
Python Unit Test
Automation

Practical Techniques for
Python Developers and Testers
—
Ashwin Pajankar

Python Unit Test
Automation

Practical Techniques for Python
Developers and Testers

Ashwin Pajankar

Python Unit Test Automation: Practical Techniques for Python Developers and Testers

Ashwin Pajankar
Nashik, Maharashtra, India

ISBN-13 (pbk): 978-1-4842-2676-6 ISBN-13 (electronic): 978-1-4842-2677-3
DOI 10.1007/978-1-4842-2677-3

Library of Congress Control Number: 2017933075

Copyright © 2017 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewers: Unmesh Gundecha and Jojo Moolayil
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

iii

Contents at a Glance

About the Author �� xi

About the Technical Reviewers �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Introduction to Python �� 1

 ■Chapter 2: Getting Started �� 19

 ■Chapter 3: Unittest �� 31

 ■Chapter 4: nose and nose2 ��� 65

 ■Chapter 5: pytest �� 87

 ■Chapter 6: Tips and Tricks �� 101

Index �� 109

v

Contents

About the Author �� xi

About the Technical Reviewers �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Introduction to Python �� 1

The History of Python �� 1

Features of Python �� 2

Simple��� 2

Easy to Learn �� 2

Easy to Read ��� 3

Easy to Maintain ��� 3

Open Source ��� 3

High-Level Language �� 3

Portable �� 3

Interpreted �� 3

Object-Oriented �� 4

Extensible ��� 4

Extensive Libraries ��� 4

Robust �� 4

Rapid Prototyping ��� 4

Memory Management �� 5

Powerful ��� 5

Community Support �� 5

■ Contents

vi

Python 3 �� 5

The Differences Between Python 2 and Python 3��� 5

Why Use Python 3 ��� 6

Installation of Python 3 �� 7

Installation on Linux ��� 7

Installation on MacOS X �� 8

Installation on Windows �� 8

Running a Python Program and Python Modes ������������������������������������� 11

Interactive Mode ��� 11

Normal Mode �� 12

IDEs for Python �� 12

IDLE �� 13

The PyDev Plugin for Eclipse �� 14

Geany �� 14

PyCharm ��� 15

Conclusion ��� 17

 ■Chapter 2: Getting Started �� 19

A Brief Introduction to Software Testing Concepts �������������������������������� 19

Unit Testing ��� 19

Test Automation �� 19

Using Docstrings ��� 20

Example of a Docstring in Python ��� 21

A Brief Introduction to doctest �� 24

Failing Tests �� 26

Separate Test File ��� 27

Advantages and Disadvantages of doctest ��� 28

Conclusion ��� 29

■ Contents

vii

 ■Chapter 3: Unittest �� 31

Introduction to xUnit �� 31

Using Unittest �� 32

Order of Execution of the Test Methods �� 34

Verbosity Control �� 35

Multiple Test Classes Within the Same Test File/Module �� 36

Test Fixtures ��� 37

Running Without unittest�main() ��� 39

Controlling the Granularity of Test Execution �� 40

Listing All the Command-Line Options and Help �� 42

Important Command-Line Options �� 43

Creating a Test Package ��� 46

Organizing the Code ��� 48

Test Discovery ��� 53

Coding Conventions for unittest �� 54

Assertions in unittest �� 55

Other Useful Methods �� 56

Failing a Test ��� 57

Exceptions in the Test Case �� 59

assertRaises() ��� 60

Conclusion ��� 63

 ■Chapter 4: nose and nose2 ��� 65

Introduction to nose �� 65

Installing nose on Linux OS �� 65

Installing nose on MacOS and Windows ��� 66

Verifying the Installation ��� 66

Getting Started with nose ��� 66

A Simple nose Test Case ��� 66

■ Contents

viii

Running the Test Module with nosetests �� 67

Getting Help �� 68

Organizing the test code ��� 68

Test Discovery �� 69

Fixtures for Classes, Modules, and Methods ��� 70

Fixtures for Functions ��� 72

Fixtures for Packages ��� 74

Alternate Names of the nose Fixtures �� 75

assert_equals() ��� 75

Testing Tools �� 77

ok_ and eq_ �� 77

The @raises() Decorator ��� 78

The @timed() decorator �� 79

Report Generation ��� 80

Creating an XML Report �� 80

Creating an HTML Report�� 81

Creating Color Output in the Console �� 82

Running unittest Tests from nose �� 83

Advantages of nose over unittest �� 83

Disadvantages of nose �� 84

Using Nose 2 ��� 84

Conclusion ��� 85

 ■Chapter 5: pytest �� 87

Introduction to pytest �� 87

Simple Test ��� 88

Running Tests with the py�test Command ��� 89

Test Class and Test Package in pytest �� 90

Test Discovery in pytest �� 91

■ Contents

ix

xUnit-Style Fixtures �� 91

pytest Support for unittest and nose �� 93

Introduction to pytest Fixtures �� 93

Scope of pytest Fixtures ��� 96

pytest�raises() ��� 97

Important pytest Command-Line Options ��� 98

Help �� 98

Stopping After the First (or N) Failures ��� 98

Profiling Test Execution Duration �� 99

JUnit-Style Logs ��� 99

Generating a Plain Result ��� 99

Sending a Test Report to Online pastebin Service �� 99

Conclusion ��� 99

 ■Chapter 6: Tips and Tricks �� 101

Coding and Filenaming Conventions for Easier Test Discovery ����������� 101

Test-Driven Development with pytest ��� 102

Conclusion ��� 108

Index �� 109

xi

About the Author

Ashwin Pajankar is a Polymath. He is a Programmer, a Maker, an Author, a Youtuber,
and a Science Popularizer. He graduated from IIIT Hyderabad with MTech in Computer
Science and Engineering. He has keen intrest in promotion of Science, Technology,
Engineering, and Mathematics (STEM) education. He has written 3 books with
Packt Publication, 6 books with Leanpub, and has also reviewed four books for Packt
Publications. This is his first book with Apress Publication and he's working on couple of
more books with Apress.

His personal web site is
www.AshwinPajankar.com
His LinkedIn profile is
https://in.linkedin.com/in/ashwinpajankar

http://www.ashwinpajankar.com/
https://in.linkedin.com/in/ashwinpajankar

xiii

About the Technical
Reviewers

Jojo Moolayil is a data scientist and the author of the
book, Smarter Decisions – The Intersection of Internet
of Things and Decision Science. With over four years of
industrial experience in data science, decision science
and IoT, he has worked with industry leaders on
high-impact and critical projects across multiple
verticals. He is currently associated with General Electric,
the pioneer and leader in data science for Industrial IoT.
He lives in Bengaluru—the silicon valley of India.

He was born and raised in Pune, India and
graduated from the University of Pune with a major in
Information Technology Engineering. He started his

career with Mu Sigma Inc., the world’s largest pure play analytics provider and worked
with the leaders of many Fortune 50 clients. One of the early enthusiasts to venture into
IoT analytics, he converged his knowledge from decision science to bring the problem-
solving frameworks and his knowledge from data and decision science to IoT analytics.

To cement his foundation in data science for industrial IoT and scale the impact of
the problem-solving experiments, he joined a fast-growing IoT analytics startup called
Flutura, based in Bangalore and headquartered in the valley. After a short stint with
Flutura, Jojo moved on to work with the leaders of Industrial IoT—General Electric—in
Bangalore, where he focused on solving decision science problems for industrial IoT
use cases. As a part of his role at GE, Jojo also focuses on developing data science and
decision science products and platforms for industrial IoT.

Apart from authoring books on decision science and IoT, Jojo has also been a
technical reviewer for various books on machine learning, deep learning, and business
analytics with Apress. He is an active data science tutor and maintains a blog at
http://www.jojomoolayil.com/web/blog/.

His profile:
http://www.jojomoolayil.com/
https://www.linkedin.com/in/jojo62000
He would like to thank his family, friends, and mentors.

http://www.jojomoolayil.com/web/blog/
http://www.jojomoolayil.com/
https://www.linkedin.com/in/jojo62000

■ About the teChniCAl RevieweRs

xiv

Unmesh Gundecha has a master’s degree in software
engineering and over 15 years of experience in Agile
software development, test automation, and technical
QA. He is an Agile, open source, and DevOps evangelist
with a rich experience in a diverse set of tools and
technologies. Presently, he is working as an automation
architect for a multinational company in Pune, India.
Unmesh also authored the Selenium Testing Tools
Cookbook and Learning Selenium Testing Tools with
Python books, published by Packt Publishing.

xv

Acknowledgments

Writing this book is a journey that I am glad I undertook. First, I would like to thank my
wife, Kavitha, without whose support this journey would not have been possible. The
journey spanned a few months, but the experience will last a life time. I had my wife
Kavitha with me onboard this journey and I wish to express my deepest gratitude to her.
Without her unwavering support and affection, I couldn’t have pulled it off.

I would also like to extend my thanks to my siblings-Savita, Gayatri, and Prasad.
I am grateful to the student and teacher community which, with their continual

bombardment of queries, impelled me to learn more, simplify my findings, and place
them neatly in the book. This book is for them.

I wish to thank my friends and colleagues—the practitioners from the field—for their
good counsel and for filling me in on the latest in the field of test automation.

A special thanks to the technical reviewers—Unmesh and Jojo—for their vigilant
review and filling in with their expert opinions.

I have been fortunate to have the support of my team, which sometimes knowingly
and at other times unknowingly contributed to the making of the book by lending me
their steady support.

I consider myself very fortunate for the editorial assistance provided by Apress.
This is my first book with Apress and the collaboration with them has been fabulous.
I am thankful to Celestin Suresh John, Senior Manager, editorial acquisitions, Apress
and Springer Science and BusinessMedia Company, for giving me this long-desired
opportunity to collaborate with Apress. I wish to acknowledge and appreciate Sanchita
Mandal, coordinating editor, James Markham, content development editor, Anila Vincent,
content development editor, and the team of associates from Apress who adeptly guided
me through the entire process of preparation and publication.

xvii

Introduction

Why This Book?
I have been using Python for more than 10 years for a variety of stuff. Initially, I used it for
GUI applications. Then I quickly moved to the scientific usage as my academic projects
demanded it. When I entered professional life, I used it for automation first and then
for implementation of alert mechanisms. I have been using Python for the last six years
in the various fields of scientific computing, Internet of Things (IoT), and single board
computers. I have written plenty of Python code over these years. I always prefer it to bash
scripting, which offers limited capabilities to users like me. Over the period of the last 10
years, I worked as a developer, an R&D engineer, a maker, an author, and a QA specialist. I
used Python in every single role.

Whenever I write any code, I unit test it thoroughly every time. Earlier I used to unit
test all my Python modules in the good old manual way. I used to run all the scripts once
and compare the outcome with what’s expected. However, I experienced that when your
codebase grows larger, it’s pretty difficult to perform the activity of testing the scripts
manually. Also, all the scripts have to be tested, re-tested, and tested for regression
whenever a small part of the codebase changes. I was looking for a way to run all the tests
automatically and then I started reading about test automation. It immediately aroused
my curiosity and, after a couple of days, I was running my own automated Python tests.
After acquainting myself with the philosophy of test automation, I applied the knowledge
to automate unit and integration testing to web, mobile, GUI, API, and a variety of other
types of applications using programming languages like C++, Python, Java, and PHP.

I wrote this book to share my knowledge and experiences while automating the
unit tests in Python 3. I explore different frameworks and plugins in this book. I learned
about the tools and techniques explained in this book by spending numerous hours
learning, coding, discussing, and actively participating in diverse Internet forums. I have
condensed the knowledge to the basics of the unit test automation frameworks in this
book. I hope readers will enjoy reading and following the book as much as I enjoyed
writing it. This book includes the following:

•	 An introduction to Python and various IDEs

•	 Various test automation frameworks for Python 3, including
doctest, unittest, nose, nose2, and pytest

•	 Coding standards for Python 3 test automation and
implementation of test driven development with pytest in
Python 3

■ intRoduCtion

xviii

Who This Book Is For
The main audience of this book is Python 3 programmers who want to automate their
unit tests. This includes a large and diverse set of people, including developers, test
automators, students, researchers, and novice learners. The book is for those who have
some knowledge of the Python programming language. The test automation engineers
who have already worked with other programming frameworks, such as Java and C++,
will find this book immensely useful to learn how test automation is done in Python 3.
If you are just beginning with Python 3 programming and want to quickly get into
automating the unit tests of your modules and packages, you will find this book helpful.

What this book is not. This book is not a book for learning Python 3 programming
and syntax from scratch. It is also not a DIY cookbook for development projects. If your
understanding of coding is limited, you will find it difficult to follow this book.

How This Book Is Organized
This book has six chapters. Here is a sneak peek into the chapters of the book:

Chapter 1: This chapter introduces the readers to the history and philosophy
of Python. It teaches you how to install Python and how to set up the environment
for Python 3 programming. It also briefly explores the new features of Python 3 and
introduces the readers to a few popular Python 3 IDEs.

Chapter 2: The aim of this chapter is to quickly get the readers started with unit test
automation in Python 3. The chapter revises the understanding of testing concepts and
quickly moves into implementing those concepts with docstring and doctest.

Chapter 3: This chapter serves to introduce xUnit and its philosophy to the readers.
Then it proceeds to teach the readers how to to implement concepts of xUnit with
unittest, a xUnit port for Python.

Chapter 4: This chapter explores the inadequacies in unittest. Then it explores a
better unit testing framework, called nose. It explains the installation of plugins for nose
to generate reports. It also discusses nose2, which is nose’s next-generation version that’s
under active development.

Chapter 5: This chapter introduces the readers to a modular, easy-to-use, and latest
unit test framework for Python, pytest. It discusses the drawbacks of nose and compares
nose, unittest, and pytest.

Chapter 6: This chapter helps the readers understand the coding and filenaming
conventions for facilitating easier test discovery across various unit test frameworks in
Python. The chapter concludes the book by implementing a test driven development in
Python 3 using pytest.

http://dx.doi.org/10.1007/978-1-4842-2677-3_1
http://dx.doi.org/10.1007/978-1-4842-2677-3_2
http://dx.doi.org/10.1007/978-1-4842-2677-3_3
http://dx.doi.org/10.1007/978-1-4842-2677-3_4
http://dx.doi.org/10.1007/978-1-4842-2677-3_5
http://dx.doi.org/10.1007/978-1-4842-2677-3_6

■ intRoduCtion

xix

How to Get the Most Out of This Book
It is easy to leverage the book to gain the most out of it by religiously abiding by the
following:

•	 Read the chapters thoroughly. Use the chapters hands-on
by following the step-by-step instructions stated in the code
examples. Do not skip any of the code examples. If need be,
repeat them a second time or until the concept is firmly etched in
your mind.

•	 Join a Python community or discussion forum.

•	 Read the online documentation available for various test
automation frameworks for Python 3.

•	 Read test automation, Python 3, migration to Python 3 from
Python 2, and test driven development blogs.

Where Next?
I have endeavored to unleash the power of the unit test automation libraries for Python 3
as an aid to the developer and tester community. I recommend you read the book from
cover to cover without skipping any of the chapters, text, or code examples.

I wish you well in exploring Python!

A Quick Word for the Instructors’ Fraternity
Attention has been paid in arriving at the sequence of chapters and also to the flow of
topics within each chapter. This is done particularly with an objective to assist my fellow
instructors and academicians in carving out a syllabus from the Table of Contents (ToC)
of the book. The complete ToC can complement the syllabus of “Software Testing,” if
students were introduced to programming their freshman year with the help of Python.

We have ensured that each concept discussed in the book includes adequate hands-on
content to enable you to teach better and to provide ample hands-on practice to your
students.

Happy Learning!!!
Ashwin Pajankar

1© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_1

CHAPTER 1

Introduction to Python

I hope you have glanced through the introduction section. If you have not, I recommend
reading it, as it will help you with the context and the philosophy of the book.

Let us begin our adventurous journey by learning the history and background of
Python.

I personally find Python amazing and have been enchanted by it. Python is a simple
yet powerful programming language. When using Python, it’s easy to focus on the
implementation of the solution of the given problem, as programmers do not have to
worry about the syntax of the programming language.

The History of Python
Python was conceived in the late 1980s. Its implementation was started in late 1989 by
Guido van Rossum at the Centrum Wiskunde & Informatica (National Research Institute
for Mathematics and Computer Science) in the Netherlands. Python is a successor to the
ABC programming language, which itself was inspired by SETL. In February 1991, Van
Rossum published the Python code to the alt.sources newsgroup. The name Python
was inspired by the television show “Monty Python’s Flying Circus,” as Van Rossum is a
big fan of Monty Python.

Van Rossum is the principal author of Python. He still plays a central role in guiding
the direction of development and further evolution of Python. He holds the title of
Benevolent Dictator for Life for Python.

The central philosophy of Python, called the Zen of Python, is explained in PEP-20,
which can be found at https://www.python.org/dev/peps/pep-0020.

It is a collection of 20 software principles, out of which 19 have been written. The
principles are as follows:

•	 Beautiful is better than ugly.

•	 Explicit is better than implicit.

•	 Simple is better than complex.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2677-3_1) contains supplementary material, which is available to
authorized users.

https://www.python.org/dev/peps/pep-0020
http://dx.doi.org/10.1007/978-1-4842-2677-3_1

Chapter 1 ■ IntroduCtIon to python

2

•	 Complex is better than complicated.

•	 Flat is better than nested.

•	 Sparse is better than dense.

•	 Readability counts.

•	 Special cases aren’t special enough to break the rules.

•	 Practicality beats purity.

•	 Errors should never pass silently.

•	 Unless explicitly silenced.

•	 In the face of ambiguity, refuse the temptation to guess.

•	 There should be one—and preferably only one—obvious way to
do it.

