

1

What Is Just Enough
Test Automation?

1

This is not going to be a discourse on how to select and implement an auto-
mated testing tools suite. There are a number of articles and books available
today that offer practical advice on tool selection. It is also not an introduc-
tory book on software testing automation. If you are reading this book, we’ll
assume you have some level of previous experience with test automation.
We will also assume that you have some serious questions about the practi-
cal aspects of test automation. You may, or may not, have a successful imple-
mentation under your belt. In any case, you most probably have experi-
enced the operational, political, and cultural pitfalls of test automation.
What you need is a how-to book that has some practical tips, tricks, and sug-
gestions, along with a proven approach. If this is what you want, read on.
Our perspective on test automation is what you will be getting in the
remaining chapters of this book.

No New Models, Please! ___________________________

“Read My Lips: No New Models!” echoes a sentiment with which we whole-
heartily agree (14). As mentioned in the Preface, there has been a plethora of

TestAutomation-01 Page 1 Friday, May 24, 2002 1:49 PM

Prentice Hall PTR
This is a sample chapter of Just Enough Software Test AutomationISBN: 0-13-008468-9For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

2

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

models of the software testing process (6,10,11) and models of the auto-
mated software testing process (4,7,8,9,12,15), including a software test auto-
mation life cycle model (2). While these ideas are all right and in some
aspects useful when discussing software testing and test automation, they
are of little use to real-world practitioners.

The Software Engineering Institute at Carnegie Mellon University has
established a Software Testing Management Key Process Area (KPA) that is
necessary to achieve Level 2: Repeatable in the Software Process Capability
Maturity Model (CMM) (11). Such a model is useful for general guidance,
but it does not define a process that is useful to the test engineer proper. It
does give test managers a warm and fuzzy feeling when they pay lip service
to it but in reality the testing process activities do not reflect the model at all.
The same things hold true for the software test automation life cycle model.
We do not believe in life cycles. Instead, we believe in processes that direct
workflows. Every testing group has a process. In some instances it is a cha-
otic process, and in other instances it is more organized.

Krause developed a four-level maturity model for automated software
testing (3) that he ties to the software testing maturity model (1) and the SEI
Software Process Maturity Model (4) that evolved into the CMM. The levels
he specified are Accidental Automation, Beginning Automation, Intentional
Automation, and Advanced Automation. While this model may describe
what happens from a conceptual standpoint, it offers no practical advice
that will facilitate test automation implementation. It merely describes what
the author has noted happening in typical organizations.

Dustin, Rashka, and Paul published an Automated Test Lifecycle Meth-
odology (ATLM)—a “structured methodology which is geared toward
ensuring successful implementation of automated testing.”(2) It identifies a
four-phased methodology: Decision to Automate Test; Introduction of Auto-
mated Testing; Test Planning, Design, and Development; Execution and
Management of Automated Test.

While this model is useful from a management and control perspective, it
is not practical from the test automation engineer’s point of view. Powers
offers practical advice that can be very helpful for software testing engineers
who are responsible for building and implementing a test automation
framework. It includes common-sense discussions of programming style,
naming standards, and other conventions that should be applied when writ-
ing automated test scripts (9).

There is a comprehensive discussion of the principle of data abstraction,
which is the basis of the data-driven approach to automated software test-

TestAutomation-01 Page 2 Friday, May 24, 2002 1:49 PM

No New Models, Please! 3

ing. He discusses alternatives for coding how data are defined and used by
the test script. According to Powers, “The principle is one of depending less
on the literal value of a variable or constant, and more on its meaning, or
role, or usage in the test.” He speaks of “constraint for product data.” He
defines this concept as “…the simplest form of this data abstraction is to use
named program constants instead of literal values.” He also speaks of “vari-
ables for product data” and says, “…instead of the literal name ‘John Q. Pri-
vate,’ the principle of data abstraction calls for the programmer to use a
program variable such as

sFullName

 here, with the value set once in the
program. This one occurrence of the literal means there’s only one place to
edit in order to change it.”(9)

The immediate impact of the statement Powers makes is that you begin to
see the possible benefits derived from data abstraction when it comes to the
maintenance of automated test scripts. He further suggests that these values
be stored in a repository that will be accessible from the test script code: “All
that’s required is a repository from which to fetch the values, and a program
mechanism to do the retrieval.”(9)

This is the underlying principle of Strang’s Data Driven Automated Test-
ing approach. His approach uses a scripting framework to read the values
from the test data repository. It uses a data file that contains both the input
and its expected behavior. His method has taken data abstraction from stor-
ing just the literal values to also storing the expected result values. This
approach can accommodate both manual and automated data generation.
The test script must be coded in such a way that it can determine

right

results from the

wrong

 results (12).

Powers’s and Strang’s work is reflected in the data-driven approaches
discussed in Chapters 7 and 8 of this book. Archer Group’s Control Synchro-
nized Data Driven Testing (CSDDT) is an example of one such approach that
employs the concepts discussed here.

