

Early praise for iOS Unit Testing by Example

When it comes to testing strategies and patterns, Jon Reid is an absolute wizard!
Few things have influenced me professionally as much as Jon’s writings on TDD.
I’m using many of his techniques from this book every single day in the develop-
ment of our iOS applications.

➤ Fred A. Brown
Enterprise Software Architect, Oracle

After reading this book, iOS developers will no longer wonder how to unit test or
why to unit test. They’ll be equipped to get all the benefits unit testing offers.

➤ Josh Justice
Web and Mobile Developer, Big Nerd Ranch

Jon Reid is the designated expert on unit testing in the iOS space. This helpful
and informative book will help you avoid common pitfalls. The wrong test is as
bad as no tests at all.

➤ Janie Larson
Red Queen Coder, LLC

Jon has given us the definitive guide on unit testing with XCTest. Techniques,
tips, tricks, and tons of Jon’s wisdom.

➤ Jeff Langr
Langr Software Solutions, Inc.

Jon is one of the most experienced TDD devs in the Cocoa world; for years he
shared interesting techniques one could apply in their codebases. This book is a
massive compendium of knowledge and should be read by anyone that wants to
get up to speed with proper iOS testing techniques.

➤ Krzysztof Zablocki
CEO and Cofounder, Pixie

Becoming a disciplined test-driven iOS developer takes patience, knowledge, dis-
cipline, and practice. iOS Unit Testing by Example will provide a major head start
on this journey and supply the toolbox of skills you need to start writing better,
more maintainable code. I know of no one better placed and better qualified to
help than Jon Reid.

➤ Andrew Ebling
Founder and Developer, Tenero Mobile Limited

iOS Unit Testing by Example
XCTest Tips and Techniques Using Swift

Jon Reid

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Michael Swaine
Copy Editor: Adaobi Obi Tulton
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-681-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Kay, who believed in me

Contents

Foreword xv
Preface xvii

Part I — Foundations

1. Assert Yourself 3
What Are Unit Tests Anyway? 4
Create a Place to Play with Tests 4
Write Your First Assertion 6
Add a Descriptive Message 8
Avoid Conditionals in Tests 9
Describe Objects upon Failure 10
Test for Equality 11
Test Equality with Optionals 12
Fudge Equality with Doubles and Floats 13
Avoid Redundant Messages 14
Choose the Right Assertion 15
Key Takeaways 16
Activities 17
What’s Next? 18

2. Manage Your Test Life Cycles 19
Make a New Place to Play 19
Start from Test Zero 21
Hook Up Tests to Production Code 22
Examine Console Output 23
Observe Object Life Cycles to Learn the Phases of a Test 26
The Wrong Way to Reduce Duplicate Test Code 28
Learn How XCTest Manages Test Cases 30

Use setUp() and tearDown() 31
Key Takeaways 33
Activities 33
What’s Next? 34

3. Measure Code Coverage and Add Tests 35
Make a New Place to Play 35
Enable Code Coverage 36
Examine Code Coverage Results 37
Drill into a Partially Covered Line 39
Add Tests for Existing Code 40
Cover a Conditional 42
Cover a Loop 45
Cover Statements in a Sequence 46
Avoid Percentage Targets, Embrace Forward Movement 49
Key Takeaways 49
Activities 50
What’s Next? 50

4. Take Control of Application Launch 53
Make a New Place to Play 53
Observe the Default Behavior 54
Learn About the Test Launch Sequence 55
Bypass the Normal App Delegate 55
Put Up with the Initial View Controller 57
Tweak Your Testing App Delegate 57
Key Takeaways 58
Activities 58
What’s Next? 59

5. Load View Controllers 61
Make a New Place to Play 61
Set Up a Storyboard-Based View Controller for Experiments 62
Load a Storyboard-Based View Controller 64
Set Up a XIB-Based View Controller for Experiments 66
Load a XIB-Based View Controller 67
Set Up a Code-Based View Controller for Experiments 68
Load a Code-Based View Controller 69
Key Takeaways 71
Activities 71
What’s Next? 72

Contents • viii

6. Manage Difficult Dependencies 73
Be Okay with Problem-Free Dependencies 73
Identify Difficult Dependencies 75
Create Boundaries to Isolate Dependencies 77
Make a New Place to Play 77
Add Backdoors to Singletons You Own 80
Subclass and Override: A Legacy Code Technique 83
Inject Instances Through Initializers or Properties 85
Inject Closures to Make New Instances 88
Key Takeaways 90
Activities 91
What’s Next? 91

Part II — iOS Testing Tips and Techniques

7. Testing Outlet Connections 95
Make a New Place to Play 95
Test Outlet Connections 96
Check the Effectiveness of Failure Messages 97
Key Takeaways 98
Activities 98
What’s Next? 99

8. Testing Button Taps (Using Actions) 101
Make a Place to Play with a Button 101
Test Button Taps 102
Make a Test Helper for Button Taps 104
Key Takeaways 105
Activities 105
What’s Next? 106

9. Testing Alerts 107
Make a New Place to Play 107
Add the Helper Framework to the Project 108
Test Alerts Using the Alert Verifier 110
Move the SUT into the Test Fixture 112
Add Tests for Alert Buttons 112
Key Takeaways 113
Activities 114
What’s Next? 114

Contents • ix

10. Testing Navigation Between Screens 115
Make a New Place to Play 115
Set Up Code-Based Navigation 116
Set Up Segue-Based Navigation 118
Test Code-Based Push Navigation 119
Test Code-Based Modal Presentation 122
Test Segue-Based Push Navigation 124
Test Segue-Based Modal Navigation 126
Key Takeaways 127
Activities 128
What’s Next? 128

11. Testing UserDefaults (with Fakes) 129
Make a New Place to Play 129
Isolate UserDefaults with Dependency Injection 130
Extract a Protocol to Support Test Doubles 131
Make a Fake Object 133
Test UserDefaults 134
Key Takeaways 137
Activities 137
What’s Next? 138

12. Testing Network Requests (with Mocks) 139
Make a New Place to Play 139
Isolate URLSession with Dependency Injection 141
Extract a URLSession Protocol for Test Doubles 141
Make a Test Spy 143
Design the Test Case 144
Promote the Test Spy into a Mock Object 146
Improve Mock Object Reporting 148
Key Takeaways 151
Activities 151
What’s Next? 152

13. Testing Network Responses (and Closures) 153
Make a New Place to Play 153
Parse the Response 155
Start with a Fresh Test Spy 158
Design the Test Case 159
Test Asynchronous Code 161
Keep Asynchronous Code in Its Closure 163

Contents • x

Test an Error Scenario 164
Key Takeaways 167
Activities 168
What’s Next? 168

14. Testing Text Fields (and Delegate Methods) 169
Make a Place to Play 169
Test the Outlets 172
Test Attributes and Wrangle UIKit Descriptions 173
Test Delegate Methods 177
Test Input Focus 180
Key Takeaways 183
Activities 184
What’s Next? 184

15. Testing Table Views 185
Make a Place to Play 185
Test Table Views 187
Key Takeaways 191
Activities 191
What’s Next? 192

16. Testing View Appearance (with Snapshots) 193
Make a Place to Play 193
Add FBSnapshotTestCase to a Test Target 196
Set the Location for Reference Images 198
Write a Snapshot Test 199
See the Difference in a Snapshot Failure 201
Manage Your Snapshot Tests 203
Key Takeaways 205
Activities 206
What’s Next? 206

Part III — Using Your New Power

17. Unleash the Power of Refactoring 209
What Is Refactoring? 209
Lay Out the Views for Our Practice App 210
Add the Code to Our Practice App 213
Replace the Difficult Dependency with a Mock Object 220
Write the First Tests of the Change Password View Controller 223

Contents • xi

Test the Cancel Button 227
Test the Submit Button 229
Test the Text Field Delegate Method 240
Refactor to Break Up a Long Function 242
Extract a Method with Parameters 245
Clean Up a Few More Places 251
Key Takeaways 253
What’s Next? 254

18. Refactoring: Moving to MVVM 255
What Is MVVM? 255
Replace String Literals to Use a View Model 256
Overwrite Storyboard Labels 259
Respond to Changes in the View Model 260
Move Logic into the View Model 268
Key Takeaways 271
What’s Next? 272

19. Refactoring: Moving to MVP 273
What Is MVP? 273
Set Up the MVP Types 274
Extract Methods into the View Commands Protocol 275
Move a Function into the Presenter 279
Remove the didSet Observer 281
Use Refactoring Principles to Reparent a Swift Type 284
Move Several Functions to the Presenter 286
Extract Password Validation into Its Own Type 288
Finish Up the Refactoring to MVP 293
Key Takeaways 295
What’s Next? 296

20. Test-Driven Development Beckons to You 297
What Is TDD? 297
Make a New Place to Play with TDD 299
Define the Requirements of the Time-of-Day Greeter 299
Design the First Failing Test with Bare Production Code 300
Make the First Test Pass with “Good Morning” 303
Refactor the First Test to Make It More Expressive 303
Repeat the TDD Steps for the Second Test 305
Add Tests to Expand “Good Afternoon” 307
Implement “Good Evening” 308

Contents • xii

Step Back to Refactor the Method as a Whole 309
Add the Name to the Greeting 314
Key Takeaways 317
What’s Next? 318

Bibliography 321
Index 323

Contents • xiii

Foreword
In these days of social media, direct marketing, and sponsored “influence,”
there seems to be an arms race to devalue words as rapidly as possible. A
mere two thousand years ago, a “passion” was a commitment to a cause or
belief so powerful that it led to suffering, abandonment, and rejection from
your closest personal friends, even to the greatest of personal sacrifices.
Today, on my LinkedIn screen as I write this, I can see people who tell me
that they are “passionate” about “digital talent,” “advertising and marketing,”
and “blockchain and broader financial technology.” The message that each
is conveying appears to be that they’re open to recruiters talking to them
about paid work in those fields. Similarly, “evangelism” has shrunk in scope
from announcing the good news from on high to working in marketing for a
technology company.

Nonetheless, I have no hesitation in describing Jon Reid as a passionate
evangelist for test-infected—test-driven is not strong enough—development,
and improving the quality of iOS apps. I worked with Jon at Facebook back
in 2014, where he brought his trademark combination of enthusiasm, com-
mitment, kindness, patience, and humility to bear on some particularly
challenging problems. We had already met and collaborated both online and
at conferences, and I knew this about Jon: everything he says about testing
with iOS is not because he is the expert, but because he wants you to become
the expert too. Not necessarily straight away, but he wants you to share in
the beauty and power he sees and to develop the same care and appreciation
about the topic.

This book will support you in that journey. Whether you picked it up because
you’re wondering why Xcode always asks you to “include unit tests” when
you start a project, or because you’re looking for specific tips to solve tricky
problems and increase your test coverage, you’ll find help in here. I did. On
the day that Jon sent me the manuscript, I was struggling with writing a test
to show that one view controller presented another modally. I searched this

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

book, and there was the answer. That makes it easy to write a conclusion for
this foreword: read this book, because we’ve tested it, and it works.

Graham Lee
Head Labrarian at https://labrary.online

Warwick, United Kingdom, November 2019

Foreword • xvi

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Preface
One of the principles of agile software development is to “respond to change.”1

Agility sounds appealing, but these days it is often approached as a project-
management tool. Yet we are developers, working in code. The more the code
itself resists change, the harder it will be to adopt agility in any meaningful way.

But we can change this—because we are developers, working in code. There
are disciplines that fall under the term “technical agile practices.” Among
these are unit testing, refactoring, and test-driven development. These are
some of the tools we can use to make code pliable so we can safely bend that
code into new shapes.

I’ve been learning to apply these disciplines in the workplace since 2001.
Lately I’ve been teaching “Test-Driven Development for iOS” workshops.2 So
it seemed a safe bet that if I ever wrote a book, it would be about TDD.

But I realized that folks can learn theoretical TDD, but still be stuck on iOS
particulars. Because if you don’t know how to write unit tests for iOS code,
how can you ever TDD it? So my book plans pivoted, and here we are. My goal
is to give you solid handholds so you can unit test your iOS code.

Apple’s framework for the user interface, UIKit, lies at the center of iOS code.
And the center of UIKit is view controllers. That’s why I focus on unit testing
view controllers.

It may seem counterintuitive to test UI-centric code using unit tests. As soon
as one sees “UI” or “view,” it’s easy to assume that “UI tests” are the best fit.
But UI tests don’t provide the level of control and fast feedback that unit tests
give. UI tests are more about automating tests for quality assurance. Unit
tests, when they are very fast, serve a different purpose. They become a
development tool, helping you bend the code so you can “respond to change.”

1. https://agilemanifesto.org
2. https://qualitycoding.org/services/

report erratum • discuss

https://agilemanifesto.org
https://qualitycoding.org/services/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

So let’s learn how to write unit tests for iOS apps. But keep in mind that the
unit tests themselves aren’t the goal. They’re not the end, they’re the means.

How This Book Is Organized
This book explores its ideas using coding examples. Each chapter has a section
describing how to make “a place to play.” One can learn things by reading,
but learning by doing is more effective. If you take the trouble to set up each
project, trying the changes and experiments, your learning will go deeper.

I’ve organized the book into three parts: Foundations, iOS Testing Tips and
Techniques, and Using Your New Power. Here’s a quick summary of each part.

Part I: Foundations
The first part covers the foundations of using XCTest with iOS apps. The first
three chapters cover XCTest. We start with test assertions, move on to man-
aging test suites, and then how to use code coverage to reveal holes.

The next two chapters get into iOS apps. We explore how the app launch
sequence may interfere with test isolation. Then we’ll see how to load view
controllers from test code. This varies, depending on whether a view controller
is storyboard-based, XIB-based, or code-based.

The last chapter of Part I examines dependencies that make testing difficult.
Managing dependencies and replacing them is a foundational skill for unit
testing. We’ll see what options are available to us in the Swift programming
language.

Part II: iOS Testing Tips and Techniques
The second part is a grab bag of techniques for testing iOS specifics. You can
jump around these chapters more freely. You can follow the cross-references
that appear where the chapters build on each other.

We start with the basics of making sure outlets are connected, and how to
tap buttons. This alone opens up a world of testing possibilities.

Then we’ll see how to test presented views. This includes alerts and navigation
from one view controller to the next.

Things become more challenging as we get into persistent data and networking.
These topics lead us into test doubles. We’ll see how to use fakes, spies, and
mocks.

Preface • xviii

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

For examples of more complicated UI elements, we’ll examine text fields and
table views. They’ll take us into the topic of how to test delegate methods.
Finally, we’ll see how to test view appearance using snapshot tests.

Part III: Using Your New Power
The last part demonstrates what a solid set of unit tests empowers you to do.

Chapters 17, 18, and 19 focus on refactoring. Contrary to common usage,
the word “refactoring” doesn’t mean rewriting. Instead, it’s a structured disci-
pline of moving in small, verified steps to change the design of code.

Unlike most of the book, the examples in these chapters build on each other,
so do them in order. In Chapter 17, we create a working view controller, bring
it under test, and begin refactoring. We do this with the most common
refactoring moves. These moves belong in your tool belt.

To illustrate how much we can change code design by applying small steps,
the UI pattern starts from model-view-controller (MVC). In Chapter 18, we
refactor our way from MVC to model-view-view-model (MVVM). Then in Chapter
19, we transform the view controller to use model-view-presenter (MVP). The
point isn’t to promote any particular UI pattern but rather to show how
refactoring makes it possible to do large transformations.

Finally in the last chapter, we’ll do test-driven development. This code example
is unrelated to the earlier chapters. TDD combines unit testing and refactoring
with emergent design. Having covered unit testing and refactoring, you’ll be
most of the way there by the time you start this chapter.

Disclaimer: No SwiftUI Support
SwiftUI is Apple’s new declarative UI paradigm. They unveiled their first version
of it at WWDC 2019. Since there’s a lot of excitement around this paradigm,
you may wonder why it’s not covered in this book.

The main difficulty is that as I write this, SwiftUI is still quite new. This makes
it a moving target, which Apple will iterate on over the next few years. Not
only that, but I simply haven’t used it yet.

And Apple has initially focused on making SwiftUI work and not on making it
testable. In the first round, there don’t seem to be any clean ways of testing the
behavior or data flow of SwiftUI code. Some folks in the iOS developer commu-
nity are coming up with their own patterns and helpers as workarounds. Will
we come to agree on any standards for unit testing SwiftUI? My guess is that
this will happen when Apple decides to put their weight into the problem.

report erratum • discuss

Disclaimer: No SwiftUI Support • xix

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

So this book uses the well-established declarative paradigm of UIKit. As you
create new projects for the worked examples, be sure to select “Storyboard”
as the user interface, not “SwiftUI.”

Online Resources
The source code shown in this book can be found under the “Source code”
link on the Pragmatic Bookshelf website.3 You can also help improve this
book by submitting errata, from typos to content suggestions.

Acknowledgments
First, I must thank my wife, Kay Reid. She’s been my constant “go for it” voice,
encouraging me to grow my initial teaching into a book and a consultancy.

Daniel Steinberg was the first person who advised me to write a book. Daniel,
I owe you a drink.

I also want to thank Graham Lee. He was the first “voice in the wilderness”
with his book Test-Driven iOS Development [Lee12]. Thank you for that book,
for being an encouraging friend, and for writing the foreword to this book.
Who else but Graham would turn a technical foreword into a reflection
spanning thousands of years?

I rely on feedback loops for software development, but had no idea that writing
a book worked in the same way. I’m deeply grateful to the technical reviewers
whose feedback made this book so much better. The reviewers were Andrew
Ebling, Fred Brown, Janie Larson, Josh Justice, Liz Marley, and Mark Dalrymple.

Besides the “official” reviewers who worked with my editor, many of you
emailed me directly. Thank you for your corrections and suggestions. I espe-
cially want to thank Simon Rofe, who struggled with me to find a way to unit
test storyboard segues. Cheers, mate.

Finally, I want to thank all the students at my workshops on test-driven devel-
opment for iOS. Several innovations came from those discussions, and some
were discovered by the students. Every time I teach, I learn something new.

Jon Reid

jon@qualitycoding.org
San Jose, California, USA, April 2020

3. https://pragprog.com/book/jrlegios

Preface • xx

report erratum • discuss

https://pragprog.com/book/jrlegios
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part I

Foundations

What are the basic tools and skills you need to
write unit tests for iOS code?

There are subtleties around how unit tests work in
XCTest. They’re not difficult but are often over-
looked. Let’s get this right to avoid problems down
the road.

As we get into iOS specifics, it’s helpful to know
how your normal application launch affects testing.
And you’ll need to know how to load your view
controllers so you can test them.

But typical iOS code contains dependencies that
interfere with testing. Let’s learn how to identify
which dependencies are problematic and how to
box them off. Previously untestable code will be-
come testable.

CHAPTER 1

Assert Yourself
Every company wants to reduce their costs. In software, making changes is
inexpensive: we wiggle our fingers on keyboards. So where do the costs lie?
Aside from development time, they lie in errors, and how much time it takes
to detect these errors. (They also lie in building the wrong thing, which is
beyond the scope of this book.)

To detect problems, mobile developers use all kinds of feedback loops. For
example, we keep an eye on crash reports and customer complaints. But
that’s the longest loop. After making an incorrect change, it takes a long time
to get that feedback.

To try to prevent errors from making it all the way to customers, companies
use manual testing. The best quality experts apply talent and creativity to do
exploratory testing. Let’s not waste their time asking them to follow steps in
mind-numbing repetition. Besides, the time between making an error and
getting feedback from testers is still long.

What if we could do a large amount of testing using computers? In fact, what
if the developer’s own computer could provide feedback? And what if this
feedback were so quick, you could get it on every change you made? This
kind of rapid feedback is a game changer. It not only catches problems
quickly, it can change the way you code.

This is what unit tests are for. Maybe you haven’t done any unit testing in
your iOS apps yet. Or maybe you’ve been able to test some logic, but your
tests don’t cover the iOS-specific parts. (And those are important parts.)
Wherever you are in your unit testing journey, the goal for this book is the
same: to reduce your costs.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What Are Unit Tests Anyway?
There’s some confusion about what makes a test a unit test. Many people try
to focus on the “unit” part of the name, thinking it describes testing a unit
of production code. I’ll continue to use the term because it’s widespread, but
let’s forget about asking “What’s a unit?” Instead, here’s my definition:

Unit tests are a subset of automated tests where the feedback is quick, con-
sistent, and unambiguous.

Quick: A single unit test should complete in milliseconds. We want thousands
of such tests.

Consistent: Given the same code, a unit test should report the same results.
The order of test execution shouldn’t matter. Global state shouldn’t matter.

Unambiguous: A failing unit test should clearly report the problem it detected.

In our first chapter, we’ll explore the fundamental tool of unit testing: asser-
tions. You’ll learn the most common assertions in the Swift XCTest framework
in a hands-on way.

If you’re a seasoned unit test writer, you may want to skip ahead to the Key
Takeaways, on page 16. But even if you’ve written some tests, it can be good
to go over the fundamentals. What are assertions for? What do they report?
Do you know how to choose the right assertion for the right job? This chapter
will help you get familiar with these tools, which we’re going to be using all
the time.

Create a Place to Play with Tests
Assertions give unit tests a way to state their expectations. The tests fail if these
expectations aren’t met. Let’s make a place outside of your actual projects where
we can experiment with how they work. Throughout this book, you’ll learn new
concepts by playing in these safe spaces. Then in the exercises at the end of
each chapter, you’ll begin applying these concepts to your own code.

When it comes to learning, reading doesn’t come close to doing. If you take
the code from the examples and type them into your computer, your learning
will go deeper. So I encourage you to open your IDE of choice and give it a
go. (The examples will use Xcode.)

Let’s start by making a place where we can play with tests. Xcode playgrounds
are tricky to use with XCTest, so we won’t do that. Instead, we’ll make a new
project. In the Xcode menu, select File ▶ New ▶ Project… or press Shift-D-N .

Chapter 1. Assert Yourself • 4

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

It doesn’t matter what type of project we make as long as it comes with unit
test support. But since we’re going to focus on testing iOS apps, we may as
well get used to what that feels like. First, create an iOS Single View App.

Next, choose any options you like for your new project. In the examples that
follow, we’ll use the project name AssertYourself. But make sure to do the following:

• Choose “Swift” as the language.
• Choose “Storyboard” as the user interface. (Don’t select “SwiftUI.”)
• Select the check box for “Include Unit Tests.”

You now have a project set up to run unit tests on an iOS app, which we’ll
use for our learning experiments.

Select the initial test file that the new project created. Its name will be the
project name followed by Tests. So for this project, find AssertYourselfTests.swift.

Delete every method in the AssertYourSelfTests class, leaving only an empty shell:

class AssertYourselfTests: XCTestCase {
}

Make sure your destination is set to an iOS simulator. Any simulator will do.

Now in the Xcode menu, select Product ▶ Test or press D-U . You might want
to learn this keyboard shortcut—you’ll be doing this often. Think U for “unit
test” to remember it.

This will perform several steps and then run the tests. You won’t see any test
failures because there are no tests. You may see this image show briefly on
your screen:

If you didn’t see that image, go to Xcode Preferences and select the Behaviors
tab. There you can customize what happens when testing succeeds. To display
the image, select the check box “Notify using bezel or system notification,” as
shown in the image on page 6.

Now we’re ready to play. In the following sections, we’ll experiment with
assertions to learn more about them.

report erratum • discuss

Create a Place to Play with Tests • 5

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Write Your First Assertion
Now that we have a home for tests, let’s go over how to use the testing
mechanism. How does a test communicate success or failure? What does
Xcode show you when a test fails? What does it show when a test succeeds?

The way a test reports a failure to XCTest is through assertions. Let’s start
with the simplest assertion. Add the following method to the AssertYourselfTests
class:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_fail() {

XCTFail()
}

First, what makes this function a test?

• It lives within a subclass of XCTestCase.
• It isn’t declared private.
• Its name starts with test.
• It takes no parameters.
• It has no return value.

Chapter 1. Assert Yourself • 6

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Why the underscore in the test name? This goes against Swift’s normal “camel
case” naming conventions. But good test names often contain three parts. I like
to use underscores to separate these parts and camel case within each part. I’ll
explain this further when we have a test name describing its inputs and
expected output. For now, know that the underscores separate the test name
into parts, which we’ll look at in Add Tests for Existing Code, on page 40.

This test does nothing but fail. Run it by pressing D-U and observe what
happens. First, you may see this image show briefly on your screen:

(If you didn’t see that image, go back to the Behaviors tab in Xcode preferences.
Only this time, customize what happens when testing fails.)

Looking at the earlier source file within Xcode, you’ll see the Test
Status Icon in the left-hand gutter, like the image to the right.

X marks the spot in two places: the method and the class containing the
method. The method is a test, also known as a test case. The class represents
a test suite, which is a collection of tests. The X icon shows a failure at both
the test level and the suite level. You’ll also see that Xcode highlighted the
XCTFail() line and added an annotation to its right.

So Xcode has marked the following:

• The class containing a failing test
• The method defining a failing test
• The line with the failed assertion

Now add // before XCTFail() to comment out the assertion. Press D-U to run the
tests. You’ll see the following:

• The annotation disappears from the assertion line
• The test status icons change from red Xs to green check marks,

like the image to the right.

report erratum • discuss

Write Your First Assertion • 7

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This may look trivial, but it’s significant. It means we have a way to fail a test,
with Xcode showing us where the test reported the failure. You can also see
that when a test finishes without triggering any assertions, the test passes.

As you progress in your testing ability, you’ll even be able to write
assertions defining what you want the code to do. Then you can
change the production code until it passes the tests. We’ll return
to this topic in Chapter 20, Test-Driven Development Beckons to
You, on page 297 at the very end of the book.

Add a Descriptive Message
Seeing the location of a test failure is a good start. But when a test fails, we
have to diagnose what went wrong. We can save time for ourselves in the
future by having the assertion explain anything we know at the point of failure.

XCTFail() can take a String parameter as an assertion message. Let’s see how it
works. Add the following method to the class:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_fail_withSimpleMessage() {

XCTFail("We have a problem")
}

Run the tests. Note how Xcode puts the message in the annotation:

Since the annotation is on the same line as the failure, you may ask, “Couldn’t
we have put a message to ourselves in a code comment?” But this isn’t the
only place the message appears.

In the Xcode menu, select View ▶ Navigators ▶ Show Issue Navigator (or press
D-5). The Navigator column on the left will show any issues, including test
failures. You may need to click the Buildtime selector, shown here:

As you can see, the descriptive failure message appears in the Issue Navigator.
It also appears in the test logs, which other tools may process—especially on
continuous integration servers.

Chapter 1. Assert Yourself • 8

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Thanks to Swift’s string interpolation, XCTFail() can do more than spit out a
string literal. Add this to the suite:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_fail_withInterpolatedMessage() {

let theAnswer = 42
XCTFail("The Answer to the Great Question is \(theAnswer)")

}

(Strings are italicized in code samples. That’s a backslash \ for string interpo-
lation, not a pipe |.)

Run the tests, and you’ll see the following:

failed - The Answer to the Great Question is 42

Avoid Conditionals in Tests
We can report failures and include descriptive messages. Now that you’ve
tasted the power of XCTFail, it’s tempting to use it everywhere. All it takes is
a little more code in the test, right? That may be true, but “more code” is code
that can go wrong. Let’s learn how to simplify our test code by introducing
more assertions.

For example, it might be tempting to test a Boolean result like this:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_avoidConditionalCode() {

let success = false
if !success {

XCTFail()
}

}

That would be fine if we didn’t have other assertions. But we do. Try adding
and running this next test. It achieves the same result but in a more declar-
ative way.

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertTrue() {

let success = false
XCTAssertTrue(success)

}

By using the Boolean assertions XCTAssertTrue() and XCTAssertFalse(), we can avoid
many conditionals in our test code.

report erratum • discuss

Avoid Conditionals in Tests • 9

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Eliminating branches from test code makes it easier to understand.
I want test code to be extremely simple. In fact, xUnit Test Patterns
[Mes07] lists conditional test logic as a test smell.

Let’s look at the three types of control flow constructs we use daily:

• Statements in a sequence
• Conditionals
• Loops

These control flows fall into a paradigm called structured programming. They’ve
become the building blocks of programming.

If our test code can avoid conditionals and loops, then we’re left with one
thing: statements executed in sequence. The best test code is dead simple to
read. Of course, there are still conditionals inside there somewhere. But by
using assertions that have more power, our test code becomes simpler.

Describe Objects upon Failure
Wouldn’t it be nice if we had assertions that came with descriptive messages?
The assertions we’ve seen so far can only say that they failed, but they can’t tell
us why. But there are some assertions that describe objects. We’ll also look at
how to customize the way objects describe themselves in these messages.

Here’s an assertion to confirm that an optional value is nil. Add this test and
give it a run:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertNil() {

let optionalValue: Int? = 123
XCTAssertNil(optionalValue)

}

This is the first assertion that gives us more information upon failure:

XCTAssertNil failed: "123" -

Instead of nil, we got "123". But why is it in quotes when the type is an
optional integer with value 123? That’s the way XCTest reports strings, and
assertions ask objects to describe themselves as strings. We can see this
better with a struct instead of an Int:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
struct SimpleStruct {

let x: Int
let y: Int

}

Chapter 1. Assert Yourself • 10

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

func test_assertNil_withSimpleStruct() {
let optionalValue: SimpleStruct? = SimpleStruct(x: 1, y: 2)
XCTAssertNil(optionalValue)

}

Running this test gives us this message:

XCTAssertNil failed: "SimpleStruct(x: 1, y: 2)" -

That’s pretty readable for a simple struct. But some types have complicated
descriptions. This can make failure messages hard to read. We can control
how a type describes itself by making it conform to CustomStringConvertible.

Here’s a structure that is identical to the previous one, but it adds the protocol
to give itself a custom description:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
struct StructWithDescription: CustomStringConvertible {

let x: Int
let y: Int

var description: String { "(\(x), \(y))" }
}

func test_assertNil_withSelfDescribingType() {
let optionalValue: StructWithDescription? =

StructWithDescription(x: 1, y: 2)
XCTAssertNil(optionalValue)

}

Running this test gives us the following simplified failure message:

XCTAssertNil failed: "(1, 2)" -

XCTAssertNil() is one assertion that gives more information. That’s because it
takes an object instead of a Boolean value. The assertions for equality also
give more information, and we’ll look at them next.

Even in the cases where we provide our own descriptive messages, it’s good
to have an option to simplify the output. Keep CustomStringConvertible in your
tool belt.

Test for Equality
We’ve tried a few different assertions so far, including one that gives more
output. And we have a way to customize its output. But now we’re coming
up to the workhorse of assertions, the one you’ll use most often.

The most common assertion takes a result and checks if it’s equal to an
expected value. Try entering and running this test:

report erratum • discuss

Test for Equality • 11

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertEqual() {

let actual = "actual"
XCTAssertEqual(actual, "expected")

}

Here’s the resulting failure message:

XCTAssertEqual failed: ("actual") is not equal to ("expected") -

It’s worth noting that other unit testing frameworks usually use (expected,
actual) for their equality arguments. The order matters because the failure
message states which is which in the following format:

expected: <"expected"> but was: <"actual">

But with XCTAssertEqual(), the argument order doesn’t matter. It simply reports
("A") is not equal to ("B"). Since we can put them in any order, there’s no need to
place the expectation first, as in

XCTAssertEqual("expected", actual)

But it does change the failure message. I prefer to flip the order, placing the
expectation last. Whichever style you prefer, it doesn’t matter to XCTest. But
to make assertions easier to read, try to be consistent across your project.

Test Equality with Optionals
Let’s explore equality further. One of Swift’s core features is optional values.
When one of the arguments to XCTAssertEqual() is optional, what happens? Enter
and run the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertEqual_withOptional() {

let result: String? = "foo"
XCTAssertEqual(result, "bar")

}

The failure message is

XCTAssertEqual failed:
("Optional("foo")") is not equal to ("Optional("bar")") -

Yet we typed a plain string literal "bar" as the second argument. How did it
become optional?

Well, XCTAssertEqual() requires both arguments to be the same type. Swift knows
that if a value of type T is being assigned to a variable of type T?, it can wrap
it. This promotes the value from non-optional to optional.

Chapter 1. Assert Yourself • 12

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

All this makes it easier to write equality assertions when optionals are involved.
There’s no need to balance out both sides of the equation ourselves. This
helps make test code more readable.

Why do I emphasize readability for test code? Isn’t it good enough
to have things pass or fail?

Change happens. The production code will evolve, so test code will
need to change with it. To change test code, we need to understand
it. And every time we need to understand code, we read it. Making
test code readable is an act of kindness to your coworkers, and to
yourself.

As Clean Code: A Handbook of Agile Software Craftsmanship
[Mar08] says, “Test code is just as important as production code.”

Fudge Equality with Doubles and Floats
We’ve looked at the equality assertion. We’ve seen how it continues to work
fine with optional values. Now let’s see how it works with floating-point
numbers. If you’re not already aware of what can go wrong, buckle your
seat belt.

Enter this next test. But don’t run it yet:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_floatingPointDanger() {

let result = 0.1 + 0.2
XCTAssertEqual(result, 0.3)

}

Before running the test, try predicting the outcome. Do you have an expected
result in your head?

Okay, now run the test. You’ll see the following failure message:

XCTAssertEqual failed: ("0.30000000000000004") is not equal to ("0.3") -

What in the world is going on?

We’re used to using ten digits to represent numbers. Can you write 1⁄3 in
decimal notation? No. The sequence 0.3333… goes on forever, so anything
you write down is an approximation.

That’s just the way math works. Computers face the same problem, but
everything boils down to 1s and 0s, so the tricky numbers are different. We

report erratum • discuss

Fudge Equality with Doubles and Floats • 13

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

can’t write 1⁄10 in binary notation. You can learn more about this at “What
Every Programmer Should Know About Floating-Point Arithmetic.”1

Let’s get back to assertions. Since floating-point numbers are approximations,
we need a hand-wavy way to assert equality—something that says, “These
two numbers should be equal, more or less.” Enter the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_floatingPointFixed() {

let result = 0.1 + 0.2
XCTAssertEqual(result, 0.3, accuracy: 0.0001)

}

The accuracy parameter gives us a way to express the “more or less” fudge
factor. Run this test and you’ll see that it passes.

It’s hard to predict in advance which floating-point numbers will cause
problems. So just use the accuracy parameter whenever you want to use
XCTAssertEqual() with Double or Float types.

Avoid Redundant Messages
Let’s finish up our examination of the equality assertion by looking at its
descriptive message.

As you may have guessed from Add a Descriptive Message, on page 8, each
assertion can have an optional message. When you first learn this power, it’s
easy to get overly excited. But consider the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_messageOverkill() {

let actual = "actual"
XCTAssertEqual(actual, "expected",

"Expected \"expected\" but got \"\(actual)\"")
}

The resulting failure message is:

XCTAssertEqual failed: ("actual") is not equal to ("expected") -
Expected "expected" but got "actual"

The added message may be a little more precise. But if you’re consistent with
the order you use for actual value versus expected value, it doesn’t add much.
Getting all that formatting right took extra work for little benefit.

Remember, when XCTAssertEqual() or XCTAssertNil() fail, they provide a fair bit of
information. It’s usually enough. XCTAssertTrue() and XCTAssertFalse() only say they

1. https://floating-point-gui.de

Chapter 1. Assert Yourself • 14

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
https://floating-point-gui.de
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

failed, but that too is often enough. We’re going to aim for tests that are so
short, we won’t need to add any messages of our own.

So for now, resist the temptation: unless you’re using XCTFail(), leave the
message out. We’ll find a use for assertion messages later.

Testing Without Assertions, Back in the Stone Age

Before the invention of unit testing frameworks, it wasn’t like programmers didn’t
run any tests. We wrote little main() functions in our source files, conditionally compiled
out. By building a single file with its main() function enabled, we’d make a little program
to exercise that one file. It would print() to the console, and we’d read the output to
see if it matched what we wanted.

Life is much easier now. Instead of having a human read the output, assertions
give us self-checking tests. And we have test suites, which let you run a set of tests
in one shot.

Choose the Right Assertion
That wraps up our tour of the most common XCTest assertions. With these
choices and more, how do you choose which one to use for a particular test?
Since all automated tests come down to a true/false decision, it may be
tempting to forget the choices and simply use XCTAssertTrue() for all your tests.
For example, you may think about writing assertions like these:

XCTAssertTrue(a == b)
XCTAssertTrue(optionalValue == nil)

These assertions will fail correctly when a is not equal to b, or when optionalValue
is not nil. But the failure messages would only say

XCTAssertTrue failed -

Then we’d have to diagnose what went wrong.

Assertions like these throw away valuable information. As xUnit Test Patterns
[Mes07] explains, test assertions have two goals:

• Fail the test when something other than the expected outcome occurs.
• Document how the system under test is supposed to behave (i.e., tests

as documentation).

In other words, it’s not enough to report that a test failed. What was the
actual result? How did it differ from the expected result? These are the
questions we should be able to answer from failure messages.

report erratum • discuss

Choose the Right Assertion • 15

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

So pick the assertion function that’s closest to what you want to say. While
XCTest provides sixteen assertion functions,2 these are the ones you’ll use
the most:

PurposeAssertion

Asserts that two values are equalXCTAssertEqual(_:_:)

Asserts that two floating-point values are equal
within a certain accuracy

XCTAssertEqual(_:_:accuracy:)

Asserts that an optional value is nilXCTAssertNil(_:)

Asserts that an optional value is not nilXCTAssertNotNil(_:)

Asserts that an expression is trueXCTAssertTrue(_:)

Asserts that an expression is falseXCTAssertFalse(_:)

Fails the current test. You should always provide a
descriptive message.

XCTFail()

Key Takeaways
What are the key points from this chapter that you should apply to your
coding?

• A test case is a function in a subclass of XCTestCase where the function has
the following traits:

– Its name starts with test
– It has no parameters, and no return value
– It isn’t private

• Press D-U (think U for “unit test”) to run tests.

• An assertion failure marks the test as failing. Otherwise, the test case
passes.

• Avoid conditional branches in test code to keep test code simple. You can
do this by choosing an assertion that expresses the condition you need.

• When comparing floating-point numbers, use XCTAssertEqual() with an accu-
racy: argument.

• If your test needs a condition that the built-in assertions don’t provide,
then put an XCTFail() (with a description message) inside a conditional
clause.

2. https://developer.apple.com/documentation/xctest

Chapter 1. Assert Yourself • 16

report erratum • discuss

https://developer.apple.com/documentation/xctest
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Check the failure reporting of your tests. If the description of an object is
hard to read, provide a custom description by conforming to the Custom-
StringConvertible protocol.

Activities
Now it’s time for you to put this chapter into action. Read through this list,
pick one of the activities, and do it. It’s only in doing that we actually learn.

1. Read Apple’s documentation of test assertions so you know what your
other options are.

2. Is there any production code you can begin testing today? Look for low-
hanging fruit—functions that use only their input arguments to calculate
a return value. This includes failable initializers: write one test checking
for a nil return value and another for non-nil. (Pro tip: Any time you add a
new test, make sure you see it fail by temporarily breaking the production
code.)

3. If your code already has some unit tests, then do the following:

a. Read through the tests you have.

b. Select a simulator, and press D-U to run your own tests. Make sure
they all pass. If there are any test failures, delete those tests.

c. Is each test using the best assertion for the job? Improve any you can.

d. Check calls to XCTAssertEqual() to see if the argument order is consistent.
Try to stick to a consistent order for actual/expected.

e. Look for any XCTAssertEqual() assertions that compare floating-point
numbers. Do they use the accuracy parameter? Add any that are
missing.

f. Consider whether there are any optional assertion messages you can
delete because they’re redundant.

g. Add descriptive messages to any XCTFail() assertions that are missing
them.

h. If you’ve changed any assertions or messages, make sure their failure
output is helpful. You can check this by introducing temporary errors
in either the test code or the production code. Afterward, don’t forget
to remove these errors, then run the tests to make sure they pass.

report erratum • discuss

Activities • 17

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What’s Next?
We’ll talk more about assertions as we put them to use, especially when we
make our own test helpers.

You still have plenty of tricks to learn. But you now carry assertions in your
tool belt, and you can begin writing simple tests of your own code.

Now that you’ve written some unit tests, how are these tests run? In the
next chapter, we’ll clarify common misunderstandings of the life cycle of
test cases. You need a mental model that matches what’s actually going on.
In particular, we’ll see how to avoid the most common mistakes that Swift
programmers make.

Chapter 1. Assert Yourself • 18

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 2

Manage Your Test Life Cycles
There’s more to tests than the assertions. When does XCTest create and run
the tests? Swift programmers are particularly prone to making wrong
assumptions about test life cycles. These assumptions lead to mistakes in
test design.

Picture a test case that passes when it’s run by itself but fails when it’s run
as part of a test suite. Perhaps you’ve had this happen to you. The noisy
results keep us from trusting our tests. Flaky tests are worse than having no
tests. To build the safety net under our legacy code, we need reliable tests.

To avoid flaky tests, we want to run each test in a virtual clean room. There
should be no debris left over from previous tests or from manual runs.

Setting up a good clean start for a test can be tricky. As Swift programmers,
we’ve become used to the way Swift creates objects. It’s easy to assume these
ideas apply to test cases as well. But XCTest manages the life cycle of tests:
it decides how tests are made, run, and terminated. So let’s go over what it’s
doing and get our mental model right.

In this chapter, we’ll explore the life cycle of tests, the different phases within
a test, and how to manage the objects they need. In particular, we’ll look at
setUp() and tearDown(). Read on and you’ll see how to give each test its own clean
room. Along the way, you’ll also learn useful tricks for creating new test suites
and for looking at test results.

Make a New Place to Play
Let’s create a new project for this chapter. Follow the steps for Create a Place
to Play with Tests, on page 4, but use the project name LifeCycle. Go ahead
and create the project now.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now let’s make a new file in the production code. In the Project Navigator,
select the LifeCycle group in the LifeCycle project. Create a new file, choosing
the Swift file type. Give it the name MyClass. Then double-check the targets.
This is production code, so it belongs in the app target, not the test target.
In the new file, create the following class:

LifeCycle/LifeCycle/MyClass.swift
class MyClass {

func methodOne() {
print(">> methodOne")

}

func methodTwo() {
print(">> methodTwo")

}
}

As you can see, this class has two methods. All they do is print to the console.
We won’t be testing them with assertions. Instead, we’re going to examine
the console output to see what gets logged when we run them.

Let’s make a test suite to exercise MyClass. By convention, the name of the test
suite starts with the name of the type we’re testing, and it ends with Tests. So
we’ll call this suite MyClassTests.

Name your test suites to match the thing they test. If you want to
test a Foo type, name your suite FooTests. This makes it easier to
find the tests for any component.

In the Project Navigator, select the LifeCycleTests group in the LifeCycle
project. Make a new file, choosing the unit test case class type. Give it the
nameMyClassTests.

The important thing to double-check is that the test file goes into the test
target, not the app target. Your Save dialog options should look like this:

You should now see MyClassTests.swift. Delete every method in the MyClassTests
class, leaving only an empty shell:

Chapter 2. Manage Your Test Life Cycles • 20

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycle/MyClass.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

LifeCycle/LifeCycleTests/MyClassTests.swift
import XCTest

class MyClassTests: XCTestCase {
}

Whenever we make a new project that includes unit tests, Xcode creates an
initial test file. We won’t be using this file, so let’s delete it. Select LifeCy-
cleTests.swift in the Project Navigator and press J . In the confirmation alert,
select Move to Trash, and wave bye-bye. Cleaning up test code is at least as
important as cleaning up production code, if not more so.

Before we start experimenting with the life cycle of test objects, let’s look at
a few techniques. First, we’ll see how helpful it is to have a stepping-stone
test that precedes the first real test. Then we’ll see how to hook up your tests
so they can access your production code. And finally, we’ll look at how to
examine the console output for specific tests.

Start from Test Zero
Now we have a home for our next set of tests. Before we get into our experi-
ments around life cycles, I’d like to show you a trick. First, whenever I create
a new test suite, I start with a special test I call Test Zero. Add the following
test to MyClassTests:

LifeCycle/LifeCycleTests/MyClassTests.swift
func test_zero() {

XCTFail("Tests not yet implemented in MyClassTests")
}

I call it Test Zero because it precedes the first real test we want to write. Go
ahead and run tests to make sure it fails. Why? This is a check of our
infrastructure. It confirms that our basic test plumbing is correct.

Test Zero helps separate our problems so we can tackle them one at a time.
When we create a new test suite, we’re usually thinking about that first test.
But before we get lost writing that test, let’s make sure the suite runs. Other-
wise, basic infrastructure problems will interrupt our thinking flow.

This is an example of a larger principle: take a small step, get feedback. If you
learn nothing else from this book, take that principle home with you.

Start a new test suite with a test that does nothing but fail. Run
your tests to make sure you get the expected failure.

report erratum • discuss

Start from Test Zero • 21

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

I never write Test Zero by hand. Instead, I use custom XCTest templates to
make new test files. You can download the templates I use from my website.1

Hook Up Tests to Production Code
While we’ve confirmed some plumbing, we haven’t checked that the test code
can reach the production code. We’ll confirm that as we write our first test.
Essentially, we’re transforming Test Zero into our first real test that accesses
MyClass.

First, once we’ve confirmed the expected failure, Test Zero has served its
purpose. Let’s delete it and add a test that uses MyClass. Add the following test:

LifeCycle/LifeCycleTests/MyClassTests.swift
func test_methodOne() {

let sut = MyClass()

sut.methodOne()

// Normally, assert something
}

The name sut stands for system under test, which is usually abbreviated as
SUT. It’s a common term for “the thing we’re testing.” Unlike this simple
example, tests often have many objects in play. Using a consistent name like
sut makes it clear which object the test is going to act on. It also makes it
easier to reuse snippets of test code.

As it stands, the test won’t compile. It doesn’t know what MyClass is. We need
to add this line at the top of the file:

LifeCycle/LifeCycleTests/MyClassTests.swift
@testable import LifeCycle

Why do we need the @testable attribute on the import statement? That’s because
we didn’t specify access control for MyClass, so it defaulted to internal access.
@testable makes internal declarations visible.

Note that anything declared private remains off-limits, even to tests. This is
different from Objective-C, where nothing is truly private.

The test should now build and run. Unlike an actual unit test, there is no
assertion. Instead, we’ll use tests together with console output as learning
tests to probe the behavior of code we don’t own.

1. https://qualitycoding.org/files/XCTest-Templates.zip

Chapter 2. Manage Your Test Life Cycles • 22

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
https://qualitycoding.org/files/XCTest-Templates.zip
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Examine Console Output
To experiment with test life cycles, we need a way to go beyond test results.
We’ll need to examine detailed test logs, the information the tests write to the
console output. Let’s go over how to see these logs.

Add a second test, test_methodTwo(), that invokes methodTwo():

LifeCycle/LifeCycleTests/MyClassTests.swift
func test_methodTwo() {

let sut = MyClass()

sut.methodTwo()

// Normally, assert something
}

With two tests in our suite, press D-U to run tests. Then let’s go find the log
so we can read the nitty-gritty details of this test run.

You can see the console output of the latest run by going to the Xcode menu
and selecting View ▶ Debug Area ▶ Activate Console. But we can do one better.

In the Xcode menu, select View ▶ Navigators ▶ Show Report Navigator (or
press D-9). The Navigator column on the left will show a history of recent
activity. Find the latest test run and click on its log. It will look something
like this:

This allows us to see not only the latest output, but also any recent test run
(and other activities).

In the central panel, select the “All Messages” filters at the top. Then select
the line that says, “Run test suite All tests.” A log icon will appear on the right
side, as shown in the image on page 24.

report erratum • discuss

Examine Console Output • 23

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Click this icon to reveal the transcript. It will look something like this:

Test Suite 'All tests' started at 2019-06-22 19:08:40.422
Test Suite 'LifeCycleTests.xctest' started at 2019-06-22 19:08:40.422
Test Suite 'MyClassTests' started at 2019-06-22 19:08:40.423
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' started.
>> methodOne
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' passed

(0.002 seconds).
Test Case '-[LifeCycleTests.MyClassTests test_methodTwo]' started.
>> methodTwo
Test Case '-[LifeCycleTests.MyClassTests test_methodTwo]' passed

(0.000 seconds).
Test Suite 'MyClassTests' passed at 2019-06-22 19:08:40.426.

Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.003)
seconds

Test Suite 'LifeCycleTests.xctest' passed at 2019-06-22 19:08:40.426.
Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.004)
seconds

Test Suite 'All tests' passed at 2019-06-22 19:08:40.426.
Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.005)
seconds

What does this show? First, that we have several test suites. Like Russian
dolls, each suite contains another one, until we reach MyClassTests.

Within MyClassTests, we have our two test cases. Don’t be afraid of the funny
notation:

-[LifeCycleTests.MyClassTests test_methodOne]

That’s in the style of Objective-C logging. The minus sign indicates a message
to an instance. The square brackets show the message, with the recipient on
the left and the content on the right.

So first we see that test_methodOne() started. The transcript shows any output,
especially messages from failed assertions. In our case, it shows the output
from the print(_:) statement, showing that the test successfully ran methodOne().
Then it reports whether the test passed or failed, along with the time it took.

Chapter 2. Manage Your Test Life Cycles • 24

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

We get a similar report for test_methodTwo(). Then counts of how many tests
passed or failed bubble up to each test suite level.

We can also look at the output for individual tests only. Click the up arrow
on the right side to collapse the “All tests” transcript. Then option-click the
disclosure triangle to the left of “Run test suite All tests.” A regular click will
expand one level, while an option-click expands all levels. Click on a test case
to reveal the log icon, or hover your mouse along the right until it appears.
Then click the log icon at this level to see the transcript for a single test case,
like this:

Let’s review this method of examining reports. In the Navigator column, we
can select which report we want to examine. For that report, we can filter by
the following options:

• All Messages
• All Issues (which includes any warnings, for build logs)
• Errors Only

Then, by using the disclosure triangles, we can select how much of the tran-
script we want to see—even down to individual test cases. So while you can
view the full console output of the latest run, the Report Navigator offers
history and granularity. Choose whichever works best for your needs.

Now we’re ready to run experiments to learn about object management. First,
we’ll see how tests have separate phases and how this relates to objects being
created and destroyed. Then, we’ll try a common Swift approach to properties
in XCTestCase and observe how it breaks the object management rules. We’ll
learn how XCTest actually manages test cases in memory. Finally, we’ll fix
the problem by using the setUp() and tearDown() methods.

report erratum • discuss

Examine Console Output • 25

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Observe Object Life Cycles to Learn the Phases of a Test
Now that we can examine the transcripts of test runs, we can log more
information and see the results. This is what we’ll use to run our experiments
on test life cycles. Let’s record information to learn when objects are created
and destroyed.

(This experiment may feel a little tedious. But memory management is
important in test code, as well as in production code. And the test life cycle
is different than what most folks expect. Let’s lay proper foundations to avoid
making common mistakes.)

Add the following properties and methods to MyClass:

LifeCycle/LifeCycle/MyClass.swift
class MyClass {

private static var allInstances = 0➤

private let instance: Int➤
➤

init() {➤

MyClass.allInstances += 1➤

instance = MyClass.allInstances➤

print(">> MyClass.init() #\(instance)")➤

}➤
➤

deinit {➤

print(">> MyClass.deinit #\(instance)")➤

}➤

func methodOne() {
print(">> methodOne")

}

func methodTwo() {
print(">> methodTwo")

}
}

This keeps a running count of MyClass instances, printing messages when init()
and deinit are called.

Then for the completeness of this example, add an XCTFail() assertion to the
end of test_methodOne(). Something like this will do:

XCTFail("Failed, yo")

Now run the tests. Then find the latest log in the Report Navigator and drill
down to the transcript of test_methodOne(). You’ll see something like this:

Chapter 2. Manage Your Test Life Cycles • 26

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycle/MyClass.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' started.
>> MyClass.init() #1
>> methodOne
LifeCycle/LifeCycleTests/MyClassTests.swift:10: error:

-[LifeCycleTests.MyClassTests test_methodOne] : failed - Failed, yo
>> MyClass.deinit #1
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' failed

(0.005 seconds).

This shows that for test_methodOne(), the following occurs:

1. The test creates an instance of MyClass.
2. It invokes a method on the instance.
3. It asserts an outcome.
4. It destroys the instance.

This is what xUnit Test Patterns [Mes07] calls the four-phase test. You can
think of these four phases as set up the thing, call the thing, check the thing,
destroy the thing.

This helps create a virtual clean room for each test. Every test needs to start
from nothing, setting up what it needs. With no changes to the code, tests
should reach the same outcomes regardless of the following:

• Whether a single test is run by itself
• Whether all tests are run together
• Whether the test order changes

FIRST is a helpful acronym for unit test principles: unit tests are fast, isolated,
repeatable, self-verifying, and timely.2 Here, we’re focusing on “I” for isolated.
Tests should not have different outcomes due to external changes. They should
be isolated from each other and from the world.

The four-phase test also creates a predictable structure. For local variables,
the final cleanup phase is handled by the compiler. So the four phases are
usually shortened to three phases and abbreviated as AAA:

• Arrange
• Act
• Assert

Following The Art of Unit Testing: with examples in C#, Second Edition [Osh13],
I recommend separating these phases by blank lines.

2. https://pragprog.com/magazines/2012-01/unit-tests-are-first

report erratum • discuss

Observe Object Life Cycles to Learn the Phases of a Test • 27

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Separate the Arrange, Act, Assert sections of your tests with blank
lines. Then each line of test code identifies its purpose. This helps
clarify what we’re testing. When their intent is clear, tests become
documentation of how the code is supposed to work.

The Wrong Way to Reduce Duplicate Test Code
Now we’re reaching the critical goal of this chapter: avoiding the testing mis-
take most Swift programmers make. Let’s apply a common Swift programmer
approach to duplication. We’ll see how it creates problems for test code. Delete
the XCTFail() assertion in test_methodOne(). This brings the MyClassTests suite back
to this:

LifeCycle/LifeCycleTests/MyClassTests.swift
class MyClassTests: XCTestCase {

func test_methodOne() {
let sut = MyClass()

sut.methodOne()

// Normally, assert something
}

func test_methodTwo() {
let sut = MyClass()

sut.methodTwo()

// Normally, assert something
}

}

See how each test starts with the same line, creating an instance of MyClass?
A typical Swift programmer would think, “Why not promote sut from local
variables to a property?” It would look like this:

LifeCycle/LifeCycleTests/MyClassTests.swift
class MyClassTests: XCTestCase {

private let sut = MyClass()

func test_methodOne() {
sut.methodOne()

// Normally, assert something
}

func test_methodTwo() {
sut.methodTwo()

// Normally, assert something
}

}

Chapter 2. Manage Your Test Life Cycles • 28

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Everything looks cleaner, and more “Swifty.” So what’s the problem? Run the
tests and look at the test transcript. If you drill down to the “All tests” level,
you’ll see something like this:

>> MyClass.init() #1
>> MyClass.init() #2
Test Suite 'All tests' started at 2019-06-22 20:12:15.128
Test Suite 'LifeCycleTests.xctest' started at 2019-06-22 20:12:15.128
Test Suite 'MyClassTests' started at 2019-06-22 20:12:15.129
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' started.
>> methodOne
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' passed

(0.001 seconds).
Test Case '-[LifeCycleTests.MyClassTests test_methodTwo]' started.
>> methodTwo
Test Case '-[LifeCycleTests.MyClassTests test_methodTwo]' passed

(0.000 seconds).
Test Suite 'MyClassTests' passed at 2019-06-22 20:12:15.131.

Executed 2 tests, with 0 failures (0 unexpected) in 0.001 (0.002)
seconds

Test Suite 'LifeCycleTests.xctest' passed at 2019-06-22 20:12:15.131.
Executed 2 tests, with 0 failures (0 unexpected) in 0.001 (0.003)
seconds

Test Suite 'All tests' passed at 2019-06-22 20:12:15.131.
Executed 2 tests, with 0 failures (0 unexpected) in 0.001 (0.004)
seconds

Look for the logging of the init and deinit calls.

Two instances of MyClass are created before tests are even run. And they’re
never destroyed.

This is no longer the clean room we want for our tests. Problems can poten-
tially multiply:

• If there’s a problem creating MyClass, it will happen before any tests run.

• If there’s a problem destroying it, we’ll never know because the instances
aren’t destroyed.

• If instantiating MyClass has any global side effects, such as swizzling
methods or touching the file system, all bets are off.

What is going on? Keep reading.

report erratum • discuss

The Wrong Way to Reduce Duplicate Test Code • 29

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The problems that come with “legacy” code don’t apply to only
production code. You can have “legacy” test code as well. Like any
code, test code requires ongoing care to keep it in shape. Any tests
that fail to preserve the clean room create potential problems.
These problems can go unnoticed for a long time. So make sure
to review the quality of test code, old and new, with the same rigor
you apply to production code.

Learn How XCTest Manages Test Cases
By applying the wrong way to reduce duplication, we’ve stumbled onto a
mystery. Why are objects piling up before we run a single test? To solve this
mystery, we’re going to dig into how XCTest creates and runs test cases.

It’s easy to assume that when XCTest runs a test case, three things happen:

1. It creates an instance of the XCTestCase subclass.
2. It runs the specific test method.
3. It destroys the XCTestCase instance.

Or, you may have assumed that XCTest creates one instance to run all the
tests in a suite.

But both are incorrect. Here’s what really happens:

1. XCTest searches for all classes that inherit from XCTestCase.

2. For each such class, it finds every test method. These are methods whose
names start with test, take no arguments, and have no return value.

3. For each such test method, it creates an instance of the class. Using
Objective-C runtime magic, it remembers which test method that instance
will run.

4. XCTest collects the instances of the subclass into a test suite.

5. When it’s finished creating all test cases, only then does XCTest begin
running them.

What this means for our example is that XCTest finds MyClassTests. It searches
for method names starting with “test,” and it finds two. So it creates two
instances of MyClassTests: one instance to run test_methodOne(), another to run
test_methodTwo().

And it assembles these instances into a test suite before running any tests.
Since each instance has a MyClass property, we’ve accidentally created two
instances of MyClass.

Chapter 2. Manage Your Test Life Cycles • 30

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

When Is XCTestCase a Test Case?

Why does XCTestCase look like a test suite, when it has a name that says it’s a test
case? The difference is between when we’re writing test code and when XCTest is
running them.

We can put several test methods inside an XCTestCase subclass. From our point of view
of writing or reading test code, MyClassTests is a test suite. But it’s more accurate to
say it will become a test suite.

When XCTest runs, it creates a separate instance for each test method. So each
instance of MyClassTests is a single test case, from XCTest’s point of view.

Use setUp() and tearDown()
Having looked at the wrong way to tackle test code duplication, what’s the
right way? XCTestCase provides special methods for us to use.

First, let’s set a term for “stuff the test needs in order to run.” The term we’re
looking for is test fixture. Since our two tests use the same test fixture, we
want to move it outside the tests. But simply promoting sut to a property didn’t
work. So what do we do? XCTestCase defines two methods, setUp() and tearDown().
They’re designed to be overridden in subclasses. Combined with careful use
of optionals, we get this:

LifeCycle/LifeCycleTests/MyClassTests.swift
class MyClassTests: XCTestCase {

private var sut: MyClass!

override func setUp() {
super.setUp()
sut = MyClass()

}

override func tearDown() {
sut = nil
super.tearDown()

}

func test_methodOne() {
sut.methodOne()

// Normally, assert something
}

func test_methodTwo() {
sut.methodTwo()

// Normally, assert something
}

}

report erratum • discuss

Use setUp() and tearDown() • 31

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests and examine the log. You’ll see that XCTest created and
destroyed the MyClass instances within each test run. Hurray!

For Swift in particular, the trick is to declare the objects in our shared test
fixture using var instead of let. We also add the ! to make these variables
implicitly unwrapped optionals:

LifeCycle/LifeCycleTests/MyClassTests.swift
private var sut: MyClass!

This may cause you some initial discomfort. Experienced Swift programmers
call ! the “crash operator,” and do their best to avoid it. But the implicitly
unwrapped optional is a necessity here, just as it is for an IBOutlet.

XCTest is a framework, meaning it calls back to our code. setUp() and tearDown()
are template methods as defined by Design Patterns: Elements of Reusable
Object-Oriented Software [GHJV95]. The test runner in XCTest guarantees the
following sequence for each test case:

1. Call setUp().
2. Call the test method.
3. Call tearDown().

So rest easy. As long as you create what you need inside setUp(), the implicitly
unwrapped optionals won’t crash. And without them, we’re creating a context
of unpredictable chaos for our tests. Type the exclamation point. It’s the right
thing for XCTestCase properties.

Note that setUp() alone isn’t enough. XCTest creates test instances, but it
never destroys them. Their properties will live on, so we need tearDown() to
clean up any remains of our shared test fixtures.

Every property you create in setUp() should be destroyed in tearDown().

Don’t Abuse setUp()
Whenever we programmers learn a new trick, we have a tendency to overuse it. Be
careful not to overuse setUp(). It can become a dumping ground for things used by
only some of the test cases. This in turn makes it hard to reason about the tests when
we read them. Try to limit setUp() to things that matter to most tests in a suite.

Chapter 2. Manage Your Test Life Cycles • 32

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways
Here are the main points from this chapter you should take with you:

• Name your test suites to match the thing they test.

• When you create a new test suite, start with Test Zero, a test that does
nothing but fail. This will help you confirm that your test plumbing is
correct.

• Use @testable import to import the code you want to test.

• Inside each test case, there are the Arrange, Act, and Assert phases.
Adding blank lines between the phases helps clarify the function of each
line of code in your tests.

• Remember that each test method runs in a separate instance of its
XCTestCase subclass. These instances live inside a collection of all tests,
which the test runner is iterating over. So they all exist before test execu-
tion and are never deallocated (at least, not until the test runner termi-
nates). And so...

• Inside XCTestCase subclasses, stored properties should always be implicitly
unwrapped optionals—that is, var with an exclamation point. Set their
values in setUp(). Set them back to nil in tearDown(). Otherwise you won’t be
able to predict or control what objects exist during any test case.

Activities
Solidify your reading by turning it into action. Pick one of the following
activities, and try it.

1. Use Test Zero the next time you create a new test suite.

2. If your code already has some unit tests, do the following:

a. Run your own unit tests. Look at the test logs using the console area.
Look at the test logs in the Report Navigator, drilling down to specific
tests. It’s good to know both approaches.

b. Do any test files import the module under test without the @testable
attribute? Add the attribute—at the very least, it helps identify what
you’re testing. Then see if you can remove public from production code
types or functions those tests touch.

c. Add blank lines to your test code to separate tests into the AAA sec-
tions: Arrange, Act, Assert.

report erratum • discuss

Key Takeaways • 33

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

d. Assuming you have an automated build system that runs your tests,
look at the output. Introduce a temporary test failure. Does your
system make it easy to identify the failure?

3. Fix any test code that doesn’t handle shared test fixtures correctly:

a. Look for test suites that initialize stored properties. Change these
properties from let to var. Make them implicitly unwrapped optionals
with ! on the end. Move their creation into setUp().

b. Look for missing or incomplete tearDown(). Make sure they set properties
back to nil so the test fixture is destroyed.

c. If you’re bold enough to try an alternative to Xcode, look into App-
Code.3 Among its many features, it supports plugins. There’s a third-
party plugin that automatically generates tearDown() code.4 It can even
do so across the whole project.

What’s Next?
XCTest has other facets that we’ll introduce as we need them. But now you’ve
seen the different phases of a single test case. We make these phases clear
by organizing code within a test method into three sections: Arrange, Act,
Assert. Just remember AAA.

Particularly, you know the biggest mistake Swift programmers make: they
don’t take into account that properties in XCTestCase can interfere with the life
cycle of test fixtures. And you know how to use setUp() and tearDown() to avoid
this mistake.

But as we write unit tests, how will we measure our progress? That’s where
code coverage comes in. In the next chapter, we’ll see how to measure coverage
in Xcode. In particular, we’ll see how coverage can mislead us and how to use
it well. We’ll also look at a useful technique for adding tests to existing code.

3. https://www.jetbrains.com/objc/
4. https://qualitycoding.org/swift-teardown-appcode-plugin/

Chapter 2. Manage Your Test Life Cycles • 34

report erratum • discuss

https://www.jetbrains.com/objc/
https://qualitycoding.org/swift-teardown-appcode-plugin/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 3

Measure Code Coverage and Add Tests
Chipping away at legacy code can be a long process. A good way to add positive
feedback to the process is by measuring code coverage. That way, you’ll be
able to have a sense of progress.

Code coverage is a way of measuring how much production code the test code
exercises. But it’s often misunderstood, and the results can be misleading.

In this chapter, you’ll see what a coverage report tells you about your unit
tests—and what it doesn’t tell you. You’ll learn how to use code coverage to
find holes in your test suites. We’ll look at rules of thumb for covering different
types of control flows. And you’ll get positive feedback as you bring your
legacy code under test.

And how should we go about writing tests for existing code? We’ll look at
whether you should even write such tests. We’ll also go over a cool trick for
testing well-established code.