•	 Although that way may not be obvious at first unless you’re Dutch.

•	 Now is better than never.

•	 Although never is often better than right now.

•	 If the implementation is hard to explain, it’s a bad idea.

•	 If the implementation is easy to explain, it may be a good idea.

•	 Namespaces are one honking great idea—let’s do more of those!

Features of Python
The following sections discuss the features of Python for which it has become the popular
and beloved in the programming community.

Simple
Python is a simple and minimalist language. Reading a well written and good Python
program makes you feel as if you are reading English text.

Easy to Learn
Due to its simple and English-like syntax, Python is extremely easy for beginners to learn.
That is the prime reason that, nowadays, it is taught as the first programming language
to high school and university students who take introduction to the programming and
programming 101 courses. An entire new generation of programmers is learning Python
as their first programming language.

Chapter 1 ■ IntroduCtIon to python

3

Easy to Read
Unlike other high-level programming languages, Python does not provide much
provision for obfuscating the code and making it unreadable. The English-like
structure of Python code makes it easier to read, compared to the code written in
other programming languages. This makes it easier to understand and easier to learn,
compared to other high-level languages like C and C++.

Easy to Maintain
As Python code is easy to read, easy to understand, and easy to learn, anyone maintaining
the code becomes comfortable with its codebase in considerably less time. I can vouch
for this from personal experiences of maintaining and enhancing large legacy codebases
written in a combination of bash and Python 2.

Open Source
Python is an open source project. That means its source code is freely available. You can
make changes to it to suit your needs and use the original and the changed code in your
applications.

High-Level Language
While writing Python programs, you do not have to manage the low-level details
like memory management, CPU timings, and scheduling processes. All these tasks
are managed by the Python interpreter. You can directly write the code in easy-to-
understand, English-like syntax.

Portable
Python has been ported to many platforms. All Python programs work on any of these
platforms without requiring any changes, if you are careful enough to avoid any system-
dependent features. You can use Python on GNU/Linux, Windows, Android, FreeBSD,
MacOS, iOS, Solaris, OS/2, Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX,
VMS, Psion, Acorn, RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE, and
PocketPC.

Interpreted
Python is an interpreted language. Programs written in a high-level programming
language like C, C++, and Java are first compiled. This means that they are first
converted into an intermediate format. When you run the program, this intermediate
format is loaded from secondary storage (i.e., a hard disk) to the memory (RAM) by the
linker/loader. So, C, C++, and Java have separate compilers and linkers/loaders. This is

Chapter 1 ■ IntroduCtIon to python

4

not the case with Python. Python runs its programs directly from the source code. You
do not have to bother about compiling and linking to the proper libraries. This makes
Python programs truly portable, as you can copy the program to one computer from
another and the program runs fine as long as the necessary libraries are installed on the
target computer.

Object-Oriented
Python supports object-oriented programming paradigms. In object-oriented
programming languages, the program is built around objects that combine data and the
related functionality. Python is a very simple but powerful object-oriented programming
language.

Extensible
One of the features of Python is that you can call C and C++ routines from the Python
programs. If you want the core functionality of the application to run faster, you can code
that part in C/C++ and call it in the Python program (C/C++ programs generally run faster
than Python).

Extensive Libraries
Python has an extensive standard library, which comes pre-installed. The standard
library has all the essential features of a modern day programming language. It
has provision for databases, unit testing (we will explore this in this book), regular
expressions, multi-threading, network programming, computer graphics, image
processing, GUI, and other utilities. This is the part of Python’s batteries-included
philosophy.

Apart from standard library, Python has a large and ever-growing set of third-party
libraries. The list of these libraries can be found in the Python Package Index.

Robust
Python provides robustness by means of its ability to handle errors. The full stack trace of
the encountered errors is available and makes the programmer’s life more bearable. The
runtime errors are known as exceptions. The feature that allows handling of these errors is
known as the exception handling mechanism.

Rapid Prototyping
Python is used as a rapid prototyping tool. As you have read, Python has extensive
libraries and is easy to learn, so many software architects are increasingly using it as a tool
to rapidly prototype their ideas into working models in a very short period of time.

Chapter 1 ■ IntroduCtIon to python

5

Memory Management
In assembly language and programming languages like C and C++, memory management
is the responsibility of the programmer. And this is in addition to the task at hand. This
creates an unnecessary burden on the programmer. In Python, the Python interpreter
handles memory management. This helps the programmers steer clear of memory issues
and focus on the task at hand.

Powerful
Python has everything in it for a modern programming language. It is used for the
applications like computer vision, supercomputing, drug discovery, scientific computing,
simulation, and bioinformatics. Millions of programmers around the world use Python.
Many big organizations like NASA, Google, SpaceX, and Cisco use Python for their
applications and infrastructure.

Community Support
I find this the most appealing feature of Python. As you have read, Python is open source
and has community of almost a million programmers (probably more, as today’s high
school kids are learning Python) throughout the world. That means there are plenty of
forums on the Internet supporting programmers who encounter roadblocks. None of my
queries related to Python have gone unanswered.

Python 3
Python 3 was released in 2008. The Python development team decided to do away with
some of the redundant features of the Python language, simplify some of its features,
rectify some design flaws, and add some much-needed features.

It was decided that a major revision number was warranted and the resultant release
would not be backward compatible. Python 2.x and 3.x were supposed to co-exist in
parallel for the programmer community to have enough time to migrate their code and
the third-party libraries from 2.x to 3.x. Python 2.x code cannot run on Python 3 as it is in
many cases, as there are significant differences between 2.x and 3.x.

The Differences Between Python 2 and Python 3
The following are the most notable differences between Python 2 and Python 3. Let's
have a look at them in brief:

•	 The print() function

This is perhaps the most notable difference between Python 2
and Python 3. The print statement of Python 2 is replaced by
the print() function in Python 3.

Chapter 1 ■ IntroduCtIon to python

6

•	 Integer division

The nature of integer division has been changed in Python
3 for the sake of mathematical correctness. In Python 2,
the result of division of two integer operands is an integer.
However, in Python 3, it is a float value.

•	 Omission of xrange()

In Python 2, for creating iterable objects, the xrange()
function is used. In Python 3, range() is implemented much
like xrange(). So, a separate xrange() is not needed anymore.
Using xrange() in Python 3 raises a nameError.

•	 Raising exceptions

It is mandatory in Python 3 to enclose exception arguments, if
any, in parentheses, whereas in Python 2 it is optional.

•	 Handling exceptions

In Python 3, while handling exceptions, the as keyword is
needed before the parameter to handle an argument. In
Python 2, it is not needed.

•	 New style classes

Python 2 supports old and new style classes, whereas, Python
3 supports only new style classes. All the classes created in
Python 3 use new style classes by default.

•	 New features of Python 3

The following new features of Python 3 have not been
backported to Python 2:

 a. Strings are Unicode by default

 b. Clean Unicode/byte separation

 c. Exception chaining

 d. Function annotations

 e. Syntax for keyword-only arguments

 f. Extended tuple unpacking

 g. Non-local variable declarations

From this list, we will be frequently using print(), new-style classes, and exceptions
in the code examples in this book.

Why Use Python 3
From the previous list, we will be frequently using new-style classes and exceptions in the
code examples in this book.

Chapter 1 ■ IntroduCtIon to python

7

While many Python experts are still advocating Python 2, I disagree with them.
Python’s wiki page (https://wiki.python.org/moin/Python2orPython3) says the
following

Python 2.x is legacy, Python 3.x is the present and future of the language.

One of the major arguments in favor of Python 2 is its extensive documentation,
books, and third-party libraries. However, most of the developers are porting their custom
libraries to Python 3 already. Almost all the major third-party libraries are ported and
fully supported for Python 3. As far as books and documentation is concerned, authors
like me are extensively writing for Python 3. As time elapses, more documentation for
Python 3 will surely be available.

New generation of programmers are introduced to Python 3 as their first
programming language. When they are comfortable with the concept and philosophy
of Python programming, they are gradually introduced to Python 2. Many organizations
have already started migrating codebases from Python 2 to Python 3. Almost all new
projects in Python extensively use Python 3.

I personally think that these are pretty good reasons to use Python 3.

 ■ Note If you want your codebase to be future proof, move to python 3 right away!
If you are starting a new project, choose python 3 irrespective of cost and any hurdles
you face. this is because python 2 will see sunset (eoL: end of Life) in 2020 and,
beyond that, support from the python Foundation will not be guaranteed. If you stick to
python 2, its maintenance costs will escalate and will exceed the cost of implementing
python 3. read the pep 373 at http://legacy.python.org/dev/peps/pep-0373/ for
more details.

Installation of Python 3
This section discusses how to install Python 3 on various commonly used computer OSs.

Installation on Linux
Linux has many popular distributions. Python 3 is pre-installed on many popular
distributions.

Installation on Debian, Ubuntu, and Derivatives
The Python 3 interpreter comes pre-installed on the latest releases of Debian, Ubuntu,
and their derivatives.

https://wiki.python.org/moin/Python2orPython3
http://legacy.python.org/dev/peps/pep-0373/

Chapter 1 ■ IntroduCtIon to python

8

Installation on Fedora and CentOS
The Python 3 interpreter comes pre-installed on the latest releases of Fedora and CentOS.

 ■ Note on most of the latest Linux distributions, both versions of python (python 2 and
python 3) are installed by default. the interpreter for python 2 is a binary executable file
named python and the interpreter for python 3 is another binary executable file named
python3. you can use python3 --V or python3 --version to check the version of the
python 3 interpreter installed on your Linux computer. also, you can use the which python3
command to determine the location of the interpreter on the disk.

Installation on MacOS X
On MacOS X, the Python 2 interpreter is installed by default and can be invoked from
the terminal using the python command. If you want to use Python 3, you have to install
it. Make sure that the computer is connected to the Internet and run the brew install
python3 command in the terminal. This will install Python 3. It will also install other
utilities, such as pip, setuptools, and wheel.

Once the installation finishes, go to the terminal and type python3 --V or python3
--version to check the version of the Python 3 interpreter installed.

Installation on Windows
In Windows OS, Python 3 installation requires a bit more effort. Python 2 or Python 3
is not pre-installed on a Windows computer. In order to install it, you have to visit the
downloads section of the Python web site at https://www.python.org/downloads, as
shown in Figure 1-1.

Figure 1-1. Python downloads section on the web site

https://www.python.org/downloads

Chapter 1 ■ IntroduCtIon to python

9

Select Python 3.5.2. (The numbers 5 and 2 might change if there is a new stable
release of Python after the book is published.) This will download the setup file for
Python 3. Open the setup file once it is downloaded. Click on the Run button in the dialog
box shown in Figure 1-2.

 ■ Note depending on the settings, you might require admin privileges to install
python 3 (or any other program, for that matter) on a Windows computer. If you are in an
organizational setting, check with your system admin team for this information.

If you are using Windows 7, depending on the update status of your computer, you
might encounter the message box shown in Figure 1-3.

Figure 1-2. Open File - Security Warning dialog box

Chapter 1 ■ IntroduCtIon to python

10

Update the OS by installing any Windows updates and then rerun the setup file. The
window in Figure 1-4 will appear when you are successful

Figure 1-3. Setup Failed message for Windows 7

Figure 1-4. Python Installation window

Chapter 1 ■ IntroduCtIon to python

11

Check the Add Python 3.5 to PATH checkbox. This will ensure that Python is added
to the PATH system variable and you will be able to access Python from the command
prompt of Windows cmd after the installation. Click the Install Now button and continue
the setup wizard. Once installation finishes, it will show the success message.

Running a Python Program and Python Modes
You have set up our environment for Python programming now. Let’s get started with a
simple concept of Python. Python has two basic modes—normal and interactive. Let’s
look at these modes in detail.

Interactive Mode
Python's interactive mode is a command-line shell that provides immediate output for
every executed statement. It also stores the output of previously executed statements
in active memory. As new statements are executed by the Python interpreter, the entire
sequence of previously executed statements is considered while evaluating the current
output. You have to type python3 in the command prompt of Linux/MacOS and python in
the command prompt cmd of Windows to invoke the Python 3 interpreter into interactive
mode, as follows:

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can execute Python statements directly in this interactive mode just like you run
commands in the OS shell/console, as follows:

>>> print('Hello World!')
Hello World!
>>>

You will not be using interactive mode in the book. However, it’s the quickest way to
check small snippets of code (5 to 10 lines). You can quit the interactive mode with the
exit() statement, as follows:

>>> exit()
$

Chapter 1 ■ IntroduCtIon to python

12

Normal Mode
Normal mode is where the Python script files (.py) are executed by the Python
interpreter.

Create a file called test.py and add the print ('Hello World!') statement to the
file. Save the file and run it with the Python 3 interpreter as follows.

$ python3 test.py
HelloWorld!
$

In this example, python3 is the interpreter and test.py is the filename. If the Python
test.py file is not in the same directory where you’re invoking the python3 interpreter,
you have to provide the absolute path of the Python file.

 ■ Note For all the Linux and Mac computers, the command for the python 3 interpreter
is python3. For Windows, it is just python, assuming that only python 3 is installed on the
Windows computer and its location is added to the PATH variable during installation or
manually after the installation. throughout this book, I use a Linux prompt to run the code
examples. I will mention it explicitly wherever Windows is used for a couple of examples.

IDEs for Python
An Integrated Development Environment (IDE) is a software suite that has all the basic
tools to write and test programs. A typical IDE has a compiler, a debugger, a code editor,
and a build automation tool. Most programming languages have various IDEs to make
programmers lives better. Python too has many IDEs. Let’s take a look at a few IDEs for
Python.

Chapter 1 ■ IntroduCtIon to python

13

IDLE
IDLE stands for Integrated DeveLopment Environment. It comes bundled with Python.
IDLE3 is for Python 3. It’s popular with beginners of Python. Just type idle3 in the
command prompt in a Linux computer where Python 3 is installed. Figure 1-5 is a
screenshot of an IDLE3 code editor and an interactive prompt.

Figure 1-5. IDLE3 running on a Raspberry Pi

Chapter 1 ■ IntroduCtIon to python

14

The PyDev Plugin for Eclipse
If you are a seasoned Java programmer, you probably have worked on Eclipse. Eclipse is
a very popular IDE for Java and it can be used with other programming languages too.
PyDev is a Python IDE for Eclipse, and it can be used in Python, Jython, and IronPython
development (Figure 1-6). You can install PyDev from the Eclipse marketplace at
www.pydev.org.

Figure 1-6. Eclipse with PyDev

Geany
Geany (Figure 1-7) is a text editor that uses the GTK+ toolkit with basic features of an
integrated development environment. It supports many file types and has some nice
features. Check out https://www.geany.org for more details.

https://www.geany.org/

Chapter 1 ■ IntroduCtIon to python

15

PyCharm
PyCharm by JetBrains is another IDE for Python and it’s packed with powerful features
like a debugger, a code inspection tool, version control, and an integrated unit test
runner. It is a cross-platform IDE available for Windows, MacOS, and Linux distributions.
Its Community Edition (Figure 1-8) is a free download. Visit its home page at https://
www.jetbrains.com/pycharm/ for more information.

Figure 1-7. Geany

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

Chapter 1 ■ IntroduCtIon to python

16

The code examples in this book are better suited for execution from the command
prompt, due to the nature of the libraries involved. I personally prefer to write the logic and
code on paper (Yes! Using a piece of paper!) first and then to use a plain-text editor with
syntax highlighting. For example, I recommend Notepad++ on Windows, or nano, Leafpad,
and gedit on Linux. You can use IDLE3 or Geany for writing and compiling the code.
However, most of the code examples are meant to be executed from the command line.

EXERCISE 1-1

Complete this exercise to understanding python 3’s background better.

• Visit and explore the python home page at
www.python.org.

• read where python is deployed successfully at
https://www.python.org/about/success/.

• Visit and explore the python documentation page at
https://docs.python.org/3/.

• Check the version-wise new features of the latest releases of
python at
https://docs.python.org/3/whatsnew/index.html.

• For practice, write simple programs in python. For example,
you could write programs for a Fibonacci series and factorial
calculations using iterative and recursive techniques.

Figure 1-8. PyCharm Community Edition

http://www.python.org/
https://www.python.org/about/success/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html

Chapter 1 ■ IntroduCtIon to python

17

Conclusion
In this chapter, you learned the background, history, and features of Python. You also
studied the important differences between Python 2 and Python 3. You learned to
install and use Python 3 in normal and interactive modes. Finally, you looked at a few
popular IDEs for Python. In the next chapter, you will get started with the concepts of test
automation and look at a simple test automation library for Python, called doctest.

19© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_2

CHAPTER 2

Getting Started

In the previous chapter, you learned how to set up the environment for Python 3 for Linux,
MacOS, and Windows computers. You also looked at a few popular IDEs for Python. In this
chapter, we will get started with concepts of test automation. Then we will explore a light
and easy way to learn the test automation framework in Python 3, called doctest.

A Brief Introduction to Software Testing Concepts
The textbook definition of software testing says that software testing means executing a
program or application to find any bugs. Usually, there are multiple stakeholders in the
process of software testing. The stakeholders include testers, the management team,
consultants, business, customers, and end users. With medium to large-scale projects,
software testing is compulsorily done to determine if the software behaves as intended
under various sets of inputs and conditions.

Unit Testing
Unit testing is a software testing method in which individual components of the program,
called units, are tested independently with all the required dependencies. Unit testing is
mostly done by the actual programmers, who write the programs for the units. In smaller
projects, it is done informally. In most of the very large-scale projects, unit testing is part
of a formal process of development with proper documentation and proper schedule/
efforts allocated to it.

