


James	E.	McDonough

Automated	Unit	Testing	with	ABAP
A	Practical	Approach
1st	ed.



James	E.	McDonough
Pennington,	NJ,	USA

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this
book	is	available	to	readers	on	GitHub	via	the	book’s	product	page,	located	at
www.apress.com/9781484269503.	For	more	detailed	information,	please	visit
http://www.apress.com/source-code.

ISBN	978-1-4842-6950-3 e-ISBN	978-1-4842-6951-0
https://doi.org/10.1007/978-1-4842-6951-0

©	James	E.	McDonough	2021

This	work	is	subject	to	copyright.	All	rights	are	solely	and	exclusively	licensed
by	the	Publisher,	whether	the	whole	or	part	of	the	material	is	concerned,
specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and
transmission	or	information	storage	and	retrieval,	electronic	adaptation,
computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.

The	use	of	general	descriptive	names,	registered	names,	trademarks,	service
marks,	etc.	in	this	publication	does	not	imply,	even	in	the	absence	of	a	specific
statement,	that	such	names	are	exempt	from	the	relevant	protective	laws	and
regulations	and	therefore	free	for	general	use.

The	publisher,	the	authors	and	the	editors	are	safe	to	assume	that	the	advice	and
information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of
publication.	Neither	the	publisher	nor	the	authors	or	the	editors	give	a	warranty,
expressed	or	implied,	with	respect	to	the	material	contained	herein	or	for	any
errors	or	omissions	that	may	have	been	made.	The	publisher	remains	neutral
with	regard	to	jurisdictional	claims	in	published	maps	and	institutional
affiliations.

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media

http://www.apress.com/9781484269503
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-6951-0


New	York,	1	New	York	Plaza,	New	York,	NY	10004.	Phone	1-800-SPRINGER,
fax	(201)	348-4505,	e-mail	orders-ny@springer-sbm.com,	or	visit
www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole
member	(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM
Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware	corporation.



To	Norman	Edge,	teacher	and	bassist	extraordinaire,	whose	benevolent
guidance	toward	improving	the	qualities	of	my	musicianship	also	had	a	profound
influence	on	the	qualities	of	my	character.



Acknowledgments
I	could	not	have	done	this	project	without	the	help	of	others.

I	extend	my	gratitude	to	Chris	Bostian,	Larry	Nansel,	and	Brian	Brennan,
who,	after	attending	a	presentation	I	gave	on	the	subject	of	ABAP	Unit	testing	to
my	colleagues	in	2011,	presented	me	with	the	opportunity	to	undertake	a	pilot
project	exploring	how	automated	unit	testing	could	be	incorporated	into	the
ABAP	development	process	used	at	that	site.

Thanks	go	to	Dr.	Juergen	Heymann	and	Thomas	Hammer,	both	of	whom	did
a	magnificent	job	of	preparing	and	presenting	the	openSAP	course	Writing
Testable	Code	for	ABAP	between	March	and	May	2018,	through	which	I
realized	that	what	I	already	knew	on	this	topic	was	only	the	tip	of	the	ABAP
Unit	testing	iceberg.

I	am	very	grateful	to	Paul	Hardy	for	agreeing	to	undertake	the	task	of
reviewing	the	content	of	the	book	and	for	doing	such	a	magnificent	job	at	it,
offering	many	suggestions	for	improvement.

Susan	McDermott,	Rita	Fernando,	and	Laura	Berendson,	my	editors	at
Apress	Media,	LLC,	were	of	enormous	help	in	guiding	me	through	the
publication	process	and	resolving	the	technical	glitches	we	encountered	along
the	way.

Finally,	it	would	have	been	much	more	difficult	to	complete	this	project
without	the	love	and	understanding	I	received	from	my	family	for	tolerating	my
absences	during	those	long	hours	on	weekends	and	holidays	while	I	was
secluded	in	deep	thought	about	how	to	organize	and	present	this	content.



Table	of	Contents
Chapter	1:	Introduction

For	Whom	This	Book	Is	Applicable

How	This	Book	Should	Be	Used

Why	This	Book	Was	Written

Credentials	of	the	Author

Summary

Chapter	2:	Preparing	to	Take	the	First	Step

Road	Map	to	Automated	Unit	Testing

Where	We	Are	Now

Where	We	Are	Going

Why	We	Are	Going	There

How	We	Are	Going	to	Get	There

Legacy	Code

Calisthenics

Summary

Chapter	3:	Software	Quality

The	Quality	of	Software

Assessing	Software	Quality

Summary

Chapter	4:	The	Origins	of	Automated	Unit	Testing

In	the	Beginning	…

The	Emergence	of	xUnit

Features	of	xUnit

Phases	of	xUnit	Tests

Writing	xUnit	Tests

Advantages	of	xUnit	Tests



Summary

Quiz	#1:	xUnit	Concepts

Multiple	Choice:	Select	the	Best	Answer

True	or	False

Chapter	5:	Automated	Unit	Testing	with	ABAP

ABAP	Unit

The	ABAP	Unit	Testing	Framework

Requirements	for	Writing	ABAP	Unit	Tests

Types	of	Components	Applicable	to	Unit	Testing

Testable	ABAP	Modularization	Units

Automatic	Generation	of	ABAP	Unit	Test	Classes

ABAP	Language	Statements	Related	to	Unit	Testing

Writing	an	ABAP	Unit	Test

Using	Fixture	Methods

Invoking	the	Services	of	the	ABAP	Unit	Testing	Framework

ABAP	Unit	Test	Runner

Unit	Test	Results	Report

Initiating	ABAP	Unit	Test	Execution

Initiating	Unit	Tests	from	Within	an	ABAP	Editor

Initiating	Unit	Tests	from	Outside	an	ABAP	Editor

Evolution	of	the	ABAP	Unit	Testing	Framework

Challenges	to	Effectively	Testing	ABAP	Code

Challenges	Presented	by	Classic	ABAP	Event	Blocks

Challenges	Presented	by	Global	Variables

Challenges	Presented	by	the	MESSAGE	Statement

Challenges	Presented	by	ALV	Reports

Challenges	Presented	by	Classic	List	Processing	Statements



Challenges	Presented	by	Open	SQL	Statements

Controlling	the	ABAP	Unit	Testing	Framework

Client	Category

Client	Category	Override

Unit	Testing	Configuration

Summary

Quiz	#2:	ABAP	Unit	Testing	Concepts

Multiple	Choice:	Select	the	Best	Answer

True	or	False

Chapter	6:	Rudiments

Introducing	a	Simple	Unit	Test

Expanding	Unit	Test	Coverage

Implementing	Unit	Tests	for	Function	Modules

Implementing	Unit	Tests	for	Global	Classes

ABAP	Statements	and	Features	Affecting	Automated	Unit	Testing

Exploring	the	Effects	of	the	MESSAGE	Statement

Exploring	the	Effects	of	ALV	Reports

Exploring	the	Effects	of	Classic	List	Processing	Statements

How	Automated	Unit	Testing	Enables	Confident	Refactoring

Diagnosing	the	Absence	of	Sufficient	Test	Data

Creating	and	Using	Fabricated	Test	Data

Gaining	Control	Over	References	to	Modifiable	Global	Variables	Within
Subroutines

Summary

Chapter	7:	Design	for	Testability

Changing	the	Production	Path	to	Enable	Automated	Testing

Categorizing	Input	and	Output



Encapsulating	Indirect	Input	and	Output

Interaction	Points

Encapsulating	Indirect	Input	Processes	to	Accommodate	Unit
Testing

Encapsulating	Indirect	Output	Processes	to	Accommodate	Unit	Testing

Summary

Chapter	8:	Test	Doubles

Depended-On	Components

The	Purpose	of	Test	Doubles

Alternative	1

Alternative	2

Alternative	3

Using	Test	Doubles

Test	Double	Using	Base	Class

Test	Double	Using	Interface

Categories	of	Test	Doubles

Using	Test	Doubles	for	Indirect	Input

Using	Test	Doubles	for	Indirect	Output

Summary

Chapter	9:	Service	Locator

Purpose	of	a	Service	Locator

Using	a	Service	Locator

Using	a	Service	Factory

Organizing	Local	Components

Summary

Chapter	10:	Leveraging	the	Service	Locator

Issues	Requiring	Leverage



Using	the	Service	Locator	to	Manage	Global	Classes

Using	the	Service	Locator	to	Manage	Function	Modules

Using	the	Service	Locator	to	Manage	MESSAGE	Statements

Handling	MESSAGE	Statements	Triggering	Unconditional	Unit	Test
Failures

Handling	Unit	Test	Failures	Arising	from	MESSAGE	Statement
Control	Flow

Using	the	Service	Locator	to	Manage	List	Processing	Statements

Summary

Chapter	11:	Test-Driven	Development

The	TDD	Cycle

The	Three	Laws	of	TDD

The	Benefits	of	TDD

Following	the	TDD	Cycle

Summary

Chapter	12:	Configurable	Test	Doubles

Isolation	Frameworks

mockA

ABAP	Test	Double	Framework

Summary

Chapter	13:	Obtaining	Code	Coverage	Information	Through	ABAP	Unit
Testing

Code	Coverage	Metrics

Summary

Chapter	14:	Cultivating	Good	Test	Writing	Skills

The	Pillars	of	Good	Unit	Tests

Test	Simplicity

Test	Coverage



SAP	Recommendations	and	Constraints	When	Writing	Unit	Tests

Tips	for	Writing	Unit	Tests

Issues	Related	to	Testing	Object-Oriented	Code

Summary

Chapter	15:	Welcome	to	Autropolis

One	Small	Step	for	Manual	Toward	Automated

The	Right	Tool	for	the	Job

Resistance	Is	Futile

Becoming	the	Agent	for	Change

Go	Forth	and	Automate

Summary

Appendix	A:	Requirements	Documentation	and	ABAP	Exercise	Programs

Appendix	B:	Answers	to	Chapter	Quizzes

Answers	to	Quiz	#1

Multiple	Choice:	Select	the	Best	Answer

True	or	False

Answers	to	Quiz	#2

Multiple	Choice:	Select	the	Best	Answer

True	or	False

Appendix	C:	Concepts	Associated	with	Defining	Local	Test	Classes

Index



About	the	Author
James	E.	McDonough
received	a	degree	in	music	education	from
Trenton	State	College.	After	teaching	music	for
only	2	years	in	the	New	Jersey	public	school
system,	he	spent	the	past	38	years	as	a	computer
programmer	while	also	maintaining	an	active
presence	as	a	freelance	jazz	bassist	between
New	York	and	Philadelphia.	Having	switched
from	mainframe	programming	to	ABAP	in
1997,	he	now	works	as	a	contract	ABAP
programmer	designing	and	writing	ABAP
programs	on	a	daily	basis.	An	advocate	of	using
the	object-oriented	programming	features
available	with	ABAP,	he	has	been	teaching
private	ABAP	education	courses	over	the	past	few	years,	where	his	background
in	education	enables	him	to	present	and	explain	complicated	concepts	in	a	way
that	makes	sense	to	beginners.

	



About	the	Technical	Reviewer
Paul	Hardy
joined	HeidelbergCement	in	the	United
Kingdom	in	1990.	For	the	first	seven	years,	he
worked	as	an	accountant.	In	1997,	a	global	SAP
rollout	came	along,	and	he	jumped	on	board	and
has	never	looked	back.	He	has	worked	on
country-specific	SAP	implementations	in	the
United	Kingdom,	Germany,	Israel,	and
Australia.

After	starting	off	as	a	business	analyst
configuring	the	good	old	IMG,	Paul	swiftly
moved	on	to	the	wonderful	world	of	ABAP
programming.	After	the	initial	run	of	data
conversion	programs,	ALV	(ABAP	List	Viewer)
reports,	interactive	Dynpro	screens,	and
SAPscript	forms,	he	yearned	for	something
more	and	since	then	has	been	eagerly
investigating	each	new	technology	as	it	comes
out,	which	culminated	in	him	writing	the	book
ABAP	to	the	Future.

Paul	became	an	SAP	Mentor	in	March	2017	and	can	regularly	be	found
blogging	on	the	SAP	Community	site	and	presenting	at	SAP	conferences	in
Australia	(Mastering	SAP	Technologies	and	the	SAP	Australian	User	Group
annual	conference),	at	SAP	TechEd	Las	Vegas,	and	all	over	Europe	at	various
SAP	Inside	Track	events.	If	you	happen	to	be	at	one	of	these	conferences,	Paul
invites	you	to	come	and	have	a	drink	with	him	at	the	networking	event	in	the
evening	and	to	ask	him	the	most	difficult	questions	you	can	think	of,	preferably
about	SAP.

	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_1

1.	Introduction
James	E.	McDonough1		

Pennington,	NJ,	USA

	

It	is	unlikely	you	still	remember	the	first	unit	test	you	ever	ran	for	an	ABAP
program	you	wrote.	It	is	very	likely	you	remember	the	most	recent	one.	It	is	also
very	likely	that	the	first	and	the	last,	and	indeed	all	those	tests	in	between,
consisted	of	a	manual	effort	executing	the	program	over	and	over	again	using
various	combinations	of	values	to	insure	the	program	produced	the	expected
results.	This	seems	to	be	the	unit	testing	experience	for	the	overwhelming
majority	of	ABAP	programmers,	who	remain	pedestrians	on	the	development
superhighway	when	it	comes	to	unit	testing.	For	programmers	coding	in	many
other	languages,	it	is	commonplace	for	automated	unit	testing	frameworks	to	be
used	as	the	vehicle	whisking	them	along	the	software	development	expressway
toward	high-quality	software.

Because	so	many	ABAP-ers	continue	to	use	a	unit	testing	process	that	is
both	horribly	inefficient	and	woefully	inadequate	to	the	task,	you	might	assume
that	there	is	no	automated	unit	testing	framework	available	to	ABAP	as	there	is
for	so	many	other	languages.	That	would	be	a	false	assumption.	Not	only	is	there
an	automated	unit	testing	framework	for	ABAP	but	unlike	other	languages	it	is
seamlessly	integrated	into	the	development	environment.	It	is	known	as	the
ABAP	Unit	Testing	Framework,	or	simply	ABAP	Unit.	It	has	been	part	of	the
ABAP	tool	set	since	2004	but	remains	virtually	unknown	to	many	ABAP
programmers.

https://doi.org/10.1007/978-1-4842-6951-0_1


For	Whom	This	Book	Is	Applicable
This	book	is	applicable	to	ABAP	programmers	having	little	or	no	familiarity
with	the	concepts	associated	with	automated	unit	testing	for	ABAP	as	well	as	to
ABAP	programmers	who	already	are	familiar	with	ABAP	Unit	testing	but	who
want	to	explore	further	its	testing	capabilities.	Though	generally	applicable	to	a
wide	range	of	programmers	having	various	levels	of	experience	writing	ABAP
code,	from	beginners	to	seasoned	experts,	and	certainly	to	those	who	are	familiar
with	object-oriented	concepts,	it	is	particularly	applicable	to	those	ABAP
programmers	who	have	not	yet	become	familiar	with	or	comfortable	using	the
object-oriented	model	for	program	design.



How	This	Book	Should	Be	Used
This	book	is	modeled	on	the	“learn	by	doing”	premise.	Accordingly,	Appendix
A	contains	information	about	retrieving	the	requirements	documentation	for	the
accompanying	comprehensive	set	of	executable	ABAP	exercise	programs,	with
each	exercise	program	illustrating	or	reinforcing	some	new	concept	introduced
in	the	book,	from	writing	the	most	basic	automated	test	to	refactoring	a	program
to	enable	comprehensive	unit	testing	upon	it.	This	provides	for	a	multitude	of
options	for	using	the	book	and	doing	the	corresponding	exercise	programs,
among	them:

Writing	each	new	exercise	program	based	solely	on	the	information	provided
by	the	requirements	documentation	accompanying	the	collection	of	executable
example	ABAP	exercise	programs.	This	option	might	need	an	occasional
supplement	of	performing	comparisons	of	adjacent	versions	of	the	executable
example	ABAP	exercise	programs	just	to	reinforce	that	the	correct	decisions
have	been	made.
Writing	each	new	exercise	program	after	looking	at	how	the	new	concepts
were	implemented	in	the	corresponding	executable	example	ABAP	exercise
program.	This	option	probably	will	require	constantly	performing
comparisons	of	adjacent	versions	of	the	executable	example	ABAP	exercise
programs	to	identify	the	differences	between	them.
Dispensing	entirely	with	writing	any	code	and	simply	relying	on	the
corresponding	executable	example	ABAP	exercise	programs	to	illustrate	the
implementation.

Consider	the	following	before	deciding	among	the	options	outlined	here.
Because	there	are	more	than	180	executable	example	ABAP	exercise	programs
accompanying	this	book,	the	easiest	of	these	options,	by	far,	is	the	last	one.	It
will	allow	you	to	proceed	through	the	exercises	at	the	quickest	pace,	reaching	the
last	exercise	program	in	the	shortest	period	of	time.	Accordingly,	this	may	be	the
most	tempting	option.	However,	it	is	most	probable	that	you	will	learn	more
about	automated	unit	testing	by	choosing	one	of	the	preceding	options.	This	is
because	those	options	will	force	you	to	think	about	what	you	are	doing	and	to
actually	write	the	unit	tests,	enabling	you	to	try	various	options	with	each	new
exercise	so	that	you	can	explore	the	nuances	of	how	automated	unit	testing
actually	works.	The	best	way	to	sharpen	your	testing	skills	and	to	acquire	the
knowledge	and	wisdom	necessary	to	implement	comprehensive	automated	unit
tests	is	to	experience	the	satisfaction	that	comes	with	wrestling	the	code	into



submission	by	your	own	hand.	Surely	it	will	be	more	arduous	and	tedious,	and
certainly	it	will	take	longer	to	complete	all	the	exercises,	but	in	the	end	you	will
have	become	much	more	adept	at	making	the	decisions	required	to	insure	that
your	program	is	flexible,	robust,	and	correct.

Refer	to	Appendix	B	for	instructions	for	retrieving	the	accompanying
collection	of	executable	example	ABAP	exercise	programs	and	their
corresponding	diagrams.



Why	This	Book	Was	Written
In	January	2011,	I	became	aware	of	ABAP	Unit,	the	automated	unit	testing
feature	provided	with	SAP	releases	and	available	directly	from	the	ABAP	editor.
I	began	to	explore	the	possibilities	of	writing	these	automated	unit	tests	for
programs	in	the	hope	that	I	could	present	a	convincing	case	to	management	for
allowing	them	as	an	alternative	to	what	until	then	had	been	rigid	requirements
for	writing	a	formal	unit	test	plan	using	a	cumbersome	spreadsheet	template	in
which	manually	executed	test	results	were	to	be	recorded	and	then	saved	as	a
permanent	artifact	to	accompany	the	software	release	documentation.

By	then	I	had	concluded	that	the	manual	spreadsheet	process	for	testing,
converted	from	a	text	document	format	well	over	three	years	before	and	taking
far	too	long	to	execute	a	single	unit	test,	was	ineffective	in	assessing	the	quality
of	the	software	simply	because	it	left	too	much	to	chance	whether	the	actual	test
would	sufficiently	cover	most	parts	of	the	software.	Worse,	the	test	plan,
prepared	by	the	developer	who	wrote	the	software,	often	was	written	in	a	way
that	assumed	much	application	knowledge	on	the	part	of	the	person	running	the
test,	making	it	virtually	useless	to	some	other	developer	unfamiliar	with	that
application,	a	discovery	I	made	when	I	found	and	tried	to	run	a	unit	test	plan	that
had	been	written	by	someone	else	years	earlier.

MY	“AHA!”	MOMENT	WITH	UNIT	TESTING
I	had	first	heard	about	the	Agile	software	development	philosophy	in	late
2008.	Over	the	next	year	or	so,	I	devoured	many	of	the	articles	on	this	topic
available	on	the	Internet.	This	eventually	led	me	to	articles	about	Test-Driven
Development	(TDD).	These	TDD	articles	constantly	stressed	the	importance
of	writing	the	unit	test	prior	to	writing	the	corresponding	production	code,	but
I	found	the	explanations	to	be	somewhat	lacking	because	my	concept	of
writing	the	unit	test	was	modeled	after	the	process	used	at	my	site,	where	the
unit	test	was	written	using	a	spreadsheet	or	similar	text	document,	to	be
executed	manually	once	the	production	code	became	available.	It	was	only
after	months	of	reading	such	articles	that	it	finally	dawned	on	me	that	the
tests	being	discussed	in	these	TDD	articles	were	automated,	tests	that	could
be	executed	by	the	push	of	a	button	and	run	to	completion	in	seconds.	It	was
my	“Aha!”	moment	to	realize	that	the	significant	characteristic	of	these	unit
tests	was	that	they	were	automated,	a	word	that	curiously	had	been	missing
from	all	those	articles.



In	April	2011,	I	prepared	and	presented	to	my	development	colleagues	a
demonstration	on	the	benefits	to	be	gained	by	using	ABAP	Unit	testing.	Also	in
attendance	were	some	management	personnel	I	had	invited.	At	the	conclusion	of
the	demo,	I	was	approached	by	a	few	of	the	managers	who	asked	me	whether	I
could	devise	a	pilot	project	using	software	I	already	had	been	developing
through	the	current	project	pipeline.	I	jumped	at	the	opportunity	and	in	July	2011
made	another	presentation	to	three	representatives	of	the	combined	development
and	support	staff	illustrating	the	ease	by	which	software	already	flowing	through
the	development	process	could	be	thoroughly	unit	tested	automatically.	Sadly,
this	presentation	was	not	well	received	by	all	who	attended.

One	point	raised	was	that	it	took	some	time	to	write	the	code	to	run	the
automated	unit	test,	time	not	currently	budgeted	with	our	current	process.	To	this
I	responded	candidly	that,	yes,	it	took	longer	to	write	the	ABAP	Unit	test	code
than	it	would	take	to	prepare	an	equivalent	spreadsheet-based	unit	test,	perhaps
an	order	of	magnitude	of	two	or	three	times	as	long.	However,	I	continued,
although	it	might	take	longer	to	write	ABAP	Unit	test	code,	there	was	significant
time	to	be	saved	because	it	often	took	hours	to	run	the	spreadsheet-based	test
compared	with	only	seconds	to	run	the	automated	test,	pointing	out	that	repeated
executions	of	the	spreadsheet-based	test	would	consume	the	same	number	of
hours	with	each	test	execution	compared	with	only	the	same	number	of	seconds
with	each	repeated	execution	of	the	automated	test.	Furthermore,	in	contrast	to
the	spreadsheet-based	test	plan	usually	glossing	over	specific	application
knowledge	possessed	by	the	person	both	writing	and	executing	it,	making	it	ill-
suited	for	use	by	anyone	other	than	the	author,	the	automated	unit	test	could	be
run	by	any	developer,	irrespective	of	their	familiarity	with	the	application.

Another	point	raised	was	that	it	would	cause	more	work	on	the	part	of
maintenance	developers	who	now	would	need	to	learn	to	use	this	new	capability
and	accommodate	it	in	code	where	automated	unit	tests	had	been	included	by	the
original	developer,	going	so	far	as	to	suggest	that	this	should	be	considered
grounds	for	not	using	automated	unit	tests.	I	did	not	challenge	the	point	but
merely	agreed	that,	yes,	it	might	require	developers	to	learn	and	become	more
comfortable	with	this	new	feature.	However,	I	was	flabbergasted	that	anyone
with	the	authority	to	manage	a	software	development	staff	would	raise	what	I
considered	to	be	such	an	indefensible	position.	Here	was	a	representative	of
presumably	capable	developers	insinuating	that	not	only	did	those	maintenance
developers	currently	have	no	knowledge	of	ABAP	Unit	testing	but	neither
should	they	be	expected	to	make	any	effort	to	learn	it.

Taking	that	reasoning	to	its	logical	conclusion,	new	software	development
should	employ	no	technology,	technique,	or	feature	that	might	require	a



maintenance	programmer	to	keep	abreast	of	the	technological	improvements
constantly	being	introduced	in	new	releases.	This	would	eliminate	many	features
introduced	in	SAP	releases	more	recent	than	that	familiar	to	the	average
maintenance	developer	from	ever	being	implemented	in	subsequent
development	efforts,	from	the	simple	use	of	ALV	to	the	more	advanced
implications	of	using	object-oriented	design.

The	three	representatives	in	attendance	would	later	consider	the	merits	of	my
request	for	allowing	ABAP	Unit	testing	to	be	used	as	an	alternative	to	the
spreadsheet-based	method	already	in	place.	About	a	week	later,	I	received	news
of	their	final	decision:	not	only	would	ABAP	Unit	testing	not	be	accepted	as	an
alternative	to	the	current	testing	requirements	but	indeed	the	use	of	ABAP	Unit
testing	would	be	prohibited	for	testing	any	code	going	to	production.	The	reason
for	the	draconian	ruling,	I	was	told,	was	due	to	concerns	some	of	these	managers
had	with	perceived	problems	that	ABAP	Unit	testing	code	introduces	into	the
production	environment.

Despite	my	attempt	to	improve	the	development	process,	I	had	succeeded	in
getting	a	useful	automated	testing	tool	blacklisted	not	only	for	myself	but	also
for	all	the	other	members	of	my	30–odd	person	development	staff.	A	few	years
later,	another	developer	challenged	the	prohibition	on	the	grounds	that	SAP	itself
recommended	using	ABAP	Unit,	and	finally	its	prohibition	was	rescinded,	but
not	before	much	new	development	that	might	have	gained	some	benefit	from	its
use	already	had	gone	to	production.	I	took	advantage	of	the	revised	policy	and
gradually	began	to	include	ABAP	Unit	tests	with	some	of	my	development
efforts.

Over	time	I	found	that	writing	ABAP	Unit	tests	helped	me	to	write	better
production	code.	My	initial	approach	to	using	ABAP	Unit	testing	was	to	write	all
the	production	code	first	and	then	write	the	associated	automated	unit	test	code
later,	similar	to	the	process	already	established	at	that	site	where	writing	the
spreadsheet-based	test	would	not	be	started	until	after	all	the	production	code
had	been	written.	What	I	found	was	that	the	attempt	to	retrofit	an	automated	unit
test	to	my	newly	completed	production	code	exposed	deficiencies	in	the	way	the
production	code	was	written,	requiring	that	I	refactor	it	to	enable	a	clean	test.	In
other	cases,	a	retrofitted	automated	unit	test	I	implemented	would	encounter
failures	that	I	suspect	I	never	would	have	found	had	I	used	the	spreadsheet-based
approach	in	preparing	the	test.	I	soon	came	to	appreciate	both	the	improved
thoroughness	of	testing	and	the	beneficial	implications	on	software	design
arising	from	the	use	of	automated	unit	testing.	It	is	through	this	book	that	I	want
to	sing	those	praises	loudly	to	the	ABAP	development	community.



Credentials	of	the	Author
My	formal	training	in	the	data	processing	industry	consists	of	one	year	at	a
community	college	learning	mainframe	languages	(IBM	assembler,	COBOL,
and	PL/I)	and,	nearly	15	years	later,	a	six-week	seminar	on	ABAP	programming.
Compared	with	some	of	my	colleagues	over	the	years,	I	have	very	little	formal
training	in	computer	programming.	Indeed,	the	only	formal	training	I	had
undertaken	on	the	subject	of	ABAP	Unit	testing	was	to	attend	the	openSAP
course	“Writing	Testable	Code	for	ABAP”	offered	online	during	March–May	of
2018.	Everything	beyond	what	I	learned	in	that	course	I	learned	on	my	own.	So
what	makes	me	think	I	am	qualified	to	teach	anyone	else	about	the	associated
concepts?

Prior	to	getting	into	the	data	processing	industry	in	1982,	I	earned	a	college
degree	in	music	education	and	taught	instrumental	music	for	two	years	in	two
different	public	school	districts	in	the	state	of	New	Jersey.	During	my	college
years,	I	made	an	effort	to	learn	and	gain	some	modicum	of	proficiency	with	all
of	the	band	and	orchestra	instruments.	My	perception	then	was	that	I	could	be	a
better	music	educator	by	understanding	more	about	the	struggles	students	endure
when	they	endeavor	to	learn	to	play	a	musical	instrument.	How,	I	thought,	could
I	presume	to	teach	a	seventh	grader	how	to	play	the	trombone	if	I	were	not	able
to	play	it	myself?

This	philosophy	on	education	served	me	well	those	two	years	I	taught	in	the
public	schools,	and	I	have	continued	with	this	approach	ever	since.	Accordingly,
although	my	credentials	in	data	processing	may	not	be	as	impressive	as	those	of
some	of	my	colleagues,	my	background	as	an	educator	enables	me	to	perceive
the	problems	students	are	likely	to	encounter	when	learning	any	new	skill.	So	I
have	learned	all	I	could	about	ABAP	Unit	testing,	some	through	the	openSAP
course	noted	in	the	preceding	text	and	some	on	my	own,	and	over	the	past	few
years	have	been	able	to	employ	this	feature	with	some	of	my	ABAP
development	efforts.	I	believe	that	now,	having	gained	a	certain	level	of
proficiency	in	this	subject,	I	am	ready	to	impart	what	I	know	to	others	who	also
wish	to	become	familiar	with	this	fascinating	field	of	automated	unit	testing.

Summary
This	chapter	described	how	the	book	should	be	used	as	the	reader	is	guided	from
a	reliance	upon	manual	testing	of	ABAP	software	to	one	based	on	automation.
The	audience	is	ABAP	programmers.	The	approach	to	be	used	to	convey	the
concepts	is	based	on	the	“learn	by	doing”	premise.	In	accordance	with	that



premise,	there	are	exercises	the	reader	is	urged	to	perform	to	reinforce	those
concepts,	exercises	based	on	a	sizable	collection	of	executable	example	ABAP
exercise	programs	available	for	download.	The	reason	for	writing	the	book	is
based	on	the	desire	to	share	with	others	how	they	can	reduce	the	time	and	effort
involved	in	unit	testing	as	well	as	to	reveal	the	beneficial	implications	automated
unit	testing	casts	upon	the	design	of	software.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_2

2.	Preparing	to	Take	the	First	Step
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Automated	unit	testing	offers	many	new	concepts	for	us	to	explore,	so	we	will
want	to	be	certain	we’ve	taken	the	necessary	precautions	to	insure	a	successful
expedition	into	this	new	realm.	Accordingly,	let’s	take	a	moment	to	prepare
ourselves	for	the	adventure	we	are	about	to	undertake,	to	pause	and	give
consideration	to	both	the	journey	itself	and	the	expectations	we	have	about	what
we	will	encounter	along	the	way.

Road	Map	to	Automated	Unit	Testing
A	road	map	is	a	useful	metaphor	to	illustrate	the	path	we	will	take	from	our
familiar	surroundings	of	manual	unit	testing	(MUT)	to	the	unfamiliar	new
territory	of	automated	unit	testing.	The	road	map	shows	us	the	way.	We	know	we
will	need	to	travel	the	road	between	these	two	locations,	eventually	reaching	our
destination,	but	that	each	step	along	the	way	is	dependent	upon	having	taken	the
previous	steps.	That	is,	we	move	continuously	in	one	general	direction	from	our
point	of	origin	to	our	destination,	covering	each	mile	as	we	encounter	it,	not
beginning	to	cover	the	tenth	mile	until	after	we	already	have	passed	through	the
ninth	mile	to	get	there.	Accordingly,	we	become	familiar	with	those	parts	of	the
road	closest	to	our	point	of	origin	before	those	parts	farther	along.	As	with	most
such	journeys,	we	find	that	the	terrain	associated	with	the	first	few	steps	is	very
similar	to	our	starting	location,	but	the	terrain	changes	as	we	continue	moving.
This	similarity	of	terrain	between	adjacent	steps	enables	us	to	adapt	gradually	to
the	changes	awaiting	us	along	the	road.

So,	before	we	start	on	our	journey	from	manual	unit	testing	to	automated	unit
testing,	let	us	give	some	consideration	toward	preparing	for	a	successful	trip:

1.

https://doi.org/10.1007/978-1-4842-6951-0_2


Where	are	we	now? 	
2.

Where	are	we	going? 	
3.

Why	are	we	going	there? 	
4.

How	are	we	going	to	get	there?	

Where	We	Are	Now
If	you	are	like	many	other	programmers	using	SAP,	you	gained	your	experience
writing	ABAP	programs	before	SAP	introduced	the	feature	known	as	ABAP
Unit	testing	for	facilitating	automated	unit	testing	of	components	written	using
the	ABAP	language,	or	if	this	feature	had	been	introduced,	your	organization
was	not	using	a	release	where	it	was	available	to	you.	For	most	of	us,	the	idea	of
unit	testing	never	rose	to	the	level	of	a	topic	worthy	of	education,	training,	and
skill	development	during	our	careers,	so	generally	we	had	been	left	to	fend	for
ourselves	when	it	came	time	to	test	a	program.	Over	the	years,	each	of	us	has
collected	useful	techniques	into	our	own	personal	bag	of	tricks	to	facilitate	unit
testing	a	program.	Perhaps	the	one	thing	many	of	us	share	with	each	other	is	that
unit	testing	has	been	and	remains	a	dreaded	and	time-consuming	manual
process.

So	here	is	where	we	find	ourselves:	capable	ABAP	developers,	knowing
very	little	about	the	new	automated	unit	testing	feature,	ABAP	Unit	testing,	and
knowing	even	less	about	how	to	use	it	effectively	to	test	ABAP	components.	It
should	come	as	no	surprise	that	many	ABAP	programmers	contemplating
whether	to	learn	and	use	this	feature	will	choose	to	continue	on	with	their
manual	testing	techniques	and	avoid	the	automated	unit	testing	feature	so	long	as
the	standards	in	place	at	the	site	where	they	work	do	not	require	its	use,	but	other
ABAP	programmers,	who	appreciate	the	significance	of	this	new	feature,	who
have	become	enlightened	to	the	benefits	of	automating	their	unit	testing	efforts
and	want	to	leverage	these	new	capabilities,	will	undertake	to	embrace	this	new
feature	and	use	it	to	their	full	advantage.

Where	We	Are	Going
Automated	unit	testing	facilities	first	emerged	in	the	late	1980s	when	Kent	Beck



invented	such	a	facility	called	SUnit	for	automatically	unit	testing	programs
written	in	the	Smalltalk	language	and	became	further	embraced	in	the	late	1990s
with	the	introduction	of	JUnit	for	automatically	unit	testing	Java	programs.	Since
then,	a	multitude	of	automated	unit	testing	facilities	have	been	created	for
various	other	programming	languages.

In	our	quest	to	reach	this	district	known	as	automated	unit	testing,	we	are
headed	for	a	place	which	was	founded	over	a	quarter	century	ago	and	has	since
grown	into	a	thriving	metropolis	within	the	data	processing	landscape,	so	it	is
hardly	new.	However,	it	is	new	to	us.	This	is	a	place	where	we	will	find	we’ll	be
able	to	use	these	automated	unit	testing	techniques	as	freely	and	comfortably	as
we	have	with	our	current	comfort	level	of	writing	programs	using	the	ABAP
language.

Why	We	Are	Going	There
We	are	going	there	primarily	for	four	reasons:

1.
Eliminate	the	drudgery	associated	with	preparing	and	running	manual	tests.

Most	of	us	regard	manually	writing	and	running	unit	tests	to	be	a	process
filled	with	dread	and	agony	as	we	jump	out	of	our	comfort	zone	of
programming	and	into	the	twilight	zone	of	using	spreadsheets	and	text
editors	to	prepare	a	document	to	describe	a	unit	test	script.	After	that
horrible	experience,	we	then	sit	at	a	computer	as	we	swap	back	and	forth
between	the	session	presenting	the	unit	test	script	and	the	session	executing
the	software	to	be	tested	in	a	dizzying	effort	to	execute	in	the	software	test
session	the	instructions	we	are	reading	in	the	unit	test	script	session.	Such
testing	endeavors,	where	swapping	between	sessions	is	frequent,	challenge
our	ability	to	pay	attention	to	where	we	are	and	what	we	are	intending	to	do
with	each	swap.	It	is	even	worse	if	we	are	expected	to	update	the	unit	test
script	with	results	as	we	step	through	it.

	

2.
Shift	the	relatively	long	time	it	takes	to	manually	run	unit	tests	to	more
productive	development	pursuits.

Hardly	anyone	would	suggest	that	manually	running	a	unit	test	script
could	be	completed	anywhere	near	as	rapidly	as	an	automated	unit	test	could
complete	when	one	considers	that	an	automated	unit	test	typically	runs	to
completion	in	a	mere	fraction	of	a	second.	If	we	were	to	aggregate	all	the
time	we	have	spent	manually	running	unit	tests	over	our	careers,	we	might

	



find	that	we	have	the	time	to	complete	all	the	component	refactoring	we	had
been	unable	to	address,	attend	to	all	the	technical	debt	that	had	accumulated
over	the	years,	and	apply	all	the	performance	optimizations	to	those
software	components	that	have	begun	running	more	slowly	in	production
and	still	have	time	left	over	for	learning	some	new	software	feature	or
sharpening	the	skills	we	already	possess.

3.
Reap	the	benefits	automated	unit	testing	has	on	software	design.

In	many	cases,	the	very	attempt	to	write	an	automated	unit	test	for	a
component	will	reveal	any	weaknesses	in	the	design	of	the	production
software.	The	inability	to	find	a	way	to	automatically	test	a	component	is	a
smell	that	should	suggest	there	is	a	better	way	to	design	the	software	such
that	it	is	capable	of	being	automatically	tested.	Accordingly,	the	production
software	design	is	improved	when	it	is	refactored	to	enable	a	passing
automated	unit	test	to	be	written	for	it.	Code	having	such	tests	often	gets
better	with	each	change,	whereas	code	without	such	tests	often	gets	worse
with	each	change.

	

4.
Instill	confidence	applying	changes	during	maintenance.

Statistics	show	that	the	initial	development	effort	of	writing	a	computer
program	consumes	only	a	small	fraction	of	the	total	time	spent	during	its	life
cycle	and	that	most	of	the	time	we	devote	to	programming	is	in	pursuit	of
maintenance	efforts	–	change.1	A	significant	reason	offered	by	many	experts
for	using	an	automated	unit	testing	facility	is	that	the	tests	run	so	rapidly	it
encourages	the	developer	to	run	them	frequently.	Since	automated	unit	tests
can	be	run	at	the	push	of	a	button	and	often	will	complete	faster	than	the
time	it	takes	to	reach	for	and	push	that	button,	running	automated	unit	tests
after	applying	a	maintenance	change	instantly	instills	in	the	developer	the
confidence	that	the	most	recent	changes	applied	have	introduced	no	new
bugs.

	

How	We	Are	Going	to	Get	There
We	are	going	to	start	where	we	are	most	comfortable	and	familiar	and	then	move
slowly	and	methodically	until	we	have	mastered	the	fundamentals	of	automated
unit	testing.	This	means	we	shall	start	from	the	familiar	surroundings	of	manual
unit	testing	(MUT)	as	practiced	in	our	hometown	of	Mutville	and	travel	along
the	path	of	least	resistance	to	the	automated	unit	testing	(AUT)	as	practiced	at
our	destination	of	Autropolis.



Along	the	way	from	Mutville	to	Autropolis,	we	will	pass	through	the
following	districts:

Software	Quality
xUnit
ABAP	Unit
Rudiments
Design	for	Testability
Test	Doubles
Service	Locator
Leveraging	the	Service	Locator
Test-Driven	Development
Configurable	Test	Doubles
Cultivating	Good	Test	Writing	Skills

Each	district	will	present	its	own	unique	landscape	distinguishing	it	from	the
other	districts.	Although	we	will	use	this	book	primarily	to	provide	the	directions
for	navigating	the	new	terrain,	we	also	will	take	the	opportunity	to	pause	in	each
district	long	enough	to	become	more	familiar	with	the	new	concepts	we	will
encounter	by	performing	exercises	designed	to	strengthen	our	grasp	of	the
nuances	and	idiosyncrasies	each	district	has	to	offer.	In	the	same	way	that	merely
reading	a	book	about	swimming	could	not	sufficiently	prepare	us	for	the
experience	of	actually	jumping	into	the	water	for	the	first	time,	merely	reading
this	book	without	performing	the	accompanying	exercises	similarly	would	leave
us	less	than	sufficiently	prepared	for	the	experience	of	actually	using	what	we
will	be	learning.

The	first	district	we	will	encounter	along	the	road	from	Mutville	to
Autropolis	is	known	as	Software	Quality,	a	region	where	we	can	learn	about
what	it	takes	to	build	good-quality	software	and	the	methods	through	which	the
level	of	software	quality	can	be	assessed.	This	is	first	because	it	establishes	the
reasons	why	we	subject	software	to	testing,	providing	us	with	a	solid	foundation
for	our	trek	through	the	remaining	districts.	This	district	is	covered	in	Chapter	3.

Once	we’ve	learned	about	the	things	the	Software	Quality	district	has	to
offer,	we’ll	proceed	on	to	the	district	known	as	xUnit,	a	territory	where	the
residents	have	transformed	the	art	of	unit	testing	by	inventing	a	way	to	automate
this	process.	Since	it	was	first	established	about	30	years	ago,	it	has	grown	over
that	time	to	have	a	significant	impact	on	many	of	the	languages	used	throughout
the	software	industry.	This	district	is	traversed	in	Chapter	4.

In	Chapter	5,	we	will	explore	ABAP	Unit,	a	particular	neighborhood	of	the
xUnit	district	where	the	primary	language	spoken	is	ABAP.	The	local	residents



have	found	ways	to	adapt	the	peculiarities	of	the	ABAP	language	to	the	same
laws,	regulations,	and	customs	underpinning	the	automated	unit	testing	that
made	the	xUnit	district	famous.

Upon	departing	ABAP	Unit,	we’ll	head	for	a	place	known	as	Rudiments,
where	the	residents	have	established	procedures	for	engaging	in	practical
activities	designed	to	strengthen	our	understanding	of	the	basic	concepts
associated	with	automated	unit	testing.	This	district	is	explored	in	Chapter	6.

After	leaving	Rudiments,	we	will	continue	on	our	way	until	reaching	the
district	known	as	Design	for	Testability,	where	the	residents	excel	at
reorganizing	components	in	such	a	way	that	promotes	cleaner	code	while	at	the
same	time	maintaining	the	ability	to	utilize	the	automated	unit	testing	techniques
we	learned	in	Rudiments.	Chapter	7	will	guide	us	through	this	sector.

Farther	down	the	road,	we	will	move	through	Test	Doubles,	where	the
residents	have	mastered	the	art	of	deception	and	illusion,	masquerading	as
dummy	objects,	fake	objects,	mock	objects,	stubs,	and	spies.	This	district	is
featured	in	Chapter	8.

After	Test	Doubles,	we	will	cross	into	Service	Locator,	a	place	where	the
residents	have	organized	their	shared	municipal	services	(animal	control,	fire
alarm	certification,	tax	reassessment,	etc.)	in	such	a	way	that	all	it	takes	is	a	call
to	the	services	distributor	to	arrange	for	the	requested	service.	In	most	cases,	the
requester	of	a	service	is	oblivious	of	the	entity	providing	the	service.	Chapter	9
takes	us	through	this	district.

Beyond	Service	Locator	lies	Leveraging	the	Service	Locator,	where	the
residents	have	instituted	a	process	for	establishing	control	over	entities	providing
services	to	other	entities,	enabling	a	service	to	be	provided	by	the	most
appropriate	entity	based	on	the	circumstances	of	the	requester.	For	instance,	the
town	dog	catcher	can	respond	to	a	resident	calling	animal	control	about	a	stray
dog,	but	a	call	about	a	prowling	cougar	in	a	neighborhood	might	elicit	a	response
from	both	the	local	police	department	and	the	Division	of	Wildlife	Resources	to
tranquilize	and	safely	move	the	animal	to	a	remote	area.	We’ll	be	escorted
through	this	district	by	Chapter	10.

Next,	we	will	traverse	through	the	TDD	district,	where	we	will	explore	a
process	known	as	Test-Driven	Development,	the	skill	for	which	is	in	abundant
supply	among	the	district	residents,	all	of	whom	are	familiar	with	and	adherents
of	a	process	whereby	an	automated	test	is	written	even	before	writing	the
corresponding	production	code	it	is	intended	to	test	–	effectively	putting	the	cart
(test)	before	the	horse	(production	code).	It	will	be	Chapter	11	that	leads	us
through	this	district.

We	will	then	traverse	through	Configurable	Test	Doubles,	where	the



residents	have	found	ways	to	eliminate	the	need	to	write	their	own	explicit	test
double	classes	and	instead	rely	on	a	software	framework	capable	of	simulating
the	presence	of	actual	test	doubles.	This	district	is	covered	in	Chapter	12.

Chapter	13	will	guide	us	through	the	next	district,	a	place	known	as
Obtaining	Code	Coverage	Information.	The	residents	here	have	developed	ways
to	determine	the	extent	of	the	code	covered	by	unit	tests,	enabling	them	to
identify	those	parts	of	programs	that	remain	without	unit	tests.

Next,	we	will	pass	through	a	place	known	for	Cultivating	Good	Test	Writing
Skills.	The	folks	who	live	here	have	learned	many	lessons	about	what	makes	for
good	unit	tests	and	are	willing	to	share	this	wisdom	with	visitors	on	their	way	to
Autropolis.	This	district	is	covered	in	Chapter	14.

In	Chapter	15,	we	finally	will	have	reached	our	destination	of	Autropolis,
where	all	the	things	we’ve	learned	along	the	way	will	enable	us	to	walk	the	walk
and	talk	the	talk	with	the	residents	who	have	contributed	to	raising	automated
unit	testing	into	a	high	art	form.

Legacy	Code
Our	journey	to	Autropolis	will	consist	of	many	encounters	with	ABAP	code.
Since	the	year	2000,	there	have	been	two	different	programming	paradigms
available	for	writing	ABAP:	procedural	and	object-oriented.	Perhaps	it	is
because	the	bulk	of	customized	programs	at	a	site	had	been	written	before	the
object-oriented	flavor	of	ABAP	became	available	that	much	of	the	ABAP	code
we	see	today	is	procedural,	referred	to	euphemistically	as	legacy	code	.

Some	testing	scholars	point	out	that	legacy	procedural	code	presents	a	more
formidable	challenge	to	writing	unit	tests	than	would	be	found	with	object-
oriented	code:

Legacy	code	…	often	refers	to	code	that’s	hard	to	work	with,	hard	to	test,
and	usually	even	hard	to	read.2

Anyone	who	has	tried	to	retrofit	automated	unit	tests	onto	legacy
software	can	testify	to	the	difficulty	this	raises.3

Gerard	Meszaros	identifies	six	kinds	of	tests	and	lists	them	in	approximate
ascending	order	of	difficulty,	with	“non-object-oriented	legacy	software”
identified	as	most	difficult:

As	we	move	down	the	list,	the	software	becomes	increasingly	more



challenging	to	test.	The	irony	is	that	many	teams	“get	their	feet	wet”	by
trying	to	retrofit	tests	onto	an	existing	application.	…	Unfortunately,
many	teams	fail	to	test	the	legacy	software	successfully,	which	may	then
prejudice	them	against	trying	automated	testing	…4

These	quotations	may	seem	alarming,	but	we	will	find	that	all	things	are
relative.5	My	reason	for	including	them	is	to	set	the	context	for	how	we	are
going	to	get	to	Autropolis.	Although	it	may	be	much	easier	to	write	automated
unit	tests	for	object-oriented	ABAP,	it	is	far	more	likely	that	(1)	the	bulk	of	the
code	at	your	site	is	legacy	procedural	code	and	(2)	there	remain	many	ABAP
programmers	who	have	not	yet	become	comfortable	with	the	object-oriented
paradigm,	so	even	their	new	code	still	is	being	written	in	a	procedural	style.
Accordingly,	to	appeal	to	the	widest	cross-section	of	ABAP	programmers,	the
procedural	programming	paradigm	is	used	intentionally	for	the	ABAP	code
examples	in	this	book	and	the	accompanying	exercises.	Programmers	already
writing	object-oriented	code	should	have	no	problem	adapting	the	concepts
presented	in	this	book	to	their	everyday	activities,	while	programmers	unfamiliar
with	object-oriented	programming	will	not	find	themselves	trudging	through
code	difficult	to	understand.

Calisthenics
Along	the	way	from	Mutville	to	Autropolis,	we	will	pause	occasionally	to
perform	some	calisthenics	by	completing	a	few	of	the	more	than	180	exercises
associated	with	this	book.	Each	exercise	presents	or	reinforces	some	concept
presented	in	this	book	by	introducing	minor	code	changes	into	an	ABAP
program	and	then	executing	both	its	production	path	and	unit	test	path	to	observe
the	effects	of	those	changes.	Indeed,	some	exercises	will	introduce	changes	to
the	program	that	will	become	reversed	or	discarded	by	a	subsequent	exercise	so
that	we	can	more	fully	understand	why	some	seemingly	appropriate
implementation	techniques	should	be	avoided.

It	will	take	some	time,	effort,	and	determination	to	complete	all	of	the
exercises,	but	the	end	result	is	to	become	comfortable	with	the	techniques	used
for	writing	unit	tests	as	well	as	to	understand	how	a	production	program	can	be
refactored	to	enable	automated	unit	testing	upon	it.	As	you	make	your	way
through	the	exercises,	you	may	find	yourself	questioning	how	a	particular
exercise	is	intended	to	help	you	understand	anything	associated	with	automated
unit	testing	since	its	practical	benefit	is	not	obvious.	Perhaps	the	following



anecdote	might	help.
In	the	movie	The	Karate	Kid,	Mister	Miyagi	asks	adolescent	Daniel	to	agree

to	a	pact:	in	order	to	learn	karate,	Daniel	is	to	spend	each	training	day	at
Miyagi’s	house	performing	whatever	physical	training	Miyagi	asks	of	him,
without	question.	Daniel	agrees,	and	on	the	first	day,	Miyagi	shows	Daniel	the
technique	he	wants	used	to	apply	wax	to	his	cars,	which	Miyagi	describes	using
the	phrases	“wax	on”	and	“wax	off.”	Daniel	complies	and	is	exhausted	after
spending	the	day	waxing	all	of	Miyagi’s	many	cars.

The	next	day	Miyagi	shows	Daniel	how	to	“sand	the	floor,”	and	Daniel
spends	the	day	using	this	technique	on	all	the	wooden	decks	at	Miyagi’s	house.
The	next	day	Miyagi	introduces	Daniel	to	“paint	the	fence”	and	the	following
day	to	“paint	the	house.”	With	each	day,	Daniel	grows	more	and	more	frustrated
that	he	is	not	learning	karate,	as	promised,	but	is	simply	spending	his	time
making	home	improvements	to	Miyagi’s	house.	Daniel	confronts	Miyagi,
complaining	bitterly	about	all	the	work	he	has	completed	yet	still	knowing
nothing	about	karate.	In	a	scene	exquisitely	capturing	the	essence	of	“learn	by
doing,”	Miyagi	stands	facing	Daniel	and	asks	him	to	show	the	motions	for	“wax
on”	and	“wax	off,”	which	Daniel	does	as	Miyagi	simultaneously	performs	the
corresponding	offensive	karate	maneuver	for	which	Daniel’s	motions	are	the
defense.	Miyagi	continues,	having	Daniel	show	the	motions	for	“sand	the	floor,”
followed	by	“paint	the	fence”	and	“paint	the	house,”	each	time	attacking	Daniel
with	the	corresponding	offensive	karate	maneuver.	Afterward,	Miyagi	bows	to
Daniel	and	walks	away	in	silence,	leaving	Daniel	dumbfounded	by	suddenly
realizing	how	much	he	has	learned	about	karate	without	even	knowing	he	was
learning	it.

Similarly,	it	is	recommended	that	you	simply	perform	the	exercises	even
though	at	the	time	you	may	not	grasp	the	benefit	of	having	done	so.	It	may	not
improve	your	karate	skills,	though	this	is	only	speculation,	but	certainly	it	should
reinforce	and	solidify	your	comprehension	of	the	concepts	associated	with
automated	unit	testing.

Summary
The	road	map	for	traveling	from	Mutville	to	Autropolis	was	presented,
specifically	that	the	reader	will	be	traveling	along	a	path	leading	from	the
familiar	surroundings	of	their	hometown	of	Mutville,	a	place	where	arduous	and
time-consuming	manual	unit	testing	(MUT)	still	reigns,	to	the	less	familiar	but
highly	mechanized	town	of	Autropolis,	a	place	where	automated	unit	testing
(AUT)	has	displaced	outdated	manual	efforts	of	testing.	It	has	oriented	and



1

2

3

4

5

prepared	the	reader	for	the	journey,	explaining	where	we	are,	where	we	are
going,	why	we	are	going	there,	and	how	we	are	going	to	get	there.	Primarily	it
will	be	procedural	code	used	with	the	examples	throughout	the	book	and	with
the	accompanying	exercise	programs	in	order	to	appeal	to	the	largest	cross-
section	of	ABAP	programmers.	The	exercises	will	require	some	dedication	to
complete	them	all	but	will	serve	to	improve	the	ability	to	design	and	write	unit
tests	as	well	as	to	enhance	the	skills	necessary	to	refactor	code	to	facilitate
automated	testing.	Some	exercises	will	introduce	code	eventually	discarded	in	a
subsequent	exercise,	providing	an	effective	illustration	for	why	some	testing
solutions	are	not	as	attractive	as	they	appear	on	the	surface.

Footnotes
Software	maintenance	costs	can	be	75%	of	software	total	ownership	costs.

https://galorath.com/software-maintenance-costs/

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	9

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	40

	
Ibid,	p.	176

	
A	phrase	often	attributed	to	Albert	Einstein

	

https://galorath.com/software-maintenance-costs/


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_3

3.	Software	Quality
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Every	software	component	has	a	quality;	it	may	be	low	quality,	high	quality,	or
somewhere	in	between.	Its	level	of	quality	will	reflect	how	well	the	software
component	meets	the	needs	of	the	organization	using	it.	This	chapter	covers
software	quality	and	how	it	can	be	evaluated.

The	Quality	of	Software
The	capabilities	incorporated	into	a	component	of	software	will	reflect	those
characteristics	the	developer	considers	most	important	for	the	software	to
possess.	These	capabilities	represent	the	quality	of	the	software.	Some	of	these
qualities	relate	directly	to	the	reason	why	the	software	was	written,	such	as
whether	the	software	provides	the	service	for	which	it	was	designed.	Other
qualities	relate	to	the	user	experience	it	yields,	such	as	whether	interaction	with
it	is	intuitive	and	response	time	is	reasonable.	Still	other	qualities	relate	to	the
design	of	the	software,	such	as	whether	it	can	be	changed	to	provide	additional
features	within	a	reasonable	amount	of	time.	Some	of	these	qualities	must	be
present	in	the	software	–	certainly	it	must	execute	correctly	–	while	other
qualities	can	be	missing;	additional	features	might	take	a	while	to	incorporate.
Accordingly,	we	might	perceive	the	quality	of	software	as	a	hierarchy	of	levels,
with	each	higher	level	providing	an	increase	in	the	quality.

Perhaps	the	most	minimal	requirement	to	be	met	is	that	the	software
component	must	be	capable	of	providing	the	correct	outcome	when	it	is	called
upon	to	perform	its	most	basic	and	fundamental	work.	We	might	refer	to	this	as
being	capable	of	providing	the	expected	outcome	for	the	happy	path	execution.
Arguably	this	is	the	one	thing	the	software	should	be	able	to	do	correctly	even	if
it	is	written	poorly	–	it	must	be	effective,	producing	the	correct	result	under	the

https://doi.org/10.1007/978-1-4842-6951-0_3


simplest	of	conditions.	This	is	the	lowest	level	of	quality	and	typically	is	the	first
thing	programmers	will	insure	the	software	is	capable	of	doing.	There	is	no
lower	level	because	software	that	cannot	do	at	least	this	would	be	regarded	as
useless.

The	next	level	of	quality	is	where	the	software	is	capable	of	handling	invalid
input,	perhaps	described	as	being	able	to	cope	with	the	unhappy	paths	of
execution.	It	must	be	robust,	able	to	determine	that	its	basic	processing	should
not	be	performed	unless	the	input	it	has	been	provided	is	valid.	Software	that
does	not	have	this	level	of	quality	is	not	quite	useless	because	it	could	still
provide	the	correct	processing	so	long	as	the	input	it	is	provided	is	valid.
Software	meeting	this	level	of	quality	can	accommodate	more	combinations	of
input	and	distinguishes	between	those	that	are	valid	and	those	that	are	invalid,
processing	or	not	processing	accordingly.	This	also	seems	to	be	the	next
capability	programmers	will	infuse	into	the	software.

The	next	level	of	quality	is	where	the	software	is	easy	to	use	and	capable	of
diagnosing	any	invalid	input	it	has	been	provided.	Users	will	not	be	happy	with
software	they	find	difficult	to	use.	Software	that	does	not	alert	the	user	of	what	it
found	to	be	incorrect	also	is	not	useless,	but	it	can	be	frustrating	to	a	user	who
has	been	provided	no	information	about	what	the	software	determined	to	be
faulty.	A	message	such	as	“invalid	input	detected”	is	hardly	helpful,	so	at	this
level	of	quality,	the	software	must	be	user-friendly	enough	to	provide	the	user
with	ease	of	use	as	well	as	feedback	to	suggest	what	the	software	considers	to	be
incorrect.	Programmers	who	have	already	insured	the	software	meets	the
previous	two	levels	of	quality	will	generally	select	this	as	its	next	capability.

The	next	level	of	quality	is	where	the	software	is	capable	of	performing	its
processing	within	a	reasonable	response	time.	It	must	be	efficient	.	Users	will
become	frustrated	and	impatient	with	software	that	meets	the	previous	three
levels	of	quality	but	causes	them	to	wait	an	exorbitantly	long	time	before	it
completes	its	work.	Programmers	who	have	already	insured	the	software	meets
the	previous	three	levels	of	quality	will	usually	find	they	are	applying	this	level
of	quality	next,	perhaps	initiated	by	user	complaints	of	poor	software	response
time.

The	next	level	of	quality	is	where	the	software	is	designed	in	such	a	way	as
to	enable	changes	to	be	applied	quickly	and	easily	and	without	introducing	any
new	problems	in	the	process.	The	software	needs	to	facilitate	easy	maintenance	.
Software	that	meets	the	previous	four	levels	of	quality	reflects	capabilities
directly	associated	with	the	user	experience,	but	at	this	level	of	quality,	the	user
is	indirectly	affected.	It	is	only	after	the	user	has	made	a	request	for	a	change
and,	after	a	reasonable	wait,	learns	the	change	has	not	yet	been	implemented



because	of	software	difficult	to	change	that	things	escalate,	prompting	the
displeased	user	to	squawk	about	the	loss	to	the	business	caused	by	the	delay.
This	level	of	quality	reflects	the	skill	of	the	programmer,	who	is	or	is	not	able	to
design	the	software	to	facilitate	future	changes	easily,	and	usually	requires	a
programmer	to	have	many	years	of	experience	wrestling	with	software	that	was
not	originally	designed	to	be	easily	maintainable	in	order	to	understand	and
recognize	those	software	design	flaws	that	prevent	rapid	change.

In	summary,	here	is	the	hierarchy	of	levels	of	software	quality	just	described:

Capable	of	handling	the	happy	path	–	Effective
Capable	of	handling	invalid	input	–	Robust
Easy	to	use	and	capable	of	diagnosing	invalid	input	–	User-friendly
Having	been	optimized	for	performance	–	Efficient
Conducive	to	applying	changes	quickly	–	Easily	maintained

The	first	four	of	these	quality	levels	seem	to	correspond	to	the	sequence	of
activities	specified	in	a	software	industry	phrase	attributed	to	Kent	Beck:

Make	it	work,	make	it	right,	make	it	fast1

The	pyramid	shown	in	Figure	3-1	illustrates	these	levels	graphically.	The
relative	width	of	the	various	quality	levels	is	intended	to	suggest	that	whereas
virtually	all	software	components	at	a	site	meet	the	quality	standard	of	the	lowest
level,	the	percentage	of	software	components	meeting	higher	levels	of	quality
diminishes	with	each	next	level.



Figure	3-1 Levels	of	software	quality

Assessing	Software	Quality
In	the	many	years	since	the	first	computer	program	was	written,	a	general
consensus	has	emerged	that	performing	unit	testing	is	a	necessary	activity	in	the
pursuit	of	insuring	high-quality	software.	The	phrase	unit	testing	denotes	the
testing	performed	by	software	developers	upon	the	specific	components	of
software	under	their	direct	control.	It	typically	is	performed	in	a	development
environment	where	software	can	be	changed	at	will.	It	gets	its	name	from	the
fact	that	the	associated	testing	is	being	applied	to	a	distinct	unit	of	software,	one
that	cannot	reasonably	be	subdivided	into	smaller	units.

Hardly	anyone	in	the	software	industry	would	argue	against	the	need	to
perform	some	level	of	unit	testing	to	assess	the	quality	of	software.	However,	it
is	the	experience	of	many	software	developers	that	unit	testing	often	gets
performed	in	haste	or	is	entirely	omitted	when	tight	deadlines	are	in	jeopardy,
milestones	are	being	missed,	schedules	are	slipping,	and	management	personnel
react	to	the	pressure	by	urging	developers	to	work	longer	and	harder	in	an	effort
to	get	back	on	track.

Virtually	all	of	us	developers	have	found	ourselves	in	situations	where	the



delivery	of	finished	software	by	the	expected	due	date	became	jeopardized	due
to	difficulties	encountered	during	the	development	cycle.	Under	such
circumstances,	more	than	a	few	of	us	have	had	to	make	difficult	decisions	about
where	we	would	devote	our	attention	in	the	time	remaining	until	the	finish	date.

Many	organizations	have	devised	and	published	highly	detailed	development
standards	in	their	quest	to	assure	the	quality	of	homegrown	software,	often	with
detailed	variable	naming	conventions	to	which	developers	are	expected	to
adhere,	enforced	through	manual	code	inspection	procedures	where	a	passing
grade	often	is	determined	by	how	well	the	code	reviewer	feels	the	developer	has
observed	the	published	development	standards.	Usually	such	development
standards	focus	on	establishing	a	style	of	coding	intended	to	be	used	by	all
developers	under	the	unquestioned	assumption	that	the	code	base	will	be	easier
to	maintain	so	long	as	all	the	code	conforms	to	the	same	prescribed	coding	style,
with	any	approach	to	its	unit	testing	remaining	unaddressed	and	left	entirely	to
the	discretion	of	the	developer.	Lacking	any	clear	guidance	on	effective	unit
testing	procedures	in	the	development	standards	coupled	with	being	assigned	to
work	on	a	project	falling	behind	schedule,	software	professionals	frequently	find
themselves	choosing	thorough	unit	testing	as	the	activity	to	be	sacrificed	at	the
altar	of	expediency,	a	decision	perhaps	made	subconsciously,	but	regrettable
nonetheless.

Indeed,	unit	testing	as	it	is	practiced	in	many	software	development
organizations	is	a	tedious,	arduous	manual	process	involving	a	lengthy	test	data
preparation	stage	to	be	completed	prior	to	running	a	test	consisting	of	following
a	script	describing	the	manual	steps	to	be	performed.	Too	often	it	becomes	a
burdensome	task	to	be	weathered	as	well	as	one	possibly	can	as	it	challenges	the
stamina	and	endurance	of	even	the	most	seasoned	practitioners.	It	is	not	unusual
for	the	same	manual	unit	test	to	be	run	repeatedly	as	adjustments	are	made	to	the
software	to	correct	problems	encountered	during	previous	test	executions.

Perhaps	you	have	had	this	experience	yourself,	realizing	during	the	third	or
fourth	time	through	the	same	manual	unit	test	that	you	no	longer	are	reading	the
associated	test	script	but	simply	performing	by	rote	what	you	believe	to	be	the
next	activity	after	having	become	so	accustomed	to	the	sequence	of	steps,	later
regretting	having	fallen	into	this	trap	once	you	reach	the	point	where	the
software	is	not	behaving	as	expected	because	you	accidentally	skipped	a	step	in
the	test	script.	When	accounts	such	as	these	describe	the	typical	experiences
developers	have	with	the	unit	testing	procedures	at	their	disposal,	then	it	is	no
mystery	why	unit	testing	becomes	one	of	the	first	casualties	of	a	development
cycle	where	the	scheduled	completion	date	becomes	jeopardized.

Whether	a	development	cycle	is	one	in	which	unit	testing	activities	are



partially	or	fully	curtailed	or	one	in	which	the	amount	of	time	allocated	toward
unit	testing	activities	is	regarded	as	sufficient,	it	follows	that	software	quality	is	a
consequence	of	the	comprehensiveness	of	the	unit	testing	to	which	it	had	been
subjected.	To	paraphrase	Portia’s	soliloquy	in	Act	IV,	Scene	I,	of	William
Shakespeare’s	The	Merchant	of	Venice

The	quality	of	software	is	not	constrained.	It	relateth	directly	to	the	effort
the	developer	doth	invest	toward	insuring	the	software	is	effective,
robust,	user-friendly,	efficient,	and	easily	maintained.

In	short,	it	is	primarily	the	responsibility	of	the	developer	to	insure	the
quality	of	software,	but	that	quality	can	be	affected	by	the	level	of	support	the
developer	receives	from	management	for	preparing	and	executing	unit	tests.	At
development	sites	where	the	developers	enjoy	substantial	management	support
for	their	testing	efforts,	having	been	allocated	the	necessary	time	and	resources
to	reach	the	goal	of	high-quality	software,	it	can	be	expected	that	the	quality
would	be	higher	than	at	sites	where	management	support	is	weak	or	absent.	So
although	the	developer	bears	primary	responsibility	for	the	quality	of	the
software,	the	entire	team	contributes	to	the	level	of	quality	that	can	be	attained.

Much	of	the	drudgery	and	mistakes	normally	associated	with	manual	unit
testing	can	be	avoided	when	the	unit	testing	itself	is	automated.	This	is	the	idea
behind	automated	unit	testing:

A	unit	test	is	an	automated	piece	of	code	that	invokes	the	unit	of	work
being	tested,	and	then	checks	some	assumptions	about	a	single	end	result
of	that	unit.	A	unit	test	is	almost	always	written	using	a	unit	testing
framework.	It	can	be	written	easily	and	runs	quickly.	It’s	trustworthy,
readable,	and	maintainable.	It’s	consistent	in	its	results	as	long	as
production	code	hasn’t	changed.2

The	computer	is	capable	of	executing	a	unit	test	far	faster	than	could	be
achieved	manually	by	a	developer	sitting	at	a	workstation,	and	the	computer
does	not	suffer	from	the	same	attention	deficit	episodes	plaguing	developers,	so
there	is	no	chance	it	could	accidentally	skip	a	step	due	to	having	becoming
disoriented.	Indeed,	the	whole	reason	there	is	a	computer	industry	is	to	automate
what	most	of	us	consider	to	be	boring	repetitive	manual	tasks.	The	next	chapter
explores	further	the	topic	of	automated	unit	testing.



1

2

Summary
Software	quality	can	be	categorized	along	five	ascending	levels:

Capable	of	handling	the	happy	path	–	Effective
Capable	of	handling	invalid	input	–	Robust
Easy	to	use	and	capable	of	diagnosing	invalid	input	–	User-friendly
Having	been	optimized	for	performance	–	Efficient
Conducive	to	applying	changes	quickly	–	Easily	maintained

The	quality	of	software	has	been	and	continues	to	be	assessed	through	the
process	of	unit	testing,	an	exhausting	and	time-consuming	process	when
performed	manually	and	fraught	with	challenges	when	software	delivery
schedules	are	jeopardized.	Many	of	the	deficiencies	inherent	in	manual	unit
testing	can	be	eliminated	when	such	testing	can	be	automated.

Footnotes
https://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	11

	

http://wiki.c2.com/%253FMakeItWorkMakeItRightMakeItFast


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_4

4.	The	Origins	of	Automated	Unit	Testing
James	E.	McDonough1		

Pennington,	NJ,	USA

	

ABAP	Unit	is	one	of	the	many	automated	unit	testing	frameworks	falling	under
the	umbrella	term	xUnit.	This	chapter	covers	what	xUnit	is	and	how	it	came	to
be.

In	the	Beginning	…
In	the	1980s,	a	fellow	by	the	name	of	Kent	Beck	began	to	experiment	with
various	ways	to	facilitate	automating	the	task	of	unit	testing	programs	he	had
written	in	the	Smalltalk	language.	By	1989,	he	had	succeeded	in	creating	an
automated	unit	testing	framework	for	Smalltalk	programs.	This	framework	was
described	in	a	paper	he	wrote	titled	“Simple	Smalltalk	Testing:	With	Patterns,”
which	in	1998	became	Chapter	30	in	the	book	Kent	Beck's	Guide	to	Better
Smalltalk.1	He	named	this	framework	SUnit	–	“S”	for	Smalltalk	and	“Unit”	for
unit	testing	framework.

According	to	Martin	Fowler	in	an	article	he	posted	on	the	Internet,	Kent
Beck	and	Erich	Gamma	found	themselves	on	the	same	flight	from	Zurich	to
Atlanta	to	attend	the	1997	OOPSLA	conference.	The	two	pair-programmed
during	the	flight	to	create	the	first	version	of	an	automated	unit	testing
framework	for	Java,	which	came	to	be	known	as	JUnit.	As	Fowler	states,
although	SUnit	was	little	known	outside	the	Smalltalk	community,	“JUnit	took
off	like	a	rocket	–	and	was	essential	to	supporting	the	growing	movement	of
Extreme	Programming	and	Test	Driven	Development.”2

The	Emergence	of	xUnit
Since	then,	various	other	languages	have	had	comparable	automated	unit	testing

https://doi.org/10.1007/978-1-4842-6951-0_4
https://doi.org/10.1007/978-1-4842-6951-0_30


frameworks	created	for	them,	each	of	which	is	named	following	the	same
convention	used	with	both	SUnit	and	JUnit	–	the	characters	preceding	the	“Unit”
portion	denote	the	associated	language.	Some	examples	are	shown	in	Table	4-1.

Table	4-1 Automated	unit	testing	frameworks	and	their	associated	languages

Framework	name Associated	language

ABAPUnit ABAP

CUnit C

COBOLUnit COBOL

CppUnit C++

NUnit .NET

PHPUnit PHP

Because	all	the	automated	unit	testing	frameworks	for	these	languages	share
the	same	traits,	capabilities,	and	characteristics,	they	are	collectively	known	by
the	term	xUnit,	where	“x”	denotes	a	generic	designation	for	the	associated
language.

Features	of	xUnit
Perhaps	the	most	appealing	feature	of	xUnit	automated	unit	testing	frameworks
is	that	the	language	used	to	write	the	unit	tests	is	the	same	language	used	to
write	the	code	being	tested.	It	is	therefore	out	of	necessity	that	we	need	to
distinguish	between	code	intended	for	production	and	code	used	to	test	the	code
intended	for	production.

Other	than	prototype	code,	written	in	a	development	environment	and
serving	only	as	the	basis	for	demonstrations	and	experimenting	with	capabilities
the	language	provides,	code	intended	for	production	and	having	no	associated
unit	testing	code	never	needed	such	a	distinction	because	there	simply	was	no
other	type	of	code.	Terms	to	describe	this	type	of	code	are

Production	code
Productive	code
Code	intended	for	production
System	code

Meanwhile,	productive	code	for	which	there	is	a	corresponding	unit	test	also
may	be	described	using	these	additional	terms	when	referenced	in	the	context	of
running	the	unit	tests:



Code	being	tested
Code	under	test	or	component	under	test	(CUT3)
Object	under	test
System	under	test	(SUT4)

Finally,	the	code	used	to	write	the	unit	test	itself	is	referred	to	as

Test	code
Unit	test	code
Unit	test

Having	both	the	productive	code	and	the	unit	test	code	written	using	the
same	language	presents	many	advantages.

For	one,	programmers	can	call	upon	their	vast	knowledge	and	experience	of
the	programming	language	when	writing	the	unit	tests.	The	structure	and	syntax
of	the	unit	test	code	must	comply	with	the	demands	the	compiler	already	places
upon	the	code	being	tested.

Another	advantage	is	that	the	unit	test	code	is	an	integral	part	of	the	file
containing	the	code	to	be	tested.	This	means	there	is	no	way	for	the	unit	test
code	to	become	separated	from	the	code	it	tests	–	it	is	retained	in	the	code
repository.	How	often	have	you	found	yourself	tasked	with	making	changes	to
code	with	which	you	are	not	familiar	and	then	trying	to	find	its	corresponding
unit	test?	If	your	experience	is	anything	like	mine,	the	corresponding	unit	test,	if
one	had	been	created,	was	written	using	either	a	text	editor	(bad	enough)	or	a
spreadsheet	application	(even	worse);	and	it	is	buried	in	a	separate	document
repository	which	offers	little	hope	for	finding	it	easily,	if	it	exists	at	all.

Yet	another	advantage	is	that	the	automated	unit	testing	code	provides
working	examples	of	how	to	invoke	the	code	being	tested.	Indeed,	such	unit	tests
represent	the	most	accurate	and	up-to-date	documentation	describing	the
functionality	of	the	tested	software	because	the	tests	must	always	pass.	Again,	if
your	experience	is	anything	like	mine,	that	unit	test	text	document	or	spreadsheet
that	you	have	been	lucky	enough	to	find	in	the	separate	document	repository	was
probably	prepared	by	your	predecessor	in	a	way	that	made	sense	to	the	author
but	is	perhaps	unintelligible	to	you.	Frequently,	programmers	will	write	such	unit
tests	and	omit	important	information	which	to	them	seems	obvious,	leaving
others	trying	to	interpret	the	unit	test	document	to	wonder	how	to	proceed	with
the	tests.	A	good	example	might	be	a	unit	test	step	which	states	something	like
the	following:

Use	transaction	ZYX987	to	create	a	rabblefrang	document	that	contains



a	combination	of	compatible	values	for	the	tillimux	and	zamitrope
attributes.