Rational Software Corporation has authored the Rational Unified Process
(RUP), which contains specific test phases that are designed to support its
automated testing tool suite (10). Even if you are not a Rational user, the test-
ing process information provides a solid base for doing even manual testing.
RUP itself comprises process documentation that addresses all of software
development, not just testing. It is relatively inexpensive—the RUP CD-
ROM sells for under $1,000. The most important aspect of RUP’s testing
approach is that it can be used to support a data-driven automated testing
framework. That is why we have used it in the past and why it is mentioned
in this book.

TestAutomation-01 Page 3 Friday, May 24, 2002 1:49 PM

4

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

A Life Cycle Is Not a Process

The problem with the approaches taken by the authors cited thus far and
other industry gurus is the same problem we have with all life-cycle mod-
els—they are management oriented, not practitioner oriented. Again, this
approach offers very little in the way of an operational process that we can
term an automated testing process. Other approaches, e.g., data-driven
automated testing, which these authors have criticized, offer much more in
the way of methods and techniques that can actually be applied in day-to-
day test automation activities. What this line of thinking really offers is a
model to give testing managers the same warm and fuzzy feeling men-
tioned above with respect to the testing maturity model.

Although purported to be an experiential model, this representation of
automated testing has not been developed on a deductive basis. It is a the-
ory based on inductive reasoning, much of which is founded on anecdotal
evidence, as are many of the models advocated in information systems (IS)
literature. On the other hand, nonmanagement techniques, which are opera-
tional, not managerial, and which are applied to specific tasks in the auto-
mation process, are based on deductive reasoning. Data-driven testing is an
example of a nonmanagement technique. These techniques have evolved
through practitioner trial and error—how many of the traditional engineer-
ing methods have come to be that are used today.

A Tool Is Not a Process

The most recent results for the minisurvey on the CSST Technologies, Inc.,
Web site indicate that 40% (102 out of 258 respondents) see software testing
methods/process implementation as doing the most to facilitate their test-
ing work. Twenty-four percent (63 respondents) see improved software
requirements documentation as the most important facilitation factor. Nine-
teen percent (50 respondents) believe that software test standards imple-
mentation is the most important aspect. Ten percent (25 respondents) cite
improved test planning as the most important consideration. Only 7% (18
respondents) think that more time to test would facilitate their work.

Purchasing a software testing tool suite does not constitute implement-
ing a software testing process. Processes are steps that are followed that
result in a goal being achieved or a product being produced. The process
steps implement testing activities that result in test execution and the cre-
ation of test artifacts. Automated software tools support existing processes
and, when the process is chaotic, impose some much-needed structure on
the activities. One of the primary reasons software testing tool implementa-

TestAutomation-01 Page 4 Friday, May 24, 2002 1:49 PM

How Much Automation Is Enough? 5

tions fail is because there is little or no testing process in place before the
tools are purchased.

When we are designing and building automated tests, we do not even see
a process. What we see are tasks, a schedule, and personal assignments to
complete. For us, just enough software test automation is the amount we
need to do our jobs effectively. If we do not have commercial software test-
ing tools we can use, we build our own or use desktop tools that our clients
routinely load on workstations.

Figure 1.1 illustrates a testing process that was defined for one of our cli-
ents that is loosely based on the RUP testing approach (10). Our process
approach differs from Rational’s in that we view test script design as part of
test implementation whereas in RUP it is still considered to be a test design
activity. The reason we differ is we believe that the skill set required for test
design does not include previous programming experience, but the one for
test implementation does.

How Much Automation Is Enough?__________________

This is the question that has been asked since the inception of automated test
tools. The tools vendors have presented us with one point of view, and
industry experts have given us varied viewpoints. Vendors began with basic
capture/playback tools that have evolved into some very sophisticated and
highly integrated tool suites. They seem to have left it to the practitioner to
determine what lies beyond the basic capture/playback model. The experts
in test automation have written many articles and books. They have cited
case studies of both successful and failed automation attempts. In the end
there has been a modicum of agreement about what we must do, but not
how we have to do it. In this text we will give you our point of view on how
to do test automation. We believe the industry has debated what to do long
enough. Until the tool suites reach a new plateau and until they possess
even more sophistication, we have a working archetype for an automation
framework that we can use.

To find out how much test automation is enough, we have to look at the
areas of the software testing process that

can

 be automated followed by the
areas that

should

 be automated. There is a difference between a tool and a
process. Tools are used to facilitate processes. A tool can be used to imple-
ment a process and to enforce process standards. In many instances, the
built-in procedures that tools bring with them can be construed as processes.

TestAutomation-01 Page 5 Friday, May 24, 2002 1:49 PM

6

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

Test Planning

Thursday, March 08, 2001

Page 1

QA&T Process Work Flow

Test Implementation

Test Execution

Test Design EngineerTest Engineeer

Test Planning Inputs

Functional Requirements
High-Level Design
Detail-Level Design
(Word Documents)

Test Planning Outputs

Test Requirements (ReqPro)
Test Plan (Word Document)
Test Cases (Excel Workbook)

Test Implementation Outputs

Manual Test Scripts (Robot)
Automated Test Scrips (Robot, WinRunner)

Test Execution Outputs

Test Results Log (TestManager)
Testing Metrics (Excel, ClearQuest)

Defect Reports (ClearQuest)

Test Evaluation Summary (Word)

Test Design Engineer

Test Design Engineer

Developer

Management

QA Manager

FIGURE 1.1
Quality Assurance and Testing (QA&T) Process

TestAutomation-01 Page 6 Friday, May 24, 2002 1:49 PM

Testing Process Spheres 7

They are, however, frequently incomplete and ill-thought-out processes. The
best software testing tools are the ones you can mold to your testing needs.
They are the ones that offer a high degree of customizability with respect to
workflow and to their tracking and reporting capabilities.