Make a New Place to Play
Let’s make a new project. Follow Create a Place to Play with Tests, on page
4, but use the project name CodeCoverage.

Now let’s make a new file in the production code. Name it CoveredClass. Import
UIKit (we’ll need it later in the examples), and let’s give it a small static
function:

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CodeCoverage/CodeCoverage/CoveredClass.swift
import UIKit

class CoveredClass {

static func max(_ x: Int, _ y: Int) -> Int {
if x < y {

return y
} else {

return x
}

}
}

In the test target, delete the initial test file for this project, CodeCoverageTests.swift.
Create a new test suite CoveredClassTests, starting with Test Zero:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
@testable import CodeCoverage
import XCTest

class CoveredClassTests: XCTestCase {

func test_zero() {
XCTFail("Tests not yet implemented in CoveredClassTests")

}
}

Run your tests to make sure you get the expected failure.

We’ll add more code as we go, but for now, we’ll start with this to learn the
basics of examining code coverage. First, we’ll turn on coverage. Then we’ll
see how to drill into a partially covered line to see what is and isn’t executed.
Then we’ll learn about characterization tests, a powerful technique for adding
tests to existing code.

Enable Code Coverage
Now let’s enable code coverage on this project. Follow these steps to get to
the check box, as shown in the image on page 37.

1. In the Xcode menu, select Product ▶ Scheme ▶ Edit Scheme… or press
D-< .

2. In the scheme editor, select Test in the left column.

3. Then from the tabs, select Options.

4. Finally, enable the Code Coverage check box to “Gather coverage for all
targets.”

Chapter 3. Measure Code Coverage and Add Tests • 36

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This will measure code coverage every time we run tests using this scheme.

Examine Code Coverage Results
We need to run the tests another time for our new code coverage settings to
take effect. Do so, then let’s see where the results are shown. In the Xcode
menu, select View ▶ Navigators ▶ Show Report Navigator (or press D-9). In
the latest test run, you will see a new entry labeled Coverage. Select it, as
shown here:

The main area to the right will show the app and a coverage percentage. Click
the disclosure triangle. You’ll see code coverage for each file, as shown in the
image on page 38.

report erratum • discuss

Examine Code Coverage Results • 37

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The coverage measurement for CoveredClass.swift is 0%, with an empty bar. You
may be surprised to see the non-zero coverage for other files, though. We’ll
address that in Chapter 4, Take Control of Application Launch, on page 53.

Try clicking the column headers labeled Name and Coverage. You can sort
the list by either column. Clicking the same header again reverses its order.
This makes it easy to sort your project’s files by ascending (or descending)
coverage percentage.

Hover your mouse cursor over a row. An arrow will appear next to the file
name. Clicking that arrow will take you to that file. Try doing that for Covered-
Class.swift.

The source code editor now shows a coverage gutter along the right side,
like this:

To the right of the max() function, the gutter is colored red. It shows a count
of 0, which means this section of code was traversed by tests zero times.

If you don’t see a right-hand gutter showing red, select Editor ▶ Code Coverage
in the Xcode menu.

Chapter 3. Measure Code Coverage and Add Tests • 38

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Drill into a Partially Covered Line
Let’s start writing a test for the max() function, keeping an eye on the code cover-
age as we progress. Delete test_zero(), then add the beginnings of the new test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_with1And2_shouldReturnSomething() {

let result = CoveredClass.max(1, 2)
}

Note that there’s no assertion yet. Run tests and go to CoveredClass.swift to see
the line-by-line coverage. It should look something like this:

The code coverage gutter now shows a smaller red area and two numbers.
The 0 marks the section that tests haven’t touched. Above that is a 1, marking
a section the test touched once. Between the two, the gutter shows a red-
striped area. Hover the mouse cursor in that area, and you’ll see things
change, as shown here:

The green section shows the code we’ve touched. The line with the else clause
is part green, part red. This gives us a way to see code coverage inside lines.

report erratum • discuss

Drill into a Partially Covered Line • 39

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Whenever you see a red-striped area, place your mouse cursor there to
examine which parts of the line remain untouched.

Of course, the problem with our test is that it has no assertion. This demon-
strates the dangerous part of code coverage. Coverage says nothing about
the quality of the tests.

Lack of code coverage proves lack of testing. But positive code
coverage doesn’t prove anything.

Add Tests for Existing Code
Our incomplete test results in a warning:

warning: initialization of immutable value 'result' was never used;
consider replacing with assignment to '_' or removing it

This is a good clue that we should write an assertion for the result value.
Let’s bring this code under test.

We can write tests for existing code in two different ways. They depend on
whether the code has proven itself with real use:

• If the code hasn’t yet shipped, we should write tests that express the
requirements for that section of code. This means we need to reason about
how the code is supposed to behave. The tests may even catch some bugs.

• If the code has shipped, then real users are exercising it. As long as no
one has found any bugs, that section of code does its job. This means we
don’t need to try to reason about the code’s behavior. The tests just need
to capture the existing behavior.

Does Old Code Need Tests?

Most code in a shipping app has been in use for some time. Do you even need to write
tests for such code? No. That is, not as long as that code doesn’t change.

But as soon as you need to change a section of code, write tests for that section before
making any changes.

Our max() example is trivial, but let’s imagine both cases. If the code hasn’t
shipped, we need to ask, “What are the requirements? That is, what is it
supposed to do?” We know we wrote this function to return the greater of two
integers, so we’d write tests that express this.

Chapter 3. Measure Code Coverage and Add Tests • 40

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

But if the code is in use, we don’t need to work backward from the require-
ments. Instead, we can write what Working Effectively with Legacy Code
[Fea04] calls characterization tests. These are tests that capture the actual
behavior of the code.

To write a characterization test, do the following:

1. Call the code from a test, yielding some kind of result.
2. Write an assertion comparing the result to a value you know won’t match.
3. Run the test. The failure message will tell you the actual result.
4. Adjust the assertion so that it expects the actual result.
5. Rerun the test to see it pass.

This creates a test that guarantees a piece of the code’s behavior. By building
up coverage with characterization tests, we’re making a safety net. It’s an
early warning system that will tell us if we changed any existing behavior.
With such tests in place, you’ll be able to move faster. Why? Because you
won’t need to spend as much time manually checking that you haven’t broken
anything.

For max(), we’ve done step 1. What we want for step 2 is an assertion that will
tell us the actual value. We can get that by doing an XCTAssertEqual() against a
value we know won’t match:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_with1And2_shouldReturnSomething() {

let result = CoveredClass.max(1, 2)

XCTAssertEqual(result, -123)
}

Step 3, run the tests. This gives us a failure message that tells us the actual
value:

XCTAssertEqual failed: ("2") is not equal to ("-123") -

For step 4, we copy the actual value 2 from the failure message and paste
into the assertion:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_with1And2_shouldReturn2() {

let result = CoveredClass.max(1, 2)

XCTAssertEqual(result, 2)
}

Finally, step 5: run the test to confirm that it passes. You can also update
the last part of the test name to shouldReturn2. This way, the test name itself
expresses the behavior we’ve captured.

report erratum • discuss

Add Tests for Existing Code • 41

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

A good test name has three parts:

1. What the test is exercising. This is usually a function name.

2. The conditions of the test. What are the inputs that make a
difference?

3. The expected result.

And in XCTest, test names must start with test. Separating these
parts with underscores makes it easier to see the different parts
—another helpful tip from The Art of Unit Testing: with examples
in C#, Second Edition [Osh13]. Also, I typically use with to identify
the conditions part, and should to identify the expectation part.

So in test_max_with1And2_shouldReturn2(), the name says we are exercis-
ing max. The conditions are that we’re calling it with 1 and 2. The
expected result is that it should return 2.

Those are the basics of code coverage. In the following sections, we’ll explore
techniques for effectively covering different types of code constructs, such as
conditionals, loops, and statements in a sequence.

Cover a Conditional
How do you write tests that cover different types of control flows? Let’s look
at the three types of structured programming constructs we use daily:

• Statements in a sequence
• Conditionals
• Loops

Let’s go over some rules of thumb for covering these control flows with tests.
We are partway through covering max(), which has a conditional in the form
of an if-else statement. We’ve written a test that covers the first half.

Now let’s add a test to cover the second half. The conditional is if x < y, so let’s
choose values that will make this if-statement false. We’ll apply the character-
ization test technique, giving the assertion a known mismatch. Running the
test gives us the actual value. We plug that value into the assertion, giving
us this test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_with3And2_shouldReturn3() {

let result = CoveredClass.max(3, 2)

XCTAssertEqual(result, 3)
}

Chapter 3. Measure Code Coverage and Add Tests • 42

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This should give us 100% coverage. Sadly, we’re robbed of that satisfaction:
The closing brace is marked as uncovered, as you can see here:

What’s going on? This is a side effect of multiple early return statements: pro-
gram execution never reaches the end of the function. There are ways to avoid
this, of course. But why? Code the way you want without being a slave to
coverage metrics.

Don’t fret trying to cover code you know to be unreachable.

It took two tests to cover this function: one for each side of the if-else. Even
when there’s no else clause, an if statement calls for at least two tests. Code
coverage won’t show it, but we need to test for what happens when a section
of code behind a conditional isn’t run.

For max(), we’re satisfied with our two tests. But with the greater-than and
less-than comparison operators, you’ll often want a third test with an equal
value. Equality is an interesting boundary condition for Comparable types.

Conditional expressions often use logical AND (&&) and logical OR (||) operators.
For a && b, you’ll want to test:

ba

truefalse

falsetrue

truetrue

report erratum • discuss

Cover a Conditional • 43

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

For a || b, you’ll want to test:

ba

falsefalse

falsetrue

truefalse

Where’s the fourth row of these truth tables? Adding tests for them doesn’t
add much value, so you can usually omit them. The three sets of inputs for
each AND or OR as shown in the tables is enough to specify their behavior.

Stay aware that if statements aren’t the only conditionals in town. Swift has
the following:

• if statements
• Ternary conditional a : b ? c
• guard statements
• Nil-coalescing operator ??
• Optional chaining
• switch statements

Try to cover every side of a conditional. Remember that an if
without an else still requires two tests, checking the behavior when
the statements are not executed.

What If There Are Too Many Paths?

We should try to have one test for each independent path through a function. But in
legacy code, the number of paths (and as a result, the number of tests) can explode.

One way to tame this explosion is to extract a nested conditional into its own method.
So if you have an if inside another if, select the inner clause. Then in the Xcode menu,
select Editor ▶ Refactor ▶ Extract to Method. Remove the fileprivate declaration from
the new function so that tests can access it. Now you can write tests to cover the new
function on its own.

Another way to tame the explosion is to look for combinations that shouldn’t exist.
We can often eliminate impossible states by using enumeration cases with associated
values. To explore this further, see Mislav Javor’s “Swift Enums Are ‘Sum’ Types.
That Makes Them Very Interesting.”a

Code analysis tools that measure cyclomatic complexity can help you identify functions
that need too many tests.

a. https://mislavjavor.github.io/2017-04-19/Swift-enums-are-sum-types.-That-makes-them-very-interesting/

Chapter 3. Measure Code Coverage and Add Tests • 44

report erratum • discuss

https://mislavjavor.github.io/2017-04-19/Swift-enums-are-sum-types.-That-makes-them-very-interesting/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Cover a Loop
Let’s move on to a new function that has a loop. Add the following static
function to CoveredClass:

CodeCoverage/CodeCoverage/CoveredClass.swift
static func commaSeparated(from: Int, to: Int) -> String {

var result = ""
for i in from..<to {

result += "\(i),"
}
result += "\(to)"
return result

}

Again, let’s write characterization tests instead of trying to reason through
the code. We’ll start with looping a few times—at least twice through. Since
this function returns a string, start with an assertion you’re confident will
fail. Silly text is more likely to fail than an empty string.

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to4_shouldReturnSomething() {

let result = CoveredClass.commaSeparated(from: 2, to: 4)

XCTAssertEqual(result, "FOO")
}

Run the tests. This gives us a failure message that tells us the actual value:

XCTAssertEqual failed: ("2,3,4") is not equal to ("FOO") -

Plug "2,3,4" into the assertion and rerun to confirm. Update the test name to
express the actual result:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to4_shouldReturn234SeparatedByCommas() {

let result = CoveredClass.commaSeparated(from: 2, to: 4)

XCTAssertEqual(result, "2,3,4")
}

Now let’s look at the resulting coverage that the Xcode shows in the image
on page 46.

The numbers in the gutter show one execution of the part before the loop,
two executions of the loop, and one execution of the part after the loop. It
looks like we have 100 percent coverage. But that doesn’t mean we’re done.

report erratum • discuss

Cover a Loop • 45

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

It’s tempting to cover a loop with a single test that loops several times. But
this misses an important boundary condition. What if the loop is never
entered? We want to see what happens if the statements inside are skipped.

Here’s a characterization test that uses the same values for from and to. This
will show the function’s behavior when it loops zero times:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to2_shouldReturnSomething() {

let result = CoveredClass.commaSeparated(from: 2, to: 2)

XCTAssertEqual(result, "FOO")
}

Run the tests. This gives us a failure message that tells us the actual value:

XCTAssertEqual failed: ("2") is not equal to ("FOO") -

Plug "2" into the assertion and rerun to confirm. Update the test name to state
the result:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to2_shouldReturn2WithNoComma() {

let result = CoveredClass.commaSeparated(from: 2, to: 2)

XCTAssertEqual(result, "2")
}

To cover an arbitrary loop, use zero times through and a few times
through—say, two or three times.

Cover Statements in a Sequence
Finally, let’s look at the most common building block of structured program-
ming: statements in a sequence. Add the following code to CoveredClass:

Chapter 3. Measure Code Coverage and Add Tests • 46

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CodeCoverage/CodeCoverage/CoveredClass.swift
private(set) var area: Int

var width: Int {
didSet {

area = width * width
let color: UIColor = redOrGreen(for: width)
drawSquare(width: width, color: color)

}
}

init() {
area = 0
width = 0

}

private func redOrGreen(for width: Int) -> UIColor {
width % 2 == 0 ? .red : .green

}

private func drawSquare(width: Int, color: UIColor) {
// ...

}

The statements in sequence we’ll focus on are the didSet observer on the width
property. Let’s test the outcome of the first line, which calculates the area
from a given width. We can do this with the following characterization test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_area_withWidth7_shouldBeSomething() {

let sut = CoveredClass()

sut.width = 7

XCTAssertEqual(sut.area, -1)
}

Running the tests gives us this failure message:

XCTAssertEqual failed: ("49") is not equal to ("-1") -

Plug 49 into the assertion and rerun. Don’t forget to update the test name to
match:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_area_withWidth7_shouldBe49() {

let sut = CoveredClass()

sut.width = 7

XCTAssertEqual(sut.area, 49)
}

report erratum • discuss

Cover Statements in a Sequence • 47

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now let’s examine the coverage, which will look like this:

It looks like we have near-100 percent coverage. But we have only one test,
which checks the calculation of the area property on line 26. We know there’s
nothing checking how redOrGreen() determines a color or checking how
drawSquare() renders a view. If we were only using positive code coverage as our
guide, we might falsely conclude that almost everything has test coverage.

This shows how misleading coverage can be. We can’t count on positive code
coverage alone—especially for statements in a sequence. We covered line 26.
The other lines in the didSet observer are touched incidentally, not meaning-
fully. If you can delete lines of production code and the tests still pass, then
those lines aren’t covered.

When you test a statement in a sequence of statements, the test
touches the entire sequence. It’s easy to have statements that look
covered but lack tests.

As for drawSquare(), we’ll look at how to write tests of rendered views in Chapter
16, Testing View Appearance (with Snapshots), on page 193.

Now we’ve seen how to cover different types of code constructs, and what to
be careful with. Let’s wrap up this chapter by taking a step back to think
about the big picture. We want code coverage to be a helpful tool—not
harmful, and not irrelevant.

Chapter 3. Measure Code Coverage and Add Tests • 48

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Avoid Percentage Targets, Embrace Forward Movement
Adding tests to a legacy project is a long endeavor. Let’s take a step back from
code examples and look at practices to avoid—and practices to embrace.

Avoid setting percentage targets for code coverage. Goodhart’s Law expresses
the problem with such targets:1

When a measure becomes a target, it ceases to be a good measure.

As you’ve seen, it’s easy to raise the numbers without having meaningful
tests. That’s exactly what folks will do if the team uses coverage as a target
instead of as a measurement of trends.

Another thing to avoid: don’t write tests that set and get stored properties.
Such tests don’t say anything about the code—they only show that the com-
piler works. Those properties are there for a reason. Find the reason, and test
the reason instead.

(But computed properties are just functions without arguments. Do test those.)

Rather than setting a percentage target, your team might try this goal: move
the needle forward. Any forward progress is significant and worth celebrating.

Measure your total code coverage on a regular cadence—maybe every two
weeks or every month. It’s helpful to capture more than the percentage alone.
Use a tool like cloc2 to count lines of code. Then apply the percentage to cal-
culate how many lines of code are covered and how many aren’t. For example,
if something with 5,000 lines has 20 percent line coverage, then 4,000 lines
of code are definitely not covered. This will give you a clearer picture of totals,
not just percentages.

Observe the code coverage gutter every time you add a test. It may be a long
road, but the positive feedback of seeing the red blocks disappear will boost
your motivation.

Key Takeaways
Here are the main things from this chapter to remember:

• To enable code coverage reporting, edit your scheme under Test/Options.

• Code coverage can be misleading, but lack of coverage is always true.

1. https://en.wikipedia.org/wiki/Goodhart%27s_law
2. https://github.com/AlDanial/cloc

report erratum • discuss

Avoid Percentage Targets, Embrace Forward Movement • 49

https://en.wikipedia.org/wiki/Goodhart%27s_law
https://github.com/AlDanial/cloc
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Covering a conditional takes two tests—one for when the condition is
true, and one for when it’s false. (That’s not counting && and || operators.)

• When testing a loop, try to test what happens if the loop is executed zero
times and also two times.

• If you can deliberately introduce a problem (such as deleting code) and
your tests still pass, then that code isn’t completely covered.

• Use the characterization test technique to capture the behavior of existing
code: write assertions that capture the actual values. Then plug those
values back into the assertions.

• Don’t write tests that aren’t meaningful just to juice your numbers. But
do celebrate any genuine forward movement.

Activities
Ready to take action? Pick an activity below and give it a try. The first one is
a prerequisite for the others, so do that if nothing else.

1. Enable code coverage on your project. Run your tests to get an initial
percentage.

2. Combine your coverage percentage with cloc to calculate how many lines
are covered and how many aren’t. Record this in a spreadsheet you update
periodically.

3. Look for any static func without tests. These will be easier to test than
instance methods. Find a simple one. Use the characterization test tech-
nique to capture its actual behavior.

4. Look for tested code that has conditionals. See if there are at least two
tests, one for true and one for false. Don’t worry about “this should never
happen, but Swift requires it” guard statements. (But do test guards that
could fail in real use.)

5. Look for tested code that has loops. If any loop can be empty, make sure
there’s a test for that case.

6. After doing a few of these, check your overall coverage percentage again.
If you moved the needle, celebrate!

What’s Next?
You’ve learned how to enable code coverage in Xcode and how to read the
results. You know how to cover the structured programming types:

Chapter 3. Measure Code Coverage and Add Tests • 50

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

1. Statements in a sequence will give false positives from a single test.

2. Conditionals should have at least two tests: one for true and one for false
conditions.

3. Loops also need tests for zero times through, which coverage will never
show.

You’ve also seen how positive coverage alone can be misleading. There’s
already a bit of a lie in your current coverage report. It shows that your
application delegate has test coverage. That’s not true. Let’s fix that in the
next chapter by giving the test target control of the application launch
sequence.

report erratum • discuss

What’s Next? • 51

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 4

Take Control of Application Launch
We want to run tests in a clean environment. It’s important that we control
any surrounding state that may affect test outcomes. As we discussed in
Chapter 2, Manage Your Test Life Cycles, on page 19, this is part of having
isolated tests, which is one of the FIRST properties of unit tests.1

But unit tests for an iOS application won’t have a clean environment—unless
we take steps to create it. We saw a hint of this in Chapter 3, Measure Code
Coverage and Add Tests, on page 35 when we saw the non-zero code coverage
for the app delegate and view controller. Unless we’re careful, the app will
continue to use its normal launch sequence, even for test runs. This could
create unwanted side effects that affect test runs. It can also slow down the
test feedback loop. Tests don’t start running until the app finishes launching.

In this chapter, we’ll go over how to use a separate app delegate when running
tests. By keeping your regular app delegate out of the way, you’ll have greater
control over your test environment. This will also make your code coverage
results a little more accurate.

Make a New Place to Play
Okay, time for a new project. Follow the steps in Create a Place to Play with
Tests, on page 4, but name the project name AppLaunch. Make sure to select
Storyboard as the user interface, not SwiftUI.

This time, don’t delete the initial test file AppLaunchTests.swift. But add one do-
nothing test, deleting the other methods:

1. https://pragprog.com/magazines/2012-01/unit-tests-are-first

report erratum • discuss

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

AppLaunch/AppLaunchTests/AppLaunchTests.swift
class AppLaunchTests: XCTestCase {

func test_emptyJustSoWeHaveAPassingTest() {
}

}

Then edit AppDelegate.swift to add a print(_:) statement to application(_:didFinishLaunch-
ingWithOptions:):

AppLaunch/AppLaunch/AppDelegate.swift
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
print(">> Launching with real app delegate")➤

return true
}

}

Now let’s use this project to run experiments about app launch. First, we’ll
see what happens with test execution if we don’t take precautions. Then we
will learn about the test launch sequence. After this, we’ll see how to bypass
the normal app delegate.

Observe the Default Behavior
With the print(_:) statement in the app delegate, let’s see what happens. Make
sure your destination is set to an iOS simulator. Build and run the app by
clicking the play button (or press D-R). Then press the stop button (or
press D- .).

Let’s check the console output by going to the Xcode menu and selecting View
▶ Debug Area ▶ Activate Console (or press Shift-D-C). After a line about
AppLaunch, you’ll see this:

>> Launching with real app delegate

No surprises so far. But now press D-U to run tests. Go to console output
and scroll to the top. We still see the print(_:) statement output from the app
delegate, even during testing—surprise!

Chapter 4. Take Control of Application Launch • 54

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunchTests/AppLaunchTests.swift
http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunch/AppDelegate.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Learn About the Test Launch Sequence
Let’s see why the app delegate fires off during testing. Xcode runs tests
within the context of a running app. The testing sequence goes like this:

1. Launch the simulator on macOS.
2. Dynamically inject the test bundle into the app.
3. Launch the app in the simulator.
4. Run the tests.
5. Terminate the app.

This gives tests the ecosystem they need to verify interactions with UIKit. As
part of step 3, UIKit gives the app delegate a chance to set up anything the
app needs to launch. This may include things like the following:

• Setting up core data
• Sending an app-specific key to an analytics service
• Sending a request to fetch data it needs before going to the first screen

These are things we don’t want to have happen while running unit tests. Core
data should be set up and populated by test code without using or changing
any stored data. We don’t want any network requests.

But we do want these things during normal launch. Since app delegate
behavior depends on the needs of the app, Apple can’t standardize it—or
safely bypass it. But you can.

Bypass the Normal App Delegate
Here’s how you can use a different app delegate for test runs only. In the test
target, create a new file TestingAppDelegate.swift. Copy the contents of AppDele-
gate.swift from the main target, but make these changes:

1. Remove the @UIApplicationMain attribute from the class declaration.

2. Change the name of the class to TestingAppDelegate, and add a declaration
@objc(TestingAppDelegate). By giving it an Objective-C name, we can refer to
it without a namespace.

3. Remove all methods except application(_:didFinishLaunchingWithOptions:).

4. Customize the remaining method. For our example, let’s change the print(_:)
statement.

report erratum • discuss

Learn About the Test Launch Sequence • 55

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Putting this together, here’s what TestingAppDelegate.swift looks like:

AppLaunch/AppLaunchTests/TestingAppDelegate.swift
import UIKit

@objc(TestingAppDelegate)
class TestingAppDelegate: UIResponder, UIApplicationDelegate {

func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
print("<< Launching with testing app delegate")
return true

}
}

On the regular app delegate, the @UIApplicationMain attribute tells the Swift
compiler to generate a “main” routine that starts the application with the
designated app delegate. Since we’re taking control, remove @UIApplicationMain
from AppDelegate.swift as well as from TestingAppDelegate.swift. Then it’s up to us to
provide main.swift. Add the following file to the main target:

AppLaunch/AppLaunch/main.swift
import UIKit

let appDelegateClass: AnyClass =
NSClassFromString("TestingAppDelegate") ?? AppDelegate.self

UIApplicationMain(
CommandLine.argc,
CommandLine.unsafeArgv,
nil,
NSStringFromClass(appDelegateClass))

This code tries to find a class named TestingAppDelegate outside of any names-
pace. If we’re running tests, the test bundle will be present, so the class will
be there. But on regular runs, the test bundle will be missing, so NSClassFrom-
String() will return nil. Then the nil-coalescing operator ?? will fall back to using
the regular AppDelegate.

It’s time to give the new setup a try. First, run the app to verify the message
from the normal app delegate in the console log. Then run the tests to verify
the message from the testing app delegate. The console log will show

<< Launching with testing app delegate

We’ve managed to avoid the regular app delegate during testing. This is
important because we want the tests to be in full control of what’s going on
during test execution.

Chapter 4. Take Control of Application Launch • 56

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunchTests/TestingAppDelegate.swift
http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunch/main.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Put Up with the Initial View Controller
The app delegate isn’t the only code that UIKit runs at app launch. It also
shows and activates the root view controller.

iOS 13 introduced scenes to support apps with multiple windows. Before this,
there was one root view controller, in one window. And the app delegate owned
that window. So with a separate app delegate for tests, it wasn’t hard to
supply an empty window with no root view controller.

But these days, the scene delegate owns the window. It would be nice if we
had a simple way to use a separate scene delegate for tests. However, iOS
caches the scene, which throws a wrench into our clean room goals.

Is there a way to suppress the initial view controller during tests? If you’re
lucky, your initial view controller doesn’t do any work without the user taking
some action. In this case, I’d shrug and ignore the fact that tests will start
with the initial view controller present. Just be aware that your code coverage
will be misleading for this view controller.

But you may have an initial view controller that immediately starts work,
such as firing off a network request. In this case, try the approach described
in the post “How to Switch Your iOS App and Scene Delegates for Improved
Testing.”2

For now, let’s set aside the initial view controller, and finish this chapter by
stepping back to think about what you might want your testing app delegate
to do.

Tweak Your Testing App Delegate
You now have control over more of the app launch sequence during testing.
Remember, the goal is to set up an environment that’s suitable for tests. But
your app may make assumptions about its environment, so your TestingAppDel-
egate may need more than the simple code in our example.

For testing, we want the environment to avoid doing any actual work.
Depending on what your normal app delegate does, the testing app delegate
may do things like the following:

2. https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-
9746279378c3

report erratum • discuss

Put Up with the Initial View Controller • 57

https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-9746279378c3
https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-9746279378c3
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Setting up core data with an in-memory store. This will keep production
data from interfering with test data and vice-versa. It will also help tests
to run faster.

• Providing a testing-specific key for an analytics service. Unit tests shouldn’t
make any actual network calls, but they’ll still happen until you change
the legacy code. So at the very least, use a different key to avoid polluting
the data you collect.

On the other hand, your app may not need anything in the testing app dele-
gate. If all you’re left with is an application(_:didFinishLaunchingWithOptions:) method
that does nothing but return true, just delete the method.

Key Takeaways
The main thing to take away from this chapter is that due to app launch,
running tests will execute other code. If left unchecked, we could have objects
doing work outside the context of test execution. For unit tests, the tests need
to be in full control of their environment. To give tests full control, use a
separate app delegate during test runs.

This doesn’t mean the regular app delegate is off-limits during testing. It
means that if we call anything in the regular app delegate, it will be because
we wrote a test to call it.

Activities
Ultimately, the goal is to change the way your app launches during testing.
But that might be a big job, depending on your app delegate. Try doing the
first activity to solidify your learning from this chapter. Then continue down
this list in order, depending on how much you want to do.

1. Measure the code coverage of your current unit tests. If you don’t have
any, add a do-nothing test. See how much coverage is reported for your
app delegate.

2. Does your app delegate contain anything that’s not related to the applica-
tion life cycle? Move such things out, even if that means placing them in
their own singletons. Make sure your app continues to work.

3. Copy your app delegate to make a testing app delegate. Remove @UIApplica-
tionMain. Set up main.swift. Gradually cut away anything you can from the
testing app delegate. Make sure all tests continue to run.

Chapter 4. Take Control of Application Launch • 58

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

4. After all this, see if the code coverage for your normal app delegate has
gone to zero.

What’s Next?
You’ve learned how to manage the app launch sequence. You can use a sep-
arate app delegate during testing.

This will give you a better clean room for testing. Except for the initial root
view controller, your code coverage report will be more accurate. This gives
you a clearer picture of where your app lacks unit tests.

Using the characterization test technique from Chapter 3, Measure Code
Coverage and Add Tests, on page 35, you can write tests for any well-isolated
business logic. But a lot of iOS code is in view controllers, so what do we do
about that? In the next chapter, we’ll pave the way for unit testing view con-
trollers by learning how tests can access them.

report erratum • discuss

What’s Next? • 59

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 5

Load View Controllers
UIViewControllers play a central role in iOS code. They’re the main way for
UIKit to call most of our code. Does that mean your view controller code is
out of reach of unit tests? Nope, not at all.

After all, UIKit manages to load and call your view controllers. So unit tests
can do the same. To write tests for a view controller, the test first needs to
load it. This will open the door to all sorts of tests.

In this chapter, we’ll look at different ways tests can load view controllers.
How you do this depends on how you like to write view controllers. You may
use storyboards, XIB files, or straight code. After making a new project to hold
this chapter’s experiments, feel free to jump to the section you need:

• Set Up a Storyboard-Based View Controller for Experiments, on page 62
• Set Up a XIB-Based View Controller for Experiments, on page 66
• Set Up a Code-Based View Controller for Experiments, on page 68

Make a New Place to Play
It’s time to make a new project. Follow Create a Place to Play with Tests, on
page 4, but use the project name LoadViewControllers. Then delete the initial
test file for this project, LoadViewControllersTests.swift.

There’s no need to apply the techniques from Chapter 4, Take Control of
Application Launch, on page 53 to bypass the app delegate. That’s important
to do in real code, but we’re just experimenting here. (But if you want the
practice, go for it.)

With this project skeleton in place, we can set up a particular style of view
controller, then learn how to load it from unit tests. We’ll do this for story-
boards, XIB files, and code-based view controllers.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Set Up a Storyboard-Based View Controller for
Experiments
Let’s make a storyboard-based view controller we can play with. We’ll want
it to have some of the basics:

• The view controller itself
• An outlet to control some UI

The default storyboard already contains a view controller, but let’s add a new
one. Storyboards usually contain more than one view controller, so we need
to be able to access any of them, not just the initial one.

Define the New View Controller
First, let’s define a new view controller for the storyboard-based version. Select
the LoadViewControllers group. Create a new file, selecting Cocoa Touch
Class. Name it StoryboardBasedViewController and make it a subclass of UIViewCon-
troller, like this:

In the Save dialog, double-check that the app target is selected, not the test
target.

Chapter 5. Load View Controllers • 62

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now let’s define an outlet—a simple label will do. Change the code as follows:

LoadViewControllers/LoadViewControllers/StoryboardBasedViewController.swift
class StoryboardBasedViewController: UIViewController {

@IBOutlet var label: UILabel!
}

Add the New View Controller to the Storyboard
Next, let’s add this view controller to the storyboard. Open Main.storyboard and
select View ▶ Libraries ▶ Show Library from the Xcode menu, or press
Shift-D-L . This will bring up the Object Library. Find “View Controller” and
double-click it to add a new view controller to the storyboard. (If you can’t
see the View Controller item, make sure you’ve selected Main.storyboard.)

This will create a generic view controller, which we need to change to our
specific type. Select the second “View Controller Scene,” which is the one we
just added, as shown here:

In the Xcode menu, select View ▶ Inspectors ▶ Show Identity Inspector or
press E-D-4 . In the Identity Inspector on the right, the Custom Class section
will show that the class of the selected view controller is UIViewController. (If it
shows ViewController, that’s the wrong one.) It will appear as follows:

Click the down arrow for Class to reveal the pull-down menu, and select Sto-
ryboardBasedViewController.

Let’s add a label so we can connect it to the view controller’s outlet. Open the
Object Library again and drag a label onto the view controller in the main
editor area. For this experiment, don’t worry about positioning the label or
setting any Auto Layout constraints.

Finally, connect the outlet to this new label. (One way to do this is to open
StoryboardBasedViewController.swift in the Assistant Editor. Click in the open circle

report erratum • discuss

Set Up a Storyboard-Based View Controller for Experiments • 63

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/StoryboardBasedViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

next to @IBOutlet and drag it to the label on the storyboard to establish the
connection.)

Load a Storyboard-Based View Controller
We added a second view controller because storyboards usually have more
than one of them. How can we access an arbitrary view controller within a
storyboard? We’ll do this by assigning a Storyboard ID to the view controller
we want.

Create a new test suite named StoryboardBasedViewControllerTests. (Remember to
start with Test Zero to confirm that the new suite is hooked up.) Add this
import declaration at the top of the file:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
@testable import LoadViewControllers

Then add the following test case:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
func test_loading() {

let sb = UIStoryboard(name: "Main", bundle: nil)
let sut = sb.instantiateViewController(

identifier: String(describing: StoryboardBasedViewController.self))
}

The first line loads the Main storyboard. Then the call to instantiateViewController(iden-
tifier:) takes an arbitrary identifier. It can be anything as long as it’s unique
within the storyboard. Using the class name as the identifier is an easy way
to do this.

When assigning a Storyboard ID to a view controller, use its class
name. That way, the identifier will be unique. And when writing
tests, you’ll know the ID without having to look it up inside the
storyboard.

(There is an edge case: the class name won’t be unique if your
storyboard has multiple instances of the same view controller type.
Don’t worry—if you use the same Storyboard ID twice, Xcode will
tell you.)

Run the tests. The results log will show “1 unexpected failure” with the follow-
ing message:

failed: caught "NSInvalidArgumentException", "Storyboard
(<UIStoryboard: 0x6000032d7bc0>) doesn't contain a view controller with
identifier 'StoryboardBasedViewController'"

Chapter 5. Load View Controllers • 64

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Let’s assign this Storyboard ID to the view controller. Open Main.storyboard,
select the “Storyboard Based View Controller,” and look in the Identity
Inspector on the right. (If the Identity Inspector isn’t showing, press E-D-4 .)
In the Identity Inspector, copy and paste the Class name field into the Story-
board ID field, like this:

Run the tests. This time this test will pass.

But the UIStoryboard method instantiateViewController(identifier:) returns a UIViewController
that won’t know about the outlet. We need to downcast this to the actual type
of our system under test (or sut). Thankfully, the method returns a generic
type. To get the type we want, we can explicitly specify the type of sut:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
let sut: StoryboardBasedViewController = sb.instantiateViewController(

identifier: String(describing: StoryboardBasedViewController.self))

(Make sure you’re using the new method which has the argument name iden-
tifier, not the old one named withIdentifier.)

If the type is wrong, this will crash the test run—we won’t get any further test
case reports. But it will give a useful message in the console log. And in my
experience, programmers don’t often introduce typos in the storyboard Class
field. Since it’s a rare occurrence, I don’t mind if the tests crash. (But only
for storyboards.)

We now have an sut of type StoryboardBasedViewController. Let’s add an assertion
to confirm that the outlet is set:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
XCTAssertNotNil(sut.label)

Run the tests. This will fail, but don’t be disheartened. There’s a trick to
making this work: we’ll ask the view controller to loadViewIfNeeded(). This will
load the view controller’s view from the storyboard, including outlet connec-
tions. Here’s a complete test using the simpler force-cast approach:

report erratum • discuss

Load a Storyboard-Based View Controller • 65

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
func test_loading() {

let sb = UIStoryboard(name: "Main", bundle: nil)
let sut: StoryboardBasedViewController = sb.instantiateViewController(

identifier: String(describing: StoryboardBasedViewController.self))

sut.loadViewIfNeeded()➤

XCTAssertNotNil(sut.label)
}

Run the tests to watch this pass. This demonstrates that a unit test can load
a specific view controller from a storyboard, with outlets connected.

Set Up a XIB-Based View Controller for Experiments
Now let’s make a XIB-based view controller we can play with. As with the
storyboard version, we’ll want it to have two things:

• The view controller itself
• An outlet to control some UI

Define the New View Controller
Let’s define a new view controller for the XIB-based version. Select the Load-
ViewControllers group in the Project Navigator. Create a new file, selecting
Cocoa Touch Class. Name it XIBBasedViewController and make it a subclass of
UIViewController. This time, select the check box labeled “Also create XIB file.”
Your selections should look like this:

Chapter 5. Load View Controllers • 66

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

In the Save dialog, double-check that the app target is selected, not the test
target, then press Create. This will add XIBBasedViewController.swift and XIBBased-
ViewController.xib to the project.

Now define an outlet—a label will do for our experiment. In the Swift file, use
the following code:

LoadViewControllers/LoadViewControllers/XIBBasedViewController.swift
class XIBBasedViewController: UIViewController {

@IBOutlet var label: UILabel!
}

Connect the View Controller Outlet to the XIB

Next, let’s add a label so we can connect it to the view controller’s outlet. Open
XIBBasedViewController.xib and select View ▶ Libraries ▶ Show Library from the
Xcode menu, or press Shift-D-L . Drag a label onto the view in the main editor
area. For this experiment, don’t worry about positioning the label or setting
any Auto Layout constraints.

Then connect the outlet to this new label. (One way to do this is to show XIB-
BasedViewController.swift in the Assistant Editor. Click in the open circle next to
@IBOutlet and drag it to the label on the view to establish the connection.)

Load a XIB-Based View Controller
Now let’s experiment with a test that loads this view controller. Create a new
test suite named XIBBasedViewControllerTests. (Remember to start with Test Zero
to confirm that the new suite is hooked up.) Add the @testable import LoadViewCon-
trollers declaration to the top of the file. Then add the following test case:

LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
func test_loading() {

let sut = XIBBasedViewController()

XCTAssertNotNil(sut.label)
}

Run the tests. This will fail because there’s a trick to making this work. We need
to ask the view controller to perform loadViewIfNeeded(). This will load the view con-
troller’s view from the XIB, including outlet connections. Here’s a complete test:

LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
func test_loading() {

let sut = XIBBasedViewController()

sut.loadViewIfNeeded()

XCTAssertNotNil(sut.label)
}

report erratum • discuss

Load a XIB-Based View Controller • 67

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/XIBBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests to watch this pass. This demonstrates that a unit test can load
a view controller with an associated XIB.

Where’s the XIB Name?

The designated initializer of UIViewController is init(nibName:bundle:). So why am I not calling
this in the test? How is this even working?

Initializing a UIViewController without arguments calls through to the designated
initializer, passing nil arguments. Since our view controller class name XIBBasedView-
Controller ends with Controller, UIKit will first look for a XIB file named XIBBasedView. (More
accurately, it will look for a NIB file created from a XIB file with that name.) If that
doesn’t work, it will try to look for a XIB that matches the full name XIBBasedViewController.

Apple describes these rules more fully in the documentation for the nibName property.a

a. https://developer.apple.com/documentation/uikit/uiviewcontroller/1621487-nibname

Set Up a Code-Based View Controller for Experiments
Let’s make a code-based view controller we can play with. Unlike the story-
board or XIB versions, a code-based view controller has no outlets. Instead,
we create the views in code.

Since UIKit instantiates storyboard or XIB-based view controllers, their des-
ignated initializers can’t change. But in a code-based view controller, we’re
free to define a new designated initializer. This lets us pass data as initializer
arguments instead of setting them as properties afterward.

Let’s define a new view controller for the code-based version. Select the
LoadViewControllers group. Make a new file, selecting Cocoa Touch Class.
Name it CodeBasedViewController and make it a subclass of UIViewController. In the
Save dialog, double-check that the app target is selected, not the test target.

Now let’s define an initializer that takes some data. For our example, we’ll
pass a string and store it in a property:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
class CodeBasedViewController: UIViewController {

private let data: String

init(data: String) {
self.data = data
super.init(nibName: nil, bundle: nil)

}
}

Chapter 5. Load View Controllers • 68

report erratum • discuss

https://developer.apple.com/documentation/uikit/uiviewcontroller/1621487-nibname
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Go ahead and try to build this. In the Xcode menu, select Product ▶ Build or
press D-B . Below the initializer, Xcode will show the following error:

This is a common error when writing code-based view controllers. We get this
error because we’re defining a designated initializer. But UIViewControllers conform
to the NSCoding protocol so that UIKit can create them from storyboards and
XIBs. Since we’re using a code-based approach, we don’t need to add actual
NSCoding support. Still, we have to appease UIKit by providing the method it
requires.

The icon on the left of the error shows that this is something Xcode can fix
for us. This is an easy way to provide a do-nothing method. In the Xcode
menu, select Editor ▶ Fix All Issues. Xcode will generate the following code:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")
}

That’s a fine implementation. For a code-based view controller, we don’t expect
anything to call this method, ever.

Load a Code-Based View Controller
A test can create a code-based view controller by calling its initializer. But
there’s one trick we need to borrow from its storyboard and XIB cousins. To
explore this, let’s create a learning experiment.

Create a new test suite named CodeBasedViewControllerTests. (Remember to start
with Test Zero to confirm that the new suite is hooked up.) Add the usual
@testable import LoadViewControllers to the top of the file. Then add the following
test case:

LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
func test_loading() {

let sut = CodeBasedViewController(data: "DUMMY")

// Normally, assert something
}

We have to pass a string argument because the initializer requires it. But we
won’t be using the string’s value in this experiment.

report erratum • discuss

Load a Code-Based View Controller • 69

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Sometimes we need to pass an object just to satisfy Swift, but we
don’t care about its value. xUnit Test Patterns [Mes07] says,

We can use a Dummy Argument whenever methods of the SUT take
objects as arguments and those objects are not relevant to the test.

Clearly communicate to your readers which arguments are dummy
arguments. For a string, this can be done by setting the value to
"DUMMY" or "". For numbers, 0 is often clear enough. For other types,
extract a variable and give it a name starting with dummy.

Code-based view controllers usually set up their views in viewDidLoad(). For this
experiment, let’s cheat by using a print(_:) statement instead of defining views.
In the view controller, add the following:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
override func viewDidLoad() {

super.viewDidLoad()
print(">> create views here")

}

Run the tests. Applying the techniques from Examine Console Output, on
page 23, drill down to the output of test suite CodeBasedViewControllerTests. You’ll
see something like:

Test Suite 'CodeBasedViewControllerTests' started at 2018-12-01 11:50:49.035
Test Case

'-[LoadViewControllersTests.CodeBasedViewControllerTests test_loading]'
started.

Test Case
'-[LoadViewControllersTests.CodeBasedViewControllerTests test_loading]'
passed (0.001 seconds).

Test Suite 'CodeBasedViewControllerTests' passed at 2018-12-01 11:50:49.037.
Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.002) seconds

Notice that between “started” and “passed,” we don’t have any output from
our print(_:) statement. So nothing calls viewDidLoad() automatically.

One way to address this is by having the test call viewDidLoad(). While this
works, it deviates from the style we need for storyboards and XIBs. Rather
than using one way here and another way there, it’s simplest to use the same
approach of calling loadViewIfNeeded().

Add the following line to the test:

LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
sut.loadViewIfNeeded()

Chapter 5. Load View Controllers • 70

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests again, and drill down to the console output for CodeBasedViewCon-
trollerTests. This time, the output for the test will include

>> create views here

This demonstrates that a unit test can load a code-based view controller,
asking it to create its views.

Key Takeaways
What should you take from this chapter back to your code? That depends on
which idioms you use for view controllers.

For storyboard-based view controllers you can do the following:

• Assign a Storyboard ID to the view controller.

• Instantiate a UIStoryboard. Then pass the Storyboard ID to instantiateViewCon-
troller(identifier:).

• Assign the view controller to a variable with its explicit type, so that the
test can access its properties and methods.

• Call loadViewIfNeeded() which connects the outlets and actions. It also calls
viewDidLoad().

For XIB-based view controllers, you can do the following:

• Instantiate the view controller. As long as its XIB shares the same name
as the view controller (or otherwise follows Where’s the XIB Name?, on
page 68), it will find the associated XIB file.

• Call loadViewIfNeeded() which connects the outlets and actions. It also calls
viewDidLoad().

For code-based view controllers, you can do the following:

• Instantiate the view controller.

• If you want the test to execute viewDidLoad(), call loadViewIfNeeded().

Activities
This chapter has one activity, consisting of three steps:

1. Pick a view controller in your production code. Start with one of your
simpler ones.

2. Make sure that its viewDidLoad() won’t trigger any network calls or write
anything to disk. If it does, pick a different view controller.

report erratum • discuss

Key Takeaways • 71

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

3. Write a unit test that loads this view controller. Don’t forget to call load-
ViewIfNeeded().

This test isn’t useful by itself because it has no assertions. But it’s an
important stepping-stone that will enable further testing. Give it a try to
cement your learning from this chapter.

What’s Next?
Whether you use storyboards, XIBs, or straight code, you can write tests that
reach your view controllers. We’ve covered the techniques you’ll need for each
type. And regardless of the type, call loadViewIfNeeded(). That way, the view
controllers will load up everything they need.

But loading a view controller is just part of the battle. We want tests that call
various methods on view controllers. Unfortunately, view controller methods
often have hard-coded dependencies that get in the way of testing. In the next
chapter, we’ll look at ways to isolate these dependencies. This will give tests
a way to control them so that we can test the methods.

Chapter 5. Load View Controllers • 72

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 6

Manage Difficult Dependencies
When you realize you can write unit tests against view controllers, it’s exciting.
At first, you may think this will unlock your codebase to automated testing:
“I can test anything!”

Unfortunately, as you try to make progress, you’ll experience setbacks and
frustrations. Sure, you can write a test that accesses a particular view con-
troller. But as soon as you try to have a test call some method, you find the
code inside the view controller is fighting you.

This is true of any types, not only view controllers. Code written without tests
often has implicit hardwired dependencies. These dependencies can complicate
testing. It so happens that view controllers are especially susceptible to such
problems. It’s easy to lump functionality (and the dependencies needed to
perform it) into a view controller.

When testing is difficult, this reveals flaws in the architectural design of the
code. By making changes to enable testing, you’ll be shaping the code into
cleaner design. Design decisions that were once hidden and implicit will
become visible and explicit.

In this chapter, we’ll learn how to identify difficult dependencies. Having
identified them, we’ll explore some techniques for isolating these dependencies.
This will give you ways to write unit tests against previously untestable code.

Be Okay with Problem-Free Dependencies
Law enforcement agents learn how to detect counterfeit money by studying
genuine money. Let’s apply this idea to dependencies. Before looking at difficult
dependencies, let’s see what makes some dependencies problem-free.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Consider the following function:

func shoutHello(to name: String) -> String {
return "HELLO, \(name.uppercased())!"

}

What dependencies does it have? This is a trick question because it’s easy to
reply, “It has no dependencies.” But it does depend on the Swift String type.
Our function calls the uppercased() method. Swift takes the result and does
string interpolation. String interpolation prefers calling the description property
of the CustomStringConvertible protocol.

There are word lawyers who insist that a test is not a unit test if it exercises
more than one type. Yet no one would blink an eye at writing tests for
shoutHello(to:) and calling them unit tests. So why is this dependency okay to
test without isolating it?

To answer this, let’s start with three of the FIRST unit test principles.1 The
first three apply to dependencies:

F for Fast Both functions—the uppercased() method and the description computed
property—are fast. We’re not in any danger of pushing up against the rule
of thumb from Working Effectively with Legacy Code [Fea04]:

A unit test that takes 1/10th of a second to run is a slow unit test.

I for Isolated Neither function has any side effects that would persist beyond
the test run. Tests that exercise shoutHello(to:) won’t get different results
due to external factors. And the tests won’t have any effect on each other.

R for Repeatable Calling these two functions with the same input will always
yield the same output. There are no external services that might fail. There
are no race conditions. The time of day (or phase of the moon) will make
no difference.

(The last two of the FIRST principles don’t apply to dependencies. So you’re
not left wondering what they are, S is for self-verifying. This means using
assertions to pass or fail without human verification. And T is for timely. This
means tests have more value when written before the production code.)

After fast, isolated, and repeatable, there’s one more question that helps us
classify dependencies.

Easy to Test? When something calls a dependency, how can we know if the
call was correct? If there’s a return value, it’s easy. We can check the

1. https://pragprog.com/magazines/2012-01/unit-tests-are-first

Chapter 6. Manage Difficult Dependencies • 74

report erratum • discuss

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

return value, or any computation that uses the return value. For
shoutHello(to:), the calls to String’s uppercased() and description affect the function’s
return value. Tests can simply check the return value.

What if there is no return value? Chances are good the call causes some
state to change. If we can check a property of the dependency for an
expected value, that’s also easy.

But if a call has an external effect we can’t access, that dependency is
harder to test.

If we take fast, isolated, and repeatable and combine it with easy to test, we
get FIRE. If a dependency satisfies the FIRE rules, we can use it as is. Writing
tests with it won’t be difficult.

Identify Difficult Dependencies
Now that we have some rules to gauge if a dependency is problem-free, let’s
break each FIRE rule. This will help us learn which kinds of dependencies get
in the way of simple tests.

F for Fast iOS programs often include code that will execute in response to
some external trigger. In later chapters, we’ll see how to unit test delegate
methods. But if there’s no way for tests to trigger the code execution
immediately, that’s a slow dependency. Examples include the following:

• Calls to web services
• Timers

I for Isolated Dependencies break the rule of isolation in two common ways:
global variables and persistent storage.

Global variables come in different varieties:

• Variables defined outside of any type
• Singletons
• Static properties

Globals aren’t a problem if they’re read-only, such as string constants.
It’s when we can change the value of a global that we run into the chal-
lenges of shared mutable state. One test can set a value that affects a
following test.

Persistent storage is similar, except that we store the state in something
that outlasts the app’s life cycle. This includes the following:

report erratum • discuss

Identify Difficult Dependencies • 75

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• The file system
• UserDefaults
• The keychain
• A local database
• A remote database

Recall from Chapter 2, Manage Your Test Life Cycles, on page 19 that we
need each test to run in a clean room. Earlier test runs or manual testing
should not change the outcome of automated tests. And automated tests
should leave no trace that affect later manual testing.

R for Repeatable What dependencies are there that yield different results
when called? We expect different results for the following:

• Current time or date
• Camera or microphone input
• Face ID or Touch ID
• Core Motion sensors
• Random numbers

We can anticipate those differences. But there are also unpredictable
differences:

• External services—they can fail.
• Writing to a log file—we can run out of disk space.
• Time zone of the machine running tests—when writing tests, it’s easy

to assume they’ll always run in your own time zone. Hidden problems
will surface if your development team grows globally.

Easy to Test? It’s not hard to test functions that return values or change
properties. But there are also functions that cause side effects outside of
the invoked type. Such dependencies take commands but offer no way to
access the effects of those commands. Examples include the following:

• Analytics
• Playing audio or video

Analytics includes any system of logging events to a server. We can send
events, but there’s no way for the mobile API to ask for the last batch of
events you sent.

This isn’t a complete list of difficult dependencies. But they illustrate guidelines
that will help you identify most of them. Next, we’ll see how to isolate them.

Chapter 6. Manage Difficult Dependencies • 76

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Create Boundaries to Isolate Dependencies
Once we’ve identified dependencies that make testing difficult, what do we
do with them? We need to find ways to isolate them behind boundaries.
Having isolated them, we can replace them with substitutes during testing.

In well-structured code, we can summarize our code as boxes of functionality.
An arrow line from one box to another represents a dependency. With careful
design, these boxes and arrows form a directed acyclic graph. By avoiding
cycles, we make it easier to replace functionality. This brings benefits to
ongoing maintenance that extend beyond testability.

We can implement boundaries using Swift protocols. With protocols in place,
we can substitute different concrete types. But to even begin using a protocol,
we need a place where we make the current type explicit. Once we spell out
the type, we’ll be able to switch it to a protocol.

There are various techniques for making dependencies explicit. To illustrate
them, let’s make another project for our experiments.

Make a New Place to Play
Now we’re ready to create a new project for this chapter. Follow the steps for
Create a Place to Play with Tests, on page 4, but name the project HardDe-
pendencies. Also delete that initial test file, HardDependenciesTests.swift.

We don’t need to apply Chapter 4, Take Control of Application Launch, on
page 53 to bypass the app delegate, since this is an experiment. (This will be
true for most of the book, so I won’t continue to repeat this.)

To simulate a difficult dependency, let’s pretend we’re using an analytics API

to track events. Make a new file in production code named Analytics.swift:

HardDependencies/HardDependencies/Analytics.swift
class Analytics {

static let shared = Analytics()

func track(event: String) {
print(">> " + event)

if self !== Analytics.shared {
print(">> ...Not the Analytics singleton")

}
}

}

This API provides a shared instance to use as a singleton. As a “soft” singleton,
it doesn’t restrict us from creating separate instances.

report erratum • discuss

Create Boundaries to Isolate Dependencies • 77

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/Analytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Let’s pretend the track(event:) instance method sends the event to a web service.
We’ll simulate it with a print(_:) statement, and observe the results in the console
log. It also prints a message if the Analytics instance is not the singleton.

Besides an API we can’t control, we’ll also see an approach for singletons we
own and can change. Make a second file in production code named MySingleto-
nAnalytics.swift:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
class MySingletonAnalytics {

static let shared = MySingletonAnalytics()

func track(event: String) {
Analytics.shared.track(event: event)

if self !== MySingletonAnalytics.shared {
print(">> Not the MySingletonAnalytics singleton")

}
}

}

It’s similar but wraps a call to the original Analytics class. We’ll use this for Add
Backdoors to Singletons You Own, on page 80.

Add Storyboard-Based View Controllers
To experiment with different techniques, let’s make several view controllers.
First let’s add two view controllers to the storyboard. Select the HardDepen-
dencies group. Make a new file, selecting Cocoa Touch Class. Name it Instance-
PropertyViewController and make it a subclass of UIViewController. In the Save dialog,
double-check that the app target is selected, not the test target.

Now let’s add this view controller to the storyboard. Open Main.storyboard and
select View ▶ Libraries ▶ Show Library from the Xcode menu, or press
Shift-D-L . This will bring up the Object Library. Double-click “View Controller”
to add a new view controller to the storyboard.

This will create a generic view controller, which we need to change to our
specific type. Select the second “View Controller Scene” that we just added,
like you see here:

Chapter 6. Manage Difficult Dependencies • 78

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

In the Xcode menu, select View ▶ Inspectors ▶ Show Identity Inspector or
press E-D-4 . In the Identity Inspector on the right, the Custom Class section
will show that the class of the selected view controller is UIViewController. (If it
shows ViewController, that’s the wrong one.) Click the down arrow for Class to
reveal the pop-up menu, and select InstancePropertyViewController.

We’re going to have a test load this view controller, so we need to apply the
trick from Load a Storyboard-Based View Controller, on page 64. In the
Identity Inspector, copy and paste the Class name into the Storyboard ID.

Now we have one storyboard-based view controller we can use in a test. Repeat
these steps to create another view controller, naming it ClosurePropertyViewCon-
troller. You should end up with three scenes in Main.storyboard—the first there
by default, and the two you just added.

Add XIB-Based View Controllers
Now we’ll add view controllers that use XIBs. Select the HardDependencies
group in the Project Navigator. Make a new file, selecting Cocoa Touch Class.
Name it OverrideViewController and make it a subclass of UIViewController. This time,
select the check box labeled “Also create XIB file.”

In the Save dialog, double-check that the app target is selected, not the test
target. Pressing Create will add OverrideViewController.swift and OverrideViewController.xib
to the project.

Now we have one XIB-based view controller we can use in a test. Repeat these
steps to make the following additional view controllers:

• InstanceInitializerViewController
• ClosureInitializerViewController
• MySingletonViewController

report erratum • discuss

Make a New Place to Play • 79

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Track Analytics on the New View Controllers
With two systems for tracking events (Analytics and MySingletonAnalytics), let’s use
them in the view controllers. In each view controller except MySingletonViewCon-
troller, add the following method:

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
Analytics.shared.track(event: "viewDidAppear - \(type(of: self))")

}

Copy the same method to MySingletonViewController, but change the singleton
from Analytics.shared to MySingletonAnalytics.shared.

We now have a simulated setup of analytics, called from view controllers using
differing styles. In the rest of this chapter, let’s look at ways to replace these
hard-coded dependencies. We’ll start with two techniques that are easier to
apply to legacy code but come at the cost of weak design. We’ll move from
there to techniques that take more work but yield more robust designs.

Add Backdoors to Singletons You Own
You can’t change the behavior of singletons you don’t own. But any singleton
you do own provides an opportunity to add a singleton backdoor. We can use
conditional compilation to ensure that the backdoors aren’t available in release
builds.

For this experiment, let’s assume MySingletonAnalytics is code we own. It uses
the Adapter design pattern2 to wrap the actual analytics API:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
class MySingletonAnalytics {

static let shared = MySingletonAnalytics()

func track(event: String) {
Analytics.shared.track(event: event)

if self !== MySingletonAnalytics.shared {
print(">> Not the MySingletonAnalytics singleton")

}
}

}

Any time you use a third-party framework, consider wrapping it
in an Adapter. This will let you change or augment the underlying
implementation without changing the call sites.

2. Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]

Chapter 6. Manage Difficult Dependencies • 80

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MySingletonViewController uses this singleton to track calls to viewDidAppear(_:).

HardDependencies/HardDependencies/MySingletonViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
MySingletonAnalytics.shared.track(

event: "viewDidAppear - \(type(of: self))"
)

}

Using this singleton is fine. But during testing, we want to use something
else. Later, we’ll learn how to create mock objects that can record calls. For
now, let’s just get it to use a different instance.

We’ll add a layer of indirection around the singleton. In the other cases where
we don’t own the singleton, we’ll do this at the calling code. But if you own
the singleton, you can add indirection inside the called code.

Add a new static instance of MySingletonAnalytics. Declare it private to restrict its
visibility. Then change shared from a stored property to a computed property
returning the new instance:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
private static let instance = MySingletonAnalytics()

static var shared: MySingletonAnalytics {
return instance

}

Also wrap the track(event:) method’s print statement in a conditional, to compare
against the new static instance. This way, it’ll report when we’re not using
the regular singleton:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
if self !== MySingletonAnalytics.instance {➤

print(">> Not the MySingletonAnalytics singleton")
}➤

Build to confirm these changes, which are transparent to the call sites.

Now let’s add the backdoor, wrapped in #if DEBUG conditional compilation.
What we want is a way for test code to provide a different object in place of
the singleton:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
private static let instance = MySingletonAnalytics()

#if DEBUG
static var stubbedInstance: MySingletonAnalytics?➤

#endif

report erratum • discuss

Add Backdoors to Singletons You Own • 81

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

static var shared: MySingletonAnalytics {
#if DEBUG
if let stubbedInstance = stubbedInstance {➤

return stubbedInstance➤

}➤

#endif

return instance
}

Now if a test provides a stubbedInstance, the shared property will return it instead
of the singleton. To ensure that we’re doing this substitution consistently,
inject the stub in setUp() and remove it in tearDown(). Add a new test suite MySin-
gletonViewControllerTests:

HardDependencies/HardDependenciesTests/MySingletonViewControllerTests.swift
@testable import HardDependencies
import XCTest

class MySingletonViewControllerTests: XCTestCase {

override func setUp() {
super.setUp()
MySingletonAnalytics.stubbedInstance = MySingletonAnalytics()

}

override func tearDown() {
MySingletonAnalytics.stubbedInstance = nil
super.tearDown()

}

func test_viewDidAppear() {
let sut = MySingletonViewController()
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

}

Run tests. Since this is an experiment, the test case has no assertion. But
our fake implementation of event tracking has print(_:) statements in Analytics.swift.
By examining the console output (see Examine Console Output, on page 23)
we can see the log for this test case:

Test Case '-[HardDependenciesTests.MySingletonViewControllerTests
test_viewDidAppear]' started.

>> viewDidAppear - MySingletonViewController
>> Not the MySingletonAnalytics singleton
Test Case '-[HardDependenciesTests.MySingletonViewControllerTests

test_viewDidAppear]' passed (0.001 seconds).

Chapter 6. Manage Difficult Dependencies • 82

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/MySingletonViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The log shows the event tracking works. The message “Not the MySingleton-
Analytics singleton” also shows that we replaced the singleton with some-
thing else.

In general, you should avoid mixing test code into production code.
Conditional compilation makes code hard to read, reason about,
and maintain. Dependency Injection Principles, Practices, and
Patterns [vS19] describes the singleton backdoor as an anti-pattern
called Ambient Context. It’s far preferable to use other means of
injection, especially constructor injection. We’ll look at this in
Inject Instances Through Initializers or Properties, on page 85.

But if you already have a singleton you own, and it’s already in
wide use, adding a backdoor can provide a small enabling point3

to switch behavior. It’s like a hidden panel on a home theater
system, concealing controls you don’t need for daily use. It doesn’t
improve the singleton-centric design. But it allows you to test code
that uses that singleton, without modifying the call sites. That’s
progress, and any progress is good.

Subclass and Override: A Legacy Code Technique
Let’s move on to singletons we don’t own. To add a layer of indirection around
the singleton, we’ll extend the calling code. An important dependency-breaking
technique from Working Effectively with Legacy Code [Fea04] is Subclass and
Override Method.

The idea is to create a subclass of production code that lives only in test code,
or a test-specific subclass.4 It gives us a way to override methods that are
problematic for testing.

Let’s apply this to OverrideViewController, which starts with this initial method:

HardDependencies/HardDependencies/OverrideViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
Analytics.shared.track(event: "viewDidAppear - \(type(of: self))")

}

We want a way to replace Analytics.shared, so extract it to its own method. Select
Analytics.shared, then select Editor ▶ Refactor ▶ Extract to Method from the Xcode
menu. Name the new method analytics().

3. Working Effectively with Legacy Code [Fea04]
4. xUnit Test Patterns [Mes07]

report erratum • discuss

Subclass and Override: A Legacy Code Technique • 83

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/OverrideViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

HardDependencies/HardDependencies/OverrideViewController.swift
fileprivate func analytics() -> Analytics { Analytics.shared }

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
analytics().track(event: "viewDidAppear - \(type(of: self))")

}

When an IDE provides automated refactoring options, lean on
them. Automated refactoring reduces human error, so it’s especial-
ly important when there is no test coverage yet.

Remove the fileprivate modifier from the new method so that tests can override it.

Now create a new test suite OverrideViewControllerTests. (As usual, add @testable
import HardDependencies.) Somewhere in the test file, define this test-specific
subclass:

HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
private class TestableOverrideViewController: OverrideViewController {

override func analytics() -> Analytics { Analytics() }
}

The naming convention I use is to add the prefix Testable to the name of the
original class. That’s why this is named TestableOverrideViewController. It overrides
the analytics() method to provide a different instance from the singleton.

Test code can then instantiate the testable subclass instead of the original.
Add the following test case:

HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
class OverrideViewControllerTests: XCTestCase {

func test_viewDidAppear() {
let sut = TestableOverrideViewController()
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

}

Run tests. The test case has no assertion, but we can check the console output
(see Examine Console Output, on page 23) for the fake event tracking printed
by Analytics.swift.

Subclass and Override Method can only be applied to a class that permits
subclassing:

Chapter 6. Manage Difficult Dependencies • 84

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/OverrideViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Swift doesn’t allow subclassing of structs.

• The final modifier prevents classes from having subclasses. Remove it to
apply this technique.

• Storyboard-based view controllers can’t be subclassed because the story-
board stores an instance of a predetermined type.

With these restrictions in mind, this technique is powerful. It provides a
way to wrangle previously untestable classes. Subclass and Override Method
is useful for short-circuiting any problematic methods. The changes to
production code are minimal, which is important when you don’t yet have
test coverage.

Once you learn Subclass and Override Method, be careful not to
apply it excessively. I recommend using this technique only for
preexisting code without tests. For new code, or old code with test
coverage, try to use the techniques that follow in the rest of this
chapter.

Inject Instances Through Initializers or Properties
Subclass and Override Method lets you replace entire methods, not only
dependencies. It’s great for legacy code but puts almost no design pressure
on the code. It also keeps dependencies somewhat hidden. Using dependen-
cy injection means making more changes, but these changes bring greater
clarity.

On the surface, dependency injection (DI) means we pass dependencies into
an object. Instead of allowing the object to decide its dependencies, we tell
the object what to use.

DI is more than passing in instances. It promotes loosely coupled code that
depends on protocols instead of concrete types. But we don’t have to go full-
on with protocols to get benefits from DI. By providing a default, we give the
object a way to specify its own dependency—unless it’s told otherwise.