If	you	happen	to	be	familiar	with	the	area	of	expertise	required	to	understand
what	is	needed	to	create	such	a	document,	then	you	are	in	luck,	but	too	often	a
statement	like	this	is	such	a	showstopper	to	the	next	programmer	as	to	render	the
unit	test	useless.	However,	when	the	automated	unit	test	is	written	in	the
language	of	the	code	to	be	tested,	it	is	easy	to	determine	how	to	create	a
rabblefrang	document	because	the	unit	test	actually	performs	this	step.	As	a
consequence,	one	can	learn	from	the	unit	test	itself	how	to	do	this,	even	though
knowing	the	process	no	longer	is	necessary	since	the	unit	test	already	is	quite
capable	of	performing	that	step	without	any	help	at	all	from	the	next
programmer.

Another	feature	of	xUnit	automated	unit	testing	frameworks	is	that	the	tests
themselves	are	self-checking	.	Gerard	Meszaros,	author	of	xUnit	Test	Patterns:
Refactoring	Test	Code,	describes	the	self-checking	characteristic	of	unit	tests	this
way:

A	Self-Checking	Test	has	encoded	within	it	everything	that	the	test	needs
to	verify	that	the	expected	outcome	is	correct.	Self-Checking	Tests	apply
the	Hollywood	principle	(“Don’t	call	us;	we’ll	call	you”)	to	running
tests.	That	is,	the	Test	Runner	“calls	us”	only	when	the	test	did	not	pass;
as	a	consequence,	a	clean	test	run	requires	zero	manual	effort.5

The	Test	Runner	appearing	in	the	preceding	statement	is	a	reference	to	a
component	of	the	automated	unit	testing	framework	capable	of	running	the	tests
for	the	language	in	which	the	tests	are	written.

xUnit	testing	frameworks	enable	testing	at	an	individual	module	level.	That
is,	each	of	their	tests	focuses	on	the	validity	of	a	small	fragment	of	code	and	not
on	the	validity	of	an	entire	integrated	system.	As	such,	these	tests	may	be	written
for	software	elements	such	as	classes,	subroutines,	and	functions.	Taken
together,	all	the	unit	tests	written	for	the	software	elements	contained	within	the
same	source	code	file	represent	a	test	harness	capable	of	asserting	the	validity	of
all	the	associated	software	elements.

Perhaps	the	most	important	feature	of	xUnit	testing	frameworks	is	that	they
facilitate	fast	test	execution.	How	fast?	Very,	very	fast!!	In	the	simplest	case	of	a
small	module	with	a	few	unit	tests,	it	might	return	a	message	that	all	the	tests
had	run	and	passed	before	the	user	is	even	able	to	focus	their	eyes	on	the
message.	In	more	complicated	cases,	it	might	take	a	few	seconds.	It	depends	on



many	factors,	not	the	least	of	which	are	how	well	structured	the	production
program	modules	are	for	performance	optimization,	how	well	the	tests	are
written,	how	much	load	is	on	the	computer	at	the	time	the	tests	are	run,	whether
any	required	resources	to	complete	running	a	unit	test	are	available	and
functioning,	and	perhaps	even	whether	the	Moon	is	in	the	seventh	house	and
Jupiter	is	aligned	with	Mars.

Robert	C.	Martin	says	the	following	about	how	fast	automated	unit	tests
should	run:

Tests	should	be	fast.	They	should	run	quickly.6

Yes,	it	will	take	some	time	to	write	the	automated	unit	tests.	Occasionally,	it
will	take	the	same	amount	of	time	as	it	takes	to	write	a	unit	test	script
counterpart	in	the	form	of	a	text	document	or	spreadsheet.	In	other	instances,	it
may	take	twice	or	three	times	as	long	to	write	the	automated	unit	testing	code.
Indeed,	you	may	find	that	a	comprehensive	unit	test	for	a	module	contains	far
more	testing	code	than	the	production	code	it	is	testing.	But	the	point	is	that	once
the	automated	unit	test	is	written,	it	takes	far,	far	less	time	to	execute	than
possibly	could	be	attained	through	a	manual	execution.	Accordingly,	when	the
unit	tests	run	rapidly,	the	developer	is	much	more	likely	to	execute	them	not	only
more	frequently	but	also	while	the	development	is	underway,	gaining	valuable
feedback	about	the	module	at	a	time	when	it	is	easiest	to	implement	design
changes.

I	have	my	own	tale	of	having	written	a	long	and	comprehensive	unit	test
script	as	a	text	document	in	2007	to	test	new	ABAP	software	I	had	written.	The
test	script	was	long	and	excruciatingly	detailed	because	I	not	only	wanted	to
enable	some	other	developer	to	run	this	same	unit	test	(which	eventually	became
necessary)	without	having	to	know	anything	about	the	application	but	was	also
afraid	that	over	the	next	few	years	I	would	need	to	run	it	again	and	might	have
forgotten	so	much	about	it	that	I	would	have	to	relearn	how	to	prepare	its	test
data.	Manually	running	the	unit	test	script	took	an	exhausting	10	hours	to
complete,	which	included	preparing	much	of	the	test	data	that	would	be
consumed	by	the	test.	I	recall	that	I	had	to	run	this	unit	test	about	eight	times
before	I	found	the	software	to	be	satisfactory.	So	you	could	say	that	it	took	all	of
2	weeks	of	8-hour	workdays	for	me	to	run	this	unit	test	the	number	of	times
necessary	for	it	to	pass	everything	as	I	had	expected.	I	feel	certain	that	had	I
known	at	the	time	about	the	xUnit	testing	feature	available	with	ABAP,	it	might
have	taken	about	4	days	to	write	the	necessary	unit	tests	and	then	I	might	have
been	able	to	run	the	tests	to	completion	in	a	few	seconds.	Indeed,	I	believe	it



would	have	taken	less	time	to	write	all	of	the	xUnit	tests	than	it	took	for	me	to
write	that	excruciatingly	detailed	unit	test	script	as	a	text	document.

xUnit	also	is	well	suited	to	facilitate	Test-Driven	Development	(TDD)	.	TDD
is	one	of	the	Agile	software	development	methodologies	and	consists	of	a	short
cycle	of	activities	designed	to	produce	a	test	for	some	fragment	of	production
code	prior	to	actually	writing	the	production	code	itself:

1.
Write	a	new	executable	test. 	

2.
Run	all	tests	to	confirm	the	new	test	fails. 	

3.
Write	production	code	to	make	the	new	test	pass. 	

4.
Run	all	tests	to	confirm	they	all	pass. 	

5.
Refactor	production	code	as	necessary	and	rerun	all	tests.	

6.
Repeat	from	step	1. 	
We	will	explore	TDD	further	in	a	subsequent	chapter.

Phases	of	xUnit	Tests
One	of	the	ways	unit	tests	resemble	the	production	components	they	test	is	that
they	contain	a	series	of	statements	executed	to	produce	a	desired	result.	The
desired	result	should	be	easily	discernible	to	a	reader	of	the	unit	test.	A	test
containing	complicated	logic	to	establish	all	the	conditions	necessary	for	a
successful	test	or	to	confirm	its	results	can	have	a	detrimental	effect	on	the
ability	of	the	reader	to	quickly	understand	the	purpose	of	the	test.	A	unit	test
should	clearly	impart	its	intent.	Gerard	Meszaros	addresses	this	issue	of	clarity
with	xUnit	tests:

How	do	we	structure	our	test	logic	to	make	what	we	are	testing	obvious?
We	structure	each	test	with	four	distinct	parts	executed	in	sequence.7

Meszaros	goes	on	to	describe	what	he	calls	the	Four-Phase	Test	consisting	of
the	following	phases8:

Setup



Exercise
Verify
Teardown

The	Setup	phase	consists	of	establishing	the	conditions	necessary	to	insure
that	the	component	under	test	will	exhibit	the	behavior	expected	of	it.	This	may
include	acquiring	or	creating	test	data	to	be	used	during	the	test,	setting	global
variables	to	specific	starting	values,	and	making	it	possible	to	examine	the	result
of	running	the	test.	It	establishes	a	starting	state	for	the	component	under	test	and
those	components	with	which	it	will	interact	during	the	course	of	the	test.

The	Exercise	phase	is	where	the	unit	test	interacts	with	the	component	under
test.	This	typically	involves	the	unit	test	causing	the	component	under	test	to	be
executed.

The	Verify	phase	consists	of	confirming	whether	the	Exercise	phase
produced	the	expected	results.

The	Teardown	phase	consists	of	setting	the	environment	back	to	the	same
state	it	was	in	prior	to	the	start	of	the	Setup	phase,	effectively	reestablishing	a
clean	slate.

Organizing	an	xUnit	test	this	way	enables	readers	to	determine	at	a	glance
what	is	being	verified	by	the	test,	contributing	to	the	goal	of	having	the	unit	test
serve	as	documentation	for	the	component	under	test,	clearly	identifying	how	the
component	can	be	used	as	well	as	what	results	can	be	expected	from	it.

Roy	Osherove	offers	a	similar	sequence	of	steps	he	refers	to	as	Arrange-Act-
Assert.	According	to	him,	a	unit	test	usually	comprises	three	main	actions:

1.
Arrange	objects,	creating	and	setting	them	up	as	necessary.	

2.
Act	on	an	object. 	

3.
Assert	that	something	is	as	expected.9 	

Writing	xUnit	Tests
Each	xUnit	test	framework	provides	its	own	protocol	through	which	unit	test
authors	can	assert	the	validity	of	a	software	module.	Usually	this	consists	of	a	set
of	assertion	methods,	defined	by	a	single	class	supplied	with	the	framework,	that
can	be	called	by	the	test	author.	These	assertion	methods	typically	test	the
relationship	between	an	actual	value	and	an	expected	value	to	determine	whether



the	code	that	produced	the	actual	value	passes	or	fails	the	assertion.	When	the
assertion	is	true,	the	test	passes;	when	false,	the	test	fails.

For	example,	let’s	say	we	have	the	following	pseudo-code	for	a	fragment	of
production	code

subroutine	getSign

		if	number	is	greater	than	00

				sign	=	'+'

		else

				if	number	is	less	than	00

						sign	=	'-'

				else

						sign	=	'	'

				endif

		endif

endsubroutine

along	with	the	following	pseudo-code	for	its	corresponding	unit	test:

testPositive

		set	thisNumber	=	55

		call	subroutine	getSign	sending	thisNumber	receiving

sign

		call	xUnitAssert.isEqual	actualValue	=	sign

																											expectedValue	=	'+'

																											failureMessage	=	'Sign

assertion	failed'

The	production	code	of	subroutine	getSign	inspects	a	number	parameter	it
has	been	sent	and,	based	on	whether	the	number	is	positive,	negative,	or	zero,
will	set	the	corresponding	sign	parameter	accordingly.

Meanwhile,	the	test	code	of	testPositive	sets	the	variable	thisNumber	to	55.	It
then	calls	the	getSign	subroutine	sending	the	parameter	thisNumber	and
receiving	the	parameter	sign.	This	is	followed	by	a	call	to	method	isEqual	of
static	class	xUnitAssert	which	asserts	whether	actual	value	in	variable	sign	is
equal	to	the	expected	value	‘+’.	When	the	value	in	variable	sign	is	equal	to	‘+’,
then	the	assertion	passes,	and	the	failureMessage	parameter	is	ignored.	This	is
the	result	we	should	expect	with	the	pseudo-code	as	written	in	the	preceding
text.



Let’s	suppose	instead	that	the	test	pseudo-code	had	been	written	as	follows:

set	thisNumber	=	55

call	subroutine	getSign	sending	thisNumber	receiving

sign

call	xUnitAssert.notEqual	actualValue	=	sign

																										expectedValue	=	'+'

																										failureMessage	=	'Sign

assertion	failed'

The	only	difference	between	this	example	and	the	previous	one	is	that	the
test	code	invokes	method	notEqual	of	class	xUnitAssert	instead	of	method
isEqual.	In	this	case,	we	should	find	that	the	assertion	fails	and	that	the	xUnit
testing	framework	will	present	some	type	of	report	to	include	the	message	“Sign
assertion	failed.”

Accordingly,	the	user	is	presented	with	an	assertion	failure	report	only	when
one	or	more	of	its	self-checking	tests	have	failed.	Otherwise,	the	user	typically	is
presented	with	some	simple	message	indicating	that	all	tests	have	passed.

Those	unit	tests	which	require	some	special	preparation	to	be	executed	can
specify	what	is	known	as	a	fixture.	A	fixture	consists	of	a	set	of	actions	to	be
taken	to	prepare	one	or	more	tests	for	execution.	This	could	include	setting
values	for	global	variables,	reading	and	applying	configuration	settings,
preparing	test	data	for	the	test	to	use,	and	any	other	type	of	activity	required	to
establish	the	preconditions	necessary	to	test	the	assertion.

The	general	sequence	of	steps	for	executing	a	unit	test	consists	of	the
following:

1.
Setup	–	Establish	the	fixture. 	

2.
Run	a	unit	test. 	

3.
Teardown	–	Restore	to	a	pre-setup	state.	
A	collection	of	unit	tests	all	using	the	same	fixture	is	known	as	a	test	suite	.
Often	a	single	module	of	production	code	will	require	multiple	tests	to

thoroughly	assert	its	validity.	Let’s	see	this	with	an	example	using	the	same
production	pseudo-code	from	the	preceding	text	with	the	following	three	unit
tests	defined	to	test	every	possible	path	through	subroutine	getSign:



testPositive

		set	thisNumber	=	55

		call	subroutine	getSign	sending	thisNumber	receiving

sign

		call	xUnitAssert.isEqual	actualValue	=	sign

																											expectedValue	=	'+'

																											failureMessage	=

'testPositive	assertion	failed'

testZero

		set	thisNumber	=	00

		call	subroutine	getSign	sending	thisNumber	receiving

sign

		call	xUnitAssert.isEqual	actualValue	=	sign

																											expectedValue	=	'	'

																											failureMessage	=	'testZero

assertion	failed'

testNegative

		set	thisNumber	=	00	-	55

		call	subroutine	getSign	sending	thisNumber	receiving

sign

		call	xUnitAssert.isEqual	actualValue	=	sign

																											expectedValue	=	'-'

																											failureMessage	=

'testNegative	assertion	failed'

As	you	can	see	in	the	preceding	code,	we	now	have	defined

A	test	named	testPositive,	which	will	assert	that	the	value	‘+’	is	returned
from	subroutine	getSign	when	it	is	sent	a	positive	number

A	test	named	testZero,	which	will	assert	that	the	value	‘	’	is	returned	from
subroutine	getSign	when	it	is	sent	a	number	equal	to	zero

A	test	named	testNegative,	which	will	assert	that	the	value	‘-’	is	returned
from	subroutine	getSign	when	it	is	sent	a	negative	number

The	number	of	logical	paths	defined	within	a	module	will	determine	the
number	of	tests	required	to	execute	each	of	those	logical	paths.

xUnit	testing	frameworks	require	the	freedom	to	run	the	tests	of	a	test	suite
in	any	order.	As	such,	the	unit	test	author	has	no	control	over	the	sequence	in



which	unit	tests	will	be	run.	This	imposes	upon	the	unit	test	author	the	discipline
to	insure	that	there	are	no	dependencies	between	individual	unit	tests.	That	is,
the	unit	test	author	should	not	structure	unit	tests	in	such	a	way	that	the
execution	of	unit	test	testB	is	dependent	upon	unit	test	testA	having	been	run	first
and	leaving	something	behind	for	testB	to	use.	To	do	so,	whether	intentionally	or
not,	exposes	the	tests	to	failures	occurring	from	what	Gerard	Meszaros	calls
Interacting	Tests	:

Every	test	needs	a	starting	point.	As	part	of	our	testing	plan,	we	take	care
that	each	test	sets	up	this	starting	point,	known	as	the	test	fixture,	each
time	the	test	is	run.	This	…	helps	us	avoid	Interacting	Tests	by	insuring
that	tests	do	not	depend	on	anything	they	did	not	set	up	themselves.10

Advantages	of	xUnit	Tests
A	policy	of	implementing	and	running	xUnit	tests	at	a	site	as	opposed	to	a	policy
of	writing	and	executing	manual	unit	tests	will	offer	the	following	advantages:

All	unit	tests	are	automated	–	the	tests	can	be	run	at	the	press	of	a	button.
The	unit	tests	are	embedded	with	the	production	code	–	they	cannot	get	lost	or
misplaced.
No	need	to	have	any	special	application	knowledge	to	prepare	the	unit	test	for
execution.
No	need	to	have	any	special	application	knowledge	to	be	able	to	run	the	unit
test.
No	need	to	remember	what	should	be	the	result	of	each	unit	test.
No	need	to	inspect	a	report	of	test	results	to	determine	simply	that	all	tests
have	passed.

Summary
The	xUnit	philosophy,	embraced	by	many	of	those	in	the	software	industry,	has
laid	the	foundation	for	the	features	and	characteristics	incorporated	into
automated	unit	testing	frameworks	adhering	to	its	principles.	Its	origin	is	traced
from	the	Smalltalk	SUnit	testing	framework	first	conceived	and	developed	by
Kent	Beck	to	the	Java	JUnit	framework	that	popularized	this	approach	to	unit
testing	to	the	central	role	it	plays	in	Test-Driven	Development	(TDD).	Its
concept	of	fixtures	enables	establishing	a	fresh	unit	testing	environment	for
multiple	unit	tests.	Its	foundation	of	four	phases	–	Setup,	Exercise,	Verify,	and



Teardown	–	provides	a	viable	model	for	writing	and	organizing	self-checking
rapidly	executing	unit	tests	using	the	same	language	and	code	repository	as	used
to	develop	the	code	to	be	tested.	When	compared	with	manual	unit	testing,	the
advantages	xUnit	provides	include	tests	embedded	with	the	production	code,
preventing	them	from	getting	lost,	and	alleviating	the	person	running	the	tests
from	needing	to	know	anything	about	how	to	prepare,	run,	and	determine	the
results	of	the	tests.

Quiz	#1:	xUnit	Concepts
Now	that	you	are	familiar	with	the	concepts	associated	with	xUnit,	test	your
knowledge	by	completing	the	following	quiz.	See	Appendix	B	for	the	answers
when	you’re	done.

Multiple	Choice:	Select	the	Best	Answer
1.

xUnit	describes

A.
Manual	code–driven	testing	frameworks 	

B.
Automated	code–driven	testing	frameworks 	

C.
Consolidated	code–driven	testing	frameworks	

	

2.
xUnit	enables	testing	at	the

A.
Internet	level	

B.
System	level 	

C.
Module	level	

	

3.
xUnit	facilitates

A.
Test-Driven	Development 	

B. Extreme	programming

	



	
C.

Seat-of-the-pants	development	
4.

xUnit	tests	are	implemented	as

A.
Breakpoints	

B.
Conditions 	

C.
Assertions 	

	

5.
xUnit	facilitates	preparing	a	test	through

A.
Dynamic	definition	

B.
Fixture 	

C.
Collection 	

	

6.
The	order	in	which	xUnit	tests	are	executed

A.
Is	the	order	in	which	they	appear	

B.
Is	dependent	on	test	attributes 	

C.
Should	not	matter 	

	

True	or	False
Advantages	of	using	xUnit	testing	include

				1. No	need	to	remember	what	the	test	result	should	be 	

				2. Elimination	of	user	testing 	

				3. Tests	are	automated 	



1

2

3

4

5

6

7

8

				4. Reduction	in	requests	for	changes 	

				5. No	need	to	think	about	how	to	implement	logic 	

				6. No	need	to	write	the	same	test	more	than	once 	

				7. Can	substitute	for	design	discussions 	

				8. Enables	testing	of	peripheral	systems 	

The	phases	of	xUnit	can	be	described	using	the	word	sequence

				9. Ready,	Set,	Go 	

		10. Arrange,	Act,	Assert 	

		11. Setup,	Exercise,	Verify,	Teardown 	

		12. Open,	Test,	Close 	

Footnotes
Beck,	Cambridge	University	Press,	December	1998

	
https://martinfowler.com/bliki/Xunit.html

	
This	acronym	is	used	prominently	in	much	of	the	documentation	covering	unit	testing	with	ABAP

	
This	acronym	is	used	throughout	the	book	xUnit	Test	Patterns:	Refactoring	Test	Code	(Meszaros,

Addison	Wesley,	2007)	which	presents	concepts	independent	of	any	specific	language

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	26

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

132

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	358

	
Ibid

https://martinfowler.com/bliki/Xunit.html


9

10

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	27

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	5

	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_5

5.	Automated	Unit	Testing	with	ABAP
James	E.	McDonough1		

Pennington,	NJ,	USA

	

With	the	concepts	underlying	xUnit	now	familiar	to	us,	this	next	chapter	covers
how	ABAP	Unit	provides	the	xUnit	capabilities	to	the	ABAP	language.

ABAP	Unit
ABAP	Unit	is	the	implementation	of	xUnit	testing	for	the	ABAP	language.	It
first	became	available	with	ABAP	release	6.40	(2004).	These	tests	may	be
written	for	the	following	types	of	components	containing	ABAP	code:

Executable	programs
Class	pools
Function	groups
Module	pools
Subroutine	pools

In	conformance	with	the	principles	of	xUnit	testing	frameworks,	unit	tests
for	ABAP	are	written	using	the	ABAP	language,	are	embedded	with	the	object
containing	the	production	code,	and	may	specify	a	testing	fixture.	Although	the
Code	Inspector	(transaction	SCI)	and	the	ABAP	Unit	Browser	(an	option
available	via	SE80)	provide	options	for	executing	ABAP	Unit	tests,	perhaps	the
most	common	way	to	do	this	is	via	the	editor	used	to	create	the	ABAP	code	to	be
tested.	For	instance,	while	an	ABAP	report	is	being	edited	via	the	ABAP	editor
(transaction	SE38),	the	corresponding	unit	tests	can	be	run	via	a	simple	selection
from	the	menu	or	through	its	designated	keyboard	shortcut.	The	advantage	of
this	is	that	the	unit	tests	can	be	run	without	having	to	leave	the	editor	to	do	so	–
passing	tests	will	be	noted	so	with	a	status	message	appearing	at	the	bottom	of
the	screen,	while	failing	tests	will	cause	the	ABAP	Unit	Result	Display	report	to

https://doi.org/10.1007/978-1-4842-6951-0_5


be	presented.	Accordingly,	the	developer	can,	in	only	a	few	seconds,	make	a
change	to	a	report,	activate	those	changes,	and	then	run	the	associated	unit	tests
to	confirm	that	nothing	has	been	broken	by	the	most	recent	change.

Because	they	are	written	in	ABAP,	unit	tests	are	subject	to	the	same	syntax
requirements	for	production	code,	and	because	the	tests	are	embedded	with	the
production	code,	they	also	are	subject	to	the	same	policies	and	constraints
established	for	source	code	management.	By	default,	ABAP	Unit	test	code	is	not
compiled	into	a	production	environment.	Why	not?	Well,	it	would	be	unwise	to
enable	in	a	production	environment	the	execution	of	testing	components	which
can	leave	behind	permanent	changes	to	configuration,	new	financial	postings,
deletion	of	master	data,	and	other	such	persistent	changes	made	to	the
environment	by	the	unit	tests	themselves.	An	incidental	benefit	of	this	default	is
that	the	unit	test	code	does	not	contribute	to	the	size	of	modules	in	production.

Further	information	about	ABAP	Unit	can	be	obtained	from	within	the	SAP
environment	itself	by	following	these	simple	steps:

From	any	ABAP	editor	(SAP	ECC	6.0	onward)

1.
Click	the	“Help	on…”	button	appearing	on	the	ABAP	editor	button	bar.	

2.
Select	ABAP	Glossary. 	

3.
Select	the	entry	for	ABAP	Unit. 	

4.
Click	the	“More”	button	appearing	at	the	end	of	the	definition. 	

The	ABAP	Unit	Testing	Framework
The	implementation	of	the	ABAP	Unit	automated	testing	feature	is	provided
through	the	set	of	components	comprising	the	ABAP	Unit	Testing	Framework.
This	testing	framework	consists	of	a	collection	of	executable	programs	along
with	a	set	of	global	static	classes	through	which	the	author	of	a	unit	test	may
invoke	the	assertion	services	offered	by	the	testing	framework.

Conceptually,	the	ABAP	Unit	Testing	Framework	is	composed	of	the
following	components:

Unit	test	preparation	components

ABAP	Language	Extensions



Testing	Framework	Test	Assertion	Interface

Unit	test	execution	components

ABAP	Unit	Test	Environment	Configuration
ABAP	Unit	Test	Runner
ABAP	Unit	Test	Results	Report

Figure	5-1	illustrates	this	arrangement	graphically.

Figure	5-1 Graphical	illustration	of	the	ABAP	Unit	Testing	Framework	components

Each	of	these	components	is	explained	in	further	detail	in	subsequent
sections.



Requirements	for	Writing	ABAP	Unit	Tests
Among	the	requirements	for	writing	ABAP	Unit	tests	is	that	the	tests	themselves
must	be	written	as	local	classes	which	are	designated	specifically	as	test	classes.
This	is	so	that	the	ABAP	Unit	Testing	Framework	can	recognize	them	as	ABAP
unit	tests	and	run	them	accordingly.	Let’s	explore	each	of	these	requirements	in
more	detail:

Classes

The	object-oriented	model	of	programming	must	be	used	to	define	an
ABAP	Unit	test.

Local

Not	only	must	the	tests	be	defined	using	classes	but	those	classes	must	be
written	as	local	classes,	meaning	the	tests	cannot	be	created	using	the	Class
Browser	(SE24)	but	only	by	using	the	same	editor	as	used	to	create	the
associated	code	to	be	tested.1

Designated	specifically	as	test	classes

The	class	definition	statement	needs	to	include	the	additional	clause	FOR
TESTING	to	denote	that	the	local	class	is	an	ABAP	Unit	test	class.

Before	continuing,	let	me	put	many	of	you	at	ease.	It	has	been	my	experience
that	the	term	“object-oriented,”	when	used	in	discussions	with	developers	of
ABAP	code,	elicits	various	levels	of	fear,	anxiety,	and	revulsion	by	those
unfamiliar	with	this	programming	model,	despite	its	availability	with	the
language	since	R/3	4.6	(1999).	Although	writing	ABAP	Unit	tests	will	require
that	the	object-oriented	ABAP	statements	be	used	to	define	classes	and	their
respective	methods,	writing	such	tests	will	not	require	an	intimate	familiarity
with	every	concept	and	nuance	of	object-oriented	design.	If	unfamiliar	with	the
object-oriented	design	concepts	available	to	ABAP	programming,	refer	now	to
Appendix	C	for	an	overview	of	the	subset	of	object-oriented	ABAP	statements
and	syntax	necessary	for	writing	ABAP	Unit	tests.

Note If	you	have	no	experience	using	object-oriented	concepts	and
language	syntax	with	ABAP	programs,	then	you	certainly	will	gain	some
after	you	have	completed	all	of	the	exercises	associated	with	this	book.

Not	only	do	the	unit	tests	need	to	be	written	as	local	classes	but	the	methods	of



those	unit	test	classes	that	are	to	be	invoked	by	the	Test	Runner	need	to	be
designated	specifically	as	test	methods	having	no	signature.	Let’s	explore	each
of	these	requirements	in	more	detail:

Designated	specifically	as	test	methods

The	METHODS	statement	needs	to	include	the	additional	clause	FOR
TESTING	to	denote	that	the	method	is	an	ABAP	Unit	test	method	to	be
invoked	by	the	Test	Runner.

Method	having	no	signature

A	method	designated	as	an	ABAP	Unit	test	method	will	be	invoked
directly	by	the	Test	Runner	of	the	ABAP	Unit	Testing	Framework.	When	the
Test	Runner	calls	the	method,	it	cannot	be	expected	to	provide	any	appropriate
values	for	any	of	the	arbitrary	parameters	the	author	might	want	to	include	in
the	method	signature.	As	such,	methods	designated	as	test	methods	cannot
have	a	signature.

Types	of	Components	Applicable	to	Unit	Testing
Another	misconception	associated	with	writing	ABAP	Unit	tests	is	that	these
tests	are	capable	of	testing	only	ABAP	components	which	also	are	written	using
the	object-oriented	model.	This	is	false,	false,	false!	In	fact,	ABAP	Unit	tests	can
be	defined	for	any	of	the	following	types	of	ABAP	components:

Executable	programs
Class	pools
Function	groups
Module	pools
Subroutine	pools

Though	the	tests	themselves	must	be	written	as	local	object-oriented	classes,
the	components	those	classes	are	capable	of	testing	can	be	written	using	any
valid	ABAP	program	design,	including	a	component	using	only	those	ABAP
statements	that	were	available	in	the	release	preceding	the	introduction	of	classes
with	ABAP.	That	is,	a	simple	report,	written	long	before	the	Great	Pyramids	of
Egypt	were	built,	composed	only	of	a	start-of-selection	event	block	and	a	few
FORM-ENDFORM	subroutines	certainly	can	be	retrofitted	with	newly	defined
ABAP	Unit	tests.	Indeed,	the	example	programs	associated	with	this	book	show
exactly	this	capability	by	describing	how	to	provide	automated	ABAP	Unit	tests
to	a	simple	report	program	originally	written	with	no	object-oriented	statements



at	all.

Testable	ABAP	Modularization	Units
In	their	book	Official	ABAP	Programming	Guidelines,	authors	Horst	Keller	and
Wolf	Hagen	Thümmel	state	the	following	about	modularization	units	:

The	key	modularization	units	or	callable	units	within	an	ABAP	program
are	referred	to	as	processing	blocks.	In	this	context,	you	distinguish
between	procedures	on	one	side	and	dialog	modules	and	event	blocks	on
the	other	side.	While	dialog	modules	and	event	blocks	are	called	from	the
dynpro	flow	logic	or	from	the	event	processing	of	the	ABAP	runtime
environment,	procedures	are	provided	for	a	direct	call	from	an	ABAP
program.2

They	subsequently	clarify	the	scope	of	what	is	included	in	procedures:

“Procedures	include	the	following

Methods
Function	modules
Subroutines”3

It	is	these	procedures	that	are	the	modularization	units	that	can	be	tested
through	automated	unit	tests	because	it	is	procedures	that	can	be	called	directly
by	an	ABAP	Unit	test.	So	let’s	expand	upon	the	list	of	component	types	and
describe	what	it	is	within	these	components	that	can	be	tested:

Executable	program
This	type	of	ABAP	component	is	capable	of	containing	procedures

defined	as	both	subroutines	and	methods	of	local	classes.	Both	its	subroutines
and	its	methods	of	the	local	classes	are	eligible	candidates	for	testing	by
automated	unit	tests.

Class	pool
This	type	of	ABAP	component	is	capable	of	containing	procedures

defined	as	methods	of	the	global	class	as	well	as	methods	for	any	local	classes
it	may	contain.	Its	methods	defined	for	both	the	global	class	and	local	classes
are	eligible	candidates	for	testing	by	automated	unit	tests.

Function	group
This	type	of	ABAP	component	is	capable	of	containing	procedures

defined	both	as	function	modules	and	as	subroutines.	Both	its	function
modules	and	its	subroutines	are	eligible	candidates	for	testing	by	automated



unit	tests.
Module	pool
This	type	of	ABAP	component	is	capable	of	containing	procedures

defined	as	both	subroutines	and	methods	of	local	classes.	Both	its	subroutines
and	its	methods	of	the	local	classes	are	eligible	candidates	for	testing	by
automated	unit	tests.

Subroutine	pool
The	purpose	of	a	subroutine	pool	has	changed	since	it	was	first	introduced:

Subroutine	pools	were	–	as	their	name	suggests	–	originally	intended
for	subroutines	that	were	called	from	other	programs.	Because
subroutines,	and	particularly	their	external	call,	are	declared	as
obsolete	within	these	programming	guidelines,	this	intended	use	for
subroutine	pools	is	no	longer	given.	Instead,	subroutine	pools	are
proposed	as	independent	containers	for	local	classes	because	they	are
hardly	impacted	by	the	implicit	processes	of	the	ABAP	runtime
environment	otherwise.4

The	new	purpose	of	subroutine	pools	is	to	serve	as	containers	for	the	local
classes	associated	with	an	OO	transaction.	Regardless	of	whether	a	subroutine
pool	still	contains	subroutines	written	a	long	time	ago	by	a	programmer	now
far,	far	away	or	contains	a	collection	of	local	classes	to	service	an	OO
transaction,	both	its	subroutines	and	the	methods	of	the	local	classes	are
eligible	candidates	for	testing	by	automated	unit	tests.

Having	been	so	clearly	defined	in	the	book	Official	ABAP	Programming
Guidelines,	the	term	procedures	is	what	will	be	used	throughout	the	remainder	of
this	book	to	refer	generically	to	subroutines,	function	modules,	and	methods	of	a
class	when	the	discussion	about	the	automated	unit	testing	of	ABAP	components
is	applicable	to	all	three	of	them.	Also,	just	to	make	it	abundantly	clear	and
unmistakable	what	is	meant	by	these	three	terms

A	subroutine	is	composed	of	a	set	of	ABAP	statements	appearing	between
the	statements	FORM	and	ENDFORM.

A	function	module	is	composed	of	a	set	of	ABAP	statements	appearing
between	the	statements	FUNCTION	and	ENDFUNCTION.

A	method	is	composed	of	a	set	of	ABAP	statements	appearing	between	the
statements	METHOD	and	ENDMETHOD.



Automatic	Generation	of	ABAP	Unit	Test	Classes
Test	classes	may	be	generated	automatically	for	global	classes	and	function
modules.	The	corresponding	editor	provides	a	test	class	generation	wizard	that
can	be	invoked	to	guide	the	programmer	through	this	process:

For	function	modules
On	the	Function	Builder	initial	screen,	select	Utilities	➤	Test	Classes	➤

Test	Class	Generation.
For	global	classes

On	the	Class	Builder:	Change	…	screen,	select	Utilities	➤	Test	Classes	➤
Generate.

Unfortunately,	automatic	test	class	generation	is	not	available	for	any	other
types	of	components,	and	even	the	test	class	generation	wizard	for	function
modules	and	global	classes	only	partially	automates	this	task:

The	wizard	only	generates	calls	to	method	assert_equals.
After	the	wizard	generates	the	code	for	the	unit	test	class,	the	author

manually	must	perform	the	following	tasks:

Complete	the	code	for	invoking	the	code	under	test.
Specify	the	expected	value	to	be	compared	with	actual	value	produced

by	the	code	under	test.
Specify	any	text	of	message	to	be	issued	with	an	assertion	failure.

TALKIN’	‘BOUT	MY	GENERATION
Although	I	have	used	the	Class	Builder	wizard	only	occasionally	over	the
years,	I	have	retained	virtually	none	of	its	generated	code.	Instead,	I	have
chosen	only	to	allow	the	wizard	to	generate	the	code	into	the	corresponding
unit	test	containers	associated	with	the	class,	saving	me	the	trouble	of	having
to	select	them	manually	via	the	menu.	Then	once	the	code	was	generated,	I
discarded	all	of	it	and	wrote	the	unit	test	the	way	I	felt	it	should	be	written.
For	the	most	part,	I	found	the	generated	code	to	consist	mainly	of
incomprehensible	comments	formatted	using	html	tags	and	only	a	few
associated	ABAP	statements,	statements	usually	not	pertinent	at	all	to	the
type	of	test	I	intended	to	write.

One	of	the	problems	associated	with	using	such	unit	test	class	generators,	aside
from	the	need	to	manually	modify	the	generated	code	anyway,	is	that	they



depend	on	the	existence	of	function	modules	in	a	function	group	or	methods	of	a
global	class	in	order	to	determine	the	content	of	the	generated	code.	This	may	be
acceptable	if	you	are	retrofitting	legacy	code	with	unit	tests	or	you	are	using	the
development	model	of	writing	the	production	code	before	writing	the	associated
tests.	If,	however,	you	are	using	the	development	model	of	writing	the	unit	test
code	prior	to	production	code,	such	as	the	Test-Driven	Development	(TDD)
model,	described	in	further	detail	in	a	subsequent	chapter,	then	these	wizards	are
simply	not	applicable	since	the	code	they	generate	depends	upon	the
corresponding	production	code	existing	already.

ABAP	Language	Statements	Related	to	Unit	Testing
The	ABAP	language	has	been	enhanced	to	enable	a	programmer	to	clearly
distinguish	between	classes	that	are	for	production	code	and	classes	that	are
intended	to	facilitate	automated	ABAP	Unit	testing.	In	the	latter	category,	we
already	have	seen	that	the	FOR	TESTING	clause	was	added	to	the	ABAP
language	for	use	with	both	the	class	definition	statement	and	the	METHODS
statement.	This	is	only	one	of	the	ways	in	which	the	ABAP	language	has
changed	to	accommodate	the	xUnit	testing	capabilities	afforded	by	the	ABAP
Unit	Testing	Framework.	Here	is	a	more	complete	description	of	the	ABAP
language	statements	related	to	unit	testing:

FOR	TESTING

This	clause	is	applicable	to	both	the	class	definition	statement	and	methods
statement.	When	applied	to	a	methods	statement,	it	denotes	a	method	that	is	to
be	recognized	by	the	ABAP	Unit	Testing	Framework	as	a	method	to	be	invoked
by	the	Test	Runner.	When	applied	to	a	class	definition,	it	denotes	a	class	that	is
relegated	solely	for	use	by	the	ABAP	Unit	Testing	Framework.

A	class	that	defines	a	method	containing	this	clause	also	must	contain	this
clause	on	its	class	definition	statement.

A	class	having	this	clause	on	its	class	definition	statement	will	be	subject	to
the	following:

None	of	its	members	will	be	accessible	by	productive	code.
Unless	overridden	by	a	system	start-up	value,	it	will	not	be	compiled	into

a	production	system.

RISK	LEVEL	<level>

This	is	an	optional	clause	to	be	included	on	the	class	definition	statement.	It



indicates	a	relative	level	of	risk	associated	with	the	execution	of	the	unit	test
class.	It	is	to	be	followed	by	a	word	designating	the	associated	risk	of	running	all
of	its	unit	test	methods.	The	value	<level>	may	indicate	any	of	the	following
words:

CRITICAL	(default)
DANGEROUS
HARMLESS

Each	risk	level	word	indicates	a	risk	level	severity	relative	to	the	other	two
words.	The	SAP	online	documentation	suggests	the	following	explanations	for
these	levels5:

CRITICAL	–	Such	as	changes	to	system	settings	or	customizing
DANGEROUS	–	Such	as	changes	to	persistent	data
HARMLESS	–	No	effects	on	persistent	data	or	system	settings

DURATION	<relative	length	of	time>

This	also	is	an	optional	clause	to	be	included	on	the	class	definition
statement.	It	indicates	a	relative	duration	of	the	time	it	should	take	to	complete
the	execution	of	all	the	unit	tests	defined	for	the	class.	It	is	to	be	followed	by	a
word	designating	the	cumulative	time	to	execute	all	its	unit	test	methods.	The
value	<relative	length	of	time>	may	indicate	any	of	the	following	words:

SHORT	(default)
MEDIUM
LONG

Each	duration	word	indicates	a	length	of	elapsed	time	relative	to	the	other
two	words.	The	SAP	online	documentation	suggests	the	following	explanations
for	these	durations6:

SHORT	–	Within	the	blink	of	an	eye.
MEDIUM	–	Take	a	sip	of	tea.
LONG	–	Get	another	cup.

There	are	actual	ABAP	Unit	Testing	Framework	configuration	settings
associated	with	both	the	RISK	LEVEL	and	DURATION	clauses,	settings	that
will	be	discussed	in	a	subsequent	section.

Writing	an	ABAP	Unit	Test



So	how	is	a	local	ABAP	Unit	test	class	defined?	In	the	example	to	follow,	we
will	see	both	a	procedural	and	object-oriented	version	of	the	same	production
code	to	be	tested	by	a	local	ABAP	Unit	test	class,	but	will	start	with	the	object-
oriented	version.	First,	let’s	see	an	example	of	what	might	be	considered	the
most	minimal	local	class	of	any	kind	that	can	be	defined,	as	shown	in	Listing	5-
1.

class	some_local_class	definition.

		public	section.

				class-methods	do_something.

endclass.

class	some_local_class	implementation.

			method	do_something.

			endmethod.

endclass.

Listing	5-1 Minimal	local	class

Here	we	see	the	complementary	definition	and	implementation	components
of	a	class	named	some_local_class	which	has	a	single	empty	static	method
named	do_something.	This	class	is	hardly	usable	as	it	is	written,	so	let’s	update	it
so	that	its	sole	method	will	provide	the	sum	of	two	numbers,	as	shown	in	Listing
5-2.

class	some_local_class	definition.

		public	section.

				class-methods	get_sum

																				importing

																						addend_01

																								type	i

																						addend_02

																								type	i

																				exporting

																						sum

																								type	i

endclass.

class	some_local_class	implementation.

		method	get_sum.

				sum	=	addend_01	+	addend_02.

		endmethod.



endclass.

Listing	5-2 Local	class	with	method	providing	sum	of	two	numbers

That’s	much	better!	This	class	now	is	providing	the	service	of	returning	the
sum	of	two	numbers.	This	shall	be	considered	our	code	under	test	(CUT).	To
write	a	unit	test	for	this	code,	we’ll	start	with	the	same	complementary	class
definition	and	implementation	components,	as	shown	in	Listing	5-3.

class	some_test_class	definition.

endclass.

class	some_test_class	implementation.

endclass.

Listing	5-3 Local	class	with	only	complementary	class	definition	and	implementation	components

Add	to	that	the	FOR	TESTING	clause	on	the	class	definition	statement,	as
shown	in	Listing	5-4	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing.

endclass.

class	some_test_class	implementation.

endclass.

Listing	5-4 Local	class	identified	as	one	to	be	used	for	testing

Add	to	that	the	RISK	LEVEL	clause	on	the	class	definition	statement,	as
shown	in	Listing	5-5	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing	risk

level	harmless.

endclass.

class	some_test_class	implementation.

endclass.

Listing	5-5 Local	class	for	testing	identified	with	minimal	risk	level

Add	to	that	a	private,	empty	method	definition	having	no	signature,	as	shown
in	Listing	5-6	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.



				methods	test_for_get_sum.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

		endmethod.

endclass.

Listing	5-6 Test	class	defining	empty	private	method

Add	to	that	the	FOR	TESTING	clause	on	the	METHODS	statement,	as
shown	in	Listing	5-7	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

		endmethod.

endclass.

Listing	5-7 Test	class	indicating	its	method	is	identified	as	one	to	be	used	for	testing

Provide	its	method	implementation	with	some	code	to	invoke	the	productive
code,	as	shown	in	Listing	5-8	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

				constants	addend_01	type	i	value	17.

				constants	addend_02	type	i	value	30.

				data						sum							type	i.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend_01

								addend_02	=	addend_02



						importing

								sum							=	sum.

		endmethod.

endclass.

Listing	5-8 Unit	test	method	with	implementation	for	calling	static	method	get_sum	of	class
some_local_class

And	finally	provide	its	method	implementation	with	some	code	to	apply	an
assertion	test	on	the	result	of	invoking	the	productive	code,	as	shown	in	Listing
5-9	with	changes	highlighted	in	bold.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

				constants	addend_01	type	i	value	17.

				constants	addend_02	type	i	value	30.

				data						sum							type	i.

				data						expected_sum	type	i.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend_01

								addend_02	=	addend_02

						importing

								sum							=	sum.

				expected_sum	=	addend_01	+	addend_02.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sum

								exp	=	expected_sum

								msg	=	'Unexpected	sum'.

		endmethod.

endclass.

Listing	5-9 Unit	test	method	containing	assertion	against	value	returned	by	static	method	get_sum	of
class	some_local_class



The	statement	calling	static	method	assert_equals	of	class	cl_abap_unit_test
is	requesting	an	assertion	that	the	actual	value	(parameter	act)	returned	from	the
call	to	static	method	get_sum	of	class	some_local_class	is	equal	to	the	expected
value	(parameter	exp).	Also	included	on	this	statement	is	a	message	(parameter
msg)	to	be	written	to	the	ABAP	Unit	Result	Display	report	in	the	event	the
assertion	fails,	and	the	ABAP	Unit	Result	Display	report	is	presented.

Now	let’s	combine	the	code	under	test	from	Listing	5-2	and	the	unit	test	class
from	Listing	5-9	into	a	real	executable	program,	the	source	code	for	which	is
shown	in	Listing	5-10,	with	new	lines	highlighted	in	bold.

report.

class	some_local_class	definition.

		public	section.

				class-methods	get_sum

																				importing

																						addend_01

																								type	i

																						addend_02

																								type	i

																				exporting

																						sum

																								type	i

endclass.

class	some_local_class	implementation.

		method	get_sum.

				sum	=	addend_01	+	addend_02.

		endmethod.

endclass.

parameters:	addend01	type	int4

										,	addend02	type	int4

										.

data						:	sum	type	int4

										.

start-of-selection.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend01



								addend_02	=	addend02

						importing

								sum							=	sum.

				message	i000(0K)	with	'Sum	is'	sum.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

				constants	addend_01	type	i	value	17.

				constants	addend_02	type	i	value	30.

				data						sum							type	i.

				data						expected_sum	type	i.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend_01

								addend_02	=	addend_02

						importing

								sum							=	sum.

				expected_sum	=	addend_01	+	addend_02.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sum

								exp	=	expected_sum

								msg	=	'Unexpected	sum'.

		endmethod.

endclass.

Listing	5-10 Executable	program	containing	production	class	and	its	corresponding	unit	test

Here	we	have	done	the	following:

Preceded	the	“code	under	test”	class	(some_local_class)	with	a	report
statement

Followed	the	definition	of	some_local_class	with	the	definition	of	an
initial	selection	screen	(parameters	statement)	defining	two	signed	integer
fields	to	be	used	to	accept	from	the	user	the	values	to	be	added	together



Followed	that	with	the	definition	of	a	global	data	field	(sum)	to	receive	the
sum	of	the	specified	numbers

Followed	that	with	the	classic	ABAP	event	block	start-of-selection
containing	two	statements:

The	first	statement	invokes	method	get_sum	of	class	some_local_class
and	places	the	result	into	data	field	sum.

The	second	statement	issues	an	information	message	showing	the	sum
just	calculated.

Followed	that	with	the	“unit	test”	class	(some_test_class)

This	defines	both	an	executable	program	and	one	that	contains	an	automated
unit	test.	From	within	the	ABAP	editor	(SE38),	it	can	be	executed	by	clicking
Execute	(F8)	and	can	have	its	automated	unit	tests	run	by	selecting	the
appropriated	menu	path	(Ctrl-Shift-F10).

When	this	unit	test	is	executed	and	there	is	no	failure	of	the	assertion,	the
user	will	see	a	status	message	at	the	bottom	of	the	screen	such	as	(in	this	case)

Processed:	1	program,	1	test	classes,	1	test	methods

Accordingly,	a	successful	unit	test	will	result	in	a	status	message	appearing	at
the	bottom	of	the	screen,	whereas	a	failing	unit	test	will	result	in	presenting	the
ABAP	Unit	Result	Display	report,	allowing	the	developer	to	see	which	unit	tests
have	failed	and	why.

Let’s	examine	this	unit	test	class	more	closely.	The	FOR	TESTING	clause
appearing	on	the	class	definition	statement	is	a	proclamation	to	the	ABAP	Unit
Testing	Framework	that	this	class	contains	no	production	code.	The	RISK
LEVEL	HARMLESS	clause	appearing	on	the	class	definition	statement	is	a
proclamation	to	the	ABAP	Unit	Testing	Framework	that	this	class	does	not	affect
configuration	or	persistence	repositories	or	leave	behind	permanent	changes	that
would	affect	subsequent	operation	of	the	SAP	environment.	The	FOR	TESTING
clause	on	the	METHODS	statement	is	a	proclamation	to	the	ABAP	Unit	Testing
Framework	that	this	method	should	be	invoked	by	its	Test	Runner.	Together,
these	clauses	defined	on	the	class	definition	and	methods	statements	enable	the
ABAP	Unit	Testing	Framework	to	do	the	following:

Read	the	definitions	of	all	the	test	classes	contained	in	the	ABAP
component.

Identify	those	methods	of	test	classes	that	are	to	be	invoked	by	the	Test
Runner	of	the	ABAP	Unit	Testing	Framework.



Recognize	that	no	permanent	change	will	result	from	running	the
associated	unit	tests	(via	RISK	LEVEL	HARMLESS)	and	compare	this	with
the	unit	testing	framework	environmental	settings	to	determine	whether	the
unit	test	class	may	be	executed.

Invoke	each	of	the	methods	designated	FOR	TESTING,	one	after	the
other,	retaining	any	information	arising	from	assertion	failures.

At	the	completion	of	running	all	unit	tests,	depending	on	whether	any
assertion	failures	had	been	encountered,	present	either	a	success	status
message	or	the	ABAP	Unit	Result	Display	report.

To	run	the	test	described	in	the	preceding	text	exactly	as	it	is	written	should
take	less	time	than	it	would	take	you	to	snap	your	fingers.	How’s	that	for	fast
unit	test	execution?!	Try	it	for	yourself	and	see.

Also,	just	to	prove	the	point	that	automated	unit	tests	can	be	written	for
classic	ABAP	procedural	components	and	not	just	those	written	using	the	object-
oriented	statements,	let’s	convert	the	process	performed	by	the	“code	under
test”	–	some_local_class	–	into	a	corresponding	subroutine.	Listing	5-11	shows
what	the	code	would	look	like,	with	differences	highlighted	in	bold.

report.

class	some_local_class	definition.

		public	section.

				class-methods	get_sum

																				importing

																						addend_01

																								type	i

																						addend_02

																								type	i

																				exporting

																						sum

																								type	i

endclass.

class	some_local_class	implementation.

		method	get_sum.

				sum	=	addend_01	+	addend_02.

		endmethod.

endclass.

parameters:	addend01	type	int4



										,	addend02	type	int4

										.

data						:	sum	type	int4

										.

start-of-selection.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend01

								addend_02	=	addend02

						importing

								sum							=	sum.

				perform	get_sum	using	addend_01

																										addend_02

																	changing	sum.

				message	i000(0K)	with	'Sum	is'	sum.

form	get_sum	using	addend_01	type	int4

																			addend_02	type	int4

										changing	sum							type	int4.

				sum	=	addend_01	+	addend_02.

endform.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

				constants	addend_01	type	i	value	17.

				constants	addend_02	type	i	value	30.

				data						sum							type	i.

				data						expected_sum	type	i.

				call	method	some_local_class=>get_sum

						exporting

								addend_01	=	addend_01

								addend_02	=	addend_02

						importing



								sum							=	sum.

				perform	get_sum	using	addend_01

																										addend_02

																	changing	sum.

				expected_sum	=	addend_01	+	addend_02.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sum

								exp	=	expected_sum

								msg	=	'Unexpected	sum'.

		endmethod.

endclass.

Listing	5-11 Executable	program	containing	single	subroutine	and	its	corresponding	unit	test,	with
changes	highlighted

Here	we	have	done	the	following:

Discarded	class	some_local_class.
Defined	a	new	subroutine	(form-endform)	named	get_sum	and	placed	it

after	the	start-of-selection	event	block;	its	single	statement	adds	the	two
numbers	of	its	using	clause	parameters	and	places	the	result	in	its	changing
clause	parameter,	just	like	what	had	been	done	in	method	get_sum	of	the
discarded	class	some_local_class.

Discarded	the	statement	in	the	start-of-selection	event	block	invoking
method	get_sum	of	class	some_local_class	and	replaced	it	with	a	statement	to
perform	subroutine	get_sum.

Discarded	from	method	“test_for_get_sum”	of	unit	test	class
“some_test_class”	the	statement	invoking	method	get_sum	of	class
some_local_class	and	replaced	it	with	a	statement	to	perform	subroutine
get_sum.

Listing	5-12	shows	how	the	code	would	look	without	all	the	highlighting	and
stricken	lines.

report.

parameters:	addend01	type	int4

										,	addend02	type	int4

										.

data						:	sum	type	int4



										.

start-of-selection.

				perform	get_sum	using	addend_01

																										addend_02

																	changing	sum.

				message	i000(0K)	with	'Sum	is'	sum.

form	get_sum	using	addend_01	type	int4

																			addend_02	type	int4

										changing	sum							type	int4.

				sum	=	addend_01	+	addend_02.

endform.

class	some_test_class	definition	for	testing	risk

level	harmless.

		private	section.

				methods	test_for_get_sum	for	testing.

endclass.

class	some_test_class	implementation.

		method	test_for_get_sum.

				constants	addend_01	type	i	value	17.

				constants	addend_02	type	i	value	30.

				data						sum							type	i.

				data						expected_sum	type	i.

				perform	get_sum	using	addend_01

																										addend_02

																	changing	sum.

				expected_sum	=	addend_01	+	addend_02.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sum

								exp	=	expected_sum

								msg	=	'Unexpected	sum'.

		endmethod.

endclass.

Listing	5-12 Executable	program	containing	single	subroutine	and	its	corresponding	unit	test,	without
changes	highlighted



If	you	were	to	create	a	program	like	that	shown	in	Listing	5-12,	you	would
find	that	it	produces	the	same	result	as	the	previous	version	either	when	executed
or	its	unit	tests	are	run.	Although	we	have	seen	with	this	simple	example	the
same	new	functionality	of	production	code	to	be	tested	written	using	both	the
procedural	and	object-oriented	models,	the	recommendation	for	writing	new
code	destined	for	production	is	to	use	the	object-oriented	model	as	it	offers
greater	flexibility	with	both	program	design	and	unit	testing,	as	will	become
evident	in	subsequent	chapters.

Using	Fixture	Methods
As	unit	tests	become	more	comprehensive	in	testing	the	productive	code,	it	may
be	necessary	to	define	a	fixture	to	facilitate	establishing	a	known	test	state	on
behalf	of	each	unit	test	prior	to	its	execution.	This	can	be	achieved	through	the
use	of	the	following	reserved	method	names	defined	for	a	unit	test	class:

			class_setup

			setup

			teardown

			class_teardown

None	of	these	fixture	methods	are	required.	A	unit	test	does	not	require	a
fixture,	but	when	defined	for	a	unit	test	class,	they	are	invoked	automatically	by
the	ABAP	Unit	Testing	Framework.	Their	intent	is	to	establish	or	reset	the
preconditions	necessary	for	invoking	the	unit	test	methods	defined	for	the	unit
test	class	in	which	they	appear.	They	are	shown	in	the	same	logical	sequence
they	would	be	invoked	during	the	life	of	a	unit	test	class	execution:

class_setup
This	static	fixture	method	is	automatically	invoked	only	once,	prior	to

invoking	the	first	unit	test	method	executed	for	the	unit	test	class.	It	enables
establishing	fixture	preconditions	applicable	to	all	unit	test	methods	defined
within	the	same	class.	A	good	example	of	its	use	might	be	to	create	an	internal
table	of	records	intended	to	be	used	by	all	of	the	unit	test	methods,	an	activity
that	would	only	need	to	be	done	once	and	not	each	time	a	unit	test	method	is
executed.	It	bears	a	conceptual	similarity	to	the	static	constructor	method
(class_constructor)	defined	for	a	class	in	that	it	is	automatically	invoked	only
once	before	any	other	activity	of	the	class	occurs.

setup
This	instance	fixture	method	is	automatically	invoked	prior	to	invoking



each	unit	test	method	defined	for	the	unit	test	class.	It	enables	establishing
fixture	preconditions	just	prior	to	the	execution	of	each	individual	unit	test
method	defined	within	the	same	class.	A	good	example	of	its	use	might	be	to
set	global	variables	to	specific	values	such	that	each	unit	test	method	starts	its
execution	with	the	same	global	variable	values,	an	activity	that	would	need	to
be	done	each	time	a	unit	test	method	is	about	to	be	executed.	It	bears	a
conceptual	similarity	to	the	instance	constructor	method	(constructor)	defined
for	a	class	in	that	the	setup	method	is	automatically	invoked	first	with	each
unit	test	execution,	just	as	the	instance	constructor	method	is	automatically
invoked	first	with	each	new	class	instantiation.

teardown
This	instance	fixture	method	is	automatically	invoked	upon	completion	of

each	unit	test	execution.	It	enables	restoring	the	SAP	environment	to	its	state
prior	to	invoking	the	most	recently	executed	unit	test	method.

class_teardown
This	static	fixture	method	is	automatically	invoked	only	once	upon

completion	of	the	last	unit	test	method	executed	for	the	unit	test	class.	It
enables	restoring	the	SAP	environment	to	its	state	prior	to	invoking	the	first
unit	test	method.

Just	to	reinforce	how	these	fixture	methods	are	invoked	automatically	by	the
ABAP	Unit	Testing	Framework.	Listing	5-13	shows	an	example	of	a	unit	test
class	named	tester	having	definitions	for	three	unit	tests	simply	named
unit_test_01	through	unit_test_03	along	with	definitions	for	all	of	the	fixture
methods	described	previously.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				class-data				class_setup_calls				type	i.

				class-data				class_teardown_calls	type	i.

				data										setup_calls										type	i.

				data										teardown_calls							type	i.

				class-methods	class_setup.

				class-methods	class_teardown.

				methods							setup.

				methods							teardown.

				methods							unit_test_01	for	testing.

				methods							unit_test_02	for	testing.



				methods							unit_test_03	for	testing.

endclass.

class	tester	implementation.

		method	class_setup.

				add	01	to	class_setup_calls.

		endmethod.

		method	setup.

				add	01	to	setup_calls.

		endmethod.

		method	unit_test_01.

				break-point.

		endmethod.

		method	unit_test_02.

				break-point.

		endmethod.

		method	unit_test_03.

				break-point.

		endmethod.

		method	teardown.

				add	01	to	teardown_calls.

		endmethod.

		method	class_teardown.

				add	01	to	class_teardown_calls.

		endmethod.

endclass.

Listing	5-13 Example	of	unit	test	class	defining	all	fixture	methods	and	three	unit	test	methods

Notice	that	each	of	the	unit	test	methods	contains	only	a	break-point
statement,	whereas	the	fixture	methods	contain	only	a	statement	to	increment	a
corresponding	counter.	When	an	ABAP	component	containing	this	unit	test
definition	is	subjected	to	a	unit	test	execution,	it	will	cause	each	of	the	break-
point	statements	to	present	the	ABAP	debugger.	With	the	ABAP	Unit	Testing
Framework,	we	cannot	be	certain	of	the	order	in	which	the	unit	test	methods	of
this	unit	test	class	will	be	invoked,	but	let	us	assume	for	the	moment	that	they
are	called	in	the	sequence	shown	in	Table	5-1.	If,	upon	encountering	each	break-
point	statement,	we	were	to	use	the	debugger	to	inspect	the	values	for	each	of	the
attributes	defined	for	this	unit	test	class,	we	would	find	the	following	attribute
values	for	the	following	unit	test	method	executions.



Table	5-1 Unit	test	method	execution	call	counts	to	fixture	methods

Unit	test	method
execution

Value	of
attribute
class_setup_calls

Value	of
attribute
setup_calls

Value	of
attribute
teardown_calls

Value	of	attribute
class_teardown_calls

unit_test_01 1 1 0 0

unit_test_02 1 2 1 0

unit_test_03 1 3 2 0

Notice	that	when	the	break-point	statement	presents	the	debugger	during	the
execution	of	test	method	unit_test_01,	the	fixture	methods	class_setup	and	setup
already	have	been	called	once.	This	confirms	that	these	fixture	methods	are
automatically	called	by	the	Test	Runner	because	we	provided	no	explicit	calls	to
these	fixture	methods	within	the	unit	test	method.	Notice	also	that	when	the
break-point	statement	presents	the	debugger	during	the	execution	of	test	method
unit_test_02,	fixture	method	class_setup	still	has	been	called	only	once,	but
fixture	method	setup	now	has	been	called	twice	and	fixture	method	teardown	has
been	called	once.	Finally,	notice	that	when	the	break-point	statement	presents	the
debugger	during	the	execution	of	test	method	unit_test_03,	fixture	method
class_setup	still	has	been	called	only	once,	but	fixture	method	setup	now	has
been	called	three	times	and	fixture	method	teardown	has	been	called	twice.	With
this	example,	there	are	no	calls	registered	for	fixture	method	class_teardown
when	any	of	the	break-point	statements	are	encountered	because	that	method
will	not	be	called	until	after	the	last	unit	test	method	of	the	unit	test	class	has
completed	its	execution.

Roy	Osherove	advises	caution	when	choosing	whether	to	use	fixture
methods:

The	setup	method	is	easy	to	use.	In	fact,	it’s	almost	too	easy	–	enough	so
that	developers	tend	to	use	it	for	things	it	wasn’t	meant	for,	and	tests
become	less	readable	and	maintainable	as	a	result.	Also,	setup	methods
have	limitations,	which	you	can	get	around	using	simple	helper	methods
…7

Osherove	continues	afterward	to	qualify	the	several	ways	that	programmers
abuse	the	setup	method,	including	using	it	to	initialize	objects	used	by	only	some
of	the	test	methods,	writing	code	in	the	setup	method	that	is	difficult	to
understand	due	to	its	length,	and	using	it	for	the	instantiation	of	fakes	and	mock
objects.	He	states	he	no	longer	uses	the	setup	method	with	his	tests,	disparaging



it	as	a	relic	that	arose	during	an	era	of	unit	testing	that	has	since	faded	into
history,	superseded	by	more	modern	approaches	made	possible	by	advances	in
technology.	He	offers	the	following	conclusion:

Setup	and	teardown	methods	in	unit	test	can	be	abused	to	the	point	where
the	tests	or	the	setup	and	teardown	methods	are	unreadable.	Usually	the
situation	is	worse	in	the	setup	method	than	the	teardown	method.	…	I’ve
several	times	written	full	test	classes	that	didn’t	have	a	setup	method,
only	helper	methods	being	called	from	each	test,	for	the	sake	of
maintainability.	The	classes	were	still	readable	and	maintainable.8

Invoking	the	Services	of	the	ABAP	Unit	Testing
Framework
In	the	preceding	section,	we	saw	in	Listing	5-9	a	glimpse	of	how	a	unit	test
determines	whether	or	not	the	test	has	passed	or	failed.	This	was	through	the	call
to	static	method	assert_equals	of	class	cl_abap_unit_test.	Class
cl_abap_unit_assert	is	the	primary	mechanism	by	which	unit	tests	are
determined	to	have	passed	or	failed.	Through	the	methods	of	this	class,	the	unit
test	author	is	provided	with	a	way	to	communicate	with	the	Test	Runner	during
test	execution.	Depending	on	which	method	of	class	cl_abap_unit_assert	is
called	and	the	values	provided	for	its	parameters,	the	Test	Runner	will	determine
whether	the	result	of	the	call	represents	a	passing	or	failing	condition	for	the	unit
test.	When	a	failure	condition	is	detected,	the	Test	Runner	will	collect	and	retain
information	about	the	unit	test,	information	to	be	presented	in	the	ABAP	Unit
Result	Display	report	at	the	conclusion	of	the	unit	test	run.

Class	cl_abap_unit_assert	has	a	multitude	of	static	methods	that	can	be	used
to	determine	whether	the	unit	test	passes	or	fails.	Table	5-2	shows	the	name	of
the	static	method	along	with	its	returning	parameter	name	(if	any)	and	its
importing	parameters.

Table	5-2 Static	methods	of	class	cl_abap_unit_assert



The	importing	parameters	appearing	in	bold	are	not	optional.	Notice	how
every	method	has	a	message	parameter	(MSG)	and	a	flow	control	parameter
(QUIT)	and	that	every	method	other	than	ABORT	has	a	failure	severity	level
parameter	(LEVEL).

The	value	specified	for	the	failure	severity	level	(LEVEL)	parameter	may	be
any	of	the	following:

Value Description Corresponding	constant



0 Tolerable IF_AUNIT_CONSTANTS=>TOLERABLE

1 Critical IF_AUNIT_CONSTANTS=>CRITICAL	(default)

2 Fatal IF_AUNIT_CONSTANTS=>FATAL

The	value	specified	for	the	flow	control	(QUIT)	parameter	may	be	any	of	the
following:

Value Description Corresponding	constant

0 Continue	with	test IF_AUNIT_CONSTANTS=>NO

1 Quit	the	current	test	method IF_AUNIT_CONSTANTS=>METHOD	(default)

2 Skip/quit	all	tests	of	current	test	class IF_AUNIT_CONSTANTS=>CLASS

3 Skip/quit	all	tests	of	current	program IF_AUNIT_CONSTANTS=>PROGRAM

Methods	FAIL	and	ABORT	seemingly	serve	the	same	purpose	and	have
nearly	identical	signatures.	The	SAP	online	help	text	explains	the	distinction
between	these	methods	as	follows:

[Method	abort()]	raises	an	unconditional	alert,	similar	to	the	fail()
method.	The	semantics	are	however	different.	abort(	)	is	used	to	tell
ABAP	Unit	that	a	test	case	was	not	executed	due	to	a	failed	prerequisite
to	perform	the	test.	fail(	)	is	used	to	signal	a	failed	test	case.9

For	those	methods	providing	a	returning	parameter,	checking	the	returning
value	can	be	used	to	determine	whether	some	additional	processing	is	to	be
performed	based	on	whether	the	assertion	passed	or	failed.	This	would	be
applicable	only	to	those	methods	called	with	the	parameter	“quit	=	no”	since	any
other	value	for	the	quit	parameter	would	cause	the	unit	test	code	to	be	exited
immediately,	providing	no	opportunity	for	the	unit	test	to	perform	any	additional
processing.

Calls	to	the	appropriate	static	methods	of	class	cl_abap_unit_assert	should
appear	in	the	unit	tests	after	the	corresponding	productive	code	has	been
invoked,	such	as	shown	in	the	preceding	section	in	Listing	5-10	where	the
following	call	to	static	method	assert_equals	is	invoked	after	the	call	to	static
method	get_sum	of	productive	code	class	some_local_class:

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sum



								exp	=	expected_sum

								msg	=	'Unexpected	sum'.

Despite	the	completely	valid	use	of	the	“call	method”	statement	shown	in	the
preceding	code	to	invoke	the	services	of	the	ABAP	Unit	Testing	Framework,	it	is
more	likely	that	you	will	find	such	calls	using	the	functional	method	call	format,
as	shown	in	the	following:

				cl_abap_unit_assert=>assert_equals(

						act	=	sum

						exp	=	expected_sum

						msg	=	'Unexpected	sum'

						).

TOLERATION
All	the	unit	tests	I	have	written	were	at	client	sites	where	there	were	two
different	development	clients	in	the	same	SAP	instance:	one	client	was	used
for	the	creation	and	maintenance	of	the	ABAP	software,	and	the	other	client
was	used	solely	for	testing.	The	testing	client	had	much	more	robust	test	data
available	for	unit	testing,	in	some	cases	having	records	in	customized	tables
for	which	its	counterpart	client	would	have	no	records	at	all	in	those	same
tables.

Accordingly,	I	found	it	handy	to	issue	a	tolerable	failure	message	when
the	unit	tests	were	run	in	the	environment	where	there	were	no	records
available	in	the	customized	tables	used	by	the	unit	tests,	along	with	a
corresponding	message	indicating	that	there	was	no	test	data	available	in	that
client.	This	made	it	easy	to	spot	that	I	had	mistakenly	run	the	unit	test	in	the
wrong	client	–	because	it	issued	tolerable	(yellow)	failure	messages	–	as
opposed	to	running	it	in	the	correct	client	and	getting	critical	(red)	failure
messages	because	the	unit	tests	were	actually	failing.

When	deciding	whether	a	failing	assertion	should	be	accompanied	by	a	level	of
tolerable	(so	it	appears	as	a	warning)	or	a	message	providing	further
clarification,	consider	that	the	users	who	will	see	these	failures	are	ABAP
programmers.	Accordingly,	message	severity	and	content	should	reflect	the	level
of	technical	expertise	associated	with	programmers	and	not	be	restricted	to	the
type	of	messages	issued	through	production	code	which	typically	assumes	a	user
with	a	less	technical	background.



KNOW	YOUR	AUDIENCE
In	2019,	in	pursuit	of	a	dual-language	requirement	for	customized	programs,	I
wrote	a	utility	program	to	automatically	retrofit	ABAP	components	by
converting	their	text	literals	into	text	elements.	The	utility	produced	a	set	of
ALV	reports	describing	all	of	the	changes	applied.	I	provided	for	the	ability	to
run	in	simulation	mode	so	that	the	programmer	could	first	see	what	would	be
changed	before	actually	choosing	to	commit	those	changes.	Some	report
messages,	such	as	“component	ZYX	is	not	locked	under	an	active	transport,”
were	reported	as	warnings	when	run	in	simulation	mode	but	as	errors	when
run	in	update	mode.	This	was	only	one	of	a	set	of	language	conversion
utilities	written	by	others	and	me	to	be	used	by	all	the	programmers	on	the
development	staff.

After	this	utility	had	been	available	for	a	while,	I	began	getting	calls	from
other	programmers	who	were	getting	failure	messages	during	runs	in	update
mode.	I	asked	whether	the	utility	was	run	first	in	simulation	mode.	“Yes,”	was
the	answer,	“but	I	got	no	failures	during	that	run.”	The	discussion	continued
using	a	screen-sharing	application	where	both	of	us	could	see	what	was
happening.	After	running	the	utility	again	in	simulation	mode,	the	report
contained	a	series	of	warning	messages	indicating	that	some	of	the
components	of	the	program	that	would	require	updating	were	not	locked	on	a
transport.	These	same	warnings	subsequently	were	being	displayed	as	errors
during	the	update	run.

It	has	been	my	experience	that	ABAP	programmers	have	learned	to
ignore	warnings,	whether	issued	during	activation	of	components	or	a
transport	process	or	via	the	extended	program	check	utility.	In	the	preceding
case,	the	programmer	was	ignoring	the	warnings	issued	during	a	simulation
mode	run	of	the	text	literals	retrofitter	utility.	Accordingly,	your	audience	for
ABAP	Unit	testing	will	be	ABAP	programmers,	so	use	the	level=tolerable
qualifier	with	caution.

ABAP	Unit	Test	Runner
In	the	game	of	baseball,	a	player	who	manages	to	get	on	base	is	known	as	a	base
runner	.	The	term	is	a	specific	reference	to	a	person	playing	for	the	team	at	bat.
In	contrast,	when	it	comes	to	unit	testing,	the	term	test	runner	does	not	refer	to
the	person	who	initiates	a	unit	test,	but	instead	refers	to	a	component	of	the	unit
testing	framework.

The	ABAP	Unit	Test	Runner	is	the	component	of	the	ABAP	Unit	Testing



Framework	responsible	for	executing	a	unit	test.	Typically,	it	is	triggered	via	a
menu	path	selected	or	a	keyboard	shortcut	issued	from	within	the	ABAP	editor.
When	invoked,	it	will

1.
Identify	all	the	unit	test	classes	within	the	compilation	unit. 	

2.
Invoke	each	of	the	unit	test	methods	of	each	of	the	unit	test	classes,
accumulating	information	about	each	one.

	
3.

Present	one	of	the	following:

A.
A	status	message	indicating	the	number	of	compilation	units,	test
classes,	and	test	methods	found	within	the	body	of	the	source	code.
Such	a	message,	if	issued,	is	an	indication	that	all	unit	tests	have
passed.

	

B.
The	ABAP	Unit	Result	Display	report,	a	set	of	reports	indicating,
among	others,	the	names	of	the	test	classes	found	and	their	respective
test	methods,	a	status	associated	with	each	unit	test	invoked,	and	one	or
more	messages	associated	with	each	of	those.	If	this	set	of	reports	is
presented,	it	is	an	indication	that	invoking	one	or	more	of	the	specified
unit	test	methods	resulted	in	a	warning	or	a	failure.

	

	

The	Test	Runner	will	identify	unit	test	classes	as	those	having	the	FOR
TESTING	clause	on	their	class	definition	and	will	identify	unit	test	methods	as
those	having	the	FOR	TESTING	clause	on	their	method	definitions.

The	unit	test	class	definition	clause	RISK	LEVEL	will	determine	whether	or
not	its	unit	tests	are	run	during	a	unit	test	execution.	This	value	will	be	compared
with	the	ABAP	Unit	testing	environment	settings	to	determine	whether	it	is	safe
to	run	the	unit	tests	in	that	environment.	These	environment	settings	are
configurable	via	the	transaction	SAUNIT_CLIENT_SETUP,	which	will	be
covered	in	a	subsequent	section.

The	unit	test	class	definition	clause	DURATION	will	determine	whether	the
elapsed	time	during	the	execution	of	a	specific	unit	test	class	exceeds	a	threshold
and	accordingly	should	be	discontinued.	If	so,	it	will	cause	the	ABAP	Unit
Result	Display	report	to	be	presented	along	with	an	applicable	warning	message
for	the	corresponding	unit	test	class.