Test Automation
Test automation is the automated execution and reporting of the outcome of test
scenarios and cases. In most large and complex projects, many phases of the testing
process are automated. Sometimes the effort of automating the tests is so huge that
there is a separate project for automation with a separate team dedicated to it, including
a separate reporting structure with separate management. There are several areas and
phases of testing that can be automated. Various tools like code libraries and third-party
APIs are used for unit testing. Sometimes, the code for unit testing is also generated in an
automated way. Unit testing is a prime candidate for automation.

Chapter 2 ■ GettinG Started

20

The Benefits of Automated Unit Testing
There are many reasons to automate unit tests. Let’s consider them one by one.

•	 Time and effort

	 As your codebase grows, the number of modules to be unit
tested grows. Manual testing occupies a lot of days of the typical
programmer’s calendar. To reduce manual testing efforts, you
can automate test cases, which then can be automated easily and
quickly.

•	 Accuracy

	 Test case execution is a rote and boring activity. Humans can
make mistakes. However, an automated test suite will run and
return correct results every time.

•	 Early bug reporting

	 Automating unit test cases gives you the distinct advantage of
early reporting of bugs and errors. When the automated test suites
are run by the scheduler, once the code freezes due to an error, all
the logical bugs in the code are quickly discovered and reported,
without much human intervention needed.

•	 Built-in support for unit testing

	 There are many programming languages that provide built-in
support for writing unit tests by means of libraries dedicated to
unit testing. Examples include Python, Java, and PHP.

Using Docstrings
The focus of this chapter is on getting you started with unit test automation in Python.
Let’s get started with the concept of docstrings and their implementation in Python.
Docstrings are going to be immensely useful to you while learning doctest.

A docstring is a string literal that’s specified in the source code of a module. It
is used to document a specific segment of the code. Code comments are also used
for documenting the source code. However, there is a major difference between a
docstring and a comment. When the source code is parsed, the comments are not
included in the parsing tree as part of the code, whereas docstrings are included in the
parsed code tree.

The major advantage of this is that the docstrings are available for use at runtime.
Using the functionalities specific to the programming language, you can retrieve the
docstring specific to a module. Docstrings are always retained through the entire runtime
of the module instance.

Chapter 2 ■ GettinG Started

21

Example of a Docstring in Python
Let’s see how the concept of the docstring is implemented in Python. A Python docstring
is a string literal that occurs as the first statement in a module, function, class, or method
definition. A docstring becomes the __doc__ special attribute of that object.

Let’s take a look at a code example of a Python docstring. From this chapter onward,
you will be programming quite a lot. I recommend that you create a directory on your
computer and create chapter-specific subdirectories within it. As I mentioned earlier, I
am using a Linux OS. (My favorite computer, a Raspberry Pi 3 Model B.) I have created
a directory called book and a directory called code under that. The code directory has
chapter-specific directories containing the code of each chapter. Figure 2-1 shows a
graphical representation of the directory structure in form of a tree diagram.

Create chapter-specific subdirectories under the directory code, as shown in the tree
diagram in Figure 2-1. We will use the directory chapter02 for this chapter, chapter03 for
the next chapter, and so on. Navigate to the chapter02 directory and save the following
code (Listing 2-1) as test_module01.py in that directory.

Listing 2-1. test_module01.py

"""
This is test_module01.
This is example of multiline docstring.
"""

class TestClass01:
 """This is TestClass01."""

 def test_case01(self):
 """This is test_case01()."""

def test_function01():
 """This is test_function01()."""

In (Listing 2-1), we have a test file called test_module01.py, which includes
TestClass01 and test_function01(). TestClass01 has a method called test_
case01(). We have a docstring for all the code units here. The first docstring is a multiline
docstring. The rest are examples of single-line docstrings.

Let’s see how the docstrings work using the code in Listing 2-1 and an interactive
Python session.

Figure 2-1. The suggested directory structure for the book

Chapter 2 ■ GettinG Started

22

Navigate to the chapter02 directory and type python3 to invoke Python 3 in
interpreter mode.

pi@raspberrypi:~/book/code/chapter02 $ pwd
/home/pi/book/code/chapter02
pi@raspberrypi:~/book/code/chapter02 $ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Import the test module you just created with the following statement:

>>> import test_module01

You can use the help() function to see the docstrings of the module and its
members, as follows.

>>> help(test_module01)

The output is as follows:

Help on module test_module01:

NAME
 test_module01

DESCRIPTION
 This is test_module01.
 This is example of multiline docstring.

CLASSES
 builtins.object
 TestClass01

 class TestClass01(builtins.object)
 | This is TestClass01.
 |
 | Methods defined here:
 |
 | test_case01(self)
 | This is test_case01().
 |
 | ---

Chapter 2 ■ GettinG Started

23

 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

FUNCTIONS
 test_function01()
 This is test_function01().

FILE
 /home/pi/book/code/chapter02/test_module01.py

You can see the docstring of the individual members using help(). Run the following
statements and see the output for yourself.

>>> help(test_module01.TestClass01)
>>> help(test_module01.TestClass01.test_case01)
>>> help(test_module01.test_function01)

As mentioned earlier, a docstring becomes the __doc__ special attribute of that
object. You can also use the print() function to see the docstring of a module and its
members. The following interactive Python session demonstrates that.

>>> import test_module01
>>> print(test_module01.__doc__)

This is test_module01.
This is example of multiline docstring.

>>> print(test_module01.TestClass01.__doc__)
This is TestClass01.
>>> print(test_module01.TestClass01.test_case01.__doc__)
This is test_case01().
>>> print(test_module01.test_function01.__doc__)
This is test_function01().
>>>

You can find detailed information about the Python docstring on the following PEP
pages.

https://www.python.org/dev/peps/pep-0256
https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0258

https://www.python.org/dev/peps/pep-0256
https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0258

Chapter 2 ■ GettinG Started

24

In the next section, you will learn to use docstrings to write simple test cases and
execute them with doctest.

A Brief Introduction to doctest
doctest is the lightweight unit testing framework in Python that uses docstrings to test
automation. The doctest is packaged with the Python interpreter, so you do not have to
install anything separately to use it. It is part of Python's standard library and adheres to
Python's “batteries-included” philosophy.

 ■ Note if you’re interested, you can read python's batteries-included philosophy on the
pep 206 page (https://www.python.org/dev/peps/pep-0206).

The code in Listing 2-2 is a simple example of a test module with two functions and
two tests for each function.

Listing 2-2. test_module02.py

"""
Sample doctest test module...
test_module02
"""

def mul(a, b):
 """
>>> mul(2, 3)
 6
>>> mul('a', 2)
 'aa'
 """
 return a * b

def add(a, b):
 """
>>> add(2, 3)
 5
>>> add('a', 'b')
 'ab'
 """
 return a + b

In Listing 2-2, the test cases are mentioned as the docstrings for the modules and
there is nothing specifically calling the doctest in the code itself. When the program is
executed as a Python 3 program using the command python3 test, _module02.py does

https://www.python.org/dev/peps/pep-0206

Chapter 2 ■ GettinG Started

25

not produce any output at the command line. In order to see doctest in action, you have
to run it using the following command at the command prompt:

python3 -m doctest -v test_module02.py

The output will be as follows,

Trying:
 add(2, 3)
Expecting:
 5
ok
Trying:
 add('a', 'b')
Expecting:
 'ab'
ok
Trying:
 mul(2, 3)
Expecting:
 6
ok
Trying:
 mul('a', 2)
Expecting:
 'aa'
ok
1 items had no tests:
 test_module02
2 items passed all tests:
 2 tests in test_module02.add
 2 tests in test_module02.mul
4 tests in 3 items.
4 passed and 0 failed.
Test passed.

Let's take a look at how the doctest works. By comparing the code—specifically
the commands for execution and output—you can figure out quite a few things. doctest
works by parsing docstrings. Whenever doctest finds an interactive Python prompt in
the doctest documentation of a module, it treats its output as the expected output. Then
it runs the module and its members by referring to the docstrings. It compares the actual
output against the output specified in the docstrings. Then it marks the test pass or fail.
You have to use -m doctest while executing the module to let the interpreter know that
you need to use the doctest module to execute the code.

The command-line argument -v stands for verbose mode. You must use it because,
without it, the test will not produce any output unless it fails. Using verbose produces an
execution log irrespective of whether the test passes or fails.

Chapter 2 ■ GettinG Started

26

Failing Tests
In Listing 2-2, all the tests passed with no hassles. Now, let's see how a test fails. In
Listing 2-2, replace + on the last line of the code with an * (asterisk) and run the test
again. You will find the following output:

Trying:
 add(2, 3)
Expecting:
 5
**
File "/home/pi/book/code/chapter02/test_module02.py", line 19, in
test_module02.add
Failed example:
 add(2, 3)
Expected:
 5
Got:
 6
Trying:
 add('a', 'b')
Expecting:
 'ab'
**
File "/home/pi/book/code/chapter02/test_module02.py", line 21, in
test_module02.add
Failed example:
 add('a', 'b')
Exception raised:
 Traceback (most recent call last):
 File "/usr/lib/python3.4/doctest.py", line 1324, in __run
 compileflags, 1), test.globs)
 File "<doctest test_module02.add[1]>", line 1, in <module>
 add('a', 'b')
 File "/home/pi/book/code/chapter02/test_module02.py", line 24, in add
 return a * b
 TypeError: can't multiply sequence by non-int of type 'str'
Trying:
 mul(2, 3)
Expecting:
 6
ok
Trying:
 mul('a', 2)
Expecting:
 'aa'

Chapter 2 ■ GettinG Started

27

ok
1 items had no tests:
 test_module02
1 items passed all tests:
 2 tests in test_module02.mul
**
1 items had failures:
 2 of 2 in test_module02.add
4 tests in 3 items.
2 passed and 2 failed.
Test Failed 2 failures.

You can clearly see two failures in the execution log. The tests usually fail due to one
or more of the following reasons:

•	 Faulty logic in the code

•	 Faulty input into the code

•	 Faulty test case

In this case, there are two failures in the test. The first one is due to faulty logic. The
second failure is due to faulty logic in the code and the wrong type of input given to the
function to be tested.

Correct the code by replacing the * in the last line with +. Then change the line that
has 'aa' to aa and run the test again. This will demonstrate the third cause of test failure
(a faulty test case).

Separate Test File
You can also write your tests in a separate test file and run them separately from the code
to be tested. This helps maintain the test modules/code separately from the development
code. Create a file called test_module03.txt in the same directory and add the code
shown in Listing 2-3 to it.

Listing 2-3. test_module03.txt

>>> from test_module02 import *
>>> mul(2, 3)
6
>>> mul('a', 2)
'aa'
>>> add(2, 3)
5
>>> add('a', 'b')
'ab'

Chapter 2 ■ GettinG Started

28

You can run this test in the usual way, by running the following command in the
command prompt:

python3 -m doctest -v test_module03.txt

The output will be as follows:

Trying:
 from test_module02 import *
Expecting nothing
ok
Trying:
 mul(2, 3)
Expecting:
 6
ok
Trying:
 mul('a', 2)
Expecting:
 'aa'
ok
Trying:
 add(2, 3)
Expecting:
 5
ok
Trying:
 add('a', 'b')
Expecting:
 'ab'
ok
1 items passed all tests:
 5 tests in test_module03.txt
5 tests in 1 items.
5 passed and 0 failed.
Test passed.

Advantages and Disadvantages of doctest
As you have learned, doctest is a very simple and intuitive framework for novice-level
testing in Python. It does not require any installation and you can quickly get started with
it without needing to know any API. It is mostly used for the following purposes:

•	 To verify if the code documentation is up to date and the
interactive examples in the docstring still work after making
changes to the code.

•	 To perform module-wise basic regression testing.

Chapter 2 ■ GettinG Started

29

•	 To write illustrative tutorials and documentation that doubles as
the test case for the package and module.

However, doctest has its own set of limitations. It does not have true API for testing.
Also doctest tests tend to be static in nature and cannot be parameterized.

Readers are advised to visit the doctest documentation page at https://docs.
python.org/3/library/doctest.html for detailed usage and more examples.

Conclusion
In this chapter, you learned the basics of software testing. You explored a light testing
framework, called doctest. It’s a good module for simple projects for novice Python
users. However, due to its lack of advanced features like testrunner, test discovery, and
test fixtures, doctest is not used in large projects. In the next chapter, we will discuss a
built-in xUnit style test automation framework for Python, called unittest.

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html

31© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_3

CHAPTER 3

Unittest

The last chapter discussed of the concepts of test automation. You learned about
docstring and doctest and their use in writing simple, static, yet elegant test cases for
Python 3 programs. However, due to the lack of features like API, configurable tests, and
test fixtures, doctest enjoys very limited popularity. You need to explore a powerful
API library for automating complex real-life projects and learning Python's built-in
unittest module is your first step toward it. This is a detailed and long chapter. You will
learn many new concepts like test fixtures, automated test discovery, organizing your
codebase, etc. in this chapter. You will use these concepts throughout the book and see
their implementation in various more advanced test automation libraries in Python. So, I
recommend that you follow every topic in this chapter very carefully.

unittest came to life as a third-party module PyUnit. PyUnit was the Python port
for JUnit. JUnit is Java's xUnit-style unit test automation framework.

The PyUnit became part of the Python Standard library from version 2.5 onward.
It was rechristened unittest. Unittest is the batteries-included test automation library
of Python, which means you do not have to install an additional library or tool in order
to start using it. Anyone who is familiar with xUnit-style libraries in other programming
languages (such as JUnit for Java, PHPUnit for PHP, CPPUnit for C++, etc.) will find it very
easy to learn and use unittest.

Introduction to xUnit
Let's take a look at the xUnit philosophy in brief. xUnit is the collective name for several
unit testing frameworks for various languages. All the xUnit-style unit testing frameworks
more or less derive their functionality, structure, and coding style from Smalltalk’s unit
testing framework SUnit. Kent Beck designed and wrote SUnit. After it gained popularity,
it was ported to Java as JUnit by Kent Beck and Erich Gamma. Eventually, it was ported
to almost every programming language. Now most of the programming languages
come pre-packaged with at least one xUnit-style test automation library. Also, many
programming languages like Python and Java have more than one xUnit-style framework.
Java has TestNG in addition to JUnit. Python has nose, pytest, and Nose2 apart from
unittest.

Chapter 3 ■ Unittest

32

All the xUnit-style test automation libraries follow a common architecture. The
following are the major components of the architecture:

•	 Test case class: This is the base class of all the test classes in the
test modules. All the test classes are derived from here.

•	 Test fixtures: These are functions or methods that run before and
after blocks of the test code execute.

•	 Assertions: These functions or methods are used to check the
behavior of the component being tested. Most of the xUnit-style
frameworks are packed with powerful assertion methods.

•	 Test suite: This is the collection or group of related tests that can
be executed or scheduled to be executed together.

•	 Test runner: This is the program or block of code that runs the test
suite.

•	 Test result formatter: This formats the test results to produce the
output of test execution in various human readable formats like
plaintext, HTML, and XML.

The implementation details of these components of xUnit differ slightly across
the unit testing frameworks. Interestingly, this enables programmers to choose the
framework based on the needs of their projects and their comfort.

If you are a seasoned programmer who has experience with any of these frameworks,
you will be quickly able to translate your knowledge to Python code. If you do not have
prior experience with any of the xUnit-style frameworks, then after reading the book,
executing all the examples in the book, and solving all the exercises, you will be able to
get started with any of the xUnit frameworks on your own without much hand-holding.

Using Unittest
This section starts with unittest. It begins with the most fundamental concept of a
test class.

For this chapter, create a directory called chapter03 in the code directory. In
chapter03, create another directory called test (you will learn later in the chapter why
you need that additional directory). Save the code in Listing 3-1 as test_module01.py.

Listing 3-1. test_module01.py

import unittest

class TestClass01(unittest.TestCase):

 def test_case01(self):
 my_str = "ASHWIN"
 my_int = 999
 self.assertTrue(isinstance(my_str, str))
 self.assertTrue(isinstance(my_int, int))

Chapter 3 ■ Unittest

33

 def test_case02(self):
 my_pi = 3.14
 self.assertFalse(isinstance(my_pi, int))

if __name__ == '__main__':
 unittest.main()

In the code in Listing 3-1, the import unittest statement imports the unittest
module. TestClass01 is the test class. It is subclassed from the TestCase class in the
unittest module. The class methods test_case01() and test_case02() are test
methods, as their names start with test_ (You will learn about the guidelines and
naming conventions for writing tests later in the chapter.) The assertTrue() and
assertFalse()methods are assertion methods which check if the argument passed to
them is True or False, respectively. If the argument meets the assert condition, the test
case passes; otherwise, it fails. unittest.main() is the test runner. We will explore more
assert methods in detail later.

Navigate to the test directory as follows:

cd ~/book/code/chapter03/test

Run the following command:

python3 test_module01.py

It yields the following output:

..
--
Ran 2 tests in 0.002s

OK

It says OK, as both the tests passed. This is one of the ways you can write and execute tests.
The test execution did not display much information. That’s because verbosity is

disabled by default. You can run the tests in verbose mode using the -v command-line
option. Run the following command at the command prompt:

python3 test_module01.py -v

The verbose output is as follows:

test_case01 (__main__.TestClass01) ... ok
test_case02 (__main__.TestClass01) ... ok

--
Ran 2 tests in 0.004s

OK

Chapter 3 ■ Unittest

34

Certainly, the verbose execution mode provides more insight about the test
execution. We will be using this mode very frequently throughout the book for running
the tests and gathering the log for test executions.

Order of Execution of the Test Methods
Now, you will see the order in which the test methods are executed. Check the code in
Listing 3-2.

