. '.h';"'ﬁ" }
=

\\ UL

Apple Device
Management

A Unified Theory of Managing Macs,
iPads, iPhones, and AppleTVs

Charles Edge
Rich Trouton

Apple Device
Management

A Unified Theory of Managing
Macs, iPads, iPhones,
and AppleTVs

Charles Edge
Rich Trouton

Apress’

Apple Device Management: A Unified Theory of Managing Macs, iPads,

iPhones, and AppleTVs

Charles Edge Rich Trouton

Minneapolis, MN, USA Middletown, MD, USA

ISBN-13 (pbk): 978-1-4842-5387-8 ISBN-13 (electronic): 978-1-4842-5388-5

https://doi.org/10.1007/978-1-4842-5388-5

Copyright © 2020 by Charles Edge and Rich Trouton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5387-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5388-5

Table of Contents

About the AUthOrS.........cccmmisemmmssmsmssnsmsssnsmsssss s s nnssssnnnnns Xv
About the Technical ReVIEWETccsssusssasssssssssnsssasssssssssnsssassssasssansas xvii
Prefacecccovssemmmsssnnmsssnnmsssnnssssnnssssnnssssnnnssssnssssannssssnsssssnnssssnnsnssnnnnsnns Xix
Chapter 1: The Evolution of Apple Device Management..........c.ccccuneiuns 1
The Classic Mac Operating SyStem.........cococvvrinnnninnn e 2
Network ProtoCols...........curernnn s 3
Early Device Managementccocvveverieriennennessessessee e sessesssessessessesssessessessenns 6
11 OSSP 9
Mac + UniX = MAC 0S X.....ccooeeereerecrerce s 11
R3] L S 15
Apple Remote DESKIOP......cccverererrreresen s s 22
ECOSYSEM COBXISTENCEcvverveererereriesersere s ses e se s e s s e s e saesss e ssesnens 24
i0S Device Management.........ccovvvverereererseresesessessesessssessessessesessessessessssessessens 26
Mobile Device Management..........cccoevvrnrnieninsnsessesie s ses s sessssessesnens 28
Apple Device Management Programs..........ccccvvvnvnnnnnsnieniesssessesesssssssessens 30
Enterprise MODIlitycooverrnenerenerescreseses e 31
i0S + Mac 0S X = MACOS........ccoveeereernerere e 35
IMAGING IS DEAUY.......ccerreerrerere s 36
mMacO0S — Unix = apple0S.........ccoveernrrnernresers e s 39
Moving Away from Active DIireCIOrYccvrrevinnennrienienn s s e ssssesessens 42
The Apple Admin COMMUNITYccccveveeierierrereserserseresresessesesessessssessessessssessessees 43

ii

TABLE OF CONTENTS

CONTEIEINCES ..o 44
Onling COMMUNITIES ...vcvveecrerrsesise e 48
USEE GFOUPS .ecveueririesisiesesis e ses e s se s se s s sttt st s e ses st 50
SUMMANY..c..citiiie e e s e bbb e e aenrn 52
Chapter 2: Agent-Based Management..........cccuccmmmmsssnnnnmssssssnnsssssnnnns 55
Daemons and AQENTScccvvrererenernsesesesrse s s s e sessesenns 56
Use Lingon to See and Change Daemons and Agents Easily...........c.ccceernee. 60
Controlling LaunchDaemons with launchctl ..o, 64
Deeper Inspection: What Does the App Have ACCESS TO?.....cccvvrererrerseereeruersenaas 66
Third-Party Management Agentscccvvrennrnreniennsensessesessesessessessesessessesseens 67
AGIGY....ceeeereesssssrsssrr s 68
FIIBWAVE ...t 71
FIEBTSMItN.....eciiri i ————————— 73
JAMT o ——————— 76
MUNKI ¢ et s s e s st e e 80
(010 1] 97
BT e ————————— 105
Edit @ RECIPE....coerertrcirere it ne 109
PUPPEL ... s 111
Use git to Manage All the ThINgS......c.ccvvvrrriennnninerr e 112
The Impact of UAMDM ..o s se s s sessesssesaesaenns 117
ROOTIESS ... s 118
FraMEWOIKS ...c.veeeeceeeriecseree e 119
Miscellaneous Automation TOOIS..........cccvererrreernnenesese s 121
SUMMANY....ceivierireseeese s e s e e ne e e 122

iv

TABLE OF CONTENTS

Chapter 3: Profiles.....ccccccmmrmsssmnnmnsssssnnnmssssssnsssssssnssssssssnssssssssnsssssssnns 125
Manually Configure Settings on DeVICESccovveverecernvennesernsers e 126
Use Apple Configurator to Create a Profile..........ccccocvivininininncncncnccncenen 136

View the Raw Contents of a Profile ..o 146
Install a Profile on MacOS ... 149
Install @ Profile 0n i0S ... 152
Install @ Profile on tV0S ... 157
View a Profile from macOS...........coorrenrerrecrrerere e 162
View a Profile from i0S.........cc e 164
View a Profile from tvOS........co e 167
Remove a Profile on mac0S ..o 169
Remove a Profile 0n i0S ... 170
Remove a Profile on tV0S ... 175
Effects of Profile Removal ... 177
Use the Profiles Command on mac0Sc.ccornrenrnnnnnesesese s 178
Using the Profiles Commandcccocovviinnninnnnsns e sessesnes 179
MCX Profile EXIENSIONS.......cceeeereeererererrenereesesesese e se e sesesnenens 181
SUMMANY....eieeereeereree e se e senpe e e e 183

Chapter 4: MDM Internals........cccuunmmsnmsssnmnmmsmsssssssssssnsssssssssssssssssnsnnes 185
What MDM Can ACCESScccvurermmmmsmserssns 186
Apple Business Manager and Apple School Manager.........ccvvvververrererersensennes 187
Apple Push Notifications.........cccccvcrinninnn s sessennes 192
Checkins: Device ENrollment.............ccovoenerrenrnscrnesese e 193
MDM: Device Managementccoovererenerensesessesesesesesseseseses e sessesessssessens 200
MDM COMMANGS......ccurreererinerranersnsesesessssssessssessssesssesssesssssssssssssssssssssssssssssanes 201
Automated Enrollment, or DEP...........cccovnnnnnsessnens 209

The Reseller DEP APl ... 210
The Cloud Service DEP API ... ssssesenns 211

TABLE OF CONTENTS

MAMCHENT ...t 214
DEVICE SUPEIVISIONcvcuerireeerrecrir ettt 216
UAMDMoooiieeeceesesess s st ns s en 217
Enroliment COMMANGS.........cccoeeerreerenenenenerseseseses e 220
The Impact of UAMDM.......c.coririrnn e s ssssessesnens 222
Enable APNS Debug LOGUiNg......ccvueerrererrenerensesesessssesssensesessesessssssessessssessssenes 235
APP DePloYMENT......coocecercr e 239
Gift and VPP COUESovrvicrcririnsssise s s 240
Volume PUrchase Programccceeerenennessesesssssssessessessssessessessssssssssessens 241
Managed OPEN-INcovcervrerrrirere e s sa e sr e e ne s 245
Host @.ipa 0n @ WED SEIVETccccvevevrrrrere s ses e s e sne s 246
Sign and Resign macOS Applicationsccceeernvevnenenenern e sesesens 249
App NOTariZatION......cccececrcre e 249
SUMIMANY....eeeerieereree e n e re e e e e 253
Chapter 5: i0S ProviSioning......cccccusseemmmssssssnsmsssssnssssssssssssssssssnssssssnns 255
10S PrOVISIONINGccvecerreereniseresesrsse s sss s s ss e s s e srssesessssessans 256
Prepare an i0S Device Using Apple Configuratorccccovvevnenernsesenenens 257
Create BIUEPIINIS......ccvviirrre e e 257
Manage CONTENT..........ccccvvrererrrre e e sr e e 259
Add Certificates for 802.1x with Profiles to Blueprints...........ccecvvvrerieriernens 259
Install Apps with Apple Configuratorcccvveriennnniniennsnsese e 265
Automate Enrollment with Apple Configuratorcccoeevvvnvenieninnenseniennens 268
Change Device Names Using Apple Configurator..........cccvvvvnvnierenenseniennns 273
Change Device Wallpaper with Apple Configuratorcccoovvevnreneresernnne. 275
Prepare @ DBVICEcoeveerrererrinersnsesessesesse e ssssesssse e s ssssessssessssssessnsessnsenens 277
Apple Configurator Debug LOgging.........ccovererreserrnsesssesessssessssesessssessssesenns 283
Using an ipsw As Part of Device ReStOres..........couvernrereresesnserensenessanensnns 284

TABLE OF CONTENTS

Device Supervision Using Manual Configurations........ccccveevevrevieresensensenaens 286
Automating i0S ACHIONSccveereverieriererrser e s sae e s e ssesnens 290
AEIOS ... s 302

L0 T T 10 S TeT (0TS 305
What's CaChed?........cvreeenerereseessese e ssssssnens 306
Caching Service Configurationccevveverrverrerensserseress e sessessenes 307
SUMMANY..c..citiiiire e s e e s b e e s R p e e e nne s 312
Chapter 6: Mac ProviSioningcccuuusssesessmsmmsssssssssssssssssessssssssssssnssnnss 313
mMacOS Startup Modifier KEYS.........ccvvrerrrenernsesnesesese s sessesessssessnnes 314
macOS Provisioning With DEP..........ccccvinrinnnennse e 316
SPIAShBUAY........cceierererir e e 318
DEPNOLIfY....ccovverererinsire st sn s s snens 318
macO0S Provisioning Without DEP............cccvivrrnvninnnrsene s ses s 318
INSTAALION......ccoviiccr e ———————— 319
Create @ WOrkflow ... 319

11 1T T | OSSP 330

3 T0T0T 5] U 10 o OSSPSR 330
INSTAIIN ... s 330
BOOT CAMP ... 330
WINCIONE ...ceieeerce et 330
Upgrades and Installationsccccevievnvniniennsnsnne s 331
Reprovisioning @ MACccccvvrereninsinienensssesese s sessessesaesessessessessssessessens 334
Virtual Machings........cooveinnnnnissss e 339
L L= o] T 340
ParalllS........cuvrmiirn e ————— 340
VIFEUAIBOX ...ucucecaencssnsnsssssrsssssssess s e e e e ssssssssssssesesees 341
SUMMAIY.c.veitetrierere s e e s s sa e e s s saese e e s aesaesae e s e naesae s e e naenaees 341

vii

TABLE OF CONTENTS

Chapter 7: Endpoint Encryption.........ccccussemmmmmssssnnnmssssssssssssssssnsssssnns 343
i0S ENCryption OVEIVIEW........cceecrirerirererescrs s s et se e se s ssenes 343
Enabling Encryption on i0S..........cccrininininnsnsne s 346
MacOS ENCryplion OVEIVIEW..........ccvrererenernseseneses e snenes 350
LT eI T L (0] (] o TSSO 352

Enabling Encryption on mac0S ... ssssessssenens 353
FileVault ReCOVErY KBYScvveerrrrerercnirieersse s e s e s sesnssenens 357
FileVault 1 and the FileVaultMaster.keychain Fileccocveeervirnicnenenns 359
Creating an Institutional Recovery Key........cccuouervsernnenesesesssesessesssenesennes 360
Enabling Filevault 2 Encryption for One or Multiple USersccooueeverenens 369
Enabling Filevault 2 Encryption Using One or Multiple Recovery Keys 378
Disabling FileVault 2 ENCryption..........cccuoveernnernsesessssesssessssesessesesessesesseens 382
Listing Current FileVault 2 USErSc.ccccvvrererenernsesessesesssessssesessesessssesennes 385
Managing Individual and Institutional Recovery Keys........cccocvveernsererenens 387
Removing Individual and Institutional Recovery Keys........cccocvearnsererenens 391
Recovery Key REpOrtingccococveeererenerenmrnsesesesesssesessesesse s sessesessenens 394
Reporting on Filevault 2 Encryption or Decryption Status............ccuecvevenene 397
SUMMANY....ceitierirererese e r s e ae e nr e e 402

Chapter 8: Securing Your Fleet...........ccurcmmmnnsncnnnnssssnnnnnssssssnsnsssnnnn 403

Securing the PIatfOrMc.cvvcrvrierenssersene s s s e ssssessessessessssessessens 403
MAC SECUNLY ..c.veveirrecrir st s 405
System Integrity Protection..........cccvcevriirninninnnssnss s 406
SIP-Protected AppliCations..........cccoverrirrinssnse e 408
SIP-Protected DIreCIONEScevererererreeere s 409
View SIP Protections INteractivelycoccocvevverevessensersesesessensesessssessensensens 412
Runtime Protections..........ccovernnnncnrc s 414
Kernel Extension Protections..........ccccoverrnnnnncnennsncsssesesesesese s 415

viii

TABLE OF CONTENTS

Managing System Integrity Protection...........ccoevvrierinrninieniennsensesenessessensenns 416
NetBoot and System Integrity Protectionccccoevvvvniernnnsnienienensensenens 419
Running csrutil Outside of the Recovery environment.............cceveeveereniennens 420
Custom System Integrity Protection Configuration Optionsccccveevuenee. 422
System Integrity Protection and Resetting NVRAMccccvcvvrevenrerieraenns 425

User-Level ProteCtioNS.........coveerermrercneree s 426

Detect Common VUINErabilities........c.uoveerenrreerneserese e 428

Manage the macOS FIreWall...........ccoverrenrnrennesese s 431

Combat Malware on MacOS..........ccoeernrernenenrenesese s e senns 433
Xprotect and GAtEKEEPETcuvvvrierire s 434

ISQUANANTING ...cveeerereerree s 437
Using Isregister to Manipulate the Launch Services Database.................... 439
QUANANEINEcceeecc e an
Changing File HandIErs.........ccouveirenernsmnnesenssessssesssse s sessesesssessnnes 442
MRT e ————————————— 443
Signing APPlICAtIONScccevveerrresrrese s s 445
CIAMAVY ... e e e e 445