Use Initializers
Constructor injection is the preferred form of DI because it makes dependencies
explicit. We can use it on any type that lets us add parameters to the initial-
izer. This includes view controllers that are XIB based or code based.

report erratum • discuss

Inject Instances Through Initializers or Properties • 85

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

InstanceInitializerViewController is a XIB-based view controller. We’ll start by giving
it a private property set by its initializer:

HardDependencies/HardDependencies/InstanceInitializerViewController.swift
private let analytics: Analytics

init(analytics: Analytics = Analytics.shared) {
self.analytics = analytics
super.init(nibName: nil, bundle: nil)

}

The initializer parameter has a default value of Analytics.shared. This lets the
view controller set the dependency, unless a call site passes in a different
argument.

Try to build this by pressing D-B . Below the initializer, Xcode will show the
following error:

We can satisfy UIViewController requirements by selecting Editor ▶ Fix All Issues
in the Xcode menu. Xcode will generate the following code:

HardDependencies/HardDependencies/InstanceInitializerViewController.swift
required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")
}

Finally, change viewDidAppear(_:) to use the analytics property instead of the Ana-
lytics.shared singleton:

HardDependencies/HardDependencies/InstanceInitializerViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
analytics.track(event: "viewDidAppear - \(type(of: self))")➤

}

Now create a new test suite InstanceInitializerViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/InstanceInitializerViewControllerTests.swift
func test_viewDidAppear() {

let sut = InstanceInitializerViewController(analytics: Analytics())
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

Chapter 6. Manage Difficult Dependencies • 86

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/InstanceInitializerViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The test creates the view controller, passing in an Analytics instance different
from the singleton. We can change this to a mock object once we learn how
to make one. For now, a different instance will do for our experiment.

Run tests. The test has no assertion, so check the console output (see
Examine Console Output, on page 23) to confirm the tracking event, and that
we avoided using the singleton.

Use Properties
Not all types let us change the initializer. In particular, we can’t use construc-
tor injection for storyboard-based view controllers. Instead, let’s use property
injection.

InstancePropertyViewController is a storyboard-based view controller. Let’s give it a
lazy property with Analytics.shared as its value:

HardDependencies/HardDependencies/InstancePropertyViewController.swift
lazy var analytics = Analytics.shared

By declaring it lazy, the property won’t have an initial value. Once it’s accessed,
it will receive the value—but only if it doesn’t already have one. This gives
test code the opportunity to inject a different instance.

Then change viewDidAppear(_:) to use the analytics property instead of the Analyt-
ics.shared singleton:

HardDependencies/HardDependencies/InstancePropertyViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
analytics.track(event: "viewDidAppear - \(type(of: self))")➤

}

Now create a new test suite InstancePropertyViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/InstancePropertyViewControllerTests.swift
func test_viewDidAppear() {

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: InstancePropertyViewController =

storyboard.instantiateViewController(identifier:
String(describing: InstancePropertyViewController.self))

sut.analytics = Analytics()
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

report erratum • discuss

Inject Instances Through Initializers or Properties • 87

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstancePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstancePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/InstancePropertyViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The test loads the view controller from the storyboard. Then it sets the value
of the analytics property to an instance different from the singleton. Notice that
it does this before calling loadViewIfNeeded() so that the replacement instance is
ready before any view controller methods fire.

Run tests. The test has no assertion, so check the console output to confirm
the tracking event, and that the test used something other than the singleton.

Inject Closures to Make New Instances
Injecting instances works well when the code outside knows what to pass in.
But there are times when the code inside wants to create an instance of a
difficult dependency. For example, it might be based on input from the user.

A good way to defer creation of new instances is by injecting closures. The
closure acts as a small factory.

This technique is overkill for our analytics singleton example. But let’s use
it anyway to see what it looks like.

Use Initializers for Closures
ClosureInitializerViewController is a XIB-based view controller. We’ll start by giving
it a closure property set by its initializer. The initializer declares it as an
@escaping closure so that it can store it in the property for later execution.

HardDependencies/HardDependencies/ClosureInitializerViewController.swift
private let makeAnalytics: () -> Analytics

init(makeAnalytics: @escaping () -> Analytics = { Analytics.shared }) {
self.makeAnalytics = makeAnalytics
super.init(nibName: nil, bundle: nil)

}

The initializer parameter has a default closure. This lets the view controller
set its own closure, unless a call site passes one in.

Because we’re defining a designated initializer, Swift will complain that our
UIViewController needs to provide init(coder:). Select Editor ▶ Fix All Issues in the
Xcode menu to generate the following code:

HardDependencies/HardDependencies/ClosureInitializerViewController.swift
required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")
}

Chapter 6. Manage Difficult Dependencies • 88

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Finally, change viewDidAppear(_:) to call the makeAnalytics closure instead of the
Analytics.shared singleton:

HardDependencies/HardDependencies/ClosureInitializerViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
makeAnalytics().track(event: "viewDidAppear - \(type(of: self))")➤

}

Now create a new test suite ClosureInitializerViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/ClosureInitializerViewControllerTests.swift
func test_viewDidAppear() {

let sut = ClosureInitializerViewController { Analytics() }
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

The test creates the view controller, passing in a closure returning an instance
suitable for testing. Run tests. The test has no assertion, so check the console
output (see Examine Console Output, on page 23) for the printout of the fake
tracking event, and to check that we avoided using the singleton.

Use Properties for Closures
For types where we can’t change the initializer, we can provide closures using
property injection. This is necessary for storyboard-based view controllers.

ClosurePropertyViewController is a storyboard-based view controller. Let’s give it a
property with a closure:

HardDependencies/HardDependencies/ClosurePropertyViewController.swift
var makeAnalytics: () -> Analytics = { Analytics.shared }

Since the closure won’t execute until it’s called, there’s no need to make it a
lazy property. Simply assign it a suitable default closure. Test code can then
replace it with a different closure.

Then change viewDidAppear(_:) to use the makeAnalytics closure instead of the Ana-
lytics.shared singleton:

HardDependencies/HardDependencies/ClosurePropertyViewController.swift
override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)
makeAnalytics().track(event: "viewDidAppear - \(type(of: self))")➤

}

report erratum • discuss

Inject Closures to Make New Instances • 89

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/ClosureInitializerViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosurePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosurePropertyViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now create a new test suite ClosurePropertyViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/ClosurePropertyViewControllerTests.swift
func test_viewDidAppear() {

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ClosurePropertyViewController =

storyboard.instantiateViewController(identifier:
String(describing: ClosurePropertyViewController.self))

sut.loadViewIfNeeded()

sut.makeAnalytics = { Analytics() }
sut.loadViewIfNeeded()

sut.viewDidAppear(false)

// Normally, assert something
}

The test loads the view controller from the storyboard. Then it sets the make-
Analytics property to a closure returning an instance suitable for testing. Notice
that it does this before calling loadViewIfNeeded() so the replacement closure is
ready before any view controller methods fire.

Run tests. The test has no assertion, so check the console output for the fake
tracking event, and that the test didn’t use the singleton.

Key Takeaways
With experience, you’ll begin distinguishing between problem-free dependen-
cies and difficult dependencies. Use the FIRE rules to ask whether a depen-
dency is fast, isolated, repeatable, and easy to test.

We discussed the following techniques for isolating difficult dependencies:

• Putting a singleton backdoor on a singleton you own. Use only for legacy
code, not for new designs.

• Subclass and Override Method, using a test-specific subclass. Try to
limit this to legacy code.

• Injecting dependencies through initializers—constructor injection

• Injecting dependencies through properties—property injection

The first two techniques are helpful for legacy code because they minimize
changes to production code. But they minimize things that we ought to change.
Sometimes I use Subclass and Override Method on new code when I haven’t
yet figured out how to design a replaceable dependency. But that’s a temporary

Chapter 6. Manage Difficult Dependencies • 90

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/ClosurePropertyViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

step. Once I know how to represent the dependency, I switch to a better
technique.

Another form of Dependency Injection described in Dependency Injection
Principles, Practices, and Patterns [vS19] is called method injection. This is
where you add a new parameter to a function. It’s useful for injecting values
that change with each call. For example, instead of a function that directly
retrieves the current time, we can sometimes pass the current time as an
additional argument to that method.

Injecting closures gives us a way to extract creation of new instances. But
injecting closures may show that there is a new type trying to break free. See
if you can move the closures into a new type, changing them to methods.

Activities
To solidify this chapter, start with the first activity. You can try it on any file in
your code. Get some practice identifying difficult dependencies. It’s a good
practice to use before attempting to write unit tests against any section of code.

The remaining activities 2–4 are for any code that already uses one of the
dependency-isolating techniques.

1. Pick a file in your production code. Using the dependency rules and
examples of Identify Difficult Dependencies, on page 75, try to list every
dependency that will make it difficult to test what’s in that file.

2. If you already use a singleton backdoor or Subclass and Override Method,
try to shift to one of the other forms of explicit dependency injection.

3. If you already use property injection on a type that will let you change
the initializer, try to shift to constructor injection.

4. If you already inject closures, see if you have a new type that’s waiting to
be discovered. This isn’t always the case, but it’s worth checking.

What’s Next?
Now you have some idea of how to write unit tests for code with tricky
dependencies. This concludes Part I, covering the foundations we need.

From here, we move to Part II, taking a tour of various things you may want
to test in iOS apps. We’ll learn various techniques, starting with how to test
outlet connections.

report erratum • discuss

Activities • 91

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part II

iOS Testing Tips and Techniques

With foundations in place, how do we test specific
behaviors of iOS apps?

Some of this requires tricks. You can test a button
tap or navigation from one view controller to the
next with a handful of tricks.

Some of it requires learning how to use test doubles
to replace an actual component with a stand-in.
This includes fakes, spies, and mocks.

And besides testing behavior, it’s good to know
how to test appearance.

This section offers a grab bag of tips and techniques
that you can look up as needed.

CHAPTER 7

Testing Outlet Connections
Outlets give us a way to connect our code to storyboard and XIB objects. But
sometimes we accidentally disconnect them. When this happens, it causes
all sort of problems that can be hard to diagnose.

In this chapter, you’ll learn how to write tests for outlet connections. These
tests will serve as an early warning system. The next time someone disconnects
an outlet, these tests will save you time.

Make a New Place to Play
Let’s start a new experiment. Follow the steps for Create a Place to Play with
Tests, on page 4, but name the project OutletConnections and delete the
initial test file OutletConnectionsTests.swift.

Let’s define a XIB-based view controller. Select the OutletConnections group
in the Project Navigator. Make a new file, selecting Cocoa Touch Class and
making it a subclass of UIViewController. Select the check box labeled “Also create
XIB file.” In the Save dialog, double-check that the app target is selected, not
the test target.

Edit OutletConnectionsViewController.swift, and let’s define a couple of outlets. Many
people declare outlets to be private, so let’s do that for this example:

OutletConnections/OutletConnections/OutletConnectionsViewController.swift
class OutletConnectionsViewController: UIViewController {

@IBOutlet private var label: UILabel!
@IBOutlet private var button: UIButton!

}

Now in OutletConnectionsViewController.xib, select View ▶ Libraries ▶ Show Library
from the Xcode menu, or press Shift-D-L to bring up the Object Library. Click
and drag a label onto the view in the main editor area. Do the same to add a

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnections/OutletConnectionsViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

button. For this experiment, don’t worry about positioning them or setting
any Auto Layout constraints.

Finally, wire these up to the outlets. (One way to do this is to show OutletCon-
nectionsViewController.swift in the Assistant Editor. Click in the open circle next
to each @IBOutlet and drag it to the appropriate view.) We now have a project
that uses outlet connections. Let’s see how to unit test this.

Test Outlet Connections
By using the foundations of Part I, we can write a test to confirm outlet con-
nections. Let’s start by adding a test suite OutletConnectionsViewControllerTests. Use
Test Zero as temporary scaffolding to confirm that you hooked up the test
suite. (See Start from Test Zero, on page 21.) Delete Test Zero once you see
its expected failure message.

Add a test named test_outlets_shouldBeConnected() that starts by loading the view
controller. (See Chapter 5, Load View Controllers, on page 61.) For our
example, OutletConnectionsViewController is a XIB-based view controller.

OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
func test_outlets_shouldBeConnected() {

let sut = OutletConnectionsViewController()

sut.loadViewIfNeeded()
}

Run tests to confirm that you can successfully load the view controller.

Next, we need to make the outlets accessible to test code. They’re currently
private, which limits their visibility to the view controller alone. Recall from
Hook Up Tests to Production Code, on page 22 that @testable import allows tests
to access internal declarations. So let’s soften the access control on the outlets
from private to internal. Since internal is the default, we can omit it. But we
can still restrict access to the setters with private(set). Combining these, the
new outlet declarations are what you see here:

OutletConnections/OutletConnections/OutletConnectionsViewController.swift
@IBOutlet private(set) var label: UILabel!
@IBOutlet private(set) var button: UIButton!

Finally, let’s add XCTAssertNotNil(_:) assertions. When testing optional values, we
often unwrap them to check their properties. But to test outlet connections,
we only want to see that the outlet is not nil:

OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
XCTAssertNotNil(sut.label, "label")
XCTAssertNotNil(sut.button, "button")

Chapter 7. Testing Outlet Connections • 96

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnections/OutletConnectionsViewController.swift
http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run tests to confirm that they pass.

When a test case has more than one assertion, it’s helpful add a
descriptive message to each assertion. This way, you don’t even
have to click on the failure message to know which assertion failed.
See Add a Descriptive Message, on page 8.

Here’s the new test in full:

OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
func test_outlets_shouldBeConnected() {

let sut = OutletConnectionsViewController()

sut.loadViewIfNeeded()

XCTAssertNotNil(sut.label, "label")
XCTAssertNotNil(sut.button, "button")

}

If you accidentally disconnect any outlets, you’ll now know what went wrong
immediately.

Check the Effectiveness of Failure Messages
Whenever you add a test case to existing code, it’s best to see it fail once. We
can do this by deliberately breaking the production code. Open OutletConnec-
tionsViewController.xib and select the button. In the Xcode menu, select View ▶
Inspectors ▶ Show Connections Inspector or press E-D-7 . In the Connections
Inspector on the right, the Referencing Outlets section shows the button’s
connection, as seen here:

report erratum • discuss

Check the Effectiveness of Failure Messages • 97

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Click the little x to remove the connection. Then run tests. You will see this
failure message:

XCTAssertNotNil failed - button

This proves that the test works. But it also gives us a chance to refine the
failure message if it’s not descriptive enough. In this case, the message
clearly identifies the button outlet.

When test code is written after production code, deliberately break
the production code to watch the test fail. This is how we can test
our tests.

Key Takeaways
There are several things you should take away from this chapter:

• Add tests to confirm outlet connections. Why bother if many things will
fail without those outlets? Because the failures will be widespread and
hard to diagnose. Writing outlet tests is quick, so they provide an early
warning system for little cost. You’ll still have a bunch of test failures,
but the list of failure cases will include test_outlets_shouldBeConnected(), which
will tell you the root cause.

• When a test case has more than one assertion, add short, descriptive
messages to the assertions. The messages will help you identify the
problem, even without clicking through to see the test code.

• You may need to relax access control so the test code can see a type’s
properties. For var properties, change them to private(set) so the getter is
available, but the setter is still private. For let properties, just remove the
private modifier.

• Always see a test case fail, even if you’re adding tests to cover existing
code. It helps you design the failure to be easy to understand.

• You can test your tests by deliberately breaking the production code.

Activities
To help your reading sink deeper, try this one activity, which has four steps.
Of course, it only applies if your code uses outlets.

1. Find a view controller that has outlets.

Chapter 7. Testing Outlet Connections • 98

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

2. Write a test that loads the view controller. If you face difficult dependencies
in viewDidLoad(), move on to a different view controller for now.

3. Change the access control on the outlets to private(set).

4. Add XCTAssertNotNil(_:) assertions to check the outlets.

Repeat this for as many view controllers as you can. Then go back to any view
controllers you skipped due to difficulties in viewDidLoad(). Try to isolate the
dependencies using techniques from Chapter 6, Manage Difficult Dependen-
cies, on page 73, then test their outlets.

What’s Next?
Now you can rest assured if anyone disconnects an outlet, the test will report
the problem. And you’ll have made an important start on unit testing many
of your view controllers.

In the next chapter, let’s do more testing on the most fundamental outlet: a
button that invokes an action.

report erratum • discuss

What’s Next? • 99

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 8

Testing Button Taps (Using Actions)
Tapping a button is one of the most basic things users do with controls. If
we can write unit tests for button taps, we’ll open up an entire world for your
tests.

In this chapter, you’ll learn how to write a unit test that taps a button. This
will let you confirm the behavior of button taps on your view controllers
without manual tests or even UI tests.

Make a Place to Play with a Button
As usual, let’s make a new project. Follow the steps for Create a Place to Play
with Tests, on page 4, but use the project name ButtonTap. Also delete the
initial test file ButtonTapTests.swift.

Let’s use the predefined storyboard-based view controller. Edit ViewController.swift,
adding a button outlet. Many people declare outlets to be private, so let’s do
that for this example:

ButtonTap/ButtonTap/ViewController.swift
@IBOutlet private var button: UIButton!

Add an action, making it private. The action prints to the console to simulate
doing something useful:

ButtonTap/ButtonTap/ViewController.swift
@IBAction private func buttonTap() {

print(">> Button was tapped")
}

We need to do three things in the storyboard:

1. Add a button to the view controller.
2. Connect the button to its outlet.
3. Connect the button to its action.

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

First, let’s add the button. Open Main.storyboard and drag a button onto the view
controller. For this experiment, don’t worry about positioning it or setting any
Auto Layout constraints.

Second, let’s connect it to the outlet. Show ButtonTapViewController.swift in the
Assistant Editor, click in the open circle next to @IBOutlet, and drag it to the
button on the storyboard.

Finally, connect it to the action. Click in the open circle next to @IBAction, and
drag it to the button on the storyboard to connect them.

Let’s confirm the button tap code with a manual test. Press D-R to run the
app. Then select View ▶ Debug Area ▶ Activate Console or press Shift-D-C to
show the console on the bottom right. Tap the button in the running app. In
the console, you’ll see the following message:

>> Button was tapped

Now we’re ready to see how to write a unit test that does the button tap.

Test Button Taps
Since buttons are UI elements, many assume you need UI tests to exercise
them. But you can tap buttons using unit tests, which are much faster than
UI tests.

Let’s start by adding a test suite ViewControllerTests. Use Test Zero as temporary
scaffolding to confirm that you hooked up the test suite. (See Start from Test
Zero, on page 21.) Delete Test Zero once you see its expected failure message.

Add a test named test_tappingButton(). Recall from the tip in Add Tests for
Existing Code, on page 40 that a good test name states the expected result.
But this experimental test won’t have any assertions, so we can skip the should
clause. Instead, we’ll check the console output for the printed message.

Inside the test, add code to load the view controller. (See Chapter 5, Load
View Controllers, on page 61.) For our example, ViewController is a storyboard-
based view controller. We’ll use the simpler forced downcast approach:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
func test_tappingButton() {

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ViewController = storyboard.instantiateViewController(

identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded()

}

Chapter 8. Testing Button Taps (Using Actions) • 102

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests. Since this is a storyboard-based view controller, you’ll see a
failure message:

failed: caught "NSInvalidArgumentException", "Storyboard
(<UIStoryboard: 0x6000001f08c0>) doesn't contain a view controller with
identifier 'ViewController'"

Recall from Load a Storyboard-Based View Controller, on page 64 that for
tests, we need to set the view controller’s Storyboard ID. Open Main.storyboard
and select the view controller. In the Xcode menu, select View ▶ Inspectors
▶ Show Identity Inspector or press E-D-4 . Then in the Identity Inspector on
the right, copy and paste the Class name ViewController into the Storyboard ID
field.

Run tests again to confirm that we can now load the view controller. So far,
we’ve been following the principle Take a small step, get feedback.

To have a unit test tap a button, the button outlet must be accessible to test
code. It’s currently private, which limits its visibility to the view controller
alone. Let’s do the same thing we did for Test Outlet Connections, on page
96 and change the outlet’s access to private(set):

ButtonTap/ButtonTap/ViewController.swift
@IBOutlet private(set) var button: UIButton!

Now we’re ready to add code to tap the button. Add the following lines to the
end of the test case:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
sut.button.sendActions(for: .touchUpInside)

// Normally, assert something

Run tests and find the console output. (See Examine Console Output, on
page 23.)

Test Case '-[ButtonTapTests.ViewControllerTests test_tappingButton]' started.
>> Button was tapped
Test Case '-[ButtonTapTests.ViewControllerTests test_tappingButton]' passed

(0.014 seconds).

This shows that the unit test successfully did a button tap! All you need to
do is make the outlet accessible, then call sendActions(for:). The event .touchUpInside
is the correct event for button taps.

Of course, this means you can send any event to any control using the same
trick.

report erratum • discuss

Test Button Taps • 103

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Test Helper for Button Taps
Tapping buttons is something we’ll do quite a bit when unit testing view
controllers. But sendActions(for: .touchUpInside) isn’t very descriptive. We can improve
the readability of our tests by extracting a helper to tap UIButtons.

Putting test helpers in a separate file makes it easier to find them. In the
Project Navigator, select the ButtonTapTests group and press D-N to make
a new file. Select Swift File, name it TestHelpers.swift, and set its target to the
test target. Give it the following code:

ButtonTap/ButtonTapTests/TestHelpers.swift
import UIKit

func tap(_ button: UIButton) {
button.sendActions(for: .touchUpInside)

}

Change the test to use this new helper:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
tap(sut.button)

Run the tests and confirm that the console output says Button was tapped.

UIBarButtonItems aren’t UIControls, so we can’t call sendActions(for:) on them.
We can make a separate helper for them. We won’t use it until the example
in Chapter 17, Unleash the Power of Refactoring, on page 209, where we’ll work
through an example with a UIBarButtonItem. But for reference, here’s a test
helper to tap them:

ButtonTap/ButtonTapTests/TestHelpers.swift
func tap(_ button: UIBarButtonItem) {

_ = button.target?.perform(button.action, with: nil)
}

Swift’s function overloading lets us support the common abstraction of tap(_:)
for two types. This also means that if we change a button type from UIButton
to UIBarButton, the test code can stay the same.

Extract test helpers to make your tests more readable. They’ll also
make the tests less fragile.

Chapter 8. Testing Button Taps (Using Actions) • 104

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways
The point of this chapter’s exercise was to show you the following:

• That unit tests can send actions to controls.

• That doing so is simple. You just have to make controls non-private so
tests can talk to them.

• That test helpers can make tests more readable.

But you may be wondering why I recommend writing unit tests to verify UI

behavior such as button taps. Shouldn’t we use Apple’s UI testing to test UI?

It’s helpful to know how the two testing paradigms differ. In UI testing, the
tests run in a separate test runner app, sending UI events to the app under
test. The app under test is a black box, revealing only the UI elements on the
screen.

But in the unit testing paradigm, the tests can have full access to all code
that isn’t declared private. This brings many advantages:

• Unit tests don’t have to start from your app’s initial screen and navigate to
specific screens. Instead, they create whatever view controllers they want.

• Unit tests can inject different dependencies to the system under test.
These dependencies can provide canned inputs, or they can record out-
puts. For example, they can intercept network calls.

• Unit tests are orders of magnitude faster than UI tests.

So test behaviors (and even appearance, as we’ll see in Chapter 16, Testing
View Appearance (with Snapshots), on page 193) using unit tests as much as
you can. They’ll give you fast feedback you can incorporate into your coding
workflow. Reserve UI testing for anything the unit tests don’t already verify,
especially end-to-end testing.

Activities
Try the following five-step activity to sink this chapter into your brain:

1. Find a view controller where tapping a button changes some state. If the
action method contains difficult dependencies, skip it for now.

2. Write a test that loads the view controller. If you face difficult dependencies
in viewDidLoad(), move on to a different view controller for now.

report erratum • discuss

Key Takeaways • 105

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

3. Change the access control of the button outlet to private(set).

4. Call sendActions(for:.touchUpInside) on the button. Use a test helper to make
this easier.

5. Add an assertion to make a characterization test (see Add Tests for
Existing Code, on page 40) for the changed state. Run tests to get the
failure message. Update the assertion to match the actual value, and run
tests again.

Repeat this for as many view controllers as you can. Then go back to any view
controllers you skipped due to difficulties in either viewDidLoad() or the action
method. Try to isolate their dependencies using techniques from Chapter 6,
Manage Difficult Dependencies, on page 73.

What’s Next?
Now you can test user input from button taps. This opens up much of your
view controller code to tests. You can also begin testing other user events.

But what do we do when the user taps a button and we want the user to
confirm the decision before proceeding with the action? In the next chapter,
let’s see how to test alerts.

Chapter 8. Testing Button Taps (Using Actions) • 106

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 9

Testing Alerts
Alerts are another means of getting input from the user. But by their nature,
alerts interrupt the flow of execution. This can complicate automated testing.

Let’s just avoid the problem while making those alerts testable. In this chapter,
you’ll learn how to use the ViewControllerPresentationSpy framework to test
alerts. You’ll be able to test alerts using unit tests, which are faster and more
reliable than UI tests.

Make a New Place to Play
Let’s create a new project for this chapter. Follow the steps for Create a Place
to Play with Tests, on page 4, naming the project Alert. Then delete the initial
test file AlertTests.swift.

Let’s use the predefined storyboard-based view controller. We’ll trigger the
alert from a button, so edit ViewController.swift to add a button outlet. Our tests
will need access to the outlet, so declare it private(set):

Alert/Alert/ViewController.swift
@IBOutlet private(set) var button: UIButton!

Add an action for the button, making it private. This is where we’ll present
the alert. Give the alert Cancel and OK buttons, which print to the console
to simulate doing something useful:

Alert/Alert/ViewController.swift
@IBAction private func buttonTap() {

let alert = UIAlertController(
title: "Do the Thing?",
message: "Let us know if you want to do the thing.",
preferredStyle: .alert

)

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Alert/Alert/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/Alert/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

let cancelAction =
UIAlertAction(title: "Cancel", style: .cancel) { _ in
print(">> Cancel")

}
let okAction = UIAlertAction(title: "OK", style: .default) { _ in

print(">> OK")
}
alert.addAction(cancelAction)
alert.addAction(okAction)
alert.preferredAction = okAction
present(alert, animated: true)

}
}

Follow the remaining steps from Make a Place to Play with a Button, on page
101 to add a button to the storyboard and connect it to the outlet and the
action.

Now let’s confirm our alert code manually. Make sure your destination is set
to an iOS simulator, then press D-R to run the app. Then select View ▶ Debug
Area ▶ Activate Console or press Shift-D-C to show the console on the bottom
right. Tap the button in the running app to present the alert, like this:

Tap one of the alert buttons and observe the message in the console output.
Present the alert again and tap the other button.

Now we have a project that presents a simple test. In the rest of the chapter,
let’s see how to unit test this using a helper framework. We want to see
whether an alert was presented. We want to see if the alert has the right
message and the desired look. Finally, we want to simulate tapping the action
buttons to trigger their closures.

Add the Helper Framework to the Project
Presenting an alert is normally a difficult dependency (see Identify Difficult
Dependencies, on page 75). For unit tests, it’s a side effect. For UI tests, it
interrupts the flow of control, waiting for input. To make it easier to unit test
alerts, I wrote a framework called ViewControllerPresentationSpy.

Chapter 9. Testing Alerts • 108

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The framework is a collection of three verifiers. One is to capture alerts and
action sheets, which we’ll use here. The other two are to capture how view
controllers are presented or dismissed.

Find the latest release by going to its GitHub page1 and clicking “releases.”
Download the versioned zip file, which GitHub shows with a size. Drag View-
ControllerPresentationSpy.framework to the open Xcode project, into the AlertTests
group, as seen here:

In the “Choose options for adding these files” dialog, select the check box
labeled “Copy items if needed” to copy the framework into the project folder.
And make sure that “Add to targets“ specifies the AlertTests target only.

For third-party frameworks to work, we often need to copy them to a place
where the dynamic linker can find them. This is what we need to do with
ViewControllerPresentationSpy. In the Project Navigator on the left, select the
Alert project. Then select the AlertTests target. Within that, select the Build
Phases tab. Click the + button at the top and select “New Copy Files Phase,”
as seen here:

This creates a new Copy Files phase at the end of the list. In its Destination
pop-up menu, select “Products Directory,” as you’ll see in the image on page
110. Click the + button at the bottom of the new Copy Files phase. In the
“Choose items to add:” dialog, select ViewControllerPresentationSpy.framework and

1. https://github.com/jonreid/ViewControllerPresentationSpy

report erratum • discuss

Add the Helper Framework to the Project • 109

https://github.com/jonreid/ViewControllerPresentationSpy
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

click Add. (Don’t select the “Code Sign On Copy” check box because we’re not
shipping test code.)

Now the helper framework is ready for compiling against, and is also copied
into place for dynamic linking at runtime.

Test Alerts Using the Alert Verifier
Now that we’ve added the ViewControllerPresentationSpy framework, we’re
ready to use it in tests.

Since our alert is triggered with a button tap, follow Test Button Taps, on
page 102 to add a test suite ViewControllerTests with a test that taps the button.
This also means editing Main.storyboard to give the view controller a Storyboard
ID. Follow it through to Make a Test Helper for Button Taps, on page 104 to
add the helper function for button taps:

Alert/AlertTests/TestHelpers.swift
func tap(_ button: UIButton) {

button.sendActions(for: .touchUpInside)
}

This lets the test express the button tap as tap(sut.button). Run the tests, which
should pass.

Next, edit ViewControllerTests.swift to import the new framework:

Alert/AlertTests/ViewControllerTests.swift
import ViewControllerPresentationSpy

This import provides a class named AlertVerifier. When test code instantiates
an AlertVerifier, it patches UIKit to capture any alerts. (This works because the
AlertVerifier initializer uses method swizzling to replace the UIViewController
present(_:animated:completion:) method. Its deinitializer reverses the swizzling to
restore the original method.)

Chapter 9. Testing Alerts • 110

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

To keep any tests from accidentally presenting real alerts, let’s put the alert
verifier in the test fixture—that is, we’ll make it a property managed by setUp()
and tearDown(). That way, we’re patching alerts for all tests in the suite.

Alert/AlertTests/ViewControllerTests.swift
private var alertVerifier: AlertVerifier!

override func setUp() {
super.setUp()
alertVerifier = AlertVerifier()

}

override func tearDown() {
alertVerifier = nil
super.tearDown()

}

Rename the test to test_tappingButton_shouldShowAlert() and add the following
assertions:

Alert/AlertTests/ViewControllerTests.swift
alertVerifier.verify(

title: "Do the Thing?",
message: "Let us know if you want to do the thing.",
animated: true,
actions: [

.cancel("Cancel"),

.default("OK"),
],
presentingViewController: sut

)
XCTAssertEqual(alertVerifier.preferredAction?.title, "OK",

"preferred action")

Run the tests, which should pass. The call to the verify() method checks quite
a few things:

• That one alert was presented

• The alert title

• The alert message

• That the alert was presented with animation

• That the preferred style was UIAlertController.Style.alert. The verify() method
takes this as a parameter, with .alert as the default value.

• The titles and styles of each action

• That the presenting view controller was the system under test

report erratum • discuss

Test Alerts Using the Alert Verifier • 111

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Our production code sets the preferredAction, so the final assertion after the
long verify() checks that.

Move the SUT into the Test Fixture
As you can see, we’re testing several aspects of the alert but not the alert
buttons. Let’s add separate tests for those. Since we want to load the view
controller for each test, let’s move that into the test fixture. (See Use setUp()
and tearDown(), on page 31.)

First, define a new sut property as an implicitly unwrapped optional:

Alert/AlertTests/ViewControllerTests.swift
private var sut: ViewController!

Next, copy the code that loads the view controller into setUp(), with a change.
Remove the let and the type so the view controller is assigned to the new
property, not to a local variable:

Alert/AlertTests/ViewControllerTests.swift
override func setUp() {

super.setUp()
alertVerifier = AlertVerifier()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(➤

identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded()

}

In tearDown(), set the sut property to nil. Remember, anything you create in setUp()
should be destroyed in tearDown().

Alert/AlertTests/ViewControllerTests.swift
override func tearDown() {

alertVerifier = nil
sut = nil➤

super.tearDown()
}

Finally, remove the code in the test case that loads the view controller. This
will change its references to sut from a local variable to the new property. Run
tests to confirm this refactoring.

Add Tests for Alert Buttons
With the system under test now in the test fixture, we’ll have an easier time
adding more tests for the alert buttons. Let’s add a test to execute the action
for the OK button.

Chapter 9. Testing Alerts • 112

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The AlertVerifier method executeAction(forButton:) throws an exception if it can’t find
a button with the given name. So we have to precede it with a try statement.
For this to work in a test, mark the test method as throws:

Alert/AlertTests/ViewControllerTests.swift
func test_executeAlertAction_withOKButton() throws {

tap(sut.button)

try alertVerifier.executeAction(forButton: "OK")

// Normally, assert something
}

If you need a try in test code, mark the test case as a throwing
function with throws. Then if the call ever throws an exception,
XCTest will report it as a test failure.

For our experiment, this test has no assertions. Run tests and find the console
output (See Examine Console Output, on page 23), where you will see the
following.

Test Case '-[AlertTests.ViewControllerTests
test_executeAlertAction_withOKButton]' started.

>> OK
Test Case '-[AlertTests.ViewControllerTests

test_executeAlertAction_withOKButton]' passed (0.015 seconds).

Write another test to execute the action for the Cancel button.

Key Takeaways
This particular framework will help you test alerts and is good to know about.
Besides that, though, there’s a larger idea to take away from this chapter:
there’s usually a way to crack open things that look “untestable.”

Parts of Apple’s frameworks are black holes: we can pass data in, but tests
can’t access it to verify what we passed in. Alerts are one example of this.
Moreover, alerts can interfere with UI testing.

Though we’re coding in Swift these days, we depend on UIKit, which is written
in Objective-C. One thing calls another in Objective-C by dynamic message
passing. This gives us a way to intercept messages. ViewControllerPresenta-
tionSpy does this using method swizzling.

If you find a black hole that receives data with no way of getting it back out,
search for helper libraries that intercept the data. For alerts, ViewController-
PresentationSpy is one such solution.

report erratum • discuss

Key Takeaways • 113

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities
To turn this chapter into something practical (and sink it deeper into your
brain), try this one activity with six parts. Start at the top and go as far as
you want to.

1. In your own code, find a view controller that presents an alert.

2. Determine what action triggers the alert. If it’s a button tap, apply Chapter
8, Testing Button Taps (Using Actions), on page 101.

3. If the alert trigger is more complicated than a button tap, apply the
“Extract to Method” Xcode refactoring. Do a manual test to confirm that
the alert is still presented correctly. Then remove the fileprivate access
control on the extracted function to make it internal. Now write a test
that loads the view controller and calls the new function.

4. Copy the tests from this chapter but not the ones that execute button
actions. Use the tests as characterization tests (see Add Tests for Existing
Code, on page 40) by running them to get any failure messages. Update
the assertions to match the actual values, and run tests again.

5. Check the production code, looking for any alert actions that change some
state. If an action closure contains difficult dependencies, skip it for now.
Add a test that executes the button action, with an assertion for the
changed state. Apply the characterization test technique to get the test
to fail, then update the assertion to match the actual state.

6. For a Cancel button, add a test that executes the action and confirms
that the state doesn’t change.

Repeat this for as many view controllers as you can.

What’s Next?
Now your tests can handle user input from button taps and alerts. Remember,
you’re getting this with unit tests, which are faster than UI tests. Unit tests
also give us opportunities to isolate difficult dependencies, which makes the
tests easier to maintain.

Let’s continue our tour of things to test in iOS apps. In the next chapter, we’ll
see how to test navigation between view controllers.

Chapter 9. Testing Alerts • 114

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 10

Testing Navigation Between Screens
Most apps have more than one view controller. Besides interactions within a view
controller, we ought to test navigation from one view controller to the next.

Going from one view controller to next is part of what we want to test. But
what’s even more interesting is that we can test the data the first view con-
troller sends to the next one.

In this chapter, you’ll learn how to write unit tests for code-based navigation
and segue-based navigation. In fact, you’ll be able to test this navigation
without manual tests or UI tests.

Make a New Place to Play
Let’s start as usual by making a new project, following Create a Place to Play
with Tests, on page 4 but using the project name Navigation. And delete its
initial test file NavigationTests.swift.

Open Main.storyboard. Since we’ll be experimenting with push navigation (as
well as modal navigation), we need to place the view controller within a navi-
gation controller. Select the view controller scene. Then in the Xcode menu,
select Editor ▶ Embed In ▶ Navigation Controller.

We’re going to work with push navigation and modal presentation for both
code-based and segue-based approaches. Let’s add four buttons to trigger
each form of navigation. Edit ViewController.swift to add four button outlets,
declaring them private(set) so that tests can reach them:

Navigation/Navigation/ViewController.swift
@IBOutlet private(set) var codePushButton: UIButton!
@IBOutlet private(set) var codeModalButton: UIButton!
@IBOutlet private(set) var seguePushButton: UIButton!
@IBOutlet private(set) var segueModalButton: UIButton!

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Back in the storyboard, open the Object Library and add four buttons to the
view controller scene:

• Code Push
• Code Modal
• Segue Push
• Segue Modal

Position them as you like. Connect each to its @IBAction in ViewController.

Set Up Code-Based Navigation
Let’s add a view controller for code-based navigation to go to. Select the Nav-
igation group in the Project Navigator. Make a new file, selecting Cocoa Touch
Class. Name it CodeNextViewController and make it a subclass of UIViewController.
Leave the check box labeled “Also create XIB file” unselected. We want to
demonstrate passing data from one view controller to the next, so let’s pass
a string. The next view controller will use it to set a label’s text. For a code-
based view controller, it’s best to pass data through an initializer:

Navigation/Navigation/CodeNextViewController.swift
class CodeNextViewController: UIViewController {

let label = UILabel()

init(labelText: String) {
label.text = labelText
super.init(nibName: nil, bundle: nil)

}
}

Xcode will complain that it doesn’t have all required initializers. In the Xcode
menu, select Editor ▶ Fix All Issues to generate the following code:

Navigation/Navigation/CodeNextViewController.swift
required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")
}

To center the label, we’ll define Auto Layout constraints in viewDidLoad() using
a helper method. We’ll also set the background color:

Navigation/Navigation/CodeNextViewController.swift
override func viewDidLoad() {

super.viewDidLoad()
view.backgroundColor = .white
view.addSubview(label)
label.translatesAutoresizingMaskIntoConstraints = false

Chapter 10. Testing Navigation Between Screens • 116

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

activateEqualConstraints(.centerX, fromItem: label, toItem: view)
activateEqualConstraints(.centerY, fromItem: label, toItem: view)

}

private func activateEqualConstraints(
_ attribute: NSLayoutConstraint.Attribute,
fromItem: UIView,
toItem: UIView) {

NSLayoutConstraint(
item: fromItem,
attribute: attribute,
relatedBy: .equal,
toItem: toItem,
attribute: attribute,
multiplier: 1,
constant: 0

).isActive = true
}

Back in ViewController, let’s add actions for the two code-based navigation but-
tons. This is where we’ll either tell the navigation controller to push the next
view controller, or we’ll present a modal. Make the actions private.

Navigation/Navigation/ViewController.swift
@IBAction private func pushNextViewController() {

let nextVC = CodeNextViewController(labelText: "Pushed from code")
self.navigationController?

.pushViewController(nextVC, animated: true)
}

@IBAction private func presentModalNextViewController() {
let nextVC = CodeNextViewController(labelText: "Modal from code")
self.present(nextVC, animated: true)

}

Finally, we need to connect these actions to their buttons. (You can show the
storyboard in the Assistant Editor. Click in the open circle next to each
@IBAction and drag it to the appropriate button on the storyboard to connect
them.)

Now let’s manually confirm the navigation we have so far. Run the app and
tap Code Push. The label will say, “Pushed from code.” Go back and tap the
Code Modal button. The label will say, “Modal from code.” (We’re not going
to add a Cancel button for this experiment, so just stop the app.)

report erratum • discuss

Set Up Code-Based Navigation • 117

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Set Up Segue-Based Navigation
For segues, let’s add another view controller to the storyboard, along with two
segues to navigate to it. Let’s start with the code. From the Project Navigator,
make a subclass of UIViewController and give it the name SegueNextViewController.

In the code, let’s define a settable property that determines the text of a label:

Navigation/Navigation/SegueNextViewController.swift
class SegueNextViewController: UIViewController {

var labelText: String?

@IBOutlet private(set) var label: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
label.text = labelText

}
}

Back in the storyboard, open the Object Library and add a new view controller
to the storyboard. Select the second view controller scene, which is the one
we just added. In the Identity Inspector, set the Custom Class to
SegueNextViewController.

In the main view controller scene, control-drag from the Segue Push button
to the Segue Next View Controller. This brings up a pop-up menu of segue
choices. From the Action Segue section, select “Show (e.g. Push).” Select the
segue, then in the Identity Inspector, set its identifier to “pushNext.”

Repeat to create a new segue from the Segue Modal button to the same Segue
Next View Controller. This time, select “Present Modally” from the pop-up
menu of segue choices. Now select the newly created segue. In the Identity
Inspector, set its identifier to “modalNext.”

Now add a label to the Segue Next View Controller. Position it where you like.
Connect the label to its outlet. (You can show SegueNextViewController.swift in the
Assistant Editor and drag from the @IBOutlet circle to the label.)

Finally, we need the code that prepares for each segue by setting the label
text. Add the following method to ViewController:

Navigation/Navigation/ViewController.swift
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

switch segue.identifier {
case "pushNext"?:

guard let nextVC = segue.destination as? SegueNextViewController
else { return }

nextVC.labelText = "Pushed from segue"

Chapter 10. Testing Navigation Between Screens • 118

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/SegueNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

case "modalNext"?:
guard let nextVC = segue.destination as? SegueNextViewController

else { return }
nextVC.labelText = "Modal from segue"

default:
return

}
}

Now let’s manually confirm this navigation. Run the app. Tap the Segue Push
button to show the next view controller. The label will say, “Pushed from
segue.” Go back, and tap the Segue Modal button to see it present a modal
showing “Modal from segue.”

We now have a project that does four styles of navigation from one view con-
troller to the next. In the rest of the chapter, let’s see how to unit test each
style.

Test Code-Based Push Navigation
We’ll start our testing with code-based navigation, taking push navigation
first. Since all our navigation is triggered by button taps, follow Test Button
Taps, on page 102 to add a test suite ViewControllerTests with a test named
test_tappingCodePushButton_shouldPushCodeNextViewController(). This also means editing
Main.storyboard to give the view controller a Storyboard ID. Also follow Make a
Test Helper for Button Taps, on page 104 to add the tap(_:) helper. Have the
test tap the codePushButton outlet. Run the tests, which should pass so far.

The @IBAction connected to codePushButton tells the view controller’s navigationCon-
troller to do a push. But since the test instantiates ViewController in isolation, it
has no navigation controller at first. Let’s prove this by adding an assertion
to the end of the test.

Navigation/NavigationTests/ViewControllerTests.swift
XCTAssertNotNil(sut.navigationController)

Run the tests to see this fail. To get it to pass, we need to embed the view
controller inside a navigation controller. Add the following line after load-
ViewIfNeeded():

Navigation/NavigationTests/ViewControllerTests.swift
sut.loadViewIfNeeded()
let navigation = UINavigationController(rootViewController: sut)➤

Run the tests again. This time they should pass. Delete the XCTAssertNotNil(_:)
assertion, which has served its purpose. We’ll move forward with other
assertions.

report erratum • discuss

Test Code-Based Push Navigation • 119

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Since we pushed one view controller over another, the navigation controller
should have two view controllers in its stack. The following assertion checks that:

Navigation/NavigationTests/ViewControllerTests.swift
XCTAssertEqual(navigation.viewControllers.count, 2, "navigation stack")

Finally, let’s confirm that the last view controller in the stack is the right type:

Navigation/NavigationTests/ViewControllerTests.swift
let pushedVC = navigation.viewControllers.last
XCTAssertTrue(pushedVC is CodeNextViewController,

"Expected CodeNextViewController, "
+ "but was \(String(describing: pushedVC))")

Run the tests but know that they’ll fail. That’s because some of UIKit’s actions
aren’t immediate but add an event to the run loop. The run loop is a UIKit
mechanism for handling events like mouse and keyboard input. UIKit also
uses it for other things. Pushing onto a navigation controller is one example.

Before checking the stack of view controllers, we need to ask the run loop to
execute one more time. This allows the push to take effect. To make this
easier, let’s create a test helper to execute the run loop. Add the following to
TestHelpers.swift:

Navigation/NavigationTests/TestHelpers.swift
func executeRunLoop() {

RunLoop.current.run(until: Date())
}

Then call executeRunLoop() before the first assertion and run the tests.

If a unit test calls UIKit but you don’t see the expected results, try
executing the run loop.

This time, the tests will pass. What we’re doing is asking the run loop to
execute until Date(), which is the current time. So it nudges the run loop by
telling it, “Run until I tell you. Now stop!” This gets us what we want while
keeping the test duration short.

At this point, we know that pushedVC is a NextViewController. Most production code
prepares the state of the next view controller and then pushes it. In test code,
we can go beyond confirming only the type of the view controller. Instead of only
asserting pushedVC is NextViewController, let’s cast it. If the cast fails, we report the
failure using XCTFail() and bail out of the test. Otherwise, we now have an instance
of the correct type. Further assertions can check that we set the properties of
NextViewController correctly. Here’s the complete test case with a good test name:

Chapter 10. Testing Navigation Between Screens • 120

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingCodePushButton_shouldPushCodeNextViewController() {

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut = storyboard.instantiateViewController(

withIdentifier: "ViewController") as! ViewController
sut.loadViewIfNeeded()
let navigation = UINavigationController(rootViewController: sut)

tap(sut.codePushButton)

executeRunLoop()
XCTAssertEqual(navigation.viewControllers.count, 2, "navigation stack")
let pushedVC = navigation.viewControllers.last
guard let codeNextVC = pushedVC as? CodeNextViewController else {

XCTFail("Expected CodeNextViewController, "
+ "but was \(String(describing: pushedVC))")

return
}
XCTAssertEqual(codeNextVC.label.text, "Pushed from code")

}

We now have a way to test code-based push navigation, including the data
sent to the next view controller.

How to Spy on the Animated Flag

We can ask the UINavigationController for its stack of view controllers. But is there a way
to check whether the animated flag was set for pushViewController(_:animated:)? Yes, by using
a test spy.a A test spy records information about how it’s called. Normally, a test spy
captures method arguments without doing actual work. But to test navigation, we
want the real results of the view controller stack. We get both with a subclassed test
double that overrides pushViewController(_:animated:) to capture the animated flag while still
letting the superclass do its work.

Navigation/NavigationTests/SpyNavigationController.swift
class SpyNavigationController: UINavigationController {

private(set) var pushViewControllerArgsAnimated: [Bool] = []

override func pushViewController(
_ viewController: UIViewController, animated: Bool) {
super.pushViewController(viewController, animated: animated)
pushViewControllerArgsAnimated.append(animated)

}
}

A test would then create a SpyNavigationController instead of a UINavigationController. The test
spy records the animated arguments passed to pushViewController(_:animated:) in the
pushViewControllerArgsAnimated property, which tests can query.

a. xUnit Test Patterns [Mes07]

report erratum • discuss

Test Code-Based Push Navigation • 121

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/SpyNavigationController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Code-Based Modal Presentation
Let’s continue to test code-based navigation, this time moving to modals. The
view controller makes a present(_:animated:) call. How can we capture the result
of this call?

If we had defined the main view controller outside of a storyboard, there’s a
useful trick we could have used. To intercept the call, we could make a test-
specific subclass. It would provide its own implementation of the present(_:ani-
mated:completion:) method, including the optional completion handler.

Navigation/NavigationTests/ViewControllerTests.swift
// We can't use this for a view controller that comes from a storyboard.
private class TestableViewController: ViewController {

var presentCallCount = 0
var presentArgsViewController: [UIViewController] = []
var presentArgsAnimated: [Bool] = []
var presentArgsClosure: [(() -> Void)?] = []

override func present(_ viewControllerToPresent: UIViewController,
animated flag: Bool,
completion: (() -> Void)? = nil) {

presentCallCount += 1
presentArgsViewController.append(viewControllerToPresent)
presentArgsAnimated.append(flag)
presentArgsClosure.append(completion)

}
}

We first saw a test-specific subclass in Subclass and Override: A Legacy Code
Technique, on page 83. Here, the subclass is a test spy, which captures
method arguments without doing actual work. The idea is that tests can
instantiate the TestableViewController instead of ViewController.

This works for view controllers that are code-based or XIB-based. Unfortunate-
ly, we can’t use this approach for view controllers from storyboards. That’s
because the storyboard stores an instance of a particular class. We can’t
instantiate a ViewController from the storyboard and convert it to a subclass
after it already exists.

Let’s try a different approach. Create a new test case, giving it the name
test_INCORRECT_tappingCodeModalButton_shouldPresentCodeNextViewController(). (As you can
see from the name, we’re going to experiment with an approach I don’t recom-
mend.) Load the view controller from the storyboard, and call loadViewIfNeeded().
Then supply the rest of the test case:

Chapter 10. Testing Navigation Between Screens • 122

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Navigation/NavigationTests/ViewControllerTests.swift
UIApplication.shared.windows.first?.rootViewController = sut➤

tap(sut.codeModalButton)

let presentedVC = sut.presentedViewController
guard let codeNextVC = presentedVC as? CodeNextViewController else {

XCTFail("Expected CodeNextViewController, "
+ "but was \(String(describing: presentedVC))")

return
}
XCTAssertEqual(codeNextVC.label.text, "Modal from code")

This test sets the view controller as the rootViewController inside a visible UIWindow.
It gives the view controller a home in a larger ecosystem, allowing the
present(_:animated:) call to work. Run the tests. They will pass. So what’s the
problem?

To see the problem, add the following diagnostic code to ViewController:

Navigation/Navigation/ViewController.swift
deinit {

print(">> ViewController.deinit")
}

Add similar code to CodeNextViewController, changing the print statement so it
identifies CodeNextViewController in the print() statement. Run the test by itself,
and check the console output. You’ll see that neither ViewController nor
CodeNextViewController are deinitialized for this test.

This violates the clean room goals of Chapter 2, Manage Your Test Life Cycles,
on page 19. The lingering objects from this memory leak may not cause
trouble, but they have the potential to do so. We want to avoid this situation,
if possible. It turns out, we can...for three out of four of our navigation
scenarios.

To intercept the call to present, let’s use the same helper framework we used
for alerts. Follow the steps in Add the Helper Framework to the Project, on
page 108 to add ViewControllerPresentationSpy to the project. Then edit View-
ControllerTests.swift to import the new framework:

Navigation/NavigationTests/ViewControllerTests.swift
import ViewControllerPresentationSpy

Start a new test case named test_tappingCodeModalButton_shouldPresentCodeNextView-
Controller(). At the top of the test, instantiate a PresentationVerifier:

Navigation/NavigationTests/ViewControllerTests.swift
let presentationVerifier = PresentationVerifier()

report erratum • discuss

Test Code-Based Modal Presentation • 123

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Like we did with the AlertVerifier in Test Alerts Using the Alert Verifier, on page
110, instantiating a PresentationVerifier uses method swizzling to intercept calls
to present view controllers. When the PresentationVerifier goes out of scope, it
reverses the swizzling to restore the original method.

The PresentationVerifier captures arguments, but without presenting anything.
To finish the test, we call verify() on it to get an optional instance of the view
controller type we want. We can then use that to check its properties:

Navigation/NavigationTests/ViewControllerTests.swift
tap(sut.codeModalButton)

let codeNextVC: CodeNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)

XCTAssertEqual(codeNextVC?.label.text, "Modal from code")

The verify() method checks several things:

• That one view controller was presented
• That it was presented with animation
• That the presenting view controller was the system under test
• That the type of the presented view controller is correct. And if so, it

returns an instance of the correct type. (Otherwise, it returns nil.)

Run this test to see it pass. Then examine the console output. You’ll see
something like this:

Test Case '-[NavigationTests.ViewControllerTests
test_tappingCodeModalButton_shouldPresentCodeNextViewController]' started.

>> CodeNextViewController.deinit
>> ViewController.deinit
Test Case '-[NavigationTests.ViewControllerTests

test_tappingCodeModalButton_shouldPresentCodeNextViewController]' passed
(0.021 seconds).

The presence of the deinit logging proves that this test successfully cleans up
after itself.

Test Segue-Based Push Navigation
Segues are more of a black box than code-based navigation. But it turns out,
part of what they do is to call present(_:animated:) to show the next view controller.
This means we can use ViewControllerPresentationSpy framework as long as
we do a little extra work.

We’ll also want to keep an eye on the memory leak problem. Add the following
diagnostic code to SegueNextViewController:

Chapter 10. Testing Navigation Between Screens • 124

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Navigation/Navigation/SegueNextViewController.swift
deinit {

print(">> SegueNextViewController.deinit")
}

Before we write a third test, let’s extract common Arrange code from the two
tests we have. Follow Move the SUT into the Test Fixture, on page 112 but
without an AlertVerifier. Move the common code up to sut.loadViewIfNeeded() into
setUp(), and set sut = nil in tearDown(). Run the tests to confirm that they’re still
happy.

Now add the following test:

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingSeguePushButton_shouldShowSegueNextViewController() {

let presentationVerifier = PresentationVerifier()

tap(sut.seguePushButton)

let segueNextVC: SegueNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)

XCTAssertEqual(segueNextVC?.labelText, "Pushed from segue")
}

Run the tests. While we’d like this to pass, it fails with

failed - Expected SegueNextViewController, but was nil

To give the segue an environment that works, we need to load the view con-
troller into a visible UIWindow. We managed to avoid this for code-based
modals, but now we need this trick. Let’s put the view controller into a
window. We will use a slightly different way, adding a new helper function
to TestHelpers.swift:

Navigation/NavigationTests/TestHelpers.swift
func putInWindow(_ vc: UIViewController) {

let window = UIWindow()
window.rootViewController = vc
window.isHidden = false

}

For this to build, add import UIKit to the top of TestHelpers.swift.

Call this helper function in the “Arrange” section after setting up the Presenta-
tionVerifier:

Navigation/NavigationTests/ViewControllerTests.swift
let presentationVerifier = PresentationVerifier()
putInWindow(sut)➤

report erratum • discuss

Test Segue-Based Push Navigation • 125

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/SegueNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests again. This time, this test will pass. But check the console
output for deinit logging. You’ll find that the presented view controller
SegueNextViewController is deinitialized. But the presenting view controller ViewCon-
troller we put in a window isn’t being cleaned up.

To give the window a chance to disappear, add a call to execute the run loop
one more time at the top of tearDown():

Navigation/NavigationTests/ViewControllerTests.swift
override func tearDown() {

executeRunLoop()➤

sut = nil
super.tearDown()

}

Run this test and check the console output. You can confirm that both view
controllers are now deinitialized.

Test Segue-Based Modal Navigation
We’ve come to the last of our navigation types, the segue-based modal. Add
the following test:

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingSegueModalButton_shouldShowSegueNextViewController() {

let presentationVerifier = PresentationVerifier()

tap(sut.segueModalButton)

let segueNextVC: SegueNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)

XCTAssertEqual(segueNextVC?.labelText, "Modal from segue")
}

Run the tests, which should pass.

Unfortunately, by peering into the console output, we can see that both view
controllers still exist. There may be a trick I don’t know yet, but as of this
writing, I haven’t found a way to clean them out. The presenting view controller
and the presented view controller both live on past the life cycle of the test.

This violates our clean room goals. The best we can do is mitigate the effects. If
either view controller has a persistent side effect, then provide a backdoor for
tests to clean it up. Add a cleanup method wrapped in #if DEBUG ... #endif so that
it’s not included in your shipping app. Call this method at the end of your test
or at the beginning of tearDown() if the view controller is in the test fixture.

It’s not a perfect world. But we were able to test the modal presentation, so
we’ll take what we can get.

Chapter 10. Testing Navigation Between Screens • 126

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways
Sometimes tests need to downcast an object to a more specific type so it can
query its properties. A force-cast as! is simple but will crash the test run if
the type is wrong. Use the softer conditional cast as? with a guard let. If the guard
fails, use an XCTFail() to report the desired type and the actual object.

“Execute the run loop” is a good trick to keep in your pocket. When things
work in manual testing but not in unit testing, see if the trick works. Some-
times it gives UIKit that extra kick it needs.

To test code-based push navigation, follow these steps:

• Put the view controller inside a UINavigationController.

• Execute the run loop before any assertions. Then query the navigation
controller.

To test code-based modal navigation, follow these steps:

• Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

• Call the PresentationVerifier’s verify() method.

To test segue-based push navigation, follow these steps:

• Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

• Load the view controller into a visible UIWindow. You may wish to use
putInWindow(_) for this.

• Call the PresentationVerifier’s verify() method.

• Execute the run loop one more time at the end of tearDown() to clean
everything up.

To test segue-based modal navigation, follow these steps:

• Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

• Call the PresentationVerifier’s verify() method.

• Recognize that both the presenting view controller and the presented view
controller will live on. Check both to see if this will leave any side effects,
such as observing notifications or running a timer. If so, provide a back-
door cleanup method and call it from the test code.

report erratum • discuss

Key Takeaways • 127

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities
To solidify this chapter in your head, find a simple point of navigation in
your code. If you can, find navigation triggered by a button push. Then do
the following:

1. Write a test case that triggers the navigation, testing the expected type of
the next view controller.

2. If the presenting view controller passes any information along, look for a
way to confirm that the presented view controller has this information.
You may need to relax access control so tests can see this data.

What’s Next?
Now your tests can confirm view navigation. Remember, you’re getting this
with unit tests, which are faster than UI tests.

In the next chapter, we’ll look at testing UserDefaults. This will introduce us to
replacing an actual type with a fake object.

Chapter 10. Testing Navigation Between Screens • 128

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 11

Testing UserDefaults (with Fakes)
The most basic form of persistence we have is UserDefaults. But we don’t want
unit tests to interact with real persistence. Otherwise, unit tests could end
up affecting manual tests as well as each other. Instead, we can simulate
persistence by using a fake object.

In this chapter you’ll learn how to write a fake object that acts as a replace-
ment for UserDefaults. In the process, you’ll see how to use protocols to substitute
testing objects in place of real ones, all while keeping Swift happy.

Make a New Place to Play
For this chapter, we want some code that writes to UserDefaults and other code
that reads from it. We’ll do that with an app that increments a counter when
you tap a button. The counter will be persistent, so the app will show the last
value when it launches.

We’ll do this in a new project, following the steps for Create a Place to Play
with Tests, on page 4 but using the project name UserDefaults. Create the
project now and delete its initial test file UserDefaultsTests.swift.

Edit ViewController.swift to add outlets for a label and a button. Declare them
private(set) so that our tests can reach them:

UserDefaults/UserDefaults/ViewController.swift
@IBOutlet private(set) var counterLabel: UILabel!
@IBOutlet private(set) var incrementButton: UIButton!

Add a private count property with a didSet observer. When the count changes,
it updates the label and writes the value to UserDefaults:

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

UserDefaults/UserDefaults/ViewController.swift
private var count = 0 {

didSet {
counterLabel.text = "\(count)"
UserDefaults.standard.set(count, forKey: "count")

}
}

In viewDidLoad(), we’ll read the value back from UserDefaults:

UserDefaults/UserDefaults/ViewController.swift
override func viewDidLoad() {

super.viewDidLoad()
count = UserDefaults.standard.integer(forKey: "count")

}

Finally, add an action for the button that increments the count:

UserDefaults/UserDefaults/ViewController.swift
@IBAction private func incrementButtonTapped() {

count += 1
}

Follow the remaining steps from Make a Place to Play with a Button, on page
101 to add a button to the storyboard and connect it to the button outlet and
the action. Also add a label and connect it to the label outlet.

Now let’s manually confirm that we’re successfully using UserDefaults. Run the
app, observing the initial count. Tap the button to increment the count. Then
rerun the app to see that the count persists across runs.

We now have a simple app that uses UserDefaults. This is a difficult dependency,
so we’ll start by isolating it. We’ll extract a protocol so we can substitute
something else in its place. Then we’ll make a fake object, which will allow
us to easily test this app.

Isolate UserDefaults with Dependency Injection
Recall from Identify Difficult Dependencies, on page 75 that UserDefaults is a
difficult dependency because it uses persistent storage. We want to isolate it
so we can replace it.

There’s another way to handle persistence, though. That’s to save the old
value, overwrite it for testing, then restore the old value. But using real per-
sistence can slow down test execution. And this approach carries the risk of
leaving unwanted remains in the event of test crashes.

Chapter 11. Testing UserDefaults (with Fakes) • 130

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

So let’s take our first steps toward isolating this dependency. Since ViewController
is a storyboard-based view controller, let’s use property injection from Inject
Instances Through Initializers or Properties, on page 85.

First, add the new property, giving it an initial value of the UserDefaults.standard
singleton. Make it var, not let, so that a different value can be injected:

UserDefaults/UserDefaults/ViewController.swift
var userDefaults = UserDefaults.standard

Replace all other references to the UserDefaults.standard singleton with the
userDefaults property:

UserDefaults/UserDefaults/ViewController.swift
private var count = 0 {

didSet {
counterLabel.text = "\(count)"
userDefaults.set(count, forKey: "count")➤

}
}

override func viewDidLoad() {
super.viewDidLoad()
count = userDefaults.integer(forKey: "count")➤

}

Use manual testing to confirm that the behavior hasn’t changed.

Extract a Protocol to Support Test Doubles
The userDefaults property currently has an implicit type of UserDefaults. If we kept
that type, then any replacement would have to be UserDefaults or a subclass.
Subclassing is useful for allowing existing behavior to flow through, capturing
extra information. (See How to Spy on the Animated Flag, on page 121.) But
subclassing isn’t useful when you want to stop some existing behavior. It also
isn’t useful when the type is a final class or a struct, or the type prevents you
from creating your own instance of it.

What we need is a way to substitute an arbitrary type that honors a contract.
In Swift, we can do this using protocols. Protocols give us a way to replace a
concrete type with a test double.

What’s a test double? It’s like a stunt double in filmmaking. We
temporarily replace the real actor with someone that looks like
that actor. Or in our case, something that looks like the original
type as far as the calling code is concerned.

report erratum • discuss

Extract a Protocol to Support Test Doubles • 131

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Start by defining a new protocol in production code. For lack of a better name,
let’s call it UserDefaultsProtocol. It’ll be empty to start with:

UserDefaults/UserDefaults/ViewController.swift
protocol UserDefaultsProtocol {
}

Now add an explicit type to the userDefaults property, specifying the protocol.

UserDefaults/UserDefaults/ViewController.swift
var userDefaults: UserDefaultsProtocol = UserDefaults.standard

Xcode will show a Swift error:

Value of type 'UserDefaults' does not conform to specified type
'UserDefaultsProtocol'

Since Swift allows us to extend existing types, we can declare an extension
saying that UserDefaults does conform to our new protocol:

UserDefaults/UserDefaults/ViewController.swift
extension UserDefaults: UserDefaultsProtocol {}

That fixes the first error. But we still have errors at the places the code calls
userDefaults:

Value of type 'UserDefaultsProtocol' has no member 'set'
Value of type 'UserDefaultsProtocol' has no member 'integer'

Note which line shows the first error about set. We want to get the original
definition of the function it’s calling. Change the type of the userDefaults prop-
erty from UserDefaultsProtocol to UserDefaults. Go to the line that was showing the
first error and place the cursor within set. Then in the Xcode menu, select
Navigate ▶ Jump to Definition or press C-D- J . Take a few breaths while Xcode
determines the correct definition.

Eventually, Xcode will show you the interface of UserDefaults, highlighting this
method:

/// -setInteger:forKey: is equivalent to -setObject:forKey: except that the
/// value is converted from an NSInteger to an NSNumber.
open func set(_ value: Int, forKey defaultName: String)

There are several definitions of set(_:forKey:). Make sure you have the version
where the first argument is of type Int. Copy that line and paste it into UserDe-
faultsProtocol. Delete the open attribute since that doesn’t apply to protocols.

Do the same for the call to integer(forKey:). You’ll end up with a protocol with
the following definition:

Chapter 11. Testing UserDefaults (with Fakes) • 132

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

UserDefaults/UserDefaults/ViewController.swift
protocol UserDefaultsProtocol {

func set(_ value: Int, forKey defaultName: String)
func integer(forKey defaultName: String) -> Int

}

Finally, change the type of the userDefaults property from UserDefaults back to
UserDefaultsProtocol. Confirm the changes by pressing D-B to build.

We’ve done two things:

• Used an extension to declare that UserDefaults conforms to a new protocol
• Copied the declarations of two methods from UserDefaults into the protocol

Since UserDefaults already implements these methods, the extension is empty.
Swift nods its head and says, “Sure, the type conforms to that extension.”

Benefits to Protocols Beyond Testing

There are benefits to protocols beyond making the code testable. What we’re doing
is implementing the interface segregation principle.a This principle states that clients
shouldn’t depend on methods it doesn’t use. If the entire UserDefaults interface is a cut
diamond, we’ve reduced the dependency to a small facet.