In	describing	the	properties	of	a	good	unit	test,	Roy	Osherove	states	“It



should	run	quickly.”10
I	have	found	that	the	Test	Runner	of	the	ABAP	Unit	Testing	Framework	is

very	fast	indeed,	typically	executing	a	complex	set	of	unit	test	classes	in	only	a
fraction	of	a	second.	Accordingly,	it	seems	to	provide	the	necessary	speed	for
complying	with	the	properties	Roy	Osherove	lists	for	a	good	unit	test,	enabling
us	to	run	the	unit	tests	often	and	not	suffer	for	having	to	wait	for	them	to	finish.

Unit	Test	Results	Report
The	ABAP	Unit	Test	Runner	will	collect	information	about	each	unit	test	it
executes.	When	it	has	completed	running	the	final	unit	test,	it	will	determine
whether	there	had	been	any	test	execution	failures.	If	so,	it	will	present	the
ABAP	Unit	Result	Display	report.	This	full-screen	report	will	show	information
about	all	unit	test	methods	for	all	the	unit	test	classes	contributing	to	the	test	run.

Figure	5-2	shows	an	example	of	an	ABAP	Unit	Result	Display	report
presented	for	one	of	the	accompanying	example	unit	test	programs.

Figure	5-2 Example	of	an	ABAP	Unit	Result	Display	report	presented	for	one	of	the	accompanying
example	unit	test	programs

As	illustrated	in	Figure	5-2,	a	tree	structure	appears	on	the	left	side	of	the
screen	which,	when	fully	expanded,	contains	four	node	levels.	The	top	node
indicates	in	its	name	the	userid,	system,	date,	and	time	of	execution.	Beneath
that	is	a	node	indicating	the	name	of	the	component	containing	unit	test	classes
that	have	been	run.	The	next	node	level	indicates	the	names	of	each	participating
unit	test	class,	and	the	next	indicates	the	names	of	the	associated	unit	test
methods.	Each	node	is	accompanied	by	columns	indicating	its	status,	number	of
failed	assertions,	number	of	exception	errors,	number	of	runtime	aborts,	and



number	of	warnings.	The	status	is	indicated	by	an	LED	icon:	green	indicates
passed;	red	indicates	failure;	yellow	indicates	a	warning.

The	right	side	of	the	screen	is	divided	into	an	upper	and	lower	area.	The
upper	area	shows	the	messages	associated	with	the	selected	tree	node,	and	the
lower	area	shows	further	analysis	and	navigation	capability	to	the	associated
code	for	the	message	selected	in	the	upper	area.	The	content	of	the	tree	structure
and	the	areas	to	the	right	of	it	are	presented	using	ALV	within	containers	that
may	be	resized	to	fit	the	preferences	of	the	user	through	dragging	and	dropping
the	separating	bars.

Clicking	once	an	entry	in	the	tree	structure	will	change	the	content	of	the
areas	to	the	right.	Clicking	once	a	message	in	the	upper-right	area	will	change
the	content	of	the	lower-right	area.	Clicking	once	an	entry	appearing	in	the	Stack
section	of	the	lower	area	will	present	the	associated	lines	of	code	where	the
message	was	issued.

Initiating	ABAP	Unit	Test	Execution
There	are	a	variety	of	ways	to	initiate	the	execution	of	ABAP	Unit	tests.
Probably	the	most	typical	way	to	do	so	is	through	an	ABAP	editor,	whether	the
standard	ABAP	editor	used	to	create	and	maintain	programs	and	reports	(SE38
and	SE80)	or	one	of	the	more	specialized	ABAP	editors,	such	as	those	associated
with	the	Function	Builder	(SE37)	or	the	Class	Builder	(SE24).	Why	is	this
probably	the	most	typical?	It	is	because	executing	unit	tests	while	within	an
ABAP	editor	will	provide	the	most	timely	and	useful	feedback	for	your
development	efforts.	Whereas	ABAP	Unit	tests	can	be	executed	through	utilities
that	do	not	involve	an	ABAP	editor,	software	developers	who	would	use	only
such	utilities	to	run	automated	unit	tests	would	be	imposing	upon	themselves	an
unnecessary	handicap.

Initiating	Unit	Tests	from	Within	an	ABAP	Editor
The	ABAP	Unit	Testing	Framework	has	been	seamlessly	integrated	into	the
ABAP	editors	so	that	unit	tests	can	be	run	without	having	to	leave	the	editor.
Here	are	the	ways	to	initiate	executing	the	associated	ABAP	Unit	tests	from
within	the	various	ABAP	editors:

From	the	ABAP	editor	(SE38)
Select	from	menu:	Program	➤	Test	➤	Unit	Test.

From	the	Function	Builder	(SE37)
Select	from	menu:	Function	Module	➤	Test	➤	Unit	Test.



From	the	Class	Builder	(SE24)

When	in	the	method	editor
Select	from	menu:	Method	➤	Unit	Test.

When	not	in	the	method	editor
Select	from	menu:	Class	➤	Unit	Test.

From	the	Object	Navigator	(SE80)
Right-click	the	component	in	the	Repository	Browser	to	present	the

context	menu.	Then	…

For	programs,	select
Execute	➤	Unit	Test
For	function	groups,	select
Unit	Test
For	classes/interfaces,	select
Test	➤	Unit	Test

Once	the	unit	tests	initiated	through	the	ABAP	editor	have	completed
executing,	the	Test	Runner	will	present	one	of	the	following:

When	all	unit	tests	have	run	successfully,	a	status	message	will	appear	at
the	bottom	of	the	screen	indicating	what	was	executed.	Here	are	some
examples	of	such	messages,	with	their	differences	attributable	to	different
releases	of	the	ABAP	Unit	Testing	Framework	producing	them:

Unit	tests	processed	successfully;	1	programs,	2	classes,	7	methods
Processed:	1	programs,	2	classes,	7	methods

When	any	one	of	the	unit	tests	fails,	then	the	ABAP	Unit	Result	Display
report	is	presented.

Initiating	Unit	Tests	from	Outside	an	ABAP	Editor
The	ABAP	Unit	Testing	Framework	also	has	been	seamlessly	integrated	into
other	utilities	associated	with	analyzing	and	reporting	on	ABAP	code,	utilities
not	dependent	upon	an	ABAP	editor	for	their	use.	Here	are	some	of	the	ways	to
initiate	executing	the	associated	ABAP	Unit	tests	from	outside	an	ABAP	editor:

From	the	Code	Inspector	(SCI)

On	the	Code	Inspector	initial	screen,	click	the	Create	button	appearing	in
the	Inspection	block.
On	the	Code	Inspector	Inspection	screen,	in	the	Object	Selection	block,
select	the	Single	radio	button,	in	the	slot	to	the	right	of	that	indicate



Program,	and	in	the	slot	to	the	right	of	that	supply	the	name	of	the
program	to	be	unit	tested.
In	the	Check	Variant	block,	select	the	Temporary	Definition	radio	button.
On	the	next	Check	Variant	screen,	select	the	Temporary	Definition	radio
button	and	place	a	checkmark	only	in	the	checkbox	associated	with
Dynamic	Tests	(first	uncheck	the	checkbox	for	List	of	Checks	to	uncheck
all	other	checkboxes).
On	the	next	Code	Inspector	Inspection	screen,	click	the	Execute	icon.

From	the	ABAP	Unit	Browser

Invoke	Object	Navigator	(SE80).
Select	ABAP	Unit	Browser	from	among	the	pushbuttons	in	the	upper-left
section	of	the	screen.

Note To	make	the	ABAP	Unit	Browser	pushbutton	available,	do	the
following:

Select	from	the	Object	Navigator	menu:	Utilities	➤	Settings.

Select	tab	Workbench.

Select	the	checkbox	for	ABAP	Unit	Browser.

Select	a	component	which	has	ABAP	Unit	code	written	for	it.

To	execute	a	specific	test	class,	right-click	the	test	class	name	to
present	the	context	menu	and	then	select	Execute	Test	Class.

To	execute	all	test	classes,	right-click	the	component	name	to	present
the	context	menu	and	then	select	Execute	Test.

These	utilities	offer	the	capability	to	execute	the	associated	unit	tests	by
personnel	other	than	the	author	of	the	code.	In	the	case	of	the	Code	Inspector,	it



can	be	configured	to	run	the	unit	tests	for	multiple	programs,	function	modules,
and	classes	in	a	single	execution.	Accordingly,	it	might	be	considered	most
useful	in	performing	a	final	mass	unit	test	execution	before	a	collection	of
associated	components	is	released	for	subsequent	quality	assurance	testing.

Evolution	of	the	ABAP	Unit	Testing	Framework
With	its	introduction	in	2004,	SAP	has	since	updated,	refined,	and	improved	the
ABAP	Unit	Testing	Framework.	Releases	since	2009	(7.0	EhP2	and	later)
include	the	static	class	cl_abap_unit_assert	and	its	methods	through
which	the	unit	test	author	can	invoke	the	services	of	the	testing	framework.	This
class	is	relatively	recent	and	was	not	included	with	version	1.0	of	the	ABAP	Unit
Testing	Framework.	Instead,	the	first	release	of	the	ABAP	Unit	Testing
Framework	provided	the	author	with	access	to	its	services	via	this	class:
cl_aunit_assert.

It	seems	that	over	time	the	folks	at	SAP	might	have	had	second	thoughts
about	the	name	of	this	class,	deciding	that	perhaps	“aunit”	was	not	as	descriptive
as	“abap_unit,”	and	so	defined	a	completely	new	class	with	the	more	descriptive
name.

The	original	class	cl_aunit_assert	is	still	available	in	releases	where	class
cl_abap_unit_assert	is	available.	The	implementation	of	each	method	defined	in
class	cl_aunit_assert	delegates	its	respective	processing	to	its	counterpart	method
defined	in	class	cl_abap_unit_assert.	Accordingly,	tests	written	using	the
methods	of	either	of	these	static	classes	will	provide	the	same	processing.

Class	cl_aunit_assert	also	provides	aliases	for	public	static	constants	not
defined	in	class	cl_abap_unit_assert,	such	as	these	operands	applicable	to	the
level	parameter

tolerable
critical
fatal

and	these	operands	applicable	to	the	quit	parameter:

no
method
class
program

These	are	actually	aliases	for	the	constants	defined	in	interface
if_aunit_constants,	which	also	could	be	used	to	specify	operands	on	these



parameters.
Also,	the	newer	releases	since	2009	provide	the	class	definition	clauses

RISK	LEVEL	and	DURATION.	These	were	not	part	of	the	ABAP	language	with
the	first	release	of	the	ABAP	Unit	Testing	Framework.	Prior	to	2009,	the	way
these	values	were	specified	was	through	the	use	of	ABAP	pseudo-comments
placed	after	the	class	definition	statement.	So,	for	instance,	the	following	class
definition	statement	that	can	be	written	using	releases	since	2009

class	some_test_class	definition

																						for	testing

																						risk	level	harmless

																						duration	short.

would	need	to	have	been	written	the	following	way	with	releases	prior	to
2009:

class	some_test_class	definition

																						for	testing.

																						"#AU	Risk_Level	Harmless

																						"#AU	Duration	Short

The	pseudo-comments	still	may	be	used,	but	it	is	recommended	to	use	the
new	class	definition	clauses	instead.	They	are	explained	here	only	so	that	they
could	be	recognized	for	the	role	they	play	in	unit	testing	if	they	were	to	be
encountered	with	unit	test	classes	written	using	a	release	prior	to	one	where
RISK	LEVEL	and	DURATION	have	become	valid	clauses	for	the	class
definition	statement.

Challenges	to	Effectively	Testing	ABAP	Code
Many	of	the	xUnit	testing	frameworks	are	associated	with	purely	object-oriented
languages.	This	means	that	those	testing	frameworks	benefit	from	the	constraints
the	associated	object-oriented	language	imposes	upon	program	design.	In
conformance	with	the	basic	xUnit	principle	that	a	unit	test	is	written	in	the	same
language	as	the	productive	code,	the	unit	tests	executed	by	their	respective	xUnit
testing	frameworks	also	can	only	have	been	written	and	designed	using	the	same
object-oriented	language	as	the	productive	code	tested	by	those	unit	tests.

In	contrast,	ABAP	is	not	a	purely	object-oriented	language.	Accordingly,	the
structure	of	programs	made	possible	by	the	ABAP	compiler	presents	challenges



to	effectively	testing	the	ABAP	code.	This	section	covers	some	of	those
challenges,	specifically	those	presented	by

Classic	ABAP	event	blocks
Global	variables
The	MESSAGE	statement
ALV	reports
Classic	list	processing	statements
Open	SQL	statements

Challenges	Presented	by	Classic	ABAP	Event	Blocks
Perhaps	the	most	significant	of	these	challenges	is	that	an	ABAP	Unit	test	cannot
directly	invoke	the	code	contained	within	an	ABAP	classic	event	block,	such	as
the	classic	event	blocks	for	initialization	and	start-of-selection.	A	unit	test	can,
however,	invoke	a	subroutine	written	using	the	FORM-ENDFORM	construct.
This	means	that	in	order	to	provide	a	unit	test	for	any	code	contained	within	an
ABAP	classic	event	block,	it	first	would	be	necessary	to	refactor	the	program
such	that	the	code	currently	residing	within	the	ABAP	classic	event	block	is
moved	into	a	subroutine,	which	then	can	be	called	from	both	the	ABAP	classic
event	block	from	which	it	was	moved	and	an	ABAP	Unit	test.

Challenges	Presented	by	Global	Variables
Global	variables	are	capable	of	retaining	values	set	by	the	procedure	tested	by	a
unit	test	method.	Accordingly,	it	presents	the	possibility	of	Interacting	Tests,
such	as	when	one	unit	test	method	sets	the	value	of	a	global	variable,	explicitly
or	as	a	result	of	calling	the	procedure	it	tests,	and	a	subsequent	unit	test	accesses
that	changed	value	or	perhaps	causes	it	to	be	changed	again	so	that	yet	another
subsequent	unit	test	has	access	to	the	newly	changed	value.	These	are	examples
of	Interacting	Tests;	the	test	may	pass	sometimes	and	fail	at	other	times	simply
due	to	the	values	of	global	variables	as	the	tests	are	run.	Since	it	is	typically	not
known	the	order	in	which	unit	test	methods	will	be	executed,	the	values
contained	in	global	variables	when	they	are	accessed	during	a	unit	test	will	be
indeterminate	unless	they	had	been	explicitly	set	to	some	initial	value	at	the	start
of	the	unit	test.

Consider	that	the	term	“global	variables”	casts	a	wide	shadow	which
includes	not	only	data	definitions	that	occur	outside	of	subroutines	but	also	the
parameters	and	select-options	statements	available	for	initial	selection	screen
definitions	as	well	as	data	definitions	defined	within	subroutines	using	the
STATICS	statement.



Challenges	Presented	by	the	MESSAGE	Statement
Depending	on	the	severity	(message	type)	of	the	message,	the	ABAP	MESSAGE
statement	can	have	an	effect	on	the	flow	of	control	of	the	program	during	normal
execution:

Messages	of	severity	exit	(message	type	“X”)	will	cause	an	immediate
program	termination	accompanied	by	a	short	dump.
	Messages	of	severity	abort	(message	type	“A”)	also	will	cause	an	immediate
program	termination	but	will	be	accompanied	by	a	Cancel	message	instead	of
a	short	dump.
The	effect	caused	by	messages	of	severity	error	(message	type	“E”)	will
depend	upon	which	classic	ABAP	event	block	is	in	control	at	the	time	they	are
issued	and	whether	the	program	is	running	in	foreground	or	background.
When	the	event	block	is	any	of	the	event	blocks	that	precede	the	start-of-
selection	event	block,	such	as	initialization	and	the	varieties	of	at	selection-
screen,	then	in	foreground	executions	the	associated	error	message	will	appear
at	the	bottom	of	the	screen	and	provide	the	user	the	chance	to	change	values
on	the	selection	screen	to	alleviate	the	error	message.	Once	the	program
reaches	the	start-of-selection	event	block,	an	error	message	will	cause	the
program	to	terminate	processing.
The	effect	caused	by	messages	of	severity	warning	(message	type	“W”)	will
depend	upon	which	classic	ABAP	event	block	is	in	control	at	the	time	they	are
issued	and	whether	the	program	is	running	in	foreground	or	background.
When	the	event	block	is	any	of	the	event	blocks	that	precede	the	start-of-
selection	event	block,	then	when	running	in	foreground,	the	warning	message
is	issued	and	provides	the	user	the	opportunity	to	continue	program	execution;
and	when	running	in	background,	the	message	simply	is	registered	in	the
resulting	job	log.	Once	the	program	reaches	the	start-of-selection	event	block,
a	warning	message	will	be	treated	the	same	as	an	error	message,	causing	the
program	to	terminate	processing.
The	effect	caused	by	messages	of	severity	information	(message	type	“I”)	will
depend	upon	whether	the	program	is	running	in	foreground	or	background.
When	running	in	foreground,	a	popup	message	will	appear	to	the	user	who
must	respond	by	clicking	one	of	the	buttons	on	the	popup	window	to	cause	the
program	to	resume.	When	run	in	background,	the	message	simply	is	registered
in	the	resulting	job	log.
Messages	of	severity	status	(message	type	“S”)	will	cause	a	message	to	appear
at	the	bottom	of	the	screen	when	running	in	foreground	and	simply	is
registered	in	the	resulting	job	log	when	running	in	background.



The	ABAP	Unit	tests	typically	are	run	in	foreground,	so	the	preceding
explanations	for	background	execution	will	not	apply,	but	message	statements
also	behave	differently	when	encountered	in	the	code	under	test	during	a	unit	test
execution.	For	one	thing,	there	is	no	classic	ABAP	event	block	in	control	during
unit	test	executions,	so	the	flow	of	control	through	the	program	does	not
necessarily	observe	the	same	rules	as	when	a	program	is	executed	in	foreground
mode.	In	addition,	you	will	find	that	messages	of	severities	status,	information,
and	warning	will	not	appear	during	the	execution	of	a	unit	test.	Also,	messages
of	severities	error,	abort,	and	exit	will	be	intercepted	by	the	Test	Runner	and
logged	either	as	an	exception	error,	for	severities	error	and	abort,	or	runtime
error	for	severity	exit.

Accordingly,	a	unit	test	execution	that	encounters	the	ABAP	MESSAGE
statement	for	a	message	of	severity	error	will	result	in	the	failure	of	the	unit	test,
regardless	of	whether	issuing	such	a	message	would	have	been	the	correct	action
to	be	taken	by	the	code	under	test.	This	means	that	to	enable	testing	of	programs
with	ABAP	MESSAGE	statements	scattered	throughout	the	code,	we	will	need	a
way	to	intercept	and	prevent	such	failures.	This	consideration	will	be	explored
further	in	a	subsequent	chapter	and	through	the	accompanying	exercise
programs.

Challenges	Presented	by	ALV	Reports
One	of	the	more	notable	features	SAP	has	made	available	over	the	years	is	the
ABAP	List	Viewer,	abbreviated	ALV,	which	enables	an	ABAP	program	to
present	output	simply	as	rows	and	columns	of	content	to	be	displayed	to	a	user
in	a	fashion	similar	to	a	spreadsheet.	Its	initial	release	facilitated	this	capability
through	SAP-supplied	function	modules.	It	has	since	been	made	available
through	the	use	of	SAP-supplied	classes.

Regardless	of	whether	an	ABAP	program	makes	use	of	the	function	modules
or	the	classes,	when	the	ALV	report	is	presented,	it	will	interrupt	program
processing	until	the	user	issues	a	command	to	allow	the	program	to	continue.
This	behavior	is	the	same	for	both	the	production	path	and	the	automated	unit
testing	path,	meaning	that	when	a	unit	test	encounters	the	ALV	component
responsible	for	displaying	the	report,	the	unit	test	will	be	suspended.	Test
execution	will	resume	when	the	person	who	initiated	the	test	clicks	Back,	Exit,
or	Cancel	or	presses	the	Escape	key.

This	is	totally	unacceptable	since	it	would	require	the	test	initiator	to	remain
on	standby	to	explicitly	press	a	key	every	time	an	ALV	report	is	presented	by	the
Test	Runner,	violating	one	of	the	most	basic	tenets	of	automated	unit	tests	–	that
they	run	to	completion	with	no	assistance	by	the	test	initiator.	In	subsequent



chapters,	we	will	explore	ways	to	mitigate	the	effects	of	ALV	during	the
execution	of	automated	unit	tests.

Challenges	Presented	by	Classic	List	Processing	Statements
Since	the	advent	of	the	ABAP	List	Viewer	(ALV)	in	the	1990s,	there	no	longer
seems	to	be	any	need	for	new	ABAP	programs	to	use	the	classic	list	processing
statements,	such	as	new-line,	write,	skip,	uline,	and	so	on.	Indeed,	the	book
Official	ABAP	Programming	Guidelines	states	the	following	regarding	classic
lists:

Rule	5.20:	Use	the	SAP	List	Viewer

Do	not	use	classic	lists.	If	you	still	deploy	dynpro-based,	classical	UI
technologies,	you	should	use	the	SAP	List	Viewer	(ALV)	or	other	GUI
control-based	technologies	instead	of	classical	lists	in	live	programs.11

Unfortunately	for	us,	there	are	thousands	of	legacy	programs	that	were
written	prior	to	the	availability	of	ALV,	and	they	generate	reports	formatted	as
classic	lists	using	classic	list	processing	statements.	Classic	lists	cause	the	same
problem	for	automated	unit	tests	that	ALV	reports	do	–	specifically,	they	cause
the	execution	of	the	unit	test	to	be	suspended	until	the	user	presses	a	key	to
enable	resumption	of	the	test.	This	suspension	is	just	as	unacceptable	with
classic	lists	as	it	is	with	ALV	reports,	but	when	classic	list	processing	statements
are	encountered	during	an	automated	unit	test,	the	Test	Runner	will	present	the
report	to	the	screen	looking	similar	to	what	is	shown	in	Figure	5-3	before	it
suspends	test	execution.



Figure	5-3 Report	presented	when	automated	unit	test	encounters	a	classic	list	processing	statement

Notice	in	Figure	5-3	that	the	content	of	the	report	is	presented	starting	on	the
final	line	shown,	after	a	series	of	introductory	lines	the	test	runner	presents	ahead
of	those	produced	by	the	tested	procedure.	These	introductory	lines	do	not
appear	when	ALV	reports	are	presented	during	a	unit	test.	Furthermore,	these
introductory	lines	include	the	word	“Warning”	and	the	phrase	“is	not	permitted
!!”	and	some	lines	are	formatted	using	red	highlighting,	giving	the	impression
that	the	unit	test	has	failed.	In	subsequent	chapters	and	through	the	exercise
programs,	we	will	explore	ways	to	circumvent	this	presentation	during	the
execution	of	automated	unit	tests.

Challenges	Presented	by	Open	SQL	Statements
There	are	few	other	modern	programming	languages	that	have	their	own
statements	for	performing	database	access.	The	ABAP	language	has	had	such
statements	since	its	first	release,	and	these	statements	can	appear	in	the	code	at
virtually	any	location.	While	the	Open	SQL	statement	select	is	virtually
harmless,	the	same	cannot	be	said	for	the	Open	SQL	statements	insert,	modify,
update,	and	delete,	each	of	which	will	leave	the	corresponding	persistence
repository	in	a	permanently	changed	state.

The	intent	with	ABAP	Unit	testing	is	to	leave	the	SAP	environment	in	which
it	runs	unchanged	after	the	execution	of	the	unit	tests.	To	achieve	this	when	the
language	itself	provides	statements	that	could	leave	the	persistence	repositories



permanently	changed	will	require	some	additional	diligence	on	the	part	of	the
author	of	any	unit	tests	where	such	statements	could	be	encountered.	While	it
might	be	acceptable	for	customized	repositories	to	be	explicitly	reset	to	their
pre–unit	test	state	at	the	conclusion	of	the	unit	test,	the	same	process	of	directly
updating	persistence	repositories	supplied	by	SAP	is	not	recommended,	either	for
production	code	or	for	unit	testing	code.	Accordingly,	some	extra	work	will	be
required	to	insure	the	SAP	environment	is	reset	back	to	a	pre–unit	test	state.

Controlling	the	ABAP	Unit	Testing	Framework
One	of	the	hallmarks	of	SAP	software	is	that	it	is	configurable	to	the
requirements	of	the	site	for	which	it	runs.	Just	issue	transaction	SPRO,	and	you
will	be	presented	with	a	multitude	of	options	for	configuring	virtually	every	area
of	the	Enterprise	Resource	Planning	(ERP)	Central	Component	(ECC).	This	type
of	system	configuration	is	not	an	area	in	which	the	typical	software	developer
spends	much	time.

The	ABAP	Unit	Testing	Framework	also	is	a	feature	for	which	site-specific
configuration	is	applicable.	In	this	section,	we	explore	the	various	site
configuration	settings	applicable	to	this	feature.

Client	Category
As	mentioned	previously,	ABAP	components	that	are	marked	FOR	TESTING
are,	by	default,	not	compiled	into	production	systems.	So	what	denotes	whether
or	not	a	system	is	a	production	system?	It	is	table	T000,	which	contains	records
indicating	the	various	attributes	of	each	client	in	the	SAP	system.	One	of	its
fields	is	known	as	the	Client	Control	Category	(T000-CCCATEGORY)	which
denotes	the	role	of	the	corresponding	client	and	can	be	set	to	“P”	for	production
or	“T”	for	test.	SAP	clients	where	ABAP	development	is	performed	are	set	as
test	clients.

It	is	in	test	clients	where	the	ABAP	Unit	Testing	Framework	will	be	enabled,
by	default,	to	compile	and	execute	components	marked	for	unit	testing.	Attempts
to	run	unit	tests	in	clients	where	the	ABAP	Unit	Testing	Framework	is	not
enabled	will	result	in	receiving	a	warning	message	indicating

The	system	settings	prevent	the	use	of	unit	tests	in

this	client

CHANGING	THE	CLIENT	CONTROL	CATEGORY



I	once	worked	at	a	site	where	a	person	in	the	Basis	group,	who	had	obtained
the	requisite	permission	to	do	so,	changed	for	me	the	client	control	category
of	the	quality	assurance	client	from	production	to	test,	which	enabled	me
momentarily	to	run	my	unit	tests	in	that	system	before	resetting	it	back	to	a
production	system.

Client	Category	Override
As	already	noted,	unit	test	code	is,	by	default,	not	compiled	into	production
systems.	The	operative	phrase	here	is	by	default.	The	default	setting	can	be
overridden	via	the	SAP	system	profile	parameter

abap/test_generation

which	will	control	whether	the	ABAP	Unit	Testing	Framework	is	enabled	to
run	in	production	systems.

It	is	probably	not	a	good	idea	to	change	this	in	the	production	system	where
your	users	are	performing	all	their	day-to-day	activities.	In	contrast,	it	is	often
the	case	that	such	a	production	system	is	periodically	copied	to	what	might	be
called	a	quality	assurance	system,	an	environment	containing	the	latest	copy	of
real	production	data	and	also	capable	of	accepting	new	and	improved	software
for	the	purpose	of	thoroughly	testing	it	before	it	can	be	moved	into	the	definitive
production	system.	It	is	in	such	quality	assurance	systems	that	are	marked	as
production	systems	where	overriding	the	default	setting	of	unit	testing
prohibition	might	be	most	applicable.

The	usefulness	of	enabling	unit	test	executions	in	a	production	system	is
debatable.	It	certainly	is	to	be	expected	that	there	would	be	far	more	test	data
available	to	such	unit	tests	in	the	various	persistence	repositories,	test	data	that
would	not	be	available	in	a	typical	development	environment.	From	this	we
might	conclude	that	a	unit	test	would	benefit	from	having	such	a	comprehensive
and	robust	set	of	test	data	at	its	disposal.

Here	are	two	reasons	why	this	might	be	undesirable:

1.
There	is	a	unit	testing	school	of	thought	embracing	the	premise	that	unit
tests	should	not	depend	upon	the	existence	of	records	in	persistence
repositories.	To	depend	on	the	presence	of	such	test	data	would	expose	the
test	to	the	smell	known	as	Resource	Optimism,12	a	variety	of	Erratic	Test,13
passing	at	some	times	and	failing	at	other	times	due	solely	to	the	presence	or
absence	of	such	records.

	



2.
All	unit	tests	should	pass	in	development,	and	if	they	do,	then	there	is	no
reason	they	need	to	be	run	in	any	other	environment.	Unit	tests	should	build
and	use	their	own	test	data	if	that	is	what	is	required	for	them	to	pass.	A	unit
test	failing	in	development	due	to	lack	of	unit	test	data	should	not	be
dismissed	with	the	rationale	that	it	will	pass	once	it	is	run	in	a	quality
assurance	system	where	applicable	test	data	exists.

	

Note The	process	of	defining	unit	tests	capable	of	creating	and	using	their
own	fabricated	test	data	is	covered	in	the	accompanying	exercises.

Unit	Testing	Configuration
The	ABAP	Unit	Testing	Framework	can	be	further	configured	using	transaction
SAUNIT_CLIENT_SETUP.	This	transaction	enables	configuring	both	the	client
and	the	associated	application	server	associated	with	the	development
environment.	Upon	invoking	this	transaction,	a	screen	similar	to	that	shown	in
Figure	5-4	is	presented.



Figure	5-4 Initial	screen	presented	by	transaction	SAUNIT_CLIENT_SETUP

Clicking	the	Change	button	enables	updates	to	the	respective	settings,	as
shown	in	Figure	5-5.



Figure	5-5 Appearance	of	screen	from	Figure	5-4	after	clicking	the	Change	button

The	values	shown	in	the	preceding	figure	are	the	default	values.	Static	class
cl_aunit_customizing	is	responsible	for	providing	these	default	values:	those	for
the	client	settings	are	set	via	method	__init_client_setup,	and	those	for	the
application	server	are	set	via	method	__init_host_setup.

If	the	default	values	are	changed	at	the	site,	the	new	client	settings	will	be
retained	in	table	TAUNIT_CLT_SETUP,	and	the	new	application	server	settings
will	be	retained	in	table	TAUNIT_SRV_SETUP.	As	you	might	expect,	table
TAUNIT_CLT_SETUP	is	client-dependent,	while	table	TAUNIT_SRV_SETUP
is	not.

These	settings	apply	to	all	developers	in	the	respective	client	and	application



server.	Changing	the	settings	will	affect	all	developers	equally.

Client	Settings
The	Client	block	checkbox	for	the	Prohibit	execution	setting	already	will	be	set
to	checked	for	a	production	client	and	cannot	be	overridden	via	this	transaction.
Otherwise	it	can	be	toggled	between	checked	and	unchecked	to	control	whether
developers	will	be	permitted	to	run	unit	tests	in	that	client.

The	Limit	of	Risk	Level	setting	can	be	raised	from	its	default	Harmless	to
either	Dangerous	or	Critical.	Its	value	correlates	to	the	values	that	can	be
specified	on	the	RISK	LEVEL	clause	of	a	unit	test	class	definition	statement.
This	setting	will	determine	the	highest	risk	level	that	can	be	associated	with	the
corresponding	unit	test	classes	included	in	the	unit	test	execution.	Say,	for
example,	this	setting	is	set	to	Harmless	and	one	of	the	unit	test	classes	in	your
source	code	indicates	a	risk	level	of	Dangerous.	This	would	be	sufficient	to
disqualify	this	unit	test	class	from	being	executed.	If	this	client	setting	is
subsequently	raised	from	Harmless	to	Dangerous,	then	the	same	unit	test	class
now	would	be	accepted	for	execution.

EVOLVING	HABITS
At	one	point	in	my	development	career,	I	had	defined	unit	tests	that	resulted
in	new	records	created	in	standard	SAP	persistence	repositories,	identified
accordingly	via	some	banner	such	as	“ABAP	Unit	testing”	emblazoned	in	the
description	of	the	new	records.	For	these	unit	test	classes,	I	had	indicated	a
risk	level	of	Dangerous	due	to	the	fact	that	running	the	tests	would	leave
behind	permanent	changes	in	the	persistence	repositories.	I	have	since
abandoned	the	use	of	that	technique	after	some	introspection	through	which	I
concluded	that	it	is	not	a	good	idea	for	unit	tests	to	create	and	leave	behind
such	records.

Application	Server	Settings
The	three	Duration	settings	available	in	the	Application	Server	block	correlate	to
the	values	that	can	be	specified	for	the	DURATION	clause	of	a	unit	test	class
definition	statement.	Here	is	where	they	are	set	to	the	number	of	seconds	that
may	elapse	between	starting	the	first	unit	test	method	of	a	class	and	finishing	the
last	one.	If	the	elapsed	time	exceeds	the	setting	for	the	DURATION	clause
associated	with	the	unit	test	class,	then	the	execution	is	interrupted	after	the
specified	duration	time	expires,	and	an	applicable	warning	is	issued	for	the	unit
test	class	upon	presenting	the	ABAP	Unit	Result	Display	report.



Clicking	the	Proposal	button	(Calculate	Proposal)	will	determine	a	different
set	of	duration	values	based	on	an	analysis	it	performs.

In	my	estimation,	the	default	value	of	60	seconds	for	Short	Duration	is	too
high	even	for	Long	Duration.	Just	consider	for	a	moment	that	the	default	value
for	Long	Duration	is	3600	seconds	–	one	hour!	It	strains	my	imagination	to	think
of	a	case	where	I	would	ever	want	a	single	unit	test	class	to	run	for	one	hour.
Indeed,	I	want	unit	tests	to	run	to	completion	in	mere	fractions	of	a	second.
Waiting	even	a	few	seconds	for	the	unit	test	run	to	finish	still	would	be	too	long
for	me.	Robert	C.	Martin	eloquently	explains	why	tests	should	be	fast:

When	tests	run	slow,	you	won’t	want	to	run	them	frequently.	If	you	don’t
run	them	frequently,	you	won’t	find	problems	early	enough	to	fix	them
easily.	You	won’t	feel	as	free	to	clean	up	the	code.	Eventually	the	code
will	begin	to	rot.14

Who	wants	rotten	code?!	Accordingly,	default	configuration	settings	that
would	result	in	waiting	an	hour	for	a	single	unit	test	class	to	finish	seem	as
though	inviting	poorly	written	unit	tests	and,	by	extension,	poorly	written
production	code.	Indeed,	I	would	want	all	the	developers	at	my	site	to	strive	for
sub-second	unit	test	execution	times	every	time	the	tests	are	run	and	to	provide	a
convincing	justification	for	why	these	duration	settings	should	be	set	any	higher
than	a	few	seconds	each.

Summary
The	ABAP	Unit	Testing	Framework,	also	known	as	ABAP	Unit,	is	the	xUnit
automated	unit	testing	framework	applicable	to	the	ABAP	language	and	is
applicable	to	testing	procedures	found	in	executable	programs,	class	pools,
function	groups,	module	pools,	and	subroutine	pools.	The	framework	itself	is
divided	into	components	providing	test	preparation	activities	and	components
providing	test	executions.	Using	this	framework	requires	that	unit	tests	are
written	as	local	object-oriented	classes	designated	specifically	as	test	classes.
Global	classes	and	function	modules	both	may	have	the	skeleton	of	their	unit
tests	automatically	generated	for	them	but	will	still	require	the	programmer	to
provide	the	details	of	the	test.

The	ABAP	language	was	enhanced	with	the	clauses	FOR	TESTING,
DURATION,	and	RISK	LEVEL	added	to	the	ABAP	class	definition	statement
and	the	clause	FOR	TESTING	added	to	the	methods	statement.	The	use	of	the
application	programming	interface	supplied	by	the	ABAP	Unit	Testing



Framework	makes	it	possible	to	assert	whether	a	unit	test	passes	or	fails.	The
reserved	method	names	class_setup,	setup,	teardown,	and	class_teardown
represent	the	fixture	methods	automatically	called	by	the	framework	to	establish
a	fresh	testing	environment.

The	ABAP	Unit	Result	Display	report	is	presented	when	any	one	of	the	unit
tests	fails	and	provides	information	to	enable	resolving	the	failure;	otherwise,	a
simple	status	message	appears	indicating	a	successful	execution	of	all	unit	tests.
Unit	test	executions	can	be	initiated	from	within	the	ABAP	editor	used	to	write
the	tests	as	well	as	from	the	Code	Inspector	(SCI)	and	ABAP	Unit	Browser.

The	ABAP	Unit	Testing	Framework	has	evolved	from	its	first	release	in
2004	to	the	upgraded	version	released	in	2009	which	introduced	the	clauses
DURATION	and	RISK	LEVEL	of	the	class	definition	statement	superseding
their	pseudo-comment	counterparts.

There	are	some	ABAP	statements	and	features	to	be	found	in	the	production
code	presenting	challenges	with	writing	automated	unit	tests,	among	them:

Classic	ABAP	event	blocks
Global	variables
The	MESSAGE	statement
ALV	reports
Classic	list	processing	statements
Open	SQL	statements

In	accordance	with	the	flexibility	SAP	provides	for	configuring	a	production
system,	the	ABAP	Unit	Testing	Framework	also	can	be	configured	through
transaction	SAUNIT_CLIENT_SETUP	to	the	development	and	testing	needs	of
the	site	at	which	it	is	used.

Quiz	#2:	ABAP	Unit	Testing	Concepts
Now	that	you	are	familiar	with	the	concepts	associated	with	ABAP	Unit	testing,
test	your	knowledge	by	completing	the	following	quiz.	The	answers	can	be
found	in	Appendix	B.

Multiple	Choice:	Select	the	Best	Answer
1.

ABAP	Unit	tests	are	written	in

A.
SAPScript	

	



B. Java 	
C.

ABAP 	
2.

ABAP	Unit	tests

A.
Must	be	implemented	as	local	classes 	

B.
Must	be	implemented	as	global	classes 	

C.
May	be	implemented	as	either	local	or	global	classes	

	

3.
ABAP	Unit	tests	can	be	executed

A.
Only	from	the	editor 	

B.
Only	from	the	Code	Inspector 	

C.
From	either	the	editor	or	the	Code	Inspector	

	

4.
An	ABAP	Unit	test	class	definition	requires	the	class	to	be

A.
Marked	as	“for	testing” 	

B.
Inherited	from	a	globally	defined	static	class	provided	by	SAP	

C.
Defined	in	a	separate	module 	

	

5.
An	ABAP	Unit	test	validity	is	asserted	by

A.
Using	an	ASSERT	statement 	

B.
Invoking	static	methods	of	the	class	cl_abap_unit_assert	

C.

	



Calling	function	module	ASSERT_THIS
	

6.
An	ABAP	Unit	test	may	test

A.
Only	code	written	using	classes	and	methods 	

B.
Only	classic	procedural	ABAP	code 	

C.
Classic	procedural	ABAP	code	and	code	written	using	classes	and
methods

	

	

True	or	False
An	ABAP	Unit	test	may	be	defined	for

				1. Executable	programs 	

				2. Class	pools 	

				3. Interface	pools 	

				4. Module	pools 	

				5. Function	groups 	

				6. Configuration 	

				7. Subroutine	pools 	

				8. Type	groups 	

An	ABAP	Unit	test

				9. By	default	is	compiled	into	all	environments 	

		10. Accommodates	using	a	fixture 	

		11. Is	embedded	with	the	object	to	be	tested 	

		12. Can	generate	the	source	code	to	comply	with	the	test 	

		13. May	accept	parameters 	

		14. Is	transported	along	with	its	tested	object 	



1

2

3

4

5

6

7

8

9

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	preparation
mode.	Refer	to	the	accompanying	exercise	workbook	to	prepare	your	ABAP
programming	environment	for	performing	the	associated	exercises	as
described	in	workbook	Section	1:	Overview	of	exercise	programs	and
Section	2:	Organization	of	requirements.

Footnotes
Except,	of	course,	the	Class	Browser	is	used	to	define	the	local	test	classes	used	for	testing	global	classes

	
Keller,	Horst	and	Thümmel,	Wolf	Hagen,	Official	ABAP	Programming	Guidelines,	Galileo	Press,	2010,

p.	287

	
Ibid

	
Keller,	Horst	and	Thümmel,	Wolf	Hagen,	Official	ABAP	Programming	Guidelines,	Galileo	Press,	2010,

p.	54

	
ABAP	Keyword	Documentation	➤	CLASS	➤	class_options	➤	FOR	TESTING	➤	Test	properties

	
Ibid

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	166

	
Ibid,	p.	184

	
SAP	online	help	text.	To	access	via	SE38,	locate	or	create	a	call	to	method	abort	of	class

cl_abap_unit_assert	in	one	of	the	unit	test	methods,	place	the	cursor	on	the	method	name,	and	press	F1.

	



10

11

12

13

14

Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	6

	
Keller,	Horst	and	Thümmel,	Wolf	Hagen,	Official	ABAP	Programming	Guidelines,	Galileo	Press,	2010,

p.	204

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	233

	
Ibid,	p.	228

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

132

	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_6

6.	Rudiments
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Since	the	ABAP	Unit	Testing	Framework	is	modeled	on	the	xUnit	testing	design
characteristics,	it	is	capable	of	providing	unit	testing	for	the	type	of	program
design	applicable	to	virtually	all	of	the	languages	providing	xUnit	testing
facilities,	meaning	it	is	quite	capable	of	handling	the	unit	testing	requirements
for	components	written	using	the	object-oriented	design	model.	It	would	hardly
provide	any	value	if	that	had	been	the	extent	of	its	capabilities	due	to	the	fact
that	most	ABAP	code	was	written	well	before	the	object-oriented	design	features
had	been	introduced	into	the	ABAP	language.	Fortunately	for	us,	the	ABAP	Unit
Testing	Framework	is	capable	of	providing	unit	testing	for	ABAP	components
using	a	non-object-oriented	program	design	as	well.	In	this	chapter,	we	will	start
at	the	beginning,	first	exploring	how	to	apply	ABAP	Unit	testing	to	legacy
programs,	working	our	way	through	the	transformations	and	improvements
implemented	into	the	language	until	eventually	reaching	the	point	where	we
have	become	proficient	writing	unit	tests	for	ABAP	components	written	using
either	a	procedural	design	or	the	object-oriented	paradigm.

Introducing	a	Simple	Unit	Test
The	short	ABAP	program	shown	in	Listing	6-1,	written	using	none	of	the	object-
oriented	language	statements,	will	be	our	starting	point	for	demonstrating	how	to
retrofit	a	legacy	program	with	ABAP	Unit	tests.

report	z_issue_message.

		constants		valid_severities		type	string	value

'SIWEAX'.

		data							severity_is_valid	type	abap_bool.

https://doi.org/10.1007/978-1-4842-6951-0_6


		parameters	severity										type	symsgty

obligatory.

at	selection-screen.

		perform	validate_message_severity.

		if	severity_is_valid	ne	abap_true.

				message	e000(0k)	with	'Select	a	message	severity

from	the	values'

																										valid_severities.

		endif.

start-of-selection.

		message	'Hello	World!'	type	severity.

form	validate_message_severity.

		if	severity	ca	valid_severities.

				severity_is_valid	=	abap_true.

		else

				severity_is_valid	=	abap_false.

		endif.

endform.

Listing	6-1 Simple	message	presentation	program

Notice	that	it	contains	a	single	parameters	statement	defined	as	type	symsgty
representing	the	type	of	a	message	issued	via	the	ABAP	MESSAGE	statement
and	that	the	start-of-selection	event	block	contains	the	MESSAGE	statement
using	the	severity	(message	type)	value	specified	by	the	user	in	the	parameters
field.	The	at	selection-screen	classic	ABAP	event	block	includes	a	perform
statement	to	a	subroutine	to	validate	that	the	specified	message	severity	is	one	of
the	valid	values	for	a	MESSAGE	statement,	and	if	not	one	of	these,	then	an	error
message	is	to	be	displayed	providing	the	valid	values	from	which	the	user	should
choose	a	severity.

When	this	program	is	executed,	there	will	be	a	simple	selection	screen
presented	on	which	the	user	is	to	specify	a	message	severity.	Then	after	having
provided	a	valid	value	and	clicking	Execute,	they	will	see	the	message	‘Hello
World!’	displayed	using	whichever	type	of	message	severity	the	user	had
specified.

Certainly	this	simple	program	does	not	rise	to	the	level	of	industrial-strength
legacy	code,	but	it	is	simple	enough	to	use	as	a	basis	for	applying	unit	testing
since	it	uses	only	statements	that	might	be	found	in	ABAP	legacy	programs.

As	it	is	currently	written,	those	portions	of	the	program	that	can	be	subjected
to	unit	testing	are	limited	to	the	statements	in	subroutine



validate_message_severity.	Why	is	that?	It	is	because	all	the	remaining
executable	ABAP	statements	appear	in	classic	ABAP	event	blocks,	blocks	of
code	which	are	not	subject	to	testing	by	the	ABAP	Unit	Testing	Framework.	So
let’s	provide	a	unit	test	class	capable	of	testing	this	subroutine.	The	code	shown
in	Listing	6-2	represents	about	the	briefest	definition	of	a	class	we	might	be	able
to	write	for	such	a	unit	test.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	validate_message_severity_s	for	testing.

endclass.

class	unit_tester	implementation.

		method	validate_message_severity_s.

				severity	=	'S'.

				perform	validate_message_severity.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	severity_is_valid

								exp	=	abap_true

								msg	=	'Unexpected	result	for	severity	S'.

		endmethod.

endclass.

Listing	6-2 Unit	test	for	simple	message	presentation	program

Let’s	analyze	this	unit	test	class	to	identify	what	it	is	intended	to	do.	We	see
on	the	“class	…	definition	…”	statement	that	this	class	name	is	“unit_tester,”
with	the	clause	“for	testing”	designating	it	as	a	class	applicable	to	unit	testing,
with	the	clause	“risk	level	harmless”	indicating	that	its	effect	upon	the	execution
environment	is	minimal,	and	with	the	default	value	of	“short”	for	“duration”
indicating	that	it	is	not	expected	to	take	long	to	execute.	Within	the	class
definition	component	is	the	definition	of	a	private	method	called
validate_message_severity_s	which	is	designated	as	a	method	applicable	to	unit
testing	due	to	its	clause	“for	testing.”

The	class	implementation	component	includes	an	implementation	for	method
validate_message_severity_s,	which	does	the	following:

1.
Sets	the	selection	screen	parameter	named	severity	to	the	value	‘S’ 	



2.
Invokes	subroutine	validate_message_severity 	

3.
Invokes	the	static	method	assert_equals	of	class	cl_abap_unit_assert	to
assert	that	the	actual	Boolean	value	resulting	from	the	call	to	subroutine
validate_message_severity	is	the	same	as	the	expected	Boolean	value
abap_true

	

This	unit	test	class	would	be	appended	to	the	end	of	the	source	code	object
containing	the	source	for	report	z_issue_message	either	directly,	as	shown	in
Listing	6-3,	or	via	an	INCLUDE	statement	naming	another	object	that	contains
the	code	of	this	unit	test	class.

report	z_issue_message.

		constants		valid_severities		type	string	value

'SIWEAX'.

		data							severity_is_valid	type	abap_bool.

		parameters	severity										type	symsgty

obligatory.

at	selection-screen.

		perform	validate_message_severity.

		if	severity_is_valid	ne	abap_true.

				message	e000(0k)	with	'Select	a	message	severity

from	the	values'

																										valid_severities.

		endif.

start-of-selection.

		message	'Hello	World!'	type	severity.

form	validate_message_severity.

		if	severity	ca	valid_severities.

				severity_is_valid	=	abap_true.

		else

				severity_is_valid	=	abap_false.

		endif.

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	validate_message_severity_s	for	testing.



endclass.

class	unit_tester	implementation.

		method	validate_message_severity_s.

				severity	=	'S'.

				perform	validate_message_severity.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	severity_is_valid

								exp	=	abap_true

								msg	=	'Unexpected	result	for	severity	S'.

		endmethod.

endclass.

Listing	6-3 Simple	message	presentation	program	with	unit	test

When	this	unit	test	is	executed,	it	will	cause	the	test	runner	to	do	the
following:

1.
Scan	the	code	and	resolve	the	presence	of	unit	test	class	“unit_tester.” 	

2.
Identify	method	validate_message_severity_s	of	class	unit_tester	as	a
method	to	be	invoked	during	the	test	run.

	
3.

Invoke	method	validate_message_severity_s	of	class	unit_tester. 	
4.

Report	on	the	result	of	having	invoked	this	unit	test	method. 	
In	this	case,	we	should	expect	to	see	the	following	status	message	appearing

at	the	bottom	of	the	screen:

Processed:	1	program,	1	test	classes,	1	test	methods

Great!!	We	now	understand	the	minimum	requirements	for	defining	a	unit
test	class	for	a	legacy	program	containing	a	single	subroutine.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	six	exercises	associated	with
workbook	Section	3:	ABAP	Unit	Testing	101	–	Creating	Your	First	Unit
Test.



Expanding	Unit	Test	Coverage
Upon	closer	inspection	of	our	simple	program	shown	in	Listing	6-3,	we	see	that
we	have	provided	validation	for	only	a	single	one	of	the	six	valid	values
applicable	to	a	message	severity.	Can	we	adjust	the	unit	test	to	facilitate	testing
all	of	them?

Yes,	we	can!	Simply	change	the	implementation	of	the	unit	test	method	to
check	each	of	the	six	valid	values.	Listing	6-4	shows	one	way	to	do	it.

		method	validate_message_severity_s.

				data	valid_severity_values	type	c	length	06.

				data	failure_message	type	string.

				valid_severity_values	=	valid_severities.

				while	valid_severity_values	is	not	initial.

						severity	=	valid_severity_values.

						perform	validate_message_severity.

						concatenate	'Unexpected	result	for	severity'

																			severity

														into	failure_message	separated	by	space.

						call	method	cl_abap_unit_assert=>assert_equals

								exporting

										act	=	severity_is_valid

										exp	=	abap_true

										msg	=	failure_message.

						shift	valid_severity_values	left	by	01	places.

				endwhile.

		endmethod.

Listing	6-4 Unit	test	for	simple	message	presentation	program	enhanced	to	test	all	valid	message
severities

Now	the	method	iterates	through	all	of	the	valid	severity	values	and	checks
that	subroutine	validate_message_severity	returns	abap_true	for	each	one	of
them.	The	name	of	the	method	no	longer	implies	what	the	unit	test	does,	so	it
should	be	renamed	to	something	more	appropriate,	such	as
validate_valid_severities.	At	this	point,	we	still	have	a	single	unit	test	class	with
a	single	unit	test	method,	but	now	it	accommodates	validating	all	the	valid
message	severities.



Wonderful!	We’ve	expanded	the	unit	testing	to	cover	more	validation
without	introducing	any	new	unit	test	methods.	However,	our	unit	test	is	capable
only	of	validating	that	subroutine	validate_message_severity	will	return
abap_true	when	we	provide	it	with	valid	message	severity	values.	We	have	not
made	any	arrangements	for	validating	that	it	would	return	abap_false	if	we	were
to	provide	it	with	an	invalid	message	severity	value.	Can	we	adjust	the	unit	test
to	do	that	as	well?

Yes,	we	can!	Simply	clone	the	current	unit	test	method	testing	for	valid
values	to	one	that	will	test	for	invalid	values.	Listing	6-5	shows	one	way	to	do	it,
with	changes	highlighted	in	bold.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	validate_valid_severities	for	testing.

				methods	validate_invalid_severities	for	testing.

endclass.

class	unit_tester	implementation.

		method	validate_valid_severities.

				data	valid_severity_values	type	c	length	06.

				data	failure_message	type	string.

				valid_severity_values	=	valid_severities.

				while	valid_severity_values	is	not	initial.

						severity	=	valid_severity_values.

						perform	validate_message_severity.

						concatenate	'Unexpected	result	for	severity'

																			severity

														into	failure_message	separated	by	space.

						call	method	cl_abap_unit_assert=>assert_equals

								exporting

										act	=	severity_is_valid

										exp	=	abap_true

										msg	=	failure_message.

						shift	valid_severity_values	left	by	01	places.

				endwhile.

		endmethod.

		method	validate_invalid_severities.

				data	invalid_severity_values	type	c	length	06

value	'123456'.



				data	failure_message	type	string.

				valid_severity_values	=	valid_severities.

				while	invalid_severity_values	is	not	initial.

						severity	=	invalid_severity_values.

						perform	validate_message_severity.

						concatenate	'Unexpected	result	for	severity'

																			severity

														into	failure_message	separated	by	space.

						call	method	cl_abap_unit_assert=>assert_equals

								exporting

										act	=	severity_is_valid

										exp	=	abap_false

										msg	=	failure_message.

						shift	invalid_severity_values	left	by	01	places.

				endwhile.

		endmethod.

endclass.

Listing	6-5 Unit	test	for	simple	message	presentation	program	enhanced	to	test	for	invalid	message
severities

Splendid!	We’ve	expanded	the	unit	testing	to	cover	both	the	valid	path	and
the	invalid	path	of	subroutine	validate_message_severity,	providing	full
coverage	for	its	processing	logic.	We	can	now	confidently	state	that	we’ve
provided	sufficient	unit	testing	for	this	subroutine.

Notice	how	much	easier	it	was	to	write	the	second	unit	test	method	for	this
unit	test	class.	You’ll	typically	find	that	the	first	test	written	for	a	class	takes	the
most	effort	because	it	requires	the	unit	test	class	itself	to	be	defined.	Once	the
unit	test	class	is	defined,	creating	additional	test	methods	is	quicker.	Roy
Osherove	agrees:

Good	tests	against	the	system	should	be	easy	and	quick	to	write	…	Small
warning:	even	experienced	unit	testers	can	find	that	it	may	take	30
minutes	or	more	to	figure	out	how	to	write	the	very	first	unit	test	against
[code]	they’ve	never	unit	tested	before.	This	is	part	of	the	work,	and	is
expected.	The	second	and	subsequent	tests	on	that	[code]	should	be	very
easy	to	accomplish.1

Using	this	same	process,	we	should	be	able	to	take	other	legacy	programs
written	over	the	years	and	similarly	provide	unit	tests	for	their	various	classic



ABAP	subroutines.	There	are	some	caveats	to	this	since	these	programs	were	not
originally	written	to	accommodate	unit	testing,	but	with	some	modest
refactoring,	we	should	be	able	to	retrofit	these	programs	with	thorough
automated	unit	tests.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	12	exercises	associated	with
workbook	Section	4:	ABAP	Unit	Testing	102	–	Expanding	Unit	Test
Coverage.

Implementing	Unit	Tests	for	Function	Modules
Perhaps	the	ABAP	repository	at	your	site	has	a	large	collection	of	customized
function	groups.	This	has	been	my	experience	with	every	SAP	site	at	which	I
have	worked.	Function	modules	defined	for	many	of	these	function	groups	also
can	have	automated	unit	tests	defined	for	them.

Note There	are	some	types	of	function	modules	which	present	a	challenge
with	automated	unit	testing.	Among	them	are	those	that	are	marked	for
remote	procedure	call,	those	marked	to	execute	in	an	update	task,	and	those
that	are	designed	to	be	containers	for	the	screen	definition	and	presentation
processing	required	by	corresponding	dialog	programs.	In	this	section,	we
will	restrict	the	discussion	to	the	implementation	of	automated	unit	tests	for
simple	function	modules	–	those	that	are	invoked	to	provide	a	synchronous
functional	service	unrelated	to	any	update	task	and	which	would	not	cause
screens	to	be	presented	for	the	purpose	of	collecting	user	input.

The	same	process	already	described	for	creating	a	local	unit	test	class	for	testing
the	code	in	subroutines	defined	for	a	simple	report	program	also	is	applicable	to
creating	a	unit	test	class	for	a	function	module.	Each	unit	test	method	of	a	local
unit	test	class	defined	for	testing	a	function	module	simply	would	invoke	the
function	module	instead	of	invoking	a	subroutine.	Indeed,	with	function
modules,	the	process	might	even	be	considered	simpler	due	to	the	fact	that	a
function	module	necessarily	requires	a	specific	signature	defining	its	input	and
output	parameters,	avoiding	the	exposure	associated	with	signature-less
subroutines	necessarily	referring	directly	to	various	types	of	global	variables	for



their	input	and	output.
The	main	program	of	a	function	group	is	composed	of	a	set	of	INCLUDEd

container	objects	following	a	prescribed	naming	convention	designated	by	SAP.
For	instance,	function	group	Z123	will	be	composed	of	main	program
SAPLZ123,	which	itself	will	include	a	set	of	objects	using	the	naming
convention	LZ123xxxx.	There	will	be	LZ123TOP	to	define	the	global	data
components	for	the	function	group,	LZ123UXX	to	define	the	various	function
modules	of	the	function	group,	and	others.	The	developer	may	choose	to	place
the	various	unit	tests	for	a	function	module	into	the	SAP-designated	component
intended	to	hold	them,	which	for	function	group	Z123	would	be	in	container
objects	with	the	naming	convention	LZ123UNITT99.

The	Function	Builder	(SE37)	has	its	own	testing	capability	through	which
parameter	values	used	for	testing	a	function	module	can	be	saved	and	recalled	to
be	run	at	a	later	time.	Such	a	test	can	be	created	by	clicking	the	Test/Execute
button,	specifying	values	for	the	function	module	parameters	on	the	input	screen
provided,	and	then	clicking	the	Save	Data	Records	button,	which	enables	the
programmer	to	assign	a	name	and	corresponding	comment	by	which	to	save	the
specified	parameter	values.	This	same	test	can	be	recalled	later	by	clicking	the
Test	Data	Directory	button	and	selecting	from	the	catalog	of	tests	the	one	to	be
run	again.	This	testing	feature	does	not	provide	the	same	capability	for	testing
function	modules	as	found	with	the	ABAP	Unit	Testing	Framework;	it	merely
records	function	module	testing	values	so	the	programmer	does	not	need	to	enter
them	manually	each	time	the	function	module	is	to	be	run	again	in	test	mode
with	the	same	values.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	two	exercises	associated	with
workbook	Section	5:	ABAP	Unit	Testing	103	–	Writing	Unit	Tests	for
Function	Modules.

Implementing	Unit	Tests	for	Global	Classes
The	global	class	repository	is	another	category	of	the	ABAP	repository	for	which
automated	unit	tests	can	be	defined.	Due	to	the	stricter	syntax	requirements
applicable	to	classes,	the	task	of	providing	global	classes	with	associated	unit
tests	is	even	easier	than	doing	so	for	function	modules.	Global	classes	do	not
present	the	same	types	of	challenges	with	regard	to	remote	procedure	calls,



update	tasks,	and	screen	handling	that	function	modules	present	because	they
cannot	do	any	of	those	things.

The	same	process	already	described	for	creating	a	local	unit	test	class	for
testing	the	code	in	subroutines	defined	for	a	simple	report	program	also	is
applicable	to	creating	a	local	unit	test	class	for	a	global	class.	Each	unit	test
method	simply	would	invoke	a	method	defined	for	the	global	class	instead	of
invoking	a	subroutine.	Also,	as	explained	for	unit	tests	with	function	modules,
the	methods	of	global	classes	require	a	specific	signature	defining	their	input	and
output	parameters,	avoiding	the	exposure	associated	with	signature-less
subroutines	necessarily	referring	directly	to	various	types	of	global	variables	for
their	input	and	output.

Unlike	function	modules,	classes	come	in	two	flavors:	static	and	instance.	A
static	class	is	composed	solely	of	static	members,	whereas	an	instance	class	has
at	least	one	instance	member.	A	static	class	declares	its	members	using	the
statements	class-data	and	class-methods,	whereas	an	instance	class	declares	its
members	using	the	data	and	methods	statements,	respectively.

Invoking	methods	of	classes	from	a	unit	test	method	is	no	different	from
invoking	those	methods	from	production	code.	For	instance,	when	it	comes	to
writing	a	unit	test	for	it,	the	call	to	the	method	of	the	static	class	would	be
qualified	with	the	name	of	the	class,	as	in

call	method	some_static_class=>some_static_method	...

In	contrast,	when	writing	a	unit	test	for	an	instance	class,	first,	the	class
would	need	to	be	instantiated,	and	then	the	call	to	its	method	would	be	qualified
by	the	corresponding	instance	reference	variable,	as	in

data	some_instance_class	type	ref	to

some_instance_class.

create	object	some_instance_class.

call	method	some_instance_class->some_instance_method

...

The	main	program	of	a	global	class	is	composed	of	a	set	of	INCLUDEd
container	objects	following	a	prescribed	naming	convention	designated	by	SAP.
For	instance,	global	class	ZCL_123	will	be	composed	of	main	program	name
starting	with	“ZCL_123,”	followed	by	a	series	of	equal	signs	(“=”)	to	extend	the
name	to	30	characters	in	length,	followed	by	“CP,”	denoting	class	pool,	which
itself	will	include	a	set	of	objects	using	the	same	30-character	prefix	followed	by



a	suffix	to	denote	the	type	of	ABAP	code	to	be	found	in	that	container	object.
There	will	be	a	container	with	suffix	“CU”	for	public	section,	“CI”	for	private
section,	“CCDEF”	for	local	class	definitions,	“CCIMP”	for	local	class
implementations,	“CMnnn”	for	method	names,	and	so	on.	The	container
designated	for	holding	the	local	unit	test	classes	for	a	global	class	is	the	one	with
suffix	“CCAU.”

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	two	exercises	associated	with
workbook	Section	6:	ABAP	Unit	Testing	104	–	Writing	Unit	Tests	for
Global	Classes.

ABAP	Statements	and	Features	Affecting	Automated
Unit	Testing
The	Chapter	5	section	titled	“Challenges	to	Effectively	Testing	ABAP	Code”
discussed	the	challenges	associated	with	effectively	testing	ABAP	code.	This
section	explores	three	of	those	challenges	in	more	detail.

The	MESSAGE	statement
ALV	reports
Classic	list	processing	statements

Exploring	the	Effects	of	the	MESSAGE	Statement
It	was	previously	explained	that	encountering	a	MESSAGE	statement	during	a
production	execution	causes	a	result	attributable	to	a	combination	of	factors:	the
severity	of	the	message,	whether	the	program	is	running	in	the	foreground	or
background,	and	the	classic	ABAP	event	block	in	effect	when	the	MESSAGE
statement	is	encountered.	Some	of	these	factors	in	combination	with	each	other
will	determine	whether	the	associated	message	also	is	accompanied	by	a	change
to	the	program	flow.	For	instance,	a	message	issued	through	a	MESSAGE
statement	during	the	execution	of	the	start-of-selection	classic	ABAP	event
block	will	cause	the	program	to	be	exited	immediately	when	the	severity	of	the
message	indicates	“error”	(type	“E”),	but	the	program	will	continue	on	with	the
next	executable	ABAP	statement	when	it	indicates	“status”	(type	“S”).

Included	in	that	explanation	was	that	the	ABAP	MESSAGE	statement	will
not	behave	the	same	way	when	encountered	during	a	unit	test	path	execution	as



it	will	during	a	production	path	execution.	Table	6-1	summarizes	the	valid
message	severity	values	and	the	corresponding	behavior	taken	by	the	test	runner
of	the	ABAP	Unit	Testing	Framework	upon	encountering	a	MESSAGE
statement	during	a	unit	test.

Table	6-1 Summary	of	message	severity	values	and	corresponding	behavior	by	test	runner	when
MESSAGE	statement	is	encountered	during	a	unit	test

Message
severity

Description	of
severity

Behavior	by	test	runner	of	the	ABAP	Unit	Testing	Framework	when
encountered

S status Message	is	not	detectable

I information Message	does	not	pop	up	as	it	would	during	foreground	production	path
execution

W warning Message	is	not	detectable	and	does	not	interfere	with	ABAP	Unit	test
running	to	completion

E error ABAP	Unit	Result	Display	report	appears	showing	exception	error
<CX_AUNIT_UNCAUGHT_MESSAGE>

A abort ABAP	Unit	Result	Display	report	appears	showing	exception	error
<CX_AUNIT_UNCAUGHT_MESSAGE>

X exit ABAP	Unit	Result	Display	report	appears	showing	runtime	error
<MESSAGE_TYPE_X>

Notice	that	the	first	three	message	severity	values	–	S,	I,	and	W	–	will	neither
cause	a	unit	test	failure	nor	will	their	associated	message	be	displayed	during	a
unit	test,	while	the	last	three,	E,	A,	and	X,	will	cause	a	unit	test	failure.

It	is	reasonable	that	status,	information,	and	warning	messages	should	not
appear	during	a	unit	test.	Since	the	unit	tests	are	run	in	random	sequence,	a	user
who	might	see	these	messages	appear	during	a	test	run	would	have	no	context	to
relate	to	what	unit	test	is	causing	them	to	be	produced.	Worse,	interruptions	by
the	test	runner	to	present	information	and	warning	messages	would	require	the
user	to	press	a	key	for	the	test	to	continue,	defeating	the	purpose	of	having
automated	unit	tests,	requiring	no	user	attention	during	their	execution.

Table	6-1	shows	that	messages	of	severity	exit	encountered	during	a	unit	test
will	cause	the	test	to	fail	and	will	be	accompanied	by	runtime	error
<MESSAGE_TYPE_X>.	This	would	suggest	that	there	is	no	way	to	write	a
passing	unit	test	which	would	encounter	a	MESSAGE	statement	with	severity
exit.	We	will	revisit	this	issue	in	a	subsequent	chapter.

Table	6-1	also	shows	that	messages	of	severities	error	and	abort	encountered
during	a	unit	test	also	will	cause	the	test	to	fail	but	will	be	accompanied	by
exception	error	<CX_AUNIT_UNCAUGHT_MESSAGE>.	This	might	suggest



that	it	is	possible	to	write	a	passing	unit	test	which	would	encounter	a
MESSAGE	statement	with	severity	error	or	abort	since
CX_AUNIT_UNCAUGHT_MESSAGE	is	an	SAP-supplied	exception	class	that
can	be	caught	in	a	try-endtry	block.	Let’s	explore	this	further.

Listing	6-6	shows	a	simple	subroutine	and	its	associated	unit	test.

form	issue_error_message	using	text_01	type	symsgv

																															text_02	type	symsgv

																															text_03	type	symsgv

																															text_04	type	symsgv.

		message	e000(0K)	with	text_01	text_02	text_03

text_04.

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_error_message	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_error_message.

				clear	sy-msgty.

				perform	issue_error_message	using	'This	'is'	'a'

'test'.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	'E'

								msg	=	'Unexpected	result'.

		endmethod.

endclass.

Listing	6-6 Simple	subroutine	and	its	associated	unit	test	using	write	statement

Upon	subjecting	the	preceding	code	to	a	unit	test	run,	the	ABAP	Unit	Result
Display	report	would	be	presented	and	show	that	unit	test	method
issue_error_message	of	class	unit_tester	failed.	Its	associated	message	would
indicate	exception	error	<CX_AUNIT_UNCAUGHT_MESSAGE>.	So	let’s
change	the	unit	test	to	intercept	this	exception	and	avoid	a	unit	test	failure,	as
shown	in	Listing	6-7,	with	changes	from	Listing	6-6	highlighted	in	bold.



form	issue_error_message	using	text_01	type	symsgv

																															text_02	type	symsgv

																															text_03	type	symsgv

																															text_04	type	symsgv.

		message	e000(0K)	with	text_01	text_02	text_03

text_04.

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_error_message	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_error_message.

				clear	sy-msgty.

		try.

				perform	issue_error_message	using	'This	'is'	'a'

'test'.

		catch	cx_aunit_uncaught_message.

		endtry.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	'E'

								msg	=	'Unexpected	result'.

		endmethod.

endclass.

Listing	6-7 Simple	subroutine	and	its	associated	unit	test,	including	interception	of	class-based
exception

Notice	that	the	perform	statement	in	the	unit	test	method	is	now	enclosed
within	a	try-endtry	block	to	catch	class-based	exception
cx_aunit_uncaught_message.	This	should	be	sufficient	to	allow	the	unit	test	to
intercept	this	class-based	exception	when	it	is	thrown	as	a	result	of	encountering
a	MESSAGE	statement,	enabling	the	unit	test	to	gracefully	continue	on	to	the
assertion	call	and	avoid	the	unit	test	failure.

Upon	subjecting	the	preceding	code	to	a	unit	test,	the	results	would	be
exactly	the	same	as	before:	a	failure	accompanied	by	a	message	indicating



exception	error	<CX_AUNIT_UNCAUGHT_MESSAGE>.	How	can	that	be?!
Didn’t	we	explicitly	indicate	that	we	wanted	the	unit	test	to	intercept	exactly	this
class-based	exception	when	it	is	thrown?	This	might	suggest	that	intercepting
any	class-based	exception	is	beyond	the	capability	of	a	simple	unit	test.	Let’s
find	out	for	certain.	Listing	6-8	shows	how	we	might	test	for	this	possibility,
with	changes	from	Listing	6-7	highlighted	in	bold.

		method	issue_error_message.

				clear	sy-msgty.

		try.

				raise	exception	type	cx_aunit_uncaught_message.

				perform	issue_error_message	using	'This	'is'	'a'

'test'.

		catch	cx_aunit_uncaught_message.

				cl_abap_unit_assert=>fail(

						msg	=	'Caught	exception	in	test	method

issue_error_message'

						).

		endtry.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	'E'

								msg	=	'Unexpected	result'.

		endmethod.

Listing	6-8 Unit	test	both	raising	and	intercepting	a	class-based	exception

Notice	that	we	have	preceded	the	call	to	the	subroutine	with	a	RAISE
EXCEPTION	statement	to	deliberately	raise	the	very	same	exception	caught	by
the	catch	clause.	Notice	also	that	now	the	catch	clause	contains	a	call	to	method
fail	of	class	cl_abap_unit_assert.	This	will	mean	that	now	the	subroutine	we’re
trying	to	test	will	not	be	invoked.	Instead,	we	expect	to	find	that	the	catch	clause
now	intercepts	the	class-based	exception	raised	within	the	try	block.	We	still
expect	the	ABAP	Unit	Result	Display	report	to	be	presented	and	show	a	failure
for	this	unit	test	method,	but	now	its	associated	failure	message	should	indicate
“Caught	exception	in	test	method	issue_error_message.”

Upon	subjecting	the	preceding	code	to	a	unit	test,	we	would	indeed	find	that
the	failure	message	indicates	the	text	we	provided	for	the	call	to	method	fail	of
class	cl_abap_unit_assert	placed	in	the	catch	clause.	This	confirms	that	a	unit



test	method	is	capable	of	intercepting	such	an	exception	within	the	unit	test	code.
The	conclusion	we	can	draw	here	is	that	the	test	runner	of	the	ABAP	Unit
Testing	Framework	raises	this	class-based	exception	during	its	own	processing
but	the	runtime	environment	does	not	allow	the	exception	to	be	propagated	back
to	the	try	block	established	in	the	test	method.	Accordingly,	we	cannot	use	the
try-endtry	block	in	a	unit	test	to	circumvent	the	failure	issued	by	the	test	runner
upon	encountering	message	statements	with	severity	values	error	and	abort,
despite	that	such	messages	would	represent	a	successful	unit	test	execution.

This	means	that	messages	issued	with	severities	error,	abort,	and	exit
appearing	in	the	executable	code	would	present	challenges	to	running	clean	tests
if	such	messages	were	to	be	encountered	during	an	ABAP	Unit	test	execution.
We	will	address	this	issue	further	in	a	subsequent	chapter.

Exploring	the	Effects	of	ALV	Reports
It	already	has	been	noted	that	the	presentation	of	ALV	reports	will	present
challenges	to	running	automated	unit	tests.	One	characteristic	of	ALV
distinguishing	it	from	classic	lists	is	that	the	report	is	presented	by	an	explicit
call	to	a	function	module	or	a	method	of	a	class.	Compare	this	with	classic	list
output	produced	by	an	executable	program,	which	has	no	explicit	statement	to
present	the	report	–	it	is	simply	presented	by	default	following	the	completion	of
executing	the	end-of-selection	classic	ABAP	event	block,	if	one	exists,	or
otherwise	following	the	completion	of	executing	the	start-of-selection	block.

Listing	6-9	has	been	copied	from	Listing	6-6	and	adjusted	accordingly	to
illustrate	a	simple	subroutine	that	produces	an	ALV	report	of	messages,	along
with	its	associated	unit	test,	with	changes	highlighted	in	bold.

form	issue_message_report	using	text_01	type	symsgv

																															text_02	type	symsgv

																															text_03	type	symsgv

																															text_04	type	symsgv.

																										changing	messages	type

message_list.

		message	e000(0K)	with	text_01	text_02	text_03

text_04.

		data	alv_report	type	ref	to	cl_salv_table.

		try.

				call	method	cl_salv_table=>factory

						importing

								r_salv_table	=	alv_report



						changing

								t_table						=	messages.

		catch	cx_salv_msg.

				return.

		endtry.

		alv_report->display(	).

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_message_report	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_message_report.

				data	messages	type	message_list.

				append	'This	is	message	1'	to	messages.

				append	'This	is	message	2'	to	messages.

				append	'This	is	message	3'	to	messages.

				clear	sy-msgty.

				perform	issue_message_report	using	'This	'is'	'a'

'test'.

																																	changing	messages.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	space	'E'

								msg	=	'Unexpected	result'.

		endmethod.

endclass.

Listing	6-9 Listing	6-6	adapted	to	have	subroutine	present	messages	via	ALV	report

Notice	that	the	name	of	the	subroutine	was	changed	from
issue_error_message	to	issue_message_report	and	that	its	signature	now	accepts
only	a	list	of	messages.	Notice	also	that	the	message	statement	has	been	replaced
with	a	comparable	set	of	method	calls	to	components	of	the	ALV	Object	Model
to	produce	an	ALV	report	containing	the	messages	supplied	by	the	caller.