Threat Management 0n i0S ... 448

macO0S Binary Whitelisting........ccccvirevnininienssniene s sessessessssessessenes 450
0] 1110 T R 453
Centralized Log Capture and AnalySiSccevrerenennerseressssessessessesessessenses 454
WHING LOGS «veerererierieserere s s sessessessesessessessessssessessessesssssssessesasssssessessens 454
(312 Vo [T T J 0T RS 455
Organization and Classification.........ccccocvevrvnieninnnnninie e 457
Comparisons and SEArCHES.........cccverreriererenserrese s s ssesaes 458
OPENBSIM.......ooerieirerere st s a e e s a e e nnen 460

ReVerse ENQINEEIINGccvvererererreriereressesessessesessessesssssssessessessssessessessssessensees 465

SUMMAIY.c.veitetrereereseeserere e sesersessessesessessessesessesaesaessesessesaesessessessesasssssensessens 469

ix

TABLE OF CONTENTS

Chapter 9: A Culture of Automation and Continual Testingc...ee.. 471
Scripting and the Command Line...........ccccovevrrsrnicnncnnescrs e 473
Command Line BaSICS........ccueererererreerreseresese s se s e senns 475

Basic Shell COMMANGS..........cccocreeerererereereserese e 476
Shell SCHPLING...co i 482
Declaring Variables........c.ovocorerernnernesereser s sesessenens 483
Expanding on ZShell..........cooorrireereer e 487
Variable Mangling........coocoenrrnnenerenerssesesese e s sessesenns 490
Standard Streams and Pipelings ... 494
If and Case Statements ..o 496
For, While, and Until Statements........c.cccceverervrreneercrrerree e 503
LN 506
EXit COABS..... e 507
Shell SCHPL LOGIC....ccceverriiriereresinsires s sss e s sss s 508
Manual TESEINGccvvririrrirrr e nens 517
Automated TeStINg.......ccccvvririnrnrrr e 520
Posting Issues to Ticketing Systemscccovvririinininnnsnsnseness e 526
Simulating i0S Environments with the Xcode Simulator.........ccccccevvereenuenne 528
0] £ TR 532
AP Orchestration..........cococeeecrererereerescse e 533
Release Management...........ccccvvreinnnnniennsnsesse s s e s sessesnens 539
SUMIMANY.....eeeereeereree e r e e e s e re e e e e 543

Chapter 10: Directory ServiCes.......cccmummsemmmmmssssnsssssssssnsssssssnsnsssssnns 545

Manually Bind t0 ACtive DIr€CIOrYcccvvvvererenrenserere s sse s 547
Bind the EASY WYccceevrieriererenirsere e sesessessssesessessesessessessessssessessens 547
Bind with the Directory ULility......c.ccocvvvrrienniniene s sesesesessesenaens 549

Test Your Connection with the id Command.............ccocovniininnnnsisnescsesenennas 554

Use dscl to Browse the DIireCtOry.........ccccecvveneriersenseenesrersessee s sessesssessessessens 556

TABLE OF CONTENTS

Programmatically Binding to Active DireCtorycccccoervrvrvnnininsenseesensenens 561
Bind to Active Directory Using @ Profilecccocovvririnnininiesssncenenscenennens 563
Beyond Active DireCtOryccccvvresnsnsniessssnse s snssessesnens 570
All the Benefits of Binding Without the Bind..........ccccocvievnincninienniniennens 571
NoMAD Stand-Alone AppliCation...........cccvvrrernsnsnieninsnssese s 571
Configuration Profilec.ccoverernnnnerrese s 574
NOMAD LOGIN AD.......orrecrireerreneseesesessesesssse s sesse e s sessessssssessesesssssssnsenens 577
Apple Enterprise CONNECL..........ccccvvririnnin e 580
SUMMANY....ctitierinerineses s e e nr e 580

Chapter 11: Customize the User EXperience.......occeesrrsrsssssssssnnnnnnnns 381

Getting i0S and iPad0S Devices in the Hands of USEIScoevvvveriererensenieneens 582
T2 T OO 583
Planning the macOS User EXperience.........c.ccvvnvrrnnnvnneniennsessesessssessessenns 583
Transparency Consent and Control Protections on User Home Folders............ 584
Using Profiles to Manage User Settings.......c.c.ccuverrenernsessnesnnssesensesessesensens 586
Using Scripts to Manage User Settings.........ccocvvvvrierennnnienienessensesesessessessens 589
Modifying the macOS Default User Template.........cccvvvvrvriererensensenenessensensenns 593
Customize the DESKIOP.......ccovrrrmresirirsss e 594
Customize the USer Preferencescveneserennnnssssesssssssssssesesesssssneas 594
Configure the i0S HOME SCIEEN........covverrererererrererre s serersessesessessesaessssessessens 595
CuSTOM APP STOTES.....cccrercrrc s enens 597
LT P [T R [599
SUMMANY....ceireerirererese e se e sr s s se e nen e nns 600
Chapter 12: Identity and Device Trustcccccusssemmmmsssssnnsssssssnsnsssssnns 601
Use IdPs for User Identities..........covrrnncnnnnnnnsssnsssssese s 602
REST and Web Authentication ... 603

TABLE OF CONTENTS

JSON .. 604
Use JWTS AS Service ACCOUNTS.........ccccvererrmmssmsesessssssssesessssssssesesesssssnsas 605
Bearer TOKENS.......ccccervieririiree s s 607
DAUTN . 608
WEDAUTNN ... e 612
0penID CONNECT ..o e s 613
SAMLovvrtrtrire e 613
COOKIES .vuerrenerenserrsesessaesessessssesesssseses e e sa e ss s sesse e e e sensesense e e e sensssensssensans 616
ASWEDAUTNSESSION......cvirierirerireer e 617
Set Up a Test OKta ACCOUNTccverevevrerierers s ses s s sss e s e ssessessssessesnens 619
VieW SAML RESPONSEScvveruerrerersererserssssssessessesssssssessessesssssssessessssssssssessens 627
Jamf Connect for MaC.........covriemrcrrrs s 628
Configure Jamf Connect LOGINccccvverevevenrerieresensessessessssesessessssessesseses 629
Jamf Connect fOr i0S ... s 635
CONAItIONAI ACCESS.....coveuerereerreereeeresese s se e e e se e s e sss e ssenes 638
Configure the Jamf Integration with Intune..........ccoocvvrnnincninincncnene, 639
Beyond AuthentiCationc.cccvvernenenenernsesse e 646
Multi-factor Authenticationccovrnrenrnssnes s 647
Microsoft AUthentiCator...........ccvvevnrerresern s 648
MODIIEIFON ACCESScoveuererreerreerrsseressesessese s sesse s s sss e ses e e e e sensessnsenens 649
Conditional ACCESS fOr G-SUILEccrrvrererrerereserrsseressese s 650
Enable the APIS YOU NEEU.........ccoveerrermrenernse s 652
Create @ Service ACCOUNTcocvvererernsmsessesenese s s e s srssesessesesseesennes 655
Create Your Google Cloud FUNCLIONccccveevererernsernsesessse s sesse e 656
Duo Trusted ENAPOINESccccevvvrinirernsnre s s 660
Managed APPIE IDS ..o 661
Managed Apple IDS in SChOOISccccvverernirienerrsersere e seenens 661
Managed Apple IDS fOr BUSINESS......c.ccvvererinienienesssensesese s sessessessssessessens 662

xii

TABLE OF CONTENTS

Using Managed Apple IDs with Microsoft Azure Active Directory................ 663
WEDROOKScoeieeieirirc st 663
Working with the Keychain ... 667
SUMMANY....eiveererereree e se e e pe e e 671

Chapter 13: The Future of Apple Device Management.............ccccunsns 673
Balanced Apple SCOreCard..........couuvmrermrinernsesrssesssese e sesesessssessenes 674

TRE TOOIS....cceeeece e 677

The Near FUTUE........co e 679

The Apple ProduCt LiNES........cccuvrvrierennninsnesesssnnsesese s sesse s ssssessessessens 681

ADPS ettt ——————————— 683

Getting ApPS 0 DEVICES......ccvcreririrrrere e e 693

Manage Only What YOu Have TO........ccccovenmrnnesenenessnesssesesesesesesessesessenens 696

The Future of AGENEScccovcevreserere e 697

Other Impacts t0 SANADOXINGcccvveeerrierrerere s 699

i0S, macO0S, tv0S, and watchOS Will Remain Separate

Operating SYSIEMSccvvcerrerre s 700

Will i0S Become Truly MURIUSEN........coveerrenerescrensesesssese e e 701

Changes in ChIPSEISccvveernenerenerrse e seenes 702

You’re Just Not an “Enterprise” COmpPany.........coccoevverreriennsensessessesessessensens 704

Apple Is @ Privacy COmMPanyccccvrrnnnnnneniennsnnsessesisssssessessessssssessessens 705
SUMMANY....ceivierrnesrsese e e s re e nr e 706

Appendix A: The Apple Ecosystemcccemmmnnnnsssssssssssssssnsssssssssnnss 7107

ANBIVIFUS ..o 707
AULOMALION TOOIS.....ce e 708
BACKUP ...ttt e s 709
Collaboration Suites and File Sharing........c.ccocveveernsnnessnnesssesessesesesesessesenns 710
CRIM.....ceer ettt bbbt e 711

xiii

TABLE OF CONTENTS

DEP Splash Screens and Help MENUS......c.ccvevvrerrerernsensesesesessesessessssessessenes 712
Development Tools, IDEs, and Text Manipulators............cccccvierninicniennsensenens 712
Digital Signage and KioSKSc.cccriermrninimnnnnsne s sessesessssessessenns 715
Directory Services and Authentication TOOIS............cooeernrenrrenerescrnseseseseneenes 715
Identity Management..........ccocuvernsnnennnns s 716
Imaging and Configuration TOOIS.........cccvcvvriernrnini s 717
Log Collection and ANAIYSISceeevrerrererserserersssessesesssssssessessessssessessessssessessenes 718
Management SUITEScccvverrerererrerere s sa s e s se e s ene s 718
1 ST 720
0T 0 T 1 S 721
PrINE SEIVEIS ... 722
Remote Management...........ccovovcrcrennsnse e 722
SECUIMLY TOOIS...cueruereererrerererie s s s s e se s e sre e e e s saesae e s s aesne e e e naeenens 723
SErvice DESK TOOIScourrrriirreresisssssse s se s se s sr s sasnans 724
Software Packaging and Package Managementcccccccvnvvnienernncrensenenne 725
R 0] 1o LSOO SRN 726
Troubleshooting, Repair, and Service ToOIS.........c.ccocvvvnvnirnnnsnine e 726
Virtualization and EmuI@tionccovverecnnncnnesnnesess e sessesessenens 729
Honorable Mention..........c.covn s 730
Appendix B: Common Apple Portsccccunnemmmmnssssnsnsssssssssssssssssssnns 731
Appendix C: Managing NVRAM..........ccccermmmssmnnnmmssssnssssssssssssssssssnssssss 747
Appendix D: Conferences, Helpful MacAdmins, and
USEI GrOUPS ..cevresssnnnssssssnnnssssssnnnsssssssnsssssssssssssssssnnssssssnnnssssssnnnnssssnnns 753
1T = 763

Xiv

About the Authors

Charles Edge is the director of the Marketplace at Jamf. He holds 30 years
of experience as a developer, administrator, network architect, product
manager, and CTO. He is the author of 20 books and more than 6,000 blog
posts on technology and has served as an editor and author for many
publications. Charles also serves on the board of multiple companies and
conferences and frequently speaks at industry conferences around the
world, including DefCon, BlackHat, LinuxWorld, the Apple Worldwide
Developers Conference, and a number of Apple-focused conferences.
Charles is also the author of krypted.com and a cohost of the MacAdmins
Podcast.

Rich Trouton has been doing Macintosh system and server administration
for 20 years and has supported Macs in a number of different
environments, including university, government, medical research,
advertising, and enterprise software development. His current position

is at SAP, where he works with the rest of the Apple CoE team to support
SAP's Apple community.

About the Technical Reviewer

Ahmed Bakir is an iOS author, teacher, and entrepreneur. He has worked
on over 30 mobile projects, ranging from advising start-ups to architecting
apps for Fortune 500 companies. In 2014, he published his first book,
Beginning iOS Media App Development, followed by the first edition of
Program the Internet of Things with Swift for iOS in 2016 and the second
edition in 2018. In 2015, he was invited to develop courses and teach iOS
development at UCSD Extension. He is currently building cool stuff in
Tokyo! You can find him online at devatelier.com.

xvii

https://urldefense.proofpoint.com/v2/url?u=http-3A__devatelier.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=qj2kV3YeVvYFJRhQbVEX2Qe9LDiqDawy3eVVBZGmsIU&s=hJOVN_9-ydAhQljXFrGtxdCoBdT1nAReRGsXgcs4pa0&e=

Preface

Apple distributed 25 releases of the Mac operating system across 35 years.
And then came iPhone, iPad, and Apple TV. The success of the iPhone

and the unique challenges to manage mobile devices mean that new
paradigms in device management had to be established. This meant

the world of managing Apple devices had to change. That evolution was
inevitable, from the second the iPhone sales doubled those of the Mac and
has only gotten more and more clear.

That evolution in device management is now undeniable and
irreversible. The end result of that evolution is a fate not yet determined.
But change is afoot. This book is meant to codify those changes and
identify best practices.

Who This Book Is For

Simply put, this book is for administrators of organizations that want to
integrate with the new Apple. Many an organization has started building
what’s next. And many complain about aspects of how they have to build
out infrastructure and services. But the world’s most valuable has shown
no desire to allow exceptions.

This book outlines what organizations need to achieve work effectively
with the Apple platform and includes not only infrastructure but a mode
of thinking that you have to adopt to find success, a mode of thinking that
forces you to leave 30 years of IT dogma at the door. And you can feel free
to complain, but the faster you embrace, the faster you find success with
the platform.