Listing 3-2. test_module02.py

import unittest
import inspect

class TestClass02(unittest.TestCase):

 def test_case02(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])

 def test_case01(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])

if __name__ == '__main__':
 unittest.main(verbosity=2)

In the code in Listing 3-2, inspect.stack()[0][3] method prints the name of the
current test method. It’s useful for debugging when you want to know the order that the
methods are executed in the test class. The output of the code in Listing 3-2 is as follows:

test_case01 (__main__.TestClass02) ...
Running Test Method : test_case01
ok
test_case02 (__main__.TestClass02) ...
Running Test Method : test_case02
ok

--
Ran 2 tests in 0.090s

OK

Note that the test methods ran in alphabetical order, irrespective of the order of the
test methods in the code.

Chapter 3 ■ Unittest

35

Verbosity Control
In earlier examples, you controlled the verbosity of test execution through the command
while invoking the Python test script in the OS console. Now, you will learn how to control
the verbose mode from the code itself. See the code in Listing 3-3 for an example.

Listing 3-3. test_module03.py

import unittest
import inspect

def add(x, y):
 print("We're in custom made function : " + inspect.stack()[0][3])
 return(x + y)

class TestClass03(unittest.TestCase):

 def test_case01(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])
 self.assertEqual(add(2, 3), 5)

 def test_case02(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])
 my_var = 3.14
 self.assertTrue(isinstance(my_var, float))

 def test_case03(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])
 self.assertEqual(add(2, 2), 5)

 def test_case04(self):
 print("\nRunning Test Method : " + inspect.stack()[0][3])
 my_var = 3.14
 self.assertTrue(isinstance(my_var, int))

if __name__ == '__main__':
 unittest.main(verbosity=2)

In Listing 3-3, you are testing a custom function called add() with the assertEqual()
method. assertEqual() takes two arguments and determines if both arguments are
equal. If both arguments are equal, the test case passes; otherwise, it fails. We have also
written a function called add() in the same test module that’s not a member of the test
class. With test_case01() and test_case03(), we are testing the correctness of the
function.

We are also setting the verbosity to the value 2 in the unittest.main() statement.
Run the code in Listing 3-3 with the following command:

python3 test_module03.py

Chapter 3 ■ Unittest

36

The output is as follows:

test_case01 (__main__.TestClass03) ...
Running Test Method : test_case01
We're in custom made function : add
ok
test_case02 (__main__.TestClass03) ...
Running Test Method : test_case02
ok
test_case03 (__main__.TestClass03) ...
Running Test Method : test_case03
We're in custom made function : add
FAIL
test_case04 (__main__.TestClass03) ...
Running Test Method : test_case04
FAIL

==
FAIL: test_case03 (__main__.TestClass03)
--
Traceback (most recent call last):
 File "test_module03.py", line 23, in test_case03
 self.assertEqual(add(2, 2), 5)
AssertionError: 4 != 5

==
FAIL: test_case04 (__main__.TestClass03)
--
Traceback (most recent call last):
 File "test_module03.py", line 28, in test_case04
 self.assertTrue(isinstance(my_var, int))
AssertionError: False is not true

--
Ran 4 tests in 0.112s

FAILED (failures=2)

The test cases test_case03() and test_case04() failed because the assert
conditions failed. You now have more information related to the test case failure, since
verbosity was enabled in the code.

Multiple Test Classes Within the Same Test File/Module
Until now, the examples included a single test class in a single test file. A .py file
that contains the test class is also called a test module. Now you will see an example
(Listing 3-4) of a test module that has multiple test classes.

Chapter 3 ■ Unittest

37

Listing 3-4. test_module04.py

import unittest
import inspect

class TestClass04(unittest.TestCase):

 def test_case01(self):
 print("\nClassname : " + self.__class__.__name__)
 print("Running Test Method : " + inspect.stack()[0][3])

class TestClass05(unittest.TestCase):

 def test_case01(self):
 print("\nClassname : " + self.__class__.__name__)
 print("Running Test Method : " + inspect.stack()[0][3])

if __name__ == '__main__':
 unittest.main(verbosity=2)

The following is the output after running the code in Listing 3-4:

test_case01 (__main__.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok
test_case01 (__main__.TestClass05) ...
Classname : TestClass05
Running Test Method : test_case01
ok

--
Ran 2 tests in 0.080s

OK

All the test classes are executed one by one in alphabetical order.

Test Fixtures
To put it simply, test fixtures are the set of steps performed before and after the tests.
In unittest, these are implemented as methods of the TestCase class and can be
overridden for your purposes. An example of custom test fixtures in unittest is shown in
Listing 3-5,

Chapter 3 ■ Unittest

38

Listing 3-5. test_module05.py

import unittest

def setUpModule():
 """called once, before anything else in this module"""
 print("In setUpModule()...")

def tearDownModule():
 """called once, after everything else in this module"""
 print("In tearDownModule()...")

class TestClass06(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
 """called once, before any test"""
 print("In setUpClass()...")

 @classmethod
 def tearDownClass(cls):
 """called once, after all tests, if setUpClass successful"""
 print("In tearDownClass()...")

 def setUp(self):
 """called multiple times, before every test method"""
 print("\nIn setUp()...")

 def tearDown(self):
 """called multiple times, after every test method"""
 print("In tearDown()...")

 def test_case01(self):
 self.assertTrue("PYTHON".isupper())
 print("In test_case01()")

 def test_case02(self):
 self.assertFalse("python".isupper())
 print("In test_case02()")

if __name__ == '__main__':
 unittest.main()

In the code in Listing 3-5, the setUpModule() and tearDownModule()methods are the
module-level fixtures. setUpModule() is executed before any method in the test module.
tearDownModule() is executed after all methods in the test module. setUpClass() and
tearDownClass() are class-level fixtures. setUpClass() is executed before any method in
the test class. tearDownClass() is executed after all methods in the test class.

Chapter 3 ■ Unittest

39

These methods are used with the @classmethod decorator, as shown in the code in
Listing 3-5. The @classmethod decorator must have a reference to a class object as the first
parameter. setUp() and tearDown() are method-level fixtures. setUp() and tearDown()
methods are executed before and after every test method in the test class. Run the code in
Listing 3-5 as follows:

python3 test_module05.py -v

The following is the output of the code:

In setUpModule()...
In setUpClass()...
test_case01 (__main__.TestClass06) ...
In setUp()...
In test_case01()
In tearDown()...
ok
test_case02 (__main__.TestClass06) ...
In setUp()...
In test_case02()
In tearDown()...
ok
In tearDownClass()...
In tearDownModule()...

--
Ran 2 tests in 0.004s

OK

The test fixtures and their implementation is the key feature in any test automation
library. This is a major advantage over the static testing offered by doctest.

Running Without unittest.main()
Up until now, you have run the test modules with unittest.main(). Now you will see
how to run the test module without unittest.main(). Consider the code in Listing 3-6,
for example.

Listing 3-6. test_module06.py

import unittest

class TestClass07(unittest.TestCase):

 def test_case01(self):
 self.assertTrue("PYTHON".isupper())
 print("\nIn test_case01()")

Chapter 3 ■ Unittest

40

If you try to run it the usual way, with python3 test_module06.py, you do not get
output in the console, as it does not have the if __name__=='__main__' and unittest.
main() statements in it. Even running in verbose mode with python3 test_module06.py
-v does not yield any output in the console.

The only way to run this module is to use the Python interpreter with the -m
unittest option and the module name, as follows:

python -m unittest test_module06

The output is as follows:

In test_case01()
.
--
Ran 1 test in 0.002s

OK

Note that you do not need to have .py after the module name as you did earlier. You
can also enable verbosity with the -v options, as follows:

python -m unittest test_module06 -v

The verbose output is as follows:

test_case01 (test_module06.TestClass07) ...
In test_case01()
ok

--
Ran 1 test in 0.002s

OK

We will use this same method throughout the chapter to run test modules. In later
sections of this chapter, you will learn more about this method. For now, run all the
previous code examples with this method of execution as an exercise.

Controlling the Granularity of Test Execution
You learned how to run a test module using the -m unittest option. You can also run
individual test classes and test cases using this option.

Consider the earlier example of test_module04.py again, shown in Listing 3-7.

Listing 3-7. test_module04.py

import unittest
import inspect

class TestClass04(unittest.TestCase):

Chapter 3 ■ Unittest

41

 def test_case01(self):
 print("\nClassname : " + self.__class__.__name__)
 print("Running Test Method : " + inspect.stack()[0][3])

class TestClass05(unittest.TestCase):

 def test_case01(self):
 print("\nClassname : " + self.__class__.__name__)
 print("Running Test Method : " + inspect.stack()[0][3])

if __name__ == '__main__':
 unittest.main(verbosity=2)

You can run the entire test module with the following command:

python3 -m unittest -v test_module04

The output is as follows:

test_case01 (test_module04.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok
test_case01 (test_module04.TestClass05) ...
Classname : TestClass05
Running Test Method : test_case01
ok

--
Ran 2 tests in 0.090s

OK

You can run a single test class with the following command:

python3 -m unittest -v test_module04.TestClass04

The output is as follows:

test_case01 (test_module04.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok

--
Ran 1 test in 0.077s

OK

Chapter 3 ■ Unittest

42

You can also run a single test case with the following command:

python3 -m unittest -v test_module04.TestClass05.test_case01

The output is as follows:

test_case01 (test_module04.TestClass05) ...
Classname : TestClass05
Running Test Method : test_case01
ok

--
Ran 1 test in 0.077s

OK

This way you can control the granularity of the test execution.

Listing All the Command-Line Options and Help
You can list all the command line options of unittest using the -h command-line option.
Run the following command:

python3 -m unittest -h

The following is the output:

usage: python3 -m unittest [-h] [-v] [-q] [-f] [-c] [-b] [tests [tests ...]]

positional arguments:
 tests a list of any number of test modules, classes and test
 methods.

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose Verbose output
 -q, --quiet Quiet output
 -f, --failfast Stop on first fail or error
 -c, --catch Catch ctrl-C and display results so far
 -b, --buffer Buffer stdout and stderr during tests

Examples:
 python3 -m unittest test_module - run tests from test_module
 python3 -m unittest module.TestClass - run tests from module.

TestClass
 python3 -m unittest module.Class.test_method - run specified test method

Chapter 3 ■ Unittest

43

usage: python3 -m unittest discover [-h] [-v] [-q] [-f] [-c] [-b] [-s START]
 [-p PATTERN] [-t TOP]

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose Verbose output
 -q, --quiet Quiet output
 -f, --failfast Stop on first fail or error
 -c, --catch Catch ctrl-C and display results so far
 -b, --buffer Buffer stdout and stderr during tests
 -s START, --start-directory START
 Directory to start discovery ('.' default)
 -p PATTERN, --pattern PATTERN
 Pattern to match tests ('test*.py' default)
 -t TOP, --top-level-directory TOP
 Top level directory of project (defaults to start
 directory)

For test discovery all test modules must be importable from the top level
directory of the project.

This way you get a detailed summary of the various command-line options available
with unittest.

Important Command-Line Options
Let’s take a look at the important command-line options in unittest. Take a look at the
code in Listing 3-8 for example.

Listing 3-8. test_module07.py

import unittest

class TestClass08(unittest.TestCase):

 def test_case01(self):
 self.assertTrue("PYTHON".isupper())
 print("\nIn test_case1()")

 def test_case02(self):
 self.assertTrue("Python".isupper())
 print("\nIn test_case2()")

 def test_case03(self):
 self.assertTrue(True)
 print("\nIn test_case3()")

Chapter 3 ■ Unittest

44

You already know that -v stands for verbose mode. The following is the output in
verbose mode:

test_case01 (test_module07.TestClass08) ...
In test_case1()
ok
test_case02 (test_module07.TestClass08) ... FAIL
test_case03 (test_module07.TestClass08) ...
In test_case3()
ok

==
FAIL: test_case02 (test_module07.TestClass08)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module07.py", line 11, in
test_case02
 self.assertTrue("Python".isupper())
AssertionError: False is not true

--
Ran 3 tests in 0.012s

FAILED (failures=1)

The option -q stands for quiet mode. Run the following command to demonstrate
quiet mode:

python3 -m unittest -q test_module07

The output is as follows:

In test_case1()

In test_case3()
==
FAIL: test_case02 (test_module07.TestClass08)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module07.py", line 11, in
test_case02

 self.assertTrue("Python".isupper())
AssertionError: False is not true

--
Ran 3 tests in 0.005s

FAILED (failures=1)

Chapter 3 ■ Unittest

45

The option -f stands for failsafe. It forcefully stops execution as soon as the first test
case fails. Run the following command to initiate failsafe mode:

python3 -m unittest -q test_module07

The following is the output in failsafe mode:

In test_case1()
.F
==
FAIL: test_case02 (test_module07.TestClass08)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module07.py", line 11, in
test_case02

 self.assertTrue("Python".isupper())
AssertionError: False is not true

--
Ran 2 tests in 0.004s

FAILED (failures=1)

You can also use more than one option. For example, you can combine verbose with
failsafe using the following command:

python3 -m unittest -fv test_module07

The output is as follows:

test_case01 (test_module07.TestClass08) ...
In test_case1()
ok
test_case02 (test_module07.TestClass08) ... FAIL

==
FAIL: test_case02 (test_module07.TestClass08)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module07.py", line 11, in
test_case02
 self.assertTrue("Python".isupper())
AssertionError: False is not true

--
Ran 2 tests in 0.005s

FAILED (failures=1)

Chapter 3 ■ Unittest

46

As an exercise, try to use different combinations of command-line options.

Creating a Test Package
Up until now, you have created and executed test modules individually. However, you
can use Python’s built-in packaging feature to create a package of tests. This is standard
practice in complex projects with large codebases.

Figure 3-1 shows a snapshot of the current test directory where you are saving your
test modules.

Now, let’s create a package of test modules. Create an __init__.py file in the test
directory. Add the code in Listing 3-9 to the __init__.py file,

Listing 3-9. __init__.py

all = ["test_module01", "test_module02", "test_module03", "test_module04",
"test_module05", "test_module06", "test_module07"]

Congratulations! You just created a test package. test is the name of the testing
package and all modules mentioned in the __init__.py belong to this package. If you
need to add a new testing module to the package test, you need to create a new test
module file in the test directory and then add the name of that module to the __init__.
py file.

Now you can run the test modules from the parent directory of test (chapter03) in
the following way. Move to the chapter03 directory using the following command:

cd /home/pi/book/code/chapter03

Note that the path might be different in your case, depending on where you have
created the book directory.

Run the test module with the following command:

python3 -m unittest -v test.test_module04

Figure 3-1. Snapshot of the test subdirectory in the chapter03 directory

Chapter 3 ■ Unittest

47

The following is the output:

test_case01 (test.test_module04.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok
test_case01 (test.test_module04.TestClass05) ...
Classname : TestClass05
Running Test Method : test_case01
ok

--
Ran 2 tests in 0.090s

OK

Run a test class in the test module with the following command:

python3 -m unittest -v test.test_module04.TestClass04

The output is as follows:

test_case01 (test.test_module04.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok

--
Ran 1 test in 0.078s

OK

Run a test case from a test module as follows:

python3 -m unittest -v
test.test_module04.TestClass04.test_case01

The output is as follows:

test_case01 (test.test_module04.TestClass04) ...
Classname : TestClass04
Running Test Method : test_case01
ok

--
Ran 1 test in 0.079s

OK

Chapter 3 ■ Unittest

48

Organizing the Code
Let’s look at the ways you can organize the test code and dev. We’re now moving toward
real-life project scenarios for using unittest. Up until now, the tests (the testing code)
and the code to be tested (the development code) were in the same module. Usually in
the real-life projects, the development code and the test code are kept in different files.

Placing the Development and Test Code in a Single Directory
Here, you will organize the dev and test code in a single directory. In the test directory,
create a module called test_me.py and add the code in Listing 3-10 to it.

Listing 3-10. test_me.py

def add(x, y):
 return(x + y)

def mul(x, y):
 return(x * y)

def sub(x, y):
 return(x - y)

def div(x, y):
 return(x / y)

Now, since test_me.py is in the test directory, it can directly be imported into
another module in the same directory using the import test_me statement. The test
module in Listing 3-11 imports test_me.py to test its functionality.

Listing 3-11. test_module08.py

import unittest
import test_me

class TestClass09(unittest.TestCase):

 def test_case01(self):
 self.assertEqual(test_me.add(2, 3), 5)
 print("\nIn test_case01()")

 def test_case02(self):
 self.assertEqual(test_me.mul(2, 3), 6)
 print("\nIn test_case02()")

Chapter 3 ■ Unittest

49

Run the test module with the following command:

python3 -m unittest -v test_module08

The output is as follows:

test_case01 (test_module08.TestClass09) ...
In test_case01()
ok
test_case02 (test_module08.TestClass09) ...
In test_case02()
ok

--
Ran 2 tests in 0.004s

OK

This way, you can organize the development code and the testing code in the same
directory, in the different files.

Placing the Development and Test Code in Separate Directories
Many coding standards recommend that the development code and the testing code files
be organized in separate directories. Let’s do that now.

Navigate to the chapter03 directory,

cd /home/pi/book/code/chapter03

Create a new directory called mypackage in the chapter03 directory:

mkdir mypackage

Navigate to the mypackage directory:

cd mypackage

Save the code in Listing 3-12 as the file mymathlib.py in the mypackage directory,

Listing 3-12. mymathlib.py

class mymathlib:
 def __init__(self):
 """Constructor for this class..."""
 print("Creating object : " + self.__class__.__name__)

Chapter 3 ■ Unittest

50

 def add(self, x, y):
 return(x + y)

 def mul(self, x, y):
 return(x * y)

 def mul(self, x, y):
 return(x - y)

 def __del__(self):
 """Destructor for this class..."""
 print("Destroying object : " + self.__class__.__name__)

Save the code in Listing 3-13 as the file mymathsimple.py in the mypackage directory.