This makes it easier to write test doubles. But we don’t have to limit use of this pro-
tocol to testing. We can substitute any type that meets the contract of the protocol.
This would let us shift the underlying persistence model to anything we want. We
could even defer the question of how we’re going to handle persistence until later.

a. Agile Software Development, Principles, Patterns, and Practices [Mar02]

Make a Fake Object
A fake object offers limited functionality like the real object. But the implemen-
tation is lightweight. In our case, we don’t need (or want) actual persistence.
We only need a way to associate an integer with a key and retrieve it using
that key. We can do this using a dictionary.

Let’s make a fake object in the test target. Select the UserDefaultsTest group
in the Project Navigator and press D-N to make a new file. Click the iOS
selector at the top, select Swift File, and press Next.

In the dialog, enter FakeUserDefaults.swift as the name of the file. In the Save
dialog, double-check that the test target is selected, not the app target. Press
Create, then define a class that conforms to the UserDefaultsProtocol protocol:

report erratum • discuss

Make a Fake Object • 133

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
@testable import UserDefaults

class FakeUserDefaults: UserDefaultsProtocol {
}

Xcode will show a Swift error:

Type 'FakeUserDefaults' does not conform to protocol 'UserDefaultsProtocol'

In the Xcode menu, select Editor ▶ Fix All Issues. Xcode will generate stubs
for the protocol methods. Fill in the rest as shown here:

UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
var integers: [String: Int] = [:]

func set(_ value: Int, forKey defaultName: String) {
integers[defaultName] = value

}

func integer(forKey defaultName: String) -> Int {
integers[defaultName] ?? 0

}

This gives us a simple implementation, backed by a dictionary of integers. In
the Xcode menu, select Product ▶ Build For ▶ Testing or press Shift-D-U to
confirm our work so far.

Test UserDefaults
Now we’re ready to use our fake object to test the app. Let’s start by adding
a test suite ViewControllerTests. Use Test Zero as temporary scaffolding to confirm
that you hooked up the test suite. (See Start from Test Zero, on page 21.)
Delete Test Zero once you see its expected failure message.

For our first test case, let’s test viewDidLoad(). That method gets the integer for
the key "count" from userDefaults and stores this in the count property. The didSet
observer on that property takes the count and updates the counter label.
These are the things we’ll test. (It also happens to write the count back to
userDefaults, which is a little wasteful but not a big deal. It’s not a requirement,
so we shouldn’t test it.) To invoke viewDidLoad(), our test will call loadViewIfNeeded().
Let’s think about how to set up the test and how to confirm the result. We
want to do the following:

• Instantiate the view controller from the storyboard.
• Create an instance of FakeUserDefaults but leave its dictionary blank.
• Inject the FakeUserDefaults into the view controller before viewDidLoad() is called.
• Call loadViewIfNeeded() to trigger viewDidLoad().
• Confirm that the counter label is displaying 0.

Chapter 11. Testing UserDefaults (with Fakes) • 134

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Following the test naming tip from Observe Object Life Cycles to Learn the
Phases of a Test, on page 26, here’s a name that expresses the test:

test_viewDidLoad_withEmptyUserDefaults_shouldShow0InCounterLabel

Create a test with that name, and follow Load a Storyboard-Based View
Controller, on page 64 to load ViewController from the storyboard. Remember
that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Here’s the rest of the test. Notice that we inject the fake object into place
before loadViewIfNeeded():

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
let defaults = FakeUserDefaults()
sut.userDefaults = defaults

sut.loadViewIfNeeded()

XCTAssertEqual(sut.counterLabel.text, "0")

Run the tests to confirm they pass.

Since we need more tests that load the fake object into the system under test,
let’s move both into the test fixture. Define properties for them as implicitly
unwrapped optionals. Copy the code to set them up, but remove each let to
assign them to the properties. Also change as! to as? to silence a Swift warning.
Remember to tear them down.

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
private var sut: ViewController!
private var defaults: FakeUserDefaults!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(describing: ViewController.self))
defaults = FakeUserDefaults()
sut.userDefaults = defaults

}

override func tearDown() {
sut = nil
defaults = nil
super.tearDown()

}

Press Shift-D-U to build tests. Then delete the corresponding lines from the
test case so the test uses the properties. Run tests to confirm this refactoring.

report erratum • discuss

Test UserDefaults • 135

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now we want a second test much like the first, except that we’ll preload
FakeUserDefaults with some integer. The test will confirm that the counter label
reflects this value.

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
func test_viewDidLoad_with7InUserDefaults_shouldShow7InCounterLabel() {

defaults.integers = ["count": 7]

sut.loadViewIfNeeded()

XCTAssertEqual(sut.counterLabel.text, "7")
}

Run tests to confirm.

That takes care of reading from UserDefaults. Let’s write a test that confirms
that tapping the button writes the incremented count to UserDefaults. First,
follow Make a Test Helper for Button Taps, on page 104 to create TestHelpers.swift
with the helper for button taps. Then add the following test:

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
func test_tappingButton_with12InUserDefaults_shouldWrite13ToUserDefaults() {

defaults.integers = ["count": 12]
sut.loadViewIfNeeded()

tap(sut.incrementButton)

XCTAssertEqual(defaults.integers["count"], 13)
}

Run tests to confirm.

Reusing the same input values across tests makes those tests
weaker. Production code could pass all tests but happen to work
only for that one input. To reduce the chances of this happening,
it’s best to vary your test inputs. (Here, we’re varying the "count"
value we load into FakeUserDefaults.)

Finally, one last test confirms that tapping the button increments the value
shown in the counter label:

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
func test_tappingButton_with42InUserDefaults_shouldShow43InCounterLabel() {

defaults.integers = ["count": 42]
sut.loadViewIfNeeded()

tap(sut.incrementButton)

XCTAssertEqual(sut.counterLabel.text, "43")
}

Chapter 11. Testing UserDefaults (with Fakes) • 136

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests to confirm. To see how effective the tests are, try breaking the
production code to see what happens. (See Check the Effectiveness of Failure
Messages, on page 97.)

Why Not Combine Similar Tests?

Why not combine the button tap tests, using multiple assertions? In Test Alerts Using
the Alert Verifier, on page 110, we got by with multiple assertions. But those assertions
were all checking properties of the same object. Here, we want to check the fake object
but also check the counter label.

By keeping these in separate tests, we’re following the principle that a good unit test
should fail for one reason. It takes only a little more work on the test side but is much
easier to diagnose when a failure occurs.

Key Takeaways
Let’s review the main things from this chapter that you should carry with you:

• Centralize direct references to a difficult dependency by putting that
dependency into a property.

• You can replace a concrete type with a protocol because Swift lets us
attach protocols to existing types. The protocol should have only the parts
of the type’s interface that you need.

• Once you express a dependency as a protocol, you can inject anything
that conforms to that protocol. This brings extra flexibility while still
preserving type safety. Tests can provide test doubles in place of the real
types.

• A fake object is a test double with a lighter-weight implementation. The
fake object avoids the complications that make the real thing a difficult
dependency. Besides FakeUserDefaults, examples include fake databases and
fake web services.

• Avoid reusing the same input values across tests. Vary the input. This
reduces the chances that the production code “happens to work” for some
inputs but not others.

Activities
If you have any code that uses UserDefaults, it’s time to apply what you’ve
learned. Here’s one activity with four steps:

report erratum • discuss

Key Takeaways • 137

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

1. Find a class that uses UserDefaults.

2. Replace direct references to UserDefaults.standard. Instead, use a property
with UserDefaults.standard as the default value.

3. Extract the UserDefaults methods you use into a protocol. (See Extract a
Protocol to Support Test Doubles, on page 131.) Set the property’s type to
this protocol.

4. Define a fake object that conforms to the protocol. (See Make a Fake
Object, on page 133.) Inject it from test code and use it to write test cases.

What’s Next?
Now you can create fake objects that simulate UserDefaults. This works for
several persistence mechanisms, not only UserDefaults. (But don’t use this
technique for core data, where you can avoid persistence by using an in-
memory store.)

Fake objects are one type of test double. What about mock objects? In the
next chapter, we’ll move on to testing networking and how to write and use
mock objects.

Chapter 11. Testing UserDefaults (with Fakes) • 138

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 12

Testing Network Requests (with Mocks)
Most iOS apps communicate with a web service. How can we unit test such
communication? This crosses a clear architectural boundary, making unit
testing impractical.

When a piece of functionality is too big for effective unit testing, break it into
smaller pieces. Instead of testing an entire chain, test the individual links
that make up the chain. For networking, this means we’ll start by testing the
request content. Testing networking without doing any actual networking
makes tests fast and consistent. You’ll be able to run your tests, even when
you have no network connection.

In this chapter, you’ll see how to test network requests. Along the way, we’ll
introduce test spies and mock objects. You’ll see how to write effective mock
objects in Swift.

Make a New Place to Play
For this chapter, we want some code that communicates with a web service.
We’ll do that with an app that communicates with the iTunes Search API1

when you tap a button. We’ll hard-code the search to get information about
a particular book. For now, we’ll print the response to the console.

Let’s work in a new project named NetworkRequest. Follow the steps for
Create a Place to Play with Tests, on page 4 using the new name, and delete
the initial test file NetworkRequestTests.swift.

Edit ViewController.swift to add an outlet for a button. Declare it private(set) so our
tests can reach it. Also declare a property to remember the current data task:

1. https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/

report erratum • discuss

https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

NetworkRequest/NetworkRequest/ViewController.swift
@IBOutlet private(set) var button: UIButton!
private var dataTask: URLSessionDataTask?

Declare an action for the button that initiates the search. It’ll call a new
method, passing the search terms.

NetworkRequest/NetworkRequest/ViewController.swift
@IBAction private func buttonTapped() {

searchForBook(terms: "out from boneville")
}

Finally, add the method that performs the search. It does this with a URLSes-
sionDataTask. When the data task begins, it disables the button so the user
can’t stack up network calls in parallel. When the task completes, it enables
the button again.

NetworkRequest/NetworkRequest/ViewController.swift
private func searchForBook(terms: String) {

guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),

let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\(encodedTerms)") else { return }

let request = URLRequest(url: url)
dataTask = URLSession.shared.dataTask(with: request) {

[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in

guard let self = self else { return }

let decoded = String(data: data ?? Data(), encoding: .utf8)
print("response: \(String(describing: response))")
print("data: \(String(describing: decoded))")
print("error: \(String(describing: error))")

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
self.dataTask = nil
self.button.isEnabled = true

}
}
button.isEnabled = false
dataTask?.resume()

}

Follow the remaining steps from Make a Place to Play with a Button, on page 101
to add a button to the storyboard, connecting it to the button outlet and the action.

Let’s do a manual test to confirm this networking code. Press D-R to run the
app. Then select View ▶ Debug Area ▶ Activate Console or press Shift-D-C to
show the console on the bottom right. Tap the button in the running app to
search for the book. The console will show you the results of the network call.

Chapter 12. Testing Network Requests (with Mocks) • 140

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now we have code that calls an actual web service. This is a difficult depen-
dency, so we’ll start by isolating it and extracting a protocol. Then we’ll create
a test spy that records how it’s called. This will give us a way to write tests
that confirm the call to the web service.

Isolate URLSession with Dependency Injection
Recall from Identify Difficult Dependencies, on page 75 that calls to web ser-
vices are difficult dependencies. For unit testing, we want to isolate these
calls so we can replace them.

Isolated unit tests aren’t the only automated testing game in town, though.
Another way to handle network calls is to fake the entire networking layer.
OHHTTPStubs2 is an example of a library that does this, letting you provide
fake network data. This is quite useful when doing automated UI testing. A
fake network makes UI tests faster and more reliable.

But back to unit tests…let’s take our first steps toward isolating the URLSes-
sion.shared singleton. Since ViewController is a storyboard-based view controller,
we’ll use property injection from Inject Instances Through Initializers or
Properties, on page 85.

First, add the new property, giving it an initial value of the URLSession.shared
singleton. Make it var, not let, so a different value can be injected:

NetworkRequest/NetworkRequest/ViewController.swift
var session = URLSession.shared

Replace the reference to the URLSession.shared singleton with the session property:

NetworkRequest/NetworkRequest/ViewController.swift
dataTask = session.dataTask(with: request) {

Use manual testing to confirm that the behavior hasn’t changed.

Extract a URLSession Protocol for Test Doubles
The session property currently has an implicit type of URLSession. Let’s follow the
same steps we used for Extract a Protocol to Support Test Doubles, on page
131. Start by defining a new protocol in production code. It’ll start out empty:

NetworkRequest/NetworkRequest/ViewController.swift
protocol URLSessionProtocol {
}

Now add an explicit type to the session property, specifying the protocol:

2. https://github.com/AliSoftware/OHHTTPStubs

report erratum • discuss

Isolate URLSession with Dependency Injection • 141

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
https://github.com/AliSoftware/OHHTTPStubs
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

NetworkRequest/NetworkRequest/ViewController.swift
var session: URLSessionProtocol = URLSession.shared

Xcode will show a Swift error:

Value of type 'URLSession' does not conform to specified type
'URLSessionProtocol'

Since Swift allows us to extend existing types, we can declare an extension
saying that URLSession does conform to our new protocol:

NetworkRequest/NetworkRequest/ViewController.swift
extension URLSession: URLSessionProtocol {}

That fixes the first error. But we still have an error where the code calls session:

Value of type 'URLSessionProtocol' has no member 'dataTask'

We want to get the original definition of the function it’s calling. Change the
type of the session property from URLSessionProtocol to URLSession. Go to the line
that had the error and place the cursor within dataTask. Then in the Xcode
menu, select Navigate ▶ Jump to Definition or press C-D- J . Xcode will show
you the interface of URLSession, highlighting this method:

open func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask

Copy that line and paste it into URLSessionProtocol. Delete the open attribute since
that doesn’t apply to protocols. You’ll end up with a protocol with the following
definition:

NetworkRequest/NetworkRequest/ViewController.swift
protocol URLSessionProtocol {

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask
}

Finally, change the type of the session property from URLSession back to URLSes-
sionProtocol. Confirm the changes by pressing D-B to build.

We’ve now decoupled the session property from URLSession, which is a difficult
dependency for unit tests. Changing its type to a protocol means tests can
supply a different implementation. Next, let’s see how to write a test spy that
implements the protocol.

Chapter 12. Testing Network Requests (with Mocks) • 142

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Test Spy
A test spy records calls to its methods. Tests can then confirm whether the
system under test made the expected calls.

For network requests, we want to intercept any calls to URLSession. The spy
can stop calls from doing any actual networking. There’s no need to test
URLSession itself. We can trust that if we ask it to fetch data for a given URL,
it’ll do that. What we want to test is how many data tasks we asked for and
whether the URL is correct.

Let’s make a test spy in the test target. The difference between a test spy and
a mock object is subtle. Most developers lump them together, calling them
all mocks. Let’s skirt around the difference for now, and give the test spy a
“mock” name. (Later, we’re going to evolve it into a full mock object.) Select
the NetworkRequestTests group in the Project Navigator and press D-N to
make a new file. Give it the name MockURLSession.swift. In the Save dialog, double-
check that the test target is selected, not the app target. Press Create. Inside,
let’s define a class that conforms to the URLSessionProtocol protocol:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
import Foundation
@testable import NetworkRequest

class MockURLSession: URLSessionProtocol {
}

Xcode will show a Swift error:

Type 'MockURLSession' does not conform to protocol 'URLSessionProtocol'

In the Xcode menu, select Editor ▶ Fix All Issues. Xcode will generate a stub
for the protocol method. It has to return a URLSessionDataTask, so just initialize
one for now. We’ll see in Design the Test Case, on page 144 that this won’t
work in practice, but it’ll satisfy the Swift compiler so that we can make
progress.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func dataTask(

with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask {
return URLSessionDataTask()

}

Now let’s capture the number of calls, and the request argument. (Ignore the
completionHandler argument for now. We’ll get to it in Chapter 13, Testing Network
Responses (and Closures), on page 153.)

report erratum • discuss

Make a Test Spy • 143

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

NetworkRequest/NetworkRequestTests/MockURLSession.swift
class MockURLSession: URLSessionProtocol {

var dataTaskCallCount = 0➤

var dataTaskArgsRequest: [URLRequest] = []➤

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask {
dataTaskCallCount += 1➤

dataTaskArgsRequest.append(request)➤

return URLSessionDataTask()
}

}

For each method in a test spy, capture the call count by increment-
ing an integer. Capture any arguments by appending them to
arrays.

Design the Test Case
Now we can try using our test spy to test the app. Let’s start by adding a test
suite ViewControllerTests. Use Test Zero as temporary scaffolding to confirm that
you hooked up the test suite. (See Start from Test Zero, on page 21.) Delete
Test Zero once you see its expected failure message.

Let’s test that tapping the button creates a data task with the expected request.
Think for a moment about how to set up the test and how to confirm the
result. We want to do the following:

• Instantiate the view controller from the storyboard.

• Create an instance of MockURLSession.

• Inject the MockURLSession into the view controller. Following what we learned
in Test UserDefaults, on page 134, let’s make sure to do this before loading
the view. We do this to avoid having any methods use the real URLSession.

• Simulate the button tap.

• Confirm that the test spy was called once, with the expected request.

Following the test naming tip from Observe Object Life Cycles to Learn the
Phases of a Test, on page 26, here’s a name that expresses the test:

test_tappingButton_shouldMakeDataTaskToSearchForEBookOutFromBoneville()

Create a test with that name, and follow Load a Storyboard-Based View
Controller, on page 64 to load ViewController from the storyboard. Remember

Chapter 12. Testing Network Requests (with Mocks) • 144

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Since we’re going to tap a button, follow Make a Test Helper for Button Taps,
on page 104 to add the tap(_:) helper.

Here’s more of the test, up to the button tap. Notice that we inject the test
spy into place before loadViewIfNeeded():

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
let mockURLSession = MockURLSession()
sut.session = mockURLSession
sut.loadViewIfNeeded()

tap(sut.button)

Run the tests. You’ll get “1 unexpected failure” with the following message:

failed: caught "NSInvalidArgumentException", "*** -resume cannot be sent to
abstract instance of class NSURLSessionDataTask"

This tells us that the Objective-C implementation of URLSessionDataTask is an
abstract base class. We can make a subclass that provides a do-nothing ver-
sion of the resume() method:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
private class DummyURLSessionDataTask: URLSessionDataTask {

override func resume() {
}

}

This is a dummy object.3 It’s something we need to satisfy the compiler, but
it has no effect on the test. Update MockURLSession to return an instance of the
dummy.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
return DummyURLSessionDataTask()

Run the tests. This time we won’t get any failures. (This does result in a
warning that URLSessionDataTask’s init() was deprecated in iOS 13.0. That’s a
sensible warning for production code, but for test code, we need to create our
own instance directly.)

Finally, let’s add two assertions of the data captured by the test spy. The first
checks that the method was called once:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(mockURLSession.dataTaskCallCount, 1, "call count")

3. xUnit Test Patterns [Mes07]

report erratum • discuss

Design the Test Case • 145

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The second is a characterization test we’ll use to get the request argument:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(

mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "http://FOO")!),
"request")

Run the tests. You’ll get the following failure message.

XCTAssertEqual failed: ("Optional(
https://itunes.apple.com/search?media=ebook&term=out%20from%20boneville)")
is not equal to ("Optional(http://FOO)") - request

The failure message from the characterization test tells us the actual behavior.
Copy and paste the URL from the failure back into the assertion:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(

mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "https://itunes.apple.com/search?" +

"media=ebook&term=out%20from%20boneville")!),
"request")

Run the tests, which will pass. We now have a test that checks the network
request without starting the download.

This isn’t the only way to test requests. In fact, it’s simpler to
extract the creation of web requests into their own types. Then
you can test the results of different inputs without using test spies
at all. But you’ll still want a test somewhere that intercepts net-
working, to confirm that the code sends the request.

We now have a test that confirms the contents of the network request, using a
test spy. In the rest of this chapter, we’ll give our spy some more smarts, turning
it into a mock object. This can simplify the test code, making it easier to write
(and read). It can also give more helpful information in the event of a test failure.

Promote the Test Spy into a Mock Object
Our test case makes two assertions against the test spy:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(mockURLSession.dataTaskCallCount, 1, "call count")
XCTAssertEqual(

mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "https://itunes.apple.com/search?" +

"media=ebook&term=out%20from%20boneville")!),
"request")

Chapter 12. Testing Network Requests (with Mocks) • 146

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

It’s saying, “Confirm that system under test called the dataTask method once,
with this request as the argument.” Let’s get a sense for how these assertions
report failures. Go to the production code for the button tap action:

NetworkRequest/NetworkRequest/ViewController.swift
@IBAction private func buttonTapped() {

searchForBook(terms: "out from boneville")
}

Try altering the production code in these three ways:

1. Comment out the searchForBook(terms:) line. Run tests and check the failure
messages. Undo.

2. Duplicate the line. Run tests and check the failure messages. Undo.

3. Go back to one line, but change the URL. Run tests and check the failure
messages. Undo.

The call count is important. We don’t want to fire off any redundant network
calls by mistake. And the test spy works pretty well. But if more than one
test uses the spy, each test case will end up duplicating the assertion that
the call count is 1. Can we avoid this duplication?

Now at last we come to mock objects. The difference between a test spy and
a mock object is where the assertions live. Let’s create a verification method
inside the test double that calls the assertions for us.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyDataTask(with request: URLRequest) {

XCTAssertEqual(dataTaskCallCount, 1, "call count")
XCTAssertEqual(dataTaskArgsRequest.first, request, "request")

}

For this to build, add an import XCTest statement to the top of the file. Then in
the Xcode menu, select Product ▶ Build For ▶ Testing or press Shift-D-U .

Now let’s change the test to use this verification method. In the test case,
replace the assertions with the following:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
mockURLSession.verifyDataTask(

with: URLRequest(url: URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=out%20from%20boneville")!))

Run the tests, which will pass. But now introduce a bug in the production
code. Change the URL argument and run tests to get a failure. In the Xcode
menu, select View ▶ Navigators ▶ Show Report Navigator (or press D-9).

report erratum • discuss

Promote the Test Spy into a Mock Object • 147

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Double-click on the test failure message. Xcode will take you to the failing
XCTAssertEqual() in MockURLSession, not to the test case that failed.

We can fix this so that test failures point to the test cases instead of to the
emerging mock object. Every XCTest assertion has two more parameters with
default arguments. They capture the file name and line number of the call
site. We can add these same parameters to the verification method:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyDataTask(with request: URLRequest,

file: StaticString = #file, line: UInt = #line) {➤

Then pass these file and line arguments down to each assertion.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
XCTAssertEqual(dataTaskCallCount, 1, "call count", file: file, line: line)
XCTAssertEqual(dataTaskArgsRequest.first, request, "request",

file: file, line: line)

Run the failing test again. Double-click on the failure message. This time,
Xcode will take you to where the failing test case calls the verification method.

Now we have a mock object. By adding more smarts to MockURLSession, we’ve
made it easier to write more tests that use it. And the test code is more
expressive.

Any time you call an XCTest assertion from a helper function, get
the file name and line number in arguments. Pass them on to any
assertions. This way, test failures will report the calling line in the
test, not the helper.

XCTest Assertions Work Differently in Objective-C

In Swift, XCTest assertions are free functions. Any type can call them, which makes
it easier to write test helpers.

But in Objective-C, assertions are methods. We can only invoke them from within
the running XCTestCase subclass. Don’t worry, though. Objective-C mocking libraries
like OCMockitoa mean you shouldn’t have to write any mock objects by hand.

a. https://github.com/jonreid/OCMockito

Improve Mock Object Reporting
We can improve the reporting from our mock object in different ways. Right
now, the verify method checks the call count is 1. It goes on to check the first
URL argument, regardless of the call count.

Chapter 12. Testing Network Requests (with Mocks) • 148

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
https://github.com/jonreid/OCMockito
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Let’s see the current failure reporting by introducing errors to ViewController.
First, in the buttonTapped() method, comment out the call to searchForBook(terms:).
Run tests. You’ll see two errors:

XCTAssertEqual failed: ("0") is not equal to ("1") - call count
XCTAssertEqual failed: ("nil") is not equal to ("Optional(

https://itunes.apple.com/search?media=ebook&term=out%20from%20boneville)")
- request

When the method is never called, it’s kind of odd to report a mismatch on the
URL argument.

Next, restore the original call to searchForBook(terms:). But add a second call
below it, with different search terms—for example:

NetworkRequest/NetworkRequest/ViewController.swift
searchForBook(terms: "out from boneville")
searchForBook(terms: "the great cow race")➤

Run tests. This time, the error log shows:

XCTAssertEqual failed: ("2") is not equal to ("1") - call count

When the method is called more than once, we’re throwing away information.
The first URL argument matches. But it would be useful to know the URL

arguments from other calls. The added information would make it easier to
pinpoint what’s going wrong. Let’s add some helpers to the mock object to
help us improve the reporting. Edit MockURLSession.swift and add the following
standalone function outside of the class definition:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyMethodCalledOnce(

methodName: String,
callCount: Int,
describeArguments: @autoclosure () -> String,
file: StaticString = #file,
line: UInt = #line) -> Bool {

if callCount == 0 {
XCTFail("Wanted but not invoked: \(methodName)",

file: file, line: line)
return false

}
if callCount > 1 {

XCTFail("Wanted 1 time but was called \(callCount) times. " +
"\(methodName) with \(describeArguments())",
file: file, line: line)

return false
}
return true

}

report erratum • discuss

Improve Mock Object Reporting • 149

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make sure to put this function outside of any type so it’s available to all mock
objects. Then inside MockURLSession, write a method that uses this function:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
private func dataTaskWasCalledOnce(

file: StaticString = #file, line: UInt = #line) -> Bool {
verifyMethodCalledOnce(

methodName: "dataTask(with:completionHandler:)",
callCount: dataTaskCallCount,
describeArguments: "request: \(dataTaskArgsRequest)",
file: file,
line: line)

}

Make sure this builds. In the Xcode menu, select Product ▶ Build For ▶ Testing
or press Shift-D-U .

Finally in the verify method, replace the call count assertion with a guard
clause that calls this new helper method. If the helper returns false, we do
an early return to skip the rest of the test.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyDataTask(with request: URLRequest,

file: StaticString = #file, line: UInt = #line) {
guard dataTaskWasCalledOnce(file: file, line: line) else { return }➤

XCTAssertEqual(dataTaskArgsRequest.first, request, "request",
file: file, line: line)

}

Run tests with that call to searchForBook(terms:) commented out. This time, the
error log says:

failed - Wanted but not invoked: dataTask(with:completionHandler:)

Now run tests with not one but two searches. The error log shows this:

failed - Wanted 1 time but was called 2 times.
dataTask(with:completionHandler:) with request:
[https://itunes.apple.com/search?media=ebook&term=out%20from%20boneville,
https://itunes.apple.com/search?media=ebook&term=the%20great%20cow%20race]

Notice how much clearer the error messages can become with a little work.
For the second case, the message lists each request to give a clearer picture
of what’s going on. Logging this information in the test results can cut down
on the amount of time you spend in the debugger.

This scratches the surface of ways to improve error reports from mock objects.
If you use a mock object in only one place, it may not be worth spending too
much time on it. But the more often it’s used, the more it pays off to improve
its reporting.

Chapter 12. Testing Network Requests (with Mocks) • 150

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Making Tests Insensitive to Things That Don’t Matter

Using XCTAssertEqual(_:_:) is a quick way to compare two Equatable objects. But equality
can be overkill.

For example, the order of queries doesn’t matter in a URL. If we made a change that
switched the media and term query items, the new URL would still work. But the test
would fail. Such tests inhibit refactoring.

We want tests that are sensitive to things that matter and insensitive to things that
don’t. To examine a URL, consider constructing URLComponents from it. Then you can
test that the components’ queryItems contains each query you expect, regardless of
their order.

Key Takeaways
As we finish this chapter, here are the main things you should hold on to:

• A test spy records the method calls it receives. This lets us test that the
system under test called it as expected. It lets us verify the communication
between components.

• Don’t use a Boolean flag to record when the test spy receives a call. That’s
throwing away information about the communication. Instead, increment
a call count so you can tell how many times a method was called.

• A mock object is a test spy that does its own assertions. This simplifies
test code. It also gives us opportunities to improve failure reporting.

• Helper methods can call the XCTest assertions. Get the file name and line
number of the call site as function arguments. Pass them along to the
assertions.

• Tests should be sensitive to things that matter and insensitive to things
that don’t. For data where the order doesn’t matter, avoid using equality
assertions. Otherwise tests can reject valid results, giving you false
negatives.

Activities
Almost every app does some networking. Try this activity, following steps 1–4.
Pause to celebrate. Then try step 5 to see how it simplifies the test.

1. Find a place in your code that calls a simple web service. Whether you
use URLSession or a networking library, replace direct references to single-
tons. Instead, use a property with the singleton as the default value.

report erratum • discuss

Key Takeaways • 151

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

2. Extract the methods you call on this networking property into a protocol.
(See Extract a Protocol to Support Test Doubles, on page 131.) Set the
property’s type to this protocol.

3. Define a test spy that conforms to the protocol. (See Make a Test Spy, on
page 143.) For each method, record the call count and collect the arguments.

4. Inject the test spy from test code and use it to write one test case.

5. Convert the test spy into a mock object by giving it a verify method that
does its own assertions. (See Promote the Test Spy into a Mock Object,
on page 146.) Remember to get the file name and line number as parame-
ters, passing them down to any assertions. Check error reporting by
deliberately introducing errors.

What’s Next?
Now you can test the first half of networking. The trick is to go right up to
the boundary of real networking and stop. Then test everything about the
request.

You’ve learned how to create effective test spies that record their call counts
and arguments. You know how to move assertions, promoting test spies into
mock objects. And you’ve seen how doing so simplifies test code and lets you
create clearer failure messages.

But what about handling the responses? In the next chapter, let’s tackle the
second half of networking. And since we tend to write response handling using
Swift closures, let’s learn how to test those closures.

Chapter 12. Testing Network Requests (with Mocks) • 152

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 13

Testing Network Responses (and Closures)
In the previous chapter, we saw a way to test network requests. These tests
confirm that we’re sending the expected network calls. But we also want to
test how to handle network responses, from the “happy path” to error cases.

Response handling is commonly done with closures. Since closures are like
code hidden inside of code, how can we test them?

In this chapter you’ll learn how to test closures. This will give you a way to
test all kinds of network responses, including errors that are normally hard
to reproduce. You’ll also learn how to test asynchronous code that crosses
threads.

Make a New Place to Play
If you worked through the example from Chapter 12, Testing Network Requests
(with Mocks), on page 139, you can continue with that code and skip to Parse
the Response, on page 155. Otherwise, let’s set up code that communicates
with a web service. It happens to be the iTunes Search API.

If you want a new project, follow the steps for Create a Place to Play with
Tests, on page 4, but use the project name NetworkResponse. As usual,
delete the initial test file NetworkResponseTests.swift.

Edit ViewController.swift to define a protocol containing one method copied from
URLSession. Declare an empty protocol extension that says URLSession conforms
to this protocol. This is what we arrived at in Extract a URLSession Protocol
for Test Doubles, on page 141:

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

NetworkResponse/NetworkResponse/ViewController.swift
protocol URLSessionProtocol {

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask
}

extension URLSession: URLSessionProtocol {}

Inside the ViewController class, add an outlet for a button, a property to
remember the current data task, and a replaceable property that holds the
URLSession using the new protocol. Declare the outlet private(set) so that our tests
can reach it. Also declare an action for the button that initiates the search.
It’ll call a new method, passing the search terms:

NetworkResponse/NetworkResponse/ViewController.swift
@IBOutlet private(set) var button: UIButton!
private var dataTask: URLSessionDataTask?
var session: URLSessionProtocol = URLSession.shared

@IBAction private func buttonTapped() {
searchForBook(terms: "out from boneville")

}

Add the method that performs the search. It uses the technique from Isolate
URLSession with Dependency Injection, on page 141 of calling the session
property instead of directly calling URLSession.shared. It also disables the button
when it issues the network request, and enables the button again upon
receiving the response:

NetworkResponse/NetworkResponse/ViewController.swift
private func searchForBook(terms: String) {

guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),

let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\(encodedTerms)") else { return }

let request = URLRequest(url: url)
dataTask = session.dataTask(with: request) {

[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in

guard let self = self else { return }

let decoded = String(data: data ?? Data(), encoding: .utf8)
print("response: \(String(describing: response))")
print("data: \(String(describing: decoded))")
print("error: \(String(describing: error))")

Chapter 13. Testing Network Responses (and Closures) • 154

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
self.dataTask = nil
self.button.isEnabled = true

}
}
button.isEnabled = false
dataTask?.resume()

}

Finally, follow the remaining steps from Make a Place to Play with a Button,
on page 101 to add a button to the storyboard, connecting it to the button
outlet and the action.

Let’s confirm this networking code by tapping the button manually and
checking the logs. Press D-R to run the app. Then select View ▶ Debug Area
▶ Activate Console or press Shift-D-C to show the console on the bottom right.
Tap the button in the running app to search for the book. The console will
show you the results of the network call.

Parse the Response
The production code is now up to date with Chapter 12, Testing Network
Requests (with Mocks), on page 139. Let’s continue by adding some parsing.
Add the following decodable structures to ViewController.swift:

NetworkResponse/NetworkResponse/ViewController.swift
struct Search: Decodable {

let results: [SearchResult]
}

struct SearchResult: Decodable, Equatable {
let artistName: String
let trackName: String
let averageUserRating: Float
let genres: [String]

}

Define SearchResult so that it conforms to the Equatable protocol. This will make
it simple to test with an XCTAssertEqual() assertion.

Now in the ViewController class, add a property to hold an array of search results.
Let’s also give it a didset observer to print the results in the console.

NetworkResponse/NetworkResponse/ViewController.swift
private(set) var results: [SearchResult] = [] {

didSet {
print(results)

}
}

report erratum • discuss

Parse the Response • 155

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Finally, in searchForBook(terms:), replace the lines that printed the data, response,
and error closure arguments. If data is present, let’s parse it with a JSONDecoder.
And if that’s successful, let’s save the results in the results property. We’ll do
so back on the main thread as a simple approach to thread safety. If there’s
any sort of error (which can happen in several ways), let’s show an alert:

NetworkResponse/NetworkResponse/ViewController.swift
private func searchForBook(terms: String) {

guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),

let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\(encodedTerms)") else { return }

let request = URLRequest(url: url)
dataTask = session.dataTask(with: request) {

[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in

guard let self = self else { return }

var decoded: Search?➤

var errorMessage: String?➤

if let error = error {➤

errorMessage = error.localizedDescription➤

} else if let response = response as? HTTPURLResponse,➤

response.statusCode != 200 {➤

errorMessage = "Response: " +➤

HTTPURLResponse.localizedString(➤

forStatusCode: response.statusCode)➤

} else if let data = data {➤

do {➤

decoded = try JSONDecoder().decode(Search.self, from: data)➤

} catch {➤

errorMessage = error.localizedDescription➤

}➤

}➤

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
if let decoded = decoded {➤

self.results = decoded.results➤

}➤

if let errorMessage = errorMessage {➤

self.showError(errorMessage)➤

}➤

self.dataTask = nil
self.button.isEnabled = true

}
}
button.isEnabled = false
dataTask?.resume()

}

Chapter 13. Testing Network Responses (and Closures) • 156

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

If errorMessage is non-nil, we call a showError(_:) method. Let’s define that method
so it shows an alert. It also prints the error to the console:

NetworkResponse/NetworkResponse/ViewController.swift
private func showError(_ message: String) {

let title = "Network problem"
print("\(title): \(message)")
let alert = UIAlertController(

title: title,
message: message,
preferredStyle: .alert

)
let okAction = UIAlertAction(title: "OK", style: .default)
alert.addAction(okAction)
alert.preferredAction = okAction
present(alert, animated: true)

}

Now we’re ready to do some manual testing to confirm this parsing code.
First, turn off your network connection to force an error. Run the app with
D-R . Then select View ▶ Debug Area ▶ Activate Console or press Shift-D-C to
show the console on the bottom right.

While disconnected from your network, tap the button in the running app.
You should see an alert with the title “Network problem” and the message
“The Internet connection appears to be offline.” (If you don’t get an alert, then
you may have tapped the button already, and the network layer cached the
results. Delete the NetworkResponse app from the simulator, then try again
with no network.)

Now reconnect to your network, and tap the button again to make the network
call. The console will show you the results, this time parsed into an array of
SearchResult.

This isn’t meant to be an example of good code. Rather, it’s an
example of a typical view controller with too many responsibilities.
Once we bring such code under test, we can clean it up. That’s
why this book has Part III.

Now we have code that calls a real web service, parses the response, and
saves the result into a property if successful. Let’s use a test spy to record
the call, only this time the spy will also capture the completion handler. We’ll
use this to write various tests of the completion handler. We’ll look at how to
test the asynchronous call from the completion handler back to the main
thread. And we’ll test one of the error scenarios.

report erratum • discuss

Parse the Response • 157

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Start with a Fresh Test Spy
If you didn’t work through Chapter 12, Testing Network Requests (with Mocks),
on page 139, the full-fledged mock object we developed would be a confusing
starting point for learning closure techniques. To simplify this example, let’s set
that MockURLSession aside and start over with a fresh test spy. (If you’re continuing
with last chapter’s code, when you see NetworkResponse or NetworkResponse-
Tests below, mentally convert to NetworkRequest and NetworkRequestTests.)

Select the NetworkResponseTests group in the Project Navigator and press
D-N to make a new file. Click the iOS selector at the top, select Swift File,
and press Next. In the dialog, enter SpyURLSession.swift as the name of the file.
In the Save dialog, double-check that the test target is selected, not the app
target. Press Create and enter the following code:

NetworkResponse/NetworkResponseTests/SpyURLSession.swift
@testable import NetworkResponse
import Foundation

private class DummyURLSessionDataTask: URLSessionDataTask {
override func resume() {
}

}

class SpyURLSession: URLSessionProtocol {
}

Xcode will show a Swift error:

Type 'SpyURLSession' does not conform to protocol 'URLSessionProtocol'

In the Xcode menu, select Editor ▶ Fix All Issues. Xcode will generate a stub
for the protocol method. Fill in the rest as shown here to increment the call
count, capture the arguments, and return a DummyURLSessionDataTask:

NetworkResponse/NetworkResponseTests/SpyURLSession.swift
var dataTaskCallCount = 0
var dataTaskArgsRequest: [URLRequest] = []
var dataTaskArgsCompletionHandler:➤

[(Data?, URLResponse?, Error?) -> Void] = []➤

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void

) -> URLSessionDataTask {
dataTaskCallCount += 1
dataTaskArgsRequest.append(request)
dataTaskArgsCompletionHandler.append(completionHandler)➤

return DummyURLSessionDataTask()
}

Chapter 13. Testing Network Responses (and Closures) • 158

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/SpyURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/SpyURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This is identical to Make a Test Spy, on page 143 except that now we’re captur-
ing the completionHandler argument.

Design the Test Case
Now we have the tools we need to start testing the network response. Let’s
start by adding a test suite ViewControllerTests. Use Test Zero as temporary
scaffolding to confirm that you hooked up the test suite. (See Start from Test
Zero, on page 21.) Delete Test Zero once you see its expected failure message.

We want to test how the code handles different network responses. This could
include error scenarios, but for now let’s concentrate on the happy path.
Think for a moment about how to set up such a test. We want to do the
following:

• Instantiate the view controller from the storyboard.

• Create an instance of SpyURLSession.

• Inject the SpyURLSession into the view controller. Make sure to do this before
loading the view to avoid having any methods use the real URLSession.

• Simulate the button tap to start the network call. This will call the test
spy, which will capture the arguments—including the closure.

• Call the captured closure with any arguments we want for testing. For
the happy path, this will include JSON data and a response with the “OK”
status code. We can test that the data was decoded into the results property.

Following the test naming tip from Observe Object Life Cycles to Learn the
Phases of a Test, on page 26, here’s a name that expresses the test:

test_searchForBookNetworkCall_withSuccessResponse_shouldSaveDataInResults()

Create a test with that name, and follow Load a Storyboard-Based View
Controller, on page 64 to load ViewController from the storyboard. Remember
that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Also follow Make a Test Helper for Button Taps, on page 104 to create the tap(_:)
helper. Then add the following to the test. It creates the test spy, injects it,
loads the view, and taps the button.

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
let spyURLSession = SpyURLSession()
sut.session = spyURLSession
sut.loadViewIfNeeded()
tap(sut.button)

report erratum • discuss

Design the Test Case • 159

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

We need some test JSON. Let’s do that by defining a multiline string, then
converting it to Data. Do this in a helper function so we can use the same data
in a couple of tests:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func jsonData() -> Data {

"""
{

"results": [
{

"artistName": "Artist",
"trackName": "Track",
"averageUserRating": 2.5,
"genres": [

"Foo",
"Bar"

]
}

]
}
""".data(using: .utf8)!

}

If test JSON is small, define it using a string inside test code. This
keeps the input close to the assertions, making their relationship
clearer.

When you need to reuse test JSON, create a method in the test
class. When you need to parameterize the data, add arguments
that the method uses to fill in the JSON details.

When test JSON is large, store it in a file to make it easier to copy
and paste from an actual response. Stored JSON files also give you
an opportunity to periodically check that they still match real
server responses. You can write contract tests1 that do this work.

To test a successful network response, we should supply an HTTPURLResponse
with a status code of 200 for HTTP “OK.” Let’s add a helper method to make
a response:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func response(statusCode: Int) -> HTTPURLResponse? {

HTTPURLResponse(url: URL(string: "http://DUMMY")!,
statusCode: statusCode, httpVersion: nil, headerFields: nil)

}

1. https://martinfowler.com/bliki/ContractTest.html

Chapter 13. Testing Network Responses (and Closures) • 160

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
https://martinfowler.com/bliki/ContractTest.html
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now we can call the closure the test spy captured. For the happy path, we
supply JSON data, an HTTP response with status code 200, and no error:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
spyURLSession.dataTaskArgsCompletionHandler.first?(

jsonData(), response(statusCode: 200), nil
)

For our first attempt, let’s assert that the decoded results match the JSON

input:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
XCTAssertEqual(sut.results, [

SearchResult(artistName: "Artist", trackName: "Track",
averageUserRating: 2.5, genres: ["Foo", "Bar"])

])

This would work if the closure stayed on the same thread. But run tests, and
you’ll see a failure message. We need to account for multithreading.

Test Asynchronous Code
Swift makes closures so pleasant to read, you may forget they’re there. We
have a good start on testing the data task completion handler. But inside
that closure, there’s another closure hiding. It’s DispatchQueue.main.async. The
part in braces is a closure, scheduled to run on the main thread.

In real life, Cocoa Touch calls the data task completion handler on a back-
ground thread. This lets us parse the response without causing the UI to
stutter. We can use different approaches for this. I’ve chosen a simple strategy
of keeping the decoding in the background, then saving the results on the
main thread because that’s what operates the UI.

But be aware that test code executes on the main thread. And when any code
schedules a closure for asynchronous execution, life gets tricky. We need to
find a way to resynchronize it back to the main thread. A Test Expectation
can usually help us.

XCTestCase provides methods that wait for one or more test expectations to be
fulfilled. If a test waits on an XCTestExpectation, the “wait” method stops. It con-
tinues as soon as fulfill() is called on the expectation. If the expectation isn’t
fulfilled before a given timeout period, the test fails.

To show an XCTestCaseExpectation example, we need a way for the test code to
provide a closure to the production code. A natural point to do this is on the
didset observer for the results property. It’s where we currently print the results

report erratum • discuss

Test Asynchronous Code • 161

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

How Do You Wait If There’s No Completion Closure?

A test expectation works as long as the test code has an opportunity to provide a
completion closure. Then the closure can call the expectation’s fulfill() method.

But sometimes, we want to wait for something to happen when the code doesn’t
provide a completion closure. In that case, we need a way to check for the condition
in periodic intervals. If the condition isn’t met within a timeout, the test should fail.

The Nimble matcher frameworka is one example of a library that provides a simple
way to do this, with its toEventually matcher.

a. https://github.com/Quick/Nimble

as a substitute for the real work an app might do. Let’s move that work into
a new handleResults closure property:

NetworkResponse/NetworkResponse/ViewController.swift
var handleResults: ([SearchResult]) -> Void = { print($0) }➤

private(set) var results: [SearchResult] = [] {
didSet {

handleResults(results)➤

}
}

Run the app, tap the button, and check the console to confirm that the parsed
results are still printed.

Now we have a place for the test to provide its own closure. Before the test calls
the data task completion handler, create an XCTestCaseExpectation using the
expectation(description:) method. Provide a closure that calls fulfill() on the expecta-
tion. After calling the data task completion handler, add a wait(timeout:):

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
let handleResultsCalled = expectation(description: "handleResults called")➤

sut.handleResults = { _ in➤

handleResultsCalled.fulfill()➤

}➤

spyURLSession.dataTaskArgsCompletionHandler.first?(
jsonData(), response(statusCode: 200), nil

)

waitForExpectations(timeout: 0.01)➤

Run tests again. This time, the test passes! (If the test doesn’t pass, check the
console output before the assertion failure message. The showError(_:) method
prints to the console in addition to showing an alert, so it may give you a clue.)

Chapter 13. Testing Network Responses (and Closures) • 162

report erratum • discuss

https://github.com/Quick/Nimble
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Many examples of waiting for an XCTestCaseExpectation specify a
timeout of 1 second. I’ve even seen 10 seconds. But for unit testing
where there is no actual networking, that’s an eternity. Try to use
0.01 seconds (10 milliseconds) or less, as shown in the preceding
example.

Keeping Assertions Out of Closures

When a test provides a closure for asynchronous testing, most online examples stick
XCTest assertions right inside the closure. The problem with this style is it mixes up
the Arrange, Act, and Assert sections of a test. We end up with part of the Assert living
inside the Arrange section.

Instead, I recommend that test-supplied closures do two things for asynchronous
tests:

1. Capture the arguments we want to test.
2. Call fulfill() to escape the wait condition.

Once we have escaped the wait condition, the rest of the test can check the captured
arguments. This gives us asynchronous tests with assertions at the end. Being able
to read tests top-down makes them easier to understand and maintain.

Keep Asynchronous Code in Its Closure
We can now test the code that goes from the background thread back to the
main thread to save the results. But there’s a weakness in having that test
by itself. If someone made a mistake and moved that code to save the results
outside the DispatchQueue.main.async closure, the tests would still pass.

To prevent this from happening, we need a second test that skips the async
closure. This test will prove that without the closure, the results aren’t saved.

Duplicate the first test. Change the test case name of the copy to test_searchFor-
BookNetworkCall_withSuccessBeforeAsync_shouldNotSaveDataInResults(). Remove everything
that has to do with test expectations. Change the assertion so that the
expected results are an empty array. Here’s the body of the new test:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
tap(sut.button)

spyURLSession.dataTaskArgsCompletionHandler.first?(
jsonData(), response(statusCode: 200), nil

)

XCTAssertEqual(sut.results, [])

report erratum • discuss

Keep Asynchronous Code in Its Closure • 163

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests to see them pass. Let’s also see what this particular test guards
against. Find the lines that save the result:

NetworkResponse/NetworkResponse/ViewController.swift
if let decoded = decoded {

self.results = decoded.results
}

Temporarily move them outside the async closure and run the tests again. The
first test will continue to pass, but the one we just added will fail.

Whenever you write a test of asynchronous code, write a second
test without the test expectations. It shows what happens without
the asynchronous code. This helps keep the asynchronous part
from creeping outside its closure.

Test an Error Scenario
Once we have a test that calls the data task completion closure, testing error
scenarios isn’t hard. We know how to capture the closure, call it with some
arguments, and handle asynchronous code. For errors, all we need to do is
change the arguments we pass to the completion closure.

When our parsing code detects an error, it displays an alert to the user. We
know from Chapter 9, Testing Alerts, on page 107 how to test alerts and that
we need the helper framework. Follow Add the Helper Framework to the
Project, on page 108 to add ViewControllerPresentationSpy to the test target.
Then import ViewControllerPresentationSpy it in ViewControllerTests.swift.

Since we’re adding new tests, let’s move the system under test and the test
spy, adding the AlertVerifier spy. Follow Move the SUT into the Test Fixture,
on page 112 to set up the text fixture and tear it down:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private var alertVerifier: AlertVerifier!
private var sut: ViewController!
private var spyURLSession: SpyURLSession!

override func setUp() {
super.setUp()
alertVerifier = AlertVerifier()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(describing: ViewController.self))
spyURLSession = SpyURLSession()
sut.session = spyURLSession
sut.loadViewIfNeeded()

}

Chapter 13. Testing Network Responses (and Closures) • 164

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

override func tearDown() {
alertVerifier = nil
sut = nil
spyURLSession = nil
super.tearDown()

}

Remove the beginning lines of the test case, which are now handled by setUp().
So the first line of the test will be tap(sut.button). Run tests to confirm that
everything still passes.

In ViewController, the first error scenario is when the closure receives an Error
argument. Since Error is a protocol, let’s define a simple implementation for
testing purposes. Create a new file in the NetworkResponseTests group with
the name TestError.swift:

NetworkResponse/NetworkResponseTests/TestError.swift
import Foundation

struct TestError: LocalizedError {
let message: String

var errorDescription: String? { message }
}

We’re going to be testing alerts. To simplify the test code, let’s make a helper
method in ViewControllerTests to verify that the code showed an alert. Each alert
will be the same, except for the message, so the helper has a message
parameter:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func verifyErrorAlert(

message: String, file: StaticString = #file, line: UInt = #line) {
alertVerifier.verify(

title: "Network problem",
message: message,
animated: true,
actions: [

.default("OK"),
],
presentingViewController: sut,
file: file,
line: line

)
XCTAssertEqual(alertVerifier.preferredAction?.title, "OK",

"preferred action", file: file, line: line)
}

Since these assertions live outside of a test case method, the helper takes the
file name and line number of the call site. We pass these arguments down to

report erratum • discuss

Test an Error Scenario • 165

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/TestError.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

each assertion. That way, if there’s a failure, the assertion will identify the
call site, not the helper.

With our helpers in place, we can write our first error test:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
func test_searchForBookNetworkCall_withError_shouldShowAlert() {

tap(sut.button)
let alertShown = expectation(description: "alert shown")
alertVerifier.testCompletion = {

alertShown.fulfill()
}

spyURLSession.dataTaskArgsCompletionHandler.first?(
nil, nil, TestError(message: "oh no")

)

waitForExpectations(timeout: 0.01)
verifyErrorAlert(message: "oh no")

}

The first line of the Arrange section is the button tap to trigger the data task.
This sets up the completion handler, which spyURLSession captures.

In the rest of the Arrange section, we set up an XCTestExpectation that an
alert was shown. We need this because the alert is created and presented
inside the DispatchQueue.main.async closure. To fulfill the expectation, we set up
a testCompletion closure on the alertVerifier. The ViewControllerPresentationSpy
framework calls this closure when an alert is presented.

The middle Act section calls the captured completion handler. This time, we
pass in a TestError with an arbitrary message.

The final Assert section waits a short time for the expectation. It then uses
our big helper to verify that an alert was presented with the given message.
Change the message temporarily and run the tests. You’ll see a failure for the
alert message. And by doing all that work to pass on the file name and line
number of the call site, the failure will point to the verifyErrorAlert(message:) call.

Change the message back and run the tests again to see them pass.

This is good. But we need one more test for this error case. Since tests run
on the main thread, someone might move the alert stuff out of async closure.
test_searchForBookNetworkCall_withError_shouldShowAlert() would still pass, but it would
fail in real life because the closure is run on a background thread. We need
to do what we did for Keep Asynchronous Code in Its Closure, on page 163 by
adding another test that ignores the async closure:

Chapter 13. Testing Network Responses (and Closures) • 166

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
func test_searchForBookNetworkCall_withErrorPreAsync_shouldNotShowAlert() {

tap(sut.button)

spyURLSession.dataTaskArgsCompletionHandler.first?(
nil, nil, TestError(message: "DUMMY")

)

XCTAssertEqual(alertVerifier.presentedCount, 0)
}

There’s no XCTestExpectation in this test and no waiting. So it blazes through
without invoking the DispatchQueue.main.async closure.

The two error tests show that if the data task completion handler receives an
error argument, it will show an alert. But it won’t attempt to show this alert
from its own thread (which will be a background thread in real life).

Key Takeaways
To test closures, make a test spy that captures the closure. The test should
trigger the call that sends the closure, which the test spy captures. The test
can then invoke the closure with any arguments it wants.

For network responses, testing the closure with various inputs will let you
exercise all sorts of scenarios, including the following:

• Success responses with valid data
• Success responses but with incomplete or malformed data
• Responses with HTTP status codes other than 200 “OK”
• Errors

Unit testing makes it possible to test scenarios that would be hard to simulate
in real life.

You’ve also seen how to use test expectations to test asynchronous code. Be
warned that there are cases that can cause expectations to crash your tests.
For details and workarounds, read Jeremy Sherman’s “XCTestExpectation
Gotchas.”2

Tests of asynchronous code should generally come in pairs. One test should
use a test expectation to wait until the asynchronous code is called. Another
test should skip the test expectations, avoiding the asynchronous code. The
second test shows that the desired outcome happens because it’s in an async
closure.

2. https://jeremywsherman.com/blog/2016/03/19/xctestexpectation-gotchas/

report erratum • discuss

Key Takeaways • 167

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
https://jeremywsherman.com/blog/2016/03/19/xctestexpectation-gotchas/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities
To help solidify this chapter in your head, pick one of the following activities.
(The first three have sample solutions in this book’s accompanying source
code.)

1. Test another error scenario: What if the JSON is incomplete? Write a test
to call the data task completion handler with a 200 "OK" response, but
remove a field from the JSON data. Test the resulting alert.

2. Here’s yet another error scenario: What if we receive a response from the
server, but the HTTP status code is something other than a 200 "OK"
response? Test the alert.

3. Add tests showing how the button is disabled when searchForBook(terms:) is
called and is enabled again by the async closure.

4. In the Activities, on page 151 for testing network requests, did you find
places in your code that call simple web services? Build on the foundation
of those tests by adding tests for network responses. Start with the happy
paths of processing successful responses. Then build on those, testing
error scenarios.

What’s Next?
Now you can test the second half of networking. The trick is to use a test spy
to capture the closure. Then call the closure with various arguments.

You’ve also seen how to use test expectations to test asynchronous code.
Create an expectation, fulfill it in a completion closure, and wait for it.

In the next chapter, let’s get back to handling user input. We’ll explore text
fields, which will show us how to test delegate methods.

Chapter 13. Testing Network Responses (and Closures) • 168

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 14

Testing Text Fields (and Delegate Methods)
Text fields are another common means of user input. We can customize the
behavior of text fields using delegates. Delegate methods give us a way to
insert our own code into Cocoa Touch’s flow of control.

In this chapter you’ll learn how to test text fields. You’ll be able to write tests
for delegate methods in a way that makes refactoring them easier, not harder.
Along the way, you’ll learn how to assert against Objective-C enumerations
and against optional Bools. You’ll also pick up a trick we need to test which
text field has input focus.

Make a Place to Play
You know the drill. Create a new project by following the steps for Create a
Place to Play with Tests, on page 4, but give it the name TextField. Delete
its initial test file.

Let’s use the predefined storyboard-based view controller. Edit ViewController.swift,
adding two text field outlets. We’ll use them to enter the username and
password for a simple login simulation. Declare these outlets private(set) so
that our tests can reach them:

TextField/TextField/ViewController.swift
@IBOutlet private(set) var usernameField: UITextField!
@IBOutlet private(set) var passwordField: UITextField!

We need something to serve as the delegate for the text fields. Let’s follow the
common practice of using the view controller. (In a later chapter, we’ll see
how to move away from this practice.) Add a declaration to ViewController that
it conforms to the UITextFieldDelegate protocol:

TextField/TextField/ViewController.swift
class ViewController: UIViewController, UITextFieldDelegate {

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now let’s add these text fields to the storyboard. Open Main.storyboard and select
View ▶ Libraries ▶ Show Library from the Xcode menu or press Shift-D-L .
This will bring up the Object Library. Click and drag “Text Field” onto the
view controller in the main editor area. For this experiment, don’t worry about
positioning the label or setting any Auto Layout constraints. Do this twice to
create two text fields.

Now connect these text fields to their outlets. (You can show ViewController.swift
in the Assistant Editor, and drag from the @IBOutlet circles to their respective
text fields.)

Let’s switch back to viewing one source file. Select View ▶ Standard Editor ▶
Show Standard Editor from the Xcode menu or press D-F .

Since we want to use ViewController as the delegate for the text fields, let’s
make those connections. Show the Connections Inspector by selecting View
▶ Inspectors ▶ Show Connections Inspector from the Xcode menu or press
E-D-6 . Select the first text field. From the Outlets section of the Connection
Inspector, click in the open circle next to “delegate” and drag it to the View
Controller, as you can see in the image. Repeat this for the second text field.

For our last settings in the storyboard, let’s set the attributes of the text fields.
Show the Attributes Inspector by selecting View ▶ Inspectors ▶ Show Attributes

Chapter 14. Testing Text Fields (and Delegate Methods) • 170

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Inspector from the Xcode menu or press E-D-4 . Select the first text field. In
the Text Input Traits section of the Attributes Inspector, make these changes:

• Content Type: Username
• Correction: No
• Return Key: Next

For the second text field, set these attributes:

• Content Type: Password
• Return Key: Go
• Secure Text Entry: Checked

Finally, let’s add some delegate methods. Add the following method to the
ViewController class. It prevents the user from entering spaces into the username
field:

TextField/TextField/ViewController.swift
func textField(_ textField: UITextField,

shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

if textField === usernameField {
return !string.contains(" ")

} else {
return true

}
}

Let’s add one more delegate method. UIKit calls this next method when the
user presses the return key. When that happens from usernameField, we shift
the keyboard input focus to the password field. When the user presses the
return key from passwordField, we hide the keyboard. Then we perform some
sort of login. The return value of this only matters in rare cases, so let’s return
false. We won’t bother to test it:

TextField/TextField/ViewController.swift
func textFieldShouldReturn(_ textField: UITextField) -> Bool {

if textField === usernameField {
passwordField.becomeFirstResponder()

} else {
guard let username = usernameField.text,

let password = passwordField.text else {
return false

}
passwordField.resignFirstResponder()
performLogin(username: username, password: password)

}
return false

}

report erratum • discuss

Make a Place to Play • 171

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

(If you haven’t seen === before, this is not the same as checking that two
values are equal. Instead, this is checking whether the textField argument is
usernameField or not.)

Our pretend login method will just print the fields to the console:

TextField/TextField/ViewController.swift
private func performLogin(username: String, password: String) {

print("Username: \(username)")
print("Password: \(password)")

}

Let’s manually confirm that the text fields function correctly. Press D-R to
run the app. Then select View ▶ Debug Area ▶ Activate Console or press
Shift-D-C to show the console on the bottom right.

Tap into the first text field. The keyboard should appear. (If it doesn’t, deselect
Hardware ▶ Keyboard ▶ Connect Hardware Keyboard in the simulator menu.)
Enter any username. Make sure that it doesn’t allow you to enter spaces. Tap
Next. This will move input focus to the second field.

Enter any password. iOS will conceal the input behind text bullets. Tap Go.
The keyboard will disappear, and our pretend login will show what you entered
in the console.

Now we have some fairly complex behavior. Part of it is specified in the story-
board. Let’s start our testing there. We’ll check the outlets, then the storyboard
attributes. And we’ll add extensions to improve test failure reporting when
comparing UIKit types.

Test the Outlets
Before we approach the delegate methods, let’s lay down some tests of the
storyboard settings. Start by adding a test suite ViewControllerTests. Use Test
Zero as temporary scaffolding to confirm that you hooked up the test suite.
(See Start from Test Zero, on page 21.) Delete Test Zero once you see its
expected failure message.

Following Chapter 7, Testing Outlet Connections, on page 95, add a test
named test_outlets_shouldBeConnected(). Begin the test by following Load a Story-
board-Based View Controller, on page 64 to load ViewController from the story-
board. Remember that this also means editing Main.storyboard to give the view
controller a Storyboard ID. Run the tests, which should pass.

Finish off this test by asserting that the outlets aren’t nil:

Chapter 14. Testing Text Fields (and Delegate Methods) • 172

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TextField/TextFieldTests/ViewControllerTests.swift
XCTAssertNotNil(sut.usernameField, "usernameField")
XCTAssertNotNil(sut.passwordField, "passwordField")

Recall from Test Outlet Connections, on page 96 that when a test case has
more than one assertion, it helps to add descriptive messages to identify them.
Run the tests, which should pass.

Test Attributes and Wrangle UIKit Descriptions
Next, let’s add a test to confirm the attributes of the username text field. But
testing every single attribute is overkill. Let’s only test the attributes we
changed from their default settings. Add a test named test_username-
Field_attributesShouldBeSet(). Copy and paste the content of the outlet test, except
for its assertions. Then add the following assertions and run the tests:

TextField/TextFieldTests/ViewControllerTests.swift
let textField = sut.usernameField!
XCTAssertEqual(textField.textContentType, .username, "textContentType")
XCTAssertEqual(textField.autocorrectionType, .no, "autocorrectionType")
XCTAssertEqual(textField.returnKeyType, .next, "returnKeyType")

The tests pass. But let’s see what the failure messages look like. We’ll do this
by following Check the Effectiveness of Failure Messages, on page 97 and
breaking the production code on purpose. Open Main.storyboard. Show the
Attributes Inspector by selecting View ▶ Inspectors ▶ Show Attributes
Inspector from the Xcode menu or press E-D-4 . Select the first text field. In
the Text Input Traits section of the Attributes Inspector, change “Content
Type” from “Username” to “Password.” Run the tests, and you’ll see this failure
message:

XCTAssertEqual failed:
("Optional(__C.UITextContentType(_rawValue: password))") is not equal to
("Optional(__C.UITextContentType(_rawValue: username))") - textContentType

This is pretty noisy. Let’s see if we can improve on it by digging into the
underlying type. Place your cursor in textContentType, then select Navigate ▶
Jump to Definition from the Xcode menu or press C-D- J . This will show you
UIKit’s definition of the property.

@available(iOS 10.0, *)
optional public var textContentType: UITextContentType! { get set }

// default is nil

Now place your cursor in UITextContentType and jump to its definition. Here’s
what you’ll see:

public struct UITextContentType : Hashable, Equatable, RawRepresentable

report erratum • discuss

Test Attributes and Wrangle UIKit Descriptions • 173

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

We can see that UITextContentType doesn’t conform to CustomStringConvertible. Recall
from Describe Objects upon Failure, on page 10 that CustomStringConvertible
defines how a type describes itself in assertions. So let’s extend UITextContentType
to conform to this protocol. We’ll make a separate file for test helpers.

In the Project Navigator, select the TextFieldTests group and press D-N to
make a new file. Select Swift File, name it TestHelpers.swift, and set its target to
the test target. Add an import UIKit declaration to the top, then add the following
empty extension:

TextField/TextFieldTests/TestHelpers.swift
extension UITextContentType: CustomStringConvertible {
}

Because we haven’t implemented anything yet, Swift will complain that the
type doesn’t conform to the protocol. Select Editor ▶ Fix All Issues in the Xcode
menu. This will generate the stub. Fill in the rest as shown here:

TextField/TextFieldTests/TestHelpers.swift
public var description: String { rawValue }

Run the tests again. This time, we’ll get the following message:

XCTAssertEqual failed: ("Optional(password)") is not equal to
("Optional(username)") - textContentType

That’s better. Let’s reset the storyboard and move on to the next assertion.
Go back to Main.storyboard and press D-Z to undo the change. Select the first
text field again. This time, change “Correction” from “No” to “Yes.” Run the
tests and look at the failure message:

XCTAssertEqual failed: ("UITextAutocorrectionType") is not equal to
("UITextAutocorrectionType") - autocorrectionType

Oh dear. This tells us the type but nothing about the values.

Swift knows how to describe enumerations written in Swift but stumbles over
enumerations written in Objective-C. This is especially noticeable for the
Cocoa Touch frameworks, which have Objective-C interfaces.