In	addition,	the	name	of	the	unit	test	method	was	changed	to	match	the	name
of	the	subroutine	it	is	calling,	it	now	builds	the	list	of	messages	to	be	sent	on	the



call	to	the	subroutine,	and	its	assertion	call	expects	the	value	of	system	variable
sy-msgty	to	remain	unchanged.

Listing	6-10	shows	this	same	code	but	without	the	highlighting	and	stricken
lines.

form	issue_message_report	changing	messages	type

message_list.

		data	alv_report	type	ref	to	cl_salv_table.

		try.

				call	method	cl_salv_table=>factory

						importing

								r_salv_table	=	alv_report

						changing

								t_table						=	messages.

		catch	cx_salv_msg.

				return.

		endtry.

		alv_report->display(	).

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_message_report	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_message_report.

				data	messages	type	message_list.

				append	'This	is	message	1'	to	messages.

				append	'This	is	message	2'	to	messages.

				append	'This	is	message	3'	to	messages.

				clear	sy-msgty.

				perform	issue_message_report	changing	messages.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	space

								msg	=	'Unexpected	result'.

		endmethod.



endclass.

Listing	6-10 Listing	6-9	without	highlighting	and	stricken	lines

Subjecting	the	code	of	Listing	6-10	to	a	unit	test	run	while	in	the	ABAP
editor	would	result	in	a	corresponding	full-screen	ALV	report	appearing	to	the
user	containing	three	rows	of	messages:

This	is	message	1

This	is	message	2

This	is	message	3

The	user	would	need	to	press	a	key	to	cause	the	unit	test	execution	to
continue,	resulting	in	a	return	to	the	ABAP	editor	with	a	status	message
appearing	at	the	bottom	of	the	screen	indicating	a	successful	unit	test	execution.

Whereas	the	unit	test	passes,	for	the	unit	test	method	to	run	to	completion,	it
requires	intervention	by	the	user	to	press	a	key	when	the	report	appears.	This
same	result	would	occur	regardless	of	how	the	ALV	report	is	produced,	whether
via	the	ALV	function	modules,	using	the	ALV	classes	that	are	the	forerunners	of
the	ALV	Object	Model	(cl_gui_alv*),	or	using	the	classes	of	the	ALV	Object
Model	as	shown	in	the	example.

This	means	that	the	presentation	of	ALV	reports	in	the	executable	code
would	present	challenges	to	running	unattended	tests	if	calls	to	the	respective
function	modules	or	class	methods	were	to	be	encountered	during	an	ABAP	Unit
test	execution.	We	will	address	this	issue	further	in	a	subsequent	chapter.

Exploring	the	Effects	of	Classic	List	Processing	Statements
Also	noted	previously	was	that	encountering	classic	list	processing	statements,
such	as	write	and	skip,	will	present	challenges	to	running	automated	unit	tests.
Presentation	of	a	classic	list	can	be	made	explicitly	via	the	LEAVE	TO	LIST-
PROCESSING	statement	for	dialog	programs,	but	it	is	called	implicitly	for
executable	programs	(those	that	can	be	initiated	via	the	SUBMIT	statement).	In
both	cases,	the	content	presented	in	the	classic	list	consists	of	the	output
associated	with	the	classic	list	processing	statements	that	had	been	encountered
until	that	point.

Listing	6-11	has	been	copied	from	Listing	6-6	and	adjusted	accordingly	to
illustrate	a	simple	subroutine	that	issues	messages	using	a	write	statement
instead	of	a	message	statement,	along	with	its	associated	unit	test,	with	changes
highlighted	in	bold.



form	issue_message	using	severity	type	symsgty

																									text_01	type	symsgv

																									text_02	type	symsgv

																									text_03	type	symsgv

																									text_04	type	symsgv.

		message	e000(0K)	with	text_01	text_02	text_03

text_04.

		write	/	severity,	text_01,	text_02,	text_03,

text_04.

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_message	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_message.

				clear	sy-msgty.

				perform	issue_message	using	'S'	'This	'is'	'a'

'test'.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	space	'E'

								msg	=	'Unexpected	result'.

		endmethod.

endclass.

Listing	6-11 Simple	subroutine	and	its	associated	unit	test

Notice	that	the	name	of	the	subroutine	was	changed	from
issue_error_message	to	issue_message	and	that	its	signature	now	accepts	as	its
first	parameter	the	severity	indicator	for	the	message	to	be	issued.	Notice	also
that	the	message	statement	has	been	replaced	with	a	comparable	write	statement.

In	addition,	the	name	of	the	unit	test	method	was	changed	to	match	the	name
of	the	subroutine	it	is	calling,	it	now	provides	the	value	‘S’	as	the	severity	of	the
message	to	be	issued	upon	calling	the	subroutine,	and	its	assertion	call	expects
the	value	of	system	variable	sy-msgty	to	remain	unchanged.

Listing	6-12	shows	this	same	code	but	without	the	highlighting	and	stricken



lines.

form	issue_message	using	severity	type	symsgty

																									text_01	type	symsgv

																									text_02	type	symsgv

																									text_03	type	symsgv

																									text_04	type	symsgv.

		write	/	severity,	text_01,	text_02,	text_03,

text_04.

endform.

class	unit_tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	issue_message	for	testing.

endclass.

class	unit_tester	implementation.

		method	issue_message.

				clear	sy-msgty.

				perform	issue_message	using	'S'	'This	'is'	'a'

'test'.

				call	method	cl_abap_unit_assert=>assert_equals

						exporting

								act	=	sy-msgty

								exp	=	space

								msg	=	'Unexpected	result'.

		endmethod.

endclass.

Listing	6-12 Listing	6-11	without	highlighting	and	stricken	lines

Subjecting	the	code	of	Listing	6-12	to	a	unit	test	run	while	in	the	ABAP
editor	would	result	in	the	full-screen	classic	list	report	appearing	to	the	user	as
shown	in	Figure	6-1.



Figure	6-1 Report	presented	when	automated	unit	test	shown	in	Listing	6-12	is	executed

Only	the	last	line	is	a	result	of	the	processing	performed	by	the	subroutine.
The	lines	above	that	are	generated	by	the	test	runner.	The	user	would	need	to
press	a	key	to	cause	the	unit	test	execution	to	continue,	resulting	in	a	return	to
the	ABAP	editor	with	a	status	message	appearing	at	the	bottom	of	the	screen
indicating	a	successful	unit	test	execution.

Whereas	the	unit	test	passes,	for	the	unit	test	method	to	run	to	completion,	it
requires	intervention	by	the	user	to	press	a	key	when	the	list	appears.	Even
worse,	the	classic	list	presented	to	the	user	has	red	highlighting	throughout	the
lines	generated	by	the	test	runner,	suggesting	a	failure	has	occurred.

This	means	that	classic	list	processing	statements	appearing	in	the	executable
code	would	present	challenges	to	running	unattended	tests	if	such	statements
were	to	be	encountered	during	an	ABAP	Unit	test	execution.	We	will	address
this	issue	further	in	a	subsequent	chapter.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	15	exercises	associated	with
workbook	Section	7:	ABAP	Unit	Testing	105	–	How	Certain	ABAP
Statements	Affect	Unit	Testing.



How	Automated	Unit	Testing	Enables	Confident
Refactoring
The	term	“refactoring”	has	appeared	sporadically	in	previous	chapters,	but
perhaps	it	is	a	term	unfamiliar	to	some	readers.	Roy	Osherove	describes	it	this
way:

Refactoring	means	changing	a	piece	of	code	without	changing	its
functionality.	If	you’ve	ever	renamed	a	method,	you’ve	done	refactoring.
If	you’ve	ever	split	a	large	[procedure]	into	multiple	smaller
[procedures],	you’ve	refactored	your	code.	The	code	still	does	the	same
thing,	but	it	becomes	easier	to	maintain,	read,	debug	and	change.2

Once	we	have	a	collection	of	unit	tests	covering	most	or	all	of	the	production
code	to	be	found	in	an	ABAP	component,	we	now	have	at	our	disposal	a	way	to
periodically	check	the	validity	of	any	maintenance	or	refactoring	changes	we
might	apply.	If	we	are	applying	refactoring	changes,	then	it	is	likely	none	of	the
unit	tests	will	require	any	changes	but	simply	would	need	to	be	run	again	to
confirm	that	the	refactoring	changes	have	not	caused	any	previously	successful
unit	tests	now	to	fail.	In	contrast,	if	we	are	applying	maintenance	changes	in
pursuit	of	new	business	requirements,	then	it	is	likely	at	least	one	of	the
corresponding	unit	test	classes	will	need	corresponding	changes	to	provide	unit
testing	for	the	newly	changed	production	code.

Suppose	in	response	to	a	new	business	requirement	we	have	been	given	the
task	to	implement	some	minor	change	to	a	program	for	which	we	already	had
written	several	unit	tests	covering	virtually	the	entire	program.	The	first	thing	we
should	do	before	applying	any	code	changes	is	to	run	all	of	the	unit	tests	to
determine	that	they	all	pass.	If	any	of	them	fail,	then	first	we	should	address
those	failures	and	make	the	necessary	changes	until	they	all	pass.

Suppose	the	necessary	changes	to	the	production	code	to	satisfy	the	new
business	requirement	are	applicable	only	to	a	single	subroutine	for	which	we
have	provided	unit	tests	to	cover	all	its	execution	paths.	Indeed,	let’s	assume	that
this	subroutine	requiring	changes	checks	a	document	type	and	determines	the
type	of	subcode	to	be	associated	with	it.	Perhaps	our	subroutine	is	written	like
what	we	see	in	Listing	6-13.

form	identify_document_subcode	using	document_type

																																							type	blart



																												changing	document_subcode

																																							type	subcode.

		if	document_type	eq	'Z9'.

				document_subcode	=	'W560'.

		else

				document_subcode	=	space.

		endif.

endform.

Listing	6-13 Example	of	subroutine	to	determine	subcode	to	be	associated	with	document	type

Let’s	also	assume	that	the	new	business	requirement	calls	for	associating
subcode	‘Q050’	with	document	type	‘Z8’.	Before	we	even	change	the	code,	we
are	faced	with	a	decision	about	how	we	might	want	to	implement	this	change
into	this	subroutine.	We	could	insert	another	“if”	statement	to	handle	the	new
document	type,	or	we	could	replace	the	current	“if”	statement	with	a	“case”
statement.	A	quick	chat	with	our	business	analyst	confirms	our	suspicion	that
over	the	next	few	months,	there	will	be	additional	document	types	requiring
subcode	assignments,	so	let’s	convert	this	existing	“if”	statement	into	a	“case”
statement	that	more	easily	can	be	extended	as	new	document	type/subcode
combinations	become	required.

Accordingly,	we	would	refactor	the	subroutine	to	look	like	what	is	shown	in
Listing	6-14,	with	changes	highlighted	in	bold.

form	identify_document_subcode	using	document_type

																																							type	blart

																												changing	document_subcode

																																							type	subcode.

		case	document_type.

				when	'Z9'.

						document_subcode	=	'W560'.

				when	others.

						document_subcode	=	space.

		endcase.

endform.

Listing	6-14 Example	of	refactored	subroutine	to	determine	subcode	to	be	associated	with	document
type

Notice	that	all	we	did	was	refactor	the	subroutine	–	to	make	it	produce	the
same	result	it	had	produced	before	but	with	changes	to	how	that	result	is



determined.	We	have	not	yet	applied	any	new	processing	to	satisfy	the	new
business	requirement.

We	should	be	able	to	run	the	unit	tests	at	this	point	and	find	that	all	of	them
still	pass,	which	would	suggest	that	the	refactoring	changes	we	applied	to	this
subroutine	have	not	caused	it	to	produce	a	result	it	was	not	already	producing.
Accordingly,	simply	having	associated	unit	tests	to	run	afterward,	executable	at
the	push	of	a	button	and	completing	in	virtually	no	time	at	all,	provides	us	with
the	confidence	that	our	refactoring	efforts	have	not	introduced	any	new	problems
with	the	changed	code.	Not	only	that,	but	these	refactoring	changes	required	no
counterpart	changes	to	any	of	the	existing	unit	tests.

Now	that	the	unit	tests	are	still	passing	after	having	refactored	this	subroutine
to	enable	easier	maintenance,	we	now	can	apply	the	changes	associated	with	the
new	business	requirement.	Listing	6-15	shows	the	result,	with	changes
highlighted	in	bold.

form	identify_document_subcode	using	document_type

																																							type	blart

																												changing	document_subcode

																																							type	subcode.

		case	document_type.

				when	'Z8'.

						document_subcode	=	'Q050'.

				when	'Z9'.

						document_subcode	=	'W560'.

				when	others.

						document_subcode	=	space.

		endcase.

endform.

Listing	6-15 Example	of	subroutine	changed	to	accommodate	new	business	requirement

Notice	that	the	only	change	required	was	an	additional	“when”	condition	to
the	existing	case	statement	along	with	its	corresponding	subcode	assignment
statement.	Running	the	unit	tests	at	this	point	should	still	result	in	all	unit	tests
passing,	but	now	we	have	introduced	a	new	logic	path	into	this	changed
subroutine.	Accordingly,	to	continue	to	maintain	unit	test	coverage	for	all	logic
paths	through	this	subroutine,	we	should	define	a	new	unit	test	method
specifically	written	to	check	that	subcode	‘Q050’	is	returned	when	this
subroutine	is	called	with	document	type	‘Z8’.



EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	one	exercise	associated	with
workbook	Section	8:	ABAP	Unit	Testing	106	–	How	Unit	Testing	Enables
Confident	Refactoring.

Diagnosing	the	Absence	of	Sufficient	Test	Data
With	a	language	like	ABAP,	it	is	commonplace	to	find	locations	within	the	code
where	records	are	retrieved	from	various	persistence	repositories	with
subsequent	processing	dependent	upon	the	content	of	those	records.	Often	it	is
the	case	that	the	development	environment	where	program	creation	and
maintenance	is	performed	does	not	have	a	sufficient	collection	of	records	to
accommodate	the	associated	automated	unit	tests,	but	a	development
environment	dedicated	only	to	testing	will	have	more	than	enough	records	to
facilitate	the	necessary	automated	testing.

This	seems	to	be	the	development	scenario	in	which	many	ABAP
programmers	find	themselves	working.	In	such	cases,	the	changes	to	the	code
would	be	applied	using	the	development	environment	allocated	to	program
creation	and	maintenance,	while	the	development	environment	dedicated	to
testing	would	be	the	environment	in	which	the	unit	tests	would	be	run.	In	such	a
scenario,	it	is	easy	to	accidentally	run	the	unit	tests	in	the	wrong	environment
and	see	them	fail	simply	because	there	is	a	lack	of	applicable	records	in	the
persistence	repositories.

Unit	test	failures	of	any	kind	can	induce	feelings	of	dread	and	anxiety
accompanied	by	dry	mouth,	cold	sweat,	and	stomach	knots,	so	it	might	be
helpful	to	distinguish	between	unit	tests	that	fail	due	to	lack	of	records	in	the
persistence	repositories	and	unit	tests	genuinely	failing	due	to	the	production
code	not	processing	correctly.	A	distinction	can	be	made	between	these	by
including	the	“level	=	tolerable”	parameter	on	the	assertion	performed	by	the
unit	test	detecting	a	lack	of	records	available	from	a	persistence	repository.	This
causes	the	associated	failure	diagnostics	presented	by	the	ABAP	Unit	Result
Display	report	to	be	marked	as	warnings	instead	of	errors,	enabling	the
programmer	to	breathe	a	sigh	of	relief	once	realizing	that	the	unit	tests	simply
were	run	in	the	wrong	environment.

Listing	6-16	contains	a	unit	test	method	code	snippet	illustrating	the	use	of
the	“level	=	tolerable”	assertion	parameter.



		o

		o

select	*

		into	table	test_flights_stack

		from	sflight

	where	carrid	eq	'AA'.

cl_abap_unit_assert=>assert_not_initial(

		act			=	test_flights_stack

		msg			=	'No	flights	records	found	for	testing'

		level	=	cl_aunit_assert=>tolerable

		).

		o

		o

Listing	6-16 Unit	test	method	code	snippet	illustrating	use	of	the	“level	=	tolerable”	assertion
parameter

In	the	code	snippet	shown	in	Listing	6-16,	table	test_flights_stack	is	to	be
loaded	with	those	records	from	persistence	repository	sflight	which	match	the
carrier	identifier	‘AA’.	The	assertion	following	the	select	statement	insures
conforming	records	had	been	found;	if	not,	then	it	causes	the	message	“No
flights	records	found	for	testing”	to	be	issued	as	a	warning	instead	of	an	error.

An	assertion	used	in	the	manner	illustrated	in	Listing	6-16	is	known	as	a
Guard	Assertion	.3	The	assertion	is	made	prior	to	calling	the	component	under
test.	It	guards	against	continuing	on	to	the	Exercise	phase	of	the	Four-Phase	Test
upon	determining	there	is	no	point	in	doing	so	when	the	conditions	for	an
effective	test	cannot	be	established,	as	shown	in	the	example	when	no
corresponding	records	have	been	retrieved	from	a	persistence	repository.

Unit	tests	that	rely	upon	records	retrieved	from	persistence	repositories
emanate	the	smell	known	as	Resource	Optimism,	a	variety	of	the	smell	Erratic
Test,	since	sometimes	they	fail	and	sometimes	they	pass.	This	will	be	explored
further	in	the	next	section.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	two	exercises	associated	with
workbook	Section	9:	ABAP	Unit	Testing	107	–	Diagnosing	the	Absence	of
Sufficient	Test	Data.



Creating	and	Using	Fabricated	Test	Data
In	the	previous	section,	we	explored	how	to	identify	the	lack	of	sufficient	test
data	residing	as	records	in	various	persistence	repositories	required	by	the	code
under	test.	In	this	section,	we	will	explore	how	to	construct	unit	tests	such	that
they	do	not	need	to	rely	on	the	existence	of	such	records.	Instead,	the	unit	test
assumes	the	responsibility	to	create	for	itself	whatever	test	data	might	be
required	for	the	code	under	test	to	execute	successfully.	To	do	so	is	to	liberate
the	unit	test	from	any	dependency	upon	test	data	over	which	it	has	no	control
and,	as	a	consequence,	preclude	it	from	spewing	forth	a	foul	odor	reminiscent	of
the	smell	Resource	Optimism.

Often	such	test	data	generation	takes	the	form	of	creating	an	internal	table	of
records	that	the	code	under	test	might	otherwise	expect	to	find	in	a	persistence
repository.	Accordingly,	rather	than	making	available	to	the	code	under	test	an
internal	table	of	real	records	retrieved	from	a	real	persistence	repository,	the	unit
test	simply	fabricates	its	own	records	into	the	internal	table,	assigning	to	those
records	whatever	column	values	will	cause	the	code	under	test	to	perform	the
processing	tested	by	the	unit	test.

Listing	6-17	shows	an	example	of	a	unit	test	class	relying	on	the	existence	of
records	in	the	corresponding	persistence	repository.

class	tester	definition	final

																								for	testing

																								risk	level	harmless.

		private	section.

				methods	adjust_flight_revenue	for	testing.

endclass.

class	tester	implementation.

		method	adjust_flight_revenue.

				data	test_flights_stack	type	standard	table

																														of	sflight.

				select	*

						into	table	test_flights_stack

						from	sflight

					where	carrid	eq	'AA'.

				perform	adjust_flight_revenue	changing

test_flights_stack.

						o

						o



		endmethod.

endclass.

Listing	6-17 Example	of	unit	test	class	relying	on	the	existence	of	persistence	records

Notice	in	Listing	6-17	that	method	adjust_flight_revenue	selects	records
from	table	sflight	that	match	carrier	identifier	‘AA’.	It	is	entirely	possible	that	no
matching	records	exist	in	this	table,	meaning	that	table	test_flights_stack	would
be	empty	when	the	call	is	made	to	subroutine	adjust_flight_revenue.	Surely	the
test	does	not	intend	to	use	an	empty	table	on	this	call	since	otherwise	it	could
have	dispensed	entirely	with	the	attempt	at	record	retrieval	and	simply	left	the
table	empty.	Accordingly,	the	test	is	written	with	the	optimistic	assumption	that
records	will	be	found	by	the	retrieval	in	method	adjust_flight_revenue,	but	there
is	no	guarantee	that	any	will	be	found.

Listing	6-18	shows	how	the	unit	test	class	can	be	written	in	a	way	where	it	is
not	dependent	on	any	records	having	been	found	in	the	persistence	repository,
with	changes	from	Listing	6-17	highlighted	in	bold.

class	tester	definition	final

																								for	testing

																								risk	level	harmless.

		private	section.

				methods	adjust_flight_revenue	for	testing.

endclass.

class	tester	implementation.

		method	adjust_flight_revenue.

				data	test_flights_stack	type	standard	table

																														of	sflight.

				data	test_flights_entry	like	line

																														of	test_flights_stack.

				select	*

						into	table	test_flights_stack

						from	sflight

					where	carrid	eq	'AA'.

				test_flights_entry-mandt						=	sy-mandt.

				test_flights_entry-fldate					=	sy-datum.

				test_flights_entry-price						=	1000.

				test_flights_entry-carrid					=	'AA'.

				test_flights_entry-currency			=	'USD'.

				test_flights_entry-planetype		=	'747-400'.



				test_flights_entry-seatsmax			=	385.

				do	02	times.

						add	01	to	test_flights_entry-connid.

						do	05	times.

								add	01	to	test_flights_entry-fldate.

								test_flights_entry-seatsocc

																																=	test_flights_entry-

seatsmax

																																-	sy-index	*	10.

								test_flights_entry-paymentsum

																																=	test_flights_entry-

price

																																*	test_flights_entry-

seatsocc.

								append	test_flights_entry

												to	test_flights_stack.

						enddo.

				enddo.

				perform	adjust_flight_revenue	changing

test_flights_stack.

						o

						o

		endmethod.

endclass.

Listing	6-18 Listing	6-17	changed	to	no	longer	rely	on	the	existence	of	persistence	records

Notice	in	Listing	6-18	that	the	select	statement	has	been	discarded	and
records	otherwise	expected	to	be	retrieved	are	now	built	manually	into	table
test_flights_stack.	With	this	arrangement,	the	unit	test	method	no	longer	oozes
the	smell	Resource	Optimism.

As	you	can	see,	this	requires	a	bit	more	unit	testing	code	to	generate	the
necessary	test	data.	When	multiple	unit	test	methods	of	the	same	unit	test	class
require	the	same	set	of	fabricated	test	data,	then	the	process	of	creating	the	test
data	can	be	delegated	to	the	static	class_setup	fixture	method,	which	can	create
the	test	data	once	and	then	make	it	available	later	to	whichever	unit	test	methods
might	require	it.	Indeed,	due	to	the	new	clutter	of	statements	in	the	unit	test
method	of	Listing	6-18	devoted	to	building	test	records,	the	stench	of	the	smell
Obscure	Test4	now	wafts	from	it.	To	remedy	this,	all	the	code	associated	with



building	test	records,	when	not	encapsulated	into	a	fixture	setup	method,	should
be	encapsulated	into	its	own	method	and	explicitly	called	from	unit	test	method
adjust_flight_revenue.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	12	exercises	associated	with
workbook	Section	10:	ABAP	Unit	Testing	108	–	Creating	and	Using
Fabricated	Test	Data.

Gaining	Control	Over	References	to	Modifiable
Global	Variables	Within	Subroutines
The	use	of	modifiable	global	variables	has	become	a	particular	sore	spot	with
ABAP	programming.	In	some	cases,	these	global	variables	are	required,	such	as
when	information	is	to	be	exchanged	between	an	ABAP	program	and	fields	on
its	associated	screens.	Unfortunately,	the	typical	ABAP	program	contains	a
plethora	of	modifiable	global	variables,	many	of	which	easily	could	have	been
defined	as	local	variables	simply	due	to	the	fact	that	they	are	used	in	only	a
single	subroutine.

For	some	programmers,	the	choice	of	whether	to	define	variables	locally	or
globally	does	not	even	occur	to	them	after	having	become	comfortable	writing
ABAP	programs	where	all	variables	are	defined	globally.	This	poor	habit	is
reinforced	each	time	a	programmer	needs	to	create	a	new	ABAP	component	and
the	editor	itself	prompts	the	programmer	to	define	TOP	includes	and	other	such
containers	that	perpetuate	the	indiscriminate	declaration	and	use	of	global
variables.

Even	the	book	Official	ABAP	Programming	Guidelines	states	the	following
regarding	global	variables:

Rule	6.3:	Do	Not	Declare	Global	Variables

Do	not	declare	variables	in	the	global	declaration	part	of	a	program.
Variables	may	only	be	declared	as	attributes	of	classes	and	interfaces	or
locally	in	methods.5

Notice	that	Rule	6.3	does	not	mention	declaring	variables	locally	in
subroutines	but	only	in	methods.	This	is	because	the	same	book	declares	that	the



use	of	subroutines	in	ABAP	programs	is	obsolete:

A.1.1	Subroutines

Obsolete	Construct

Subroutines	that	are	declared	with	FORM-ENDFORM	are	obsolete.6

Despite	subroutines	having	been	declared	obsolete,	there	is	still	a	large	body
of	ABAP	code	using	such	subroutines.	Accordingly,	one	of	the	easiest	ways	to
gain	control	over	references	to	modifiable	global	variables	is	for	all	subroutines
to	have	signature	parameters	declared	through	which	to	exchange	the	content	of
the	global	variables	required	by	the	subroutine.	This	specifically	means	that	no
subroutine	should	contain	within	it	a	reference	to	a	modifiable	global	variable.	If
the	processing	contained	within	a	subroutine	requires	that	it	use	the	value	held
by	a	modifiable	global	variable,	or	in	some	cases	even	a	non-modifiable	global
variable	such	as	a	constant,	then	the	signature	of	the	subroutine	should	be
defined	such	that	it	provides	the	necessary	formal	parameters	for	the	global
variable	values	to	be	passed	to	or	returned	from	the	subroutine,	and	callers	of	the
subroutine	should	provide	the	global	variables	as	the	corresponding	actual
parameters.

Listing	6-19	shows	an	example	of	a	subroutine	directly	accessing	a	global
variable.

data	report_content	type	report_list.

parameters	alv_list	radiobutton	group	alv.

parameters	alv_grid	radiobutton	group	alv.

		o

		o

		perform	show_report	changing	report_content.

		o

		o

form	show_report	changing	report_stack	type

report_list.

		if	alv_grid	is	not	initial.

				perform	show_alv_grid	changing	report_stack.

		else.

				perform	show_alv_list	changing	report_stack.

		endif.



endform.

Listing	6-19 Example	of	a	subroutine	directly	accessing	a	global	variable

Notice	in	Listing	6-19	that	subroutine	show_report	checks	the	value	of
alv_grid	to	determine	which	of	two	subsequent	subroutines	is	to	be	called.	Field
alv_grid	is	defined	as	a	parameter	to	appear	on	the	screen	as	a	radio	button;
hence,	a	global	variable	is	accessed	directly	within	subroutine	show_report.
Listing	6-20	shows	how	the	subroutine	show_report	can	be	changed	to	accept
through	its	signature	the	designation	for	which	type	of	report	to	produce,	with
changes	from	Listing	6-19	highlighted	in	bold.

data	report_content	type	report_list.

parameters	alv_list	radiobutton	group	alv.

parameters	alv_grid	radiobutton	group	alv.

		o

		o

		perform	show_report	using	alv_grid

																						changing	report_content.

		o

		o

form	show_report	using	display_as_grid	type	xflag

																	changing	report_stack	type

report_list.

		if	display_as_grid	is	not	initial.

				perform	show_alv_grid	changing	report_stack.

		else.

				perform	show_alv_list	changing	report_stack.

		endif.

endform.

Listing	6-20 Listing	6-19	changed	to	avoid	directly	accessing	a	global	variable

Notice	in	Listing	6-20	that	subroutine	show_report	no	longer	directly
accesses	the	global	variable	named	alv_grid	but	now	accesses	its	own	signature
parameter	to	make	the	determination	of	which	subsequent	subroutine	to	call.	The
perform	statement	to	subroutine	show_report	also	was	changed	to	specify	global
variable	alv_grid	as	the	field	to	supply	the	value	to	signature	parameter
display_as_grid	of	subroutine	show_report.

To	apply	these	changes	constitutes	refactoring	the	program.	No	new	business
processing	is	being	introduced;	instead,	the	subroutines	are	refactored	to	perform



1

2

the	same	processing	but	now	to	use	references	to	their	own	parameters	rather
than	references	to	what	otherwise	might	be	modifiable	global	variables.

Note Contrary	to	what	has	been	mentioned	earlier	in	this	book	about
refactoring	not	requiring	any	changes	to	the	corresponding	unit	tests,	this	type
of	refactoring	is	an	exception	because	the	unit	test	methods	providing	tests	for
the	subroutine	would	need	to	change	accordingly	to	provide	the	necessary
new	signature	parameters	on	the	call	to	the	subroutine.

EXERCISES
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	six	exercises	associated	with
workbook	Section	11:	ABAP	Unit	Testing	109	–	Gaining	Control	Over
References	to	Modifiable	Global	Variables	Within	Subroutines.

Summary
This	chapter	covered	the	most	rudimentary	aspects	of	writing	automated	unit
tests	for	ABAP	components,	introducing	a	simple	unit	test	and	then	expanding
upon	that	to	describe	more	of	the	features	and	capabilities	available	through	the
ABAP	Unit	Testing	Framework,	including	how	unit	tests	can	be	written	to	test
function	modules	and	global	classes.	It	further	explored	some	of	the	ABAP
statements	and	features	presenting	challenges	to	automated	testing	and
demonstrated	how	the	presence	of	automated	unit	tests	instills	the	programmer
with	the	confidence	to	make	the	necessary	changes	when	the	need	arises	to
refactor	production	code,	describing	how	to	diagnose	the	absence	of	sufficient
test	data	as	well	as	considerations	for	creating	fabricated	test	data	and	illustrating
a	way	to	gain	control	over	the	use	of	global	variables	in	the	production	code.	It	is
with	this	chapter	that	the	associated	exercise	programs	are	first	used	as	a
teaching	device	for	reinforcing	the	concepts	presented	in	the	book.

Footnotes
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	10

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	16



3

4

5

6

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	490

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	186

	
Keller,	Horst	and	Thümmel,	Wolf	Hagen,	Official	ABAP	Programming	Guidelines,	Galileo	Press,	2010,

p.	224

	
Ibid,	p.	342

	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_7

7.	Design	for	Testability
James	E.	McDonough1		

Pennington,	NJ,	USA

	

The	previous	chapter	covered	the	basic	techniques	used	when	writing	automated
unit	tests	for	ABAP	programs,	which	included	exposing	some	of	the	challenges
we	are	likely	to	encounter	when	writing	such	tests.	Aside	from	brief	excursions
into	the	considerations	and	techniques	associated	with	writing	unit	tests	for
function	modules	and	global	classes,	the	explanations	and	accompanying
exercise	programs	so	far	have	focused	on	testing	ABAP	production	components
designed	around	the	use	of	subroutines	(FORM-ENDFORM).

In	this	chapter,	we	will	explore	additional	ways	to	design	ABAP	components
such	that	their	procedures	can	be	more	readily	subjected	to	automated	unit	tests.
It	is	at	this	point	that	we	will	begin	to	introduce	into	the	production	path	the
program	design	features	made	possible	by	the	object-oriented	model,	since	this
will	enable	automated	unit	testing	coverage	of	ABAP	components	that	is
virtually	impossible	to	achieve	with	programs	designed	using	a	purely
procedural	model.

Changing	the	Production	Path	to	Enable	Automated
Testing
Often	it	is	the	case	that	existing	production	code	will	need	to	be	changed	to
facilitate	creating	automated	unit	tests	for	it.	Roy	Osherove	explains	further:

Changing	the	design	of	your	code	so	that	it’s	more	easily	testable	is	a
controversial	issue	for	some	developers.	…	[some	ask]	“Why	should	I
care	about	testability	in	my	design?”	The	question	is	a	legitimate	one.
When	designing	software,	you	learn	to	think	about	what	the	software
should	accomplish	and	what	the	results	will	be	for	the	end	user	of	the

https://doi.org/10.1007/978-1-4842-6951-0_7


system.1

Osherove	then	proceeds	to	explain	that	a	unit	test	represents	just	another	user
of	the	software	and	that	the	expectation	of	the	software	by	the	user	known	as
“unit	test”	is	that	it	facilitates	testability.	Accordingly,	this	user	has	a	beneficial
effect	upon	the	design	of	the	software,	just	as	the	expectations	of	a	human	user
would	have	on	the	functionality	of	the	software.	He	goes	on	to	state	that	with	a
testable	design,	writing	a	unit	test	for	a	procedure	should	be	both	quick	and	easy,
resulting	in	one	that	exhibits	the	following	characteristics:

Executes	rapidly
Is	capable	of	being	isolated	from	the	effects	of	any	associated	procedures
Does	not	require	any	external	configuration
Produces	a	consistent	and	reliable	pass/fail	result

He	sums	it	up	by	stating

These	are	the	FICC	properties:	fast,	isolated,	configuration-free,	and
consistent.	If	it’s	hard	to	write	such	a	test,	or	if	it	takes	a	long	time	to
write	it,	the	system	isn’t	testable.2

However,	designing	a	program	so	that	it	can	be	automatically	unit	tested
provides	benefits	beyond	just	the	ability	to	run	unit	tests.	It	also	arranges	the
code	so	that	it	can	be	more	easily	maintained.

Suppose	we	are	working	for	a	company	with	the	contract	to	handle	ticket
sales	for	events	held	at	stadiums	in	Italy	as	shown	in	Table	7-1.

Table	7-1 Stadiums	in	Italy	for	which	ticket	sales	are	handled

Stadium City

Stadio	Olimpico Rome

Stadio	San	Paolo Naples

Stadio	Artemio	Franchi Florence

Arena	Civica Milan

Stadio	Luigi	Ferraris Genoa

Listing	7-1	shows	an	example	of	a	simple	ABAP	procedure	capable	of
producing	the	total	count	of	tickets	sold	for	events	at	these	stadiums	based	on
criteria	qualifying	both	the	stadiums	to	be	included	in	the	count	and	the	date	of
the	events	taking	place	there.



form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		select	count(*)

				into	tickets_sold

				from	zticket_sales

			where	stadium_id	in	stadium_identifier_range

					and	event_date	in	event_date_range.

		write	/	'total	number	of	tickets	sold:',

tickets_sold.

endform.

Listing	7-1 Example	of	ABAP	procedure	to	produce	the	total	count	of	tickets	sold	for	events

This	example	shows	a	procedure	named	report_total_tickets_sold	that
through	its	signature	receives	input	(stadium_identifier_range	and
event_date_range)	but	returns	no	output	and	also	acquires	input	not	supplied	by
its	caller	(the	select	statement)	and	produces	output	not	intended	for	its	caller
(the	write	statement).

Listing	7-2	expands	upon	this	by	providing	additional	code	to	make	this	an
executable	program,	with	changes	highlighted	in	bold.

report.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		select	count(*)

				into	tickets_sold

				from	zticket_sales

			where	stadium_id	in	stadium_identifier_range

					and	event_date	in	event_date_range.



		write	/	'total	number	of	tickets	sold:',

tickets_sold.

endform.

Listing	7-2 Listing	7-1	expanded	to	make	it	an	executable	program

The	program	is	now	executable	while	remaining	sufficiently	simple	to
illustrate	the	different	types	of	input	and	output	that	could	appear	in	an	ABAP
program.

In	its	current	format,	it	is	virtually	impossible	to	write	a	useful	automated
unit	test	for	this	program.	The	only	component	applicable	to	such	a	test	is	the
subroutine	report_total_tickets_sold.	Though	we	could	write	a	local	class
containing	a	unit	test	method	calling	this	subroutine,	there	is	no	assertion	the	test
can	make	to	determine	whether	or	not	the	subroutine	worked	correctly	–	it
returns	no	information	to	the	caller,	acquires	its	own	input	that	a	test	cannot
detect,	and	creates	a	classic	list	report	the	test	cannot	see.	In	short,	there	is
nothing	this	subroutine	does	that	can	be	tested	effectively	through	automation.
That	does	not	mean	we	need	to	abandon	all	hope	of	ever	bringing	this	program
under	the	control	of	automated	unit	tests,	but	only	that	to	do	so	will	require	the
production	path	to	be	refactored	in	a	way	that	enables	automated	testing.

Categorizing	Input	and	Output
As	illustrated	in	the	example	code	of	Listing	7-1,	a	procedure	will	be	designed	to
accept	input	and	produce	output.	Input	accepted	by	such	a	procedure	can	be
categorized	as	follows:

Content	provided	to	the	procedure	by	its	caller
This	category	of	input	consists	of	content	supplied	by	a	caller	through	the

inbound	signature	parameters	defined	for	the	procedure.	The	content	provided
by	these	signature	parameters	can	be	used	immediately	by	the	procedure
without	it	having	to	perform	any	processing	to	make	that	content	available.
Content	acquired	by	the	procedure	during	its	execution

This	category	of	input	consists	of	content	made	available	to	the	procedure
through	an	explicit	action	taken	by	the	procedure,	such	as	issuing	an	Open
SQL	select	statement	or	by	calling	some	other	component	capable	of
providing	the	necessary	content.
Existing	content	of	global	variables

Global	variables	always	are	available	to	any	procedure.	The	content
provided	by	a	global	variable	also	can	be	used	immediately	by	the	procedure



without	it	having	to	perform	any	processing	to	make	that	content	available.

Similarly,	output	produced	by	such	a	procedure	can	be	categorized	as
follows:

Content	returned	by	the	procedure	to	its	caller
This	category	of	output	consists	of	content	returned	to	a	caller	through	the

outbound	signature	parameters	defined	for	the	procedure.
Content	sent	by	the	procedure	to	a	receiver	other	than	its	caller
This	category	of	output	consists	of	any	content	produced	by	the	procedure

but	not	intended	for	its	caller,	output	made	available	by	the	procedure	through
an	explicit	action	taken	by	the	procedure	without	reference	to	its	outbound
signature	parameters,	such	as	issuing	an	Open	SQL	insert	statement	or	through
a	call	it	makes	to	a	designated	content	receiver.

Changed	content	of	global	variables
Global	variables	always	are	available	to	any	procedure.	The	content	of	a

global	variable	is	always	changeable	by	any	procedure.

The	input	and	output	flowing	through	a	procedure’s	signature	parameters	is
regarded	as	direct3	input	and	output,	whereas	input	and	output	that	does	not	flow
through	a	procedure’s	signature	parameters	is	regarded	as	indirect4	input	and
output.

Global	variables	present	a	particularly	thorny	issue	for	procedures.	While
they	are	directly	accessible	by	a	procedure,	they	are	also	considered	indirect
when	providing	input	to	or	accepting	output	from	a	procedure.	Whereas	the
signature	of	a	subroutine	enables	a	designation	for	the	data	type	of	each
parameter	and	a	method	of	a	class	requires	a	data	type	designation	for	all	of	its
signature	parameters,	the	designation	for	the	data	types	of	global	variables	used
by	subroutines	and	methods	cannot	appear	in	their	signatures,	leaving	the
associated	processing	by	the	procedure	exposed	to	type	mismatches	in	those
statements	referencing	global	variables.

Accordingly,	it	has	become	widely	regarded	as	a	good	programming	practice
to	provide	global	variables	to	a	subroutine	or	method	of	a	class	explicitly
through	its	corresponding	signature,	enabling	them	to	be	treated	as	direct	input
and	output.	This	allows	defining	the	data	type	of	the	global	variable	in	the
signature	and	then	supplying	the	global	variable	as	the	actual	parameter
associated	with	its	corresponding	formal	parameter	of	the	signature.	We	saw	an
example	of	this	with	Listing	6-20.	By	extension,	it	has	become	a	good
programming	practice	not	only	to	provide	subroutines	with	signatures,	which	is
not	syntactically	required	for	subroutines,	but	for	those	signatures	to	designate



the	data	type	associated	with	the	parameter,	which	also	is	not	syntactically
required	for	subroutines	that	do	have	signatures.

In	order	to	provide	an	ABAP	component	with	a	comprehensive	set	of
automated	unit	tests,	it	is	desirable	to	have	it	designed	such	that	each	of	its
procedures	references	only	those	variables	provided	through	its	signature	and
only	content	it	explicitly	acquires	on	its	own.	This	means	we	should	endeavor	to
eliminate	from	each	procedure	any	explicit	references	to	global	variables,
replacing	their	appearance	in	the	code	of	the	procedure	with	corresponding
signature	parameters	that	can	provide	the	necessary	access	to	them.

Encapsulating	Indirect	Input	and	Output
The	use	by	a	procedure	of	direct	input	and	output	is	compatible	with	automated
unit	testing,	as	well	as	the	use	of	the	indirect	input	and	output	associated	with
global	variables.	This	is	because	a	unit	test	method	can	always	control	both	the
global	variables	and	the	signature	parameters	used	by	the	procedure	it	is	testing.

The	use	by	a	procedure	of	indirect	input	and	output	not	associated	with
global	variables	may	or	may	not	be	compatible	with	automated	unit	testing.	This
is	because	a	unit	test	method	may	or	may	not	have	control	over	the	indirect	input
a	procedure	acquires	or	the	indirect	output	a	procedure	produces.	When	the
processing	contained	within	a	procedure	involves	indirect	input	or	indirect
output,	it	becomes	necessary	to	encapsulate	that	activity	into	a	called	procedure
that	can	be	controlled	by	the	unit	test.	The	challenge	to	doing	this	is	to	design	the
called	procedure	providing	indirect	input	or	accepting	indirect	output	in	such	a
way	that	enables	the	unit	test	to	exert	control	over	it	while	leaving	the	production
path	oblivious	to	the	fact	that	the	called	procedure	can	be	controlled	by	a	unit
test.	Accordingly,	changing	the	production	path	of	the	program	to	encapsulate
indirect	input	and	indirect	output	improves	its	design	for	testability.5

Let’s	consider	the	variations	of	called	procedures	available	to	us	for
encapsulating	indirect	input	and	output:

Subroutine
A	procedure	written	as	a	subroutine	easily	can	provide	indirect	input	to	or

accept	indirect	output	from	a	calling	procedure.	Unfortunately,	it	is	virtually
impossible	to	design	a	subroutine	in	such	a	way	that	a	unit	test	method	can
exert	control	over	it	when	it	is	invoked	by	its	caller	during	a	unit	test
execution.	In	addition,	the	FORM-ENDFORM	construct	has	been	rendered
obsolete	for	many	years.	Accordingly,	in	pursuit	of	better	design	for
testability,	subroutines	are	not	good	candidates	for	encapsulating	procedures



called	to	provide	indirect	input	or	accept	indirect	output.
Function	module
A	procedure	written	as	a	function	module	also	easily	can	provide	indirect

input	to	or	accept	indirect	output	from	a	calling	procedure.	The	syntax	for
calling	function	modules	effectively	permits	either	a	static	call	or	a	dynamic
call	to	the	function	module	based	on	how	the	name	of	the	function	module	is
provided	on	the	statement.	When	the	name	of	the	function	module	to	be	called
is	a	literal	or	the	name	of	a	defined	constant,	then	it	is	regarded	as	a	statically
specified	object;	and	when	specified	as	a	data	field	or	parameter,	it	is	regarded
as	a	dynamically	specified	object.	This	means	the	name	of	the	function
module	to	be	called	by	a	procedure	could	be	specified	as	a	signature
parameter,	allowing	the	production	path	to	provide	the	name	of	the	function
module	for	production	purposes	and	the	automated	unit	test	path	to	provide
the	name	of	a	function	module	to	be	used	only	during	unit	testing.

Although	the	statement	to	call	a	function	module	procedure	offers	some
flexibility,	it	has	its	drawbacks	when	applied	to	automated	unit	testing:

A	function	module	built	solely	for	use	during	unit	testing	would	need	to
be	defined	such	that	its	signature	matches	the	signature	of	its	counterpart
production	path	function	module.	Whereas	this	is	possible,	there	is	no	static
checking	that	could	be	applied	to	insure	that	both	function	modules	have
compatible	signatures,	leaving	such	coordination	up	to	the	programmer	to
be	done	manually.

A	function	module	can	be	defined	only	globally	via	the	Function
Builder.	It	is	impractical	to	assume	that	a	single	function	module	could	be
defined	as	one	built	solely	for	use	during	unit	testing	and	also	to	provide	all
the	necessary	unit	testing	capabilities	for	every	procedure	where	it	could	be
substituted	during	testing.	This	means	that	the	function	module	repository
would	become	polluted	with	the	proliferation	of	specific	function	modules
written	to	accommodate	specific	unit	tests.

Accordingly,	in	pursuit	of	better	design	for	testability,	function	modules	are
not	good	candidates	for	encapsulating	procedures	called	to	provide	indirect	input
or	accept	indirect	output.

Method	of	a	class
A	procedure	written	as	a	method	of	a	class	also	easily	can	provide	indirect

input	to	or	accept	indirect	output	from	a	calling	procedure.	The	syntax	for
calling	methods	of	a	class	provides	the	same	flexibility	found	with	function
modules	that	makes	it	possible	for	them	to	be	specified	as	signature



parameters	to	the	calling	procedure,	allowing	the	production	path	to	provide
the	reference	to	the	class	instance	to	be	used	for	production	purposes	and	the
automated	unit	test	path	to	provide	the	reference	to	the	class	instance	to	be
used	only	during	unit	testing.	It	also	does	not	suffer	the	drawbacks	inherent
with	function	modules	when	applied	to	automated	unit	testing:

A	class	built	solely	for	use	during	unit	testing	would	need	to	be	defined
such	that	its	signature	matches	the	signature	of	its	counterpart	production
path	class.	This	is	possible	when	either	the	unit	test	class	is	a	subclass	of	its
counterpart	production	class	or	when	both	the	production	class	and	the
counterpart	unit	test	class	implement	the	same	interface	declaring	the
associated	methods,	requiring	both	classes	to	implement	all	the	methods
defined	in	the	interface.	Either	of	these	options	will	allow	static	checking
that	both	classes	have	implemented	their	respective	methods	using	the	same
method	signatures.

A	class	can	be	defined	either	globally	via	the	Class	Builder	or	locally	to
the	component	in	which	it	resides.	This	means	that	classes	intended	to	be
used	solely	for	unit	testing	can	be	defined	locally	to	their	respective
components,	avoiding	the	pollution	of	the	class	repository	with	the
proliferation	of	classes	written	to	accommodate	specific	unit	tests	as	would
occur	with	comparable	function	modules.

Indeed,	the	preparation	and	use	of	classes	in	this	way	makes	it	possible	to
define	and	use	classes	that	can	be	substituted	for	their	counterpart	production
classes	during	the	execution	of	automated	unit	tests.	A	subsequent	chapter	will
cover	this	topic	in	more	detail.

Accordingly,	in	pursuit	of	better	design	for	testability,	methods	of	a	class
make	the	best	candidates	for	encapsulating	procedures	called	to	provide	indirect
input	or	accept	indirect	output.

Interaction	Points
A	unit	test	will	require	interaction	with	the	code	under	test,	whether	it	is	to
establish	the	conditions	necessary	for	a	successful	test,	to	execute	the	code	under
test	once	the	necessary	conditions	have	been	established,	or	to	assert	that	the
code	under	test	has	performed	as	expected.	Locations	in	the	code	where	the	unit
test	method	is	able	to	interact	with	the	code	under	test	are	known	as	interaction
points.6	Each	interaction	can	be	either	direct	or	indirect.	Each	point	can	be	either
a	control	point7	or	an	observation	point.8

Direct	interaction	points



These	are	locations	where	a	production	procedure	is	called	by	a	unit	test
method.	The	call	is	made	to	the	procedure	through	its	signature.	Meszaros
refers	to	this	as	“going	in	the	front	door.”9
Indirect	interaction	points

These	are	locations	where	preparation	is	performed	by	a	unit	test	prior	to
exercising	the	code	under	test	or	analysis	is	performed	by	a	unit	test	after	the
code	under	test	has	been	exercised.	Meszaros	refers	to	this	as	Back	Door
Manipulation.10
Control	point

These	are	locations	where	the	unit	test	provides	some	content	or	setting	to
be	used	by	the	code	under	test	and	includes	the	use	of	fixture	methods.	It
establishes	the	pre-test	state.
Observation	point

These	are	locations	where	the	unit	test	examines	some	content	or	setting
provided	by	the	code	under	test.	It	analyzes	the	post-test	state.

Let’s	explore	these	interaction	points	further	and	see	how	they	are	used.
Listing	7-3	shows	the	ABAP	code	from	Listing	6-3	annotated	with	line	numbers
for	subsequent	reference.

01	report	z_issue_message.

02			constants		valid_severities		type	string	value

'SIWEAX'.

03			data							severity_is_valid	type	abap_bool.

04			parameters	severity										type	symsgty

obligatory.

05	at	selection-screen.

06			perform	validate_message_severity.

07			if	severity_is_valid	ne	abap_true.

08					message	e000(0k)	with	'Select	a	message

severity	from	the	values'

09																											valid_severities.

10			endif.

11	start-of-selection.

12			message	'Hello	World!'	type	severity.

13	form	validate_message_severity.

14			if	severity	ca	valid_severities.

15					severity_is_valid	=	abap_true.

16			else



17					severity_is_valid	=	abap_false.

18			endif.

19	endform.

20

21	class	unit_tester	definition	for	testing	risk	level

harmless.

22			private	section.

23					methods	validate_message_severity_s	for

testing.

24	endclass.

25	class	unit_tester	implementation.

26			method	validate_message_severity_s.

27					severity	=	'S'.

28					perform	validate_message_severity.

29					call	method	cl_abap_unit_assert=>assert_equals

30							exporting

31									act	=	severity_is_valid

32									exp	=	abap_true

33									msg	=	'Unexpected	result	for	severity	S'.

34			endmethod.

35	endclass.

Listing	7-3 Annotated	code	from	Listing	6-3

Notice	that	lines	1–19	represent	the	production	code	and	that	lines	21–35
represent	the	unit	test	code.	Notice	also	that	there	is	only	one	procedure	in	the
production	code	subject	to	unit	testing:	the	subroutine	validate_message_severity
defined	by	lines	13–19.	This	subroutine	has	no	signature	and	is	called	from	the
production	code	on	line	6	and	from	the	unit	test	code	on	line	28.

Here	we	see	that	the	processing	of	subroutine	validate_message_severity
inspects	the	content	of	global	variable	severity	on	line	14	and	changes	the
content	of	global	variable	severity_is_valid	on	lines	15	and	17.	Accordingly,	it	is
using	indirect	input	(global	variable	severity)	and	indirect	output	(global	variable
severity_is_valid).

Line	27	shows	an	example	of	an	indirect	control	point	as	the	unit	test	sets	the
value	of	global	variable	severity.	The	next	line	shows	an	example	of	a	direct
control	point	as	the	unit	test	“goes	in	the	front	door”	by	calling	the	code	under
test	(performs	subroutine	validate_message_severity).

Lines	29–33	show	an	example	of	an	indirect	observation	point	as	the	value
of	global	variable	severity_is_valid	is	asserted	to	be	equal	to	the	expected	value



abap_true.	The	expectation	at	this	point	is	that,	having	been	called	from	line	28,
the	subroutine	has	performed	its	processing	by	setting	global	variable
severity_is_valid	to	a	value	of	true	or	false	based	on	the	value	it	found	in	global
variable	severity.	Since	the	unit	test	already	had	set	global	variable	severity	to
the	value	‘S’	on	line	27,	the	call	to	the	subroutine	on	line	28	should	result	in
global	variable	severity_is_valid	containing	the	value	abap_true.

Let’s	change	the	code	in	this	listing	so	that	subroutine
validate_message_severity	no	longer	contains	any	references	to	global	variables,
using	the	best	practice	mentioned	earlier	of	providing	the	subroutine	with
signature	parameters	through	which	it	can	access	global	variables.	Listing	7-4
shows	the	changed	code,	with	differences	highlighted	in	bold.

01	report	z_issue_message.

02			constants		valid_severities		type	string	value

'SIWEAX'.

03			data							severity_is_valid	type	abap_bool.

04			parameters	severity										type	symsgty

obligatory.

05	at	selection-screen.

06			perform	validate_message_severity	using	severity

																																				changing

severity_is_valid.

07			if	severity_is_valid	ne	abap_true.

08					message	e000(0k)	with	'Select	a	message

severity	from	the	values'

09																											valid_severities.

10			endif.

11	start-of-selection.

12			message	'Hello	World!'	type	severity.

13	form	validate_message_severity	using	severity

																																										type	symsgty

																																								changing

severity_is_valid

																																										type

abap_bool.

14			if	severity	ca	valid_severities.

15					severity_is_valid	=	abap_true.

16			else

17					severity_is_valid	=	abap_false.



18			endif.

19	endform.

20

21	class	unit_tester	definition	for	testing	risk	level

harmless.

22			private	section.

23					methods	validate_message_severity_s	for

testing.

24	endclass.

25	class	unit_tester	implementation.

26			method	validate_message_severity_s.

27					severity	=	'S'.

28					perform	validate_message_severity	using

severity

																																						changing

severity_is_valid.

29					call	method	cl_abap_unit_assert=>assert_equals

30							exporting

31									act	=	severity_is_valid

32									exp	=	abap_true

33									msg	=	'Unexpected	result	for	severity	S'.

34			endmethod.

35	endclass.

Listing	7-4 Code	from	Listing	7-3	changed	to	eliminate	references	to	global	variables	within
subroutine	validate_message_severity

Notice	that	all	we	did	was	to	provide	subroutine	validate_message_severity
with	a	signature	and	then	change	the	calls	to	it	from	both	the	production	code
and	the	unit	test	code	to	provide	the	respective	global	variables	as	signature
parameters.	Since	the	names	of	signature	parameters	severity	and
severity_is_valid	match	the	names	of	existing	global	variables,	it	means	that	the
statements	within	the	subroutine	referring	to	severity	and	severity_is_valid	now
refer	to	the	signature	parameters	instead	of	to	the	global	variables	as	they	had
previously.	This	changes	the	categorization	of	its	input	and	output	from	indirect
to	direct.

This	also	changes	the	nature	of	the	interaction	points.	Setting	the	value	of
global	variable	severity	on	line	27	no	longer	is	considered	an	indirect	control
point,	nor	is	checking	the	value	of	global	variable	severity_is_valid	on	line	31
considered	an	indirect	observation	point.	This	is	because	now	these	variables



have	been	provided	as	the	actual	parameters	to	the	formal	signature	parameters
defined	for	subroutine	validate_message_severity,	which	now	considers	this
direct	input	and	output	flowing	through	its	signature.	Accordingly,	lines	27	and
31	no	longer	are	considered	interaction	points.

Perhaps	some	of	you	are	skeptical	about	these	former	indirect	interaction
points	evaporating	simply	because	a	signature	has	been	provided	to	the
subroutine	and	global	variable	values	are	being	exchanged	through	the	signature.
If	so,	consider	that	the	code	of	unit	test	method	validate_message_severity_s
could	have	been	written	as	shown	in	Listing	7-5,	the	differences	with	Listing	7-4
highlighted	in	bold.

26			method	validate_message_severity_s.

27					data	is_the_severity_valid	type	abap_bool.

"severity	=	'S'.

28					perform	validate_message_severity	using	'S'

																																						changing

is_the_severity_valid.

29					call	method	cl_abap_unit_assert=>assert_equals

30							exporting

31									act	=	is_the_severity_valid

32									exp	=	abap_true

33									msg	=	'Unexpected	result	for	severity	S'.

34			endmethod.

Listing	7-5 Alternative	to	applying	the	changes	to	unit	test	method	validate_message_severity_s

Notice	that	now	the	unit	test	method	makes	no	references	at	all	to	global
variables,	so	there	are	no	longer	any	points	where	it	indirectly	interacts	with	the
code	under	test,	but	we	should	still	expect	the	unit	test	to	pass.	The	only
interaction	point	remaining	between	unit	test	and	code	under	test	is	the	direct
interaction	point	on	line	28	where	the	unit	test	calls	the	code	of	the	production
path	and	is	going	in	the	front	door	of	the	subroutine.	Whereas	the	unit	test
method	is	able	to	examine	and	change	the	values	of	global	variables,	it	does	not
constitute	an	interaction	point	when	those	global	variables	are	not	used	by	the
code	under	test.

Encapsulating	Indirect	Input	Processes	to	Accommodate	Unit
Testing
This	section	covers	the	process	of	encapsulating	the	acquisition	of	indirect	input



required	by	a	procedure	into	a	method	of	a	class	that	can	be	called	to	perform
that	activity	for	the	procedure.	It	will	require	refactoring	the	procedure	to	enable
it	to	be	subjected	to	unit	testing.

Listing	7-6	is	a	copy	of	Listing	7-2	with	changes	applied	to	show	how	the
indirect	input	of	subroutine	report_total_tickets_sold	can	be	encapsulated	into	a
method	of	a	class,	with	changes	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		perform	report_total_tickets_sold	using	stadium



																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		select	count(*)

				into	tickets_sold

				from	zticket_sales

			where	stadium_id	in	stadium_identifier_range

					and	event_date	in	event_date_range.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		write	/	'total	number	of	tickets	sold:',

tickets_sold.

endform.

Listing	7-6 Listing	7-2	with	changes	applied	to	illustrate	encapsulating	indirect	input

What	have	we	done	here?	We’ve	defined	a	new	class	named
ticket_sales_examiner	having	a	single	method	named	get_total_tickets_sold.	The
implementation	of	this	method	has	virtually	the	same	code	that	had	been
removed	from	subroutine	report_total_tickets_sold.	The	retrieval	for	the	number
of	tickets	sold	now	is	encapsulated	into	a	class	that	can	provide	that	information.
Accordingly,	the	subroutine	no	longer	acquires	this	input	itself	but	calls	a
method	capable	of	doing	so	on	its	behalf.	We’ve	also	defined	a	new	global
variable	to	hold	a	reference	to	an	instance	of	class	ticket_sales_examiner	and
created	an	instance	of	it	in	the	start-of-selection	event	block	just	prior	to
invoking	the	subroutine.

Listing	7-7	shows	a	copy	of	Listing	7-6	without	the	stricken	statements	and
highlighting.

report.

class	ticket_sales_examiner	definition.

		public	section.



				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range



						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		write	/	'total	number	of	tickets	sold:',

tickets_sold.

endform.

Listing	7-7 A	copy	of	Listing	7-6	without	the	stricken	records	and	highlighting

There	are	those	who	would	complain	that	this	program	has	had	26	lines
added	and	5	removed,	for	a	net	gain	of	21	extra	lines	in	a	program	that	had	only
18	lines	before	having	made	any	changes,	more	than	doubling	the	number	of
lines	the	program	has.	True,	that	is	the	case;	however,	software	quality	cannot	be
measured	by	number	of	lines.	These	changes	have	moved	the	program	a	step
closer	to	being	designed	for	testability.

Aside	from	the	benefits	this	program	has	gained	toward	unit	testing,	it	now
also	has	a	better	design	for	its	production	path.	The	subroutine
report_total_tickets_sold	no	longer	performs	a	direct	retrieval	from	a	custom
table,	delegating	this	retrieval	instead	to	a	method	of	a	class.	In	effect,	the
subroutine	is	no	longer	bound	to	the	custom	table.	Now	it	is	up	to	the	method
called	by	this	subroutine	–	get_total_tickets_sold	–	to	determine	how	to	provide
that	answer.	This	method	could	determine	the	total	count	of	tickets	sold	using	a
flat	file	or	a	spreadsheet	or	in	a	variety	of	other	ways	than	through	the
customized	table	in	use	at	the	moment,	and	the	subroutine	making	the	call	to	it
would	not	need	to	change	at	all.	Accordingly,	the	program	itself	is	more	flexible
and	adaptable	to	future	changes.

Again,	there	are	some	who	would	point	out	that	encapsulating	the	code
determining	total	ticket	sales	into	a	method	of	a	class	has	only	moved	the
location	where	such	changes	would	be	required	if	it	were	to	become	necessary	to
change	from,	say,	using	the	customized	table	to	using	a	flat	file.	Again,	this	is
true,	but	the	fact	that	this	processing	is	now	encapsulated	into	a	class	provides
more	flexible	alternatives	for	its	implementation,	not	the	least	of	which	is	to
have	two	classes	defined,	one	capable	of	using	a	customized	table,	as	it	does
now,	and	another	capable	of	using	a	flat	file,	with	both	classes	inheriting	from	a
single	class	that	can	provide	the	definition	for	the	methods	they	both	implement.
With	this	flexibility,	it	is	even	possible	now	to	design	the	program	such	that	the
decision	whether	to	use	a	customized	table	or	flat	file	can	be	made	at	runtime,
instantiating	whichever	of	these	two	subclasses	provides	that	service,	and	still
the	subroutine	would	not	have	to	be	altered	in	any	way.



Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	13	exercises	associated	with
workbook	Section	12:	ABAP	Unit	Testing	201	–	Gaining	Control	Over
Unit	Test	Coverage	of	Input.

Encapsulating	Indirect	Output	Processes	to
Accommodate	Unit	Testing
This	section	covers	the	process	of	encapsulating	the	handling	of	indirect	output
produced	by	a	procedure	into	a	method	of	a	class	that	can	be	called	to	perform
that	activity	for	the	procedure.	This	also	will	require	refactoring	the	procedure	to
enable	it	to	be	subjected	to	unit	testing.

Listing	7-8	is	a	copy	of	Listing	7-7	with	changes	applied	to	show	how	the
indirect	output	of	subroutine	report_total_tickets_sold	can	be	encapsulated	into	a
method	of	a	class,	with	changes	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.



		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.



		write	/	'total	number	of	tickets	sold:',

tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

Listing	7-8 Listing	7-7	with	changes	applied	to	illustrate	encapsulating	indirect	output

What	have	we	done	here?	We’ve	defined	a	new	class	named
ticket_sales_reporter	having	a	single	method	named	show_total_tickets_sold.
The	implementation	of	this	method	has	virtually	the	same	code	that	had	been
removed	from	subroutine	report_total_tickets_sold.	The	presentation	for	the
number	of	tickets	sold	now	is	encapsulated	into	a	class	that	can	provide	that
service.	Accordingly,	the	subroutine	no	longer	writes	this	output	itself	but	calls	a
method	capable	of	doing	so	on	its	behalf.	We’ve	also	defined	a	new	global
variable	to	hold	a	reference	to	an	instance	of	class	ticket_sales_reporter	and
created	an	instance	of	it	in	the	start-of-selection	event	block	just	prior	to
invoking	the	subroutine.

Listing	7-9	shows	a	copy	of	Listing	7-8	without	the	stricken	statements	and
highlighting.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.



		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-



>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

Listing	7-9 Listing	7-8	without	the	highlighting	and	stricken	statements

As	we	had	seen	with	the	changes	to	encapsulate	indirect	input,	these	changes
have	moved	the	program	another	step	closer	to	being	designed	for	testability.

Aside	from	the	benefits	this	program	has	gained	toward	unit	testing,	it	now
also	has	a	better	design	for	its	production	path.	The	subroutine
report_total_tickets_sold	no	longer	performs	a	direct	write	to	a	classic	list,
delegating	this	instead	to	a	method	of	a	class.	In	effect,	the	subroutine	is	no
longer	bound	to	the	use	of	a	classic	list.	Now	it	is	up	to	the	method	called	by	this
subroutine	–	show_total_tickets_sold	–	to	determine	how	to	present	this
information.	This	method	could	use	an	ABAP	MESSAGE	statement,	present	an
ALV	grid	using	either	a	full-screen	or	popup	window,	call	a	function	module
capable	of	displaying	such	information,	and	a	variety	of	other	ways	than	through
the	classic	list	in	use	at	the	moment,	and	the	subroutine	making	the	call	to	it
would	not	need	to	change	at	all.	Accordingly,	the	program	itself	is	more	flexible
and	adaptable	to	future	changes.

Despite	all	the	changes	that	have	been	made	to	the	production	path	to
encapsulate	the	indirect	input	and	output	associated	with	subroutine
report_total_tickets_sold,	you	may	have	noticed	that	the	program	still	remains
without	any	automated	unit	test	to	determine	whether	this	subroutine	is	working
correctly.	This	deficit	will	be	addressed	in	the	next	chapter.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	six	exercises	associated	with



1

2

3

4

5

6

7

8

workbook	Section	13:	ABAP	Unit	Testing	202	–	Gaining	Control	Over
Unit	Test	Coverage	of	Output.

Summary
This	chapter	explained	the	concept	of	controlling	indirect	input	to	and	indirect
output	from	a	procedure,	showing	how	these	types	of	input	and	output	need	to	be
encapsulated	to	insure	a	component	is	designed	for	testability,	concluding
through	analysis	how	only	object-oriented	classes	can	provide	the	necessary
capabilities	toward	this	end	due	to	the	limitations	inherent	with	function	modules
and	subroutines	as	encapsulators.	Interactions	between	the	unit	test	and	the
tested	procedure	are	described	as	test	interaction	points	which	can	be	direct	or
indirect	as	well	as	control	or	observation.	Examples	showed	how	to	encapsulate
both	indirect	input	and	indirect	output	to	enable	automated	testing.

Footnotes
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	219

	
Ibid	p.	220

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	792

	
Ibid,	p.	800

	
Ibid,	p.	7

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	801

	
Ibid,	p.	791

	
Ibid,	p.	804



9

10

	
bid,	p.	40

	
Ibid,	p.	327

	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_8

8.	Test	Doubles
James	E.	McDonough1		

Pennington,	NJ,	USA

	

The	previous	chapter	covered	the	considerations	associated	with	refactoring	a
program	to	encapsulate	the	processes	that	perform	the	exchange	of	indirect	input
and	output	from	the	rest	of	its	processing.	This	was	achieved	through	the	use	of
object-oriented	classes	that	could	encapsulate	the	respective	processes.
Refactoring	such	components	into	object-oriented	classes	as	opposed	to	simple
subroutines	or	function	modules	is	done	for	a	specific	reason.	It	is	because	we
will	need	to	be	able	to	substitute	components	that	perform	indirect	input	and
output	activities	in	ways	that	are	conducive	to	running	automated	unit	tests.	This
chapter	explores	this	topic	in	more	detail.

Depended-On	Components
The	structure	of	a	typical	program	may	consist	of	a	main	driving	routine	and
multiple	subroutines	it	calls.	Each	of	these	subroutines	themselves	may	call	other
subroutines,	with	each	subroutine	performing	some	service	required	by	its	caller.
For	the	purpose	of	illustration,	Listing	8-1	shows	pseudo-code	for	such	a
program.

program	xyz

(global	variables	are	defined	here)

main_driving_routine

		call	subroutine_01

		o

		o

		call	subroutine_02

https://doi.org/10.1007/978-1-4842-6951-0_8


		o

		o

		call	subroutine_03

subroutine_01

		call	subroutine_16

		o

		o

		call	subroutine_17

subroutine_02

		call	subroutine_55

		o

		o

		call	subroutine_72

subroutine_03

		call	subroutine_95

		call	subroutine_98

		o

		o

Listing	8-1 Pseudo-code	for	typical	program	with	main	driving	routine	and	multiple	subroutines

Notice	that	the	main_driving_routine	makes	calls	to	subroutine_01,
subroutine_02,	and	subroutine_03.	Also	notice	that	each	one	of	these	subroutines
also	makes	calls	to	other	subroutines.	In	each	case,	the	subroutine	that	is	called	is
considered	a	component	on	which	the	caller	is	dependent	–	that	is,	the	caller	is
depending	on	the	called	subroutine	to	provide	some	service	on	its	behalf.	In	the
context	of	unit	testing,	a	component	on	which	a	caller	is	dependent	is	known	as	a
depended-on	component,1	abbreviated	as	DOC.

Notice	also	that	none	of	the	subroutines	indicate	a	signature,	so	all
information	being	exchanged	between	them	is	done	through	global	variables.
This	would	mean	that	each	subroutine	either	provides	indirect	input	to	a	caller	or
processes	indirect	output	from	a	caller.

Let’s	suppose	we	wanted	to	provide	such	a	program	with	automated	unit
tests.	We	would	be	challenged	to	write	a	unit	test	for	subroutine_01	because	as
part	of	its	processing,	it	calls	subroutine_16	and	subroutine_17,	its	two
depended-on	components.	The	concern	is	that	these	two	subroutines	will



perform	their	respective	processing	on	behalf	of	subroutine_01,	but	during	a	unit
test,	we	would	want	to	have	the	unit	test	in	control	of	the	processing	they
perform.	When	our	goal	is	to	determine	whether	the	processing	of	subroutine_01
is	correct,	we	would	want	to	nullify	any	effects	to	this	subroutine	by	the
components	it	calls.	This	is	known	as	isolating	the	code	under	test.

Isolating	the	code	under	test	will	require	refactoring	the	code	so	that	its
depended-on	components	can	be	overridden	during	the	execution	of	a	unit	test.
The	first	step	in	isolating	subroutine_01	would	be	to	provide	signatures	for
subroutine_16	and	subroutine_17	and	pass	to	them	the	necessary	global
variables	as	parameters.	Once	that	has	been	done,	the	next	step	would	be	to
refactor	subroutine_16	and	subroutine_17	into	methods	of	classes	that	can
encapsulate	their	respective	processing	–	for	now,	let’s	call	them	method_16	and
method_17.	Lastly,	the	program	would	be	changed	so	that	subroutine_01	has
access	to	the	instances	of	the	new	classes	containing	method_16	and	method_17
that	are	to	be	called	in	place	of	the	calls	it	had	made	to	subroutine_16	and
subroutine_17.

At	this	point,	subroutine_01	would	be	in	a	state	where	a	unit	test	can	exert
control	over	its	called	methods.	The	next	step	would	be	to	create	classes	that	can
provide	the	necessary	processing	for	method_16	and	method_17	during	the
execution	of	an	automated	unit	test,	processing	that	would	differ	significantly
from	their	production	path	counterparts.	These	types	of	classes	are	known	as	test
doubles.

The	Purpose	of	Test	Doubles
A	good	analogy	for	thinking	about	test	doubles	is	to	consider	how	the	motion
picture	industry	uses	what	are	known	as	stunt	doubles.	These	are	actors	who
have	learned	various	ways	to	avoid	injury	when	performing	the	dangerous
activities	called	for	in	a	movie.	The	script	might	describe	a	scene	where	the	lead
character	leaps	head	first	out	of	a	third-floor	window	of	an	old	hotel	and	lands	in
a	wagon	full	of	hay.	The	actor	playing	the	lead	character	would	not	perform	this
leap;	instead,	it	would	be	performed	by	a	stunt	double.	While	shooting	the	scene,
the	camera	would	capture	the	action	as	the	lead	actor	runs	to	the	window,	at
which	point	the	director	would	yell	“Cut!	Send	in	the	stunt	double.”	Then,	once
the	stunt	double	has	taken	the	place	of	the	lead	actor,	the	director	would	yell
“Lights	…	Camera	…	Action!”	at	which	point	the	stunt	double	would	perform
the	flying	leap	into	the	wagon	of	hay	below	that	becomes	part	of	the	movie.	In
such	cases,	a	stunt	double	usually	is	chosen	based	on	their	resemblance	to	the
lead	actor	so	that	the	audience	remains	unaware	that	a	different	person	had



performed	the	stunt.
Test	doubles	serve	the	same	purpose	for	automated	unit	testing	as	stunt

doubles	do	for	the	movie	industry	–	specifically,	test	doubles	substitute	for	actual
production	components	when	the	automated	unit	tests	are	being	run.	Each	test
double	replaces	a	called	component	upon	which	the	code	under	test	depends.	It
effectively	becomes	a	surrogate	for	a	depended-on	component.

For	example,	let’s	suppose	we	have	a	simple	subroutine	that	calculates	the
sales	tax	for	each	one	of	a	set	of	records	in	an	internal	table	supplied	by	the
caller,	where	the	internal	table	contains	the	jurisdiction	where	the	sale	applies
and	the	subroutine	changes	each	table	row	to	include	the	associated	sales	tax.
This	tax	calculation	subroutine	itself	calls	a	subroutine	which	supplies	the
corresponding	tax	rate	to	be	used.	Listing	8-2	shows	the	ABAP	code.

form	calculate_sales_tax	changing	sale_items

																																				type	item_table.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.

				perform	get_sales_tax_rate	using	<sale_item>-

jurisdiction

																												changing	<sale_item>-

tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

		endloop.

endform.

Listing	8-2 Example	of	subroutine

Notice	that	subroutine	calculate_sales_tax	calls	subroutine
get_sales_tax_rate.	Using	the	prevailing	sales	tax	rates	in	effect	on	January	1,
2020,	for	jurisdictions	in	the	United	States,	we	should	expect	subroutine
get_sales_tax_rate	to	return	a	sales	tax	rate	of	7.25%	for	California,	4.00%	for
New	York,	and	zero	for	Alaska,	a	state	which	imposes	no	sales	tax.

Accordingly,	subroutine	get_sales_tax_rate	is	a	component	on	which
subroutine	calculate_sales_tax	is	dependent.	As	written,	it	would	be	virtually
impossible	during	an	automated	unit	test	to	substitute	the	processing	performed
by	subroutine	get_sales_tax_rate.