Listing 3-13. mymathsimple.py

def add(x, y):
 return(x + y)

def mul(x, y):
 return(x * y)

def sub(x, y):
 return(x - y)

def div(x, y):
 return(x / y)

These modules you just created are the development modules. Finally, to create a
package of the development modules, create the __init__.py file with the code shown in
Listing 3-14.

Listing 3-14. __init__.py

all = ["mymathlib", "mymathsimple"]

This will create a Python package for the development code. Now, navigate back to
the chapter03 directory. The structure of the chapter03 directory should now look like
Figure 3-2.

Chapter 3 ■ Unittest

51

mypackage is the package of the development code and test is the package of the
testing code.

You now need to create a test module for testing the development code in mypackage.
Create a new test module called test_module09.py in the test directory and add the
code shown in Listing 3-15.

Listing 3-15. test_module09.py

from mypackage.mymathlib import *
import unittest

math_obj = 0

def setUpModule():
 """called once, before anything else in the module"""
 print("In setUpModule()...")
 global math_obj
 math_obj = mymathlib()

def tearDownModule():
 """called once, after everything else in the module"""
 print("In tearDownModule()...")
 global math_obj
 del math_obj

Figure 3-2. Snapshot of the chapter03 directory

Chapter 3 ■ Unittest

52

class TestClass10(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
 """called only once, before any test in the class"""
 print("In setUpClass()...")

 def setUp(self):
 """called once before every test method"""
 print("\nIn setUp()...")

 def test_case01(self):
 print("In test_case01()")
 self.assertEqual(math_obj.add(2, 5), 7)

 def test_case02(self):
 print("In test_case02()")

 def tearDown(self):
 """called once after every test method"""
 print("In tearDown()...")

 @classmethod
 def tearDownClass(cls):
 """called once, after all the tests in the class"""
 print("In tearDownClass()...")

Add test_module09 to __init__.py in the test directory to make it part of the test
package.

Run the code from the test directory using the following command:

python3 -m unittest -v test_module09

It will throw an error as follows:

from mypackage.mymathlib import *
ImportError: No module named 'mypackage'

That’s because the mypackage module is not visible from the test directory. It
lives not in the test directory, but in the chapter03 directory. This module cannot be
executed from the test directory. You must execute this module as a part of the test
package. You can do this from the chapter03 directory. The mypackage module is visible
in this directory as mypackage, which is a subdirectory of chapter03.

Navigate to the chapter03 directory and run this module as follows:

python3 -m unittest -v test.test_module09

Chapter 3 ■ Unittest

53

Here is the output of the execution:

In setUpModule()...
Creating object : mymathlib
In setUpClass()...
test_case01 (test.test_module09.TestClass10) ...
In setUp()...
In test_case01()
In tearDown()...
ok
test_case02 (test.test_module09.TestClass10) ...
In setUp()...
In test_case02()
In tearDown()...
ok
In tearDownClass()...
In tearDownModule()...
Destroying object : mymathlib

--
Ran 2 tests in 0.004s

OK

That’s how you organize the development and testing code files in separate
directories. It is standard practice to separate these code files.

Test Discovery
Test discovery is the process of discovering and executing all the tests in the project
directory and all its subdirectories. The test discovery process is automated in unittest
and can be invoked using the discover sub-command. It can be invoked with the
following command:

python3 -m unittest discover

Here is the partial output of this command when it runs in the chapter02 directory:

..
Running Test Method : test_case01
.
Running Test Method : test_case02
.
Running Test Method : test_case01
We're in custom made function : add
.

Chapter 3 ■ Unittest

54

Running Test Method : test_case02
.
Running Test Method : test_case03
We're in custom made function : add
F
Running Test Method : test_case04
F
Classname : TestClass04
Running Test Method : test_case01

You can also invoke it using the verbose mode with the following command:

python3 -m unittest discover -v

Here is the partial output of this command:

test_case01 (test.test_module01.TestClass01) ... ok
test_case02 (test.test_module01.TestClass01) ... ok
test_case01 (test.test_module02.TestClass02) ...
Running Test Method : test_case01
ok
test_case02 (test.test_module02.TestClass02) ...
Running Test Method : test_case02
ok
test_case01 (test.test_module03.TestClass03) ...
Running Test Method : test_case01
We're in custom made function : add
ok
test_case02 (test.test_module03.TestClass03) ...
Running Test Method : test_case02
ok
test_case03 (test.test_module03.TestClass03) ...
Running Test Method : test_case03
We're in custom made function : add

As you can see in the verbose output, the unittest automatically found and ran all
the test modules located in the chapter03 directory and its subdirectories. This saves you
the pain of running each test module separately and collecting the results individually.
Test discovery is one of the most important features of any automation testing framework.

Coding Conventions for unittest
As you have seen, test discovery automatically finds and runs all the tests in a project
directory. To achieve this effect, you need to follow some coding and naming conventions
for your test code. You may have noticed already that I have consistently followed these
conventions in all the code examples in this book.

Chapter 3 ■ Unittest

55

•	 In order to be compatible with test discovery, all of the test files
must be either modules or packages importable from the top-
level directory of the project.

•	 By default, the test discovery always starts from the current
directory.

•	 By default, test discovery always searches for test*.py patterns in
the filenames.

Assertions in unittest
You have learned about a few basic assertions, like assertEqual() and assertTrue().
The following tables list the most used assertions and their purpose.

Method Checks That

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

Method Checks That

assertAlmostEqual(a, b) round(a-b, 7) == 0

assertNotAlmostEqual(a, b) round(a-b, 7) != 0

assertGreater(a, b) a > b

assertGreaterEqual(a, b) a >= b

assertLess(a, b) a < b

assertLessEqual(a, b) a <= b

assertRegexpMatches(s, r) r.search(s)

assertNotRegexpMatches(s, r) not r.search(s)

assertItemsEqual(a, b) sorted(a) == sorted(b)

assertDictContainsSubset(a, b) all the key/value pairs in a exist in b

Chapter 3 ■ Unittest

56

Method Used to Compare

assertMultiLineEqual(a, b) strings

assertSequenceEqual(a, b) sequences

assertListEqual(a, b) lists

assertTupleEqual(a, b) tuples

assertSetEqual(a, b) sets or frozensets

assertDictEqual(a, b) dicts

All the assert methods listed in the previous tables are good enough for most of the
programmers and testers for automating the tests.

Other Useful Methods
This section looks at a few useful methods that will help you debug and understand the
flow of execution.

The id() and shortDescription() methods are very useful for debugging. id()
returns the name of the method and shortDescription() returns the description of the
method. Listing 3-16 shows an example.

Listing 3-16. test_module10.py

import unittest

class TestClass11(unittest.TestCase):

 def test_case01(self):
 """This is a test method..."""
 print("\nIn test_case01()")
 print(self.id())
 print(self.shortDescription())

The output of Listing 3-16 is as follows:

test_case01 (test_module10.TestClass11)
This is a test method... ...
In test_case01()
test_module10.TestClass11.test_case01
This is a test method...
ok

--
Ran 1 test in 0.002s

OK

Chapter 3 ■ Unittest

57

Failing a Test
Many times, you might want to have a method that explicitly fails a test when it’s called. In
unittest, the fail() method is used for that purpose. Check the code in Listing 3-17 as
an example.

Listing 3-17. test_module11.py

import unittest

class TestClass12(unittest.TestCase):

 def test_case01(self):
 """This is a test method..."""
 print(self.id())
 self.fail()

The output of Listing 3-16 is as follows:

test_case01 (test_module11.TestClass12)
This is a test method... ...
test_module11.TestClass12.test_case01
FAIL

==
FAIL: test_case01 (test_module11.TestClass12)
This is a test method...
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module11.py", line 9, in
test_case01
 self.fail()
AssertionError: None

--
Ran 1 test in 0.004s

FAILED (failures=1)

Skipping tests

unittest provides a mechanism for skipping tests, conditionally or unconditionally.
It uses the following decorators for implementing the skipping mechanism:

•	 unittest.skip(reason): Unconditionally skips the decorated
test. reason should describe why the test is being skipped.

•	 unittest.skipIf(condition, reason): Skips the decorated test
if condition is true.

Chapter 3 ■ Unittest

58

•	 unittest.skipUnless(condition, reason): Skips the decorated
test unless condition is true.

•	 unittest.expectedFailure(): Marks the test as an expected
failure. If the test fails when it runs, the test is not counted as a
failure.

The code in Listing 3-18 demonstrates how to skip tests conditionally and
unconditionally.

Listing 3-18. test_module12.py

import sys
import unittest

class TestClass13(unittest.TestCase):

 @unittest.skip("demonstrating unconditional skipping")
 def test_case01(self):
 self.fail("FATAL")

 @unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
 def test_case02(self):
 # Windows specific testing code
 pass

 @unittest.skipUnless(sys.platform.startswith("linux"), "requires Linux")
 def test_case03(self):
 # Linux specific testing code
 pass

When you run the code in Listing 3-18 on the Linux platform, the output is as
follows:

test_case01 (test_module12.TestClass13) ... skipped 'demonstrating
unconditional skipping'
test_case02 (test_module12.TestClass13) ... skipped 'requires Windows'
test_case03 (test_module12.TestClass13) ... ok

--
Ran 3 tests in 0.003s

OK (skipped=2)

When you run the code in Listing 3-18 on the Windows platform, the output is as
follows:

test_case01 (test_module12.TestClass13) ... skipped 'demonstrating
unconditional skipping'

Chapter 3 ■ Unittest

59

test_case02 (test_module12.TestClass13) ... ok
test_case03 (test_module12.TestClass13) ... skipped
'requires Linux'

--
Ran 3 tests in 0.003s

OK (skipped=2)

As you can see, the code skips the test cases based on the OS where it runs. This trick
is very useful for running platform-specific test cases.

You can also skip entire test classes in a test module using the unittest.
skip(reason) decorator.

Exceptions in the Test Case
When an exception is raised in a test case, the test case fails. The code shown in Listing 3-19
will raise an exception explicitly.

Listing 3-19. test_module13.py

import unittest

class TestClass14(unittest.TestCase):
 def test_case01(self):
 raise Exception

The output of Listing 3-19 is as follows:

test_case01 (test_module13.TestClass14) ... ERROR

==
ERROR: test_case01 (test_module13.TestClass14)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module13.py", line 6, in
test_case01

 raise Exception
Exception

--
Ran 1 test in 0.004s

FAILED (errors=1)

The failure message shown when the test fails due to an exception is different from
when the test fails due to an assertion.

Chapter 3 ■ Unittest

60

assertRaises()
You learned that the assert methods are used to check the test conditions. The
assertRaises() method is used to check if the code block raises the exception
mentioned in assertRaises(). If the code raises the exception then the test
passes; otherwise, it fails. The code shown in Listing 3-20 demonstrates the usage of
assertRaises() in detail.

Listing 3-20. test_module14.py

import unittest

class Calculator:

 def add1(self, x, y):
 return x + y

 def add2(self, x, y):
 number_types = (int, float, complex)
 if isinstance(x, number_types) and isinstance(y, number_

types):
 return x + y
 else:
 raise ValueError

calc = 0

class TestClass16(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
 global calc
 calc = Calculator()

 def setUp(self):
 print("\nIn setUp()...")

 def test_case01(self):
 self.assertEqual(calc.add1(2, 2), 4)

 def test_case02(self):
 self.assertEqual(calc.add2(2, 2), 4)

 def test_case03(self):
 self.assertRaises(ValueError, calc.add1, 2, 'two')

 def test_case04(self):
 self.assertRaises(ValueError, calc.add2, 2, 'two')

Chapter 3 ■ Unittest

61

 def tearDown(self):
 print("\nIn tearDown()...")

 @classmethod
 def tearDownClass(cls):
 global calc
 del calc

In the code in Listing 3-20, we defined a class called Calculator that has two
different methods for the addition operation. The add1() method does not have a
provision to raise an exception if a non-numeric argument is passed to it. The add2()
method raises a ValueError if any of the arguments are non-numeric. Here is the output
of the code in Listing 3-20:

test_case01 (test_module14.TestClass16) ...
In setUp()...

In tearDown()...
ok
test_case02 (test_module14.TestClass16) ...
In setUp()...

In tearDown()...
ok
test_case03 (test_module14.TestClass16) ...
In setUp()...

In tearDown()...
ERROR
test_case04 (test_module14.TestClass16) ...
In setUp()...

In tearDown()...
ok

==
ERROR: test_case03 (test_module14.TestClass16)
--
Traceback (most recent call last):
 File "/home/pi/book/code/chapter03/test/test_module14.py", line 37, in
test_case03

 self.assertRaises(ValueError, calc.add1, 2, 'two')
 File "/usr/lib/python3.4/unittest/case.py", line 704, in assertRaises
 return context.handle('assertRaises', callableObj, args, kwargs)
 File "/usr/lib/python3.4/unittest/case.py", line 162, in handle
 callable_obj(*args, **kwargs)
 File "/home/pi/book/code/chapter03/test/test_module14.py", line 7, in add1
 return x + y

Chapter 3 ■ Unittest

62

TypeError: unsupported operand type(s) for +: 'int' and 'str'

--
Ran 4 tests in 0.030s

FAILED (errors=1)

In the output, the test_Case03() fails because add1() does not have a provision
to raise an exception when you pass it a non-numeric argument (a string, in this case).
assertRaises() is very useful in writing negative test cases, such as when you need to
check the behavior of the API against invalid arguments.

EXERCISE 3-1

unittest, like all the other python libraries, is too vast a topic to be covered in a
single book. so, i recommend you complete the following exercises to gain more
knowledge and experience with unittest.

1. Visit the python 3 Documentation page for unittest at
https://docs.python.org/3/library/unittest.html.

2. practice all the assertion methods mentioned in this chapter by
writing tests using each one of them.

3. practice using the unittest.skipIf(condition, reason)
and unittest.expectedFailure() decorators. Write code to
demonstrate their functionality.

4. Write a test module with multiple test classes and skip an entire
test class using the unittest.skip(reason) decorator.

5. experiment with raising exceptions in the test fixtures.

Hint : try to run the code in Listing 3-21 by enabling each
commented-out raise Exception line, one line at a time. this
will help you understand how an individual fixture behaves
when you raise an exception in it.

Listing 3-21. test_module15.py

import unittest

def setUpModule():
raise Exception
 pass

https://docs.python.org/3/library/unittest.html

Chapter 3 ■ Unittest

63

def tearDownModule():
raise Exception
 pass

class TestClass15(unittest.TestCase):

 @classmethod
 def setUpClass(cls):
raise Exception
 pass

 def setUp(self):
raise Exception
 pass

 def test_case01(self):
 self.id()

 def tearDown(self):
raise Exception
 pass

 @classmethod
 def tearDownClass(cls):
raise Exception
 pass

Conclusion
In this chapter, you learned about several important concepts, including test fixtures,
test classes, test methods, and test modules. You also learned how to implement all
these concepts with unittest. Almost all the concepts you learned in this chapter will be
revisited in later chapters that cover other Python testing frameworks. In the next chapter,
we will look at nose and nose2, which are two other popular Python test automation
frameworks.

65© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_4

CHAPTER 4

nose and nose2

The last chapter introduced xUnit and unittest. In this chapter, we will explore yet
another unit testing API for Python, called nose. The tagline of nose is, nose extends
unittest to make testing easier.

You can use nose’s API to write and run automated tests. You can also use nose to
run tests written in other frameworks like unittest. This chapter will also explore the
next actively developed and maintained iteration of nose, nose2.

Introduction to nose
nose is not the part of Python’s standard library. You have to install it in order to use it.
Let’s see how we can install it on Python 3.

Installing nose on Linux OS
The easiest way to install nose on a Linux computer is to install it using Python’s package
manager pip. Pip stands for pip installs packages. It’s a recursive acronym. If pip is not
installed on your Linux computer, you can install it by using a system package manager.
On any Debian/Ubuntu or derivative computer, install pip with the following command:

sudo apt-get install python3-pip

On Fedora/CentOS and derivatives, run following commands (assuming you have
Python 3.5 installed on the OS) to install pip:

sudo yum install python35-setuptools
sudo easy_install pip

Once pip is installed, you can install nose with the following command:

sudo pip3 install nose

Chapter 4 ■ nose and nose2

66

Installing nose on MacOS and Windows
pip is pre-installed with Python 3 on MacOS and Windows. Install nose with the following
command:

pip3 install nose

Verifying the Installation
Once nose is installed, run the following command to verify the installation:

nosetests -V

It will show output as follows:

nosetests version 1.3.7

Getting Started with nose
To get started with nose, follow the same path of exploration that you followed with
unittest. Create a directory called chapter04 in the code directory and copy the
mypackage directory from the chapter03 directory to code. You will need it later. Create a
directory called test too. After all this, the chapter04 directory structure should look like
the structure shown in Figure 4-1.

Save all the code examples to the test directory only.

A Simple nose Test Case
A very simple nose test case is demonstrated in Listing 4-1.

Listing 4-1. test_module01.py

def test_case01():
 assert 'aaa'.upper() == 'AAA'

Figure 4-1. The chapter04 directory structure

Chapter 4 ■ nose and nose2

67

In Listing 4-1, test_case01() is the test function. assert is Python’s built-in
keyword and it works like the assert methods in unittest. If you compare this code with
the simplest test case in the unittest framework, you will notice that you do not have to
extend the test from any parent class. This makes the test code cleaner and less cluttered.