Let’s dig into the underlying type. Place your cursor in autocorrectionType, then
select Navigate ▶ Jump to Definition from the Xcode menu or press C-D- J .
Here is UIKit’s definition of the property:

optional public var autocorrectionType: UITextAutocorrectionType { get set }
// default is UITextAutocorrectionTypeDefault

Chapter 14. Testing Text Fields (and Delegate Methods) • 174

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now place your cursor in UITextAutocorrectionType and jump to its definition:

public enum UITextAutocorrectionType : Int {
case `default`
case no
case yes

}

Once again, we can see that this type doesn’t conform to the CustomStringCon-
vertible protocol. Let’s add an empty extension to our test code:

TextField/TextFieldTests/TestHelpers.swift
extension UITextAutocorrectionType: CustomStringConvertible {
}

This results in the following error:

Type 'UITextAutocorrectionType' does not conform to protocol
'CustomStringConvertible'

Select Editor ▶ Fix All Issues in the Xcode menu to generate the method stub.
Since we want a description for each case, let’s switch on self:

TextField/TextFieldTests/TestHelpers.swift
public var description: String {

switch self {
}

}

Now we get this error:

Switch must be exhaustive

Again, select Editor ▶ Fix All Issues in the Xcode menu. This gives us all the
case statements for the enumeration. For each case (except for Swift 5’s
@unknown default), return a string:

TextField/TextFieldTests/TestHelpers.swift
public var description: String {

switch self {
case .default:

return "default"
case .no:

return "no"
case .yes:

return "yes"
@unknown default:

fatalError("Unknown UITextAutocorrectionType")
}

}

report erratum • discuss

Test Attributes and Wrangle UIKit Descriptions • 175

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests again. This time, we’ll get the following message:

XCTAssertEqual failed: ("yes") is not equal to ("no") - autocorrectionType

Now that is a useful failure message.

Be careful when using XCTAssertEqual with types declared in Objec-
tive-C. Introduce an error to check the failure message. Where
needed, add an extension to make the type conform to the Custom-
StringConvertible protocol.

Let’s move on to the last assertion in test_usernameField_attributesShouldBeSet(). Undo the
previous change in the storyboard and select the first text field. This time, change
Return Key from “Next” to “Join.” Run the tests and look at the failure message:

XCTAssertEqual failed: ("UIReturnKeyType") is not equal to
("UIReturnKeyType") - returnKeyType

Following the preceding steps, create an extension so that UIReturnKeyType
conforms to CustomStringConvertible, describing each case. Run the tests to confirm
the improved failure message:

XCTAssertEqual failed: ("join") is not equal to ("next") - returnKeyType

We now have duplicate code between the tests to load the view controller.
Following Move the SUT into the Test Fixture, on page 112, let’s extract this.
For storyboard-based view controllers, remember to change the type cast from
as! to as? to silence the warning about assigning to an optional:

TextField/TextFieldTests/ViewControllerTests.swift
private var sut: ViewController!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded()

}

override func tearDown() {
executeRunLoop()➤

sut = nil
super.tearDown()

}

Finally, we can test the attributes of the password text field. Let’s do this in
another test case. We check each text field in its own test case instead of
combining the tests, as explained in Why Not Combine Similar Tests?, on
page 137.

Chapter 14. Testing Text Fields (and Delegate Methods) • 176

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TextField/TextFieldTests/ViewControllerTests.swift
func test_passwordField_attributesShouldBeSet() {

let textField = sut.passwordField!
XCTAssertEqual(textField.textContentType, .password, "textContentType")
XCTAssertEqual(textField.returnKeyType, .go, "returnKeyType")
XCTAssertTrue(textField.isSecureTextEntry, "isSecureTextEntry")

}

Run tests to confirm that this passes. We’ve already improved the types used,
so these tests will report useful error messages.

With this, we’ve tested the text field attributes as defined in the storyboard.
In the rest of this chapter, let’s see how to test the code. We’ll look at delegate
methods, and finish by testing input focus—that is, the first responder.

Test Delegate Methods
Delegate methods are the classic way for Cocoa Touch to call back to our
code. Thankfully, we don’t have to try to coax this to happen in test code. For
unit tests, it doesn’t matter what calls a delegate method. We only have to
mimic the arguments and call the method directly. So what Cocoa Touch
would call, the test calls.

Let’s consider how to test the first delegate method, textField(_:shouldChangeChar-
actersIn:replacementString:). To test with a naive approach, we do two things:

• First, test that the delegate of the text field is the view controller.
• Second, call the delegate method directly on the view controller.

The problem with this approach is that it locks down who gets to be the dele-
gate. Programmers earlier in their Cocoa Touch experience will always use
the view controller. This results in a view controller that conforms to several
delegate protocols. The common joke in iOS circles is that MVC stands for
“Massive View Controller.”

But there’s nothing about the delegate pattern that says you have to do this.
A good way to slim down a Massive View Controller is to extract delegates
into their own types. With a little care, we can move delegation around without
changing any tests. Ideally, tests should strive to check behavior (like what
a delegate method does). Tests shouldn’t care about implementation details
(like where a delegate method lives). Here’s how to write tests that stay igno-
rant of the location of delegate methods:

• First, test that the delegate of the text field is set. It doesn’t matter what
it is, as long as it’s not nil.

report erratum • discuss

Test Delegate Methods • 177

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Second, call the delegate method on the delegate. We do so by asking the
text field for its delegate, then calling the method we want.

In theory, we could do without the first type of test, since the second type of
test will fail if the delegate is nil. But it would be trickier to diagnose. Just as
we test outlets with Chapter 7, Testing Outlet Connections, on page 95, we
can save time by testing that we’ve assigned those delegates. Add the following
test to check that they’re not nil:

TextField/TextFieldTests/ViewControllerTests.swift
func test_textFieldDelegates_shouldBeConnected() {

XCTAssertNotNil(sut.usernameField.delegate, "usernameField")
XCTAssertNotNil(sut.passwordField.delegate, "passwordField")

}

Run the tests, which should pass.

Next, let’s test the first delegate method. The job of textField(_:shouldChangeCharac-
tersIn:replacementString:) is to determine whether to replace some text in a text
field. It takes a replacement string instead of a single character since the user
can paste text. The code prevents the entry of spaces in the username field.
We need at least three tests:

• Don’t allow spaces in the username.
• Do allow text without spaces in the username.
• Allow any text in the password.

(This isn’t intended to be a prescription for how to code your entry fields. I’m
just describing what this example does so we can test its behavior.)

Add the following test. Run tests to confirm that it passes:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_usernameWithSpaces_shouldPreventChange() {

let allowChange = sut.usernameField.delegate?.textField?(
sut.usernameField,
shouldChangeCharactersIn: NSRange(),
replacementString: "a b")

XCTAssertEqual(allowChange, false)
}

To reach the text field delegate, we’re not simply calling the view controller.
Instead, we ask the username text field for its delegate. This way, the test will
continue to work, even if we switch the delegate to another object.

For this test, the replacement string contains a space, as if the user pasted
it. We don’t want to allow it to enter this text field.

Chapter 14. Testing Text Fields (and Delegate Methods) • 178

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Since the call uses optional chaining, the result is an optional Bool. So it may
be true, false, or nil. We can’t use XCTAssertFalse(_:), which requires a Bool. Instead,
we used XCTAssertEqual(_:_:) to assert that the result is false.

To assert that a Bool? value is true or false, use XCTAssertEqual(_:_:).
If there’s a mismatch, it’ll report the actual value.

The test works, but it’s cumbersome to get the text field delegate and then
pass that same text field as the first argument. Let’s extract a helper to make
the tests more readable. Put this, and other helpers, in a separate file, like
TestHelpers.swift, so it’ll be available to other suites:

TextField/TextFieldTests/TestHelpers.swift
func shouldChangeCharacters(in textField: UITextField,

range: NSRange = NSRange(),
replacement: String) -> Bool? {

textField.delegate?.textField?(
textField,
shouldChangeCharactersIn: range,
replacementString: replacement)

}

Since the range of characters to replace will often (but not always) be empty,
it’s handy to give that parameter an empty range as a default value. This
simplifies the test code:

TextField/TextFieldTests/ViewControllerTests.swift
let allowChange = shouldChangeCharacters(in: sut.usernameField,

replacement: "a b")

Run the tests to confirm that everything is still happy with these changes.
Now it’s easy to add a new test that the username field allows text without
spaces:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_usernameWithoutSpaces_shouldAllowChange() {

let allowChange = shouldChangeCharacters(in: sut.usernameField,
replacement: "abc")

XCTAssertEqual(allowChange, true)
}

Run the tests, which should pass. Finally, we need to test the password field.
It should accept all text changes. Since it’s going through the same method
that handles the username field, let’s add tests of two replacement strings:
one with a space, and one without:

report erratum • discuss

Test Delegate Methods • 179

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_passwordWithSpaces_shouldAllowChange() {

let allowChange = shouldChangeCharacters(in: sut.passwordField,
replacement: "a b")

XCTAssertEqual(allowChange, true)
}

func test_shouldChangeCharacters_passwordWithoutSpaces_shouldAllowChange() {
let allowChange = shouldChangeCharacters(in: sut.passwordField,

replacement: "abc")

XCTAssertEqual(allowChange, true)
}

We now have tests fully covering the text field delegate method
textField(_:shouldChangeCharactersIn:replacementString:).

Test Input Focus
We have one more delegate method, textFieldShouldReturn(_:). It does two things:

• When the user presses the return key in the username field, the input
focus should move to the password field.

• When the user presses the return key in the password field, the keyboard
should be dismissed, and the login process should start.

Let’s start with the second behavior (logging in) before moving to the challenge
of testing keyboard input focus. Add a test that populates the text fields, and
confirms that pressing the return key in the password field starts the login
process. As we did in Test Delegate Methods, on page 177, we’ll ask the text
field for its delegate and talk to it:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withPassword_shouldPerformLogin() {

sut.usernameField.text = "USERNAME"
sut.passwordField.text = "PASSWORD"

_ = sut.passwordField.delegate?.textFieldShouldReturn?(sut.passwordField)

// Normally, assert something
}

Run the tests. Our pretend login method only prints to the console, so we’ll
check that instead of asserting as we normally would. Following Examine
Console Output, on page 23, drill down in the test results until you find the
output for this test. You should see this:

Username: USERNAME
Password: PASSWORD

Chapter 14. Testing Text Fields (and Delegate Methods) • 180

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Next, let’s extract a helper for this delegate method. Most tests can ignore
this delegate method’s return value, so declare this helper with @discardableResult:

TextField/TextFieldTests/TestHelpers.swift
@discardableResult func shouldReturn(in textField: UITextField) -> Bool? {

textField.delegate?.textFieldShouldReturn?(textField)
}

Using this helper, it’s easier to write tests that check the return key behavior:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withPassword_shouldPerformLogin() {

sut.usernameField.text = "USERNAME"
sut.passwordField.text = "PASSWORD"

shouldReturn(in: sut.passwordField)

// Normally, assert something
}

With this test in place, let’s now try to test the input focus. Pressing the return
key in the username field should move the focus to the password field by
calling becomeFirstResponder(). So you’d think we’d be able to test the isFirstResponder
property as follows:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withUsername_shouldMoveInputFocusToPassword() {

shouldReturn(in: sut.usernameField)

XCTAssertTrue(sut.passwordField.isFirstResponder)
}

Run the tests...but this one will fail. Unfortunately, this test won’t work
without some extra help. For changes to the first responder to take effect,
UIKit needs the view to live inside a view hierarchy. Add the following helper:

TextField/TextFieldTests/TestHelpers.swift
func putInViewHierarchy(_ vc: UIViewController) {

let window = UIWindow()
window.addSubview(vc.view)

}

Let’s put the view controller in a view hierarchy in the test’s Arrange section:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withUsername_shouldMoveInputFocusToPassword() {

putInViewHierarchy(sut)➤

shouldReturn(in: sut.usernameField)

XCTAssertTrue(sut.passwordField.isFirstResponder)
}

Run the tests. This time, the latest test passes.

report erratum • discuss

Test Input Focus • 181

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

To test keyboard input focus, add the view controller’s view to a
UIWindow beforehand.

To test that a text field resigns the first responder, we need to make it the
first responder in the Arrange section. Now we can write a test that puts the
focus on the password field and confirms that pressing the return key removes
that focus:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withPassword_shouldDismissKeyboard() {

putInViewHierarchy(sut)
sut.passwordField.becomeFirstResponder()
XCTAssertTrue(sut.passwordField.isFirstResponder, "precondition")

shouldReturn(in: sut.passwordField)

XCTAssertFalse(sut.passwordField.isFirstResponder)
}

It’s sometimes helpful to put an assertion in the Arrange section to confirm
a precondition. This essentially acts as a test of the putFocusOn(textField:) helper
method. By mirroring the opposite assertion at the end, we can clearly see
that the lines in between caused this state to change.

Unfortunately, adding a view controller’s view to a window keeps it in memory
past the lifetime of the test. To see this, add the following to ViewController:

TextField/TextField/ViewController.swift
deinit {

print("ViewController.deinit")
}

Run all tests, then check the console output. You’ll see ViewController.deinit
sprinkled here and there. But check the very bottom of the output after all
test have completed.

Test Suite 'All tests' passed at 2019-05-30 17:13:17.930.
Executed 11 tests, with 0 failures (0 unexpected) in 0.035 (0.041) seconds

ViewController.deinit

As you can see, a stray view controller has managed to stay alive past the
end of all tests. This violates the clean room goal of Chapter 2, Manage Your
Test Life Cycles, on page 19. Drill into the console output for test_shouldReturn_with-
Password_shouldDismissKeyboard() and you’ll see that it’s missing the expected deinit
logging.

Chapter 14. Testing Text Fields (and Delegate Methods) • 182

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

As we did with Test Segue-Based Push Navigation, on page 124, UIKit will clean
up the window if we give the run loop a kick. To make it easier to execute the
run loop one time, add the following helper:

TextField/TextFieldTests/TestHelpers.swift
func executeRunLoop() {

RunLoop.current.run(until: Date())
}

Then execute the run loop in tearDown() after setting everything in the test fix-
ture to nil.

TextField/TextFieldTests/ViewControllerTests.swift
override func tearDown() {

executeRunLoop()➤

sut = nil
super.tearDown()

}

We need to do this whenever any test code calls the putInViewHierarchy() helper.
Run tests one more time to confirm that this fixes the memory problem.

Key Takeaways
Let’s review the main points from this chapter:

• To test delegate methods, don’t directly call the object that implements
it. That would lock down that particular class as the delegate. Instead,
request the delegate (whatever it is) and call through it. This allows the
delegate to move in future refactoring without breaking tests.

• Getting an object’s delegate and passing that same object as an argument
makes for clumsy test code. You’ve seen how extracting helper functions
(sometimes with default arguments) can go a long way to making test
code easy to write and easy to read.

• Some types written in Objective-C need help describing themselves,
especially enumerations. Add extensions so these types conform to the
CustomStringConvertible protocol. And you’ve learned that to assert against a
Bool? value, you can use XCTAssertEqual(_:_:).

• To test the first responder, the view needs to be in a view hierarchy for
input focus to take effect.

• If you add anything to a temporary UIWindow, execute the run loop in
tearDown() so that UIKit releases the window. This avoids memory leaks.

report erratum • discuss

Key Takeaways • 183

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities
To solidify your learning from this chapter, try one or more of these activities.
Start with the first one and work down as far as you want to.

1. Search your code for any classes that conform to UITextFieldDelegate or
UITextViewDelegate. Add tests that the fields using these classes as delegates
have non-nil delegates.

2. Choose a simple delegate method with no references to the first responder,
and write one test for it. Make sure not to directly call the object that
provides the method but to call through the delegate.

3. Extract a helper function to simplify the test. Put this helper in a file of
test helpers so you can use them across your test suites.

4. Expand your testing into delegate methods that set or resign the first
responder.

What’s Next?
Now you can test delegate methods. You know not to directly call the object
that implements it since that locks it down as the delegate.

Perhaps the most common delegates are those of table views. In the next
chapter, we’ll look at an example of testing a UITableView.

Chapter 14. Testing Text Fields (and Delegate Methods) • 184

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 15

Testing Table Views
In the previous chapter, we saw how to test delegate methods, focusing our
example on text fields. But the most common use of delegates is probably for
table views.

Though the principles are the same as Chapter 14, Testing Text Fields (and
Delegate Methods), on page 169, let’s work through a table view example. A
table view has two delegates: one focusing on content, and the other on
actions. In this chapter, you’ll learn how to test table views. You’ll be able to
test table view output (displaying cells) and input (cell selection).

Make a Place to Play
It’s time for another project. Copy the steps from Create a Place to Play with
Tests, on page 4, but use TableView as the project name. Delete its initial
test file as usual.

In the Project Navigator, select the TableView group. Create a new file,
selecting Cocoa Touch Class, and make it a subclass of UITableViewController.

With this new file in place, delete the old file ViewController.swift.

Next, let’s put this in the storyboard. Edit Main.storyboard, select “View Controller
Scene,” and press J to delete it. Select View ▶ Libraries ▶ Show Library from
the Xcode menu or press Shift-D-L to bring up the Object Library. Double-
click “Table View Controller” to add it to the storyboard. Now let’s modify it.
In the storyboard, select “Table View Controller Scene.” Then in the Xcode
menu, select View ▶ Inspectors ▶ Show Identity Inspector or press E-D-3 . In
the Identity Inspector on the right, in the Custom Class section, click the
Class pull-down menu. Select the class we just made, TableViewController, like
you see in the image on page 186.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Show the Attributes Inspector by selecting View ▶ Inspectors ▶ Show Attributes
Inspector from the Xcode menu or press E-D-5. In the View Controller section,
shown here, select “Is Initial View Controller.”

Xcode still shows a warning symbol. Click on the symbol, or select View ▶
Navigators ▶ Show Issue Navigator, or press D-5 . Under “Unsupported Con-
figuration,” click the warning that says the following:

Prototype table cells must have reuse identifiers

This will select “Table View Cell.” In the Attributes Inspector on the right, in
the Table View Cell section (shown in the following image), enter cell as the
identifier.

Before we work on the code, let’s make sure this shows an empty table. Set
your destination to an iOS simulator, then press D-R to run the app. You
should see a table with empty rows.

Now delete the generated contents of the TableViewController class. Define the
following property, which will serve as our simple model:

TableView/TableView/TableViewController.swift
private let model = [

"One",
"Two",
"Three"

]

Add these methods to display this model:

Chapter 15. Testing Table Views • 186

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TableView/TableView/TableViewController.swift
override func tableView(_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {
model.count

}

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath)

-> UITableViewCell {
let cell = tableView.dequeueReusableCell(

withIdentifier: "cell", for: indexPath)
cell.textLabel?.text = model[indexPath.row]
return cell

}

And when a row is selected, we’ll print the selected row to the console:

TableView/TableView/TableViewController.swift
override func tableView(_ tableView: UITableView,

didSelectRowAt indexPath: IndexPath) {
print(model[indexPath.row])

}

Let’s make sure this table works. Run the app. You should see three rows,
showing “One,” “Two,” and “Three.” Select View ▶ Debug Area ▶ Activate
Console or press Shift-D-C to show the console on the bottom right. Tap each
row to confirm that the app prints the selected row in the console.

Now that we have a table view, let’s see how to write tests for it. In most cases,
all we need to do is test that each delegate method does what we want.

Test Table Views
You’ve already learned how to test delegate methods in Chapter 14, Testing
Text Fields (and Delegate Methods), on page 169. Testing table views isn’t much
more complicated. All we have to do is manage two delegates, not one: the
UITableViewDataSource and the UITableViewDelegate.

Add a new test suite, TableViewControllerTests, using the Test Zero technique from
Start from Test Zero, on page 21. Once it reports the expected failure, delete
Test Zero.

Let’s now test that the table view’s delegates exist. Though a UITableViewController
serves as its own delegates by default, we may want to change that in the
future. The following test ensures that we have the connections we need. Add
an empty test case named test_tableViewDelegates_shouldBeConnected().

Inside this test, follow Load a Storyboard-Based View Controller, on page 64
to load TableViewController from the storyboard. Remember that this also means

report erratum • discuss

Test Table Views • 187

http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

editing Main.storyboard to give the view controller a Storyboard ID. Run the tests,
which should pass.

Finish off this test by asserting that the view controller’s table view has both
delegates:

TableView/TableViewTests/TableViewControllerTests.swift
XCTAssertNotNil(sut.tableView.dataSource, "dataSource")
XCTAssertNotNil(sut.tableView.delegate, "delegate")

Run the tests, which should pass. Next, let’s start testing those delegate
methods. The first method tableView(_:numberOfRowsInSection:) is a data source
method. Add a new test named test_numberOfRows_shouldBe3(). To load the view
controller, copy and paste that part from the previous test. Then add the fol-
lowing assertion, and run the tests:

TableView/TableViewTests/TableViewControllerTests.swift
XCTAssertEqual(sut.tableView.dataSource?.tableView(

sut.tableView, numberOfRowsInSection: 0), 3)

Note that we’re calling the method indirectly through the dataSource delegate.
As we did in Chapter 14, Testing Text Fields (and Delegate Methods), on page
169, avoid calling delegate methods directly against the view controller. This
gives you the possibility of moving the delegate methods to another object.
The tests don’t need to know where they’re implemented.

Most of the time, tests should provide their own models to view controllers.
But here, we rely on our knowledge that the built-in model has three entries.

Since the code to load the view controller is duplicated, let’s follow Move the
SUT into the Test Fixture, on page 112 to extract it. Remember to change the
type cast from as! to as? to silence the warning about assigning to an optional:

TableView/TableViewTests/TableViewControllerTests.swift
private var sut: TableViewController!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(describing: TableViewController.self))
sut.loadViewIfNeeded()

}

override func tearDown() {
sut = nil
super.tearDown()

}

Chapter 15. Testing Table Views • 188

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests to make sure they still pass. Now let’s clean up that awkward
call to the delegate method. Again, let’s make a separate file for test helpers.
Name it TestHelpers.swift and set its target to the test target. Add an import UIKit
declaration to the top.

Add the following helper function. Many table views have just one section, so
declaring 0 as the default for section can be helpful:

TableView/TableViewTests/TestHelpers.swift
func numberOfRows(in tableView: UITableView, section: Int = 0) -> Int? {

tableView.dataSource?.tableView(
tableView, numberOfRowsInSection: section)

}

This simplifies our test:

TableView/TableViewTests/TableViewControllerTests.swift
func test_numberOfRows_shouldBe3() {

XCTAssertEqual(numberOfRows(in: sut.tableView), 3)
}

Next, let’s test tableView(_:cellForRowAt:). Any helper function is best when there’s
more than one example driving it, so let’s start with two tests:

TableView/TableViewTests/TableViewControllerTests.swift
func test_cellForRowAt_withRow0_shouldSetCellLabelToOne() {

let cell = sut.tableView.dataSource?.tableView(
sut.tableView, cellForRowAt: IndexPath(row: 0, section: 0))

XCTAssertEqual(cell?.textLabel?.text, "One")
}

func test_cellForRowAt_withRow1_shouldSetCellLabelToTwo() {
let cell = sut.tableView.dataSource?.tableView(

sut.tableView, cellForRowAt: IndexPath(row: 1, section: 0))

XCTAssertEqual(cell?.textLabel?.text, "Two")
}

Run the tests, which should pass. Now we can see that the value that’s
varying between the tests is row. Let’s create a helper that hides the IndexPath,
using 0 for the section by default:

TableView/TableViewTests/TestHelpers.swift
func cellForRow(in tableView: UITableView, row: Int, section: Int = 0)

-> UITableViewCell? {
tableView.dataSource?.tableView(

tableView, cellForRowAt: IndexPath(row: row, section: section))
}

Using this new helper, let’s clean up our two tests and add the third. Run
the tests to see them pass.

report erratum • discuss

Test Table Views • 189

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TableView/TableViewTests/TableViewControllerTests.swift
func test_cellForRow_withRow0_shouldSetCellLabelToOne() {

let cell = cellForRow(in: sut.tableView, row: 0)

XCTAssertEqual(cell?.textLabel?.text, "One")
}

func test_cellForRow_withRow1_shouldSetCellLabelToTwo() {
let cell = cellForRow(in: sut.tableView, row: 1)

XCTAssertEqual(cell?.textLabel?.text, "Two")
}

func test_cellForRow_withRow2_shouldSetCellLabelToThree() {
let cell = cellForRow(in: sut.tableView, row: 2)

XCTAssertEqual(cell?.textLabel?.text, "Three")
}

Finally, let’s test tableView(_:didSelectRowAt:), which handles row selection. The
only thing we need to be careful about is that we talk to the correct delegate.
While the dataSource provides cell content, the delegate handles cell selection.

In our example, tapping a row prints to the console instead of doing actual
work. Here’s a test that taps row 1 (the second row, counting from row 0):

TableView/TableViewTests/TableViewControllerTests.swift
func test_didSelectRow_withRow1() {

sut.tableView.delegate?.tableView?(
sut.tableView, didSelectRowAt: IndexPath(row: 1, section: 0))

// Normally, assert something
}

Run the tests and follow Examine Console Output, on page 23 to drill down
to the test results. You should see something like this:

Two

Now we can extract a helper function. Once again, it hides the IndexPath and
uses a section of 0 unless told otherwise:

TableView/TableViewTests/TestHelpers.swift
func didSelectRow(in tableView: UITableView, row: Int, section: Int = 0) {

tableView.delegate?.tableView?(
tableView, didSelectRowAt: IndexPath(row: row, section: section))

}

Then we can clean up the test to use this helper:

Chapter 15. Testing Table Views • 190

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TableView/TableViewTests/TableViewControllerTests.swift
func test_didSelectRow_withRow1() {

didSelectRow(in: sut.tableView, row: 1)

// Normally, assert something
}

Run all tests to confirm that everything passes. We don’t have an assertion on
this last test, so drill down into the test results again to confirm that it prints
Two. We’ve now successfully opened the door to testing this table view. The rest
would be assertions confirming the behavior of tapping different rows.

Key Takeaways
Testing table views is a continuation of testing delegate methods. So the same
techniques from Chapter 14, Testing Text Fields (and Delegate Methods), on
page 169 apply, except that table views have two delegates instead of one.

• Write a test to confirm that the table view’s dataSource and delegate aren’t
nil. Remember to call methods through the appropriate delegate.

• There’s a lot of opportunity to extract test helpers for table view delegate
methods. Doing so will lead to simpler test code, especially if you give the
section number a default value of 0.

Activities
You can use the following activities to sink this chapter into your brain. Start
with the first. Work down as far as you want to go.

1. Search your code for any classes that use table views. Add tests to ensure
that their data sources and delegates are non-nil.

2. Choose a simple table with one kind of cell. Write a test that creates a
data model, then checks the number of rows.

3. Write another test that gets a cell. Use a guard let to cast the cell to your
cell subclass. If the cast is unsuccessful, report the failure with XCTFail()
and do an early return. Otherwise, test that the cell contents are correct.

4. Extract helper functions to simplify the data source tests. Put these helpers
in a file of test helpers you can use across your test suites.

5. Expand your testing into table view delegate methods that handle cell
selection. For example, if selecting a cell pushes another view controller,
apply Chapter 10, Testing Navigation Between Screens, on page 115 (as
long as you’re not using segues).

report erratum • discuss

Key Takeaways • 191

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What’s Next?
Now you can test table views. As you can see, they’re not very different from
testing other delegate methods. Since table views have two delegates, direct
your calls through the right delegate.

As you did with Chapter 14, Testing Text Fields (and Delegate Methods), on
page 169, extract helper functions to keep your tests clean.

We’ve now tested the behavior of various view controllers. But what about their
appearance? In the next chapter, we explore a way to test how views look.

Chapter 15. Testing Table Views • 192

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 16

Testing View Appearance (with Snapshots)
Until now, we’ve focused on unit testing the behavior of view controllers. But
view controllers don’t just manage input and output. They lay out views, and
we want those views to look good. How do we test their appearance?

In this chapter, you’ll learn how to write snapshot tests to compare views with
reference images. We’ll use the FBSnapshotTestCase library for our example.1

By writing snapshot tests for your views, you’ll be able to make changes to
view layouts and test the results.

Because you won’t have to manually navigate through your view controllers
and then do visual comparisons, this is a huge time saver. It’s also good for
testing custom views.

Make a Place to Play
Let’s make a new project for this chapter’s learning experience. Follow the
steps for Create a Place to Play with Tests, on page 4 to create a new project,
but give it the name Snapshot. Delete its initial test file.

We’ll use the predefined storyboard, adding some visual elements. Edit
Main.storyboard. Feel free to add any UI elements you want using correct Auto
Layout constraints with no warnings.

If you arranged your own elements with no warnings, you can proceed to the
next section. Or you can follow along with this example. Open Main.storyboard
and select View ▶ Libraries ▶ Show Library from the Xcode menu or press
Shift-D-L . This will bring up the Object Library. Drag a label, a slider, and a
button into the View Controller Scene.

1. https://github.com/uber/ios-snapshot-test-case

report erratum • discuss

https://github.com/uber/ios-snapshot-test-case
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Select the label. In the bottom right of the storyboard editor, hover your mouse
cursor over the icon showing a square between two margins. This will reveal
the help tag “Add New Constraints.” Click the icon. In the following image,
it’s the middle icon:

In the pop-over, enter 20 for the top, left, and right constraints. Keep the
bottom constraint unselected. Press “Add 3 Constraints,” as shown here:

Let’s relax that right edge. With the label still selected, show the Size Inspector
by selecting View ▶ Inspectors ▶ Show Size Inspector from the Xcode menu
or press E-D-6 . In the Constraints section of the Size Inspector, find the
“Align Trailing to: Safe Area” constraint and click Edit. Change the Constant
from = to ≤, and its Priority from Required (1000) to Low (250), like this:

Chapter 16. Testing View Appearance (with Snapshots) • 194

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Next, select the slider, and set the following constraints:

• Top Space to Label Equals 20
• Align Leading to Safe Area Equals 20
• Align Trailing to Safe Area Equals 20

Finally, select the button and add these constraints:

• Top Space to Horizontal Slider Equals 20
• Align Leading to Safe Area >= 20 with Priority 250
• Align Trailing to Safe Area Equals 20
• Height Equals 44

With these layout constraints in place, the storyboard should look something
like this:

Confirm that Xcode is showing you no warnings. If you like, you can run the
app to see what it feels like to manipulate the controls.

Now we have a view controller with a few subviews. Let’s see how we can
capture its layout in a test. This way, the test will catch us if the layout ever
changes unintentionally. In order to do this, we will add a helper library to
our test code.

report erratum • discuss

Make a Place to Play • 195

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add FBSnapshotTestCase to a Test Target
To test how a view appears, we can do the following:

1. Render a view to an image.
2. Save this image to disk.

The saved image acts as a reference image. Once we have a reference image,
then we can:

1. Read the reference image from disk.
2. Render the view to a new image.
3. If the new image matches the reference image, the test passes. Otherwise,

the test fails.

This is characterization testing applied to images. The reference image
captures the appearance of a view. As long as the view continues to gen-
erate the same pixels, the test doesn’t care. Such tests are often called
snapshot tests.

In the past, I wrote such tests by hand. I would switch a test between record
mode and test mode using #if conditional compilation. There’s nothing
stopping you from developing your own test helpers to do this work. But
you can use third-party libraries to make it easier. One of them is
FBSnapshotTestCase.2

FBSnapshotTestCase supports the dependency managers CocoaPods and
Carthage. If you want to use either, feel free to skip ahead to Set the Location
for Reference Images, on page 198. Otherwise, let’s add a pre-built library to
the project by hand.

On GitHub, go to the Releases page for ios-snapshot-test-case to check if
the latest release has a zip file for your version of Xcode.3 If there is one,
download FBSnapshotTestCase.framework.zip. This will expand to a folder named
Carthage. Navigate through its subfolders Build and iOS until you find FBSnap-
shotTestCase.framework.

If the releases on GitHub are out of date, then download the source code for
this book4 and look in the TestFrameworks folder.

2. https://github.com/uber/ios-snapshot-test-case
3. https://github.com/uber/ios-snapshot-test-case/releases
4. https://pragprog.com/titles/jrlegios/source_code

Chapter 16. Testing View Appearance (with Snapshots) • 196

report erratum • discuss

https://github.com/uber/ios-snapshot-test-case
https://github.com/uber/ios-snapshot-test-case/releases
https://pragprog.com/titles/jrlegios/source_code
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Drag the framework into the SnapshotTests group in the Xcode project, as
shown here:

In the “Choose options for adding these files” dialog, select the check box
labeled “Copy items if needed” to copy the folder into your project files. And
make sure that “Add to targets“ specifies the SnapshotTests target only.

Let’s check if the downloaded framework works with your version of Swift. In
the Xcode menu, select Product ▶ Build For ▶ Testing. If Xcode complains
that a module compiled with a certain version of Swift cannot be imported,
see if you can find a build that matches. Otherwise, you’ll need to build the
framework yourself or use a dependency manager.

For third-party frameworks to work, we often need to copy them to a place
where the dynamic linker can find them. This is what we need to do with the
snapshot library. In the Project Navigator on the left, select the Snapshot
project. Then select the SnapshotTests target. Within that, select the Build
Phases tab. Click the + button at the top and select “New Copy Files Phase”
like this:

report erratum • discuss

Add FBSnapshotTestCase to a Test Target • 197

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This creates a new Copy Files phase at the end of the list. In its Destination
pop-up menu, select “Products Directory” as shown here:

Click the + button at the bottom of the new Copy Files phase. In the “Choose
items to add:” dialog, select FBSnaphotTestCase.framework and click Add. (Don’t
select the “Code Sign On Copy” check box because we’re not shipping test
code.)

Now the snapshot framework is ready for compiling against and is also copied
into place for dynamic linking.

Set the Location for Reference Images
FBSnapshotTestCase is ready to use. Next, we need to tell it where to put the
reference images. The simplest way is to add an environment variable to the
run scheme. In the Xcode menu, select Product ▶ Scheme ▶ Edit Scheme…
or press D-< .

In the scheme editor, select Run in the left column. Then from the tabs, select
Arguments. In the Environment Variables section, click the + button to create
a new entry. In the figure on page 199, the new entry is filled with the name
and value we’ll describe next:

• For Name, enter FB_REFERENCE_IMAGE_DIR.
• For Value, enter $(SOURCE_ROOT)/SnapshotImages. (Of course, you can specify

any location in your own projects.)

Chapter 16. Testing View Appearance (with Snapshots) • 198

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Finally, make sure to select the “Shared” check box at the very bottom. This allows
your teammates to use the same scheme. Press Close to save your changes.

Write a Snapshot Test
Now we’re ready to create a snapshot test. Let’s start by adding a test suite
ViewControllerSnapshotTests. Use Test Zero as temporary scaffolding to confirm
that you hooked up the test suite. (See Start from Test Zero, on page 21.)
Delete Test Zero once you see its expected failure message.

Now instead of import XCTest, change that to import FBSnapshotTestCase. Change the
superclass of ViewControllerSnapshotTests from XCTestCase to FBSnapshotTestCase. Make
sure this builds so far. In the Xcode menu, select Product ▶ Build For ▶
Testing or press Shift-D-U .

Add a special setUp() method to set the record mode of the snapshot tests in
this suite:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
override func setUp() {

super.setUp()
recordMode = false

}

Now create a test named test_example(). Follow Load a Storyboard-Based View
Controller, on page 64 to load ViewController from the storyboard. Remember
that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

report erratum • discuss

Write a Snapshot Test • 199

http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Finally, add the call to verify a snapshot of the view controller:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
FBSnapshotVerifyViewController(sut)

Here’s what the whole file looks like:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
@testable import Snapshot
import FBSnapshotTestCase

class ViewControllerSnapshotTests: FBSnapshotTestCase {

override func setUp() {
super.setUp()
recordMode = false

}

func test_example() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ViewController = storyboard.instantiateViewController(

identifier: String(describing: ViewController.self))

FBSnapshotVerifyViewController(sut)
}

}

Run the tests again. This time, you’ll see a failure beginning with the message:

failed - Snapshot comparison failed

The whole failure message is wordy, describing several objects. But buried
in the failure text is the following explanation:

Reference image not found. You need to run the test in record mode

To run the test in record mode, temporarily change recordMode to true in setUp().
Then set your destination to the iOS simulator you want to use for snapshots,
and run the tests. This time, you’ll get a different test failure:

failed - Test ran in record mode. Reference image is now saved. Disable
record mode to perform an actual snapshot comparison!

Based on the location you set for reference images (see Set the Location for
Reference Images, on page 198), look for a new folder. If the simulator you
chose is for a 64-bit device, it’ll append _64 to the name, so look for SnapshotIm-
ages_64. Inside that folder is another folder for the test suite, SnapshotTests.View-
ControllerSnapshotTests. And inside that folder is the new reference image, named
for the test case. Examine the reference image.

Finally, set recordMode back to false and run the tests again. This time the
snapshot verification will pass.

Chapter 16. Testing View Appearance (with Snapshots) • 200

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What If the Snapshot Doesn’t Look Right?

Sometimes a reference image won’t look right. This can happen because tests normally
create view controllers without surrounding context. In such cases, it’s good to try
creating a container for the view controller that’s closer to what it has in a real app.
For example, you can try creating a UIWindow to hold the view controller’s view:

let window = UIWindow(frame: UIScreen.main.bounds)
window.addSubview(sut.view)

Just remember from Test Input Focus, on page 180 that you need to execute the run
loop to clean up window memory.

Now we have a test that records how the view controller looks, capturing it
in a reference image. As long as the test continues to generate that same
image, it passes. In the rest of this chapter, let’s look at ways to work effec-
tively with snapshot tests.

See the Difference in a Snapshot Failure
Now we have a passing snapshot test. But what happens when the test fails?
Let’s find out by changing the layout.

Open Main.storyboard and select the button. Show the Size Inspector by selecting
View ▶ Inspectors ▶ Show Size Inspector from the Xcode menu or press E-D-6.
In the Constraints section, find the “Align Trailing to: Safe Area” constraint
as shown here:

Click Edit and change the constant to 25. Run the tests. The snapshot will
report a failure. If you go to the test case, you’ll see the test failure annotation:

report erratum • discuss

See the Difference in a Snapshot Failure • 201

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

But there’s more information that’s not visible in the failure annotation, even
if you click to expand it. Let’s find the console output by following Examine
Console Output, on page 23. The log icon, which is hidden for passing tests,
is shown to the right of the failing test. Click the log icon to expand the log.
It will look something like this, with different details:

The failure highlighted in the screenshot says, “Images different.” But the
most important information comes at the very beginning and isn’t highlighted.
After the line showing that the test case started, it says:

If you have Kaleidoscope installed you can run this command to see an
image diff:

This is followed by a ksdiff command. Kaleidoscope5 is a commercial Mac app
that does file comparison. You can download a fourteen-day free trial. If you
download the Mac app and launch it, select Kaleidoscope ▶ Integration... from
the Kaleidoscope menu. The following window will appear:

With “Kaleidoscope Command-line tool” selected on the left, click Install on
the right to install the ksdiff command-line tool.

5. https://www.kaleidoscopeapp.com

Chapter 16. Testing View Appearance (with Snapshots) • 202

report erratum • discuss

https://www.kaleidoscopeapp.com
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now open a new terminal shell. You can find the terminal by selecting Go ▶
Utilities from the Finder menu. Go back to Xcode and find the ksdiff command
in the test log. Copy and paste that line into your terminal shell. Pressing F
will run the command, which will compare the images in Kaleidoscope in a
window like this:

You may not be able to spot subtle differences in Two-Up mode. But they pop
out if you select the Difference mode at the bottom.

If you don’t want to use Kaleidoscope, you can use a different tool as long as
it has a command-line interface. Just make a shell function named ksdiff that
passes its arguments to the tool you like.

Manage Your Snapshot Tests
To get the most out of your snapshot tests, you should know that these tests
are slow, and somewhat touchy. Also, you don’t have to wait until you’ve
finished coding the views for them to be useful.

Slow Snapshots: Keep Them in Their Own Corner
When you first discover snapshot tests, it’s tempting to use them to test all
kinds of visible state. But compared to a normal unit test, a snapshot test is
an order of magnitude slower. That is, in the time it takes to run one snapshot
test, you can run ten to twenty unit tests.

report erratum • discuss

Manage Your Snapshot Tests • 203

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The speed of one snapshot may not seem like much. But they accumulate
quickly. To keep snapshot tests from slowing down rapid feedback, I keep
snapshots in their own corner. Here’s how:

First, don’t mix unit tests and snapshot tests in the same test suite. Create
separate suites. That’s why we named the test suite for this chapter ViewCon-
trollerSnapshotTests. Any unit tests can go in ViewControllerTests instead. This gives
us a way to run them separately, because Xcode lets us run a single test
suite. To the left of a test suite, Xcode shows an empty lozenge icon:

Hover your mouse cursor over the icon. It changes to a play button:

Clicking this will run all the tests in that class.

Second, keep these snapshot tests in separate files. That is, don’t group
ViewControllerSnapshotTests together with ViewControllerTests in the same file. Eventu-
ally, you’ll have quite a few snapshot tests. To get fast feedback on my local
machine, I like to either run all unit tests, or run one set of snapshots. This
is easier if you create separate test targets: one for unit tests, and one for
snapshot tests. So I have one unit testing bundle for unit tests and another
for snapshots.

Finally, keep your snapshots limited. Snapshot the appearance of small
custom views in different states. With those tests in place, another snapshot
can capture the overall layout of a view controller. Getting larger snapshots
that repeat the same smaller state changes is a waste of time. Instead, use
faster unit tests to confirm combinations of state.

Touchy Snapshots: One Device, One iOS Version
Be sure to capture and run snapshots using the same simulator. Given enough
developers, there’s bound to be some confusion about which simulator to
use. You may want to write your own FBSnapshotTestCase subclass. It can have
a setUp() method that checks UIDevice.current and fails if the device doesn’t match.

Capturing view layouts with one device in one orientation can feel limiting.
You may wish to investigate other open-source libraries that extend
FBSnapshotTestCase. But capturing every device combination is overkill.
Remember, snapshot tests are inherently slower. Be selective, and try to
limit yourself to tests that add value.

Pixel-perfect image comparison is touchy. Different versions of iOS often use
slightly different math to render images. So your team will also have to agree

Chapter 16. Testing View Appearance (with Snapshots) • 204

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

on a single iOS version to use across all snapshots. You can enforce this in
the setUp method of your custom FBSnapshotTestCase subclass.

To adopt a new version of iOS, you’ll need to update all reference images for your
snapshots. You can do this in one shot with a global find-and-replace to set
recordMode = true. You could also set recordMode using an environment variable.

Use Snapshots to Write View Code
Characterization tests capture the existing behavior of code. Since snapshot
tests are a type of characterization test, it’d be easy to assume they always
come after the finished code. But snapshots can also give you feedback about
views and view controllers as you write them.

One of the best things about unit testing view controllers is that you don’t
have to navigate through your app to reach the screen you want. So if your
app has a login screen, an accounts tab, and a screen you can reach from
that tab, you don’t have to do any of that manual tapping. Instead, unit tests
create the objects they need, including view controllers. The time saved by
not navigating adds up quickly.

The same applies to snapshot tests. Instead of slow, manual navigation, the
tests create what they need. But on top of that, you don’t need to stare at a
screen wondering if a button shifted five points to the left. If the test passes,
you know view’s appearance is identical to the reference image. This saves
you even more time.

But now imagine that you’re starting work on a new view controller or on a
new custom view. What if the first thing you did was create a new snapshot
test with recordMode set to true? Then every time you run the test, you could
see what the view looks like—without navigating to it. In fact, there may not
even be a way to navigate to it yet!

This lets you observe the view as it grows. The generated reference image will
be closer to real life than what you see in Interface Builder. And the benefits
are even greater if you write code-based view controllers. The reference image
shows the result of using Auto Layout constraints to lay out views. By keeping
recordMode on, you can visually confirm each step you take.

Key Takeaways
Find a way to render views from XCTest without using UI tests. FBSnap-
shotTestCase is just one of many libraries that do this. The important thing
is that your tests should be able to create any view or view controller, and
render it to a file.

report erratum • discuss

Key Takeaways • 205

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Snapshots are good for capturing aspects of appearance that would be hard
to express by checking properties. But they become tempting to overuse.
Because snapshot tests are slower than normal unit tests, try to limit their
use to layout. Use normal unit tests to check behavior and simple state
change. For example, use a normal unit test to check whether a control is
enabled by checking its isEnabled property.

Snapshot tests are useful not only to record a “known good” baseline, but to
also provide quick feedback to power iterative development. You can make a
change, run the test, and see how the view looks—without firing up the app
and navigating to that screen.

Activities
Take action to give your reading concrete benefits. If you don’t already use a
library to render view for testing, do the first activity.

1. Add FBSnapshotTestCase to your own project. Use CocoaPods, Carthage,
or direct integration by hand.

2. Add some snapshot tests, starting from the smallest custom views. Work
up to entire view controllers, trying to limit the total number of snapshots.

3. Create a custom subclass of FBSnapshotTestCase. Use its setUp() method to enforce
the type of simulator and the version of iOS your team uses for snapshots.
You can call fatalError() from setUp() if anyone strays from your standard to put
an immediate stop to any testing on the wrong device type.

4. The next time you create a new view or view controller, start with a new
snapshot test that has recordMode on. Use the captured image to give you
feedback as you design the Auto Layout constraints.

What’s Next?
Now you can capture the appearance of views in snapshot tests. This will
help you save time by alerting you whenever any rendered views change. It’ll
also save you time while you’re actively developing custom views or changing
the layout of any view controllers.

This concludes our tour of iOS testing techniques. You now have the means
to transform legacy code into tested code.

But what does all this testing enable? Starting in the next chapter, let’s begin
looking at the refactoring possibilities that open up to you thanks to having
well-tested code.

Chapter 16. Testing View Appearance (with Snapshots) • 206

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part III

Using Your New Power

Why is all this unit testing useful? The speed of
unit test feedback empowers powerful styles of
development.

Fast feedback is the engine that powers disciplined
refactoring: working in small, verified steps.
Refactoring gives us a way to change the design of
code without changing its behavior. We’ll see an
example of refactoring a view controller’s design
from MVC to MVVM, then on to MVP.

And if we flip conventional coding-then-testing on
its head, we get test-driven development. We
will see how TDD combines a test-first approach
with refactoring. The result is a powerful way
to develop code.

CHAPTER 17

Unleash the Power of Refactoring
Now you’re able to bring much of your app under test. But adding unit tests
is a lot of work. What purpose do they serve? Tests validate that the code
does what the tests say it does, and unit tests are fast by definition. This fast
validation makes refactoring possible. But refactoring is widely misunderstood.

In this chapter, you’ll learn what refactoring is and you’ll see some of the
most common refactoring moves. Learning these moves will help you make
changes to your own code safely and with confidence.

What Is Refactoring?
The term “refactoring” has become quite popular in the workplace. We devel-
opers say, “I need to refactor this thing,” then proceed to rewrite a large chunk
of code. From a big-picture view, this use of the term carries the same intent
as its proper definition: we want to change the way the code does its work
without changing its behavior. This matches the definition from the book
Refactoring: Improving the Design of Existing Code, 2nd Edition [Fow18]:

Refactoring is the process of changing a software system in a way that does not
alter the external behavior of the code yet improves its internal structure.

But the common use of the word ignores both the methodology and the
mechanics shown in the book. We get no further than page 5 before the book
explains:

Whenever I do refactoring, the first step is always the same. I need to ensure that
I have a solid set of tests for that section of code. The tests are essential…

The reason tests are essential is that changing things around is risky. We
can reduce the risk of breaking things by testing the changed code. The better
the tests are, the safer the change becomes. The faster the tests are, the more

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

often we can run them. And the more often we can run them, the smaller the
steps we can take become.

Working in small, verified steps is a game changer. Many developers like to work
with large changes. But if we practice refactoring as described in the book, the
changes are very small. Let me summarize it this way: disciplined refactoring is
changing code in small steps, with automated verification of each step.

Why do we want to change the internal structure of the code in the first place?
Because this can make the code easier to read, understand, and modify.
Often, adding new functionality will be faster and safer if we make other
changes first. Kent Beck writes:

for each desired change, make the change easy (warning: this may be hard), then
make the easy change1

In a fast-moving world, we strive to follow the Agile Manifesto2 by valuing
“responding to change.” (This is one of the four points of the manifesto.) But
to accommodate these changes safely, our software must be malleable, not
brittle. We need the freedom to restructure the internals of our code without
breaking anything. This is why disciplined refactoring is important.

So unit testing has a tight connection with refactoring. Unit tests form the
safety net that makes disciplined refactoring possible. Part III of this book
focuses on the practical steps of what that kind of refactoring looks like.

Lay Out the Views for Our Practice App
In Parts I and II, each chapter pretty much had its own project. But for Part
III, each chapter will build on the previous work. This means you won’t be
able to cherry-pick chapters but instead will need to progress through them
if you want to work through the examples.

The project we’ll use across Part III is an interface for changing a password.
Start a new project as we’ve done before by copying the steps from Create a
Place to Play with Tests, on page 4. Use Refactoring as the project name.

Edit Main.storyboard, adding a button in the center of the View Controller Scene.
Give it a title like “Change My Password.” Give it the following layout constraints:

• Height Equals 44
• Align Center X to Safe Area
• Align Center Y to Safe Area

1. https://twitter.com/kentbeck/status/250733358307500032
2. https://agilemanifesto.org

Chapter 17. Unleash the Power of Refactoring • 210

report erratum • discuss

https://twitter.com/kentbeck/status/250733358307500032
https://agilemanifesto.org
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

That’s the layout of the starting view. Next, let’s lay out the change password
view controller. Still in Main.storyboard, select View ▶ Libraries ▶ Show Library
from the Xcode menu, or press Shift-D-L to bring up the Object Library. Drag
a new view controller onto the storyboard. Then drag a navigation bar to the
top of the new view controller.

Set the constraints of the navigation bar:

• Align Top to Safe Area
• Align Leading to Safe Area
• Align Trailing to Safe Area

Show the Attributes Inspector by selecting View ▶ Inspectors ▶ Show Attributes
Inspector from the Xcode menu or press E-D-5 . In the Attributes Inspector
in the Navigation Bar section, deselect “Translucent.”

Adding a navigation bar also creates an embedded navigation item. Double-
click on its title, renaming it to “Change Password.”

Next, drag a bar button item to the left of the navigation title.

In the Attributes Inspector in the Bar Button Item section, set System Item
to Cancel, like this:

Now for the main part. Drag a text field below the navigation bar. Click Add
New Constraints at the bottom right of the storyboard editor. Set the top, left,
and right constraints to 20, and the height to 44. Using the Attributes

report erratum • discuss

Lay Out the Views for Our Practice App • 211

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Inspector, in the Text Field section, set the Placeholder to “Current Password.”
Then in the Text Input Traits section, set the following:

• Content Type: Password
• Auto-enable Return Key: Selected
• Secure Text Entry: Selected

Drag another text field below the first one. For the layout constraints, set the
top to 8, left and right to 20, and height to 44. Set its placeholder to “New
Password.” Do this again with a third text field. Use the same constraints,
and set its placeholder to “Confirm New Password.”

Now select the bottom two text fields. In the Attributes Inspector in the Text
Input Traits section, set the following:

• Content Type: New Password
• Auto-enable Return Key: Selected
• Secure Text Entry: Selected

Drag a button below the text fields. For its layout constraints, set the top to
16, left and right to 20, and height to 44. Double-click the button’s title and
change it to “Submit.”

Finally, let’s add a segue to go from the button on the initial view controller
to the Change Password view. Control-drag from the “Change My Password”
button onto the Change Password Scene. This brings up a pop-up menu of
segue choices, as you can see here:

From the Action Segue section, select “Present Modally.” This concludes the
layout of our views. Look at what we’ve done so far by running the app and
clicking that first button.

Chapter 17. Unleash the Power of Refactoring • 212

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add the Code to Our Practice App
In real life, we would make a type that communicates with some password
changing API. But for our example, we don’t have an actual web service.
Instead, we will just print its arguments to the console. To simulate the
time it would take to do network communication, it will call either the
success closure or the failure closure after 1 second. Additonally, we will
be able to alternate between both success and failure so that we are able
to try both.

Select the Refactoring group in the Project Navigator and press D-N to make
a new file. Select Swift File and name it PasswordChanger.swift:

Refactoring/Refactoring/PasswordChanger.swift
import Foundation

final class PasswordChanger {
private static var pretendToSucceed = false
private var successOrFailureTimer: SuccessOrFailureTimer?

func change(securityToken: String,
oldPassword: String,
newPassword: String,
onSuccess: @escaping () -> Void,
onFailure: @escaping (String) -> Void) {

print("Initiate Change Password:")
print("securityToken = \(securityToken)")
print("oldPassword = \(oldPassword)")
print("newPassword = \(newPassword)")
successOrFailureTimer = SuccessOrFailureTimer(

onSuccess: onSuccess,
onFailure: onFailure,
timer: Timer.scheduledTimer(

withTimeInterval: 1,
repeats: false

) { [weak self] _ in self?.callSuccessOrFailure() }
)

}

private func callSuccessOrFailure() {
if PasswordChanger.pretendToSucceed {

successOrFailureTimer?.onSuccess()
} else {

successOrFailureTimer?.onFailure("Sorry, something went wrong.")
}
PasswordChanger.pretendToSucceed.toggle()
successOrFailureTimer?.timer.invalidate()
successOrFailureTimer = nil

}
}

report erratum • discuss

Add the Code to Our Practice App • 213

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/PasswordChanger.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

private struct SuccessOrFailureTimer {
let onSuccess: () -> Void
let onFailure: (String) -> Void
let timer: Timer

}

The change() method takes a security token, the old password, and a new
password. Upon success, it calls the onSuccess closure. Upon failure, it calls
the onFailure closure with a failure message.

The helper method callSuccessOrFailure() alternates between failure and success.
The pretendToSucceed flag is a static property, so it persists across PasswordChanger
instances. The change() method calls it after a 1-second timer to simulate net-
work lag.

Next, let’s write the code for the Change Password view. Similar to Set Up a
Storyboard-Based View Controller for Experiments, on page 62, make a new
Cocoa Touch file that’s a subclass of UIViewController but with the name
ChangePasswordViewController. Define the following outlets in the new class:

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBOutlet private(set) var cancelBarButton: UIBarButtonItem!
@IBOutlet private(set) var oldPasswordTextField: UITextField!
@IBOutlet private(set) var newPasswordTextField: UITextField!
@IBOutlet private(set) var confirmPasswordTextField: UITextField!
@IBOutlet private(set) var submitButton: UIButton!

Edit Main.storyboard and select the Change Password Scene. In the Identity
Inspector, set the Custom Class to ChangePasswordViewController. Connect all the
new outlets to their corresponding storyboard objects. Then add the following
additional properties:

Refactoring/Refactoring/ChangePasswordViewController.swift
private var passwordChanger = PasswordChanger()
var securityToken = ""
private let blurView = UIVisualEffectView(effect: UIBlurEffect(style: .dark))
private let activityIndicator = UIActivityIndicatorView(style: .large)

Now let’s define viewDidLoad(). It adds a rounded border around the button. It
prepares for Auto Layout constraints on blurView and activityIndicator. It also sets
the color of activityIndicator. Add this method, then run the app to see what the
button looks like now:

Refactoring/Refactoring/ChangePasswordViewController.swift
override func viewDidLoad() {

super.viewDidLoad()
submitButton.layer.borderWidth = 1
submitButton.layer.borderColor = UIColor(

red: 55/255.0, green: 147/255.0, blue: 251/255.0, alpha: 1

Chapter 17. Unleash the Power of Refactoring • 214

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

).cgColor
submitButton.layer.cornerRadius = 8
blurView.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.color = .white

}

Add the following action and connect the Cancel bar button to it. Then run
the app and try the Cancel button.

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBAction private func cancel() {

oldPasswordTextField.resignFirstResponder()
newPasswordTextField.resignFirstResponder()
confirmPasswordTextField.resignFirstResponder()
dismiss(animated: true)

}

Next is a big one. Add the following action. Don’t worry that it’s one big glob
of code—we’ll clean it up later.

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBAction private func changePassword() {

// 1. Validate inputs
if oldPasswordTextField.text?.isEmpty ?? true {

oldPasswordTextField.becomeFirstResponder()
return

}

if newPasswordTextField.text?.isEmpty ?? true {
let alertController = UIAlertController(

title: nil,
message: "Please enter a new password.",
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)
return

}

if newPasswordTextField.text?.count ?? 0 < 6 {
let alertController = UIAlertController(title: nil,

message: "The new password should have at least 6 characters.",
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

report erratum • discuss

Add the Code to Our Practice App • 215

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

self?.newPasswordTextField.text = ""
self?.confirmPasswordTextField.text = ""
self?.newPasswordTextField.becomeFirstResponder()

}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)
return

}

if newPasswordTextField.text != confirmPasswordTextField.text {
let alertController = UIAlertController(title: nil,

message: "The new password and the confirmation password "
+ "don’t match. Please try again.",

preferredStyle: .alert)
let okButton = UIAlertAction(

title: "OK",
style: .default) { [weak self] _ in

self?.newPasswordTextField.text = ""
self?.confirmPasswordTextField.text = ""
self?.newPasswordTextField.becomeFirstResponder()

}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)
return

}

// 2. Set up waiting appearance
oldPasswordTextField.resignFirstResponder()
newPasswordTextField.resignFirstResponder()
confirmPasswordTextField.resignFirstResponder()
cancelBarButton.isEnabled = false
view.backgroundColor = .clear
view.addSubview(blurView)
view.addSubview(activityIndicator)
NSLayoutConstraint.activate([

blurView.heightAnchor.constraint(equalTo: view.heightAnchor),
blurView.widthAnchor.constraint(equalTo: view.widthAnchor),
activityIndicator.centerXAnchor.constraint(

equalTo: view.centerXAnchor),
activityIndicator.centerYAnchor.constraint(

equalTo: view.centerYAnchor),
])
activityIndicator.startAnimating()

// 3. Attempt to change password
passwordChanger.change(

securityToken: securityToken,
oldPassword: oldPasswordTextField.text ?? "",
newPassword: newPasswordTextField.text ?? "",
onSuccess: { [weak self] in

Chapter 17. Unleash the Power of Refactoring • 216

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

self?.activityIndicator.stopAnimating()
self?.activityIndicator.removeFromSuperview()
let alertController = UIAlertController(

title: nil,
message: "Your password has been successfully changed.",
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

self?.dismiss(animated: true)
}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self?.present(alertController, animated: true)

},
onFailure: { [weak self] message in

self?.activityIndicator.stopAnimating()
self?.activityIndicator.removeFromSuperview()
let alertController = UIAlertController(

title: nil,
message: message,
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

self?.oldPasswordTextField.text = ""
self?.newPasswordTextField.text = ""
self?.confirmPasswordTextField.text = ""
self?.oldPasswordTextField.becomeFirstResponder()
self?.view.backgroundColor = .white
self?.blurView.removeFromSuperview()
self?.cancelBarButton.isEnabled = true

}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self?.present(alertController, animated: true)

})
}

Once the action is in place, connect the Submit button to it. This action
enforces the following rules:

• If the old password is empty, put the user input back in the old password
field.

• If the new password is empty, show an alert. Tapping OK puts the user
input back in the new password field.

• The new password must be at least six characters long. If not, show an
alert explaining the requirement. Tapping OK clears the new password

report erratum • discuss

Add the Code to Our Practice App • 217

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

and confirm password fields, and puts the user input back in the new
password field.

• The confirmation password must match the new password. If not, show
an alert explaining the problem. Tapping OK clears the new password
and confirm password fields, and puts the user input back in the new
password field.

If the inputs satisfy these rules, then we do the following:

• Hide the keyboard.
• Disable the Cancel bar button.
• Show a blurring overlay with a spinning activity indicator.
• Call the password changer, passing the security token, the old password,

and the new password.

The call to change the password may succeed or fail. If the call succeeds, stop
the spinner and hide it. Show a success alert. Tapping OK dismisses the view.

If the call fails, stop the spinner and hide it. Show a failure alert displaying
the failure message passed to the closure. Tapping OK resets the screen by
doing the following:

• Clearing all text fields
• Putting the user input back in the old password field
• Removing the blur overlay
• Re-enabling the Cancel bar button

Try running the app, and see what happens if the inputs don’t satisfy the
rules. Then try with valid inputs. Remember, our fake password changer will
alternate between failure and success.

To support the return key in the keyboard, we need a delegate for the text
fields. First add UITextFieldDelegate conformance to the view controller definition:

Refactoring/Refactoring/ChangePasswordViewController.swift
class ChangePasswordViewController: UIViewController, UITextFieldDelegate {

In the storyboard, select each text field in turn and connect its delegate to
the view controller as we did in Make a Place to Play, on page 169. Then add
a method to ChangePasswordViewController to process the return key. It advances
the keyboard focus from one text field to the next until it calls the same action
as the Submit button:

Chapter 17. Unleash the Power of Refactoring • 218

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/Refactoring/ChangePasswordViewController.swift
func textFieldShouldReturn(_ textField: UITextField) -> Bool {

if textField === oldPasswordTextField {
newPasswordTextField.becomeFirstResponder()

} else if textField === newPasswordTextField {
confirmPasswordTextField.becomeFirstResponder()

} else if textField === confirmPasswordTextField {
changePassword()

}
return true

}

Run the app and try using the return key in each text field. Notice how the
return key is disabled until some text is entered. See how tapping it advances
the input focus.

Finally, run the app and enter passwords that meet the requirements. Apply
Examine Console Output, on page 23 to see the console output for a change
password request:

Initiate Change Password:
securityToken =

The security token is empty. This property needs to be set from the outside.
Add the following method to ViewController (not to ChangePasswordViewCon-
troller). It prepares for the segue to ChangePasswordViewController:

Refactoring/Refactoring/ViewController.swift
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

super.prepare(for: segue, sender: sender)
if segue.identifier == "changePassword" {

let changePasswordVC = segue.destination
as? ChangePasswordViewController

changePasswordVC?.securityToken = "TOKEN"
}

}

In the storyboard, select the first segue from the View Controller Scene to the
Change Password Scene. In the Attributes Inspector, set its identifier to
“changePassword.” Now run the app again, submitting a valid password
request. This time, the console output will show the following:

Initiate Change Password:
securityToken = TOKEN

Now we have functioning code. But before we start any refactoring, let’s bring
this code under test.

report erratum • discuss

Add the Code to Our Practice App • 219

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Replace the Difficult Dependency with a Mock Object
This chapter focuses on refactoring ChangePasswordViewController, so we want to
bring it under test. But the class has an embedded dependency on Password-
Changer. Even though PasswordChanger is a simulation, we need to break this
dependency. We shouldn’t have unit tests call an actual web service, not even
one set up for testing. It’s unreliable, too slow, and would pollute the service.

Instead, let’s apply Extract a Protocol to Support Test Doubles, on page 131.
In PasswordChanger.swift, define an empty protocol named PasswordChanging:

Refactoring/Refactoring/PasswordChanger.swift
protocol PasswordChanging {}

Then in ChangePasswordViewController, change the passwordChanger property to have
an explicit type of PasswordChanging:

Refactoring/Refactoring/ChangePasswordViewController.swift
private var passwordChanger: PasswordChanging = PasswordChanger()

Xcode will show an error:

Value of type 'PasswordChanger' does not conform to specified type
'PasswordChanging'

Since PasswordChanger is a type we own, we can make it conform to the protocol
directly:

Refactoring/Refactoring/PasswordChanger.swift
final class PasswordChanger: PasswordChanging {

This in turn leads to the error:

Value of type 'PasswordChanging' has no member 'change'

Fix this by copying the method signature into the protocol:

Refactoring/Refactoring/PasswordChanger.swift
protocol PasswordChanging {

func change(securityToken: String,
oldPassword: String,
newPassword: String,
onSuccess: @escaping () -> Void,
onFailure: @escaping (String) -> Void)

}

We’ve changed the property type to use the protocol. But its value is still fixed
to a PasswordChanger instance. Let’s make it possible for tests to substitute a
different implementation of the protocol. Apply Use Properties, on page 87 by
making the property lazy, and no longer private.

Chapter 17. Unleash the Power of Refactoring • 220

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/PasswordChanger.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/PasswordChanger.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/PasswordChanger.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/Refactoring/ChangePasswordViewController.swift
lazy var passwordChanger: PasswordChanging = PasswordChanger()

Now we’re set up to create a mock object version of the PasswordChanging protocol.
First, create a file named TestHelpers.swift in the RefactoringTests group with
these mock object helpers:

Refactoring/RefactoringTests/TestHelpers.swift
import XCTest

func verifyMethodCalledOnce(
methodName: String,
callCount: Int,
describeArguments: @autoclosure () -> String,
file: StaticString = #file,
line: UInt = #line) -> Bool {

if callCount == 0 {
XCTFail("Wanted but not invoked: \(methodName)",

file: file, line: line)
return false

}
if callCount > 1 {

XCTFail("Wanted 1 time but was called \(callCount) times. " +
"\(methodName) with \(describeArguments())",
file: file, line: line)

return false
}
return true

}

func verifyMethodNeverCalled(
methodName: String,
callCount: Int,
describeArguments: @autoclosure () -> String,
file: StaticString = #file,
line: UInt = #line) {

let times = callCount == 1 ? "time" : "times"
if callCount > 0 {

XCTFail("Never wanted but was called \(callCount) \(times). " +
"\(methodName) with \(describeArguments())",
file: file, line: line)

}
}

(The first helper returns a Bool because we’ll use it to decide whether to make
more assertions. The second helper has no return type because we won’t do
any more checks.)