What are the types of tests that can be automated? They include unit, inte-
gration, and system testing. Subcategories of automated system tests include
security, configuration, and load testing. Automated regression testing should
be implemented at the unit, integration, and system levels during develop-
ment and for use against major and minor system production releases.

What are the regions of the testing process that we should consider? They
include the general spheres of test planning, test design, test construction,
test execution, test results capture and analysis, test results verification, and
test reporting. There are other activities that are closely associated with the
testing activities proper. They include problem (defect) tracking and resolu-
tion, software configuration management, and software test metrics. Over-
all, the activities of the testing process are glued together, as is the software
development process, by good project management techniques.

All of these areas should be automated to the degree that it makes sense
for your organization in terms of time and costs. The more automation you
can implement, the better and more effective your process will be. Realize
that this statement holds true only if the tools are the appropriate ones and if
they have been properly implemented. By

implemented

 we mean that an inte-
grated test automation framework has been constructed and is being used.

Testing Process Spheres ____________________________

Let’s look at each component of the testing process individually.

Test Planning

We’ll begin our discussion of the testing process with test planning, the most
important activity in the testing process. It involves assessing risk, identify-
ing and prioritizing test requirements, estimating testing resource require-
ments, developing a testing project plan, and assigning testing
responsibilities to test team members. These ingredients can be structured as
a formal test plan or they can be developed individually and used at the
appropriate times.

The traditional idea of a test plan is the

who

,

what

,

when

,

where

,

how

, and

how long

 of the testing process. Since using Rational RequisitePro’s capabili-

TestAutomation-01 Page 7 Friday, May 24, 2002 1:49 PM

8

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

ties, we have adjusted our thoughts on what a test plan is and how it is used.
We can import the software requirements document into tools such as Ratio-
nal RequisitePro and then develop test scenarios directly from such tools
into a test plan that is constructed using the RUP test plan template, which
we have modified extensively (see Figure 1.2). From the test plan scenarios,
we can create test requirements. They can be constructed directly in the sce-
nario tables in the test plan document, or they can be created in a separate
test requirements document using the RUP template. From either of these
documents, we can create a test requirements view that we can export to a
Comma Separated Values (CSV) file. Then we can open the test require-
ments during testing in Microsoft (MS) Excel and update it online with the
test results and import it back into RequisitePro. This is how we defined our
manual testing process. We do not yet have this fully implemented, but have
piloted it and it works very well.

The point is that we now see the test plan as a working document derived
from software requirements and linked to test requirements and test results.
It is a dynamic document used during testing. The old idea of test plan is
that it is a planning document. It is a document that forces the tester to think
about what he is going to do during testing. From this perspective, it
becomes a document that, once the planning stage is finished, sits on the
shelf. In our experience, very few people refer back to the test plan during
test execution. In fact, we have worked in several companies where test
plans were actually created after the fact. With our approach, the test plan is
created up front, and it is updated when the software requirements are
updated; subsequently, the updates are reflected in the test requirements,
which can actually be used for testing. The test plan standard is based on a
modified version of the template contained in RUP, which accompanies the
Rational Suite TestStudio.

The following is how we defined the manual system testing process at
one client organization. We have also piloted this and it works very well.
From the test plan scenarios, we create test case requirements. They are con-
structed directly in scenario tables created in the test plan document, as well
as in separate test requirements documents (requirements grids). From
either of these sources, we can create test requirements views that can be
exported to CSV files. For manual testing, we open the CSV files in MS
Excel. We use the information to guide manual test execution activities, and
we update it online with the test results. We import the updated files back
into our automated tool for results analysis and reporting.

Figure 1.2 contains a modified version of the RUP test plan template docu-
ment table of contents (TOC). The TOC has been simplified in that the number

TestAutomation-01 Page 8 Friday, May 24, 2002 1:49 PM

Testing Process Spheres 9

1. INTRODUCTION

1.1 PURPOSE

1.2 BACKGROUND

1.3 SCOPE

1.4 PROJECT IDENTIFICATION

2. SCENARIOS FOR TEST

3. TEST STRATEGY

3.1 TESTING TYPES

3.1.1 Function Testing

3.1.2 Business Cycle Testing

3.1.3 User Interface Testing

3.1.4 Performance Profiling

3.1.5 Load Testing

3.1.6 Stress Testing

3.1.7 Volume Testing

3.1.8 Security and Access Control Testing

3.1.9 Failover and Recovery Testing

3.1.10 Configuration Testing

3.1.11 Installation Testing

3.2 TOOLS

4. RESOURCES

4.1 WORKERS

4.2 SYSTEM

5. PROJECT MILESTONES

6. DELIVERABLES

6.1 TEST MODEL

6.2 TEST LOGS

6.3 DEFECT REPORTS

7. APPENDIX A: PROJECT TASKS

FIGURE 1.2
RUP Test Plan TOC with Modifications

TestAutomation-01 Page 9 Friday, May 24, 2002 1:49 PM

10

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

of testing types has been reduced to include only Function Testing, Business
Cycle Testing, Setup and Configuration Testing, and User Interface Testing.