If you try to run it with the following commands, it will not yield any output:

python3 test_module01.py
python3 test_module01.py -v

This is because you have not included a test-runner in the code.
You can run it by using the -m command-line option for Python as follows:

python3 -m nose test_module01.py

The output is as follows:

.
--
Ran 1 test in 0.007s

OK

Verbose mode can be invoked by adding the -v command-line option as follows:

python3 -m nose -v test_module01.py

The output is as follows:

test.test_module01.test_case01 ... ok
--
Ran 1 test in 0.007s

OK

Running the Test Module with nosetests
You can use nose’s nosetests command to run the test modules as follows:

nosetests test_module01.py

The output is as follows:

.
--
Ran 1 test in 0.006s

OK

Chapter 4 ■ nose and nose2

68

Verbose mode can be invoked as follows:

nosetests test_module01.py -v

The output is as follows:

test.test_module01.test_case01 ... ok
--
Ran 1 test in 0.007s

OK

Using the nosetests command is the simplest way to run the test modules. Due to
the simplicity and convenience of the coding and invocation style, we will use nosetests
to run the tests until we introduce and explain nose2.

Getting Help
Use the following command to get help and documentation about nose:

nosetests -h

Organizing the test code
In the previous chapter, you learned how to organize the development and the testing
code of the project in separate directories. You will follow the same standard in this
and the next chapter too. First create a test module to test the development code in
mypackage. Save the code shown in Listing 4-2 in the test directory.

Listing 4-2. test_module02.py

from mypackage.mymathlib import *

class TestClass01:
 def test_case01(self):
 print("In test_case01()")
 assert mymathlib().add(2, 5) == 7

Listing 4-2 creates a test class called TestClass01. As discussed earlier, you do not
have to extend it from a parent class. The line containing assert checks if the statement
mymathlib(). add(2, 5) == 7 is true or false to mark the test method as PASS or FAIL.

Also, create an __init__.py file with the code in Listing 4-3 placed in the test
directory.

Chapter 4 ■ nose and nose2

69

Listing 4-3. __init__.py

all = ["test_module01", "test_module02"]

After this, the chapter04 directory structure will resemble Figure 4-2.

The test package is ready now. You can run the tests from the chapter04 directory as
follows:

nosetests test.test_module02 -v

The output is as follows:

test.test_module02.TestClass01.test_case01 ... ok
--
Ran 1 test in 0.008s
OK

The convention for running a specific test class is a bit different in nose. The
following is the example:

nosetests test.test_module02:TestClass01 -v

You can also run an individual test method as follows:

nosetests test.test_module02:TestClass01.test_case01 -v

Test Discovery
You learned about test discovery in an earlier chapter. nose also supports the test discovery
process. In fact, test discovery in nose is even simpler than in unittest. You do not have to
use the discover sub-command for test discovery. You just need to navigate to the project
directory (chapter04 in this case) and run the nosetests command, as follows:

Figure 4-2. The chapter04 directory structure

Chapter 4 ■ nose and nose2

70

nosetests

You can also invoke this process in verbose mode:

nosetests -v

The output is as follows:

test.test_module01.test_case01 ... ok
test.test_module02.TestClass01.test_case01 ... ok
Ran 2 tests in 0.328s
OK

As you can see in the output, nosetests automatically discovers the test package and
runs all its test modules.

Fixtures for Classes, Modules, and Methods
nose provides xUnit-style fixtures that behave in similar way as the fixtures in unittest.
Even the names of the fixtures are same. Consider the code in Listing 4-4.

Listing 4-4. test_module03.py

from mypackage.mymathlib import *

math_obj = 0

def setUpModule():
 """called once, before anything else in this module"""
 print("In setUpModule()...")
 global math_obj
 math_obj = mymathlib()

def tearDownModule():
 """called once, after everything else in this module"""
 print("In tearDownModule()...")
 global math_obj
 del math_obj

class TestClass02:

 @classmethod
 def setUpClass(cls):

Chapter 4 ■ nose and nose2

71

 """called once, before any test in the class"""
 print("In setUpClass()...")

 def setUp(self):
 """called before every test method"""
 print("\nIn setUp()...")

 def test_case01(self):
 print("In test_case01()")
 assert math_obj.add(2, 5) == 7

 def test_case02(self):
 print("In test_case02()")

 def tearDown(self):
 """called after every test method"""
 print("In tearDown()...")

 @classmethod
 def tearDownClass(cls):
 """called once, after all tests, if setUpClass() successful"""
 print ("\nIn tearDownClass()...")

If you run the code in Listing 4-4 with the following command:

nosetests test_module03.py -v

The output will be as follows:

test.test_module03.TestClass02.test_case01 ... ok
test.test_module03.TestClass02.test_case02 ... ok

--
Ran 2 tests in 0.010s

OK

In order to get more details of test execution, you need to add the -s option to the
command line, which allows any stdout output to be printed in the command line
immediately.

Run the following command:

nosetests test_module03.py -vs

Chapter 4 ■ nose and nose2

72

The output is as follows:

In setUpModule()...
Creating object : mymathlib
In setUpClass()...
test.test_module03.TestClass02.test_case01 ...
In setUp()...
In test_case01()
In tearDown()...
ok
test.test_module03.TestClass02.test_case02 ...
In setUp()...
In test_case02()
In tearDown()...
ok

In tearDownClass()...
In tearDownModule()...
Destroying object : mymathlib

--
Ran 2 tests in 0.011s

OK

From now onward, we will add the -s option to the nosetests command while
executing the tests.

Fixtures for Functions
Before you get started with the fixtures for functions, you must understand the difference
between a function and a method in Python. A function is a named piece of code that
performs an operation and a method is a function with an extra parameter that’s the
object on which it runs. A function is not associated with a class. A method is always
associated with a class.

Check the code in Listing 4-5 as an example.

Listing 4-5. test_module04.py

from nose.tools import with_setup

def setUpModule():
 """called once, before anything else in this module"""
 print("\nIn setUpModule()...")

Chapter 4 ■ nose and nose2

73

def tearDownModule():
 """called once, after everything else in this module"""
 print("\nIn tearDownModule()...")

def setup_function():
 """setup_function(): use it with @with_setup() decorator"""
 print("\nsetup_function()...")

def teardown_function():
 """teardown_function(): use it with @with_setup() decorator"""
 print("\nteardown_function()...")

def test_case01():
 print("In test_case01()...")

def test_case02():
 print("In test_case02()...")

@with_setup(setup_function, teardown_function)
def test_case03():
 print("In test_case03()...")

In the code in Listing 4-5, test_case01(), test_case02(), test_case03(), setup_
function(), and teardown_function() are the functions. They are not associated with a
class. You have to use the @with_setup() decorator, which is imported from nose.tools,
for assigning setup_function() and teardown_function() as fixtures of test_case03().
nose recognizes test_case01(), test_case02(), and test_case03() as test functions
because the names begin with test_. setup_function() and teardown_function() are
recognized as fixtures of test_case03(), due to the @with_setup() decorator.

The test_case01() and test_case02()functions do not have any fixtures assigned
to them.

Let’s run this code with the following command:

nosetests test_module04.py -vs

The output is as follows:

In setUpModule()...
test.test_module04.test_case01 ... In test_case01()...
ok
test.test_module04.test_case02 ... In test_case02()...
ok
test.test_module04.test_case03 ...
setup_function()...
In test_case03()...

teardown_function()...
ok

Chapter 4 ■ nose and nose2

74

In tearDownModule()...

--
Ran 3 tests in 0.011s

OK

As you can see in the output, setup_function() and teardown_function() run
before and after test_case03(), respectively. unittest does not have any provision for
the fixtures at the test function level. Actually, unittest does not support the concept of
standalone test functions, as everything has to be extended from the TestCase class and a
function cannot be extended.

It’s not mandatory that you name the function-level fixtures setup_function()
and teardown_function(). You can name that anything you want (except, of course, for
Python 3’s reserved keywords). Those will be executed before and after the test function
as long as you use those in the @with_setup() decorator.

Fixtures for Packages
unittest does not have a provision for package-level fixtures. Package fixtures are
executed when the test package or part of the test package is invoked. Change the
contents of the __init__.py file in the test directory to the code in Listing 4-6.

Listing 4-6. __init__.py

all = ["test_module01", "test_module02", "test_module03", "test_module04"]

def setUpPackage():
 print("In setUpPackage()...")

def tearDownPackage():
 print("In tearDownPackage()...")

If you run a module in this package now, the package-level fixtures will run before
beginning any test and after the entire test in the package. Run the following command:

nosetests test_module03.py -vs

Here is the output:

In setUpPackage()...
In setUpModule()...
Creating object : mymathlib
In setUpClass()...
test.test_module03.TestClass02.test_case01 ...
In setUp()...
In test_case01()

Chapter 4 ■ nose and nose2

75

In tearDown()...
ok
test.test_module03.TestClass02.test_case02 ...
In setUp()...
In test_case02()
In tearDown()...
ok

In tearDownClass()...
In tearDownModule()...
Destroying object : mymathlib
In tearDownPackage()...

--
Ran 2 tests in 0.012s

OK

Alternate Names of the nose Fixtures
This table lists the alternate names of the nose fixtures.

Fixture Alternative Name(s)

setUpPackage setup, setUp, or setup_package

tearDownPackage teardown, tearDown, or teardown_package

setUpModule setup, setUp, or setup_module

tearDownModule teardown, tearDown, or teardown_module

setUpClass setupClass, setup_class, setupAll, or
setUpAll

tearDownClass teardownClass, teardown_class,
teardownAll,or tearDownAll

setUp (class method fixtures) setup

tearDown (class method fixtures) teardown

assert_equals()
Until now, you have been using Python’s built-in keyword assert to check the actual
results against expected values. nose has its own assert_equals() method for this. The
code in Listing 4-7 demonstrates the use of assert_equals() and assert.

Chapter 4 ■ nose and nose2

76

Listing 4-7. test_module05.py

from nose.tools import assert_equals

def test_case01():
 print("In test_case01()...")
 assert 2+2 == 5

def test_case02():
 print("In test_case02()...")
 assert_equals(2+2, 5)

Run the code in Listing 4-7. The following shows the output:

In setUpPackage()...
test.test_module05.test_case01 ... In test_case01()...
FAIL
test.test_module05.test_case02 ... In test_case02()...
FAIL
In tearDownPackage()...

==
FAIL: test.test_module05.test_case01
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198,
in runTest

 self.test(*self.arg)
 File "/home/pi/book/code/chapter04/test/test_module05.py", line 6,
in test_case01

 assert 2+2 == 5
AssertionError

==
FAIL: test.test_module05.test_case02
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198,
in runTest

 self.test(*self.arg)
 File "/home/pi/book/code/chapter04/test/test_module05.py", line 11,
in test_case02

 assert_equals(2+2, 5)
AssertionError: 4 != 5

--
Ran 2 tests in 0.013s

FAILED (failures=2)

Chapter 4 ■ nose and nose2

77

Both the test cases failed due to incorrect test inputs. Note the difference between the logs
printed by these test methods. In test_case02(), you get more information about the
cause of the failure, as you are using nose’s assert_equals() method.

Testing Tools
nose.tools has a few methods and decorators that come in very handy while you’re
automating tests.

This section looks at a few of those testing tools.

ok_ and eq_
ok_ and eq_ are shorthand for assert and assert_equals(), respectively. They also come
with a parameter for an error message when the test case fails. The code in Listing 4-8
demonstrates this.

Listing 4-8. test_module06.py

from nose.tools import ok_, eq_

def test_case01():
 ok_(2+2 == 4, msg="Test Case Failure...")

def test_case02():
 eq_(2+2, 4, msg="Test Case Failure...")

def test_case03():
 ok_(2+2 == 5, msg="Test Case Failure...")

def test_case04():
 eq_(2+2, 5, msg="Test Case Failure...")

The following shows the output of the code in Listing 4-8.

In setUpPackage()...
test.test_module06.test_case01 ... ok
test.test_module06.test_case02 ... ok
test.test_module06.test_case03 ... FAIL
test.test_module06.test_case04 ... FAIL
In tearDownPackage()...

Chapter 4 ■ nose and nose2

78

==
FAIL: test.test_module06.test_case03
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198,
in runTest

 self.test(*self.arg)
 File "/home/pi/book/code/chapter04/test/test_module06.py", line 13,
in test_case03

 ok_(2+2 == 5, msg="Test Case Failure...")
AssertionError: Test Case Failure...

==
FAIL: test.test_module06.test_case04
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198,
in runTest

 self.test(*self.arg)
 File "/home/pi/book/code/chapter04/test/test_module06.py", line 17,
in test_case04

 eq_(2+2, 5, msg="Test Case Failure...")
AssertionError: Test Case Failure...

--
Ran 4 tests in 0.015s

FAILED (failures=2)

The @raises() Decorator
When you use raises decorator before the test, it must raise one of the exceptions
mentioned in the list of exceptions associated with the @raises() decorator. Listing 4-9
demonstrates this idea.

Listing 4-9. test_module07.py

from nose.tools import raises

@raises(TypeError, ValueError)
def test_case01():
 raise TypeError("This test passes")

@raises(Exception)
def test_case02():
 pass

Chapter 4 ■ nose and nose2

79

The output is as follows:

In setUpPackage()...
test.test_module07.test_case01 ... ok
test.test_module07.test_case02 ... FAIL
In tearDownPackage()...

==
FAIL: test.test_module07.test_case02
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198, in
runTest
 self.test(*self.arg)
 File "/usr/local/lib/python3.4/dist-packages/nose/tools/nontrivial.py",
line 67, in newfunc
 raise AssertionError(message)
AssertionError: test_case02() did not raise Exception

--
Ran 2 tests in 0.012s

FAILED (failures=1)

As you can see, test_case02() fails as it does not raise a exception when it is
supposed to. You can cleverly use this to write negative test cases.

The @timed() decorator
If you are using a timed decorator with the test, then the test must finish within the time
mentioned in the @timed() decorator to pass. The code in Listing 4-10 demonstrates that idea.

Listing 4-10. test_module10.py

from nose.tools import timed
import time

@timed(.1)
def test_case01():
 time.sleep(.2)

This test fails, as it takes more time to finish the execution of the test than is allotted
in the @timed() decorator. The output of execution is as follows:

In setUpPackage()...
test.test_module08.test_case01 ... FAIL
In tearDownPackage()...

Chapter 4 ■ nose and nose2

80

==
FAIL: test.test_module08.test_case01
--
Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/nose/case.py", line 198, in
runTest
 self.test(*self.arg)
 File "/usr/local/lib/python3.4/dist-packages/nose/tools/nontrivial.py",
line 100, in newfunc
 raise TimeExpired("Time limit (%s) exceeded" % limit)
nose.tools.nontrivial.TimeExpired: Time limit (0.1) exceeded

--
Ran 1 test in 0.211s

FAILED (failures=1)

It is the collection or group of related tests that can be executed or scheduled to be
executed together.

Report Generation
Let’s look at the various ways to generate comprehensible reports using nose.

Creating an XML Report
nose has a built-in feature for generating XML reports. These are xUnit-style formatted
reports. You have to use --with-xunit for generating the report. The report is generated
in the current working directory.

Run the following command in the test directory:

nosetests test_module01.py -vs --with-xunit

The output will be as follows:

In setUpPackage()...
test.test_module01.test_case01 ... ok
In tearDownPackage()...

--
XML: /home/pi/book/code/chapter04/test/nosetests.xml
--
Ran 1 test in 0.009s

OK

Chapter 4 ■ nose and nose2

81

The generated XML file is shown in Listing 4-11.

Listing 4-11. nosetests.xml

<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="nosetests" tests="1" errors="0" failures="0" skip="0">
<testcase classname="test.test_module01" name="test_case01" time="0.002">
</testcase>
</testsuite>

Creating an HTML Report
nose does not have a built-in provision for HTML reports. You have to install a plugin for
that. Run the following command to install the HTML output plugin:

sudo pip3 install nose-htmloutput

Once the plugin is installed, you can run the following command to execute the test:

nosetests test_module01.py -vs --with-html

Here is the output:

In setUpPackage()...
test.test_module01.test_case01 ... ok
In tearDownPackage()...

--
HTML: nosetests.html
--
Ran 1 test in 0.009s

OK

The plugin saves the output in the current location in a file called nosetests.html.
Figure 4-3 shows a snapshot of the nosetests.html file, opened in a web browser.

Chapter 4 ■ nose and nose2

82

Creating Color Output in the Console
Until now, you saw the methods that generate formatted output files. While running
nosetest, you must have observed that the console output is monochrome (white text on
a dark background and vice versa). The plugin called rednose is used to create colored
console output. You can install that plugin using the following command:

sudo pip3 install rednose

Once the plugin is installed, run the following command:

nosetests test_module08.py -vs --rednose

Figure 4-4 shows a screenshot of the output, although you won’t see it in color here,
due to the grayscale nature of the published book.

Figure 4-3. The nosetests.html file

Chapter 4 ■ nose and nose2

83

Running unittest Tests from nose
In the beginning of the chapter, you read that you can run unittest tests with nose.
Let’s try that now. Navigate to the chapter03 directory. Run the following command to
discover and execute all of the unittest tests automatically:

nosetests -v

This will be the output:

test_case01 (test.test_module01.TestClass01) ... ok
test_case02 (test.test_module01.TestClass01) ... ok
test_case01 (test.test_module02.TestClass02) ... ok
test_case02 (test.test_module02.TestClass02) ... ok
test_case01 (test.test_module03.TestClass03) ... ok
test_case02 (test.test_module03.TestClass03) ... ok
test_case03 (test.test_module03.TestClass03) ... FAIL
test_case04 (test.test_module03.TestClass03) ... FAIL
test_case01 (test.test_module04.TestClass04) ... ok

I am truncating the output as it would otherwise fill a lot of pages. Run the command
yourself to see the entire output.

Advantages of nose over unittest
Here is a summary of the advantages of nose over unittest:

•	 Unlike unittest, nose does not require you to extend test cases
from a parent class. This results in less code.

