
	12.8.9 Capturing a screen shot for a JUnit 4 test failure

	12.9 HtmlUnit versus Selenium
	12.10 Summary

	Ajax testing
	13.1 Why are Ajax applications difficult to test?
	13.1.1 Web-classic interaction
	13.1.2 Ajax interaction
	13.1.3 A brave new world
	13.1.4 Testing challenges

	13.2 Testing patterns for Ajax
	13.2.1 Functional testing
	13.2.2 Client-side script unit testing
	13.2.3 Service testing

	13.3 Functional testing
	13.3.1 Functional testing with Selenium
	13.3.2 Functional testing with HtmlUnit

	13.4 JavaScript testing
	13.4.1 JavaScript testing with RhinoUnit
	13.4.2 JavaScript testing with JsUnit
	13.4.3 Writing JsUnit tests
	13.4.4 Writing JsUnit test suites
	13.4.5 Running JsUnit tests manually
	13.4.6 Running JsUnit tests with Ant

	13.5 RhinoUnit versus JsUnit
	13.6 Checking best practices with JSLint
	13.7 Testing services with HttpClient
	13.7.1 Calling an XML service
	13.7.2 Validating an XML response
	13.7.3 Validating a JSON response

	13.8 Testing Google Web Toolkit applications
	13.8.1 Choosing a testing framework for a GWT application
	13.8.2 Creating a GWTTestCase manually
	13.8.3 Creating a GWTTestCase with junitCreator
	13.8.4 Running test cases
	13.8.5 Setup and teardown
	13.8.6 Creating a test suite
	13.8.7 Running a test suite

	13.9 Summary

	Server-side Java testing with Cactus
	14.1 What is Cactus?
	14.2 Testing with Cactus
	14.2.1 Java components that you can test with Cactus
	14.2.2 General principles
	14.2.3 How Cactus works

	14.3 Testing servlets and filters
	14.3.1 Presenting the Administration application
	14.3.2 Writing servlet tests with Cactus

	14.4 Testing JSPs
	14.4.1 Revisiting the Administration application
	14.4.2 What is JSP unit testing?
	14.4.3 Unit testing a JSP in isolation with Cactus
	14.4.4 Executing a JSP with SQL results data

	14.5 Testing EJBs
	14.6 What is Cargo?
	14.7 Executing Cactus tests with Ant
	14.7.1 Cactus tasks to prepare the archive

	14.8 Executing Cactus tests with Maven2x
	14.8.1 Maven2 cactifywar MOJO
	14.8.2 Maven2 cactifyear MOJO

	14.9 Executing Cactus tests from the browser
	14.10 Summary

	Testing JSF applications
	15.1 Introducing JSF
	15.2 Introducing the sample application
	15.3 Typical problems when testing JSF applications
	15.4 Strategies for testing JSF applications
	15.4.1 Black box approach
	15.4.2 Mock objects to the rescue

	15.5 Testing the sample application with JSFUnit
	15.5.1 Executing a JSFUnit test from a browser
	15.5.2 Testing Ajax using JSFUnit

	15.6 Using HtmlUnit with JSFUnit
	15.7 Performance testing for your JSF application
	15.8 Summary

	Testing OSGi components
	16.1 Introducing OSGi
	16.2 Our first OSGi service
	16.2.1 The sample application

	16.3 Testing OSGi services
	16.3.1 Mock objects

	16.4 Introducing JUnit4OSGi
	16.5 Summary

	Testing database access
	17.1 The database unit testing impedance mismatch
	17.1.1 Unit tests must exercise code in isolation
	17.1.2 Unit tests must be easy to write and run
	17.1.3 Unit tests must be fast to run

	17.2 Introducing DbUnit
	17.2.1 The sample application
	17.2.2 Setting up DbUnit and running the sample application

	17.3 Using datasets to populate the database
	17.3.1 DatabaseOperation dissected

	17.4 Asserting database state with datasets
	17.4.1 Filtering data sets
	17.4.2 Ignoring columns

	17.5 Transforming data using ReplacementDataSet
	17.5.1 Using ReplacementDataSet to handle the different IDs issue
	17.5.2 Handling NULL values

