Th
Pr ema’tic
ogramimers

iOS Unit Testing
by Example

XCTest Tips and
Techniques Using Swift

Jon Reid
edited by Michael Swaine

Early praise for iOS Unit Testing by Example

When it comes to testing strategies and patterns, Jon Reid is an absolute wizard!
Few things have influenced me professionally as much as Jon’s writings on TDD.
I'm using many of his techniques from this book every single day in the develop-
ment of our iOS applications.
>» Fred A. Brown

Enterprise Software Architect, Oracle

After reading this book, iOS developers will no longer wonder how to unit test or
why to unit test. They’ll be equipped to get all the benefits unit testing offers.
» Josh Justice

Web and Mobile Developer, Big Nerd Ranch

Jon Reid is the designated expert on unit testing in the iOS space. This helpful
and informative book will help you avoid common pitfalls. The wrong test is as
bad as no tests at all.
» Janie Larson

Red Queen Coder, LLC

Jon has given us the definitive guide on unit testing with XCTest. Techniques,
tips, tricks, and tons of Jon’s wisdom.
>» Jeff Langr

Langr Software Solutions, Inc.

Jon is one of the most experienced TDD devs in the Cocoa world; for years he
shared interesting techniques one could apply in their codebases. This book is a
massive compendium of knowledge and should be read by anyone that wants to
get up to speed with proper iOS testing techniques.

» Krzysztof Zablocki
CEO and Cofounder, Pixie

Becoming a disciplined test-driven iOS developer takes patience, knowledge, dis-
cipline, and practice. iOS Unit Testing by Example will provide a major head start
on this journey and supply the toolbox of skills you need to start writing better,
more maintainable code. I know of no one better placed and better qualified to
help than Jon Reid.

» Andrew Ebling
Founder and Developer, Tenero Mobile Limited

iOS Unit Testing by Example

XCTest Tips and Techniques Using Swift

Jon Reid

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Michael Swaine
Copy Editor: Adaobi Obi Tulton
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-681-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Kay, who believed in me

Contents

Foreword b:q'4

Preface xvii

Part | — Foundations

Assert Yourself

© 00 OB W

10

12
13
14
15
16
17
18

19
19
21
22
23
26
28
30

Contents ® viii

Use setUp() and tearDown() 31
33
33
34

35
35
36
37
39
40
42
45
46
49
49
50
50

53
53
54
55
55
57
57
58
58
59

61
61
62
64
66
67
68
69
71
71
72

Manage Difficult Dependencies

Part Il — iOS Testing Tips and Techniques

Testing Outlet Connections

Contents ® ix

73
73
75
77
77
80
83
85
88
90
91
91

95
95
96
97
98
98
99

101
101
102
104
105
105
106

107
107
108
110
112
112
113
114
114

Contents ® x

10. Testing Navigation Between Screens .« .« . . . 115
115
116
118
119
122
124
126
127
128
128

11. 129
129
130
131
133
134
137
137
138

12. 139
139
141
141
143
144
146
148
151
151
152

13. 153
153
155
158
159
161

163

Contents ® xi

Test an Error Scenario 164
Key Takeaways 167
Activities 168
What's Next? 168

14. Testing Text Fields (and Delegate Methods) . e . 169

Make a Place to Play 169
Test the Outlets 172
Test Attributes and Wrangle UIKit Descriptions 173
Test Delegate Methods 177
Test Input Focus 180
Key Takeaways 183
Activities 184
What's Next? 184

15. Testing Table Views 18>
185
187
191
191
192

16. Testing View Appearance (with Snapshots) . e . 193
193
196
198
199
See the Difference in a Snapshot Failure 201

Manage Your Snapshot Tests 203
Key Takeaways 205
206

206

Part lll — Using Your New Power

17. Unleash the Power of Refactoring 209

What Is Refactoring? 209
LayOuttheVlewsfor Our Practice App 210
Add the Code to Our Practice App 213
Replace the Difficult Dependency with a Mock Object 220

Write the First Tests of the Change Password View Controller 223

18.

19.

20.

Test the Cancel Button

Contents ® xii

227
229
240
242
245
251
253
254

255
255
256
259
260
268
271
272

273
273
274
275
279
281
284
286
288
293
295
296

297
297
299
299
300
303
303
305
307
308

Contents ® xiii

Step Back to Refactor the Method as a Whole 309
Add the Name to the Greeting 314
Key Takeaways 317
What's Next? 318

Bibliography 321

Index 323

Foreword

In these days of social media, direct marketing, and sponsored “influence,”
there seems to be an arms race to devalue words as rapidly as possible. A
mere two thousand years ago, a “passion” was a commitment to a cause or
belief so powerful that it led to suffering, abandonment, and rejection from
your closest personal friends, even to the greatest of personal sacrifices.
Today, on my LinkedIn screen as I write this, I can see people who tell me
that they are “passionate” about “digital talent,” “advertising and marketing,”
and “blockchain and broader financial technology.” The message that each
is conveying appears to be that they’re open to recruiters talking to them
about paid work in those fields. Similarly, “evangelism” has shrunk in scope
from announcing the good news from on high to working in marketing for a
technology company.

Nonetheless, I have no hesitation in describing Jon Reid as a passionate
evangelist for test-infected—test-driven is not strong enough—development,
and improving the quality of iOS apps. I worked with Jon at Facebook back
in 2014, where he brought his trademark combination of enthusiasm, com-
mitment, kindness, patience, and humility to bear on some particularly
challenging problems. We had already met and collaborated both online and
at conferences, and I knew this about Jon: everything he says about testing
with i0OS is not because he is the expert, but because he wants you to become
the expert too. Not necessarily straight away, but he wants you to share in
the beauty and power he sees and to develop the same care and appreciation
about the topic.

This book will support you in that journey. Whether you picked it up because
you're wondering why Xcode always asks you to “include unit tests” when
you start a project, or because you're looking for specific tips to solve tricky
problems and increase your test coverage, you'll find help in here. I did. On
the day that Jon sent me the manuscript, I was struggling with writing a test
to show that one view controller presented another modally. I searched this

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Foreword ® xvi

book, and there was the answer. That makes it easy to write a conclusion for
this foreword: read this book, because we've tested it, and it works.

Graham Lee
Head Labrarian at https://labrary.online

Warwick, United Kingdom, November 2019

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Preface

One of the principles of agile software development is to “respond to change.”’
Agility sounds appealing, but these days it is often approached as a project-
management tool. Yet we are developers, working in code. The more the code
itself resists change, the harder it will be to adopt agility in any meaningful way.

But we can change this—because we are developers, working in code. There
are disciplines that fall under the term “technical agile practices.” Among
these are unit testing, refactoring, and test-driven development. These are
some of the tools we can use to make code pliable so we can safely bend that
code into new shapes.

I've been learning to apply these disciplines in the workplace since 2001.
Lately I've been teaching “Test-Driven Development for iOS” workshops.” So
it seemed a safe bet that if I ever wrote a book, it would be about TDD.

But I realized that folks can learn theoretical TDD, but still be stuck on iOS
particulars. Because if you don’t know how to write unit tests for iOS code,
how can you ever TDD it? So my book plans pivoted, and here we are. My goal
is to give you solid handholds so you can unit test your iOS code.

Apple’s framework for the user interface, UIKit, lies at the center of iOS code.
And the center of UIKit is view controllers. That’s why I focus on unit testing
view controllers.

It may seem counterintuitive to test Ul-centric code using unit tests. As soon
as one sees “UI” or “view,” it’s easy to assume that “Ul tests” are the best fit.
But UI tests don’t provide the level of control and fast feedback that unit tests
give. Ul tests are more about automating tests for quality assurance. Unit
tests, when they are very fast, serve a different purpose. They become a
development tool, helping you bend the code so you can “respond to change.”

1. https://agilemanifesto.org

https://agilemanifesto.org
https://qualitycoding.org/services/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Preface ® xviii

So let’s learn how to write unit tests for iOS apps. But keep in mind that the
unit tests themselves aren’t the goal. They’re not the end, they're the means.

How This Book Is Organized

This book explores its ideas using coding examples. Each chapter has a section
describing how to make “a place to play.” One can learn things by reading,
but learning by doing is more effective. If you take the trouble to set up each
project, trying the changes and experiments, your learning will go deeper.

I've organized the book into three parts: Foundations, iOS Testing Tips and
Techniques, and Using Your New Power. Here’s a quick summary of each part.

Part I: Foundations

The first part covers the foundations of using XCTest with iOS apps. The first
three chapters cover XCTest. We start with test assertions, move on to man-
aging test suites, and then how to use code coverage to reveal holes.

The next two chapters get into iOS apps. We explore how the app launch
sequence may interfere with test isolation. Then we’ll see how to load view
controllers from test code. This varies, depending on whether a view controller
is storyboard-based, XIB-based, or code-based.

The last chapter of Part I examines dependencies that make testing difficult.
Managing dependencies and replacing them is a foundational skill for unit
testing. We'll see what options are available to us in the Swift programming
language.

Part II: iOS Testing Tips and Techniques

The second part is a grab bag of techniques for testing iOS specifics. You can
jump around these chapters more freely. You can follow the cross-references
that appear where the chapters build on each other.

We start with the basics of making sure outlets are connected, and how to
tap buttons. This alone opens up a world of testing possibilities.

Then we’ll see how to test presented views. This includes alerts and navigation
from one view controller to the next.

Things become more challenging as we get into persistent data and networking.
These topics lead us into test doubles. We’ll see how to use fakes, spies, and
mocks.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Disclaimer: No SwiftUl Support ® xix

For examples of more complicated Ul elements, we’ll examine text fields and
table views. They’ll take us into the topic of how to test delegate methods.
Finally, we’ll see how to test view appearance using snapshot tests.

Part lll: Using Your New Power

The last part demonstrates what a solid set of unit tests empowers you to do.

Chapters 17, 18, and 19 focus on refactoring. Contrary to common usage,
the word “refactoring” doesn’t mean rewriting. Instead, it’s a structured disci-
pline of moving in small, verified steps to change the design of code.

Unlike most of the book, the examples in these chapters build on each other,
so do them in order. In Chapter 17, we create a working view controller, bring
it under test, and begin refactoring. We do this with the most common
refactoring moves. These moves belong in your tool belt.

To illustrate how much we can change code design by applying small steps,
the UI pattern starts from model-view-controller (MVC). In Chapter 18, we
refactor our way from MVC to model-view-view-model (MVVM). Then in Chapter
19, we transform the view controller to use model-view-presenter (MVP). The
point isn’t to promote any particular Ul pattern but rather to show how
refactoring makes it possible to do large transformations.

Finally in the last chapter, we’ll do test-driven development. This code example
is unrelated to the earlier chapters. TDD combines unit testing and refactoring
with emergent design. Having covered unit testing and refactoring, you'll be
most of the way there by the time you start this chapter.

Disclaimer: No SwiftUl Support

SwiftUI is Apple’s new declarative Ul paradigm. They unveiled their first version
of it at WWDC 2019. Since there’s a lot of excitement around this paradigm,
you may wonder why it’s not covered in this book.

The main difficulty is that as I write this, SwiftUI is still quite new. This makes
it a moving target, which Apple will iterate on over the next few years. Not
only that, but I simply haven’t used it yet.

And Apple has initially focused on making SwiftUI work and not on making it
testable. In the first round, there don’t seem to be any clean ways of testing the
behavior or data flow of SwiftUI code. Some folks in the iOS developer commu-
nity are coming up with their own patterns and helpers as workarounds. Will
we come to agree on any standards for unit testing SwiftUI? My guess is that
this will happen when Apple decides to put their weight into the problem.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Preface ® xx

So this book uses the well-established declarative paradigm of UIKit. As you
create new projects for the worked examples, be sure to select “Storyboard”
as the user interface, not “SwiftUI.”

Online Resources

The source code shown in this book can be found under the “Source code”
link on the Pragmatic Bookshelf website.” You can also help improve this
book by submitting errata, from typos to content suggestions.

Acknowledgments

First, I must thank my wife, Kay Reid. She’s been my constant “go for it” voice,
encouraging me to grow my initial teaching into a book and a consultancy.

Daniel Steinberg was the first person who advised me to write a book. Daniel,
I owe you a drink.

I also want to thank Graham Lee. He was the first “voice in the wilderness”
with his book Test-Driven iOS Development [Leel2]. Thank you for that book,
for being an encouraging friend, and for writing the foreword to this book.
Who else but Graham would turn a technical foreword into a reflection

spanning thousands of years?

I rely on feedback loops for software development, but had no idea that writing
a book worked in the same way. I'm deeply grateful to the technical reviewers
whose feedback made this book so much better. The reviewers were Andrew
Ebling, Fred Brown, Janie Larson, Josh Justice, Liz Marley, and Mark Dalrymple.

Besides the “official” reviewers who worked with my editor, many of you
emailed me directly. Thank you for your corrections and suggestions. I espe-
cially want to thank Simon Rofe, who struggled with me to find a way to unit
test storyboard segues. Cheers, mate.

Finally, I want to thank all the students at my workshops on test-driven devel-
opment for i0S. Several innovations came from those discussions, and some
were discovered by the students. Every time I teach, I learn something new.

Jon Reid
jon@qualitycoding.org
San Jose, California, USA, April 2020

3. https://pragprog.com/book/jrlegios

https://pragprog.com/book/jrlegios
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part I

Foundations

What are the basic tools and skills you need to
write unit tests for iOS code?

There are subtleties around how unit tests work in
XCTest. They’re not difficult but are often over-
looked. Let’s get this right to avoid problems down
the road.

As we get into iOS specifics, it’s helpful to know
how your normal application launch affects testing.
And you'll need to know how to load your view
controllers so you can test them.

But typical iOS code contains dependencies that
interfere with testing. Let’s learn how to identify
which dependencies are problematic and how to
box them off. Previously untestable code will be-
come testable.

CHAPTER 1

Assert Yourself

Every company wants to reduce their costs. In software, making changes is
inexpensive: we wiggle our fingers on keyboards. So where do the costs lie?
Aside from development time, they lie in errors, and how much time it takes
to detect these errors. (They also lie in building the wrong thing, which is
beyond the scope of this book.)

To detect problems, mobile developers use all kinds of feedback loops. For
example, we keep an eye on crash reports and customer complaints. But
that’s the longest loop. After making an incorrect change, it takes a long time
to get that feedback.

To try to prevent errors from making it all the way to customers, companies
use manual testing. The best quality experts apply talent and creativity to do
exploratory testing. Let’s not waste their time asking them to follow steps in
mind-numbing repetition. Besides, the time between making an error and
getting feedback from testers is still long.

What if we could do a large amount of testing using computers? In fact, what
if the developer’'s own computer could provide feedback? And what if this
feedback were so quick, you could get it on every change you made? This
kind of rapid feedback is a game changer. It not only catches problems
quickly, it can change the way you code.

This is what unit tests are for. Maybe you haven’'t done any unit testing in
your iOS apps yet. Or maybe you've been able to test some logic, but your
tests don’t cover the iOS-specific parts. (And those are important parts.)
Wherever you are in your unit testing journey, the goal for this book is the
same: to reduce your costs.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself * 4

What Are Unit Tests Anyway?

There’s some confusion about what makes a test a unit test. Many people try
to focus on the “unit” part of the name, thinking it describes testing a unit
of production code. I'll continue to use the term because it’s widespread, but
let’s forget about asking “What’s a unit?” Instead, here’s my definition:

Unit tests are a subset of automated tests where the feedback is quick, con-
sistent, and unambiguous.

Quick: A single unit test should complete in milliseconds. We want thousands
of such tests.

Consistent: Given the same code, a unit test should report the same results.
The order of test execution shouldn’t matter. Global state shouldn’t matter.

Unambiguous: A failing unit test should clearly report the problem it detected.

In our first chapter, we’ll explore the fundamental tool of unit testing: asser-
tions. You'll learn the most common assertions in the Swift XCTest framework
in a hands-on way.

If you're a seasoned unit test writer, you may want to skip ahead to the Key

to go over the fundamentals. What are assertions for? What do they report?
Do you know how to choose the right assertion for the right job? This chapter
will help you get familiar with these tools, which we’re going to be using all
the time.

Create a Place to Play with Tests

Assertions give unit tests a way to state their expectations. The tests fail if these
expectations aren’t met. Let’s make a place outside of your actual projects where
we can experiment with how they work. Throughout this book, you'll learn new
concepts by playing in these safe spaces. Then in the exercises at the end of
each chapter, you'll begin applying these concepts to your own code.

When it comes to learning, reading doesn’t come close to doing. If you take
the code from the examples and type them into your computer, your learning
will go deeper. So I encourage you to open your IDE of choice and give it a
go. (The examples will use Xcode.)

Let’s start by making a place where we can play with tests. Xcode playgrounds
are tricky to use with XCTest, so we won't do that. Instead, we’ll make a new
project. In the Xcode menu, select File » New » Project... or press Shift-3-N.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Create a Place to Play with Tests ® 5

It doesn’t matter what type of project we make as long as it comes with unit
test support. But since we're going to focus on testing iOS apps, we may as
well get used to what that feels like. First, create an iOS Single View App.

Next, choose any options you like for your new project. In the examples that
follow, we’ll use the project name AssertYourself. But make sure to do the following:

e Choose “Swift” as the language.
* Choose “Storyboard” as the user interface. (Don’t select “SwiftUI.”)
¢ Select the check box for “Include Unit Tests.”

You now have a project set up to run unit tests on an iOS app, which we’ll
use for our learning experiments.

Select the initial test file that the new project created. Its name will be the
project name followed by Tests. So for this project, find AssertYourselfTests.swift.

Delete every method in the AssertYourSelfTests class, leaving only an empty shell:

class AssertYourselfTests: XCTestCase {

}
Make sure your destination is set to an iOS simulator. Any simulator will do.

Now in the Xcode menu, select Product » Test or press #-U. You might want
to learn this keyboard shortcut—you’ll be doing this often. Think U for “unit
test” to remember it.

This will perform several steps and then run the tests. You won’t see any test
failures because there are no tests. You may see this image show briefly on
your screen:

Test Succeeded

If you didn’t see that image, go to Xcode Preferences and select the Behaviors
tab. There you can customize what happens when testing succeeds. To display
the image, select the check box “Notify using bezel or system notification,” as
shown in the image on page 6.

Now we're ready to play. In the following sections, we’ll experiment with
assertions to learn more about them.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself ® 6

[NON J Behaviors
- QRAY 4 / B W 3 @

General Accounts [Behaviors | Navigation Fonts & Colors Text Editing Key Bindings Source Control Components Locations Server & Bots

Build Ol a5 =
Starts Play soun Sosum <

v Generates new issues () Speak announcement using | Samantha <

v Succeeds

V Fails Notify using bezel or system notification

Testing
Starts () Bounce Xcode icon in Dock if application inactive

V Pauses
Generates new issues (3 show tab named ‘ in | active window <
Generates output

O [show 2 navigator | © Testnavigator °

V Fails

Running 3| show C | debugger with | Current Views C
Starts | show C | inspectors

v Pauses —

v Generates output O/ show 2 toolbar

v Completes
Exits unexpectedly 3| Show C| editor as | Current Editor ¢

GPU Frame Capture
Starts

+ Completes

+

JJ

@] Navigate to \ first new issue ¢

(JRun | Choose Script.. c

Write Your First Assertion

Now that we have a home for tests, let's go over how to use the testing
mechanism. How does a test communicate success or failure? What does
Xcode show you when a test fails? What does it show when a test succeeds?

The way a test reports a failure to XCTest is through assertions. Let’s start
with the simplest assertion. Add the following method to the AssertYourselfTests
class:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_fail() {

XCTFail()
}

First, what makes this function a test?

e It lives within a subclass of XCTestCase.
e It isn’t declared private.

¢ Its name starts with test.

e It takes no parameters.

¢ It has no return value.

report erratum - discuss

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Write Your First Assertion ® 7

Why the underscore in the test name? This goes against Swift’s normal “camel
case” naming conventions. But good test names often contain three parts. I like
to use underscores to separate these parts and camel case within each part. I'll
explain this further when we have a test name describing its inputs and
expected output. For now, know that the underscores separate the test name
into parts, which we’ll look at in Add Tests for Existing Code, on page 40.

This test does nothing but fail. Run it by pressing #-U and observe what
happens. First, you may see this image show briefly on your screen:

Test Failed

(If you didn't see that image, go back to the Behaviors tab in Xcode preferences.
Only this time, customize what happens when testing fails.)

Looking at the earlier source file within Xcode, you’ll see the Test 0
Status Icon in the left-hand gutter, like the image to the right.

X marks the spot in two places: the method and the class containing the
method. The method is a test, also known as a test case. The class represents
a test suite, which is a collection of tests. The X icon shows a failure at both
the test level and the suite level. You'll also see that Xcode highlighted the
XCTFail() line and added an annotation to its right.

XCTFail() © failed
So Xcode has marked the following:

e The class containing a failing test
e The method defining a failing test
e The line with the failed assertion

Now add // before XCTFRail() to comment out the assertion. Press $-U to run the
tests. You'll see the following:

e The annotation disappears from the assertion line
e The test status icons change from red Xs to green check marks, o
like the image to the right.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself ® 8

This may look trivial, but it’s significant. It means we have a way to fail a test,
with Xcode showing us where the test reported the failure. You can also see
that when a test finishes without triggering any assertions, the test passes.

As you progress in your testing ability, you’ll even be able to write
assertions defining what you want the code to do. Then you can
change the production code until it passes the tests. We’ll return
o to this topic in Chapter 20, Test-Driven Development Beckons to

Add a Descriptive Message

Seeing the location of a test failure is a good start. But when a test fails, we
have to diagnose what went wrong. We can save time for ourselves in the
future by having the assertion explain anything we know at the point of failure.

XCTFail() can take a String parameter as an assertion message. Let’s see how it
works. Add the following method to the class:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift

func test_fail withSimpleMessage() {
XCTFail("We have a problem")

}

Run the tests. Note how Xcode puts the message in the annotation:

XCTFail("We have a problem") © failed - We have a problem

Since the annotation is on the same line as the failure, you may ask, “Couldn’t
we have put a message to ourselves in a code comment?” But this isn’t the
only place the message appears.

In the Xcode menu, select View » Navigators » Show Issue Navigator (or press
#-5). The Navigator column on the left will show any issues, including test
failures. You may need to click the Buildtime selector, shown here:

BEH=ZQANSCEop B

Buildtime (2) EEUTING

v [] AssertYourselfTests 2 issues (%]
v € AssertYourselfTests.test_fail() failed

& failed
AssertYourselfTests.swift

v € AssertYourselfTests.test_fail_withSim...

€ failed - We have a problem
AssertYourselfTests.swift

As you can see, the descriptive failure message appears in the Issue Navigator.
It also appears in the test logs, which other tools may process—especially on
continuous integration servers.

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Avoid Conditionals in Tests ® 9

Thanks to Swift's string interpolation, XCTFail() can do more than spit out a
string literal. Add this to the suite:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_fail withInterpolatedMessage() {

let theAnswer = 42

XCTFail("The Answer to the Great Question is | (theAnswer)")
}

(Strings are italicized in code samples. That’s a backslash \ for string interpo-
lation, not a pipe |.)

Run the tests, and you’ll see the following:

failed - The Answer to the Great Question is 42

Avoid Conditionals in Tests

We can report failures and include descriptive messages. Now that you've
tasted the power of XCTFail, it's tempting to use it everywhere. All it takes is
a little more code in the test, right? That may be true, but “more code” is code
that can go wrong. Let’s learn how to simplify our test code by introducing
more assertions.

For example, it might be tempting to test a Boolean result like this:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_avoidConditionalCode() {
let success = false
if !success {
XCTFail()
}
}

That would be fine if we didn’t have other assertions. But we do. Try adding
and running this next test. It achieves the same result but in a more declar-
ative way.

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift

func test_assertTrue() {

let success = false
XCTAssertTrue(success)

}

By using the Boolean assertions XCTAssertTrue() and XCTAssertFalse(), we can avoid
many conditionals in our test code.

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself ® 10

Eliminating branches from test code makes it easier to understand.
I want test code to be extremely simple. In fact, xUnit Test Patterns

= [MesO07] lists conditional test logic as a test smell.

Let’s look at the three types of control flow constructs we use daily:

e Statements in a sequence
e Conditionals
e Loops

These control flows fall into a paradigm called structured programming. They've
become the building blocks of programming.

If our test code can avoid conditionals and loops, then we’re left with one
thing: statements executed in sequence. The best test code is dead simple to
read. Of course, there are still conditionals inside there somewhere. But by
using assertions that have more power, our test code becomes simpler.

Describe Objects upon Failure

Wouldn't it be nice if we had assertions that came with descriptive messages?
The assertions we've seen so far can only say that they failed, but they can't tell
us why. But there are some assertions that describe objects. We'll also look at
how to customize the way objects describe themselves in these messages.

Here’s an assertion to confirm that an optional value is nil. Add this test and
give it a run:
AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertNil() {
let optionalValue: Int? = 123
XCTAssertNil(optionalValue)
}

This is the first assertion that gives us more information upon failure:

XCTAssertNil failed: "123" -

Instead of nil, we got "123". But why is it in quotes when the type is an
optional integer with value 123? That’s the way XCTest reports strings, and
assertions ask objects to describe themselves as strings. We can see this
better with a struct instead of an Int:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
struct SimpleStruct {

let x: Int

let y: Int

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test for Equality ® 11

func test_assertNil_withSimpleStruct() {
let optionalValue: SimpleStruct? = SimpleStruct(x: 1, y: 2)
XCTAssertNil(optionalValue)

}

Running this test gives us this message:

XCTAssertNil failed: "SimpleStruct(x: 1, y: 2)" -

That’s pretty readable for a simple struct. But some types have complicated
descriptions. This can make failure messages hard to read. We can control
how a type describes itself by making it conform to CustomStringConvertible.

Here’s a structure that is identical to the previous one, but it adds the protocol
to give itself a custom description:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift

struct StructWithDescription: CustomStringConvertible {
let x: Int
let y: Int

var description: String { "(\(x), \(y))" }
}

func test_assertNil_withSelfDescribingType() {
let optionalValue: StructWithDescription? =
StructWithDescription(x: 1, y: 2)
XCTAssertNil(optionalValue)
}

Running this test gives us the following simplified failure message:

XCTAssertNil failed: "(1, 2)" -

XCTAssertNil() is one assertion that gives more information. That’s because it
takes an object instead of a Boolean value. The assertions for equality also
give more information, and we’ll look at them next.

Even in the cases where we provide our own descriptive messages, it's good
to have an option to simplify the output. Keep CustomStringConvertible in your
tool belt.

Test for Equality

We've tried a few different assertions so far, including one that gives more
output. And we have a way to customize its output. But now we’re coming
up to the workhorse of assertions, the one you’ll use most often.

The most common assertion takes a result and checks if it's equal to an
expected value. Try entering and running this test:

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself ® 12

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertEqual() {
let actual = "actual"
XCTAssertEqual(actual, "expected")

}
Here’s the resulting failure message:

XCTAssertEqual failed: ("actual") is not equal to ("expected") -

It's worth noting that other unit testing frameworks usually use (expected,
actual) for their equality arguments. The order matters because the failure
message states which is which in the following format:

expected: <"expected"> but was: <"actual">

But with XCTAssertEqual(), the argument order doesn’t matter. It simply reports
("A") is not equal to ("B"). Since we can put them in any order, there’s no need to
place the expectation first, as in

XCTAssertEqual("expected", actual)

But it does change the failure message. I prefer to flip the order, placing the
expectation last. Whichever style you prefer, it doesn’t matter to XCTest. But
to make assertions easier to read, try to be consistent across your project.

Test Equality with Optionals

Let’s explore equality further. One of Swift’s core features is optional values.
When one of the arguments to XCTAssertEqual() is optional, what happens? Enter
and run the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_assertEqual_withOptional() {
let result: String? = "foo"
XCTAssertEqual(result, "bar")

}
The failure message is

XCTAssertEqual failed:
("Optional("foo")") is not equal to ("Optional("bar")") -

Yet we typed a plain string literal "bar" as the second argument. How did it
become optional?

Well, XCTAssertEqual() requires both arguments to be the same type. Swift knows
that if a value of type T is being assigned to a variable of type T?, it can wrap
it. This promotes the value from non-optional to optional.

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Fudge Equality with Doubles and Floats ® 13

All this makes it easier to write equality assertions when optionals are involved.
There’s no need to balance out both sides of the equation ourselves. This
helps make test code more readable.

Why do I emphasize readability for test code? Isn’t it good enough
to have things pass or fail?

Change happens. The production code will evolve, so test code will
need to change with it. To change test code, we need to understand

6 it. And every time we need to understand code, we read it. Making
test code readable is an act of kindness to your coworkers, and to
yourself.

As Clean Code: A Handbook of Agile Software Craftsmanship

[Mar08] says, “Test code is just as important as production code.”

Fudge Equality with Doubles and Floats

We've looked at the equality assertion. We've seen how it continues to work
fine with optional values. Now let’s see how it works with floating-point
numbers. If you're not already aware of what can go wrong, buckle your
seat belt.

Enter this next test. But don’t run it yet:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_floatingPointDanger() {
let result = 0.1 + 0.2
XCTAssertEqual(result, 0.3)
}

Before running the test, try predicting the outcome. Do you have an expected
result in your head?

Okay, now run the test. You'll see the following failure message:
XCTAssertEqual failed: ("0.30000000000000004") is not equal to ("0.3") -
What in the world is going on?

We're used to using ten digits to represent numbers. Can you write 1/3 in
decimal notation? No. The sequence 0.3333... goes on forever, so anything
you write down is an approximation.

That’s just the way math works. Computers face the same problem, but
everything boils down to 1s and Os, so the tricky numbers are different. We

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself * 14

can’'t write 1/10 in binary notation. You can learn more about this at “What
Every Programmer Should Know About Floating-Point Arithmetic.”

Let’s get back to assertions. Since floating-point numbers are approximations,
we need a hand-wavy way to assert equality—something that says, “These
two numbers should be equal, more or less.” Enter the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_floatingPointFixed() {
let result = 0.1 + 0.2
XCTAssertEqual(result, 0.3, accuracy: 0.0001)
}

The accuracy parameter gives us a way to express the “more or less” fudge
factor. Run this test and you’ll see that it passes.

It's hard to predict in advance which floating-point numbers will cause
problems. So just use the accuracy parameter whenever you want to use
XCTAssertEqual() with Double or Float types.

Avoid Redundant Messages

Let’s finish up our examination of the equality assertion by looking at its
descriptive message.

As you may have guessed from Add a Descriptive Message, on page 8, each

assertion can have an optional message. When you first learn this power, it’s
easy to get overly excited. But consider the following test:

AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
func test_messageOverkill() {
let actual = "actual"
XCTAssertEqual(actual, "expected",
"Expected \|"expected\" but got \"\(actual)\"")
}

The resulting failure message is:

XCTAssertEqual failed: ("actual") is not equal to ("expected") -
Expected "expected" but got "actual"

The added message may be a little more precise. But if you're consistent with
the order you use for actual value versus expected value, it doesn’t add much.
Getting all that formatting right took extra work for little benefit.

Remember, when XCTAssertEqual() or XCTAssertNil() fail, they provide a fair bit of
information. It’s usually enough. XCTAssertTrue() and XCTAssertFalse() only say they

1. https://floating-point-gui.de

http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
http://media.pragprog.com/titles/jrlegios/code/AssertYourself/AssertYourselfTests/AssertYourselfTests.swift
https://floating-point-gui.de
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Choose the Right Assertion ® 15

failed, but that too is often enough. We're going to aim for tests that are so
short, we won'’t need to add any messages of our own.

So for now, resist the temptation: unless you’re using XCTFail(), leave the
message out. We'll find a use for assertion messages later.

Before the invention of unit testing frameworks, it wasn’t like programmers didn’t
run any tests. We wrote little main() functions in our source files, conditionally compiled
out. By building a single file with its main() function enabled, we’d make a little program
to exercise that one file. It would print() to the console, and we'd read the output to
see if it matched what we wanted.

Life is much easier now. Instead of having a human read the output, assertions
give us self-checking tests. And we have test suites, which let you run a set of tests
in one shot.

.
Choose the Right Assertion

That wraps up our tour of the most common XCTest assertions. With these
choices and more, how do you choose which one to use for a particular test?
Since all automated tests come down to a true/false decision, it may be
tempting to forget the choices and simply use XCTAssertTrue() for all your tests.
For example, you may think about writing assertions like these:

XCTAssertTrue(a == b)
XCTAssertTrue(optionalValue == nil)

These assertions will fail correctly when a is not equal to b, or when optionalValue
is not nil. But the failure messages would only say

XCTAssertTrue failed -
Then we’d have to diagnose what went wrong.

Assertions like these throw away valuable information. As xUnit Test Patterns
[MesO07] explains, test assertions have two goals:

e Fail the test when something other than the expected outcome occurs.
e Document how the system under test is supposed to behave (i.e., tests
as documentation).

In other words, it's not enough to report that a test failed. What was the
actual result? How did it differ from the expected result? These are the
questions we should be able to answer from failure messages.

report erratum -« discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself * 16

So pick the assertion function that’s closest to what you want to say. While
XCTest provides sixteen assertion functions,” these are the ones you’ll use
the most:

Assertion Purpose
XCTAssertEqual(_:_:) Asserts that two values are equal

XCTAssertEqual(_:_:accuracy:) Asserts that two floating-point values are equal
within a certain accuracy

XCTAssertNil(_:) Asserts that an optional value is nil

XCTAssertNotNil(_:) Asserts that an optional value is not nil
XCTAssertTrue(_:) Asserts that an expression is true

XCTAssertFalse(_:) Asserts that an expression is false

XCTFail() Fails the current test. You should always provide a

descriptive message.

Key Takeaways

What are the key points from this chapter that you should apply to your
coding?

¢ A test case is a function in a subclass of XCTestCase where the function has
the following traits:
— Its name starts with test
— It has no parameters, and no return value
— It isn’t private

¢ Press #-U (think U for “unit test”) to run tests.

e An assertion failure marks the test as failing. Otherwise, the test case
passes.

¢ Avoid conditional branches in test code to keep test code simple. You can
do this by choosing an assertion that expresses the condition you need.

e When comparing floating-point numbers, use XCTAssertEqual() with an accu-
racy: argument.

¢ If your test needs a condition that the built-in assertions don’t provide,
then put an XCTFail() (with a description message) inside a conditional
clause.

2. https://developer.apple.com/documentation/xctest

https://developer.apple.com/documentation/xctest
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities ® 17

¢ Check the failure reporting of your tests. If the description of an object is
hard to read, provide a custom description by conforming to the Custom-
StringConvertible protocol.

Activities

Now it’s time for you to put this chapter into action. Read through this list,
pick one of the activities, and do it. It’s only in doing that we actually learn.

1.

Read Apple’s documentation of test assertions so you know what your
other options are.

Is there any production code you can begin testing today? Look for low-
hanging fruit—functions that use only their input arguments to calculate
a return value. This includes failable initializers: write one test checking
for a nil return value and another for non-nil. (Pro tip: Any time you add a
new test, make sure you see it fail by temporarily breaking the production
code.)

If your code already has some unit tests, then do the following:

a.

b.

Read through the tests you have.

Select a simulator, and press #-U to run your own tests. Make sure
they all pass. If there are any test failures, delete those tests.

Is each test using the best assertion for the job? Improve any you can.

Check calls to XCTAssertEqual() to see if the argument order is consistent.
Try to stick to a consistent order for actual/expected.

Look for any XCTAssertEqual() assertions that compare floating-point
numbers. Do they use the accuracy parameter? Add any that are
missing.

Consider whether there are any optional assertion messages you can
delete because they’re redundant.

Add descriptive messages to any XCTFail() assertions that are missing
them.

If you've changed any assertions or messages, make sure their failure
output is helpful. You can check this by introducing temporary errors
in either the test code or the production code. Afterward, don’t forget
to remove these errors, then run the tests to make sure they pass.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 1. Assert Yourself * 18

What’'s Next?

We'll talk more about assertions as we put them to use, especially when we
make our own test helpers.

You still have plenty of tricks to learn. But you now carry assertions in your
tool belt, and you can begin writing simple tests of your own code.

Now that you’ve written some unit tests, how are these tests run? In the
next chapter, we’ll clarify common misunderstandings of the life cycle of
test cases. You need a mental model that matches what’s actually going on.
In particular, we’ll see how to avoid the most common mistakes that Swift
programmers make.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 2

Manage Your Test Life Cycles

There’s more to tests than the assertions. When does XCTest create and run
the tests? Swift programmers are particularly prone to making wrong
assumptions about test life cycles. These assumptions lead to mistakes in
test design.

Picture a test case that passes when it’s run by itself but fails when it’s run
as part of a test suite. Perhaps you've had this happen to you. The noisy
results keep us from trusting our tests. Flaky tests are worse than having no
tests. To build the safety net under our legacy code, we need reliable tests.

To avoid flaky tests, we want to run each test in a virtual clean room. There
should be no debris left over from previous tests or from manual runs.

Setting up a good clean start for a test can be tricky. As Swift programmers,
we've become used to the way Swift creates objects. It's easy to assume these
ideas apply to test cases as well. But XCTest manages the life cycle of tests:
it decides how tests are made, run, and terminated. So let’s go over what it’'s
doing and get our mental model right.

In this chapter, we’ll explore the life cycle of tests, the different phases within
a test, and how to manage the objects they need. In particular, we’ll look at
setUp() and tearDown(). Read on and you’ll see how to give each test its own clean
room. Along the way, you'll also learn useful tricks for creating new test suites
and for looking at test results.

Make a New Place to Play

Let’s create a new project for this chapter. Follow the steps for Create a Place

and create the project now.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 20

Now let's make a new file in the production code. In the Project Navigator,
select the LifeCycle group in the LifeCycle project. Create a new file, choosing
the Swift file type. Give it the name MyClass. Then double-check the targets.
This is production code, so it belongs in the app target, not the test target.
In the new file, create the following class:

LifeCycle/LifeCycle/MyClass.swift
class MyClass {
func methodOne() {
print(">> methodOne")

}

func methodTwo() {
print(">> methodTwo")
}
}

As you can see, this class has two methods. All they do is print to the console.
We won’t be testing them with assertions. Instead, we're going to examine
the console output to see what gets logged when we run them.

Let’s make a test suite to exercise MyClass. By convention, the name of the test
suite starts with the name of the type we're testing, and it ends with Tests. So
we’ll call this suite MyClassTests.

Name your test suites to match the thing they test. If you want to
test a Foo type, name your suite FooTests. This makes it easier to
o find the tests for any component.

In the Project Navigator, select the LifeCycleTests group in the LifeCycle
project. Make a new file, choosing the unit test case class type. Give it the
nameMyClassTests.

The important thing to double-check is that the test file goes into the test
target, not the app target. Your Save dialog options should look like this:

Group [LifeCycleTests

Targets |(J /A LifeCycle
LifeCycleTests

You should now see MyClassTests.swift. Delete every method in the MyClassTests
class, leaving only an empty shell:

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycle/MyClass.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Start from Test Zero ® 21

LifeCycle/LifeCycleTests/MyClassTests.swift
import XCTest

class MyClassTests: XCTestCase {
}

Whenever we make a new project that includes unit tests, Xcode creates an
initial test file. We won’t be using this file, so let’s delete it. Select LifeCy-
cleTests.swift in the Project Navigator and press &. In the confirmation alert,
select Move to Trash, and wave bye-bye. Cleaning up test code is at least as
important as cleaning up production code, if not more so.

Before we start experimenting with the life cycle of test objects, let’s look at
a few techniques. First, we’ll see how helpful it is to have a stepping-stone
test that precedes the first real test. Then we’ll see how to hook up your tests
so they can access your production code. And finally, we’ll look at how to
examine the console output for specific tests.