Using these helpers, let’s create a new file, MockPasswordChanger.swift:

Refactoring/RefactoringTests/MockPasswordChanger.swift
@testable import Refactoring

report erratum • discuss

Replace the Difficult Dependency with a Mock Object • 221

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/MockPasswordChanger.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

import XCTest

final class MockPasswordChanger: PasswordChanging {
private var changeCallCount = 0
private var changeArgsSecurityToken: [String] = []
private var changeArgsOldPassword: [String] = []
private var changeArgsNewPassword: [String] = []
private var changeArgsOnSuccess: [() -> Void] = []
private var changeArgsOnFailure: [(String) -> Void] = []

func change(
securityToken: String,
oldPassword: String,
newPassword: String,
onSuccess: @escaping () -> Void,
onFailure: @escaping (String) -> Void) {

changeCallCount += 1
changeArgsSecurityToken.append(securityToken)
changeArgsOldPassword.append(oldPassword)
changeArgsNewPassword.append(newPassword)
changeArgsOnSuccess.append(onSuccess)
changeArgsOnFailure.append(onFailure)

}

func verifyChange(
securityToken: String,
oldPassword: String,
newPassword: String,
file: StaticString = #file,
line: UInt = #line) {

guard changeWasCalledOnce(file: file, line: line) else { return }
XCTAssertEqual(changeArgsSecurityToken.last, securityToken,

"security token", file: file, line: line)
XCTAssertEqual(changeArgsOldPassword.last, oldPassword,

"old password", file: file, line: line)
XCTAssertEqual(changeArgsNewPassword.last, newPassword,

"new password", file: file, line: line)
}

func verifyChangeNeverCalled(
file: StaticString = #file, line: UInt = #line) {

changeWasNeverCalled(file: file, line: line)
}

private func changeWasCalledOnce(
file: StaticString = #file, line: UInt = #line) -> Bool {

verifyMethodCalledOnce(
methodName: changeMethodName,
callCount: changeCallCount,
describeArguments: changeMethodArguments,
file: file, line: line)

}

Chapter 17. Unleash the Power of Refactoring • 222

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

private func changeWasNeverCalled(
file: StaticString = #file, line: UInt = #line) {

verifyMethodNeverCalled(
methodName: changeMethodName,
callCount: changeCallCount,
describeArguments: changeMethodArguments,
file: file, line: line)

}

private var changeMethodName: String {
"change(securityToken:oldPassword:newPassword:onSuccess:onFailure:)"

}

private var changeMethodArguments: String {
"oldPasswords: \(changeArgsOldPassword), " +

"newPasswords: \(changeArgsNewPassword)"
}

}

In addition to recording calls to the change() method, this mock object provides
the following:

• verifyChange(securityToken:oldPassword:newPassword:) to verify one call with the
given arguments

• verifyChangeNeverCalled() to verify no calls

We changed the production code to use a protocol instead of a direct reference.
We made the property lazy so that tests can substitute a different value after
loading the view controller from the storyboard. And we created a mock object
to intercept calls to the protocol and let us test the arguments. Now onward
to the tests.

Write the First Tests of the Change Password
View Controller
Let’s begin writing tests for ChangePasswordViewController. If Refactor-
ingTests.swift is still lingering around from creating the project, delete the file.
Add a new test suite named ChangePasswordViewControllerTests. Do the normal Test
Zero steps to confirm that it’s in the right place.

Then let’s start easy by testing the outlets. Since we know we’re going to be
writing many tests, let’s put the system under test into the test fixture from
the start. Here’s the content of the file so far:

report erratum • discuss

Write the First Tests of the Change Password View Controller • 223

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
@testable import Refactoring
import XCTest

final class ChangePasswordViewControllerTests: XCTestCase {
private var sut: ChangePasswordViewController!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(
describing: ChangePasswordViewController.self))

sut.loadViewIfNeeded()
}

override func tearDown() {
sut = nil
super.tearDown()

}

func test_outlets_shouldBeConnected() {
XCTAssertNotNil(sut.cancelBarButton, "cancelButton")
XCTAssertNotNil(sut.oldPasswordTextField, "oldPasswordTextField")
XCTAssertNotNil(sut.newPasswordTextField, "newPasswordTextField")
XCTAssertNotNil(sut.confirmPasswordTextField,

"confirmPasswordTextField")
XCTAssertNotNil(sut.submitButton, "submitButton")

}
}

To get this to pass, we edit the view controller in Main.storyboard, copying the
Class name into the Storyboard ID.

Next, let’s test the attributes of each UI component from top to bottom. It
would be nice to test the title shown in the navigation bar, but there’s no way
for tests to reach it. To provide that access, let’s add an outlet to ChangePass-
wordViewController:

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBOutlet private(set) var navigationBar: UINavigationBar!

In test_outlets_shouldBeConnected(), add an assertion for the new outlet:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
XCTAssertNotNil(sut.navigationBar, "navigationBar")

This test will fail. Get it to pass by connecting the navigation bar to the outlet.
Then we can write the test we wanted in the first place, checking the title:

Chapter 17. Unleash the Power of Refactoring • 224

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_navigationBar_shouldHaveTitle() {

XCTAssertEqual(sut.navigationBar.topItem?.title, "Change Password")
}

Moving down, how can we check the “System Item” setting of the Bar Button
Item? UIKit doesn’t expose it as a property, but we can still peek at it since
it’s Objective-C underneath. (Peering into Apple’s implementation details is
inadvisable in production code. But in test code, it’s a necessary evil when
Apple chooses not to expose something that would be useful for tests.)

Add a function to TestHelpers.swift, which uses value(forKey:) to ask a UIBarButtonItem
for a hidden numeric property named systemItem. It converts that number into
the UIBarButtonItem.SystemItem enumeration.

Refactoring/RefactoringTests/TestHelpers.swift
func systemItem(for barButtonItem: UIBarButtonItem) ->

UIBarButtonItem.SystemItem {
let systemItemNumber = barButtonItem.value(forKey: "systemItem") as! Int
return UIBarButtonItem.SystemItem(rawValue: systemItemNumber)!

}

We’ll use this helper to test the Cancel button is the right kind of system item.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_cancelBarButton_shouldBeSystemItemCancel() {

XCTAssertEqual(systemItem(for: sut.cancelBarButton), .cancel)
}

The tests should pass. But remember the warning from Test Attributes and
Wrangle UIKit Descriptions, on page 173 about older enumerations defined in
Objective-C: they don’t report mismatches well in Swift tests. To test this,
edit the Bar Button Item in the storyboard. Temporarily change its system
item to Done instead of Cancel, and run the tests again. You’ll see an
unhelpful test failure message:

XCTAssertEqual failed: ("UIBarButtonSystemItem") is not equal to
("UIBarButtonSystemItem")

To make the error reporting useful, let’s have the system item conform to the
CustomStringConvertible protocol. Add the following to TestHelpers.swift:

Refactoring/RefactoringTests/TestHelpers.swift
extension UIBarButtonItem.SystemItem: CustomStringConvertible {

public var description: String {
switch self {
case .done: return "done"
case .cancel: return "cancel"
case .edit: return "edit"
case .save: return "save"

report erratum • discuss

Write the First Tests of the Change Password View Controller • 225

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

case .add: return "add"
case .flexibleSpace: return "flexibleSpace"
case .fixedSpace: return "fixedSpace"
case .compose: return "compose"
case .reply: return "reply"
case .action: return "action"
case .organize: return "organize"
case .bookmarks: return "bookmarks"
case .search: return "search"
case .refresh: return "refresh"
case .stop: return "stop"
case .camera: return "camera"
case .trash: return "trash"
case .play: return "play"
case .pause: return "pause"
case .rewind: return "rewind"
case .fastForward: return "fastForward"
case .undo: return "undo"
case .redo: return "redo"
case .pageCurl: return "pageCurl"
case .close: return "close"
@unknown default: fatalError("Unknown UIBarButtonItem.SystemItem")
}

}
}

Run tests again. This time, you should see the following test failure:

XCTAssertEqual failed: ("done") is not equal to ("cancel")

That’s more like it. Change the system item back to Cancel. Run tests again
to make sure we’re back to a clean state.

Tests for the text field placeholders and the Submit button title are straight-
forward:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_oldPasswordTextField_shouldHavePlaceholder() {

XCTAssertEqual(sut.oldPasswordTextField.placeholder, "Current Password")
}

func test_newPasswordTextField_shouldHavePlaceholder() {
XCTAssertEqual(sut.newPasswordTextField.placeholder, "New Password")

}

func test_confirmPasswordTextField_shouldHavePlaceholder() {
XCTAssertEqual(sut.confirmPasswordTextField.placeholder,

"Confirm New Password")
}

func test_submitButton_shouldHaveTitle() {
XCTAssertEqual(sut.submitButton.titleLabel?.text, "Submit")

}

Chapter 17. Unleash the Power of Refactoring • 226

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The Current Password text field is set up to receive password input and to
enable the Return key. Let’s write a test that confirms those attributes:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_oldPasswordTextField_shouldHavePasswordAttributes() {

let textField = sut.oldPasswordTextField!
XCTAssertEqual(textField.textContentType, .password, "textContentType")
XCTAssertTrue(textField.isSecureTextEntry, "isSecureTextEntry")
XCTAssertTrue(textField.enablesReturnKeyAutomatically,

"enablesReturnKeyAutomatically")
}

Make similar tests for newPasswordTextField and confirmPasswordTextField but change
their textContentType assertions to check for .newPassword.

Now we have tests for the basic configuration of the UI elements on the Change
Password view controller. Next, let’s begin adding tests of behavior, starting
with button taps.

Test the Cancel Button
Tapping the Cancel button should get the active text field to resign input focus
so that the keyboard goes away. We know from Test Input Focus, on page 180
that we need to put the view controller’s view into a UIWindow. We also know
that we need to take extra steps to clean up this UIWindow by executing the
run loop. And all this starts by tapping Cancel, which is a UIBarButtonItem. Add
the following helpers to TestHelpers.swift, along with import UIKit:

Refactoring/RefactoringTests/TestHelpers.swift
func tap(_ button: UIBarButtonItem) {

_ = button.target?.perform(button.action, with: nil)
}

func putInViewHierarchy(_ vc: UIViewController) {
let window = UIWindow()
window.addSubview(vc.view)

}

func executeRunLoop() {
RunLoop.current.run(until: Date())

}

To make it easier to activate a particular text field as the first responder, let’s
add a helper method to ChangePasswordViewControllerTests:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func putFocusOn(textField: UITextField) {

putInViewHierarchy(sut)
textField.becomeFirstResponder()

}

report erratum • discuss

Test the Cancel Button • 227

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Since this adds the system under test’s view to a UIWindow, execute the run
loop in tearDown() to delete the window:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
override func tearDown() {

executeRunLoop() // Clean out UIWindow➤

sut = nil
super.tearDown()

}

Now we can use these pieces to put input focus on one text field, then tap
the Cancel button. The test confirms that the text field is no longer the first
responder.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingCancel_withFocusOnOldPassword_shouldResignThatFocus() {

putFocusOn(textField: sut.oldPasswordTextField)
XCTAssertTrue(sut.oldPasswordTextField.isFirstResponder, "precondition")

tap(sut.cancelBarButton)

XCTAssertFalse(sut.oldPasswordTextField.isFirstResponder)
}

Repeat this test for newPasswordTextField and confirmPasswordTextField.

The other thing the Cancel button does is dismiss the modal presentation
of the Change Password view controller. To check this, we will use another
verifier from ViewControllerPresentationSpy, the DismissalVerifier. First, follow
the steps from Add the Helper Framework to the Project, on page 108 to add
ViewControllerPresentationSpy to the test target. Add import ViewControllerPre-
sentationSpy to the top of ChangePasswordViewControllerTests.swift. Then we can write
the following test:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingCancel_shouldDismissModal() {

let dismissalVerifier = DismissalVerifier()

tap(sut.cancelBarButton)

dismissalVerifier.verify(animated: true, dismissedViewController: sut)
}

This verify() call checks the following:

• That dismiss(animated:completion:) was called once
• That the dismissal was animated
• That the dismissed view controller was the system under test

That takes care of the Cancel button. Let’s move on to the Submit button.

Chapter 17. Unleash the Power of Refactoring • 228

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test the Submit Button
The behavior of the Submit button is defined in the changePassword() method.
This is a big one. The method has 116 lines with three sections. The first
section checks the inputs. The second sets up the appearance of the view
while we wait for the password call to finish. The third section passes the
inputs to the password changer and handles success or failure. Let’s test
this, step by step.

Since our tests will be tapping the Submit button, let’s add a helper to TestHelpers.swift
to make these tests more expressive:

Refactoring/RefactoringTests/TestHelpers.swift
func tap(_ button: UIButton) {

button.sendActions(for: .touchUpInside)
}

The Submit button interacts with the password changer. We created a Mock-
PasswordChanger in Replace the Difficult Dependency with a Mock Object, on
page 220, which we’ll need now. There are also several different alerts, so let’s
also set up an AlertVerifier. Put both into the test fixture, injecting the mock
into the system under test as the password changer:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private var sut: ChangePasswordViewController!
private var passwordChanger: MockPasswordChanger!➤

private var alertVerifier: AlertVerifier!➤

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(

identifier: String(
describing: ChangePasswordViewController.self))

passwordChanger = MockPasswordChanger()➤

sut.passwordChanger = passwordChanger➤

alertVerifier = AlertVerifier()➤

sut.loadViewIfNeeded()
}

override func tearDown() {
executeRunLoop() // Clean out UIWindow
sut = nil
passwordChanger = nil➤

alertVerifier = nil➤

super.tearDown()
}

Make sure your tests still pass with these changes.

report erratum • discuss

Test the Submit Button • 229

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Validate the Inputs
Most of our tests will need valid entries in the text fields. To test an invalid
entry, we can set up valid entries, then change one of them. Let’s make a
helper to set up valid entries. The old password has to be non-empty. The
new password has to have at least six characters. And the confirmation
password has to match the new password.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func setUpValidPasswordEntries() {

sut.oldPasswordTextField.text = "NONEMPTY"
sut.newPasswordTextField.text = "123456"
sut.confirmPasswordTextField.text = sut.newPasswordTextField.text

}

If the old password input is empty and the user taps Submit, we don’t submit
anything to the password changer. And we move input focus to the old
password.

We can express this with two tests:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withOldPasswordEmpty_shouldNotChangePassword() {

setUpValidPasswordEntries()
sut.oldPasswordTextField.text = ""

tap(sut.submitButton)

passwordChanger.verifyChangeNeverCalled()
}

func test_tappingSubmit_withOldPasswordEmpty_shouldPutFocusOnOldPassword() {
setUpValidPasswordEntries()
sut.oldPasswordTextField.text = ""
putInViewHierarchy(sut)

tap(sut.submitButton)

XCTAssertTrue(sut.oldPasswordTextField.isFirstResponder)
}

If the new password is empty, we don’t submit the change request. And we
show an alert with a message. The alerts throughout this view controller are
the same, except for the message and the behavior of the OK button. Let’s
write a helper to verify the basics of these alerts:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func verifyAlertPresented(

message: String, file: StaticString = #file, line: UInt = #line) {
alertVerifier.verify(

title: nil,
message: message,

Chapter 17. Unleash the Power of Refactoring • 230

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

animated: true,
actions: [

.default("OK"),
],
presentingViewController: sut,
file: file,
line: line

)
XCTAssertEqual(alertVerifier.preferredAction?.title, "OK",

"preferred action", file: file, line: line)
}

Now we can write our first two tests of what should happen when the new
password field is empty:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withNewPasswordEmpty_shouldNotChangePassword() {

setUpValidPasswordEntries()
sut.newPasswordTextField.text = ""

tap(sut.submitButton)

passwordChanger.verifyChangeNeverCalled()
}

func test_tappingSubmit_withNewPasswordEmpty_shouldShowPasswordBlankAlert() {
setUpValidPasswordEntries()
sut.newPasswordTextField.text = ""

tap(sut.submitButton)

verifyAlertPresented(message: "Please enter a new password.")
}

Then we can test that tapping OK in the alert puts the input focus on the
new password field:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingOKPasswordBlankAlert_shouldPutFocusOnNewPassword() throws {

setUpValidPasswordEntries()
sut.newPasswordTextField.text = ""
tap(sut.submitButton)
putInViewHierarchy(sut)

try alertVerifier.executeAction(forButton: "OK")

XCTAssertTrue(sut.newPasswordTextField.isFirstResponder)
}

What if the new password is too short? Then we don’t submit it to the pass-
word changer, and we show a different alert. But if the rules about what’s
considered too short change, we don’t want to make repeated changes across

report erratum • discuss

Test the Submit Button • 231

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

the tests. So let’s make a shared helper to set up the input we need for the
“too short” case:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func setUpEntriesNewPasswordTooShort() {

sut.oldPasswordTextField.text = "NONEMPTY"
sut.newPasswordTextField.text = "12345"
sut.confirmPasswordTextField.text = sut.newPasswordTextField.text

}

Now we can use this helper to write our first tests of this case:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withNewPasswordTooShort_shouldNotChangePassword() {

setUpEntriesNewPasswordTooShort()

tap(sut.submitButton)

passwordChanger.verifyChangeNeverCalled()
}

func test_tappingSubmit_withNewPasswordTooShort_shouldShowTooShortAlert() {
setUpEntriesNewPasswordTooShort()

tap(sut.submitButton)

verifyAlertPresented(
message: "The new password should have at least 6 characters.")

}

A few things happen with this alert’s OK action. It should clear the text fields
for the new password and the confirmation password. But it should leave the
old password field alone. And it should put input focus on the new password.
Here are our tests for this action:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingOKInTooShortAlert_shouldClearNewAndConfirmation() throws {

setUpEntriesNewPasswordTooShort()
tap(sut.submitButton)

try alertVerifier.executeAction(forButton: "OK")

XCTAssertEqual(sut.newPasswordTextField.text?.isEmpty, true, "new")
XCTAssertEqual(sut.confirmPasswordTextField.text?.isEmpty, true,

"confirmation")
}

func test_tappingOKInTooShortAlert_shouldNotClearOldPasswordField() throws {
setUpEntriesNewPasswordTooShort()
tap(sut.submitButton)

try alertVerifier.executeAction(forButton: "OK")

XCTAssertEqual(sut.oldPasswordTextField.text?.isEmpty, false)
}

Chapter 17. Unleash the Power of Refactoring • 232

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

func test_tappingOKInTooShortAlert_shouldPutFocusOnNewPassword() throws {
setUpEntriesNewPasswordTooShort()
tap(sut.submitButton)
putInViewHierarchy(sut)

try alertVerifier.executeAction(forButton: "OK")

XCTAssertTrue(sut.newPasswordTextField.isFirstResponder)
}

(That first test adds descriptive messages to the assertions because the test
has more than one assertion.)

Finally, what if the confirmation password doesn’t match the new password?
Same as the others, we don’t change the password, but instead show an alert.
Let’s write a helper to express this input case:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func setUpMismatchedConfirmationEntry() {

sut.oldPasswordTextField.text = "NONEMPTY"
sut.newPasswordTextField.text = "123456"
sut.confirmPasswordTextField.text = "abcdef"

}

Here are the first two tests for a mismatch:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withConfirmationMismatch_shouldNotChangePassword() {

setUpMismatchedConfirmationEntry()

tap(sut.submitButton)

passwordChanger.verifyChangeNeverCalled()
}

func test_tappingSubmit_withConfirmationMismatch_shouldShowMismatchAlert() {
setUpMismatchedConfirmationEntry()

tap(sut.submitButton)

verifyAlertPresented(
message: "The new password and the confirmation password " +

"don’t match. Please try again.")
}

Just like the “password too short” case, the alert’s OK action should clear
the new and confirmation fields, leaving the old password field alone. And
the input focus should go back on the new password field. So copy and paste
the tappingOKInTooShortAlert tests, changing their names and using setUpMismatched-
ConfirmationEntry() instead.

report erratum • discuss

Test the Submit Button • 233

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Set the Appearance of the Waiting State
If the input fields are okay, the next step is to set the appearance while we
wait for the password change request to finish. The first thing that happens
is we dismiss the keyboard. Add a test that puts input focus on the first text
field and confirms that it loses this focus:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withValidFieldsFocusedOnOldPassword_resignsFocus() {

setUpValidPasswordEntries()
putFocusOn(textField: sut.oldPasswordTextField)
XCTAssertTrue(sut.oldPasswordTextField.isFirstResponder, "precondition")

tap(sut.submitButton)

XCTAssertFalse(sut.oldPasswordTextField.isFirstResponder)
}

Repeat this same test for the new password field and for the confirmation
field.

We want to prevent user interaction while the change password call is hap-
pening. This includes disabling the Cancel button. Here’s a test for that.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withValidFields_shouldDisableCancelBarButton() {

setUpValidPasswordEntries()
XCTAssertTrue(sut.cancelBarButton.isEnabled, "precondition")

tap(sut.submitButton)

XCTAssertFalse(sut.cancelBarButton.isEnabled)
}

We blur the entire screen, then put a spinning activity indicator on top. We’ll
test this in two ways. First, we’ll test if blurView and activityIndicator have a
superview. To make these properties accessible from the tests, edit
ChangePasswordViewController, removing the private modifiers. Then add the following
tests:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withValidFields_shouldShowBlurView() {

setUpValidPasswordEntries()
XCTAssertNil(sut.blurView.superview, "precondition")

tap(sut.submitButton)

XCTAssertNotNil(sut.blurView.superview)
}

func test_tappingSubmit_withValidFields_shouldShowActivityIndicator() {
setUpValidPasswordEntries()
XCTAssertNil(sut.activityIndicator.superview, "precondition")

Chapter 17. Unleash the Power of Refactoring • 234

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

tap(sut.submitButton)

XCTAssertNotNil(sut.activityIndicator.superview)
}

func test_tappingSubmit_withValidFields_shouldStartActivityAnimation() {
setUpValidPasswordEntries()
XCTAssertFalse(sut.activityIndicator.isAnimating, "precondition")

tap(sut.submitButton)

XCTAssertTrue(sut.activityIndicator.isAnimating)
}

The blur visual effect looks best if the background color is clear. Let’s add a
test for that:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withValidFields_shouldClearBackgroundColorForBlur() {

setUpValidPasswordEntries()
XCTAssertNotEqual(sut.view.backgroundColor, .clear, "precondition")

tap(sut.submitButton)

XCTAssertEqual(sut.view.backgroundColor, .clear)
}

These tests confirm some basic state about the views, but not how they look.
To capture the layout, let’s add a snapshot test. A snapshot is slower than a
regular unit test, so let’s apply Slow Snapshots: Keep Them in Their Own
Corner, on page 203 and create a separate test suite. Give it the name
ChangePasswordViewControllerSnapshotTests.

Then follow Add FBSnapshotTestCase to a Test Target, on page 196 to add the
library and Set the Location for Reference Images, on page 198 to set the
environment variable. Change the superclass of the snapshot suite from
XCTestCase to FBSnapshotTestCase.

Copy the Test Fixture from ChangePasswordViewControllerTests, including setUp() and
tearDown(). In setUp(), add the record mode for the snapshot:

Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
super.setUp()
recordMode = false➤

let storyboard = UIStoryboard(name: "Main", bundle: nil)

Also copy the setUpValidPasswordEntries() helper from the unit tests to the snapshot
tests. Then add the following test:

report erratum • discuss

Test the Submit Button • 235

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
func test_blur() {

setUpValidPasswordEntries()

tap(sut.submitButton)

FBSnapshotVerifyViewController(sut)
}

Set your destination to the iOS simulator you want to use for snapshots.
Temporarily change recordMode to true, and run tests. Find the recorded image.
On the first try, it doesn’t look correct. The navigation bar is missing. To fix
that, follow What If the Snapshot Doesn’t Look Right?, on page 201 by creating
the following helper:

Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
private func verifySnapshot(file: StaticString = #file, line: UInt = #line) {

let window = UIWindow(frame: UIScreen.main.bounds)
window.addSubview(sut.view)
FBSnapshotVerifyViewController(sut, file: file, line: line)

}

Change the last line in the test to verifySnapshot(). Run the tests again and check
the recorded image. This time the positioning is correct. The blur effect isn’t
the same as in real life, but it shows an approximation, which is good enough.
Change recordMode back to false and rerun the tests to see them pass.

Now we have unit tests that check the state of the blur view and the activity
indicator, and snapshot tests that check their appearance.

Call the Password Changer
Our last tests of the Submit button check the interactions with the password
changer. These tests will all deal with the mock object. The first test sets up
some valid inputs, along with a security token. We want to make sure the
code sends these to the password changer. But instead of using setUpValidPass-
wordEntries() where the input values are somewhat hidden, let’s set them right
from the test. That way, it’s obvious where the values in the mock object’s
verifyChange() call come from.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingSubmit_withValidFields_shouldRequestChangePassword() {

sut.securityToken = "TOKEN"
sut.oldPasswordTextField.text = "OLD456"
sut.newPasswordTextField.text = "NEW456"
sut.confirmPasswordTextField.text = sut.newPasswordTextField.text

tap(sut.submitButton)

Chapter 17. Unleash the Power of Refactoring • 236

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerSnapshotTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

passwordChanger.verifyChange(
securityToken: "TOKEN",
oldPassword: "OLD456",
newPassword: "NEW456"

)
}

The rest of the password changer tests are for the closures, which handle
success or failure. To make it easy to invoke these closures, let’s add some
more methods to MockPasswordChanger:

Refactoring/RefactoringTests/MockPasswordChanger.swift
func changeCallSuccess(file: StaticString = #file, line: UInt = #line) {

guard changeWasCalledOnce(file: file, line: line) else { return }
changeArgsOnSuccess.last!()

}

func changeCallFailure(message: String,
file: StaticString = #file, line: UInt = #line) {

guard changeWasCalledOnce(file: file, line: line) else { return }
changeArgsOnFailure.last!(message)

}

Let’s test the success closure. First, it should stop the spinning animation
on the activity indicator and remove it from the view:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_changePasswordSuccess_shouldStopActivityIndicatorAnimation() {

setUpValidPasswordEntries()
tap(sut.submitButton)
XCTAssertTrue(sut.activityIndicator.isAnimating, "precondition")

passwordChanger.changeCallSuccess()

XCTAssertFalse(sut.activityIndicator.isAnimating)
}

func test_changePasswordSuccess_shouldHideActivityIndicator() {
setUpValidPasswordEntries()
tap(sut.submitButton)
XCTAssertNotNil(sut.activityIndicator.superview, "precondition")

passwordChanger.changeCallSuccess()

XCTAssertNil(sut.activityIndicator.superview)
}

This should also be true for the failure closure. Duplicate these tests, but
change their names and have them call the failure closure:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
passwordChanger.changeCallFailure(message: "DUMMY")

report erratum • discuss

Test the Submit Button • 237

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/MockPasswordChanger.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The success closure should show a success alert notifying the user. Tapping
OK in the alert should dismiss the modal. Here are the tests for this:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_changePasswordSuccess_shouldShowSuccessAlert() {

setUpValidPasswordEntries()
tap(sut.submitButton)

passwordChanger.changeCallSuccess()

verifyAlertPresented(
message: "Your password has been successfully changed.")

}

func test_tappingOKInSuccessAlert_shouldDismissModal() throws {
setUpValidPasswordEntries()
tap(sut.submitButton)
passwordChanger.changeCallSuccess()
let dismissalVerifier = DismissalVerifier()

try alertVerifier.executeAction(forButton: "OK")

dismissalVerifier.verify(animated: true, dismissedViewController: sut)
}

If the call to the password changer fails, it will call the failure closure. Let’s
call the closure with a pretend error message, confirming that this shows an
alert with that message:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_changePasswordFailure_shouldShowFailureAlertWithGivenMessage() {

setUpValidPasswordEntries()
tap(sut.submitButton)

passwordChanger.changeCallFailure(message: "MESSAGE")

verifyAlertPresented(message: "MESSAGE")
}

We have several tests of the OK action in the failure alert. Let’s make it easier
to get to this alert by creating a helper method:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
private func showPasswordChangeFailureAlert() {

setUpValidPasswordEntries()
tap(sut.submitButton)
passwordChanger.changeCallFailure(message: "DUMMY")

}

The upcoming tests of the OK action for failure show the following:

• It clears the text fields to start all over.

• It puts input focus on the first text field.

Chapter 17. Unleash the Power of Refactoring • 238

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• It sets the background color to back to white. (We used a clear background
color underneath the blur effect.)

• It removes the blur from the view.

• It enables the Cancel button.

• It doesn’t dismiss the modal.

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_tappingOKInFailureAlert_shouldClearAllFieldsToStartOver() throws {

showPasswordChangeFailureAlert()

try alertVerifier.executeAction(forButton: "OK")

XCTAssertEqual(sut.oldPasswordTextField.text?.isEmpty, true, "old")
XCTAssertEqual(sut.newPasswordTextField.text?.isEmpty, true, "new")
XCTAssertEqual(sut.confirmPasswordTextField.text?.isEmpty, true,

"confirmation")
}

func test_tappingOKInFailureAlert_shouldPutFocusOnOldPassword() throws {
showPasswordChangeFailureAlert()
putInViewHierarchy(sut)

try alertVerifier.executeAction(forButton: "OK")

XCTAssertTrue(sut.oldPasswordTextField.isFirstResponder)
}

func test_tappingOKInFailureAlert_shouldSetBackgroundBackToWhite() throws {
showPasswordChangeFailureAlert()
XCTAssertNotEqual(sut.view.backgroundColor, .white, "precondition")

try alertVerifier.executeAction(forButton: "OK")

XCTAssertEqual(sut.view.backgroundColor, .white)
}

func test_tappingOKInFailureAlert_shouldHideBlur() throws {
showPasswordChangeFailureAlert()
XCTAssertNotNil(sut.blurView.superview, "precondition")

try alertVerifier.executeAction(forButton: "OK")

XCTAssertNil(sut.blurView.superview)
}

func test_tappingOKInFailureAlert_shouldEnableCancelBarButton() throws {
showPasswordChangeFailureAlert()
XCTAssertFalse(sut.cancelBarButton.isEnabled, "precondition")

try alertVerifier.executeAction(forButton: "OK")

XCTAssertTrue(sut.cancelBarButton.isEnabled)
}

report erratum • discuss

Test the Submit Button • 239

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

func test_tappingOKInFailureAlert_shouldNotDismissModal() throws {
showPasswordChangeFailureAlert()
let dismissalVerifier = DismissalVerifier()

try alertVerifier.executeAction(forButton: "OK")

XCTAssertEqual(dismissalVerifier.dismissedCount, 0)
}

We’re nearly done. We have one last method to test, a UITextField delegate
method.

Test the Text Field Delegate Method
We’ve finished testing the long method for the Submit button action. Here’s
the last method we want to test. It determines what happens when you press
the Return key from within each text field.

Refactoring/Refactoring/ChangePasswordViewController.swift
func textFieldShouldReturn(_ textField: UITextField) -> Bool {

if textField === oldPasswordTextField {
newPasswordTextField.becomeFirstResponder()

} else if textField === newPasswordTextField {
confirmPasswordTextField.becomeFirstResponder()

} else if textField === confirmPasswordTextField {
changePassword()

}
return true

}

We’ll follow the approach laid out in Test Delegate Methods, on page 177. As
a first test, let’s make sure each text field has its delegate hooked up:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_textFieldDelegates_shouldBeConnected() {

XCTAssertNotNil(sut.oldPasswordTextField.delegate,
"oldPasswordTextField")

XCTAssertNotNil(sut.newPasswordTextField.delegate,
"updatedPasswordTextField")

XCTAssertNotNil(sut.confirmPasswordTextField.delegate,
"confirmPasswordTextField")

}

To call the method through the text field delegate, add a function to Tes-
tHelpers.swift:

Refactoring/RefactoringTests/TestHelpers.swift
@discardableResult func shouldReturn(in textField: UITextField) -> Bool? {

textField.delegate?.textFieldShouldReturn?(textField)
}

Chapter 17. Unleash the Power of Refactoring • 240

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now we can test that hitting Return in the first two fields moves the input
focus to the next field:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_hittingReturnFromOldPassword_shouldPutFocusOnNewPassword() {

putInViewHierarchy(sut)

shouldReturn(in: sut.oldPasswordTextField)

XCTAssertTrue(sut.newPasswordTextField.isFirstResponder)
}

func test_hittingReturnFromNewPassword_shouldPutFocusOnConfirmPassword() {
putInViewHierarchy(sut)

shouldReturn(in: sut.newPasswordTextField)

XCTAssertTrue(sut.confirmPasswordTextField.isFirstResponder)
}

Hitting Return from the Confirmation field should fire off the change password
request:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_hittingReturnFromConfirmPassword_shouldRequestPasswordChange() {

sut.securityToken = "TOKEN"
sut.oldPasswordTextField.text = "OLD456"
sut.newPasswordTextField.text = "NEW456"
sut.confirmPasswordTextField.text = sut.newPasswordTextField.text

shouldReturn(in: sut.confirmPasswordTextField)

passwordChanger.verifyChange(
securityToken: "TOKEN",
oldPassword: "OLD456",
newPassword: "NEW456")

}

This last test passes because of the call to the changePassword() method. But
what if that call moves outside the if statement? Imagine what would happen
if we put it right before the return statement. Our tests would still pass.

To make sure this doesn’t happen, let’s add two more tests. Hitting the Return
key from the first text field shouldn’t start the change password task, so let’s
test that:

Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
func test_hittingReturnFromOldPassword_shouldNotRequestPasswordChange() {

setUpValidPasswordEntries()

shouldReturn(in: sut.oldPasswordTextField)

passwordChanger.verifyChangeNeverCalled()
}

report erratum • discuss

Test the Text Field Delegate Method • 241

http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/RefactoringTests/ChangePasswordViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Then duplicate this test using the new password field.

Congratulations, we’re finally done bringing the code under test! That was a
long haul, so put this book down and take a break. When you come back,
let’s start refactoring the production code.

Refactor to Break Up a Long Function
You may have already noticed a few things about the production code, which
you’d like to clean up. But instead of making a lot of changes all at once, let’s
apply the principles of refactoring. That’s why we have all these unit tests.

We could start anywhere, but for this worked example, let’s begin with a code
smell. Martin Fowler describes what these are:

A code smell is a surface indication that usually corresponds to a deeper problem
in the system.…A smell by definition is something that’s quick to spot.3

The changePassword() method has the Long Function smell. As we noted earlier,
this one method has 116 lines. This makes it more difficult to understand.
There are three sections, each marked by a comment, so it also has the
comments smell.

Inside the back cover of Refactoring, there’s a catalog of smells. Each smell
has a list of common refactorings we can apply. For Long Function, the most
common refactoring is Extract Function.

Let’s lean on automated refactoring when we can. Select the third section in
changePassword(), which has the comment 3. Attempt to change password. In the
Refactor menu, select Extract to Method.

The context menu is a simpler way to access the Refactor menu.
Either tap with two fingers or control-click. Then you can access
the Refactor menu without moving the cursor up to the menu bar.

Xcode will extract the function and prompt you for its name. The comment
describes what it does, so let’s name it attemptToChangePassword().

Now we come to the most important part of the refactoring: running the tests.
This follows my definition that “disciplined refactoring is changing code in
small steps, with automated verification of each step.” This is true for auto-
mated steps as well as manual steps.

3. https://martinfowler.com/bliki/CodeSmell.html

Chapter 17. Unleash the Power of Refactoring • 242

report erratum • discuss

https://martinfowler.com/bliki/CodeSmell.html
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Xcode places the new method above its origin, with a fileprivate modifier. I
prefer the more restrictive private modifier. I also prefer to place helper methods
below their point of call. This follows the newspaper metaphor from Clean
Code: A Handbook of Agile Software Craftsmanship [Mar08]:

We would like a source file to be like a newspaper article. …The topmost parts of
the source file should provide the high-level concepts and algorithms. Detail
should increase as we move downward, until at the end we find the lowest level
functions and details in the source file.

So move the extracted method to the bottom of the ChangePasswordViewController
class. Change its access control modifier from fileprivate to private.

Thanks to the name of the new method, the comment is now redundant.
Delete the comment. Now run tests to confirm that moving the method and
deleting the comment did no harm.

Follow these same steps to extract the section with the comment 2. Set up waiting
appearance. Name the new method setUpWaitingAppearance(). Run tests. Then move
the new method down, placing it above attemptToChangePassword(). Delete the
superfluous comment. Test.

If you try this with the remaining first section, you’ll find that Xcode has
disabled “Extract to Method.” That’s because this section has early return
statements. But that’s okay because we can always follow the manual steps
of the Extract Function refactoring.

The bulk of the refactoring book is a catalog of refactorings. Each refactoring
entry has a Mechanics section, describing the steps to follow. For Extract
Function, the first step is as follows:

• Create a new function and name it after the intent of the function.

To support the early return statements, let’s return a Boolean flag indicating
if the input is valid. Here’s the skeleton of the new function:

Refactoring/Refactoring/ChangePasswordViewController.swift
private func validateInputs() -> Bool {

return true
}

The next step is to do the following:

• Copy the extracted code from the source function into the new target
function.

Paste the copied code above the return statement.

report erratum • discuss

Refactor to Break Up a Long Function • 243

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Xcode shows us four errors: “Non-void function should return a value” next
to each return statement. Since these early returns handle failure, change each
to return false.

There are further steps about handling local variables. We happen not to have
any. This brings us to the next step:

• Compile after all variables are dealt with.

This build confirms that the new function compiles, even before anything
calls it.

Now that we have a destination function, the next step is to do the following:

• Replace the extracted code in the source function with a call to the target
function.

To express this as literally as possible, let’s call the new function. If any inputs
are invalid, do an early return:

Refactoring/Refactoring/ChangePasswordViewController.swift
guard validateInputs() else {

return
}

Then we’re ready for the big step to confirm it all:

• Test.

The final step in the Mechanics section is to “look for other code that’s the
same or similar to the code just extracted.” That doesn’t apply this time.

The new version of changePassword() now looks like this:

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBAction private func changePassword() {

guard validateInputs() else {
return

}
setUpWaitingAppearance()
attemptToChangePassword()

}

It clearly expresses what the action does in each section, while concealing
the details.

Some programmers would do all this extracting in a single step, followed by
one run of the tests. But following disciplined refactoring, this is what we did:

Chapter 17. Unleash the Power of Refactoring • 244

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

1. “Extract to Method” (automated), then test.
2. Move things around, then test.
3. “Extract to Method” again (automated), then test.
4. Move things around, then test.
5. Extract Function (manual):

a. Define new target function, then build. (Nothing calls it yet, so building
is a sufficient check.)

b. Replace original code with call to target function, then test.

By moving in smaller steps, any failure in building or testing has a smaller
scope. So fixing any problems is simpler and takes less time.

Extract a Method with Parameters
You may have noticed that ChangePasswordViewController has a lot of repeated code. In
the newly extracted validateInputs() method, find the first alert code shown here:

Refactoring/Refactoring/ChangePasswordViewController.swift
if newPasswordTextField.text?.isEmpty ?? true {

let alertController = UIAlertController(
title: nil,
message: "Please enter a new password.",
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)
return false

}

There are many places that present an alert like this. It makes sense to think
about extracting the common code into a new method. But if we apply the
Extract Function refactoring without preparing the code, we’ll end up with
code we can’t reuse.

Looking through the other places with alerts, we can see that they’re the same
except for these two things:

• The alert message
• The closure for the OK action

report erratum • discuss

Extract a Method with Parameters • 245

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Here’s a basic strategy for extracting reusable code, giving the extracted code
input parameters:

1. Extract Variable
2. Extract Function
3. Inline Variable

In other words, let’s first move aside the parts that change. We want to create
a core section that we can reuse, then pull this core out into a function call.
Then if we want to, we can move those changing parts back, putting them
directly in the function arguments.

That’s the large strategy. Let’s dive into the nitty-gritty details.

Perform “Extract Variable” on the Alert Message
First, select the literal string "Please enter a new password." and look at the Refactor
menu. As of this writing, Xcode doesn’t enable “Extract to Variable” on this
string literal, but maybe you’ll be luckier with a newer release of Xcode. If so,
use the automated refactoring and name the extracted variable message. Oth-
erwise, let’s follow the manual instructions.

The refactoring book lists the following steps for Extract Variable. First, it
asks us to ensure that the expression we’re extracting has no side effects.
We’re good there. On to the next step:

• Declare an immutable variable. Set it to a copy of the expression you want
to name:

Refactoring/Refactoring/ChangePasswordViewController.swift
let message = "Please enter a new password."

Followed by:

• Replace the original expression with the new variable:

Refactoring/Refactoring/ChangePasswordViewController.swift
let alertController = UIAlertController(

title: nil,
message: message,➤

preferredStyle: .alert)

And finally:

• Test.

Chapter 17. Unleash the Power of Refactoring • 246

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Perform “Extract Variable” on the Alert Action Closure
Next, we want to extract the closure for the OK action. Select the trailing
closure passed to the UIAlertController initializer. In the Refactor menu, select
Extract to Variable. Name the new variable okAction. This creates a new variable:

Refactoring/Refactoring/ChangePasswordViewController.swift
let okAction: (UIAlertAction) -> Void = { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}

However, Xcode currently leaves the variable use dangling past the end of
the initializer:

Refactoring/Refactoring/ChangePasswordViewController.swift
let okButton = UIAlertAction(

title: "OK",
style: .default) okAction➤

Fix this up by moving the closure variable inside the initializer parameters,
using the argument label handler:

Refactoring/Refactoring/ChangePasswordViewController.swift
let okButton = UIAlertAction(

title: "OK",
style: .default,
handler: okAction)➤

Run all tests to validate these changes.

Perform “Slide Statements” to Move the Closure Variable
Before we can do an Extract Function refactoring, we need to move things
around. The extracted code should start with the creation of the UIAlertController
and end with the call to present it. But now we have the okAction closure vari-
able sitting in the middle.

We can’t perform the extraction with that variable there, so let’s move it further
up. To do this, we’ll use the Slide Statements refactoring.

The first step in the Mechanics section is to see if moving the statement will
create any interference. It looks fine. So here are the remaining steps:

• Cut the fragment from the source and paste into the target position.
• Test.

This leaves us with the two newly extracted variables sitting together. They’re
above the code we want to extract, which is where we want them.

report erratum • discuss

Extract a Method with Parameters • 247

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/Refactoring/ChangePasswordViewController.swift
let message = "Please enter a new password."
let okAction: (UIAlertAction) -> Void = { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}

Perform “Extract Function” on the Alert Code
We’ve extracted variables for the parts that can vary when presenting an alert.
We’ve moved those variables out of the way. Now we’re ready to Extract
Function. Let’s use the automated version.

Start a multiline selection from the line defining the alertController variable.
Finish the selection on the self.present() call. Then from the Refactor menu,
select Extract to Method. Name the new function showAlert().

The resulting code has an error to fix and other ways we can refine it. Here’s
the error:

Passing non-escaping parameter 'okAction' to function expecting an @escaping
closure

Xcode offers a suggestion, so select Editor ▶ Fix All Issues in the menu to
define the okAction parameter as an escaping closure. Run the tests.

We’ll use this new function throughout the code, so let’s move it to the very
bottom of the class. Do a Slide Statements refactoring and change the access
control modifier from fileprivate to private. Run tests.

Now let’s look at the signature of the new function. Xcode extracted it with
no argument labels:

Refactoring/Refactoring/ChangePasswordViewController.swift
private func showAlert(_ message: String,

_ okAction: @escaping (UIAlertAction) -> Void) {

This leaves the call site looking rather bare.

Refactoring/Refactoring/ChangePasswordViewController.swift
showAlert(message, okAction)

To give the arguments names, we can apply the simplest mechanics of the
Change Function Declaration refactoring, assisted by Xcode. First, we remove
the underscores from the declaration:

Refactoring/Refactoring/ChangePasswordViewController.swift
private func showAlert(message: String,

okAction: @escaping (UIAlertAction) -> Void) {

Chapter 17. Unleash the Power of Refactoring • 248

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Xcode shows a fixable error about “Missing argument labels,” Apply the sug-
gestion to have Xcode fix it up. The call site will look like this:

Refactoring/Refactoring/ChangePasswordViewController.swift
showAlert(message: message, okAction: okAction)

Here’s what the extracted function looks like as a whole. Confirm what we’ve
done by running all tests:

Refactoring/Refactoring/ChangePasswordViewController.swift
private func showAlert(message: String,

okAction: @escaping (UIAlertAction) -> Void) {
let alertController = UIAlertController(

title: nil,
message: message,
preferredStyle: .alert)

let okButton = UIAlertAction(
title: "OK",
style: .default,
handler: okAction)

alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)

}

Perform “Inline Variable” to Simplify the Call Site
Here’s what the call site looks like now:

Refactoring/Refactoring/ChangePasswordViewController.swift
let message = "Please enter a new password."
let okAction: (UIAlertAction) -> Void = { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}
showAlert(message: message, okAction: okAction)

We extracted those variables so that we could do Extract Function. But now
their job is complete. Let’s move their values directly into the function call
with the Inline Variable refactoring.

These are freshly extracted variables, so we know they’re free of side effects
and are immutable. So we can skip the first two steps of the Mechanics. The
next step is to do the following:

• Find the first reference to the variable and replace it with the right-hand
side of the assignment:

report erratum • discuss

Extract a Method with Parameters • 249

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactoring/Refactoring/ChangePasswordViewController.swift
let message = "Please enter a new password."
let okAction: (UIAlertAction) -> Void = { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}
showAlert(message: "Please enter a new password.", okAction: okAction)

The next step is “Test.”

There are no more references to replace. So the last two steps are these:

• Remove the declaration and assignment of the variable.
• Test.

In other words, we remove the entire let message statement and then test.

This completes the inlining of the string. Follow the same steps to inline the
closure:

1. Copy the closure and paste it as the okAction argument of the showAlert()
method. Test.

2. Delete the entire definition of the okAction variable. Test again.

The call site is now fairly simple:

Refactoring/Refactoring/ChangePasswordViewController.swift
showAlert(message: "Please enter a new password.",

okAction: { [weak self] _ in
self?.newPasswordTextField.becomeFirstResponder()

})

You may like the explicit labeling of the closure as okAction. Or you may prefer
to use Swift’s trailing closure syntax. For our example, let’s make it a trailing
closure:

Refactoring/Refactoring/ChangePasswordViewController.swift
showAlert(message: "Please enter a new password.") { [weak self] _ in

self?.newPasswordTextField.becomeFirstResponder()
}

Run the tests.

This completes our strategy for extracting a method with parameters. The
new function looks good. The first call site looks good.

The next steps are to use the new method wherever we can. The name of this
refactoring is Replace Inline Code with Function Call. The steps are simple:
replace the code and then test.

Chapter 17. Unleash the Power of Refactoring • 250

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

I leave this as an exercise for you. Change each chunk of alert code to use
the new method. Be sure to do this one alert at a time, not all at once.

If you encounter any test failures, here’s a strategy for fixing them:

• If you can quickly figure out the problem, try to fix it. Run the tests.

• If the attempt at a fix didn’t work, or you couldn’t figure out a fix in a
short time, undo. Go backward until the tests pass. Then take a breath,
clear your mind, and start over.

The beauty of refactoring in small steps is that if a test fails, you don’t have
to hunt for the source. You know it’s in the last change you made.

Using AppCode for Its Automated Refactoring

The alternative IDE AppCodea brings greater power to automated refactoring than
Xcode. Working through the earlier example we see the following:

• AppCode’s “Extract Variable” works on the string literal. It also works on closures.
It even converts the former trailing closure to use the argument label.

• AppCode has “Move Statement Up” and “Move Statement Down” commands to
help perform Slide Statements. These commands move entire statements.

• To select a portion to extract, place the cursor inside the code. Use the “Extend
Selection” command to repeatedly increase the selected scope. If you go too far,
use “Shrink Selection.”

• “Extract to Method” works more often. It puts the extracted code below, following
the Newspaper Metaphor. It sets the access modifier to private by default (you can
change this). It names the arguments, gives them sensible names, and gives you
a chance to change the argument names before doing the extraction.

No IDE is perfect, and Xcode is stronger in some areas. But AppCode is the tool to
prefer for automated refactoring.

a. https://www.jetbrains.com/objc/

Clean Up a Few More Places
We’ve broken a big method into pieces. And we’ve extracted the most repeated
section of code to show alerts. Let’s finish with a little more cleanup.

Instead of doing a fine-grained walk-through, this time I will give rough
descriptions. Remember to move in small steps, verifying each step as you go.

report erratum • discuss

Clean Up a Few More Places • 251

https://www.jetbrains.com/objc/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

First, we have a UITextFieldDelegate method mixed in along with the rest of the
code. Move it into its own extension:

Refactoring/Refactoring/ChangePasswordViewController.swift
extension ChangePasswordViewController: UITextFieldDelegate {

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
if textField === oldPasswordTextField {

newPasswordTextField.becomeFirstResponder()
} else if textField === newPasswordTextField {

confirmPasswordTextField.becomeFirstResponder()
} else if textField === confirmPasswordTextField {

changePassword()
}
return true

}
}

Now that this is in an extension, remove the UITextFieldDelegate conformance
from the ChangePasswordViewController declaration at the top of the file. Run tests
to confirm.

There are two places that dismiss the keyboard with code like this:

Refactoring/Refactoring/ChangePasswordViewController.swift
oldPasswordTextField.resignFirstResponder()
newPasswordTextField.resignFirstResponder()
confirmPasswordTextField.resignFirstResponder()

We can do this more simply by using a UIView method that resigns the first
responder of any subview. Change both to the following code. (Do one at a
time, running tests after each change.)

Refactoring/Refactoring/ChangePasswordViewController.swift
view.endEditing(true)

Then in validateInputs(), the last two checks show alerts with the same closures
for the OK action. Perform the Extract Function refactoring by creating a new
method, resetNewPasswords():

Refactoring/Refactoring/ChangePasswordViewController.swift
private func resetNewPasswords() {

newPasswordTextField.text = ""
confirmPasswordTextField.text = ""
newPasswordTextField.becomeFirstResponder()

}

Build with the new method. Then replace each call site, testing after each
replacement.

Chapter 17. Unleash the Power of Refactoring • 252

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Next, in attemptToChangePassword(), both the onSuccess and onFailure closures start
with the same two lines:

Refactoring/Refactoring/ChangePasswordViewController.swift
self?.activityIndicator.stopAnimating()
self?.activityIndicator.removeFromSuperview()

Perform the Extract Function refactoring to pull these out to a new method
named hideSpinner().

Finally in the onFailure closure, there’s an alert that has another closure for
the OK action. This inner closure is rather long and makes attemptToChangePass-
word() harder to read. This is a Long Function code smell. Perform the Extract
Function refactoring to pull the contents of the inner closure into a new method
named startOver().

This leaves the onFailure closure with code that gives a higher-level description
of everything it does:

Refactoring/Refactoring/ChangePasswordViewController.swift
onFailure: { [weak self] message in

self?.hideSpinner()
self?.showAlert(message: message) { [weak self] _ in

self?.startOver()
}

})

If we were to express this code in English, it would read like this: If the attempt
to change the password change fails, we get a message. First, we hide the
waiting spinner. Then we show an alert with the given message. When the
user dismisses the alert, start over.

The smaller details are hidden, making the larger intent clearer.

Key Takeaways
Stepping back from the exercise, here are the larger points you should
remember:

• Refactoring means changing code in very small steps, with each step
verified by tests.

• Quick feedback from automated tests makes this kind of refactoring
possible.

• Use automated refactoring when possible. (AppCode makes this easier.)

report erratum • discuss

Key Takeaways • 253

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• To perform manual refactoring, see Refactoring: Improving the Design of
Existing Code, 2nd Edition [Fow18] for a catalog of refactorings. Follow
the steps listed in the Mechanics sections.

• Whether the refactoring was automatic or manual, run the tests afterward.

• When moving code manually, don’t perform the move in a single step. Put
the new code in place and verify. Then remove the old code and verify.

• With each step verified by tests, if you get a failure, it happened because
of something in the last change. Try to “fix it forward” once. If that doesn’t
work, go back to when the tests were passing and start over.

Here are the manual refactoring moves we introduced in this chapter:

• Extract Function
• Extract Variable
• Inline Variable
• Replace Inline Code with Function Call
• Slide Statements

(The chapters in Part III don’t have Activities for your own code.)

What’s Next?
Hopefully this chapter has given you a clearer picture of what it’s like to make
small changes in a safe manner. We can transform code by taking one small
step after another.

Taking enough small steps can reveal larger possibilities for change that were
harder to see before. For example, we can break a large class into multiple
classes. In the next chapter, we’ll refactor toward the model-view-view-model
(MVVM) architecture.

Chapter 17. Unleash the Power of Refactoring • 254

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 18

Refactoring: Moving to MVVM
In the previous chapter, we established the basic rhythm of refactoring: take
a small step; run the tests. We used this to clean up a view controller, with
high confidence that we didn’t break anything. Now let’s go further. That view
controller followed a plain old model-view-controller (MVC) UI pattern.
Another UI pattern popular among iOS developers is model-view-view-model
or MVVM.

In this chapter, let’s see how we can transform the view controller from MVC

to MVVM. You’ll learn how to do this using refactoring. With enough test cov-
erage, you’ll be able to adopt MVVM in your view controllers in a safe way.

What Is MVVM?
The basic idea of MVVM is to create a separate type that represents the current
state of the view. We call this type a view model. Once we have a view model
that captures the current state, it can also make decisions based on that state.

The view model then holds the business rules that affect the user interface.
This makes it easier to reason about the business rules. The UIViewController
becomes simpler because it doesn’t have to handle the rules. Its job is to
observe the view model and update the view to match.

The view model’s representation should be independent of the view’s technol-
ogy. I find it helps to imagine that I have a different user interface, like a
command-line tool one uses in Terminal. Then I ask myself, could I use this
same view model for a Terminal-based UI?

Let’s make this more concrete using our Change Password example. In the
workflow, the Cancel button is usually enabled but is sometimes disabled.
We can represent this in a view model with a Boolean variable:

var isCancelButtonEnabled: Bool

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This variable doesn’t know that the Cancel button is a UIBarButtonItem. That’s
not its job. But the ChangePasswordViewController does know how to communicate
with the Cancel button. So in this chapter’s example, we’ll set up a simple
way for the view controller to observe changes in the view model and respond
to those changes. And we’re going to refactor our way there, step by step.

For this worked example, we’ll continue with the code we created and refac-
tored in Chapter 17, Unleash the Power of Refactoring, on page 209. Let’s
duplicate the Refactoring source code into a new folder named MVVM. The
project name will continue to be “Refactoring.”

Replace String Literals to Use a View Model
The simplest place to begin a view model is to look for string literals. Search
through ChangePasswordViewController, looking for double quotes. You will find:

• Various empty strings
• Alert messages
• The “OK” alert action label

The empty strings can remain. But let’s pull the other string literals into a
view model. These strings don’t change, so we can start with a view model
that doesn’t change state at first. Let’s begin by defining an empty view
model. Add this file to the project:

MVVM/Refactoring/ChangePasswordViewModel.swift
struct ChangePasswordViewModel {
}

Then add it as a property in ChangePasswordViewController. In our case, we’re using
a storyboard supporting iOS versions before iOS 13, so it needs to be an
implicitly unwrapped var property. (Otherwise, we could get rid of the ! and
set it through an initializer.)

MVVM/Refactoring/ChangePasswordViewController.swift
var viewModel: ChangePasswordViewModel!

We use a new instance of ChangePasswordViewController in three places:

• Preparing for the segue in ViewController
• In the setUp() of ChangePasswordViewControllerTests
• In the setUp() of ChangePasswordViewControllerSnapshotTests

In each place, set the viewModel property to a new ChangePasswordViewModel. So in
ViewController, we’ll have:

MVVM/Refactoring/ViewController.swift
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

Chapter 18. Refactoring: Moving to MVVM • 256

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

super.prepare(for: segue, sender: sender)
if segue.identifier == "changePassword" {

let changePasswordVC = segue.destination
as! ChangePasswordViewController

changePasswordVC.securityToken = "TOKEN"
changePasswordVC.viewModel = ChangePasswordViewModel()➤

}
}

And each test suite will set the property on the system under test:

MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
sut = storyboard.instantiateViewController(

identifier: String(describing: ChangePasswordViewController.self))
sut.viewModel = ChangePasswordViewModel()➤

We’re not using viewModel yet, but everything should build. From the Xcode
menu, select Product ▶ Build For ▶ Testing to build everything.

For our first string literal, let’s move the “OK” from the alert action. Add the
following to the view model:

MVVM/Refactoring/ChangePasswordViewModel.swift
let okButtonLabel: String

This now fails to build because the places that make ChangePasswordViewModel
need to supply the string. Select Editor ▶ Fix All Issues in the Xcode menu to
fill in the missing parameter, and set "OK" as the value:

MVVM/Refactoring/ViewController.swift
changePasswordVC.viewModel = ChangePasswordViewModel(okButtonLabel: "OK")

Repeat this with the setUp() code in the test suites. Then in ChangePasswordView-
Controller, change showAlert(message:okAction:) to use the view model instead of the
string literal:

MVVM/Refactoring/ChangePasswordViewController.swift
private func showAlert(message: String,

okAction: @escaping (UIAlertAction) -> Void) {
let alertController = UIAlertController(

title: nil,
message: message,
preferredStyle: .alert)

let okButton = UIAlertAction(
title: viewModel.okButtonLabel,➤

style: .default,
handler: okAction)

alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)

}

report erratum • discuss

Replace String Literals to Use a View Model • 257

http://media.pragprog.com/titles/jrlegios/code/MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run the tests, which should pass. But because they were passing before, the
tests passing now could mean we didn’t hook things up. Confirm that we’re
using the view model by temporarily changing the okButtonLabel value in the
setUp() of ChangePasswordViewControllerTests. Running tests with a value other than
"OK" will produce a lot of failures.

Repeat this process for the error alert messages. Add these strings to the view
model one at a time, replacing the string literals:

• enterNewPasswordMessage
• newPasswordTooShortMessage
• confirmationPasswordDoesNotMatchMessage

One alert remains, for the success case. Start by setting up a successMessage
property in the view model. But replacing the literal with viewModel.successMessage
doesn’t work, because Xcode complains:

Reference to property 'viewModel' in closure requires explicit 'self.' to
make capture semantics explicit.

Applying the Fix-it suggestion to Insert 'self.' leads to a different error because
we’re inside a closure where self is weak. A common approach is to convert
the weak self into a strong one with a guard statement:

guard let self = self else { return }

But let’s use this as an opportunity to practice a refactoring technique. Instead
of “fixing it forward,” let’s go back to a clean state where all tests pass, and
try a different approach. Revert any changes to attemptToChangePassword(), but
keep the unused successMessage property in the view model.

Instead of a guard to convert self from weak to strong, let’s apply the Extract
Function refactoring. A method is a function that happens to have implicit
access to self, so this will simplify things. Xcode doesn’t want to help us extract
a closure into a method, so let’s apply the mechanics of manual refactoring:

1. Create the skeleton of a new private function named handleSuccess().

2. Copy and paste the contents of the onSuccess closure into the new function.

3. Apply “Fix All Issues” so that the new code compiles.

4. Replace the body of the onSuccess closure with a call to the new function:

self?.handleSuccess()

5. Run tests.

Chapter 18. Refactoring: Moving to MVVM • 258

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now we can do the view model replacement we were attempting in the first
place. In handleSuccess(), replace the string literal with a call to access successMes-
sage from the view model. This time, the replacement goes smoothly. Run
tests. Confirm the replacement by altering the successMessage in ChangePassword-
ViewControllerTests and checking for test failure.

Finally, we can remove each self-dot because we’re no longer inside a closure.
The method now looks as follows. As always, run tests to check the changes.

MVVM/Refactoring/ChangePasswordViewController.swift
private func handleSuccess() {

hideSpinner()
showAlert(message: viewModel.successMessage) { [weak self] _ in

self?.dismiss(animated: true)
}

}

(This also helps readability because we no longer have a closure inside a clo-
sure. In fact, let’s repeat these same steps for the onFailure closure even though
it doesn’t need the view model. This reduces the complexity of the attempt-
ToChangePassword() method.)

Overwrite Storyboard Labels
String literals in code aren’t the only source of text in this view controller. We
also have the labels we set in the storyboard. Let’s supply that text in the
view model as well.

Why Place Any Strings in the View Model?

Why bother overwriting labels, when Apple provides a way to localize storyboards?
In fact, why not keep the earlier string literals in code, using NSLocalizedString() to convert
them?

Well, it gives us a simple starting point to begin working on MVVM. If you have an
existing localization workflow, you may not want to move strings into view models.
And that’s fine.

But moving strings does allow the UI components to be ignorant of the workflow.
They’ll just show whatever they’re given. Separating concerns makes code easier to
maintain. And if both storyboard and code-based strings live in a common place, it
can simplify the localization workflow.

To help us set various labels, define an empty private function named setLabels()
and call it from the end of viewDidLoad():

report erratum • discuss

Overwrite Storyboard Labels • 259

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVVM/Refactoring/ChangePasswordViewController.swift
override func viewDidLoad() {

super.viewDidLoad()
submitButton.layer.borderWidth = 1
submitButton.layer.borderColor = UIColor(

red: 55/255.0, green: 147/255.0, blue: 251/255.0, alpha: 1
).cgColor
submitButton.layer.cornerRadius = 8
blurView.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.color = .white
setLabels()➤

}

One at a time, add the following properties to ChangePasswordViewModel:

• Set title to "Change Password"
• Set oldPasswordPlaceholder to "Current Password"
• Set newPasswordPlaceholder to "New Password"
• Set confirmPasswordPlaceholder to "Confirm New Password"
• Set submitButtonLabel to "Submit"

As each property is added, use it in setLabels() to set the appropriate label.
Eventually, the method will grow to look like this:

MVVM/Refactoring/ChangePasswordViewController.swift
private func setLabels() {

navigationBar.topItem?.title = viewModel.title
oldPasswordTextField.placeholder = viewModel.oldPasswordPlaceholder
newPasswordTextField.placeholder = viewModel.newPasswordPlaceholder
confirmPasswordTextField.placeholder =

viewModel.confirmPasswordPlaceholder
submitButton.setTitle(viewModel.submitButtonLabel, for: .normal)

}

Run tests after each property is used by setLabels(). Remember to temporarily
change the text of each property to make sure at least one test fails.

We now have a simple view model in place. It’s simple because its contents
never change. Let’s take it further into a view model that changes, having it
update the UI.

Respond to Changes in the View Model
So far, our view model is a set of strings that don’t change. The view controller
just looks up these strings as it needs them. But that only scratches the
surface. MVVM becomes more powerful when the UI responds to changes in
the view model.

Chapter 18. Refactoring: Moving to MVVM • 260

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

When a view model property changes, we need a way for the view controller
to use the new value. We can do this in various ways, from Apple’s Key-Value
Observing to third-party frameworks like Reactive Swift. For our example,
we’ll use a simple way built into the Swift language: the didSet observer.

We’ll use this observation technique to move one view concept at a time,
starting with whether the Cancel button is enabled.

Is the Cancel Button Enabled?
Add the following property to ChangePasswordViewModel. We’ll use it to determine
whether the Cancel bar button item is enabled.

MVVM/Refactoring/ChangePasswordViewModel.swift
var isCancelButtonEnabled = true

Note that this is a var property, not a let property like the others. This flag
should be true initially. By giving it an initial value at its declaration, we don’t
need to add a custom initializer.

Now let’s respond to changes in the view model. Our viewModel is already a var
property because we’re using old-fashioned storyboard injection. (If you defined
it as a constant let property, change it now to a var.) Then add a didSet observer.
Inside the observer, compare the old value of the property with the new value.
If the property changed, use the new value to set cancelBarButton.isEnabled.

MVVM/Refactoring/ChangePasswordViewController.swift
var viewModel: ChangePasswordViewModel! {

didSet {
guard isViewLoaded else { return }

if oldValue.isCancelButtonEnabled != viewModel.isCancelButtonEnabled {
cancelBarButton.isEnabled = viewModel.isCancelButtonEnabled

}
}

}

Run tests to make sure nothing we haven’t broken anything so far.

Why is that guard statement there? Try removing it and run tests again.
Because we set viewModel before the view controller loads up the views,
IBOutlets are still nil the first time through. The guard avoids this problem by
not doing anything until the view controller’s isViewLoaded property is true.

Now search for all references to cancelBarButton.isEnabled. Wherever it’s set to true,
set viewModel.isCancelButtonEnabled = true instead. Do the same for false. Run the
tests.

report erratum • discuss

Respond to Changes in the View Model • 261

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This moves all direct manipulation of cancelBarButton.isEnabled into the view model’s
didSet observer. Everything else is indirect, by changing the view model property.

Why Check If the Property Changed?

Using if statements to check whether a property changed isn’t always necessary. This
is especially true for idempotent operations—that is, any operation you can apply
multiple times without changing the result. Setting isEnabled on a UIControl is an example
of such an operation. It doesn’t matter if you set it to its own value.

But remember that we’re using a struct for the view model. As we add more mutable
properties, when any of them change value, Swift will replace the entire struct. This
fires off the didSet observer. Unless we’re careful, it will update everything, whether
we want it to or not.

By comparing the old and new values of a property, we give the observer more gran-
ular control. Instead of updating everything, we can update only what changed. This
granular control is important when gradually refactoring a view controller to use
MVVM.

Which Text Field Has Input Focus?
Let’s move another piece of state into the view model. This example is going
to take us through interesting territory: What should you do if you try a
refactoring but some tests fail?