Xix

PREFACE

This book is here to help you embrace the new style of management.
Because it’s not going anywhere.

Chapters at a Glance

The chapters in this book provide guidance. This guidance is split up into

a number of chapters that provide insights for each larger theme of Apple
device management. Most will go through the philosophy and design of
the Apple device management story. Unless specified in the title, we work
to unify that management story across the operating systems, covering iOS,
macOS§, and tvOS, noting the differences within each chapter.

Chapter 1: The Evolution of Apple Device
Management

How did we get here? It helps to understand the history of how Apple
management has evolved in the past 20+ years. Understanding where we
have come from should make you more accepting of Apple’s choices and
help you better understand where Apple, third-party software vendors,
and the IT community are taking us. Chapter 1 provides the background to
get us started.

Chapter 2: Agent-Based Management

There is no such thing as an agentless management solution. In this
chapter, we'll look at management agents that do not include MDM, as
well as when you will need to use an agent as opposed to when to use
other options.

PREFACE

Chapter 3: Profiles

A profile is a file that can be used to configure settings on a Mac or iOS
device. Once you can install a management solution, you can deploy those
profiles on a device or you can deploy profiles on Macs using scripts. We'll
cover how to craft profiles and install them so you can get most necessary
settings on devices.

Chapter 4: MDM Internals

What is Mobile Device Management and how does it work under the
hood? By understanding how MDM works, you will understand what
needs to happen on your networks in order to allow for MDM, as well as
the best way to give the least amount of access to the servers or services
that’s necessary.

Chapter 5: i0S Provisioning

Covering how to prepare iOS, tvOS, and iPadOS devices for deployment,
including working with profiles, MDM, Apple Configurator, the App Store,
and other tools to set up these devices.

Chapter 6: Mac Provisioning

Setting up Macs has been a bit of a moving target, starting with the end
of traditional imaging and the rise of zero-touch deployments using
DEP. This chapter covers how to provision Macs for deployment using a
variety of methods, including tools from both Apple and third parties.

PREFACE

Chapter 7: Endpoint Encryption

Now that the Mac or iOS device has been set up, folks will start adding data
to them which needs to be protected. Encryption provides that protection
and this chapter covers how it works, how to enable it, and how to manage
it for all of your Apple devices.

Chapter 8: Securing Your Fleet

An administrator can lock down devices so they’re completely secure.
By turning them off and smashing them with a hammer. Security is
table stakes in order to grow your device population. Every organization
has their own security posture, and so once you get settings and apps
on devices, we will take you through applying your security posture to
customize the settings on Apple devices.

Chapter 9: A Culture of Automation and
Continual Testing

Deploying settings on devices without first testing those settings can cause
your coworkers to have no idea where things are on their devices, get
kicked off of networks, or many other things that will cause you to get coal
during your office Secret Santa. As you deploy more and more iterations

of systems, settings configurations, and software loads, you won’t be able
to manually test everything. In this chapter, we’ll work on getting standard
QA environments built out, so you can test without having to manually test
everything.

xxii

PREFACE

Chapter 10: Directory Services

Active Directory was once the bane of many a Mac Admin’s existence. But
in recent years, the problem of binding and existing in an Active Directory
environment has been mostly a nonissue. In fact, these days, the biggest
concern isn’t how but why, given that there is now a bevy of options for
dealing with Directory Services. In this chapter, we go through how to get
Macs to work with Active Directory and function as a first-class citizen on
predominantly Windows networks.

Chapter 11: Customize the User Experience

You can’t cover device management without discussing one of the main
reasons why people actually want to manage devices: to make the lives of
their coworkers better. The book has thus far been about deployment and
the finer technical details. We’ll look at techniques and tools to leverage
some of the things you've learned how to do in order to into world class
support and enablement workflows.

Chapter 12: Identity and Device Trust

Federated identities are important as they keep us from putting our
passwords over networks. This allows us to more easily access resources
on networks and be more secure at the same time. What can be better? In
this chapter, we cover common federated identity solutions and how to
leverage them in new ways.

xxiii

PREFACE

Chapter 13: The Future of Apple Device
Management

By this point, you've likely stopped caring and just want the authors to
wrap it up already. We get that. But in case you're still reading, you'll
find a little prognostication for things to consider future-proofing your
deployments.

Think Different

How cliché can we be? Obviously very. But there’s an important concept
that needs to be addressed, and that’s attitude. Apple is forging their own
path in IT. They trade spots with Amazon, Google, and Microsoft as the
wealthiest company to ever exist. And they will not be constrained by 30 or
more years of dogma in the IT industry. Or at least that’s the way they often
portray their perspective on the industry.

Asyou’ll see in Chapter 1, Apple is actually going about mass device
management in much the same way it has since the 1980s. The screens
look similar, the options look similar, sometimes with the same words.

But due to the private data on systems and the ease of identity theft,
there’s much more a focus on end-user privacy. Still, Apple devices aren’t
Windows devices. But they are increasingly sharing a code base, and this
has led to more similar management techniques than ever before.

The most important thing to consider is you want to try to shoehorn
Apple devices into outdated modes of device management or whether you
are ready to embrace Apple’s stance on management. If you aren’t ready
to embrace the Apple way, then you might not be ready to manage Apple
devices.

XXiv

CHAPTER 1

The Evolution
of Apple Device
Management

Once upon a time, in a land far, far away, the Mac existed in a vacuum.
Unmanaged and left behind in the grand scheme of the corporate
enterprise, it was at best overlooked by Windows-centric IT departments
and, at worst, marked for retirement and removal. In those times, it was
common to see a Mac network running as a silo, often with a dedicated
cable modem for Internet access and sometimes even with a dedicated
mail server to support the creatives. And yes, it was pretty much
exclusively creatives.

The platform seemed to be dying, as Apple’s sales slumped and
Microsoft’s offerings dominated the consumer and enterprise markets.
Gradually, deployments of Apple equipment shrank to small workgroups
with one exception: education.

Schools around the world continued to embrace the Apple platform
throughout the tough times at Apple. During those times, anyone with
large-scale Apple management experience was almost certainly working
in a school or for a school district. But everything started changing with
the advent of the iPhone. Suddenly enterprises were looking to education
for guidance on how to deploy large numbers of Apple devices, CIOs were

© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_1

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

asking their IT departments why IT wasn’t supporting the CEO’s new
MacBook Air, staff at some schools started moving into large companies,
and some of the requirements we faced started to change.

The more things change, the more they stay the same, but not
exactly. When Apple asked me to take over updating the
Directory Services course and book, we used Mac OS X Server
to keep management, identity, and authorization settings in
the same place: Open Directory. But most wanted to leverage
identity and authorization stored in another directory (LDAP
or Active Directory). Then it seemed like no one cared about
Directory Services any more and the focus was on moving
from directory-based management (Workgroup Manager) to
MDM. Now we’re learning more about integrating MDM solu-
tions with various 3rd party Identity Providers (IdPs). The fun
part of this job is trying to figure out... What's next?

—Arek Dreyer, Dreyer Network Consultants and the author
of several books on macOS and macOS Server

There are about as many reasons for this change as there are Apple
fans. But the change is not deniable. The rise of Apple in the enterprise
and the growth has led to a number of innovations from Apple. The
management story completely changed with the advent of Mac OS X, now
called macOS. But it started long before that.

In this chapter, we’ll look at this management story - beginning in the
dark ages, through the Renaissance that was the emergence of Mac OS X
rising like a phoenix from the ashes of NeXT and into the modern era of
macOS and iOS management, starting with the Apple II.

The Classic Mac Operating System

The Apple I was released in June of 1977 and changed the world. It
was really the first mass-produced and therefore actually accessible
computer. Back then, if environments had more than one computer,

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

device management involved walking around with floppy disks that were
used to boot the computer. Large-scale device management didn’t become
a thing until much, much later.

The Macintosh was released in 1984, marking the first rung of the
upward climb to where we are today. We didn’t want to cover Apple
device management at every step from the Apple I and on. Mostly
because we can’t find too many people who can recall actual facts from
that time frame and there was really nothing worth talking about in the
mid-2000s. Between Apple’s System 6 to Mac OS 9 operating systems,
Mac management over the network often used the AppleTalk network
protocol (which was released in 1985 but only went away in 10.6 in 2009)
instead of TCP/IP. In addition to being unsupported by any other platform,
AppleTalk’s methods of network communication were viewed by many
as being unnecessarily “chatty.” This, other Apple-specific characteristic,
and the difficulty of managing Apple devices using Microsoft management
tools led to the opinion that many old timer IT execs still have today:
“Apple devices don’t play nice on corporate networks.”

Network Protocols

We still get questions about whether or not Apple devices will cause
problems on modern networks. If an Apple device can hurt a network,
then the network sucks. So, we can dispel that rumor now. But it is true
that once upon a time, Apple devices could spew AppleTalk traffic on the
network that caused packet storms or other problems. But then, so could
IPX or NetBIOS, which were initially released in 1983.

Networking was initially built into the Lisa in 1983 in the form of
AppleNet. AppleNet was replaced by AppleTalk in 1985 and Apple finally
dropped support for AppleTalk in 2009, although it had not been used
much since the introduction of Mac OS X. Apple was able to join TCP/IP
networks in 1988 with the release of MacTCP, giving access to most types of
devices that a Mac would connect with.

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Before Mac OS X, the Chooser was a tool used to connect to network
file servers and printers. Shown in Figure 1-1, the Chooser would scan the
network for AppleTalk devices and display them, allowing you to choose a
device to mount. Because networks were growing and discovery protocols
didn’t always find devices on the network, you could also define an IP
address to connect to if the host didn’t show up in the list - also useful
when connecting to other LANs or over a WAN.

0= Chooser—— H

N Select a file server:
‘ Workgroup Server

AppleShare Laser'Writer 8

[server IP Address...]

= @ Active
= AppleTalk .
O Inactive 2 6.2

Figure 1-1. The 1990s era Chooser

With the advent of Mac OS X in 2001, the Chooser was replaced with
the Connect to Server option (Figure 1-2), which had everything required
to connect to file servers, WebDAYV, and FTP servers available in most
standard TCP/IP environments. Apple added Rendezvous to Mac OS X
beginning in 2002, enabling Macs to find devices and services over TCP/
IP. Renamed to Bonjour in 2005, this zero-configuration technology

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

uses mDNS (multicast Domain Name System) to allow you to locate
and connect to devices or services on networks with the same level of
convenience that AppleTalk offered.

Favorite Servers:

Figure 1-2. The Connect to Server Dialog

The concerns about Apple on corporate networks were valid at
times. During the massive rollouts of Windows 95 and then Windows
98, many environments used Novell networks or left IPX/SPX enabled
on computers. NetBIOS, and later NetBEUI, were often enabled as well,
causing a lot of traffic going over older hubs. When you added AppleTalk
into that mix, there could legitimately be just too much traffic for the
network equipment of that era. Luckily, AppleTalk is long behind us.
Additionally, many switching environments started to ship with Spanning
Tree Protocol (STP) enabled during the 2000s. Macs could have issues with
Spanning Tree Protocol, especially if AppleTalk had not been disabled.
However, Mac OS X’s declining need for AppleTalk meant that disabling
AppleTalk on networks was already a best practice by the mid-2000s unless
backward compatibility with old hardware was necessary.

Given that we had networking on the platform, larger environments
naturally looked toward being able to manage devices over that network.

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Early Device Management

Devices weren’'t managed as intricately back then, though. Not only
were the network protocols different, but the technology stack was wildly
different; there weren’t nearly as many devices being managed from a
central location, and we didn’t have 30-40 years of IT wisdom on how
to make the lives better for our coworkers, students, or even ourselves.
Maybe you managed extensions (as Desk Accessories) using Font/DA
Mover or launchers. This allowed you to install fonts and things like
screensavers - but Apple-provided tools for centralized management of
Macintosh settings by and large weren’t available up until the 1990s.
Then came Apple’s At Ease. At Ease was an alternative desktop
environment released for System 7 in 1991, which provided a simplified
desktop environment for multiple users to use and share files;
functionality not otherwise supported in the Mac at that time. But as At
Ease evolved, Apple also released At Ease for Workgroups. This new tool
provided client configuration options and a restricted Finder mode, as
well as a home folder that could be stored on an AppleShare IP Server and
with eMate the ability to Hand In homework for classes (Figure 1-3). That
restricted Finder mode would later evolve into a multi-user operating
system environment in Mac OS 9 and the Simple Finder, which is still
around today in modern macOS.

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

: SN coit view snmal Panels I'hb
New Folder... ®N W/
onmou:er.. %0 |

Rename.. #R |
/| Delete... ®D

Get Info... =1

l'l!l‘l.. =F

Figure 1-3. Handing In homework in a managed environment

The following are few important things to keep in mind as we progress
through the years:

o Atone point, At Ease was a unified tool to manage
file shares, printers, settings on devices, and mobile
devices (the Newton).

o AtEase brought some semblance of multiple users, but
the actual operating system of the Mac didn’t interpret
those the way it does today.

o Many of the philosophies you can see in At Ease are still
the same even though the way those are implemented
on devices is now quite different, due to a shift from

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

AppleTalk to Ethernet then wireless and then making
an assumption that devices are no longer on a Local
Area Network.

e eMate (Figure 1-4) was used to exchange data with
devices, including the Newton (when using Apple
Newton Works), making it the ancestor of Apple
Classroom (albeit less feature rich ancestor).