The purpose of the test plan is to assemble the information extracted from
the requirements/design documents into test requirements that can be imple-
mented as test scenarios. The test scenarios are the portion of the test plan that
will directly feed the development of test conditions, test cases, and test data.

Desktop tools such as MS Office and MS Project can be used to automate
test planning and project management. For example, checklists created in
MS Excel spreadsheets can be used to assess and analyze risk and to docu-
ment test requirements; MS Project can be used to produce the project plan;
MS Word can be used to create a formal test plan that ties it altogether. These
documents are test-planning

artifacts

. Just as software development artifacts
need configuration management, so do test objects.

Test Design

Test design includes identifying test conditions that are based on the previ-
ously specified test requirements, developing all possible functional variants
of those conditions, divining the expected behavior(s) of each variant when
executed against the application under test (AUT), and executing manual
tests during the design process prior to test automation. The manual testing
allows the test design engineer to verify that the test data are appropriate
and correct for the automated test in which they will be used. It also allows
the test designer to become a “human” tester who can identify errors auto-
mation might miss. Test design also embraces the layout of the test data that
will be input to the AUT. When designing from a data-driven perspective,
these same data also control the navigation of the automated test scripts.
Last, the test scripts themselves have to be designed.

Designing the tests and the test data is the most time-consuming portion
of the testing process. It is also the most important set of activities. If the
tests do not test what the requirements have indicated, then the tests are
invalid. If the test data do not reflect the intent of the tests, once again the
tests are invalid. Test case design is so important that we have included a
section in the appendices devoted to test design techniques and their use.

Test designers can use MS Excel to design and build the tests. If you use
this approach, it is best to keep everything in a single workbook and to
include one test conditions spreadsheet, one test data spreadsheet, and as
many detailed test spreadsheets as are needed to adequately describe the
environmental, pretest, and posttest activities that are related to each test.
For manual testing, a test log should be constructed that will be used during

TestAutomation-01 Page 10 Friday, May 24, 2002 1:49 PM

Testing Process Spheres 11

test execution (used online, not as a printed test log). There are integrated
tool suites available that support test data design and creation with mecha-
nisms known as

data pools

. In all cases the data are stored as CSV files that
can be read and interpreted by automated test scripts. Those data can be
used for either manual or automated testing.

Test Implementation

Test implementation can be subdivided into Test Construction, Test Execu-
tion, Test Results Capture and Analysis, and Test Result Verification. We’ll
discuss each activity separately.

Test Construction

Test construction is facilitated using the same set of
tools that test design employs. The test data are constructed in a spreadsheet
in the same workbook as the test conditions. Those data can then be
exported to CSV files that can be used at test execution. When the tests are
executed via an automated framework, test construction also includes writ-
ing the test scripts. Automated test scripts are software programs. As such,
they have their own programming languages and/or language extensions
that are required to accommodate software testing events. The scripting lan-
guage is usually embedded in a capture/playback tool that has an accompa-
nying source code editor. The flavors of the languages vary by vendor and,
as the associated syntax/semantics vary, so does the difficulty of using a
specific product. In addition, some vendors’ scripting languages and their
recording tools are more robust than others.

The more specialized the commands available as part of the language, the
more control the test engineer has over the test environment and the AUT.
Specialized tests are built into the languages as commands that, when exe-
cuted, test specific items—for example, graphical user interface (GUI) object
properties and data and window existence—and do file comparisons. Some
of the built-in test cases are useful and most are very powerful for GUI test-
ing, but they are not all useful for functional testing. We implement many of
the tests through executing external test data (data that reflect the test
requirements) and verification of the results. Those data control how the test
script behaves against the application; the data contain values the test script
uses to populate the target application input data fields.

The design and implementation of the test scripts is left to the script-
writer. If there are no guidelines for developing test scripts, the scripts that
are created will most likely be badly structured and each will be the product
of the personality of the individual who coded it. We have seen this happen
when several people on the test team were given specific sections of an

TestAutomation-01 Page 11 Friday, May 24, 2002 1:49 PM

12

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

application and asked to write automated test scripts for their portion. We
even gave them basic templates as starting points and, still, no two were
alike. We have written and implemented a set of automated test script writ-
ing guidelines that is described in Chapter 8.

If possible, test script coding should be completed in parallel with test
data development. Using an approach such as Archer Group’s CSDDT
allows the test scriptwriters to work independently of the test data design-
ers. This is doable because the data drive the test scripts. The scripts are
designed and built to specifics that create a general test-processing engine
that does not care about test data content.

It is very important to have test script coding conventions in use if the
workload is spread across a number of scriptwriters. It is also important that
the right personnel are assigned to this set of activities. We have found that
test designers do not like coding test scripts and that test implementers do
not enjoy designing and building test conditions and test data. In fact, they
both do crappy work when their roles are reversed.