Start from Test Zero

Now we have a home for our next set of tests. Before we get into our experi-
ments around life cycles, I'd like to show you a trick. First, whenever I create
a new test suite, I start with a special test I call Test Zero. Add the following
test to MyClassTests:

LifeCycle/LifeCycleTests/MyClassTests.swift
func test_zero() {

XCTFail("Tests not yet implemented in MyClassTests")
}

I call it Test Zero because it precedes the first real test we want to write. Go
ahead and run tests to make sure it fails. Why? This is a check of our
infrastructure. It confirms that our basic test plumbing is correct.

Test Zero helps separate our problems so we can tackle them one at a time.
When we create a new test suite, we're usually thinking about that first test.
But before we get lost writing that test, let's make sure the suite runs. Other-
wise, basic infrastructure problems will interrupt our thinking flow.

This is an example of a larger principle: take a small step, get feedbaclk. If you
learn nothing else from this book, take that principle home with you.

Start a new test suite with a test that does nothing but fail. Run
4 your tests to make sure you get the expected failure.

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 22

I never write Test Zero by hand. Instead, I use custom XCTest templates to
make new test files. You can download the templates I use from my website. "

Hook Up Tests to Production Code

While we've confirmed some plumbing, we haven’t checked that the test code
can reach the production code. We’ll confirm that as we write our first test.
Essentially, we're transforming Test Zero into our first real test that accesses
MyClass.

First, once we've confirmed the expected failure, Test Zero has served its
purpose. Let’s delete it and add a test that uses MyClass. Add the following test:
LifeCycle/LifeCycleTests/MyClassTests.swift

func test_methodOne() {
let sut = MyClass()

sut.methodOne()

// Normally, assert something

}

The name sut stands for system under test, which is usually abbreviated as
SUT. It's a common term for “the thing we're testing.” Unlike this simple
example, tests often have many objects in play. Using a consistent name like
sut makes it clear which object the test is going to act on. It also makes it
easier to reuse snippets of test code.

As it stands, the test won’t compile. It doesn’t know what MyClass is. We need
to add this line at the top of the file:

LifeCycle/LifeCycleTests/MyClassTests.swift
@testable import LifeCycle

Why do we need the @testable attribute on the import statement? That’s because
we didn’t specify access control for MyClass, so it defaulted to internal access.
@testable makes internal declarations visible.

Note that anything declared private remains off-limits, even to tests. This is
different from Objective-C, where nothing is truly private.

The test should now build and run. Unlike an actual unit test, there is no
assertion. Instead, we’ll use tests together with console output as learning
tests to probe the behavior of code we don’t own.

1. https://qualitycoding.org/files/XCTest-Templates.zip

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
https://qualitycoding.org/files/XCTest-Templates.zip
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Examine Console Output ® 23

Examine Console Output

To experiment with test life cycles, we need a way to go beyond test results.
We'll need to examine detailed test logs, the information the tests write to the
console output. Let’s go over how to see these logs.

Add a second test, test methodTwo(), that invokes methodTwo():

LifeCycle/LifeCycleTests/MyClassTests.swift
func test_methodTwo() {
let sut = MyClass()

sut.methodTwo ()

// Normally, assert something

}

With two tests in our suite, press #-U to run tests. Then let’s go find the log
so we can read the nitty-gritty details of this test run.

You can see the console output of the latest run by going to the Xcode menu
and selecting View » Debug Area » Activate Console. But we can do one better.

In the Xcode menu, select View » Navigators » Show Report Navigator (or
press #-9). The Navigator column on the left will show a history of recent
activity. Find the latest test run and click on its log. It will look something
like this:

BEER2QAOC=ED@

SYACICI.W By Time

v //A\ LifeCycle
v O Test Today, 4:14 PM
/" Build
]’ Clean Today, 4:14 PM
v @ Test 11/18/18, 9:40 PM
]’ Build 11/18/18, 9:40 PM
& Log

Q Project

This allows us to see not only the latest output, but also any recent test run
(and other activities).

In the central panel, select the “All Messages” filters at the top. Then select
the line that says, “Run test suite All tests.” A log icon will appear on the right
side, as shown in the image on page 24.

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 24

B2 < > /A Lifecycle) & Test) 3 Log = M
Recent All Issues Errors Only [@]
v Test target LifeCycleTests

@ Destination iPhone 8
v P LifeCycle.app (98914) 2 out of 2 tests passed, 0.003 seconds

» @ Writing diagnostic log for test session. Please attach this log to any test-related bug reports. 0.1 seconds

¥ Run test suite All tests 2 out of 2 tests passed, 0.003 seconds (=)
Testing Complete 1/2/20, 2:54 PM 14.3 seconds
No issues

Click this icon to reveal the transcript. It will look something like this:

Test Suite 'All tests' started at 2019-06-22 19:08:40.422

Test Suite 'LifeCycleTests.xctest' started at 2019-06-22 19:08:40.422

Test Suite 'MyClassTests' started at 2019-06-22 19:08:40.423

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' started.

>> methodOne

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' passed

(0.002 seconds).

Test Case '-[LifeCycleTests.MyClassTests test methodTwo]' started.

>> methodTwo

Test Case '-[LifeCycleTests.MyClassTests test methodTwo]' passed

(0.000 seconds).

Test Suite 'MyClassTests' passed at 2019-06-22 19:08:40.426.
Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.003)
seconds

Test Suite 'LifeCycleTests.xctest' passed at 2019-06-22 19:08:40.426.
Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.004)
seconds

Test Suite 'All tests' passed at 2019-06-22 19:08:40.426.
Executed 2 tests, with 0 failures (O unexpected) in 0.002 (0.005)
seconds

What does this show? First, that we have several test suites. Like Russian
dolls, each suite contains another one, until we reach MyClassTests.

Within MyClassTests, we have our two test cases. Don’t be afraid of the funny
notation:

-[LifeCycleTests.MyClassTests test methodOne]

That’s in the style of Objective-C logging. The minus sign indicates a message
to an instance. The square brackets show the message, with the recipient on
the left and the content on the right.

So first we see that test methodOne() started. The transcript shows any output,
especially messages from failed assertions. In our case, it shows the output
from the print(_:) statement, showing that the test successfully ran methodOne().
Then it reports whether the test passed or failed, along with the time it took.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Examine Console Output ® 25

We get a similar report for test_methodTwo(). Then counts of how many tests
passed or failed bubble up to each test suite level.

We can also look at the output for individual tests only. Click the up arrow
on the right side to collapse the “All tests” transcript. Then option-click the
disclosure triangle to the left of “Run test suite All tests.” A regular click will
expand one level, while an option-click expands all levels. Click on a test case
to reveal the log icon, or hover your mouse along the right until it appears.
Then click the log icon at this level to see the transcript for a single test case,
like this:

| < /; LifeCycle) & Test) 5 Log
Recent All Issues Errors Only [@]

Test target LifeCycleTests
@ Destination iPhone 8

(I
&

v

v Py LifeCycle.app (99101) 2 out of 2 tests passed, 0.003 seconds

» @ Writing diagnostic log for test session. Please attach this log to any test-related bug reports. 0.1 seconds
v & Run test suite All tests 2 out of 2 tests passed, 0.003 seconds
v & Run test suite LifeCycleTests.xctest 2 out of 2 tests passed, 0.003 seconds
v & Run test suite MyClassTests 2 out of 2 tests passed, 0.003 seconds

Test Case '-[LifeCycleTests.MyClassTests test_methodOne]' started.
>> methodOne
Test Case '-[LifeCycleTests.MyClassTests test_methodOne]l' passed (0.002 seconds).
@ Run test case test_methodTwo() 0.000 seconds
Testing Complete 1/2/20, 3:01 PM 7.0 seconds
No issues

Let’s review this method of examining reports. In the Navigator column, we
can select which report we want to examine. For that report, we can filter by
the following options:

e All Messages
e All Issues (which includes any warnings, for build logs)
e Errors Only

Then, by using the disclosure triangles, we can select how much of the tran-
script we want to see—even down to individual test cases. So while you can
view the full console output of the latest run, the Report Navigator offers
history and granularity. Choose whichever works best for your needs.

Now we’re ready to run experiments to learn about object management. First,
we’ll see how tests have separate phases and how this relates to objects being
created and destroyed. Then, we’ll try a common Swift approach to properties
in XCTestCase and observe how it breaks the object management rules. We'll
learn how XCTest actually manages test cases in memory. Finally, we’ll fix
the problem by using the setUp() and tearDown() methods.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

YYYYYYYYYYYY

Chapter 2. Manage Your Test Life Cycles ® 26

Observe Object Life Cycles to Learn the Phases of a Test

Now that we can examine the transcripts of test runs, we can log more
information and see the results. This is what we’ll use to run our experiments
on test life cycles. Let’s record information to learn when objects are created
and destroyed.

(This experiment may feel a little tedious. But memory management is
important in test code, as well as in production code. And the test life cycle
is different than what most folks expect. Let’s lay proper foundations to avoid
making common mistakes.)

Add the following properties and methods to MyClass:

LifeCycle/LifeCycle/MyClass.swift

class MyClass {
private static var alllnstances = 0
private let instance: Int

init() {
MyClass.allInstances += 1
instance = MyClass.alllnstances
print(">> MyClass.init() #\(instance)")
}

deinit {
print(">> MyClass.deinit #\(instance)")

}

func methodOne() {
print(">> methodOne")

}

func methodTwo() {
print(">> methodTwo")
}
}

This keeps a running count of MyClass instances, printing messages when init()
and deinit are called.

Then for the completeness of this example, add an XCTFail() assertion to the
end of test_methodOne(). Something like this will do:

XCTFail("Failed, yo")

Now run the tests. Then find the latest log in the Report Navigator and drill
down to the transcript of test_methodOne(). You'll see something like this:

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycle/MyClass.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Observe Object Life Cycles to Learn the Phases of a Test ® 27

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' started.

>> MyClass.init() #1

>> methodOne

LifeCycle/LifeCycleTests/MyClassTests.swift:10: error:
-[LifeCycleTests.MyClassTests test methodOne] : failed - Failed, yo

>> MyClass.deinit #1

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' failed
(0.005 seconds).

This shows that for test methodOne(), the following occurs:

The test creates an instance of MyClass.
It invokes a method on the instance.
It asserts an outcome.

It destroys the instance.

W

This is what xUnit Test Patterns [MesO7] calls the four-phase test. You can

think of these four phases as set up the thing, call the thing, check the thing,
destroy the thing.

This helps create a virtual clean room for each test. Every test needs to start
from nothing, setting up what it needs. With no changes to the code, tests
should reach the same outcomes regardless of the following:

e Whether a single test is run by itself
e Whether all tests are run together
e Whether the test order changes

FIRST is a helpful acronym for unit test principles: unit tests are fast, isolated,
repeatable, self-verifying, and timely.” Here, we're focusing on “I” for isolated.
Tests should not have different outcomes due to external changes. They should
be isolated from each other and from the world.

The four-phase test also creates a predictable structure. For local variables,
the final cleanup phase is handled by the compiler. So the four phases are
usually shortened to three phases and abbreviated as AAA:

e Arrange
e Act
e Assert

Following The Art of Unit Testing: with examples in C#, Second Edition [Osh13],

I recommend separating these phases by blank lines.

2. https://pragprog.com/magazines/2012-01/unit-tests-are-first

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 28

Separate the Arrange, Act, Assert sections of your tests with blank
lines. Then each line of test code identifies its purpose. This helps
clarify what we're testing. When their intent is clear, tests become
documentation of how the code is supposed to work.

%

The Wrong Way to Reduce Duplicate Test Code

Now we're reaching the critical goal of this chapter: avoiding the testing mis-
take most Swift programmers make. Let’s apply a common Swift programmer
approach to duplication. We’ll see how it creates problems for test code. Delete
the XCTFail() assertion in test_methodOne(). This brings the MyClassTests suite back
to this:

LifeCycle/LifeCycleTests/MyClassTests.swift
class MyClassTests: XCTestCase {

func test_methodOne() {
let sut = MyClass()

sut.methodOne()

// Normally, assert something

}

func test_methodTwo() {
let sut = MyClass()

sut.methodTwo ()

// Normally, assert something

}

See how each test starts with the same line, creating an instance of MyClass?
A typical Swift programmer would think, “Why not promote sut from local
variables to a property?” It would look like this:

LifeCycle/LifeCycleTests/MyClassTests.swift
class MyClassTests: XCTestCase {
private let sut = MyClass()

func test_methodOne() {
sut.methodOne()

// Normally, assert something

}

func test_methodTwo() {
sut.methodTwo ()

// Normally, assert something

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

The Wrong Way to Reduce Duplicate Test Code ® 29

Everything looks cleaner, and more “Swifty.” So what’s the problem? Run the
tests and look at the test transcript. If you drill down to the “All tests” level,
you’ll see something like this:

>> MyClass.init() #1

>> MyClass.init() #2

Test Suite 'All tests' started at 2019-06-22 20:12:15.128

Test Suite 'LifeCycleTests.xctest' started at 2019-06-22 20:12:15.128

Test Suite 'MyClassTests' started at 2019-06-22 20:12:15.129

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' started.

>> methodOne

Test Case '-[LifeCycleTests.MyClassTests test methodOne]' passed

(0.001 seconds).

Test Case '-[LifeCycleTests.MyClassTests test methodTwo]' started.

>> methodTwo

Test Case '-[LifeCycleTests.MyClassTests test methodTwo]' passed

(0.000 seconds).

Test Suite 'MyClassTests' passed at 2019-06-22 20:12:15.131.
Executed 2 tests, with 0 failures (0 unexpected) in 0.001 (0.002)
seconds

Test Suite 'LifeCycleTests.xctest' passed at 2019-06-22 20:12:15.131.
Executed 2 tests, with 0 failures (0 unexpected) in 0.001 (0.003)
seconds

Test Suite 'All tests' passed at 2019-06-22 20:12:15.131.

Executed 2 tests, with 0 failures (O unexpected) in 0.001 (0.004)
seconds

Look for the logging of the init and deinit calls.

Two instances of MyClass are created before tests are even run. And they're
never destroyed.

This is no longer the clean room we want for our tests. Problems can poten-
tially multiply:

e If there’s a problem creating MyClass, it will happen before any tests run.

¢ If there’s a problem destroying it, we’ll never know because the instances
aren’t destroyed.

e If instantiating MyClass has any global side effects, such as swizzling
methods or touching the file system, all bets are off.

What is going on? Keep reading.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 30

The problems that come with “legacy” code don’t apply to only
production code. You can have “legacy” test code as well. Like any
code, test code requires ongoing care to keep it in shape. Any tests

o that fail to preserve the clean room create potential problems.
These problems can go unnoticed for a long time. So make sure
to review the quality of test code, old and new, with the same rigor
you apply to production code.

Learn How XCTest Manages Test Cases

By applying the wrong way to reduce duplication, we've stumbled onto a
mystery. Why are objects piling up before we run a single test? To solve this
mystery, we're going to dig into how XCTest creates and runs test cases.

It's easy to assume that when XCTest runs a test case, three things happen:

1. It creates an instance of the XCTestCase subclass.
2. It runs the specific test method.
3. It destroys the XCTestCase instance.

Or, you may have assumed that XCTest creates one instance to run all the
tests in a suite.

But both are incorrect. Here’s what really happens:
1. XCTest searches for all classes that inherit from XCTestCase.

2. For each such class, it finds every test method. These are methods whose
names start with test, take no arguments, and have no return value.

3. For each such test method, it creates an instance of the class. Using
Objective-C runtime magic, it remembers which test method that instance
will run.

4. XCTest collects the instances of the subclass into a test suite.

5. When it's finished creating all test cases, only then does XCTest begin
running them.

What this means for our example is that XCTest finds MyClassTests. It searches
for method names starting with “test,” and it finds two. So it creates two
instances of MyClassTests: one instance to run test methodOne(), another to run
test_ methodTwo().

And it assembles these instances into a test suite before running any tests.
Since each instance has a MyClass property, we've accidentally created two
instances of MyClass.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Use setUp() and tearDown() ® 31

Why does XCTestCase look like a test suite, when it has a name that says it's a test
case? The difference is between when we're writing test code and when XCTest is
running them.

We can put several test methods inside an XCTestCase subclass. From our point of view
of writing or reading test code, MyClassTests is a test suite. But it’s more accurate to
say it will become a test suite.

When XCTest runs, it creates a separate instance for each test method. So each
instance of MyClassTests is a single test case, from XCTest’s point of view.

./
Use setUp() and tearDown()

Having looked at the wrong way to tackle test code duplication, what's the
right way? XCTestCase provides special methods for us to use.

First, let’s set a term for “stuff the test needs in order to run.” The term we're
looking for is test fixture. Since our two tests use the same test fixture, we
want to move it outside the tests. But simply promoting sut to a property didn’t
work. So what do we do? XCTestCase defines two methods, setUp() and tearDown().
They’re designed to be overridden in subclasses. Combined with careful use
of optionals, we get this:

LifeCycle/LifeCycleTests/MyClassTests.swift

class MyClassTests: XCTestCase {
private var sut: MyClass!

override func setUp() {
super.setUp()
sut = MyClass()

}

override func tearDown() {
sut = nil
super.tearDown()

}

func test_methodOne() {
sut.methodOne()

// Normally, assert something

}

func test_methodTwo() {
sut.methodTwo ()

// Normally, assert something

report erratum - discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ¢ 32

Run the tests and examine the log. You'll see that XCTest created and
destroyed the MyClass instances within each test run. Hurray!

For Swift in particular, the trick is to declare the objects in our shared test
fixture using var instead of let. We also add the ! to make these variables
implicitly unwrapped optionals:

LifeCycle/LifeCycleTests/MyClassTests.swift
private var sut: MyClass!

This may cause you some initial discomfort. Experienced Swift programmers
call ! the “crash operator,” and do their best to avoid it. But the implicitly
unwrapped optional is a necessity here, just as it is for an IBOutlet.

XCTest is a framework, meaning it calls back to our code. setUp() and tearDown()
are template methods as defined by Design Patterns: Elements of Reusable

following sequence for each test case:

1. Call setUp().
2. Call the test method.
3. Call tearDown().

So rest easy. As long as you create what you need inside setUp(), the implicitly
unwrapped optionals won’t crash. And without them, we're creating a context
of unpredictable chaos for our tests. Type the exclamation point. It’s the right
thing for XCTestCase properties.

Note that setUp() alone isn’t enough. XCTest creates test instances, but it
never destroys them. Their properties will live on, so we need tearDown() to
clean up any remains of our shared test fixtures.

Every property you create in setUp() should be destroyed in tearDown().

v

Whenever we programmers learn a new trick, we have a tendency to overuse it. Be
careful not to overuse setUp(). It can become a dumping ground for things used by

only some of the test cases. This in turn makes it hard to reason about the tests when
we read them. Try to limit setUp() to things that matter to most tests in a suite.

report erratum -« discuss

http://media.pragprog.com/titles/jrlegios/code/LifeCycle/LifeCycleTests/MyClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 33

Key Takeaways

Here are the main points from this chapter you should take with you:

Name your test suites to match the thing they test.

When you create a new test suite, start with Test Zero, a test that does
nothing but fail. This will help you confirm that your test plumbing is
correct.

Use @testable import to import the code you want to test.

Inside each test case, there are the Arrange, Act, and Assert phases.
Adding blank lines between the phases helps clarify the function of each
line of code in your tests.

Remember that each test method runs in a separate instance of its
XCTestCase subclass. These instances live inside a collection of all tests,
which the test runner is iterating over. So they all exist before test execu-
tion and are never deallocated (at least, not until the test runner termi-
nates). And so...

Inside XCTestCase subclasses, stored properties should always be implicitly
unwrapped optionals—that is, var with an exclamation point. Set their
values in setUp(). Set them back to nil in tearDown(). Otherwise you won’t be
able to predict or control what objects exist during any test case.

Activities

Solidify your reading by turning it into action. Pick one of the following
activities, and try it.

1.
2.

Use Test Zero the next time you create a new test suite.
If your code already has some unit tests, do the following:

a. Run your own unit tests. Look at the test logs using the console area.
Look at the test logs in the Report Navigator, drilling down to specific
tests. It’s good to know both approaches.

b. Do any test files import the module under test without the @testable
attribute? Add the attribute—at the very least, it helps identify what
you're testing. Then see if you can remove public from production code
types or functions those tests touch.

c. Add blank lines to your test code to separate tests into the AAA sec-
tions: Arrange, Act, Assert.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 2. Manage Your Test Life Cycles ® 34

d. Assuming you have an automated build system that runs your tests,
look at the output. Introduce a temporary test failure. Does your
system make it easy to identify the failure?

3. Fix any test code that doesn’t handle shared test fixtures correctly:

a. Look for test suites that initialize stored properties. Change these
properties from let to var. Make them implicitly unwrapped optionals
with ! on the end. Move their creation into setUp().

b. Look for missing or incomplete tearDown(). Make sure they set properties
back to nil so the test fixture is destroyed.

c. If you're bold enough to try an alternative to Xcode, look into App-
Code.’ Among its many features, it supports plugins. There’s a third-
party plugin that automatically generates tearDown() code.” It can even
do so across the whole project.

What's Next?

XCTest has other facets that we’ll introduce as we need them. But now you've
seen the different phases of a single test case. We make these phases clear
by organizing code within a test method into three sections: Arrange, Act,
Assert. Just remember AAA.

Particularly, you know the biggest mistake Swift programmers make: they
don’t take into account that properties in XCTestCase can interfere with the life
cycle of test fixtures. And you know how to use setUp() and tearDown() to avoid
this mistake.

But as we write unit tests, how will we measure our progress? That's where
code coverage comes in. In the next chapter, we’ll see how to measure coverage
in Xcode. In particular, we’ll see how coverage can mislead us and how to use
it well. We'll also look at a useful technique for adding tests to existing code.

3. https://www.jetbrains.com/objc/

rdown-appcode-plugin/

https://www.jetbrains.com/objc/
https://qualitycoding.org/swift-teardown-appcode-plugin/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 3

Measure Code Coverage and Add Tests

Chipping away at legacy code can be a long process. A good way to add positive
feedback to the process is by measuring code coverage. That way, you'll be
able to have a sense of progress.

Code coverage is a way of measuring how much production code the test code
exercises. But it's often misunderstood, and the results can be misleading.

In this chapter, you'll see what a coverage report tells you about your unit
tests—and what it doesn’t tell you. You'll learn how to use code coverage to
find holes in your test suites. We'll look at rules of thumb for covering different
types of control flows. And you’ll get positive feedback as you bring your
legacy code under test.

And how should we go about writing tests for existing code? We'll look at
whether you should even write such tests. We’ll also go over a cool trick for
testing well-established code.

Make a New Place to Play

Let’'s make a new project. Follow Create a Place to Play with Tests, on page

4, but use the project name CodeCoverage.

Now let’s make a new file in the production code. Name it CoveredClass. Import
UIKit (we’ll need it later in the examples), and let’'s give it a small static
function:

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 36

CodeCoverage/CodeCoverage/CoveredClass.swift
import UIKit

class CoveredClass {

static func max(_ x: Int, _y: Int) -> Int {
if x <y {
return y
} else {
return x
}
}

}

In the test target, delete the initial test file for this project, CodeCoverageTests.swift.
Create a new test suite CoveredClassTests, starting with Test Zero:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
@testable import CodeCoverage
import XCTest

class CoveredClassTests: XCTestCase {

func test_zero() {
XCTFail("Tests not yet implemented in CoveredClassTests")
}
}

Run your tests to make sure you get the expected failure.

We'll add more code as we go, but for now, we’ll start with this to learn the
basics of examining code coverage. First, we’ll turn on coverage. Then we’ll
see how to drill into a partially covered line to see what is and isn’t executed.
Then we’ll learn about characterization tests, a powerful technique for adding
tests to existing code.

Enable Code Coverage

Now let’s enable code coverage on this project. Follow these steps to get to
the check box, as shown in the image on page 37.

1. In the Xcode menu, select Product » Scheme » Edit Scheme... or press
#-<.

2. In the scheme editor, select Test in the left column.
3. Then from the tabs, select Options.

4. Finally, enable the Code Coverage check box to “Gather coverage for all
targets.”

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Examine Code Coverage Results ® 37

/A CodeCoverage) i iPhone 8
»]~ Build Info Arguments Options Diagnostics
2 targets
Run
> > Debug Application Language [System Language
Test ¢ ati . n 7S
| System Region <
f Bare Application Region [Y g .
> -‘N’ ::ga"see Ul Testing Capture screenshots automatically
Delete when each test succeeds
> E Analyze o
Debug (O Gather screenshots for localization
Archive Attachments Delete when each test succeeds
> P
Release
Code Coverage Gather coverage for <
[Duplicate Scheme] [Manage Schemes...] Shared

This will measure code coverage every time we run tests using this scheme.

Examine Code Coverage Results

We need to run the tests another time for our new code coverage settings to
take effect. Do so, then let’s see where the results are shown. In the Xcode
menu, select View » Navigators » Show Report Navigator (or press #-9). In

the latest test run, you will see a new entry labeled Coverage. Select it, as
shown here:

BN B QAOC =D @

v /A CodeCoverage

v O Test Today, 4:42 PM S
/" Build
& Log

v O Test Today, 4:42 PM S
/" Build
& Log

@ Project

The main area to the right will show the app and a coverage percentage. Click
the disclosure triangle. You’'ll see code coverage for each file, as shown in the
image on page 38.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 38

B < /A CodeCoverage) O Test) {} Coverage <O> = H©
(O show Test Bundles [@]
Name ~ | Coverage |
¥ . CodeCoverage.app — 35.1%
» . AppDelegate.swift ——— 64.3%
» 4 CoveredClass.swift 0.0%
P> . SceneDelegate.swift —— 48.3%
» 4 ViewController.swift 100.0%

The coverage measurement for CoveredClass.swift is 0%, with an empty bar. You
may be surprised to see the non-zero coverage for other files, though. We’'ll
address that in Chapter 4, Take Control of Application Launch, on page 53.

Try clicking the column headers labeled Name and Coverage. You can sort
the list by either column. Clicking the same header again reverses its order.
This makes it easy to sort your project’s files by ascending (or descending)
coverage percentage.

Hover your mouse cursor over a row. An arrow will appear next to the file
name. Clicking that arrow will take you to that file. Try doing that for Covered-
Class.swift.

The source code editor now shows a coverage gutter along the right side,
like this:

B2 < > [B codeCoverage) [| CodeCoverage) « CoveredClass.swift) No Selection = [

1 dimport UIKit
class CoveredClass {

static func max(_ x: Int, _ y: Int) -> Int { 0
if x <y {
return y
} else {
return x

}

To the right of the max() function, the gutter is colored red. It shows a count
of 0, which means this section of code was traversed by tests zero times.

If you don’t see a right-hand gutter showing red, select Editor » Code Coverage
in the Xcode menu.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Drill into a Partially Covered Line ® 39

Drill into a Partially Covered Line

Let’s start writing a test for the max() function, keeping an eye on the code cover-
age as we progress. Delete test_zero(), then add the beginnings of the new test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_withlAnd2_shouldReturnSomething() {
let result = CoveredClass.max(l, 2)

}

Note that there’s no assertion yet. Run tests and go to CoveredClass.swift to see
the line-by-line coverage. It should look something like this:

BR < @ CodeCoverage) CodeCoverage) a2 CoveredCIass.swiﬂ) No Selection < >

(I
&

1 dimport UIKit

class CoveredClass {

static func max(_ x: Int, _ y: Int) -> Int { 1
if x <y {
return y
} else {
return x 0

}

The code coverage gutter now shows a smaller red area and two numbers.
The O marks the section that tests haven’t touched. Above that is a 1, marking
a section the test touched once. Between the two, the gutter shows a red-
striped area. Hover the mouse cursor in that area, and you’ll see things
change, as shown here:

BR < & codeCoverage) [] CodeCoverage) « CoveredClass.swift) No Selection < > = [H

1 dimport UIKit

class CoveredClass {

static func max(_ x: Int, _ y: Int) -> Int { 1
if x <y {
return y
} else { RN
return x 0

}

The green section shows the code we’ve touched. The line with the else clause
is part green, part red. This gives us a way to see code coverage inside lines.

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 40

Whenever you see a red-striped area, place your mouse cursor there to
examine which parts of the line remain untouched.

Of course, the problem with our test is that it has no assertion. This demon-
strates the dangerous part of code coverage. Coverage says nothing about
the quality of the tests.

Lack of code coverage proves lack of testing. But positive code
l;lg coverage doesn’t prove anything.

Add Tests for Existing Code

Our incomplete test results in a warning:

warning: initialization of immutable value 'result' was never used;
consider replacing with assignment to ' ' or removing it

This is a good clue that we should write an assertion for the result value.
Let’s bring this code under test.

We can write tests for existing code in two different ways. They depend on
whether the code has proven itself with real use:

e If the code hasn’t yet shipped, we should write tests that express the
requirements for that section of code. This means we need to reason about
how the code is supposed to behave. The tests may even catch some bugs.

e If the code has shipped, then real users are exercising it. As long as no
one has found any bugs, that section of code does its job. This means we
don’t need to try to reason about the code’s behavior. The tests just need
to capture the existing behavior.

Most code in a shipping app has been in use for some time. Do you even need to write
tests for such code? No. That is, not as long as that code doesn’t change.

But as soon as you need to change a section of code, write tests for that section before
making any changes.

Our max() example is trivial, but let’s imagine both cases. If the code hasn’t
shipped, we need to ask, “What are the requirements? That is, what is it
supposed to do?” We know we wrote this function to return the greater of two
integers, so we’'d write tests that express this.

report erratum -« discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add Tests for Existing Code ® 41

But if the code is in use, we don’t need to work backward from the require-
ments. Instead, we can write what Working Effectively with Legacy Code

behavior of the code.
To write a characterization test, do the following:

Call the code from a test, yielding some kind of result.

Write an assertion comparing the result to a value you know won’t match.
Run the test. The failure message will tell you the actual result.

Adjust the assertion so that it expects the actual result.

Rerun the test to see it pass.

SIS

This creates a test that guarantees a piece of the code’s behavior. By building
up coverage with characterization tests, we’re making a safety net. It’s an
early warning system that will tell us if we changed any existing behavior.
With such tests in place, you’ll be able to move faster. Why? Because you
won't need to spend as much time manually checking that you haven’t broken
anything.

For max(), we've done step 1. What we want for step 2 is an assertion that will
tell us the actual value. We can get that by doing an XCTAssertEqual() against a
value we know won’t match:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_withlAnd2_shouldReturnSomething() {
let result = CoveredClass.max(1l, 2)

XCTAssertEqual(result, -123)
}

Step 3, run the tests. This gives us a failure message that tells us the actual
value:

XCTAssertEqual failed: ("2") is not equal to ("-123") -

For step 4, we copy the actual value 2 from the failure message and paste
into the assertion:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_withlAnd2_shouldReturn2() {
let result = CoveredClass.max(1l, 2)

XCTAssertEqual(result, 2)
}

Finally, step 5: run the test to confirm that it passes. You can also update
the last part of the test name to shouldReturn2. This way, the test name itself
expresses the behavior we've captured.

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 42

A good test name has three parts:
1. What the test is exercising. This is usually a function name.

2. The conditions of the test. What are the inputs that make a
difference?

3. The expected result.

And in XCTest, test names must start with test. Separating these
4 parts with underscores makes it easier to see the different parts
—another helpful tip from The Art of Unit Testing: with examples

the conditions part, and should to identify the expectation part.

So in test_ max_with1And2_shouldReturn2(), the name says we are exercis-
ing max. The conditions are that we're calling it with 1 and 2. The
expected result is that it should return 2.

Those are the basics of code coverage. In the following sections, we’ll explore
techniques for effectively covering different types of code constructs, such as
conditionals, loops, and statements in a sequence.

Cover a Conditional

How do you write tests that cover different types of control flows? Let’s look
at the three types of structured programming constructs we use daily:

e Statements in a sequence
e Conditionals
e Loops

Let’s go over some rules of thumb for covering these control flows with tests.
We are partway through covering max(), which has a conditional in the form
of an if-else statement. We've written a test that covers the first half.

Now let’s add a test to cover the second half. The conditional is if x <y, so let’s
choose values that will make this if-statement false. We’ll apply the character-
ization test technique, giving the assertion a known mismatch. Running the
test gives us the actual value. We plug that value into the assertion, giving
us this test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_max_with3And2_shouldReturn3() {
let result = CoveredClass.max(3, 2)

XCTAssertEqual(result, 3)

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Cover a Conditional * 43

This should give us 100% coverage. Sadly, we're robbed of that satisfaction:
The closing brace is marked as uncovered, as you can see here:

B < [CodeCoverage) [] CodeCoverage) u CoveredClass.swift) [§ CoveredClass = [

import UIKit

class CoveredClass {

static func max(_ x: Int, _ y: Int) -> Int { 2
if x <y {
return y 1
} else {

return x

What's going on? This is a side effect of multiple early return statements: pro-
gram execution never reaches the end of the function. There are ways to avoid
this, of course. But why? Code the way you want without being a slave to
coverage metrics.

Don't fret trying to cover code you know to be unreachable.

NN

It took two tests to cover this function: one for each side of the if-else. Even
when there’s no else clause, an if statement calls for at least two tests. Code
coverage won’t show it, but we need to test for what happens when a section
of code behind a conditional isn’t run.

For max(), we're satisfied with our two tests. But with the greater-than and
less-than comparison operators, you’ll often want a third test with an equal
value. Equality is an interesting boundary condition for Comparable types.

Conditional expressions often use logical AND (&&) and logical OR (||) operators.
For a && b, you’'ll want to test:

a b
false true
true false

true true

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 44

For a || b, you'll want to test:
a b

false false

true false

false true

Where’s the fourth row of these truth tables? Adding tests for them doesn’t
add much value, so you can usually omit them. The three sets of inputs for
each AND or OR as shown in the tables is enough to specify their behavior.

Stay aware that if statements aren’t the only conditionals in town. Swift has
the following:

¢ if statements

e Ternary conditional a:b?c
e guard statements

¢ Nil-coalescing operator ??
Optional chaining

switch statements

L[]

Try to cover every side of a conditional. Remember that an if
without an else still requires two tests, checking the behavior when
the statements are not executed.

We should try to have one test for each independent path through a function. But in
legacy code, the number of paths (and as a result, the number of tests) can explode.

One way to tame this explosion is to extract a nested conditional into its own method.
So if you have an if inside another if, select the inner clause. Then in the Xcode menu,
select Editor » Refactor » Extract to Method. Remove the fileprivate declaration from
the new function so that tests can access it. Now you can write tests to cover the new
function on its own.

Another way to tame the explosion is to look for combinations that shouldn't exist.
We can often eliminate impossible states by using enumeration cases with associated
values. To explore this further, see Mislav Javor’s “Swift Enums Are ‘Sum’ Types.
That Makes Them Very Interesting.”®

Code analysis tools that measure cyclomatic complexity can help you identify functions
that need too many tests.

a. https://mislavjavor.github.io/2017-04-19/Swift-enums-are-sum-types.-That-makes-them-very-interesting/

report erratum -« discuss

https://mislavjavor.github.io/2017-04-19/Swift-enums-are-sum-types.-That-makes-them-very-interesting/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Cover a Loop ® 45

Cover a Loop

Let’s move on to a new function that has a loop. Add the following static
function to CoveredClass:

CodeCoverage/CodeCoverage/CoveredClass.swift
static func commaSeparated(from: Int, to: Int) -> String {
var result = ""
for i in from..<to {
result += "\ (1i),"
}
result += "\ (to)"
return result

}

Again, let’s write characterization tests instead of trying to reason through
the code. We'll start with looping a few times—at least twice through. Since
this function returns a string, start with an assertion you're confident will
fail. Silly text is more likely to fail than an empty string.

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to4_shouldReturnSomething() {
let result = CoveredClass.commaSeparated(from: 2, to: 4)

XCTAssertEqual(result, "F00")
}

Run the tests. This gives us a failure message that tells us the actual value:

XCTAssertEqual failed: ("2,3,4") is not equal to ("FO0")

Plug "2,3,4" into the assertion and rerun to confirm. Update the test name to
express the actual result:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to4_shouldReturn234SeparatedByCommas() {
let result = CoveredClass.commaSeparated(from: 2, to: 4)

XCTAssertEqual(result, "2,3,4")
}

Now let’s look at the resulting coverage that the Xcode shows in the image
on page 46.

The numbers in the gutter show one execution of the part before the loop,
two executions of the loop, and one execution of the part after the loop. It
looks like we have 100 percent coverage. But that doesn’t mean we’re done.

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 46

B < [codeCoverage) || CodeCoverage) . CoveredClass.swift) No Selection = [
static func commaSeparated(from: Int, to: Int) -> String { 1
var result = ""
for i in from..<to { 2

result += "\(i),"
}
result += "\(to)" 1
return result

It's tempting to cover a loop with a single test that loops several times. But
this misses an important boundary condition. What if the loop is never
entered? We want to see what happens if the statements inside are skipped.

Here’s a characterization test that uses the same values for from and to. This
will show the function’s behavior when it loops zero times:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to2_shouldReturnSomething() {
let result = CoveredClass.commaSeparated(from: 2, to: 2)

XCTAssertEqual(result, "F00")
}

Run the tests. This gives us a failure message that tells us the actual value:
XCTAssertEqual failed: ("2") is not equal to ("FOO")

Plug "2" into the assertion and rerun to confirm. Update the test name to state
the result:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_commaSeparated_from2to2_shouldReturn2WithNoComma() {
let result = CoveredClass.commaSeparated(from: 2, to: 2)

XCTAssertEqual(result, "2")

To cover an arbitrary loop, use zero times through and a few times
4 through—say, two or three times.

Cover Statements in a Sequence

Finally, let’s look at the most common building block of structured program-
ming: statements in a sequence. Add the following code to CoveredClass:

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Cover Statements in a Sequence ® 47

CodeCoverage/CodeCoverage/CoveredClass.swift
private(set) var area: Int

var width: Int {
didSet {
area = width * width
let color: UIColor = redOrGreen(for: width)
drawSquare(width: width, color: color)

}

}

init() {
area = 0
width = 0

}

private func redOrGreen(for width: Int) -> UIColor {
width % 2 == 0 ? .red : .green

}

private func drawSquare(width: Int, color: UIColor) {
// ...

}

The statements in sequence we’ll focus on are the didSet observer on the width
property. Let’s test the outcome of the first line, which calculates the area
from a given width. We can do this with the following characterization test:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_area_withWidth7_shouldBeSomething() {
let sut = CoveredClass()

sut.width = 7

XCTAssertEqual(sut.area, -1)
}

Running the tests gives us this failure message:

XCTAssertEqual failed: ("49") is not equal to ("-1")

Plug 49 into the assertion and rerun. Don’t forget to update the test name to
match:

CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
func test_area_withWidth7_shouldBe49() {
let sut = CoveredClass()

sut.width = 7
XCTAssertEqual(sut.area, 49)

http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverage/CoveredClass.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://media.pragprog.com/titles/jrlegios/code/CodeCoverage/CodeCoverageTests/CoveredClassTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 48

Now let’s examine the coverage, which will look like this:

(I
&

BR < [codecoverage) CodeCoverage) s CoveredClass.swift) [width <>

private(set) var area: Int

var width: Int {
didSet { 1
26 area = width * width
let color: UIColor = redOrGreen(for: width)
drawSquare(width: width, color: color)

}

init() { C
area = @
width = @

}

private func redOrGreen(for width: Int) -> UIColor { 1
return width % 2 == @ ? .red : .green

}

private func drawSquare(width: Int, color: UIColor) { 1

/...
}

It looks like we have near-100 percent coverage. But we have only one test,
which checks the calculation of the area property on line 26. We know there’s
nothing checking how redOrGreen() determines a color or checking how
drawSquare() renders a view. If we were only using positive code coverage as our
guide, we might falsely conclude that almost everything has test coverage.

This shows how misleading coverage can be. We can’t count on positive code
coverage alone—especially for statements in a sequence. We covered line 26.
The other lines in the didSet observer are touched incidentally, not meaning-
fully. If you can delete lines of production code and the tests still pass, then
those lines aren’t covered.