- eMate Classroom Exchange Preferences -

— Listen for connections on - . Store student documents in .
[X] AppleTalk network @) Named folders, created as needed
[] serial, using the Printer-Modem Port (O Named folders, created in advance |
[] Serial, using the Internal Modem () At Ease documents folder

(O One folder named “Student Data™ '

— Backup — Advanced

@ Newton Works only] Erase data from eMate after backup
(O Newton Works and selected applications [J &Now navigation outside student folder

| Cancel | Save

Figure 1-4. Settings for eMate management are similar to
Classroom settings

At Ease didn’t solve every problem for every use case. Another
important event from this era was the first wave of third-party device
management solutions. In August of 1991 (the same year the Internet was
born), netOctopus was launched at Macworld in Boston. This kicked off
an era of third-party tools that allowed organizations to manage Apple
devices. By 1993, when Filewave was released, Apple allowed and even
gave active thought to how to put things in places on Macs that gave us the
infancy of a centralized command and control. The same was happening in
Windows, where you could edit .ini files from a central location, and we saw

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

the evolution of .zap files and similar formats (now .mst files) that could be
distributed from a central location in the upcoming Windows 95 era.

The next major third party to enter the picture was Thursby Software’s
DAVE, a file and printer sharing tool for the Mac, bridging the gap to
SMB/CIFS shares from Windows servers. Microsoft had an AFP server
called File Sharing Services for Mac, but it was never on par with what
was needed by most organizations. DAVE'’s introduction in 1996 allowed
Macs in Microsoft-centric environments to connect to SMB file servers
and access files, which in turn meant that Macs didn’t need their own
platform-specific file servers in order to get useful work accomplished.
Thursby also helped address the gap to connect users to Active Directory
with ADmitMac, which allowed Macs to connect to and work like Windows
workstations with an Active Directory domain.

The computers of this era left a lot to be desired. The Macintosh IJ,
Macintosh LC, Macintosh Portable, PowerBook, Quadra, Performa, and
Centris are mostly overshadowed in organizations that actually need
centralized management by the onslaught that was one of the most
substantial technological revolutions in history, the PC era. But all that was
getting ready to change. Something was brewing.

NeXT

Steve Jobs left Apple in 1985 and started his next company, aptly named
NeXT. The first NeXT computers shipped in 1988, with the NeXTSTEP
operating system becoming the core of what would later become Mac OS X
when Steve Jobs returned to Apple. Therefore, the management ecosystem
in NeXT set the tone for managing Macs for the next 18 years.

The most important thing that happened on a NeXT computer was
that the first web page was served on a NeXT computer by Tim Berners-
Lee in August 6, 1991, at the European Organization for Nuclear Research,
CERN. Oh, and Doom was developed on NeXT - which brought us into

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

awhole new era of gaming. When Steve Jobs returned to Apple in 1997,
NeXT’s workstation technologies had matured enough that Apple could
begin replacing Mac OS 9 with Mac OS X (which would later evolve into
macOS). The NeXT had many obvious similarities to the Mac, as seen in
Figure 1-5.

Figure 1-5. NeXT (aka The Inbetween)

As it pertains to the concept of device management, several important
things came from NeXT that would later influence the Mac and then
i0S. The most important is the object-oriented nature of NeXTSTEP and
the second is the development environment. Ironically, the Unix-derived
nature of OPENSTEP is what brought the Mac so far, so fast. And the
“open” components of the operating system actively being removed as

10

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

large portions of open source code within the Mac are being removed as
well. Still, Darwin, Xcode, and parts of iOS are still hosted and regularly

updated on opensource.apple.com, and Webkit and Swift are successful
open source projects from Apple. However, Apple owns the licenses for

these and seems to be removing components that might result in future

legal implications.

Specific pieces of technology also emerged from NeXT, such as the
property list file type, which lays the foundation for all modern settings
management on the Mac. Objective-C, the Mach kernel, and the Dock
likewise surfaced as part of the NeXT acquisition. We also got the Electronic
AppWrapper (the predecessor to the App Store), Mail, Chess.app, TextEdit,
and most importantly, Workspace Manager, which seemed a bit like the
Mac OS 9 Finder and would later become the Finder for Mac OS X.

Another important and critical part of the evolution of the Mac
also began in the NeXT era. In 1991, NeXT started moving to the 80486
processor. At this point, there was no partnership between Apple and
Intel. But the NeXT move to the x86 architecture (Marklar) would usher
in an era of an Intel partnership, once Apple acquired NeXT and began
planning the introduction of the new operating system that lasts to this
day (although there was a crappy PowerPC chipset port in there during the
Rhapsody era). But moving an x86-based architecture did more than make
it easier for Apple to buy ready-built chips from Intel; it brought better
virtualization of Windows to the Mac and made those Directors of IT stop
and think Apple was playing nice and mayyyybe could be trusted to show
up on their networks.

Mac + Unix = Mac 0S X

Apple started integrating NeXT technologies with a new operating
system using the code name Rhapsody, with many of the tools we still
use today originating from this collaboration. The advent of Mac OS X

brought with it a more Unix-oriented management framework, replacing

11

http://opensource.apple.com

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

the single-user model used by Mac OS 9 and earlier. Mac OS X brought a
true multiuser experience and the beginning of what would evolve into
management policies.

New policy-based management came in the form of Managed
Preferences, or MCX (Managed Computing for X). These are available
in /System/Library/CoreServices/ManagedClient.app. MCX allowed
administrators to pre-populate preferences domains or control the settings
applied in those keys, similar to how many administrators in a Windows
world were accustomed to doing using the registry in Windows and similar
to blocking access to Control Panels in At Ease. For many years, Managed
Preferences was the main way that you controlled settings on a Mac,
and this provided a framework that later tools could leverage to provide
centralized management of a Mac'’s settings.

With policy controls available on a multiuser computer, the Mac
continued to iterate toward a first-class corporate citizen, adding smaller
flags to the dsconfigad command used to bind to Active Director and
adding DFS integration along the way. Additionally, standard LDAP
implementations, and the ability to natively connect to file shares was
bolstered with the ability to manage these from a centralized location.

The course of my professional life changed when we realized
that while Apple had provided a great tool in At Ease, but that
we could go further. Apple has always given customers a prod-
uct that can get the job done in isolated circumstances, but
often wants third party developers to step in and handle use
cases that aren't exactly what they have in mind. We saved
customers time and provided a better experience with netOc-
topus. Much the same way that modern deployments tend to
leverage one of the many third party products instead of
Apple’s Profile Manager today.

— Martin Bestman, Founder of netOctopus

The Bondi Blue iMac was released in 1998, shortly after Steve Jobs
returned to Apple. This led to an explosion in the number of devices being

12

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

managed in larger environments. Mac Admins soon began to leverage the
second major wave of third-party Apple device management solutions.
These built on the frameworks that came to the Mac from NeXT which still
managed the way things appeared on a Mac but went further and allowed
for software packages (.pkgs) and centrally managed preference files.
After a few years using these techniques, 2002 saw the first major open
source project for managing Macs - Radmind came out of the University
of Michigan. And the introduction of the Casper Suite 1.0, which would
evolve into what’s now known as Jamf Pro.

At this point, device management was mostly about putting packages
or similar data constructs onto devices, as you can see in Figure 1-6, which
shows Casper 1.0’s package screen.

Casper Admin Console

1110.2.2 AD.package

'Mac 0§ 9.2.2.package

Acrobat Reader 5.1.package

Classic Prefs. package

CTCBridge 4.02.package

Dock Dream and all Adobe.package
Dock Dream.package

Dock Fixup.package

Dock Standard.package
Dreamweaver MX.package

Fetch 4.0.2.package

Finder Prefs.package

Mustrator 10.0.3.package

InDesign 2.01.package

Internet Explorer 5.2.2.package
iTunes 3.0.2.package

Login Hook 11.11.02.package
Login Hook 11.20.02.package
Logout Hook 11.11.02.package
Logout Hook 11.20.02.package
Media Player.package

Menu bar Items. package

Microsoft Outlook 2001.package
MS Office vX SR1.2.package

MS Office vX Value Pack.package .
MSUAM . package v

Group: Operating Systems ?]

Info: Mac 0S X 10.2.1

Notes: Created on 11/06/02.

1110.2.1 package M Name: 1110.2.1 package
]
|
]
|

Figure 1-6. The Casper Admin Console from the Casper 1.0 User’s
Guide

13

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

These worked by putting an agent (or daemon usually) on devices.
That agent then talked back to a central server to pull commands or
configurations down to devices. Filewave and Radmind took a more
file-based approach, where they were dropping a set of files in place on a
filesystem in order to bring about a change on a system. NetOctopus and
Jamf used native Apple technologies, including software packages (pkgs),
to make changes on devices instead.

Later, Apple started to look at agentless technology, which we’ll look
at further later in this chapter when we start talking about MDM. But
packages could (and still can) be used to configure settings, install
software, and another of other tasks. PackageMaker itself was removed
from the operating system in 2015, although it could still be installed
through Xcode if needed.

When we launched. the first version of FileWave in 1992, end-
point management was in its infancy, and was still very frag-
mented. Most of the tools on the market were specialized,
point solutions (like the old Timbuktu Remote Control.)
FileWave may be the only tool left standing from those days,
and 1 think the reason is that we've continued to evolve. We've
grown along with Apple to support modern apps, MDM, and
every new OS version, but we've also added management of
Windows and Google operating systems, recognizing that very
few organizations have the luxury of limiting endpoints to a
single OS.

—Nurdan Eris, CEO of Filewave

By 2008, the understanding of the community had matured to the
point that agent-based management was maturing to be on-par with what
was available for Windows systems using tools like Altiris. In fact, Altiris
and other Windows management solutions had agents available for the
Mac. Tools with a stronger focus on Apple, such as FileWave, Jamf, and
LANTrev, could manage Macs as first-class citizens on corporate networks.

14

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

In 2008, Greg Neagle began to work on an open source agent for Mac
management called Munki. The first public code commits came in early
2009, opening the way for an open source alternative to Mac management.
The use of Munki has grown over the years, making management
accessible to a number of environments that previously couldn’t afford it
or who needed more customizable workflows than those available with the
third-party solutions. With the advent of MDM, which we’ll discover later
in this chapter, Munki also played a pivotal role in providing agent-based
options for environments that are also using MDM. But most importantly,
Munki brought an almost DevOps style focus to Apple administration,
allowing many administrators to manage Macs in much the same way they
manage code.

These days, we tend to think of management as policy-driven
management to achieve a certain amount of idempotency on Apple
devices or the known state that we think a device is in. But the first
management tasks were controlling the way a system looked and the
experience a user had to access the applications and data they needed.
We kind of lost our way for a while looking for ways to make our jobs
easier, but since the advent of iOS have started to rediscover that goal
of improving the user experience, not controlling it. The less we can
change on the operating system, the more we know the state a device is
in. Therefore, while there’s still a gap in understanding the exact state of a
device, we now have a good ecosystem that allows us to enforce policies
that don’t destroy the experience Apple crafts for devices.

Server

Apple has had a server product from 1987 to today. At Ease had some file
and print sharing options. But the old AppleShare (later called AppleShare
IP, shown in Figure 1-7) server was primarily used to provide network
resources to the Mac from 1986 to 2000, with file sharing being the main

15

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

service offered. Apple also took a stab at early server hardware in the
form of the Apple Network Server, which was a PowerPC server sold from
1996 to 1997 that ran the AIX operating system. AppleShare IP worked up
until 9.2.2. In an era before, as an example, you needed to require SMTP
authentication, AppleShare IP was easily used for everything from file
sharing services to mail services. An older Quadra made for a great mail
server so your company could stop paying an ISP for some weird email
address and get your own domain in 1999!

[0 =—— AppleShare IPManager=—— H
Admin Status
A ‘Web & File Admin: Mot Running
’.‘-i_ -Web & File Server: Running — =
Web: Enabled
AppleShare via TCP: Enabled
FTP: Enabled

Windows File Sharing: Disabled

Remote User & Groups Server: 0 servers connected.

o Mail Admin: Not Running
H Mail Server: Running
IMAP: Enabled

POP: Enabled
SMTP: Enabled

Print Admin: Not Running
Print Server: Running

Figure 1-7. Early Apple Servers were pretty easy to manage

Meanwhile, serving services was a central need for NeXTSTEP and
OPENSTEP systems. The UNIX underpinnings made it possible to compile
a number of open source software packages, and as mentioned earlier in

16

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

this chapter, the first web server was hosted on a NeXTcube. During the
transition over to Apple, AppleShare IP and services from NeXT were made
to look and feel similar and turned into Mac OS X Server.

The first few releases of Mac OS X Server represented a learning
curve for many classic Apple admins and in fact caused a generational
shift in who administered the systems. John Welch wrote books in 2000
and 2002 that helped administrators get up to speed. The Xserve was
released in 2002 and the Xserve RAID was released in 2003. It took time,
but a community began to form around these products. The late Michael
Bartosh compiled a seminal work in Essential Mac OS X Panther Server
Administration for O’Reilly Media in 2005. Charles Edge (coauthor of this
book) released The Mac Tiger Server Little Black Book in 2006.

Up until this point, Apple never publicly acknowledged that businesses
or enterprises used their device, so the rise of the Xserve advertising was
the first time we saw that acknowledgement. Apple continued to improve
the product with new services up until 2009 with Mac OS X Server 10.6. At
this point, Apple included most services necessary for running a standard
IT department in the product, including the Web (in the form of Apache),
mail, groupware, DHCP, DNS, directory services, file sharing, and even
web and wiki services. There were also edge case services such as Podcast
Producer for automating video and content workflows; Xsan, a clustered
file system; and in 2009 even purchased a company called Artbox, whose
product was rebranded as Final Cut Server.

But that was a turning point. As you can see in Table 1-1, around
that same time, Apple had been working toward the iPad, released in
2010 (although arguably the Knowledge Navigator was the first iteration,
conceptualized in 1987). The skyrocketing sales of the iPhone led to some
tough decisions. Apple no longer needed to control the whole ecosystem
with their server product and instead began transitioning as many teams
as possible to work on higher profit margin areas, reducing focus on areas
that took attention away from valuable software developers who were
trying to solve problems many other vendors had already solved better.