Alternative	1
As	an	alternative,	we	could	refactor	this	subroutine	such	that	its	signature



accepts	a	reference	to	the	name	of	a	function	module	that	can	provide	the	service
of	getting	the	associated	sales	tax.	This	way,	the	production	path	could	provide
the	name	of	the	function	module	containing	the	code	copied	from	subroutine
get_sales_tax_rate,	and	the	automated	unit	test	path	could	provide	the	name	of	a
test	double	for	that	function	module,	one	that	can	provide	whatever	processing
might	be	required	to	satisfy	the	unit	test.	We	already	had	concluded	in	the
previous	chapter	that	function	modules	do	not	make	good	candidates	for	test
doubles,	but	let’s	explore	this	possibility	anyway.	Changes	to	the	subroutine	to
achieve	this	alternative	are	shown	in	Listing	8-3,	with	changes	from	Listing	8-2
highlighted	in	bold.

form	calculate_sales_tax	using	tax_rate_resolver

																																	type	funcname

																						changing	sale_items

																																	type	item_table.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.

				perform	get_sales_tax_rate	using	<sale_item>-

jurisdiction

																												changing	<sale_item>-

tax_rate.

				call	function	tax_rate_resolver

						exporting

								jurisdiction			=	<sale_item>-jurisdiction

						importing

								sales_tax_rate	=	<sale_item>-tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

		endloop.

endform.

Listing	8-3 Refactoring	alternative	1:	subroutine	changed	to	accept	name	of	function	module	to	determine
tax	rate

Notice	that	depended-on	subroutine	get_sales_tax_rate	has	been	replaced	by
a	call	to	the	name	of	a	function	module	provided	through	the	signature	of	the
subroutine.	Subroutine	calculate_sales_tax	no	longer	is	dependent	on	subroutine
get_sales_tax_rate	but	instead	is	now	dependent	on	a	function	module	whose
name	is	provided	by	the	caller.

One	question	that	arises	is	this:	Now	that	the	designation	of	this	depended-on



component	is	being	supplied	through	the	signature	of	the	subroutine,	does	it
mean	that	its	associated	input	shifts	from	being	indirect	input	to	direct	input?
The	answer	is	a	resounding	“No!”	Whereas	the	name	of	the	depended-on
component	represents	direct	input	to	the	subroutine,	a	value	coming	in	“through
the	front	door,”	the	subroutine	still	must	perform	a	specific	action	to	acquire	that
input	by	calling	that	depended-on	component,	meaning	that	the	input	provided
by	the	depended-on	component	still	constitutes	indirect	input.

However,	this	does	represent	an	example	of	what	is	known	as	dependency
injection.	With	dependency	injection,	a	called	procedure	is	provided,	through	its
signature,	with	the	names	of	or	references	to	components	it	is	to	use	for	its	own
processing.	Essentially,	the	depended-on	components	called	by	a	procedure	–	its
dependencies	–	are	injected	into	the	procedure	through	its	signature.

Using	a	function	module	in	this	way	may	be	considered	better	than	when
subroutine	calculate_sales_tax	was	dependent	on	subroutine	get_sales_tax_rate,
but	it	does	present	some	exposures,	as	noted	in	the	previous	chapter.	For	one,
neither	the	syntax	checker	nor	the	extended	program	check	is	able	to	determine
whether	this	dependency	is	valid	since	it	now	represents	a	dynamic	call	to	a
function	module.2	In	addition,	although	one	function	module	name	can	be
provided	for	the	production	path	and	a	different	function	module	name	for	the
unit	test	path,	both	of	these	corresponding	function	modules	would	need	to	have
been	defined	with	matching	parameters	which,	again,	cannot	be	checked	during
syntax	check	or	extended	program	check.	Furthermore,	the	call	cannot	be
checked	for	validity	through	the	syntax	checker;	if	the	named	function	module
does	not	exist	at	runtime,	then	class-based	exception
CX_SY_DYN_CALL_ILLEGAL_FUNC	would	be	raised.	In	short,	it	leaves
much	up	to	the	diligence	of	the	programmer	to	insure	that	both	the	production
path	and	the	automated	unit	test	path	for	this	program	will	execute	correctly.

Alternative	2
Another	alternative,	also	using	the	dependency	injection	technique,	is	to	pass	the
name	of	a	subroutine	to	be	dynamically	called,	as	shown	in	Listing	8-4,	with
changes	from	Listing	8-2	highlighted	in	bold.

form	calculate_sales_tax	using	tax_rate_resolver

																																	type	formname

																						changing	sale_items

																																	type	item_table.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.



				perform	(tax_rate_resolver)	in	program

this_program_name

																															using	<sale_item>-

jurisdiction

																												changing	<sale_item>-

tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

		endloop.

endform.

Listing	8-4 Refactoring	alternative	2:	subroutine	changed	to	accept	name	of	some	other	subroutine	to
determine	tax	rate

Here	we	have	refactored	subroutine	calculate_sales_tax	such	that	its
signature	accepts	a	reference	to	the	name	of	a	subroutine	that	can	provide	the
service	of	getting	the	associated	sales	tax.	This	way,	the	production	path	could
provide	the	value	GET_SALES_TAX_RATE	on	the	call	to	subroutine
calculate_sales_tax,	and	the	automated	unit	test	path	could	provide	the	value	of
some	other	subroutine	intended	to	be	used	only	for	the	purpose	of	unit	testing.
Again,	subroutine	calculate_sales_tax	no	longer	is	dependent	on	subroutine
get_sales_tax_rate	but	instead	is	now	dependent	on	a	subroutine	whose	name	is
provided	by	the	caller.

This	alternative	also	has	its	exposures.	Since	the	name	of	the	subroutine	to	be
called	is	now	provided	as	a	parameter,	it	constitutes	a	dynamic	subroutine	call.
This	means	the	call	cannot	be	checked	for	validity	through	the	syntax	checker;	if
the	named	subroutine	does	not	exist	at	runtime,	then	class-based	exception
CX_SY_DYN_CALL_ILLEGAL_FORM	would	be	raised.	In	addition,	the
subroutine	to	be	used	during	testing	would	exist	in	this	same	program	along	with
other	subroutines	used	for	the	production	path,	meaning	the	program	would
contain	code	used	solely	for	the	purpose	of	automated	unit	testing,	emanating	the
noxious	odor	of	For	Tests	Only,3	one	of	the	more	putrid	variations	of	the	smell
Test	Logic	in	Production.4

Alternative	3
Yet	another	alternative,	also	using	the	dependency	injection	technique,	is	to	pass
the	reference	to	a	class	to	be	called,	as	shown	in	Listing	8-5,	with	changes	from
Listing	8-2	highlighted	in	bold.

interface	tax_rate_resolvable.



		methods	get_tax_rate	importing	jurisdiction

																									type	jurisdiction

																							returning	value(rate)

																									type	tax_rate.

endinterface.

		o

		o

class	tax_rate_resolver	definition.

		public	section.

				interfaces	tax_rate_resolvable.

				aliases	get_tax_rate

								for	tax_rate_resolvable~get_tax_rate.

endclass.

class	tax_rate_resolver	implementation.

		method	get_tax_rate.

				o

				o

		endmethod.

endclass.

		o

		o

form	calculate_sales_tax	using	tax_rate_resolver

																																	type	ref	to

tax_rate_resolvable

																						changing	sale_items

																																	type	item_table.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.

				perform	get_sales_tax_rate	using	<sale_item>-

jurisdiction

																												changing	<sale_item>-

tax_rate.

				call	method	tax_rate_resolver->get_tax_rate

						exporting

								jurisdiction	=	<sale_item>-jurisdiction

						receiving

								rate									=	<sale_item>-tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.



		endloop.

endform.

Listing	8-5 Refactoring	alternative	3:	subroutine	changed	to	accept	interface	reference.	Corresponding
class	reference	is	used	to	determine	tax	rate

Here	we	have	refactored	subroutine	calculate_sales_tax	such	that	its
signature	accepts	an	interface	reference,	one	to	hold	a	reference	to	the	instance
of	a	class	implementing	that	interface	to	provide	the	service	of	getting	the
associated	sales	tax.	This	way,	the	production	path	could	provide	on	the	call	to
subroutine	calculate_sales_tax	the	reference	to	an	instance	of	class
tax_rate_resolver,	one	that	implements	interface	tax_rate_resolvable,	and	the
automated	unit	test	path	could	provide	the	reference	to	the	instance	of	some
other	class	implementing	interface	tax_rate_resolvable,	one	for	which	its
definition	statement	might	even	indicate	FOR	TESTING,	to	be	used	only	for	the
purpose	of	unit	testing.	Again,	subroutine	calculate_sales_tax	no	longer	is
dependent	on	subroutine	get_sales_tax_rate	but	instead	is	now	dependent	on	an
interface	reference	provided	by	the	caller.

Though	it	has	similarities	with	the	alternative	using	a	function	module	as
shown	in	Listing	8-3,	this	alternative	does	not	carry	with	it	the	same	baggage
associated	with	the	previous	alternatives	using	dependency	injection.	It	can	be
statically	checked	via	both	the	syntax	checker	and	the	extended	program	check.
It	also	uses	the	object-oriented	principle	of	polymorphism	in	accepting	a
reference	to	an	interface,	which	necessarily	would	need	to	hold	an	actual
reference	to	a	class	implementing	that	interface,	enabling	a	reference	of	any	class
implementing	this	interface	to	be	provided	through	dependency	injection	by	the
caller	of	the	subroutine.

So	what’s	the	problem	with	this	alternative?	Simply	this:	The	ABAP
statement	documentation	for	release	7.5	includes	the	following	bullet	point
under	the	associated	Notes	for	the	USING	clause	of	the	PERFORM	statement:

“When	passing	an	actual	parameter	to	a	USING	parameter	typed	as	a
reference	variable,	an	up	cast	is	not	possible.”5

This	bullet	point	is	as	clear	as	mud.	To	appreciate	its	full	impact,	it	is
necessary	to	understand	what	SAP	means	by	an	up	cast,	which	is	this:

If	the	static	type	of	the	target	variable	is	less	specific	or	the	same	as	the
static	type	of	the	source	variable,	assignment	is	always	possible.	The
name	up	cast	arises	from	the	fact	that	the	movement	within	the
inheritance	space	is	upwards.	…	This	includes	…	passes	from	actual	to



formal	parameters.6

Accordingly,	an	up	cast	on	a	USING	clause	of	a	PERFORM	statement
would	imply	either	(1)	a	reference	variable	typed	on	the	subroutine	signature	as
a	superclass	holding	an	actual	reference	to	one	of	its	subclasses	or	(2)	a	reference
variable	typed	on	the	subroutine	signature	as	an	interface	holding	a	reference	to
a	class	implementing	that	interface.	It	seems	this	bullet	point	is	indicating	that
such	up	casting	during	program	execution	is	not	possible.

To	put	into	better	perspective	this	idea	of	using	up	cast	with	a	parameter
defined	by	a	subroutine	signature,	consider	the	following	example:	A	class	is
defined	named	animal	and	has	a	method	named	speak.	Another	class	is	defined
named	dog,	has	its	own	method	named	fetch,	and	also	inherits	from	class	animal.
An	instance	of	class	dog	should	be	able	to	be	used	anywhere	an	instance	of	class
animal	is	expected,	but	in	such	cases,	the	dog	would	be	regarded	simply	as	an
animal.	This	is	what	is	meant	by	up	casting	–	the	dog	may	play	the	part	of	an
animal	because	a	dog	is	an	animal.	Method	speak	of	the	dog	may	be	invoked,
perhaps	resulting	in	the	sound	"woof"	to	be	produced,	because	the	animal	class
has	a	method	named	speak	that	the	dog	class	inherits;	however,	the	dog's	method
fetch	cannot	be	invoked	because	the	animal	class	provides	no	such	method.
Accordingly,	a	subroutine	defined	as

form	visit_veterinarian	using	animal	type	ref	to

animal.

		o

		o

endform.

should	be	able	to	be	called	using	the	statement

perform	visit_veterinarian	using	dog.

In	this	example,	the	actual	parameter	dog	used	on	the	call	to	the	subroutine	is
being	up	cast	to	an	animal	as	defined	in	the	signature	of	the	subroutine.
Essentially,	the	subroutine	visit_veterinarian	accommodates	through	its	signature
that	all	dogs	are	animals,	but	not	all	animals	are	dogs.

If	indeed	the	intention	behind	the	bullet	point	noted	in	the	preceding	text	is
that	up	casting	is	not	possible,	then	perhaps	a	better	way	to	have	suggested	that
restriction	would	be	to	conclusively	state	that	such	reference	variables	on
USING	clauses	of	PERFORM	statements	do	not	support	the	object-oriented



principle	of	polymorphism.	If	so,	this	completely	undermines	the	alternative
described	in	Listing	8-5.	But	during	my	research,	I	have	found	that	the
alternative	illustrated	in	Listing	8-5	works	just	fine	in	a	release	7.4	ABAP
environment.	Indeed,	in	the	counterpart	documentation	for	that	release,7	there	is
no	corresponding	bullet	point	indicating	any	such	restriction	with	reference
variables	on	USING	clauses	of	PERFORM	statements.

Although	a	7.5	environment	was	not	available	to	me	on	which	to	test	this,
Paul	Hardy	has	confirmed	to	me	that	indeed	a	7.5	system	causes	syntax	errors
under	these	circumstances,	which	would	be	catastrophic	to	sites	upon	finding
their	programs	using	this	feature	no	longer	work	after	upgrading	from	7.4	or
earlier	to	7.5.	This	is	the	first	time	I	have	ever	heard	of	an	instance	where	SAP
backward	compatibility	is	not	being	supported	in	a	subsequent	release	–	a
chilling	prospect.

Using	Test	Doubles
A	better	way	is	to	redesign	the	code	without	perpetuating	the	use	of	subroutines
so	that	it	is	capable	of	using	a	test	double	that	can	be	statically	checked	for	its
relationship	to	the	component	for	which	it	is	doubling.	This	can	be	facilitated	by
first	refactoring	the	code	in	the	following	way:

Encapsulate	the	processing	required	for	resolving	the	correct	tax	rate	into
either	a	base	class	that	defines	its	own	public	methods	or	a	class	that	uses	an
interface	to	provide	its	public	method	definitions.
Encapsulate	subroutine	calculate_sales_tax	into	a	class	having	a	method
whose	signature	accepts	a	reference	to	the	base	class	or	interface	defined	in
the	previous	bullet	item.

Why	would	it	be	necessary	to	define	a	base	class	or	an	interface	to	provide
the	public	methods	of	the	class	resolving	the	correct	tax	rate?	It	is	so	that	the
method	defined	for	the	class	that	calculates	the	sales	tax	can	accept	through	its
signature	a	reference	to	any	class	that	extends	that	base	class	or	implements	that
interface.	Once	it	is	capable	of	accepting	a	reference	to	more	than	just	a	single
class,	then	it	can	be	called	by	different	callers,	each	one	sending	its	own	version
of	a	class	instance	to	be	used	to	resolve	the	correct	tax	rate.	The	called	method
then	regards	the	reference	provided	through	its	signature	simply	as	a	class
capable	of	providing	the	methods	defined	by	the	base	class	or	interface,	unaware
of	the	actual	class	being	used	to	provide	that	service.	With	such	a	design,	it
becomes	possible	to	statically	check	that	a	test	double	class	provides
implementations	for	the	same	method	declarations	and	their	respective



signatures	as	the	class	for	which	it	is	doubling.
Not	only	that,	but	a	test	double,	when	defined	as	a	local	class	in	the	same

program	containing	other	subroutines,	can	be	restricted	for	use	only	during
automated	unit	testing	by	including	the	FOR	TESTING	clause	in	its	definition.
Compare	this	with	the	dynamic	subroutine	call	scenario	described	in	the
previous	section	which	was	identified	as	emanating	the	smell	Test	Logic	in
Production.	There	is	no	way	to	designate	a	subroutine	such	that	it	is	restricted
only	for	use	during	unit	testing,	but	local	classes	can	be	so	designated	and	their
use	in	the	production	path,	whether	intentional	or	accidental,	would	be	detected
and	flagged	as	invalid	by	the	compiler.	Since	the	use	in	the	production	path	of
any	local	classes	defined	in	the	same	program	and	marked	as	FOR	TESTING
would	be	flagged	as	invalid	by	the	compiler,	their	presence	does	not	cause	the
program	to	spew	forth	the	toxic	smell	of	Test	Logic	in	Production.

With	this	design,	the	production	path	can	provide	the	instance	of	a	class	to
resolve	the	sales	tax	rate	required	during	normal	execution,	and	the	unit	test	path
can	provide	an	instance	applicable	to	unit	testing.	This	might	sound	very
complicated,	so	let’s	explore	this	further	in	order	to	clarify	it.	We’ll	cover	how
this	is	implemented	using	two	scenarios:	the	first	scenario	illustrates	how	this	is
implemented	using	the	base	class	variation;	the	second	illustrates	the	interface
variation.

Test	Double	Using	Base	Class
The	base	class	scenario	consists	of	a	single	base	class,	also	known	as	a
superclass,	defining	the	production	path	processing,	and	a	derived	class,	also
known	as	a	subclass,	inheriting	from	the	base	class	and	defining	the	processing
to	be	used	with	the	automated	unit	test	path.	Figure	8-1	shows	the	UML	diagram
of	the	required	components	with	the	base	class	scenario.



Figure	8-1 UML	diagram	of	the	required	components	with	the	base	class	scenario

This	UML	diagram	follows	the	general	conventions	used	for	modeling	the
components	of	object-oriented	entities	interacting	with	each	other.8

At	the	top	of	the	UML	diagram	is	the	base	class	named
salesTaxRateResolver	providing	the	definition	and	implementation	for	a	method
named	resolveSalesTaxRate,	which	would	be	implemented	to	provide	the
processing	applicable	to	the	production	path.

Beneath	that	is	the	definition	for	a	subclass	named
salesTaxRateResolverTestDouble.	The	subclass	is	shown	to	inherit	from	base
class	salesTaxRateResolver.	It	would	redefine	method	resolveSalesTaxRate	to
provide	an	implementation	applicable	to	the	automated	unit	test	path.

At	the	bottom	of	the	UML	diagram	is	a	class	named	salesTaxCalculator.	It	is
shown	to	define	a	public	method	named	calculateSalesTax,	the	signature	for
which	indicates	that	it	accepts	a	reference	to	class	salesTaxRateResolver	and	to	a
list	of	sales	items	of	type	itemTable.



Let’s	convert	all	this	into	ABAP	code.	First,	as	shown	in	Listing	8-6,	is	the
former	subroutine	calculate_sales_tax	as	it	looked	in	Listing	8-3	but	transformed
into	a	method	of	a	class	and	invoking	a	different	method	of	a	different	class	to
resolve	the	tax	rate,	with	changes	from	Listing	8-3	shown	highlighted	in	bold.

(in	class	definition	portion)

public	section.

		methods	calculate_sales_tax	importing

																																tax_rate_resolver

																																		type	ref	to

sales_tax_rate_resolver

																														changing

																																sale_items

																																		type	item_table.

(in	class	implementation	portion)

method	calculate_sales_tax.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.

				call	method	tax_rate_resolver-

>resolve_sales_tax_rate

						exporting

								jurisdiction			=	<sale_item>-jurisdiction

						importing

								sales_tax_rate	=	<sale_item>-tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

		endloop.

endmethod.

Listing	8-6 Subroutine	calculate_sales_tax	transformed	into	equivalent	method	of	a	class

Next,	as	shown	in	Listing	8-7,	is	the	definition	of	the	base	class	to	be	used
when	providing	the	service	of	resolving	the	sales	tax	rate	to	the	production	path.

class	sales_tax_rate_resolver	definition.

		public	section.

				methods	resolve_sales_tax_rate



						importing

								jurisdiction	type	jurisdiction

						exporting

								sales_tax_rate	type	rate.

endclass.

class	sales_tax_rate_resolver	implementation.

		method	resolve_sales_tax_rate.

				o

				o

				o

		endmethod.

endclass.

Listing	8-7 Base	class	used	to	resolve	sales	tax	rate	for	production	path

Method	resolve_sales_tax_rate	is	shown	with	no	specific	implementation.	It
may	require	reading	customized	tables	to	find	a	record	that	matches	the
jurisdiction	or	perhaps	even	invoking	methods	of	other	classes	to	correctly
resolve	the	sales	tax	rate.

Next,	as	shown	in	Listing	8-8,	is	the	definition	of	the	subclass	to	be	used
when	providing	the	service	of	resolving	the	sales	tax	rate	for	the	automated	unit
test	path.

class	sales_tax_rate_resolver_tstdbl	definition

																																					inheriting	from

																																							sales_tax_rate_resolver

																																					for	testing.

		public	section.

				constants	constant_sales_tax_rate	type	rate	value	'0.10'.

				methods	resolve_sales_tax_rate	redefinition.

endclass.

class	sales_tax_rate_resolver_tstdbl	implementation.

		method	resolve_sales_tax_rate.

				sales_tax_rate	=	constant_sales_tax_rate.

		endmethod.

endclass.

Listing	8-8 Subclass	used	to	resolve	sales	tax	rate	for	automated	unit	test	path

Notice	that	class	sales_tax_rate_resolver_tstdbl	inherits	from	class
sales_tax_rate_resolver	and	is	marked	“for	testing.”	Notice	also	it	indicates	that



it	redefines	method	resolve_sales_tax_rate,	which	is	shown	with	an
implementation	simply	returning	a	constant	sales	tax	rate	to	any	caller.

Note New	class	sales_tax_rate_resolver_tstdbl	corresponds	to	the	entity
named	salesTaxRateResolverTestDouble	in	the	UML	diagram	which	uses	the
lower	camel	case	spelling	convention	for	entity	names.	Such	UML	entity
names	do	not	transfer	easily	to	ABAP	names	for	two	reasons:

1)
UML	names	reflect	the	naming	convention	used	with	object-oriented
languages	such	as	Java,	languages	that	are	case-sensitive	to	entity	names.
ABAP	is	a	case-insensitive	language,	meaning	it	does	not	distinguish
between	upper-	and	lowercase	characters	used	with	entity	names.	While
it	is	easy	to	see	the	individual	words	composing	an	entity	name	using
lower	camel	case,	because	each	subsequent	word	starts	with	a	capital
letter,	such	names	become	indecipherable	and	hard	to	read	when
subjected	to	the	ABAP	pretty	printer,	which	would	convert	such	names
into	all	lowercase	or	all	uppercase	depending	on	the	pretty	printer	option
selected.	So	ABAP	names	usually	include	underscores	to	separate	words
of	an	entity	name,	making	the	name	longer.	Decide	for	yourself	which	of
the	following	two	names	is	easiest	to	understand	–	the	first	uses	lower
camel	case,	and	the	second	uses	all	lowercase:

	

salesTaxRateResolverTestDouble

salestaxrateresolvertestdouble

2)
Entity	names	defined	in	other	case-sensitive	languages	have	virtually	no
limit	to	their	length.	Comparable	entity	names	defined	in	ABAP	are
limited	to	30	characters.	Accordingly,	ABAP	entity	names	often	have	to
use	cryptic	abbreviations	out	of	necessity,	further	obscuring	their	names.
In	this	case,	it	was	necessary	to	reduce	“test_double”	down	to	“tstdbl”	to
stay	within	the	30-character	name	limit.

	

Let’s	put	everything	together	into	an	ABAP	report	that	illustrates	both	the
production	path	and	the	automated	unit	test	path	and	how	each	path	provides	a
different	instance	to	method	calculate_sales_tax	for	resolving	the	applicable
sales	tax	rate,	as	shown	in	Listing	8-9.

report	zyx.



class	sales_tax_rate_resolver	definition.

		public	section.

				methods	resolve_sales_tax_rate

						importing

								jurisdiction	type	jurisdiction

						exporting

								sales_tax_rate	type	rate.

endclass.

class	sales_tax_rate_resolver	implementation.

		method	resolve_sales_tax_rate.

				o

				o

				o

		endmethod.

endclass.

class	sales_tax_rate_resolver_tstdbl	definition

																																					inheriting	from

																																							sales_tax_rate_resolver

																																					for	testing.

		public	section.

				constants	constant_sales_tax_rate	type	rate	value	'0.10'.

				methods	resolve_sales_tax_rate	redefinition.

endclass.

class	sales_tax_rate_resolver_tstdbl	implementation.

		method	resolve_sales_tax_rate.

				sales_tax_rate	=	constant_sales_tax_rate.

		endmethod.

endclass.

class	sales_tax_calculator	definition.

		public	section.

				methods	calculate_sales_tax	importing

																																		tax_rate_resolver

																																				type	ref	to

sales_tax_rate_resolver

																																changing

																																		sale_items

																																				type	item_table.

endclass.



class	sales_tax_calculator	implementation.

		method	calculate_sales_tax.

				field-symbols	<sale_item>	type	item_row.

				loop	at	sale_items	assigning	<sale_item>.

						call	method	tax_rate_resolver->resolve_sales_tax_rate

								exporting

										jurisdiction			=	<sale_item>-jurisdiction

								importing

										sales_tax_rate	=	<sale_item>-tax_rate.

						<sale_item>-sales_tax	=	<sale_item>-price	*	<sale_item>-

tax_rate.

				endloop.

		endmethod.

endclass.

start-of-selection.

		perform	drive_process.

form	drive_process.

		data	sale_items	type	item_table.

		data	sales_tax_calculator	type	ref	to	sales_tax_calculator.

		data	sales_tax_rate_resolver	type	ref	to

sales_tax_rate_resolver.

		perform	get_sale_items	changing	sale_items.

		create	object	sales_tax_rate_resolver.

		create	object	sales_tax_calculator.

		call	method	sales_tax_calculator->	calculate_sales_tax

				exporting

						tax_rate_resolver	=	sales_tax_rate_resolver

				changing

						sale_items								=	sale_items.

		perform	produce_sales_item_report	using	sale_items.

endform.

form	get_sale_items	changing	sale_items	type	item_table.

		o

		o

endform.



form	produce_sales_item_report	using	sale_items.

		o

		o

endform.

class	sales_tax_calculator_tester	definition	for	testing.

		private	section.

				methods	calculate_sales_tax_tester	for	testing.

				methods	get_sale_items	changing	sale_items	type

item_table.

endclass.

class	sales_tax_calculator_tester	implementation.

		method	calculate_sales_tax_tester.

				data	sale_items	type	item_table.

				data	sales_tax_calculator	type	ref	to

sales_tax_calculator.

				data	sales_tax_rate_resolver	type	ref

																																			to

sales_tax_rate_resolver_tstdbl.

				field-symbols	<sale_item>	type	item_row.

				call	method	me->get_sale_items	changing	sale_items.

				create	object	sales_tax_rate_resolver.

				create	object	sales_tax_calculator.

				call	method	sales_tax_calculator->	calculate_sales_tax

						exporting

								tax_rate_resolver	=	sales_tax_rate_resolver

						changing

								sale_items								=		sale_items.

				loop	at	sale_items	assigning	<sale_item>.

						cl_abap_unit_assert=>assert_equals(

										act	=	<sale_item>-sales_tax

										exp	=	<sale_item>-sale_price

														*

sales_tax_rate_resolver_tstdbl=>constant_sales_tax_rate

								).

				endloop.

		endmethod.

		method	get_sale_items.

				o



				o

		endmethod.

endclass.

Listing	8-9 Production	path	and	automated	unit	test	path	illustrating	the	use	of	a	test	double	implemented	using	the	
class	variation

Notice	the	following	things	about	this	code:

1.
Class	sales_tax_rate_resolver_tstdbl	represents	the	test	double	for	class
sales_tax_rate_resolver.	It	defines	a	publicly	available	constant	named
constant_sales_tax_rate	indicating	the	rate	it	will	return	when	its	method
resolve_sales_tax_rate	is	called.	This	means	that	unit	test	method
calculate_sales_tax_tester	has	direct	access	to	the	rate	this	test	double	will
use.	Notice	that	the	call	made	by	unit	test	method	calculate_sales_tax_tester
to	method	assert_equals	of	class	cl_abap_unit_assert	is	setting	the	expected
value	using	this	constant.

	

2.
Subroutine	drive_process	defines	two	reference	variables:	one	for	an
instance	of	class	sales_tax_calculator	and	another	for	an	instance	of	class
sales_tax_rate_resolver.	It	creates	instances	into	each	of	these	reference
variables	prior	to	invoking	method	calculate_sales_tax	of	class
sales_tax_calculator.	Accordingly,	when	method	calculate_sales_tax	of	class
sales_tax_calculator	is	called	by	this	subroutine,	it	is	supplied	with	a
reference	to	an	instance	of	production	path	class	sales_tax_rate_resolver.

	

3.
Unit	test	method	sales_tax_calculator_tester	defines	two	local	reference
variables:	one	for	an	instance	of	class	sales_tax_calculator	and	another	for
an	instance	of	class	sales_tax_rate_resolver_tstdbl,	the	test	double	inheriting
from	class	sales_tax_rate_resolver.	It	creates	instances	into	each	of	these
reference	variables	prior	to	invoking	method	calculate_sales_tax	of	class
sales_tax_calculator.	Accordingly,	when	method	calculate_sales_tax	of	class
sales_tax_calculator	is	called	by	this	unit	test	method,	it	is	supplied	with	a
reference	to	an	instance	of	automated	unit	test	path	class
sales_tax_rate_resolver_tstdbl.

	

4.
The	signature	of	method	calculate_sales_tax	of	class	sales_tax_calculator
indicates	that	it	accepts	a	reference	to	class	sales_tax_rate_resolver,	meaning
that	a	reference	to	this	class	or	any	class	inheriting	from	this	class	may	be
provided	through	this	signature	parameter.	The	validity	of	this	reference	can

	



be	statically	checked	by	the	syntax	checker.	This	is	how	it	becomes	possible
to	provide	it	a	reference	to	an	instance	of	class	sales_tax_rate_resolver
during	the	production	path	but	to	provide	a	reference	to	an	instance	of	its
test	double,	class	sales_tax_rate_resolver_tstdbl,	during	the	automated	unit
test	path.

5.
Method	calculate_sales_tax	of	class	sales_tax_calculator	is	completely
unaware	that	there	is	either	a	production	path	or	an	automated	unit	test	path.
It	behaves	no	differently	for	either	of	these	executions.	It	is	oblivious	to	the
fact	that	it	has	been	directed	to	make	a	call	to	method	resolve_sales_tax_rate
using	an	instance	of	class	sales_tax_rate_resolver	during	execution	of	the
production	path	but	make	a	call	to	the	same	method	using	an	instance	of
class	sales_tax_rate_resolver_tstdbl	during	execution	of	the	automated	unit
test	path.	It	simply	is	provided	through	its	signature	the	component	on	which
it	depends.	Accordingly,	it	has	no	way	to	know	when	or	whether	it	is	being
tested.

	

6.
The	code	base	has	now	become	more	flexible	and	maintainable	due	simply
to	the	changes	to	accommodate	unit	testing.	How	so?	The	answer	is	that	it
now	becomes	possible	for	the	production	path	of	this	component	to	be
changed	quickly	and	easily	to	specify	a	different	class	to	provide	the	tax	rate
resolution	service.	When	the	code	was	composed	of	one	subroutine	calling
another,	as	shown	in	Listing	8-2,	it	would	require	a	change	to	the	calling
subroutine	to	change	the	name	of	the	called	one.

With	the	design	shown	in	Listing	8-9,	the	business	process	encapsulated
in	calling	method	sales_tax_calculator	no	longer	needs	to	change	simply	to
accommodate	a	change	to	the	way	the	sales	tax	rate	is	resolved.	Instead,	it
simply	is	provided	with	a	reference	to	a	different	instance	of	a	class	that	can
perform	this	service.

This	may	seem	insignificant	at	first,	but	it	means	that	the	production
path	of	the	program	now	has	the	flexibility	to	decide	at	runtime	which
instance	of	a	class	will	provide	this	tax	rate	resolution	service.

	

Test	Double	Using	Interface
The	interface	scenario	consists	of	two	classes	implementing	the	same	interface.
The	interface	defines	the	methods	to	be	implemented	by	both	of	the	classes,	and
each	class	would	need	to	implement	those	methods	according	to	the	role	it	plays.
One	class	would	implement	those	methods	to	provide	the	applicable	processing
for	the	production	path,	and	the	other,	the	test	double,	would	implement	those



methods	the	way	they	would	be	applicable	to	the	automated	unit	test	path.	Figure
8-2	shows	the	UML	diagram	of	the	required	components	with	the	interface
scenario.

Figure	8-2 UML	diagram	of	the	required	components	with	the	interface	scenario

At	the	top	of	the	UML	diagram	is	an	interface	named
salesTaxRateResolvable	providing	the	definition	for	a	method	named
resolveSalesTaxRate.

Beneath	that	are	definitions	for	two	classes:	salesTaxRateResolver	and
salesTaxRateResolverTestDouble.	Each	of	these	two	classes	is	shown	to
implement	interface	salesTaxRateResolvable,	which	means	that	each	class	needs
to	provide	its	own	implementation	for	method	resolveSalesTaxRate	defined	by



this	interface.	The	implementation	of	method	resolveSalesTaxRate	in	class
salesTaxRateResolver	would	provide	the	processing	applicable	to	the	production
path,	whereas	the	implementation	of	this	same	method	in	class
salesTaxRateResolverTestDouble	would	provide	the	processing	applicable	to	the
automated	unit	test	path.

At	the	bottom	of	the	UML	diagram	is	a	class	named	salesTaxCalculator.	It	is
shown	to	define	a	public	method	named	calculateSalesTax,	the	signature	for
which	indicates	that	it	accepts	a	reference	to	interface	salesTaxRateResolvable
and	to	a	list	of	sales	items	of	type	itemTable.

Let’s	convert	all	this	into	ABAP	code.	First,	as	shown	in	Listing	8-10,	is	the
former	subroutine	calculate_sales_tax	as	it	looked	in	Listing	8-3	but	transformed
into	a	method	of	a	class	and	invoking	a	different	method	of	a	different	class	to
resolve	the	tax	rate,	with	changes	from	Listing	8-3	shown	highlighted	in	bold.

(in	class	definition	portion)

public	section.

		methods	calculate_sales_tax	importing

																																tax_rate_resolver

																																		type	ref	to

sales_tax_rate_resolvable

																														changing

																																sale_items

																																		type	item_table.

(in	class	implementation	portion)

method	calculate_sales_tax.

		field-symbols	<sale_item>	type	item_row.

		loop	at	sale_items	assigning	<sale_item>.

				call	method	tax_rate_resolver-

>resolve_sales_tax_rate

						exporting

								jurisdiction			=	<sale_item>-jurisdiction

						importing

								sales_tax_rate	=	<sale_item>-tax_rate.

				<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

		endloop.



endmethod.

Listing	8-10 Subroutine	calculate_sales_tax	transformed	into	equivalent	method	of	a	class

The	highlighting	indicates	how	this	new	class	differs	from	its	subroutine
counterpart,	but	we	had	seen	a	similar	transformation	to	a	class	by	this
subroutine	in	the	base	class	scenario	shown	by	Listing	8-6.	The	only	difference
between	Listing	8-6	and	Listing	8-10	is	the	type	used	with	the	importing
parameter	defined	for	method	calculate_sales_tax:	in	Listing	8-6	it	is	defined	as
type	ref	to	sales_tax_rate_resolver,	a	class,	but	in	Listing	8-10	it	is	defined	as
type	ref	to	sales_tax_rate_resolvable,	an	interface.

Next,	as	shown	in	Listing	8-11,	is	the	definition	of	the	interface	and	the
production	path	class	providing	the	service	of	resolving	the	sales	tax	rate.

interface	sales_tax_rate_resolvable.

		methods	resolve_sales_tax_rate

				importing

						jurisdiction	type	jurisdiction

				exporting

						sales_tax_rate	type	rate.

endinterface.

class	sales_tax_rate_resolver	definition.

		public	section.

				interfaces	sales_tax_rate_resolvable.

				aliases	resolve_sales_tax_rate

								for

sales_tax_rate_resolvable~resolve_sales_tax_rate.

endclass.

class	sales_tax_rate_resolver	implementation.

		method	resolve_sales_tax_rate.

				o

				o

				o

		endmethod.

endclass.

Listing	8-11 Interface	and	the	production	path	class	providing	the	service	of	resolving	the	sales	tax
rate

Next,	as	shown	in	Listing	8-12,	is	the	definition	of	the	automated	unit	test



path	class	providing	the	service	of	resolving	the	sales	tax	rate.

class	sales_tax_rate_resolver_tstdbl	definition

																																					for	testing.

		public	section.

				constants	constant_sales_tax_rate	type	rate	value

'0.10'.

				interfaces	sales_tax_rate_resolvable.

				aliases	resolve_sales_tax_rate

								for

sales_tax_rate_resolvable~resolve_sales_tax_rate.

endclass.

class	sales_tax_rate_resolver_tstdbl	implementation.

		method	resolve_sales_tax_rate.

				sales_tax_rate	=	constant_sales_tax_rate.

		endmethod.

endclass.

Listing	8-12 Automated	unit	test	path	class	providing	the	service	of	resolving	the	sales	tax	rate

The	implementations	shown	for	method	resolve_sales_tax_rate	in	class
sales_tax_rate_resolver,	shown	in	Listing	8-11,	and	in	class
sales_tax_rate_resolver_tstdbl,	shown	in	Listing	8-12,	are	identical	to	their
respective	counterparts	in	Listing	8-7	and	Listing	8-8.

Let’s	put	everything	together	into	an	ABAP	component	that	illustrates	both
the	production	path	and	the	automated	unit	test	path	and	how	each	path	provides
a	different	instance	to	method	calculate_sales_tax	for	resolving	the	applicable
sales	tax	rate,	as	shown	in	Listing	8-13.

report	zyx.

interface	sales_tax_rate_resolvable.

		methods	resolve_sales_tax_rate

				importing

						jurisdiction	type	jurisdiction

				exporting

						sales_tax_rate	type	rate.

endinterface.

class	sales_tax_rate_resolver	definition.



		public	section.

				interfaces	sales_tax_rate_resolvable.

				aliases	resolve_sales_tax_rate

								for

sales_tax_rate_resolvable~resolve_sales_tax_rate.

endclass.

class	sales_tax_rate_resolver	implementation.

		method	resolve_sales_tax_rate.

				o

				o

				o

		endmethod.

endclass.

class	sales_tax_rate_resolver_tstdbl	definition

																																					for	testing.

		public	section.

				constants	constant_sales_tax_rate	type	rate	value

'0.10'.

				interfaces	sales_tax_rate_resolvable.

				aliases	resolve_sales_tax_rate

								for

sales_tax_rate_resolvable~resolve_sales_tax_rate.

endclass.

class	sales_tax_rate_resolver_tstdbl	implementation.

		method	resolve_sales_tax_rate.

				sales_tax_rate	=	constant_sales_tax_rate.

		endmethod.

endclass.

class	sales_tax_calculator	definition.

		public	section.

				methods	calculate_sales_tax	importing

																																		tax_rate_resolver

																																				type	ref	to

sales_tax_rate_resolvable

																																changing

																																		sale_items

																																				type	item_table.

endclass



class	sales_tax_calculator	implementation.

		method	calculate_sales_tax.

				field-symbols	<sale_item>	type	item_row.

				loop	at	sale_items	assigning	<sale_item>.

						call	method	tax_rate_resolver-

>resolve_sales_tax_rate

								exporting

										jurisdiction			=	<sale_item>-jurisdiction

								importing

										sales_tax_rate	=	<sale_item>-tax_rate.

						<sale_item>-sales_tax	=	<sale_item>-price	*

<sale_item>-tax_rate.

				endloop.

		endmethod.

endclass.

start-of-selection.

		perform	drive_process.

form	drive_process.

		data	sale_items	type	item_table.

		data	sales_tax_calculator	type	ref	to

sales_tax_calculator.

		data	sales_tax_rate_resolvable	type	ref	to

sales_tax_rate_resolvable.

		perform	get_sale_items	changing	sale_items.

		create	object	sales_tax_rate_resolvable

											type	sales_tax_rate_resolver.

		create	object	sales_tax_calculator.

		call	method	sales_tax_calculator->

calculate_sales_tax

				exporting

						tax_rate_resolver	=	sales_tax_rate_resolvable

				changing

						sale_items								=		sale_items.

		perform	produce_sales_item_report	using	sale_items.

endform.

form	get_sale_items	changing	sale_items	type

item_table.



		o

		o

endform.

form	produce_sales_item_report	using	sale_items.

		o

		o

endform.

class	sales_tax_calculator_tester	definition	for

testing.

		private	section.

				methods	calculate_sales_tax_tester	for	testing.

				methods	get_sale_items	changing	sale_items	type

item_table.

endclass.

class	sales_tax_calculator_tester	implementation.

		method	calculate_sales_tax_tester.

				data	sale_items	type	item_table.

				data	sales_tax_calculator	type	ref	to

sales_tax_calculator.

				data	sales_tax_rate_resolvable	type	ref	to

sales_tax_rate_resolvable.

				field-symbols	<sale_item>	type	item_row.

				call	method	me->get_sale_items	changing	sale_items.

				create	object	sales_tax_rate_resolvable

													type	sales_tax_rate_resolver_tstdbl.

				create	object	sales_tax_calculator.

				call	method	sales_tax_calculator->

calculate_sales_tax

						exporting

								tax_rate_resolver	=	sales_tax_rate_resolvable

						changing

								sale_items								=		sale_items.

				loop	at	sale_items	assigning	<sale_item>.

						cl_abap_unit_assert=>assert_equals(

										act	=	<sale_item>-sales_tax

										exp	=	<sale_item>-sale_price

														*



sales_tax_rate_resolver_tstdbl=>constant_sales_tax_rate

								).

				endloop.

		endmethod.

		method	get_sale_items.

				o

				o

		endmethod.

endclass.

Listing	8-13 Production	path	and	automated	unit	test	path	illustrating	the	use	of	a	test	double
implemented	using	the	interface	variation

Notice	the	following	things	about	this	code:

1.
Class	sales_tax_rate_resolver_tstdbl	represents	the	test	double	for	class
sales_tax_rate_resolver.	It	defines	a	publicly	available	constant	named
constant_sales_tax_rate	indicating	the	rate	it	will	return	when	its	method
resolve_sales_tax_rate	is	called.	This	means	that	unit	test	method
calculate_sales_tax_tester	has	direct	access	to	the	rate	this	test	double	will
use.	Notice	that	the	call	made	by	unit	test	method	calculate_sales_tax_tester
to	method	assert_equals	of	class	cl_abap_unit_assert	is	setting	the	expected
value	using	this	constant.	This	is	identical	to	what	we	saw	with	the	base
class	variation.

	

2.
Subroutine	drive_process	creates	into	its	local	variable	sales_tax_collector
an	instance	of	class	sales_tax_calculator.	It	also	creates	into	its	local	variable
defined	as	reference	to	interface	sales_tax_rate_resolvable	an	instance	of
production	path	class	sales_tax_rate_resolver.	Accordingly,	when	method
calculate_sales_tax	of	class	sales_tax_calculator	is	called	by	this	subroutine,
it	is	supplied	with	a	reference	to	an	instance	of	production	path	class
sales_tax_rate_resolver.

	

3.
Unit	test	method	sales_tax_calculator_tester	creates	into	its	local	variable
sales_tax_collector	an	instance	of	class	sales_tax_calculator,	the	same	as	is
done	by	subroutine	drive_process.	It	also	creates	into	its	local	variable
defined	as	reference	to	interface	sales_tax_rate_resolvable	not	an	instance	of
production	path	class	sales_tax_rate_resolver	but	an	instance	of	automated
unit	test	path	class	sales_tax_rate_resolver_tstdbl.	Accordingly,	when
method	calculate_sales_tax	of	class	sales_tax_calculator	is	called	by	this

	



unit	test	method,	it	is	supplied	with	a	reference	to	an	instance	of	automated
unit	test	path	class	sales_tax_rate_resolver_tstdbl.

4.
The	signature	of	method	calculate_sales_tax	of	class	sales_tax_calculator
indicates	that	it	accepts	a	reference	to	interface	sales_tax_rate_resolvable,
meaning	that	a	reference	to	any	class	implementing	this	interface	may	be
provided	through	this	signature	parameter.	The	validity	of	this	reference	can
be	statically	checked	by	the	syntax	checker.	This	is	how	it	becomes	possible
to	provide	a	reference	to	an	instance	of	class	sales_tax_rate_resolver	during
the	production	path	but	to	provide	a	reference	to	an	instance	of	its	test
double,	class	sales_tax_rate_resolver_tstdbl,	during	the	automated	unit	test
path.

	

5.
Method	calculate_sales_tax	of	class	sales_tax_calculator	is	completely
unaware	that	there	is	either	a	production	path	or	an	automated	unit	test	path.
It	behaves	no	differently	for	either	of	these	executions.	It	is	oblivious	to	the
fact	that	it	has	been	directed	to	make	a	call	to	method	resolve_sales_tax_rate
using	an	instance	of	class	sales_tax_rate_resolver	during	execution	of	the
production	path	but	make	a	call	to	the	same	method	using	an	instance	of
class	sales_tax_rate_resolver_tstdbl	during	execution	of	the	automated	unit
test	path.	It	simply	is	provided	through	its	signature	the	component	on	which
it	depends.	Accordingly,	it	has	no	way	to	know	when	or	whether	it	is	being
tested.	This	also	is	identical	to	what	we	saw	with	the	base	class	variation.

	

Categories	of	Test	Doubles
Test	doubles	are	categorized	by	the	specific	purpose	they	serve.	The	general
categories	are	these:	input	test	doubles	and	output	test	doubles.	That	is,	test
doubles	generally	provide	the	service	of	supplying	input	to	or	accepting	output
from	a	component	being	tested.	Indeed,	the	kind	of	input	and	output	associated
with	test	doubles	is	known	as	indirect	input	and	output.	The	distinction	is
important	because	it	implies	that	the	code	under	test	is	making	its	own	request	to
acquire	input	for	its	own	use	or	is	making	its	own	request	to	send	output	to	a
component	capable	of	accepting	it.	It	distinguishes	indirect	input	and	output
from	the	direct	input	and	output	exchanged	through	the	signature	of	the
component	under	test.

Gerard	Meszaros	has	defined	the	following	terms	to	describe	the	specific
types	of	test	doubles9:



Dummy	object
A	dummy	object	test	double	represents	an	object	that	is	defined	but	not

intended	to	be	used	in	any	meaningful	way.	Often	it	represents	an	object
instantiated	for	the	purpose	of	satisfying	the	need	to	specify	a	type-compatible
non-optional	parameter	defined	for	a	method	signature.	Meszaros	notes	in	his
explanation	of	a	dummy	object	that	it	is	not	the	same	as	a	null	object,	because
a	null	object	is	used	to	provide	do-nothing	behavior,	whereas	a	dummy	object
is	not	intended	to	be	used	at	all.	Accordingly,	it	represents	neither	input	nor
output	test	double.

Test	stub
A	test	stub	is	an	object	intended	to	provide	indirect	input	to	a	component

under	test	when	the	component	under	test	invokes	its	methods.	It	enables
forcing	the	code	under	test	to	traverse	a	specific	path	based	on	the	input
received	from	the	test	stub.	One	variation	of	test	stub	is	known	as	a
Responder10	which	is	capable	of	providing	either	valid	or	invalid	input
through	the	call	signature.	Another	variation	is	known	as	a	Saboteur11	which
is	capable	of	throwing	exceptions	for	the	purpose	of	testing	whether	the	caller
is	capable	of	handling	them	appropriately.

Test	spy
A	test	spy	is	an	object	intended	to	accept	indirect	output	from	a	component

under	test	when	the	component	under	test	invokes	its	methods.	It	is	intended
to	record	the	indirect	output	sent	to	it	by	the	code	under	test.	Once	the	code
under	test	has	completed	its	processing,	the	test	spy	can	be	queried	to
determine	whether	it	had	received	the	expected	output	from	the	code	under
test.	Often	the	test	spy	will	contain	its	own	unique	methods	to	be	invoked
where	it	will	perform	its	own	automated	unit	testing	assertions	upon	the
output	it	had	or	had	not	received	from	the	code	under	test.

Mock	object
A	mock	object	is	an	object	intended	to	accept	indirect	output	from	a
component	under	test	when	the	component	under	test	invokes	its	methods.	It
is	intended	to	record	the	sequence	of	calls	made	to	its	methods.	Once	the	code
under	test	has	completed	its	processing,	the	mock	object	can	be	queried	to
determine	whether	it	had	received	from	the	code	under	test	the	calls	to	its
methods	the	expected	number	of	times	and	in	the	expected	sequence.	Usually
it	will	contain	its	own	unique	methods	to	be	invoked	where	it	will	perform	its
own	automated	unit	testing	assertions	upon	the	sequence	of	method	calls,	but
it	differs	from	the	test	spy	in	that	it	is	not	validating	output	received	but
instead	the	sequence	and	number	of	calls	made	to	its	methods.



There	are	three	variations	of	the	mock	object:	strict,	lenient,	and	very
lenient.	A	strict	mock	object	will	pass	the	unit	test	only	when	the	calls	to	its
methods	were	made	in	the	correct	sequence	and	for	the	expected	number	of
times	and	there	were	no	calls	to	any	of	its	methods	not	expected	to	be	called.
A	lenient	mock	object	will	allow	the	test	to	pass	so	long	as	its	methods
expected	to	be	called	were	called	the	expected	number	of	times,	regardless	of
their	sequence.	A	very	lenient	mock	object	will	allow	the	test	to	pass	so	long
as	its	methods	expected	to	be	called	were	called	the	expected	number	of	times,
regardless	of	their	sequence	and	despite	unexpected	calls	made	to	its	other
methods.

Fake	object
A	fake	object	is	an	object	intended	to	provide	indirect	input	to	or	accept

indirect	output	from	a	component	under	test	when	the	component	under	test
invokes	its	methods.	Typically	it	is	used	to	replace	the	functionality	of	a	real
indirect	input	or	output	component	but	using	a	simpler	implementation.	Often
it	is	used	to	substitute	for	a	depended-on	component	that	runs	too	slowly	for
the	purposes	of	unit	testing	or	one	that	is	not	available	in	the	testing
environment.	Its	purpose	is	not	so	much	to	facilitate	providing	input	or
accepting	output	enabling	test	validation	as	it	is	to	provide	the	automated	unit
test	a	lightweight	component	to	replace	one	that	is	not	practical	for	use	with
the	test.

Using	Test	Doubles	for	Indirect	Input
In	this	section,	we	will	explore	further	the	use	of	test	doubles	to	supply	indirect
input.	We	finished	the	previous	chapter	with	a	program	in	which	we	had
encapsulated	both	the	indirect	input	and	indirect	output	associated	with	a
subroutine	for	reporting	total	ticket	sales,	as	shown	in	Listing	7-9.

Listing	8-14	is	a	copy	of	Listing	7-9	but	with	a	unit	test	added	to	test	its
subroutine,	with	changes	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold



						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium



																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				create	object	ticket_sales_examiner.

				create	object	ticket_sales_reporter.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

		endmethod.

endclass.

Listing	8-14 Ticket	sales	program	with	unit	test



The	implementation	for	unit	test	method	report_total_tickets_sold	contains
the	bare	minimum	necessary	to	call	subroutine	report_total_tickets_sold	without
causing	a	runtime	exception.	It	is	not	much	of	a	test	because	it	has	no	assertion
to	determine	whether	the	called	subroutine	worked	as	expected.	If	we	were	to
run	this	unit	test	as	it	is	currently	defined,	we	should	find	that	the	unit	test	would
be	interrupted	during	its	execution	to	present	the	“Internal	Session	for	Isolated
Test	Class	Execution”	screen	upon	encountering	the	write	statement	in	the
encapsulated	indirect	output	processing	of	method	show_total_tickets_sold	of
the	instance	of	class	ticket_sales_reporter.	This	would	require	the	programmer	to
press	a	key	to	allow	the	unit	test	to	continue	on	to	its	completion,	an	issue	to	be
addressed	later.

For	now,	give	some	consideration	to	how	we	could	test	subroutine
report_total_tickets_sold.	What	type	of	test	could	we	write	that	would	offer
convincing	evidence	that	it	worked	properly?	It	accepts	two	direct	input
parameters	which	it	passes	along	on	the	call	to	method	get_total_tickets_sold,
providing	the	subroutine	with	indirect	input.	Then	it	passes	the	value	returned
from	that	method	along	on	the	call	to	method	show_total_tickets_sold,	the
receiver	of	the	indirect	output	produced	by	the	subroutine.	How	could	a	unit	test
invoking	this	subroutine	assert	that	the	number	of	tickets	sold	provided	by	the
indirect	input	was	correctly	passed	on	to	the	receiver	of	the	indirect	output?

At	this	point,	we	want	to	focus	on	the	encapsulated	indirect	input	provided
by	method	get_total_tickets_sold	of	the	instance	of	class	ticket_sales_examiner.
When	the	automated	unit	test	is	executed,	we	want	to	provide	a	test	double	for
this	class	so	that	the	unit	test	can	exert	control	over	the	subroutine,	insuring	that
the	subroutine	receives	a	value	for	number	of	tickets	sold	determined	by	the	unit
test	itself.	Since	the	subroutine	relies	on	a	global	variable	to	provide	the
reference	for	the	class	that	produces	this	indirect	input,	it	is	a	simple	matter	for
the	unit	test	to	preemptively	set	that	global	variable	with	a	reference	to	a	test
double.	So	first	we	will	need	to	define	a	test	double.	Listing	8-15	shows	how	we
would	create	one	using	a	base	class.

class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt

value	591.

				methods	get_total_tickets_sold	redefinition.

endclass.



class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.

Listing	8-15 Indirect	input	test	double	for	use	with	the	ticket	sales	program

The	new	test	double	class	is	named	ticket_sales_examiner_tstdbl	and
indicates	that	it	inherits	from	class	ticket_sales_examiner.	Notice	that	it	redefines
method	get_total_tickets_sold	defined	by	its	superclass.	Notice	also	that	its
implementation	of	this	redefined	method	is	to	set	the	number	of	tickets	sold	to	a
constant	defined	in	its	public	section.

Listing	8-16	shows	how	this	would	be	incorporated	into	the	program	and
made	available	by	the	unit	test	for	use	by	the	subroutine,	with	changes	from
Listing	8-14	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.



class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				methods	get_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.



form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

		endmethod.

endclass.

Listing	8-16 Indirect	input	test	double	incorporated	into	the	ticket	sales	program	and	made	available	by
the	unit	test	for	use	by	the	subroutine



Notice	that	the	unit	test	method	was	changed	to	include	the	type	of
ticket_sales_examiner	object	to	create.	Now	when	this	unit	test	method	is
executed,	it	will	create	into	global	variable	ticket_sales_examiner	an	instance	of
test	double	ticket_sales_examiner_tstdbl	and	then	call	subroutine
report_total_tickets_sold,	so	that	when	the	subroutine	invokes	method
get_total_tickets_sold	through	global	variable	ticket_sales_examiner,	it	will	be
invoking	a	method	of	class	ticket_sales_examiner_tstdbl.	The	method	of	this	test
double	has	been	implemented	always	to	return	the	value	assigned	to	its	constant
named	constant_tickets_sold,	shown	in	the	preceding	code	as	having	the	value
591.

Accordingly,	when	subroutine	report_total_tickets_sold	is	invoked	through
the	automated	unit	test	path,	it	will	receive	the	value	591	as	its	indirect	input
from	the	call	to	method	get_total_tickets_sold.	This	is	how	the	unit	test	has
exerted	control	over	the	subroutine	–	it	has	insured	that	the	subroutine	receives
its	indirect	input	through	a	test	double.	More	to	the	point,	the	indirect	input
received	by	the	subroutine	from	the	test	double	–	the	value	591	for	total	ticket
sales	–	also	is	a	value	directly	available	to	the	unit	test	through	a	public	constant
defined	by	the	test	double.	This	means	that	the	unit	test	not	only	has	controlled
how	the	subroutine	receives	its	indirect	input	but	also	is	aware	of	what	the
indirect	input	value	is.	Meanwhile,	the	production	path	of	this	program	remains
unaffected,	and	the	subroutine	gets	whatever	value	of	total	ticket	sales	is
supplied	to	it	by	the	instance	of	class	ticket_sales_examiner	instantiated	during
the	start-of-selection	event	block.

This	illustrates	an	example	of	the	use	of	Back	Door	Manipulation.12	The	unit
test	method	has	gone	through	the	back	door	to	set	the	value	of	global	variable
ticket_sales_examiner	used	by	the	subroutine	prior	to	calling	it	because	there	is
no	way	to	provide	this	to	the	subroutine	via	its	signature	–	the	front	door.

Even	though	the	unit	test	defined	by	Listing	8-16	still	does	not	yet	make	any
assertions	on	the	behavior	of	subroutine	report_total_tickets_sold,	the	program
has	moved	a	step	closer	to	being	designed	for	testability.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	nine	exercises	associated	with
workbook	Section	14:	ABAP	Unit	Testing	301	–	Introducing	a	Test	Double
for	Input.



Using	Test	Doubles	for	Indirect	Output
In	this	section,	we	will	explore	further	the	use	of	test	doubles	to	supply	indirect
output.	We	finished	the	preceding	section	with	the	ticket	sales	program	changed
to	provide	both	an	indirect	input	test	double	and	a	unit	test	method	to	invoke	its
subroutine,	as	shown	in	Listing	8-16.

At	this	point,	we	want	to	focus	on	the	encapsulated	indirect	output	received
by	method	show_total_tickets_sold	of	the	instance	of	class	ticket_sales_reporter.
When	executed	as	is,	the	unit	test	would	be	interrupted	to	present	the	“Internal
Session	for	Isolated	Test	Class	Execution”	screen	upon	encountering	the	write
statement	in	the	encapsulated	indirect	output	processing	of	method
show_total_tickets_sold	of	the	instance	of	class	ticket_sales_reporter.	To	prevent
this,	we	want	to	provide	a	test	double	for	this	class	so	that	the	unit	test	can	exert
control	over	the	subroutine,	insuring	that	the	subroutine	sends	the	number	of
tickets	sold	to	a	receiver	determined	by	the	unit	test	itself,	one	that	will	not
contain	a	write	statement	to	interrupt	its	execution.	Since	the	subroutine	relies	on
a	global	variable	to	provide	the	reference	for	the	class	that	receives	this	indirect
output,	it	is	a	simple	matter	for	the	unit	test	to	preemptively	set	that	global
variable	with	a	reference	to	a	test	double.	So	first	we	will	need	to	define	a	test
double.	Listing	8-17	shows	how	we	would	create	one	using	a	base	class.

class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

		endmethod.

endclass.

Listing	8-17 Indirect	output	test	double	for	use	with	the	ticket	sales	program

The	new	test	double	class	is	named	ticket_sales_reporter_tstdbl	and	indicates
that	it	inherits	from	class	ticket_sales_reporter.	Notice	that	it	redefines	method
show_total_tickets_sold	defined	by	its	superclass.	Notice	also	that	its
implementation	of	this	redefined	method	is	to	do	nothing,	meaning	it	will	accept
the	method	parameters	but	will	ignore	them.



Listing	8-18	shows	how	this	would	be	incorporated	into	the	program	shown
by	Listing	8-17	and	made	available	by	the	unit	test	for	use	by	the	subroutine,
with	changes	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				methods	get_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.



		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.



form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

		endmethod.

endclass.

Listing	8-18 Indirect	output	test	double	incorporated	into	the	ticket	sales	program	and	made	available



by	the	unit	test	for	use	by	the	subroutine

Notice	that	the	unit	test	method	was	changed	to	include	the	type	of
ticket_sales_reporter	object	to	create.	Now	when	this	unit	test	method	is
executed,	it	will	create	into	global	variable	ticket_sales_reporter	an	instance	of
test	double	ticket_sales_reporter_tstdbl	and	then	call	subroutine
report_total_tickets_sold,	so	that	when	the	subroutine	invokes	method
show_total_tickets_sold	through	global	variable	ticket_sales_reporter,	it	will	be
invoking	a	method	of	class	ticket_sales_reporter_tstdbl.	The	method	of	this	test
double	has	been	implemented	always	to	ignore	anything	it	receives	from	its
caller.

Accordingly,	when	subroutine	report_total_tickets_sold	is	invoked	through
the	automated	unit	test	path,	it	will	send	the	value	591	as	its	indirect	output	on
the	call	to	method	show_total_tickets_sold,	which	will	be	ignored	by	this
receiver,	but	more	importantly,	will	not	cause	the	test	execution	to	be	interrupted
by	the	presentation	of	the	“Internal	Session	for	Isolated	Test	Class	Execution”
screen.	This	is	how	the	unit	test	has	exerted	control	over	the	subroutine	–	it	has
insured	that	the	subroutine	sends	its	indirect	output	to	a	test	double.	Meanwhile,
the	production	path	of	this	program	remains	unaffected,	and	the	subroutine	sends
its	total	ticket	sales	output	to	the	receiver	supplied	to	it	by	the	instance	of	class
ticket_sales_reporter	instantiated	during	the	start-of-selection	event	block.

This	certainly	is	an	improvement	since	the	programmer	no	longer	would
need	to	press	a	key	to	enable	the	unit	test	to	run	to	completion,	but	it	still	does
not	represent	a	satisfactory	test	for	subroutine	report_total_tickets_sold	–	it
makes	no	assertion	about	the	behavior	of	the	subroutine.	So	what	does	the
subroutine	do	that	we	could	possibly	test?	Let’s	summarize	what	this	subroutine
does:	it	acquires	as	indirect	input	the	value	of	total	number	of	tickets	sold	and
then	produces	as	indirect	output	a	report	of	the	total	number	of	tickets	sold.	Both
its	indirect	input	and	indirect	output	have	been	encapsulated	into	classes	to
provide	these	capabilities.	In	addition,	each	of	these	classes	has	its	own	test
double	for	use	during	the	unit	test	path.	As	such,	we	could	write	a	unit	test
asserting	that	the	total	number	of	tickets	sold	provided	to	the	subroutine	by	the
indirect	input	test	double	also	is	received	by	the	indirect	output	test	double.

At	this	point,	the	unit	test	is	aware	that	591	is	the	number	the	subroutine	will
be	provided	by	its	indirect	input	test	double	for	total	number	of	tickets	sold,	but
currently	it	has	no	way	to	check	that	its	indirect	output	test	double	receives	this
value.	So	let’s	enhance	the	indirect	output	test	double	to	be	able	to	capture	and
record	the	value	it	receives	from	its	last	caller.	Listing	8-19	shows	how	we	might
do	that,	with	changes	from	Listing	8-17	highlighted	in	bold.



class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

Listing	8-19 Indirect	output	test	double	enhanced	to	capture	and	record	parameter	value	sent	by	last
caller

Notice	we	now	have	declared	a	private	attribute	to	record	the	parameter
tickets_sold	sent	by	the	most	recent	caller.	The	implementation	of	its	method
show_total_tickets_sold	also	has	been	changed	to	capture	this	value.	In	addition,
a	public	method	has	been	declared	through	which	a	caller	may	retrieve	the	value
of	the	new	private	attribute.

Listing	8-20	shows	the	enhanced	test	double	incorporated	into	the	program
shown	by	Listing	8-18	and	used	by	the	unit	test	to	retrieve	the	value	of	its
attribute	last_caller_tickets_sold,	with	changes	to	the	unit	test	method
highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.



				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				methods	get_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.



				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range



																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				try.



						ticket_sales_reporter_tstdbl	?=

ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

		endmethod.

endclass.

Listing	8-20 Enhanced	indirect	output	test	double	incorporated	into	the	ticket	sales	program	and	made
available	by	the	unit	test	for	use	by	the	subroutine

Notice	that	the	unit	test	method	now	explicitly	declares	its	own	local
reference	variable	defined	as	an	instance	of	class	ticket_sales_reporter_tstdbl
and	has	included	a	try-endtry	block	to	move	into	this	new	reference	variable	the
reference	to	the	instance	of	the	test	double	from	the	corresponding	global
variable.	This	is	necessary	because	method	get_last_caller_tickets_sold	cannot
be	referenced	through	a	reference	variable	defined	as	type	ref	to
ticket_sales_reporter,	which	is	the	way	global	variable	ticket_sales_reporter
defines	it.	Assuming	the	assignment	does	not	fail,	then	the	unit	test	calls	method
get_last_caller_tickets_sold	and	saves	the	answer	in	the	new	local	variable
declared	to	hold	this	value.

Now	we	are	able	to	assert	that	the	behavior	of	subroutine
report_total_tickets_sold	is	correct.	The	unit	test	path	makes	available	to	the
execution	of	the	subroutine	the	test	double	ticket_sales_examiner_tstdbl,	which
means	it	knows	that	this	test	double	will	supply	the	subroutine	with	its	public
constant	named	constant_tickets_sold	as	the	value	for	the	total	tickets	sold.	It
also	makes	available	to	the	execution	of	the	subroutine	the	test	double
ticket_sales_reporter_tstdbl,	which	means	it	knows	that	this	test	double	will
capture	and	record	the	value	of	the	total	tickets	sold	when	method
show_total_tickets_sold	of	the	test	double	is	invoked	and	that	this	value	can	be
retrieved	by	calling	test	double	method	get_last_caller_tickets_sold.	So	the
assertion	we	can	write	for	this	unit	test	is	that	the	value	retrieved	from	the	call	to
get_last_caller_tickets_sold	of	class	ticket_sales_reporter_tstdbl	is	the	same



value	as	the	constant	named	constant_tickets_sold	of	class
ticket_sales_examiner_tstdbl,	as	shown	in	Listing	8-21	which	shows	how	the
unit	test	method	in	Listing	8-20	would	be	changed	to	include	the	assertion,	with
changes	from	its	counterpart	in	Listing	8-20	highlighted	in	bold.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				try.

						ticket_sales_reporter_tstdbl	?=

ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.



1

Listing	8-21 Assertion	applied	to	unit	test	method	of	ticket	sales	program

This	unit	test	now	asserts	that	the	processing	of	subroutine
report_total_tickets_sold	is	correct.	Test	double	ticket_sales_reporter_tstdbl	now
represents	an	example	of	a	test	spy	–	not	only	does	it	receive	indirect	output
from	a	caller	but	it	captures	and	records	that	output	for	later	interrogation.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	14	exercises	associated	with
workbook	Section	15:	ABAP	Unit	Testing	302	–	Introducing	a	Test	Double
for	Output.

Summary
Test	doubles	used	in	testing	software	are	analogous	to	stunt	doubles	used	in	the
motion	picture	industry	–	in	both	cases,	a	surrogate	takes	the	place	of	the
primary	performer.	The	concept	of	“depended-on	components”	was	presented,
and	it	was	illustrated	how	test	doubles	may	be	defined	either	through	class
inheritance	or	through	the	use	of	interfaces.	Test	doubles	fall	into	one	of	five
categories:

Dummy	object	–	An	object	satisfying	syntax	requirements	but	not	intended	to
be	used
Test	stub	–	An	object	supplying	indirect	input	to	a	caller	during	a	unit	test
Test	spy	–	An	object	collecting	indirect	output	from	a	caller	during	a	unit	test
Mock	object	–	An	object	recording	and	verifying	the	sequence	of	calls	made
to	it	during	a	unit	test
Fake	object	–	An	object	taking	the	place	of	a	slower	or	nonexistent	entity

Examples	showed	how	to	define	test	doubles	through	inheritance	and	to	use
them	in	an	automated	unit	testing	scenario	to	provide	indirect	input	to	and	accept
indirect	output	from	a	tested	procedure,	enabling	a	unit	test	to	be	defined	capable
of	confirming	that	the	indirect	input	provided	to	the	caller	was	reflected	in	the
indirect	output	it	produced.

Footnotes
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	791



2

3

4

5

6

7

8

9

10

11

12

	
When	the	name	of	the	function	module	following	the	CALL	FUNCTION	statement	is	a	literal,	the	syntax

checker	is	able	to	determine	whether	it	exists	prior	to	activating	the	component	containing	the	call.

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	219

	
Ibid,	p.	217

	
https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-

US/abapperform_parameters.htm

	
https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-

us/abenconversion_references.htm

	
https://help.sap.com/doc/abapdocu_740_index_htm/7.40/en-

US/abapperform_parameters.htm

	
For	an	explanation	of	these	UML	modeling	conventions,	refer	to	Object-Oriented	Design	with	ABAP:	A

Practical	Approach	(James	E.	McDonough,	Apress,	2017),	Chapter	9

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	133

	
Ibid,	p.	524

	
Ibid,	p.	524

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	327

	

https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-US/abapperform_parameters.htm
https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-us/abenconversion_references.htm
https://help.sap.com/doc/abapdocu_740_index_htm/7.40/en-US/abapperform_parameters.htm


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_9

9.	Service	Locator
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Previous	chapters	explored	how	to	encapsulate	indirect	input	and	output	into
classes	providing	those	services	and	elaborated	on	the	usefulness	of	test	doubles
capable	of	simulating	those	services	during	a	unit	test.	This	chapter	introduces
the	service	locator	as	a	way	to	manage	those	services.

Purpose	of	a	Service	Locator
A	service	locator	is	a	design	feature	implemented	into	a	program	for	the	purpose
of	providing	a	central	registry	for	the	various	entities	providing	services	to	the
program.	It	can	be	thought	of	simply	as	a	list	of	services,	each	service	having	an
associated	entity	assigned	to	provide	that	particular	service.	What	makes	it	so
useful	is	that	the	services	are	established	at	program	runtime,	enabling	the
program	to	determine	during	execution	the	specific	entities	it	prefers	to	provide
each	of	the	respective	services.	Implicit	with	a	service	locator	is	that	during
execution	there	is	only	one	entity	designated	to	provide	a	particular	service.

Here	is	a	simple	example	of	a	service	locator.	Every	year,	my	municipality
sends	to	me	a	calendar	for	the	upcoming	year	showing	the	dates	on	which
various	activities	are	to	occur,	such	as	holidays	when	municipal	offices	will	be
closed,	meetings	scheduled	for	the	planning	board,	recycling	pickup	dates,	and
other	information	of	interest	to	all	residents.	One	of	the	calendar	pages	is	titled
Easy	Access	Municipal	Service	Directory;	and	it	includes,	among	other	things,	a
chart	listing	the	phone	numbers	associated	with	some	of	the	municipal	services
that	can	be	requested	by	any	resident,	as	shown	in	the	example	service	directory
in	Figure	9-1.

https://doi.org/10.1007/978-1-4842-6951-0_9


Figure	9-1 Example	of	a	municipal	service	directory

From	this,	a	resident	is	able	simply	to	look	up	the	desired	service	and	dial	the
corresponding	phone	number	to	request	it,	such	as	dialing	123-456-7828	to
request	animal	control	to	attend	to	a	stray	dog	roaming	the	neighborhood.	The
resident	placing	the	call	has	no	idea	who	will	answer	the	phone,	nor	should	they
care	–	they	simply	know	that	by	dialing	the	listed	number,	they	will	be
connected	to	the	person	who	performs	or	is	in	charge	of	that	service.

The	following	year,	there	may	be	new	services	provided,	with	corresponding
phone	numbers	for	residents	to	call,	or	perhaps	one	or	more	of	the	phone
numbers	for	the	current	list	of	services	will	be	changed.	Regardless,	the	resident
simply	performs	a	lookup	in	this	chart	of	the	desired	service	and	dials	the
associated	number,	secure	in	the	knowledge	that	they	will	be	put	in	contact	with
the	correct	person	to	provide	the	service.

Using	a	Service	Locator
This	same	concept	applies	to	software	through	the	service	locator.1	Meszaros
refers	to	this	feature	also	by	the	terms	Dependency	Lookup,	Object	Factory,
Component	Broker,	and	Component	Registry.	There	are	variations	for	how	a
service	locator	can	be	defined,	but	all	of	them	simply	provide	to	a	software
component	access	to	an	instance	of	a	class	that	can	provide	the	desired	service.

The	ticket	sales	program	used	with	the	previous	two	chapters	included
classes	to	facilitate	examining	and	reporting	ticket	sales.	These	are	two
independent	services	that	can	be	provided	for	the	program.	Figure	9-2	shows
how	they	can	be	represented	in	a	service	directory.



Figure	9-2 Example	of	services	associated	with	ticket	sales	program

With	this	arrangement,	the	program	would	refer	to	this	service	directory	any
time	it	needs	to	obtain	the	instance	of	the	class	assigned	to	provide	the	service
required.

Listing	9-1	shows	a	simple	example	of	defining	a	class	named
service_locator	for	providing	the	indirect	input	and	output	services	required	by
the	ticket	sales	program	shown	in	Listing	8-19.

class	service_locator	definition	create	private.

		public	section.

				class-methods	get_service_locator

																				returning	value(instance)

																						type	ref	to	service_locator.

				methods							get_ticket_sales_examiner

																				returning	value(instance)

																						type	ref	to

ticket_sales_examiner.

				methods							get_ticket_sales_reporter

																				returning	value(instance)

																						type	ref	to

ticket_sales_reporter.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to

ticket_sales_examiner.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to

ticket_sales_reporter.

		private	section.

				class-data	service_locator	type	ref	to

service_locator.

				data	ticket_sales_examiner	type	ref	to

https://doi.org/10.1007/978-1-4842-6951-0_8PC#21


ticket_sales_examiner.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

endclass.

class	service_locator	implementation.

		method	get_service_locator.

				if	service_locator	is	not	bound.

						create	object	service_locator.

				endif.

				instance	=	service_locator.

		endmethod.

		method	get_ticket_sales_examiner.

				instance	=	ticket_sales_examiner.

		endmethod.

		method	get_ticket_sales_reporter.

				instance	=	ticket_sales_reporter.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

Listing	9-1 Service	locator	class	for	ticket	sales	program

Notice	that	class	service_locator	is	defined	as	a	singleton	class	by	virtue	of
(a)	the	“create	private”	clause	on	its	definition	statement,	meaning	that	only	class
service_locator	is	able	to	create	instances	of	this	class,	and	(b)	the
implementation	of	static	method	get_service_locator,	which	will	create	an
instance	of	class	service_locator	into	its	private	static	attribute	service_locator
only	once,	upon	the	first	call	to	it.	Notice	also	that	the	class	has	a	private
attribute	defined	to	hold	a	reference	to	an	instance	of	class	ticket_sales_examiner
and	another	to	hold	a	reference	to	an	instance	of	class	ticket_sales_reporter.
Finally,	notice	that	the	class	defines	getter	and	setter	methods	to	provide	external
entities	ways	to	register	or	request	the	instance	providing	a	particular	service.