Script writing, as it is used here, is the

coding

 of test scripts in a test tool’s
proprietary test scripting language, in one of the extant application pro-
gramming languages such as Java or Visual Basic; in one of the standard
scripting languages such as Perl, CGI, or VB Script; or in the operating sys-
tem’s command procedure language (for example, coding Unix shell scripts
that execute test procedures). As far as test script writing is concerned, you
really need people who enjoy programming. Bruce was an engineer who
moved into the software industry as a programmer before becoming a test
scriptwriter. That type of experience makes a person a natural test script-
writer. Test script coding requires either prior programming experience or
current training in programming concepts such as logic, syntax, and seman-
tics. It also requires an eye for developing complex logic structures. Because
of these requirements, don’t expect nontechnical testers to write test scripts
and, furthermore, don’t expect them to be able to create effective test scripts
using the capture/playback facilities most tool suites provide. Test scripts
developed by that method are a maintenance nightmare.

Test Execution

Test execution can be manual, automated, or automated-
manual. It is common wisdom in the testing industry that manual tests and
automated tests each find different classes of errors. Thus, the experts say that
we should do both. We agree to a great extent—that to do full-blown manual
system tests and then follow up with automated regression tests is a neat idea,
but most testing efforts have the resources to do only one or the other. What
we suggest is a combination of both where manual testing occurs in parallel
with test case design and construction.

TestAutomation-01 Page 12 Friday, May 24, 2002 1:49 PM

Testing Process Spheres 13

The test designers should have the application open as they design and
construct the test data, and they should execute it against the application fea-
ture(s) it is designed to test. This accomplishes two things. First, it performs a
validation of the data that will eventually be used in the automated regres-
sion tests and, second, it implements manual functional (system-level) tests
of each application feature prior to the automated regression tests. Many
errors can and will be found during test case design and construction when
this process is followed. We have successfully applied this approach.

Test Results Capture and Analysis

For manual testing, a test log
should be developed and implemented online. At the very least it should be
a spreadsheet in the same workbook where the test conditions and test data
are stored. Ideally, a test results database is used as a central repository for
permanent storage. This is the case when the tests are executed using cap-
ture/playback tools such as Rational Robot or Mercury Interactive’s Win-
Runner. The test results are trapped as they occur and are written to the
repository where later they can be viewed and reports can be printed.

Bruce has developed an automated manual test script (using Rational
Robot and the SQABasic language) that does this very thing for manual tests
(this tool is fully described in Chapter 9). It displays the manual test scripts
much as a teleprompter does, and each step in the script can be selected dur-
ing test execution. When execution is completed, the test can be logged as
pass, fail, or skipped. The manual test script is based on one that was pub-
lished several years ago by the Phoenix Arizona SQA Users Group (13). It
has been completely rewritten and enhanced to add custom comment
entries in the test log. This test script is included with the utilities that are on
the FTP site that supports this book. It can easily be adapted to scripting lan-
guages other than SQABasic.

Test Results Verification

Test results verification can be accom-
plished either manually or through test automation. Manually eyeballing
the results and making subjective assessments of correctness is one way of
verifying the test results. Test results can further be compared to sets of
expected output data values, compared to values that should have been cre-
ated in database rows based on the transactions tested, and compared
against stored files and reports.

Test results verification is a task ripe for automation. Test results should
be captured in a test log that is stored in a test repository. The test log should
store results from previous test runs that can serve as baseline behaviors
with which to compare the current test results. For manual tests, the test log
can be an MS Excel workbook where new spreadsheets are created for each

TestAutomation-01 Page 13 Friday, May 24, 2002 1:49 PM

14

C

HAPTER

 1

 ◗

W

HAT

 I

S

 J

UST

 E

NOUGH

 T

EST

 A

UTOMATION

?

new test iteration. It does not matter how the test results are stored. What is
important is that comparisons can be made. If a baseline is not established,
then the assessment of a pass or fail status is based on a guess at what the
results should be. Being able to define and store baseline behaviors is an
important advantage and a strong argument for automated testing.

Commercially available automated testing tool suites offer a variety of
automated verification methods. For example, Rational Robot uses SQA-
Basic, which has special test cases called

verification points

 that can be used to
trap AUT characteristics; these can then be used as baselines for future
regression tests.

Test Reporting

Test reporting is an essential part of the testing process
because it documents the test results and their analysis. Two levels of reporting
are required—a summary report should be generated for middle- and upper-
level technical managers and for customers, and a detailed report should be
compiled and presented to the development team members as feedback.

These reports should be presented in standard formats that can be edited
and tweaked for each individual test project report. We have employed the
reporting template that is in RUP’s documentation, but you can create your
own. Two versions of this report can be created—a summary report and a
detailed report. You can also find templates and examples of test reporting
on the World Wide Web.

An important reporting item is also defect tracking information. Defect
tracking reports can be generated separately using tools such as Rational
ClearQuest and/or MS Excel. Defect information should also be summa-
rized and included in both the detailed and summary test evaluation
reports. It is imperative to include a list of known defects that have not been
addressed and that will be in the software upon its release. The information
in the list should be grouped according to severity. Information such as this
can be used to make intelligent release decisions, and help desk personnel
can use it after the software goes into production.