17

THE EVOLUTION OF APPLE DEVICE MANAGEMENT

CHAPTER 1

(panunuo9)

NdA NdA NdA NdA NdA NdA NdA NdA NdA NdA NdA
dJHd dOHd dOHd dJHd dJHd dOHd dOHA dOHd dJHd dJHd
SNd SNd SNd SNd SNd SNd SNd SNd SNd SNd SNd
I'eN I'elN ITeIN I'eIN I'elNl I'elN I'eIN I'elN I'elAl I'eIN ITeIN
ains ains ais ains ains ais dins dINS SMOPUIM SMOPUIM

dld dld dld dld dld dl4 dld dld dld dld

[[EISUISN [[eISUflSN [[eISUflsN [[elSU[lsN [[eISUlSN |[[eISujlaN 100gisN 100glsN 100glsN 100dleN 100gisN
foyang AMopang AMoang Mioeng AMioang Aowaang Aioyoanqg Aiopoang Alopang Aiooang Alojoaaq
uadp uadp uadp uadp uadp uadp uadp uadp uadp uadp uadp
S8)Isqa\ S8USGeM SNSQeM S8NSqIM SaUSgeM SelSgIM qsm qsm qsm asm asm
S4N S4N S4N S4AN S4N S4N S4AN S4AN S4N S4AN

ddv ddv ddv ddv ddv ddv ddv ddv ddv ddv

vl ¥4 ¥4 ¥4 ¥4 8l ¢c 144 144 6l Gl

L10¢ 910¢ G102 v10¢ €10¢ [Alir4 (1) 14 6002 L00¢ G002 €00¢
e€rot clol L0l 1'oL 601 80l L0l 901 Gol v'ol €0l

P1p 20UO0]1 UDY] S931149S kmgm\xﬁ\uwbﬁ 0] pasn mou 1 421435 SOOIV °[-T 219P],

18

THE EVOLUTION OF APPLE DEVICE MANAGEMENT

CHAPTER 1

(panu11u00)
s199(00 spalao
asm asm
apoay apoay apoay 9p0ax
Buiyoey Buiyory Buiyoey Buiyoen
uesy uesy uesy uesy uesy uesy

lobeueyy Jabeuepy
a[ljoid a[ljoid

aUILIBI
auw)

S]OBJUOY S}ORIUOD

MM I
Jepuse) Jepusje)
sofessal\ Sobessaly

alepdn sarepdn
9/eM}J0S 9JeM)oS

Jobeueyy Jobeuepy Jobeuepy Jsbeuely Jabeuepy
a[ljoid a[ljoid a[ljoid ayoid 9|joid

QUIUJBIN SUIYJB[\ SUIUJBN SUIYOBJ SUIYORJ
owy ewy ewll ewl 8wy

300g 400g
S]0BJUOD SIOBJUOY SJOBJLUOD S}OBJUOD SSAIPPY SSAIpPY

MM MM MM MM MM MM MM
Jepuaje) Jepuaje) Jepusje) Jepuaje) 1] [eol 1]
sobesso|y sobessal\ sobessaly Sabesso|y 1ey9l eyl ey 1ey9|

solepdn selepdn selepdn sarepdn seepdn serepdn sarepdn saiepdn
9J/eM]JOS 9JBMIJOS 8JBMYOS 9JBMIOS 8JeMYOS 8JeMOS 9JeMI0S 8JeM}oS

19

THE EVOLUTION OF APPLE DEVICE MANAGEMENT

CHAPTER 1

5900y
3|IqoI
1SeOPO4 1SBIPOd

Sniavd sniavd

pubx pubx
1VN IVN
SS10

g

1eawo|

TOSAN
1Sedp0d
Sniavy
pubx puby
YN 19N YN
SSID SSID SSLD
Wild L Wld

JanIas JanIas
1eowo] uoneaddy uoneonddy

(panunuod) °I-1 219VI,

20

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

In 2009, the Xserve RAID was discontinued and the Xserve went away the
following year. The next few years saw services slowly peeled off the server.
Today, the Mac OS X Server product has been migrated to just an app on
the App Store, as you can see in Figure 1-8. Today, macOS Server is meant to
run Profile Manager and be run as a metadata controller for Xsan, Apple’s
clustered file system. Products that used to compete with the platform are now
embraced by most in the community. For the most part, this is because Apple
let Microsoft or Linux-based systems own the market for providing features
that are often unique to each enterprise and not about delighting end users.

ene
Server ;
Bl CE's MacBook Pro
=l Aers
5 Cortificates Settings Access
[toos
f Stats Host Name: @ CEs-MacBook-Pro.local
Edfit Host Name.

Accounts

& users Computer Name: @ CE's MacBaok Pro

o Groups Edit Computer Name..

Services Internet: @ Reachable at 24.7.244.95, no services available
& Profile Manager
Reachability Details
Advanced

W xsan

Running for: 4 days, 19 minutes

Version: macOS 10.14.4 (Build 18E226)
Server 5.8 (Build 1852071)

Network Interfaces: 1,0, 1P Address

Wi-Fi 10.00124
Wi-Fi 26071°345:438011204:1079: 2caBc3d..

Figure 1-8. The simplified macOS Server app

Today, building server products that try to do everything for everyone
seems like a distant memory for many at Apple. But there is still a keen eye
toward making the lives of Apple devices better. This can be seen by the
Caching service built into macOS (moved there from macOS Server) and
how some products, such as Apple Remote Desktop, are still very much
alive and kicking.

21

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Apple Remote Desktop

By 1997, the Apple Network Administrator Toolkit, which was used to install
At Ease, also came with the Apple Network Assistant. Shown in Figure 1-9,
the Apple Network Assistant will look very similar to modern Mac Admins.
You could remotely control the screen of a Mac, lock screens, share your
screen, copy files, remotely open apps, send messages to the desktop, and
perform other basic network administrative tasks over an AppleTalk network.

o File Edit Setup Report Manage Interact Server Window Hel FDIOPME | Network Assistant

Hlp[@ - [ol@EE

£ workstations

IR

Tak

Select the you want to and add theém to &
workstation list.

rin usig

wark Workstati List: | Main =
E&M-Lm—-
iBook 53 =2 Add
Remoy

Dalete List..

Figure 1-9. Network Assistant, the ancestor of Apple Remote Desktop

After the advent of Mac OS X, Apple released a new tool called Remote
Desktop in 2002. Remote Desktop, which is still available on the Mac
App Store today, allows administrators to take over the desktop of client
systems, send shell scripts to Mac clients, and perform a number of other
tasks that are useful for point-in-time management. Remote Desktop

22

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

also works well when used in conjunction with these other tools as those
are mostly used for imaging, software configuration management, and
deployment. Most of the functionality from Apple Network Assistant was
brought into Apple Remote Desktop, and a new ARD protocol was built to
facilitate finding and controlling clients over UDP.

Apple’s Remote Desktop allowed administrators to control
Macs and send scripts to devices. This was great for a lot of
environments and well priced! As organizations grew and their
needs matured, ARD made it easy to transition into more tradi-
tional management solutions because the packages and scripts
were great foundational technologies we could build on.

—Chip Pearson, Co-Founder, Jamf Software

By 2004, it was clear that there were some better options than a UDP-
based protocol to perform screen control. Apple Remote Desktop 2 was
built on top of VNC but does much more. It also comes with a task server,
so it can queue up commands to be sent out. While Remote Desktop was
best for making a specific immediate change or action on a computer, it
also provides a great entry point into using management tools and testing
unattended installations.

Now on Version 3.9 (Figure 1-10), Apple Remote Desktop has gone
through a number of different places in the Apple ecosystem. Management
commands have transitioned to APNs-based workflows for other products
and Apple Remote Desktop only allows connectivity over a LAN unless you
open ports to control devices from incoming WAN connections. Other tools
such as Bomgar, TeamViewer, GoToMy PC, Splashtop, ISL, and a host of
other solutions can do this; it’s no surprise that Apple hasn’t made such a
large investment into a refactor for a product that now costs $79.99 on the
Mac App Store and has only 1.7 star out of 5 star ratings. Furthermore, Apple
Remote Desktop gets away from a slightly more modern way of thinking at
Apple: users should explicitly approve any invasion into their privacy.

23

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

eane Remote Desktop
Mn & W B &) B W Q Q

Observe Control Curtain Copy Install UNIX Reports Spotlight Filter
@ Al Computers -
@ scanner Bcnjow

L @ Task Server

L Name - IP Address DNS Name ARD Versicn
») Active Tasks
» [History B BatBookPro 10.15.41.45 batbookpro.m... 3.9.6
10.15.40.17 danfido.jocal. —
B Jell's MacBook Pro (3) 10.15.40.18 jelfs-mbp-4.... 397
B Jeremy's JamfBook Pro 10.15.41.193 jeremysfoook... 3.9.8
B MacBook Pro (5) 10.15.43.3 josburns msp._ 393
@ paz i) 10.15.42.265 paz-2mspja.. 3.9.8
B uss-voyager 10.15.41.141 uss-voyager.. 3.9.8
@ wollgang 10.15.42.66 wolfgang.msp... 3.9.8

+ | +~ Bcomputers 1selected

Figure 1-10. Apple Remote Desktop still has much of the
functionality from Network Assistant

Ecosystem Coexistence

With the release of a more modern and flexible operating system, Apple
brought us multiple users. And multiple users brought us the ability to
have one of those users be sourced from a directory services account.
These accounts then gave users the ability to log into their local computer
with the same password used on servers to access their mail and other
services provided by an organization.

You could also get policy data via directory services in the form of an
extended Active Directory schema that contained MCX data, which is
much easier to manage en masse than the local MCX referenced earlier.
Not all organizations could extend their schemas (have you ever met an

24

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Active Directory administrator that wants to extend their schema?!?!), and
so techniques were also developed to bind client computers to both Active
Directory and Apple’s Open Directory and allow users and groups to be
nested inside Open Directory in order to deploy Managed Preferences to
clients without extending the Active Directory schema. This was known as
the Magic Triangle.

We mentioned ADmitMac earlier, but another option, Centrify, a
more centrally managed solution to help deliver policies to the Mac, was
introduced in 2005. Centrify has since focused much of their efforts to
be an Identity Provider (IdP). Quest Authentication Services was also
introduced to solve making deployment of policies easier; but the easier
Apple made the technology, the less each of those solutions was needed,
and by 2011 they had all but fizzled out. The policies were always a tough
sell to IT departments (even though many had extended their schema
dozens of times). Environments that weren’t willing to extend schemas
typically also weren’t willing to add Apple servers for a supplemental
directory service. In the past few releases of macOS, MCX has slowly been
deprecated in favor of profile-based management, which evolved from
rethinking policy-based management for iOS.

Apple’s MCX was a powerful and flexible way for admins to
manage the settings of Apple and third party software. Apple’s
preferred replacement, configuration profiles, lacks some of
the flexibility present in MCX. Many of us hoped that over
time, Apple would add the missing features back into configu-
ration profiles, but that seems unlikely now. Back to badly
written shell scripts!

—Greg Neagle, Creator of Munki and co-author of Enterprise
Mac Managed Preferences, from Apress

Where many an Apple admin’s job was once managing servers,
today those have moved to managing the states of devices, first with
directory services and MCX and then toward more modern management

25

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

techniques, such as the ones introduced to aid admins in managing
iPhones and iPads. This is where profiles enter into the picture, which
cover a lot of needs of an administrator, but not all.

iI0S Device Management

The Mac was growing its presence in the enterprise, but another big
change was coming. This time, rather than try to work within the confines
of corporate dogma surrounding how the business of IT was done, Apple
would start to go their own way. This was made possible by the increasing
dominance of the iPhone accessing Exchange servers and the fact that
suddenly employees were showing up with these things and using them
at work. Suddenly, companies needed to manage the OS that ships on
iPhone, iOS.

The original iPhone was released in 2007, and iOS management
initially occurred manually through iTunes. You could drag an app onto
a device and the app would be sent to the phone over the USB cable, and
some settings were exposed to iTunes. Back then, you had to register an
iOS device with Apple by plugging it into iTunes in order to use it. You
could also backup and restore a device using iTunes, which came with
some specific challenges, such as the account you used to buy an app
would follow the “image” to the new device. Additionally, if the backup
was encrypted or not determined, what was stored in the backup and
some information might have to be reentered.

This led to profiles. Profiles were created using a tool called the iPhone
Configuration Utility, released in 2008. A Profile is a small xml file that
applies a given configuration onto an iOS device. This was necessary because
developers wanted to control what could be done on iOS devices. One of
those configurations was the ability to install an app over-the-air that was
hosted on an organization’s own web server, provided the .ipa mime type on
the web server was defined. This basically mirrored what the App Store was

26

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

doing and paved the way for internal app stores and profiles that were hosted
on servers, both of which could be installed using in-house app stores.

Profiles were a huge paradigm shift. Instead of growing a
library of scripts that customers needed to learn, modify, and
deploy, profiles allowed us to start moving in a unified direc-
tion for configuring settings across the OS and applications,
on both iOS and macOS. I think it's representative of why
adoption of Apple has been so strong: they are able to re-
architect major aspects of the platform relatively quickly,
which allows them to remove barriers to adoption rapidly.

—Zach Halmstad, Co-Founder, Jamf

iPhone OS 3.1, released in 2009, came with the mail client in iOS
reading and respecting any Exchange ActiveSync (EAS) policies. These
were policies configured on an Exchange server that were read by clients
that then gave the institution control on the ability to limit various
features of the device, such as restricting the use of the camera or forcing
a password to be used to wake a device up. EAS policies had been
introduced by Microsoft in 2005, as part of the Exchange 2003 SP2 release,
but had mostly been used to manage Windows Mobile devices.

At this point, Apple was getting some larger deployments, and it
quickly became clear that plugging devices into iTunes and waiting for
long restores in a monolithic imaging kind of way was just not going
to work. The first iteration of iOS device management techniques that
survives to this day brought profiles. But the success of the iPhone 4 in
2010 and the iPhone 4s in 2011 meant we needed better tooling than
using iTunes to restore devices and iPhone Configuration Utility to apply
profiles. In 2012, the ability to create profiles and apply them to devices
was moved into a new tool called Apple Configurator, which is still used
today for building custom profiles.