One	of	the	peripheral	benefits	with	the	use	of	a	service	locator	is	that	a
program	using	it	does	not	need	to	declare	global	variables	to	hold	references	to
instances	managed	by	the	service	locator.	Listing	9-2	shows	how	the	production



path	of	the	ticket	sales	program	shown	in	Listing	8-19	would	be	affected	by	the
introduction	of	a	service	locator,	with	changes	highlighted	in	bold.

o

o

o

data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	create_services.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	create_services.

		data	service_locator	type	ref	to	service_locator.

		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		service_locator	=	service_locator=>get_instance(	).

		create	object	ticket_sales_examiner.

		service_locator->set_ticket_sales_examiner(

				ticket_sales_examiner	).

		create	object	ticket_sales_reporter.

		service_locator->set_ticket_sales_reporter(

				ticket_sales_reporter	).

endform.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	service_locator	type	ref	to	service_locator.

https://doi.org/10.1007/978-1-4842-6951-0_8PC#21


		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		data	tickets_sold	type	sy-dbcnt.

		service_locator	=	service_locator=>get_instance(	).

		ticket_sales_examiner	=	service_locator-

>get_ticket_sales_examiner(	).

		ticket_sales_reporter	=	service_locator-

>get_ticket_sales_reporter(	).

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

o

o

o

Listing	9-2 Production	path	of	ticket	sales	program	showing	use	of	service	locator	class

Notice	that	the	global	variables	have	been	eliminated	and	now	a	new
subroutine	named	create_services	performs	the	processing	for	creating	instances
of	classes	ticket_sales_examiner	and	ticket_sales_reporter	and	then	registering
them	with	the	service	locator.	Notice	also	that	subroutine
report_total_tickets_sold	has	been	modified	to	retrieve	from	the	service	locator
the	instances	of	classes	ticket_sales_examiner	and	ticket_sales_reporter	it	calls.

Although	two	global	variables	have	been	eliminated,	it	is	hard	to	justify	the
additional	complexity	introduced	into	the	program	by	the	extra	code	required	to
compensate	for	their	removal.	Notice	that	existing	subroutine
report_total_tickets_sold	now	consists	of	three	local	variables	and	the	processing



to	fill	them	with	references	to	instances	of	classes.	Many	would	say	this	program
is	worse	than	it	was	when	it	had	global	variables,	and	I	would	agree.	A	better
design	would	be	one	where	the	service	locator	makes	its	services	available
through	public	read-only	attributes.	Listing	9-3	shows	an	alternative	definition
for	the	service	locator	class,	with	lines	highlighted	in	bold	showing	where	it
differs	from	Listing	9-1.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				class-methods	get_service_locator

																				returning	value(instance)

																						type	ref	to	service_locator.

				methods							get_ticket_sales_examiner

																				returning	value(instance)

																						type	ref	to	ticket_sales_examiner.

				methods							get_ticket_sales_reporter

																				returning	value(instance)

																						type	ref	to	ticket_sales_reporter.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examiner.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reporter.

		private	section.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.



				create	instance	singleton.

		endmethod.

		method	get_service_locator.

				if	service_locator	is	not	bound.

						create	object	service_locator.

				endif.

				instance	=	service_locator.

		endmethod.

		method	get_ticket_sales_examiner.

				instance	=	ticket_sales_examiner.

		endmethod.

		method	get_ticket_sales_reporter.

				instance	=	ticket_sales_reporter.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

Listing	9-3 Alternative	definition	for	service	locator	class	for	ticket	sales	program

It	is	still	a	singleton	class;	and	its	former	attribute	named	service	locator,
holding	the	reference	to	the	singleton	instance,	has	been	renamed	as	singleton.
Notice	that	the	method	to	request	an	instance	of	this	class	has	been	eliminated
because	the	reference	to	the	singleton	instance	has	been	elevated	from	private	to
public	visibility,	making	this	attribute	directly	available	to	external	entities.	In
addition,	notice	that	the	getter	methods	to	request	instances	of	the	classes
providing	the	ticket_sales_examiner	and	ticket_sales_reporter	services	have
been	eliminated	because	these	respective	instance	attributes	also	have	been
elevated	from	private	to	public	visibility,	obviating	the	need	for	getter	methods.
Notice	also	that	the	former	private	attributes,	all	now	public,	include	the	“read-
only”	qualifier,	meaning	their	values,	while	accessible	to	any	entity,	can	be
changed	only	by	the	class	in	which	they	are	defined.	Listing	9-4	shows	this	class
declaration	without	the	highlighting	and	stricken	lines.

class	service_locator	definition	create	private.

		public	section.



				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examiner.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reporter.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

Listing	9-4 Same	as	Listing	9-3	but	without	the	associated	highlighting	and	stricken	lines

Notice	how	much	simpler	the	class	has	become	just	by	making	its	attributes
publicly	accessible.	Listing	9-5	shows	how	subroutines	create_services	and
report_total_tickets_sold	described	by	Listing	9-2	would	be	affected,	with
changes	highlighted	in	bold.

form	create_services.

		data	service_locator	type	ref	to	service_locator.

		data	ticket_sales_examiner	type	ref	to



ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		service_locator	=	service_locator=>get_instance(	).

		create	object	ticket_sales_examiner.

		service_locator=>singleton-

>set_ticket_sales_examiner(

				ticket_sales_examiner	).

		create	object	ticket_sales_reporter.

		service_locator=>singleton-

>set_ticket_sales_reporter(

				ticket_sales_reporter	).

endform.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	service_locator	type	ref	to	service_locator.

		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		data	tickets_sold	type	sy-dbcnt.

		service_locator	=	service_locator=>get_instance(	).

		ticket_sales_examiner	=	service_locator-

>get_ticket_sales_examiner(	).

		ticket_sales_reporter	=	service_locator-

>get_ticket_sales_reporter(	).

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method	ticket_sales_reporter-

>show_total_tickets_sold



	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets

sold:'

						tickets_sold							=	tickets_sold.

endform.

Listing	9-5 Effect	on	Listing	9-2	subroutines	by	using	service	locator	shown	in	Listing	9-4

As	can	be	seen	in	Listing	9-5,	the	effect	upon	subroutine
report_total_ticket_sales	has	been	to	remove	all	the	extra	lines	of	processing	that
it	would	have	required,	as	shown	in	Listing	9-2,	with	the	implementation	of	a
service	locator	class	as	it	is	shown	in	Listing	9-1.	Listing	9-6	shows	the	full
ticket	sales	program	using	the	merged	code	from	Listing	8-19	and	Listing	8-20
along	with	the	changes	to	use	the	service	locator	shown	in	Listing	9-4,	with
changes	highlighted	in	bold.

report.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type	event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.



class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				methods	get_total_tickets_sold	redefinition.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.



				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examiner.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reporter.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.



data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		create	object	ticket_sales_examiner.

		create	object	ticket_sales_reporter.

		perform	create_services.

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	create_services.

		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		create	object	ticket_sales_examiner.

		service_locator=>singleton->set_ticket_sales_examiner(

				ticket_sales_examiner	).

		create	object	ticket_sales_reporter.

		service_locator=>singleton->set_ticket_sales_reporter(

				ticket_sales_reporter	).

endform.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method	ticket_sales_examiner-

>get_total_tickets_sold

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.



		call	method	ticket_sales_reporter-

>show_total_tickets_sold

	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets	sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type	ticket_sales_examiner-

>stadium_identifier_range.

				data	event_date_type	ticket_sales_examiner-

>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				data	ticket_sales_examiner	type	ticket_sales_examiner.

				data	ticket_sales_reporter	type	ticket_sales_reporter.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				try.

						ticket_sales_reporter_tstdbl	?=

ticket_sales_reporter.

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-



>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	9-6 Full	ticket	sales	program	using	service	locator	shown	in	Listing	9-4

Notice	that	with	the	removal	of	the	global	variables	defining
ticket_sales_examiner	and	ticket_sales_reporter,	it	was	necessary	to	change	the
unit	test	method	to	define	these	as	local	variables	into	which	corresponding
instances	could	be	created	before	requesting	the	service	locator	to	register	them.

There	is	plenty	of	information	available	on	the	Internet	further	describing	the
“service	locator”	design	pattern,	along	with	its	adherents	and	critics	providing
the	pros	and	cons	for	using	it	with	software	components.	The	Wikipedia	page
(https://en.wikipedia.org/wiki/Service_locator_pattern)
suggests	that	some	scholars	consider	it	to	be	an	anti-pattern	(a	pattern	to	be
avoided)	which	“	…	obscures	dependencies	and	makes	software	harder	to	test,”
but	indeed	I	have	found	it	to	be	particularly	helpful	for	facilitating	automated
unit	testing,	as	I	think	you	might	agree	after	completing	the	associated	exercises.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	seven	exercises	associated	with
workbook	Section	16:	ABAP	Unit	Testing	401	–	Introducing	a	Service
Locator.

https://en.wikipedia.org/wiki/Service_locator_pattern


Using	a	Service	Factory
One	variation	of	a	service	locator	serves	simply	as	a	list	of	the	services	required
during	the	execution	of	an	ABAP	program,	as	previously	described.	Another
variation	has	the	service	locator	explicitly	instantiating	the	objects	to	be	used	for
the	services	it	manages.	When	a	service	locator	is	not	designed	to	instantiate	the
objects	providing	the	services	it	manages,	then	it	is	often	accompanied	by	a
service	factory.

A	service	factory	creates	the	instances	of	the	services	managed	by	the	service
locator.	It	is	itself	a	class	encapsulating	the	tasks	associated	with	creating	the
various	services	to	be	used	by	the	program.	Once	it	instantiates	an	object,	it	will
call	the	service	locator	to	have	the	object	registered	as	the	designated	service.

Listing	9-7	shows	how	we	might	define	a	service	factory	for	creating	the
services	managed	by	the	ticket	sales	program,	which	essentially	encapsulates	the
processing	currently	performed	by	the	subroutine	create_services	of	the	ticket
sales	program.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory

read-only.

				class-methods	class_constructor.

				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

				create	object	ticket_sales_examiner.

				service_locator=>singleton-

>set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to



ticket_sales_reporter.

				create	object	ticket_sales_reporter.

				service_locator=>singleton-

>set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

endclass.

Listing	9-7 Service	factory	for	use	with	the	ticket	sales	program

This	eliminates	the	need	for	the	subroutine	create_services	to	exist.	Listing
9-8	shows	how	the	start-of-selection	event	block	and	create_services	subroutine
shown	in	Listing	9-6	would	be	changed	to	use	the	service	factory,	with	changes
highlighted	in	bold.

start-of-selection.

		perform	create_services.

		service_factory=>singleton-

>create_ticket_sales_examiner(	).

		service_factory=>singleton-

>create_ticket_sales_reporter(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	create_services.

		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		create	object	ticket_sales_examiner.

		service_locator=>singleton-

>set_ticket_sales_examiner(

				ticket_sales_examiner	).

		create	object	ticket_sales_reporter.

		service_locator=>singleton-

>set_ticket_sales_reporter(

				ticket_sales_reporter	).

endform.

Listing	9-8 Effects	upon	ticket	sales	program	start-of-selection	event	block	and	subroutine



create_services	to	use	service	factory

When	there	are	many	services	to	be	managed	by	the	service	locator,	then	the
service	factory	usually	will	contain	a	method	by	which	all	the	services	can	be
created	with	a	single	call.	Listing	9-9	shows	how	we	might	change	the	service
factory	to	provide	such	a	capability,	with	changes	from	Listing	9-7	highlighted	in
bold.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory

read-only.

				class-methods	class_constructor.

				methods	create_all_services.

				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_all_services.

				create_ticket_sales_examiner(	).

				create_ticket_sales_reporter(	).

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

				create	object	ticket_sales_examiner.

				service_locator=>singleton-

>set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

				create	object	ticket_sales_reporter.

				service_locator=>singleton-

>set_ticket_sales_reporter(



							ticket_sales_reporter	).

		endmethod.

endclass.

Listing	9-9 Service	factory	with	a	single	method	capable	of	creating	all	services

Organizing	Local	Components
Due	to	the	nature	of	the	ABAP	compiler,	I	have	found	that	when	most	or	all	of
the	classes	have	been	defined	locally,	then	it	becomes	advantageous	to	have	the
service	locator	and	the	service	factory	defined	as	two	separate	components.	This
is	because	the	compiler	needs	to	have	already	parsed	the	definitions	of	the
classes	referenced	by	subsequent	classes	and	subroutines,	and	it	increases	clutter
to	have	to	specify	a	preemptive	class	definition	deferral	statement	for	each	class
referenced	before	the	compiler	encounters	its	definition.

Indeed,	with	more	complex	programs,	I	have	found	that	the	use	of	a	service
locator	will	impose	the	following	demands	upon	the	design	of	the	program:

Attributes	of	the	service	locator	holding	the	references	to	the	objects
providing	the	services	it	manages	should	be	defined	as	references	to	interfaces
and	not	to	classes.

Classes	providing	services	managed	by	a	service	locator	should	specify	an
interface	to	define	all	of	its	public	methods.

The	sequence	of	the	classes	and	interfaces	should	be	in	the	following
order:

1.
All	interfaces 	

2.
The	service	locator	class 	

3.
All	classes	providing	a	service	managed	by	the	service	locator	

4.
The	service	factory 	

5.
Any	component	calling	a	method	of	the	service	factory 	
The	preceding	first	two	bullets	call	for	accessing	class	instances	through	an

interface	reference	variable	and	not	through	a	reference	variable	defined	as	the
concrete	classes	they	are.	This	alone	has	beneficial	consequences	on	the	design
of	the	components	since	it	conforms	with	the	advice	given	by	object-oriented



scholars	who	suggest	this	as	a	good	way	of	keeping	the	code	flexible:

“Program	to	an	interface,	not	an	implementation.”2
“Dependency	Inversion	Principle	–	Depend	upon	abstractions.	Do	not

depend	upon	concretions.”3

Notice	in	the	sequence	shown	in	the	preceding	list	that	the	service	locator,
whose	attributes	holding	references	to	service	objects	all	are	defined	as
references	to	interfaces,	should	appear	after	the	definitions	of	all	the	interfaces.
Notice	also	that	all	of	the	classes	providing	services	managed	by	the	service
locator	should	be	defined	after	the	service	locator.	This	means	that	any	of	these
classes	can	define	a	service	managed	by	the	service	locator	and	can	obtain	the
services	provided	by	any	of	the	other	classes	defining	a	service	managed	by	the
service	locator	irrespective	of	the	sequence	in	which	they	are	defined.	This	is
because	through	the	service	locator	there	is	no	direct	reference	between	these
classes	–	each	instance	of	a	class	providing	a	service	is	accessed	through	an
interface	reference.	Notice	also	that	the	service	factory,	the	one	instantiating	and
registering	services	with	the	service	locator,	is	positioned	to	insure	that	(a)	it	has
been	preceded	by	all	the	class	definitions	that	could	possibly	be	used	to	provide
an	instance	of	a	service	it	creates	to	be	managed	by	the	service	locator	and	(b)	it
is	followed	by	any	component	that	would	call	one	of	its	methods.

Let’s	see	this	with	an	example.	Listing	9-10	is	a	copy	of	Listing	9-6	changed
to	reflect	how	to	define	and	arrange	the	components	in	sequence	described	in	the
preceding	list,	with	changes	highlighted	in	bold.

report.

interface	ticket_sales_examinable.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type	event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endinterface.

interface	ticket_sales_reportable.

				methods	show_total_tickets_sold



						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endinterface.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examinable

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

class	ticket_sales_examiner	definition.

		public	section.

				types	stadium_identifier_range	type	range	of



zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type	event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

				interfaces	ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for

ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_examiner_tstdbl	definition

																																			inheriting	from

ticket_sales_examiner.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				methods	get_total_tickets_sold	redefinition.

				interfaces	ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for

ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.



endclass.

class	ticket_sales_reporter	definition.

		public	section.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable-

>get_total_tickets_sold.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition

																																			inheriting	from

ticket_sales_reporter.

		public	section.

				methods	show_total_tickets_sold	redefinition.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable-

>get_total_tickets_sold.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.



		endmethod.

endclass.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory	read-

only.

				class-methods	class_constructor.

				methods	create_all_services.

				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_all_services.

				create_ticket_sales_examiner(	).

				create_ticket_sales_reporter(	).

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner.

				service_locator=>singleton->set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter.

				service_locator=>singleton->set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

endclass.

select-options	stadium		for	zticket_sales-stadium_id.



select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		perform	create_services.

		service_factory=>singleton->create_all_services(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	create_services.

		data	ticket_sales_examiner	type	ref	to

ticket_sales_examiner.

		data	ticket_sales_reporter	type	ref	to

ticket_sales_reporter.

		create	object	ticket_sales_examiner.

		service_locator=>singleton->set_ticket_sales_examiner(

				ticket_sales_examiner	).

		create	object	ticket_sales_reporter.

		service_locator=>singleton->set_ticket_sales_reporter(

				ticket_sales_reporter	).

endform.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method

	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets	sold:'

						tickets_sold							=	tickets_sold.



endform.

class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type

ticket_sales_examinable=>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				data	ticket_sales_examiner	type

ticket_sales_examinable.

				data	ticket_sales_reporter	type

ticket_sales_reportable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.



						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	9-10 Ticket	sales	program	using	service	factory

Notice	first	that	there	are	two	new	interfaces	appearing	at	the	top	of	the
listing:	ticket_sales_examinable	and	ticket_sales_reportable.	Interface
ticket_sales_examinable	is	defined	using	the	very	same	public	types	and
methods	removed	from	class	ticket_sales_examiner.	Likewise,	interface
ticket_sales_reportable	is	defined	using	the	very	same	public	method	removed
from	class	ticket_sales_reporter.	The	respective	classes	from	which	code	was
moved	into	an	interface	have	been	replaced	with	interfaces	and	aliases
statements	indicating	the	interface	now	defining	its	public	section.

Notice	also	that	test	double	classes	ticket_sales_examiner_tstdbl	and
ticket_sales_reporter_tstdbl	have	been	changed	to	no	longer	inherit	from	a
superclass	and	also	have	their	public	declarations	of	redefined	inherited	methods
replaced	with	the	same	interfaces	and	aliases	statements	appearing	now	in	their
former	superclasses.	In	addition,	notice	that	subroutine	create_services	has	been
removed	and	that	the	start-of-selection	event	block	has	been	changed	from
calling	subroutine	create_services	to	calling	method	create_all_services	of	the
service	factory.	Finally,	notice	that	local	variables	ticket_sales_examiner	and
ticket_sales_reporter	defined	for	unit	test	method	report_total_tickets_sold	have
been	changed	from	references	to	their	respective	classes	to	references	to	their
respective	interfaces.

Listing	9-11	shows	the	same	code	as	Listing	9-10	but	without	the
highlighting	and	stricken	code.

report.

interface	ticket_sales_examinable.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.



				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type	event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endinterface.

interface	ticket_sales_reportable.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endinterface.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.



		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

class	ticket_sales_examiner	definition.

		public	section.

				interfaces	ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for

ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_examiner_tstdbl	definition.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value

591.

				interfaces	ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for

ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.



class	ticket_sales_reporter	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable-

>get_total_tickets_sold.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable-

>get_total_tickets_sold.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory	read-

only.

				class-methods	class_constructor.



				methods	create_all_services.

				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_all_services.

				create_ticket_sales_examiner(	).

				create_ticket_sales_reporter(	).

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner.

				service_locator=>singleton->set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter.

				service_locator=>singleton->set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

endclass.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		service_factory=>singleton->create_all_services(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using



stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method

	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets	sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				methods	report_total_tickets_sold	for	testing.

endclass.

class	tester	implementation.

		method	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type

ticket_sales_examinable=>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				data	ticket_sales_examiner	type

ticket_sales_examinable.

				data	ticket_sales_reporter	type

ticket_sales_reportable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.



				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	9-11 Listing	9-10	without	the	highlighting	and	stricken	code

Now	that	it	is	easier	to	read,	notice	that	these	local	components	have	been
organized	as	previously	recommended:

Attributes	of	the	service	locator	holding	the	references	to	the	objects
providing	the	services	for	ticket_sales_examiner	and	ticket_sales_reporter
have	been	defined	as	references	to	interfaces	ticket_sales_examinable	and
ticket_sales_reportable,	respectively.

Classes	ticket_sales_examiner	and	ticket_sales_reporter	specify	interfaces



ticket_sales_examiner	and	ticket_sales_reporter,	respectively,	to	define	all	of
their	public	methods;	classes	ticket_sales_examiner_tstdbl	and
ticket_sales_reporter_tstdbl	have	been	similarly	changed	to	specify	interfaces
ticket_sales_examinable	and	ticket_sales_reportable,	respectively.

The	classes	and	interfaces	appear	in	the	following	order:

1.
Interfaces	ticket_sales_examinable	and	ticket_sales_reportable	appear
first.

	
2.

The	service	locator	class	appears	next. 	
3.

Classes	ticket_sales_examiner,	ticket_sales_examiner_tstdbl,
ticket_sales_reporter,	and	ticket_sales_reporter_tstdbl,	all	of	which
provide	services	manageable	by	the	service	locator,	appear	next.

	

4.
The	service	factory	appears	after	all	the	classes	it	uses	to	create	services,
specifically,	ticket_sales_examiner	and	ticket_sales_reporter.

	
5.

The	service	factory	is	followed	by	components	calling	its	methods,
specifically,	the	start-of-selection	classic	event	block.

	
To	make	it	easier	to	visualize	the	sequence	of	these	entities,	Listing	9-12

shows	a	condensed	version	of	Listing	9-11.

interface	ticket_sales_examinable.

interface	ticket_sales_reportable.

class	service_locator	definition	create	private.

class	ticket_sales_examiner	definition.

class	ticket_sales_examiner_tstdbl	definition.

class	ticket_sales_reporter	definition.

class	ticket_sales_reporter_tstdbl	definition.

class	service_factory	definition	create	private.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.



		service_factory=>singleton->create_all_services(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using

stadium_identifier_range

																																					event_date_range.

class	tester	definition	for	testing	risk	level

harmless.

				o

				o

		method	report_total_tickets_sold.

				o

				o

				service_locator=>singleton-

>set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton-

>set_ticket_sales_reporter(

						ticket_sales_reporter	).

				o

				o

endclass.

Listing	9-12 Condensed	version	of	Listing	9-11

In	the	condensed	Listing	9-12,	it	is	easy	to	see	that	all	the	interfaces	appear
first,	followed	by	the	service	locator,	followed	by	those	classes	defining	services
managed	by	the	service	locator,	followed	by	the	service	factory,	followed	by	the
components	calling	methods	of	the	service	factory.	Notice	that	since	method
create_all_services	of	the	service	factory	is	called	during	the	start-of-selection
classic	ABAP	event	block,	the	start-of-selection	block	appears	after	the
definition	of	the	service	factory	class.

Notice	also	that	the	unit	test	class	does	not	make	use	of	the	service	factory;
instead,	it	instantiates	its	own	services	and	makes	direct	calls	to	the	service
locator	to	register	them.	Accordingly,	the	definitions	for	test	classes
ticket_sales_examiner_tstdbl	and	ticket_sales_reportable_tstdbl	need	not	appear
directly	following	their	respective	production	classes	as	shown,	but	simply	need
to	follow	the	service	locator	and	precede	the	unit	test	class	that	instantiates	them.



Before	leaving	this	section,	there	is	one	more	improvement	that	can	be	made
to	unit	test	class	tester.	Its	sole	method	report_total_tickets_sold	has	changed
significantly	since	it	was	first	introduced	in	Listing	8-13	to	the	way	it	now
appears	in	Listing	9-11.	The	component	being	tested	by	this	method	is
subroutine	report_total_tickets_sold,	but	the	statement	to	perform	that	subroutine
is	buried	between	the	code	establishing	the	conditions	necessary	for	running	the
test	and	the	code	asserting	the	test	results.	With	a	few	simple	changes	to	this	unit
test	class,	it	could	be	made	easier	to	understand	exactly	what	is	being	tested	by
its	method,	as	shown	in	Listing	9-13	with	changes	from	its	version	in	Listing	9-
11	highlighted	in	bold.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	setup.

				methods	report_total_tickets_sold	for	testing.

				methods	validate_test_results.

endclass.

class	tester	implementation.

		method	setup.	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type

ticket_sales_examinable=>event_date_range.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				data	ticket_sales_examiner	type

ticket_sales_examinable.

				data	ticket_sales_reporter	type

ticket_sales_reportable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				service_locator=>singleton-

>set_ticket_sales_examiner(

						ticket_sales_examiner	).



				service_locator=>singleton-

>set_ticket_sales_reporter(

						ticket_sales_reporter	).

		endmethod.

		method	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type

ticket_sales_examinable=>event_date_range.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				validate_test_results(	).

		endmethod.

		method	validate_test_results.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton-

>ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.



Listing	9-13 Modified	version	of	unit	test	class	tester	to	enable	better	visibility	to	the	purpose	of	the	test

Notice	there	are	now	two	new	methods:	setup	and	validate_test_results.	The
statements	establishing	the	conditions	necessary	for	running	the	test,	formerly
located	in	method	report_total_tickets_sold,	now	appear	in	the	setup	method,	a
method	automatically	called	by	the	test	runner	prior	to	calling	any	method
marked	“for	testing.”	Also	notice	that	the	statements	validating	the	results
produced	by	calling	the	subroutine	have	been	removed	from	method
report_total_tickets_sold	and	now	appear	in	method	validate_test_results,	which
is	called	by	method	report_total_tickets_sold.

Listing	9-14	is	a	copy	of	Listing	9-13	without	the	highlighting	and	stricken
lines.

class	tester	definition	for	testing	risk	level

harmless.

		private	section.

				methods	setup.

				methods	report_total_tickets_sold	for	testing.

				methods	validate_test_results.

endclass.

class	tester	implementation.

		method	setup.

				data	ticket_sales_examiner	type

ticket_sales_examinable.

				data	ticket_sales_reporter	type

ticket_sales_reportable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner_tstdbl.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter_tstdbl.

				service_locator=>singleton-

>set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton-

>set_ticket_sales_reporter(

						ticket_sales_reporter	).

		endmethod.

		method	report_total_tickets_sold.

				data	stadium				type



ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type

ticket_sales_examinable=>event_date_range.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				validate_test_results(	).

		endmethod.

		method	validate_test_results.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to

ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton-

>ticket_sales_reporter.

						ticket_sales_reporter_tstdbl-

>get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=

ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	9-14 Listing	9-13	without	highlighting	and	stricken	lines

With	unit	test	method	report_total_tickets_sold	reduced	down	to	only	four
lines,	it	becomes	abundantly	clear	that	subroutine	report_total_tickets_sold	is	the
component	being	tested	and	that	it	is	being	called	with	empty	values.



1

2

3

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	eight	exercises	associated	with
workbook	Section	17:	ABAP	Unit	Testing	402	–	Introducing	a	Service
Factory.

Summary
A	service	locator	is	a	centralized	services	management	facility	for	the	services
required	by	a	software	component.	It	assumes	the	responsibility	to	make	each
service	it	manages	available	through	a	corresponding	designated	entity
registered	to	provide	the	corresponding	service.	Its	use	improves	the	design	for
testability	of	production	components.	A	service	factory	is	a	complementary
component	collaborating	with	the	service	locator,	creating	and	registering	the
services	managed	by	the	service	locator.	Examples	illustrated	the	use	of
interfaces	to	define	the	public	methods	of	the	classes	providing	the	services
managed	by	the	service	locator,	with	interfaces	being	preferred	over	inheritance
when	the	services	being	managed	are	defined	by	local	classes.

Footnotes
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	686

	
Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides,	Design	Patterns:	Elements	of	Reusable

Object-Oriented	Software,	Addison-Wesley,	1994,	p.	18

	
See	http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

	

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_10

10.	Leveraging	the	Service	Locator
James	E.	McDonough1		

Pennington,	NJ,	USA

	

The	previous	chapter	introduced	the	service	locator	and	described	how	it	could
handle	the	various	services	required	by	the	program	as	well	as	facilitate	the	use
of	test	doubles	during	unit	testing.	At	this	point,	the	examples	of	services
managed	by	the	service	locator	were	provided	by	local	classes.	It	also	is	capable
of	managing	program	services	and	their	respective	unit	testing	doubles	for	global
classes	and	function	modules.

Also	at	this	point,	there	remain	some	unresolved	issues	with	the	ability	to	run
clean	unattended	unit	tests.	In	this	chapter,	we	will	explore	how	the	service
locator	can	be	leveraged	to	handle	these	outstanding	issues	as	well	as	to	manage
services	supplied	by	function	modules	and	global	classes.

Issues	Requiring	Leverage
The	Chapter	5	section	titled	“Challenges	Presented	by	the	MESSAGE
Statement”	and	Chapter	6	section	titled	“Exploring	the	Effects	of	the	MESSAGE
Statement”	covered	unit	testing	results	attributable	to	the	MESSAGE	Statement,
but	we	still	have	no	viable	solution	for	the	unit	test	failures	certain	to	be
triggered	upon	encountering	an	ABAP	MESSAGE	statement	with	a	severity	of
error,	abort,	or	exit.	This	remains	the	only	identified	impediment	to	running
successful	unit	tests.

The	Chapter	5	section	titled	“Challenges	to	Effectively	Testing	ABAP	Code”
told	of	the	effects	on	unit	tests	attributable	to	ALV	reports	and	classic	list
statements.	We	subsequently	found	that	we	could	encapsulate	the	reception	of
this	type	of	indirect	output	into	classes	capable	of	providing	reports	formatted
using	either	classic	list	statements	or	ALV,	with	test	doubles	defined	for	these
classes	used	to	enable	automated	unit	tests	to	run	to	completion	unattended.

https://doi.org/10.1007/978-1-4842-6951-0_10


Although	this	seems	to	be	a	reasonable	solution	for	handling	output	presented	by
both	ALV	and	classic	list	statements,	it	is	practical	only	with	ALV.

With	ALV	there	is	an	associated	internal	table	containing	the	content	to	be
displayed	in	the	report,	and	a	specific	function	module	or	class	method	must	be
called	to	present	it.	This	makes	it	easy	to	identify	the	two	lines	of	code	where	the
internal	table	is	contributing	content	to	the	report	and	the	request	is	being	made
to	present	it.

In	contrast,	classic	list	processing	statements	could	be	scattered	throughout	a
program,	each	one	contributing	some	new	full	or	partial	row	to	be	presented	in	a
report	that	for	executable	programs	has	no	associated	statement	to	indicate	it	is
to	be	presented.	A	unit	test	encountering	any	one	of	these	classic	list	statements
would	require	manual	intervention	to	enable	the	test	to	run	to	completion.
Accordingly,	the	disjointed	nature	of	constructing	classic	list	output	and	the	lack
of	complete	control	over	the	presentation	of	the	resulting	report	present
challenges	with	devising	a	way	to	avoid	encountering	these	statements	during	a
unit	test.

The	following	topics	are	presented	in	the	sequence	of	what	might	loosely	be
considered	the	relative	amount	of	time	required	to	complete	the	respective
implementation,	from	least	time	to	most:

Managing	global	classes
Managing	function	modules
Managing	message	statements
Managing	list	processing	statements

Using	the	Service	Locator	to	Manage	Global	Classes
Having	the	service	locator	manage	a	global	class	requires	simply	that	the
attribute	holding	the	reference	to	the	instance	providing	the	service	be	defined	as
a	reference	to	either	a	global	class	or	a	global	interface.	When	defined	as	a
reference	to	a	global	class,	then	the	attribute	may	hold	a	reference	to	an	instance
of	that	class	or	of	any	class	inheriting	directly	or	indirectly	from	it,	including
local	classes.	When	defined	as	a	reference	to	an	interface,	then	the	attribute	may
hold	a	reference	to	any	global	or	local	class	implementing	that	interface.

Suppose	it	had	been	determined	that	the	local	classes	defined	in	the	ticket
sales	program	to	represent	ticket	sales	examiner	and	ticket	sales	reporter	and
their	respective	local	interfaces	were	applicable	to	other	similar	programs	and
therefor	migrated	to	the	global	class	repository.	Adhering	to	the	naming
conventions	associated	with	global	classes	would	require	that	the	classes	be



renamed	from	ticket_sales_examiner	and	ticket_sales_reporter	to
zcl_ticket_sales_examiner	and	zcl_ticket_sales_reporter,	respectively,	and	the
interfaces	be	renamed	from	ticket_sales_examinable	and	ticket_sales_reportable
to	zif_ticket_sales_examinable	and	zif_ticket_sales_reportable,	respectively.

Listing	10-1	shows	the	service	locator	class	copied	from	Listing	9-11	and
changed	to	reflect	these	two	classes	and	two	interfaces	now	defined	as	global
entities,	with	changes	highlighted	in	bold.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to

zif_ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to

zif_ticket_sales_reportable.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

zif_ticket_sales_examinable

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

zif_ticket_sales_reportable

																																																					read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11


		endmethod.

endclass.

Listing	10-1 Service	locator	class	from	Listing	9-11	changed	to	reflect	local	classes	migrated	to	global	class
repository

Notice	the	only	changes	made	were	to	apply	the	prefix	“zif_”	to	the	names	of
the	former	local	interfaces	on	the	type	clauses	of	the	two	methods	statements	and
the	two	data	statements.	The	entity	creating	these	objects	and	calling	the	setter
methods	of	the	service	locator	would	need	a	corresponding	change	to	instantiate
an	object	compatible	with	these	respective	global	class	definitions.

Listing	10-2	includes	only	the	two	methods	from	the	service	factory	copied
from	Listing	9-11	that	create	instances	of	objects	to	be	managed	by	the	service
locator	and	shows	how	those	methods	would	change	when	interfaces
ticket_sales_examinable	and	ticket_sales_reportable	are	migrated	to	the	global
class	repository,	with	changes	highlighted	in	bold.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to

zif_ticket_sales_examinable.

				create	object	ticket_sales_examiner	type

ticket_sales_examiner.

				service_locator=>singleton-

>set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to

zif_ticket_sales_reportable.

				create	object	ticket_sales_reporter	type

ticket_sales_reporter.

				service_locator=>singleton-

>set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

Listing	10-2 Service	factory	class	methods	changed	to	reflect	local	classes	migrated	to	global	class
repository

Notice	the	only	difference	is	that	the	type	assigned	to	the	local	variable
defined	within	each	method	is	changed	to	indicate	the	global	interface	prefix

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11
https://doi.org/10.1007/978-1-4842-6951-0_9PC#11


each	interface	now	has.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	six	exercises	associated	with
workbook	Section	18:	ABAP	Unit	Testing	501	–	Gaining	Control	Over
Global	Class	Dependencies.

Using	the	Service	Locator	to	Manage	Function
Modules
The	ability	of	the	service	locator	to	manage	a	function	module	is	only	slightly
more	involved	than	its	ability	to	manage	a	reference	to	an	instance	of	a	class.
Unlike	instances	of	classes,	function	modules	need	not	be	instantiated	before
they	can	be	used.	Accordingly,	a	service	locator	attribute	defined	to	manage	the
function	module	assigned	to	perform	a	service	cannot	be	defined	as	a	reference
variable	as	it	can	be	for	instances	of	classes.	Instead,	the	attribute	would	simply
be	defined	to	hold	the	name	of	the	corresponding	function	module.	An	attribute
defined	as	type	funcname	would	do	this	nicely.	Once	the	service	locator	attribute
has	been	set	with	the	name	of	the	function	module	to	provide	the	associated
service,	a	call	to	that	function	module	can	be	made	using	the	name	found	in	the
corresponding	attribute.

We’ll	see	this	through	an	example	shortly.	First,	let’s	identify	a	situation
where	two	different	function	modules	might	be	defined	to	have	the	same
signatures	and	provide	similar	services	such	that	they	are	interchangeable.	A
good	example	of	this	comes	from	the	very	first	exercise	program,	which	when
executed	prompts	the	user	to	decide	whether	the	resulting	report	is	to	be
presented	as	an	ALV	list	or	an	ALV	grid.

Listing	10-3	shows	the	code	of	a	subroutine	that	determines	the	function
module	to	be	used	to	display	an	ALV	report	based	on	whether	or	not	the	caller	is
indicating	to	render	the	report	as	a	grid.

form	set_alv_function_module_name	using	alv_style_grid

																																										type	xflag

																															changing

alv_display_function_module

																																										type

funcname.



				constants	alv_list_function_module	type	funcname

																																							value

'REUSE_ALV_LIST_DISPLAY'.

				constants	alv_grid_function_module	type	funcname

																																							value

'REUSE_ALV_GRID_DISPLAY'.

				if	alv_style_grid	is	initial.

						alv_display_function_module	=

alv_list_function_module.

				else.

						alv_display_function_module	=

alv_grid_function_module.

				endif.

endform.

Listing	10-3 Subroutine	defined	to	determine	name	of	ALV	display	function	module	via	service
locator

Indeed,	we	might	characterize	this	subroutine	as	a	rudimentary	version	of	a
service	locator	since	its	purpose	is	to	determine	the	name	of	a	function	module	to
provide	the	ALV	reporting	service.	Listing	10-4	shows	the	code	for	a	portion	of
a	procedure	to	render	an	ALV	report	after	first	calling	the	subroutine	shown	in
Listing	10-3	to	determine	the	name	of	the	function	module	to	be	used.

				o

				o

				perform	set_alv_function_module_name

												using	alv_style_grid

									changing	alv_display_function_module.

				call	function	alv_display_function_module

						exporting

								is_layout			=	alv_layout

								it_fieldcat	=	alv_fieldcatalog

						tables

								t_outtab				=	report_content

						exceptions

								others						=	0.

				o

				o

Listing	10-4 Portion	of	subroutine	defined	to	determine	name	of	ALV	display	function	module



Notice	that	the	first	statement	calls	a	subroutine	to	identify	the	name	of	the
ALV	function	module	capable	of	producing	the	ALV	report	in	the	desired	format
and	the	next	statement	calls	that	function	module.	Notice	also	that	the	CALL
FUNCTION	statement	is	using	the	dynamic	variation	of	the	syntax	by
specifying	a	variable	to	supply	the	name	of	the	function	module	to	be	called.	The
function	module	called	will	be	either	REUSE_ALV_LIST_DISPLAY	or
REUSE_ALV_GRID_DISPLAY	depending	on	the	value	returned	into	variable
alv_display_function_module	by	subroutine	set_alv_function_module_name.

Listing	10-5	is	a	copy	of	the	service	locator	class	from	Listing	9-11	modified
to	show	how	an	ALV	reporting	function	module	would	be	managed	by	the
service	locator,	with	changes	highlighted	in	bold.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				methods							set_alv_report_function_module

																				importing	alv_function_module_name

																						type	funcname.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable

																																																					read-

only.

				data	alv_function_module_name	type	funcname	read-only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11


		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

		method	set_alv_report_function_module.

				me->alv_function_module_name	=

alv_function_module_name.

		endmethod.

endclass.

Listing	10-5 Listing	9-11	showing	how	an	ALV	reporting	function	module	would	be	managed	by	the	service
locator

Notice	that	a	new	public	read-only	attribute	named
alv_function_module_name	was	defined.	Notice	also	that	a	new	setter	method
was	defined	named	set_alv_report_function_module	which	accepts	a	value	of
type	funcname,	and	its	implementation,	similar	to	the	other	setter	methods	that
already	had	been	defined	for	the	service	locator,	is	to	set	the	new	public	attribute
to	the	name	of	the	function	module	the	caller	sends.

Now	that	the	service	locator	is	capable	of	managing	the	name	of	the	function
module	to	provide	rendering	of	ALV	reports,	the	program	using	it	would	need	to
call	its	setter	method	to	assign	the	corresponding	function	module	to	be	used
when	presenting	ALV	reports.

Listing	10-6	is	a	copy	of	Listing	10-3	and	modified	to	show	how	the
subroutine	would	be	changed	to	enable	the	service	locator	to	manage	the	name
of	the	function	module	to	present	ALV	reports,	with	changes	highlighted	in	bold.

form	set_alv_function_module_name	using	alv_style_grid

																																										type	xflag

																															changing

alv_display_function_module

																																										type

funcname.

				constants	alv_list_function_module	type	funcname

																																							value

'REUSE_ALV_LIST_DISPLAY'.

				constants	alv_grid_function_module	type	funcname

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11


																																							value

'REUSE_ALV_GRID_DISPLAY'.

				if	alv_style_grid	is	initial.

						alv_display_function_module	=

alv_list_function_module.

						service_locator=>singleton-

>set_alv_report_function_module(

								alv_list_function_module	).

				else.

						alv_display_function_module	=

alv_grid_function_module.

						service_locator=>singleton-

>set_alv_report_function_module(

								alv_grid_function_module	).

				endif.

endform.

Listing	10-6 Subroutine	defined	to	determine	name	of	ALV	display	function	module	and	register	it
with	the	service	locator

Notice	that	the	signature	of	the	subroutine	no	longer	includes	a	changing
parameter	through	which	to	pass	a	value	back	to	the	caller.	Notice	also	that	it
calls	the	setter	method	set_alv_report_function_module	of	the	service	locator
class	to	register	the	appropriate	function	module	to	be	used	for	ALV	reporting.

Listing	10-7	is	a	copy	of	Listing	10-6	without	the	highlighting	and	stricken
lines.

form	set_alv_function_module_name	using	alv_style_grid

																																										type	xflag.

				constants	alv_list_function_module	type	funcname

																																							value

'REUSE_ALV_LIST_DISPLAY'.

				constants	alv_grid_function_module	type	funcname

																																							value

'REUSE_ALV_GRID_DISPLAY'.

				if	alv_style_grid	is	initial.

						service_locator=>singleton-

>set_alv_report_function_module(

								alv_list_function_module	).

				else.



						service_locator=>singleton-

>set_alv_report_function_module(

								alv_grid_function_module	).

				endif.

endform.

Listing	10-7 Listing	10-6	without	highlighting	and	stricken	lines

Listing	10-8	is	a	copy	of	Listing	10-4,	the	code	for	a	portion	of	a	procedure
to	render	an	ALV	report	after	first	calling	the	subroutine	shown	in	Listing	10-3
to	determine	the	name	of	the	function	module	to	be	used,	showing	how	it	would
change	once	the	service	locator	is	managing	the	name	of	the	ALV	reporting
function	module,	with	changes	highlighted	in	bold.

				o

				o

				perform	set_alv_function_module_name

												using	alv_style_grid

									changing	alv_display_function_module.

				call	function	alv_display_function_module

																		service_locator=>singleton-

>alv_function_module_name

						exporting

								is_layout			=	alv_layout

								it_fieldcat	=	alv_fieldcatalog

						tables

								t_outtab				=	report_content

						exceptions

								others						=	0.

				o

				o

Listing	10-8 Portion	of	subroutine	defined	to	determine	name	of	ALV	display	function	module

Notice	that	this	procedure	no	longer	provides	a	signature	parameter
specifying	a	variable	into	which	subroutine	set_alv_function_module_name	will
return	the	name	of	a	function	module.	Notice	also	that	it	is	calling	the	function
module	through	the	public	attribute	alv_function_module_name	of	the	singleton
instance	of	class	service_locator.

The	Chapter	7	section	titled	“Encapsulating	Indirect	Input	and	Output”	lists
the	reasons	why	function	modules	do	not	make	good	candidates	for



encapsulating	processing	intended	to	be	overridden	by	a	unit	test.	When	function
modules	already	exist,	a	better	approach	would	be	to	define	a	class	that	can
encapsulate	a	call	to	the	function	module	and	then	to	define	a	test	double	for	that
class.	However,	as	shown	by	the	example	of	interchangeable	function	modules
REUSE_ALV_LIST_DISPLAY	and	REUSE_ALV_GRID_DISPLAY,	there	may
be	situations	where	it	makes	sense	for	a	new	function	module	to	be	defined	as	a
test	double	for	an	existing	one.	When	that	is	the	case,	the	service	locator	can
manage	the	production	version	of	the	function	module	and	its	associated	test
double	using	the	process	described	in	the	preceding	text.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	five	exercises	associated	with
workbook	Section	19:	ABAP	Unit	Testing	502	–	Gaining	Control	Over
Function	Module	Dependencies.

Using	the	Service	Locator	to	Manage	MESSAGE
Statements
The	Chapter	5	section	titled	“Challenges	Presented	by	the	MESSAGE
Statement”	described	how	the	severity	of	a	message	issued	via	the	MESSAGE
statement	could	affect	the	control	flow	of	the	program,	specifically	noting	that
messages	of	severities	error,	abort,	and	exit	will	cause	procedures	in	which	they
are	issued	to	be	discontinued	immediately.	It	also	raised	the	issue	that
encountering	an	ABAP	MESSAGE	statement	of	severity	error,	abort,	or	exit
during	a	unit	test	will	cause	an	unconditional	failure	of	the	unit	test.	This	section
addresses	both	of	these	issues.

Handling	MESSAGE	Statements	Triggering	Unconditional	Unit
Test	Failures
Listing	10-9	shows	a	file	name	validation	subroutine	using	message	statements
to	alert	the	user	to	problems	found	with	values	specified	for	parameters
appearing	on	an	initial	selection	screen.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name



																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

				message	e000(0k)	with	'Must	specify	either	unix

file	name'

																										'or	PC	file	name'.

		endif.

		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

				message	e000(0k)	with	'May	specify	either	unix

file	name'

																										'or	PC	file	name,	not	both'.

		endif.

endform.

Listing	10-9 Subroutine	providing	selection	screen	validation

In	this	case,	the	selection	screen	has	two	parameters	for	file	names:	one	for
the	name	of	a	unix	file	and	another	for	the	name	of	a	PC	file.	We	can	see	from
the	message	statements	that	these	are	mutually	exclusive	parameters,	but	one
needs	to	have	been	supplied	with	a	corresponding	file	name.	Error	messages	are
issued	when	the	user	leaves	both	parameters	blank	or	specifies	non-blank	values
for	both.

Listing	10-10	shows	a	unit	test	for	testing	subroutine	validate_file_name
shown	in	Listing	10-9.

class	validate_file_name_tester	definition

																																for	testing

																																risk	level	harmless.

		private	section.

				methods	validate_no_file_specified	for	testing.

				methods	validate_2_files_specified	for	testing.

endclass.

class	validate_file_name_tester	implementation.

		method	validate_no_file_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	space

																																					space.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty



						exp	=	'E'

						).

		endmethod.

		method	validate_2_files_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	'\'

																																					'/'.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

		endmethod.

endclass.

Listing	10-10 Unit	test	class	for	testing	subroutine	validate_file_name

Notice	that	each	method	clears	system	field	sy-msgty,	then	calls	subroutine
validate_file_name	using	parameter	values	certain	to	cause	the	subroutine	to
identify	an	invalid	combination	of	values,	and	then	asserts	that	field	sy-msgty
has	been	set	to	indicate	a	message	severity	of	error.	Both	unit	tests	would	pass	if
not	for	the	fact	that	the	test	runner	unconditionally	fails	unit	tests	with	class-
based	exception	CX_AUNIT_UNCAUGHT_MESSAGE	when	a	message
statement	of	severity	error	is	encountered	during	their	execution.

The	Chapter	6	section	titled	“Exploring	the	Effects	of	the	MESSAGE
Statement”	provided	some	analysis	and	investigation	about	intercepting	the
class-based	exception	CX_AUNIT_UNCAUGHT_MESSAGE	thrown	during	a
unit	test	when	an	ABAP	MESSAGE	statement	of	severity	error	or	abort	is
encountered,	through	which	it	was	concluded	that	a	unit	test	was	not	able	to
intercept	it.	Accordingly,	the	MESSAGE	statement	presents	a	predicament	with
writing	unit	tests	for	procedures	where	an	ABAP	MESSAGE	statement	of
severity	error,	abort,	or	exit	could	be	encountered.

Since	the	message	text	accompanying	the	MESSAGE	statement	simply
represents	indirect	output	–	output	produced	by	a	procedure	but	not	intended	to
be	returned	to	its	caller	through	its	signature	parameters	–	one	way	to	resolve
this	predicament	is	to	encapsulate	issuing	such	messages	into	a	callable
procedure	representing	a	service	manageable	by	the	service	locator	and,	as	a
result,	one	over	which	a	unit	test	can	exert	control.	To	do	so	will	involve	the
following	changes	to	the	production	path	of	the	program:

Define	a	class	having	a	public	method	that	can	be	called	to	issue	a



message.
Change	the	service	locator	to	be	able	to	manage	the	service	provided	by

this	class.
Replace	each	explicit	MESSAGE	statement	in	the	program	with	a	call	to

the	corresponding	service	managed	by	the	service	locator.

There	are	further	considerations	to	be	taken	into	account.	For	one,	the	ABAP
MESSAGE	statement	has	a	few	variations	with	its	syntax,	as	illustrated	with	the
following	examples	of	error	message	statements:

1.
message	e001. 	

2.
message	e001(zyx). 	

3.
message	id	'zyx'	type	'E'	num	001. 	

4.
message	'Error	has	been	detected'	type	'E'.	
The	first	three	examples	of	message	statements	shown	in	the	preceding	list

are	functionally	equivalent,	with	example	#1	relying	on	the	class	of	messages
having	been	established	through	the	MESSAGE-ID	clause	of	a	corresponding
report,	program,	or	function-pool	statement.	In	addition,	all	three	of	these	may
have	optional	WITH	clauses	to	indicate	accompanying	text	to	be	inserted	into
placeholders	of	the	message.	Example	#4	is	a	message	with	no	associated
message	class.

Another	consideration	is	that	a	message	statement	can	be	accompanied	by
the	optional	clauses	DISPLAY	LIKE,	RAISING,	and	INTO.	We	can	ignore
accommodating	messages	with	the	INTO	clause	because	there	would	be	no
associated	indirect	output	resulting	from	it.

Based	on	all	of	this,	we	would	want	to	define	a	class	that	can	handle	the
variations	of	MESSAGE	statements	found	throughout	our	program.	Listing	10-
11	shows	an	interface	defining	methods	to	do	this.

interface	message_dispatchable.

				types	message_type			type	symsgty.

				types	message_id					type	symsgid.

				types	message_number	type	symsgno.

				types	message_text			type	symsgv.

				constants	status_message						type	message_type



value	'S'.

				constants	information_message	type	message_type

value	'I'.

				constants	warning_message					type	message_type

value	'W'.

				constants	error_message							type	message_type

value	'E'.

				constants	abort_message							type	message_type

value	'A'.

				constants	exit_message								type	message_type

value	'X'.

				methods	issue_identified_message

														importing

																message_severity

																		type	message_type	default

status_message

																message_display_severity

																		type	message_type	optional

																id

																		type	message_id

																number

																		type	message_number

																text_01

																		type	message_text	optional

																text_02

																		type	message_text	optional

																text_03

																		type	message_text	optional

																text_04

																		type	message_text	optional.

				methods	issue_unidentified_message

														importing

																message_severity

																		type	message_type	default

status_message

																message_display_severity

																		type	message_type	optional

																text

																		type	clike.



endinterface.

Listing	10-11 Interface	defining	methods	to	be	implemented	by	a	class	encapsulating	the	issuance	of
MESSAGE	statements

Notice	this	interface	defines	two	methods:	method	issue_identified_message
defines	a	method	signature	compatible	with	the	preceding	MESSAGE	statement
examples	#2	and	#3;	method	issue_unidentified_message	defines	a	method
signature	compatible	with	the	preceding	MESSAGE	statement	example	#4.

Listing	10-12	shows	the	production	path	class	implementing	the	methods	of
interface	message_dispatchable	and	encapsulating	the	issuance	of	MESSAGE
statements.

class	messenger	definition.

		public	section.

				interfaces	message_dispatchable.

				aliases	issue_identified_message

														for

message_dispatchable~issue_identified_message.

				aliases	issue_unidentified_message

														for

message_dispatchable~issue_unidentified_message.

endclass.

class	messenger	implementation.

		method	issue_identified_message.

				data	message_display_type	type

message_dispatchable=>message_type.

				message_display_type	=	message_display_severity.

				if	message_display_type	is	initial.

						message_display_type	=	message_severity.

				endif.

				message	id						id

												type				message_severity

												number		number

												display	like	message_display_type

												with				text_01	text_02	text_03	text_04.

												.

		endmethod.

		method	issue_unidentified_message.

				data	message_display_type	type



message_dispatchable=>message_type.

				message_display_type	=	message_display_severity.

				if	message_display_type	is	initial.

						message_display_type	=	message_severity.

				endif.

				message	text	type	message_severity

																	display	like	message_display_type.

		endmethod.

endclass.

Listing	10-12 Production	class	encapsulating	the	issuance	of	MESSAGE	statements

Notice	that	the	entire	public	section	of	this	class	is	provided	by	the	interface
message_dispatchable	it	implements.	Notice	also	that	each	method	ends	with	a
message	statement	using	the	parameters	sent	by	the	caller.

Now	that	we	have	the	class	to	provide	the	messenger	service,	the	service
locator	can	be	modified	to	manage	it.

Listing	10-13	is	a	copy	of	the	service	locator	from	Listing	10-5	changed	to
accommodate	a	messenger	service	as	a	reference	to	an	interface,	with	changes
highlighted	in	bold.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				methods							set_alv_report_function_module

																				importing	alv_function_module_name

																						type	funcname.

				methods							set_message_dispatcher

																				importing	message_dispatcher

																						type	ref	to	message_dispatchable.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable



																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable

																																																					read-

only.

				data	alv_function_module_name	type	funcname	read-only.

				data	message_dispatcher	type	ref	to

message_dispatchable	read-only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

		method	set_alv_report_function_module.

				me->alv_function_module_name	=

alv_function_module_name.

		endmethod.

		method	set_message_dispatcher.

				me->message_dispatcher	=	message_dispatcher.

		endmethod.

endclass.

Listing	10-13 Service	locator	from	Listing	10-5	changed	to	accommodate	managing	a	messenger	service

Notice	that	there	is	now	a	new	public	read-only	attribute	named
message_dispatcher	and	a	corresponding	public	setter	method	for	it.

Listing	10-14	shows	a	subroutine	for	creating	an	instance	of	class	messenger
and	registering	it	with	the	service	locator	as	the	message_dispatcher	service.

form	create_message_dispatcher.

		data	messenger	type	ref	to	message_dispatchable.

		create	object	messenger	type	messenger.

		service_locator=>singleton->set_message_dispatcher(



messenger	).

endform.

Listing	10-14 Subroutine	creating	message	dispatch	service	and	registering	it	with	the	service	locator

The	subroutine	shown	in	Listing	10-14	would	be	called	at	some	point	during
the	initial	execution	of	the	program	to	register	the	message	dispatcher	to	be	used
for	issuing	messages	with	production	path	executions.	With	components	defined
as	shown	in	Listings	10-11,	10-12,	10-13,	and	10-14,	it	becomes	possible	to
replace	an	ABAP	MESSAGE	statement	with	a	call	through	the	public	attribute
of	the	service	locator	providing	the	service.

Listing	10-15	shows	how	the	subroutine	in	Listing	10-9	would	be	changed	to
do	this,	with	changes	highlighted	in	bold.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name

																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

				message	e000(0k)	with	'Must	specify	either	unix

file	name'

																										'or	PC	file	name'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'Must	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name'

						).

		endif.

		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

				message	e000(0k)	with	'May	specify	either	unix

file	name'

																										'or	PC	file	name,	not	both'.

		service_locator=>singleton->message_dispatcher-



>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'May	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name,	not	both'

						).

		endif.

endform.

Listing	10-15 Screen	validation	subroutine	with	message	statements	replaced	with	equivalent	calls	to
a	service	managed	by	the	service	locator

Notice	that	each	explicit	message	statement	has	been	replaced	with	a	call	to	a
method	of	a	service	managed	by	the	service	locator.	The	call	requires	specifying
parameters	to	achieve	the	same	result,	parameters	not	necessary	with	its
associated	message	statement,	but	each	parameter	value	has	been	extracted
directly	from	the	message	statement	being	replaced.

Listing	10-16	is	a	copy	of	Listing	10-15	without	the	highlighting	and	stricken
lines.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name

																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'Must	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name'

						).

		endif.



		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'May	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name,	not	both'

						).

		endif.

endform.

Listing	10-16 Listing	10-15	without	the	highlighting	and	stricken	lines

At	this	point,	we	would	undertake	the	task	of	replacing	all	the	MESSAGE
statements	in	the	program	with	corresponding	calls	to	the	message_dispatch
service	managed	by	the	service	locator.	Once	that	has	been	completed,	the
program	can	be	considered	designed	for	testability.	This	is	because	a	unit	test
would	now	be	able	to	register	with	the	service	locator	an	instance	of	a	test
double	implementing	the	message_dispatchable	interface,	one	that	does	not	use
the	MESSAGE	statement,	guaranteeing	no	more	unconditional	unit	test	failures
due	to	encountering	a	MESSAGE	statement	with	a	severity	of	error,	abort,	or
exit.

Listing	10-17	shows	such	a	test	double.

class	messenger_test_double	definition	for	testing.

		public	section.

				interfaces	message_dispatchable.

				aliases	issue_identified_message

														for

message_dispatchable~issue_identified_message.

				aliases	issue_unidentified_message

														for

message_dispatchable~issue_unidentified_message.

endclass.

class	messenger_test_double	implementation.

		method	issue_identified_message.



				sy-msgty	=	message_severity.

				sy-msgid	=	id.

				sy-msgno	=	number.

				sy-msgv1	=	text_01.

				sy-msgv2	=	text_02.

				sy-msgv3	=	text_03.

				sy-msgv4	=	text_04.

		endmethod.

		method	issue_unidentified_message.

				data:	begin	of	message_content

								,			text_01	type

message_dispatchable=>message_text

								,			text_02	type

message_dispatchable=>message_text

								,			text_03	type

message_dispatchable=>message_text

								,			text_04	type

message_dispatchable=>message_text

								,	end			of	message_content

								.

				sy-msgty	=	message_severity.

				sy-msgid	=	'00'

				sy-msgno	=	000.

				message_content	=	text.

				sy-msgv1	=	message_content-text_01.

				sy-msgv2	=	message_content-text_02.

				sy-msgv3	=	message_content-text_03.

				sy-msgv4	=	message_content-text_04.

		endmethod.

endclass.

Listing	10-17 Test	double	for	class	messenger

Notice	that	the	implementations	for	both	methods	cause	the	respective
system	variables	changed	by	the	MESSAGE	statement	to	be	set	with	the	values
they	would	receive	if	the	corresponding	MESSAGE	statement	had	been	issued
by	the	method.	This	makes	it	possible	to	write	a	unit	test	class	for	testing
subroutine	validate_file_name	that	can	pass.	Listing	10-18	shows	how	the	unit
test	from	Listing	10-10	would	be	adjusted	to	do	this,	with	changes	highlighted	in
bold.



class	validate_file_name_tester	definition

																																for	testing

																																risk	level	harmless.

		private	section.

				methods	setup.

				methods	validate_no_file_specified	for	testing.

				methods	validate_2_files_specified	for	testing.

endclass.

class	validate_file_name_tester	implementation.

		method	setup.

				data	messenger	type	ref	to	message_dispatchable.

				create	object	messenger	type

messenger_test_double.

				service_locator=>singleton-

>set_message_dispatcher(	messenger	).

		endmethod.

		method	validate_no_file_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	space

																																					space.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

		endmethod.

		method	validate_2_files_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	'\'

																																					'/'.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

		endmethod.

endclass.

Listing	10-18 Adjusted	unit	test	class	for	testing	subroutine	validate_file_name

Notice	that	this	unit	test	class	has	a	setup	method	which	will	create	an
instance	of	class	messenger_test_double	and	then	register	that	instance	with	the



service	locator	as	the	instance	to	be	used	to	provide	the	message	dispatch
service.	The	setup	method	is	automatically	called	prior	to	executing	either	of	the
methods	defined	as	“for	testing.”

Executing	this	program	normally	and	specifying	values	for	both	a	unix	file
name	and	a	PC	file	name	on	the	initial	selection	screen	would	result	in	the	error
message	“May	specify	either	unix	file	name	or	PC	file	name,	not	both”
appearing	to	the	user.	Assuming	this	message	is	issued	during	the	at	selection-
screen	classic	ABAP	event	block,	it	enables	the	user	to	correct	the	problem	and
try	again.	Executing	the	automated	unit	tests	of	this	program	as	shown	in	the
preceding	text	would	indicate	passing	tests	for	test	methods
validate_no_file_specified	and	validate_2_files_specified,	despite	both	of	these
test	methods	calling	the	very	same	subroutine	that	causes	error	messages	to	be
issued	by	the	production	path.

Handling	Unit	Test	Failures	Arising	from	MESSAGE	Statement
Control	Flow
Now	that	the	service	locator	is	capable	of	handling	MESSAGE	statements	as	a
service	and	offering	a	way	to	specify	a	test	double	for	a	procedure	that	would
issue	messages,	an	automated	unit	test	also	would	need	to	account	for	the
program	flow	control	that	could	be	expected	when	a	message	of	severity	error,
abort,	or	exit	is	encountered.

Suppose	the	screen	validation	subroutine	of	Listing	10-9	had	additional
parameter	validations	to	perform,	as	shown	in	Listing	10-19,	with	changes
highlighted	in	bold.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name

																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

				message	e000(0k)	with	'Must	specify	either	unix

file	name'

																										'or	PC	file	name'.

		endif.

		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

				message	e000(0k)	with	'May	specify	either	unix

file	name'



																										'or	PC	file	name,	not	both'.

		endif.

		if	unix_file_name	ca	'\'.

				message	w000(0k)	with	'Value	"\"	appears	in	unix

file	name'.

		endif.

		if	pc_file_name	ca	'/'.

				message	w000(0k)	with	'Value	"/"	appears	in	PC

file	name'.

		endif.

endform.

Listing	10-19 Subroutine	from	Listing	10-9	with	additional	selection	screen	validation

Notice	that	now	there	are	warning	messages	issued	when	a	specified	unix	or
PC	file	name	contains	a	value	typically	found	with	the	other	type	of	file.	During
a	production	run,	neither	of	these	two	new	conditions	for	checking	file	name
characters	would	be	encountered	if	either	of	the	preceding	two	conditions	had
been	met.	Instead,	program	flow	would	be	interrupted,	and	the	subroutine	would
be	exited	immediately	with	the	issuance	of	the	associated	error	message.

Listing	10-20	indicates	how	the	subroutine	appearing	in	Listing	10-19	would
be	changed	to	use	the	service	locator	described	by	Listing	10-13,	with	changes
highlighted	in	bold.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name

																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

				message	e000(0k)	with	'Must	specify	either	unix

file	name'

																										'or	PC	file	name'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'Must	specify	either	unix



file	name'

								text_02										=	'or	PC	file	name'

						).

		endif.

		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

				message	e000(0k)	with	'May	specify	either	unix

file	name'

																										'or	PC	file	name,	not	both'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'May	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name,	not	both'

						).

		endif.

		if	unix_file_name	ca	'\'.

				message	w000(0k)	with	'Value	"\"	appears	in	unix

file	name'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'W'

								id															=	'0K'

								number											=	000

								text_01										=	'Value	"\"	appears	in	unix

file	name'

						).

		endif.

		if	pc_file_name	ca	'/'.

				message	w000(0k)	with	'Value	"/"	appears	in	PC

file	name'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting



								message_severity	=	'W'

								id															=	'0K'

								number											=	000

								text_01										=	'Value	"/"	appears	in	PC

file	name'

						).

		endif.

endform.

Listing	10-20 Subroutine	from	Listing	10-19	changed	to	use	service	locator	to	issue	messages

Notice	that	each	MESSAGE	statement	has	been	replaced	with	a
corresponding	call	to	the	service	locator.	This	is	similar	to	the	changes	illustrated
by	Listing	10-15	which	showed	how	Listing	10-9	would	change	for	the	same
reason.

Listing	10-21	shows	the	merged	content	of	Listing	10-20	without	the
highlighting	and	stricken	lines	and	with	the	corresponding	unit	test	for	this
subroutine	from	Listing	10-18.

form	validate_file_name	using	unix_file_name

																																type	localfile

																														pc_file_name

																																type	localfile.

		if	unix_file_name	is	initial	and	pc_file_name	is

initial.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'Must	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name'

						).

		endif.

		if	unix_file_name	is	not	initial	and	pc_file_name	is

not	initial.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(



						exporting

								message_severity	=	'E'

								id															=	'0K'

								number											=	000

								text_01										=	'May	specify	either	unix

file	name'

								text_02										=	'or	PC	file	name,	not	both'

						).

		endif.

		if	unix_file_name	ca	'\'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'W'

								id															=	'0K'

								number											=	000

								text_01										=	'Value	“\”	appears	in	unix

file	name'

						).

		endif.

		if	pc_file_name	ca	'/'.

		service_locator=>singleton->message_dispatcher-

>issue_identified_message(

						exporting

								message_severity	=	'W'

								id															=	'0K'

								number											=	000

								text_01										=	'Value	"/"	appears	in	PC

file	name'

						).

		endif.

endform.

class	validate_file_name_tester	definition

																																for	testing

																																risk	level	harmless.

		private	section.

				methods	setup.

				methods	validate_no_file_specified	for	testing.



				methods	validate_2_files_specified	for	testing.

endclass.

class	validate_file_name_tester	implementation.

		method	setup.

				data	messenger	type	ref	to	message_dispatchable.

				create	object	messenger	type

messenger_test_double.

				service_locator=>singleton-

>set_message_dispatcher(	messenger	).

		endmethod.

		method	validate_no_file_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	space

																																					space.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

		endmethod.

		method	validate_2_files_specified.

				clear	sy-msgty.

				perform	validate_file_name	using	'\'

																																					'/'.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

		endmethod.

endclass.

Listing	10-21 Merged	content	of	subroutine	from	Listing	10-20	without	highlighting	and	stricken
lines	and	with	unit	test	from	Listing	10-18

If	this	unit	test	were	to	be	executed	as	written,	unit	test	method
validate_no_file_specified	would	pass,	but	unit	test	method
validate_2_files_specified	would	fail.	How	could	that	be?!	This	is	the	same	unit
test	that	would	have	passed	when	the	subroutine	consisted	of	only	the	first	two
conditions!	The	answer	is	that	an	error	message	issued	by	subroutine
validate_file_name	would	interrupt	the	flow	of	control	only	when	run	in	its
production	mode.



When	executed	during	a	unit	test	where	the	error	message	statement	is	not
encountered	(and	as	a	consequence	does	not	have	a	chance	to	cause	an
unconditional	failure	of	the	unit	test),	the	flow	of	control	in	the	subroutine
continues	through	to	the	end	of	it.	This	means	the	two	conditions	issuing
warning	messages	will	be	executed	even	when	it	determines	one	of	the
preceding	error	conditions	is	true.	Since	unit	test	method
validate_2_files_specified	specifies	a	unix	file	value	of	‘\’	and	a	PC	file	value	of
‘/’	on	the	call	to	the	subroutine,	the	last	three	of	the	four	conditions	in	subroutine
validate_file_name	are	met.	Accordingly,	based	on	the	processing	performed	by
test	double	messenger_test_double	to	set	system	variable	sy-msgty	with	the
message	severity	of	the	most	recent	call	made	to	it,	only	the	message	severity
associated	with	the	final	condition	of	subroutine	validate_file_name	will	be	the
one	to	reflect	the	value	to	be	found	in	sy-msgty	when	control	returns	to	the	unit
test	method.	Unit	test	method	validate_2_files_specified	fails	because	it	is
asserting	that	sy-msgty	contains	‘E’,	but	the	final	condition	of	the	subroutine	it
called	caused	this	value	to	be	set	to	‘W’.

So	what	are	the	options	available	to	rectifying	this	problem?
One	is	to	recognize	that	subroutine	validate_file_name	is	doing	more	than	its

name	implies.	It	contains	conditions	checking	not	only	that	the	selected	file
name	is	valid	but	also	alerting	the	user	to	the	possibility	that	the	file	name	might
be	unintended.	This	violates	the	Single	Responsibility	Principle,1	which	states
that	procedures	should	do	only	one	thing.	Accordingly,	the	conditions	checking
for	an	unintended	file	name	could	be	split	out	into	a	separate	subroutine,	named
appropriately,	that	could	be	called	after	this	subroutine	for	the	production	path
and	called	by	separate	and	distinct	unit	tests	for	the	unit	test	path.	Though	this
solution	is	attractive	on	its	merits	of	improving	code	clarity,	it	may	be	more	than
we	are	willing	to	undertake	after	already	having	implemented	all	the	new
changes	simply	to	prevent	unit	tests	from	unconditional	failures	for	having
encountered	MESSAGE	statements	of	severity	error,	abort,	or	exit.

Another	option	is	to	include	a	simple	RETURN	statement	immediately
following	calls	to	the	service	locator	to	handle	messages	of	types	error,	abort,
and	exit.	This	would	mimic	during	a	unit	test	the	behavior	arising	when
messages	with	these	severity	values	are	encountered	through	the	production
path.	The	production	path	would	never	encounter	the	RETURN	statement,	but	it
would	prevent	unit	test	method	validate_2_files_specified	described	in	Listing
10-21	from	failing.	This	option	is	even	worse	than	the	previous	solution.	The
first	of	its	problems	is	that	the	severity	of	a	message	provided	on	a	service
locator	call	to	the	message	dispatcher	may	be	provided	by	a	variable,	so	there
would	need	to	be	conditional	logic	checking	the	variable	value	to	determine



whether	the	RETURN	statement	should	be	executed	to	mimic	for	a	unit	test	the
flow	control	interruption	resulting	from	the	production	path.	The	more
disturbing	problem	is	that	it	means	production	procedures	would	contain	logic
that	is	applicable	only	to	the	execution	of	an	automated	unit	test.	This	is	never	a
good	idea!

A	better	option	is	to	enhance	class	messenger_test_double	so	that	it	can
record	all	the	messages	that	might	be	issued	during	the	execution	of	a	procedure
and	then	assert	in	the	unit	test	that	the	procedure	issued	the	expected	messages.

Listing	10-22	is	a	copy	of	Listing	10-17	indicating	how	class
messenger_test_double	would	be	changed	to	record	the	content	of	messages
issued	through	its	method	issue_identified_message,	with	changes	highlighted	in
bold.

class	messenger_test_double	definition	for	testing.

		public	section.

				interfaces	message_dispatchable.

				aliases	issue_identified_message

														for

message_dispatchable~issue_identified_message.

				aliases	issue_unidentified_message

														for

message_dispatchable~issue_unidentified_message.

				types:	begin	of	identified_message_row

									,			type									type

message_dispatchable=>message_type

									,			display_type	type

message_dispatchable=>message_type

									,			id											type

message_dispatchable=>message_id

									,			number							type

message_dispatchable=>message_number

									,			text_01						type

message_dispatchable=>message_text

									,			text_02						type

message_dispatchable=>message_text

									,			text_03						type

message_dispatchable=>message_text

									,			text_04						type

message_dispatchable=>message_text



									,	end			of	identified_message_row

									,	identified_message_list

																										type	standard	table

																												of	identified_message_row

									.

				data	identified_message_stack

																										type	identified_message_list

																																	read-only.

endclass.

class	messenger_test_double	implementation.

		method	issue_identified_message.

				data	identified_message_entry	like	line

																																			of

identified_message_stack.

				identified_message_entry-type	=	message_severity.

				if	message_display_severity	is	not	initial.

						identified_message_entry-display_type	=

message_display_severity.

				else.

						identified_message_entry-display_type	=

message_severity.

				endif.

				identified_message_entry-id	=	id.

				identified_message_entry-number	=	number.

				identified_message_entry-text_01	=	text_01.

				identified_message_entry-text_02	=	text_02.

				identified_message_entry-text_03	=	text_03.

				identified_message_entry-text_04	=	text_04.

				append	identified_message_entry	to

identified_message_stack.

				sy-msgty	=	message_severity.

				sy-msgid	=	id.

				sy-msgno	=	number.

				sy-msgv1	=	text_01.

				sy-msgv2	=	text_02.

				sy-msgv3	=	text_03.

				sy-msgv4	=	text_04.

		endmethod.

		method	issue_unidentified_message.



				data:	begin	of	message_content

								,			text_01	type

message_dispatchable=>message_text

								,			text_02	type

message_dispatchable=>message_text

								,			text_03	type

message_dispatchable=>message_text

								,			text_04	type

message_dispatchable=>message_text

								,	end			of	message_content

								.

				sy-msgty	=	message_severity.

				sy-msgid	=	'00'

				sy-msgno	=	000.

				message_content	=	text.

				sy-msgv1	=	message_content-text_01.

				sy-msgv2	=	message_content-text_02.

				sy-msgv3	=	message_content-text_03.

				sy-msgv4	=	message_content-text_04.

		endmethod.

endclass.