When you test a statement in a sequence of statements, the test
, touches the entire sequence. It’s easy to have statements that look
= covered but lack tests.

As for drawSquare(), we’ll look at how to write tests of rendered views in Chapter
16, Testing View Appearance (with Snapshots), on page 193.

Now we've seen how to cover different types of code constructs, and what to
be careful with. Let's wrap up this chapter by taking a step back to think
about the big picture. We want code coverage to be a helpful tool—mot
harmful, and not irrelevant.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Avoid Percentage Targets, Embrace Forward Movement ® 49

Avoid Percentage Targets, Embrace Forward Movement

Adding tests to a legacy project is a long endeavor. Let’s take a step back from
code examples and look at practices to avoid—and practices to embrace.

Avoid setting percentage targets for code coverage. Goodhart’s Law expresses
the problem with such targets:'

When a measure becomes a target, it ceases to be a good measure.

As you've seen, it's easy to raise the numbers without having meaningful
tests. That’s exactly what folks will do if the team uses coverage as a target
instead of as a measurement of trends.

Another thing to avoid: don’t write tests that set and get stored properties.
Such tests don’t say anything about the code—they only show that the com-
piler works. Those properties are there for a reason. Find the reason, and test
the reason instead.

(But computed properties are just functions without arguments. Do test those.)

Rather than setting a percentage target, your team might try this goal: move
the needle forward. Any forward progress is significant and worth celebrating.

Measure your total code coverage on a regular cadence—maybe every two
weeks or every month. It’s helpful to capture more than the percentage alone.
Use a tool like cloc® to count lines of code. Then apply the percentage to cal-
culate how many lines of code are covered and how many aren’t. For example,
if something with 5,000 lines has 20 percent line coverage, then 4,000 lines
of code are definitely not covered. This will give you a clearer picture of totals,
not just percentages.

Observe the code coverage gutter every time you add a test. It may be a long
road, but the positive feedback of seeing the red blocks disappear will boost
your motivation.

Key Takeaways
Here are the main things from this chapter to remember:
¢ To enable code coverage reporting, edit your scheme under Test/Options.

e Code coverage can be misleading, but lack of coverage is always true.

1. https://en.wikipedia.org/wiki/Goodhart%27s_law

2. https://github.com/AlDanial/cloc

https://en.wikipedia.org/wiki/Goodhart%27s_law
https://github.com/AlDanial/cloc
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 3. Measure Code Coverage and Add Tests ® 50

e Covering a conditional takes two tests—one for when the condition is
true, and one for when it’s false. (That’s not counting && and || operators.)

e When testing a loop, try to test what happens if the loop is executed zero
times and also two times.

¢ If you can deliberately introduce a problem (such as deleting code) and
your tests still pass, then that code isn’t completely covered.

¢ Use the characterization test technique to capture the behavior of existing
code: write assertions that capture the actual values. Then plug those
values back into the assertions.

e Don’t write tests that aren’t meaningful just to juice your numbers. But
do celebrate any genuine forward movement.

Activities

Ready to take action? Pick an activity below and give it a try. The first one is
a prerequisite for the others, so do that if nothing else.

1. Enable code coverage on your project. Run your tests to get an initial
percentage.

2. Combine your coverage percentage with cloc to calculate how many lines
are covered and how many aren’t. Record this in a spreadsheet you update
periodically.

3. Look for any static func without tests. These will be easier to test than
instance methods. Find a simple one. Use the characterization test tech-
nique to capture its actual behavior.

4. Look for tested code that has conditionals. See if there are at least two
tests, one for true and one for false. Don’t worry about “this should never
happen, but Swift requires it” guard statements. (But do test guards that
could fail in real use.)

5. Look for tested code that has loops. If any loop can be empty, make sure
there’s a test for that case.

6. After doing a few of these, check your overall coverage percentage again.
If you moved the needle, celebrate!

What's Next?

You've learned how to enable code coverage in Xcode and how to read the
results. You know how to cover the structured programming types:

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What's Next? ¢ 51

1. Statements in a sequence will give false positives from a single test.

2. Conditionals should have at least two tests: one for true and one for false
conditions.

3. Loops also need tests for zero times through, which coverage will never
show.

You've also seen how positive coverage alone can be misleading. There’'s
already a bit of a lie in your current coverage report. It shows that your
application delegate has test coverage. That’s not true. Let’s fix that in the

next chapter by giving the test target control of the application launch
sequence.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER4

Take Control of Application Launch

We want to run tests in a clean environment. It’s important that we control
any surrounding state that may affect test outcomes. As we discussed in
Chapter 2, Manage Your Test Life Cycles, on page 19, this is part of having

isolated tests, which is one of the FIRST properties of unit tests."

But unit tests for an i0OS application won’t have a clean environment—unless
we take steps to create it. We saw a hint of this in Chapter 3, Measure Code

for the app delegate and view controller. Unless we're careful, the app will
continue to use its normal launch sequence, even for test runs. This could
create unwanted side effects that affect test runs. It can also slow down the
test feedback loop. Tests don'’t start running until the app finishes launching.

In this chapter, we’ll go over how to use a separate app delegate when running
tests. By keeping your regular app delegate out of the way, you’ll have greater
control over your test environment. This will also make your code coverage
results a little more accurate.

Make a New Place to Play

Okay, time for a new project. Follow the steps in Create a Place to Play with

Storyboard as the user interface, not SwiftUI.

This time, don’t delete the initial test file AppLaunchTests.swift. But add one do-
nothing test, deleting the other methods:

1. https://pragprog.com/magazines/2012-01/unit-tests-are-first

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 4. Take Control of Application Launch ¢ 54

AppLaunch/AppLaunchTests/AppLaunchTests.swift

class AppLaunchTests: XCTestCase {
func test_emptyJustSoWeHaveAPassingTest() {
}

}

Then edit AppDelegate.swift to add a print(_:) statement to application(_:didFinishLaunch-
ingWithOptions:):
AppLaunch/AppLaunch/AppDelegate.swift
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
print(">> Launching with real app delegate")
return true

}

Now let’s use this project to run experiments about app launch. First, we’ll
see what happens with test execution if we don’t take precautions. Then we
will learn about the test launch sequence. After this, we’ll see how to bypass
the normal app delegate.

Observe the Default Behavior

With the print(_:) statement in the app delegate, let’s see what happens. Make
sure your destination is set to an iOS simulator. Build and run the app by
clicking the play button (or press #-R). Then press the stop button (or
press #-.).

Let’s check the console output by going to the Xcode menu and selecting View
» Debug Area P Activate Console (or press Shift-3-C). After a line about
AppLaunch, you'll see this:

>> Launching with real app delegate

No surprises so far. But now press #-U to run tests. Go to console output
and scroll to the top. We still see the print(_:) statement output from the app
delegate, even during testing—surprise!

http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunchTests/AppLaunchTests.swift
http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunch/AppDelegate.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Learn About the Test Launch Sequence ¢ 55

Learn About the Test Launch Sequence

Let’'s see why the app delegate fires off during testing. Xcode runs tests
within the context of a running app. The testing sequence goes like this:

Launch the simulator on macOS.

Dynamically inject the test bundle into the app.
Launch the app in the simulator.

Run the tests.

Terminate the app.

Ol N =

This gives tests the ecosystem they need to verify interactions with UIKit. As
part of step 3, UIKit gives the app delegate a chance to set up anything the
app needs to launch. This may include things like the following:

e Setting up core data
e Sending an app-specific key to an analytics service
¢ Sending a request to fetch data it needs before going to the first screen

These are things we don’t want to have happen while running unit tests. Core
data should be set up and populated by test code without using or changing
any stored data. We don’t want any network requests.

But we do want these things during normal launch. Since app delegate
behavior depends on the needs of the app, Apple can’'t standardize it—or
safely bypass it. But you can.

Bypass the Normal App Delegate

Here’s how you can use a different app delegate for test runs only. In the test
target, create a new file TestingAppDelegate.swift. Copy the contents of AppDele-
gate.swift from the main target, but make these changes:

1. Remove the @UIApplicationMain attribute from the class declaration.

2. Change the name of the class to TestingAppDelegate, and add a declaration
@objc(TestingAppDelegate). By giving it an Objective-C name, we can refer to
it without a namespace.

3. Remove all methods except application(_:didFinishLaunchingWithOptions:).

4. Customize the remaining method. For our example, let’s change the print(_:)
statement.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 4. Take Control of Application Launch ¢ 56

Putting this together, here’s what TestingAppDelegate.swift looks like:

AppLaunch/AppLaunchTests/TestingAppDelegate.swift
import UIKit

@objc(TestingAppDelegate)
class TestingAppDelegate: UIResponder, UIApplicationDelegate {
func application(
__application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
print("<< Launching with testing app delegate")
return true

}

On the regular app delegate, the @UIApplicationMain attribute tells the Swift
compiler to generate a “main” routine that starts the application with the
designated app delegate. Since we're taking control, remove @UIApplicationMain
from AppDelegate.swift as well as from TestingAppDelegate.swift. Then it’s up to us to
provide main.swift. Add the following file to the main target:

AppLaunch/AppLaunch/main.swift
import UIKit

let appDelegateClass: AnyClass =

NSClassFromString("TestingAppDelegate") ?? AppDelegate.self
UIApplicationMain(

CommandLine.argc,

CommandLine.unsafeArgv,

nit,

NSStringFromClass (appDelegateClass))
This code tries to find a class named TestingAppDelegate outside of any names-
pace. If we're running tests, the test bundle will be present, so the class will
be there. But on regular runs, the test bundle will be missing, so NSClassFrom-
String() will return nil. Then the nil-coalescing operator ?? will fall back to using
the regular AppDelegate.

It’s time to give the new setup a try. First, run the app to verify the message
from the normal app delegate in the console log. Then run the tests to verify
the message from the testing app delegate. The console log will show

<< Launching with testing app delegate

We've managed to avoid the regular app delegate during testing. This is
important because we want the tests to be in full control of what’s going on
during test execution.

http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunchTests/TestingAppDelegate.swift
http://media.pragprog.com/titles/jrlegios/code/AppLaunch/AppLaunch/main.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Put Up with the Initial View Controller ¢ 57

Put Up with the Initial View Controller

The app delegate isn’t the only code that UIKit runs at app launch. It also
shows and activates the root view controller.

iOS 13 introduced scenes to support apps with multiple windows. Before this,
there was one root view controller, in one window. And the app delegate owned
that window. So with a separate app delegate for tests, it wasn’'t hard to
supply an empty window with no root view controller.

But these days, the scene delegate owns the window. It would be nice if we
had a simple way to use a separate scene delegate for tests. However, iOS
caches the scene, which throws a wrench into our clean room goals.

Is there a way to suppress the initial view controller during tests? If you're
lucky, your initial view controller doesn’t do any work without the user taking
some action. In this case, I'd shrug and ignore the fact that tests will start
with the initial view controller present. Just be aware that your code coverage
will be misleading for this view controller.

But you may have an initial view controller that immediately starts work,
such as firing off a network request. In this case, try the approach described
in the post “How to Switch Your iOS App and Scene Delegates for Improved
Testing.””

For now, let’s set aside the initial view controller, and finish this chapter by
stepping back to think about what you might want your testing app delegate
to do.

Tweak Your Testing App Delegate

You now have control over more of the app launch sequence during testing.
Remember, the goal is to set up an environment that’s suitable for tests. But
your app may make assumptions about its environment, so your TestingAppDel-
egate may need more than the simple code in our example.

For testing, we want the environment to avoid doing any actual work.
Depending on what your normal app delegate does, the testing app delegate
may do things like the following:

2. https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-

https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-9746279378c3
https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegates-for-improved-testing-9746279378c3
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 4. Take Control of Application Launch ¢ 58

e Setting up core data with an in-memory store. This will keep production
data from interfering with test data and vice-versa. It will also help tests
to run faster.

* Providing a testing-specific key for an analytics service. Unit tests shouldn’t
make any actual network calls, but they’ll still happen until you change
the legacy code. So at the very least, use a different key to avoid polluting
the data you collect.

On the other hand, your app may not need anything in the testing app dele-
gate. If all you're left with is an application(_:didFinishLaunchingWithOptions:) method
that does nothing but return true, just delete the method.

Key Takeaways

The main thing to take away from this chapter is that due to app launch,
running tests will execute other code. If left unchecked, we could have objects
doing work outside the context of test execution. For unit tests, the tests need
to be in full control of their environment. To give tests full control, use a
separate app delegate during test runs.

This doesn’t mean the regular app delegate is off-limits during testing. It
means that if we call anything in the regular app delegate, it will be because
we wrote a test to call it.

Activities

Ultimately, the goal is to change the way your app launches during testing.
But that might be a big job, depending on your app delegate. Try doing the
first activity to solidify your learning from this chapter. Then continue down
this list in order, depending on how much you want to do.

1. Measure the code coverage of your current unit tests. If you don’t have
any, add a do-nothing test. See how much coverage is reported for your
app delegate.

2. Does your app delegate contain anything that’s not related to the applica-
tion life cycle? Move such things out, even if that means placing them in
their own singletons. Make sure your app continues to work.

3. Copy your app delegate to make a testing app delegate. Remove @UIApplica-
tionMain. Set up main.swift. Gradually cut away anything you can from the
testing app delegate. Make sure all tests continue to run.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What's Next? ¢ 59

4. After all this, see if the code coverage for your normal app delegate has
gone to zero.

What's Next?

You've learned how to manage the app launch sequence. You can use a sep-
arate app delegate during testing.

This will give you a better clean room for testing. Except for the initial root
view controller, your code coverage report will be more accurate. This gives
you a clearer picture of where your app lacks unit tests.

Using the characterization test technique from Chapter 3, Measure Code

business logic. But a lot of iOS code is in view controllers, so what do we do
about that? In the next chapter, we’ll pave the way for unit testing view con-
trollers by learning how tests can access them.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 5

Load View Controllers

UlViewControllers play a central role in iOS code. They're the main way for
UIKit to call most of our code. Does that mean your view controller code is
out of reach of unit tests? Nope, not at all.

After all, UIKit manages to load and call your view controllers. So unit tests
can do the same. To write tests for a view controller, the test first needs to
load it. This will open the door to all sorts of tests.

In this chapter, we’ll look at different ways tests can load view controllers.
How you do this depends on how you like to write view controllers. You may
use storyboards, XIB files, or straight code. After making a new project to hold
this chapter’s experiments, feel free to jump to the section you need:

e Set Up a Storyboard-Based View Controller for Experiments, on page 62

Make a New Place to Play

It’s time to make a new project. Follow Create a Place to Play with Tests, on

test file for this project, LoadViewControllersTests.swift.

There’s no need to apply the techniques from Chapter 4, Take Control of

to do in real code, but we're just experimenting here. (But if you want the
practice, go for it.)

With this project skeleton in place, we can set up a particular style of view
controller, then learn how to load it from unit tests. We’'ll do this for story-
boards, XIB files, and code-based view controllers.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 62

Set Up a Storyboard-Based View Controller for
Experiments

Let’'s make a storyboard-based view controller we can play with. We’ll want
it to have some of the basics:

e The view controller itself
¢ An outlet to control some UI

The default storyboard already contains a view controller, but let’s add a new
one. Storyboards usually contain more than one view controller, so we need
to be able to access any of them, not just the initial one.

Define the New View Controller

First, let’s define a new view controller for the storyboard-based version. Select
the LoadViewControllers group. Create a new file, selecting Cocoa Touch
Class. Name it StoryboardBasedViewController and make it a subclass of UlViewCon-
troller, like this:

Choose options for your new file:

Class: |StoryboardBasedViewControIIer |

Subclass of: |UIViewControIIer

() Also create XIB file

Language: [Swift

In the Save dialog, double-check that the app target is selected, not the test
target.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Set Up a Storyboard-Based View Controller for Experiments ¢ 63

Now let’s define an outlet—a simple label will do. Change the code as follows:

LoadViewControllers/LoadViewControllers/StoryboardBasedViewController.swift

class StoryboardBasedViewController: UIViewController {
@IBOutlet var label: UILabel!

}

Add the New View Controller to the Storyboard

Next, let’s add this view controller to the storyboard. Open Main.storyboard and
select View » Libraries » Show Library from the Xcode menu, or press
Shift-#-L. This will bring up the Object Library. Find “View Controller” and
double-click it to add a new view controller to the storyboard. (If you can’t
see the View Controller item, make sure you've selected Main.storyboard.)

This will create a generic view controller, which we need to change to our
specific type. Select the second “View Controller Scene,” which is the one we
just added, as shown here:

BR < [LoadviewControllers
»> View Controller Scene

[& View Controller Scene

In the Xcode menu, select View » Inspectors » Show Identity Inspector or
press X-#-4. In the Identity Inspector on the right, the Custom Class section
will show that the class of the selected view controller is UlViewController. (If it
shows ViewController, that’s the wrong one.) It will appear as follows:

DO oeE ¥+ B O

Custom Class

Class |

Module

Inherit Module From Target

Click the down arrow for Class to reveal the pull-down menu, and select Sto-
ryboardBasedViewController.

Let’s add a label so we can connect it to the view controller’s outlet. Open the
Object Library again and drag a label onto the view controller in the main
editor area. For this experiment, don’t worry about positioning the label or
setting any Auto Layout constraints.

Finally, connect the outlet to this new label. (One way to do this is to open
StoryboardBasedViewController.swift in the Assistant Editor. Click in the open circle

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/StoryboardBasedViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 64

next to @IBOutlet and drag it to the label on the storyboard to establish the
connection.)

Load a Storyboard-Based View Controller

We added a second view controller because storyboards usually have more
than one of them. How can we access an arbitrary view controller within a
storyboard? We’ll do this by assigning a Storyboard ID to the view controller
we want.

Create a new test suite named StoryboardBasedViewControllerTests. (Remember to
start with Test Zero to confirm that the new suite is hooked up.) Add this
import declaration at the top of the file:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
@testable import LoadViewControllers

Then add the following test case:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
func test_loading() {
let sb = UIStoryboard(name: "Main", bundle: nil)
let sut = sb.instantiateViewController(
identifier: String(describing: StoryboardBasedViewController.self))

}

The first line loads the Main storyboard. Then the call to instantiateViewController(iden-
tifier:) takes an arbitrary identifier. It can be anything as long as it’s unique
within the storyboard. Using the class name as the identifier is an easy way
to do this.

When assigning a Storyboard ID to a view controller, use its class
name. That way, the identifier will be unique. And when writing
tests, you'll know the ID without having to look it up inside the
storyboard.

(There is an edge case: the class name won't be unique if your

a7

storyboard has multiple instances of the same view controller type.
Don’t worry—if you use the same Storyboard ID twice, Xcode will
tell you.)

Run the tests. The results log will show “1 unexpected failure” with the follow-
ing message:
failed: caught "NSInvalidArgumentException", "Storyboard

(<UIStoryboard: 0x6000032d7bc0>) doesn't contain a view controller with
identifier 'StoryboardBasedViewController'"

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Load a Storyboard-Based View Controller ® 65

Let’s assign this Storyboard ID to the view controller. Open Main.storyboard,
select the “Storyboard Based View Controller,” and look in the Identity
Inspector on the right. (If the Identity Inspector isn’t showing, press X--4.)
In the Identity Inspector, copy and paste the Class name field into the Story-
board ID field, like this:

DO oeE ¥+ B O

Custom Class

Class |StoryboardBasedViewCaN

Module |

Inherit Module From Target

Identity

Storyboard ID |StoryboardBasedViewControIIer |

Restoration ID | |

[Use Storyboard ID

Run the tests. This time this test will pass.

But the UlStoryboard method instantiateViewController(identifier:) returns a UlViewController
that won’t know about the outlet. We need to downcast this to the actual type
of our system under test (or sut). Thankfully, the method returns a generic
type. To get the type we want, we can explicitly specify the type of sut:
LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift

let sut: StoryboardBasedViewController = sb.instantiateViewController(
identifier: String(describing: StoryboardBasedViewController.self))

(Make sure you're using the new method which has the argument name iden-
tifier, not the old one named withldentifier.)

If the type is wrong, this will crash the test run—we won’t get any further test
case reports. But it will give a useful message in the console log. And in my
experience, programmers don’t often introduce typos in the storyboard Class
field. Since it’s a rare occurrence, I don’t mind if the tests crash. (But only
for storyboards.)

We now have an sut of type StoryboardBasedViewController. Let’s add an assertion
to confirm that the outlet is set:

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
XCTAssertNotNil(sut.label)

Run the tests. This will fail, but don’t be disheartened. There’s a trick to
making this work: we’ll ask the view controller to loadViewlfNeeded(). This will
load the view controller’s view from the storyboard, including outlet connec-
tions. Here’s a complete test using the simpler force-cast approach:

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 66

LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
func test_loading() {
let sb = UIStoryboard(name: "Main", bundle: nil)
let sut: StoryboardBasedViewController = sb.instantiateViewController(
identifier: String(describing: StoryboardBasedViewController.self))

sut.loadViewIfNeeded ()

XCTAssertNotNil(sut.label)
}

Run the tests to watch this pass. This demonstrates that a unit test can load
a specific view controller from a storyboard, with outlets connected.

Set Up a XIB-Based View Controller for Experiments

Now let’'s make a XIB-based view controller we can play with. As with the
storyboard version, we’ll want it to have two things:

e The view controller itself
e An outlet to control some Ul

Define the New View Controller

Let’s define a new view controller for the XIB-based version. Select the Load-
ViewControllers group in the Project Navigator. Create a new file, selecting
Cocoa Touch Class. Name it XIBBasedViewController and make it a subclass of
UlViewController. This time, select the check box labeled “Also create XIB file.”
Your selections should look like this:

Choose options for your new file:

Class: |XIBBasedViewControIIer ”

Subclass of:] UlViewController

Also create XIB file

Language: [Swift

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/StoryboardBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Load a XIB-Based View Controller ® 67

In the Save dialog, double-check that the app target is selected, not the test
target, then press Create. This will add XIBBasedViewController.swift and XIBBased-
ViewController.xib to the project.

Now define an outlet—a label will do for our experiment. In the Swift file, use
the following code:

LoadViewControllers/LoadViewControllers/XIBBasedViewController.swift

class XIBBasedViewController: UIViewController {

@IBOutlet var label: UILabel!
}

Connect the View Controller Outlet to the XIB

Next, let’s add a label so we can connect it to the view controller’s outlet. Open
XIBBasedViewController.xib and select View » Libraries » Show Library from the
Xcode menu, or press Shift-#-L. Drag a label onto the view in the main editor
area. For this experiment, don’t worry about positioning the label or setting
any Auto Layout constraints.

Then connect the outlet to this new label. (One way to do this is to show XIB-
BasedViewController.swift in the Assistant Editor. Click in the open circle next to
@IBOutlet and drag it to the label on the view to establish the connection.)

Load a XIB-Based View Controller

Now let’s experiment with a test that loads this view controller. Create a new
test suite named XIBBasedViewControllerTests. (Remember to start with Test Zero
to confirm that the new suite is hooked up.) Add the @testable import LoadViewCon-
trollers declaration to the top of the file. Then add the following test case:

LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
func test_loading() {
let sut = XIBBasedViewController()

XCTAssertNotNil(sut.label)
}

Run the tests. This will fail because there’s a trick to making this work. We need
to ask the view controller to perform loadViewlfNeeded(). This will load the view con-
troller’s view from the XIB, including outlet connections. Here’s a complete test:

LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
func test_loading() {
let sut = XIBBasedViewController()

sut.loadViewIfNeeded ()
XCTAssertNotNil(sut.label)

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/XIBBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/XIBBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 68

Run the tests to watch this pass. This demonstrates that a unit test can load
a view controller with an associated XIB.

The designated initializer of UlViewController is init(nibName:bundle:). So why am I not calling
this in the test? How is this even working?

Initializing a UIViewController without arguments calls through to the designated
initializer, passing nil arguments. Since our view controller class name XIBBasedView-
Controller ends with Controller, UIKit will first look for a XIB file named XIBBasedView. (More
accurately, it will look for a NIB file created from a XIB file with that name.) If that
doesn’t work, it will try to look for a XIB that matches the full name XIBBasedViewController.

Apple describes these rules more fully in the documentation for the nibName property.?

Set Up a Code-Based View Controller for Experiments

Let’'s make a code-based view controller we can play with. Unlike the story-
board or XIB versions, a code-based view controller has no outlets. Instead,
we create the views in code.

Since UIKit instantiates storyboard or XIB-based view controllers, their des-
ignated initializers can’t change. But in a code-based view controller, we're
free to define a new designated initializer. This lets us pass data as initializer
arguments instead of setting them as properties afterward.

Let’s define a new view controller for the code-based version. Select the
LoadViewControllers group. Make a new file, selecting Cocoa Touch Class.
Name it CodeBasedViewController and make it a subclass of UlViewController. In the
Save dialog, double-check that the app target is selected, not the test target.

Now let’'s define an initializer that takes some data. For our example, we’ll
pass a string and store it in a property:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
class CodeBasedViewController: UIViewController {
private let data: String

init(data: String) {
self.data = data
super.init(nibName: nil, bundle: nil)

report erratum -« discuss

https://developer.apple.com/documentation/uikit/uiviewcontroller/1621487-nibname
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Load a Code-Based View Controller ® 69

Go ahead and try to build this. In the Xcode menu, select Product » Build or
press #-B. Below the initializer, Xcode will show the following error:

O 'required' initializer 'init(coder:)' must be provided by subclass of 'UIViewController'

This is a common error when writing code-based view controllers. We get this
error because we're defining a designated initializer. But UlViewControllers conform
to the NSCoding protocol so that UIKit can create them from storyboards and
XIBs. Since we're using a code-based approach, we don’t need to add actual
NSCoding support. Still, we have to appease UIKit by providing the method it
requires.

The icon on the left of the error shows that this is something Xcode can fix
for us. This is an easy way to provide a do-nothing method. In the Xcode
menu, select Editor » Fix All Issues. Xcode will generate the following code:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

That’s a fine implementation. For a code-based view controller, we don’t expect
anything to call this method, ever.

Load a Code-Based View Controller

A test can create a code-based view controller by calling its initializer. But
there’s one trick we need to borrow from its storyboard and XIB cousins. To
explore this, let’s create a learning experiment.

Create a new test suite named CodeBasedViewControllerTests. (Remember to start
with Test Zero to confirm that the new suite is hooked up.) Add the usual
@testable import LoadViewControllers to the top of the file. Then add the following
test case:

LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
func test_loading() {
let sut = CodeBasedViewController(data: "DUMMY")

// Normally, assert something

}

We have to pass a string argument because the initializer requires it. But we
won't be using the string’s value in this experiment.

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 70

Sometimes we need to pass an object just to satisfy Swift, but we
don’t care about its value. xUnit Test Patterns [MesO7] says,

We can use a Dummy Argument whenever methods of the SUT take
objects as arguments and those objects are not relevant to the test.

7

Clearly communicate to your readers which arguments are dummy
arguments. For a string, this can be done by setting the value to
"DUMMY" or "". For numbers, 0 is often clear enough. For other types,
extract a variable and give it a name starting with dummy.

Code-based view controllers usually set up their views in viewDidLoad(). For this
experiment, let’s cheat by using a print(_:) statement instead of defining views.

In the view controller, add the following:

LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
override func viewDidLoad() {

super.viewDidLoad ()

print(">> create views here")

}
Run the tests. Applying the techniques from Examine Console Output, on

see something like:

Test Suite 'CodeBasedViewControllerTests' started at 2018-12-01 11:50:49.035
Test Case
'-[LoadViewControllersTests.CodeBasedViewControllerTests test loading]'
started.
Test Case
'-[LoadViewControllersTests.CodeBasedViewControllerTests test loading]'
passed (0.001 seconds).
Test Suite 'CodeBasedViewControllerTests' passed at 2018-12-01 11:50:49.037.
Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.002) seconds

Notice that between “started” and “passed,” we don’t have any output from
our print(_:) statement. So nothing calls viewDidLoad() automatically.

One way to address this is by having the test call viewDidLoad(). While this
works, it deviates from the style we need for storyboards and XIBs. Rather
than using one way here and another way there, it’s simplest to use the same
approach of calling loadViewlfNeeded().

Add the following line to the test:

LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
sut.loadViewIfNeeded()

http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllers/CodeBasedViewController.swift
http://media.pragprog.com/titles/jrlegios/code/LoadViewControllers/LoadViewControllersTests/CodeBasedViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 71

Run the tests again, and drill down to the console output for CodeBasedViewCon-
trollerTests. This time, the output for the test will include

>> create views here

This demonstrates that a unit test can load a code-based view controller,
asking it to create its views.

Key Takeaways

What should you take from this chapter back to your code? That depends on
which idioms you use for view controllers.

For storyboard-based view controllers you can do the following:
e Assign a Storyboard ID to the view controller.

¢ Instantiate a UlIStoryboard. Then pass the Storyboard ID to instantiateViewCon-
troller(identifier:).

¢ Assign the view controller to a variable with its explicit type, so that the
test can access its properties and methods.

e Call loadViewlfNeeded() which connects the outlets and actions. It also calls
viewDidLoad().

For XIB-based view controllers, you can do the following:

¢ Instantiate the view controller. As long as its XIB shares the same name
as the view controller (or otherwise follows Where’s the XIB Name?, on

e Call loadViewlfNeeded() which connects the outlets and actions. It also calls
viewDidLoad().

For code-based view controllers, you can do the following:
¢ Instantiate the view controller.

e If you want the test to execute viewDidLoad(), call loadViewlfNeeded().

Activities
This chapter has one activity, consisting of three steps:

1. Pick a view controller in your production code. Start with one of your
simpler ones.

2. Make sure that its viewDidLoad() won’t trigger any network calls or write
anything to disk. If it does, pick a different view controller.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 5. Load View Controllers ® 72

3. Write a unit test that loads this view controller. Don’t forget to call load-
ViewlfNeeded().

This test isn’t useful by itself because it has no assertions. But it's an
important stepping-stone that will enable further testing. Give it a try to
cement your learning from this chapter.

What’'s Next?

Whether you use storyboards, XIBs, or straight code, you can write tests that
reach your view controllers. We've covered the techniques you’ll need for each
type. And regardless of the type, call loadViewlfNeeded(). That way, the view
controllers will load up everything they need.

But loading a view controller is just part of the battle. We want tests that call
various methods on view controllers. Unfortunately, view controller methods
often have hard-coded dependencies that get in the way of testing. In the next
chapter, we’ll look at ways to isolate these dependencies. This will give tests
a way to control them so that we can test the methods.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 6

Manage Difficult Dependencies

When you realize you can write unit tests against view controllers, it’s exciting.
At first, you may think this will unlock your codebase to automated testing:
“I can test anything!”

Unfortunately, as you try to make progress, you'll experience setbacks and
frustrations. Sure, you can write a test that accesses a particular view con-
troller. But as soon as you try to have a test call some method, you find the
code inside the view controller is fighting you.

This is true of any types, not only view controllers. Code written without tests
often has implicit hardwired dependencies. These dependencies can complicate
testing. It so happens that view controllers are especially susceptible to such
problems. It’'s easy to lump functionality (and the dependencies needed to
perform it) into a view controller.

When testing is difficult, this reveals flaws in the architectural design of the
code. By making changes to enable testing, you’ll be shaping the code into
cleaner design. Design decisions that were once hidden and implicit will
become visible and explicit.

In this chapter, we’ll learn how to identify difficult dependencies. Having
identified them, we’ll explore some techniques for isolating these dependencies.
This will give you ways to write unit tests against previously untestable code.

Be Okay with Problem-Free Dependencies

Law enforcement agents learn how to detect counterfeit money by studying
genuine money. Let’s apply this idea to dependencies. Before looking at difficult
dependencies, let’s see what makes some dependencies problem-free.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 74

Consider the following function:

func shoutHello(to name: String) -> String {
return "HELLO, \(name.uppercased())!"

}

What dependencies does it have? This is a trick question because it’s easy to
reply, “It has no dependencies.” But it does depend on the Swift String type.
Our function calls the uppercased() method. Swift takes the result and does
string interpolation. String interpolation prefers calling the description property
of the CustomStringConvertible protocol.

There are word lawyers who insist that a test is not a unit test if it exercises
more than one type. Yet no one would blink an eye at writing tests for
shoutHello(to:) and calling them unit tests. So why is this dependency okay to
test without isolating it?

To answer this, let’s start with three of the FIRST unit test principles.' The
first three apply to dependencies:

F for Fast Both functions—the uppercased() method and the description computed
property—are fast. We're not in any danger of pushing up against the rule
of thumb from Working Effectively with Legacy Code [FeaO4].

A unit test that takes 1/10th of a second to run is a slow unit test.

I for Isolated Neither function has any side effects that would persist beyond
the test run. Tests that exercise shoutHello(to:) won't get different results
due to external factors. And the tests won’t have any effect on each other.

R for Repeatable Calling these two functions with the same input will always
yield the same output. There are no external services that might fail. There
are no race conditions. The time of day (or phase of the moon) will make
no difference.

(The last two of the FIRST principles don’t apply to dependencies. So you're
not left wondering what they are, S is for self-verifying. This means using
assertions to pass or fail without human verification. And T is for timely. This
means tests have more value when written before the production code.)

After fast, isolated, and repeatable, there’s one more question that helps us
classify dependencies.

Easy to Test? When something calls a dependency, how can we know if the
call was correct? If there’s a return value, it's easy. We can check the

1. https://pragprog.com/magazines/2012-01/unit-tests-are-first

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Identify Difficult Dependencies ® 75

return value, or any computation that uses the return value. For
shoutHello(to:), the calls to String’s uppercased() and description affect the function’s
return value. Tests can simply check the return value.

What if there is no return value? Chances are good the call causes some
state to change. If we can check a property of the dependency for an
expected value, that’s also easy.

But if a call has an external effect we can’t access, that dependency is
harder to test.

If we take fast, isolated, and repeatable and combine it with easy to test, we
get FIRE. If a dependency satisfies the FIRE rules, we can use it as is. Writing
tests with it won’t be difficult.

Identify Difficult Dependencies

Now that we have some rules to gauge if a dependency is problem-free, let’s
break each FIRE rule. This will help us learn which kinds of dependencies get
in the way of simple tests.

F for Fast i0S programs often include code that will execute in response to
some external trigger. In later chapters, we’ll see how to unit test delegate
methods. But if there’s no way for tests to trigger the code execution
immediately, that’s a slow dependency. Examples include the following;:

e Calls to web services
e Timers

I for Isolated Dependencies break the rule of isolation in two common ways:
global variables and persistent storage.

Global variables come in different varieties:

¢ Variables defined outside of any type
e Singletons
e Static properties

Globals aren’t a problem if they're read-only, such as string constants.
It's when we can change the value of a global that we run into the chal-
lenges of shared mutable state. One test can set a value that affects a
following test.

Persistent storage is similar, except that we store the state in something
that outlasts the app’s life cycle. This includes the following:

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 76

The file system

e UserDefaults

¢ The keychain

¢ A local database

¢ A remote database

Recall from Chapter 2, Manage Your Test Life Cycles, on page 19 that we
need each test to run in a clean room. Earlier test runs or manual testing
should not change the outcome of automated tests. And automated tests

should leave no trace that affect later manual testing.

R for Repeatable What dependencies are there that yield different results
when called? We expect different results for the following:

e Current time or date

e Camera or microphone input
e Face ID or Touch ID

e Core Motion sensors

e Random numbers

We can anticipate those differences. But there are also unpredictable
differences:

¢ External services—they can fail.

e Writing to a log file—we can run out of disk space.

e Time zone of the machine running tests—when writing tests, it’s easy
to assume they’ll always run in your own time zone. Hidden problems
will surface if your development team grows globally.

Easy to Test? It’s not hard to test functions that return values or change
properties. But there are also functions that cause side effects outside of
the invoked type. Such dependencies take commands but offer no way to
access the effects of those commands. Examples include the following:

e Analytics
¢ Playing audio or video
Analytics includes any system of logging events to a server. We can send

events, but there’s no way for the mobile API to ask for the last batch of
events you sent.

This isn’t a complete list of difficult dependencies. But they illustrate guidelines
that will help you identify most of them. Next, we’ll see how to isolate them.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Create Boundaries to Isolate Dependencies ¢ 77

Create Boundaries to Isolate Dependencies

Once we've identified dependencies that make testing difficult, what do we
do with them? We need to find ways to isolate them behind boundaries.
Having isolated them, we can replace them with substitutes during testing.

In well-structured code, we can summarize our code as boxes of functionality.
An arrow line from one box to another represents a dependency. With careful
design, these boxes and arrows form a directed acyclic graph. By avoiding
cycles, we make it easier to replace functionality. This brings benefits to
ongoing maintenance that extend beyond testability.

We can implement boundaries using Swift protocols. With protocols in place,
we can substitute different concrete types. But to even begin using a protocol,
we need a place where we make the current type explicit. Once we spell out
the type, we’ll be able to switch it to a protocol.

There are various techniques for making dependencies explicit. To illustrate
them, let’s make another project for our experiments.

Make a New Place to Play

Now we're ready to create a new project for this chapter. Follow the steps for
Create a Place to Play with Tests, on page 4, but name the project HardDe-

pendencies. Also delete that initial test file, HardDependenciesTests.swift.

We don’t need to apply Chapter 4, Take Control of Application Launch, on

true for most of the book, so I won’t continue to repeat this.)

To simulate a difficult dependency, let’s pretend we're using an analytics API
to track events. Make a new file in production code named Analytics.swift:
HardDependencies/HardDependencies/Analytics.swift

class Analytics {
static let shared = Analytics()

func track(event: String) {
print(">> " + event)

if self !== Analytics.shared {
print(">> ...Not the Analytics singleton")

}
}

This API provides a shared instance to use as a singleton. As a “soft” singleton,
it doesn’t restrict us from creating separate instances.

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/Analytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 78

Let’s pretend the track(event:) instance method sends the event to a web service.
We'll simulate it with a print(_:) statement, and observe the results in the console
log. It also prints a message if the Analytics instance is not the singleton.

Besides an API we can’t control, we’ll also see an approach for singletons we
own and can change. Make a second file in production code named MySingleto-
nAnalytics.swift:

HardDependencies/HardDependencies/MySingletonAnalytics.swift

class MySingletonAnalytics {
static let shared = MySingletonAnalytics()

func track(event: String) {
Analytics.shared.track(event: event)

if self !== MySingletonAnalytics.shared {
print(">> Not the MySingletonAnalytics singleton")
b

}

It's similar but wraps a call to the original Analytics class. We'll use this for Add
Backdoors to Singletons You Own, on page 80.

Add Storyboard-Based View Controllers

To experiment with different techniques, let's make several view controllers.
First let’s add two view controllers to the storyboard. Select the HardDepen-
dencies group. Make a new file, selecting Cocoa Touch Class. Name it Instance-
PropertyViewController and make it a subclass of UlViewController. In the Save dialog,
double-check that the app target is selected, not the test target.

Now let’s add this view controller to the storyboard. Open Main.storyboard and
select View » Libraries » Show Library from the Xcode menu, or press
Shift- 8 -L. This will bring up the Object Library. Double-click “View Controller”
to add a new view controller to the storyboard.

This will create a generic view controller, which we need to change to our
specific type. Select the second “View Controller Scene” that we just added,
like you see here:

B2 < & HardDependencies
»> View Controller Scene

[& View Controller Scene

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a New Place to Play ® 79

In the Xcode menu, select View » Inspectors » Show Identity Inspector or
press \X-&-4. In the Identity Inspector on the right, the Custom Class section
will show that the class of the selected view controller is UlViewController. (If it
shows ViewController, that’s the wrong one.) Click the down arrow for Class to
reveal the pop-up menu, and select InstancePropertyViewController.

We're going to have a test load this view controller, so we need to apply the
trick from Load a Storyboard-Based View Controller, on page 64. In the

Identity Inspector, copy and paste the Class name into the Storyboard ID.

DO oeE ¥+ B O

Custom Class

Class | InstancePropertyViewCo...