•	 Using nose, you can write test functions. This is not possible in
unittest.

Figure 4-4. A rednose demo

Chapter 4 ■ nose and nose2

84

•	 nose has more fixtures than unittest. In addition to the regular
unittest fixtures, nose has package- and function-level fixtures.

•	 nose has alternate names for fixtures.

•	 nose.tools offers many features for automating test cases.

•	 Test discovery is simpler in nose than in unittest, as nose does
not need a Python interpreter with the discover sub-command.

•	 nose can recognize and run unittest tests easily.

Disadvantages of nose
The only and the biggest disadvantage of nose is that it is not under active development
and has been in maintenance mode for the past several years. It will likely cease without
a new person or team to take over its maintenance. If you’re planning to start a project
and are looking for a suitable automation framework for Python 3, then pytest, nose2, or
plain unittest.

You might be wondering why I even spent time covering nose if it is not being
actively developed. The reason is that learning a more advanced framework like nose
helps you understand the limitations of unittest. Also, if you are working with an older
project that uses nose as the test automation and/or unit testing framework, it will help
you understand your tests.

Using Nose 2
nose2 is the next generation of testing for Python. It is based on the plugins branch of
unittest2.

nose2 aims to improve on nose as follows:

•	 It provides a better plugin API.

•	 It is easier for users to configure.

•	 It simplifies internal interfaces and processes.

•	 It supports Python 2 and 3 from the same codebase.

•	 It encourages greater community involvement in its development.

•	 Unlike nose, it is under active development.

It can be installed conveniently using the following command:

sudo pip3 install nose2

Once installed, nose2 can be invoked by running nose2 at the command prompt.
It can be used to auto-discover and run the unittest and nose test modules. Run
the nose2 -h command at the command prompt to get help with the various nose2
command-line options.

Chapter 4 ■ nose and nose2

85

The following are the important differences between nose and nose2:

•	 Python versions

	 nose supports Python version 2.4 and above. nose2 supports
pypy, 2.6, 2.7, 3.2, 3.3, 3.4, and 3.5. nose2 does not support all the
versions, as it is not possible to support all the Python versions in
a single codebase.

•	 Test loading

	 nose loads and executes test modules one by one, which is called
lazy loading. On the contrary, nose2 loads all the modules first
and then executes them all at once.

•	 Test discovery

	 Because of the difference between the test loading techniques,
nose2 does not support all the project layouts. The layout shown
in Figure 4-5 is supported by nose. However, it will not be loaded
correctly by nose2. nose can distinguish between ./dir1/test.
py and ./dir1/dir2/test.py.

EXERCISE 4-1

Check if the codebase in your organization is using unittest, nose, or nose2.
Consult with the owners of the codebase and plan a migration from these
frameworks to a better and more flexible unit-testing framework.

Conclusion
In this chapter, you learned about the advanced unit testing framework nose.
Unfortunately, it is not being developed actively so you need to use nose2 as a test-runner
for nose tests. In the next chapter, you will learn about and explore an advanced test
automation framework called py.test.

Figure 4-5. nose2 unsupported test layout

87© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_5

CHAPTER 5

pytest

In an earlier chapter, we explored nose, which is an advanced and better framework for
Python testing. Unfortunately, nose has not been under active development for the past
several years. That makes it an unsuitable candidate for a test framework when you want
to choose something for a long-term project. Moreover, there are many projects that use
unittest or nose or a combination of both. You definitely need a framework that has more
features than unittest, and unlike nose, it should be under active development. nose2
is more of a test-runner for unittest and an almost defunct tool. You need a unit test
framework that’s capable of discovering and running tests written in unittest and nose. It
should be advanced and must be under active development. The answer is pytest.

This chapter extensively explores a modern, advanced, and better test automation
framework, called pytest. First, you’ll learn how pytest offers traditional xUnit style
fixtures and then you will explore the advanced fixtures offered by pytest.

Introduction to pytest
pytest is not a part of Python’s standard library. We have to install it in order to use it, just
like we installed nose and nose2. Let’s see how we can install it for Python 3. pytest can
be installed conveniently by running the following command on Windows:

pip install pytest

For Linux and MacOS, you install it using pip3 as follows:

sudo pip3 install pytest

This installs pytest for Python 3.
You can check the installed version by running the following command:

py.test --version

The output is as follows:

This is pytest version 3.0.4, imported from /usr/local/lib/python3.4/dist-
packages/pytest.py

Chapter 5 ■ pytest

88

Simple Test
Before you begin, create a directory called chapter05 in the code directory. Copy the
mypackage directory as it is from the chapter04 directory. Create a directory called test
in chapter05. Save all the code files for this chapter in the test directory.

Just like when using nose, writing a simple test is very easy. See the code in
Listing 5-1 as an example.

Listing 5-1. test_module01.py

def test_case01():
 assert 'python'.upper() == 'PYTHON'

In Listing 5-1, we are importing pytest in the first line. test_case01() is the test
function. Recall that assert is a Python built-in keyword. Also, just like with nose, we do
not need to extend these tests from any class. This helps keep the code uncluttered.

Run the test module with the following command:

python3 -m pytest test_module01.py

The output is as follows:

============================ test session starts ====================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module01.py .

========================== 1 passed in 0.05 seconds =================

You can also use verbose mode:

python3 -m pytest -v test_module01.py

The output is as follows:

========================= test session starts ===========================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module01.py::test_case01 PASSED

======================== 1 passed in 0.04 seconds ====================

Chapter 5 ■ pytest

89

Running Tests with the py.test Command
You can also run these tests with pytest’s own command, called py.test:

py.test test_module01.py

The output is as follows:

======================= test session starts =========================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module01.py .

======================= 1 passed in 0.04 seconds =====================

You can also use verbose mode as follows:

py.test test_module01.py -v

The output in the verbose mode is as follows:

============================ test session starts =======================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module01.py::test_case01 PASSED

============================ 1 passed in 0.04 seconds =================

For the sake of simplicity and convenience, from now onward, we will use the same
method to run these tests for rest of the chapter and book. We will use pytest in the next
chapter to implement test-driven development. Also, observe when you run your own
tests that the output of test execution is in color by default, although the book shows the
results in black and white. You do not have to use any external or third-party plugin for
this effect. Figure 5-1 shows a screenshot of an execution sample.

Chapter 5 ■ pytest

90

Test Class and Test Package in pytest
Like all the previous test automation frameworks, in pytest you can create test classes
and test packages. Take a look at the code in Listing 5-2 as an example.

Listing 5-2. test_module02.py

class TestClass01:

 def test_case01(self):
 assert 'python'.upper() == 'PYTHON'

 def test_case02(self):
 assert 'PYTHON'.lower() == 'python'

Also create an __init__.py file, as shown in Listing 5-3.

Listing 5-3. __init__.py

all = ["test_module01", "test_module02"]

Now navigate to the chapter05 directory:

cd /home/pi/book/code/chapter05

And run the test package, as follows:

py.test test

You can see the output by running the previous command. You can also use the
following command to run a test package in verbose mode.

py.test -v test

You can run a single test module within a package with the following command:

py.test -v test/test_module01.py

Figure 5-1. Sample pytest execution

Chapter 5 ■ pytest

91

You can also run a specific test class as follows:

py.test -v test/test_module02.py::TestClass01

You can run a specific test method as follows:

py.test -v test/test_module02.py::TestClass01::test_case01

You can run a specific test function as follows:

py.test -v test/test_module01.py::test_case01

Test Discovery in pytest
pytest can discover and automatically run the tests, just like unittest, nose, and nose2
can. Run the following command in the project directory to initiate automated test
discovery:

py.test

For verbose mode, run the following command:

py.test -v

xUnit-Style Fixtures
pytest has xUnit-style of fixtures. See the code in Listing 5-4 as an example.

Listing 5-4. test_module03.py

def setup_module(module):
 print("\nIn setup_module()...")

def teardown_module(module):
 print("\nIn teardown_module()...")

def setup_function(function):
 print("\nIn setup_function()...")

def teardown_function(function):
 print("\nIn teardown_function()...")

def test_case01():
 print("\nIn test_case01()...")

def test_case02():

Chapter 5 ■ pytest

92

 print("\nIn test_case02()...")

class TestClass02:

 @classmethod
 def setup_class(cls):
 print ("\nIn setup_class()...")

 @classmethod
 def teardown_class(cls):
 print ("\nIn teardown_class()...")

 def setup_method(self, method):
 print ("\nIn setup_method()...")

 def teardown_method(self, method):
 print ("\nIn teardown_method()...")

 def test_case03(self):
 print("\nIn test_case03()...")

 def test_case04(self):
 print("\nIn test_case04()...")

In this code, setup_module() and teardown_module() are module-level fixtures
that are invoked before and after anything else in the module. setup_class() and
teardown_class() are the class-level fixtures and they run before and after anything else
in the class. You have to use the @classmethod() decorator with them. setup_method()
and teardown_method() are method-level fixtures that run before and after every test
method. setup_function() and teardown_function() are function-level fixtures that
run before and after every test function in the module. In nose, you need the @with_setup()
decorator with the test functions to assign those to the function level-fixtures. In pytest,
function-level fixtures are assigned to all the test functions by default.

Also, just like with nose, you need to use the -s command-line option to see the
detailed log on the command line.

Let’s run the code with an additional -s option, as follows:

py.test -vs test_module03.py

Now, run the test again with the following command:

py.test -v test_module03.py

Compare the outputs of these modes of execution for a better understanding.

Chapter 5 ■ pytest

93

pytest Support for unittest and nose
pytest supports all the tests written in unittest and nose. pytest can automatically
discover and run the tests written in unittest and nose. It supports all the xUnit-style
fixtures for unittest test classes. It also supports most of the fixtures in nose. Try running
py.test -v in the chapter03 and chapter04 directories.

Introduction to pytest Fixtures
Apart from supporting xUnit-style fixtures and unittest fixtures, pytest has its own set
of fixtures that are flexible, extensible, and modular. This is one of the core strengths of
pytest and why it’s a popular choice of automation testers.

In pytest, you can create a fixture and use it as a resource where it is needed.
Consider the code in Listing 5-5 as an example.

Listing 5-5. test_module04.py

import pytest

@pytest.fixture()
def fixture01():
 print("\nIn fixture01()...")

def test_case01(fixture01):
 print("\nIn test_case01()...")

In Listing 5-5, fixture01() is the fixture function. It is because we are using the
@pytest.fixture() decorator with that. test_case01() is a test function that uses
fixture01(). For that, we are passing fixture01 as an argument to test_case01().

Here is the output:

============================= test session starts ======================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module04.py::test_case01
In fixture01()...

In test_case01()...
PASSED

========================== 1 passed in 0.04 seconds ====================

Chapter 5 ■ pytest

94

As you can see, fixture01() is invoked before the test function test_case01(). You
could also use the @pytest.mark.usefixtures() decorator, which achieves the same
result. The code in Listing 5-6 is implemented with this decorator and it produces the
same output as Listing 5-5.

Listing 5-6. test_module05.py

import pytest

@pytest.fixture()
def fixture01():
 print("\nIn fixture01()...")

@pytest.mark.usefixtures('fixture01')
def test_case01(fixture01):
 print("\nIn test_case01()...")

The output of Listing 5-6 is exactly the same as the code in Listing 5-5.
You can use the @pytest.mark.usefixtures() decorator for a class, as shown in

Listing 5-7.

Listing 5-7. test_module06.py

import pytest

@pytest.fixture()
def fixture01():
 print("\nIn fixture01()...")

@pytest.mark.usefixtures('fixture01')
class TestClass03:
 def test_case01(self):
 print("I'm the test_case01")

 def test_case02(self):
 print("I'm the test_case02")

Here is the output:

============================ test session starts =======================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 2 items

test_module06.py::TestClass03::test_case01
In fixture01()...

Chapter 5 ■ pytest

95

I'm the test_case01
PASSED
test_module06.py::TestClass03::test_case02
In fixture01()...
I'm the test_case02
PASSED

========================== 2 passed in 0.08 seconds ====================

If you want to run a block of code after the test with a fixture has run, you have to add
a finalizer function to the fixture. Listing 5-8 demonstrates this idea.

Listing 5-8. test_module07.py

import pytest

@pytest.fixture()
def fixture01(request):
 print("\nIn fixture...")

 def fin():
 print("\nFinalized...")
 request.addfinalizer(fin)

@pytest.mark.usefixtures('fixture01')
def test_case01():
 print("\nI'm the test_case01")

The output is as follows:

=========================== test session starts ========================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module07.py::test_case01
In fixture...

I'm the test_case01
PASSED
Finalized...

========================= 1 passed in 0.05 seconds =====================

Chapter 5 ■ pytest

96

pytest provides access to the fixture information on the requested object. Listing 5-9
demonstrates this concept.

Listing 5-9. test_module08.py

import pytest

@pytest.fixture()
def fixture01(request):
 print("\nIn fixture...")
 print("Fixture Scope: " + str(request.scope))
 print("Function Name: " + str(request.function.__name__))
 print("Class Name: " + str(request.cls))
 print("Module Name: " + str(request.module.__name__))
 print("File Path: " + str(request.fspath))

@pytest.mark.usefixtures('fixture01')
def test_case01():
 print("\nI'm the test_case01")

The following is the output of Listing 5-9:

============================ test session starts =======================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 1 items

test_module08.py::test_case01
In fixture...
Fixture Scope: function
Function Name: test_case01
Class Name: None
Module Name: test.test_module08
File Path: /home/pi/book/code/chapter05/test/test_module08.py

I'm the test_case01
PASSED

========================= 1 passed in 0.06 seconds =====================

Scope of pytest Fixtures
pytest provides you with a set of scope variables to define exactly when you want to use
the fixture. The default scope of any fixture is the function level. It means that, by default,
the fixtures are at the level of function.

Chapter 5 ■ pytest

97

The following is the list of scopes for pytest fixtures:

•	 function: Runs once per test

•	 class: Runs once per class of tests

•	 module: Runs once per module

•	 session: Runs once per session

To use these, define them like this:

@pytest.fixture(scope="class")

•	 Use the function scope if you want the fixture to run after every
single test. This is fine for smaller fixtures.

•	 Use the class scope if you want the fixture to run in each class of
tests. Typically, you’ll group tests that are alike in a class, so this
may be a good idea, depending on how you structure things.

•	 Use the module scope if you want the fixture to run at the start of
the current file and then after the file has finished its tests. This
can be good if you have a fixture that accesses the database and
you set up the database at the beginning of the module and then
the finalizer closes the connection.

•	 Use the session scope if you want to run the fixture at the first test
and run the finalizer after the last test has run.

There is no scope for packages in pytest. However, you can cleverly use the session
scope as a package-level scope by making sure that only a specific test package runs in a
single session.

pytest.raises()
In unittest, you have assertRaises() to check if any test raises an exception. There
is a similar method in pytest. It is implemented as pytest.raises() and is useful for
automating negative test scenarios.

Consider the code shown in Listing 5-10.

Listing 5-10. test_module09.py

import pytest

def test_case01():
 with pytest.raises(Exception):
 x = 1 / 0

def test_case02():
 with pytest.raises(Exception):
 x = 1 / 1

Chapter 5 ■ pytest

98

In Listing 5-10, the line with pytest.raises(Exception) checks if an exception
is raised in the code. If an exception is raised in the block of the code that include the
exception, the test passes; otherwise, it fails.

Here is Listing 5-10’s output:

========================= test session starts =============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test, inifile:
collected 2 items

test_module09.py::test_case01 PASSED
test_module09.py::test_case02 FAILED

============================= FAILURES ====================================
_____________________________ test_case02 _________________________________

 def test_case02():
 with pytest.raises(Exception):
> x = 1 / 1
E Failed: DID NOT RAISE <class 'Exception'>

test_module09.py:10: Failed
==================== 1 failed, 1 passed in 0.21 seconds ===================

In test_case01(), an exception is raised, so it passes. test_case02() does not raise
any exception, so it fails. As mentioned earlier, this is extremely useful for testing negative
scenarios.

Important pytest Command-Line Options
Some of pytest’s more important command-line options are discussed in the following
sections.

Help
For help, run py.test -h. It will display a list and usage of various command-line
options.

Stopping After the First (or N) Failures
You can stop the execution of tests after the first failure using py.test -x. In the same
way, you can use py.test --maxfail=5 to stop execution after five failures. You can also
change the argument provided to --maxfail.

Chapter 5 ■ pytest

99

Profiling Test Execution Duration
You can use the py.test --durations=10 command to show the 10 slowest tests. You
can change the argument provided to --duration. Try running this command on the
chapter05 directory as an example.

JUnit-Style Logs
You can generate JUnit-style XML log files by running the following command:

py.test --junitxml=result.xml

The XML file will be generated in the current directory.

Generating a Plain Result
In an earlier section, you learned how to generate an XML log file. In same way, you can
also generate a plaintext result file by running the following command:

py.test --resultlog=result.log

The plaintext log file will be generated in the current directory.

Sending a Test Report to Online pastebin Service
The following command sends the entire execution log to an online remote pastebin
service:

py.test -v --pastebin=all

As of now, only pasting to the http://bpaste.net service is implemented. The
output of the execution will contain a web link where the log has been stored. Open
the link in a web browser to view the log. This is a great way to share the log across a
geographically distributed team. Note that the link to the online pastebin log page
expires in seven days.

Conclusion
The following are the reasons I use pytest and recommend that all Python enthusiasts
and professionals use it:

•	 It is better than unittest. The resulting code is cleaner and
simpler.

•	 Unlike with nose, pytest is still under active development.

http://bpaste.net/

Chapter 5 ■ pytest

100

•	 It has great features for controlling the test execution.

•	 It can generate XML as well as plaintext results without an
additional plugin.

•	 It can run unittest tests.