Listing	10-22 Class	messenger_test_double	enhanced	with	capability	to	record	messages	issued
through	method	issue_identified_message

Notice	the	new	public	read-only	attribute	identified_message_stack	defined
as	an	internal	table	to	record	all	message	content	flowing	through	method
issue_identified_message.	Notice	also	that	method	issue_identified_message	has
extra	code	to	capture	the	respective	values	of	the	signature	parameters	in	a	new
row	appended	to	the	new	public	attribute.	These	changes	transform	class
messenger_test_double	into	a	test	spy.

Listing	10-23	shows	how	the	unit	test	method	validate_2_files_specified
defined	in	Listing	10-21	could	be	changed	to	assert	that	the	value	it	uses	on	the
call	to	subroutine	validate_file_name	causes	three	messages	to	be	recorded	by
the	test	double,	with	changes	highlighted	in	bold.

		method	validate_2_files_specified.

				data	messenger_test_double	type	ref	to

messenger_test_double.

				data	identified_message_entry	like	line



											of	messenger_test_double-

>identified_message_stack.

				data	error_message_count	type	int4.

				data	warning_message_count	type	int4.

				clear	sy-msgty.

				perform	validate_file_name	using	'\'

																																					'/'.

				try.

						messenger_test_double	?=

								service_locator=>singleton->message_dispatchable.

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	'E'

						).

				loop	at	messenger_test_double->identified_message_stack

							into																								identified_message_entry.

						case	identified_message_entry-type.

								when	'E'.

										add	01	to	error_message_count.

								when	'W'.

										add	01	to	warning_message_count.

						endcase.

				endloop.

				cl_abap_unit_assert=>assert_equals(

						act	=	error_message_count

						exp	=	01

						msg	=	'Unexpected	count	of	error	messages'

						).

				cl_abap_unit_assert=>assert_equals(

						act	=	warning_message_count

						exp	=	02

						msg	=	'Unexpected	count	of	warning	messages'

						).

		endmethod.



Listing	10-23 Unit	test	method	validate_2_files_specified	changed	to	inspect	the	messages	recorded	by	test	spy
messenger_test_double

Notice	that	now	this	unit	test	method	defines	four	new	variables	and	no
longer	clears	sy-msgty	prior	to	calling	the	subroutine.	Notice	also	that	after
calling	the	subroutine,	it	has	a	try-endtry	block	where	it	performs	a	specializing
cast	to	move	the	service	locator	instance	providing	the	message	dispatch	service
into	a	reference	field	defined	specifically	as	one	of	type	messenger_test_double.
This	enables	the	unit	test	to	have	access	to	the	new	attribute	of	class
messenger_test_double	holding	the	rows	of	message	parameter	values	resulting
from	the	calls	to	its	method	issue_identified_message.

Finally,	notice	that	the	former	assertion	statement	has	been	discarded,
replaced	with	a	loop	through	the	rows	in	internal	table	identified_message_stack
of	class	messenger_test_double	counting	the	number	of	messages	of	type	error
and	of	type	warning	and	then	performing	assertions	on	those	numbers.	Since
there	will	be	no	implicit	control	flow	interruption	in	subroutine
validate_file_name	when	called	by	unit	test	validate_2_files_specified,	we
should	expect	that	there	will	be	three	calls	to	the	messenger	test	double:	one	with
an	error	message	and	two	with	warning	messages.

Although	not	shown	in	this	example,	for	consistency,	we	would	want	to
apply	the	same	relative	changes	to	method	issue_unidentified_message	of	class
messenger_test_double.

There	remains	a	small	issue	to	be	discovered	with	unit	test	method
validate_2_files_specified	shown	in	Listing	10-23,	one	that	relates	to	reporting
of	failures.	Can	you	find	it	in	Listing	10-23?	Listing	10-24	is	a	copy	of	Listing
10-23	without	the	highlighting	and	stricken	lines	but	with	two	slight	changes
highlighted	in	bold.

		method	validate_2_files_specified.

				data	messenger_test_double	type	ref	to

messenger_test_double.

				data	identified_message_entry	like	line

											of	messenger_test_double-

>identified_message_stack.

				data	error_message_count	type	int4.

				data	warning_message_count	type	int4.

				perform	validate_file_name	using	'\'

																																					'/'.

				try.



						messenger_test_double	?=

								service_locator=>singleton->message_dispatchable.

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				loop	at	messenger_test_double->identified_message_stack

							into																								identified_message_entry.

						case	identified_message_entry-type.

								when	'E'.

										add	01	to	error_message_count.

								when	'W'.

										add	01	to	warning_message_count.

						endcase.

				endloop.

				cl_abap_unit_assert=>assert_equals(

						act	=	error_message_count

						exp	=	02	"	01

						msg	=	'Unexpected	count	of	error	messages'

						).

				cl_abap_unit_assert=>assert_equals(

						act	=	warning_message_count

						exp	=	01	"	02

						msg	=	'Unexpected	count	of	warning	messages'

						).

		endmethod.

Listing	10-24 Unit	test	method	validate_2_files_specified	changed	to	cause	failures	with	both	assertions

Notice	that	both	calls	to	method	assert_equals	of	class	cl_abap_unit_assert
have	had	the	values	of	the	exp	parameter	changed	to	a	value	guaranteed	to	cause
an	assertion	failure.	The	small	problem	is	that	when	this	unit	test	is	executed	and
these	failures	await,	the	ABAP	Unit	Result	Display	report	will	show	only	that
one	of	these	failures	has	been	triggered.	This	is	because	all	assertion	methods	of
class	cl_abap_unit_assert	have	a	default	value	of	“method”	for	their	quit
parameter,	meaning	that	unless	explicitly	stated	otherwise,	the	first	assertion
failure	caused	by	a	call	to	a	method	of	class	cl_abap_unit_assert	will	cause	the
unit	test	method	in	which	it	occurs	to	be	immediately	discontinued.

In	the	example	in	Listing	10-24,	we	should	expect	the	ABAP	Unit	Result



Display	report	to	show	that	unit	test	method	validate_2_files_specified	fails	and
is	accompanied	by	only	one	failure	message:	“Unexpected	count	of	error
messages.”	The	assertion	against	the	number	of	warning	messages	is	never
performed	because	the	unit	test	method	is	exited	immediately	upon	the	assertion
failure	against	the	number	of	error	messages.	In	its	current	state,	the	unit	test
would	diagnose	this	error	message	count	failure;	then	after	correcting	this	and
rerunning	the	unit	test,	we	would	be	presented	with	the	assertion	failure
diagnosing	the	incorrect	number	of	warning	messages.	In	such	cases,	it	would	be
to	our	advantage	for	the	unit	test	method	to	diagnose	both	failures.	To	do	this
would	require	that	we	supply	the	quit	parameter	with	the	value	“no”	for	the	first
assertion	so	that	its	failure	does	not	prevent	the	unit	test	from	also	testing	the
second	assertion,	as	shown	in	Listing	10-25	with	changes	highlighted	in	bold.

		method	validate_2_files_specified.

				data	messenger_test_double	type	ref	to

messenger_test_double.

				data	identified_message_entry	like	line

											of	messenger_test_double-

>identified_message_stack.

				data	error_message_count	type	int4.

				data	warning_message_count	type	int4.

				perform	validate_file_name	using	'\'

																																					'/'.

				try.

						messenger_test_double	?=

								service_locator=>singleton->message_dispatchable.

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				loop	at	messenger_test_double->identified_message_stack

							into																								identified_message_entry.

						case	identified_message_entry-type.

								when	'E'.

										add	01	to	error_message_count.

								when	'W'.

										add	01	to	warning_message_count.

						endcase.



				endloop.

				cl_abap_unit_assert=>assert_equals(

						act	=	error_message_count

						exp	=	02	"	01

						msg	=	'Unexpected	count	of	error	messages'

						quit	=	cl_aunit_assert=>no

						).

				cl_abap_unit_assert=>assert_equals(

						act	=	warning_message_count

						exp	=	01	"	02

						msg	=	'Unexpected	count	of	warning	messages'

						).

		endmethod.

Listing	10-25 Unit	test	method	changed	to	allow	both	assertion	failures	to	be	diagnosed	in	a	single	unit	test	run

Now,	even	though	the	first	assertion	fails,	there	is	an	indication	to	the	test
runner	to	continue	executing	the	remainder	of	the	unit	test	method.	With	this
arrangement,	we	would	be	able	to	see	both	failure	messages	in	a	single
presentation	of	the	ABAP	Unit	Result	Display	report.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	16	exercises	associated	with
workbook	Section	20:	ABAP	Unit	Testing	503	–	Gaining	Control	Over
Message	Statements.

Using	the	Service	Locator	to	Manage	List	Processing
Statements
The	Chapter	5	section	titled	“Challenges	Presented	by	Classic	List	Processing
Statements”	described	how	a	unit	test	encountering	a	classic	list	processing
statement,	such	as	WRITE	and	ULINE,	would	cause	the	resulting	list	output	(a)
to	be	presented	to	the	user	during	the	unit	test	and	(b)	to	be	preceded	by	lines
generated	by	the	test	runner	highlighted	in	red	containing	a	warning	against
using	such	statements.	The	presentation	of	such	output	during	a	unit	test	requires
manual	intervention	by	the	user	to	press	a	key	enabling	the	unit	test	to	run	to
completion.	This	violates	one	of	the	basic	principles	of	xUnit	testing	–	that	the



tests	run	to	completion	without	requiring	any	monitoring	or	action	by	the	user.
This	section	addresses	this	issue.

Suppose	a	program	is	written	to	accept	some	selection	criteria	specified	by
the	user	and	then	produce	a	corresponding	summary	report	of	accounts	payable,
similar	to	the	example	report	shown	in	Figure	10-1.

Figure	10-1 Example	report

Part	of	the	program	is	the	subroutine	shown	in	Listing	10-26	which	uses
classic	list	processing	statements	to	produce	the	content	of	the	report.

form	create_report	using	report_rows	type	report_list.

		data	report_row	like	line	of	report_rows.

		loop	at	report_rows	into	report_row.

				new-line.

				write:	report_row-vendor,

											report_row-city,

											report_row-amount,

											report_row-currency_key.

		endloop.

endform.

Listing	10-26 Subroutine	producing	report	using	classic	list	processing	statements

Notice	the	subroutine	consists	of	a	loop	through	the	rows	of	the	report,	with
each	row	formatted	to	appear	on	the	report	using	the	classic	list	processing
statements	NEW-LINE	and	WRITE.

Listing	10-27	shows	the	unit	test	class	written	for	testing	subroutine
create_report.

class	create_report_tester	definition

																											for	testing

																											risk	level	harmless.

		private	section.

				methods	create_report	for	testing.



				methods	create_test_data

						exporting	report_rows	type	report_list.

endclass.

class	create_report_tester	implementation.

		method	create_report.

				data	report_rows	type	report_list.

				create_test_data(

						importing	report_rows	=	report_rows

						).

				clear	sy-msgty.

				perform	create_report	using	report_rows.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	space

						).

		endmethod.

		method	create_test_data.

				data	report_row	like	line	of	report_rows.

				report_row-vendor							=	'Amalgamated	Materials'.

				report_row-city									=	'Toronto'.

				report	row-amount							=	2571909.06.

				report_row-currency_key	=	'CAD'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'Associated

Manufacturers'.

				report_row-city									=	'Melbourne'.

				report	row-amount							=	184396.26.

				report_row-currency_key	=	'AUD'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'General	Industries

LTD'.

				report_row-city									=	'London'.

				report	row-amount							=	6005.72.

				report_row-currency_key	=	'GBP'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'Innovative	Solutions'.

				report_row-city									=	'New	York'.

				report	row-amount							=	12545.80.

				report_row-currency_key	=	'USD'.



				append	report_row	to	report_rows.

		endmethod.

endclass.

Listing	10-27 Unit	test	class	for	testing	subroutine	create_report

There	are	a	few	things	to	notice	about	this	unit	test	class.	First,	notice	that	it
has	two	methods	but	only	one	of	them	is	marked	with	the	“for	testing”	clause.
During	unit	test	execution,	only	the	method	with	the	“for	testing”	clause	will	be
called	by	the	test	runner.	Notice	also	that	the	creation	of	test	data	has	been
delegated	to	helper	method	create_test_data.	This	utility	method	has	many	lines
devoted	to	the	creation	of	the	test	data	to	be	used	when	method	create_report
calls	subroutine	create_report.	These	lines	of	code	could	easily	have	been
included	directly	within	method	create_report,	but	then	the	purpose	of	the	test
would	have	become	obscured	by	all	the	lines	of	code	creating	the	test	data	to	be
used.	As	currently	written,	it	is	clear	to	see	that	method	create_report	calls	a
method	to	have	its	test	data	created	for	it,	then	clears	system	variable	sy-msgty,
then	calls	subroutine	create_report,	and	finally	asserts	that	sy-msgty	was	not
affected	by	the	activity	performed	by	the	subroutine.

If	the	unit	test	shown	in	Listing	10-27	were	to	be	executed,	it	would	be
interrupted	with	the	report	shown	in	Figure	10-2	presented	to	the	user.



Figure	10-2 Report	presented	when	automated	unit	test	shown	in	Listing	10-27	is	executed

The	unit	test	will	remain	suspended	at	this	point	until	the	user	presses	a	key
enabling	it	to	resume.	This	needs	to	be	avoided	so	the	unit	test	can	run	to
completion	with	no	help	at	all	from	the	user.

We’ve	already	seen	how	encapsulating	the	production	of	ALV	reports	into	a
class	enables	defining	that	class	with	a	test	double	to	be	used	during	execution	of
the	unit	test	path.	A	similar	approach	will	be	used	with	classic	list	processing
statements.	The	full	solution	will	involve	the	following	changes	to	the
production	path	of	the	program:

Define	a	class	having	public	methods	that	can	be	called	to	issue	classic	list
processing	statements.

Change	the	service	locator	to	be	able	to	manage	the	service	provided	by
this	class.

Replace	each	explicit	classic	list	processing	statement	in	the	program	with
a	call	to	the	corresponding	service	managed	by	the	service	locator.

The	class	having	public	methods	that	can	be	called	to	issue	classic	list
processing	statements	will	implement	an	interface	defining	those	methods.
Listing	10-28	shows	an	interface	defining	methods	correlating	to	the	classic	list
processing	statements	new-line	and	write.

interface	report_writable.

				types	value_type		type	c	length	100.

				types	format_type	type	c	length	100.

				methods	new_line.

				methods	write

						importing

								format

										type	report_writable=>format_type

								value

										type	report_writable=>value_type.

endinterface.

Listing	10-28 Interface	defining	methods	for	classic	list	processing	statements	new-line	and	write

Notice	that	this	interface	specifies	signature	parameters	for	indicating	both	a
format	and	a	value	to	be	accepted	by	method	write.	This	interface	is
implemented	by	the	class	shown	in	Listing	10-29.



class	report_writer	definition.

		public	section.

				interfaces	report_writable.

				aliases	new_line	for	report_writable~new_line.

				aliases	write				for	report_writable~write.

endclass.

class	report_writer	implementation.

		method	new_line.

				new-line.

		endmethod.

		method	write.

				constants	default_format	type	sy-msgv1	value	'SY-

MSGV1'.

				data	value_formatting_field	type	ref	to	data.

				field-symbols	<value_formatting_field>	type	any.

				try.

						create	data	value_formatting_field	type

(format).

				catch	cx_sy_create_data_error.

						create	data	value_formatting_field	type

(default_format).

				endtry.

				if	value_formatting_field	is	bound.

						assign		value_formatting_field->*

										to	<value_formatting_field>.

				endif.

				if	<value_formatting_field>	is	assigned.

						<value_formatting_field>	=	value.

						write	<value_formatting_field>.

				else.

						write	value.

				endif.

		endmethod.

endclass.

Listing	10-29 Class	implementing	interface	report_writable

Notice	the	implementation	for	method	new-line	simply	contains	the	new-line
statement.	Notice	also	the	implementation	for	method	write	will	dynamically
define	a	data	field	with	the	same	type	specified	by	the	format	parameter



provided	by	the	caller	and	then	will	move	the	value	specified	by	the	value
parameter	into	this	field	so	it	can	be	formatted	correctly	when	used	with	the
write	statement.	It	contains	processing	to	accommodate	the	failure	to
dynamically	define	a	field	according	to	the	type	specified	by	the	format
parameter	and	to	use	a	corresponding	default	format	instead,	as	well	as
processing	to	accommodate	the	failure	to	assign	a	reference	to	the	dynamically
defined	field.

Listing	10-30	is	a	copy	of	the	service	locator	from	Listing	10-13	changed	to
accommodate	a	classic	list	report	service	as	a	reference	to	an	interface,	with
changes	highlighted	in	bold.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				methods							set_alv_report_function_module

																				importing	alv_function_module_name

																						type	funcname.

				methods							set_message_dispatcher

																				importing	message_dispatcher

																						type	ref	to	message_dispatchable.

				methods							set_report_writer

																				importing	report_writer

																						type	ref	to	report_writable.

				class-data	singleton	type	ref	to	service_locator	read-

only.

				data	ticket_sales_examiner	type	ref	to

ticket_sales_examinable

																																																					read-

only.

				data	ticket_sales_reporter	type	ref	to

ticket_sales_reportable

																																																					read-

only.



				data	alv_function_module_name	type	funcname	read-only.

				data	message_dispatcher	type	ref	to

message_dispatchable	read-only.

				data	report_writer	type	ref	to	report_writable	read-

only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

		method	set_alv_report_function_module.

				me->alv_function_module_name	=

alv_function_module_name.

		endmethod.

		method	set_message_dispatcher.

				me->message_dispatcher	=	message_dispatcher.

		endmethod.

		method	set_report_writer.

				me->report_writer	=	report_writer.

		endmethod.

endclass.

Listing	10-30 Service	locator	from	Listing	10-13	changed	to	accommodate	managing	a	classic	list	report
writer	service

Notice	that	there	is	now	a	new	public	read-only	attribute	named
report_writer	and	a	corresponding	public	setter	method	for	it.	These	changes	are
similar	to	the	changes	required	to	enable	the	service	locator	to	manage	a
message	dispatch	service	and	were	just	as	easy	to	implement.

Listing	10-31	shows	a	subroutine	for	creating	an	instance	of	class
report_writer	and	registering	it	with	the	service	locator	as	the	report_writer
service.

form	create_report_writer.



		data	report_writer	type	ref	to	report_writable.

		create	object	report_writer	type	report_writer.

		service_locator=>singleton->set_report_writer(

report_writer	).

endform.

Listing	10-31 Subroutine	creating	report	writer	service	and	registering	it	with	the	service	locator

The	subroutine	shown	in	Listing	10-31	would	be	called	at	some	point	during
the	initial	execution	of	the	program	to	register	the	report	writer	to	be	used	for
producing	a	report	with	production	path	executions.	With	components	defined	as
shown	in	Listings	10-28,	10-29,	10-30,	and	10-31,	it	becomes	possible	to	replace
classic	list	processing	statements	new-line	and	write	with	corresponding	calls
through	the	public	attribute	of	the	service	locator	providing	the	report	writer
service.

Listing	10-32	shows	how	the	subroutine	in	Listing	10-26	would	be	changed
to	do	this,	with	changes	highlighted	in	bold.

form	create_report	using	report_rows	type	report_list.

		data	report_row	like	line	of	report_rows.

		loop	at	report_rows	into	report_row.

				new-line.

				service_locator=>singleton->report_writer->new-

line(	).

				write:	report_row-vendor,

											report_row-city,

											report_row-amount,

											report_row-currency_key.

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-vendor'

																value		=	conv	#(	report_row-vendor	)

						).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-city'

																value		=	conv	#(	report_row-city	)

						).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-amount'

																value		=	conv	#(	report_row-amount	)

						).



				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-

currency_key'

																value		=	conv	#(	report_row-

currency_key	)

						).

		endloop.

endform.

Listing	10-32 Subroutine	producing	classic	report	with	classic	list	processing	statements	replaced
with	equivalent	calls	to	a	service	managed	by	the	service	locator

Notice	that	each	explicit	classic	list	processing	statement	has	been	replaced
with	a	call	to	a	method	of	a	service	managed	by	the	service	locator.	The	calls	to
method	write	require	specifying	parameters	to	indicate	the	format	to	be	used	in
addition	to	the	value,	but	the	format	specified	is	simply	the	apostrophe-bounded
name	of	the	same	field	providing	the	value.	Also,	the	fields	providing	the	values
for	the	value	parameters	of	method	write	all	are	shown	using	the	constructor
operator	“conv	#”	so	that	the	value	in	the	supplying	field	is	converted	to	a	value
compatible	with	the	type	assigned	to	the	value	parameter,	averting	syntax	errors
otherwise	raised	by	type	mismatches	and	eliminating	the	need	to	define	local
helper	variables	to	facilitate	this	conversion.	This	would	not	be	needed	in	all
cases	but	certainly	would	be	necessary	for	the	call	to	method	write	where	the
value	is	supplied	by	a	numeric	field,	such	as	the	use	of	field	report_row-amount
shown	in	the	preceding	example.

Listing	10-33	is	a	copy	of	Listing	10-32	without	the	highlighting	and	stricken
lines:

form	create_report	using	report_rows	type	report_list.

		data	report_row	like	line	of	report_rows.

		loop	at	report_rows	into	report_row.

				service_locator=>singleton->report_writer->new-

line(	).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-vendor'

																value		=	conv	#(	report_row-vendor	)

						).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-city'

																value		=	conv	#(	report_row-city	)



						).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-amount'

																value		=	conv	#(	report_row-amount	)

						).

				service_locator=>singleton->report_writer->write(

						exporting	format	=								'report_row-

currency_key'

																value		=	conv	#(	report_row-

currency_key	)

						).

		endloop.

endform.

Listing	10-33 Listing	10-32	without	the	highlighting	and	stricken	lines

At	this	point,	the	task	could	be	undertaken	to	replace	any	other	NEW-LINE
and	WRITE	statements	in	the	program	with	corresponding	calls	to	the
report_writer	service	managed	by	the	service	locator.	Once	that	has	been
completed,	the	program	can	be	considered	designed	for	testability.	This	is
because	a	unit	test	would	now	be	able	to	register	with	the	service	locator	an
instance	of	a	test	double	implementing	the	report_writer	interface,	one	that	does
not	use	classic	list	processing	statements,	guaranteeing	no	more	interruptions	of
unit	tests	with	lines	generated	by	the	test	runner	preceding	a	classic	list	report
and	requiring	manual	intervention	by	the	user	to	enable	the	test	to	run	to
completion.

Listing	10-34	shows	such	a	test	double.

class	report_writer_test_double	definition.

		public	section.

				interfaces	report_writable.

				aliases	new_line	for	report_writable~new_line.

				aliases	write				for	report_writable~write.

endclass.

class	report_writer_test_double	implementation.

		method	new_line.

		endmethod.

		method	write.

		endmethod.

endclass.



Listing	10-34 Test	double	for	class	report_writer

Notice	the	implementations	for	both	methods	are	empty	–	neither	contains
any	classic	list	processing	statements.	This	makes	it	possible	to	write	a	unit	test
class	for	testing	subroutine	create_report	that	can	run	to	completion	without	user
intervention.	Listing	10-35	shows	how	the	unit	test	from	Listing	10-27	would	be
adjusted	to	do	this,	with	changes	highlighted	in	bold.

class	create_report_tester	definition

																											for	testing

																											risk	level	harmless.

		private	section.

				methods	setup.

				methods	create_report	for	testing.

				methods	create_test_data

						exporting	report_rows	type	report_list.

endclass.

class	create_report_tester	implementation.

		method	setup.

				data	report_writer	type	ref	to	report_writable.

				create	object	report_writer	type

report_writer_test_double.

				service_locator=>singleton->set_report_writer(

report_writer	).

		endmethod.

		method	create_report.

				data	report_rows	type	report_list.

				create_test_data(

						importing	report_rows	=	report_rows

						).

				clear	sy-msgty.

				perform	create_report	using	report_rows.

				cl_abap_unit_assert=>assert_equals(

						act	=	sy-msgty

						exp	=	space

						).

		endmethod.

		method	create_test_data.

				data	report_row	like	line	of	report_rows.



				report_row-vendor							=	'Amalgamated	Materials'.

				report_row-city									=	'Toronto'.

				report	row-amount							=	2571909.06.

				report_row-currency_key	=	'CAD'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'Associated

Manufacturers'.

				report_row-city									=	'Melbourne'.

				report	row-amount							=	184396.26.

				report_row-currency_key	=	'AUD'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'General	Industries

LTD'.

				report_row-city									=	'London'.

				report	row-amount							=	6005.72.

				report_row-currency_key	=	'GBP'.

				append	report_row	to	report_rows.

				report_row-vendor							=	'Innovative	Solutions'.

				report_row-city									=	'New	York'.

				report	row-amount							=	12545.80.

				report_row-currency_key	=	'USD'.

				append	report_row	to	report_rows.

		endmethod.

endclass.

Listing	10-35 Adjusted	unit	test	class	for	testing	subroutine	create_report

Notice	that	this	unit	test	class	has	a	setup	method	which	will	create	an
instance	of	class	report_writer_test_double	and	then	register	that	instance	with
the	service	locator	as	the	instance	to	be	used	to	provide	the	classic	report	writer
service.	The	setup	method	is	automatically	called	prior	to	executing	the	method
defined	as	“for	testing.”

Executing	this	program	normally	with	the	corresponding	selection	criteria
would	produce	the	classic	list	report	shown	in	Figure	10-1	at	the	top	of	this
section.	Executing	the	automated	unit	test	of	this	program	as	shown	in	the
preceding	text	would	indicate	a	passing	test	for	test	method	create_report	and
would	not	be	interrupted	prior	to	its	completion	by	the	presentation	of	a	classic
list	report,	despite	calling	the	very	same	subroutine	that	causes	the	classic	list
report	produced	by	the	production	path.

Upon	further	examination,	it	might	be	concluded	that	the	unit	test	of	Listing



10-34	is	not	very	robust	because	it	does	not	really	test	what	the	subroutine	does
but	rather	what	it	does	not	do	–	specifically,	the	test	asserts	the	subroutine	does
not	change	the	value	of	system	variable	sy-msgty.	Listing	10-36	is	a	copy	of
Listing	10-34	and	changed	so	that	the	report	writer	test	double	keeps	track	of	the
number	of	report	rows	that	would	result	from	the	calls	made	to	its	methods,	with
changes	highlighted	in	bold.

class	report_writer_test_double	definition.

		public	section.

				interfaces	report_writable.

				aliases	new_line	for	report_writable~new_line.

				aliases	write				for	report_writable~write.

				data	number_of_lines_written	type	int4	read-only.

		private	section.

				data	new_line_pending	type	abap_bool	value

abap_true.

endclass.

class	report_writer_test_double	implementation.

		method	new_line.

				new_line_pending	=	abap_true.

		endmethod.

		method	write.

				if	new_line_pending	=	abap_true.

						add	01	to	number_of_lines_written.

						new_line_pending	=	abap_false.

				endif.

		endmethod.

endclass.

Listing	10-36 Listing	10-34	changed	to	track	number	of	resulting	report	rows

Notice	that	there	is	now	a	public	read-only	attribute	to	retain	the	number	of
report	lines	that	would	be	written.	In	addition,	a	new	private	section	defines	a
Boolean	attribute	indicating	whether	a	new	line	is	pending.	Notice	also	that	both
methods	now	have	non-empty	implementations:	method	new_line	will	now	set
the	private	Boolean	attribute	to	true	to	indicate	that	a	new	row	of	the	report	is
pending;	and	method	write	will	now	increment	public	attribute
number_of_lines_written	when	the	private	attribute	indicates	that	a	new	line	is
pending	and	then	will	set	the	private	attribute	to	false.	Accordingly,	each	time
method	write	is	called	after	method	new_line	has	been	called,	it	will	indicate



another	line	written	to	the	report.	This	change	transforms	class
report_writer_test_double	into	a	test	spy	which	can	be	interrogated	to	determine
how	many	report	lines	resulted	from	calls	to	methods	new_line	and	write.

Listing	10-37	is	a	copy	of	unit	test	method	create_report	from	Listing	10-35
changed	to	show	how	this	method	could	assert	the	correct	number	of	lines	was
written	by	the	called	subroutine,	with	changes	highlighted	in	bold.

		method	create_report.

				data	report_rows	type	report_list.

				data	report_writer_test_double	type	ref	to

report_writer_test_double.

				create_test_data(

						importing	report_rows	=	report_rows

						).

				clear	sy-msgty.

				perform	create_report	using	report_rows.

				try.

						report_writer_test_double	?=

								service_locator=>singleton->report_writer.

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	report_writer_test_double-

>number_of_lines_written

						exp	=	lines(	report_rows	)

						).

		endmethod.

Listing	10-37 Listing	10-35	changed	to	assert	the	number	of	report	lines	caused	by	the	subroutine

Notice	the	additional	local	variable	defined	as	a	reference	to	class
report_writer_test_double.	This	is	used	in	the	try-endtry	block	to	enable	the	class
instance	occupying	public	read-only	attribute	report_writer	of	the	service	locator,
defined	as	a	reference	to	interface	report_writable,	to	be	regarded	as	an	instance
of	class	report_writer_test_double.	If	the	specializing	cast	works,	then	the
assertion	compares	the	value	in	attribute	number_of_lines_written	of	class
report_writer_test_double	and	the	number	of	lines	in	internal	table	report_rows



for	equality,	improving	the	unit	test	from	asserting	something	the	subroutine
does	not	do	to	something	that	it	does	do.

This	solution	may	be	considered	by	many	as	a	long	way	to	go	to	enable	unit
testing	a	program	producing	a	classic	list	report.	Since	the	rows	of	the	report	in
this	example	already	are	contained	within	an	internal	table,	it	might	be	easier
simply	to	convert	from	using	a	classic	list	report	to	using	an	ALV	report.	This
would	eliminate	from	the	program	the	use	of	deprecated	statements,	as	well	as
instantly	providing	users	with	new	report	analyzing	capabilities.	So	why	bother
with	such	heavy	refactoring	to	enable	automated	unit	testing	when	ALV	offers	a
much	better	approach	to	reporting	and	arguably	is	more	conducive	to
implementing	its	associated	automated	unit	tests?

The	answer	is	that	some	ABAP	developer	somewhere	is	working	at	a	site	full
of	users	who	will	moan	and	complain	about	every	change	made	to	the	software
they	use.	Despite	the	benefits	of	ALV	over	classic	lists,	these	users	will	revolt
should	the	developer	have	the	temerity	to	make	such	an	improvement	to	their
beloved	classic	list	reports	without	their	approval.	Perhaps	you	know	some	users
at	your	own	site	who	fit	this	description.	So	for	those	developers	who	find
themselves	in	such	a	situation,	this	section	offers	the	less	preferred	alternative	to
implementing	unit	tests	with	reports,	one	for	which	the	associated	changes
would	not	be	apparent	to	a	user	base	intent	on	thwarting	improvements	to	the
software	they	use	on	a	daily	basis.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	ten	exercises	associated	with
workbook	Section	21:	ABAP	Unit	Testing	504	–	Gaining	Control	Over
List	Processing	Statements.

Summary
This	chapter	showed	how	the	service	locator	introduced	in	the	previous	chapter
can	be	leveraged	to	manage
1.

Services	provided	through	global	classes 	
2.

Services	provided	through	function	modules	
It	also	demonstrated	how	the	service	locator	can	be	instrumental	in	providing



1

solutions	to	the	problems	arising	from	those	ABAP	statements	and	features
presenting	challenges	to	automated	unit	testing	–	specifically

3.
How	it	can	be	used	to	manage	an	ABAP	MESSAGE	statement	service	for
which	a	unit	test	can	provide	a	test	double	that	can	circumvent	the	otherwise
automatic	test	failures	when	encountering	messages	of	severities	error	and
higher

	

4.
How	it	can	be	used	to	manage	a	classic	list	statement	service	for	which	a
unit	test	can	provide	a	test	double	that	can	avoid	the	manual	intervention
otherwise	required	by	the	presentation	of	the	classic	report	output	during	the
execution	of	the	unit	test

	

Examples	were	provided	showing	how	to	resolve	each	of	these	challenges.

Footnotes
See	http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

	

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_11

11.	Test-Driven	Development
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Test-Driven	Development,	known	by	its	acronym	TDD,	is	one	of	the	many
development	approaches	to	have	gained	traction	through	the	Agile	software
development	movement.	It	is	based	on	the	idea	of	developing	software	using	a
test-first	perspective:	first,	a	failing	executable	test	is	written;	then	production
software	is	written	capable	of	passing	the	test.	Accordingly,	as	its	name	suggests,
the	development	of	production	software	is	being	driven	by	the	test.	This	chapter
explores	TDD.

The	TDD	Cycle
A	developer	utilizing	TDD	follows	a	cycle	consisting	of	the	following	steps:

1.
Write	a	new	executable	test. 	

2.
Run	all	tests	to	confirm	the	new	test	fails. 	

3.
Write	production	code	to	make	the	new	test	pass.	

4.
Run	all	tests	to	confirm	they	all	pass. 	

5.
Refactor	code	as	necessary	and	rerun	all	tests. 	

6.
Repeat	from	step	1. 	
This	cycle	implies	a	distinction	between	production	code	and	test	code.

Whereas	only	the	production	code	will	be	executed	in	a	production	environment,

https://doi.org/10.1007/978-1-4842-6951-0_11


code	used	for	its	testing	is	not	only	developed	along	with	it	but	the	test	code	is
written	first	before	the	corresponding	production	code	it	tests	is	written.

Roy	Osherove	summarizes	the	process:

You	begin	by	writing	a	test	that	fails;	then	you	move	on	to	creating	the
production	code,	seeing	the	test	pass,	and	continuing	on	to	either	refactor
your	code	or	create	another	failing	test.1

Those	who	champion	its	use	readily	point	out	that	with	TDD	it	is	virtually
impossible	not	to	have	an	associated	test	for	every	shred	of	production	code	and
furthermore	that	the	test	code	describes	the	functionality	of	the	production
software	far	more	accurately	than	any	external	specification	document	possibly
could	simply	because	the	tests	must	pass	while	an	external	specification
documentation	can	eventually	get	out	of	synchronization	with	the	software	for	a
variety	of	reasons,	including	reengineering,	postponed	or	canceled	updates,	and
even	loss	of	the	specification.	Indeed,	having	a	robust	testing	harness	for
production	software	means	that	developers	can	refactor	the	software	with	the
confidence	that	no	new	problems	will	be	introduced	with	the	new	changes.

The	Three	Laws	of	TDD
Robert	C.	Martin	has	emerged	as	one	of	the	leading	advocates	of	using	TDD,	so
much	so	that	he	formulated	the	three	laws	of	TDD:

First	Law	You	may	not	write	production	code	until	you	have	written	a	failing
unit	test.
Second	Law	You	may	not	write	more	of	a	unit	test	than	is	sufficient	to	fail,
and	not	compiling	is	failing.
Third	Law	You	may	not	write	more	production	code	than	is	sufficient	to	pass
the	currently	failing	test.2

Observing	the	TDD	discipline	in	developing	software	enables	adhering	to
what	is	known	as	the	red-green-refactor	cycle,	which	Martin	puts	into
perspective	for	us:

The	rules	of	this	cycle	are	simple.

1.
Create	a	unit	tests	that	fails. 	

2.
Write	production	code	that	makes	that	test	pass.	



3. Clean	up	the	mess	you	just	made.3 	
The	red-green-refactor	cycle	gets	its	name	from	the	feedback	produced	by

many	of	the	xUnit	testing	frameworks.	A	failing	test	generally	is	reported	using
the	color	red,	whether	it	is	a	failure	message	with	red	background,	a	red	flag
associated	with	the	failing	unit	test	method,	or	a	red	traffic	light	in	a	report.	A
successful	test	generally	is	reported	using	the	color	green.	Refactoring	the	code
has	no	associated	color,	but	once	the	refactoring	is	complete,	the	subsequent	unit
test	execution	will	either	continue	to	pass	(green)	or	fail	(red)	indicating	that
something	changed	during	the	refactoring	process	has	resulted	in	a	failing	unit
test:

The	red/green	concept	is	prevalent	throughout	the	unit	testing	world	and
especially	in	test-driven	development.	Its	mantra	is	“Red-Green-
Refactor,”	meaning	that	you	start	with	a	failing	test,	then	pass	it,	and
then	make	your	code	readable	and	more	maintainable.4

For	developers	who	have	been	writing	in	a	procedural	style	for	most	of	their
careers,	the	thought	of	writing	the	tests	first	may	be	perceived	as	backward	at
best	and	thoroughly	confusing	at	worst.	It	represents	a	testing	format	that	may	be
regarded	as	the	antithesis	of	common	sense	and	apt	to	cause	a	conflict	with	their
comfort	level.	Indeed,	some	could	sense	a	feeling	of	revulsion	toward	such	a
jarring	change	as	elevating	testing	to	the	more	prominent	position	within	the
development	cycle	that	TDD	demands	of	it.	However,	after	having	tried	TDD,	I
have	become	an	advocate	of	this	development	process	since	it	forces	the
programmer	to	design	the	productive	code	in	a	way	that	it	can	be	tested,	perhaps
the	most	significant	benefit	it	has	to	offer.

Though	it	may	feel	uncomfortable	at	first,	it	eventually	provides	its	own
“Aha!”	moments	as	developers	come	to	understand	the	power	it	places	at	their
disposal.	It	is	not	unlike	other	evolutionary	improvements	that	have	been
discovered	over	the	centuries	that	first	were	ignored,	shunned,	and	ridiculed	as
folly,	such	as	the	change	from	the	concept	of	a	flat	earth	to	one	of	a	spherical
planet	and,	by	the	supplanting	of	Newtonian	physics,	the	theory	of	mechanics
that	had	reigned	throughout	the	world	for	two	centuries,	with	Einstein’s	Theory
of	Relativity.

The	Benefits	of	TDD



Programmers	using	the	TDD	approach	to	developing	software	will	find
themselves	in	a	red-green-refactor	cycle	lasting	only	about	half	a	minute.	As
Robert	C.	Martin	describes	it	in	his	book	The	Clean	Coder

The	three	laws	lock	you	into	a	cycle	that	is,	perhaps,	thirty	seconds	long.
…	Round	and	round	the	cycle	you	go.	Adding	a	bit	to	the	test	code.
Adding	a	bit	to	the	production	code.	The	two	code	streams	grow
simultaneously	into	complementary	components.	The	tests	fit	the
production	code	like	an	antibody	fits	an	antigen.5

Through	the	use	of	this	cycle,	development	organizations	reap	what	Martin
describes	as	“The	Litany	of	Benefits”6	listed	as	follows:

Certainty
Using	TDD	enables	a	developer	to	be	certain	that	a	production	solution

produces	the	intended	results.	The	test	simply	will	continue	to	fail	until	it
passes.	This	certainty	instills	in	the	developer	the	confidence	that	the	solution
implemented	satisfies	the	associated	requirement.

Low	defect	injection	rate
When	code	is	being	changed,	introducing	new	bugs	into	it	can	be	avoided

when	there	are	associated	unit	tests	available	for	it.	Tests	that	suddenly	fail
after	implementing	a	new	change	would	identify	a	defect	that	would	have
made	its	way	into	production	had	there	been	no	corresponding	unit	tests.

Courage
Most	of	us	have	encountered	bad	code	during	our	careers.	Too	often	we

leave	this	bad	code	unchanged,	despite	the	excessive	time	it	might	have
required	for	us	to	determine	how	it	works,	because	we	fear	we	don’t
understand	it	well	enough,	even	now,	to	be	certain	of	the	conclusions	we	have
drawn	about	it	and	changing	it	might	introduce	bugs	that	don’t	exist	now.	This
trepidation	disappears	when	there	are	accompanying	unit	tests	exercising	the
bad	code.	It	gives	us	the	courage	to	refactor	the	bad	code	into	good	code
because	the	unit	tests	will	tell	us	whether	we	have	broken	anything	in	the
process.

Documentation
Unit	tests	provide	excellent	examples	of	the	ways	in	which	a	procedure

can	be	called.	Need	to	learn	how	some	procedure	parameter	affects	its
operation?	Consult	a	unit	test	using	that	parameter	to	see	its	effect	in	an
executable	context.	Martin	sums	it	up	well	by	stating



The	unit	tests	are	documents.	They	describe	the	lowest-level	design	of
the	system.	They	are	unambiguous,	accurate,	written	in	the	language
that	the	audience	understands,	and	are	so	formal	they	execute.	They
are	the	best	kind	of	low-level	documentation	that	can	exist.7

Design
Because	the	unit	test	must	be	written	first,	the	corresponding	production

code	written	to	cause	the	test	to	pass	is	implicitly	designed	for	testability.	This
eliminates	the	possibility	of	finding	that	tests	written	later	will	expose	design
incompatibilities	requiring	the	production	code	to	be	refactored.	In	short,
using	TDD	promotes	good	program	design.

Following	the	TDD	Cycle
So	let’s	run	through	the	motions	of	implementing	production	code	using	the
TDD	model.	Based	on	the	pseudo-code	we	had	encountered	in	the	Chapter	4
section	titled	“Writing	xUnit	Tests,”	Listing	11-1	shows	what	might	be	the
minimal	compilable	code	we	could	write	at	the	start	for	an	ABAP	program	as	we
follow	the	TDD	session.

report.

"	production	code	starts	here

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				data	sign	type	c	length	1.

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	'+'

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here



Listing	11-1 Minimal	compilable	code	to	start	a	TDD	session

Here	we	see	an	ABAP	report	having	no	production	code	but	having	a	single
unit	test	class	named	sign_tester	defining	a	single	unit	test	method	test_positive.
The	unit	test	method	contains	only	the	definition	for	a	field	named	sign	and	a
call	to	method	assert_equals	of	static	class	cl_abap_unit.	When	this	source	code
is	subjected	to	automated	unit	testing,	we	should	expect	a	failure.	The	code	is
now	in	the	red	phase	of	the	red-green-refactor	cycle.

Next,	we’ll	provide	the	minimal	amount	of	production	code	to	enable	the
unit	test	to	pass,	as	shown	in	Listing	11-2,	with	changes	from	Listing	11-1
highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				methods	get_sign	importing	number	type	int4

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				sign	=	'+'.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				data	sign	type	c	length	1.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	55	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign



						exp	=	'+'

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-2 Minimal	production	code	to	enable	unit	test	to	pass

Here	we	have	added	to	the	production	code	a	new	class	named	sign_setter
having	a	single	method	named	get_sign.	The	implementation	for	get_sign
consists	of	a	single	statement	setting	the	returning	value	to	‘+’.	We’ve	also
changed	the	implementation	of	unit	test	method	test_positive	of	unit	test	class
sign_tester	in	the	following	way:

Defined	local	variable	sign_setter	as	a	reference	to	an	instance	of	class
sign_setter

Created	an	instance	of	class	sign_setter	into	local	variable	sign_setter
Invoked	method	get_sign	of	the	class	referenced	by	local	variable

sign_setter,	passing	the	value	55	for	the	number	parameter	and	accepting	the
returned	value	in	local	variable	sign

When	this	source	code	is	subjected	to	automated	unit	testing,	we	should
expect	it	to	pass.	The	code	is	now	in	the	green	phase	of	the	red-green-refactor
cycle.

Next,	we’ll	clean	up	the	code	as	shown	in	Listing	11-3,	with	changes	from
Listing	11-2	highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				sign	=	positive_sign.

		endmethod.



endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-3 Result	of	cleaning	the	code	after	the	unit	test	passes

Here	we	have	changed	production	class	sign_setter	by	adding	to	its	public
section	a	new	types	statement	defining	a	type	named	integer,	a	new	constant
defining	a	positive	sign	value,	and	changed	the	signature	of	method	get_sign	to
indicate	type	integer	for	its	number	parameter.	Method	get_sign	was	also
changed	to	use	the	newly	defined	public	constant	instead	of	a	character	literal	to
set	the	returning	value.

We	also	have	changed	unit	test	class	sign_tester	by	defining	a	local	constant
positive_number	in	unit	test	method	test_positive,	defining	it	using	the	public
type	integer	provided	by	class	sign_setter	and	assigning	it	the	value	55,	as	well
as	changed	the	type	associated	with	local	variable	sign	to	use	the	public	type
defined	by	class	sign_setter.	In	addition,	the	numeric	literal	on	the	call	to	method
get_sign	has	been	replaced	with	the	local	constant,	and	the	value	specified	on	the
exp	parameter	of	the	assertion	statement	now	uses	the	public	constant	defined	by
class	sign_setter	instead	of	the	character	literal	value	it	had	used.	At	this	point,
all	the	local	data	fields	and	parameter	values	of	unit	test	method	test_positive	are



defined	in	terms	of	types	and	constants	provided	by	class	sign_setter.	The	code
now	is	in	the	refactor	phase	of	the	red-green-refactor	cycle.	Running	the	unit	test
again	will	determine	whether	the	refactoring	changes	applied	have	caused	the
unit	test	to	fail.	If	so,	we	would	need	to	address	this	failure	by	altering	our
refactored	code	to	the	point	where	the	unit	test	passes	once	again.

You	may	already	have	come	to	the	conclusion	that	the	implementation
provided	for	method	get_sign	is	hardly	acceptable	since	it	always	provides	the
same	value	back	to	the	caller.	While	this	is	true,	the	fact	remains	that	the	single
unit	test	we	have	written	passes.	Meanwhile,	we	also	recognize	that	method
get_sign	should	be	able	to	provide	a	negative	sign	for	a	negative	number	and	a
blank	sign	for	zero.	These	are	two	more	unit	tests	that	we	need	to	write	during
our	TDD	session.

Let’s	start	with	writing	the	unit	test	to	determine	whether	method	get_sign	is
capable	of	providing	a	negative	sign	for	a	negative	number.	Listing	11-4	shows
the	code	with	changes	from	Listing	11-3	highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				sign	=	positive_sign.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

endclass.

class	sign_tester	implementation.



		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	'-'

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-4 The	code	after	adding	new	unit	test	method	negative_test

Here	we	have	cloned	unit	test	method	test_positive	as	unit	test	method
test_negative,	changing	the	name	and	respective	value	of	the	local	constant,	as
well	as	changing	the	expected	value	to	be	used	with	the	call	to	method
assert_equals	of	static	class	cl_abap_unit_assert.	Now	when	this	source	code	is
subjected	to	automated	unit	testing,	we	should	expect	unit	test	method
test_positive	to	pass	and	unit	test	method	test_negative	to	fail.	The	code	is	once
again	in	the	red	phase	of	the	red-green-refactor	cycle.

So	next	we’ll	provide	the	minimal	amount	of	production	code	to	enable	both
unit	tests	to	pass,	as	shown	in	Listing	11-5,	with	changes	from	Listing	11-4
highlighted	in	bold.



report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				constants	negative_sign	type	sign	value	'-'.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				if	number	>	0.

						sign	=	positive_sign.

				else.

						sign	=	negative_sign.

				endif.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).



		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	'-'

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-5 The	code	after	changing	class	sign_setter	to	be	able	to	handle	both	positive	and	negative
numbers

Here	we	have	changed	class	sign_setter	to	define	a	new	public	constant	to
represent	a	negative	sign	and	changed	the	implementation	of	its	method	get_sign
to	return	a	positive	sign	only	when	the	number	parameter	indicates	a	positive
number	and	to	return	a	negative	sign	for	all	other	values.	Now	when	the	unit
tests	are	run,	both	of	them	pass.	The	code	is	once	again	in	the	green	phase	of	the
red-green-refactor	cycle.

Listing	11-6	shows	how	we	would	refactor	the	code	to	keep	it	clean,	again
with	changes	from	Listing	11-5	highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				constants	negative_sign	type	sign	value	'-'.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.



		method	get_sign.

				if	number	>	0.

						sign	=	positive_sign.

				else.

						sign	=	negative_sign.

				endif.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>negative_sign

						).



		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-6 Result	of	cleaning	the	code	after	both	unit	tests	pass

Here	the	only	difference	is	that	we	changed	the	expected	value	of	the
assertion	in	unit	test	method	test_negative	to	use	the	public	constant	defined	by
class	sign_setter	so	that	the	unit	test	code	continues	to	be	defined	in	terms	of	the
public	attributes	provided	by	class	sign_setter.	The	code	is	again	in	the	refactor
phase	of	the	red-green-refactor	cycle.	Once	more,	we	would	need	to	run	the	unit
tests	to	determine	whether	the	refactoring	changes	applied	have	caused	either	of
the	unit	tests	to	fail.

You	may	already	have	noticed	the	weakness	of	the	implementation	provided
for	method	get_sign.	If	not,	then	examine	it	again	carefully.	This	leads	us	to	yet
another	unit	test	for	method	get_sign,	whether	it	is	able	to	provide	the	correct
sign	for	a	value	that	is	neither	positive	nor	negative	-	that	is,	zero.8

So	let’s	write	the	unit	test	to	determine	whether	method	get_sign	is	capable
of	providing	a	blank	value	as	the	sign	for	the	number	zero.	Listing	11-7	shows
the	code	with	changes	from	Listing	11-6	highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				constants	negative_sign	type	sign	value	'-'.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				if	number	>	0.

						sign	=	positive_sign.

				else.

						sign	=	negative_sign.

				endif.

		endmethod.



endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

				methods	test_zero					for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>negative_sign

						).

		endmethod.

		method	test_zero.

				constants	zero	type	sign_setter=>integer	value	0.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.



				sign	=	sign_setter->get_sign(	zero	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	space

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-7 Result	after	adding	unit	test	to	check	sign	returned	for	value	zero	is	space

Here	we	have	cloned	unit	test	method	test_negative	as	unit	test	method
test_zero,	changing	the	name	and	respective	value	of	the	local	constant,	as	well
as	changing	the	expected	value	to	be	used	with	the	call	to	method	assert_equals
of	static	class	cl_abap_unit_assert.	Now	when	this	source	code	is	subjected	to
automated	unit	testing,	we	should	expect	unit	test	methods	test_positive	and
test_negative	to	pass	and	unit	test	method	test_zero	to	fail.	The	code	is	once
again	in	the	red	phase	of	the	red-green-refactor	cycle.

Once	again	we’ll	provide	the	minimal	amount	of	production	code	to	enable
all	unit	tests	to	pass,	as	shown	in	Listing	11-8,	with	changes	from	Listing	11-7
highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				constants	negative_sign	type	sign	value	'-'.

				constants	zero_sign					type	sign	value	space.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass

class	sign_setter	implementation.

		method	get_sign.

				if	number	>	0.

						sign	=	positive_sign.

				else.

						if	number	<	0.



								sign	=	negative_sign.

						else.

								sign	=	zero_sign.

						endif.

				endif.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

				methods	test_zero					for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>negative_sign

						).



		endmethod.

		method	test_zero.

				constants	zero	type	sign_setter=>integer	value	0.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	zero	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	space

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-8 The	code	after	changing	class	sign_setter	to	be	able	to	handle	positive,	negative,	and	zero
numbers

Here	we	have	changed	class	sign_setter	to	define	a	new	public	constant	to
represent	a	sign	for	a	zero	value	and	changed	the	implementation	of	its	method
get_sign	to	return	a	positive	sign	only	when	the	number	parameter	indicates	a
positive	number,	to	return	a	negative	sign	only	when	the	number	parameter
indicates	a	negative	number,	and	to	return	a	zero	sign	for	all	other	values.	Now
when	the	unit	tests	are	run,	all	of	them	pass.	The	code	is	once	again	in	the	green
phase	of	the	red-green-refactor	cycle.

Listing	11-9	shows	how	we	would	refactor	the	code	to	keep	it	clean,	again
with	changes	from	Listing	11-8	highlighted	in	bold.

report.

"	production	code	starts	here

class	sign_setter	definition.

		public	section.

				types	sign	type	c	length	1.

				types	integer	type	int4.

				constants	positive_sign	type	sign	value	'+'.

				constants	negative_sign	type	sign	value	'-'.

				constants	zero_sign					type	sign	value	space.

				methods	get_sign	importing	number	type	integer

																					returning	value(sign)	type	sign.

endclass



class	sign_setter	implementation.

		method	get_sign.

				if	number	>	0.

						sign	=	positive_sign.

				else.

						if	number	<	0.

								sign	=	negative_sign.

						else.

								sign	=	zero_sign.

						endif.

				endif.

		endmethod.

endclass.

"	production	code	ends	here

"	unit	testing	code	starts	here

class	sign_tester	definition.

		private	section.

				methods	test_positive	for	testing.

				methods	test_negative	for	testing.

				methods	test_zero					for	testing.

endclass.

class	sign_tester	implementation.

		method	test_positive.

				constants	positive_number	type

sign_setter=>integer	value	55.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	positive_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>positive_sign

						).

		endmethod.

		method	test_negative.

				constants	negative_number	type

sign_setter=>integer	value	'-55'.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.



				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	negative_number	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>negative_sign

						).

		endmethod.

		method	test_zero.

				constants	zero	type	sign_setter=>integer	value	0.

				data	sign	type	sign_setter=>sign.

				data	sign_setter	type	ref	to	sign_setter.

				create	object	sign_setter.

				sign	=	sign_setter->get_sign(	zero	).

				cl_abap_unit_assert=>assert_equals(

						act	=	sign

						exp	=	sign_setter=>zero_sign

						).

		endmethod.

endclass.

"	unit	testing	code	ends	here

Listing	11-9 Result	of	cleaning	the	code	after	all	unit	tests	pass

Again	the	only	difference	is	that	we	changed	the	expected	value	of	the
assertion	in	unit	test	method	test_zero	to	use	the	public	constant	defined	by	class
sign_setter	so	that	the	unit	test	code	continues	to	be	defined	in	terms	of	the
public	attributes	provided	by	class	sign_setter.	The	code	is	again	in	the	refactor
phase	of	the	red-green-refactor	cycle.	Once	more	we	would	need	to	run	the	unit
tests	to	determine	whether	the	refactoring	changes	applied	have	caused	any	of
the	unit	tests	to	fail.

We	now	have	a	program	that	was	constructed	completely	using	the	TDD
cycle.	Every	shred	of	production	code	is	covered	by	a	corresponding	passing
unit	test;	and	every	unit	test	was	written,	and	failed,	before	ever	writing	a	shred
of	its	corresponding	production	code.

Upon	considering	the	time	it	took	to	maneuver	through	each	phase	of	the
TDD	cycle,	perhaps	it	might	have	taken	about	two	minutes	–	120	seconds	–	to
write	the	code	shown	in	Listing	11-1	due	to	the	fact	that	we	were	starting	from
scratch.	Then	to	include	the	changes	shown	in	Listing	11-2	might	also	have
taken	about	two	minutes	to	write	due	to	the	fact	that	we	needed	to	write	an
entirely	new	class	from	scratch	and	modify	the	unit	test	accordingly.	Thereafter,



1

2

the	changes	shown	by	Listings	11-3	through	11-9	each	might	have	taken	only	a
few	seconds	to	apply	since	we	simply	were	adding	new	functionality	to	the
existing	method	of	the	production	class	and	adding	a	new	unit	test	method	to	the
existing	unit	test	class.	We	might	conclude	from	this	that	it	should	be	expected	to
take	less	time	with	each	new	unit	test	written	to	test	the	same	chunk	of
production	code.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	19	exercises	associated	with
workbook	Section	22:	ABAP	Unit	Testing	601	–	Detecting	Missing	Service
Locators.

Summary
The	concept	of	Test-Driven	Development	(TDD)	was	introduced	with
accompanying	explanation	addressing	how	it	can	be	used	to	insure	that	all
production	code	is	covered	by	a	corresponding	automated	unit	test.	The	three
laws	of	TDD	govern	the	short	development	cycle	of	red-green-refactor;	and
TDD’s	“Litany	of	Benefits,”	as	described	by	Robert	C.	Martin,	are	summarized
as

Certainty	that	changes	made	to	the	production	code	are	correct
A	low	rate	of	defect	injection	resulting	from	new	changes
Instilling	in	developers	the	courage	to	refactor	poorly	written	code
Tests	serving	as	system	documentation
Promotion	of	good	program	design

A	sequence	of	examples	walked	the	reader	through	a	development	scenario
based	on	TDD,	illustrating	how	the	three	laws	of	TDD	apply	to	an	ABAP
development	environment.

Footnotes
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	15

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

122



3

4

5

6

7

8

	
https://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	31

	
Martin,	Robert	C.,	The	Clean	Coder:	A	Code	of	Conduct	for	Professional	Programmers,	Prentice	Hall,

2011,	p.	80

	
Ibid

	
Ibid,	p.	82

	
In	the	context	of	computer	science,	an	argument	can	be	made	that	a	binary	integer	value	of	zero	is	a

positive	number	because	its	high-order	bit	is	0,	just	as	it	is	for	all	positive	integers.	Even	more	absurd	is	the
argument	that	can	be	made	for	packed	decimal	numbers:	that	a	value	of	zero	is	positive	when	the	low-order
nibble	of	its	final	byte	is	the	binary	equivalent	of	hexadecimal	value	“A”	or	“C,”	negative	when	that	low-
order	nibble	represents	hexadecimal	“B”	or	“D,”	and	unsigned	when	representing	either	“E”	or	“F.”	Here
we	will	simply	agree	that	a	value	of	zero	is	to	have	neither	a	positive	nor	negative	sign.	See
www.sfu.ca/sasdoc/sashtml/lrcon/z1265705.htm

	

https://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html
http://www.sfu.ca/sasdoc/sashtml/lrcon/z1265705.htm


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_12

12.	Configurable	Test	Doubles
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Chapter	8	covered	the	details	of	creating	test	doubles	and	using	them	during
automated	unit	tests,	describing	how	to	define	a	test	double	either	as	a	subclass
inheriting	from	a	base	class	or	as	a	class	implementing	an	interface.	This	chapter
introduces	configurable	test	doubles.

Isolation	Frameworks
You’ll	be	happy	to	know	that	manually	defining	your	own	test	double	is	not	the
only	way	to	facilitate	using	one.	Many	programming	languages	now	provide
frameworks	for	defining	configurable	test	doubles	for	the	associated	unit	tests,
each	framework	capable	of	magically	generating	a	test	double	during	the
execution	of	the	unit	test.	ABAP	is	no	exception.

Roy	Osherove	refers	to	these	as	isolation	frameworks	:

…	a	reusable	library	that	can	create	and	configure	[test	double]	objects
at	runtime.1

An	isolation	framework	is	a	set	of	programmable	APIs	that	makes
creating	[test	double]	objects	much	simpler,	faster,	and	shorter	than
hand-coding	them.2

With	ABAP,	there	are	two	configurable	test	double	frameworks	from	which
to	choose:

mockA
ABAP	Test	Double	Framework

https://doi.org/10.1007/978-1-4842-6951-0_12


mockA
The	mockA	framework	is	open	source	software.	Written	primarily	by	Uwe
Kunath,	it	was	made	available	in	2013	at	a	time	when	there	was	not	yet	any
configurable	test	double	framework	available	with	ABAP	Unit	testing.	It	is
compatible	with	NetWeaver	releases	starting	with	7.01.3	More	information	about
this	mocking	framework	for	ABAP	can	be	found	at	the	following	websites:

https://github.com/uweku/mockA

http://uwekunath.wordpress.com/2013/10/16/mocka-

released-a-new-abap-mocking-framework

The	first	website	listed	in	the	preceding	list	has	links	to	others	providing
further	information	about	how	the	framework	can	be	used.

ABAP	Test	Double	Framework
The	ABAP	Test	Double	Framework	is	the	configurable	test	double	framework
provided	by	SAP.	Known	better	by	its	acronym	ATDF,	it	is	available	with
NetWeaver	release	7.40	SP9	and	higher.	Since	it	already	is	available	to	the
development	environment	so	long	as	the	site	has	upgraded	to	a	compatible
release	of	NetWeaver,	it	is	the	framework	most	developers	will	use	simply
because	it	requires	no	extra	effort	to	install	as	would	be	required	with	open
source	software.

Using	this	framework	with	automated	unit	tests	means	you	can	avoid	having
to	define	your	own	test	doubles.	With	only	a	few	configuration	statements,	it	is
able	to	simulate	the	presence	of	an	actual	test	double.	Not	only	that,	but	its
configuration	for	simulating	a	test	double	occurs	while	the	unit	test	is	underway!
It	even	comes	with	its	own	ability	to	verify	the	results	of	the	calls	made	to	the
test	double	it	is	pretending	to	be.	Well,	what	a	wonderful	utility!	It	does	not	yet
have	the	capability	to	brew	a	cup	of	coffee	for	you,	but	perhaps	some	future
release	might	even	include	that	as	a	feature.	Meanwhile,	just	think	of	all	the	time
and	effort	spent	coding	test	doubles	that	you	can	save	by	utilizing	this
framework	instead!

However,	with	the	great	expectations	you	may	have	for	the	ATDF	to
eliminate	the	necessity	for	you	to	write	your	own	test	doubles,	it	might	dampen
your	enthusiasm	to	learn	that	the	ATDF	is	compatible	only	with	global
interfaces	–	that	is,	it	cannot	be	used	to	define	a	test	double	based	on	a	global
class,	a	local	class,	or	a	local	interface.4	Furthermore,	even	if	it	could	support
local	interfaces	and	both	local	and	global	classes,	it	would	not	be	suitable	for

https://github.com/uweku/mockA
http://uwekunath.wordpress.com/2013/10/16/mocka-released-a-new-abap-mocking-framework


defining	a	test	spy	because	it	has	no	facility	to	recognize	attributes	and	methods
beyond	those	available	publicly	to	the	interface	or	class	for	which	it	is	serving	as
a	test	double.

As	a	reminder	of	how	a	test	spy	works,	refer	back	to	Listing	10-36	in	which
test	spy	class	report_writer_test_double	includes	public	attribute
number_of_lines_written,	an	attribute	it	explicitly	defines	in	addition	to	the
public	methods	it	receives	by	implementing	interface	report_writable.	An	ATDF
test	double	based	on	interface	report_writable	would	not	be	able	to	reference	this
attribute	because	it	is	not	defined	by	the	interface.

Despite	these	limitations,	you	may	find	it	useful	for	your	unit	testing
purposes.	Therefore,	an	example	of	its	use	is	presented	here	describing	how	the
unit	test	class	of	the	ticket	sales	program	shown	in	Listing	9-11	would	be
changed	to	use	the	ATDF	instead	of	class	ticket_sales_examiner_tstdbl.

Listing	12-1	shows	local	interface	ticket_sales_examinable	from	Listing	9-
11.

interface	ticket_sales_examinable.

				types	stadium_identifier_range	type	range	of

zticket_sales-stadium_id.

				types	event_date_range									type	range	of

zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type

stadium_identifier_range

																event_date									type

event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endinterface.

Listing	12-1 Local	interface	ticket_sales_examinable	from	Listing	9-11

Since	the	ATDF	requires	a	global	interface	on	which	to	base	its	test	doubling
capabilities,	assume	that	interface	ticket_sales_examinable	has	been	migrated	to
the	global	interface	repository	and	now	goes	by	the	name
zif_ticket_sales_examinable.

Listing	9-14	showed	the	improved	version	of	unit	test	class	tester	from
Listing	9-11,	so	Listing	12-2	shows	how	this	unit	test	class	would	be	changed	to
use	the	ATDF	to	configure	a	test	double	to	replace	class
ticket_sales_examiner_tstdbl,	with	changes	from	Listing	9-14	highlighted	in
bold.

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11
https://doi.org/10.1007/978-1-4842-6951-0_9PC#11
https://doi.org/10.1007/978-1-4842-6951-0_9PC#14
https://doi.org/10.1007/978-1-4842-6951-0_9PC#11
https://doi.org/10.1007/978-1-4842-6951-0_9PC#14


class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value	591.

				data	stadium				type

																				zif_ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type	zif_ticket_sales_examinable=>event_date_range.

				methods	setup.

				methods	report_total_tickets_sold	for	testing.

				methods	validate_test_results.

endclass.

class	tester	implementation.

		method	setup.

				data	ticket_sales_examiner	type	zif_ticket_sales_examinable.

				data	ticket_sales_reporter	type	ticket_sales_reportable.

				data	test_double_configurer	type	ref	to	if_abap_testdouble_config.

				create	object	ticket_sales_examiner	type	ticket_sales_examiner_tstdbl.

				ticket_sales_examiner	?=

						cl_abap_testdouble=>create(	'zif_ticket_sales_examinable'	).

				test_double_configurer	=

						cl_abap_testdouble=>configure_call(	ticket_sales_examiner	).

				test_double_configurer	=	test_double_configurer->set_parameter(

						name	=	'tickets_sold'

						value	=	constant_tickets_sold

						).

				ticket_sales_examiner->get_total_tickets_sold(

						exporting

								stadium_identifier	=	stadium_identifier_range

								event_date									=	event_date_range

						).

				create	object	ticket_sales_reporter	type	ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

		endmethod.

		method	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type	ticket_sales_examinable=>event_date_range.



				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				validate_test_results(	).

		endmethod.

		method	validate_test_results.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to	ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl->get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=	ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	12-2 Unit	test	class	tester	from	Listing	9-14	changed	to	use	ATDF

First,	notice	that	the	unit	test	class	now	has	a	private	constant	named
constant_tickets_sold.	It	was	simply	copied	from	the	corresponding	public
attribute	of	class	ticket_sales_examiner_tstdbl.	The	assertion	at	the	end	of
method	validate_test_results	was	changed	to	reference	this	new	field	instead	of
the	constant	provided	by	test	double	ticket_sales_examiner_tstdbl.

Next,	notice	that	the	local	variables	defined	in	method
report_total_tickets_sold	have	been	removed	from	the	method	and	elevated	to
private	attributes	of	the	class.	This	was	necessary	because	these	variables	are
now	referenced	also	by	the	setup	method.

Finally,	notice	that	method	setup	now	has	a	new	variable	named
test_double_configurer	and	its	statement	creating	an	instance	of	class

https://doi.org/10.1007/978-1-4842-6951-0_9PC#14


ticket_sales_examiner_tstdbl	has	been	removed	and	replaced	with	four	new
statements	configuring	a	dynamically	defined	test	double	using	ATDF.	Each	of
these	four	statements	is	described	here	in	more	detail:

ticket_sales_examiner	?=

		cl_abap_testdouble=>create(

'zif_ticket_sales_examinable'	).

The	preceding	statement	calls	static	method	create	of	ATDF	class
cl_abap_testdouble	to	return	to	reference	variable	ticket_sales_examiner	the
reference	to	an	instance	of	a	dynamically	generated	test	double	based	on
interface	zif_ticket_sales_examinable.	This	instance	will	substitute	for	the
instance	of	test	double	class	ticket_sales_examiner_tstdbl	that	had	been
created	by	the	removed	“create	object”	statement.

test_double_configurer	=

				cl_abap_testdouble=>configure_call(

ticket_sales_examiner	).

The	preceding	statement	calls	static	method	configure_call	of	ATDF	class
cl_abap_testdouble	to	return	to	reference	variable	test_double_configurer	a
reference	to	an	instance	of	a	class	capable	of	configuring	the	dynamically
generated	test	double.	Notice	that	the	parameter	value	passed	to	this	method	is
the	reference	to	the	instance	of	the	dynamically	generated	test	double	created
by	the	previous	statement.	The	name	of	method	configure_call	may	be
misleading	because	no	call	is	being	configured	with	this	statement.	Instead,
the	instance	being	returned	has	the	ability	to	configure	calls	to	methods	of	a
test	double	based	on	interface	zif_ticket_sales_examinable.	Method	name
get_call_configurer	might	have	made	it	clearer	what	this	statement	is	actually
doing,	but	there	is	a	reason	why	the	name	of	the	method	is	configure_call,	a
reason	that	will	become	clear	later.

test_double_configurer	=	test_double_configurer-

>set_parameter(

				name	=	'tickets_sold'

				value	=	constant_tickets_sold

).

The	preceding	statement	calls	method	set_parameter	of	instance



test_double_configurer	to	return	an	updated	instance	of	itself	after	having
established	that	the	ATDF	test	double	is	to	return	the	value
constant_tickets_sold	to	the	parameter	named	tickets_sold	of	a	call	to	method
get_total_tickets_sold.	That	is	too	much	to	take	in	a	single	gulp,	so	it	needs
some	further	explanation.

First,	how	is	the	relationship	established	between	the	parameter	named
tickets_sold	and	the	unspecified	method	get_total_tickets_sold?	In	this	case,	it
could	be	attributed	to	the	fact	that	the	interface	zif_ticket_sales_examinable,
upon	which	this	ATDF	test	double	has	been	based,	contains	only	a	single
method,	named	get_total_tickets_sold.	But	suppose	the	interface	had	more
than	one	method.	Then	how	would	the	test_double_configurer	know	which	of
those	methods	is	applicable?	The	fact	is	that	it	does	not	know.	At	this	point,	it
simply	knows	that	value	constant_tickets_sold	is	the	response	to	be	provided
through	parameter	tickets_sold	for	whatever	method	of	interface
zif_ticket_sales_examinable	makes	a	call	to	it.	This	statement	effectively
registers	the	answer	to	be	given	to	a	question	that	has	yet	to	be	asked.

Second,	what	is	the	idea	behind	a	method	call	resulting	in	an	instance
being	returned	to	the	very	same	reference	variable	providing	access	to	the
called	method?	The	methods	of	the	class	providing	for	the	configuration	of	an
ATDF	test	double	are	defined	by	interface	if_abap_testdouble_config,	as
evident	by	the	type	used	to	define	new	variable	test_double_configurer.	The
signatures	of	these	methods	are	defined	to	enable	method	chaining.	Such
method	chaining	is	a	characteristic	of	what	is	known	as	the	Builder5	design
pattern,	which	is	a	pattern	for	building	an	object	into	its	final	state	a	single
step	at	a	time.	Despite	the	ATDF	test	configurer	supporting	method	chaining,
it	is	not	being	used	with	the	preceding	statement.

An	example	of	method	chaining	using	the	ABAP	syntax	is	shown	in	the
following	example:

some_builder=>configure(	)->set_min(	5	)->set_max(	9

)->set_limit(	15	).

In	this	example,	methods	set_min,	set_max,	and	set_limit	had	been
defined	to	indicate	a	returning	parameter	of	the	same	type	of	instance	created
by	the	configure	method.	That	returning	instance	is	passed	from	one	method
to	the	next	through	the	chain	of	methods,	each	one	contributing	its	applicable
value	to	the	final	state	of	the	object	being	built.

ticket_sales_examiner->get_total_tickets_sold(



				exporting

				stadium_identifier	=	stadium_identifier_range

				event_date									=	event_date_range

).

The	preceding	statement	calls	instance	method	get_total_tickets_sold	on
the	ATDF	test	double	referenced	by	ticket_sales_examiner,	passing	empty
values	to	the	two	parameters	defined	for	this	method.	Notice	that	this	call	is
being	made	without	a	value	associated	with	outbound	parameter	tickets_sold
defined	for	this	method.	The	ATDF	test	double	registers	the	call	to	this
method	using	these	inbound	parameter	values	as	the	call	to	trigger	the
response	recorded	by	the	previous	statement.	This	represents	the	question
asked	to	which	the	previously	recorded	answer	is	to	be	given.	It	establishes
the	values	of	the	inbound	calling	parameters	that	are	to	trigger	that	answer.
What	might	be	confusing	about	this	is	that	this	configuration	statement
appears	exactly	the	same	as	an	actual	call	to	a	test	double	without	parameter
tickets_sold,	an	implicitly	optional	parameter	anyway	having	been	defined	in
the	method	signature	as	an	exporting	parameter.

One	last	observation	to	be	made	about	all	these	changes	is	that	the	statement
near	the	end	of	the	setup	method	calling	the	service	locator	to	register	an
instance	to	provide	the	ticket	sales	examination	service	did	not	change	in	any
way,	despite	registering	a	test	double	instantiated	and	configured	through	the
ATDF.

Listing	12-3	shows	the	ticket	sales	program	from	Listing	9-11	with	the
version	of	class	tester	from	Listing	9-14	and	modified	to	incorporate	all	the
subsequent	ATDF	changes	described	in	this	section,	with	changes	highlighted	in
bold.

report.

interface	ticket_sales_examinable.

				types	stadium_identifier_range	type	range	of	zticket_sales-stadium_id.

				types	event_date_range									type	range	of	zticket_sales-event_date.

				methods	get_total_tickets_sold

						importing	stadium_identifier	type	stadium_identifier_range

																event_date									type	event_date_range

						exporting	tickets_sold							type	sy-dbcnt.

endinterface.

interface	ticket_sales_reportable.

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11
https://doi.org/10.1007/978-1-4842-6951-0_9PC#14


				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endinterface.

class	service_locator	definition	create	private.

		public	section.

				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	zif_ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				class-data	singleton	type	ref	to	service_locator	read-only.

				data	ticket_sales_examiner	type	ref	to	zif_ticket_sales_examinable

																																																					read-only.

				data	ticket_sales_reporter	type	ref	to	ticket_sales_reportable

																																																					read-only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

class	ticket_sales_examiner	definition.

		public	section.

				interfaces	zif_ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for	zif_ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner	implementation.



		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.

endclass.

class	ticket_sales_examiner_tstdbl	definition.

		public	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value	591.

				interfaces	ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for	ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner_tstdbl	implementation.

		method	get_total_tickets_sold.

				tickets_sold	=	constant_tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable->get_total_tickets_sold.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable->get_total_tickets_sold.



				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory	read-only.

				class-methods	class_constructor.

				methods	create_all_services.

				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_all_services.

				create_ticket_sales_examiner(	).

				create_ticket_sales_reporter(	).