Support Activities__________________________________

Testing Is a Team Effort

Because software testing is done at the team level, it requires tools that sup-
port and enhance team member communication and that present an inte-
grated interface allowing team members to share common views of testing

TestAutomation-01 Page 14 Friday, May 24, 2002 1:49 PM

Support Activities 15

process activities and artifacts. One of the predominant problems at all stages
of the testing process is artifact control and storage. One of the areas that pro-
vide the most payback to the testing process is automated configuration man-
agement of testing deliverables. There are many documents and executables
that are created that must be available to all of the test team members. Team
members frequently work these entities in parallel. They must be protected
from concurrent updates that may overwrite each other when more than one
team member is working on the same deliverable. Furthermore, there must
be a central repository where the artifacts are stored for public use.

We have worked on many testing projects where there was no central
storage and where everyone on the team created and updated the docu-
ments on their local desktops. We created rules defining directories for spe-
cific deliverables and stating that everyone was supposed to place their
work in these shared public directories. This solution was better than no
solution, but it still did not provide versioning with check-out and check-in
control of the documents.

First and foremost are testing management and requirements manage-
ment. Testing management can be implemented using a tool such as MS
Project. It allows tasking identification, resource management, and progress
assessment through the setting of testing milestones. A requirements man-
agement tool is also essential because software requirements must be docu-
mented and updated during the development process and test requirements
must be documented and updated in parallel with development activities
and during testing activities.

Our tool of choice for requirements management has been RequisitePro
because it integrates software requirements gathering with test require-
ments specification. Furthermore, its test requirements grids can be
exported to MS Project and then used to guide and monitor the test process.
There are other requirements management tools available, some of which
are integrated with testing tool suites. While this book is not about tool eval-
uation, there are two essential considerations when assessing these prod-
ucts. First, is the product already integrated with a testing tool suite?
Second, if it is not, does it have an open application programming interface
(API) that can be used to create your own integration code?

Software configuration management is next. There are products available
that can be used to implement configuration management of testing arti-
facts. They include MS Visual SourceSafe, Rational ClearCase, and Merant’s
PVCS, just to name a few. It is imperative that all testing artifacts be stored in
an automated configuration management database. It is just as important
that the particular configuration management tool you have chosen commu-

TestAutomation-01 Page 15 Friday, May 24, 2002 1:49 PM

16 CHAPTER 1 ◗ WHAT IS JUST ENOUGH TEST AUTOMATION?

nicate with the other tools you are using to support test process activities at
all levels of testing. If the tool does not, then it must offer and open an API to
build the software bridges you need.

Software testing metrics are a necessary component in test evaluation
reporting. The metrics should include defect metrics, coverage metrics, and
quality metrics. There are many useful defect tracking measures. Defect met-
rics can be generally categorized as defect density metrics, defect aging met-
rics, and defect density metrics: the number of daily/weekly opens/closes,
the number of defects associated with specific software/test requirements,
the number of defects listed over application objects/classes, the number of
defects associated with specific types of tests, and so on. Defect reporting
should be automated using at a minimum an Excel workbook because Excel
has the capability to summarize spreadsheet data in charts and graphs.
Defect reporting can also be automated through tools such as Rational
ClearQuest, among others.

Testing quality metrics are special types of defect metrics. They include (8):

• Current state of the defect (open, being fixed, closed, etc.)

• Priority of the defect (importance to its being resolved)

• Severity of the defect (impact to the end-user, an organization, third
parties, etc.)

• Defect source (the originating fault that results in this defect—the what
component that needs to be fixed)

Coverage metrics represent an indication of the completeness of the testing
that has been implemented. They should include both requirements-based
coverage measures and code-based coverage measures. For examples of
these metrics, see Chapter 9 in reference (6) and the Concepts section under
“Key Measures of Testing” in reference (10).

A Test Automation Group’s Scope and Objectives______

The Scope
A test automation group’s purpose should be to develop automated support
for testing efforts. This group should be responsible for the design and
implementation of a data-driven automated testing framework. They
should design and construct suites of automated tests for regression testing
purposes. Figure 1.3 illustrates an automated testing infrastructure that was
designed for a well-known company by CSST Technologies, Inc.

TestAutomation-01 Page 16 Friday, May 24, 2002 1:49 PM

A Test Automation Group’s Scope and Objectives 17

The test automation framework should be deployed specifically to sup-
port automated test script development and the maintenance related to all
levels of testing. The framework should support unit and integration testing
and system/regression testing endeavors. This does not imply that other

Test Execution Infrastructure

Test Application Server – Configuration 1 Test Application Server– Configuration n

Test Development Workstation 2 Test Development Workstation n

Test Application Server– Configuration 2

Test Execution Workstation 1

Test Development Workstation 3

Test Execution Workstation n

Test Implementation Infrastructure

Test Datastore Server

Test Development Workstation 1

ReqPro
Repository

ClearQuest
Repository

Project
Datastore

Tuesday, March 27, 2001

Test Auto ation Infrastructure Diagramm

ClearCase
Repository

Configuration Management Server

FIGURE 1.3
A Sample Automated Test Infrastructure

TestAutomation-01 Page 17 Friday, May 24, 2002 1:49 PM

18 CHAPTER 1 ◗ WHAT IS JUST ENOUGH TEST AUTOMATION?

areas not included in this scope cannot take advantage of the test automa-
tion framework and tool suites. Other departments that may be interested in
using the test automation scaffolding and the automation tool suite should
fund and coordinate deployments with the automation team. An automa-
tion effort should focus on the identified areas of deployment.