Apple Configurator could do a lot more than install profiles, though.
Apple Configurator also brought the ability to back up, restore, and
install apps using Volume Purchase codes from the App Store. You

27

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

could also build complex workflows to do all of these by plugging an
iOS device in just once. And these days, the most important thing Apple
Configurator can do is automatically enroll an iOS device into a Mobile
Device Management solution.

Mobile Device Management

Apple Push Notifications were introduced in 2009, and MDM was built on
top of that the following year. MDM, short for Mobile Device Management,
was introduced in 2010, along with iOS 4. Initially MDM was used to
manage profiles on iOS, thus why Apple called their MDM service in
macOS Server Profile Manager. In addition to managing profiles, three
actions were supported in that original release: locate, lock, and wipe.

Since the initial release, MDM capabilities have grown over the years,
as shown in Table 1-2. Each update brings more into MDM and means
device administrators have to script and perform custom workflows to
manage various features.

Table 1-2. MDM capabilities by OS, per year

i0S mac0S Year New Capabilities

Version Version

4 N/A 2010 Volume Purchase Program (VPP), Mobile Device
Management (MDM), MDM for the Mac

5 10.7 2011 Over-the-air OS Updates, Siri management,
disable iCloud backup

6 10.8 2012 APIs for third-party developers, Managed Open In,
Device Supervision

7 10.9 2013 TouchlD management, Activation Lock bypass,
Managed App Config

(continued)

28

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Table 1-2. (continued)

i0S mac0S Year New Capabilities

Version Version

8 10.10 2014 Device Enrollment Program, Apple Configuration
enrollments

9 10.11 2015 Device-based VPP, B2B App Store, supervision
reminders, enable and disable apps, home screen
control, kiosk mode/app lock

10 10.12 2016 Restart device, shut down device, Lost Mode, APFS

11 10.13 2017 Classroom 2.0 management, Managed FacelD
management, AirPrint. Add devices to DEP, QR
code-based enroliment with some MDMSs, User-
Approved Kernel Extension Loading for Mac, user
approval of MDM enroliment for Mac

12 10.14 2018 Apple Business Manager, OAuth for managed
Exchange accounts, managed tvOS app
installation, password auto-fill restrictions

13 2019 Content Caching configuration, Bluetooth

management, autonomous single app mode,
0S update deferral, automatic renewal of Active
Directory certificates

Apple continues to evolve the device management toolset made

available through MDM, sometimes causing traditional agent-based

management to deprecate features that tapped into then unsupported

areas of the filesystem. At the same time, the original programs had too

many acronyms and were too disconnected and therefore much more

difficult to access for new administrators of the ecosystem, who continue

to flood in more rapidly than ever.

29

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Apple Device Management Programs

The App Store is arguably the reason that iOS is so popular. Need we say
more than “there’s an app for that”? The App Store deputed in 2008, the
day before the iPhone 3G was released. It was an immediate success, and
while it launched with 500 apps, that number has grown to well over 2
million now.

The App Store has created a cultural shift in how people use
computers. Need an app to manage HR operations? There’s an app for
that. Need an app to look up CIDR tables? There’s an app for that. Need
an app that lets you make fart sounds? Obviously that was one of the first
apps. Businesses and schools started using these devices at scale. But
there was a gap: in order to get apps to users, you had to install them as
an App Store user that kept users from using their own accounts, or you
had to distribute gift cards which came with tons of legal and accounting
problems, as these apps were basically gifted to personal accounts.

As with all things, large customers wanted a way to buy apps en masse,
and so the Volume Purchase Program (VPP) came to the App Store in 2010,
allowing customers to purchase apps in bulk. The VPP initially involved
basically creating large tables of gift codes that were doled out to users,
which could be done through Apple Configurator with a fancy spreadsheet.

The VPP evolved over the years, first adding the ability to revoke
codes and then the ability to assign apps over-the-air through, which still
required a user to associate their personal Apple ID to an organization
(although apps were revocable so it could be reclaimed when employees
left an organization). The VPP also started being managed over-the-air
using a Mobile Device Management solution. The more recent
enhancements have included a B2B app store, which has apps that aren’t
publicly available and device-based VPP, which ties apps to devices
enrolled into an MDM through the DEP to a given organization.

The Device Enrollment Program (DEP) was launched in 2014.
Organizations need to either be a school or have a DUNS number from

30

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Dun & Bradstreet (in order to prove they are a legitimate company).
Enrollment via DEP proves that an organization owns a device, and so
Apple provides special management features that allow greater control by
a centralized device management solution, such as the ability to force a
device background or the ability to skip the confirmation screen before an
app is being deployed on a device. In 2018, recognizing that some devices
weren'’t a part of DEP for various reasons, Apple also added the ability to
enroll i0S devices into DEP through Apple Configurator.

All of these acronyms can provide unnecessary friction to learning to
work with Apple. Therefore, Apple School Manager (ASM) was released
in 2016, which also added the Classroom app into the mix. ASM provides
a single portal for managing these Apple services as well as a means of
managing classroom rosters. This is really a means to make it easier to find
the things you need when setting up MDM services.

Apple Business Manager was released in 2018, bringing all of the
ASM options applicable to businesses into a new program. As with ASM,
organizations now have a single location to obtain VPP tokens and assign
servers for DEP-based devices associated with a given account.

Enterprise Mobility

The first real mobile management solution to gain traction was SOTI,
which launched in 2001 with an eye toward leveraging automation using
mobile devices and got into device management when those options
started to emerge. More and more IT departments wanted “over-the-air”
management, or OTA management. So AirWatch, founded by John
Marshall in 2003 as Wandering Wi-Fi, was the first truly multi-platform
device management solution that included iOS device management.
During that same time frame, Jamf, Afaria (by SAP), and Mobilelron,
founded by Ajay Mishra and Suresh Batchu, in 2007, were also building
similar OTA profile delivery techniques leveraging the original MDM spec.

31

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

At this point, most OTA management tasks (such as issuing a remote
wipe or disabling basic features of devices) were done using Exchange
ActiveSync (EAS). As you can see in Figure 1-11, you could control basic
password policies as well as some rudimentary devices settings such as
disabling the camera. With this in mind, Apple began to write the initial
MDM specifications, paving the way for an entire IT industry segment to
be born.

Default Properties X

General Password | Sync Setthgs' Devicei Device Applicationsl Other I

IV Require password
vV Require alphanumeric password

Minimum number of character sets: |3

[~ Enable password recovery
¥ PRequire encryption on device
™ Require encryption on storage card

vV Allow simple password

¥ Number of failed attempts allowed: |8
V' Minimum password length: |4
[V Time without user input before password must be |1 5

re-entered (in minutes):

™ Password egpiration (days): |
Enforce password histony: |D

Figure 1-11. Exchange ActiveSync Policies

32

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

This was the landscape when the first edition of the Enterprise iPhone
and iPad Administrator’s Guide was released by Apress in 2010. Additional
MDM solutions were soon to follow. TARMAC released MDM for i0S
devices using a server running on a Mac in late 2011. AppBlade and Excitor
was also released in 2011.

Over the course of the next 10+ years, MDM became one part of a
number of other lovely acronyms:

e Mobile Content Management, or MCM, is a system of
distributing content to mobile devices.

e Mobile Identity Management, or MIM, refers to a
centralized identity provider hosting SAML or OAuth

services.

o Enterprise Mobility Management, or EMM, gets more
into managing apps and content that gets put on devices.

e Unified Endpoint Management, or UEM, brings
traditional laptops and then desktops into the
management feature, merging EMM with traditional
device management.

A pivotal moment for Apple device management came in 2011, when
Blackberry announced that you would be able to manage Apple devices
with their Blackberry Enterprise Server (BES), which had been created
in 1999 to manage Blackberry devices. This represented a legitimization
of sorts for Apple mobile devices in enterprise environments and also
an opportunistic play for licensing due to the fact that the devices were
becoming such a mainstay in the enterprise and a shift toward UEM
that would continue until 2018, when BlackBerry Enterprise Server was
renamed to BlackBerry Unified Endpoint Manager.

An explosion of MDM providers has occurred since Blackberry
added Apple to their platform, to keep up with the demand of the
market. Filewave and LANrev added MDM to their products in 2011
with new iOS vendors NotifyMDM and SOTI entering into the Apple

33

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Device Management family. Then Amtel MDM, AppTrack, Codeproof,
Kony, ManageEngine (a part of Zoho corporation), OurPact, Parallels,
PUSHMANAGER, ProMDW, SimpleMDM, Sophos Mobile Control, and
Tangoe MDM were released in 2012. MaaS360 was acquired by IBM in
2013, the same year auralis, CREA MDM, FancyFon Mobility Center
(FAMOC), Hexnode, Lightspeed, and Relution were released and when
Endpoint Protector added MDM to their security products. Citrix also
acquired Zenprise in 2013 to introduce XenMobile. Jamf Now (originally
called Bushel), Miradore, Mosyle, and ZuluDesk (acquired by Jamfin 2018
and being rebranded to Jamf School) were released in 2014, which also saw
VMware acquire AirWatch for $1.54 billion dollars and Good Technology
acquire BoxTone, beefing up their Apple device management capabilities.
The year 2014 also saw Microsoft extend Intune to manage iOS devices.

Working every day to boost our users’ experiences with the most
powerful, intuitive and elegant devices is amazing. As an Apple-
only MDM provider, we have the joy of working every day with
the most innovative company in the world and with the most
advanced customers in the market. It's all about working 24x7
with the best people in the computer world and we love it!

—Alcyr Araujo, Founder and CEO of Mosyle

Things quieted down a bit, but in 2016 after Apple started publishing
the MDM specifications guide freely, an open source MDM called
MicroMDM was initially committed to github, making it easier for
organizations to build their own fork or implement that should they
choose. Others crept on the scene as well during those years, such as
Absolute Manage MDM, AppTech 360, Avalanche Mobility Center,
Baramundi, Circle by Disney, Cisco Meraki (by way of the Cisco
acquisition of Meraki), Kaseya EMM, SureMDM, Trend Micro Mobile
Security, and many others. Each one of these tools has a great place in the
space. Some focus on specific horizontal or vertical markets, while others
focus on integrating with other products in a company’s portfolio.

34

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

With such a wide field of MDM solutions, Apple has been able to focus
efforts on building a great API and not spend a ton of time on building out
many of the specific features needed for every possible market.

A number of family or residential MDM providers have also sprung
up, including Circle by Disney. The one market Apple has not made MDM
available to has been the home. Apple has a number of tools they believe
help families manage devices. It's been touted as a violation of user privacy
to deploy MDM for home environments and in fact is a violation of the
APNs terms of service. Whether we believe this to be valid or not, OurPact,
initially launched in 2012, was shut down in 2019 along with a number of
other screen time apps for leveraging MDM to control various functions of
iOS devices. Some of those have been restored to the app stores, but Apple
is getting more specific about requirements for future acceptance.

MDM isn’t the only feature that began on iOS and ended up on the Mac.

iI0S + Mac 0S X = mac0S

Apple once dedicated an entire keynote to “Back to the Mac.” macOS
shows a slow unification of features from iOS. This isn’t to say that the
operating systems will eventually merge, but concepts inarguably are
coming to the Mac from iOS.

This began with the App Store, which was released for iOS and then
came to the Mac in 2011 in Mac OS X 10.6.6. Software updates were later
moved to the App Store, unifying how updates are centralized. Software
updates for iOS have always been free. But up until 2013, they were not free
for the Mac. Mavericks was free as was every operating system thereafter.
Updates for iOS have always been free (except a couple of releases for the
iPod Touch, which were legal and accounting issues more than technical
or marketing issues). This is one of the bigger ways that iOS has changed
not only the Mac, but the entire IT industry (although while Microsoft
hasn’t made Windows free, it is very easy to legitimately get it for free now).

35

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

tvOS

The Apple TV initially ran a modified version of Mac OS X 10.4 in 2007.
It was a great idea but a little too early to market. It had a spinning disk.
Soin 2010, the tvOS was introduced as a modified iOS 4 for the second-
generation Apple TV. The operating system has evolved since then to be
very similar in terms of management to iOS, albeit a bit more restrictive in
terms of low-level functionality exposed to users.

Initial management for tvOS came in Apple Configurator, which you
would need to plug a device into in order to load an 802.1x certificate. You
can plug devices into Apple Configurator and deploy profiles (including
802.1x configuration and MDM enrollment profiles). Later we were
able to load devices into DEP so we could manage them over standard
MDM. Management commands can be a bit different, so not all MDM
providers support tvOS, but as management of the platform matures, more
and more do.

Imaging Is Dead?

NetBoot shipped in 1999 at MacWorld. NetBoot allowed an administrator to
boot a computer to an image stored on a centralized server. NetBoot was cool
but was only adopted in niche environments; given the rapid acceleration of
the desktop and the less rapid acceleration of the servers, networks and disk
drives used to host and facilitate access to NetBoot servers.

Apple Software Restore then shipped in 2002. It had existed since the
Mac Classic days as an internal restore tool, but after the public release, the
combination of these formed the foundation of the imaging story for the
Mac for the next 15 years. You would boot a Mac to a NetBoot volume and
then since the hard drive wasn’t being used, you could reformat the drive
and restore an image to it.

An “image” refers to a digital replica. Imaging a device is taking a
snapshot of the boot volume (and maybe other volumes if you so choose)
of a device and then replicating that snapshot onto other devices. The Mac

36

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

community has often referred to this practice as “monolithic imaging” and
usually involved setting up a Mac just how you wanted it and then capturing
that image with a tool like the asr command, which is built into the Mac.

Monolithic imaging first became a common practice around 2004
and evolved so you could stream that image over a network and lay those
bits down on a hard drive. Other evolutions involved running scripts to
normalize the volume the image would be applied to and post-flight scripts
to perform additional tasks on the image which hadn’t been booted, as well
as installing standard Apple packages during the imaging process.