We have several places that set a particular text field as the first responder
for keyboard focus. There are also two places that dismiss the keyboard. We
can model these with an enum showing which field has input focus, where
the initial value is .noKeyboard.

MVVM/Refactoring/ChangePasswordViewModel.swift
var inputFocus: InputFocus = .noKeyboard

enum InputFocus {
case noKeyboard
case oldPassword
case newPassword
case confirmPassword

}

Then back in ChangePasswordViewController, add the following private method:

MVVM/Refactoring/ChangePasswordViewController.swift
private func updateInputFocus() {

switch viewModel.inputFocus {
case .noKeyboard:

view.endEditing(true)

Chapter 18. Refactoring: Moving to MVVM • 262

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

case .oldPassword:
oldPasswordTextField.becomeFirstResponder()

case .newPassword:
newPasswordTextField.becomeFirstResponder()

case .confirmPassword:
confirmPasswordTextField.becomeFirstResponder()

}
}

Call this method from the didSet observer, wrapped in an if statement to see
if the property value changed:

MVVM/Refactoring/ChangePasswordViewController.swift
if oldValue.inputFocus != viewModel.inputFocus {

updateInputFocus()
}

Run tests. Now we want to take each case statement and replace other
occurrences of that code with a view model change. So search for this state-
ment outside of the didSet observer:

MVVM/Refactoring/ChangePasswordViewController.swift
view.endEditing(true)

The first occurrence is in cancel(). Replace it with code that sets the view
model’s inputFocus property to .noKeyboard:

MVVM/Refactoring/ChangePasswordViewController.swift
viewModel.inputFocus = .noKeyboard

Run tests. Unfortunately, this gives us a few errors related to tapping Cancel.
Why? Each failing test starts by calling a helper method putFocusOn(textField:).
And there we can see the test directly tells the given text field to becomeFirstRe-
sponder(), but the view model isn’t updated.

We can make a new test helper that uses the view model to put focus on a
specific text field. But the first thing we should do is get back to a state where
our tests pass.

Don’t refactor while tests are failing. In disciplined refactoring, a
move starts from “green” and ends in “green” without going through
“red.” That is, the tests should pass before the change, and con-
tinue to pass after the change.

Revert the last change, setting cancel() back to calling view.endEditing(true). Run
tests to make sure they pass. Then let’s start with our new strategy. Make a
new test helper:

report erratum • discuss

Respond to Changes in the View Model • 263

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
private func putFocusOn(_ inputFocus: ChangePasswordViewModel.InputFocus) {

putInViewHierarchy(sut)
sut.viewModel.inputFocus = inputFocus

}

Now replace calls to putFocusOn(textField:) with calls to the new helper. For
example, where you see:

MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
putFocusOn(textField: sut.oldPasswordTextField)

change it to:

MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
putFocusOn(.oldPassword)

Run tests after each replacement. When there are no more callers to the old
helper, remove it.

Then let’s go back to the line we wanted to change in the first place. In cancel(),
change view.endEditing(true) back to viewModel.inputFocus = .noKeyboard. Run the tests.
This time, it works fine. Repeat for other occurrences of view.endEditing(true).
Then do the same for the other cases in the updateInputFocus() method.

Now the didSet observer is the only place that calls endEditing(_) or becomeFirstRe-
sponder(). We’ve moved more of our direct controlling of views into the view
model observer. The rest of the code in the view controller is starting to express
things at a higher level of abstraction. For example, here’s the delegate method
that handles the Return key for each text field:

MVVM/Refactoring/ChangePasswordViewController.swift
func textFieldShouldReturn(_ textField: UITextField) -> Bool {

if textField === oldPasswordTextField {
viewModel.inputFocus = .newPassword

} else if textField === newPasswordTextField {
viewModel.inputFocus = .confirmPassword

} else if textField === confirmPasswordTextField {
changePassword()

}
return true

}

With a little explanation, we can now read over this together with the product
owner to make sure this is the behavior the product owner wants for the
Return key.

Chapter 18. Refactoring: Moving to MVVM • 264

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Is the Blur View Showing?
The next thing we can move into the view model is whether the blur view is
showing. We can represent this with a Boolean property. Name it isBlurViewShow-
ing and initialize it to false:

MVVM/Refactoring/ChangePasswordViewModel.swift
var isBlurViewShowing = false

In the didSet observer, check whether this property changed. If it did, call a
new method we’ll write next:

MVVM/Refactoring/ChangePasswordViewController.swift
if oldValue.isBlurViewShowing != viewModel.isBlurViewShowing {

updateBlurView()
}

Create a skeleton for this new method that does one thing if the new value is
true, and something else if it’s false:

MVVM/Refactoring/ChangePasswordViewController.swift
private func updateBlurView() {

if viewModel.isBlurViewShowing {
} else {
}

}

Make sure there are no compiler errors so far. Then let’s find where we show
the blur view. It’s the method setUpWaitingAppearance(). Copy the entire body of
this method into the if clause of updateBlurView(). Remove anything that doesn’t
pertain to either blurView or view.backgroundColor. This leaves the following in the
if clause:

MVVM/Refactoring/ChangePasswordViewController.swift
view.backgroundColor = .clear
view.addSubview(blurView)
NSLayoutConstraint.activate([

blurView.heightAnchor.constraint(equalTo: view.heightAnchor),
blurView.widthAnchor.constraint(equalTo: view.widthAnchor),

])

Back in setUpWaitingAppearance(), remove the lines that now live in updateBlurView().
Replace them with the following line:

MVVM/Refactoring/ChangePasswordViewController.swift
viewModel.isBlurViewShowing = true

Run tests to confirm this move was successful.

report erratum • discuss

Respond to Changes in the View Model • 265

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Next, find the two lines in startOver() that remove the blur view and set the
background color back to white. Copy and paste them into the else clause:

MVVM/Refactoring/ChangePasswordViewController.swift
blurView.removeFromSuperview()
view.backgroundColor = .white

Change the original lines in startOver() to viewModel.isBlurViewShowing = false and run
tests.

Moving this into the view model and its didSet observer takes the somewhat
complicated show/hide commands that lived in two places and brings them
together. Now we can see them in one place. The symmetry of the two halves
makes visual inspection of the code easier.

MVVM/Refactoring/ChangePasswordViewController.swift
private func updateBlurView() {

if viewModel.isBlurViewShowing {
view.backgroundColor = .clear
view.addSubview(blurView)
NSLayoutConstraint.activate([

blurView.heightAnchor.constraint(equalTo: view.heightAnchor),
blurView.widthAnchor.constraint(equalTo: view.widthAnchor),

])
} else {

blurView.removeFromSuperview()
view.backgroundColor = .white

}
}

Is the Activity Indicator Showing?
Let’s do much the same thing to move the spinning activity indicator into
ChangePasswordViewModel. Add a Boolean property isActivityIndicatorShowing and ini-
tialize it to false:

MVVM/Refactoring/ChangePasswordViewModel.swift
var isActivityIndicatorShowing = false

In the didSet observer, call a new helper method if the property changed:

MVVM/Refactoring/ChangePasswordViewController.swift
if oldValue.isActivityIndicatorShowing !=

viewModel.isActivityIndicatorShowing {
updateActivityIndicator()

}

Define the new helper with a skeleton for whether the property is true or false:

Chapter 18. Refactoring: Moving to MVVM • 266

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVVM/Refactoring/ChangePasswordViewController.swift
private func updateActivityIndicator() {

if viewModel.isActivityIndicatorShowing {
} else {
}

}

Find the lines in setUpWaitingAppearance() that handle the activityIndicator. Copy
those lines into the if clause of updateActivityIndicator():

MVVM/Refactoring/ChangePasswordViewController.swift
view.addSubview(activityIndicator)
NSLayoutConstraint.activate([

activityIndicator.centerXAnchor.constraint(equalTo: view.centerXAnchor),
activityIndicator.centerYAnchor.constraint(equalTo: view.centerYAnchor),

])
activityIndicator.startAnimating()

If there are no compiler errors, replace the original lines with viewModel.isActivi-
tyIndicatorShowing = true and run tests.

The helper hideSpinner() has the code to hide the activity indicator. Copy its
body into the else clause of updateActivityIndicator():

MVVM/Refactoring/ChangePasswordViewController.swift
activityIndicator.stopAnimating()
activityIndicator.removeFromSuperview()

In handleSuccess(), replace the call to hideSpinner() with a view model change view-
Model.isActivityIndicatorShowing = false. Run tests.

MVVM/Refactoring/ChangePasswordViewController.swift
private func handleSuccess() {

viewModel.isActivityIndicatorShowing = false➤

showAlert(message: viewModel.successMessage) { [weak self] _ in
self?.dismiss(animated: true)

}
}

Once again, we’ve pulled code for showing or hiding something that used to
live in two places, bringing them close together. And the remaining view
controller code is now more expressive. Look at the method that sets the
appearance while the app sends the change password request. This is what
it looked like before:

MVVM/Refactoring/ChangePasswordViewController.swift
private func setUpWaitingAppearance() {

view.endEditing(true)
cancelBarButton.isEnabled = false
view.backgroundColor = .clear
view.addSubview(blurView)

report erratum • discuss

Respond to Changes in the View Model • 267

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

view.addSubview(activityIndicator)
NSLayoutConstraint.activate([

blurView.heightAnchor.constraint(equalTo: view.heightAnchor),
blurView.widthAnchor.constraint(equalTo: view.widthAnchor),
activityIndicator.centerXAnchor.constraint(

equalTo: view.centerXAnchor),
activityIndicator.centerYAnchor.constraint(

equalTo: view.centerYAnchor),
])
activityIndicator.startAnimating()

}

Here it is now:

MVVM/Refactoring/ChangePasswordViewController.swift
private func setUpWaitingAppearance() {

viewModel.inputFocus = .noKeyboard
viewModel.isCancelButtonEnabled = false
viewModel.isBlurViewShowing = true
viewModel.isActivityIndicatorShowing = true

}

The former is a mishmash of details. The latter is code we could review with
the product owner to make sure we did everything the product owner wanted.

Move Logic into the View Model
Most of the logic of this view controller is in the validateInputs() method. For
example, to see if the new password is too short, we have the following if
statement:

MVVM/Refactoring/ChangePasswordViewController.swift
if newPasswordTextField.text?.count ?? 0 < 6 {

Because UITextField’s text property is optional (due to legacy Objective-C code),
this statement is extra fiddly. If the view model could express the content of
each text field, we could separate this logic from UIKit.

So far, the interaction between the view model and the views has been one-
way. Any changes to the view model cause the didSet observer to execute. This
is one-way data binding: the views are bound to the view model.

We can expand this to two-way data binding, where changes to the views
update values in the view model. To do this in a thorough fashion, we could
have each UITextField copy user input to the view model. We’d need this if user
input enabled or disabled the Submit button on each keystroke. But that’s
not how this view controller behaves.

Chapter 18. Refactoring: Moving to MVVM • 268

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

We’re not checking text field content until the user taps the Submit button.
So we can use a simpler approach of copying the fields to the view model on-
demand. Let’s start by adding a property for each text field, showing what
the user entered. Set their initial values to empty strings:

MVVM/Refactoring/ChangePasswordViewModel.swift
var oldPassword = ""
var newPassword = ""
var confirmPassword = ""

Back in ChangePasswordViewController, add the following method to copy the text
property from each UITextField to the view model:

MVVM/Refactoring/ChangePasswordViewController.swift
private func updateViewModelToTextFields() {

viewModel.oldPassword = oldPasswordTextField.text ?? ""
viewModel.newPassword = newPasswordTextField.text ?? ""
viewModel.confirmPassword = confirmPasswordTextField.text ?? ""

}

Add a line to the top of changePassword() that calls this new method:

MVVM/Refactoring/ChangePasswordViewController.swift
@IBAction private func changePassword() {

updateViewModelToTextFields()➤

guard validateInputs() else {
return

}
setUpWaitingAppearance()
attemptToChangePassword()

}

By applying nil-coalescing, the view model can hold regular strings instead
of optional strings. This will simplify things as we move the conditionals into
the view model. Start from the first conditional in validateInputs().

MVVM/Refactoring/ChangePasswordViewController.swift
if oldPasswordTextField.text?.isEmpty ?? true {

Define a new computed variable in the view model. Copy everything before
the nil-coalescing operator ?? into the body of the computed variable.

MVVM/Refactoring/ChangePasswordViewModel.swift
var isOldPasswordEmpty: Bool { oldPassword.isEmpty }

Make sure there are no compiler errors. Then change the conditional in vali-
dateInputs() to use this computed property instead:

MVVM/Refactoring/ChangePasswordViewController.swift
if viewModel.isOldPasswordEmpty {

report erratum • discuss

Move Logic into the View Model • 269

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Run tests to make sure everything is still fine. Then repeat these steps to
define the following computed properties in ChangePasswordViewModel, changing
the conditionals to call them:

• isNewPasswordEmpty
• isNewPasswordTooShort
• isConfirmPasswordMismatched

The resulting validateInputs() method is cleaner, expressing things at a slightly
higher level of abstraction:

MVVM/Refactoring/ChangePasswordViewController.swift
private func validateInputs() -> Bool {

if viewModel.isOldPasswordEmpty {
viewModel.inputFocus = .oldPassword
return false

}

if viewModel.isNewPasswordEmpty {
showAlert(message: viewModel.enterNewPasswordMessage) {

[weak self] _ in
self?.viewModel.inputFocus = .newPassword

}
return false

}

if viewModel.isNewPasswordTooShort {
showAlert(message: viewModel.newPasswordTooShortMessage) {

[weak self] _ in
self?.resetNewPasswords()

}
return false

}

if viewModel.isConfirmPasswordMismatched {
showAlert(

message: viewModel.confirmationPasswordDoesNotMatchMessage) {
[weak self] _ in
self?.resetNewPasswords()

}
return false

}

return true
}

You should notice a few things:

• The conditionals are now expressed as ideas, without testing whether any
UIKit properties are nil.

• The alert messages are now expressed as ideas, not as string literals.

Chapter 18. Refactoring: Moving to MVVM • 270

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Changing input focus is now expressed as ideas, not as UIKit commands.

Business rules like “What’s the minimum number of characters we require
in a new password?” now live in the view model. Pulling such rules out of the
view controller makes it easier to see them in one place. They’re no longer
scattered around code that’s manipulating views.

There’s also some nil-coalescing in attemptToChangePassword(). Since it’s called
after changePassword() updates the view model, we can replace them with refer-
ences to the view model:

MVVM/Refactoring/ChangePasswordViewController.swift
private func attemptToChangePassword() {

passwordChanger.change(
securityToken: securityToken,
oldPassword: viewModel.oldPassword,➤

newPassword: viewModel.newPassword,➤

onSuccess: { [weak self] in
self?.handleSuccess()

},
onFailure: { [weak self] message in

self?.handleFailure(message)
})

}

If you start with MVVM, it’s easier to write tests directly against the view
model. But if you have a solid suite of tests on a view controller, you can
adopt MVVM later. And you can do so in safe and gradual steps using disci-
plined refactoring.

Key Takeaways
Starting with a well-tested view controller in MVC, we were able to evolve it
toward MVVM using refactoring. The following was our overall refactoring
strategy:

• Set up infrastructure for the new thing.
• Lay down the new code without changing the old code.
• Change the old code so it uses the new code.

This was a smooth process most of the way. But sometimes a refactoring
doesn’t work out and you end up with failing tests. Rather than “fixing for-
ward,” a pure refactoring approach sticks to the safety of keeping tests passing:

• Try a change that causes tests to fail.

• Revert the code back to where tests were passing.

report erratum • discuss

Key Takeaways • 271

http://media.pragprog.com/titles/jrlegios/code/MVVM/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Refactor the thing that caused the test failures. (In our case, we needed
to refactor the test code.)

• Try again with the original change you wanted.

We were able to gradually shift to MVVM with these steps:

• Move string literals into the view model.

• Choose a way to do data binding from the view model to the views. In our
example, we did this using Swift’s ability to define didSet observers.

• If your view controller loads IBOutlets from a storyboard or XIB, start the
observer with a check that short-circuits if the outlets aren’t ready:

guard isViewLoaded else { return }

• Find ways to model the user interface ideas separate from UIKit.

• Move view state changes into the didSet observer. Replace occurrences of
the code with changes to the view model.

• Move conditionals that use view state into the view model. You’ll need to
choose a way to do data binding from the views back to the view model.
Replace the original code with queries to the view model.

What’s Next?
Now you can begin extracting view models from any view controller that has
good unit tests. Doing so introduces some separation between the view con-
troller code and the actual manipulation of UIKit views. The view model will
contain some of your business logic. The view controller will manage the UI

at a higher abstraction.

But MVVM is just one approach for improving traditional model-view-controller
code. Another UI pattern that lets us move more business logic out of the view
controller is model-view-presenter (MVP). In the next chapter, we’ll continue
refactoring our view controller, this time to MVP.

Chapter 18. Refactoring: Moving to MVVM • 272

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 19

Refactoring: Moving to MVP
We’ve now seen some refactoring in action. Relying on a good set of unit tests,
we took a plain view controller and evolved it to use MVVM.

But MVC and MVVM aren’t the only UI patterns we have. Another pattern is
model-view-presenter, or MVP. This pattern is less well-known among iOS
developers but brings a lot of power.

In this chapter, we’ll continue refactoring our example, this time to MVP. You’ll
see even more code move out of the view controller. And we’ll continue to do
it all with refactoring.

What Is MVP?
In MVVM, we represent the state of the view in the view model. The view con-
troller does two things with the view model:

• It asks the view model for what to show. This information might be con-
stant, or it may change depending on business logic.

• It responds to changes in the view model state. We did this by adding a
didSet observer to the view model property.

The information flow is one-way. The view controller is in charge and asks
questions like, “Is the Cancel button enabled right now?” The view model
knows nothing about the view controller.

But in MVP, the view controller puts the presenter in charge. It does this by
routing user commands (like button taps) to the presenter. The presenter
decides what to do and tells the view controller what to update.

So the view controller has a reference to the presenter, and the presenter has
a reference back to the view controller. But we don’t want a strong bidirectional
dependency—otherwise we’ll have a retain cycle causing memory leaks. Let’s

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

make the reference back to the view controller an unowned reference to break
this retain cycle.

We also don’t want the presenter to know everything about the view controller.
In particular, the presenter should know nothing about UIKit views or controls.
Instead, we’ll create a protocol that represents an abstraction of UI commands.
The view controller will conform to this protocol to provide the commands.
And the presenter will issue these commands to the protocol, without knowing
what implements them. We can diagram these relationships as follows:

Presenter

View
Commands

View
Controller

unowned
implements

Set Up the MVP Types
Let’s set up the new types we need for MVP and the relationships between them.

We’ll continue where we left off with Chapter 18, Refactoring: Moving to MVVM,
on page 255. There’s no need to go through MVVM to get to MVP. But in our
example, the responsibilities are clearer in the MVVM version, making it easier
to work with. So duplicate the MVVM source code into a new folder named
MVP. The project name will continue to be “Refactoring.”

We’ll start by setting up an empty View Commands protocol. Create a new
file to hold a protocol named ChangePasswordViewCommands. Because the presen-
ter’s reference to it will be unowned, let’s make it a class-only protocol to keep
Swift happy:

MVP/Refactoring/ChangePasswordViewCommands.swift
protocol ChangePasswordViewCommands: AnyObject {
}

Add an extension to ChangePasswordViewController to conform to this protocol:

MVP/Refactoring/ChangePasswordViewController.swift
extension ChangePasswordViewController: ChangePasswordViewCommands {
}

Chapter 19. Refactoring: Moving to MVP • 274

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewCommands.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Next, define ChangePasswordPresenter. It receives a ChangePasswordViewCommands
implementor as its first initializer argument. (There will be more arguments
later.) Hold on to it using an unowned property:

MVP/Refactoring/ChangePasswordPresenter.swift
class ChangePasswordPresenter {

private unowned var view: ChangePasswordViewCommands!

init(view: ChangePasswordViewCommands) {
self.view = view

}
}

Finally, add a property in ChangePasswordViewController to the presenter. We’re
going to pass self as the argument, so we’ll delay construction of the property
by making it a lazy property:

MVP/Refactoring/ChangePasswordViewController.swift
private lazy var presenter = ChangePasswordPresenter(view: self)

Now we have a View Commands protocol, and the view controller conforms
to it. The view controller has a presenter. And the presenter points back to
the view controller through the protocol. The pieces are empty, but we have
what we need to begin refactoring to MVP.

Extract Methods into the View Commands Protocol
Here’s the refactoring strategy we’ll use to move responsibilities into MVP:

1. Use the Extract Function refactoring to take commands issued to views,
and move them into the View Commands protocol.

2. Use the Move Function refactoring to move functions that call these View
Commands. We’ll move them from the view controller to the presenter.

Let’s find something that issues commands to UIKit views. Since we used
MVVM before, most of these will be in the didSet observer of viewModel. Looking
at the bottom, we see it calls updateActivityIndicator(). Let’s start there.

MVP/Refactoring/ChangePasswordViewController.swift
private func updateActivityIndicator() {

if viewModel.isActivityIndicatorShowing {
view.addSubview(activityIndicator)
NSLayoutConstraint.activate([

activityIndicator.centerXAnchor.constraint(
equalTo: view.centerXAnchor),

activityIndicator.centerYAnchor.constraint(
equalTo: view.centerYAnchor),

])
activityIndicator.startAnimating()

report erratum • discuss

Extract Methods into the View Commands Protocol • 275

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

} else {
activityIndicator.stopAnimating()
activityIndicator.removeFromSuperview()

}
}

The else clause hides the activity indicator. Select those lines, then in the
Refactor menu, select Extract to Method. Name the new method hideActivityIndi-
cator(). Run tests.

We want this method to live in the extension at the bottom, which conforms
the view controller to ChangePasswordViewCommands. To do this, we’ll use the Slide
Statements refactoring from Refactoring: Improving the Design of Existing Code,
2nd Edition [Fow18]. Basically, that means cutting and pasting to move it,
then running tests.

Then remove the fileprivate access control. Copy this method signature into the
protocol definition. Now the protocol declares one view command. Run tests.

MVP/Refactoring/ChangePasswordViewCommands.swift
protocol ChangePasswordViewCommands: AnyObject {

func hideActivityIndicator()
}

Repeat these steps on the if clause of updateActivityIndicator(), extracting a method
named showActivityIndicator(). Move it into the extension and copy its signature
into ChangePasswordViewCommands.

Move Functionality out of the View Model
Here’s what’s left of updateActivityIndicator().

MVP/Refactoring/ChangePasswordViewController.swift
private func updateActivityIndicator() {

if viewModel.isActivityIndicatorShowing {
showActivityIndicator()

} else {
hideActivityIndicator()

}
}

We want to change the places that set viewModel.isActivityIndicatorShowing to
directly show or hide the activity indicator instead. When refactoring, we’re
looking for ways to move in small steps. The didSet observer calls this method
whenever the property changes, so let’s continue to set the property for now.
Comment out the call to hideActivityIndicator(), so that the else clause is empty.
Then at every call site that sets isActivityIndicatorShowing to false, add a call to
hideActivityIndicator():

Chapter 19. Refactoring: Moving to MVP • 276

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewCommands.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVP/Refactoring/ChangePasswordViewController.swift
viewModel.isActivityIndicatorShowing = false
hideActivityIndicator()➤

Run tests. Then repeat the process to move the call to showActivityIndicator() out
of the if clause. Run tests again.

Now delete the line in the didSet observer that calls updateActivityIndicator() and
run tests. This leaves an empty if statement. Delete it and run tests. With
nothing left that calls updateActivityIndicator(), delete the method and run tests.

The places that change the value of isActivityIndicatorShowing still cause the didSet
observer to fire. But this no longer has any effect. One at a time, delete a line
that changes the value of this view model property, and run tests. Repeat
until there are no references to this property left in the view controller.

Now nothing even uses the view model property isActivityIndicatorShowing. Remove
it from ChangePasswordViewModel, and run tests.

Can We Move to the Presenter? Not Until We Extract More
The View Commands protocol now defines two methods, showActivityIndicator()
and hideActivityIndicator(). Let’s see if we can move anything to the presenter. To
move a method to the presenter, we need that method to call only the View
Commands protocol and deal only with properties that exist in the presenter.

We call showActivityIndicator() from setUpWaitingAppearance(), but there are still other
lines in there that manipulate the view model. It can wait until later.

The methods that call hideActivityIndicator() are much shorter. handleSuccess() calls
hideActivityIndicator(), then shows an alert. The alert’s OK action closure dismisses
the view controller.

MVP/Refactoring/ChangePasswordViewController.swift
private func handleSuccess() {

hideActivityIndicator()
showAlert(message: viewModel.successMessage) { [weak self] _ in

self?.dismiss(animated: true)
}

}

Remember, our goal is to move methods to the presenter. To do that for this
method, we need to define View Commands to show the alert and dismiss
the modal. Let’s start from the inside out and extract the dismiss(animated:) call.

Select the line. Control-click to bring up Xcode’s context menu and select
Refactor ▶ Extract to Method. Let’s name the new method dismissModal() to
describe what it does. The automated extraction leaves a couple of errors with

report erratum • discuss

Extract Methods into the View Commands Protocol • 277

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Fix-it suggestions. Select Editor ▶ Fix All Issues in the main menu to apply
the first fixes. This creates a new error saying:

Value of optional type 'ChangePasswordViewController?' must be unwrapped to
refer to member 'dismissModal' of wrapped base type
'ChangePasswordViewController'

We can’t “Fix All Issues” because it offers two suggestions. Click on the error
and accept the fix to “Chain the optional.” With no errors remaining, run
tests.

Xcode’s automated “Extract to Method” is helpful. But doing Extract Function
manually has an important final step: “Look for other code that’s the same
or similar to the code just extracted.” A search reveals another call to dismiss(ani-
mated:), from the cancel() action. Let’s apply the Replace Inline Code with Function
Call refactoring by changing it to call dismissModal() and then running tests.

After doing an automated “Extract to Method” refactoring, look for
other places that can call the new method.

Do a manual Slide Statements (cut and paste, then test) to move the new
method dismissModal() down to the extension that provides the View Commands
protocol methods. Remove the fileprivate modifier, then copy its method signa-
ture into the protocol definition in ChangePasswordViewCommands.swift. Run the
tests again.

Since we already extracted a method to show alerts in Chapter 17, Unleash
the Power of Refactoring, on page 209, it’s tempting to move it into the protocol.
But its okAction closure takes a UIAlertAction argument, which we ignore. We want
to avoid UIKit types in the View Commands protocol so that it stays at an
abstraction higher than UIKit. It would be nice to provide a closure without
the argument, since we ignore the argument anyway.

So define a new method that takes an action with no argument. It will wrap
the closure into the type UIKit needs, then call the method we already had
before.

MVP/Refactoring/ChangePasswordViewController.swift
func showAlert(message: String,

action: @escaping () -> Void) {
let wrappedAction: (UIAlertAction) -> Void = { _ in action() }
showAlert(message: message, okAction: { wrappedAction($0) })

}

Chapter 19. Refactoring: Moving to MVP • 278

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

One at a time, find the other calls to showAlert(message:okAction:). The preamble
to each closure uses an underscore to show that it ignores the argument.

MVP/Refactoring/ChangePasswordViewController.swift
[weak self] _ in

Delete the underscore so the alert action closure starts as follows:

[weak self] in

This changes it to call the new method showAlert(message:action:) where the closure
has no argument. Run tests.

Do Slide Statements on both showAlert() methods to pull them down into the
extension. On the original one, which has the UIAlertAction closure argument, keep
it private. Copy the signature of the new method showAlert(message:action:) with no
closure argument into the ChangePasswordViewCommands protocol. Run tests.

Avoid using UIKit types in the View Commands protocol so that
the presenter can stay ignorant of UIKit.

Now everything inside of handleSuccess() calls things that are available to the
presenter. So it’s ready to move from the view controller to the presenter.

Move a Function into the Presenter
Let’s now see how we can use Move Function to move handleSuccess() from the
view controller to the presenter. We’ll walk through the steps from the
Mechanics section of this refactoring.

• Examine all the program elements used by the chosen function in its
current context. Consider whether they should move too.

Everything in handleSuccess() is a call to one of the View Commands with one
exception. The alert message comes from viewModel.successMessage. So we’ll need
to pass viewModel to the presenter.

The view model has begun to shrink, and may shrink down to only string
literals, which we can store in a let property. But for now, since the view
controller holds it as a mutable var, let’s have the presenter also hold it as a
var. Add viewModel as an initializer argument, which sets the property:

MVP/Refactoring/ChangePasswordPresenter.swift
class ChangePasswordPresenter {

private unowned var view: ChangePasswordViewCommands!
private var viewModel: ChangePasswordViewModel➤

report erratum • discuss

Move a Function into the Presenter • 279

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

init(view: ChangePasswordViewCommands,
viewModel: ChangePasswordViewModel) {➤

self.view = view
self.viewModel = viewModel➤

}

This creates a ”Missing argument” build error where the presenter is created.
Fix it up by adding the new argument:

MVP/Refactoring/ChangePasswordViewController.swift
private lazy var presenter = ChangePasswordPresenter(view: self,

viewModel: viewModel)➤

Run tests to make sure nothing is broken. Now that the presenter has a way
to access the strings in the view model, let’s continue doing Move Function.

• Check if the chosen function is a polymorphic method.

The method only exists at the ChangePasswordViewController level, so it’s not poly-
morphic.

• Copy the function to the target context. Adjust it to fit in its new home.

Here, we copy handleSuccess() and paste it into ChangePasswordPresenter as a method.
This causes a couple of “Use of unresolved identifier” errors where it’s trying
to call the ChangePasswordViewCommands protocol. The presenter already has this
in its view property, so add view. in front of each call. Also remove the private
modifier:

MVP/Refactoring/ChangePasswordPresenter.swift
func handleSuccess() {

view.hideActivityIndicator()
view.showAlert(message: viewModel.successMessage) { [weak self] in

self?.view.dismissModal()
}

}

• Perform static analysis.

To do static analysis in Xcode, select Product ▶ Analyze from the menu.

• Figure out how to reference the target function from the source context.

ChangePasswordViewController has a property holding the ChangePasswordPresenter.
And we’ve already made the target function non-private. So we’re good.

• Turn the source function into a delegating function.

This changes the original handleSuccess() in ChangePasswordViewController so that it
does nothing but call the new function:

Chapter 19. Refactoring: Moving to MVP • 280

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVP/Refactoring/ChangePasswordViewController.swift
private func handleSuccess() {

presenter.handleSuccess()
}

• Test.

Everything should continue to pass.

• Consider Inline Function on the source function.

This step is directing us to perform another refactoring, which has its own
steps. We’ll follow them below:

1. Check that this isn’t a polymorphic method. (We already know it’s not.)
2. Find all the callers of the function.
3. Replace each call with the function’s body.
4. Test after each replacement.

There is one caller, from attemptToChangePassword() inside the onSuccess closure
argument. Change it to call the presenter, then test:

MVP/Refactoring/ChangePasswordViewController.swift
self?.presenter.handleSuccess()

With no more callers, we can take the final Move Function step:

• Remove the function definition.

So we delete the original handleSuccess() method.

The migration of this function from the view controller to the presenter is
complete. Now you’ve experienced the process of moving one function, which
calls back to the view controller through the protocol.

Remove the didSet Observer
Having moved handleSuccess() from the view controller to the presenter, it would
be nice to do the same for handleFailure(). But its alert action calls startOver(),
which touches several view model properties. So let’s shift the effects of those
properties into View Commands.

Let’s follow the same refactoring steps we used in Move Functionality out of
the View Model, on page 276, applying them to updateBlurView():

1. Extract the else clause into a function named hideBlurView(). Slide it down
into the extension, then declare it in the ChangePasswordViewCommands protocol.

2. Extract the if clause into a function named showBlurView(). Slide it into the
extension and declare it in the protocol.

report erratum • discuss

Remove the didSet Observer • 281

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

3. Comment out the call to hideBlurView(). Add the call after every place that
sets isBlurViewShowing to false. Run the tests.

4. Comment out the call to showBlurView(). Add the call after every place that
sets isBlurViewShowing to true. Test.

5. Delete the didSet line that calls updateBlurView(), then test. Delete the now-
empty conditional, then test. Delete updateBlurView() entirely, then test again.

6. Find a line that sets the viewModel.isBlurViewShowing. Delete it and run tests.
Repeat until they’re gone.

7. Delete the isBlurViewShowing property from ChangePasswordViewModel itself. Test.

The code that handles changes to isCancelButtonEnabled lives directly inside the
didSet observer. Let’s extract it. To separate it from the view model, first do the
Extract Variable refactoring on viewModel.isCancelButtonEnabled. Xcode’s automated
refactoring isn’t helping us, so do it by hand:

MVP/Refactoring/ChangePasswordViewController.swift
if oldValue.isCancelButtonEnabled != viewModel.isCancelButtonEnabled {

let enabled = viewModel.isCancelButtonEnabled➤

cancelBarButton.isEnabled = enabled➤

}

Test. Now we can use Xcode’s “Extract to Method” to extract that last line to
a method named setCancelButtonEnabled(_:). Test again.

From this point, we’ll follow the same steps as before, except that there’s one
function to move into View Commands. Comment out the call to setCancelButtonEn-
abled(), and add calls with true or false arguments after each line that sets isCancelBut-
tonEnabled. Then start deleting until the view model no longer has that property.

This leaves one last property observed by didSet, the inputFocus property. It calls
updateInputFocus():

MVP/Refactoring/ChangePasswordViewController.swift
private func updateInputFocus() {

switch viewModel.inputFocus {
case .noKeyboard:

view.endEditing(true)
case .oldPassword:

oldPasswordTextField.becomeFirstResponder()
case .newPassword:

newPasswordTextField.becomeFirstResponder()
case .confirmPassword:

confirmPasswordTextField.becomeFirstResponder()
}

}

Chapter 19. Refactoring: Moving to MVP • 282

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

This is nicely contained, except for the reference to the view model. Let’s fix
this by passing viewModel.inputFocus in as a parameter. We can get there in a few
steps. We need to apply the Change Function Declaration refactoring. This
refactoring has two sets of mechanics. The simple mechanics are to make the
change and fix up the callers. If you can adjust everything in less than a
minute, this is appropriate. Otherwise, use the following migration mechanics
to avoid breaking the build.

• If necessary, refactor the body of the function to make it easy to do the
following extraction step.

To move the reference to viewModel.inputFocus outside the main body of this
function, do a manual Extract Variable refactoring and run tests:

MVP/Refactoring/ChangePasswordViewController.swift
let inputFocus = viewModel.inputFocus
switch inputFocus {

• Use Extract Function on the function body to create the new function.

Select the entire switch statement and select “Extract to Method” from Xcode’s
Refactoring menu. Thanks to Swift’s function overloading, we can give the
new method the same name. Run tests.

• Apply Inline Function to the old function.

We’ll do this in two inline steps. First, do Inline Variable on the variable we
extracted right before extracting the new method:

MVP/Refactoring/ChangePasswordViewController.swift
private func updateInputFocus() {

updateInputFocus(viewModel.inputFocus)➤

}

Then do Inline Function so that the didSet observer calls the method with the
added parameter. Now follow the usual steps of doing Slide Statements to
move the updateInputFocus(_:) method into the extension. Then copy its signature
into the View Commands protocol:

MVP/Refactoring/ChangePasswordViewCommands.swift
func updateInputFocus(_ inputFocus: ChangePasswordViewModel.InputFocus)

Next, comment out the call to updateInputFocus(_:). At every call site that sets
viewModel.inputFocus, add a call to the new method. For example, here’s what we
do with the cancel() method:

report erratum • discuss

Remove the didSet Observer • 283

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewCommands.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVP/Refactoring/ChangePasswordViewController.swift
@IBAction private func cancel() {

viewModel.inputFocus = .noKeyboard
updateInputFocus(.noKeyboard)➤

dismissModal()
}

Run tests...and we get several failures! But the name of each failing test says
something about testing with the focus on a specific field. These tests each
call the test helper putFocusOn(_:) in their Arrange sections. Fix up this helper
by adding a call to updateInputFocus(_:):

MVP/RefactoringTests/ChangePasswordViewControllerTests.swift
private func putFocusOn(_ inputFocus: ChangePasswordViewModel.InputFocus) {

putInViewHierarchy(sut)
sut.viewModel.inputFocus = inputFocus
sut.updateInputFocus(inputFocus)➤

}

This time, all tests should pass. (If you have any failures, you probably over-
looked some viewModel.inputFocus changes.) Delete the preceding line that sets
sut.viewModel.inputFocus, then test again.

Now the didSet has an empty if statement. Delete it and test. Then delete each
line that sets viewModel.inputFocus. Run tests afterward.

Delete the inputFocus property from ChangePasswordViewModel.

Finally, what’s left in the didSet does nothing useful. Delete it, leaving the view
model as a plain property with no observer:

MVP/Refactoring/ChangePasswordViewController.swift
var viewModel: ChangePasswordViewModel!

All tests should continue to pass. We’ve succeeded in shifting away from an
observed view model to a set of commands. We can now continue moving
functions into the MVP style.

Use Refactoring Principles to Reparent a Swift Type
We still declare the InputFocus enumeration inside ChangePasswordViewModel as a
nested type. But there’s nothing left in the view model that references it, so
it no longer makes sense for it to live there. It would be nice to move it to
ChangePasswordCommands.swift, next to the protocol that uses it.

Three files use this enumeration. In this small example, we could just move
it and fix all the references. But what if there were many more references?

Chapter 19. Refactoring: Moving to MVP • 284

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/RefactoringTests/ChangePasswordViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Let’s put on our refactoring thinking caps. What we want are mechanics that
allow us to move in small steps. This would let us make gradual progress
without breaking the build. That way, having a refactoring in progress would
not impact us or anyone else.

In Swift, we can use a typealias as temporary scaffolding. That is, we can set
up the scaffolding, gradually shift references, then remove the scaffolding.
Here are the mechanics to move a type from one parent to another:

• Copy the entire type definition from its current location. Paste it into the
desired location.

• Build.

• Change the original type definition into a typealias pointing to the new type.
If the new type has no parent, reference it by the module name (the
implicit parent).

• Test.

• Replace references to the original type with the new type. Build after each
change.

• Remove the typealias definition.

• Test.

Let’s do this for InputFocus. First, copy it from ChangePasswordViewModel and paste
it inside ChangePasswordCommands.swift, below the protocol definition. Make sure
that builds.

Then change the old definition into the following typealias. We can’t say InputFocus
= InputFocus so prefix it with the module name:

MVP/Refactoring/ChangePasswordViewModel.swift
typealias InputFocus = Refactoring.InputFocus

Everything should continue to pass. Now one by one, find the references to
the old type name ChangePasswordViewModel.InputFocus. Change them to InputFocus,
building after each change.

Finally, remove the typealias and run tests.

This completes the reparenting of the type. And it’s an example of applying
the principles of Refactoring: Improving the Design of Existing Code, 2nd Edition
[Fow18] in new ways. The important goal is to find a gradual transformation
that avoids breaking the build or the tests.

report erratum • discuss

Use Refactoring Principles to Reparent a Swift Type • 285

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewModel.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Move Several Functions to the Presenter
The effects that the view model used to control now live in View Commands.
Let’s keep working on moving other functions into the presenter.

It helps to move lower-level functions first, so let’s start from the methods at
the bottom and move up. Here’s what startOver() looks like now:

MVP/Refactoring/ChangePasswordViewController.swift
private func startOver() {

oldPasswordTextField.text = ""
newPasswordTextField.text = ""
confirmPasswordTextField.text = ""
updateInputFocus(.oldPassword)
hideBlurView()
setCancelButtonEnabled(true)

}

The last three lines are all View Commands. But the first three lines can’t
move to the presenter. Extract them into a method named clearAllPasswordFields().
Move it into the extension, and copy its signature into the protocol. You know
to run the tests often during this process, right?

Now we can do Move Function on startOver(). Follow the steps shown in Move
a Function into the Presenter, on page 279. The end result should be that the
alert action of handleFailure(_:) calls the following presenter method:

MVP/Refactoring/ChangePasswordPresenter.swift
func startOver() {

view.clearAllPasswordFields()
view.updateInputFocus(.oldPassword)
view.hideBlurView()
view.setCancelButtonEnabled(true)

}

Moving higher, handleFailure(_:) is the next function to move. Follow the same
steps. Here’s how it looks living in the presenter:

MVP/Refactoring/ChangePasswordPresenter.swift
func handleFailure(_ message: String) {

view.hideActivityIndicator()
view.showAlert(message: message) { [weak self] in

self?.startOver()
}

}

Now that the line that calls startOver() is also in the presenter, we can mark
startOver() as private. All tests should continue to pass.

Chapter 19. Refactoring: Moving to MVP • 286

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The attemptToChangePassword() method is up next. But it has references to the
view controller properties passwordChanger and securityToken. So we’ll need to pass
these to the presenter’s initializer:

MVP/Refactoring/ChangePasswordPresenter.swift
init(view: ChangePasswordViewCommands,

viewModel: ChangePasswordViewModel,
securityToken: String,➤

passwordChanger: PasswordChanging) {➤

self.view = view
self.viewModel = viewModel
self.securityToken = securityToken➤

self.passwordChanger = passwordChanger➤

}

Fix anything the compiler complains about. Namely, add new properties in
the presenter (declaring them private). And pass the extra arguments at the
call site.

Now we can move attemptToChangePassword(). It’s the one that calls handleSuccess()
and handleFailure(_:), so those two methods can become private after the function
moves.

Then move setUpWaitingAppearance() to the presenter.

Next up, resetNewPasswords():

MVP/Refactoring/ChangePasswordViewController.swift
private func resetNewPasswords() {

newPasswordTextField.text = ""
confirmPasswordTextField.text = ""
updateInputFocus(.newPassword)

}

Its first two lines clear the new and confirm password fields. Extract those
lines into a new method named clearNewPasswordFields(). Move it into the exten-
sion, and add it to the ChangePasswordViewCommands protocol.

Now move resetNewPasswords() into the presenter. Follow the steps to turn the
original method in the view controller into a delegating function. There are
two call sites in validateInputs(). Change one at a time, running tests. Then delete
the original method.

We’ve now moved several things into the presenter. Take a moment to celebrate
before we face the last obstacle.

report erratum • discuss

Move Several Functions to the Presenter • 287

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Extract Password Validation into Its Own Type
Moving up the view controller helper methods, the next ones are updateViewMod-
elToTextFields() and validateInputs(). They involve the view model’s validation of the
inputs to the password fields. Let’s find a way to move that validation out of
the view model.

The view model has methods that check the password inputs against business
rules. Rather than moving these into the presenter, it would make sense to
extract them into their own type. Let’s apply the Extract Class refactoring,
which has the following mechanics:

• Decide how to split the responsibilities of the class.

What we’d like to end up with is a value type that takes the three password
inputs and answers questions about their validity. I’m picturing a struct with
three properties, and a handful of methods.

• Create a new child class to express the split-off responsibilities.

Make a new file that defines the following empty type:

MVP/Refactoring/PasswordInputs.swift
struct PasswordInputs {
}

• Create an instance of the child class when constructing the parent and
add a link from parent to child.

Because the validation currently takes place in ChangePasswordViewModel, we’ll
add the instance there. Declare it as a mutable var property for now. We can
try to make it immutable later, but the property itself may move around or
even vanish. Let’s cross the immutability bridge when we get there.

MVP/Refactoring/ChangePasswordViewModel.swift
var passwordInputs = PasswordInputs()

• Use Move Field on each field you wish to move. Test after each move.

Here it refers to another refactoring that’s new to us. Move Field starts with
adding getter and setter methods so that one can flexibly change them into
forwarding functions. Swift lets us avoid these mechanics by using computed
properties. We can have getters and setters, but the call sites continue to
reference the property. (Swift gives us the best of both worlds.)

Let’s move oldPassword from ChangePasswordViewModel to PasswordInputs. First, define
it in the target. Give it the same default value that it has in the origin:

Chapter 19. Refactoring: Moving to MVP • 288

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/PasswordInputs.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewModel.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVP/Refactoring/PasswordInputs.swift
var oldPassword = ""

Then change the original property to use a custom getter and setter that point
to the new property:

MVP/Refactoring/ChangePasswordViewModel.swift
var oldPassword: String {

get { passwordInputs.oldPassword }
set { passwordInputs.oldPassword = newValue }

}

All tests should continue to pass. Now change all references to the original
property to use the new property instead. The following computed property
body is a good place to start. Change its implementation from referencing
oldPassword to passwordInputs.oldPassword:

MVP/Refactoring/ChangePasswordViewModel.swift
var isOldPasswordEmpty: Bool { passwordInputs.oldPassword.isEmpty }

Run tests. Change the other references in the presenter and the view con-
troller, running tests after each change. Then once everything has been
updated to use the new property, delete the original oldPassword property from
ChangePasswordViewModel, then test again.

This completes the Move Field refactoring for one field. Repeat this process
for the newPassword and confirmPassword properties.

Now we return to the mechanics of the Extract Class refactoring.

• Use Move Function to move methods to the new child. Start with lower-
level methods (those being called rather than calling). Test after each
move.

We know how to do this. Start by copying the first function, the isOldPasswordEmp-
ty computed property, from ChangePasswordViewModel. Paste it into PasswordInputs,
adjusting it to fit by deleting the reference to passwordInputs:

MVP/Refactoring/PasswordInputs.swift
var isOldPasswordEmpty: Bool { oldPassword.isEmpty }

Then change the old ChangePasswordViewModel function so it delegates to the new
one (and test):

MVP/Refactoring/ChangePasswordViewModel.swift
var isOldPasswordEmpty: Bool { passwordInputs.isOldPasswordEmpty }

Change the call site in validateInputs() to call the new method (and test):

report erratum • discuss

Extract Password Validation into Its Own Type • 289

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/PasswordInputs.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewModel.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/PasswordInputs.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewModel.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

MVP/Refactoring/ChangePasswordViewController.swift
if viewModel.passwordInputs.isOldPasswordEmpty {

Finally, delete the old function (and test).

Repeat this process to move isNewPasswordEmpty, isNewPasswordTooShort, and isCon-
firmPasswordMismatched into PasswordInputs.

• Review the interfaces of both classes, remove unneeded methods, change
names to better fit the new circumstances.

Now we must remember our original goal, which was to move validation of
the view model. The validation functions now live in the PasswordInputs, but
validateInputs() references it through viewModel.passwordInputs. What if, instead, we
pass the PasswordInputs in as an argument to validateInputs()?

We can do this with a Change Function Declaration refactoring. First, add it
as an argument:

MVP/Refactoring/ChangePasswordViewController.swift
private func validateInputs(passwordInputs: PasswordInputs) -> Bool {

Fix up the call site to pass this argument:

MVP/Refactoring/ChangePasswordViewController.swift
guard validateInputs(passwordInputs: viewModel.passwordInputs) else {

Now in validateInputs(_:), change each reference to viewModel.passwordInputs to use
the passwordInputs argument instead. Test. The only viewModel references left in
the method should be to access strings.

Next, we can do Move Function to move validateInputs(_:) from the view controller
to the presenter. Start with copy and paste, fixing it up by adding view refer-
ences and removing presenter references:

MVP/Refactoring/ChangePasswordPresenter.swift
func validateInputs(passwordInputs: PasswordInputs) -> Bool {

if passwordInputs.isOldPasswordEmpty {
view.updateInputFocus(.oldPassword)➤

return false
}

if passwordInputs.isNewPasswordEmpty {
view.showAlert(message: viewModel.enterNewPasswordMessage) {➤

[weak self] in
self?.view.updateInputFocus(.newPassword)➤

}
return false

}

if passwordInputs.isNewPasswordTooShort {

Chapter 19. Refactoring: Moving to MVP • 290

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

view.showAlert(message: viewModel.newPasswordTooShortMessage) {➤

[weak self] in
self?.resetNewPasswords()➤

}
return false

}

if passwordInputs.isConfirmPasswordMismatched {
view.showAlert(➤

message: viewModel.confirmationPasswordDoesNotMatchMessage) {
[weak self] in
self?.resetNewPasswords()➤

}
return false

}

return true
}

Change the original function so it calls the new one in the presenter. Don’t
forget to conclude this refactoring by inlining the original function into the
call site in the changePassword() method. This is a big one, and worth celebrating.

The last remaining use of viewModel.passwordInputs is in updateViewModelToTextFields().
Let’s first do Inline Function to move its contents into changePassword(). (Replace
the call with the body, run tests, then delete the original method and then
test again.)

Instead of using viewModel.passwordInputs, we want changePassword() to create its
own instance of PasswordInputs. Let’s add this below the references to viewMod-
el.passwordInputs we just inlined:

MVP/Refactoring/ChangePasswordViewController.swift
viewModel.passwordInputs.oldPassword = oldPasswordTextField.text ?? ""
viewModel.passwordInputs.newPassword = newPasswordTextField.text ?? ""
viewModel.passwordInputs.confirmPassword =

confirmPasswordTextField.text ?? ""
let passwordInputs = PasswordInputs(➤

oldPassword: oldPasswordTextField.text ?? "",➤

newPassword: newPasswordTextField.text ?? "",➤

confirmPassword: confirmPasswordTextField.text ?? "")➤

Change the following line to pass passwordInputs instead of viewModel.passwordInputs:

MVP/Refactoring/ChangePasswordViewController.swift
guard presenter.validateInputs(passwordInputs: passwordInputs) else {

Run the tests to see that they still pass. But now try deleting the preceding three
lines that reference viewModel.passwordInputs, and run tests again. Two tests fail!
What went wrong? It turns out that in the presenter, attemptToChangePassword() still

report erratum • discuss

Extract Password Validation into Its Own Type • 291

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

references viewModel.passwordInputs. It’s a good thing we have unit tests to catch
such mistakes right away.

Let’s fix this up. Do Change Function Declaration to pass the PasswordInputs
instance into attemptToChangePassword(). Add the argument to the caller. Build
to check this change, without running the tests yet.

MVP/Refactoring/ChangePasswordViewController.swift
presenter.attemptToChangePassword(passwordInputs: viewModel.passwordInputs)

Now fix up attemptToChangePassword() to use the argument instead of viewModel.pass-
wordInputs. This should pass all tests.

MVP/Refactoring/ChangePasswordPresenter.swift
private func attemptToChangePassword(passwordInputs: PasswordInputs) {

passwordChanger.change(
securityToken: securityToken,
oldPassword: passwordInputs.oldPassword,➤

newPassword: passwordInputs.newPassword,➤

onSuccess: { [weak self] in
self?.handleSuccess()

},
onFailure: { [weak self] message in

self?.handleFailure(message)
})

}

Now we can go back to changePassword() in ChangePasswordViewController. Delete the
three lines above the creation of PasswordInputs that reference viewModel.pass-
wordInputs. Run tests to confirm that everything still works.

There’s nothing remaining that references the passwordInputs property in
ChangePasswordViewModel. Delete it and test.

There should be nothing left that sets the PasswordInputs properties from the
outside. Give them explicit types of String with no default values. Then change
the properties from var to let. Run tests.

MVP/Refactoring/PasswordInputs.swift
let oldPassword: String
let newPassword: String
let confirmPassword: String

Password validation now lives in this new type, reducing our reliance on the
view model. This was the last thing keeping us from moving things into the
presenter. We’re in the final stretch.

Chapter 19. Refactoring: Moving to MVP • 292

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordPresenter.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/PasswordInputs.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Finish Up the Refactoring to MVP
We’ve moved all sorts of helper methods from the view controller to the pre-
senter. All that remains are the two IBAction methods, cancel() and changePass-
word().

Let’s start with cancel(). Though it has only two lines, we want those two lines
to live in the presenter. That way, nothing in the view controller calls the View
Commands—only the presenter does.

Select those two lines and use Xcode’s “Extract to Method” command. We
want to name this new method cancel() as well when it lives in the presenter.
But we can’t do that while it coexists with the IBAction. So let’s use a tempo-
rary name that stands out, like zz_cancel(). Run tests.

Then do Move Function to move it into the presenter. Using our usual tech-
nique, copy it to the presenter but give it the desired name cancel(). Make
zz_cancel() delegate to the new method and then test. Then Inline Function so
that that IBAction calls presenter.cancel().

Now on changePassword(). Select everything below the creation of PasswordInputs.
Xcode doesn’t want to let us do an automated extraction, so do a manual
Extract Method of those lines. Call the new method zz_changePassword(). Give it
a PasswordInputs parameter so it builds and tests pass.

MVP/Refactoring/ChangePasswordViewController.swift
func zz_changePassword(passwordInputs: PasswordInputs) {

guard presenter.validateInputs(passwordInputs: passwordInputs) else {
return

}
presenter.setUpWaitingAppearance()
presenter.attemptToChangePassword(passwordInputs: passwordInputs)

}

Here we are at the last step. Do a Move Function but name it changePassword(_:)
in the presenter. Inline it so that the IBAction calls it directly.

Everything is now in the presenter. Let’s do some final cleanup. First, the
only methods we need to expose are the initializer, cancel(), and changePassword(_:).
Make everything else private and run tests.

ChangePasswordViewModel now contains nothing but immutable strings, so there’s
no benefit in keeping it a var property in the presenter. Change it to let.

Finally, ChangePasswordViewModel is no longer a view model. It’s a set of labels to
show to the user. Use Xcode’s “Rename” refactoring command to rename it
to ChangePasswordLabels. And rename viewModel properties to labels. (I’ll leave this

report erratum • discuss

Finish Up the Refactoring to MVP • 293

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

step to you to avoid complicating the downloadable sample code with this
change.)

Now that we shifted to an MVP design, what does it look like? Everything in
the view controller deals with the actual views. The job of the IBAction
methods is to pull information out of the inputs and send it to the presenter,
nothing more.

MVP/Refactoring/ChangePasswordViewController.swift
@IBAction private func cancel() {

presenter.cancel()
}

@IBAction private func changePassword() {
let passwordInputs = PasswordInputs(

oldPassword: oldPasswordTextField.text ?? "",
newPassword: newPasswordTextField.text ?? "",
confirmPassword: confirmPasswordTextField.text ?? "")

presenter.changePassword(passwordInputs)
}

The presenter (with all its helper methods) does the work. All updates to the
user interface are calls to the View Commands.

The View Commands themselves are an abstraction of the user interface
specific to this view.

MVP/Refactoring/ChangePasswordViewCommands.swift
protocol ChangePasswordViewCommands: AnyObject {

func setCancelButtonEnabled(_ enabled: Bool)
func updateInputFocus(_ inputFocus: InputFocus)
func showBlurView()
func hideBlurView()
func showActivityIndicator()
func hideActivityIndicator()
func dismissModal()
func clearNewPasswordFields()
func clearAllPasswordFields()
func showAlert(message: String, action: @escaping () -> Void)

}

The view controller implements these commands, turning them into updates
to the views. You now have a complete example of how the MVP pattern works.

(MVP is command-centric and so may be a better fit for imperative, command-
based UI. Meanwhile, MVVM is state-centric and so is likely better for declar-
ative UI.)

If you start a view controller following MVP, it would be simpler to write tests
for the presenter first. Tests for the view controller could then inject a spy to

Chapter 19. Refactoring: Moving to MVP • 294

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/MVP/Refactoring/ChangePasswordViewCommands.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

make sure it’s calling the presenter correctly. This leads to simpler tests
because there are fewer combinations to test.

But in our example, we started with a comprehensive test suite against the
view controller. This let us change our minds about the UI pattern to use,
shifting from MVVM to MVP. And we accomplished this shift in small, well-
tested steps. This shows the power of disciplined refactoring.

Key Takeaways
Starting with a well-tested view controller, we were able to change it to the
MVP pattern. First, we set up the relationships:

• Create an initially empty protocol to house the View Commands.
• Conform the view controller to the protocol.
• Create a presenter with an unowned reference to the protocol.
• Create a lazy view controller property to the presenter, passing itself as

the implementor of the protocol.

Then we followed this approach:

• Extract functions to manipulate the views. Make these functions available
through the View Commands protocol. These commands call the views
but should avoid using UIKit types in their function signatures.

• Move functions that call View Commands into the presenter. Pass anything
else these functions need to the presenter but nothing that uses UIKit.

• View controller actions should extract information from inputs, then call
a presenter method, nothing more.

We did all this with disciplined refactoring, relying on a thorough set of unit
tests. The tests check the end result we want, but are ignorant of the UI pat-
tern we use. This allowed us to change from MVC to MVVM to MVP, with only
minor changes in test code. In other words, the tests check the behavior, not
the implementation.

Here are the manual refactoring moves we discussed in this chapter:

• Change Function Declaration
• Extract Class
• Inline Function
• Move Field
• Move Function

report erratum • discuss

Key Takeaways • 295

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What’s Next?
Now you’ve seen how the small steps of refactoring can add up to big changes.
We put these steps to work to do basic cleanup in Chapter 17, Unleash the
Power of Refactoring, on page 209. We used them to adopt MVVM in Chapter
18, Refactoring: Moving to MVVM, on page 255. And in this chapter, we applied
these small steps to adopt the model-view-presenter pattern.

And you now have a feel for how disciplined refactoring works. A large refac-
toring such as “use MVVM” or “use MVP” is composed of smaller refactoring
moves. Each refactoring move has a prescribed set of steps designed to keep
the code working at all times. “I can’t commit my changes, I’m in the middle
of refactoring” is something we should never have to say.

Disciplined refactoring is moving in small steps, verifying each step as you
go. Unit tests are the secret sauce that make such refactoring possible.

But let’s not stop there! You’re ready to go all the way into test-driven devel-
opment (TDD), which we’ll look at in the final chapter.

Chapter 19. Refactoring: Moving to MVP • 296

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 20

Test-Driven Development Beckons to You
Adding tests after the production code is written is hard work. What could
we do to make this process easier? This question leads us to test-driven
development, or TDD. Writing a unit test before changing production code
may sound backward. But it’s easier, and the resulting code tends to be better
(both the production code and the test code).

In Part I of this book, we laid the foundations of unit testing using XCTest.
In Part II, we explored various tricks for testing the specifics of iOS apps. And
so far in Part III, we’ve seen how unit tests can empower us to change the
design of our code using refactoring. So you have most of the ingredients you
need to do test-driven development. Why not go all the way?

In this chapter, we’ll look at the three steps of TDD. You’ll learn how to let the
tests determine how much code to write. And you’ll see what it looks like to
allow a solution to gradually evolve.

What Is TDD?
Test-driven development adds functionality by following three repeating steps:

Write a
Failing

Test

Make
the Test

Pass

Refactor

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

These steps are easy to remember as “red, green, refactor.” The colors tell us
whether we want a failing test (red) or a passing test (green). Let’s examine
each step and the transitions between them.

Write a Failing Test
The first step is to write a failing test. Note that this is one test, not a suite
of tests. That doesn’t mean you can’t sketch out a plan for several test cases.
But you turn only one at a time into code.

You have some experience with writing tests by doing the worked exercises
from Part II of this book. For example, you know how to ensure that a button
outlet is connected and how to write a test that taps that button. So you’re
already ahead of the game.

But what’s tricky at first is writing test code before writing production code.
What does that mean? We’ll explore this in the coming worked example.

Make the Test Pass
Once we have a failing test, we can do whatever it takes to get it to pass, or
turn green. All the other tests should continue to pass as well.

What’s interesting is that the production code change can be a quick and
dirty hack. It can be dirty, because we’ll take time to clean it up in the third
step. The code can be long-winded or use hard-coded values or have code
smells. It doesn’t matter as long as it causes the test to go from red to green.

Refactor
Now that the test passes, we can clean up code. If you’ve done the earlier
exercises in Part III, then you have some experience with refactoring.

This step includes cleaning up test code as well as production code. At no
point should this step cause tests to fail. Refactoring needs to start in green
and end in green without going through red.

Separating the second and third steps is a discipline of concentrating on dif-
ferent goals. It’s much like writing a book. As I write this, I’m trying to express
my ideas in words, even if the first draft is clumsy. But then I switch hats,
from author to editor. In the editing phase, I examine my words critically. I
look for anything that feels awkward. I see if the new words fit into the larger
picture.

Chapter 20. Test-Driven Development Beckons to You • 298

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Switching hats between creating and critiquing leads to better results. The
second and third steps of TDD lead us in this direction, except we’re writing
code instead of prose.

Let’s work through an example so you see what these three steps look like.

Make a New Place to Play with TDD
Let’s create a new project. Unlike the projects for the other chapters, we don’t
need a full iOS app for what we’re about to do. We can make a framework
instead to keep things simple.

Make a new Xcode project, selecting iOS Framework. Use the product name
TDD. As always, make sure you’ve selected the “Include Unit Tests” check box.

Delete the initial test file TDDTests.swift. Now we have a blank framework, with
no tests. We don’t need to set up any production code yet, because this time
we’re going to start from the test code.

Define the Requirements of the Time-of-Day Greeter
For our example, let’s make code to greet someone by name, according to the
time of day. These are the greetings we’ll use:

5:00 a.m.–11:59 a.m. Good morning.

12:00 p.m.–4:59 p.m. Good afternoon.

5:00 p.m.–4:59 a.m. Good evening.

For example, if we’ve provided the name “Jon” and the time is 3:56 p.m., the
greeting should be, “Good afternoon, Jon.”

If no name is provided, the greeting should omit the name and simply say,
“Good afternoon.”

Those are the requirements. Take a moment to think about what test cases
we need to capture these requirements. In particular, think about the
boundary conditions. At 11:59 a.m., it should say, “Good morning.” At noon,
it should say, “Good afternoon.” So those are two test cases right there. You
may want to sketch out the test cases on a piece of paper.

Now let’s begin turning this into code in a test-driven way.

report erratum • discuss

Make a New Place to Play with TDD • 299

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Design the First Failing Test with Bare Production Code
When you’re new to test-driven development, writing the first test can feel
counterintuitive. How are you supposed to test something that doesn’t exist?

The answer is to create just enough production code to get the test to compile.
By writing the test first, we focus on designing the interface from the point
of view of the caller. The test code is the first call site.

The requirements don’t describe the interface. That’s up to us to figure out
and depends on the context. With little context to guide us, let’s make some
educated guesses. Let’s assume the name of the person won’t change often.
But the time of day keeps changing.

Remember from Chapter 6, Manage Difficult Dependencies, on page 73 that
the current time is a difficult dependency. We don’t want the code to call Date()
directly because it would make it hard to write tests. Instead, let’s tell it the
time using some form of dependency injection. That way, tests can pass in
any time they need.

So let’s aim for a type that takes a name in its initializer. If there is no name,
let’s pass in any empty string. To get the time-of-day greeting, we’ll call a
method that takes a Date argument.

Now we need to think of some names. Let’s call the new type Greeter. To write
test code first, create a new test file named GreeterTests.swift. Start the test suite
with Test Zero, deleting the test when it gives you the expected failure message.

Next, let’s decide what the first test will be. A good way to find a starting point
is to ask yourself, what’s the simplest functionality we can deliver? In our
case, it would be to have no name, which we decided to represent with an
empty string. And “Good morning” seems like a good greeting to start with.

According to our requirements, “Good morning” should cover any time between
5:00 a.m. and 11:59 a.m. The boundary condition at noon is interesting, and
a test for that would drive more behavior. So let’s plan on noon as our second
test. For our first test, let’s use 11:59 a.m.

Let’s express this in the test name. To do this we’ll create a new test named
test_greet_with1159am_shouldSayGoodMorning().

Remember what we’ve decided:

• We’ll name the new type Greeter.
• It’ll have an initializer that takes a name.
• We’re starting by passing an empty string as the name.

Chapter 20. Test-Driven Development Beckons to You • 300

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

That’s enough information to start entering some test code to express this:

TDD/TDDTests/GreeterTests.swift
Greeter(name: "")

Of course, this doesn’t compile yet. But we’ve done a fair bit of design work
to get here. This is the first call site, so we can pay attention to how it feels.
Ask yourself questions like, “Do I like the type name? Do I like the initializer
parameters? Am I passing the right type, or is there something more expressive
that would eliminate impossible state?”

To get this to build, create a new file in production code named Greeter.swift.
We’ll make a new struct inside called Greeter. Define an initializer that takes
a name of type String:

TDD/TDD/Greeter.swift
struct Greeter {

init(name: String) {
}

}

AppCode provides a way to generate production code from a call
site. All you do is place the cursor inside the code that doesn’t
compile. A light bulb icon appears. Clicking the light bulb shows
various options. Select “Create type ’Greeter’ in a new file,” and
it’s done. No typing involved.

Using an IDE that generates code helps me stay focused on what
I was doing in the first place: writing the test.

This is enough to satisfy the compiler. And it shows one of the rhythms of
TDD, especially for the first test. We write just enough test code to call produc-
tion code into existence. And we write only enough production code to satisfy
the test code. Initially, a new type has no properties, and a new method has
no behavior. But we can create an instance, and we can call the method.