	17.6 Creating datasets from existing database data
	17.7 Advanced techniques
	17.7.1 DbUnit and the Template Design Pattern
	17.7.2 Improving reuse through custom annotations
	17.7.3 Using Expression Language in datasets

	17.8 Database access testing best practices
	17.8.1 Use one database per developer
	17.8.2 Make sure the target database is tested
	17.8.3 Create complementary tests for loading and storing data
	17.8.4 When writing load test cases, cover all the basic scenarios
	17.8.5 Plan your dataset usage
	17.8.6 Test cleanup

	17.9 Summary

	Testing JPA-based applications
	18.1 Testing multilayered applications
	18.1.1 The sample application
	18.1.2 Multiple layers, multiple testing strategies

	18.2 Aspects of JPA testing
	18.3 Preparing the infrastructure
	18.4 Testing JPA entities mapping
	18.4.1 Integrating test cases with JPA ID generators

	18.5 Testing JPA-based DAOs
	18.6 Testing foreign key names
	18.7 Summary

	JUnit on steroids
	19.1 Introduction
	19.1.1 Tools overview
	19.1.2 Running the examples

	19.2 Transparent mock usage
	19.2.1 Unitils EasyMock support
	19.2.2 FEST-Mocks
	19.2.3 Mycila

	19.3 DbUnit integration
	19.4 Assertions made easy
	19.4.1 JUnit-addons assertions package
	19.4.2 Unitils’ ReflectionAssert
	19.4.3 FEST Fluent Assertions Module
	19.4.4 Mycila extend assertions

	19.5 Using reflection to bypass encapsulation
	19.5.1 In-house alternative
	19.5.2 JUnit-addons
	19.5.3 FEST-Reflect

	19.6 Summary

	appendix A: Differences between JUnit 3 and JUnit 4
	A.1 Global changes
	A.1.1 JDK required
	A.1.2 Backward/forward compatibility

	A.2 Changes in the API
	A.2.1 Package structure
	A.2.2 Constructors
	A.2.3 Extending TestCase
	A.2.4 Test method names

	A.3 Annotations and static imports added
	A.3.1 @Before and @After annotations
	A.3.2 @BeforeClass and @AfterClass annotations
	A.3.3 Differences in ignoring a test
	A.3.4 Static imports
	A.3.5 Exception testing
	A.3.6 Timeout testing

	A.4 New JUnit runners
	A.4.1 Test runners
	A.4.2 Test suites
	A.4.3 Parameterized tests

	A.5 New assertions and assumptions
	A.5.1 Hamcrest assertions
	A.5.2 Assumptions
	A.5.3 New assertions
	A.5.4 Assertion errors

	appendix B: Extending the JUnit API with custom runners and matchers
	B.1 Introducing the Interceptor pattern
	B.2 Implementing a custom runner
	B.3 Implementing a custom matcher

	appendix C: The source code for the book
	C.1 Getting the source code
	C.2 Source code overview
	C.3 External libraries
	C.4 JAR versions
	C.5 Directory structure conventions

	appendix D: JUnit IDE integration
	D.1 JUnit integration with Eclipse
	D.1.1 Installing Eclipse
	D.1.2 Setting up Eclipse projects from the source
	D.1.3 Running JUnit tests from Eclipse
	D.1.4 Running Ant scripts from Eclipse

	D.2 Introducing the JUnitMAX Eclipse plug-in
	D.2.1 Integrated in your development cycle
	D.2.2 Execution order
	D.2.3 Reverting to last stable version

	D.3 JUnit integration with NetBeans
	D.3.1 Installing NetBeans
	D.3.2 Setting up NetBeans projects from the source
	D.3.3 Running JUnit tests from NetBeans
	D.3.4 Running Ant scripts from NetBeans

	appendix E: Installing software
	E.1 Installing HtmlUnit
	E.1.1 Standard configuration
	E.1.2 Eclipse configuration

	E.2 Configuring Cactus with HtmlUnit
	E.3 Installing Selenium
	E.4 Installing RhinoUnit
	E.5 Installing JsUnit

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