Module |

Inherit Module From Target

Identity

Storyboard ID |InstancePropertyViewControIIer |

Restoration ID | |
[Use Storyboard ID

Now we have one storyboard-based view controller we can use in a test. Repeat
these steps to create another view controller, naming it ClosurePropertyViewCon-
troller. You should end up with three scenes in Main.storyboard—the first there
by default, and the two you just added.

Add XIB-Based View Controllers

Now we’ll add view controllers that use XIBs. Select the HardDependencies
group in the Project Navigator. Make a new file, selecting Cocoa Touch Class.
Name it OverrideViewController and make it a subclass of UlViewController. This time,
select the check box labeled “Also create XIB file.”

In the Save dialog, double-check that the app target is selected, not the test
target. Pressing Create will add OverrideViewController.swift and OverrideViewController.xib
to the project.

Now we have one XIB-based view controller we can use in a test. Repeat these
steps to make the following additional view controllers:

¢ |nstancelnitializerViewController
e ClosurelnitializerViewController
e MySingletonViewController

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 80

Track Analytics on the New View Controllers

With two systems for tracking events (Analytics and MySingletonAnalytics), let’s use
them in the view controllers. In each view controller except MySingletonViewCon-
troller, add the following method:

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
Analytics.shared.track(event: "viewDidAppear - |\ (type(of: self))")
}

Copy the same method to MySingletonViewController, but change the singleton
from Analytics.shared to MySingletonAnalytics.shared.

We now have a simulated setup of analytics, called from view controllers using
differing styles. In the rest of this chapter, let’s look at ways to replace these
hard-coded dependencies. We'll start with two techniques that are easier to
apply to legacy code but come at the cost of weak design. We’ll move from
there to techniques that take more work but yield more robust designs.

Add Backdoors to Singletons You Own

You can’t change the behavior of singletons you don’t own. But any singleton
you do own provides an opportunity to add a singleton backdoor. We can use
conditional compilation to ensure that the backdoors aren’t available in release
builds.

For this experiment, let’'s assume MySingletonAnalytics is code we own. It uses
the Adapter design pattern® to wrap the actual analytics API:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
class MySingletonAnalytics {
static let shared = MySingletonAnalytics()

func track(event: String) {
Analytics.shared.track(event: event)

if self !== MySingletonAnalytics.shared {
print(">> Not the MySingletonAnalytics singleton")
}

Any time you use a third-party framework, consider wrapping it
_ in an Adapter. This will let you change or augment the underlying
= implementation without changing the call sites.

2. Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add Backdoors to Singletons You Own © 81

MySingletonViewController uses this singleton to track calls to viewDidAppear(_:).

HardDependencies/HardDependencies/MySingletonViewController.swift
override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
MySingletonAnalytics.shared.track(
event: "viewDidAppear - |(type(of: self))"
)
}

Using this singleton is fine. But during testing, we want to use something
else. Later, we’ll learn how to create mock objects that can record calls. For
now, let’s just get it to use a different instance.

We'll add a layer of indirection around the singleton. In the other cases where
we don’t own the singleton, we’ll do this at the calling code. But if you own
the singleton, you can add indirection inside the called code.

Add a new static instance of MySingletonAnalytics. Declare it private to restrict its
visibility. Then change shared from a stored property to a computed property
returning the new instance:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
private static let instance = MySingletonAnalytics()

static var shared: MySingletonAnalytics {
return instance

}

Also wrap the track(event:) method’s print statement in a conditional, to compare
against the new static instance. This way, it'll report when we're not using
the regular singleton:

HardDependencies/HardDependencies/MySingletonAnalytics.swift

if self !== MySingletonAnalytics.instance {

print(">> Not the MySingletonAnalytics singleton")
}

Build to confirm these changes, which are transparent to the call sites.

Now let’s add the backdoor, wrapped in #if DEBUG conditional compilation.
What we want is a way for test code to provide a different object in place of
the singleton:

HardDependencies/HardDependencies/MySingletonAnalytics.swift
private static let instance = MySingletonAnalytics()

#1if DEBUG
static var stubbedInstance: MySingletonAnalytics?
#endif

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Yvy

Chapter 6. Manage Difficult Dependencies ® 82

static var shared: MySingletonAnalytics {
#1if DEBUG
if let stubbedInstance = stubbedInstance {
return stubbedInstance

}
#endif

return instance

}

Now if a test provides a stubbedinstance, the shared property will return it instead
of the singleton. To ensure that we're doing this substitution consistently,
inject the stub in setUp() and remove it in tearDown(). Add a new test suite MySin-
gletonViewControllerTests:

HardDependencies/HardDependenciesTests/MySingletonViewControllerTests.swift
@testable import HardDependencies
import XCTest

class MySingletonViewControllerTests: XCTestCase {

override func setUp() {
super.setUp()
MySingletonAnalytics.stubbedInstance = MySingletonAnalytics()

}
override func tearDown() {

MySingletonAnalytics.stubbedInstance
super.tearDown ()

nil

}

func test_viewDidAppear() {
let sut = MySingletonViewController()
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

}

Run tests. Since this is an experiment, the test case has no assertion. But
our fake implementation of event tracking has print(_:) statements in Analytics.swift.
By examining the console output (see Examine Console Output, on page 23)

we can see the log for this test case:

Test Case '-[HardDependenciesTests.MySingletonViewControllerTests
test viewDidAppear]' started.

>> viewDidAppear - MySingletonViewController

>> Not the MySingletonAnalytics singleton

Test Case '-[HardDependenciesTests.MySingletonViewControllerTests
test viewDidAppear]' passed (0.001 seconds).

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/MySingletonViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Subclass and Override: A Legacy Code Technique ® 83

The log shows the event tracking works. The message “Not the MySingleton-
Analytics singleton” also shows that we replaced the singleton with some-
thing else.

In general, you should avoid mixing test code into production code.
Conditional compilation makes code hard to read, reason about,
and maintain. Dependency Injection Principles, Practices, and

called Ambient Context. It’s far preferable to use other means of
injection, especially constructor injection. We'll look at this in
Q Inject Instances Through Initializers or Properties, on page 85.

But if you already have a singleton you own, and it’s already in
wide use, adding a backdoor can provide a small enabling point’
to switch behavior. It’s like a hidden panel on a home theater
system, concealing controls you don’t need for daily use. It doesn’t
improve the singleton-centric design. But it allows you to test code
that uses that singleton, without modifying the call sites. That’s
progress, and any progress is good.

Subclass and Override: A Legacy Code Technique

Let’s move on to singletons we don’t own. To add a layer of indirection around
the singleton, we’ll extend the calling code. An important dependency-breaking
technique from Working Effectively with Legacy Code [Fea04] is Subclass and

Override Method.

The idea is to create a subclass of production code that lives only in test code,
or a test-specific subclass.” It gives us a way to override methods that are
problematic for testing.

Let’s apply this to OverrideViewController, which starts with this initial method:

HardDependencies/HardDependencies/OverrideViewController.swift
override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)
Analytics.shared.track(event: "viewDidAppear - |\ (type(of: self))")
}

We want a way to replace Analytics.shared, so extract it to its own method. Select
Analytics.shared, then select Editor » Refactor » Extract to Method from the Xcode
menu. Name the new method analytics().

3. Working Effectively with Legacy Code [Fea0O4]

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/OverrideViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies * 84

HardDependencies/HardDependencies/OverrideViewController.swift
fileprivate func analytics() -> Analytics { Analytics.shared }

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
analytics().track(event: "viewDidAppear - \|(type(of: self))")

When an IDE provides automated refactoring options, lean on
: them. Automated refactoring reduces human error, so it’s especial-
= ly important when there is no test coverage yet.

Remove the fileprivate modifier from the new method so that tests can override it.

Now create a new test suite OverrideViewControllerTests. (As usual, add @testable
import HardDependencies.) Somewhere in the test file, define this test-specific
subclass:

HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
private class TestableOverrideViewController: OverrideViewController {

override func analytics() -> Analytics { Analytics() }

}

The naming convention I use is to add the prefix Testable to the name of the
original class. That’s why this is named TestableOverrideViewController. It overrides
the analytics() method to provide a different instance from the singleton.

Test code can then instantiate the testable subclass instead of the original.
Add the following test case:

HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
class OverrideViewControllerTests: XCTestCase {

func test_viewDidAppear() {
let sut = TestableOverrideViewController()
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

}

Run tests. The test case has no assertion, but we can check the console output
(see .I.*.Dgg.q__r_rggcf_ _9(_){}?9_1_(_3" nggggtf__g_r__l_.p_qgg?_@) for the fake event tracking printed

by Analytics.swift.

Subclass and Override Method can only be applied to a class that permits
subclassing:

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/OverrideViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/OverrideViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Inject Instances Through Initializers or Properties ® 85

e Swift doesn’t allow subclassing of structs.

e The final modifier prevents classes from having subclasses. Remove it to
apply this technique.

¢ Storyboard-based view controllers can’t be subclassed because the story-
board stores an instance of a predetermined type.

With these restrictions in mind, this technique is powerful. It provides a
way towrangle previously untestable classes. Subclass and Override Method
is useful for short-circuiting any problematic methods. The changes to
production code are minimal, which is important when you don’t yet have
test coverage.

Once you learn Subclass and Override Method, be careful not to
apply it excessively. I recommend using this technique only for
preexisting code without tests. For new code, or old code with test

< coverage, try to use the techniques that follow in the rest of this
chapter.

o

Inject Instances Through Initializers or Properties

Subclass and Override Method lets you replace entire methods, not only
dependencies. It’s great for legacy code but puts almost no design pressure
on the code. It also keeps dependencies somewhat hidden. Using dependen-
cy injection means making more changes, but these changes bring greater
clarity.

On the surface, dependency injection (DI) means we pass dependencies into
an object. Instead of allowing the object to decide its dependencies, we tell
the object what to use.

DI is more than passing in instances. It promotes loosely coupled code that
depends on protocols instead of concrete types. But we don’t have to go full-
on with protocols to get benefits from DI. By providing a default, we give the
object a way to specify its own dependency—unless it’s told otherwise.

Use Initializers

Constructor injection is the preferred form of DI because it makes dependencies
explicit. We can use it on any type that lets us add parameters to the initial-
izer. This includes view controllers that are XIB based or code based.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 86

InstancelnitializerViewController is a XIB-based view controller. We'll start by giving
it a private property set by its initializer:

HardDependencies/HardDependencies/InstancelnitializerViewController.swift
private let analytics: Analytics

init(analytics: Analytics = Analytics.shared) {
self.analytics = analytics
super.init(nibName: nil, bundle: nil)

}

The initializer parameter has a default value of Analytics.shared. This lets the
view controller set the dependency, unless a call site passes in a different
argument.

Try to build this by pressing §-B. Below the initializer, Xcode will show the
following error:

O 'required' initializer 'init(coder:)' must be provided by subclass of 'UIViewController'

We can satisfy UlViewController requirements by selecting Editor » Fix All Issues
in the Xcode menu. Xcode will generate the following code:

HardDependencies/HardDependencies/InstancelnitializerViewController.swift
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

Finally, change viewDidAppear(_:) to use the analytics property instead of the Ana-
lytics.shared singleton:

HardDependencies/HardDependencies/InstancelnitializerViewController.swift
override func viewDidAppear(animated: Bool) {
super.viewDidAppear (animated)
analytics.track(event: "viewDidAppear - \|(type(of: self))")
}

Now create a new test suite InstancelnitializerViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/InstancelnitializerViewControllerTests.swift

func test_viewDidAppear() {
let sut = InstancelInitializerViewController(analytics: Analytics())
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstanceInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/InstanceInitializerViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Inject Instances Through Initializers or Properties ® 87

The test creates the view controller, passing in an Analytics instance different
from the singleton. We can change this to a mock object once we learn how
to make one. For now, a different instance will do for our experiment.

Run tests. The test has no assertion, so check the console output (see
Examine Console Output, on page 23) to confirm the tracking event, and that

we avoided using the singleton.

Use Properties

Not all types let us change the initializer. In particular, we can’t use construc-
tor injection for storyboard-based view controllers. Instead, let’s use property
injection.

InstancePropertyViewController is a storyboard-based view controller. Let’s give it a
lazy property with Analytics.shared as its value:

HardDependencies/HardDependencies/InstancePropertyViewController.swift
lazy var analytics = Analytics.shared

By declaring it lazy, the property won’t have an initial value. Once it’s accessed,
it will receive the value—but only if it doesn’t already have one. This gives
test code the opportunity to inject a different instance.

Then change viewDidAppear(_:) to use the analytics property instead of the Analyt-
ics.shared singleton:

HardDependencies/HardDependencies/InstancePropertyViewController.swift
override func viewDidAppear(animated: Bool) {
super.viewDidAppear (animated)
analytics.track(event: "viewDidAppear - \|(type(of: self))")
}

Now create a new test suite InstancePropertyViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/InstancePropertyViewControllerTests.swift
func test_viewDidAppear() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: InstancePropertyViewController =
storyboard.instantiateViewController(identifier:
String(describing: InstancePropertyViewController.self))
sut.analytics = Analytics()
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstancePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/InstancePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/InstancePropertyViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies * 88

The test loads the view controller from the storyboard. Then it sets the value
of the analytics property to an instance different from the singleton. Notice that
it does this before calling loadViewlfNeeded() so that the replacement instance is
ready before any view controller methods fire.

Run tests. The test has no assertion, so check the console output to confirm
the tracking event, and that the test used something other than the singleton.

Inject Closures to Make New Instances

Injecting instances works well when the code outside knows what to pass in.
But there are times when the code inside wants to create an instance of a
difficult dependency. For example, it might be based on input from the user.

A good way to defer creation of new instances is by injecting closures. The
closure acts as a small factory.

This technique is overkill for our analytics singleton example. But let’s use
it anyway to see what it looks like.

Use Initializers for Closures

ClosurelnitializerViewController is a XIB-based view controller. We'll start by giving
it a closure property set by its initializer. The initializer declares it as an
@escaping closure so that it can store it in the property for later execution.

HardDependencies/HardDependencies/ClosurelnitializerViewController.swift
private let makeAnalytics: () -> Analytics

init(makeAnalytics: @escaping () -> Analytics = { Analytics.shared }) {
self.makeAnalytics = makeAnalytics
super.init(nibName: nil, bundle: nil)

}

The initializer parameter has a default closure. This lets the view controller
set its own closure, unless a call site passes one in.

Because we're defining a designated initializer, Swift will complain that our
UlViewController needs to provide init(coder:). Select Editor » Fix All Issues in the
Xcode menu to generate the following code:

HardDependencies/HardDependencies/ClosurelnitializerViewController.swift
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Inject Closures to Make New Instances ® 89

Finally, change viewDidAppear(_:) to call the makeAnalytics closure instead of the
Analytics.shared singleton:

HardDependencies/HardDependencies/ClosurelnitializerViewController.swift
override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
makeAnalytics().track(event: "viewDidAppear - \(type(of: self))")
}

Now create a new test suite ClosurelnitializerviewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/ClosurelnitializerViewControllerTests.swift
func test_viewDidAppear() {
let sut = ClosureInitializerViewController { Analytics() }
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

}

The test creates the view controller, passing in a closure returning an instance
suitable for testing. Run tests. The test has no assertion, so check the console
output (see Examine Console Output, on page 23) for the printout of the fake

tracking event, and to check that we avoided using the singleton.

Use Properties for Closures

For types where we can’t change the initializer, we can provide closures using
property injection. This is necessary for storyboard-based view controllers.

ClosurePropertyViewController is a storyboard-based view controller. Let’s give it a
property with a closure:

HardDependencies/HardDependencies/ClosurePropertyViewController.swift
var makeAnalytics: () -> Analytics = { Analytics.shared }

Since the closure won’t execute until it’s called, there’s no need to make it a
lazy property. Simply assign it a suitable default closure. Test code can then
replace it with a different closure.

Then change viewDidAppear(_:) to use the makeAnalytics closure instead of the Ana-
lytics.shared singleton:

HardDependencies/HardDependencies/ClosurePropertyViewController.swift
override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear (animated)
makeAnalytics().track(event: "viewDidAppear - |(type(of: self))")

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosureInitializerViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/ClosureInitializerViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosurePropertyViewController.swift
http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/ClosurePropertyViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 6. Manage Difficult Dependencies ® 90

Now create a new test suite ClosurePropertyViewControllerTests with the following
test case:

HardDependencies/HardDependenciesTests/ClosurePropertyViewControllerTests.swift
func test_viewDidAppear() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ClosurePropertyViewController =
storyboard.instantiateViewController(identifier:
String(describing: ClosurePropertyViewController.self))
sut.loadViewIfNeeded ()

sut.makeAnalytics = { Analytics() }
sut.loadViewIfNeeded ()

sut.viewDidAppear(false)

// Normally, assert something

}

The test loads the view controller from the storyboard. Then it sets the make-
Analytics property to a closure returning an instance suitable for testing. Notice
that it does this before calling loadViewlfNeeded() so the replacement closure is
ready before any view controller methods fire.

Run tests. The test has no assertion, so check the console output for the fake
tracking event, and that the test didn’t use the singleton.

Key Takeaways

With experience, you’ll begin distinguishing between problem-free dependen-
cies and difficult dependencies. Use the FIRE rules to ask whether a depen-
dency is fast, isolated, repeatable, and easy to test.

We discussed the following techniques for isolating difficult dependencies:

e Putting a singleton backdoor on a singleton you own. Use only for legacy
code, not for new designs.

e Subclass and Override Method, using a test-specific subclass. Try to
limit this to legacy code.

* Injecting dependencies through initializers—constructor injection
¢ Injecting dependencies through properties—property injection

The first two techniques are helpful for legacy code because they minimize
changes to production code. But they minimize things that we ought to change.
Sometimes I use Subclass and Override Method on new code when I haven’t
yet figured out how to design a replaceable dependency. But that’s a temporary

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependenciesTests/ClosurePropertyViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Activities ® 91

step. Once I know how to represent the dependency, I switch to a better
technique.

Another form of Dependency Injection described in Dependency Injection

where you add a new parameter to a function. It’s useful for injecting values
that change with each call. For example, instead of a function that directly
retrieves the current time, we can sometimes pass the current time as an
additional argument to that method.

Injecting closures gives us a way to extract creation of new instances. But
injecting closures may show that there is a new type trying to break free. See
if you can move the closures into a new type, changing them to methods.

Activities

To solidify this chapter, start with the first activity. You can try it on any file in
your code. Get some practice identifying difficult dependencies. It's a good
practice to use before attempting to write unit tests against any section of code.

The remaining activities 2-4 are for any code that already uses one of the
dependency-isolating techniques.

1. Pick a file in your production code. Using the dependency rules and
examples of Identify Difficult Dependencies, on page 75, try to list every

dependency that will make it difficult to test what’s in that file.

2. Ifyou already use a singleton backdoor or Subclass and Override Method,
try to shift to one of the other forms of explicit dependency injection.

3. If you already use property injection on a type that will let you change
the initializer, try to shift to constructor injection.

4. If you already inject closures, see if you have a new type that’s waiting to
be discovered. This isn’t always the case, but it’s worth checking.

What's Next?

Now you have some idea of how to write unit tests for code with tricky
dependencies. This concludes Part I, covering the foundations we need.

From here, we move to Part II, taking a tour of various things you may want
to test in iOS apps. We'll learn various techniques, starting with how to test
outlet connections.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part II

iOS Testing Tips and Techniques

With _foundations in place, how do we test specific
behaviors of iOS apps?

Some of this requires tricks. You can test a button
tap or navigation from one view controller to the
next with a handful of tricks.

Some of it requires learning how to use test doubles
to replace an actual component with a stand-in.
This includes fakes, spies, and mocks.

And besides testing behavior, it's good to know
how to test appearance.

This section offers a grab bag of tips and techniques
that you can look up as needed.

CHAPTER 7

Testing Outlet Connections

Outlets give us a way to connect our code to storyboard and XIB objects. But
sometimes we accidentally disconnect them. When this happens, it causes
all sort of problems that can be hard to diagnose.

In this chapter, you’ll learn how to write tests for outlet connections. These
tests will serve as an early warning system. The next time someone disconnects
an outlet, these tests will save you time.

Make a New Place to Play

Let’s start a new experiment. Follow the steps for Create a Place to Play with

initial test file OutletConnectionsTests.swift.

Let’s define a XIB-based view controller. Select the OutletConnections group
in the Project Navigator. Make a new file, selecting Cocoa Touch Class and
making it a subclass of UlViewController. Select the check box labeled “Also create
XIB file.” In the Save dialog, double-check that the app target is selected, not
the test target.

Edit OutletConnectionsViewController.swift, and let’s define a couple of outlets. Many
people declare outlets to be private, so let’s do that for this example:

OutletConnections/OutletConnections/OutletConnectionsViewController.swift
class OutletConnectionsViewController: UIViewController {
@IBOutlet private var label: UILabel!
@IBOutlet private var button: UIButton!
}

Now in OutletConnectionsViewController.xib, select View » Libraries » Show Library
from the Xcode menu, or press Shift-$-L to bring up the Object Library. Click
and drag a label onto the view in the main editor area. Do the same to add a

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnections/OutletConnectionsViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 7. Testing Outlet Connections ® 96

button. For this experiment, don’t worry about positioning them or setting
any Auto Layout constraints.

Finally, wire these up to the outlets. (One way to do this is to show OutletCon-
nectionsViewController.swift in the Assistant Editor. Click in the open circle next
to each @IBOutlet and drag it to the appropriate view.) We now have a project
that uses outlet connections. Let’s see how to unit test this.

Test Outlet Connections

By using the foundations of Part I, we can write a test to confirm outlet con-
nections. Let’s start by adding a test suite OutletConnectionsViewControllerTests. Use
Test Zero as temporary scaffolding to confirm that you hooked up the test
suite. (See Start from Test Zero, on page 21.) Delete Test Zero once you see

its expected failure message.

Add a test named test_outlets_shouldBeConnected() that starts by loading the view
controller. (See Chapter 5, Load View Controllers, on page 61.) For our

example, OutletConnectionsViewController is a XIB-based view controller.

OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
func test_outlets_shouldBeConnected() {
let sut = OutletConnectionsViewController()

sut.loadViewIfNeeded ()
}

Run tests to confirm that you can successfully load the view controller.

Next, we need to make the outlets accessible to test code. They're currently
private, which limits their visibility to the view controller alone. Recall from
Hook Up Tests to Production Code, on page 22 that @testable import allows tests
to access internal declarations. So let's soften the access control on the outlets
from private to internal. Since internal is the default, we can omit it. But we
can still restrict access to the setters with private(set). Combining these, the

new outlet declarations are what you see here:

OutletConnections/OutletConnections/OutletConnectionsViewController.swift
@IBOutlet private(set) var label: UILabel!
@IBOutlet private(set) var button: UIButton!

Finally, let’s add XCTAssertNotNil(_:) assertions. When testing optional values, we
often unwrap them to check their properties. But to test outlet connections,
we only want to see that the outlet is not nil:
OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift

XCTAssertNotNil(sut.label, "label")
XCTAssertNotNil(sut.button, "button")

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnections/OutletConnectionsViewController.swift
http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Check the Effectiveness of Failure Messages ¢ 97

Run tests to confirm that they pass.

When a test case has more than one assertion, it’s helpful add a
descriptive message to each assertion. This way, you don’t even
have to click on the failure message to know which assertion failed.
See Add a Descriptive Message, on page 8.

W 7

Here’s the new test in full:

OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
func test_outlets_shouldBeConnected() {
let sut = OutletConnectionsViewController()

sut.loadViewIfNeeded ()

XCTAssertNotNil(sut.label, "label")
XCTAssertNotNil(sut.button, "button")
}

If you accidentally disconnect any outlets, you’ll now know what went wrong
immediately.

Check the Effectiveness of Failure Messages

Whenever you add a test case to existing code, it’s best to see it fail once. We
can do this by deliberately breaking the production code. Open OutletConnec-
tionsViewController.xib and select the button. In the Xcode menu, select View »
Inspectors » Show Connections Inspector or press X--7. In the Connections
Inspector on the right, the Referencing Outlets section shows the button’s
connection, as seen here:

Do e aE ¢+ B O

Outlet Collections
gestureRecognizers

Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed

00000000000 OOOO |0

Referencing Outlets
("button)—(File's Owner
New Referencing Outlet

(6]O)

Referencing Outlet Collections
New Referencing Outlet Collection

http://media.pragprog.com/titles/jrlegios/code/OutletConnections/OutletConnectionsTests/OutletConnectionsViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 7. Testing Outlet Connections ® 98

Click the little x to remove the connection. Then run tests. You will see this
failure message:

XCTAssertNotNil failed - button

This proves that the test works. But it also gives us a chance to refine the
failure message if it's not descriptive enough. In this case, the message
clearly identifies the button outlet.

When test code is written after production code, deliberately break
the production code to watch the test fail. This is how we can test
= our tests.

Key Takeaways
There are several things you should take away from this chapter:

e Add tests to confirm outlet connections. Why bother if many things will
fail without those outlets? Because the failures will be widespread and
hard to diagnose. Writing outlet tests is quick, so they provide an early
warning system for little cost. You'll still have a bunch of test failures,
but the list of failure cases will include test outlets shouldBeConnected(), which
will tell you the root cause.

e When a test case has more than one assertion, add short, descriptive
messages to the assertions. The messages will help you identify the
problem, even without clicking through to see the test code.

* You may need to relax access control so the test code can see a type’s
properties. For var properties, change them to private(set) so the getter is
available, but the setter is still private. For let properties, just remove the
private modifier.

e Always see a test case fail, even if you're adding tests to cover existing
code. It helps you design the failure to be easy to understand.

e You can test your tests by deliberately breaking the production code.

Activities

To help your reading sink deeper, try this one activity, which has four steps.
Of course, it only applies if your code uses outlets.

1. Find a view controller that has outlets.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

What's Next? ¢ 99

2. Write a test that loads the view controller. If you face difficult dependencies
in viewDidLoad(), move on to a different view controller for now.

3. Change the access control on the outlets to private(set).
4. Add XCTAssertNotNil(_:) assertions to check the outlets.

Repeat this for as many view controllers as you can. Then go back to any view
controllers you skipped due to difficulties in viewDidLoad(). Try to isolate the
dependencies using techniques from Chapter 6, Manage Difficult Dependen-

What's Next?

Now you can rest assured if anyone disconnects an outlet, the test will report
the problem. And you’ll have made an important start on unit testing many
of your view controllers.

In the next chapter, let’s do more testing on the most fundamental outlet: a
button that invokes an action.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 8

Testing Button Taps (Using Actions)

Tapping a button is one of the most basic things users do with controls. If
we can write unit tests for button taps, we’ll open up an entire world for your
tests.

In this chapter, you'll learn how to write a unit test that taps a button. This
will let you confirm the behavior of button taps on your view controllers
without manual tests or even Ul tests.

Make a Place to Play with a Button

As usual, let’'s make a new project. Follow the steps for Create a Place to Play

initial test file ButtonTapTests.swift.

Let’s use the predefined storyboard-based view controller. Edit ViewController.swift,
adding a button outlet. Many people declare outlets to be private, so let’s do
that for this example:

ButtonTap/ButtonTap/ViewController.swift
@IBOutlet private var button: UIButton!

Add an action, making it private. The action prints to the console to simulate
doing something useful:

ButtonTap/ButtonTap/ViewController.swift
@IBAction private func buttonTap() {
print(">> Button was tapped")

}

We need to do three things in the storyboard:

1. Add a button to the view controller.
2. Connect the button to its outlet.
3. Connect the button to its action.

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 8. Testing Button Taps (Using Actions) ¢ 102

First, let’s add the button. Open Main.storyboard and drag a button onto the view
controller. For this experiment, don’t worry about positioning it or setting any
Auto Layout constraints.

Second, let’s connect it to the outlet. Show ButtonTapViewController.swift in the
Assistant Editor, click in the open circle next to @IBOutlet, and drag it to the
button on the storyboard.

Finally, connect it to the action. Click in the open circle next to @IBAction, and
drag it to the button on the storyboard to connect them.

Let’s confirm the button tap code with a manual test. Press #-R to run the
app. Then select View » Debug Area » Activate Console or press Shift-#-C to
show the console on the bottom right. Tap the button in the running app. In
the console, you'll see the following message:

>> Button was tapped

Now we’re ready to see how to write a unit test that does the button tap.

Test Button Taps

Since buttons are Ul elements, many assume you need Ul tests to exercise
them. But you can tap buttons using unit tests, which are much faster than
Ul tests.

Let’s start by adding a test suite ViewControllerTests. Use Test Zero as temporary
scaffolding to confirm that you hooked up the test suite. (See Start from Test

But this experimental test won’t have any assertions, so we can skip the should
clause. Instead, we’ll check the console output for the printed message.

Inside the test, add code to load the view controller. (See Chapter 5, Load

based view controller. We’ll use the simpler forced downcast approach:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
func test_tappingButton() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ViewController = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded()

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Button Taps ® 103

Run the tests. Since this is a storyboard-based view controller, you'll see a
failure message:

failed: caught "NSInvalidArgumentException", "Storyboard
(<UIStoryboard: 0x6000001f08c0>) doesn't contain a view controller with
identifier 'ViewController'"

Recall from Load a Storyboard-Based View Controller, on page 64 that for
tests, we need to set the view controller's Storyboard ID. Open Main.storyboard
and select the view controller. In the Xcode menu, select View » Inspectors
» Show Identity Inspector or press X-#-4. Then in the Identity Inspector on
the right, copy and paste the Class name ViewController into the Storyboard ID

field.

Run tests again to confirm that we can now load the view controller. So far,
we’'ve been following the principle Take a small step, get feedback.

To have a unit test tap a button, the button outlet must be accessible to test
code. It’s currently private, which limits its visibility to the view controller
alone. Let’'s do the same thing we did for Test Outlet Connections, on page

ButtonTap/ButtonTap/ViewController.swift
@IBOutlet private(set) var button: UIButton!

Now we're ready to add code to tap the button. Add the following lines to the
end of the test case:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
sut.button.sendActions(for: .touchUpInside)

// Normally, assert something

Run tests and find the console output. (See _I?g(_glg_}igg___(..I.Q.r“l§gl_§._Q}.1__t.R1_1“t_,_..9_r_.1
page 23.)

Test Case '-[ButtonTapTests.ViewControllerTests test tappingButton]' started.

>> Button was tapped

Test Case '-[ButtonTapTests.ViewControllerTests test tappingButton]' passed
(0.014 seconds).

This shows that the unit test successfully did a button tap! All you need to
do is make the outlet accessible, then call sendActions(for:). The event .touchUplinside
is the correct event for button taps.

Of course, this means you can send any event to any control using the same
trick.

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTap/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 8. Testing Button Taps (Using Actions) ¢ 104

Make a Test Helper for Button Taps

Tapping buttons is something we’ll do quite a bit when unit testing view
controllers. But sendActions(for: .touchUplnside) isn’t very descriptive. We can improve
the readability of our tests by extracting a helper to tap UIButtons.

Putting test helpers in a separate file makes it easier to find them. In the
Project Navigator, select the ButtonTapTests group and press $-N to make
a new file. Select Swift File, name it TestHelpers.swift, and set its target to the
test target. Give it the following code:

ButtonTap/ButtonTapTests/TestHelpers.swift
import UIKit

func tap(_ button: UIButton) {
button.sendActions(for: .touchUpInside)

}
Change the test to use this new helper:

ButtonTap/ButtonTapTests/ViewControllerTests.swift
tap(sut.button)

Run the tests and confirm that the console output says Button was tapped.

UlBarButtonltems aren’t UIControls, so we can’t call sendActions(for:) on them.
We can make a separate helper for them. We won’t use it until the example
in Chapter 17, Unleash the Power of Refactoring, on page 209, where we'll work

through an example with a UIBarButtonltem. But for reference, here’s a test
helper to tap them:

ButtonTap/ButtonTapTests/TestHelpers.swift
func tap(_ button: UIBarButtonItem) {
= button.target?.perform(button.action, with: nil)

}

Swift’s function overloading lets us support the common abstraction of tap(_:)
for two types. This also means that if we change a button type from UIButton
to UIBarButton, the test code can stay the same.

Extract test helpers to make your tests more readable. They’ll also
make the tests less fragile.

http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/ButtonTap/ButtonTapTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 105

Key Takeaways
The point of this chapter’s exercise was to show you the following:
e That unit tests can send actions to controls.

¢ That doing so is simple. You just have to make controls non-private so
tests can talk to them.

e That test helpers can make tests more readable.

But you may be wondering why I recommend writing unit tests to verify UI
behavior such as button taps. Shouldn’t we use Apple’s Ul testing to test UI?

It's helpful to know how the two testing paradigms differ. In UI testing, the
tests run in a separate test runner app, sending Ul events to the app under
test. The app under test is a black box, revealing only the Ul elements on the
screen.

But in the unit testing paradigm, the tests can have full access to all code
that isn’t declared private. This brings many advantages:

e Unit tests don't have to start from your app’s initial screen and navigate to
specific screens. Instead, they create whatever view controllers they want.

e Unit tests can inject different dependencies to the system under test.
These dependencies can provide canned inputs, or they can record out-
puts. For example, they can intercept network calls.

e Unit tests are orders of magnitude faster than UI tests.

So test behaviors (and even appearance, as we’ll see in Chapter 16, Testing

you can. They’ll give you fast feedback you can incorporate into your coding
workflow. Reserve Ul testing for anything the unit tests don’t already verify,
especially end-to-end testing.

Activities
Try the following five-step activity to sink this chapter into your brain:

1. Find a view controller where tapping a button changes some state. If the
action method contains difficult dependencies, skip it for now.

2. Write a test that loads the view controller. If you face difficult dependencies
in viewDidLoad(), move on to a different view controller for now.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 8. Testing Button Taps (Using Actions) ® 106

3. Change the access control of the button outlet to private(set).

4. Call sendActions(for:.touchUplnside) on the button. Use a test helper to make
this easier.

5. Add an assertion to make a characterization test (see Add Tests for

failure message. Update the assertion to match the actual value, and run
tests again.

Repeat this for as many view controllers as you can. Then go back to any view
controllers you skipped due to difficulties in either viewDidLoad() or the action
method. Try to isolate their dependencies using techniques from Chapter 6,
Manage Difficult Dependencies, on page 73.

What's Next?

Now you can test user input from button taps. This opens up much of your
view controller code to tests. You can also begin testing other user events.

But what do we do when the user taps a button and we want the user to
confirm the decision before proceeding with the action? In the next chapter,
let’s see how to test alerts.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 9

Testing Alerts

Alerts are another means of getting input from the user. But by their nature,
alerts interrupt the flow of execution. This can complicate automated testing.

Let’s just avoid the problem while making those alerts testable. In this chapter,
you’ll learn how to use the ViewControllerPresentationSpy framework to test
alerts. You’'ll be able to test alerts using unit tests, which are faster and more
reliable than UI tests.

Make a New Place to Play

Let’s create a new project for this chapter. Follow the steps for Create a Place

test file AlertTests.swift.

Let’s use the predefined storyboard-based view controller. We'll trigger the
alert from a button, so edit ViewController.swift to add a button outlet. Our tests
will need access to the outlet, so declare it private(set):

Alert/Alert/ViewController.swift
@IBOutlet private(set) var button: UIButton!

Add an action for the button, making it private. This is where we’ll present
the alert. Give the alert Cancel and OK buttons, which print to the console
to simulate doing something useful:

Alert/Alert/ViewController.swift
@IBAction private func buttonTap() {
let alert = UIAlertController(
title: "Do the Thing?",
message: "Let us know if you want to do the thing.",
preferredStyle: .alert

http://media.pragprog.com/titles/jrlegios/code/Alert/Alert/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/Alert/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 9. Testing Alerts ® 108

let cancelAction =
UIAlertAction(title: "Cancel", style: .cancel) { _ in
print(">> Cancel")

}

let okAction = UIAlertAction(title: "OK", style: .default) { _ in
print(">> 0K")

}

alert.addAction(cancelAction)

alert.addAction(okAction)

alert.preferredAction = okAction

present(alert, animated: true)

}

Follow the remaining steps from Make a Place to Play with a Button, on page

action.

Now let’s confirm our alert code manually. Make sure your destination is set
to an iOS simulator, then press -R to run the app. Then select View » Debug
Area P Activate Console or press Shift-3-C to show the console on the bottom
right. Tap the button in the running app to present the alert, like this:

Do the Thing?

Let us know if you want to do the thing.

Cancel OK

Tap one of the alert buttons and observe the message in the console output.
Present the alert again and tap the other button.

Now we have a project that presents a simple test. In the rest of the chapter,
let’s see how to unit test this using a helper framework. We want to see
whether an alert was presented. We want to see if the alert has the right
message and the desired look. Finally, we want to simulate tapping the action
buttons to trigger their closures.

Add the Helper Framework to the Project

Presenting an alert is normally a difficult dependency (see Identify Difficult

interrupts the flow of control, waiting for input. To make it easier to unit test
alerts, I wrote a framework called ViewControllerPresentationSpy.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add the Helper Framework to the Project ® 109

The framework is a collection of three verifiers. One is to capture alerts and
action sheets, which we’ll use here. The other two are to capture how view
controllers are presented or dismissed.

Find the latest release by going to its GitHub page' and clicking “releases.”
Download the versioned zip file, which GitHub shows with a size. Drag View-
ControllerPresentationSpy.framework to the open Xcode project, into the AlertTests
group, as seen here:

B = Q AN © = o 8
V@Alert
> Alert

v AlertTa
[=8, ViewControllerPresentationSpy.framework
s ViewControllerTests.swi

Info.plist
> Products

In the “Choose options for adding these files” dialog, select the check box
labeled “Copy items if needed” to copy the framework into the project folder.
And make sure that “Add to targets” specifies the AlertTests target only.

For third-party frameworks to work, we often need to copy them to a place
where the dynamic linker can find them. This is what we need to do with
ViewControllerPresentationSpy. In the Project Navigator on the left, select the
Alert project. Then select the AlertTests target. Within that, select the Build
Phases tab. Click the + button at the top and select “New Copy Files Phase,”
as seen here:

R B Alert [
D General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT s [@]
P | -
=] Alert New Copy Files Phase
TARGETS New Run Script Phase
/A Alert New Headers Phase x
[AlertTests New Copy Bundle Resources Phase
New Compile Sources Phase x
New Link Binary With Libraries Phase
New Build Carbon Resources Phase %

This creates a new Copy Files phase at the end of the list. In its Destination
pop-up menu, select “Products Directory,” as you'll see in the image on page

“Choose items to add:” dialog, select ViewControllerPresentationSpy.framework and

1. https://github.com/jonreid/ViewControllerPresentationSpy

https://github.com/jonreid/ViewControllerPresentationSpy
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 9. Testing Alerts ® 110
click Add. (Don't select the “Code Sign On Copy” check box because we're not
shipping test code.)

¥ Copy Files (1 item) X

Destination | Products Directory <

Subpath |

[Copy only when installing

Name Platforms |C0de Sign On Copy
=3 ViewControllerPresentationSpy.framework ...in AlertTests macOS +i0S { C]
+

Now the helper framework is ready for compiling against, and is also copied
into place for dynamic linking at runtime.

Test Alerts Using the Alert Verifier

Now that we've added the ViewControllerPresentationSpy framework, we're
ready to use it in tests.

Since our alert is triggered with a button tap, follow Test Button Taps, on

This also means editing Main.storyboard to give the view controller a Storyboard
ID. Follow it through to Make a Test Helper for Button Taps, on page 104 to

add the helper function for button taps:

Alert/AlertTests/TestHelpers.swift
func tap(_ button: UIButton) {
button.sendActions(for: .touchUpInside)

}

This lets the test express the button tap as tap(sut.button). Run the tests, which
should pass.

Next, edit ViewControllerTests.swift to import the new framework:

Alert/AlertTests/ViewControllerTests.swift
import ViewControllerPresentationSpy

This import provides a class named AlertVerifier. When test code instantiates
an AlertVerifier, it patches UIKit to capture any alerts. (This works because the
AlertVerifier initializer uses method swizzling to replace the UlViewController
present(_:animated:completion:) method. Its deinitializer reverses the swizzling to
restore the original method.)