Imaging then became modular and tools such as AutoDMG (https://
github.com/MagerValp/AutoDMG) were released to build images, and
DeployStudio (shown in Figure 1-12) was released to deploy images -
both addressing issues administrators found with the built-in NetBoot,
NetInstall, and NetRestore tools from Apple. These allowed you to build a
master out of packages and dmg files that were then synthesized into an
image. As you can see in Figure 1-13, these workflows started out a little
tough to use but quickly became GUI-driven and much more accessible to
new administrators.

» i commuTINS

Figure 1-12. DeployStudio

37

https://github.com/MagerValp/AutoDMG
https://github.com/MagerValp/AutoDMG

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

L] AACOMG ene Log
= Timastame Ll Mase »

2016-12-08 #9216 Infe Phase ‘Scanaisg disk inage® with weight 1.8
" I0L6-13-08 E9:04:18 Info Phase “Scaralsg divk inege® with welght 150.8
weight 17.8

NLB-12-80 58418 Tnfe

WL6-12-99 9319 Inte
0L6-12-98 #9004:19 Infe
IWL6-12-09 #9104219 Motice
2W16-12-08 #9019 Metice
IW16-12-08 #9:084:19 Tnfe
WL6-12-08 R8T

Mag 05 X 10121 1882650

{Tunest2. 8,31 048181,
B Apely updates .

W iTunes 1253

WL6-12-00 050420 Info 4 pockages to dastalls
WL0-12-80 §5:04:28 Info Jprivatestap/dug, cdVLB)/Packages D5 Tatall. npky
IWL6-12-08 ¥5I04120 Info JPrivaTestap/ang, STy TI/ I TALL TTenes. phy

Adcitional software:

W ApoleSetupDone.ckg
W mundtoos-2.8.2. 2856 0kg

Sarve At

o custom 161 208-16.12.1- 1038 hs.dng
i Installing 05
staieg 0SSl mosg
Buld View Leg

Figure 1-13. AutoDMG

But the times are changing and the device security landscape is
changing in a way that Apple doesn’t seem so friendly to laying bits on
devices. File systems don’t change often. Apple introduced HFS in 1985
to replace the Mac File System. It went through a few revisions over the
decades, most notably becoming HFS+ in 1998. But it makes sense that
Apple would move toward leveraging a filesystem across all operating
systems. This led to APFS (Apple File System) file system being introduced
on March 27, 2017, for iOS and then rolled out to tvOS and watchOS. By
September of that year, it came to the Mac in macOS 10.13.

With the move away from imaging I thought for sure that apfs
would be the death knell for AutoDMG. Apple has a long tra-
dition of not discussing upcoming changes in public, so listen-
ing closely to what they announce at WWDC is critical — and
always, _always_, test the betas. In the end apfs turned out to
be quite uneventful for AutoDMG itself and the surrounding
ecosystem had to bear the brunt of the changes.

—Per Olofsson, creator of AutoDMG

38

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

The introduction of APFES to iOS and then macOS gives Apple software
engineers a lot of options around how to slice disks, how to leverage
volumes to provide device management options, and potentially how
to freeze portions of the Mac file system from being edited. But most
importantly, it means Apple administrators need to embrace a whole new
way of doing things.

You can use Apple Configurator to explode an ipsw file onto an iOS
device. This ipsw is signed by Apple, cannot be altered, and is similar to
the old monolithic restore process with the exception that you can'’t install
anything into the image before applying it to devices. The Mac process
of imaging involves setting devices up similarly to how it’s done in iOS
(shocking). You boot to a network volume hosted on the App Store, the
operating system is downloaded and installed onto a Mac, or use the
createinstallmedia command to build an operating system installer that
can then be used to install Macs without booting them to the recovery
partition/App Store.

macO0S — Unix = apple0S

As with Ragnarok, someday we will return to our roots with the Mac
losing part of what makes it work so well in a corporate environment.
From 10.2 on, the Mac community gained momentum, with multiuser
operating systems; fast user switching; Active Directory integration; good
information security policies; mass deployment techniques on par with
Windows, if not better; and a number of other features that made the Mac
a first-class citizen.

But Apple has been playing catchup and has realized that the goalpost
continues to move in being a first-class citizen on corporate networks. The
success of i0S has taught Apple that they can redefine corporate dogma
rather than just play catchup. And that mentality has started leaking into
the Mac. Part of that redefinition is SIP.

39

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

System Integrity Protection, or SIP, is a mode for macOS where
full sandbox controls are implemented in such a way that parts of the
operating system can’t be written to, even if you elevate your privileges to a
super user. There are other aspects of SIP such as handling memory more
securely as well, but the most noticeable aspects for many administrators
will involve not being able to write into /System folders and not being able
to remotely set NetBoot. This philosophy comes from the fact that iOS is
arguably one of the most secure operating systems ever conceived.

There are a number of features in iOS that provide such a high level
of security on the platform, although arguably the most important is how
apps are sandboxed. Every iOS app comes with its own sandbox, which
means that apps can communicate with one another, but only if they have
what are called entitlements, to do so, which typically involve a user either
allowing a temporary connection between apps using a share sheet, or
allowing an entitlement in order to use the app, like how many apps ask
to access your camera. Over the past few years, this design philosophy has
then come to the Mac.

For 10.14.4 and below, to distribute apps through the Mac App Store,
developers need to turn on an App Sandbox and have entitlements defined
for apps in more and more cases. Higher versions of the operating system
actually require certain entitlements be explicit in order for the app to get
notarized by Apple. Apps that aren’t notarized then can’t be opened. As of
10.14.5 and macOS Catalina, an app does not yet have to be sandboxed to
be notarized. The only requirement is the “hardened runtime.” https://
help.apple.com/xcode/mac/current/#/dev033e997ca.

Apple has sandboxed part of the operating system. We will discuss
sandboxing and other security measures throughout the book, but there
are other ramifications of these moves. In a POSIX-compliant Unix
environment, administrators with an appropriate level of privileges
(e.g., root access) can do whatever they want on a device. They're often
called super users for just this reason. But with sandbox, Apple can
actually restrict you from writing to certain directories on the file system.

40

https://help.apple.com/xcode/mac/current/#/dev033e997ca
https://help.apple.com/xcode/mac/current/#/dev033e997ca

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

While macOS has been certified as compatible with the Single UNIX
Specification version 3, or SUSv3 for short, this is more tied to the core of
macOS, Darwin, than the layer that an end-user interacts with.

Each variant of an operating system seems to have their own way
of dealing with device drivers and that’s probably more true for UNIX
compatible operating systems than any others. The concept of an
extension dates back to the Mac OS Classic era. An extension was a file
that basically provided kernel access, allowing devices to be plugged into
computers. Mac OS 9 had a tool called the Extension Manager, which
allowed a user to turn these drivers on and off easily. If an extension
caused a computer to become unbootable, you could easily boot the
computer into safe mode, drag all the extensions out of their folder and
into a folder called Disabled Extensions on the desktop, and reboot and
viola - the system was good.

In Mac OS X and later macOS, a kernel extension (often referred to as
a kext) is code loaded directly into the kernel of the Mac. This allows much
lower level access that’s typically necessary for software that needs to
interrupt processes (such as security software) or software that interfaces
with physical devices where Apple doesn’t provide an API for doing so.
Most operating systems have something of this sort, for example, on
Windows you have Kernel-Mode Extensions.

Given how low-level kexts can run, there’s always been a concern
about the security of a kext. Kexts had to be signed as of Mavericks. Apple
went further in restricting kexts in High Sierra, when Secure Kernel
Extension Loading forced a user to accept a kext (and Apple disabled
synthetic clicking, so administrators couldn’t programmatically accept
their own kext). The exceptions are that an MDM can preemptively enable
a kernel extension and the “spctl kext-consent add” command can do so if
you have administrative access on a client computer.

In general, forcing acceptance of kernel extensions and acceptance of
MDM enrollment is another step toward a more iOS-centric Mac. This isn’t
to say that we’'ll lose the ability to access a command line or write code,

41

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

but as the distribution of Macs increases, we need management options
simpler so they’re more accessible, while also being more secure, to keep
our users safe. While the kernel extension is a uniquely Apple solution,
sandbox is actually derived from the sandbox facility in BSD, a core part
of trusted BSD. According to how future options are implemented, we
can still have fully manageable and nerdy tools without sacrificing these
elements that Apple has always held so dear.

Moving Away from Active Directory

One of the main reasons the Mac was accepted as a standard in many
companies was the ability to work within standard Active Directory
environments. From Mac OS X 10.2.x until today’s macOS versions, many
Mac Admins spent countless hours refining and perfecting their Active
Directory scripts. Out of that wealth of knowledge about how every part
of Active Directory worked, we also began to realize we might be wrong in
how we were using Active Directory with the Mac. While joining our Macs
directly to an Active Directory domain provided some advantages, like
being able to get Kerberos tickets and having password management, it
also introduced issues like keeping login keychain passwords and FileVault
account passwords in sync with the password used for the user’s Active
Directory account. These password problems were solved by using local
accounts on the Mac, but local accounts were unable to communicate at
all with the AD domain.

The open source NoMAD project was introduced in 2017 by Joel
Rennich and represented a seismic shift in how people charged with
managing Apple devices thought about Active Directory and how their
Macs should connect to it. NoMAD, short for No More AD, was a project
that allowed admins to obtain Kerberos tickets from Active Directory and
do many of the common tasks required in an Active Directory environment,

without actually joining the machine to the domain. This new approach

42

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

of using middleware to connect to Active Directory allowed the use of
local accounts on the Mac, addressing the password problems, while still
enabling NoMAD-equipped Macs to obtain Kerberos tickets and password

management from the AD domain.

As the father of the Magic Triangle(tm) I get that it’s a bit weird
to be telling you not to bind anymore... but those days are
done. The modern Mac is primarily a single user system that
barely, if ever, touches the corporate network anymore, so we
should stop acting like a persistent LDAP bind is doing any-
body any favors.

—Joel Rennich, Founder of NoMAD and Director of Jamf
Connect, Jamf

NoMAD was sold to Jamf in 2018 and portions are now part of a
proprietary product called Jamf Connect. Since the early days of NoMAD,
the paid version of NoMAD Login Window (now called Jamf Connect) has
since expanded to allow for Smart Card authentication, and now works
with federated identity providers such as Azure AD, Okta, Ping, and Google.

Joel brought us NoMAD. In terms of his place in the Apple Device
Management history books, though, almost as importantly, Joel also
founded a web site called afp548.com. In doing so, he and his cohort Josh
Wiesenbaker were laying foundation blocks for what has evolved into the
latter-day Apple admin community.

The Apple Admin Community

There is a strong community of Apple administrators, which we often
self-identify as MacAdmins. The community idea is pretty Apple-centric -
dating back to when Guy Kawasaki started the concept of evangelizing
the platform as Apple’s Chief Evangelist from 1983 to 1987. Ways to get
involved in the community include going to conferences, attending user
groups, and interacting with the community online.

43

http://afp548.com

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Conferences

This community initially grew out of Macworld and the Apple Worldwide

Developers Conference (WWDC), which both started in 1987. The
community slowly matured, usually meeting in sessions, expo booths,

and then bars (like Dave’s) around the conferences up until 2009 when

Apple announced it would be the final year they would be involved in the
conference. Many Apple products had been announced at Macworld, but

that would shift to WWDC in the future.

But with the explosion of iPhones, WWDC became less focused on

administration topics and much more focused on software development

(after all, it is a “developers” conference). WWDC also became so popular

that you now have to participate in a lottery and less and less admins

could actually go. And so 2009 brought the modern era of conferences.

MacSysAdmin in Gothenburg, Sweden, came in 2009. And once again,

the Apple team at Penn State stepped up and created the PennState Mac
Admins conference in 2010.

44

From the earliest days of Macintosh, there’s always been some-
thing special about those that were creating or supporting
Apple technologies. That community, the Apple technical
community, has always been at the core of MacTech. It’s the
reason that we created the live, in-person MacTech events
more than a decade ago. Some 150+ days of events later, the
community continues to come together for an amazing expe-
rience, seeing incredible speakers and content, and engaging
in the ever popular “hallway track” Those awesome face-to-
face interactions both bond and power an exceptional com-
munity. As we move into the second decade of MacTech’s live
events, we’ll continue to enable the community to come
together in this unique way.

—Neil Ticktin, CEO, MacTech

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

At this point, a number of vendors have also built up conferences
and parts of the community have fragmented off into the conferences
that most fit their needs. This is the nature as people need to find more
focused content for their specific jobs, especially since many tasks have
become vendor or open source product-centric. A quick overview of the
conferences available are as follows:

o ACES Conference: ACES is a conference for Apple
Consultants. Held June 4 to 6 in Kansas City, MO, ACES
is areally good introduction for many on running a
Mac consultancy, represented by many of the larger
and more well-established Apple consultancies in the
United States and Canada.

e Command-IT: 2018 was the first year of the Command-
IT conference in France! Based on the people putting it
on, I'm sure it'll be fantastic. More at www.command-it.fr

o Filewave Conference: The Filewave Alliance
Conference focuses on the latest and greatest with
FileWave and provides systems administrators of
FileWave environments with access to developers,
deployment information, etc.

o JAME Software’s INUC (JAMF Nation User Conference)
is a conference primarily geared at the Apple

Administrator who use the Casper Suite for their
administrative efforts. There are some sessions on
general administrative topics, such as what a plist is and
general shell scripting. If you spend a lot of your day in
Jamf Pro, then this is a great conference to check out,
held in Minneapolis in the fall, November 12 to 14, 2019.

45

https://acesconf.com
http://www.command-it.fr
https://www.filewave.com/the-news/filewave-alliance-conference-save-the-date
https://www.filewave.com/the-news/filewave-alliance-conference-save-the-date
https://www.jamf.com/events/jamf-nation-user-conference/2018/

CHAPTER 1

46

THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Mac Admin and Developer Conference UK: MacADUK
is a conference for Apple administrators and developers,
with a lot of sessions and good content, held in London
from March 26 to 27. I'll have to miss this one as I'll be
surfing in South America again, no offense.