Back in the test, assign the newly created Greeter to a variable. This will be
the system under test, so name it sut:

TDD/TDDTests/GreeterTests.swift
let sut = Greeter(name: "")

Next, we’d like to call a new method, passing in a time argument. The time
will be a Date with 11:59 a.m. as the time of day, so let’s create this input
using DateComponents:

report erratum • discuss

Design the First Failing Test with Bare Production Code • 301

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TDD/TDDTests/GreeterTests.swift
let components = DateComponents(

calendar: Calendar.current, hour: 11, minute: 59)
let time = components.date!

Now we can pass this time to our new method, which doesn’t exist yet:

TDD/TDDTests/GreeterTests.swift
let result: String = sut.greet(time: time)

If you’re used to omitting explicit types in Swift, it may look odd to specify
the String type for result. But this completely defines the interface we’re
designing. We can always remove the explicit type later. (This also gives
AppCode the information it needs to generate the correct function stub.)

Let’s define just enough production code by declaring a new method so that
this builds. It has to return a String, so what string should we use for a bare
implementation? An empty string sometimes works, but it may also happen
to be valid output. We want to provide invalid output if possible. So for strings,
we can return a nonsense value like "BOGUS".

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

return "BOGUS"
}

When creating the skeleton of a method to make your test compile,
try to return output you know is invalid. This will help make the
test fail. Remember, the first step of TDD is to get a test to fail in
the way you want it to.

Now we’re ready for the assertion in our first test. At one minute before noon,
the greeter should say, “Good morning.”

TDD/TDDTests/GreeterTests.swift
XCTAssertEqual(result, "Good morning.")

Run the test. We expect it to fail. And it does, with the message:

XCTAssertEqual failed: ("BOGUS") is not equal to ("Good morning.")

The test fails in the way we want it to, with a clear message. We’ve succeeded
at the first step of TDD! This is worth celebrating, because the very first test
took a lot of work:

• We put some thought into designing the interface.
• We came up with the name for a new type.
• We decided what the first test should do.
• We designed the initializer.

Chapter 20. Test-Driven Development Beckons to You • 302

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• We created a bare type with the initializer.
• We designed the call to the method.
• We created a bare method that returns a nonsense value.
• We expressed the desired return value in an assertion.
• We watched the test fail. This not only satisfies the first step of TDD, it

also gives us a way to check that the failure message is expressive.

Make the First Test Pass with “Good Morning”
We now have a failing test. The second step of TDD is to get this test to pass.
At this point, people new to TDD often start adding code to examine the time
argument of greet(time:). When you haven’t yet built up muscle memory of the
TDD steps, it’s easy to fall back on old habits.

No, our job for the second step is to get the test to pass, and that’s all. The
passing code can look silly and unsophisticated. The important thing is to
avoid adding code that goes beyond the current set of tests. By keeping the
production code from running beyond what the tests ask for, we are allowing
the tests to be in control.

The test wants the function to return “Good morning” Here’s the quickest
way to do that:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

return "Good morning."➤

}

This may bother you because you know the code is incomplete. Where’s “Good
afternoon” or “Good evening”? Those will come as we add tests that expect
those results.

The nagging feeling that the production code is incomplete is a
signal that you have more tests to write.

“Incomplete” is not the same as “incorrect.” Our greeter now works correctly
—as long as you give it no name and call it during the morning hours.

Refactor the First Test to Make It More Expressive
The third step of TDD is to refactor. Now that we have a passing test, we can
look for opportunities to do cleanup. We want to take time to look critically
at both the production code and the test code.

report erratum • discuss

Make the First Test Pass with “Good Morning” • 303

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The production code has hardly anything in it so far. There’s usually no clean-
up to do here after the first test passes.

But in the test code, we should ask: Does the test express what is important
while hiding what is unimportant? Here’s what the first test looks like now:

TDD/TDDTests/GreeterTests.swift
func test_greet_with1159am_shouldSayGoodMorning() {

let sut = Greeter(name: "")
let components = DateComponents(

calendar: Calendar.current, hour: 11, minute: 59)
let time = components.date!

let result: String = sut.greet(time: time)

XCTAssertEqual(result, "Good morning.")
}

Creating the Greeter with no name looks fine. But the code to make the time
11:59 a.m. has noisy details. The system under test doesn’t care about Date-
Components. Let’s create a test helper to create a Date with a given hour and
minute:

• Apply Extract Variable refactorings to pull 11 into a variable named hour
and 59 into a variable named minute.

• Apply the Extract Function refactoring to extract the creation of DateCompo-
nents, and the call to create a Date from it, into a method named
date(hour:minute:).

• Apply the Inline Variable refactoring to inline the hour and the minute.

• Apply Inline Variable again on the time variable so that the call to greet(time:)
directly expresses the time.

TDD/TDDTests/GreeterTests.swift
func test_greet_with1159am_shouldSayGoodMorning() {

let sut = Greeter(name: "")

let result: String = sut.greet(time: date(hour: 11, minute: 59))

XCTAssertEqual(result, "Good morning.")
}

private func date(hour: Int, minute: Int) -> Date {
let components = DateComponents(

calendar: Calendar.current, hour: hour, minute: minute)
return components.date!

}

The test now does a better job at hiding irrelevant details.

Chapter 20. Test-Driven Development Beckons to You • 304

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

There’s one more thing we can refactor, and that’s to remove the explicit String
type of the result. It helped us make the interface explicit while we were still
defining it. But it was a stepping-stone we can now remove.

TDD/TDDTests/GreeterTests.swift
let result = sut.greet(time: date(hour: 11, minute: 59))

This concludes our first journey through the three steps. We have an
expressive test that passes, with minimal production code to satisfy it.

Repeat the TDD Steps for the Second Test
Let’s add a second test for noon, the border where the greeting changes to
“Good afternoon.” For step 1 (red), we want a failing test. Duplicate the first
test, changing its input, output, and test name:

TDD/TDDTests/GreeterTests.swift
func test_greet_with1200pm_shouldSayGoodAfternoon() {

let sut = Greeter(name: "")

let result = sut.greet(time: date(hour: 12, minute: 00))

XCTAssertEqual(result, "Good afternoon.")
}

Run tests. This new test fails as expected, with this message:

XCTAssertEqual failed: ("Good morning.") is not equal to ("Good afternoon.")

On to step 2 (green), getting this test to pass. What’s the simplest thing we
can do? We can add a conditional that checks if the hour is 12. To determine
the hour of the given time, we can use DateComponents again, but this time in
production code:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let components = Calendar.current.dateComponents([.hour], from: time)➤

if components.hour! == 12 {➤

return "Good afternoon."➤

}➤

return "Good morning."
}

The tests pass. Again, we know this code is incomplete. “Good afternoon” will
be the greeting for more than when the hour is 12. This tells us that we’ll
need another “Good afternoon” test at the far end of the boundary condition.

And this code is inelegant. But remember, we’ll have an opportunity to clean
it up soon in step 3. The important thing for step 2 is that all tests pass.

report erratum • discuss

Repeat the TDD Steps for the Second Test • 305

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Now on to step 3 (refactor). Let’s start by cleaning up production code. The
first nagging thing is where we’re force-unwrapping the hour from the date
components. While it should be safe because we asked for .hour components,
let’s avoid force-unwrapping in production code. Change this to nil-coalesce,
returning 0 if the hour is missing for any reason:

TDD/TDD/Greeter.swift
if components.hour ?? 0 == 12 {

Run tests to confirm this refactoring.

The next thing we can clean up is to extract the bit that determines the hour.
To separate this from the comparison against 12, let’s apply the Extract
Variable refactoring. Select components.hour ?? 0 and extract it using Xcode’s
automated refactoring if it lets you. Run tests.

Then use the Extract Function refactoring to create and call the following
method:

TDD/TDD/Greeter.swift
private func hour(for time: Date) -> Int {

let components = Calendar.current.dateComponents([.hour], from: time)
return components.hour ?? 0

}

This makes the code for greet(time:) easier to read. As always, run tests to
confirm these changes:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

if hour(for: time) == 12 {
return "Good afternoon."

}
return "Good morning."

}

Let’s turn our attention to cleaning up the test code. There’s duplication
around creating the Greeter, passing it an empty name. But we know that later
we’ll have tests where we do pass in a name.

The choice we face is whether to create a new instance in each test or to create
separate test suites with different setUp() methods. This varies by context and
can be a matter of preference. For the sake of example, let’s plan to use sep-
arate test suites—so let’s extract the repeated code into a test fixture:

Chapter 20. Test-Driven Development Beckons to You • 306

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TDD/TDDTests/GreeterTests.swift
private var sut: Greeter!

override func setUp() {
super.setUp()
sut = Greeter(name: "")

}

override func tearDown() {
sut = nil
super.tearDown()

}

With this fixture in place, delete let sut = Greeter(name: "") from both tests. To
make the meaning of this common SUT more obvious, rename the class from
GreeterTests to GreeterWithoutNameTests. (Don’t use Xcode’s “Rename” refactoring
for this because we want to keep the same file name. Just change the class
name by hand.) Run tests to confirm these changes.

This completes our three steps for the new test case of 12:00 p.m.

Add Tests to Expand “Good Afternoon”
The greeting for “Good afternoon” should start at 12:00 p.m., and continue
through 4:59 p.m. The production code is incomplete because it checks for
hour 12 and nothing else. Let’s stretch it to the next boundary by adding a
new failing test:

TDD/TDDTests/GreeterTests.swift
func test_greet_with459pm_shouldSayGoodAfternoon() {

let result = sut.greet(time: date(hour: 16, minute: 59))

XCTAssertEqual(result, "Good afternoon.")
}

This fails, fulfilling the red step. The quickest way to get this test to pass is
to extend the conditional to check for hour 16 (that is, four in the afternoon).

TDD/TDD/Greeter.swift
if hour(for: time) == 12 || hour(for: time) == 16 {

This passes, fulfilling the green step. Now let’s clean it up for the refactor
step. First, repeatedly extracting the same hour is wasteful. Let’s apply the
Extract Variable refactoring to pull out the call to hour(for: time) to a variable.
We can’t call it hour because that name would clash with our helper method.
So let’s name it theHour:

TDD/TDD/Greeter.swift
let theHour = hour(for: time)
if theHour == 12 || theHour == 16 {

report erratum • discuss

Add Tests to Expand “Good Afternoon” • 307

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

We want the conditional to check for a range of hours, not just the boundary
endpoints. So we’ve discovered a missing test. Let’s go back to step 1 and add
a test with a time somewhere in the middle of the range.

Duplicate the previous test, changing the input time to 2:00 p.m.—that is,
hour 14. Run the test to watch it fail. Now let’s go from red to green in the
quickest way, by adding one more check to our conditional:

TDD/TDD/Greeter.swift
if theHour == 12 || theHour == 14 || theHour == 16 {

This passes. Now that we’re in green, we can clean up this code by checking
for a range of hours:

TDD/TDD/Greeter.swift
if 12 <= theHour && theHour <= 16 {

Remember to run tests to confirm this refactoring.

Implement “Good Evening”
Let’s continue on to the “Good evening” greeting. The requirements say this
greeting should apply for any time from 5:00 p.m. to 4:59 a.m.

But in 24-hour notation, this starts at hour 17 and continues through the
end of hour 4. It’ll be easier if we split this into two ranges: one from 5:00
p.m. through 11:59 p.m., and one from 12:00 a.m. through 4:59 a.m.

Continue in the same manner we used for the “Good afternoon” tests by
testing for the beginning of a range, the end of a range, and a time in between.
So use TDD the first range using the following times:

• date(hour: 17, minute: 00)
• date(hour: 23, minute: 59)
• date(hour: 20, minute: 00)

These inputs should all return the greeting "Good evening." Then do the same
with the second range from midnight on:

• date(hour: 0, minute: 00)
• date(hour: 4, minute: 59)
• date(hour: 2, minute: 00)

Your resulting code, grown gradually to satisfy each test in turn, may look
like this:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)

Chapter 20. Test-Driven Development Beckons to You • 308

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

if 12 <= theHour && theHour <= 16 {
return "Good afternoon."

}
if 0 <= theHour && theHour <= 4 ||

17 <= theHour && theHour <= 23 {
return "Good evening."

}
return "Good morning."

}

At this point, we know the final “Good morning” result will apply to any time
that wasn’t scooped up by the “Good afternoon” or “Good evening” ranges.
But sometimes it helps to deviate from TDD and add tests we think will already
pass. We already have a "Good morning." test for 11:59 a.m. Let’s add two more:

• date(hour: 5, minute: 00)
• date(hour: 8, minute: 00)

The purpose of these tests isn’t to drive the creation of any more code. But
they can help our anxious brains relax by filling in gaps.

If adding a passing test helps you sleep better at night, add it.

The greeting now works for all times of day. But now, let’s take a step back
and look at the method we created.

Step Back to Refactor the Method as a Whole
Each conditional in greet(time:) is doing an important job. But looking at them
all together makes me feel uncomfortable. Code should not only work, it
should be easy to change. What happens if the customer asks us to change
the starting time of “Good evening” from 5:00 p.m. to 6:00 p.m.? We’d have
to change two lines: not only the starting time of “Good evening,” but the
ending time of “Good afternoon.”

Even though we followed the three steps to apply TDD to what we have,
repeating similar steps can sometimes lead to a narrow focus. So let’s take a
step back and expand our focus. What can we do to make this method easier
to maintain?

Now we encounter another principle of refactoring. Sometimes things look
similar, but not quite the same. See how we repeat comparisons using different
ranges? The more similar we can make these repeated comparisons, the more
opportunities we’ll have for further refactoring.

report erratum • discuss

Step Back to Refactor the Method as a Whole • 309

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Separate a Complex Conditional
Let’s start by splitting the complex conditional for “Good evening” into two.
We can turn it into one conditional for midnight on, and another for 5:00
p.m. on. Let’s do this in steps. First, duplicate the entire conditional.

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
if 12 <= theHour && theHour <= 16 {

return "Good afternoon."
}
if 0 <= theHour && theHour <= 4 ||

17 <= theHour && theHour <= 23 {
return "Good evening."

}
if 0 <= theHour && theHour <= 4 ||➤

17 <= theHour && theHour <= 23 {➤

return "Good evening."➤

}➤

return "Good morning."
}

Run tests, which should still pass. (Remember, try to avoid any test failures
during refactoring.)

Next, take the first of the repeated conditionals. Delete the second half, leaving
the first half. Run tests. On the second “Good evening” conditional, delete
the first half, leaving the second half. Run tests.

TDD/TDD/Greeter.swift
if 0 <= theHour && theHour <= 4 {➤

return "Good evening."
}
if 17 <= theHour && theHour <= 23 {➤

return "Good evening."
}

Reorder the Comparisons and Fill a Gap
Now we can sort the comparisons by hour. Do a Slide Statements refactoring
to move the 0-to-4 hour comparison so it comes first.

This leaves a strange gap in the hours, where “Good morning” is handled at
the end by falling through other conditionals. To make things more uniform,
add a conditional so that the “Good morning” range is spelled out in the code.
Run tests. We should never reach the final return statement, but Swift demands
it. Change it to return an empty string and run tests again.

Chapter 20. Test-Driven Development Beckons to You • 310

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
if 0 <= theHour && theHour <= 4 {

return "Good evening."
}
if 5 <= theHour && theHour <= 11 {➤

return "Good morning."➤

}➤

if 12 <= theHour && theHour <= 16 {
return "Good afternoon."

}
if 17 <= theHour && theHour <= 23 {

return "Good evening."
}
return ""➤

}

This is looking more uniform.

Repeat Values by Changing Comparisons
Changing a boundary of a greeting still requires us to edit two lines. Let’s
make the relationships between the ranges clearer. Change the ending
boundary check from <= 4 to < 5. Run tests. Repeat this change for each
conditional, testing after each change.

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
if 0 <= theHour && theHour < 5 {➤

return "Good evening."
}
if 5 <= theHour && theHour < 12 {➤

return "Good morning."
}
if 12 <= theHour && theHour < 17 {➤

return "Good afternoon."
}
if 17 <= theHour && theHour < 24 {➤

return "Good evening."
}
return ""

}

The integers at the end of one conditional and the beginning of the next now
repeat. This makes their meaning clearer and would provide a visual clue if
we were to change any of them.

report erratum • discuss

Step Back to Refactor the Method as a Whole • 311

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Introduce a Lookup Table
Let’s go further. Add a new property to the Greeter type.

TDD/TDD/Greeter.swift
private let greetingTimes: [(from: Int, greeting: String)] = [

(0, "Good evening."),
(5, "Good morning."),
(12, "Good afternoon."),
(17, "Good evening."),

]

This defines an array of tuples with a starting hour and greeting, which we’ll
use as a lookup table. Make sure this compiles. Then, let’s start replacing
the string literals in greet with array references. So where we have the first
"Good evening." replace that with greetingTimes[0].greeting. Run tests. Continue to
replace each string literal, until we get the following:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
if 0 <= theHour && theHour < 5 {

return greetingTimes[0].greeting➤

}
if 5 <= theHour && theHour < 12 {

return greetingTimes[1].greeting➤

}
if 12 <= theHour && theHour < 17 {

return greetingTimes[2].greeting➤

}
if 17 <= theHour && theHour < 24 {

return greetingTimes[3].greeting➤

}
return ""

}

Now we can begin replacing the integer literals. Replace 0 with greeting-
Times[0].from and run tests. Repeat for the remaining integers until you come
to 24. To make this uniform, let’s add a sentinel value to the end of the greet-
ingTimes array:

TDD/TDD/Greeter.swift
(24, "SENTINEL"),

Now we can replace 24 with a reference to this last entry. The resulting code
looks like this:

Chapter 20. Test-Driven Development Beckons to You • 312

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
if greetingTimes[0].from <= theHour && theHour < greetingTimes[1].from {➤

return greetingTimes[0].greeting
}
if greetingTimes[1].from <= theHour && theHour < greetingTimes[2].from {➤

return greetingTimes[1].greeting
}
if greetingTimes[2].from <= theHour && theHour < greetingTimes[3].from {➤

return greetingTimes[2].greeting
}
if greetingTimes[3].from <= theHour && theHour < greetingTimes[4].from {➤

return greetingTimes[3].greeting
}
return ""

}

By making the code more similar, this now looks like an unrolled loop. Let’s
replace it with an actual loop. We’ll enumerate over each entry in greetingTimes:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
for (index, greetingTime) in greetingTimes.enumerated() {➤

if greetingTime.from <= theHour &&➤

theHour < greetingTimes[index + 1].from {➤

return greetingTime.greeting➤

}➤

}➤

return ""
}

Instead of a bunch of literals in code, we now do a lookup in a data structure.
This lookup makes the code tighter and easier to change. We could even
substitute the data to localize the greeting to different customs.

Note that we got here not by following a grand plan but by looking for oppor-
tunities to make the code more similar.

Making code more similar reveals opportunities for refactoring
that were initially hard to see.

report erratum • discuss

Step Back to Refactor the Method as a Whole • 313

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add the Name to the Greeting
So far, we’ve handled the greeting for every time of day, as long as the name
is empty. Now let’s add a test that specifies a name. We decided to use separate
test suites for the test cases with and without names. First, let’s do a little
preparatory refactoring. We want to reuse the helper function date(hour:minute:),
so it needs to move outside of GreeterWithoutNameTests. Move it to file scope (that
is, outside of the test class), and run tests to confirm this refactoring.

Red: Test with One Name
Inside GreeterTests.swift, add a new test suite named GreeterWithNameTests. Give it
the following test using the name Alberto:

TDD/TDDTests/GreeterTests.swift
final class GreeterWithNameTests: XCTestCase {

func test_greetMorning_withAlberto_shouldSayGoodMorningAlberto() {
let sut = Greeter(name: "Alberto")

let result = sut.greet(time: date(hour: 5, minute: 0))

XCTAssertEqual(result, "Good morning, Alberto.")
}

}

Run tests to watch this fail.

Green: Hard-Code the Name
How shall we get this test to pass? The initializer takes a name argument but
ignores it. Let’s first save the name in a property:

TDD/TDD/Greeter.swift
private let name: String➤

init(name: String) {
self.name = name➤

}

We can now use this property in greet(time:). The quickest way to go from red
to green is to return a hard-coded greeting if the name is not empty:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

if !name.isEmpty {➤

return "Good morning, Alberto."➤

}➤

let theHour = hour(for: time)

Run tests to watch this pass.

Chapter 20. Test-Driven Development Beckons to You • 314

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Refactor: Reuse Existing Greetings
Now let’s refactor. We have duplication between “Good morning” in this string
literal and “Good morning” in the greetingTimes property.

The problem is, the string in the property ends with a period, which keeps
us from using it in this new conditional. Let’s refactor to move the period out.

Edit the greetingTimes array, removing the period from each greeting. Inside the
for-in loop, append a period to the returned string:

TDD/TDD/Greeter.swift
return greetingTime.greeting + "."

Run tests to confirm that we successfully moved the period. With the period
on the outside of the greeting, we can move Alberto’s greeting so it uses the
greetingTimes look-up:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let theHour = hour(for: time)
for (index, greetingTime) in greetingTimes.enumerated() {

if greetingTime.from <= theHour &&
theHour < greetingTimes[index + 1].from {

if !name.isEmpty {➤

return "\(greetingTime.greeting), Alberto."➤

}➤

return greetingTime.greeting + "."
}

}
return ""

}

This shifts the Alberto case away from a hard-coded “Good morning” to use
the proper greeting for the time of day.

Red: Test with Different Name Input
The greeting works—as long as your name is Alberto. Let’s add another test
with a different name. This will lead us to make the code more general.

TDD/TDDTests/GreeterTests.swift
func test_greetAfternoon_withBeryl_shouldSayGoodAfternoonBeryl() {

let sut = Greeter(name: "Beryl")

let result = sut.greet(time: date(hour: 15, minute: 0))

XCTAssertEqual(result, "Good afternoon, Beryl.")
}

Watch this test fail.

report erratum • discuss

Add the Name to the Greeting • 315

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDDTests/GreeterTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Green: Use the Given Name
To get this test to pass, replace Alberto with the name property:

TDD/TDD/Greeter.swift
return "\(greetingTime.greeting), \(name)."

Refactor: Separate Name from Time
Now we have a solution that satisfies all the requirements. It correctly returns
a greeting for any time of day, with or without a name. But once again, let’s
expand our focus past individual lines to look at things as a whole.

As it stands, greet(time:) mixes two responsibilities. First, it determines the
appropriate greeting for the time of day. Then, it decides how to use this
greeting depending on the given name. If either of these were to change, we’d
have to separate the code in our minds to find the right part to change.

So instead of separating the code in our minds, let’s actually separate them
into two functions. It makes sense for the time-of-day greeting to become its
own thing. Let’s do this with these steps:

• Duplicate greet(time:), giving it a slightly different name.

• Simplify the return statement so it returns only greetingTime.greeting. No name,
no punctuation.

• Declare this new method private.

TDD/TDD/Greeter.swift
private func greeting(for time: Date) -> String {

let theHour = hour(for: time)
for (index, greetingTime) in greetingTimes.enumerated() {

if greetingTime.from <= theHour &&
theHour < greetingTimes[index + 1].from {

return greetingTime.greeting
}

}
return ""

}

Call this new method from greet(time:), assigning the results to a variable named
hello. Strip out the call to determine theHour along with the contents of the for
loop, leaving the name conditional. Replace occurrences of greetingTime.greeting
with hello:

Chapter 20. Test-Driven Development Beckons to You • 316

report erratum • discuss

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let hello = greeting(for: time)
if !name.isEmpty {

return "\(hello), \(name)."
}
return hello + "."

}

Run tests to confirm these changes.

This is better. But the conditional checks the negative condition first, which
is awkward. Let’s flip the conditional and add an else:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let hello = greeting(for: time)
if name.isEmpty {➤

return hello + "."➤

} else {➤

return "\(hello), \(name)."➤

}➤

}

Run tests. Finally, let’s unify the appearance of the two return statements by
using string interpolation to append the period:

TDD/TDD/Greeter.swift
func greet(time: Date) -> String {

let hello = greeting(for: time)
if name.isEmpty {

return "\(hello)."➤

} else {
return "\(hello), \(name)."

}
}

Run all tests, which should pass. Now we have one method that handles the
time of day and another that handles the name. Making changes to either
responsibility will be easier because they’re handled by separate pieces of code.

Key Takeaways
Test-driven development combines unit testing and refactoring into a discipline
for creating new functionality:

• TDD emphasizes moving in small steps.

• The main steps are red, green, refactor: Create a single failing test. Get
it to pass. Clean up code.

report erratum • discuss

Key Takeaways • 317

http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://media.pragprog.com/titles/jrlegios/code/TDD/TDD/Greeter.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

• Creating a failing test includes creating bare-bones production code that
does nothing useful.

• Try to move from red to green quickly. The code can be ugly, because
you’ll clean it up in the refactor step.

• Refactoring includes cleaning up test code as well as production code.
Try to change one or the other. Keep the tests passing while refactoring.
Keep cleaning until you’re satisfied.

• Create test helpers so your tests express what is important while hiding
what is unimportant.

• It’s okay for the production code to use hard-coded values. Such code
isn’t wrong; it’s just incomplete. The feeling that it’s wrong is telling you
to write more tests.

• It’s okay to add non-TDD-passing tests if they help demonstrate require-
ments. There’s nothing wrong with extra reassurance that you didn’t miss
a particular edge case. (But remember to force an unwanted change in
production code to make sure the test fails as desired.)

• After you’ve fleshed out a piece of functionality, take a step back. Expand
your focus to look at the whole method or the whole type. Ask yourself
how easy it will be to maintain when changes are requested. Refactor to
make it easier to change.

• Making code more similar reveals further opportunities for refactoring.

This particular example demonstrates one more thing about TDD. The test
input supplies both hour and minute to create instances of Date, so that we
can see how the tests map to the requirements. But curiously, the production
code only needs to pay attention to the hour. We didn’t need to examine the
minutes at all. This is an example of how code written with TDD can be simpler
than code written without it.

What’s Next?
We’ve reached the end of this book. You’ve grown in your unit testing. You’ve
improved your refactoring skills. The next logical step is to begin mastering
test-driven development.

Here are some next steps for you to take. First, try to use TDD the next time
you need a piece of functionality that doesn’t use UIKit. This is what we did
for our time-of-day greeter.

Chapter 20. Test-Driven Development Beckons to You • 318

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Then combine TDD with the iOS testing tips and techniques in Part II. You
might start with the following exercise: Use TDD to make an iOS app that
shows two buttons. Tapping either button will push another view controller,
showing a label. The text of the label depends on which button you tapped.

After this, use TDD to make the next new view controller in your actual code.
A test-driven approach will lead you to identify any difficult dependencies
right away. Sketch out a rough design on a whiteboard, but allow the actual
design to emerge.

It shouldn’t take long before you begin to experience the benefits of TDD.
There is, of course, the big benefit of unit testing—safety. But TDD adds to
this by making testability a requirement. You’ll still puzzle over “How can I
test this,” but you’ll ask that question first instead of at the end when it’s too
late. Testability leads to better designs where the components are more
modular. This—and continuously asking, “How can I clean this up?”—will
lead to code that’s easier to change. The end result is that making changes
will become faster.

Don’t become discouraged if you find TDD hard at first. You are learning how
to code backward. You have taken the first steps in a journey of discovery
that never stops. Get help along the way to accelerate your progress, and
have fun!

report erratum • discuss

What’s Next? • 319

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Bibliography

[Fea04] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall,
Englewood Cliffs, NJ, 2004.

[Fow18] Martin Fowler. Refactoring: Improving the Design of Existing Code, 2nd
Edition. Addison-Wesley, Boston, MA, 2018.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, MA, 1995.

[Lee12] Graham Lee. Test-Driven iOS Development. Addison-Wesley, Boston, MA,
2012.

[Mar02] Robert C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, Englewood Cliffs, NJ, 2002.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Englewood Cliffs, NJ, 2008.

[Mes07] Gerard Meszaros. xUnit Test Patterns. Addison-Wesley, Boston, MA, 2007.

[Osh13] Roy Osherove. The Art of Unit Testing: with examples in C#, Second Edition.
Manning Publications Co., Greenwich, CT, 2013.

[vS19] Steven van Deursen and Mark Seemann. Dependency Injection Principles,
Practices, and Patterns. Manning Publications Co., Greenwich, CT, 2019.

report erratum • discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Index

SYMBOLS
! (exclamation point), implicit-

ly unwrapped optionals, 32

- (minus sign), in logs, 24

[…] (square brackets), in logs,
24

=== (strict equality operator),
172

_ (underscore), in test names,
7, 42

A
AAA (Arrange, Act, Assert)

phases, 27, 163

actions, refactoring, 293–295,
see also button taps; navi-
gation

Activate Console, Xcode, 172,
187

agile practices, xvii, 210, see
also refactoring; TDD (test-
driven development); unit
testing

Alert example, 107–113

alerts, testing, 107–113

AlertVerifier class, 110–113

Ambient Context anti-pattern,
83

Analyze, Xcode, 280

AppCode IDE, 251, 301

AppLaunch example, 53–58

application launch
example project for, 53–

54
modifying app delegate

for, 57

sequence of, when test-
ing, 55

substituting app delegate
for, 55–56

testing affected by, 53–
54, 58

assertions, 15–16, see al-
so unit tests

as functions in Swift, 148
as methods in Objective-

C, 148
conditionals, avoiding in,

9–10
for equality, 11–14
example project for, 4–5
failed, notifications of, 7
failed, objects described

with, 10–11
failed, redundant mes-

sages for, 14–15
failed, specifying message

with, 8–9
list of, 15–16
loops, avoiding in, 10
not belonging in closures,

163
with Objective-C types,

176
running, 5
successful, notifications

of, 5, 7
writing, 6–8

AssertYourself example, 4–16

asynchronous code, testing,
161–164

attributes of UI components,
testing, 173–177, 224–227

automated refactoring
AppCode IDE for, 251
Extract to Method tech-

nique, 242–243, 276–
277

B
Build, Xcode, 69, 86, 134,

147, 150

button taps
testing, 101–105, 112–

113, 227–240
testing network requests

using, 139–141
testing network respons-

es using, 154–155

ButtonTap example, 101–104

C
Change Function Declaration

refactoring, 283, 290, 292

characterization tests, 41–42,
45–47, 146, 196, 205

clean room for tests, 19, 27,
30, 53, 182

closures
assertions not belonging

in, 163
in asynchronous code,

161–164
completion closure, 162,

164, 166
injecting, 88–90
network responses han-

dled by, 153, 167
test spy capturing, 158–

159
testing, 159–161, 164–

167

Cocoa Touch
asynchronous code used

by, 161
delegate methods with,

169, 177
frameworks, Objective-C

used by, 174
view controllers using,

62, 66, 68, 78–79, 95,
116, 177, 185, 214

code coverage, 35, 49–50
adding for existing code,

40–42
best practices for, 49
of conditionals, 42–45
enabling, 36
example project for, 35–

37
of loops, 45–46
results of, limitations of,

40
results of, viewing, 37–40
of statements in a se-

quence, 46–48

code-based view controllers
loading for tests, 68–71
navigation between, 115–

117, 119–124

CodeCoverage example, 35–
49

compilation, conditional, 81–
83

completion closure, 162,
164, 166

completion handler, 157,
161–162, 166

conditional compilation, 81–
83

conditionals
complex, separating, 310
covering with tests, 42–

45
nested, extracting to a

method, 44
not using in tests, 9–10
types of, 44

Connect Hardware Keyboard,
Xcode, 172

console output
generating, 20
learning tests using, 22
viewing, 23–25, 54, 102,

108, 140, 172, 187

constructor injection, 85–87

control flow statements
covering with tests, 42–

46
which to use in tests, 10

D
delegate fields, for table

views, 185, 191

delegate methods
for table views, 187–191
for text fields, 169, 171,

177–180, 183, 240–242

dependencies, 73–77, 90–91
difficult, identifying, 75–

76
example project for, 77–

80
FIRE rules for, 74–76
isolating, 77
mock objects for, 220–

223
problem-free, identifying,

73–75
singleton backdoors for,

80–83
Subclass and Override

Method for, 83–85

dependency injection, 85–88
constructor injection, 85–

87
injecting closures, 88–90
isolating URLSession, 141,

154
isolating UserDefaults, 130–

131
property injection, 87–89

design patterns
Ambient Context anti-

pattern, 83
template methods, 32

didSet observer
removing, 281–284
in view model, 261–268

directed acyclic graph, 77

Doubles type, testing equality
with, 13–14

doubles, test, see test doubles

duplication, reducing, 28–29

E
enumerations, 174, 183, 225

equality, testing for, 11–14
with Doubles or Floats,

13–14
with optionals, 12–13

error logs, 149–150

examples
Alert example, 107–113
AppLaunch example, 53–

58
AssertYourself example,

4–16
ButtonTap example, 101–

104
CodeCoverage example,

35–49
HardDependencies exam-

ple, 77–90
LifeCycle example, 19–32
LoadViewControllers ex-

ample, 61–71
Navigation example, 115–

126
NetworkRequest example,

139–151
NetworkResponse exam-

ple, 153–167
OutletConnections exam-

ple, 95–98
projects for, setting up,

4–5
Refactoring example, cre-

ating, 210–219
Refactoring example, ini-

tial refactoring, 242–
253

Refactoring example, ini-
tial testing, 220–242

Refactoring example,
moving to MVP, 273–
295

Refactoring example,
moving to MVVM, 255–
272

Snapshot example, 193–
205

TableView example, 185–
191

TDD example, 299–317
TextField example, 169–

183
UserDefaults example,

129–137

exclamation point (!), implicit-
ly unwrapped optionals, 32

existing code, see legacy code

exploratory tests, 3

extensions
for protocols, 132–133,

142, 153, 174–176,
183, 274, 276

in refactoring, 252

Extract Class refactoring,
288–290

Index • 324

Extract Function refactoring,
242–246, 248–249, 252–
253, 258, 275–279, 283,
304, 306

Extract to Method automated
refactoring, 242–243, 276–
277

Extract Variable refactoring,
246–247, 304, 306–307

F
fake objects, 133–137

fast tests, see FIRE rules;
FIRST principles

FBSnapshotTestCase library,
196–198

FIRE (fast, isolated, repeat-
able, easy to test) rules, 74–
76

FIRST (fast, isolated, repeat-
able, self-verifying, timely)
principles, 27, 53, 74

Fix All Issues, Xcode, 69, 86,
88, 116, 134, 143, 158,
174–175, 278

Floats, testing equality with,
13–14

four-phase test structure, 27

H
HardDependencies example,

77–90, see also dependen-
cies; dependency injection

helper framework, see View-
ControllerPresentationSpy
framework

helper functions/methods
for button taps, 104, 110
calling assertions from,

148
calling assertions in, 148
location in code, 243
in navigation, 116, 125
in network requests, 150–

151
in network responses,

160, 165
in refactoring, 214, 227,

238, 263, 266, 284,
288, 293, 304, 314

for run loops, 120
in table views, 189–190
for text fields, 174

I
iOS apps

alerts, testing, 107–113
button taps, testing, 101–

105, 112–113
launch, controlling, 53–

58
network requests, testing,

139–151
network responses, test-

ing, 153–167
table views, testing, 185–

191
text fields, testing, 169–

183
UserDefaults, testing, 129–

137
view controllers, loading,

61–71
view controllers, naviga-

tion, 115–127
view controllers, outlet

connections, 95–98

iTunes Search API, examples
using, 139–141, 153–155

@IBActions, refactoring, 293–
295, see also button taps;
navigation

@IBOutlet, see outlet connec-
tions

idempotent operations, 262

implicitly unwrapped option-
als, 32

import statement, 22

initial root view controller,
testing affected by, 57

initializers, using for closures,
88

injections, see dependency
injections

Inline Function refactoring,
281, 283, 291

Inline Variable refactoring,
246, 249–251, 304

input focus, testing, 180–183

interface segregation princi-
ple, 133

isolating dependencies, 77,
see also dependency injec-
tion

isolation of tests, see FIRE
rules; FIRST principles

Issue Navigator, Xcode, 8

J
JSON data, for network re-

sponses, 156, 160–161

Jump to Definition, Xcode,
132, 142, 173–174

K
Kaleidoscope app, 202

L
labels, for view controllers, 63

language in Xcode, 5, see al-
so Swift

lazy property, 87, 220, 223

learning tests, 22

legacy (existing) code
characterization tests for,

41–42
checking failure mes-

sages for, 97
coverage of, measuring,

35, 49
dependency injection for,

85–88
number of paths in, 44
Subclass and Override

Method for, 83–85
test code as, 30

life cycle of tests, 19, 33
app launch with, 55
console output showing,

23–25
determining from test

logs, 26–27
example project for, 19–

21
four-phase test structure,

27
setUp() method for, 31–32
tearDown() method for, 31–

32
three-phase test struc-

ture (AAA), 27
XCTest management of,

30

LifeCycle example, 19–32

LoadViewControllers example,
61–71

logs, see error logs; test logs

lookup tables, 312–313

loops
covering with tests, 45–

46
not using in tests, 10

Index • 325

M
manual tests, 3

method swizzling, 110

minus sign (-), in logs, 24

mock objects
for dependencies, 220–

223, 229, 236–237
promoting test spies to,

146–148
reporting from, 148–151

modal navigation, 115–116
setting up, 117–118
testing, 122–124, 126

model-view-controller (MVC)
pattern, 177, 255

model-view-presenter (MVP)
pattern, see MVP pattern,
Refactoring example; pre-
senter; View Commands
protocol

model-view-view-model
(MVVM) pattern, see MVVM
pattern, Refactoring exam-
ple; view model

Move Field refactoring, 288

Move Function refactoring,
275, 279–281, 286–287,
289–290, 293

multithreading, see asyn-
chronous code

MVC (model-view-controller)
pattern, 177, 255

MVP (model-view-presenter)
pattern, 273–275, 295, see
also Refactoring example;
presenter; View Commands
protocol

input focus, reparenting,
284–285

password validation, ex-
tracting, 288–292

presenter, creating, 275
presenter, moving @IBAc-
tion methods to, 293–
295

presenter, moving func-
tions to, 279–281, 286–
287

View Commands proto-
col, creating, 274

View Commands proto-
col, extracting methods
to, 275–279

View Commands proto-
col, moving properties
to, 281–284

MVVM (model-view-view-
model) pattern, 255–256,
271–273, see also Refactor-
ing example; view model

moving storyboard labels
to view model, 259–260

moving string literals to
view model, 256–259

view controller making
changes to view model,
268–271

view controller respond-
ing to view model, 261–
268

view model in, 255–256

N
naming conventions

test suites, 20
unit tests, 7, 42

navigation, 115, 127
code-based, 116–117,

119–124
segue-based, 118–119,

124–126
types of, 115–116

Navigation Controller, Xcode,
115

Navigation example, 115–126

network layer, faking, with
OHHTTPStubs library, 141

network requests, 139, 151
example project for, 139–

141
isolating URLSession, 141
mock objects, 146–151
URLSession class test spy,

143–148
URLSession test doubles,

141–142

network responses
capturing in test spy,

158–159
closures handling, 153,

159–164, 167
completion handler for,

157, 161–162, 166
error scenarios, testing,

164–167
example project for, 153–

155
isolating URLSession, 154
parsing, 155–157
URLSession test doubles,

153

NetworkRequest example,
139–151

NetworkResponse example,
153–167

newspaper metaphor, 243

Nimble matcher framework,
162

O
Object Library, Xcode, 95

Objective-C
assertions as methods in,

148
checking types with asser-

tions, 176
enumerations, 174, 183,

225
logging style of, 24
UIKit written in, 113

OHHTTPStubs library, 141

one-way data binding, 268

online resources, for this
book, xx

optionals
implicitly unwrapped, 32
testing equality with, 12–

13

outlet connections
for storyboard view con-

trollers, 63–65, 102
testing, 95–98, 172–173,

223
for XIB view controllers,

67

OutletConnections example,
95–98

P
parsing network responses,

155–157

password changing example,
see Refactoring example

patterns, see design patterns;
UI patterns

persistence, 75
side effects, mitigating,

126
UserDefaults, testing, 129–

137

phases of tests, see life cycle
of tests

presenter, 273–274
creating, 275
moving functions to, 279–

281, 286–287

principles of testing
clean room for testing,

19, 27, 30, 53, 182

Index • 326

failing for one reason,
137

FIRST principles, 27, 53,
74

small steps and feedback,
21

private keyword, not used for
tests, 6

production code
accessing from unit tests,

22
creating files for, 20

projects, see also examples
destination (simulator)

for, 5, 204
initial test file for, not us-

ing, 21
setting up, 4–5
targets for, 20

property injection, 87–89

protocols
extensions for, 132–133,

142, 153, 174–176,
183, 274, 276

interface segregation
principle implemented
by, 133

for test doubles, 131–
133, 141–142, 153,
220–221

push navigation, 115–116
setting up, 117–118
testing, 119–121, 124–

126

R
refactoring, 209–210, 253–

254
automated, AppCode IDE

for, 251
automated, Extract to

Method technique,
242–243, 276–277

Change Function Declara-
tion technique, 283,
290, 292

complex conditionals,
separating, 310

Extract Class technique,
288–290

Extract Function tech-
nique, 242–246, 248–
249, 252–253, 258,
275–279, 283, 304,
306

Extract Variable tech-
nique, 246–247, 304,
306–307

Inline Function tech-
nique, 281, 283, 291

Inline Variable technique,
246, 249–251, 304

Move Field technique,
288

Move Function technique,
275, 279–281, 286–
287, 289–290, 293

moving to MVP, 273–295
moving to MVVM, 255–

272
Replace Inline Code with

Function Call tech-
nique, 250, 278

Slide Statements tech-
nique, 247, 276, 278–
279, 310

in TDD, third step, 298–
299, 303–307, 309–
313, 315–316

Refactoring example
activity indicator, moving

to view model, 266–268
attributes of UI, testing,

224–227
blur view, moving to view

model, 265–266
Cancel button, moving to

view model, 261–262
Cancel button, testing,

227–228
code for, initial, 213–219
dependencies in, mock

objects for, 220–223,
229, 236–237

extracting functions,
242–245

extracting methods with
parameters, 245–251

input focus, moving to
view model, 262–264

input focus, reparenting,
284–285

input validation, creating,
230–233

outlet connections, test-
ing, 223

password changer, test-
ing, 236–240

password validation, ex-
tracting, 288–292

presenter, creating, 275
presenter, moving @IBAc-
tion methods to, 293–
295

presenter, moving func-
tions to, 279–281, 286–
287

Submit button, moving
to view model, 269

Submit button, testing,
229–240

text field delegate meth-
ods, testing, 240–242

View Commands proto-
col, creating, 274

View Commands proto-
col, extracting methods
to, 275–279

View Commands proto-
col, moving properties
to, 281–284

view model, moving Can-
cel button to, 255

view model, moving input
validation to, 268–271

view model, moving story-
board labels to, 259–
260

view model, moving string
literals to, 256–259

view model, properties in,
261–268

views for, creating, 210–
212

waiting state appearance,
234–236

repeatability of tests,
see FIRE rules; FIRST prin-
ciples

Replace Inline Code with
Function Call refactoring,
250, 278

Report Navigator, Xcode, 23–
25, 37, 147

root view controller, see initial
root view controller

run loop, UIKit, 120

S
segue-based navigation, 115–

116
setting up, 118–119
testing, 124–126

sequence of statements, cov-
ering with tests, 46–48

setUp() method, 31–32

shared mutable state, 75

Show Attributes Inspector,
Xcode, 170, 173, 186

Show Connections Inspector,
Xcode, 97, 170

Show Identity Inspector,
Xcode, 103, 185

Index • 327

Show Library, Xcode, 170,
185, 193

Show Size Inspector, Xcode,
194

Show Standard Editor, Xcode,
170

simulator
setting, 5
for snapshot tests, 204

singletons, 75, 77
backdoors for, 80–83
Subclass and Override

Method for, 83–85

Slide Statements refactoring,
247, 276, 278–279, 310

Snapshot example, 193–205

snapshots
example project for, 193–

195
failed tests, analyzing,

201–203
FBSnapshotTestCase li-

brary for, 196–198
managing tests of, 203–

205
reference images for,

196–199
same simulator for cap-

turing and running,
204

tests using, 193, 199–
201, 205

writing code using, 205

spies, see test spies

square brackets ([…]), in logs,
24

statements in a sequence,
covering with tests, 46–48

static analysis, 280

Storyboard
ID for, 64–65, 103
labels, moving to view

model, 259–260
setting user interface as,

xx, 5

storyboard-based view con-
trollers

handling dependencies
with, 78–79, 87, 89

loading for tests, 62–66
navigation between, 118–

119, 124–126

strict equality operator (===),
172

string interpolation, 9, 74

structured programming con-
structs, which to use in
tests, 10

Subclass and Override
Method, 83–85

SUT (system under test), 22

Swift
assertions as functions,

148
conditionals in, 44
dummy arguments, when

needed, 70
duplication, reducing,

28–29
enumerations, 174
function overloading, 104
implicitly unwrapped op-

tionals, 32
naming conventions in, 7
optionals in, 12–13
protocols, 77, 85, 131
setting language as, 5
string interpolation in, 9,

74
subclassing of structs not

allowed, 84
type extensions, 132, 142
wrapping types, 12

SwiftUI paradigm, xix

system under test (SUT), 22

T
table views

delegate fields for testing,
185, 191

delegate methods for
testing, 187–191

example project for, 185–
187

TableView example, 185–191

TDD (test-driven develop-
ment), 297–299, 317–318

example project for, 299
failing tests, writing,

298, 300–303, 305,
307, 314–315

making failed tests pass,
298, 303, 305, 307,
314, 316

project requirements,
defining, 299

refactoring passing tests,
298–299, 303–307,
309–313, 315–316

TDD example, 299–317
afternoon test, 305–308
evening test, 308–309

lookup tables, 312–313
morning test, making it

fail, 300–303
morning test, making it

pass, 303
morning test, refactoring,

303–305
name test, 314–317
project requirements for,

299
refactoring passing tests,

309–313

tearDown() method, 31–32

template methods, 32

templates, XCTest, 22

test cases, 7, 31, see also unit
tests

test doubles
extracting protocols for,

131–133, 141–142,
153, 220–221

fake objects, 133–137
mock objects, 146–151,

220–223

test expectations, 161–164,
166

test fixtures, 31, 306

test helpers, see helper func-
tions/methods

test logs
determining object life

cycles from, 26–27
notation used in, 24
viewing, 23–25

test prefix for test names, 6,
42

test spies
capturing closures, 159–

161
creating, 143–144, 158–

159
promoting to mock ob-

jects, 146–148
using, 144–146

test suites, 7
clean room for, 19, 27,

30, 53, 182
compared to test cases,

31
created by XCTest, 30
examples for, 19–32
first test in, 21
naming, conventions for,

20

Test Zero, 21

Index • 328

test-driven development,
see TDD

test-specific subclass, 83

@testable attribute, 22, 96

testing, 3–4, see also life cycle
of tests; test suites; unit
tests

exploratory tests, 3
learning tests, 22
manual tests, 3
principles of, 21, 27, 53,

74
UI tests, xvii
unit tests, 3–4

text fields
attributes of, testing,

173–177
delegate fields for testing,

183
delegate methods for

testing, 169, 171, 177–
180

example project for, 169–
172

input focus of, testing,
180–183

TextField example, 169–183

third-party frameworks
importing, 110
using, 109, 197

three-phase test structure, 27

Time-of-Day Greeter example,
see TDD example

transcripts (logs), see error
logs; test logs

try statement, in test code,
113

two-way data binding, 268–
271

type definitions, viewing, 173–
175

type extensions, see exten-
sions

typealias keyword, 285

U
UI patterns, see MVC pattern;

MVP pattern; MVVM pat-
tern

UI tests, xvii

UIKit, xvii
app delegate run by, 55
code-based view con-

trollers, requirements
for, 68–69

declarative paradigm, xx
importing, 35, 125
initial root view controller

run by, 57
run loop, 120
SwiftUI paradigm, xix
type definitions, viewing,

173–175
view controllers used by,

61

UIViewControllers, see view
controllers

underscore (_), in test names,
7, 42

unit tests, 3–4, 16, see al-
so assertions; life cycle of
tests; test suites

accessing production
code from, 22

adding for existing code,
40–42

for alerts, 107–113
application launch affect-

ing, 53–57
for button taps, 101–105
characteristics of, 4, 6–7
characterization tests,

41–42, 45–47, 146,
196, 205

clean room for, 19, 27,
30, 53, 182

code coverage by, 35–50
conditionals, avoiding in,

9–10
dependencies affecting,

73–77, 90–91
execution of, 30, 55
failed, effectiveness of,

97–98
failed, notifications of, 7
failed, objects described

with, 10–11
failed, redundant mes-

sages for, 14–15
failed, specifying message

with, 8–9
initial root view controller

affecting, 57
loops, avoiding in, 10
naming, conventions for,

7, 42
for network requests,

139–151
for network responses,

153–167
reducing duplication in,

28–29

refactoring requiring,
209–210

running, 5
successful, notifications

of, 5, 7
for table views, 185–191
test logs for, 23–25
for text fields, 169–183
for UserDefaults, 129–137
view controllers, loading,

61–71
view controllers, naviga-

tion, 115–127
view controllers, outlet

connections, 95–98
writing, 6–8

URLSession class
isolating with dependency

injection, 141, 154
test doubles for, 141–

142, 153
test spy for, 143–148

user interface in Xcode, 5, see
also Storyboard

UserDefaults class, 129–137
example project for, 129–

130
isolating with dependency

injection, 130–131
test doubles for, 131–133
testing with fake objects,

133–137

UserDefaults example, 129–
137

V
View Commands protocol

creating, 274
extracting methods to,

275–279
moving properties to,

281–284

view controllers
alerts, testing, 107–113
analytics on, tracking, 80
button taps, testing, 101–

104
code-based, 68–71
handling dependencies

with, 78–90
label for, 63
loading for tests, 61–71
making changes to view

model, 268–271
navigation between, 115–

127
outlet connections for,

63–65, 67, 95–98

Index • 329

responding to view model,
260–268

role in MVP, 273–274
role in MVVM, 255–256
storyboard-based, 62–

66, 78–79, 87, 89
text fields in, testing,

169–183
view appearance, testing,

193–206
XIB-based, 66–68, 79

view model, 255–256
one-way data binding

with, 268
storyboard labels in, 259–

260
string literals in, 256–259
two-way data binding

with, 268–271
view controller respond-

ing to, 260–268
views making changes to,

268–271

ViewControllerPresentation-
Spy framework, 108–113,
123–124, 164, 228

views
appearance of, testing,

193, 199–203, 205
creating, 193–195
reference images for,

196–199

W
web services, see network re-

quests; network responses

wrapping types, 12

X
Xcode

Activate Console, 172,
187

Analyze, 280
Build, 69, 86, 134, 147,

150
code coverage, enabling,

36
code coverage, viewing,

37–40
Connect Hardware Key-

board, 172
console, viewing, 23–25,

54, 102, 108, 140
extracting to a method,

44, 83
failure notifications, 7–8
Fix All Issues, 69, 86,

88, 116, 134, 143,
158, 174–175, 278

Issue Navigator, 8
Jump to Definition, 132,

142, 173–174
Navigation Controller,

115
Object Library, 95
projects, creating, 4
Report Navigator, 23–25,

37, 147
Show Attributes Inspec-

tor, 170, 173, 186
Show Connections Inspec-

tor, 97, 170
Show Identity Inspector,

103, 185

Show Library, 170, 185,
193

Show Size Inspector, 194
Show Standard Editor,

170
successful notifications,

5, 7
view controller outlets,

connecting to XIB, 67
view controllers, adding

to storyboard, 63, 78–
79

XCTAssertEqual() assertion, 11–
14, 16

XCTAssertFalse() assertion, 16

XCTAssertNil() assertion, 10–11,
16

XCTAssertNotNil() assertion, 16,
96

XCTAssertTrue() assertion, 15–16

XCTest, see also assertions;
code coverage; test suites

creation and execution of
tests, 30

templates for, 22

XCTestCase class, 6

XCTFail() assertion, 6–9, 16

XIB-based view controllers
handling dependencies

with, 79
loading for tests, 66–68
testing outlet connections

with, 95–96

Index • 330

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

https://pragprog.com

Become an Effective Software Engineering Manager
Software startups make global headlines every day. As
technology companies succeed and grow, so do their
engineering departments. In your career, you’ll may
suddenly get the opportunity to lead teams: to become
a manager. But this is often uncharted territory. How
do you decide whether this career move is right for
you? And if you do, what do you need to learn to suc-
ceed? Where do you start? How do you know that
you’re doing it right? What does “it” even mean? And
isn’t management a dirty word? This book will share
the secrets you need to know to manage engineers
successfully.

James Stanier
(396 pages) ISBN: 9781680507249. $45.95
https://pragprog.com/book/jsengman

Build Websites with Hugo
Rediscover how fun web development can be with
Hugo, the static site generator and web framework that
lets you build content sites quickly, using the skills
you already have. Design layouts with HTML and share
common components across pages. Create Markdown
templates that let you create new content quickly.
Consume and generate JSON, enhance layouts with
logic, and generate a site that works on any platform
with no runtime dependencies or database. Hugo gives
you everything you need to build your next content
site and have fun doing it.

Brian P. Hogan
(154 pages) ISBN: 9781680507263. $26.95
https://pragprog.com/book/bhhugo

https://pragprog.com/book/jsengman
https://pragprog.com/book/bhhugo

Practical Microservices
MVC and CRUD make software easier to write, but
harder to change. Microservice-based architectures
can help even the smallest of projects remain agile in
the long term, but most tutorials meander in theory
or completely miss the point of what it means to be
microservice based. Roll up your sleeves with real
projects and learn the most important concepts of
evented architectures. You’ll have your own deployable,
testable project and a direction for where to go next.

Ethan Garofolo
(290 pages) ISBN: 9781680506457. $45.95
https://pragprog.com/book/egmicro

Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

https://pragprog.com/book/egmicro
https://pragprog.com/book/sbsockets

Programming Machine Learning
You’ve decided to tackle machine learning — because
you’re job hunting, embarking on a new project, or
just think self-driving cars are cool. But where to start?
It’s easy to be intimidated, even as a software develop-
er. The good news is that it doesn’t have to be that
hard. Master machine learning by writing code one
line at a time, from simple learning programs all the
way to a true deep learning system. Tackle the hard
topics by breaking them down so they’re easier to un-
derstand, and build your confidence by getting your
hands dirty.

Paolo Perrotta
(340 pages) ISBN: 9781680506600. $47.95
https://pragprog.com/book/pplearn

Competing with Unicorns
Today’s tech unicorns develop software differently.
They’ve developed a way of working that lets them scale
like an enterprise while working like a startup. These
techniques can be learned. This book takes you behind
the scenes and shows you how companies like Google,
Facebook, and Spotify do it. Leverage their insights,
so your teams can work better together, ship higher-
quality product faster, innovate more quickly, and
compete with the unicorns.

Jonathan Rasmusson
(138 pages) ISBN: 9781680507232. $26.95
https://pragprog.com/book/jragile

https://pragprog.com/book/pplearn
https://pragprog.com/book/jragile

Programming Flutter
Develop your next app with Flutter and deliver native
look, feel, and performance on both iOS and Android
from a single code base. Bring along your favorite li-
braries and existing code from Java, Kotlin, Objective-
C, and Swift, so you don’t have to start over from
scratch. Write your next app in one language, and
build it for both Android and iOS. Deliver the native
look, feel, and performance you and your users expect
from an app written with each platform’s own tools
and languages. Deliver apps fast, doing half the work
you were doing before and exploiting powerful new
features to speed up development. Write once, run
anywhere.

Carmine Zaccagnino
(368 pages) ISBN: 9781680506952. $47.95
https://pragprog.com/book/czflutr

Agile Web Development with Rails 6
Learn Rails the way the Rails core team recommends
it, along with the tens of thousands of developers who
have used this broad, far-reaching tutorial and refer-
ence. If you’re new to Rails, you’ll get step-by-step
guidance. If you’re an experienced developer, get the
comprehensive, insider information you need for the
latest version of Ruby on Rails. The new edition of this
award-winning classic is completely updated for Rails
6 and Ruby 2.6, with information on processing email
with Action Mailbox and managing rich text with Action
Text.

Sam Ruby and David Bryant Copeland
(494 pages) ISBN: 9781680506709. $57.95
https://pragprog.com/book/rails6

https://pragprog.com/book/czflutr
https://pragprog.com/book/rails6

Modern Systems Programming with Scala Native
Access the power of bare-metal systems programming
with Scala Native, an ahead-of-time Scala compiler.
Without the baggage of legacy frameworks and virtual
machines, Scala Native lets you re-imagine how your
programs interact with your operating system. Compile
Scala code down to native machine instructions;
seamlessly invoke operating system APIs for low-level
networking and IO; control pointers, arrays, and other
memory management techniques for extreme perfor-
mance; and enjoy instant start-up times. Skip the JVM
and improve your code performance by getting close
to the metal.

Richard Whaling
(260 pages) ISBN: 9781680506228. $45.95
https://pragprog.com/book/rwscala

Fixing Your Scrum
Broken Scrum practices limit your organization’s
ability to take full advantage of the agility Scrum
should bring: The development team isn’t cross-func-
tional or self-organizing, the product owner doesn’t get
value for their investment, and stakeholders and cus-
tomers are left wondering when something—any-
thing—will get delivered. Learn how experienced Scrum
masters balance the demands of these three levels of
servant leadership, while removing organizational im-
pediments and helping Scrum teams deliver real-world
value. Discover how to visualize your work, resolve
impediments, and empower your teams to self-organize
and deliver using advanced coaching and facilitation
techniques that honor and support the Scrum values
and agile principles.

Ryan Ripley and Todd Miller
(240 pages) ISBN: 9781680506976. $45.95
https://pragprog.com/book/rrscrum

https://pragprog.com/book/rwscala
https://pragprog.com/book/rrscrum

Software Estimation Without Guessing
Developers hate estimation, and most managers fear
disappointment with the results, but there is hope for
both. You’ll have to give up some widely held miscon-
ceptions: let go of the notion that “an estimate is an
estimate,” and estimate for your particular need. Real-
ize that estimates have a limited shelf-life, and re-esti-
mate frequently as needed. When reality differs from
your estimate, don’t lament; mine that disappointment
for the gold that can be the longer-term jackpot. We’ll
show you how.

George Dinwiddie
(246 pages) ISBN: 9781680506983. $29.95
https://pragprog.com/book/gdestimate

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

https://pragprog.com/book/gdestimate
https://pragprog.com/book/jgotp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/jrlegios
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/jrlegios
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword
	Preface
	How This Book Is Organized
	Disclaimer: No SwiftUI Support
	Online Resources
	Acknowledgments

	Part I—Foundations
	1. Assert Yourself
	What Are Unit Tests Anyway?
	Create a Place to Play with Tests
	Write Your First Assertion
	Add a Descriptive Message
	Avoid Conditionals in Tests
	Describe Objects upon Failure
	Test for Equality
	Test Equality with Optionals
	Fudge Equality with Doubles and Floats
	Avoid Redundant Messages
	Choose the Right Assertion
	Key Takeaways
	Activities
	What’s Next?

	2. Manage Your Test Life Cycles
	Make a New Place to Play
	Start from Test Zero
	Hook Up Tests to Production Code
	Examine Console Output
	Observe Object Life Cycles to Learn the Phases of a Test
	The Wrong Way to Reduce Duplicate Test Code
	Learn How XCTest Manages Test Cases
	Use setUp() and tearDown()
	Key Takeaways
	Activities
	What’s Next?

	3. Measure Code Coverage and Add Tests
	Make a New Place to Play
	Enable Code Coverage
	Examine Code Coverage Results
	Drill into a Partially Covered Line
	Add Tests for Existing Code
	Cover a Conditional
	Cover a Loop
	Cover Statements in a Sequence
	Avoid Percentage Targets, Embrace Forward Movement
	Key Takeaways
	Activities
	What’s Next?

	4. Take Control of Application Launch
	Make a New Place to Play
	Observe the Default Behavior
	Learn About the Test Launch Sequence
	Bypass the Normal App Delegate
	Put Up with the Initial View Controller
	Tweak Your Testing App Delegate
	Key Takeaways
	Activities
	What’s Next?

	5. Load View Controllers
	Make a New Place to Play
	Set Up a Storyboard-Based View Controller for Experiments
	Load a Storyboard-Based View Controller
	Set Up a XIB-Based View Controller for Experiments
	Load a XIB-Based View Controller
	Set Up a Code-Based View Controller for Experiments
	Load a Code-Based View Controller
	Key Takeaways
	Activities
	What’s Next?

	6. Manage Difficult Dependencies
	Be Okay with Problem-Free Dependencies
	Identify Difficult Dependencies
	Create Boundaries to Isolate Dependencies
	Make a New Place to Play
	Add Backdoors to Singletons You Own
	Subclass and Override: A Legacy Code Technique
	Inject Instances Through Initializers or Properties
	Inject Closures to Make New Instances
	Key Takeaways
	Activities
	What’s Next?

	Part II—iOS Testing Tips and Techniques
	7. Testing Outlet Connections
	Make a New Place to Play
	Test Outlet Connections
	Check the Effectiveness of Failure Messages
	Key Takeaways
	Activities
	What’s Next?

	8. Testing Button Taps (Using Actions)
	Make a Place to Play with a Button
	Test Button Taps
	Make a Test Helper for Button Taps
	Key Takeaways
	Activities
	What’s Next?

	9. Testing Alerts
	Make a New Place to Play
	Add the Helper Framework to the Project
	Test Alerts Using the Alert Verifier
	Move the SUT into the Test Fixture
	Add Tests for Alert Buttons
	Key Takeaways
	Activities
	What’s Next?

	10. Testing Navigation Between Screens
	Make a New Place to Play
	Set Up Code-Based Navigation
	Set Up Segue-Based Navigation
	Test Code-Based Push Navigation
	Test Code-Based Modal Presentation
	Test Segue-Based Push Navigation
	Test Segue-Based Modal Navigation
	Key Takeaways
	Activities
	What’s Next?

	11. Testing UserDefaults (with Fakes)
	Make a New Place to Play
	Isolate UserDefaults with Dependency Injection
	Extract a Protocol to Support Test Doubles
	Make a Fake Object
	Test UserDefaults
	Key Takeaways
	Activities
	What’s Next?

	12. Testing Network Requests (with Mocks)
	Make a New Place to Play
	Isolate URLSession with Dependency Injection
	Extract a URLSession Protocol for Test Doubles
	Make a Test Spy
	Design the Test Case
	Promote the Test Spy into a Mock Object
	Improve Mock Object Reporting
	Key Takeaways
	Activities
	What’s Next?

	13. Testing Network Responses (and Closures)
	Make a New Place to Play
	Parse the Response
	Start with a Fresh Test Spy
	Design the Test Case
	Test Asynchronous Code
	Keep Asynchronous Code in Its Closure
	Test an Error Scenario
	Key Takeaways
	Activities
	What’s Next?

	14. Testing Text Fields (and Delegate Methods)
	Make a Place to Play
	Test the Outlets
	Test Attributes and Wrangle UIKit Descriptions
	Test Delegate Methods
	Test Input Focus
	Key Takeaways
	Activities
	What’s Next?

	15. Testing Table Views
	Make a Place to Play
	Test Table Views
	Key Takeaways
	Activities
	What’s Next?

	16. Testing View Appearance (with Snapshots)
	Make a Place to Play
	Add FBSnapshotTestCase to a Test Target
	Set the Location for Reference Images
	Write a Snapshot Test
	See the Difference in a Snapshot Failure
	Manage Your Snapshot Tests
	Key Takeaways
	Activities
	What’s Next?

	Part III—Using Your New Power
	17. Unleash the Power of Refactoring
	What Is Refactoring?
	Lay Out the Views for Our Practice App
	Add the Code to Our Practice App
	Replace the Difficult Dependency with a Mock Object
	Write the First Tests of the Change Password View Controller
	Test the Cancel Button
	Test the Submit Button
	Test the Text Field Delegate Method
	Refactor to Break Up a Long Function
	Extract a Method with Parameters
	Clean Up a Few More Places
	Key Takeaways
	What’s Next?

	18. Refactoring: Moving to MVVM
	What Is MVVM?
	Replace String Literals to Use a View Model
	Overwrite Storyboard Labels
	Respond to Changes in the View Model
	Move Logic into the View Model
	Key Takeaways
	What’s Next?

	19. Refactoring: Moving to MVP
	What Is MVP?
	Set Up the MVP Types
	Extract Methods into the View Commands Protocol
	Move a Function into the Presenter
	Remove the didSet Observer
	Use Refactoring Principles to Reparent a Swift Type
	Move Several Functions to the Presenter
	Extract Password Validation into Its Own Type
	Finish Up the Refactoring to MVP
	Key Takeaways
	What’s Next?

	20. Test-Driven Development Beckons to You
	What Is TDD?
	Make a New Place to Play with TDD
	Define the Requirements of the Time-of-Day Greeter
	Design the First Failing Test with Bare Production Code
	Make the First Test Pass with “Good Morning”
	Refactor the First Test to Make It More Expressive
	Repeat the TDD Steps for the Second Test
	Add Tests to Expand “Good Afternoon”
	Implement “Good Evening”
	Step Back to Refactor the Method as a Whole
	Add the Name to the Greeting
	Key Takeaways
	What’s Next?

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –