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Alerts Using the Alert Verifier ® 111

To keep any tests from accidentally presenting real alerts, let’s put the alert
verifier in the test fixture—that is, we’ll make it a property managed by setUp()
and tearDown(). That way, we're patching alerts for all tests in the suite.

Alert/AlertTests/ViewControllerTests.swift
private var alertVerifier: AlertVerifier!

override func setUp() {
super.setUp()
alertVerifier = AlertVerifier()

}

override func tearDown() {
alertVerifier = nil
super.tearDown ()

}

Rename the test to test_tappingButton_shouldShowAlert() and add the following
assertions:

Alert/AlertTests/ViewControllerTests.swift
alertVerifier.verify(
title: "Do the Thing?",
message: "Let us know if you want to do the thing.",
animated: true,
actions: [
.cancel("Cancel"),
.default("0K"),
1,
presentingViewController: sut
)
XCTAssertEqual(alertVerifier.preferredAction?.title, "OK",
"preferred action")

Run the tests, which should pass. The call to the verify() method checks quite
a few things:

e That one alert was presented

e The alert title

e The alert message

e That the alert was presented with animation

e That the preferred style was UlAlertController.Style.alert. The verify() method
takes this as a parameter, with .alert as the default value.

¢ The titles and styles of each action

That the presenting view controller was the system under test

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 9. Testing Alerts ® 112

Our production code sets the preferredAction, so the final assertion after the
long verify() checks that.

Move the SUT into the Test Fixture

As you can see, we're testing several aspects of the alert but not the alert
buttons. Let’'s add separate tests for those. Since we want to load the view
controller for each test, let’s move that into the test fixture. (See Use setUp()
and tearDown(), on page 31.)

First, define a new sut property as an implicitly unwrapped optional:

Alert/AlertTests/ViewControllerTests.swift
private var sut: ViewController!

Next, copy the code that loads the view controller into setUp(), with a change.
Remove the let and the type so the view controller is assigned to the new
property, not to a local variable:

Alert/AlertTests/ViewControllerTests.swift
override func setUp() {
super.setUp()
alertVerifier = AlertVerifier()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded ()

}

In tearDown(), set the sut property to nil. Remember, anything you create in setUp()
should be destroyed in tearDown().

Alert/AlertTests/ViewControllerTests.swift
override func tearDown() {
alertVerifier = nil
sut = nil
super.tearDown ()

}

Finally, remove the code in the test case that loads the view controller. This
will change its references to sut from a local variable to the new property. Run
tests to confirm this refactoring.

Add Tests for Alert Buttons

With the system under test now in the test fixture, we’ll have an easier time
adding more tests for the alert buttons. Let’s add a test to execute the action
for the OK button.

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 113

The AlertVerifier method executeAction(forButton:) throws an exception if it can’t find
a button with the given name. So we have to precede it with a try statement.
For this to work in a test, mark the test method as throws:

Alert/AlertTests/ViewControllerTests.swift
func test_executeAlertAction_withOKButton() throws {
tap(sut.button)

try alertVerifier.executeAction(forButton: "OK")

// Normally, assert something

If you need a try in test code, mark the test case as a throwing
function with throws. Then if the call ever throws an exception,
< XCTest will report it as a test failure.

For our experiment, this test has no assertions. Run tests and find the console
output (See Examine Console Output, on page 23), where you will see the
following.

Test Case '-[AlertTests.ViewControllerTests
test executeAlertAction withOKButton]' started.
>> 0K
Test Case '-[AlertTests.ViewControllerTests
test executeAlertAction withOKButton]' passed (0.015 seconds).

Write another test to execute the action for the Cancel button.

Key Takeaways

This particular framework will help you test alerts and is good to know about.
Besides that, though, there’s a larger idea to take away from this chapter:
there’s usually a way to crack open things that look “untestable.”

Parts of Apple’s frameworks are black holes: we can pass data in, but tests
can’'t access it to verify what we passed in. Alerts are one example of this.
Moreover, alerts can interfere with UI testing.

Though we're coding in Swift these days, we depend on UIKit, which is written
in Objective-C. One thing calls another in Objective-C by dynamic message
passing. This gives us a way to intercept messages. ViewControllerPresenta-
tionSpy does this using method swizzling.

If you find a black hole that receives data with no way of getting it back out,
search for helper libraries that intercept the data. For alerts, ViewController-
PresentationSpy is one such solution.

http://media.pragprog.com/titles/jrlegios/code/Alert/AlertTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 9. Testing Alerts ® 114

Activities

To turn this chapter into something practical (and sink it deeper into your
brain), try this one activity with six parts. Start at the top and go as far as
you want to.

1. In your own code, find a view controller that presents an alert.

2. Determine what action triggers the alert. If it's a button tap, apply Chapter
8, Testing Button Taps (Using Actions), on page 101.

3. If the alert trigger is more complicated than a button tap, apply the
“Extract to Method” Xcode refactoring. Do a manual test to confirm that
the alert is still presented correctly. Then remove the fileprivate access
control on the extracted function to make it internal. Now write a test
that loads the view controller and calls the new function.

4. Copy the tests from this chapter but not the ones that execute button
actions. Use the tests as characterization tests (see Add Tests for Existing

the assertions to match the actual values, and run tests again.

5. Check the production code, looking for any alert actions that change some
state. If an action closure contains difficult dependencies, skip it for now.
Add a test that executes the button action, with an assertion for the
changed state. Apply the characterization test technique to get the test
to fail, then update the assertion to match the actual state.

6. For a Cancel button, add a test that executes the action and confirms
that the state doesn’t change.

Repeat this for as many view controllers as you can.

What's Next?

Now your tests can handle user input from button taps and alerts. Remember,
you're getting this with unit tests, which are faster than Ul tests. Unit tests
also give us opportunities to isolate difficult dependencies, which makes the
tests easier to maintain.

Let’s continue our tour of things to test in iOS apps. In the next chapter, we’ll
see how to test navigation between view controllers.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

cHAPTER 10

Testing Navigation Between Screens

Most apps have more than one view controller. Besides interactions within a view
controller, we ought to test navigation from one view controller to the next.

Going from one view controller to next is part of what we want to test. But
what’s even more interesting is that we can test the data the first view con-
troller sends to the next one.

In this chapter, you’'ll learn how to write unit tests for code-based navigation
and segue-based navigation. In fact, you’ll be able to test this navigation
without manual tests or UI tests.

Make a New Place to Play

Let’s start as usual by making a new project, following Create a Place to Play

initial test file NavigationTests.swift.

Open Main.storyboard. Since we’ll be experimenting with push navigation (as
well as modal navigation), we need to place the view controller within a navi-
gation controller. Select the view controller scene. Then in the Xcode menu,
select Editor » Embed In » Navigation Controller.

We're going to work with push navigation and modal presentation for both
code-based and segue-based approaches. Let's add four buttons to trigger
each form of navigation. Edit ViewController.swift to add four button outlets,
declaring them private(set) so that tests can reach them:

Navigation/Navigation/ViewController.swift

@IBOutlet private(set) var codePushButton: UIButton!
@IBOutlet private(set) var codeModalButton: UIButton!
@IBOutlet private(set) var seguePushButton: UIButton!
@IBOutlet private(set) var segueModalButton: UIButton!

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ¢ 116

Back in the storyboard, open the Object Library and add four buttons to the
view controller scene:

¢ Code Push

e Code Modal
e Segue Push
¢ Segue Modal

Position them as you like. Connect each to its @IBAction in ViewController.

Set Up Code-Based Navigation

Let’s add a view controller for code-based navigation to go to. Select the Nav-
igation group in the Project Navigator. Make a new file, selecting Cocoa Touch
Class. Name it CodeNextViewController and make it a subclass of UlViewController.
Leave the check box labeled “Also create XIB file” unselected. We want to
demonstrate passing data from one view controller to the next, so let’s pass
a string. The next view controller will use it to set a label’s text. For a code-
based view controller, it’s best to pass data through an initializer:

Navigation/Navigation/CodeNextViewController.swift
class CodeNextViewController: UIViewController {
let label = UILabel()

init(labelText: String) {
label.text = labelText
super.init(nibName: nil, bundle: nil)

}

Xcode will complain that it doesn’t have all required initializers. In the Xcode
menu, select Editor » Fix All Issues to generate the following code:

Navigation/Navigation/CodeNextViewController.swift
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

To center the label, we’ll define Auto Layout constraints in viewDidLoad() using
a helper method. We'll also set the background color:

Navigation/Navigation/CodeNextViewController.swift
override func viewDidLoad() {
super.viewDidLoad ()
view.backgroundColor = .white
view.addSubview(label)
label.translatesAutoresizingMaskIntoConstraints = false

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/CodeNextViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Set Up Code-Based Navigation ® 117

activateEqualConstraints(.centerX, fromItem: label, toItem: view)
activateEqualConstraints(.centerY, fromItem: label, toItem: view)

}

private func activateEqualConstraints(
_ attribute: NSLayoutConstraint.Attribute,
fromItem: UIView,
toItem: UIView) {
NSLayoutConstraint(
item: fromItem,
attribute: attribute,
relatedBy: .equal,
toItem: toItem,
attribute: attribute,
multiplier: 1,
constant: 0
) .isActive = true

}

Back in ViewController, let’s add actions for the two code-based navigation but-
tons. This is where we’ll either tell the navigation controller to push the next
view controller, or we’ll present a modal. Make the actions private.

Navigation/Navigation/ViewController.swift
@IBAction private func pushNextViewController() {
let nextVC = CodeNextViewController(labelText: "Pushed from code")
self.navigationController?
.pushViewController(nextVC, animated: true)

}

@IBAction private func presentModalNextViewController() {
let nextVC = CodeNextViewController(labelText: "Modal from code")
self.present(nextVC, animated: true)

}

Finally, we need to connect these actions to their buttons. (You can show the
storyboard in the Assistant Editor. Click in the open circle next to each
@IBAction and drag it to the appropriate button on the storyboard to connect
them.)

Now let’s manually confirm the navigation we have so far. Run the app and
tap Code Push. The label will say, “Pushed from code.” Go back and tap the
Code Modal button. The label will say, “Modal from code.” (We're not going
to add a Cancel button for this experiment, so just stop the app.)

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ¢ 118

Set Up Segue-Based Navigation

For segues, let’s add another view controller to the storyboard, along with two
segues to navigate to it. Let’s start with the code. From the Project Navigator,
make a subclass of UlViewController and give it the name SegueNextViewController.

In the code, let’s define a settable property that determines the text of a label:

Navigation/Navigation/SegueNextViewController.swift
class SegueNextViewController: UIViewController {
var labelText: String?

@IBOutlet private(set) var label: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
label.text = labelText

}

Back in the storyboard, open the Object Library and add a new view controller
to the storyboard. Select the second view controller scene, which is the one
we just added. In the Identity Inspector, set the Custom Class to
SegueNextViewController.

In the main view controller scene, control-drag from the Segue Push button
to the Segue Next View Controller. This brings up a pop-up menu of segue
choices. From the Action Segue section, select “Show (e.g. Push).” Select the
segue, then in the Identity Inspector, set its identifier to “pushNext.”

Repeat to create a new segue from the Segue Modal button to the same Segue
Next View Controller. This time, select “Present Modally” from the pop-up
menu of segue choices. Now select the newly created segue. In the Identity
Inspector, set its identifier to “modalNext.”

Now add a label to the Segue Next View Controller. Position it where you like.
Connect the label to its outlet. (You can show SegueNextViewController.swift in the
Assistant Editor and drag from the @IBOutlet circle to the label.)

Finally, we need the code that prepares for each segue by setting the label
text. Add the following method to ViewController:

Navigation/Navigation/ViewController.swift
override func prepare(for segue: UIStoryboardSegque, sender: Any?) {
switch segue.identifier {
case "pushNext"?:
guard let nextVC = segue.destination as? SegueNextViewController
else { return }
nextVC.labelText = "Pushed from segue"

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/SegueNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Code-Based Push Navigation ® 119

case "modalNext"?:

guard let nextVC = segue.destination as? SegueNextViewController
else { return }

nextVC.labelText = "Modal from segue"

default:
return

}

}

Now let’s manually confirm this navigation. Run the app. Tap the Segue Push
button to show the next view controller. The label will say, “Pushed from
segue.” Go back, and tap the Segue Modal button to see it present a modal
showing “Modal from segue.”

We now have a project that does four styles of navigation from one view con-
troller to the next. In the rest of the chapter, let’'s see how to unit test each

style.
Test Code-Based Push Navigation

We'll start our testing with code-based navigation, taking push navigation
first. Since all our navigation is triggered by button taps, follow Test Button

test_tappingCodePushButton_shouldPushCodeNextViewController(). This also means editing
Main.storyboard to give the view controller a Storyboard ID. Also follow Make a

test tap the codePushButton outlet. Run the tests, which should pass so far.

The @IBAction connected to codePushButton tells the view controller’s navigationCon-
troller to do a push. But since the test instantiates ViewController in isolation, it
has no navigation controller at first. Let’s prove this by adding an assertion
to the end of the test.

Navigation/NavigationTests/ViewControllerTests.swift
XCTAssertNotNil(sut.navigationController)

Run the tests to see this fail. To get it to pass, we need to embed the view
controller inside a navigation controller. Add the following line after load-
ViewlfNeeded():

Navigation/NavigationTests/ViewControllerTests.swift

sut.loadViewIfNeeded ()
let navigation = UINavigationController(rootViewController: sut)

Run the tests again. This time they should pass. Delete the XCTAssertNotNil(_:)
assertion, which has served its purpose. We'll move forward with other
assertions.

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ¢ 120

Since we pushed one view controller over another, the navigation controller
should have two view controllers in its stack. The following assertion checks that:

Navigation/NavigationTests/ViewControllerTests.swift
XCTAssertEqual(navigation.viewControllers.count, 2, "navigation stack")

Finally, let’s confirm that the last view controller in the stack is the right type:

Navigation/NavigationTests/ViewControllerTests.swift
let pushedVC = navigation.viewControllers.last
XCTAssertTrue(pushedVC is CodeNextViewController,
"Expected CodeNextViewController, "
+ "but was | (String(describing: pushedVC))")

Run the tests but know that they’ll fail. That’s because some of UlKit’s actions
aren’t immediate but add an event to the run loop. The run loop is a UIKit
mechanism for handling events like mouse and keyboard input. UIKit also
uses it for other things. Pushing onto a navigation controller is one example.

Before checking the stack of view controllers, we need to ask the run loop to
execute one more time. This allows the push to take effect. To make this
easier, let’s create a test helper to execute the run loop. Add the following to
TestHelpers.swift:

Navigation/NavigationTests/TestHelpers.swift
func executeRunLoop() {
RunLoop.current.run(until: Date())

}

Then call executeRunLoop() before the first assertion and run the tests.

If a unit test calls UIKit but you don’t see the expected results, try
P executing the run loop.

This time, the tests will pass. What we're doing is asking the run loop to
execute until Date(), which is the current time. So it nudges the run loop by
telling it, “Run until I tell you. Now stop!” This gets us what we want while
keeping the test duration short.

At this point, we know that pushedVC is a NextViewController. Most production code
prepares the state of the next view controller and then pushes it. In test code,
we can go beyond confirming only the type of the view controller. Instead of only
asserting pushedVC is NextViewController, let’s cast it. If the cast fails, we report the
failure using XCTFail() and bail out of the test. Otherwise, we now have an instance
of the correct type. Further assertions can check that we set the properties of
NextViewController correctly. Here’s the complete test case with a good test name:

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Code-Based Push Navigation ¢ 121

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingCodePushButton_shouldPushCodeNextViewController() {

}

We now have a way to test code-based push navigation, including the data

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut = storyboard.instantiateViewController(
withIdentifier: "ViewController") as! ViewController
sut.loadViewIfNeeded ()
let navigation = UINavigationController(rootViewController: sut)

tap(sut.codePushButton)

executeRunLoop()
XCTAssertEqual(navigation.viewControllers.count, 2, "navigation stack")
let pushedVC = navigation.viewControllers.last
guard let codeNextVC = pushedVC as? CodeNextViewController else {
XCTFail("Expected CodeNextViewController, "
+ "but was | (String(describing: pushedVC))")
return
}
XCTAssertEqual (codeNextVC. label.text, "Pushed from code")

sent to the next view controller.

We can ask the UINavigationController for its stack of view controllers. But is there a way
to check whether the animated flag was set for pushViewController(_:animated:)? Yes, by using
a test spy.? A test spy records information about how it’s called. Normally, a test spy
captures method arguments without doing actual work. But to test navigation, we
want the real results of the view controller stack. We get both with a subclassed test
double that overrides pushViewController(_:animated:) to capture the animated flag while still
letting the superclass do its work.

Navigation/NavigationTests/SpyNavigationController.swift
class SpyNavigationController: UINavigationController {
private(set) var pushViewControllerArgsAnimated: [Bool] = []

override func pushViewController(
_ viewController: UIViewController, animated: Bool) {
super.pushViewController(viewController, animated: animated)
pushViewControllerArgsAnimated.append(animated)

}

A test would then create a SpyNavigationController instead of a UINavigationController. The test
spy records the animated arguments passed to pushViewController(_:animated:) in the
pushViewControllerArgsAnimated property, which tests can query.

a. xUnit Test Patterns [MesO07]

report erratum -« discuss

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/SpyNavigationController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ® 122

Test Code-Based Modal Presentation

Let’s continue to test code-based navigation, this time moving to modals. The
view controller makes a present(_:animated:) call. How can we capture the result
of this call?

If we had defined the main view controller outside of a storyboard, there’s a
useful trick we could have used. To intercept the call, we could make a test-
specific subclass. It would provide its own implementation of the present(_:ani-
mated:completion:) method, including the optional completion handler.

Navigation/NavigationTests/ViewControllerTests.swift
// We can't use this for a view controller that comes from a storyboard.
private class TestableViewController: ViewController {

var presentCallCount = 0

var presentArgsViewController: [UIViewController] = []
var presentArgsAnimated: [Bool] = []
var presentArgsClosure: [(() -> Void)?] = []

override func present(_ viewControllerToPresent: UIViewController,
animated flag: Bool,
completion: (() -> Void)? = nil) {
presentCallCount += 1
presentArgsViewController.append(viewControllerToPresent)
presentArgsAnimated.append(flag)
presentArgsClosure.append(completion)

}

We first saw a test-specific subclass in Subclass and Override: A Legacy Code

method arguments without doing actual work. The idea is that tests can
instantiate the TestableViewController instead of ViewController.

This works for view controllers that are code-based or XIB-based. Unfortunate-
ly, we can’t use this approach for view controllers from storyboards. That’s
because the storyboard stores an instance of a particular class. We can’t
instantiate a ViewController from the storyboard and convert it to a subclass
after it already exists.

Let’s try a different approach. Create a new test case, giving it the name
test INCORRECT _tappingCodeModalButton_shouldPresentCodeNextViewController(). (As you can
see from the name, we're going to experiment with an approach I don’t recom-
mend.) Load the view controller from the storyboard, and call loadViewlfNeeded().
Then supply the rest of the test case:

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Code-Based Modal Presentation ¢ 123

Navigation/NavigationTests/ViewControllerTests.swift
UIApplication.shared.windows.first?.rootViewController = sut

tap(sut.codeModalButton)

let presentedVC = sut.presentedViewController
guard let codeNextVC = presentedVC as? CodeNextViewController else {
XCTFail("Expected CodeNextViewController, "
+ "but was | (String(describing: presentedVC))")
return

}
XCTAssertEqual(codeNextVC.label.text, "Modal from code")

This test sets the view controller as the rootViewController inside a visible UlWindow.
It gives the view controller a home in a larger ecosystem, allowing the
present(_:animated:) call to work. Run the tests. They will pass. So what's the
problem?

To see the problem, add the following diagnostic code to ViewController:

Navigation/Navigation/ViewController.swift
deinit {
print(">> ViewController.deinit")

}

Add similar code to CodeNextViewController, changing the print statement so it
identifies CodeNextViewController in the print() statement. Run the test by itself,
and check the console output. You'll see that neither ViewController nor
CodeNextViewController are deinitialized for this test.

This violates the clean room goals of Chapter 2, Manage Your Test Life Cycles,

trouble, but they have the potential to do so. We want to avoid this situation,
if possible. It turns out, we can...for three out of four of our navigation
scenarios.

To intercept the call to present, let’s use the same helper framework we used
for alerts. Follow the steps in Add the Helper Framework to the Project, on

ControllerTests.swift to import the new framework:

Navigation/NavigationTests/ViewControllerTests.swift
import ViewControllerPresentationSpy

Start a new test case named test_tappingCodeModalButton_shouldPresentCodeNextView-
Controller(). At the top of the test, instantiate a PresentationVerifier:

Navigation/NavigationTests/ViewControllerTests.swift
let presentationVerifier = PresentationVerifier()

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ® 124

Like we did with the AlertVerifier in Test Alerts Using the Alert Verifier, on page

to present view controllers. When the PresentationVerifier goes out of scope, it
reverses the swizzling to restore the original method.

The PresentationVerifier captures arguments, but without presenting anything.
To finish the test, we call verify() on it to get an optional instance of the view
controller type we want. We can then use that to check its properties:

Navigation/NavigationTests/ViewControllerTests.swift
tap(sut.codeModalButton)

let codeNextVC: CodeNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)
XCTAssertEqual(codeNextVC?.label.text, "Modal from code")

The verify() method checks several things:

e That one view controller was presented

e That it was presented with animation

e That the presenting view controller was the system under test

e That the type of the presented view controller is correct. And if so, it
returns an instance of the correct type. (Otherwise, it returns nil.)

Run this test to see it pass. Then examine the console output. You’'ll see
something like this:

Test Case '-[NavigationTests.ViewControllerTests
test tappingCodeModalButton shouldPresentCodeNextViewController]' started.
>> CodeNextViewController.deinit
>> ViewController.deinit
Test Case '-[NavigationTests.ViewControllerTests
test tappingCodeModalButton shouldPresentCodeNextViewController]' passed
(0.021 seconds).

The presence of the deinit logging proves that this test successfully cleans up
after itself.

Test Segue-Based Push Navigation

Segues are more of a black box than code-based navigation. But it turns out,
part of what they do is to call present(_:animated:) to show the next view controller.
This means we can use ViewControllerPresentationSpy framework as long as
we do a little extra work.

We'll also want to keep an eye on the memory leak problem. Add the following
diagnostic code to SegueNextViewController:

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Segue-Based Push Navigation ¢ 125

Navigation/Navigation/SegueNextViewController.swift
deinit {
print(">> SegueNextViewController.deinit")

}

Before we write a third test, let’s extract common Arrange code from the two
tests we have. Follow Move the SUT into the Test Fixture, on page 112 but

without an AlertVerifier. Move the common code up to sut.loadViewlfNeeded() into
setUp(), and set sut = nil in tearDown(). Run the tests to confirm that they're still

happy.
Now add the following test:

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingSeguePushButton_shouldShowSegueNextViewController() {
let presentationVerifier = PresentationVerifier()

tap(sut.seguePushButton)

let segueNextVC: SegueNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)
XCTAssertEqual (segueNextVC?.labelText, "Pushed from segue")
}

Run the tests. While we’d like this to pass, it fails with

failed - Expected SegueNextViewController, but was nil

To give the segue an environment that works, we need to load the view con-
troller into a visible UIWindow. We managed to avoid this for code-based
modals, but now we need this trick. Let’s put the view controller into a
window. We will use a slightly different way, adding a new helper function
to TestHelpers.swift:

Navigation/NavigationTests/TestHelpers.swift

func putInWindow(_ vc: UIViewController) {
let window = UIWindow()
window. rootViewController = vc
window.isHidden = false

}
For this to build, add import UIKit to the top of TestHelpers.swift.

Call this helper function in the “Arrange” section after setting up the Presenta-
tionVerifier:
Navigation/NavigationTests/ViewControllerTests.swift

let presentationVerifier = PresentationVerifier()
» putInWindow(sut)

http://media.pragprog.com/titles/jrlegios/code/Navigation/Navigation/SegueNextViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ® 126

Run the tests again. This time, this test will pass. But check the console
output for deinit logging. You'll find that the presented view controller
SegueNextViewController is deinitialized. But the presenting view controller ViewCon-
troller we put in a window isn’t being cleaned up.

To give the window a chance to disappear, add a call to execute the run loop
one more time at the top of tearDown():

Navigation/NavigationTests/ViewControllerTests.swift
override func tearDown() {
executeRunLoop()
sut = nil
super.tearDown()

}

Run this test and check the console output. You can confirm that both view
controllers are now deinitialized.

Test Segue-Based Modal Navigation

We've come to the last of our navigation types, the segue-based modal. Add
the following test:

Navigation/NavigationTests/ViewControllerTests.swift
func test_tappingSegueModalButton_shouldShowSegueNextViewController() {
let presentationVerifier = PresentationVerifier()

tap(sut.segueModalButton)

let segueNextVC: SegueNextViewController? = presentationVerifier.verify(
animated: true, presentingViewController: sut)
XCTAssertEqual (segueNextVC?.labelText, "Modal from segue")

}
Run the tests, which should pass.

Unfortunately, by peering into the console output, we can see that both view
controllers still exist. There may be a trick I don’t know yet, but as of this
writing, I haven’t found a way to clean them out. The presenting view controller
and the presented view controller both live on past the life cycle of the test.

This violates our clean room goals. The best we can do is mitigate the effects. If
either view controller has a persistent side effect, then provide a backdoor for
tests to clean it up. Add a cleanup method wrapped in #if DEBUG ... #endif so that
it’s not included in your shipping app. Call this method at the end of your test
or at the beginning of tearDown() if the view controller is in the test fixture.

It’s not a perfect world. But we were able to test the modal presentation, so
we’ll take what we can get.

http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/Navigation/NavigationTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 127

Key Takeaways

Sometimes tests need to downcast an object to a more specific type so it can
query its properties. A force-cast as! is simple but will crash the test run if
the type is wrong. Use the softer conditional cast as? with a guard let. If the guard
fails, use an XCTFail() to report the desired type and the actual object.

“Execute the run loop” is a good trick to keep in your pocket. When things
work in manual testing but not in unit testing, see if the trick works. Some-
times it gives UIKit that extra kick it needs.

To test code-based push navigation, follow these steps:
¢ Put the view controller inside a UINavigationController.

e Execute the run loop before any assertions. Then query the navigation
controller.

To test code-based modal navigation, follow these steps:

e Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

e Call the PresentationVerifier’s verify() method.
To test segue-based push navigation, follow these steps:

e Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

¢ Load the view controller into a visible UlWindow. You may wish to use
putinWindow(_) for this.

e Call the PresentationVerifier’s verify() method.

¢ Execute the run loop one more time at the end of tearDown() to clean
everything up.
To test segue-based modal navigation, follow these steps:

e Add the ViewControllerPresentationSpy framework to your test target.
Instantiate a PresentationVerifier.

e Call the PresentationVerifier’s verify() method.

e Recognize that both the presenting view controller and the presented view
controller will live on. Check both to see if this will leave any side effects,
such as observing notifications or running a timer. If so, provide a back-
door cleanup method and call it from the test code.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 10. Testing Navigation Between Screens ¢ 128

Activities

To solidify this chapter in your head, find a simple point of navigation in
your code. If you can, find navigation triggered by a button push. Then do
the following;:

1. Write a test case that triggers the navigation, testing the expected type of
the next view controller.

2. If the presenting view controller passes any information along, look for a
way to confirm that the presented view controller has this information.
You may need to relax access control so tests can see this data.

What's Next?

Now your tests can confirm view navigation. Remember, you're getting this
with unit tests, which are faster than UI tests.

In the next chapter, we’ll look at testing UserDefaults. This will introduce us to
replacing an actual type with a fake object.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 11

Testing UserDefaults (with Fakes)

The most basic form of persistence we have is UserDefaults. But we don’t want
unit tests to interact with real persistence. Otherwise, unit tests could end
up affecting manual tests as well as each other. Instead, we can simulate
persistence by using a fake object.

In this chapter you'll learn how to write a fake object that acts as a replace-
ment for UserDefaults. In the process, you'll see how to use protocols to substitute
testing objects in place of real ones, all while keeping Swift happy.

Make a New Place to Play

For this chapter, we want some code that writes to UserDefaults and other code
that reads from it. We’ll do that with an app that increments a counter when
you tap a button. The counter will be persistent, so the app will show the last
value when it launches.

We'll do this in a new project, following the steps for Create a Place to Play

project now and delete its initial test file UserDefaultsTests.swift.

Edit ViewController.swift to add outlets for a label and a button. Declare them
private(set) so that our tests can reach them:

UserDefaults/UserDefaults/ViewController.swift
@IBOutlet private(set) var counterLabel: UILabel!
@IBOutlet private(set) var incrementButton: UIButton!

Add a private count property with a didSet observer. When the count changes,
it updates the label and writes the value to UserDefaults:

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 11. Testing UserDefaults (with Fakes) ® 130

UserDefaults/UserDefaults/ViewController.swift
private var count = 0 {
didSet {
counterLabel.text = "|(count)"
UserDefaults.standard.set(count, forKey: "count")

}
In viewDidLoad(), we’ll read the value back from UserDefaults:

UserDefaults/UserDefaults/ViewController.swift
override func viewDidLoad() {
super.viewDidLoad()
count = UserDefaults.standard.integer(forKey: "count")

}
Finally, add an action for the button that increments the count:

UserDefaults/UserDefaults/ViewController.swift
@IBAction private func incrementButtonTapped() {
count += 1

}

Follow the remaining steps from Make a Place to Play with a Button, on page

the action. Also add a label and connect it to the label outlet.

Now let’s manually confirm that we're successfully using UserDefaults. Run the
app, observing the initial count. Tap the button to increment the count. Then
rerun the app to see that the count persists across runs.

We now have a simple app that uses UserDefaults. This is a difficult dependency,
so we'll start by isolating it. We’ll extract a protocol so we can substitute
something else in its place. Then we’ll make a fake object, which will allow
us to easily test this app.

Isolate UserDefaults with Dependency Injection

Recall from Identify Difficult Dependencies, on page 75 that UserDefaults is a

difficult dependency because it uses persistent storage. We want to isolate it
so we can replace it.

There’s another way to handle persistence, though. That’s to save the old
value, overwrite it for testing, then restore the old value. But using real per-
sistence can slow down test execution. And this approach carries the risk of
leaving unwanted remains in the event of test crashes.

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Extract a Protocol to Support Test Doubles ® 131

So let’s take our first steps toward isolating this dependency. Since ViewController
is a storyboard-based view controller, let’s use property injection from Inject
Instances Through Initializers or Properties, on page 85.

First, add the new property, giving it an initial value of the UserDefaults.standard
singleton. Make it var, not let, so that a different value can be injected:

UserDefaults/UserDefaults/ViewController.swift
var userDefaults = UserDefaults.standard

Replace all other references to the UserDefaults.standard singleton with the
userDefaults property:

UserDefaults/UserDefaults/ViewController.swift
private var count = 0 {
didSet {
counterLabel.text = "|(count)"
userDefaults.set(count, forKey: "count")

}

override func viewDidLoad() {
super.viewDidLoad ()
count = userDefaults.integer(forKey: "count")

}

Use manual testing to confirm that the behavior hasn’t changed.

Extract a Protocol to Support Test Doubles

The userDefaults property currently has an implicit type of UserDefaults. If we kept
that type, then any replacement would have to be UserDefaults or a subclass.
Subclassing is useful for allowing existing behavior to flow through, capturing
extra information. (See How to Spy on the Animated Flag, on page 121.) But
subclassing isn't useful when you want to stop some existing behavior. It also
isn’t useful when the type is a final class or a struct, or the type prevents you

from creating your own instance of it.

What we need is a way to substitute an arbitrary type that honors a contract.
In Swift, we can do this using protocols. Protocols give us a way to replace a
concrete type with a test double.

What's a test double? It’s like a stunt double in filmmaking. We
temporarily replace the real actor with someone that looks like
that actor. Or in our case, something that looks like the original
type as far as the calling code is concerned.

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 11. Testing UserDefaults (with Fakes) ® 132

Start by defining a new protocol in production code. For lack of a better name,
let’s call it UserDefaultsProtocol. It'll be empty to start with:

UserDefaults/UserDefaults/ViewController.swift
protocol UserDefaultsProtocol {

}
Now add an explicit type to the userDefaults property, specifying the protocol.

UserDefaults/UserDefaults/ViewController.swift
var userDefaults: UserDefaultsProtocol = UserDefaults.standard

Xcode will show a Swift error:

Value of type 'UserDefaults' does not conform to specified type
'UserDefaultsProtocol’

Since Swift allows us to extend existing types, we can declare an extension
saying that UserDefaults does conform to our new protocol:

UserDefaults/UserDefaults/ViewController.swift
extension UserDefaults: UserDefaultsProtocol {}

That fixes the first error. But we still have errors at the places the code calls
userDefaults:

Value of type 'UserDefaultsProtocol' has no member 'set'
Value of type 'UserDefaultsProtocol' has no member 'integer'

Note which line shows the first error about set. We want to get the original
definition of the function it’s calling. Change the type of the userDefaults prop-
erty from UserDefaultsProtocol to UserDefaults. Go to the line that was showing the
first error and place the cursor within set. Then in the Xcode menu, select
Navigate » Jump to Definition or press ~-#-). Take a few breaths while Xcode
determines the correct definition.

Eventually, Xcode will show you the interface of UserDefaults, highlighting this
method:

/// -setInteger:forKey: is equivalent to -setObject:forKey: except that the
/// value is converted from an NSInteger to an NSNumber.
open func set(_ value: Int, forKey defaultName: String)

There are several definitions of set(_:forkey:). Make sure you have the version
where the first argument is of type Int. Copy that line and paste it into UserDe-
faultsProtocol. Delete the open attribute since that doesn’t apply to protocols.

Do the same for the call to integer(forkey:). You'll end up with a protocol with
the following definition:

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Fake Object ® 133

UserDefaults/UserDefaults/ViewController.swift

protocol UserDefaultsProtocol {
func set(_value: Int, forKey defaultName: String)
func integer(forKey defaultName: String) -> Int

}

Finally, change the type of the userDefaults property from UserDefaults back to
UserDefaultsProtocol. Confirm the changes by pressing #-B to build.

We've done two things:

¢ Used an extension to declare that UserDefaults conforms to a new protocol
e Copied the declarations of two methods from UserDefaults into the protocol

Since UserDefaults already implements these methods, the extension is empty.
Swift nods its head and says, “Sure, the type conforms to that extension.”

There are benefits to protocols beyond making the code testable. What we’re doing
is implementing the interface segregation principle.? This principle states that clients
shouldn’t depend on methods it doesn’t use. If the entire UserDefaults interface is a cut
diamond, we've reduced the dependency to a small facet.

This makes it easier to write test doubles. But we don’t have to limit use of this pro-
tocol to testing. We can substitute any type that meets the contract of the protocol.
This would let us shift the underlying persistence model to anything we want. We
could even defer the question of how we're going to handle persistence until later.

a. Agile Software Development, Principles, Patterns, and Practices [Mar0O2]

Make a Fake Object

A fake object offers limited functionality like the real object. But the implemen-
tation is lightweight. In our case, we don’t need (or want) actual persistence.
We only need a way to associate an integer with a key and retrieve it using
that key. We can do this using a dictionary.

Let’s make a fake object in the test target. Select the UserDefaultsTest group
in the Project Navigator and press #-N to make a new file. Click the iOS
selector at the top, select Swift File, and press Next.

In the dialog, enter FakeUserDefaults.swift as the name of the file. In the Save
dialog, double-check that the test target is selected, not the app target. Press
Create, then define a class that conforms to the UserDefaultsProtocol protocol:

report erratum -« discuss

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaults/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 11. Testing UserDefaults (with Fakes) ® 134

UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
@testable import UserDefaults

class FakeUserDefaults: UserDefaultsProtocol {

}
Xcode will show a Swift error:

Type 'FakeUserDefaults' does not conform to protocol 'UserDefaultsProtocol’

In the Xcode menu, select Editor » Fix All Issues. Xcode will generate stubs
for the protocol methods. Fill in the rest as shown here:

UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
var integers: [String: Int] = [:]

func set(_ value: Int, forKey defaultName: String) {
integers[defaultName] = value

}

func integer(forKey defaultName: String) -> Int {
integers[defaultName] ?? ©

}

This gives us a simple implementation, backed by a dictionary of integers. In
the Xcode menu, select Product » Build For » Testing or press Shift--U to
confirm our work so far.

Test UserDefaults

Now we're ready to use our fake object to test the app. Let’s start by adding
a test suite ViewControllerTests. Use Test Zero as temporary scaffolding to confirm
that you hooked up the test suite. (See Start from Test Zero, on page 21.)

Delete Test Zero once you see its expected failure message.

For our first test case, let’s test viewDidLoad(). That method gets the integer for
the key "count" from userDefaults and stores this in the count property. The didSet
observer on that property takes the count and updates the counter label.
These are the things we’ll test. (It also happens to write the count back to
userDefaults, which is a little wasteful but not a big deal. It’s not a requirement,
so we shouldn’t test it.) To invoke viewDidLoad(), our test will call loadViewlfNeeded().
Let’s think about how to set up the test and how to confirm the result. We
want to do the following:

¢ Instantiate the view controller from the storyboard.

e Create an instance of FakeUserDefaults but leave its dictionary blank.

e Inject the FakeUserDefaults into the view controller before viewDidLoad() is called.
e Call loadViewlfNeeded() to trigger viewDidLoad().

e Confirm that the counter label is displaying O.

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/FakeUserDefaults.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test UserDefaults ® 135

Following the test naming tip from Observe Object Life Cycles to Learn the

test viewDidLoad withEmptyUserDefaults shouldShowOInCounterLabel

Create a test with that name, and follow Load a Storyboard-Based View

that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Here’s the rest of the test. Notice that we inject the fake object into place
before loadViewlfNeeded():

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
let defaults = FakeUserDefaults()
sut.userDefaults = defaults

sut.loadViewIfNeeded ()
XCTAssertEqual(sut.counterLabel.text, "0")

Run the tests to confirm they pass.

Since we need more tests that load the fake object into the system under test,
let’'s move both into the test fixture. Define properties for them as implicitly
unwrapped optionals. Copy the code to set them up, but remove each let to
assign them to the properties. Also change as! to as? to silence a Swift warning.
Remember to tear them down.

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
private var sut: ViewController!
private var defaults: FakeUserDefaults!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))
defaults = FakeUserDefaults()
sut.userDefaults = defaults

}

override func tearDown() {
sut = nil
defaults = nil
super.tearDown ()

}

Press Shift-$-U to build tests. Then delete the corresponding lines from the
test case so the test uses the properties. Run tests to confirm this refactoring.

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 11. Testing UserDefaults (with Fakes) ® 136

Now we want a second test much like the first, except that we’ll preload
FakeUserDefaults with some integer. The test will confirm that the counter label
reflects this value.

UserDefaults/UserDefaultsTests/ViewControllerTests.swift
func test_viewDidLoad_with7InUserDefaults_shouldShow7InCounterLabel() {
defaults.integers = ["count": 7]

sut.loadViewIfNeeded /()

XCTAssertEqual(sut.counterLabel.text, "7")
}

Run tests to confirm.

That takes care of reading from UserDefaults. Let’s write a test that confirms
that tapping the button writes the incremented count to UserDefaults. First,
follow Make a Test Helper for Button Taps, on page 104 to create TestHelpers.swift

with the helper for button taps. Then add the following test:

UserDefaults/UserDefaultsTests/ViewControllerTests.swift

func test_tappingButton_withl2InUserDefaults_shouldWritel3ToUserDefaults() {
defaults.integers = ["count": 12]
sut.loadViewIfNeeded()

tap(sut.incrementButton)

XCTAssertEqual (defaults.integers["count"], 13)
}

Run tests to confirm.

Reusing the same input values across tests makes those tests
weaker. Production code could pass all tests but happen to work
only for that one input. To reduce the chances of this happening,

< it’s best to vary your test inputs. (Here, we're varying the "count"
value we load into FakeUserDefaults.)

7

Finally, one last test confirms that tapping the button increments the value
shown in the counter label:

UserDefaults/UserDefaultsTests/ViewControllerTests.swift

func test_tappingButton_with42InUserDefaults_shouldShow43InCounterLabel() {

defaults.integers = ["count": 42]
sut.loadViewIfNeeded ()

tap(sut.incrementButton)

XCTAssertEqual(sut.counterLabel.text, "43")

http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/UserDefaults/UserDefaultsTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ¢ 137

Run the tests to confirm. To see how effective the tests are, try breaking the
production code to see what happens. (See Check the Effectiveness of Failure
Messages, on page 97.)

were all checking properties of the same object. Here, we want to check the fake object
but also check the counter label.

By keeping these in separate tests, we're following the principle that a good unit test
should fail for one reason. It takes only a little more work on the test side but is much
easier to diagnose when a failure occurs.

.
Key Takeaways

Let’s review the main things from this chapter that you should carry with you:

e Centralize direct references to a difficult dependency by putting that
dependency into a property.

* You can replace a concrete type with a protocol because Swift lets us
attach protocols to existing types. The protocol should have only the parts
of the type’s interface that you need.

e Once you express a dependency as a protocol, you can inject anything
that conforms to that protocol. This brings extra flexibility while still
preserving type safety. Tests can provide test doubles in place of the real

types.

» A fake object is a test double with a lighter-weight implementation. The
fake object avoids the complications that make the real thing a difficult
dependency. Besides FakeUserDefaults, examples include fake databases and
fake web services.

¢ Avoid reusing the same input values across tests. Vary the input. This
reduces the chances that the production code “happens to work” for some
inputs but not others.

Activities

If you have any code that uses UserDefaults, it’s time to apply what you've
learned. Here’s one activity with four steps:

report erratum -« discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 11. Testing UserDefaults (with Fakes) ® 138

1. Find a class that uses UserDefaults.

2. Replace direct references to UserDefaults.standard. Instead, use a property
with UserDefaults.standard as the default value.

3. Extract the UserDefaults methods you use into a protocol. (See Extract a

this protocol.

4. Define a fake object that conforms to the protocol. (See Make a Fake

What's Next?

Now you can create fake objects that simulate UserDefaults. This works for
several persistence mechanisms, not only UserDefaults. (But don’t use this
technique for core data, where you can avoid persistence by using an in-
memory store.)

Fake objects are one type of test double. What about mock objects? In the
next chapter, we’ll move on to testing networking and how to write and use
mock objects.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 12

Testing Network Requests (with Mocks)

Most i0OS apps communicate with a web service. How can we unit test such
communication? This crosses a clear architectural boundary, making unit
testing impractical.

When a piece of functionality is too big for effective unit testing, break it into
smaller pieces. Instead of testing an entire chain, test the individual links
that make up the chain. For networking, this means we’ll start by testing the
request content. Testing networking without doing any actual networking
makes tests fast and consistent. You'll be able to run your tests, even when
you have no network connection.

In this chapter, you’ll see how to test network requests. Along the way, we’ll
introduce test spies and mock objects. You'll see how to write effective mock
objects in Swift.

Make a New Place to Play

For this chapter, we want some code that communicates with a web service.
We'll do that with an app that communicates with the iTunes Search API'
when you tap a button. We’ll hard-code the search to get information about
a particular book. For now, we’ll print the response to the console.

Let’s work in a new project named NetworkRequest. Follow the steps for
Create a Place to Play with Tests, on page 4 using the new name, and delete

the initial test file NetworkRequestTests.swift.

Edit ViewController.swift to add an outlet for a button. Declare it private(set) so our
tests can reach it. Also declare a property to remember the current data task:

1. https:/affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/

https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 140

NetworkRequest/NetworkRequest/ViewController.swift
@IBOutlet private(set) var button: UIButton!
private var dataTask: URLSessionDataTask?

Declare an action for the button that initiates the search. It'll call a new
method, passing the search terms.

NetworkRequest/NetworkRequest/ViewController.swift
@IBAction private func buttonTapped() {
searchForBook(terms: "out from boneville")

}

Finally, add the method that performs the search. It does this with a URLSes-
sionDataTask. When the data task begins, it disables the button so the user
can’t stack up network calls in parallel. When the task completes, it enables
the button again.

NetworkRequest/NetworkRequest/ViewController.swift
private func searchForBook(terms: String) {
guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),
let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\ (encodedTerms)") else { return }
let request = URLRequest(url: url)
dataTask = URLSession.shared.dataTask(with: request) {
[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in
guard let self = self else { return }

let decoded = String(data: data ?? Data(), encoding: .utf8)
print("response: \(String(describing: response))")
print("data: | (String(describing: decoded))")
print("error: \(String(describing: error))")

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
self.dataTask = nil
self.button.isEnabled = true

}

}
button.isEnabled = false
dataTask?.resume()

}
Follow the remaining steps from Make a Place to Play with a Button, on page 101

to add a button to the storyboard, connecting it to the button outlet and the action.

Let’s do a manual test to confirm this networking code. Press #-R to run the
app. Then select View » Debug Area » Activate Console or press Shift-&-C to
show the console on the bottom right. Tap the button in the running app to
search for the book. The console will show you the results of the network call.

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Isolate URLSession with Dependency Injection ® 141

Now we have code that calls an actual web service. This is a difficult depen-
dency, so we’ll start by isolating it and extracting a protocol. Then we’ll create
a test spy that records how it’s called. This will give us a way to write tests
that confirm the call to the web service.

Isolate URLSession with Dependency Injection

Recall from Identify Difficult Dependencies, on page 75 that calls to web ser-

vices are difficult dependencies. For unit testing, we want to isolate these
calls so we can replace them.

Isolated unit tests aren’t the only automated testing game in town, though.
Another way to handle network calls is to fake the entire networking layer.
OHHTTPStubs” is an example of a library that does this, letting you provide
fake network data. This is quite useful when doing automated UI testing. A
fake network makes Ul tests faster and more reliable.

But back to unit tests...let’s take our first steps toward isolating the URLSes-
sion.shared singleton. Since ViewController is a storyboard-based view controller,
we’ll use property injection from Inject Instances Through Initializers or
Propertios, om page 85, e e

First, add the new property, giving it an initial value of the URLSession.shared
singleton. Make it var, not let, so a different value can be injected:

NetworkRequest/NetworkRequest/ViewController.swift
var session = URLSession.shared

Replace the reference to the URLSession.shared singleton with the session property:

NetworkRequest/NetworkRequest/ViewController.swift
dataTask = session.dataTask(with: request) {

Use manual testing to confirm that the behavior hasn’t changed.

Extract a URLSession Protocol for Test Doubles

The session property currently has an implicit type of URLSession. Let’s follow the
same steps we used for Extract a Protocol to Support Test Doubles, on page

NetworkRequest/NetworkRequest/ViewController.swift
protocol URLSessionProtocol {

}
Now add an explicit type to the session property, specifying the protocol:

2. https://github.com/AliSoftware/OHHTTPStubs

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
https://github.com/AliSoftware/OHHTTPStubs
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 142

NetworkRequest/NetworkRequest/ViewController.swift
var session: URLSessionProtocol = URLSession.shared

Xcode will show a Swift error:

Value of type 'URLSession' does not conform to specified type
'URLSessionProtocol’

Since Swift allows us to extend existing types, we can declare an extension
saying that URLSession does conform to our new protocol:

NetworkRequest/NetworkRequest/ViewController.swift
extension URLSession: URLSessionProtocol {}

That fixes the first error. But we still have an error where the code calls session:

Value of type 'URLSessionProtocol' has no member 'dataTask'

We want to get the original definition of the function it’s calling. Change the
type of the session property from URLSessionProtocol to URLSession. Go to the line
that had the error and place the cursor within dataTask. Then in the Xcode
menu, select Navigate » Jump to Definition or press ~-#-]. Xcode will show
you the interface of URLSession, highlighting this method:

open func dataTask(

with request: URLRequest,

completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask

Copy that line and paste it into URLSessionProtocol. Delete the open attribute since
that doesn’t apply to protocols. You'll end up with a protocol with the following
definition:
NetworkRequest/NetworkRequest/ViewController.swift
protocol URLSessionProtocol {
func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask
}

Finally, change the type of the session property from URLSession back to URLSes-
sionProtocol. Confirm the changes by pressing #-B to build.

We've now decoupled the session property from URLSession, which is a difficult
dependency for unit tests. Changing its type to a protocol means tests can
supply a different implementation. Next, let’s see how to write a test spy that
implements the protocol.

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Test Spy © 143

Make a Test Spy

A test spy records calls to its methods. Tests can then confirm whether the
system under test made the expected calls.

For network requests, we want to intercept any calls to URLSession. The spy
can stop calls from doing any actual networking. There’s no need to test
URLSession itself. We can trust that if we ask it to fetch data for a given URL,
it'll do that. What we want to test is how many data tasks we asked for and
whether the URL is correct.

Let’s make a test spy in the test target. The difference between a test spy and
a mock object is subtle. Most developers lump them together, calling them
all mocks. Let’s skirt around the difference for now, and give the test spy a
“mock” name. (Later, we're going to evolve it into a full mock object.) Select
the NetworkRequestTests group in the Project Navigator and press #-N to
make a new file. Give it the name MockURLSession.swift. In the Save dialog, double-
check that the test target is selected, not the app target. Press Create. Inside,
let’s define a class that conforms to the URLSessionProtocol protocol:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
import Foundation
@testable import NetworkRequest

class MockURLSession: URLSessionProtocol {

}
Xcode will show a Swift error:

Type 'MockURLSession' does not conform to protocol 'URLSessionProtocol’

In the Xcode menu, select Editor » Fix All Issues. Xcode will generate a stub
for the protocol method. It has to return a URLSessionDataTask, so just initialize
one for now. We'll see in Design the Test Case, on page 144 that this won't

work in practice, but it’ll satisfy the Swift compiler so that we can make
progress.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask {
return URLSessionDataTask()

}

Now let’s capture the number of calls, and the request argument. (Ignore the
completionHandler argument for now. We'll get to it in Chapter 13, Testing Network
Responses (and Closures), on page 153.)

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Yy

Chapter 12. Testing Network Requests (with Mocks) ® 144

NetworkRequest/NetworkRequestTests/MockURLSession.swift
class MockURLSession: URLSessionProtocol {
var dataTaskCallCount = 0
var dataTaskArgsRequest: [URLRequest] = []

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask {
dataTaskCallCount += 1
dataTaskArgsRequest.append(request)
return URLSessionDataTask()

}
}
For each method in a test spy, capture the call count by increment-
ing an integer. Capture any arguments by appending them to
= arrays.

Design the Test Case

Now we can try using our test spy to test the app. Let’s start by adding a test
suite ViewControllerTests. Use Test Zero as temporary scaffolding to confirm that
you hooked up the test suite. (See Start from Test Zero, on page 21.) Delete

Test Zero once you see its expected failure message.

Let’s test that tapping the button creates a data task with the expected request.
Think for a moment about how to set up the test and how to confirm the
result. We want to do the following:

¢ Instantiate the view controller from the storyboard.
e Create an instance of MockURLSession.

¢ Inject the MockURLSession into the view controller. Following what we learned
in Test UserDefaults, on page 134, let’s make sure to do this before loading

the view. We do this to avoid having any methods use the real URLSession.
e Simulate the button tap.
e Confirm that the test spy was called once, with the expected request.

Following the test naming tip from Observe Object Life Cycles to Learn the

test tappingButton shouldMakeDataTaskToSearchForEBookOutFromBoneville()

Create a test with that name, and follow Load a Storyboard-Based View

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Design the Test Case ® 145

that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Since we're going to tap a button, follow Make a Test Helper for Button Taps,
on page 104 to add the tap(_:) helper.

Here’s more of the test, up to the button tap. Notice that we inject the test
spy into place before loadViewlfNeeded():

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
let mockURLSession = MockURLSession()
sut.session = mockURLSession
sut.loadViewIfNeeded ()

tap(sut.button)

Run the tests. You'll get “1 unexpected failure” with the following message:

failed: caught "NSInvalidArgumentException", "*** -resume cannot be sent to
abstract instance of class NSURLSessionDataTask"

This tells us that the Objective-C implementation of URLSessionDataTask is an
abstract base class. We can make a subclass that provides a do-nothing ver-
sion of the resume() method:

NetworkRequest/NetworkRequestTests/MockURLSession.swift

private class DummyURLSessionDataTask: URLSessionDataTask {
override func resume() {
}

}

This is a dummy object.” It’'s something we need to satisfy the compiler, but
it has no effect on the test. Update MockURLSession to return an instance of the
dummy.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
return DummyURLSessionDataTask()

Run the tests. This time we won't get any failures. (This does result in a
warning that URLSessionDataTask’s init() was deprecated in iOS 13.0. That's a
sensible warning for production code, but for test code, we need to create our
own instance directly.)

Finally, let’s add two assertions of the data captured by the test spy. The first
checks that the method was called once:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual (mockURLSession.dataTaskCallCount, 1, "call count")

3. xUnit Test Patterns [MesO07]

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 146

The second is a characterization test we’ll use to get the request argument:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift

XCTAssertEqual(
mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "http://F00")!),
"request")

Run the tests. You'll get the following failure message.

XCTAssertEqual failed: ("Optional(
https://itunes.apple.com/search?media=ebook&term=out%20from%20boneville)")
is not equal to ("Optional(http://F00)") - request

The failure message from the characterization test tells us the actual behavior.
Copy and paste the URL from the failure back into the assertion:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(
mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=out%s20froms20boneville")!),
"request")

Run the tests, which will pass. We now have a test that checks the network
request without starting the download.

This isn’t the only way to test requests. In fact, it’s simpler to
extract the creation of web requests into their own types. Then

o you can test the results of different inputs without using test spies
at all. But you'll still want a test somewhere that intercepts net-
working, to confirm that the code sends the request.

We now have a test that confirms the contents of the network request, using a
test spy. In the rest of this chapter, we'll give our spy some more smarts, turning
it into a mock object. This can simplify the test code, making it easier to write
(and read). It can also give more helpful information in the event of a test failure.

Promote the Test Spy into a Mock Object

Our test case makes two assertions against the test spy:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
XCTAssertEqual(mockURLSession.dataTaskCallCount, 1, "call count")
XCTAssertEqual(
mockURLSession.dataTaskArgsRequest.first,
URLRequest(url: URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=out%s20froms20boneville")!),
"request")

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Promote the Test Spy into a Mock Object ¢ 147

It’'s saying, “Confirm that system under test called the dataTask method once,
with this request as the argument.” Let’s get a sense for how these assertions
report failures. Go to the production code for the button tap action:

NetworkRequest/NetworkRequest/ViewController.swift
@IBAction private func buttonTapped() {
searchForBook(terms: "out from boneville")

}
Try altering the production code in these three ways:

1. Comment out the searchForBook(terms:) line. Run tests and check the failure
messages. Undo.

2. Duplicate the line. Run tests and check the failure messages. Undo.

3. Go back to one line, but change the URL. Run tests and check the failure
messages. Undo.

The call count is important. We don’t want to fire off any redundant network
calls by mistake. And the test spy works pretty well. But if more than one
test uses the spy, each test case will end up duplicating the assertion that
the call count is 1. Can we avoid this duplication?

Now at last we come to mock objects. The difference between a test spy and
a mock object is where the assertions live. Let’s create a verification method
inside the test double that calls the assertions for us.

NetworkRequest/NetworkRequestTests/MockURLSession.swift

func verifyDataTask(with request: URLRequest) {
XCTAssertEqual(dataTaskCallCount, 1, "call count")
XCTAssertEqual (dataTaskArgsRequest.first, request, "request")

}

For this to build, add an import XCTest statement to the top of the file. Then in
the Xcode menu, select Product » Build For » Testing or press Shift--U.

Now let’s change the test to use this verification method. In the test case,
replace the assertions with the following:

NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
mockURLSession.verifyDataTask(
with: URLRequest(url: URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=out%20froms20boneville")!))

Run the tests, which will pass. But now introduce a bug in the production
code. Change the URL argument and run tests to get a failure. In the Xcode
menu, select View » Navigators » Show Report Navigator (or press #-9).

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 148

Double-click on the test failure message. Xcode will take you to the failing
XCTAssertEqual() in MockURLSession, not to the test case that failed.

We can fix this so that test failures point to the test cases instead of to the
emerging mock object. Every XCTest assertion has two more parameters with
default arguments. They capture the file name and line number of the call
site. We can add these same parameters to the verification method:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyDataTask(with request: URLRequest,
file: StaticString = #file, line: UInt = #line) {

Then pass these file and line arguments down to each assertion.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
XCTAssertEqual(dataTaskCallCount, 1, "call count", file: file, line: line)
XCTAssertEqual(dataTaskArgsRequest.first, request, "request",

file: file, line: line)

Run the failing test again. Double-click on the failure message. This time,
Xcode will take you to where the failing test case calls the verification method.

Now we have a mock object. By adding more smarts to MockURLSession, we've
made it easier to write more tests that use it. And the test code is more
expressive.

Any time you call an XCTest assertion from a helper function, get
the file name and line number in arguments. Pass them on to any
assertions. This way, test failures will report the calling line in the
test, not the helper.

In Swift, XCTest assertions are free functions. Any type can call them, which makes
it easier to write test helpers.

But in Objective-C, assertions are methods. We can only invoke them from within
the running XCTestCase subclass. Don't worry, though. Objective-C mocking libraries
like OCMockito® mean you shouldn’t have to write any mock objects by hand.

Improve Mock Object Reporting

We can improve the reporting from our mock object in different ways. Right
now, the verify method checks the call count is 1. It goes on to check the first
URL argument, regardless of the call count.

report erratum -« discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
https://github.com/jonreid/OCMockito
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Improve Mock Object Reporting ® 149

Let’s see the current failure reporting by introducing errors to ViewController.
First, in the buttonTapped() method, comment out the call to searchForBook(terms:).
Run tests. You'll see two errors:

XCTAssertEqual failed: ("0") is not equal to ("1") - call count

XCTAssertEqual failed: ("nil") is not equal to ("Optional(
https://itunes.apple.com/search?media=ebook&term=out%20from%20boneville)")
- request

When the method is never called, it’s kind of odd to report a mismatch on the
URL argument.

Next, restore the original call to searchForBook(terms:). But add a second call
below it, with different search terms—for example:

NetworkRequest/NetworkRequest/ViewController.swift
searchForBook(terms: "out from boneville")
searchForBook(terms: "the great cow race")

Run tests. This time, the error log shows:
XCTAssertEqual failed: ("2") is not equal to ("1") - call count

When the method is called more than once, we're throwing away information.
The first URL argument matches. But it would be useful to know the URL
arguments from other calls. The added information would make it easier to
pinpoint what’s going wrong. Let’s add some helpers to the mock object to
help us improve the reporting. Edit MockURLSession.swift and add the following
standalone function outside of the class definition:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyMethodCalledOnce(
methodName: String,
callCount: Int,
describeArguments: @autoclosure () -> String,
file: StaticString = #file,
line: UInt = #line) -> Bool {
if callCount == 0 {
XCTFail("Wanted but not invoked: \(methodName)",
file: file, line: line)
return false
}
if callCount > 1 {
XCTFail("Wanted 1 time but was called \(callCount) times. " +
"\ (methodName) with | (describeArguments())",
file: file, line: 1line)
return false
}

return true

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequest/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 150

Make sure to put this function outside of any type so it’s available to all mock
objects. Then inside MockURLSession, write a method that uses this function:

NetworkRequest/NetworkRequestTests/MockURLSession.swift
private func dataTaskWasCalledOnce(
file: StaticString = #file, line: UInt = #line) -> Bool {
verifyMethodCalledOnce(
methodName: "dataTask(with:completionHandler:)",
callCount: dataTaskCallCount,
describeArguments: "request: | (dataTaskArgsRequest)",
file: file,
line: line)

}

Make sure this builds. In the Xcode menu, select Product » Build For » Testing
or press Shift-3-U.

Finally in the verify method, replace the call count assertion with a guard
clause that calls this new helper method. If the helper returns false, we do
an early return to skip the rest of the test.

NetworkRequest/NetworkRequestTests/MockURLSession.swift
func verifyDataTask(with request: URLRequest,
file: StaticString = #file, line: UInt = #line) {
guard dataTaskWasCalledOnce(file: file, line: line) else { return }
XCTAssertEqual(dataTaskArgsRequest.first, request, "request",
file: file, line: 1line)

}

Run tests with that call to searchForBook(terms:) commented out. This time, the
error log says:

failed - Wanted but not invoked: dataTask(with:completionHandler:)

Now run tests with not one but two searches. The error log shows this:

failed - Wanted 1 time but was called 2 times.
dataTask(with:completionHandler:) with request:
[https://itunes.apple.com/search?media=ebook&term=out%20from%s20boneville,
https://itunes.apple.com/search?media=ebook&term=the%20great%20cowss20race]

Notice how much clearer the error messages can become with a little work.
For the second case, the message lists each request to give a clearer picture
of what’s going on. Logging this information in the test results can cut down
on the amount of time you spend in the debugger.

This scratches the surface of ways to improve error reports from mock objects.
If you use a mock object in only one place, it may not be worth spending too
much time on it. But the more often it’s used, the more it pays off to improve
its reporting.

http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkRequest/NetworkRequestTests/MockURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 151

Using XCTAssertEqual(_:_:) is a quick way to compare two Equatable objects. But equality
can be overkill.

For example, the order of queries doesn’t matter in a URL. If we made a change that
switched the media and term query items, the new URL would still work. But the test
would fail. Such tests inhibit refactoring.

We want tests that are sensitive to things that matter and insensitive to things that
don’t. To examine a URL, consider constructing URLComponents from it. Then you can
test that the components’ queryltems contains each query you expect, regardless of
their order.

.
Key Takeaways

As we finish this chapter, here are the main things you should hold on to:

* A test spy records the method calls it receives. This lets us test that the
system under test called it as expected. It lets us verify the communication
between components.

e Don’t use a Boolean flag to record when the test spy receives a call. That’s
throwing away information about the communication. Instead, increment
a call count so you can tell how many times a method was called.

e A mock object is a test spy that does its own assertions. This simplifies
test code. It also gives us opportunities to improve failure reporting.

e Helper methods can call the XCTest assertions. Get the file name and line
number of the call site as function arguments. Pass them along to the
assertions.

¢ Tests should be sensitive to things that matter and insensitive to things
that don’t. For data where the order doesn’t matter, avoid using equality
assertions. Otherwise tests can reject valid results, giving you false
negatives.

Activities

Almost every app does some networking. Try this activity, following steps 1-4.
Pause to celebrate. Then try step 5 to see how it simplifies the test.

Find a place in your code that calls a simple web service. Whether you
use URLSession or a networking library, replace direct references to single-
tons. Instead, use a property with the singleton as the default value.

report erratum -« discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 12. Testing Network Requests (with Mocks) ® 152

2. Extract the methods you call on this networking property into a protocol.
(See Extract a Protocol to Support Test Doubles, on page 131.) Set the

property’s type to this protocol.
3. Define a test spy that conforms to the protocol. (See Make a Test Spy, on

4. Inject the test spy from test code and use it to write one test case.

5. Convert the test spy into a mock object by giving it a verify method that
does its own assertions. (See Promote the Test Spy into a Mock Object,

ters, passing them down to any assertions. Check error reporting by
deliberately introducing errors.

What's Next?

Now you can test the first half of networking. The trick is to go right up to
the boundary of real networking and stop. Then test everything about the
request.

You've learned how to create effective test spies that record their call counts
and arguments. You know how to move assertions, promoting test spies into
mock objects. And you've seen how doing so simplifies test code and lets you
create clearer failure messages.

But what about handling the responses? In the next chapter, let’s tackle the
second half of networking. And since we tend to write response handling using
Swift closures, let’s learn how to test those closures.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 13

Testing Network Responses (and Closures)

In the previous chapter, we saw a way to test network requests. These tests
confirm that we're sending the expected network calls. But we also want to
test how to handle network responses, from the “happy path” to error cases.

Response handling is commonly done with closures. Since closures are like
code hidden inside of code, how can we test them?

In this chapter you’ll learn how to test closures. This will give you a way to
test all kinds of network responses, including errors that are normally hard
to reproduce. You’'ll also learn how to test asynchronous code that crosses
threads.

Make a New Place to Play

If you worked through the example from Chapter 12, Testing Network Requests

with a web service. It happens to be the iTunes Search API.

If you want a new project, follow the steps for Create a Place to Play with

delete the initial test file NetworkResponseTests.swift.

Edit ViewController.swift to define a protocol containing one method copied from
URLSession. Declare an empty protocol extension that says URLSession conforms
to this protocol. This is what we arrived at in Extract a URLSession Protocol
for Test Doubles, on page 141:

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 13. Testing Network Responses (and Closures) ® 154

NetworkResponse/NetworkResponse/ViewController.swift
protocol URLSessionProtocol {
func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask

}

extension URLSession: URLSessionProtocol {}

Inside the ViewController class, add an outlet for a button, a property to
remember the current data task, and a replaceable property that holds the
URLSession using the new protocol. Declare the outlet private(set) so that our tests
can reach it. Also declare an action for the button that initiates the search.
It'll call a new method, passing the search terms:

NetworkResponse/NetworkResponse/ViewController.swift
@IBOutlet private(set) var button: UIButton!
private var dataTask: URLSessionDataTask?

var session: URLSessionProtocol = URLSession.shared

@IBAction private func buttonTapped() {
searchForBook(terms: "out from boneville")

}
Add the method that performs the search. It uses the technique from Isolate

property instead of directly calling URLSession.shared. It also disables the button
when it issues the network request, and enables the button again upon
receiving the response:

NetworkResponse/NetworkResponse/ViewController.swift
private func searchForBook(terms: String) {
guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),
let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\ (encodedTerms)") else { return }
let request = URLRequest(url: url)
dataTask = session.dataTask(with: request) {
[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in
guard let self = self else { return }

let decoded = String(data: data ?? Data(), encoding: .utf8)
print("response: \(String(describing: response))")
print("data: | (String(describing: decoded))")

print("error: \(String(describing: error))")

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Parse the Response ¢ 155

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
self.dataTask = nil
self.button.isEnabled = true

}

}
button.isEnabled = false

dataTask?.resume()

}

Finally, follow the remaining steps from Make a Place to Play with a Button,

outlet and the action.

Let’s confirm this networking code by tapping the button manually and
checking the logs. Press #-R to run the app. Then select View » Debug Area
» Activate Console or press Shift-# -C to show the console on the bottom right.
Tap the button in the running app to search for the book. The console will
show you the results of the network call.

Parse the Response

The production code is now up to date with Chapter 12, Testing Network

Add the following decodable structures to ViewController.swift:

NetworkResponse/NetworkResponse/ViewController.swift
struct Search: Decodable {
let results: [SearchResult]

}

struct SearchResult: Decodable, Equatable {
let artistName: String
let trackName: String
let averageUserRating: Float
let genres: [String]
}

Define SearchResult so that it conforms to the Equatable protocol. This will make
it simple to test with an XCTAssertEqual() assertion.

Now in the ViewController class, add a property to hold an array of search results.
Let’s also give it a didset observer to print the results in the console.

NetworkResponse/NetworkResponse/ViewController.swift
private(set) var results: [SearchResult] = [] {
didSet {
print(results)

}

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

YYYYYYYYYYYYYYYY

YYYVYYVYY

Chapter 13. Testing Network Responses (and Closures) ® 156

Finally, in searchForBook(terms:), replace the lines that printed the data, response,
and error closure arguments. If data is present, let’s parse it with a JSONDecoder.
And if that’s successful, let’s save the results in the results property. We’'ll do
so back on the main thread as a simple approach to thread safety. If there’s
any sort of error (which can happen in several ways), let’s show an alert:

NetworkResponse/NetworkResponse/ViewController.swift
private func searchForBook(terms: String) {
guard let encodedTerms = terms.addingPercentEncoding(
withAllowedCharacters: .urlQueryAllowed),
let url = URL(string: "https://itunes.apple.com/search?" +
"media=ebook&term=\ (encodedTerms)") else { return }
let request = URLRequest(url: url)
dataTask = session.dataTask(with: request) {
[weak self] (data: Data?, response: URLResponse?, error: Error?)
-> Void in
guard let self = self else { return }

var decoded: Search?
var errorMessage: String?
if let error = error {
errorMessage = error.localizedDescription
} else if let response = response as? HTTPURLResponse,
response.statusCode != 200 {
errorMessage = "Response: " +
HTTPURLResponse.localizedString(
forStatusCode: response.statusCode)
} else if let data = data {
do {
decoded = try JSONDecoder().decode(Search.self, from: data)
} catch {
errorMessage = error.localizedDescription

}

DispatchQueue.main.async { [weak self] in
guard let self = self else { return }
if let decoded = decoded {

self.results = decoded.results
}
if let errorMessage = errorMessage {
self.showError(errorMessage)
}
self.dataTask = nil
self.button.isEnabled = true
}
}
button.isEnabled = false
dataTask?.resume()

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Parse the Response ¢ 157

If errorMessage is non-nil, we call a showError(_:) method. Let’s define that method
so it shows an alert. It also prints the error to the console:

NetworkResponse/NetworkResponse/ViewController.swift
private func showError(_message: String) {
let title = "Network problem"
print("\(title): \(message)")
let alert = UIAlertController(
title: title,
message: message,
preferredStyle: .alert
)
let okAction = UIAlertAction(title: "OK", style: .default)
alert.addAction(okAction)
alert.preferredAction = okAction
present(alert, animated: true)

}

Now we're ready to do some manual testing to confirm this parsing code.
First, turn off your network connection to force an error. Run the app with
#-R. Then select View » Debug Area » Activate Console or press Shift-#-C to
show the console on the bottom right.

While disconnected from your network, tap the button in the running app.
You should see an alert with the title “Network problem” and the message
“The Internet connection appears to be offline.” (If you don’t get an alert, then
you may have tapped the button already, and the network layer cached the
results. Delete the NetworkResponse app from the simulator, then try again
with no network.)

Now reconnect to your network, and tap the button again to make the network
call. The console will show you the results, this time parsed into an array of
SearchResult.

This isn’t meant to be an example of good code. Rather, it’s an

A example of a typical view controller with too many responsibilities.
Once we bring such code under test, we can clean it up. That’s
why this book has Part III.

Now we have code that calls a real web service, parses the response, and
saves the result into a property if successful. Let’'s use a test spy to record
the call, only this time the spy will also capture the completion handler. We’ll
use this to write various tests of the completion handler. We’ll look at how to
test the asynchronous call from the completion handler back to the main
thread. And we’ll test one of the error scenarios.

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

vy

>

Chapter 13. Testing Network Responses (and Closures) ® 158

Start with a Fresh Test Spy
If you didn’t work through Chapter 12, Testing Network Requests (with Mocks),

starting point for learning closure techniques. To simplify this example, let’s set
that MockURLSession aside and start over with a fresh test spy. (If you're continuing
with last chapter’s code, when you see NetworkResponse or NetworkResponse-
Tests below, mentally convert to NetworkRequest and NetworkRequestTests.)

Select the NetworkResponseTests group in the Project Navigator and press
#-N to make a new file. Click the iOS selector at the top, select Swift File,
and press Next. In the dialog, enter SpyURLSession.swift as the name of the file.
In the Save dialog, double-check that the test target is selected, not the app
target. Press Create and enter the following code:

NetworkResponse/NetworkResponseTests/SpyURLSession.swift
@testable import NetworkResponse
import Foundation

private class DummyURLSessionDataTask: URLSessionDataTask {
override func resume() {

}
}
class SpyURLSession: URLSessionProtocol {
}

Xcode will show a Swift error:

Type 'SpyURLSession' does not conform to protocol 'URLSessionProtocol'

In the Xcode menu, select Editor » Fix All Issues. Xcode will generate a stub
for the protocol method. Fill in the rest as shown here to increment the call
count, capture the arguments, and return a DummyURLSessionDataTask:

NetworkResponse/NetworkResponseTests/SpyURLSession.swift
var dataTaskCallCount = 0
var dataTaskArgsRequest: [URLRequest] = []
var dataTaskArgsCompletionHandler:
[(Data?, URLResponse?, Error?) -> Void] = []

func dataTask(
with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) -> Void
) -> URLSessionDataTask {
dataTaskCallCount += 1
dataTaskArgsRequest.append(request)
dataTaskArgsCompletionHandler.append(completionHandler)
return DummyURLSessionDataTask()

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/SpyURLSession.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/SpyURLSession.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Design the Test Case ® 159

This is identical to Make a Test Spy, on page 143 except that now we're captur-

ing the completionHandler argument.

Design the Test Case

Now we have the tools we need to start testing the network response. Let's
start by adding a test suite ViewControllerTests. Use Test Zero as temporary
scaffolding to confirm that you hooked up the test suite. (See Start from Test

We want to test how the code handles different network responses. This could
include error scenarios, but for now let’'s concentrate on the happy path.
Think for a moment about how to set up such a test. We want to do the
following;:

¢ Instantiate the view controller from the storyboard.
¢ Create an instance of SpyURLSession.

e Inject the SpyURLSession into the view controller. Make sure to do this before
loading the view to avoid having any methods use the real URLSession.

e Simulate the button tap to start the network call. This will call the test
spy, which will capture the arguments—including the closure.

e Call the captured closure with any arguments we want for testing. For
the happy path, this will include JSON data and a response with the “OK”
status code. We can test that the data was decoded into the results property.

Following the test naming tip from Observe Object Life Cycles to Learn the

test searchForBookNetworkCall withSuccessResponse shouldSaveDataInResults()

Create a test with that name, and follow Load a Storyboard-Based View

that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

Also follow Make a Test Helper for Button Taps, on page 104 to create the tap(_:)

helper. Then add the following to the test. It creates the test spy, injects it,
loads the view, and taps the button.

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
let spyURLSession = SpyURLSession()

sut.session = spyURLSession

sut.loadViewIfNeeded ()

tap(sut.button)

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 13. Testing Network Responses (and Closures) ® 160

We need some test JSON. Let’s do that by defining a multiline string, then
converting it to Data. Do this in a helper function so we can use the same data
in a couple of tests:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func jsonData() -> Data {

{

"results": [
{
"artistName": "Artist",
"trackName": "Track",
"averageUserRating": 2.5,
"genres": [
"Foo",
"Bar"

1
}
""" data(using: .utf8)!

If test JSON is small, define it using a string inside test code. This
keeps the input close to the assertions, making their relationship
clearer.

When you need to reuse test JSON, create a method in the test
class. When you need to parameterize the data, add arguments
that the method uses to fill in the JSON details.

[W

When test JSON is large, store it in a file to make it easier to copy
and paste from an actual response. Stored JSON files also give you
an opportunity to periodically check that they still match real

server responses. You can write contract tests' that do this work.

To test a successful network response, we should supply an HTTPURLResponse
with a status code of 200 for HTTP “OK.” Let’s add a helper method to make
a response:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func response(statusCode: Int) -> HTTPURLResponse? {

HTTPURLResponse(url: URL(string: "http://DUMMY")!,
statusCode: statusCode, httpVersion: nil, headerFields: nil)

https://martinfowler.com/bliki/ContractTest.html

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
https://martinfowler.com/bliki/ContractTest.html
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Asynchronous Code ® 161

Now we can call the closure the test spy captured. For the happy path, we
supply JSON data, an HTTP response with status code 200, and no error:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
spyURLSession.dataTaskArgsCompletionHandler.first?(
jsonData(), response(statusCode: 200), nil

)

For our first attempt, let’s assert that the decoded results match the JSON
input:
NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
XCTAssertEqual(sut.results, [
SearchResult(artistName: "Artist", trackName: "Track",
averageUserRating: 2.5, genres: ["Foo", "Bar"])

D

This would work if the closure stayed on the same thread. But run tests, and
you’'ll see a failure message. We need to account for multithreading.

Test Asynchronous Code

Swift makes closures so pleasant to read, you may forget they're there. We
have a good start on testing the data task completion handler. But inside
that closure, there’s another closure hiding. It's DispatchQueue.main.async. The
part in braces is a closure, scheduled to run on the main thread.

In real life, Cocoa Touch calls the data task completion handler on a back-
ground thread. This lets us parse the response without causing the UI to
stutter. We can use different approaches for this. I've chosen a simple strategy
of keeping the decoding in the background, then saving the results on the
main thread because that's what operates the UI.

But be aware that test code executes on the main thread. And when any code
schedules a closure for asynchronous execution, life gets tricky. We need to
find a way to resynchronize it back to the main thread. A Test Expectation
can usually help us.

XCTestCase provides methods that wait for one or more test expectations to be
fulfilled. If a test waits on an XCTestExpectation, the “wait” method stops. It con-
tinues as soon as fulfill() is called on the expectation. If the expectation isn’t
fulfilled before a given timeout period, the test fails.

To show an XCTestCaseExpectation example, we need a way for the test code to
provide a closure to the production code. A natural point to do this is on the
didset observer for the results property. It's where we currently print the results

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

YYVvYYyY

Chapter 13. Testing Network Responses (and Closures) ® 162

A test expectation works as long as the test code has an opportunity to provide a
completion closure. Then the closure can call the expectation’s fufill() method.

But sometimes, we want to wait for something to happen when the code doesn’t
provide a completion closure. In that case, we need a way to check for the condition
in periodic intervals. If the condition isn’t met within a timeout, the test should fail.

The Nimble matcher framework® is one example of a library that provides a simple
way to do this, with its toEventually matcher.

as a substitute for the real work an app might do. Let’s move that work into
a new handleResults closure property:

NetworkResponse/NetworkResponse/ViewController.swift
var handleResults: ([SearchResult]) -> Void = { print($0) }

private(set) var results: [SearchResult] = [] {
didSet {
handleResults(results)
}
}

Run the app, tap the button, and check the console to confirm that the parsed
results are still printed.

Now we have a place for the test to provide its own closure. Before the test calls
the data task completion handler, create an XCTestCaseExpectation using the
expectation(description:) method. Provide a closure that calls fulfill() on the expecta-
tion. After calling the data task completion handler, add a wait(timeout:):

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
let handleResultsCalled = expectation(description: "handleResults called")
sut.handleResults = { _ in
handleResultsCalled. fulfill()
}

spyURLSession.dataTaskArgsCompletionHandler.first?(
jsonData(), response(statusCode: 200), nil

)

waitForExpectations(timeout: 0.01)

Run tests again. This time, the test passes! (If the test doesn't pass, check the
console output before the assertion failure message. The showError(_:) method
prints to the console in addition to showing an alert, so it may give you a clue.)

report erratum -« discuss

https://github.com/Quick/Nimble
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Keep Asynchronous Code in Its Closure ® 163

Many examples of waiting for an XCTestCaseExpectation specify a

timeout of 1 second. I've even seen 10 seconds. But for unit testing

where there is no actual networking, that’s an eternity. Try to use

2 0.01 seconds (10 milliseconds) or less, as shown in the preceding
example.

When a test provides a closure for asynchronous testing, most online examples stick
XCTest assertions right inside the closure. The problem with this style is it mixes up
the Arrange, Act, and Assert sections of a test. We end up with part of the Assert living
inside the Arrange section.

Instead, I recommend that test-supplied closures do two things for asynchronous
tests:

1. Capture the arguments we want to test.
2. Call fuffill() to escape the wait condition.

Once we have escaped the wait condition, the rest of the test can check the captured
arguments. This gives us asynchronous tests with assertions at the end. Being able
to read tests top-down makes them easier to understand and maintain.

"
Keep Asynchronous Code in Its Closure

We can now test the code that goes from the background thread back to the
main thread to save the results. But there’s a weakness in having that test
by itself. If someone made a mistake and moved that code to save the results
outside the DispatchQueue.main.async closure, the tests would still pass.