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to	ticket_sales_examinable.

				create	object	ticket_sales_examiner	type	ticket_sales_examiner.

				service_locator=>singleton->set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to	ticket_sales_reportable.



				create	object	ticket_sales_reporter	type	ticket_sales_reporter.

				service_locator=>singleton->set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

endclass.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		service_factory=>singleton->create_all_services(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using	stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold

				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method

	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets	sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value	591.

				data	stadium				type

																				zif_ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type	zif_ticket_sales_examinable=>event_date_range.



				methods	setup.

				methods	report_total_tickets_sold	for	testing.

				methods	validate_test_results.

endclass.

class	tester	implementation.

		method	setup.

				data	ticket_sales_examiner	type	zif_ticket_sales_examinable.

				data	ticket_sales_reporter	type	ticket_sales_reportable.

				data	test_double_configurer	type	ref	to	if_abap_testdouble_config.

				create	object	ticket_sales_examiner	type	ticket_sales_examiner_tstdbl.

				ticket_sales_examiner	?=

						cl_abap_testdouble=>create(	'zif_ticket_sales_examinable'	).

				test_double_configurer	=

						cl_abap_testdouble=>configure_call(	ticket_sales_examiner	).

				test_double_configurer	=	test_double_configurer->set_parameter(

						name	=	'tickets_sold'

						value	=	constant_tickets_sold

						).

				ticket_sales_examiner->get_total_tickets_sold(

						exporting

								stadium_identifier	=	stadium_identifier_range

								event_date									=	event_date_range

						).

				create	object	ticket_sales_reporter	type	ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

		endmethod.

		method	report_total_tickets_sold.

				data	stadium				type

ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type	ticket_sales_examinable=>event_date_range.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				validate_test_results(	).

		endmethod.

		method	validate_test_results.

				data	ticket_sales_reporter_tstdbl	type	ref



																																								to	ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl->get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=	ticket_sales_examiner_tstdbl=>constant_tickets_sold

						).

		endmethod.

endclass.

Listing	12-3 Copy	of	Listing	9-11	modified	to	incorporate	ATDF	changes	described	in	this	section

Notice	that	interface	ticket_sales_examinable	has	been	deleted	along	with
test	double	class	ticket_sales_examiner_tstdbl.	Notice	also	that	classes
service_locator	and	ticket_sales_examiner	were	changed	to	reflect	the	migration
of	interface	ticket_sales_examinable	to	the	global	interface	repository	and	now
having	the	prefix	“zif_”.

Listing	12-4	shows	a	copy	of	Listing	12-3	without	the	highlighting	and
stricken	lines.

report.

interface	ticket_sales_reportable.

				methods	show_total_tickets_sold

						importing	descriptor									type	string

																tickets_sold							type	sy-dbcnt.

endinterface.

class	service_locator	definition	create	private.

		public	section.

https://doi.org/10.1007/978-1-4842-6951-0_9PC#11


				class-methods	class_constructor.

				methods							set_ticket_sales_examiner

																				importing	ticket_sales_examiner

																						type	ref	to	zif_ticket_sales_examinable.

				methods							set_ticket_sales_reporter

																				importing	ticket_sales_reporter

																						type	ref	to	ticket_sales_reportable.

				class-data	singleton	type	ref	to	service_locator	read-only.

				data	ticket_sales_examiner	type	ref	to	zif_ticket_sales_examinable

																																																					read-only.

				data	ticket_sales_reporter	type	ref	to	ticket_sales_reportable

																																																					read-only.

endclass.

class	service_locator	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	set_ticket_sales_examiner.

				me->ticket_sales_examiner	=	ticket_sales_examiner.

		endmethod.

		method	set_ticket_sales_reporter.

				me->ticket_sales_reporter	=	ticket_sales_reporter.

		endmethod.

endclass.

class	ticket_sales_examiner	definition.

		public	section.

				interfaces	zif_ticket_sales_examinable.

				aliases	get_total_tickets_sold

														for	zif_ticket_sales_examinable~get_total_tickets_sold.

endclass.

class	ticket_sales_examiner	implementation.

		method	get_total_tickets_sold.

				select	count(*)

						into	tickets_sold

						from	zticket_sales

					where	stadium_id	in	stadium_identifier

							and	event_date	in	event_date.

		endmethod.



endclass.

class	ticket_sales_reporter	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable->get_total_tickets_sold.

endclass.

class	ticket_sales_reporter	implementation.

		method	show_total_tickets_sold.

				write	/	descriptor,	tickets_sold.

		endmethod.

endclass.

class	ticket_sales_reporter_tstdbl	definition.

		public	section.

				interfaces	ticket_sales_reportable.

				aliases	show_total_tickets_sold

														for	ticket_sales_reportable->get_total_tickets_sold.

				methods	get_last_caller_tickets_sold

						exporting

								tickets_sold	type	sy-dbcnt.

		private	section.

				last_caller_tickets_sold	type	sy-dbcnt.

endclass.

class	ticket_sales_reporter_tstdbl	implementation.

		method	show_total_tickets_sold.

				last_caller_tickets_sold	=	tickets_sold.

		endmethod.

		method	get_last_caller_tickets_sold.

				tickets_sold	=	last_caller_tickets_sold.

		endmethod.

endclass.

class	service_factory	definition	create	private.

		public	section.

				class-data	singleton	type	ref	to	service_factory	read-only.

				class-methods	class_constructor.

				methods	create_all_services.



				methods	create_ticket_sales_examiner.

				methods	create_ticket_sales_reporter.

endclass.

class	service_factory	implementation.

		method	class_constructor.

				create	instance	singleton.

		endmethod.

		method	create_all_services.

				create_ticket_sales_examiner(	).

				create_ticket_sales_reporter(	).

		endmethod.

		method	create_ticket_sales_examiner.

				data	ticket_sales_examiner	type	ref	to	ticket_sales_examinable.

				create	object	ticket_sales_examiner	type	ticket_sales_examiner.

				service_locator=>singleton->set_ticket_sales_examiner(

							ticket_sales_examiner	).

		endmethod.

		method	create_ticket_sales_reporter.

				data	ticket_sales_reporter	type	ref	to	ticket_sales_reportable.

				create	object	ticket_sales_reporter	type	ticket_sales_reporter.

				service_locator=>singleton->set_ticket_sales_reporter(

							ticket_sales_reporter	).

		endmethod.

endclass.

select-options	stadium		for	zticket_sales-stadium_id.

select-options	evntdate	for	zticket_sales-event_date.

start-of-selection.

		service_factory=>singleton->create_all_services(	).

		perform	report_total_tickets_sold	using	stadium

																																										evntdate.

form	report_total_tickets_sold	using	stadium_identifier_range

																																					event_date_range.

		data	tickets_sold	type	sy-dbcnt.

		call	method

		service_locator=>singleton->ticket_sales_examiner-

>get_total_tickets_sold



				exporting

						stadium_identifier	=	stadium_identifier_range

						event_date									=	event_date_range

				importing

						tickets_sold							=	tickets_sold.

		call	method

	service_locator=>singleton->ticket_sales_reporter-

>show_total_tickets_sold

				exporting

						descriptor									=	'total	number	of	tickets	sold:'

						tickets_sold							=	tickets_sold.

endform.

class	tester	definition	for	testing	risk	level	harmless.

		private	section.

				constants	constant_tickets_sold	type	sy-dbcnt	value	591.

				data	stadium				type

																				zif_ticket_sales_examinable=>stadium_identifier_range.

				data	event_date_type	zif_ticket_sales_examinable=>event_date_range.

				methods	setup.

				methods	report_total_tickets_sold	for	testing.

				methods	validate_test_results.

endclass.

class	tester	implementation.

		method	setup.

				data	ticket_sales_examiner	type	zif_ticket_sales_examinable.

				data	ticket_sales_reporter	type	ticket_sales_reportable.

				data	test_double_configurer	type	ref	to	if_abap_testdouble_config.

				ticket_sales_examiner	?=

						cl_abap_testdouble=>create(	'zif_ticket_sales_examinable'	).

				test_double_configurer	=

						cl_abap_testdouble=>configure_call(	ticket_sales_examiner	).

				test_double_configurer	=	test_double_configurer->set_parameter(

						name	=	'tickets_sold'

						value	=	constant_tickets_sold

						).

				ticket_sales_examiner->get_total_tickets_sold(

						exporting

								stadium_identifier	=	stadium_identifier_range



								event_date									=	event_date_range

						).

				create	object	ticket_sales_reporter	type	ticket_sales_reporter_tstdbl.

				service_locator=>singleton->set_ticket_sales_examiner(

						ticket_sales_examiner	).

				service_locator=>singleton->set_ticket_sales_reporter(

						ticket_sales_reporter	).

		endmethod.

		method	report_total_tickets_sold.

				perform	report_total_tickets_sold	using	stadium

																																												event_date.

				validate_test_results(	).

		endmethod.

		method	validate_test_results.

				data	ticket_sales_reporter_tstdbl	type	ref

																																								to	ticket_sales_reporter_tstdbl.

				data	last_caller_tickets_sold	type	sy-dbcnt.

				try.

						ticket_sales_reporter_tstdbl	?=

								service_locator=>singleton->ticket_sales_reporter.

						ticket_sales_reporter_tstdbl->get_last_caller_tickets_sold(

								importing

										tickets_sold	=	last_caller_tickets_sold

								).

				catch	cx_sy_move_cast_error.

						cl_abap_unit_assert=>fail(

								msg	=	'specializing	cast	has	failed'

								).

				endtry.

				cl_abap_unit_assert=>assert_equals(

						act	=	last_caller_tickets_sold

						exp	=	constant_tickets_sold

						).

		endmethod.

endclass.

Listing	12-4 Copy	of	Listing	12-3	without	highlighting	and	stricken	lines

The	ATDF	has	many	more	test	configuration	options	than	just	the	simple
example	shown	in	the	preceding	text.	Here	is	a	list	of	just	some	of	the	other



useful	testing	capabilities	it	offers:

Ignore	the	values	provided	for	specific	parameters	accompanying	a
method	call.

Ignore	the	values	provided	for	all	parameters	accompanying	a	method	call.
Indicate	the	number	of	times	a	configured	response	is	to	be	returned	for

calls	to	the	corresponding	method.
Indicate	the	number	of	times	a	specific	method	is	expected	to	be	called.
Raise	an	exception	when	a	method	is	called.
Request	the	ATDF	to	verify	all	testing	expectations	have	been	met	with	a

single	method	call.

An	example	of	using	some	of	the	configuration	settings	noted	in	the
preceding	text	in	a	single	chained	method	call	to	configure	the	ATDF	test	double
is	the	following	statement	using	fragments	from	the	ticket	sales	program:

cl_abap_testdouble=>configure_call(

ticket_sales_examiner

		)->set_parameter(	name		=	'tickets_sold'

																				value	=	constant_tickets_sold

		)->times(	1

		)->ignore_all_parameters(

		)->and_expect(

		)->is_called_times(	1

		).

The	preceding	statement	is	indicating	to	configure	a	call	to	a	method	of	the
ATDF	test	double	to	set	the	return	parameter	tickets_sold	to	the	value
constant_tickets_sold,	to	do	this	only	once	regardless	of	the	parameter	values
supplied	by	the	caller,	and	to	expect	that	this	response	is	called	for	only	once.
This	example	statement	also	makes	it	clear	why	the	name	of	the	method	is
“configure_call”	–	because	a	call	to	a	method	of	a	test	double	is	being
configured	with	this	single	chained	method	call	statement.

The	explanation	following	Listing	12-2	for	the	second	of	the	four	new
statements	that	had	been	introduced	in	the	setup	method	raised	the	point	that	the
name	of	method	configure_call	was	misleading	because	no	configuration	was
occurring	with	that	statement.	However,	when	the	configuration	is	achieved
through	a	chained	method	call	statement,	it	becomes	possible	to	combine	the
new	second	and	third	statements	in	the	setup	method	of	Listing	12-2	into	a	single
statement,	and	now	the	method	name	makes	more	sense.	The	following	two



consecutive	statements	from	method	setup	of	Listing	12-2

test_double_configurer	=

		cl_abap_testdouble=>configure_call(

ticket_sales_examiner	).

test_double_configurer	=	test_double_configurer-

>set_parameter(

		name	=	'tickets_sold'

		value	=	constant_tickets_sold

		).

appear	awkward	when	the	first	of	these	statements	is	performing	no
configuration	of	a	call	as	its	name	would	suggest,	but	when	the	two	statements
are	combined	into	a	single	chained	method	call	statement,	now	it	becomes	clear
that	indeed	it	does	represent	the	configuration	of	a	call:

cl_abap_testdouble=>configure_call(

ticket_sales_examiner

		)->set_parameter(	name		=	'tickets_sold'

																				value	=	constant_tickets_sold

		).

Accordingly,	“configure_call”	was	chosen	deliberately	as	the	name	for	this
method	with	the	expectation	that	it	would	be	used	in	a	chained	method	call
statement.	Not	only	that,	but	as	an	added	bonus,	it	eliminates	the	need	to	define
variable	test_double_configurer	since	it	is	not	used	in	the	chained	method	call
statement.	Instead,	the	call	to	static	method	configure_call	returns	an	instance	of
an	object	upon	which	the	call	to	method	set_parameter	is	made.	Normally	a	call
to	a	method	that	returns	an	instance	would	need	a	reference	variable	to	receive
the	pointer	to	that	instance,	but	when	method	chaining	is	involved,	there	is	no
need	for	such	a	variable.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	ten	exercises	associated	with
workbook	Section	23:	ABAP	Unit	Testing	701	–	Using	the	ABAP	Test
Double	Framework.



1

2

3

4

5

Summary
This	chapter	continued	with	the	concept	of	test	doubles,	this	time	introducing
configurable	test	double	frameworks	that	can	eliminate	the	need	to	manually
define	test	doubles.	Open	source	framework	mockA	was	discussed	briefly	before
moving	on	to	a	thorough	explanation	of	the	ABAP	Test	Double	Framework
supplied	by	SAP.	An	example	of	utilizing	a	configurable	test	double	with	an
automated	unit	test	was	shown	using	the	ABAP	Test	Double	Framework.	This	is
the	final	chapter	having	associated	new	exercise	programs	to	be	written.

Footnotes
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	90

	
Ibid,	p.	91

	
https://blogs.sap.com/2015/01/05/abap-test-double-framework-an-

introduction/#comment-246058

	
At	the	time	of	this	writing

	
For	more	information,	see	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Design,	Gamma,

Helm,	Johnson,	Vlissides,	Addison-Wesley,	1995,	p.	97

	

https://blogs.sap.com/2015/01/05/abap-test-double-framework-an-introduction/%2523comment-246058


(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_13

13.	Obtaining	Code	Coverage	Information
Through	ABAP	Unit	Testing
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Writing	automated	unit	tests	is	perhaps	the	most	reliable	way	to	insure	that
production	code	is	designed	properly.	Failing	unit	tests	will	indicate	areas	of	the
production	code	in	need	of	attention.	With	larger	components,	it	can	be	difficult
to	determine	which	portions	of	the	production	code	are	covered	by	unit	tests	and
which	are	not.	This	chapter	covers	the	type	of	code	coverage	information	that
can	be	obtained	via	ABAP	Unit.

Code	Coverage	Metrics
Fortunately	for	us,	the	ABAP	Unit	Testing	Framework	is	capable	not	only	of
running	unit	tests	but	also	of	providing	code	coverage	metrics	for	any
component	having	at	least	one	automated	unit	test	for	one	of	its	procedures.	The
code	coverage	metrics	provide	the	following	statistics	for	production
components:

Procedure	coverage
Statement	coverage
Branch	coverage

These	metrics	are	generated	only	when	explicitly	requested	as	part	of	the	unit
test	run	and	are	presented	as	part	of	the	ABAP	Unit	Result	Display	report	even
when	all	of	the	unit	tests	pass,	typically	a	scenario	causing	the	presentation	of
the	ABAP	Unit	Result	Display	report	to	be	bypassed.	While	there	are	variations
for	issuing	the	command	through	which	to	produce	a	coverage	metrics	report,
one	can	be	produced	from	the	standard	ABAP	editor	(SE38)	by	selecting	the
following	command	path	from	the	menu:

https://doi.org/10.1007/978-1-4842-6951-0_13


Program	➤	Execute	➤	Unit	Tests	With	➤	Coverage
Each	category	of	metric	has	its	own	tab	on	the	report	such	that	clicking	the

tab	brings	that	report	forward.
Procedure	coverage	will	list	all	of	the	procedures	of	the	component,	which

include	subroutines,	methods	of	classes,	and	classic	ABAP	event	blocks.	The
metrics	provided	include	total	procedures,	number	of	procedures	executed,
number	of	procedures	not	executed,	and	percentage	of	procedure	code	covered
by	unit	tests.	Metrics	shown	for	Total	procedures	is	always	1	for	subroutines,
methods,	and	classic	ABAP	event	blocks;	but	each	method	is	shown	subordinate
to	the	class	in	which	it	appears,	so	the	node	entries	for	a	class	will	indicate	the
sum	total	of	methods	defined	for	it.

Statement	coverage	will	list	the	number	of	statements	within	each	procedure
of	the	component.	The	metrics	provided	include	total	number	of	statements	in
the	procedure,	number	of	statements	executed	by	a	unit	test,	number	of
statements	not	executed	by	a	unit	test,	and	a	percentage	of	statements	by
procedure	covered	by	unit	tests.	Total	number	of	statements	is	not	always
accurate.	It	correctly	shows	the	number	of	statements	in	subroutines	and	classic
ABAP	event	blocks,	but	for	methods	it	often	indicates	a	count	one	greater	than
the	actual	number	of	statements	in	the	method	(release	7.4).

Branch	coverage	will	reflect	the	number	of	logical	paths	within	each
procedure	of	the	component.	The	metrics	provided	include	total	number	of
logical	paths	in	the	procedure,	number	of	paths	executed	by	a	unit	test,	number
of	paths	not	executed	by	a	unit	test,	and	a	percentage	of	paths	by	procedure
covered	by	unit	tests.	Total	number	of	paths	is	not	always	accurate	in	this	report
either,	sometimes	overstating	the	number	of	paths	by	one	when	any	type	of
procedure	contains	conditional	logic.

Not	only	is	it	possible	to	see	the	percentages	of	procedures,	statements,	and
branches	covered	during	the	unit	test	run	but	it	is	also	possible	to	drill	into	the
report	further	to	see	the	actual	statements	that	were	executed	to	produce	those
percentages.	Double-clicking	the	node	of	a	procedure	name	shown	in	the
coverage	metrics	report	will	present	the	lines	of	code	for	that	procedure
highlighted	to	indicate	which	statements	were	executed	as	a	result	of	running	a
unit	test	and	which	were	not.	Executed	lines	appear	highlighted	with	green
background,	while	lines	not	executed	will	appear	with	red	background.	This
report	also	has	its	weaknesses	since	there	are	times	when	a	scope	terminator,
such	as	endif	or	endloop,	or	a	condition	node,	such	as	else,	will	not	be
highlighted	at	all	even	though	code	within	its	scope	had	been	highlighted	in	red
or	green.



This	highlighted	code	coverage	report	makes	it	possible	to	discover	which
lines	of	which	procedures	remain	without	an	associated	unit	test	to	cover	them.
Then	it	becomes	a	simple	task	to	write	additional	unit	tests	to	cover	the
uncovered	lines.	Eventually	the	percentage	for	statement	coverage	will	converge
on	100%,	even	though	there	may	be	some	cases	in	which	it	is	impractical	to
expect	to	reach	100%	coverage.	Indeed,	because	they	cannot	be	called	by	an
automated	unit	test,	classic	ABAP	event	blocks	will	always	show	that	none	of
their	statements	had	been	executed	by	a	unit	test.	So	we	should	expect
percentages	presented	in	procedure,	statement,	and	branch	coverage	for	classic
ABAP	event	blocks	to	always	show	0%.

Exercises
At	this	point,	take	a	break	from	reading	and	shift	into	exercise	mode.	Refer	to
the	accompanying	workbook	to	perform	the	exercise	associated	with
workbook	Section	24:	Obtaining	ABAP	Unit	Test	Code	Coverage
Information.

Summary
This	chapter	briefly	described	how	the	ABAP	Unit	Testing	Framework	is
capable	of	providing	statistics	on	the	code	coverage	offered	through	the
corresponding	automated	unit	tests,	describing	each	of	the	statistics	presented	in
the	resulting	report	as	well	as	showing	how	to	initiate	a	unit	test	run	to	cause
code	coverage	statistics	to	be	produced.	Using	these	statistics	and	the	highlighted
code	coverage,	the	developer	is	able	to	see	which	parts	of	a	program	remain
without	sufficient	unit	testing.	This	is	the	final	chapter	for	which	an	exercise	is	to
be	performed,	one	that	does	not	require	writing	any	new	code.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_14

14.	Cultivating	Good	Test	Writing	Skills
James	E.	McDonough1		

Pennington,	NJ,	USA

	

Writing	automated	unit	tests	is	a	skill	that	must	be	honed	and	nurtured	just	as
carefully	as	the	skills	developers	acquire	over	their	careers	writing	production
software.	Indeed,	a	new	programming	model	is	involved	with	writing	tests,	one
where	the	prime	directive	is	to	insure	the	stability	and	accuracy	of	production
software.	This	chapter	addresses	some	of	the	topics	related	to	the	development
of	those	skills.

The	Pillars	of	Good	Unit	Tests
Perhaps	you’ve	heard	tales	of	developers	at	other	software	organizations
experiencing	difficulties	keeping	their	automated	unit	tests	in	a	passing	state,
some	even	deciding	to	abandon	those	tests	once	they	came	to	be	regarded	as	a
hindrance	instead	of	a	help.1	Often	such	situations	arise	from	poorly	written
tests.	So	how	do	we	determine	whether	the	unit	tests	we	write	are	any	good?	Roy
Osherove	offers	guidance	with	what	he	calls	the	pillars	of	good	unit	tests	:

The	tests	that	you	write	should	have	three	properties	that	together	make	them
good:

Trustworthiness
Maintainability
Readability2

Osherove	further	explains	that	trustworthiness	addresses	the	collective
confidence	felt	by	members	of	the	development	staff	in	accepting	the	results	of
the	tests,	which	are	neither	riddled	with	bugs	nor	test	the	wrong	things;	that
maintainability	addresses	the	diligence	required	during	repeated	modification
efforts	to	prevent	tests	from	spiraling	out	of	control	to	the	point	where	the	staff

https://doi.org/10.1007/978-1-4842-6951-0_14


ceases	to	maintain	them;	and	that	readability	addresses	the	ease	with	which	the
next	programmer	can	quickly	understand	the	intent	of	the	test,	having	a
detrimental	ripple	effect	on	both	trustworthiness	and	maintainability	when	a	test
becomes	difficult	to	understand.

None	of	us	suddenly	becomes	an	expert	with	a	skill	simply	because	we	have
read	the	books	or	had	a	competent	instructor,	so	it	should	be	expected	that	our
initial	experience	writing	automated	unit	tests	will	not	be	perfect.	It	will	take
some	time	to	become	proficient	at	writing	unit	tests.	Insuring	the	automated	unit
tests	you	write	conform	to	these	pillars	may	spare	you	coming	to	the	painful
conclusion	that	the	tests	are	impeding	development	instead	of	aiding	it.

Test	Simplicity
With	production	code,	it	is	possible	to	write	large	complex	procedures	to	achieve
the	desired	result.	Some	procedures	start	off	small	but	grow	so	large	over
repeated	maintenance	cycles	they	no	longer	are	easily	understood	without
exhaustive	examination.	Perhaps	you	are	familiar	with	such	a	procedure	at	your
site,	one	that	induces	dread	with	each	new	change	requirement.

The	ABAP	language	seems	to	place	virtually	no	limits	on	the	number	of
lines	a	procedure	may	have	or	the	number	of	nesting	levels	of	scope-terminated
constructs	such	as	if,	case,	and	while.	This	presents	the	possibility	of	single
procedures	having	thousands	of	lines	containing	many	levels	of	deeply	nested
constructs,	procedures	that	defy	comprehension	simply	due	to	their	size	and
complexity.	Despite	the	horror	stories	you	might	have	heard	about	code	like	that
at	other	sites,	perhaps	you	are	fortunate	enough	to	work	on	a	development	staff
where	the	programmers	never,	ever,	ever	write	such	monstrous	procedures	or
allow	one	to	emerge	through	repeated	maintenance	updates.

In	contrast	to	what	typically	is	found	in	production	code,	a	unit	test	should	be
devoid	of	all	conditional	logic.	That	means	it	should	have	no	if	statements	and
no	case	statements.	Since	the	unit	test	should	execute	exactly	the	same	way	every
time,	the	inclusion	of	conditional	logic	presents	the	possibility	of	multiple
outcomes	based	on	the	associated	conditions.	Roy	Osherove	elaborates	on	this
issue:

If	you	have	any	of	the	following	inside	a	unit	test,	your	test	contains	logic
that	shouldn’t	be	there:

[case],	if,	or	else	statements
…	for	or	while	loops



A	test	that	contains	logic	is	usually	testing	more	than	one	thing	at	a	time,
which	isn’t	recommended,	because	the	test	is	less	readable	and	more	fragile.
But	test	logic	also	adds	complexity	that	may	contain	a	hidden	bug.3

Following	the	Four-Phase	Test	model	proposed	by	Gerard	Meszaros,	the
intent	of	the	test	should	be	readily	evident	to	the	reader.	According	to	Robert	C.
Martin,	test	readability	is	paramount:

What	makes	a	clean	test?	Three	things:	Readability,	readability,
readability.	Readability	is	perhaps	even	more	important	in	unit	tests	than
it	is	in	production	code.4

Roy	Osherove	and	Gerard	Meszaros	offer	their	perspectives	on	readability:

Readability	is	one	of	the	most	important	aspects	when	writing	a	test.	As
far	as	possible,	it	has	to	read	effortlessly,	even	to	someone	who’s	never
seen	the	test	before,	without	needing	to	ask	too	many	questions	–	or	any
questions	at	all.5

Without	readability	the	tests	you	write	are	almost	meaningless.
Readability	is	the	connecting	thread	between	the	person	who	wrote	the
test	and	the	poor	soul	who	has	to	read	it	a	few	months	later.	Tests	are
stories	you	tell	the	next	generation	of	programmers	on	a	project.6

…	tests	must	be	simple	–	simple	to	read	and	simple	to	write.	They	need	to
be	simple	to	read	and	understand	because	testing	the	automated	tests
themselves	is	a	complicated	endeavor.7

This	means	that	to	avoid	diminishing	the	readability	of	a	unit	test,	any
complicated	processing	for	establishing	the	conditions	necessary	to	run	the	test
or	to	the	subsequent	assertion	of	the	test	outcome	should	be	encapsulated	into
helper	methods.

A	test	should	be	designed	such	that	it	tests	only	a	single	outcome	of	a
procedure.	The	best	way	to	do	this	is	for	the	test	to	contain	only	a	single
assertion,	but	this	is	not	possible	when	the	procedure	has	multiple	outbound
parameters	defined	for	its	signature	or	changes	global	variables.	In	such	cases,	it
may	be	necessary	to	have	multiple	assertions	in	the	unit	test,	with	each	assertion
testing	some	result	of	a	single	call	to	the	procedure.	Robert	C.	Martin	puts	this
into	perspective:



There	is	a	school	of	thought	that	says	that	every	test	function	in	a	[unit]
test	should	have	one	and	only	one	assertion.	This	rule	may	seem
draconian	…	Perhaps	a	better	rule	is	that	we	want	to	test	a	single
concept	in	each	test	function.8

Test	Coverage
Ideally,	a	production	procedure	should	have	maximum	test	coverage	for	it.	This
means	that	each	statement	in	the	procedure	has	been	exercised	by	an	automated
unit	test.	Achieving	100%	coverage	is	not	often	attainable,	but	we	should	strive
to	get	as	close	to	100%	as	possible.	Indeed,	if	you	abide	by	the	advice	offered	in
this	book,	then	you	will	have	test	doubles	that	mimic	production	components
during	a	unit	test,	meaning	that	the	production	components	being	mimicked	may
have	no	coverage	at	all,	as	expected,	since	executing	them	may	cause	the	unit
test	to	fail	or	to	be	interrupted	and	require	manual	intervention	–	exactly	the
reasons	why	the	test	double	was	used	in	the	first	place.

A	given	procedure	may	have	multiple	logic	paths	that	can	be	traversed.
Avoid	writing	a	single	unit	test	that	sequentially	tests	multiple	paths	through	the
same	procedure.	In	such	cases,	the	procedure	should	have	as	many	unit	tests	for
it	as	there	are	unique	paths	of	logic	to	be	taken.	Why	not	have	multiple	paths	of	a
procedure	tested	by	a	single	unit	test?	Here	are	a	few	reasons	why	this	is	not	a
good	idea:

1.
The	single	name	of	the	unit	test	method	cannot	do	justice	in	describing	all
the	paths	it	is	responsible	for	testing.

	
2.

When	a	unit	test	failure	does	occur,	it	is	not	abundantly	clear	which	path
resulted	in	the	failure.	Meszaros	refers	to	such	a	situation	as	emanating	the
smell	Assertion	Roulette.9

	

3.
Execution	of	one	path	could	set	the	conditions	causing	the	test	of	the	next
path	to	fail	when	it	should	pass	or	to	pass	when	it	should	fail,	another
example	of	Interacting	Tests.

	

4.
Unless	the	quit=no	parameter	is	used	with	all	the	assertions	being	issued
after	testing	a	specific	path,	it	would	cause	some	paths	not	to	be	tested	when
one	of	the	paths	causes	a	failure.

	

5.



When	the	component	under	test	changes	and	now	has	fewer	paths	to	test,	it
is	easier	and	safer	to	remove	an	entire	unit	test	method	testing	that	path	than
to	remove	only	those	applicable	lines	of	code	from	an	existing	unit	test
method	testing	multiple	paths.

	

With	a	unit	test	per	procedure	path,	it	can	be	determined	at	a	glance	which
paths	pass	and	which	ones	fail.	All	of	the	unit	tests	for	a	single	procedure	should
be	contained	within	a	single	unit	test	class.	In	some	cases,	it	may	make	sense	for
a	single	unit	test	class	to	contain	unit	tests	only	for	a	single	procedure.

SAP	Recommendations	and	Constraints	When
Writing	Unit	Tests
SAP	has	made	the	following	recommendations	for	writing	unit	tests:

Place	all	ABAP	Unit	local	test	class	code	after	all	code	of	the	object	under
test.	This	provides	the	test	classes	with	access	to	all	data	and	procedures	of	the
object	under	test.10
Define	all	test	methods	in	the	private	section	or,	if	inherited,	the	protected
section.11	Methods	in	the	public	section	are	applicable	only	when	a	test
executes	the	tests	of	other	unit	test	classes.	Local	test	classes	may	inherit	from
an	abstract	global	test	class.

SAP	also	has	established	the	following	constraints:

Global	test	classes,	if	defined,	must	be	defined	with	their	instantiation
property	set	to	“abstract.”	When	this	is	not	the	case,	a	warning	is	issued	when
the	global	class	itself	is	subjected	to	unit	testing.

A	local	test	class	inheriting	from	a	global	test	class	must	specify	a
compatible	attribute	for	risk	level.	A	local	class	can	raise	the	risk	level
assigned	to	the	global	class	but	cannot	lower	it.

Tips	for	Writing	Unit	Tests
Over	the	years,	I	have	implemented	some	ABAP	Unit	testing	techniques	I	later
came	to	regret.	Accordingly,	here	are	some	tips	I	can	offer	for	avoiding	some	of
the	pitfalls	I	had	encountered:
1.

Do	not	define	components	in	the	code	under	test	which	are	used	solely	by	its	



unit	testing	code.	Examples	of	such	components	are	the	following:

Types	and	data	definitions,	including	those	for	structures	and	internal
tables
Constants
Text	elements
Messages	defined	via	Message	Maintenance	(SE91)

2.
Do	not	elevate	the	visibility	of	a	class	member	simply	to	make	it	accessible
to	the	local	class	containing	its	unit	testing	code.	The	correct	way	to
facilitate	this	capability,	when	it	becomes	necessary,	is	via	class	friendship.

	

Note The	accompanying	exercise	programs	provide	an	example	showing
how	to	use	friendship	in	this	way.

3.
Hard-coded	staging	data	is	permissible	within	the	unit	test	class	for	the
preparation	of	unit	test	execution.	Avoid	defining	such	hard-coded	values	in
the	production	code.

Any	hard-coded	staging	data	related	to	Personally	Identifiable
Information	(PII)	should	be	composed	of	mock	values	and	not	based	on
real	values.

	

4.
There	may	be	times	when	you	want	to	disable	a	unit	test	method.	You	can
do	this	easily	by	commenting	out	the	“for	testing”	clause	on	its	method
definition.	If	the	unit	test	method	needs	to	be	disabled	for	an	extended
period	of	time,	then	I	would	suggest	a	different	approach,	which	is	to	place	a
call	to	method	fail	of	class	cl_abap_unit_assert	as	the	first	executable
statement	in	the	method,	set	its	level	parameter	to	tolerable,	and	include	a
message	such	as	“Unit	test	has	been	disabled.”	These	test	methods	still	will
be	counted	as	executed	tests	but	will	appear	with	warnings	in	the	ABAP
Unit	Result	Display	report.	This	way	it	will	be	easy	to	distinguish	those	tests
that	are	truly	failing	from	those	that	are	simply	disabled,	and	because	they
trigger	the	ABAP	Unit	Result	Display	report,	you	cannot	forget	to	go	back
and	address	the	reason	why	disabling	them	had	become	necessary.

	

5.
Define	all	ABAP	Unit	tests	initially	as	deliberately	failing	tests.	This	will
enable	running	the	ABAP	Unit	test	feature	to	see	which	unit	test	methods

	



still	remain	to	be	completed.	Listing	14-1	illustrates	this	with	an	example	of
a	report	consisting	of	three	subroutines	and	a	test	class	named
test_all_subroutines	having	corresponding	unit	test	methods	for	testing	each
of	the	three	subroutines.

report.

		o

		o

form	calculate_gross_weight	using	...

		o

		o

endform.

form	calculate_net_weight	using	...

		o

		o

endform.

form	calculate_overweight_penalty	using	...

		o

		o

endform.

class	test_all_subroutines	definition.

		private	section.

				methods	calculate_gross_weight							for	testing.

				methods	calculate_net_weight									for	testing.

				methods	calculate_overweight_penalty	for	testing.

endclass.

class	test_all_subroutines	implementation.

		method	calculate_gross_weight.

				cl_abap_unit_assert=>fail(

						msg	=	'No	ABAP	Unit	test	code	implemented'

						).

		endmethod.

		method	calculate_net_weight.

				cl_abap_unit_assert=>fail(

						msg	=	'No	ABAP	Unit	test	code	implemented'



						).

		endmethod.

		method	calculate_overweight_penalty.

				cl_abap_unit_assert=>fail(

						msg	=	'No	ABAP	Unit	test	code	implemented'

						).

		endmethod.

endclass.

Listing	14-1 Example	program	with	deliberately	failing	unit	tests

Issues	Related	to	Testing	Object-Oriented	Code
For	years	there	has	been	a	debate	raging	on	the	Internet	on	the	topic	of	writing
unit	tests	for	non-public	members	of	classes.	This	controversy	originated	over
the	testing	practices	associated	with	purely	object-oriented	languages	such	as
Java	and	C++,	so	its	relevance	to	ABAP	is	restricted	to	the	object-oriented
aspects	of	the	language.

Those	who	advocate	against	it	suggest	that	only	the	public	interface	of	a
class	should	have	associated	tests,	meaning	only	the	public	methods	and	public
attributes	of	a	class	should	be	accessed	during	a	unit	test,	that	class	members
assigned	a	visibility	level	other	than	public	should	be	exempt	from	direct	testing.
Their	position	is	that	any	class	members	that	are	not	public	should	be	exercised
through	the	process	of	testing	the	public	members.	Roy	Osherove	makes	the	case
this	way:

When	you	test	a	private	method,	you’re	testing	against	a	contract
internal	to	the	system,	which	may	well	change.	Internal	contracts	are
dynamic,	and	they	can	change	when	you	refactor	the	system.	When	they
change,	your	test	could	fail	because	some	internal	work	is	being	done
differently,	even	though	the	overall	functionality	of	the	system	remains
the	same.12

In	contrast,	those	who	advocate	for	it	argue	that	even	non-public	members,
such	as	protected	and	private	methods,	may	be	sufficiently	complex	to	warrant
their	own	unit	tests.	It	may	be	the	processing	performed	by	a	non-public	member
that	causes	the	failure	for	a	test	of	a	public	member,	so	restricting	unit	tests	only
to	public	members	makes	finding	those	problems	more	difficult.	Their	position
is	that	any	class	member	should	be	a	candidate	for	a	unit	test.



1

2

As	demonstrated	by	the	exercise	programs,	ABAP	certainly	provides	the
ability	to	make	non-public	members	of	a	class	accessible	to	unit	tests.

In	the	past,	I	have	written	unit	tests	against	private	methods.	Lately	I	have
been	swayed	by	the	argument	presented	by	advocates	against	unit	testing	of	non-
public	members,	who	raise	the	credible	point	that	a	class	that	has	such
complexity	in	its	non-public	methods	is	an	example	of	a	class	that	needs	to	be
split	into	two	classes.	The	result	of	extracting	out	part	of	one	such	class	into	a
new	class	would	cause	former	non-public	members	now	to	become	public
members,	for	which	unit	tests	could	now	be	written	and	restricted	only	to	its
public	interface.

Indeed,	a	case	can	be	made	that	restricting	unit	tests	to	only	the	public
interface	of	a	class	will	have	the	positive	effect	of	making	classes	smaller,	with
the	associated	benefit	of	them	now	being	easier	to	understand	and	maintain.
Defining	smaller	classes	is	a	recommendation	made	by	Robert	C.	Martin:

The	first	rule	of	classes	is	that	they	should	be	small.	The	second	rule	of
classes	is	that	they	should	be	smaller	than	that.	…	smaller	is	the	primary
rule	when	it	comes	to	designing	classes.13

You	can	also	express	yourself	by	keeping	your	functions	and	classes
small.	Small	classes	and	functions	are	usually	easy	to	name,	easy	to	write
and	easy	to	understand.14

Summary
This	chapter	offered	advice	on	acquiring	and	developing	good	unit	test	writing
skills.	After	explaining	the	characteristics	that	make	a	unit	test	most	effective,	it
elaborated	on	the	programming	skills	associated	with	writing	automated	unit
tests	and	how	these	skills	differ	from	those	used	for	writing	production	software.
Various	test	writing	tips	were	offered,	and	arguments	for	and	against	writing
tests	for	non-public	members	of	object-oriented	classes	were	presented.

Footnotes
For	examples,	see	1)	Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	xix,	and

2)	Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	xxii

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	151-152



3

4

5

6

7

8

9

10

11

12

13

14

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	157

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

124

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	31

	
Ibid,	p.	180

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	27

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

130–131

	
Meszaros,	Gerard,	xUnit	Test	Patterns:	Refactoring	Test	Code,	Addison	Wesley,	2007,	p.	224

	
https://help.sap.com/viewer/ba879a6e2ea04d9bb94c7ccd7cdac446/1709%20000/en-

US/49250ce64d7216b5e10000000a42189d.html

	
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-

us/49/25686a29ac16b7e10000000a42189d/content.htm?no_cache=true

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	161

	
Martin,	Robert	C.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Prentice	Hall,	2009,	p.

136

	
Ibid,	p.	175

https://help.sap.com/viewer/ba879a6e2ea04d9bb94c7ccd7cdac446/1709%2520000/en-US/49250ce64d7216b5e10000000a42189d.html
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/49/25686a29ac16b7e10000000a42189d/content.htm%253Fno_cache%253Dtrue


	



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
J.	E.	McDonough,	Automated	Unit	Testing	with	ABAP
https://doi.org/10.1007/978-1-4842-6951-0_15

15.	Welcome	to	Autropolis
James	E.	McDonough1		

Pennington,	NJ,	USA

	

I	hope	by	now	you	are	convinced	that	the	automated	unit	testing	framework	will
simplify	your	ABAP	testing	efforts	and	free	you	from	the	agony	to	be	endured
through	manual	testing.	The	fact	that	tests	can	be	written	as	executable	code	just
might	be	the	catalyst	needed	for	transforming	reluctant	manual	testers	into
enthusiastic	automated	testers.	This	chapter	presents	some	further	commentary
on	the	topic	of	automated	unit	testing.

One	Small	Step	for	Manual	Toward	Automated
Now	that	you	are	familiar	with	the	ways	an	ABAP	component	can	be	brought
under	the	control	of	automated	unit	tests,	you	may	feel	as	though	you	are	facing
a	daunting	challenge	when	you	consider	the	amount	of	work	it	would	take	to
retrofit	existing	programs	with	such	tests.	Instead	of	trying	to	implement	a
comprehensive	set	of	tests	for	every	nook	and	cranny	of	an	ABAP	component	all
in	one	gulp,	it	may	be	better	to	simply	add	unit	tests	as	maintenance	is
performed.	For	instance,	the	next	time	you	need	to	change	a	subroutine	to
accommodate	a	new	user	requirement,	write	one	small	automated	unit	test
method	for	that	changed	subroutine.	Over	time	the	number	of	unit	tests	for	the
component	will	grow	and	cover	more	of	a	percentage	of	the	code.	Eventually
you’ll	be	able	to	use	the	coverage	tool	of	the	ABAP	Unit	Testing	Framework	to
identify	where	there	remain	procedures	in	the	code	having	little	or	no	test
coverage.

The	Right	Tool	for	the	Job
The	Extended	Program	Check	and	the	Code	Inspector	are	two	valuable	tools	for

https://doi.org/10.1007/978-1-4842-6951-0_15


insuring	that	ABAP	code	contains	no	statement	usage	considered	obsolete,	prone
to	error,	or	potentially	inefficient.	Most	developers	use	these	automated	tools	to
identify	portions	of	code	to	be	analyzed	further	in	the	quest	for	high-quality
software.	They’ve	been	around	much	longer	than	the	new	kid	on	the	block:	the
ABAP	Unit	Testing	Framework.	However,	these	older	tools	were	not	designed	to
insure	that	ABAP	code	produces	the	correct	business	results.

In	episodes	of	Star	Trek,	there	are	often	scenes	where	a	ship’s	component	is
subjected	to	an	immediate	diagnosis	to	determine	its	effectiveness,	such	as	the
one	resulting	from	this	exchange	heard	one	fine	day	on	the	bridge	of	the	USS
Enterprise:

Lieutenant	Uhura:	Captain,	we’ve	received	a	subspace	communication
from	the	USS	Excalibur	that	multiple	Klingon	warships	have	taken	positions
along	the	neutral	zone.

Captain	Kirk:	Spock,	can	you	confirm	that?
Commander	Spock:	No,	captain,	our	long-range	scanners	show	no

unusual	activity	along	the	neutral	zone.
Captain	Kirk:	Ensign	Chekov,	run	a	Level	1	Diagnostic	on	the	long-

range	scanners.
Ensign	Chekov:	Aye	aye,	captain!

Give	some	consideration	toward	designating	the	self-checking	automated
unit	tests	of	ABAP	Unit	as	your	preferred	Level	1	Diagnostic	tool	for	your
development	efforts.	The	Extended	Program	Check	and	the	Code	Inspector	can
occupy	positions	as	diagnostic	tools	at	level	2	and	level	3,	respectively,	after	first
running	the	automated	unit	tests	to	determine	that	the	code	is	producing	the
correct	results.	It	will	enable	you	to	avoid	the	embarrassment,	finger-pointing,
unconvincing	explanations,	and	ensuing	scramble	to	address	the	associated
issues	arising	from	the	following	exchange	when	the	captain	of	your
organization	looks	to	you	for	immediate	confirmation	that	the	code	is	working	as
expected:

Lieutenant	Uhura:	Captain,	we’ve	received	an	intercompany
communication	from	a	user	that	the	rabblefrang	report	is	producing	incorrect
results.

Captain	Kirk	Spock,	can	you	confirm	that?
Commander	Spock:	No,	captain,	the	rabblefrang	report	seems	to	be

working	properly.
Captain	Kirk:	Ensign	Chekov,	run	a	Level	1	Diagnostic	on	the

rabblefrang	report.



Ensign	Chekov:	[after	a	momentary	pause]	Captain,	the	rabblefrang
report	has	no	Level	1	Diagnostic	capability.

Resistance	Is	Futile
The	software	industry	is	constantly	changing.	New	development	and	deployment
processes	such	as	DevOps1	and	Continuous	Integration2	(CI),	enabling	software
development	staffs	to	release	changes	to	production	multiple	times	per	day,3
have	moved	to	the	forefront,	displacing	older	models	based	on	larger	releases
made	at	intervals	of	months	or	years.	Automated	unit	testing	plays	a	central	role
in	these	processes.

Although	such	processes	had	been	adopted	long	ago	by	many	in	the	software
industry,	their	use	is	not	yet	commonplace	among	ABAP	development
organizations.	However,	the	software	development	tide	is	surging	in	that
direction,	and	adopting	a	policy	of	automated	unit	testing	will	move	your
organization	one	step	closer	to	being	able	to	continuously	integrate	changes	into
production.

There	are	those	who	are	content	with	their	software	development	process
being	based	on	manual	testing	and	see	no	reason	why	it	needs	to	change.
Perhaps	it	never	occurs	to	them	that	there	are	better,	faster,	cheaper	ways	to
deliver	effective,	robust,	user-friendly,	efficient,	and	easily	maintainable
software.	Those	who	resist	change	and	insist	on	continuing	with	a	manual	testing
process	are	choosing	to	use	stone-age	tools	to	build	and	maintain	a	modern
software	infrastructure.	But	such	resistance	is	futile.	With	the	inexorable	march
of	the	software	industry	toward	better	tools	to	facilitate	better	software,	it	is
inevitable	that	automated	unit	testing	becomes	such	an	integral	part	of	ABAP
development	that	programmers	will	consider	it	indispensable	and	wonder	how
they	ever	would	be	able	to	do	their	jobs	without	it.

Becoming	the	Agent	for	Change
The	Chapter	1	section	titled	“Why	This	Book	Was	Written”	recounts	my
experience	being	the	pioneer	with	automated	unit	testing	at	the	site	I	had	been
working.	If	you	also	find	yourself	in	a	situation	where	automated	unit	testing	is
not	yet	used	by	any	of	your	development	colleagues,	then	you	also	may	find
yourself	to	be	the	agent	for	change	with	introducing	automated	unit	testing	into
your	development	process.	Roy	Osherove	proposes	two	different	ways	to
succeed	with	this	challenge:



There	are	two	main	ways	an	organization	or	team	can	start	changing	a
process:	bottom	up	or	top	down	(and	sometimes	both).	The	two	ways	are
very	different	…	and	either	could	be	the	right	approach	for	your	team	or
company.4

Osherove	elaborates	on	this	point	by	stating	Guerrilla	Implementation	is	an
example	of	a	bottom-up	process,	one	in	which	a	small	team	of	developers
determined	to	improve	their	work	processes	pursues	a	new	practice,	obtains
some	encouraging	results,	and	then	shares	their	experience	with	others	who
might	become	convinced	of	the	worthiness	of	the	new	practice	and	begin	to
adopt	it	to	their	own	work	processes,	before	long	percolating	up	through	the
various	levels	of	management.	He	also	states	that	a	top-down	process	is	one
where	a	manager	will	initiate	a	change	in	a	work	process,	making	the	case	to
subordinates	why	the	change	would	be	beneficial	to	the	team	and	then	using
their	authority	to	enable	the	new	practice	to	become	part	of	the	team’s	standard
work	process	once	it	becomes	embraced	by	a	significant	number	of	team
members.

The	experience	I	recounted	previously	was	one	based	on	both	the	top-down
and	bottom-up	approaches	–	it	was	the	recommendation	of	managers	who
attended	one	of	my	presentations	to	undertake	a	pilot	project	(top-down),	the
results	of	which	could	be	used	to	convince	other	management	personnel
(bottom-up)	of	the	merits	of	implementing	automated	unit	testing.

Go	Forth	and	Automate
You’ve	reached	the	end	of	the	book.	Now	it	is	up	to	you	to	decide	when	to	begin
automating	your	ABAP	Unit	testing	efforts	and	how	you	will	approach	it.
Harness	the	power	of	the	computer	to	perform	the	boring	and	repetitive	testing
tasks	for	you.	Dare	to	ascend	from	the	depths	of	that	dungeon	of	despair	known
as	manual	testing.	Enlist	the	machine	itself	as	your	co-pilot	as	you	depart
Mutville	for	Autropolis,	the	destination	famous	for	thorough	automated	unit
testing	for	insuring	high-quality	software.

Summary
Retrofitting	a	complete	set	of	automated	unit	tests	to	a	legacy	program	at	once	is
an	intimidating	prospect	even	for	the	most	seasoned	programmer.	Instead	of
trying	to	attempt	that	forbidding	challenge,	make	small	steps	simply	by	adding



1

2

3

4

to	that	legacy	program	a	new	unit	test	each	time	it	is	updated	in	a	subsequent
maintenance	cycle.	Eventually	the	unit	test	collection	grows	to	cover	most	of	the
program.	Since	it	will	indicate	whether	the	business	logic	is	operating	as
expected,	consider	using	ABAP	Unit	as	your	primary	tool	for	insuring	software
quality,	to	be	supplemented	by	the	Extended	Program	Check	and	Code	Inspector.

To	keep	abreast	of	changes	occurring	in	the	software	industry,	developers	in
ABAP	organizations	soon	may	find	themselves	using	new	technologies	such	as
DevOps	and	Continuous	Integration.	Since	automated	unit	testing	is	a
fundamental	component	of	such	technologies,	get	a	head	start	by	slowly
abandoning	manual	unit	testing	in	favor	of	its	automated	counterpart,	and	in	the
process	reap	the	resulting	rewards	contributing	to	higher-quality	software.	You
can	become	an	agent	of	change	in	your	development	organization	using	a	top-
down	or	a	bottom-up	approach	toward	making	automated	unit	testing	a	process
accepted	and	embraced	by	your	colleagues.

Footnotes
https://atarc.org/wp-content/uploads/2019/01/MITRE-ATARC-DevOps-White-

Paper-2016-08-18.pdf

	
http://cope.eecs.oregonstate.edu/papers/OpenSourceCIUsage.pdf

	
https://dzone.com/articles/release-frequency-a-need-for-speed

	
Osherove,	Roy,	The	Art	of	Unit	Testing,	second	edition,	Manning,	2014,	p.	193

	

https://atarc.org/wp-content/uploads/2019/01/MITRE-ATARC-DevOps-White-Paper-2016-08-18.pdf
http://cope.eecs.oregonstate.edu/papers/OpenSourceCIUsage.pdf
https://dzone.com/articles/release-frequency-a-need-for-speed


Appendix	A:	Requirements	Documentation	and
ABAP	Exercise	Programs
The	source	code	for	this	book	is	available	on	GitHub	via	the	book’s	product
page,	located	at	www.apress.com/9781484269503	.

It	contains	the	following:

The	file	containing	the	requirements	document	describing	the	associated
ABAP	exercise	programs	(.pdf).

The	file	containing	the	supplemental	source	code	described	by	the
requirements	document	to	be	included	in	each	new	exercise	program	(.txt).
Use	this	as	the	source	for	the	code	to	copy	and	paste	into	each	new	exercise
program	because,	unlike	.pdf	documents,	it	retains	consecutive	spaces	used
for	maintaining	proper	formatting	and	alignment	of	the	ABAP	code.

The	files	containing	the	source	code	for	each	of	the	associated	ABAP
exercise	programs	(.txt).

The	file	containing	the	ABAP	program	for	uploading	all	the	exercise
programs	into	your	training	system	(.txt).

http://www.apress.com/9781484269503


Appendix	B:	Answers	to	Chapter	Quizzes
Answers	to	Quiz	#1
Presented	at	the	end	of	Chapter	4

Multiple	Choice:	Select	the	Best	Answer
The	correct	answers	to	the	multiple	choice	selections	of	Quiz	#1	are	the	entries
highlighted	in	bold.
1.

xUnit	describes
A.		Manual	code–driven	testing	frameworks
B.		Automated	code–driven	testing	frameworks
C.		Consolidated	code–driven	testing	frameworks

	

2.
xUnit	enables	testing	at	the

A.		Internet	level
B.		System	level
C.		Module	level

	

3.
xUnit	facilitates

A.		Test-Driven	Development
B.		Extreme	programming
C.		Seat-of-the-pants	development

	

4.
xUnit	tests	are	implemented	as

A.		Breakpoints
B.		Conditions
C.		Assertions

	

5.
xUnit	facilitates	preparing	a	test	through

A.		Dynamic	definition
B.		Fixture
C.		Collection

	

6.
The	order	in	which	xUnit	tests	are	executed

A.		Is	the	order	in	which	they	appear
B.		Is	dependent	on	test	attributes
C.		Should	not	matter

	



True	or	False
The	answers	to	the	True	or	False	statements	of	Quiz	#1	are	shown	to	the	right	of
the	statements.

Advantages	of	using	xUnit	testing	include

				1. No	need	to	remember	what	the	test	result	should	be True

				2. Elimination	of	user	testing False

				3. Tests	are	automated True

				4. Reduction	in	requests	for	changes False

				5. No	need	to	think	about	how	to	implement	logic False

				6. No	need	to	write	the	same	test	more	than	once True

				7. Can	substitute	for	design	discussions False

				8. Enables	testing	of	peripheral	systems False

The	phases	of	xUnit	can	be	described	using	the	word	sequence

				9. Ready,	Set,	Go False

		10. Arrange,	Act,	Assert True	(Osherove)

		11. Setup,	Exercise,	Verify,	Teardown True	(Meszaros)

		12. Open,	Test,	Close False

Answers	to	Quiz	#2
Presented	at	the	end	of	Chapter	5

Multiple	Choice:	Select	the	Best	Answer
The	correct	answers	to	the	multiple	choice	selections	of	Quiz	#2	are	the	entries
highlighted	in	bold.
1.

ABAP	Unit	tests	are	written	in
A.		SAPScript
B.		Java
C.		ABAP

	

2.
ABAP	Unit	tests

A.		Must	be	implemented	as	local	classes
B.		Must	be	implemented	as	global	classes
C.		May	be	implemented	as	either	local	or	global	classes

	



3.
ABAP	Unit	tests	can	be	executed

A.		Only	from	the	editor
B.		Only	from	the	Code	Inspector
C.		From	either	the	editor	or	the	Code	Inspector

	

4.
An	ABAP	Unit	test	class	definition	requires	the	class	to	be

A.		Marked	as	“for	testing”
B.		Inherited	from	a	globally	defined	static	class	provided	by	SAP
C.		Defined	in	a	separate	module

	

5.
An	ABAP	Unit	test	validity	is	asserted	by

A.		Using	an	ASSERT	statement
B.		Invoking	static	methods	of	the	class	cl_abap_unit_assert
C.		Calling	function	module	ASSERT_THIS

	

6.
An	ABAP	Unit	test	may	test

A.		Only	code	written	using	classes	and	methods
B.		Only	classic	procedural	ABAP	code
C.		Classic	procedural	ABAP	code	and	code	written	using	classes

and	methods

	

True	or	False
The	answers	to	the	True	or	False	statements	of	Quiz	#2	are	shown	to	the	right	of
the	statements.

An	ABAP	Unit	test	may	be	defined	for

				1. Executable	programs True

				2. Class	pools True

				3. Interface	pools False

				4. Module	pools True

				5. Function	groups True

				6. Configuration False

				7. Subroutine	pools True

				8. Type	groups False

An	ABAP	Unit	test

				9. By	default	is	compiled	into	all	environments False



		10. Accommodates	using	a	fixture True

		11. Is	embedded	with	the	object	to	be	tested True

		12. Can	generate	the	source	code	to	comply	with	the	test False

		13. May	accept	parameters False

		14. Is	transported	along	with	its	tested	object True

Appendix	C:	Concepts	Associated	with	Defining	Local
Test	Classes
Although	the	ABAP	Unit	Testing	Framework	requires	that	a	unit	test	be	written
as	a	local	class,	such	a	class	requires	the	use	of	only	a	few	of	the	many	object-
oriented	ABAP	statements.	This	section	covers	those	concepts	of	object-oriented
programming	necessary	to	be	known	in	order	to	define	and	use	local	test	classes
effectively.	If	you	are	reading	this	section,	the	assumption	is	that	you	know
nothing	about	either	object-oriented	programming	or	the	ABAP	statements	used
to	write	object-oriented	programs.	We	will	concentrate	only	on	what	is	required
to	be	understood	in	order	to	use	the	object-oriented	extensions	to	the	ABAP
language	to	define	and	execute	local	test	classes.1

With	object-oriented	programming,	the	fundamental	unit	of	design	is	called	a
class.	A	class	is	a	complex	data	object	consisting	of	attributes	and	behaviors.
Collectively,	attributes	and	behaviors	are	known	as	members	of	the	class.

An	attribute	of	a	class	is	simply	a	data	item.	Each	attribute	is	defined	as	a
data	field	or	as	a	constant,	using	the	ABAP	statement	DATA	or	CONSTANTS,
respectively.	The	TYPES	statement	also	may	be	defined	within	the	class	to	assist
in	defining	the	data	fields	and	constants.

A	behavior,	also	known	as	a	method,	is	an	action	defined	for	a	class	that	can
be	used	to	read	or	change	the	values	of	its	attributes	or	to	produce	some	other
type	of	processing	result.	A	method	must	be	invoked	to	perform	the	action	it
provides,	similar	to	using	the	PERFORM	statement	to	call	a	subroutine	that
performs	some	action.

The	following	example,	from	the	SAP	online	help,2	shows	a	simple
production	class	named	myclass	and	a	test	class	named	mytest	3:

*	Production	classes

CLASS	myclass	DEFINITION.

		PUBLIC	SECTION.

				CLASS-DATA	text	TYPE	string	READ-ONLY.



				CLASS-METHODS	set_text_to_x.

ENDCLASS.

CLASS	myclass	IMPLEMENTATION.

		METHOD	set_text_to_x.

				text	=	'U'.

		ENDMETHOD.

ENDCLASS.

*	Test	classes

CLASS	mytest	DEFINITION	FOR	TESTING.

		PRIVATE	SECTION.

				METHODS	this_test	FOR	TESTING.

ENDCLASS.

CLASS	mytest	IMPLEMENTATION.

		METHOD	this_test.

				myclass=>set_text_to_x(	).

				cl_abap_unit_assert=>assert_equals(	act	=

myclass=>text

																																								exp	=	'X'	).

		ENDMETHOD.

ENDCLASS.

As	with	all	classes	defined	using	the	ABAP	language,	each	class	has	both	a
definition	component	and	an	implementation	component.	The	definition
component	of	a	class	specifies	its	attributes	as	well	as	the	names	and	signatures
of	its	methods;	it	begins	with	the	CLASS	…	DEFINITION	statement	and	ends
with	the	ENDCLASS	scope	terminator	statement.	The	implementation
component	contains	an	implementation	for	each	of	the	methods	specified	in	the
definition	component;	it	begins	with	the	CLASS	…	IMPLEMENTATION
statement	and	ends	with	the	ENDCLASS	scope	terminator	statement.	The
statements	METHOD	and	ENDMETHOD	are	functionally	equivalent	to	the
statements	FORM	and	ENDFORM	found	with	classic	ABAP.	Both	the
definition	and	implementation	components	together	represent	a	complete	class.

In	the	preceding	example,	class	myclass	has	been	defined	to	contain	a	static
attribute	(CLASS-DATA)	called	text	and	a	static	method	(CLASS-METHODS)
called	set_text_to_x.	These	are	both	defined	in	the	PUBLIC	SECTION,	which
assigns	public	visibility	to	any	attributes	and	methods	following	this	section



header.	Public	visibility	means	that	any	external	entity	has	access	to	these
members	–	can	read	or	change	the	attribute	and	can	call	the	method.	Effectively,
external	entities	can	see	these	class	members.	However,	in	this	case	the	attribute
text	also	carries	the	READ-ONLY	qualifier,	which	means	external	entities	can
read	its	value	but	cannot	change	it.	The	implementation	for	its	method
set_text_to_x	uses	a	simple	ABAP	assignment	statement	to	set	its	attribute	text	to
the	value	‘U’.	This	is	about	the	simplest	example	of	how	a	class	could	be	defined
which	has	both	an	attribute	and	a	method.

By	comparison,	class	mytest	has	been	defined	to	contain	no	attributes	but
with	only	a	method	called	this_test.	The	method	is	defined	on	a	METHODS
statement	in	the	PRIVATE	SECTION,	which	assigns	private	visibility	to	any
attributes	and	methods	following	this	section	header.	Private	visibility	means
that	only	the	class	itself	has	access	to	these	members	–	can	read	or	change	the
attribute	and	can	call	the	method.	Effectively,	external	entities	cannot	see	these
class	members	and	so	have	no	access	to	them.

In	addition	to	the	usual	ABAP	statements	(CLASS,	ENDCLASS,	PUBLIC
SECTION,	PRIVATE	SECTION,	METHODS,	METHOD)	used	to	define	any
type	of	class,	mytest	also	includes	ABAP	statement	words	that	specifically
designate	the	class	as	an	ABAP	Unit	test	class.	These	are

The	additional	clause	FOR	TESTING	appearing	on	the	class	definition
statement

The	additional	clause	FOR	TESTING	appearing	on	the	methods	definition
statement

There	are	other	ABAP	statement	words	and	clauses	also	associated	solely
with	defining	ABAP	Unit	test	classes,	but	the	FOR	TESTING	clause	on	the	class
definition	statement	is	the	only	one	necessary	to	designate	the	entire	class	as	a
test	class.

Using	the	preceding	example,	class	mytest	is	dependent	upon	class	myclass	–
that	is,	class	mytest	knows	about	class	myclass,	but	class	myclass	knows	nothing
about	class	mytest.	This	dependency	exists	because	class	mytest	includes	a
statement	in	its	implementation	of	method	this_test	to	call	the	static	method
set_text_to_x	of	class	myclass:

myclass=>set_text_to_x(	).

This	statement	makes	use	of	the	functional	syntax	for	invoking	a	method	of	a
class.	Prior	to	the	introduction	into	the	ABAP	language	of	the	functional	syntax
for	invoking	methods	of	classes,	there	was	the	original,	and	still	supported,



syntax	for	doing	so:

call	method	myclass=>set_text_to_x.

Though	it	uses	more	words,	this	syntax	variation	for	invoking	a	method	of	a
class	has	similarities	with	the	syntax	of	the	CALL	FUNCTION	statement	to
invoke	a	function	module	to	perform	some	action,	and	indeed	the	concept	of
calling	a	method	of	a	class	via	the	call	method	statement	is	comparable	to	calling
a	function	module	of	a	function	group	via	the	call	function	statement.

In	addition	to	invoking	method	set_text_to_x	of	class	myclass,	the
implementation	for	method	this_test	of	class	mytest	also	has	a	statement	calling
static	method	assert_equals	of	class	cl_abap_unit_assert:

cl_abap_unit_assert=>assert_equals(	act	=

myclass=>text

																																				exp	=	'X'	).

Here	again	the	call	to	this	method	of	this	class	uses	the	more	recent
functional	syntax.	Had	the	original	method	invocation	syntax	been	used,	the
statement	would	have	looked	like	this:

call	method	cl_abap_unit_assert=>assert_equals

				exporting

								act	=	myclass=>text

								exp	=	'X'.

The	call	effectively	requests	an	assertion	that	the	actual	value	(parameter	act)
found	in	attribute	text	of	class	myclass	is	equal	to	the	expected	value	(parameter
exp)	of	‘X’.	Our	conclusion	that	the	expected	value	should	be	‘X’	is	based	not	so
much	on	knowing	anything	about	how	method	set_text_to_x	of	class	myclass	is
implemented	but	is	based	simply	on	the	name	of	the	method	itself	–	we	expect
that	when	we	call	a	method	named	set_text_to_x,	an	attribute	named	text	will	be
set	to	the	value	‘X’,	just	as	the	method	name	suggests.	If	indeed	the	value	found
in	attribute	text	of	class	myclass	is	equal	to	‘X’,	then	the	assertion	passes;
otherwise,	the	assertion	fails.

Before	continuing,	look	again	at	the	code	defining	these	two	classes	and
determine	for	yourself	whether	you	think	the	assertion	call	in	method	this_test
will	pass	or	fail.

When	we	request	to	execute	an	ABAP	Unit	test	for	a	program	containing



these	two	classes,	the	ABAP	Unit	Testing	Framework	will	be	invoked,	which
eventually	will	determine	that	method	this_test	of	class	mytest	is	to	be	invoked.
When	method	this_test	of	class	mytest	does	gain	control,	the	first	thing	it	will	do
is	call	method	set_text_to_x	of	class	myclass.	This	will	have	the	effect	of	setting
attribute	text	of	class	myclass	to	the	value	‘U’.	The	next	thing	method	this_test
will	do	is	to	call	the	method	assert_equals	of	class	cl_abap_unit_assert,
requesting	it	to	assert	that	the	value	in	attribute	text	of	class	myclass	is	equal	to
the	value	‘X’.	This	assertion	will	fail	because	the	actual	value	‘U’	in	attribute
text	of	class	myclass	is	not	equal	to	the	expected	value	‘X’.

Index
A
ABAP	code
challenges	to	effectively	testing
components	eligible	for	testing

ABAP	List	Viewer	(ALV)
ABAP	Test	Double	Framework	(ATDF)
ABAP	Unit	test
automatic	class	generation
language	statements	related	to
writing

ABAP	Unit	Testing	Framework
components	of
controlling
evolution	of
invoking	services	of

Advanced	Business	Application	Programming	(ABAP)
applicable
credentials
exercise	programs
introduction
unit	tests

Arrange-Act-Assert
ATDF
See ABAP	Test	Double	Framework	(ATDF)

Automated	unit	testing	(AUT)
Fowler,	Martin



languages
See xUnit,	languages
MUT
See Manual	unit	testing	(MUT)
Smalltalk	programs

Autropolis
challenges
extended	program	check
legacy	program
manual	testing
software	industry
USS	enterprise

B
Builder	design	pattern

C
chained	method	call
class_setup
class_teardown
Code	coverage
metrics

Configurable	test	doubles

D,	E
Depended-on	components	(DOC)
Design	testing
categorizing	input/output
characteristics
encapsulating	indirect	input	and	output
annotated	code
class/method
function	module
interaction
production	path
subroutine
subroutine	validate_message_severity
validate_message_severity_s	method

global	variables
input	processes



indirect	input
stricken	statements

output	processes
production	code

DOC
See Depended-on	components	(DOC)

Dummy	object
See Test	doubles,	categories	of

Duration	(class	qualifier)

F
Fabricated	test	data
creating	and	using

Fake	object
See Test	doubles,	categories	of

For	testing	(class	qualifier)
Four-phase	test
Function	modules

G,	H
Global	variables
gaining	control	over	references	to

Guard	assertion

I,	J,	K
Input
categorizing
direct
encapsulating
indirect

Interaction	points
Isolation	frameworks

L
Leveraging	service	locator
function	modules
global	class	repository
list	processing	statements
assertion
automated	unit	test



classic	list	report	service
create_report
highlighting/stricken	lines
interface	defining	methods
local	variable	definition
production	path
report
report_writable	class
report	writer	service	creation
resulting	report
selection	criteria
subroutine	report
test	double
testing	subroutine

MESSAGE	statement
assertion	statement
class	messenger
control	flow
error	messages
error	message	statements
highlighting/stricken	lines
interface	defining	methods
issue	messages
message_dispatcher	service
messages	information
messenger	service
messenger_test_double	class
production	class
production	path
RETURN	statement
screen	validation
testing	subroutine
validate_file_name

MESSAGE	Statement
respective	implementation

M,	N
Manual	unit	testing	(MUT)
calisthenics



consideration
legacy	code
maintenance	efforts
meaning
Mutville
autropolis
cultivating	good	test	writing	skills
districts
Service	Locator
Software	Quality
TDD

productive	development	pursuits
running	manual	tests
software	design
SUnit
unit	testing

Martin,	Robert	C.
Meszaros,	Gerard
mockA
Mock	object
See Test	doubles,	categories	of

Modularization	units

O
Object-oriented	code
issues	related	to	testing

Osherove,	Roy
Output
categorizing
direct
encapsulating
indirect

P,	Q
Pillars/good	unit	tests

R
Red-Green-Refactor
Risk	level	(class	qualifier)
Rudiments



ALV	reports
classic	list	processing	statements
confident	refactoring
fabricated	test	data
function	modules
global	class	repository
MESSAGE	statement
modifiable	global	variables
persistence	repository
simple	message	presentation	program
subroutines
sufficient	collection
valid	message	severities

S
Self-checking
Service	factory
using

Service	locator
alternative	definition
class	declaration
concepts
effect	process
factory	creation
condensed	version
effects	process
highlighting/stricken	code
highlighting/stricken	lines
local	components
meaning
single	method
ticket	sales	program
version	modification

full	ticket	sales	program
leveraging
to	manage	function	module
to	manage	global	class
to	manage	list	processing	statements
to	manage	MESSAGE	statements



municipal	service	directory
production	path
purpose	of
ticket	sales	program
using

Setup
Software	quality
ascending	levels
assess	information
capabilities
development	cycle
diagnosing	input
easy	maintenance
efficient
handling	invalid	input
hierarchy	levels
levels	of
requirements

Subroutine	pools

T
TDD
See Test-Driven	Development	(TDD)

Teardown
Test	coverage
Test	doubles
assertion	method
base	class	scenario
code	description
equivalent	method
production	path
subclass	definition
UML	diagram
variation

categories	of
dummy	object
fake	object
indirect	input	and	output
mock	object



test	spy
test	stub

configuration
ATDF	framework
consecutive	statements
framework
highlighting	and	stricken	lines
isolation	frameworks
mockA	framework
modification
statement
testing	capabilities
ticket	sales	program
unit	test	class	tester

dependency	injection	technique
DOC
FOR	TESTING	clause
function	module
input	programs
interface
automated	unit	test	path	class
class	definitions
code	description
components
equivalent	method
production	path	class
UML	diagram
variation

interface	reference
meaning
output
PERFORM	statement
purpose	of
refactoring	code
subroutine
using

Test-Driven	Development	(TDD)
benefits	of
cleaning	up	code



compilable	code
cycle	of
get_sign	method
negative_test	method
positive	and	negative	numbers	code
production	code
red-green-refactor	cycle
sign_setter	class
steps
test	code
tests	pass
three	laws

Testing	object-oriented	code
Testing	process
coverage
deliberately	failing	tests
recommendations
simplicity
unit	testing	code

Test	runner
Test	spy
See Test	doubles,	categories	of

Test	stub
See Test	doubles,	categories	of

U,	V,	W
Unit	testing
ABAP	statements	and	features	affecting
applicable
components
modularization	units
subroutine	pool

automatic	generation
base	runner
challenges
ALV	report
classic	event	block
classic	list	processing	statements
effective	code



global	variables
MESSAGE	statement
open	SQL	statement

client	category	override
client	control	category
components
configuration
application	server	block
button	setup
client	block	checkbox
SAUNIT_CLIENT_SETUP

evolution
execution
analyzing	and	reporting
editors

flow	control	(QUIT)	parameter
for	function	module
for	global	class
graphical	illustration
incidental	benefit
language	statements
DURATION
RISK	LEVEL
TESTING

requirements
results	report
SAP	recommendations	and	constraints	when	writing
static	method
steps
testing	framework
tips	for	writing
writing	code
class	definition/methods	statements
code	under	test
corresponding	unit	test
empty	method	definition
executable	program
fixture	methods
FOR	TESTING	clause



1

2

local	class
method	executions
METHODS	statement
minimal	local	class
productive	code
RISK	LEVEL	clause
single	subroutine
static	method

X,	Y,	Z
xUnit
advantages	of
assertion	methods
associated	language
emergence	of
features	of
interacting	tests
languages
phases	of
productive	code
prototype	code
pseudo-code
self-checking	test
software	elements
test	code
TDD
testing	frameworks
test	suite
text	document/spreadsheet

Footnotes
For	a	comprehensive	explanation	of	using	object-oriented	design	in	ABAP	programs,	refer	to	Object-

Oriented	Design	with	ABAP:	A	Practical	Approach	(McDonough,	James	E.,	Apress,	2017)

	
https://help.sap.com/saphelp_snc700_ehp01/helpdata/en/49/180619005338a1e10000000a421937/content.htm?

no_cache=true

https://help.sap.com/saphelp_snc700_ehp01/helpdata/en/49/180619005338a1e10000000a421937/content.htm%253Fno_cache%253Dtrue


3

	
With	this	example,	I	have	taken	the	liberty	to	change	the	name	of	the	method	defined	in	class	mytest

from	mytest	to	this_test	simply	to	avoid	confusion	with	a	class	and	one	of	its	methods	having	the	same
name

	


	Front Matter
	1. Introduction
	2. Preparing to Take the First Step
	3. Software Quality
	4. The Origins of Automated Unit Testing
	5. Automated Unit Testing with ABAP
	6. Rudiments
	7. Design for Testability
	8. Test Doubles
	9. Service Locator
	10. Leveraging the Service Locator
	11. Test-Driven Development
	12. Configurable Test Doubles
	13. Obtaining Code Coverage Information Through ABAP Unit Testing
	14. Cultivating Good Test Writing Skills
	15. Welcome to Autropolis
	Back Matter