The chosen approach should cover the test automation activities that will
be performed by an automated tools group. Manual testing activities can
serve as precursors to test automation. The goal for manual test efforts
should be to manually test all application features and, while in the process,
to develop test conditions and data that can be implemented using the auto-
mation framework for regression testing.

As an example, the data-driven approach could be implemented through
structured test scripts that make use of functions and procedures stored in
library files, the primary goal being to separate the test data from the test
scripts and the secondary goal being to develop reusable test script compo-
nent architecture. Meeting these goals substantially reduces the mainte-
nance burden for automated test scripts.

Assumptions, Constraints, and Critical Success
Factors for an Automated Testing Framework
The following assumptions should be applied.

Assumptions The following assumptions form the basis of the test
automation strategy.

• An integrated tool suite must be the primary test management, plan-
ning, development, and implementation vehicle.

• The tool suite must be used to direct and control test execution, to store
and retrieve test artifacts, and to capture/analyze/report test results.

• The tool suite must include a tool of choice for defect tracking and
resolution.

• The tool suite must include a component for test requirements
management.

• The tool suite must include a configuration management tool of choice.

• The configuration management tool of choice must be used to put
manual and automated test artifacts under configuration management.

• All of the tools described above must be integrated with desktop tools
such as MS Office.

TestAutomation-01 Page 18 Friday, May 24, 2002 1:49 PM

A Test Automation Group’s Scope and Objectives 19

• The proper automated testing workspaces must be created on test
servers that are separate from development servers.

• The required test engineer desktop-script-development configuration
must be defined and implemented.

• Testing standards must be documented and followed.

Constraints These constraints limit the success of the automation effort
if they are not heeded.

• The automated tools group resources must remain independent of any
manual testing group.

• There may not be a large enough number of available staff on the auto-
mation team.

• The level of cooperation of the software development group and their
management with respect to automated tool use may be too low.

• There may be a lack of cooperation and information exchange with
developers in creating testable applications.

• The release schedules for major versions of the AUT and for customer-
specific releases of the AUT can be too tight.

• There is uncertainty associated with the GUI updates in AUT.
• There may be corporate mandates on what tools must be used.

Critical Success Factors We based the following critical success fac-
tors on a set of test automation guidelines developed by Nagle (7).

• Test automation must be implemented as a full-time effort, not a side-
line.

• The test design process and the test automation framework must be
developed as separate entities.

• The test framework must be application independent.
• The test framework must be easy to expand, maintain, and enhance.
• The test strategy/design vocabulary must be framework independent.
• The test strategy/design must hide the complexities of the test frame-

work from testers.

Strategic Objectives These objectives are based on the critical success
factors listed above.

• Implement a strategy that will allow tests to be developed and exe-
cuted both manually (initial test cycle) and via an automation frame-
work (regression test cycles).

TestAutomation-01 Page 19 Friday, May 24, 2002 1:49 PM

20 CHAPTER 1 ◗ WHAT IS JUST ENOUGH TEST AUTOMATION?

• Separate test design and test implementation to allow test designers to
concentrate on developing test requirements, test planning, and test
case design while test implementers build and execute test scripts.

• Implement a testing framework that both technical and nontechnical
testers can use.

• Employ a test strategy that assures that test cases include the naviga-
tion and execution steps to perform, the input data to use, and the
expected results all in one row or record of the input data source.

• Realize an integrated approach that applies the best features of key-
word-driven testing, data-driven testing, and functional decomposi-
tion testing.

• Implement an application-independent test automation framework.

• Document and publish the framework.

• Develop automated build validation (smoke) tests for each release of
the application.

• Develop automated environmental setup utility scripts for each release
of the application.

• Develop automated regression tests for

✘ GUI objects and events

✘ Application functions

✘ Application special features

✘ Application performance and scalability

✘ Application reliability

✘ Application compatibility

✘ Application performance

✘ Database verification

Test Automation Framework Deliverables ____________

The following represents a minimal set of test automation framework arti-
facts that must be created in order to assure success.

• An integrated suite of automated tools that can be used by both techni-
cal and nontechnical individuals to test application software

• A strategy for training and periodic retraining of framework users

• A set of reusable test scripts and test script utilities

✘ Automated environmental setup utility scripts

TestAutomation-01 Page 20 Friday, May 24, 2002 1:49 PM

Categories of Testing Tools 21

✘ Automated smoke test scripts

✘ Automated GUI test scripts

✔ Events and objects

✔ Object properties

✘ Data-driven automated functional test scripts

✔ GUI-level data validation

✔ Server-level data validation

✘ Automated reliability test scripts

✘ Automated compatibility test scripts

✘ Application performance test scripts

✘ Automated test utility libraries (files that contain reusable called
procedures and functions) to implement activities such as pretest
database loading and posttest database verification

An Automation Plan
Some do not believe that a plan for automating software testing activities is
necessary. In fact, it has been said that such a plan is a waste of time and
money and that it can impede an automation effort. Our experience has
been that it is important to go through the exercise of writing a plan because
it directs your thinking, and, if you follow a plan template, it reduces the
chances of omitting important details. Appendix C illustrates an automation
plan that was developed for one major company. You could say that it was a
waste of time from a management perspective because the plan was submit-
ted to executive-level management in the IS group and was never heard
from again. It was not a waste of time for those of us who had to get the
effort moving; it gave us guidance and perspective concerning what we
thought we could accomplish given the time we had.