To prevent this from happening, we need a second test that skips the async
closure. This test will prove that without the closure, the results aren’t saved.

Duplicate the first test. Change the test case name of the copy to test_searchFor-
BookNetworkCall_withSuccessBeforeAsync_shouldNotSaveDatalnResults(). Remove everything
that has to do with test expectations. Change the assertion so that the
expected results are an empty array. Here’s the body of the new test:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
tap(sut.button)

spyURLSession.dataTaskArgsCompletionHandler.first?(
jsonData(), response(statusCode: 200), nil
)

XCTAssertEqual(sut.results, [])

report erratum -« discuss

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 13. Testing Network Responses (and Closures) ® 164

Run the tests to see them pass. Let’s also see what this particular test guards
against. Find the lines that save the result:

NetworkResponse/NetworkResponse/ViewController.swift
if let decoded = decoded {
self.results = decoded.results

}

Temporarily move them outside the async closure and run the tests again. The
first test will continue to pass, but the one we just added will fail.

Whenever you write a test of asynchronous code, write a second
test without the test expectations. It shows what happens without
the asynchronous code. This helps keep the asynchronous part
from creeping outside its closure.

2
(&)

Test an Error Scenario

Once we have a test that calls the data task completion closure, testing error
scenarios isn’t hard. We know how to capture the closure, call it with some
arguments, and handle asynchronous code. For errors, all we need to do is
change the arguments we pass to the completion closure.

When our parsing code detects an error, it displays an alert to the user. We
know from Chapter 9, Testing Alerts, on page 107 how to test alerts and that

Then import ViewControllerPresentationSpy it in ViewControllerTests.swift.

Since we're adding new tests, let’s move the system under test and the test
spy, adding the AlertVerifier spy. Follow Move the SUT into the Test Fixture,

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private var alertVerifier: AlertVerifier!

private var sut: ViewController!

private var spyURLSession: SpyURLSession!

override func setUp() {
super.setUp()
alertVerifier = AlertVerifier()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))
spyURLSession = SpyURLSession()
sut.session = spyURLSession
sut.loadViewIfNeeded ()

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponse/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test an Error Scenario ® 165

override func tearDown() {
alertVerifier = nil
sut = nil
spyURLSession = nil
super.tearDown ()

}

Remove the beginning lines of the test case, which are now handled by setUp().
So the first line of the test will be tap(sut.button). Run tests to confirm that
everything still passes.

In ViewController, the first error scenario is when the closure receives an Error
argument. Since Error is a protocol, let’s define a simple implementation for
testing purposes. Create a new file in the NetworkResponseTests group with
the name TestError.swift:

NetworkResponse/NetworkResponseTests/TestError.swift
import Foundation

struct TestError: LocalizedError {
let message: String

var errorDescription: String? { message }

}

We're going to be testing alerts. To simplify the test code, let’'s make a helper
method in ViewControllerTests to verify that the code showed an alert. Each alert
will be the same, except for the message, so the helper has a message
parameter:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
private func verifyErrorAlert(
message: String, file: StaticString = #file, line: UInt = #line) {
alertVerifier.verify(
title: "Network problem",
message: message,
animated: true,
actions: [
.default("0K"),
1,
presentingViewController: sut,
file: file,
line: line
)
XCTAssertEqual(alertVerifier.preferredAction?.title, "OK",
"preferred action", file: file, line: line)

}

Since these assertions live outside of a test case method, the helper takes the
file name and line number of the call site. We pass these arguments down to

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/TestError.swift
http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 13. Testing Network Responses (and Closures) ® 166

each assertion. That way, if there’s a failure, the assertion will identify the
call site, not the helper.

With our helpers in place, we can write our first error test:

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
func test_searchForBookNetworkCall_withError_shouldShowAlert() {
tap(sut.button)
let alertShown = expectation(description: "alert shown")
alertVerifier.testCompletion = {
alertShown. fulfill()
}

spyURLSession.dataTaskArgsCompletionHandler.first?(
nil, nil, TestError(message: "oh no")

)

waitForExpectations(timeout: 0.01)
verifyErrorAlert(message: "oh no")

}

The first line of the Arrange section is the button tap to trigger the data task.
This sets up the completion handler, which spyURLSession captures.

In the rest of the Arrange section, we set up an XCTestExpectation that an
alert was shown. We need this because the alert is created and presented
inside the DispatchQueue.main.async closure. To fulfill the expectation, we set up
a testCompletion closure on the alertVerifier. The ViewControllerPresentationSpy
framework calls this closure when an alert is presented.

The middle Act section calls the captured completion handler. This time, we
pass in a TestError with an arbitrary message.

The final Assert section waits a short time for the expectation. It then uses
our big helper to verify that an alert was presented with the given message.
Change the message temporarily and run the tests. You’'ll see a failure for the
alert message. And by doing all that work to pass on the file name and line
number of the call site, the failure will point to the verifyErrorAlert(message:) call.

Change the message back and run the tests again to see them pass.

This is good. But we need one more test for this error case. Since tests run
on the main thread, someone might move the alert stuff out of async closure.
test_searchForBookNetworkCall_withError_shouldShowAlert() would still pass, but it would
fail in real life because the closure is run on a background thread. We need
to do what we did for Keep Asynchronous Code in Its Closure, on page 163 by

adding another test that ignores the async closure:

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 167

NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
func test_searchForBookNetworkCall_withErrorPreAsync_shouldNotShowAlert() {
tap(sut.button)

spyURLSession.dataTaskArgsCompletionHandler.first?(
nil, nil, TestError(message: "DUMMY")
)

XCTAssertEqual(alertVerifier.presentedCount, 0)
}

There’s no XCTestExpectation in this test and no waiting. So it blazes through
without invoking the DispatchQueue.main.async closure.

The two error tests show that if the data task completion handler receives an
error argument, it will show an alert. But it won’t attempt to show this alert
from its own thread (which will be a background thread in real life).

Key Takeaways

To test closures, make a test spy that captures the closure. The test should
trigger the call that sends the closure, which the test spy captures. The test
can then invoke the closure with any arguments it wants.

For network responses, testing the closure with various inputs will let you
exercise all sorts of scenarios, including the following:

¢ Success responses with valid data

* Success responses but with incomplete or malformed data
¢ Responses with HTTP status codes other than 200 “OK”

e Errors

Unit testing makes it possible to test scenarios that would be hard to simulate
in real life.

You've also seen how to use test expectations to test asynchronous code. Be
warned that there are cases that can cause expectations to crash your tests.
For details and workarounds, read Jeremy Sherman’s “XCTestExpectation
Gotchas.”

Tests of asynchronous code should generally come in pairs. One test should
use a test expectation to wait until the asynchronous code is called. Another
test should skip the test expectations, avoiding the asynchronous code. The
second test shows that the desired outcome happens because it’s in an async
closure.

2. https://jeremywsherman.com/blog/2016/03/19/xctestexpectation-gotchas/

http://media.pragprog.com/titles/jrlegios/code/NetworkResponse/NetworkResponseTests/ViewControllerTests.swift
https://jeremywsherman.com/blog/2016/03/19/xctestexpectation-gotchas/
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 13. Testing Network Responses (and Closures) ® 168

Activities

To help solidify this chapter in your head, pick one of the following activities.
(The first three have sample solutions in this book’s accompanying source
code.)

1.

Test another error scenario: What if the JSON is incomplete? Write a test
to call the data task completion handler with a 200 "OK" response, but
remove a field from the JSON data. Test the resulting alert.

Here’s yet another error scenario: What if we receive a response from the
server, but the HTTP status code is something other than a 200 "OK"
response? Test the alert.

Add tests showing how the button is disabled when searchForBook(terms:) is
called and is enabled again by the async closure.

In the Activities, on page 151 for testing network requests, did you find
places 1nyour codethatca11s1mple web services? Build on the foundation
of those tests by adding tests for network responses. Start with the happy
paths of processing successful responses. Then build on those, testing

error scenarios.

What's Next?

Now you can test the second half of networking. The trick is to use a test spy
to capture the closure. Then call the closure with various arguments.

You've also seen how to use test expectations to test asynchronous code.
Create an expectation, fulfill it in a completion closure, and wait for it.

In the next chapter, let’s get back to handling user input. We'll explore text
fields, which will show us how to test delegate methods.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 14

Testing Text Fields (and Delegate Methods)

Text fields are another common means of user input. We can customize the
behavior of text fields using delegates. Delegate methods give us a way to
insert our own code into Cocoa Touch’s flow of control.

In this chapter you’ll learn how to test text fields. You’ll be able to write tests
for delegate methods in a way that makes refactoring them easier, not harder.
Along the way, you'll learn how to assert against Objective-C enumerations
and against optional Bools. You’ll also pick up a trick we need to test which
text field has input focus.

Make a Place to Play

You know the drill. Create a new project by following the steps for Create a

its initial test file.

Let’s use the predefined storyboard-based view controller. Edit ViewController.swift,
adding two text field outlets. We'll use them to enter the username and
password for a simple login simulation. Declare these outlets private(set) so
that our tests can reach them:

TextField/TextField/ViewController.swift
@IBOutlet private(set) var usernameField: UITextField!
@IBOutlet private(set) var passwordField: UITextField!

We need something to serve as the delegate for the text fields. Let’s follow the
common practice of using the view controller. (In a later chapter, we’ll see
how to move away from this practice.) Add a declaration to ViewController that
it conforms to the UlTextFieldDelegate protocol:

TextField/TextField/ViewController.swift
class ViewController: UIViewController, UITextFieldDelegate {

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 170

Now let’s add these text fields to the storyboard. Open Main.storyboard and select
View P Libraries » Show Library from the Xcode menu or press Shift-3-L.
This will bring up the Object Library. Click and drag “Text Field” onto the
view controller in the main editor area. For this experiment, don’t worry about
positioning the label or setting any Auto Layout constraints. Do this twice to
create two text fields.

Now connect these text fields to their outlets. (You can show ViewController.swift
in the Assistant Editor, and drag from the @IBOutlet circles to their respective
text fields.)

Let’s switch back to viewing one source file. Select View » Standard Editor »
Show Standard Editor from the Xcode menu or press #-¢.

Since we want to use ViewController as the delegate for the text fields, let's
make those connections. Show the Connections Inspector by selecting View
» Inspectors » Show Connections Inspector from the Xcode menu or press
X-#-6. Select the first text field. From the Outlets section of the Connection
Inspector, click in the open circle next to “delegate” and drag it to the View
Controller, as you can see in the image. Repeat this for the second text field.

ER)Y 0y 2)E) QYD [Flusemame Field = | [o @ U B O
v [=] View Controller Scene - Triggered Segues
= — action
(v View Controller A . e
v D Vi Outlets
few] u] delegate
D Safe Area pasteDelegate
E Username Field textDragDelegate
IE‘ Password Field | textDropDelegate
@ First Responder Outlet Collections
l:‘ Exit gestureRecognizers
—> Storyboard Entry Poi... Sent Events

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
% Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed

00000000000 OOOO | |00 |O

Referencing Outlets
(usernameField)—(* View Controller
New Referencing Outlet

K j Referencing Outlet Collections
— New Referencing Outlet Collection

(6]O)

For our last settings in the storyboard, let’s set the attributes of the text fields.
Show the Attributes Inspector by selecting View » Inspectors » Show Attributes

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Place to Play ® 171

Inspector from the Xcode menu or press X-#-4. Select the first text field. In
the Text Input Traits section of the Attributes Inspector, make these changes:

e Content Type: Username
e Correction: No
¢ Return Key: Next

For the second text field, set these attributes:

e Content Type: Password
¢ Return Key: Go
¢ Secure Text Entry: Checked

Finally, let's add some delegate methods. Add the following method to the
ViewController class. It prevents the user from entering spaces into the username
field:

TextField/TextField/ViewController.swift
func textField(textField: UITextField,

shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

if textField === usernameField {
return !string.contains(" ")
} else {

return true

}
}

Let’'s add one more delegate method. UIKit calls this next method when the
user presses the return key. When that happens from usernameField, we shift
the keyboard input focus to the password field. When the user presses the
return key from passwordField, we hide the keyboard. Then we perform some
sort of login. The return value of this only matters in rare cases, so let’s return
false. We won’t bother to test it:

TextField/TextField/ViewController.swift
func textFieldShouldReturn(textField: UITextField) -> Bool {

if textField === usernameField {
passwordField.becomeFirstResponder()
} else {

guard let username = usernameField.text,
let password = passwordField.text else {
return false
b
passwordField.resignFirstResponder ()
performLogin(username: username, password: password)
}

return false

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 172

(If you haven't seen === before, this is not the same as checking that two
values are equal. Instead, this is checking whether the textfield argument is
usernameField or not.)

Our pretend login method will just print the fields to the console:

TextField/TextField/ViewController.swift

private func performLogin(username: String, password: String) {
print("Username: \(username)")
print("Password: | (password)")

}

Let’s manually confirm that the text fields function correctly. Press #-R to
run the app. Then select View » Debug Area » Activate Console or press
Shift- 8 -C to show the console on the bottom right.

Tap into the first text field. The keyboard should appear. (If it doesn’t, deselect
Hardware » Keyboard » Connect Hardware Keyboard in the simulator menu.)
Enter any username. Make sure that it doesn’t allow you to enter spaces. Tap
Next. This will move input focus to the second field.

Enter any password. iOS will conceal the input behind text bullets. Tap Go.
The keyboard will disappear, and our pretend login will show what you entered
in the console.

Now we have some fairly complex behavior. Part of it is specified in the story-
board. Let’s start our testing there. We'll check the outlets, then the storyboard
attributes. And we’ll add extensions to improve test failure reporting when
comparing UIKit types.

Test the Outlets

Before we approach the delegate methods, let’'s lay down some tests of the
storyboard settings. Start by adding a test suite ViewControllerTests. Use Test
Zero as temporary scaffolding to confirm that you hooked up the test suite.
(See Start from Test Zero, on page 21.) Delete Test Zero once you see its

expected failure message.

Following Chapter 7, Testing Outlet Connections, on page 95, add a test

board. Remember that this also means editing Main.storyboard to give the view
controller a Storyboard ID. Run the tests, which should pass.

Finish off this test by asserting that the outlets aren’t nil:

http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Attributes and Wrangle UIKit Descriptions ® 173

TextField/TextFieldTests/ViewControllerTests.swift
XCTAssertNotNil(sut.usernameField, "usernameField")
XCTAssertNotNil(sut.passwordField, "passwordField")

Recall from Test Qutlet Connections, on page 96 that when a test case has

more than one assertion, it helps to add descriptive messages to identify them.
Run the tests, which should pass.

Test Attributes and Wrangle UIKit Descriptions

Next, let’s add a test to confirm the attributes of the username text field. But
testing every single attribute is overkill. Let’s only test the attributes we
changed from their default settings. Add a test named test username-
Field_attributesShouldBeSet(). Copy and paste the content of the outlet test, except
for its assertions. Then add the following assertions and run the tests:

TextField/TextFieldTests/ViewControllerTests.swift

let textField = sut.usernameField!
XCTAssertEqual(textField.textContentType, .username, "textContentType")
XCTAssertEqual(textField.autocorrectionType, .no, "autocorrectionType")
XCTAssertEqual(textField.returnKeyType, .next, "returnKeyType")

The tests pass. But let’s see what the failure messages look like. We’'ll do this
by following Check the Effectiveness of Failure Messages, on page 97 and
breaking the production code on purpose. Open Main.storyboard. Show the
Attributes Inspector by selecting View » Inspectors » Show Attributes
Inspector from the Xcode menu or press X-3-4. Select the first text field. In
the Text Input Traits section of the Attributes Inspector, change “Content
Type” from “Username” to “Password.” Run the tests, and you'll see this failure

message:

XCTAssertEqual failed:
("Optional(C.UITextContentType(rawValue: password))") is not equal to
("Optional(C.UITextContentType(rawValue: username))") - textContentType

This is pretty noisy. Let’'s see if we can improve on it by digging into the
underlying type. Place your cursor in textContentType, then select Navigate »
Jump to Definition from the Xcode menu or press ~-#-]. This will show you
UlKit’s definition of the property.

@available(i0S 10.0, *)

optional public var textContentType: UITextContentType! { get set }
// default is nil

Now place your cursor in UlTextContentType and jump to its definition. Here’s
what you'll see:

public struct UITextContentType : Hashable, Equatable, RawRepresentable

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 174

We can see that UlTextContentType doesn’t conform to CustomStringConvertible. Recall
from Describe Objects upon Failure, on page 10 that CustomStringConvertible

defines how a type describes itself in assertions. So let’s extend UlTextContentType
to conform to this protocol. We’ll make a separate file for test helpers.

In the Project Navigator, select the TextFieldTests group and press #-N to
make a new file. Select Swift File, name it TestHelpers.swift, and set its target to
the test target. Add an import UIKit declaration to the top, then add the following
empty extension:

TextField/TextFieldTests/TestHelpers.swift

extension UITextContentType: CustomStringConvertible {

}

Because we haven’t implemented anything yet, Swift will complain that the
type doesn’t conform to the protocol. Select Editor » Fix All Issues in the Xcode
menu. This will generate the stub. Fill in the rest as shown here:

TextField/TextFieldTests/TestHelpers.swift
public var description: String { rawValue }

Run the tests again. This time, we’ll get the following message:

XCTAssertEqual failed: ("Optional(password)") is not equal to
("Optional(username)") - textContentType

That’s better. Let’s reset the storyboard and move on to the next assertion.
Go back to Main.storyboard and press #-Z to undo the change. Select the first
text field again. This time, change “Correction” from “No” to “Yes.” Run the
tests and look at the failure message:

XCTAssertEqual failed: ("UITextAutocorrectionType") is not equal to
("UITextAutocorrectionType") - autocorrectionType

Oh dear. This tells us the type but nothing about the values.

Swift knows how to describe enumerations written in Swift but stumbles over
enumerations written in Objective-C. This is especially noticeable for the
Cocoa Touch frameworks, which have Objective-C interfaces.

Let’s dig into the underlying type. Place your cursor in autocorrectionType, then
select Navigate » Jump to Definition from the Xcode menu or press ~-#-].
Here is UlKit’'s definition of the property:

optional public var autocorrectionType: UITextAutocorrectionType { get set }
// default is UITextAutocorrectionTypeDefault

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Attributes and Wrangle UIKit Descriptions ® 175

Now place your cursor in UlTextAutocorrectionType and jump to its definition:

public enum UITextAutocorrectionType : Int {
case “default’
case no
case yes

}

Once again, we can see that this type doesn’t conform to the CustomStringCon-
vertible protocol. Let’'s add an empty extension to our test code:

TextField/TextFieldTests/TestHelpers.swift
extension UITextAutocorrectionType: CustomStringConvertible {

}
This results in the following error:

Type 'UITextAutocorrectionType' does not conform to protocol
'CustomStringConvertible’

Select Editor » Fix All Issues in the Xcode menu to generate the method stub.
Since we want a description for each case, let’s switch on self:

TextField/TextFieldTests/TestHelpers.swift
public var description: String {
switch self {
}
}

Now we get this error:

Switch must be exhaustive

Again, select Editor » Fix All Issues in the Xcode menu. This gives us all the
case statements for the enumeration. For each case (except for Swift 5's
@unknown default), return a string:

TextField/TextFieldTests/TestHelpers.swift
public var description: String {
switch self {
case .default:
return "default"

case .no:
return "no"
case .yes:

return "yes"
@unknown default:
fatalError("Unknown UITextAutocorrectionType")

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ® 176

Run the tests again. This time, we’ll get the following message:

XCTAssertEqual failed: ("yes") is not equal to ("no") - autocorrectionType
Now that is a useful failure message.

Be careful when using XCTAssertEqual with types declared in Objec-
tive-C. Introduce an error to check the failure message. Where
needed, add an extension to make the type conform to the Custom-
StringConvertible protocol.

4
(&)

Let’s move on to the last assertion in test_usernameField_attributesShouldBeSet(). Undo the
previous change in the storyboard and select the first text field. This time, change
Return Key from “Next” to “Join.” Run the tests and look at the failure message:

XCTAssertEqual failed: ("UIReturnKeyType") is not equal to
("UIReturnKeyType") - returnKeyType

Following the preceding steps, create an extension so that UIReturnKeyType
conforms to CustomStringConvertible, describing each case. Run the tests to confirm
the improved failure message:

XCTAssertEqual failed: ("join") is not equal to ("next") - returnKeyType

We now have duplicate code between the tests to load the view controller.
Following Move the SUT into the Test Fixture, on page 112, let’s extract this.

For storyboard-based view controllers, remember to change the type cast from
as! to as? to silence the warning about assigning to an optional:

TextField/TextFieldTests/ViewControllerTests.swift
private var sut: ViewController!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))
sut.loadViewIfNeeded()
}

override func tearDown() {
executeRunLoop()
sut = nil
super.tearDown ()

}

Finally, we can test the attributes of the password text field. Let’s do this in
another test case. We check each text field in its own test case instead of
combining the tests, as explained in Why Not Combine Similar Tests?, on

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Delegate Methods ¢ 177

TextField/TextFieldTests/ViewControllerTests.swift

func test_passwordField_attributesShouldBeSet() {
let textField = sut.passwordField!
XCTAssertEqual(textField.textContentType, .password, "textContentType")
XCTAssertEqual(textField.returnKeyType, .go, "returnKeyType")
XCTAssertTrue(textField.isSecureTextEntry, "isSecureTextEntry")

}

Run tests to confirm that this passes. We've already improved the types used,
so these tests will report useful error messages.

With this, we've tested the text field attributes as defined in the storyboard.
In the rest of this chapter, let’s see how to test the code. We'll look at delegate
methods, and finish by testing input focus—that is, the first responder.

Test Delegate Methods

Delegate methods are the classic way for Cocoa Touch to call back to our
code. Thankfully, we don’t have to try to coax this to happen in test code. For
unit tests, it doesn’t matter what calls a delegate method. We only have to
mimic the arguments and call the method directly. So what Cocoa Touch
would call, the test calls.

Let’s consider how to test the first delegate method, textField(_:shouldChangeChar-
actersin:replacementString:). To test with a naive approach, we do two things:

e First, test that the delegate of the text field is the view controller.
e Second, call the delegate method directly on the view controller.

The problem with this approach is that it locks down who gets to be the dele-
gate. Programmers earlier in their Cocoa Touch experience will always use
the view controller. This results in a view controller that conforms to several
delegate protocols. The common joke in iOS circles is that MVC stands for
“Massive View Controller.”

But there’s nothing about the delegate pattern that says you have to do this.
A good way to slim down a Massive View Controller is to extract delegates
into their own types. With a little care, we can move delegation around without
changing any tests. Ideally, tests should strive to check behavior (like what
a delegate method does). Tests shouldn’t care about implementation details
(like where a delegate method lives). Here’s how to write tests that stay igno-
rant of the location of delegate methods:

¢ First, test that the delegate of the text field is set. It doesn’t matter what
it is, as long as it’s not nil.

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 178

¢ Second, call the delegate method on the delegate. We do so by asking the
text field for its delegate, then calling the method we want.

In theory, we could do without the first type of test, since the second type of
test will fail if the delegate is nil. But it would be trickier to diagnose. Just as
we test outlets with Chapter 7, Testing Qutlet Connections, on page 95, we

can save time by testing that we've assigned those delegates. Add the following
test to check that they’re not nil:

TextField/TextFieldTests/ViewControllerTests.swift

func test_textFieldDelegates_shouldBeConnected() {
XCTAssertNotNil(sut.usernameField.delegate, "usernameField")
XCTAssertNotNil(sut.passwordField.delegate, "passwordField")

}
Run the tests, which should pass.

Next, let’s test the first delegate method. The job of textField(_:shouldChangeCharac-
tersin:replacementString:) is to determine whether to replace some text in a text
field. It takes a replacement string instead of a single character since the user
can paste text. The code prevents the entry of spaces in the username field.
We need at least three tests:

e Don’t allow spaces in the username.
e Do allow text without spaces in the username.
e Allow any text in the password.

(This isn’t intended to be a prescription for how to code your entry fields. I'm
just describing what this example does so we can test its behavior.)

Add the following test. Run tests to confirm that it passes:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_usernameWithSpaces_shouldPreventChange() {
let allowChange = sut.usernameField.delegate?.textField?(
sut.usernameField,
shouldChangeCharactersIn: NSRange(),
replacementString: "a b")

XCTAssertEqual(allowChange, false)
}

To reach the text field delegate, we're not simply calling the view controller.
Instead, we ask the username text field for its delegate. This way, the test will
continue to work, even if we switch the delegate to another object.

For this test, the replacement string contains a space, as if the user pasted
it. We don’t want to allow it to enter this text field.

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Delegate Methods ¢ 179

Since the call uses optional chaining, the result is an optional Bool. So it may
be true, false, or nil. We can’t use XCTAssertFalse(_:), which requires a Bool. Instead,
we used XCTAssertEqual(_:_:) to assert that the result is false.

To assert that a Bool? value is true or false, use XCTAssertEqual(_: :).
4 If there’s a mismatch, it'll report the actual value.

The test works, but it's cumbersome to get the text field delegate and then
pass that same text field as the first argument. Let’s extract a helper to make
the tests more readable. Put this, and other helpers, in a separate file, like
TestHelpers.swift, so it’ll be available to other suites:

TextField/TextFieldTests/TestHelpers.swift
func shouldChangeCharacters(in textField: UITextField,
range: NSRange = NSRange(),
replacement: String) -> Bool? {
textField.delegate?. textField?(
textField,
shouldChangeCharactersIn: range,
replacementString: replacement)

}

Since the range of characters to replace will often (but not always) be empty,
it’s handy to give that parameter an empty range as a default value. This
simplifies the test code:

TextField/TextFieldTests/ViewControllerTests.swift
let allowChange = shouldChangeCharacters(in: sut.usernameField,
replacement: "a b")

Run the tests to confirm that everything is still happy with these changes.
Now it’s easy to add a new test that the username field allows text without
spaces:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_usernameWithoutSpaces_shouldAllowChange() {
let allowChange = shouldChangeCharacters(in: sut.usernameField,
replacement: "abc")

XCTAssertEqual(allowChange, true)
}

Run the tests, which should pass. Finally, we need to test the password field.
It should accept all text changes. Since it's going through the same method
that handles the username field, let’s add tests of two replacement strings:
one with a space, and one without:

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 180

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldChangeCharacters_passwordWithSpaces_shouldAllowChange() {
let allowChange = shouldChangeCharacters(in: sut.passwordField,
replacement: "a b")

XCTAssertEqual(allowChange, true)
}

func test_shouldChangeCharacters_passwordWithoutSpaces_shouldAllowChange() {
let allowChange = shouldChangeCharacters(in: sut.passwordField,
replacement: "abc")

XCTAssertEqual(allowChange, true)
}

We now have tests fully covering the text field delegate method
textField(_:shouldChangeCharactersin:replacementString:).

Test Input Focus
We have one more delegate method, textFieldShouldReturn(_:). It does two things:

e When the user presses the return key in the username field, the input
focus should move to the password field.

e When the user presses the return key in the password field, the keyboard
should be dismissed, and the login process should start.

Let’s start with the second behavior (logging in) before moving to the challenge
of testing keyboard input focus. Add a test that populates the text fields, and
confirms that pressing the return key in the password field starts the login
process. As we did in Test Delegate Methods, on page 177, we’ll ask the text

field for its delegate and talk to it:

TextField/TextFieldTests/ViewControllerTests.swift

func test_shouldReturn_withPassword_shouldPerformLogin() {
sut.usernameField.text = "USERNAME"
sut.passwordField.text = "PASSWORD"

= sut.passwordField.delegate?.textFieldShouldReturn?(sut.passwordField)

// Normally, assert something

}

Run the tests. Our pretend login method only prints to the console, so we’ll
check that instead of asserting as we normally would. Following Examine

output for this test. You should see this:

Username: USERNAME
Password: PASSWORD

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Input Focus ® 181

Next, let’s extract a helper for this delegate method. Most tests can ignore
this delegate method’s return value, so declare this helper with @discardableResult:

TextField/TextFieldTests/TestHelpers.swift

@discardableResult func shouldReturn(in textField: UITextField) -> Bool? {
textField.delegate?.textFieldShouldReturn?(textField)

}

Using this helper, it's easier to write tests that check the return key behavior:

TextField/TextFieldTests/ViewControllerTests.swift

func test_shouldReturn_withPassword_shouldPerformLogin() {
sut.usernameField.text = "USERNAME"
sut.passwordField.text = "PASSWORD"

shouldReturn(in: sut.passwordField)

// Normally, assert something

}

With this test in place, let’s now try to test the input focus. Pressing the return
key in the username field should move the focus to the password field by
calling becomeFirstResponder(). So you'd think we’d be able to test the isFirstResponder
property as follows:

TextField/TextFieldTests/ViewControllerTests.swift

func test_shouldReturn_withUsername_shouldMoveInputFocusToPassword() {
shouldReturn(in: sut.usernameField)

XCTAssertTrue(sut.passwordField.isFirstResponder)

}

Run the tests...but this one will fail. Unfortunately, this test won't work
without some extra help. For changes to the first responder to take effect,
UIKit needs the view to live inside a view hierarchy. Add the following helper:
TextField/TextFieldTests/TestHelpers.swift
func putInViewHierarchy(_ vc: UIViewController) {

let window = UIWindow()

window.addSubview(vc.view)

}
Let’s put the view controller in a view hierarchy in the test’s Arrange section:

TextField/TextFieldTests/ViewControllerTests.swift
func test_shouldReturn_withUsername_shouldMoveInputFocusToPassword() {
putInViewHierarchy(sut)

shouldReturn(in: sut.usernameField)

XCTAssertTrue(sut.passwordField.isFirstResponder)

}

Run the tests. This time, the latest test passes.

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 182

To test keyboard input focus, add the view controller’s view to a
P UlWindow beforehand.

To test that a text field resigns the first responder, we need to make it the
first responder in the Arrange section. Now we can write a test that puts the
focus on the password field and confirms that pressing the return key removes
that focus:

TextField/TextFieldTests/ViewControllerTests.swift

func test_shouldReturn_withPassword_shouldDismissKeyboard() {
putInViewHierarchy(sut)
sut.passwordField.becomeFirstResponder()
XCTAssertTrue(sut.passwordField.isFirstResponder, "precondition")

shouldReturn(in: sut.passwordField)

XCTAssertFalse(sut.passwordField.isFirstResponder)

}

It's sometimes helpful to put an assertion in the Arrange section to confirm
a precondition. This essentially acts as a test of the putFocusOn(textField:) helper
method. By mirroring the opposite assertion at the end, we can clearly see
that the lines in between caused this state to change.

Unfortunately, adding a view controller’s view to a window keeps it in memory
past the lifetime of the test. To see this, add the following to ViewController:

TextField/TextField/ViewController.swift
deinit {
print("ViewController.deinit")

}

Run all tests, then check the console output. You’'ll see ViewController.deinit
sprinkled here and there. But check the very bottom of the output after all
test have completed.

Test Suite 'All tests' passed at 2019-05-30 17:13:17.930.
Executed 11 tests, with 0 failures (0 unexpected) in 0.035 (0.041) seconds
ViewController.deinit

As you can see, a stray view controller has managed to stay alive past the
end of all tests. This violates the clean room goal of Chapter 2, Manage Your

Password_shouldDismisskeyboard() and you’ll see that it’s missing the expected deinit
logging.

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextField/ViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 183

As we did with Test Segue-Based Push Navigation, on page 124, UlKit will clean

up the window if we give the run loop a kick. To make it easier to execute the
run loop one time, add the following helper:

TextField/TextFieldTests/TestHelpers.swift
func executeRunLoop() {
RunLoop.current.run(until: Date())

}

Then execute the run loop in tearDown() after setting everything in the test fix-
ture to nil.

TextField/TextFieldTests/ViewControllerTests.swift
override func tearDown() {
executeRunLoop()
sut = nil
super.tearDown ()

}

We need to do this whenever any test code calls the putinViewHierarchy() helper.
Run tests one more time to confirm that this fixes the memory problem.

Key Takeaways
Let’s review the main points from this chapter:

e To test delegate methods, don’t directly call the object that implements
it. That would lock down that particular class as the delegate. Instead,
request the delegate (whatever it is) and call through it. This allows the
delegate to move in future refactoring without breaking tests.

¢ Getting an object’s delegate and passing that same object as an argument
makes for clumsy test code. You've seen how extracting helper functions
(sometimes with default arguments) can go a long way to making test
code easy to write and easy to read.

e Some types written in Objective-C need help describing themselves,
especially enumerations. Add extensions so these types conform to the
CustomStringConvertible protocol. And you've learned that to assert against a
Bool? value, you can use XCTAssertEqual(_:_:).

e To test the first responder, the view needs to be in a view hierarchy for
input focus to take effect.

e If you add anything to a temporary UIWindow, execute the run loop in
tearDown() so that UIKit releases the window. This avoids memory leaks.

http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TextField/TextFieldTests/ViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 14. Testing Text Fields (and Delegate Methods) ¢ 184

Activities
To solidify your learning from this chapter, try one or more of these activities.

Start with the first one and work down as far as you want to.

1. Search your code for any classes that conform to UlTextFieldDelegate or
UlTextViewDelegate. Add tests that the fields using these classes as delegates
have non-nil delegates.

2. Choose a simple delegate method with no references to the first responder,
and write one test for it. Make sure not to directly call the object that
provides the method but to call through the delegate.

3. Extract a helper function to simplify the test. Put this helper in a file of
test helpers so you can use them across your test suites.

4. Expand your testing into delegate methods that set or resign the first
responder.

What’'s Next?

Now you can test delegate methods. You know not to directly call the object
that implements it since that locks it down as the delegate.

Perhaps the most common delegates are those of table views. In the next
chapter, we’ll look at an example of testing a UlTableView.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 15

Testing Table Views

In the previous chapter, we saw how to test delegate methods, focusing our
example on text fields. But the most common use of delegates is probably for
table views.

Though the principles are the same as Chapter 14, Testing Text Fields (and

table view has two delegates: one focusing on content, and the other on
actions. In this chapter, you’ll learn how to test table views. You’'ll be able to
test table view output (displaying cells) and input (cell selection).

Make a Place to Play

It’s time for another project. Copy the steps from Create a Place to Play with

test file as usual.

In the Project Navigator, select the TableView group. Create a new file,
selecting Cocoa Touch Class, and make it a subclass of UlTableViewController.

With this new file in place, delete the old file ViewController.swift.

Next, let’s put this in the storyboard. Edit Main.storyboard, select “View Controller
Scene,” and press & to delete it. Select View » Libraries » Show Library from
the Xcode menu or press Shift-#-L to bring up the Object Library. Double-
click “Table View Controller” to add it to the storyboard. Now let’s modify it.
In the storyboard, select “Table View Controller Scene.” Then in the Xcode
menu, select View » Inspectors » Show Identity Inspector or press X-#-3. In
the Identity Inspector on the right, in the Custom Class section, click the
Class pull-down menu. Select the class we just made, TableViewController, like
you see in the image on page 186.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 15. Testing Table Views ¢ 186

DO oeE ¥+ B O

Custom Class

Class | UITableViewController

Module | TableViewController

] Tnherit Module From Target

Show the Attributes Inspector by selecting View » Inspectors » Show Attributes
Inspector from the Xcode menu or press X-#-5. In the View Controller section,
shown here, select “Is Initial View Controller.”

View Controller

Title | |
Is Initial View Controller

Xcode still shows a warning symbol. Click on the symbol, or select View »
Navigators » Show Issue Navigator, or press #-5. Under “Unsupported Con-
figuration,” click the warning that says the following:

Prototype table cells must have reuse identifiers

This will select “Table View Cell.” In the Attributes Inspector on the right, in
the Table View Cell section (shown in the following image), enter cell as the
identifier.

Do oeaE v A o

Table View Cell

Style [Custom

Identifier | Reuse Identifier |

Before we work on the code, let’s make sure this shows an empty table. Set
your destination to an iOS simulator, then press #-R to run the app. You
should see a table with empty rows.

Now delete the generated contents of the TableViewController class. Define the
following property, which will serve as our simple model:

TableView/TableView/TableViewController.swift
private let model = [

"One",

"Two",

"Three"
1

Add these methods to display this model:

http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Table Views ® 187

TableView/TableView/TableViewController.swift
override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
model.count

}

override func tableView(tableView: UITableView,
cellForRowAt indexPath: IndexPath)
-> UITableViewCell {
let cell = tableView.dequeueReusableCell(
withIdentifier: "cell", for: indexPath)
cell.textLabel?.text = model[indexPath.row]
return cell

}
And when a row is selected, we’ll print the selected row to the console:

TableView/TableView/TableViewController.swift
override func tableView(tableView: UITableView,

didSelectRowAt indexPath: IndexPath) {
print(model[indexPath.row])

}

Let’s make sure this table works. Run the app. You should see three rows,
showing “One,” “ITwo,” and “Three.” Select View » Debug Area » Activate
Console or press Shift-#-C to show the console on the bottom right. Tap each
row to confirm that the app prints the selected row in the console.

Now that we have a table view, let’s see how to write tests for it. In most cases,
all we need to do is test that each delegate method does what we want.

Test Table Views

You've already learned how to test delegate methods in Chapter 14, Testing

more complicated. All we have to do is manage two delegates, not one: the
UlTableViewDataSource and the UlTableViewDelegate.

Add a new test suite, TableViewControllerTests, using the Test Zero technique from
Start from Test Zero, on page 21. Once it reports the expected failure, delete

Test Zero.

Let’s now test that the table view’s delegates exist. Though a UlTableViewController
serves as its own delegates by default, we may want to change that in the
future. The following test ensures that we have the connections we need. Add
an empty test case named test_tableViewDelegates_shouldBeConnected().

Inside this test, follow Load a Storyboard-Based View Controller, on page 64

to load TableViewController from the storyboard. Remember that this also means

http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableView/TableViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 15. Testing Table Views ¢ 188

editing Main.storyboard to give the view controller a Storyboard ID. Run the tests,
which should pass.

Finish off this test by asserting that the view controller’s table view has both
delegates:

TableView/TableViewTests/TableViewControllerTests.swift
XCTAssertNotNil(sut.tableView.dataSource, "dataSource")
XCTAssertNotNil(sut.tableView.delegate, "delegate")

Run the tests, which should pass. Next, let’s start testing those delegate
methods. The first method tableView(_:numberOfRowsInSection:) is a data source
method. Add a new test named test numberOfRows_shouldBe3(). To load the view
controller, copy and paste that part from the previous test. Then add the fol-
lowing assertion, and run the tests:

TableView/TableViewTests/TableViewControllerTests.swift
XCTAssertEqual(sut.tableView.dataSource?.tableView(
sut.tableView, numberOfRowsInSection: 0), 3)

Note that we’re calling the method indirectly through the dataSource delegate.
As we did in Chapter 14, Testing Text Fields (and Delegate Methods), on page

gives you the possibility of moving the delegate methods to another object.
The tests don’t need to know where they're implemented.

Most of the time, tests should provide their own models to view controllers.
But here, we rely on our knowledge that the built-in model has three entries.

Since the code to load the view controller is duplicated, let’s follow Move the

type cast from as! to as? to silence the warning about assigning to an optional:

TableView/TableViewTests/TableViewControllerTests.swift
private var sut: TableViewController!

override func setUp() {
super.setUp()
let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewController(
identifier: String(describing: TableViewController.self))
sut.loadViewIfNeeded ()
}
override func tearDown() {
sut = nil
super.tearDown ()

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Test Table Views ® 189

Run the tests to make sure they still pass. Now let’s clean up that awkward
call to the delegate method. Again, let’s make a separate file for test helpers.
Name it TestHelpers.swift and set its target to the test target. Add an import UIKit
declaration to the top.