•	 It has its own set of advanced fixtures that are modular in nature.

If you are working on a project where they use unittest, nose, or doctest as the test
framework for Python, I recommend migrating your tests to pytest.

101© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3_6

CHAPTER 6

Tips and Tricks

In the first chapter of the book, you about learned the history and philosophy of Python.
Subsequent chapters explored the features of various test automation frameworks in
Python. The frameworks you explored included doctest, unittest, nose, nose2, and
pytest. This chapter looks at coding conventions that will make the test discovery easier
across the frameworks. Then, we will look at the concept of test-driven development and
how it can be implemented in Python 3 projects with the help of pytest.

Coding and Filenaming Conventions for Easier
Test Discovery
You have seen that all the xUnit-style frameworks have the feature of test discovery,
that is, the automated detection, execution, and report generation of tests. This is a very
important feature, as it makes life easier for code testers. You can even schedule the test
discovery process by using OS schedulars (for example, cron in Linux-based operating
systems and Windows Schedular in Windows), and they will run tests at scheduled times
automatically.

In order to ensure that the test discovery system detects all the tests successfully, I
usually follow these code and filename conventions:

•	 Names of all the test modules (the test files) should start with
test_

•	 Names of all the test functions should start with test_

•	 Names of all the test classes should start with Test

•	 Names of all the test methods should start with test_

•	 Group all the tests into test classes and packages

•	 All the packages with test code should have an __init__.py file

It is always a good idea to follow the PEP 8 convention for the code. It can be found at
https://www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/

Chapter 6 ■ tips and triCks

102

If you use these conventions for your code and filenames, the test discovery feature
of all the test automation frameworks—including unittest, nose, nose2, and pytest—
will detect the tests without any problem. So, the next time you write your tests, follow
these conventions for best results.

Test-Driven Development with pytest
Test-driven development (TDD) is a paradigm whereby you implement the new feature
or requirement by writing the tests first, watch them fail, and then write the code to make
the failed tests pass. Once the basic skeleton of the features is implemented this way,
you then build on this by altering the tests and then changing the development code to
accommodate the added functionality. You repeat this process as many times as needed
to accommodate all new requirements.

Essentially, TDD is a cycle where you write the tests first, watch them fail, implement
the required features, and repeat this process until the new features are added to the
existing code.

By writing the automated tests before the development code, it forces you to think
about the problem at hand first. As you start to build your tests, you have to think about
the way you write the development code that must pass the already-written automated
tests in order to be accepted.

Figure 6-1 sums up the TDD approach.

Refactor

Write a
Failing

Test

Make
the Test

Pass

Figure 6-1. TDD flow

To see how TDD is implemented in Python with pytest, create a directory called
chapter06 for this TDD in the code directory. You will use this directory for the TDD
exercise.

Chapter 6 ■ tips and triCks

103

Create the test module shown in Listing 6-1 in the chapter06 directory.

Listing 6-1. test_module01.py

class TestClass01:

 def test_case01(self):
 calc = Calculator()
 result = calc.add(2, 2)
 assert 4 == result

Run the code in Listing 6-1 with the following command:

py.test -vs test_module01.py

The output will be as follows:

============================= test session starts =============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 -- /
usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter06, inifile:
collected 1 items

test_module01.py::TestClass01::test_case01 FAILED

================================== FAILURES ===================================
___________________________ TestClass01.test_case01 ___________________________

self = <test_module01.TestClass01 object at 0x763c03b0>

 def test_case01(self):
> calc = Calculator()
E NameError: name 'Calculator' is not defined

test_module01.py:4: NameError
=========================== 1 failed in 0.29 seconds ==========================

From this output, you can see that the problem is due to us not importing
Calculator. That is because we have not created the Calculator module yet! So let’s
define the Calculator module in a file called calculator.py, as shown in Listing 6-2,
under the same directory,

Chapter 6 ■ tips and triCks

104

Listing 6-2. calculator.py

class Calculator:

 def add(self, x, y):
 pass

Make sure that there are no errors in calculator.py by running the following
command every time you modify the module:

python3 calculator.py

Now import Calculator in the test module, as shown in Listing 6-3.

Listing 6-3. test_module01.py

from calculator import Calculator

class TestClass01:

 def test_case01(self):
 calc = Calculator()
 result = calc.add(2, 2)
 assert 4 == result

Run the test_module01.py again. The output will be as follows:

============================ test session starts ==============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter06, inifile:
collected 1 items

test_module01.py::TestClass01::test_case01 FAILED

================================= FAILURES ====================================
___________________________ TestClass01.test_case01 ___________________________

self = <test_module01.TestClass01 object at 0x762c24b0>

 def test_case01(self):
 calc = Calculator()
 result = calc.add(2, 2)
> assert 4 == result
E assert 4 == None

test_module01.py:9: AssertionError
=========================== 1 failed in 0.32 seconds ==========================

Chapter 6 ■ tips and triCks

105

The add() method returns the wrong value (i.e., pass), as it does not do anything at
the moment. Fortunately, pytest returns the line with the error in the test run so you can
decide what you need to change. Let’s fix the code in the add() method in calculator.py
as shown in Listing 6-4.

Listing 6-4. calculator.py

class Calculator:

 def add(self, x, y):
 return x+y

You can run the test module again. Here is the output:

============================= test session starts =============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter06, inifile:
collected 1 items

test_module01.py::TestClass01::test_case01 PASSED

========================== 1 passed in 0.08 seconds ===========================

Now you can add more test cases to the test module (as shown in Listing 6-5) to
check for more features,

Listing 6-5. test_module01.py

from calculator import Calculator
import pytest

class TestClass01:

 def test_case01(self):
 calc = Calculator()
 result = calc.add(2, 2)
 assert 4 == result

 def test_case02(self):
 with pytest.raises(ValueError):
 result = Calculator().add(2, 'two')

In the modified code shown in Listing 6-5, we’re trying to add an integer and a string,
which should raise a ValueError exception.

Chapter 6 ■ tips and triCks

106

If you run the modified test module, you get the following:

============================= test session starts =============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 -- /
usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter06, inifile:
collected 2 items

test_module01.py::TestClass01::test_case01 PASSED
test_module01.py::TestClass01::test_case02 FAILED

================================= FAILURES ====================================
__________________________ TestClass01.test_case02 ____________________________

self = <test_module01.TestClass01 object at 0x7636f050>

 def test_case02(self):
 with pytest.raises(ValueError):
> result = Calculator().add(2, 'two')

test_module01.py:14:
_ _

self = <calculator.Calculator object at 0x7636faf0>, x = 2, y = 'two'

 def add(self, x, y):
> return x+y
E TypeError: unsupported operand type(s) for +: 'int' and 'str'

calculator.py:4: TypeError
===================== 1 failed, 1 passed in 0.33 seconds ======================

As you can see in the output, the second test fails as it does not detect a ValueError
exception. So, let’s add the provision to check if both the arguments are numeric, else
raise a ValueError exception—see Listing 6-6.

Listing 6-6. calculator.py

class Calculator:

 def add(self, x, y):
 number_types = (int, float, complex)

 if isinstance(x, number_types) and isinstance(y, number_types):
 return x + y
 else:
 raise ValueError

Chapter 6 ■ tips and triCks

107

Finally, Listing 6-7 shows how to add two more test cases to the test module to check
if add() is behaving as expected.

Listing 6-7. test_module01.py

from calculator import Calculator
import pytest

class TestClass01:

 def test_case01(self):
 calc = Calculator()
 result = calc.add(2, 2)
 assert 4 == result

 def test_case02(self):
 with pytest.raises(ValueError):
 result = Calculator().add(2, 'two')

 def test_case03(self):
 with pytest.raises(ValueError):
 result = Calculator().add('two', 2)

 def test_case04(self):
 with pytest.raises(ValueError):
 result = Calculator().add('two', 'two')

When you run the test module in Listing 6-7, you will get the following output:

============================= test session starts =============================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 -- /
usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter06, inifile:
collected 4 items

test_module01.py::TestClass01::test_case01 PASSED
test_module01.py::TestClass01::test_case02 PASSED
test_module01.py::TestClass01::test_case03 PASSED
test_module01.py::TestClass01::test_case04 PASSED

========================== 4 passed in 0.14 seconds ===========================

This is how TDD is implemented in real-life projects. You write a failing test first,
refactor the development code, and continue the same process until the test passes.
When you want to add a new feature, you repeat this process to implement it.

Chapter 6 ■ tips and triCks

108

Conclusion
In this chapter, you learned the coding and filename conventions for easy test discovery;
these conventions can be implemented across all the automation frameworks. You also
read a brief introduction to TDD.

You began the book with an introduction to Python, including how to install it
on the various OSs, and differences between Python version 2 and version 3. Then,
in subsequent chapters, you explored the most used test automation frameworks for
Python.

In Chapter 2, you explored docstrings and how they are useful in writing doctests.
You learned that the doctest is not a very powerful test framework, as it lacks many
essentials of a true test framework.

In Chapter 3, we were introduced to Python's batteries-included test automation
framework, unittest. You learned how to write xUnit-style test cases for Python with
unittest.

In Chapter 4, you explored a more advanced, but defunct, test automation
framework called nose. You learned about the advanced features and plugins offered by
nose. Because nose is not under active development, you used nose2 as a test-runner for
running nose and unittest tests.

In Chapter 5, you studied and explored one of the best unit test automation
frameworks for Python, pytest. You learned how and why it is better than unittest and
nose. You also explored its plugins and modular fixtures.

You have practiced numerous examples throughout the book, the goal of which is to
instill you with confidence in Python test automation. You can also work with codebases
where they have implemented test automation with unittest, doctest, or nose and plan
a migration to pytest. Also, if you are a career Python developer or an automation expert,
you can follow the TDD approach in your projects. I hope all of you have enjoyed reading
this book as much as I enjoyed writing it. Happy Pythoning and testing!!

http://dx.doi.org/10.1007/978-1-4842-2677-3_2
http://dx.doi.org/10.1007/978-1-4842-2677-3_3
http://dx.doi.org/10.1007/978-1-4842-2677-3_4
http://dx.doi.org/10.1007/978-1-4842-2677-3_5

109© Ashwin Pajankar 2017
A. Pajankar, Python Unit Test Automation, DOI 10.1007/978-1-4842-2677-3

��������� A
add() method, 35
assertEqual() method, 35, 55
assertRaises() method, 60–62
assertTrue(), 55
Automated unit testing, 20

��������� B
Benevolent Dictator for Life, 1

��������� C
Coding and file naming

conventions, 101–102

��������� D, E, F
Docstrings, 20

advantage, 20
in Python, 21–24

Doctest, 19, 24–25, 29, 101
advantages and disadvantages, 28–29
failing tests, 26–27
separate test file, 27–28

��������� G, H
Geany, 14
Guido van Rossum at the Centrum

Wiskunde & Informatica, 1

��������� I, J, K
id()methods, 56
inspect.stack()[0][3] method, 34
Integrated development environment

(IDE), 12

��������� L, M
Lazy loading, 85

��������� N
National Research Institute for

Mathematics and
Computer Science, 1

Nose, Python, 65, 101
advantages over unittest, 83–84
disadvantages, 84
fixtures for classes, modules, and

methods, 70–72
alternate names, 75
assert_equals() method, 75–76
for functions, 72–74
for packages, 74

getting help, 68
getting started with, 66
installing

on Linux OS, 65
on MacOS and Windows, 66

pytest support, 93
report generation

color output in console, 82–83
HTML reports, creating, 81
running unittest tests, 83
XML reports, creating, 80

test case, 67
test discovery, 69–70
testing code, organizing, 68–69
testing tools, 77

ok_ and eq_, 77–78
@raises() decorator, 78–79
@timed() decorator, 79–80

test modules, 67–68
verifying installation, 66

Nose2, 65, 84–85, 87, 101

Index

■ INDEX

110

��������� O
OS schedulars, 101

��������� P, Q, R
PyCharm, 15
pytest, 85, 87

command-line options, 98
generating plain result, 99
help, 98
JUnit-style logs, 99
profiling test execution

duration, 99
stopping after the first (or n)

failures, 98
test report to online pastebin

service, 99
fixtures, 93–96

pytest.raises(), 97–98
scope, 96–97

overview, 87
with py.test command, 89
simple test, 88
support for unittest and nose, 93
TDD with, 102–107
test class and package, 90–91
test discovery, 91
xUnit-style of fixtures, 91–92

Python
community support, 5
docstring in, 21–24
easy to learn, 2
easy to maintain, 3
easy to read, 3
extensible, 4
extensive libraries, 4
Geany, 14
high-level language, 3
history, 1
IDLE, 13
installation

debian, ubuntu, and derivatives, 7
Fedora and CentOS, 8
linux, 7
MacOS X, 8
windows, 8–9, 11

interactive mode, 11
interpreted, 3
memory management, 5
normal mode, 12

object-oriented programming
paradigms, 4

open source, 3
portable, 3
powerful, 5
PyCharm, 15
PyDev Plugin for Eclipse, 14
Python 2 vs. Python 3, 5–7
Python 3, 5
rapid prototyping, 4
robust, 4
simple, 2

PyUnit, 31

��������� S
setUpModule() method, 38
shortDescription() method, 56
Software testing, 19

automated unit testing, 20
docstrings, 20

advantage, 20
in Python, 21–24

doctest, 24–25
advantages and disadvantages,

28–29
failing tests, 26–27
separate test file, 27–28

test automation, 19
unit testing, 19

��������� T
tearDownModule() methods, 38
Test automation, 19
Test discovery, coding and file naming

conventions, 101–102
Test-driven development (TDD), 102–107
Test module, 36

��������� U
Unittest/unit testing, 19, 29, 101

advantages of nose over, 83
assertions, 55
assertRaises(), 60–62
benefits of automated, 20
coding conventions, 54–55
command-line options and help,

42–46
creation, test package, 46–47

■ INDEX

111

development and test code
separate directories,

49–50, 52–53
single directory, 48–49

exceptions, test case, 59
failing a test, 57–58
organizing code, 48
Python libraries, 62
pytest support, 93
PyUnit, 31
test discovery, 53–54
test execution, 40–42
test file/module, 36–37
test fixtures, 37–38

test methods, 34
unittest.main(), 39–40
usage, 32–33
useful methods, 56
verbosity control, 35–36
xUnit, 31–32

��������� V, W
Verbosity control, 35–36

��������� X, Y, Z
xUnit, 31–32

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Python
	The History of Python
	Features of Python
	Simple
	Easy to Learn
	Easy to Read
	Easy to Maintain
	Open Source
	High-Level Language
	Portable
	Interpreted
	Object-Oriented
	Extensible
	Extensive Libraries
	Robust
	Rapid Prototyping
	Memory Management
	Powerful
	Community Support

	Python 3
	The Differences Between Python 2 and Python 3
	Why Use Python 3

	Installation of Python 3
	Installation on Linux
	Installation on Debian, Ubuntu, and Derivatives
	Installation on Fedora and CentOS

	Installation on MacOS X
	Installation on Windows

	Running a Python Program and Python Modes
	Interactive Mode
	Normal Mode

	IDEs for Python
	IDLE
	The PyDev Plugin for Eclipse
	Geany
	PyCharm

	Conclusion

	Chapter 2: Getting Started
	A Brief Introduction to Software Testing Concepts
	Unit Testing
	Test Automation
	The Benefits of Automated Unit Testing

	Using Docstrings
	Example of a Docstring in Python

	A Brief Introduction to doctest
	Failing Tests
	Separate Test File
	Advantages and Disadvantages of doctest

	Conclusion

	Chapter 3: Unittest
	Introduction to xUnit
	Using Unittest
	Order of Execution of the Test Methods
	Verbosity Control
	Multiple Test Classes Within the Same Test File/Module
	Test Fixtures
	Running Without unittest.main()
	Controlling the Granularity of Test Execution
	Listing All the Command-Line Options and Help
	Important Command-Line Options
	Creating a Test Package
	Organizing the Code
	Placing the Development and Test Code in a Single Directory
	Placing the Development and Test Code in Separate Directories

	Test Discovery
	Coding Conventions for unittest
	Assertions in unittest
	Other Useful Methods
	Failing a Test
	Exceptions in the Test Case
	assertRaises()

	Conclusion

	Chapter 4: nose and nose2
	Introduction to nose
	Installing nose on Linux OS
	Installing nose on MacOS and Windows
	Verifying the Installation
	Getting Started with nose
	A Simple nose Test Case
	Running the Test Module with nosetests
	Getting Help
	Organizing the test code
	Test Discovery

	Fixtures for Classes, Modules, and Methods
	Fixtures for Functions
	Fixtures for Packages
	Alternate Names of the nose Fixtures
	assert_equals()

	Testing Tools
	ok_ and eq_
	The @raises() Decorator
	The @timed() decorator

	Report Generation
	Creating an XML Report
	Creating an HTML Report
	Creating Color Output in the Console

	Running unittest Tests from nose
	Advantages of nose over unittest
	Disadvantages of nose
	Using Nose 2
	Conclusion

	Chapter 5: pytest
	Introduction to pytest
	Simple Test
	Running Tests with the py.test Command
	Test Class and Test Package in pytest
	Test Discovery in pytest
	xUnit-Style Fixtures
	pytest Support for unittest and nose

	Introduction to pytest Fixtures
	Scope of pytest Fixtures
	pytest.raises()

	Important pytest Command-Line Options
	Help
	Stopping After the First (or N) Failures
	Profiling Test Execution Duration
	JUnit-Style Logs
	Generating a Plain Result
	Sending a Test Report to Online pastebin Service

	Conclusion

	Chapter 6: Tips and Tricks
	Coding and Filenaming Conventions for Easier Test Discovery
	Test-Driven Development with pytest
	Conclusion

	Index