Appendix D is a template for a test automation project work breakdown
plan. Even if you do not write a formal work breakdown plan, you should at
least ponder what you are going to do for each of the areas that are listed in
the template.

Categories of Testing Tools __________________________

A number of different types of automated and manual testing tools are
required to support an automated testing framework. Marick has catego-

TestAutomation-01 Page 21 Friday, May 24, 2002 1:49 PM

22 CHAPTER 1 ◗ WHAT IS JUST ENOUGH TEST AUTOMATION?

rized them in a manner that makes sense because it is based on when and
how they are used during testing (5).

Test Design Tools. Tools that are used to plan software testing activities.
These tools are used to create test artifacts that drive later testing activi-
ties.

Static Analysis Tools. Tools that analyze programs without machines
executing them. Inspections and walkthroughs are examples of static test-
ing tools.

Dynamic Analysis Tools. Tools that involve executing the software in
order to test it.

GUI Test Drivers and Capture/Replay Tools. Tools that use macrorecord-
ing capabilities to automate testing of applications employing GUIs.

Load and Performance Tools. Tools that simulate different user load con-
ditions for automated stress and volume testing.

Non-GUI Test Drivers and Test Managers. Tools that automate test exe-
cution of applications that do not allow tester interaction via a GUI.

Other Test Implementation Tools. Miscellaneous tools that assist test
implementation. We include the MS Office Suite of tools here.

Test Evaluation Tools. Tools that are used to evaluate the quality of a test-
ing effort.

Appendix B is a list of automated testing terms and definitions included
for your convenience.

Conclusion __

Your job is to look at each testing sphere and, given the scope, goals, and
objectives of your organization’s automation effort, to decide what cate-
gory(ies) of test tools (manual or automated) should be implemented to sup-
port that sphere. You will find that you have to make compromises and
concessions and that an ideal test automation framework is just that: an
idea. What you will finally implement is a mélange of tools and techniques
that are appropriate for your needs.

TestAutomation-01 Page 22 Friday, May 24, 2002 1:49 PM

References 23

References __

1. Bender, Richard. SEI/CMM Proposed Software Evaluation and Test KPA. Rev. 4,
Bender and Associates, P.O. Box 849, Larkspur, CA 94977, April 1996.

2. Dustin, Elfriede, Jeff Rashka, and John Paul. Automated Software Testing. Add-
ison-Wesley, Reading, MA, 1999.

3. Humphrey, W. S. Managing the Software Process. Addison-Wesley, Reading,
MA, 1989.

4. Krause, Michael H. “A Maturity Model for Automated Software Testing.”
Medical Device and Diagnostic Industry Magazine, December 1994.

5. Marick, Brian. “Testing Tools Supplier List.” www.testingfaqs.org/tools.htm

6. Mosley, Daniel J. Client-Server Software Testing on the Desktop and the Web.
Prentice Hall PTR, Upper Saddle River, NJ, 1999.

7. Nagle, Carl. “Test Automation Frameworks.” Published at members.aol.com/
sascanagl/FRAMESDataDrivenTestAutomationFrameworks.htm

8. Pettichord, Bret. “Seven Steps to Test Automation Success.” Rev. July 16, 2000,
from a paper presented at STAR West, San Jose, November 1999. Available at
www.pettichord.com

9. Powers, Mike. “Styles for Making Test Automation Work.” January 1997,
Testers’ Network, www.veritest.com/testers’network

10. Rational Software Corporation. Rational Unified Process 5.1, Build 43. Cuper-
tino, CA, 2001.

11. The Software Engineering Institute, Carnegie Mellon University. “Software
Test Management: A Key Process Area for Level 2: Repeatable.” Available in
the “Management Practices” section of www.sei.cmu.edu/cmm/cmm-v2/test-
mgt-kpa.html

12. Strang, Richard. “Data Driven Testing for Client/Server Applications.” Fifth
International Conference on Software Testing, Analysis and Reliability (STAR
‘96), pp. 395–400.

13. Weimer, Jack. Manual Test User Interface Program. Touch Technology Interna-
tional, Inc., www.touchtechnology.com. Available from Phoenix, Arizona, SQA
Users Group. This code is free and can be passed on to anyone who wishes to
use it, provided the copyright, credits, and instructions stay with the code.
www.quanonline.com/phoenix_sqa/tips.html

14. Wiegers, Karl E. “Read My Lips: No New Models!” Whitepaper, Process
Impact, (716)377-5110, www.processimpact.com

15. Zambelich, Keith. “Totally Data-Driven Automated Testing.” Whitepaper,
Automated Testing Specialists (ATS), www.auto-sqa.com/articles.html

TestAutomation-01 Page 23 Friday, May 24, 2002 1:49 PM