Add the following helper function. Many table views have just one section, so
declaring O as the default for section can be helpful:

TableView/TableViewTests/TestHelpers.swift
func numberOfRows (in tableView: UITableView, section: Int = 0) -> Int? {
tableView.dataSource?.tableView(
tableView, numberOfRowsInSection: section)

}
This simplifies our test:

TableView/TableViewTests/TableViewControllerTests.swift
func test_numberOfRows_shouldBe3() {

XCTAssertEqual (numberOfRows (in: sut.tableView), 3)
}

Next, let’s test tableView(_:cellForRowAt:). Any helper function is best when there’s
more than one example driving it, so let’s start with two tests:

TableView/TableViewTests/TableViewControllerTests.swift
func test_cellForRowAt_withRow0®_shouldSetCellLabelToOne() {
let cell = sut.tableView.dataSource?.tableView(
sut.tableView, cellForRowAt: IndexPath(row: 0, section: 0))

XCTAssertEqual(cell?.textLabel?.text, "One")
}

func test_cellForRowAt_withRowl_shouldSetCellLabelToTwo() {
let cell = sut.tableView.dataSource?.tableView(
sut.tableView, cellForRowAt: IndexPath(row: 1, section: 0))

XCTAssertEqual(cell?.textLabel?.text, "Two")
}

Run the tests, which should pass. Now we can see that the value that’s
varying between the tests is row. Let’s create a helper that hides the IndexPath,
using O for the section by default:

TableView/TableViewTests/TestHelpers.swift
func cellForRow(in tableView: UITableView, row: Int, section: Int = 0)
-> UITableViewCell? {
tableView.dataSource?.tableView(
tableView, cellForRowAt: IndexPath(row: row, section: section))

}

Using this new helper, let’s clean up our two tests and add the third. Run
the tests to see them pass.

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 15. Testing Table Views ¢ 190

TableView/TableViewTests/TableViewControllerTests.swift
func test_cellForRow_withRow0_shouldSetCellLabelToOne() {
let cell = cellForRow(in: sut.tableView, row: 0)

XCTAssertEqual(cell?.textlLabel?.text, "One")
}

func test_cellForRow_withRowl_shouldSetCellLabelToTwo() {
let cell = cellForRow(in: sut.tableView, row: 1)

XCTAssertEqual(cell?.textLabel?.text, "Two")
}

func test_cellForRow_withRow2_shouldSetCellLabelToThree() {
let cell = cellForRow(in: sut.tableView, row: 2)

XCTAssertEqual(cell?.textLabel?.text, "Three")
}

Finally, let’s test tableView(_:didSelectRowAt:), which handles row selection. The
only thing we need to be careful about is that we talk to the correct delegate.
While the dataSource provides cell content, the delegate handles cell selection.

In our example, tapping a row prints to the console instead of doing actual
work. Here’s a test that taps row 1 (the second row, counting from row 0):

TableView/TableViewTests/TableViewControllerTests.swift
func test_didSelectRow_withRowl() {
sut.tableView.delegate?.tableView?(
sut.tableView, didSelectRowAt: IndexPath(row: 1, section: 0))

// Normally, assert something

}

Run the tests and follow Examine Console Output, on page 23 to drill down

to the test results. You should see something like this:

Two

Now we can extract a helper function. Once again, it hides the IndexPath and
uses a section of O unless told otherwise:

TableView/TableViewTests/TestHelpers.swift
func didSelectRow(in tableView: UITableView, row: Int, section: Int = 0) {
tableView.delegate?. tableView?(
tableView, didSelectRowAt: IndexPath(row: row, section: section))

}

Then we can clean up the test to use this helper:

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TestHelpers.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 191

TableView/TableViewTests/TableViewControllerTests.swift
func test_didSelectRow_withRowl() {
didSelectRow(in: sut.tableView, row: 1)

// Normally, assert something

}

Run all tests to confirm that everything passes. We don’t have an assertion on
this last test, so drill down into the test results again to confirm that it prints
Two. We've now successfully opened the door to testing this table view. The rest
would be assertions confirming the behavior of tapping different rows.

Key Takeaways

Testing table views is a continuation of testing delegate methods. So the same
techniques from Chapter 14, Testing Text Fields (and Delegate Methods), on

e Write a test to confirm that the table view’s dataSource and delegate aren’t
nil. Remember to call methods through the appropriate delegate.

e There’s a lot of opportunity to extract test helpers for table view delegate
methods. Doing so will lead to simpler test code, especially if you give the
section number a default value of O.

Activities

You can use the following activities to sink this chapter into your brain. Start
with the first. Work down as far as you want to go.

1. Search your code for any classes that use table views. Add tests to ensure
that their data sources and delegates are non-nil.

2. Choose a simple table with one kind of cell. Write a test that creates a
data model, then checks the number of rows.

3. Write another test that gets a cell. Use a guard let to cast the cell to your
cell subclass. If the cast is unsuccessful, report the failure with XCTFail()
and do an early return. Otherwise, test that the cell contents are correct.

4. Extract helper functions to simplify the data source tests. Put these helpers
in a file of test helpers you can use across your test suites.

5. Expand your testing into table view delegate methods that handle cell
selection. For example, if selecting a cell pushes another view controller,
apply Chapter 10, Testing Navigation Between Screens, on page 115 (as

long as you're not using segues).

http://media.pragprog.com/titles/jrlegios/code/TableView/TableViewTests/TableViewControllerTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 15. Testing Table Views ¢ 192

What’'s Next?

Now you can test table views. As you can see, they're not very different from
testing other delegate methods. Since table views have two delegates, direct
your calls through the right delegate.

As you did with Chapter 14, Testing Text Fields (and Delegate Methods), on

We've now tested the behavior of various view controllers. But what about their
appearance? In the next chapter, we explore a way to test how views look.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

CHAPTER 16

Testing View Appearance (with Snapshots)

Until now, we've focused on unit testing the behavior of view controllers. But
view controllers don’t just manage input and output. They lay out views, and
we want those views to look good. How do we test their appearance?

In this chapter, you’ll learn how to write snapshot tests to compare views with
reference images. We'll use the FBSnapshotTestCase library for our example.'
By writing snapshot tests for your views, you’ll be able to make changes to
view layouts and test the results.

Because you won’t have to manually navigate through your view controllers
and then do visual comparisons, this is a huge time saver. It's also good for
testing custom views.

Make a Place to Play

Let’'s make a new project for this chapter’s learning experience. Follow the
steps for Create a Place to Play with Tests, on page 4 to create a new project,

but give it the name Snapshot. Delete its initial test file.
We'll use the predefined storyboard, adding some visual elements. Edit

Main.storyboard. Feel free to add any UI elements you want using correct Auto
Layout constraints with no warnings.

If you arranged your own elements with no warnings, you can proceed to the
next section. Or you can follow along with this example. Open Main.storyboard
and select View » Libraries » Show Library from the Xcode menu or press
Shift-# - L. This will bring up the Object Library. Drag a label, a slider, and a
button into the View Controller Scene.

1. https://github.com/uber/ios-snapshot-test-case

https://github.com/uber/ios-snapshot-test-case
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ¢ 194

Select the label. In the bottom right of the storyboard editor, hover your mouse
cursor over the icon showing a square between two margins. This will reveal
the help tag “Add New Constraints.” Click the icon. In the following image,

it’s the middle icon:
= ol Al

In the pop-over, enter 20 for the top, left, and right constraints. Keep the
bottom constraint unselected. Press “Add 3 Constraints,” as shown here:

Add New Constraints

20 v

I

20 v 20 -

730 v
Spacing to nearest neighbor
Constrain to margins
O = width 42 -
O [T Height 21 v

O [Aspect Ratio

(Add 3 Constraints)

& tof tal

Let’s relax that right edge. With the label still selected, show the Size Inspector
by selecting View » Inspectors » Show Size Inspector from the Xcode menu
or press X-#-6. In the Constraints section of the Size Inspector, find the
“Align Trailing to: Safe Area” constraint and click Edit. Change the Constant
from = to <, and its Priority from Required (1000) to Low (250), like this:

Constraints

Constant: 20 v

Priority: |250 v
Ho!
] Align Trailing to: Safe Area Edit |
<= 20 H
E Align Leading to: Safe Area Edit
Equals: 20
Vertical
GE] Align Top to: Safe Area Edit
Equals: 20

Showing 3 of 3

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Make a Place to Play ® 195

Next, select the slider, and set the following constraints:

e Top Space to Label Equals 20
e Align Leading to Safe Area Equals 20
e Align Trailing to Safe Area Equals 20

Finally, select the button and add these constraints:

e Top Space to Horizontal Slider Equals 20

e Align Leading to Safe Area >= 20 with Priority 250
e Align Trailing to Safe Area Equals 20

¢ Height Equals 44

With these layout constraints in place, the storyboard should look something
like this:

|/

Confirm that Xcode is showing you no warnings. If you like, you can run the
app to see what it feels like to manipulate the controls.

Now we have a view controller with a few subviews. Let’s see how we can
capture its layout in a test. This way, the test will catch us if the layout ever
changes unintentionally. In order to do this, we will add a helper library to
our test code.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ® 196

Add FBSnapshotTestCase to a Test Target

To test how a view appears, we can do the following:

1. Render a view to an image.
2. Save this image to disk.

The saved image acts as a reference image. Once we have a reference image,
then we can:

1. Read the reference image from disk.
Render the view to a new image.

3. Ifthe new image matches the reference image, the test passes. Otherwise,
the test fails.

This is characterization testing applied to images. The reference image
captures the appearance of a view. As long as the view continues to gen-
erate the same pixels, the test doesn’t care. Such tests are often called
snapshot tests.

In the past, I wrote such tests by hand. I would switch a test between record
mode and test mode using #if conditional compilation. There’s nothing
stopping you from developing your own test helpers to do this work. But
you can use third-party libraries to make it easier. One of them is
FBSnapshotTestCase.”

FBSnapshotTestCase supports the dependency managers CocoaPods and
Carthage. If you want to use either, feel free to skip ahead to Set the Location

the project by hand.

On GitHub, go to the Releases page for ios-snapshot-test-case to check if
the latest release has a zip file for your version of Xcode.® If there is one,
download FBSnapshotTestCase.framework.zip. This will expand to a folder named
Carthage. Navigate through its subfolders Build and i0S until you find FBSnap-
shotTestCase.framework.

If the releases on GitHub are out of date, then download the source code for
this book* and look in the TestFrameworks folder.

2. https://github.com/uber/ios-snapshot-test-case

3. https://github.com/uber/ios-snapshot-test-case/releases

4. https://pragprog.com/titles/jrlegios/source_code

https://github.com/uber/ios-snapshot-test-case
https://github.com/uber/ios-snapshot-test-case/releases
https://pragprog.com/titles/jrlegios/source_code
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add FBSnapshotTestCase to a Test Target ® 197

Drag the framework into the SnapshotTests group in the Xcode project, as
shown here:

BHRZE QAN =EDo B

v @ Snapshot

v Snapshot
s AppDelegate.swift
= ViewController.swift
Main.storyboard
7| Assets.xcassets
LaunchScreen.storyboard
Info.plist
v SnapshotTests

m ‘FBSnapshotTestCase.framework

> Products

In the “Choose options for adding these files” dialog, select the check box
labeled “Copy items if needed” to copy the folder into your project files. And
make sure that “Add to targets” specifies the SnapshotTests target only.

Let’s check if the downloaded framework works with your version of Swift. In
the Xcode menu, select Product » Build For » Testing. If Xcode complains
that a module compiled with a certain version of Swift cannot be imported,
see if you can find a build that matches. Otherwise, you’ll need to build the
framework yourself or use a dependency manager.

For third-party frameworks to work, we often need to copy them to a place
where the dynamic linker can find them. This is what we need to do with the
snapshot library. In the Project Navigator on the left, select the Snapshot
project. Then select the SnapshotTests target. Within that, select the Build
Phases tab. Click the + button at the top and select “New Copy Files Phase”
like this:

B < B snapshot [
D General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT e [@]
[snapsh f
|= Snapshot New Copy Files Phase
TARGETS New Run Script Phase
/A Snapshot New Headers Phase x
[snapshotTests New Copy Bundle Resources Phase
New Compile Sources Phase x

New Link Binary With Libraries Phase
New Build Carbon Resources Phase

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ¢ 198

This creates a new Copy Files phase at the end of the list. In its Destination
pop-up menu, select “Products Directory” as shown here:

=] Snapshot +

< B snapsh [

D General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT + [@]

Q Snapshot

TARGETS » Dependencies (1 item)

/A Snapshot

» Compile Sources (1 item) X
Ml SnapshotTests

P Link Binary With Libraries (1 item) X

P Copy Bundle Resources (0 items) X

¥ Copy Files (0 items) X

Destination | Products Directory <

Subpath |

[Copy only when installing

Name Platforms Code Sign On Copy

Add files here

+

Click the + button at the bottom of the new Copy Files phase. In the “Choose
items to add:” dialog, select FBSnaphotTestCase.framework and click Add. (Don’t
select the “Code Sign On Copy” check box because we're not shipping test
code.)

Now the snapshot framework is ready for compiling against and is also copied
into place for dynamic linking.

Set the Location for Reference Images

FBSnapshotTestCase is ready to use. Next, we need to tell it where to put the
reference images. The simplest way is to add an environment variable to the
run scheme. In the Xcode menu, select Product » Scheme » Edit Scheme...
or press #-<.

In the scheme editor, select Run in the left column. Then from the tabs, select
Arguments. In the Environment Variables section, click the + button to create
a new entry. In the figure on page 199, the new entry is filled with the name

and value we’ll describe next:

¢ For Name, enter FB_REFERENCE_IMAGE DIR.
e For Value, enter $(SOURCE_ROOT)/Snapshotimages. (Of course, you can specify
any location in your own projects.)

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Write a Snapshot Test ® 199

/A Snapshot) g iPhone 8

>) Build Info Arguments Options Diagnostics
2 targets
> > Run ¥ Arguments Passed On Launch
Debug
Test
>
Debug
R .‘u' Profile No Arguments
Release
Analyze + -
>B Debug
) Archive ¥ Environment Variables
Release
‘ Name ‘ Value

FB_REFERENCE_IMAGE_DIR $(SOURCE_ROOT)/Snapshotimages

Expand Variables Based On [A Snapshot

[Duplicate Scheme][Manage Schemes...]Shared

Finally, make sure to select the “Shared” check box at the very bottom. This allows
your teammates to use the same scheme. Press Close to save your changes.

Write a Snapshot Test

Now we're ready to create a snapshot test. Let’s start by adding a test suite
ViewControllerSnapshotTests. Use Test Zero as temporary scaffolding to confirm
that you hooked up the test suite. (See Start from Test Zero, on page 21.)

Delete Test Zero once you see its expected failure message.

Now instead of import XCTest, change that to import FBSnapshotTestCase. Change the
superclass of ViewControllerSnapshotTests from XCTestCase to FBSnapshotTestCase. Make
sure this builds so far. In the Xcode menu, select Product » Build For »
Testing or press Shift-3-U.

Add a special setUp() method to set the record mode of the snapshot tests in
this suite:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
override func setUp() {

super.setUp()

recordMode = false

}

Now create a test named test_example(). Follow Load a Storyboard-Based View

that this also means editing Main.storyboard to give the view controller a Story-
board ID. Run the tests, which should pass.

http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ¢ 200

Finally, add the call to verify a snapshot of the view controller:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
FBSnapshotVerifyViewController(sut)

Here’s what the whole file looks like:

Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
@testable import Snapshot
import FBSnapshotTestCase

class ViewControllerSnapshotTests: FBSnapshotTestCase {

override func setUp() {
super.setUp()
recordMode = false

}

func test_example() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut: ViewController = storyboard.instantiateViewController(
identifier: String(describing: ViewController.self))

FBSnapshotVerifyViewController(sut)

}
Run the tests again. This time, you'll see a failure beginning with the message:
failed - Snapshot comparison failed

The whole failure message is wordy, describing several objects. But buried
in the failure text is the following explanation:

Reference image not found. You need to run the test in record mode

To run the test in record mode, temporarily change recordMode to true in setUp().
Then set your destination to the iOS simulator you want to use for snapshots,
and run the tests. This time, you’'ll get a different test failure:

failed - Test ran in record mode. Reference image is now saved. Disable
record mode to perform an actual snapshot comparison!

Based on the location you set for reference images (see Set the Location for

chose is for a 64-bit device, it'll append 64 to the name, so look for Snapshotim-
ages_64. Inside that folder is another folder for the test suite, SnapshotTests.View-
ControllerSnapshotTests. And inside that folder is the new reference image, named
for the test case. Examine the reference image.

Finally, set recordMode back to false and run the tests again. This time the
snapshot verification will pass.

http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://media.pragprog.com/titles/jrlegios/code/Snapshot/SnapshotTests/ViewControllerSnapshotTests.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

See the Difference in a Snapshot Failure ® 201

Sometimes a reference image won't look right. This can happen because tests normally
create view controllers without surrounding context. In such cases, it's good to try
creating a container for the view controller that’s closer to what it has in a real app.
For example, you can try creating a UlWindow to hold the view controller’s view:

let window = UIWindow(frame: UIScreen.main.bounds)
window.addSubview(sut.view)

Just remember from Test Input Focus, on page 180 that you need to execute the run

loop to clean up window memory.

Now we have a test that records how the view controller looks, capturing it
in a reference image. As long as the test continues to generate that same
image, it passes. In the rest of this chapter, let’s look at ways to work effec-
tively with snapshot tests.

See the Difference in a Snapshot Failure

Now we have a passing snapshot test. But what happens when the test fails?
Let’s find out by changing the layout.

Open Main.storyboard and select the button. Show the Size Inspector by selecting
View P Inspectors » Show Size Inspector from the Xcode menu or press \X-#-6.
In the Constraints section, find the “Align Trailing to: Safe Area” constraint
as shown here:

Constraints

Aiey
\9)
A

This Size Class

Horizontal

g Align Trailing to: Safe Area Edit
Equals: 20

E Align Leading to: Safe Area Edit

>= 20
Vertical
[Height Equals: 44 Edit]
I Top Space to: Horizontal Sl... Edit
Equals: 20

Showing 4 of 4

Click Edit and change the constant to 25. Run the tests. The snapshot will
report a failure. If you go to the test case, you'll see the test failure annotation:

FBSnapshotVerifyViewController(sut) @ failed - Snapshot comparison failed: Optional(Error...

report erratum -« discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ¢ 202

But there’s more information that’s not visible in the failure annotation, even
if you click to expand it. Let’s find the console output by following Examine

is shown to the right of the failing test. Click the log icon to expand the log.
It will look something like this, with different details:

X Run test case test_example() 0.233 seconds x 1
Test Case '-[SnapshotTests.ViewControllerSnapshotTests test_example]' started.

2020-01-04 16:53:28.856009-0800 Snapshot[18767:21039833] If you have Kaleidoscope installed you can run
this command to see an image diff:

ksdiff "/Users/jmreid/Library/Developer/CoreSimulator/Devices/41E51C47-2500-436F-B4B8-CA3D152AEBBC/
data/Containers/Data/Application/CCD@7CA9-B71E-46D8-9216-B358992B98D5/tmp/
SnapshotTests.ViewControllerSnapshotTests/reference_test_example@x.png" "/Users/jmreid/Library/
Developer/CoreSimulator/Devices/41E51C47-2500-436F-B4B8-CA3D152AEBBC/data/Containers/Data/
Application/CCD@7CA9-B71E-46D8-9216-B358992B98D5/tmp/SnapshotTests.ViewControllerSnapshotTests/
failed_test_example@2x.png"

/Users/jmreid/Documents/Blogs/Quality Coding/Books/UnitTesting/jrlegios/Book/code/Snapshot/
SnapshotTests/ViewControllerSnapshotTests.swift:19: error:
[SnapshotTests.ViewControllerSnapshotTests test_example] : failed - Snapshot comparison failed:
Optional(Error Domain=FBSnapshotTestControllerErrorDomain Code=4 "Images different"
UserInfo={NSLocalizedFailureReason=image pixels differed by more than 0.00% from the reference image,

FBDiffed 1T {375, 667}>, FBRefer IIm:

age:
0x600000a90900 anonymous {375, 667}>, FBCaptured: {375, 667}
>, NSLocalizedDescription=Images different})

Test Case '-[SnapshotTests.ViewControllerSnapshotTests test_example]l' failed (@.233 seconds).

The failure highlighted in the screenshot says, “Images different.” But the

most important information comes at the very beginning and isn’t highlighted.
After the line showing that the test case started, it says:

If you have Kaleidoscope installed you can run this command to see an
image diff:

This is followed by a ksdiff command. Kaleidoscope® is a commercial Mac app
that does file comparison. You can download a fourteen-day free trial. If you

download the Mac app and launch it, select Kaleidoscope » Integration... from
the Kaleidoscope menu. The following window will appear:

Command-line tool

Versions
/' Subversion client
Subversion
Command-line integration
Git

Command-line integration

$) Mercurial

Command-line integration

4

Command-line integration

4 Pav
GUI integration

Bazaar

Command-line integration
v,

—2 TextMate
91

Subversion bundle

Mercurial bundie

With “Kaleidoscope Command-line tool” selected on the
the right to install the ksdiff command-line tool.

5. https://www.kaleidoscopeapp.com

Kaleidoscope Command-Line Tool

Kaleidoscope's ksdiff command-line tool lets you compare and merge any

number of files from the Terminal. To install or remove, follow these
instructions:

Install the ksdiff command-line tool W
Usage example.

ksdiff ~/Documents/Draftl.txt ~/Documents/Draft2.txt
~/Desktop/Final .doc

left, click Install on

https://www.kaleidoscopeapp.com
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Manage Your Snapshot Tests ® 203

Now open a new terminal shell. You can find the terminal by selecting Go »
Utilities from the Finder menu. Go back to Xcode and find the ksdiff command
in the test log. Copy and paste that line into your terminal shell. Pressing €
will run the command, which will compare the images in Kaleidoscope in a
window like this:

) Kaleidoscope:

I reference_test | failed_test ¢ 2

A » SnapshotTestsView.. reference_test example@2x.png - | < B | » failed_test. [l

Label Label

Button Button

MRV T one-Up » spiit oifterence ([iifl] = @l — o1

You may not be able to spot subtle differences in Two-Up mode. But they pop
out if you select the Difference mode at the bottom.

If you don’t want to use Kaleidoscope, you can use a different tool as long as
it has a command-line interface. Just make a shell function named ksdiff that
passes its arguments to the tool you like.

Manage Your Snapshot Tests

To get the most out of your snapshot tests, you should know that these tests
are slow, and somewhat touchy. Also, you don’t have to wait until you've
finished coding the views for them to be useful.

Slow Snapshots: Keep Them in Their Own Corner

When you first discover snapshot tests, it's tempting to use them to test all
kinds of visible state. But compared to a normal unit test, a snapshot test is
an order of magnitude slower. That is, in the time it takes to run one snapshot
test, you can run ten to twenty unit tests.

report erratum - discuss

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ¢ 204

The speed of one snapshot may not seem like much. But they accumulate
quickly. To keep snapshot tests from slowing down rapid feedback, I keep
snapshots in their own corner. Here’s how:

First, don’t mix unit tests and snapshot tests in the same test suite. Create
separate suites. That’s why we named the test suite for this chapter ViewCon-
trollerSnapshotTests. Any unit tests can go in ViewControllerTests instead. This gives
us a way to run them separately, because Xcode lets us run a single test
suite. To the left of a test suite, Xcode shows an empty lozenge icon:

(> class ViewControllerSnapshotTests: FBSnapshotTestCase {
Hover your mouse cursor over the icon. It changes to a play button:
© class ViewControllerSnapshotTests: FBSnapshotTestCase {

Clicking this will run all the tests in that class.

Second, keep these snapshot tests in separate files. That is, don't group
ViewControllerSnapshotTests together with ViewControllerTests in the same file. Eventu-
ally, you'll have quite a few snapshot tests. To get fast feedback on my local
machine, I like to either run all unit tests, or run one set of snapshots. This
is easier if you create separate test targets: one for unit tests, and one for
snapshot tests. So I have one unit testing bundle for unit tests and another
for snapshots.

Finally, keep your snapshots limited. Snapshot the appearance of small
custom views in different states. With those tests in place, another snapshot
can capture the overall layout of a view controller. Getting larger snapshots
that repeat the same smaller state changes is a waste of time. Instead, use
faster unit tests to confirm combinations of state.

Touchy Snapshots: One Device, One iOS Version

Be sure to capture and run snapshots using the same simulator. Given enough
developers, there’s bound to be some confusion about which simulator to
use. You may want to write your own FBSnapshotTestCase subclass. It can have
a setUp() method that checks UlDevice.current and fails if the device doesn’t match.

Capturing view layouts with one device in one orientation can feel limiting.
You may wish to investigate other open-source libraries that extend
FBSnapshotTestCase. But capturing every device combination is overkill.
Remember, snapshot tests are inherently slower. Be selective, and try to
limit yourself to tests that add value.

Pixel-perfect image comparison is touchy. Different versions of iOS often use
slightly different math to render images. So your team will also have to agree

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Key Takeaways ® 205

on a single i0OS version to use across all snapshots. You can enforce this in
the setUp method of your custom FBSnapshotTestCase subclass.

To adopt a new version of i0OS, you'll need to update all reference images for your
snapshots. You can do this in one shot with a global find-and-replace to set
recordMode = true. You could also set recordMode using an environment variable.

Use Snapshots to Write View Code

Characterization tests capture the existing behavior of code. Since snapshot
tests are a type of characterization test, it'd be easy to assume they always
come after the finished code. But snapshots can also give you feedback about
views and view controllers as you write them.

One of the best things about unit testing view controllers is that you don’t
have to navigate through your app to reach the screen you want. So if your
app has a login screen, an accounts tab, and a screen you can reach from
that tab, you don’t have to do any of that manual tapping. Instead, unit tests
create the objects they need, including view controllers. The time saved by
not navigating adds up quickly.

The same applies to snapshot tests. Instead of slow, manual navigation, the
tests create what they need. But on top of that, you don’t need to stare at a
screen wondering if a button shifted five points to the left. If the test passes,
you know view’s appearance is identical to the reference image. This saves
you even more time.

But now imagine that you're starting work on a new view controller or on a
new custom view. What if the first thing you did was create a new snapshot
test with recordMode set to true? Then every time you run the test, you could
see what the view looks like—without navigating to it. In fact, there may not
even be a way to navigate to it yet!

This lets you observe the view as it grows. The generated reference image will
be closer to real life than what you see in Interface Builder. And the benefits
are even greater if you write code-based view controllers. The reference image
shows the result of using Auto Layout constraints to lay out views. By keeping
recordMode on, you can visually confirm each step you take.

Key Takeaways

Find a way to render views from XCTest without using UI tests. FBSnap-
shotTestCase is just one of many libraries that do this. The important thing
is that your tests should be able to create any view or view controller, and
render it to a file.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 16. Testing View Appearance (with Snapshots) ® 206

Snapshots are good for capturing aspects of appearance that would be hard
to express by checking properties. But they become tempting to overuse.
Because snapshot tests are slower than normal unit tests, try to limit their
use to layout. Use normal unit tests to check behavior and simple state
change. For example, use a normal unit test to check whether a control is
enabled by checking its isEnabled property.

Snapshot tests are useful not only to record a “known good” baseline, but to
also provide quick feedback to power iterative development. You can make a
change, run the test, and see how the view looks—without firing up the app
and navigating to that screen.

Activities

Take action to give your reading concrete benefits. If you don’t already use a
library to render view for testing, do the first activity.

1. Add FBSnapshotTestCase to your own project. Use CocoaPods, Carthage,
or direct integration by hand.

2. Add some snapshot tests, starting from the smallest custom views. Work
up to entire view controllers, trying to limit the total number of snapshots.

3. Create a custom subclass of FBSnapshotTestCase. Use its setUp() method to enforce
the type of simulator and the version of iOS your team uses for snapshots.
You can call fatalError() from setUp() if anyone strays from your standard to put
an immediate stop to any testing on the wrong device type.

4. The next time you create a new view or view controller, start with a new
snapshot test that has recordMode on. Use the captured image to give you
feedback as you design the Auto Layout constraints.

What's Next?

Now you can capture the appearance of views in snapshot tests. This will
help you save time by alerting you whenever any rendered views change. It’ll
also save you time while you're actively developing custom views or changing
the layout of any view controllers.

This concludes our tour of iOS testing techniques. You now have the means
to transform legacy code into tested code.

But what does all this testing enable? Starting in the next chapter, let’s begin
looking at the refactoring possibilities that open up to you thanks to having
well-tested code.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Part III

Using Your New Power

Why is all this unit testing useful? The speed of
unit test feedback empowers powerful styles of
development.

Fast feedback is the engine that powers disciplined
refactoring: working in small, verified steps.
Refactoring gives us a way to change the design of
code without changing its behavior. We’'ll see an
example of refactoring a view controller’s design
from MVC to MVVM, then on to MVP.

And if we flip conventional coding-then-testing on
its head, we get test-driven development. We
will see how TDD combines a test-first approach
with refactoring. The result is a powerful way
to develop code.

CHAPTER 17

Unleash the Power of Refactoring

Now you're able to bring much of your app under test. But adding unit tests
is a lot of work. What purpose do they serve? Tests validate that the code
does what the tests say it does, and unit tests are fast by definition. This fast
validation makes refactoring possible. But refactoring is widely misunderstood.

In this chapter, you'll learn what refactoring is and you’ll see some of the
most common refactoring moves. Learning these moves will help you make
changes to your own code safely and with confidence.

What Is Refactoring?

The term “refactoring” has become quite popular in the workplace. We devel-
opers say, “I need to refactor this thing,” then proceed to rewrite a large chunk
of code. From a big-picture view, this use of the term carries the same intent
as its proper definition: we want to change the way the code does its work
without changing its behavior. This matches the definition from the book
Refactoring: Improving the Design of Existing Code, 2nd Edition [Fow18]:

Refactoring is the process of changing a software system in a way that does not
alter the external behavior of the code yet improves its internal structure.

But the common use of the word ignores both the methodology and the
mechanics shown in the book. We get no further than page 5 before the book
explains:
Whenever I do refactoring, the first step is always the same. I need to ensure that
I have a solid set of tests for that section of code. The tests are essential...

The reason tests are essential is that changing things around is risky. We
can reduce the risk of breaking things by testing the changed code. The better
the tests are, the safer the change becomes. The faster the tests are, the more

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 17. Unleash the Power of Refactoring ® 210

often we can run them. And the more often we can run them, the smaller the
steps we can take become.

Working in small, verified steps is a game changer. Many developers like to work
with large changes. But if we practice refactoring as described in the book, the
changes are very small. Let me summarize it this way: disciplined refactoring is
changing code in small steps, with automated verification of each step.

Why do we want to change the internal structure of the code in the first place?
Because this can make the code easier to read, understand, and modify.
Often, adding new functionality will be faster and safer if we make other
changes first. Kent Beck writes:

for each desired change, make the change easy (warning: this may be hard), then
make the easy change'

In a fast-moving world, we strive to follow the Agile Manifesto® by valuing
“responding to change.” (This is one of the four points of the manifesto.) But
to accommodate these changes safely, our software must be malleable, not
brittle. We need the freedom to restructure the internals of our code without
breaking anything. This is why disciplined refactoring is important.

So unit testing has a tight connection with refactoring. Unit tests form the
safety net that makes disciplined refactoring possible. Part III of this book
focuses on the practical steps of what that kind of refactoring looks like.

Lay Out the Views for Our Practice App

In Parts I and II, each chapter pretty much had its own project. But for Part
III, each chapter will build on the previous work. This means you won’t be
able to cherry-pick chapters but instead will need to progress through them
if you want to work through the examples.

The project we’ll use across Part III is an interface for changing a password.
Start a new project as we've done before by copying the steps from Create a

Edit Main.storyboard, adding a button in the center of the View Controller Scene.
Give it a title like “Change My Password.” Give it the following layout constraints:

e Height Equals 44
e Align Center X to Safe Area
¢ Align Center Y to Safe Area

1. https://twitter.com/kentbeck/status/250733358307500032

2. https://agilemanifesto.org

https://twitter.com/kentbeck/status/250733358307500032
https://agilemanifesto.org
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Lay Out the Views for Our Practice App ® 211

That’s the layout of the starting view. Next, let’s lay out the change password
view controller. Still in Main.storyboard, select View » Libraries » Show Library
from the Xcode menu, or press Shift-3-L to bring up the Object Library. Drag
a new view controller onto the storyboard. Then drag a navigation bar to the
top of the new view controller.

Set the constraints of the navigation bar:

e Align Top to Safe Area
e Align Leading to Safe Area
e Align Trailing to Safe Area

Show the Attributes Inspector by selecting View » Inspectors » Show Attributes
Inspector from the Xcode menu or press \-#-5. In the Attributes Inspector
in the Navigation Bar section, deselect “Translucent.”

Adding a navigation bar also creates an embedded navigation item. Double-
click on its title, renaming it to “Change Password.”

Next, drag a bar button item to the left of the navigation title.

[® E]

Change Password

In the Attributes Inspector in the Bar Button Item section, set System Item
to Cancel, like this:

Do oeaE v A o

Bar Button Item

Style [Bordered

System Item [Cancel

Tint [Default

Drag and Drop () Spring Loaded

Now for the main part. Drag a text field below the navigation bar. Click Add
New Constraints at the bottom right of the storyboard editor. Set the top, left,
and right constraints to 20, and the height to 44. Using the Attributes

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 17. Unleash the Power of Refactoring ® 212

Inspector, in the Text Field section, set the Placeholder to “Current Password.”
Then in the Text Input Traits section, set the following:

e Content Type: Password
e Auto-enable Return Key: Selected
e Secure Text Entry: Selected

Drag another text field below the first one. For the layout constraints, set the
top to 8, left and right to 20, and height to 44. Set its placeholder to “New
Password.” Do this again with a third text field. Use the same constraints,
and set its placeholder to “Confirm New Password.”

Now select the bottom two text fields. In the Attributes Inspector in the Text
Input Traits section, set the following:

e Content Type: New Password
¢ Auto-enable Return Key: Selected
e Secure Text Entry: Selected

Drag a button below the text fields. For its layout constraints, set the top to
16, left and right to 20, and height to 44. Double-click the button’s title and
change it to “Submit.”

Finally, let’s add a segue to go from the button on the initial view controller
to the Change Password view. Control-drag from the “Change My Password”
button onto the Change Password Scene. This brings up a pop-up menu of
segue choices, as you can see here:

Change Password

9:41 -

Cancel Change Password

Action Segue
Show
Show Detail
Present Modally

Present As Popover
Custom

Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

From the Action Segue section, select “Present Modally.” This concludes the
layout of our views. Look at what we've done so far by running the app and
clicking that first button.

http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add the Code to Our Practice App © 213

Add the Code to Our Practice App

In real life, we would make a type that communicates with some password
changing API. But for our example, we don’t have an actual web service.
Instead, we will just print its arguments to the console. To simulate the
time it would take to do network communication, it will call either the
success closure or the failure closure after 1 second. Additonally, we will
be able to alternate between both success and failure so that we are able
to try both.

Select the Refactoring group in the Project Navigator and press #-N to make
a new file. Select Swift File and name it PasswordChanger.swift:

Refactoring/Refactoring/PasswordChanger.swift
import Foundation

final class PasswordChanger {
private static var pretendToSucceed = false
private var successOrFailureTimer: SuccessOrFailureTimer?

func change(securityToken: String,
oldPassword: String,
newPassword: String,
onSuccess: @escaping () -> Void,
onFailure: @escaping (String) -> Void) {

print("Initiate Change Password:")
print("securityToken = | (securityToken)")
print("oldPassword = | (oldPassword)")
print("newPassword = \|(newPassword)")

successOrFailureTimer = SuccessOrFailureTimer (
onSuccess: onSuccess,
onFailure: onFailure,
timer: Timer.scheduledTimer (
withTimeInterval: 1,
repeats: false
) { [weak self] _ in self?.callSuccessOrFailure() }

}

private func callSuccessOrFailure() {

if PasswordChanger.pretendToSucceed {
successOrFailureTimer?.onSuccess()

} else {
successOrFailureTimer?.onFailure("Sorry, something went wrong.")

}

PasswordChanger.pretendToSucceed. toggle()

successOrFailureTimer?.timer.invalidate()

successOrFailureTimer = nil

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/PasswordChanger.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Chapter 17. Unleash the Power of Refactoring ® 214

private struct SuccessOrFailureTimer {
let onSuccess: () -> Void
let onFailure: (String) -> Void
let timer: Timer

}

The change() method takes a security token, the old password, and a new
password. Upon success, it calls the onSuccess closure. Upon failure, it calls
the onFailure closure with a failure message.

The helper method callSuccessOrFailure() alternates between failure and success.
The pretendToSucceed flag is a static property, so it persists across PasswordChanger
instances. The change() method calls it after a 1-second timer to simulate net-
work lag.

Next, let’s write the code for the Change Password view. Similar to Set Up a

Cocoa Touch file that’s a subclass of UlViewController but with the name
ChangePasswordViewController. Define the following outlets in the new class:

Refactoring/Refactoring/ChangePasswordViewController.swift

@IBOutlet private(set) var cancelBarButton: UIBarButtonItem!
@IBOutlet private(set) var oldPasswordTextField: UITextField!
@IBOutlet private(set) var newPasswordTextField: UITextField!
@IBOutlet private(set) var confirmPasswordTextField: UITextField!
@IBOutlet private(set) var submitButton: UIButton!

Edit Main.storyboard and select the Change Password Scene. In the Identity
Inspector, set the Custom Class to ChangePasswordViewController. Connect all the
new outlets to their corresponding storyboard objects. Then add the following
additional properties:

Refactoring/Refactoring/ChangePasswordViewController.swift

private var passwordChanger = PasswordChanger ()

var securityToken = ""

private let blurView = UIVisualEffectView(effect: UIBlurEffect(style: .dark))
private let activityIndicator = UIActivityIndicatorView(style: .large)

Now let’s define viewDidLoad(). It adds a rounded border around the button. It
prepares for Auto Layout constraints on blurView and activityIndicator. It also sets
the color of activityindicator. Add this method, then run the app to see what the
button looks like now:

Refactoring/Refactoring/ChangePasswordViewController.swift
override func viewDidLoad() {
super.viewDidLoad ()
submitButton.layer.borderWidth = 1
submitButton.layer.borderColor = UIColor(
red: 55/255.0, green: 147/255.0, blue: 251/255.0, alpha: 1

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://pragprog.com/titles/jrlegios/errata/add
http://forums.pragprog.com/forums/jrlegios

Add the Code to Our Practice App © 215

).cgColor

submitButton.layer.cornerRadius = 8
blurView.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.translatesAutoresizingMaskIntoConstraints = false
activityIndicator.color = .white

}

Add the following action and connect the Cancel bar button to it. Then run
the app and try the Cancel button.

Refactoring/Refactoring/ChangePasswordViewController.swift

@IBAction private func cancel() {
oldPasswordTextField.resignFirstResponder()
newPasswordTextField.resignFirstResponder ()
confirmPasswordTextField.resignFirstResponder()
dismiss(animated: true)

}

Next is a big one. Add the following action. Don’t worry that it’s one big glob
of code—we’ll clean it up later.

Refactoring/Refactoring/ChangePasswordViewController.swift
@IBAction private func changePassword() {
// 1. Validate inputs
if oldPasswordTextField.text?.isEmpty ?? true {
oldPasswordTextField.becomeFirstResponder()
return

}

if newPasswordTextField.text?.isEmpty ?? true {
let alertController = UIAlertController(
title: nil,
message: "Please enter a new password.",
preferredStyle: .alert)
let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in
self?.newPasswordTextField.becomeFirstResponder ()
}
alertController.addAction(okButton)
alertController.preferredAction = okButton
self.present(alertController, animated: true)
return

}

if newPasswordTextField.text?.count ?? 0 < 6 {
let alertController = UIAlertController(title: nil,
message: "The new password should have at least 6 characters.",
preferredStyle: .alert)
let okButton = UIAlertAction(
title: "OK",
style: .default) { [weak self] _ in

http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.swift
http://media.pragprog.com/titles/jrlegios/code/Refactoring/Refactoring/ChangePasswordViewController.s