MacDevOps YVR: MacDevOps is a conference from
June 12 to the 14 in Vancouver, with sessions ranging
across the DevOps build-train. This one is definitely for
the scripty among the Mac community who are heavy
into systems automation and, well, DevOps as the

name would imply.

MacSysAdmin: All things Apple, in Sweden. Definitely
one of my favorite conferences ever. This will be my
tenth year speaking there. Lots of really good content,
with a very global perspective. Really great people

to network with as well, in a relaxed atmosphere.
MacSysAdmin 2019 will take place in Géteborg,
Sweden, from October 1 to 4.

MacTech: This conference is a good look at how
environments grow (if you're growing) or to get

some really good tips and tricks for your grown-up
environment. MacTech Conference is held in LA, so
bring your wetsuits and I'll have to show you some of
the better surfing spots in South Bay. This year, it'll be
October 15.

Mobile World Congress: I usually find the people at

a show like this to be less technical, more business
analysts, and more interested in the why and results than
the how. It’s a good group but different from those who
spend all of their time integrating systems. Held in early

http://macad.uk
http://www.macdevops.ca
http://www.mobileworldlive.com

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

May, with global shows globally, later in the year. For a
sampling of sessions, check out their YouTube channel
atwww.youtube.com/user/GSMAOnline/playlists.

Mobilelron Live: Mobilelron has a new(ish) conference

in New York this year. If you use Mobilelron to manage
your Apple devices, definitely worth giving this one a
look!

Objective By The Sea: Security has been a topic that has

come up from time to time at MacAdmin conferences.
But Patrick Wardle did a fantastic job putting together
a lineup of speakers for the first real security-focused
conference for MacAdmins. I didn’t make it to the
inaugural conference but heard great things (like really
awesome thing). It was in November, so might not
come back around for a bit, but when it does, make
sure to check it out!

Penn State MacAdmins Conference: 2019’s event

will be held July 9-12 at the Penn Stater Hotel and
Conference Center in State College, PA. Penn State Mac
Admins emerged during a time of uncertainty with
WWDC and systems administration topics. If you're
part of the infamous MacEnterprise list that Penn State
runs, and you find the conversations there relevant to
your job, then this is likely a conference you’ll want to
attend. It’s priced well, vendor agnostic, and run by one
of the most talented MacAdmin teams around, too!

VMworld (formerly AirWatch Connect) is a great
conference for people managing heterogenous
mobile deployments that rely on Workspace One and
AirWatch. The conference will be held this year in San
Francisco, from August 25 to 29, 2019.

47

http://www.youtube.com/user/GSMAOnline/playlists
https://www.mobileiron.com/mobileiron-live-2019
https://objectivebythesea.com

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

« WWDC: Everyone knows about Apple’s Worldwide
Developer Conference. But it’s getting more and more
difficult to get tickets to the conference, and if you use
a third-party tool to manage your systems and aren’t
writing code, you can watch the sessions online and
save your continuing development/training funds to
check out one of the other conferences.

o X World: Originally part of the AUC in Australia, X
World has topics ranging from Munki to Casper. Initially
avery education-centric conference, there were Apple
administrators from around Australia gathered to share
their knowledge and green information from others
on managing large numbers of Apple systems. And the
organizers and delegates are pretty awesome people to
hang out with. Great networking.

Online Communities

The Apple administrative community began to emerge in 2001 and
congealed around a few specific places. One was the Mac Enterprise list-
serve, from Penn State University. Another was the Mac OS X Server list
from Apple. These were active communities that were really sometimes
very long email threads, but we all got to know each other. Another was
afp548. The port for the Apple File Protocol is 548. The afp548.com web
site was launched in 2002 by Joel Rennich with a little more focus around
the server product and later around directory services and imaging, or
large-scale deployment practices. Both Mac Enterprise and afp548.com are
important as they represented the creation of a community built around
Apple Administration.

48

https://developer.apple.com/wwdc/
https://auc.edu.au/xworld/about/

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

Over time, email lists can grow unwieldy. Many conversations moved
to specialized lists, chat rooms, Twitter, or bulletin boards. For example,
in 2011, Jamf created a message list but eventually moved that over to
a web portal that now boasts over 40,000 active users and over 30,000
discussions. Other vendors created message boards and communities as
well, and the community appeared to be fragmenting. But then came the
MacAdmins Slack channel.

The Mac Admins Slack is a unique online community for a
few reasons. There is a general sense of thoughtfulness among
members. Time and time again I see someone go to lengths to
help another member that they have no prior connection with,
just for the good of the community. Likewise, there's a strong
sense of authenticity. Vendors, like us, can become involved,
but we're really there to support the community and not to
treat it like a promotional channel. It's also not just a slack. It's
a podcast, it's local meetups, and more. Connections may ini-
tially be made online, but they can grow outside of it. The
community extends far beyond a particular slack channel.
The Slack is just a touch point.

—Taylor Boyko, Founder and CEO at SimpleM DM

The MacAdmins Slack instance was introduced in 2015. Since then,
“Slack” as it seems to lovingly be called has grown to over 25,000 users
who have sent over 250,000 messages. As can be seen in Figure 1-14,
these Apple admins discuss everything from upcoming betas to DEP
deployments, imaging, and even local groups for each major city and/
or country in the world. More focused than checking for #macadmins on
Twitter, more history than IRC, and a great place to ask a polite question
and potentially save yourself weeks of hunting for the answer to a problem.

49

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

MacAdmins - G4 #blog-chat © O & a @

g

Maonday, April 1st

_ scriptingosx #/
hitps:f'script

All Unreads #/ Scripting OS X
All Threads On the Shebang
Every script you want to run from the command line should have a)

shebang as the first line. Note: | talked about this in my MacSysAdmin
talk. | wanted to go inte more detail here. You can have scri...

macadmpodcast

macsysadminconf

cjcox
L+ Back in the olden days the way Unix determine csh or sh, was whether or not the first character
was #. 5o, | began my "sh” scripts with : and my "csh® seripts with #. No shebang back then.

Some of my scripts out there still do that biw,

AnTmac P B srahamrpugh © 1107 Am
- bash and sh are the same thing on macO$ - both actually bash (though not the same binary, not
7 quite the same size).
autopkg
backroom $ sh --version
GHU b version 3.2.57(1)-release (xBE_64-apple-darwinli)
blog-chat Copyright (C) 2087 Fres Software Foundation, Inc.
blog-feed
$ bosh --version
cascadia WU bash, version 3.2.57(1)-release (x86_64-apple-dorwin1s)
danger-zone Conurisht () 28A7 Feas Softwars Eousdotion Tnc
dep ¥ @ @

Unread Mentions &

Figure 1-14. The MacAdmins Slack

The MacAdmins Slack channel is one of the most important things to
happen to the MacAdmins community. With over 650 channels to follow,
Slack could further fragment admins, but the fact that so many people
are in a lot of different channels actually brings more people together in
better contexts. The fact that you don’t end up reading a digest at the end
of the day and arguing about the way you responded to emails makes

conversations more inclusive.

User Groups

Apple has a long and rich tradition of sponsoring, facilitating, helping

out with, and sometimes just tolerating user groups. There have been
Macintosh user groups since as long as we can remember. Over time, those
charged with larger-scale care and feeding of devices have split off into
their own, professional user groups. Simply searching for your city name

50

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

followed by MacAdmins and maybe user groups or meetups should find a

local chapter to get involved in.

Some available at the time of this book being written include the

following:

Apple Admins of LA and OC: www.meetup.com/Los-
Angeles-Mac-Meetup/

Austin Apple Admins: www.austinappleadmins.org

Boston Mac Admins: www.meetup.com/
bostonmacadmins/

Calgary MacDeployment Meetup: http://
macdeployment.ca

Chicago Mac Admins: www.chicagoappleadmins.org
Colorado iOS Admins: http://coiosadmin.tumblr.com

Denver Mac Admins: www.meetup.com/Denver-Mac-
Admins/

London Apple Admins: waw. londonappleadmins.org.uk
MacAdmin Monthly: www.macadminmonthly.org
[MacSysAdmin] Bier: http://macsysadmin.ch
MacBrained: http://macbrained.org

MacDMV (The DC Metro area Mac Admins group):
http://www.macdmv.com

NW Apple Administrators (Portland): www.meetup.com/
NW-Apple-Administrators-Eng-Architects-Support-
JAMF-Casper/

Perth Apple Admins: www.meetup.com/Perth-Apple-
Admins/

51

http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.austinappleadmins.org
http://www.meetup.com/bostonmacadmins/
http://www.meetup.com/bostonmacadmins/
http://macdeployment.ca/
http://macdeployment.ca/
http://www.chicagoappleadmins.org
http://coiosadmin.tumblr.com
http://www.meetup.com/Denver-Mac-Admins/
http://www.meetup.com/Denver-Mac-Admins/
http://www.londonappleadmins.org.uk
http://www.macadminmonthly.org
http://macsysadmin.ch
http://macbrained.org
http://www.macdmv.com
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/Perth-Apple-Admins/
http://www.meetup.com/Perth-Apple-Admins/

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

o Philly Mac Admins: www.meetup.com/Greater-
Philadelphia-Area-Mac-Admins/

o Providence Apple Admins: www.meetup.com/
providenceappleadmins/

e Apple Admins of Seattle and the Great Northwest: www.
meetup.com/Seattle-Apple-Admins/

e Sydney Mac Admins Meetup: www.meetup.com/
Sydney-Mac-Admins/

e Twin Cities Mac Admins Group: Twin Cities Mac

Admins

More come online all the time. Many now start out of MacAdmins
Slack channels or organize around those. And the topics are always
changing but man of those discussed build up to form a set of best
practices that can be summarized in a line in a balanced scorecard, one
way to easily visualize how an organization tracks performance of any
initiative over time. To see one of those, skip ahead to Chapter 12.

Summary

The pace of innovation in the early days of Apple was astounding. But
that seemed to trail off for a while. After Mac OS X came along, the first
ten years seemed to be trying to find an identity for administration. If you
listen, you'll hear people at Apple say “words matter” quite a bit. In 2008,
Steve Jobs said, “Why would I do anything for that orifice called the CIO?”
This sums up that period of time.

But the Apple administrative community pushed, and Apple learned
what larger organizations actually needed the devices to do and figure
out how to do those tasks (such as integrate with Active Directory) in a
way that preserved Apple values while still providing the tools needed to
manage devices en masse.

52

http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0CFMQFjAMahUKEwjl8duH9d3GAhUMkg0KHcZdDvk&url=http://www.mspmacadmins.org/&ei=WbqmVaXhGYykNsa7ucgP&usg=AFQjCNFKlRkPdoADHQFX0V9G_gCoT-DVzg&sig2=hdI6tPANxFMayKU4jFpPbg&bvm=bv.97653015,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0CFMQFjAMahUKEwjl8duH9d3GAhUMkg0KHcZdDvk&url=http://www.mspmacadmins.org/&ei=WbqmVaXhGYykNsa7ucgP&usg=AFQjCNFKlRkPdoADHQFX0V9G_gCoT-DVzg&sig2=hdI6tPANxFMayKU4jFpPbg&bvm=bv.97653015,d.eXY

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

The pace for administrators over the past 10 years has been
substantial. But always-on Internet, the explosion in the number of devices
we all have, and the ways we use those devices (like to stream music over
a HomePod) were barely even conceivable when the Mac was released.
Always-on Internet for every device you could have has caused that type
of change in almost every industry. The evolution to allow for more device
management has been a learning experience, both for Apple and for the
community of users and administrators they serve.

Perhaps what I respect about Apple most is that they know
who they are. Their focus on the individual has been relent-
less. In the face of many telling them to do something different,
Apple stays true to their DNA.

—Dean Hager, CEO Jamf

The tipping point in that evolution would be when Apple forged a
partnership with IBM in 2014, with Ginni Rometty and Apple CEO Tim
Cook (who spent 12 years at IBM) doing interviews (e.g., for CNBC) and
filmed walking around campus looking all kinds of pensive. Since then, the
focus on business has tightened and so enterprise adoption has exploded.

But as you can see throughout this chapter, the more things change,
the more they stay the same. The names of the tools have changed: At
Ease led to Macintosh Manager, which led to Workgroup Manager, and
eventually became what we now see as Profile Manager. The back-end
technology for management has changed with each of those names,
where we now have MDM as the predominant way to manage device with
some tools still having agents. But while the look and feel of the tools has
changed, the mission of each hasn’t changed all that much, much as the
buttons still say many of the same words from Apple Network Assistant all
the way through to Apple Remote Desktop 3.9.

In this chapter, we laid out the timeline of when various features and
components were released. We can’t cover all of the items in this book
at the level they deserve, especially given the number of vendors and

53

CHAPTER 1 THE EVOLUTION OF APPLE DEVICE MANAGEMENT

talented engineers that now work in the Apple space. When the first book
on managing Macs in the Enterprise was released, there were about half-a-
dozen management MDM vendors, and today there are well over 10 times
that. That doesn’t include security tools, backup software, groupware, and
other entire software categories we just skipped right over. But we can look
at general themes and provide guidance around each. And this guidance
begins in Chapter 2, when we look at what agent-based management
solution you will use to manage your Macs.

54

CHAPTER 2

Agent-Based
Management

This chapter is about agents that can run on a Mac. Agents are services,
or programs, that run on devices. These agents are specifically designed
to give a systems administrator command and control over a Mac and are
usually agents that start a listener on the Mac or tell the Mac to log into

a server and pull down management tasks from that server. These give
administrators the ability to control various aspects of computers from a
centralized server. Commands are sent to the device from the server or
pulled from the server and run on devices.

Over the past few years, Apple developers have started to reduce the
importance of agents on the Mac. Agents are still an important aspect of
macOS management and so it’s important to understand what an agent is,
what it does, and when to use one. Device management tools use agents,
security software uses agents, and a number of tools use agents to track
the licensing of their software on devices. Agents can do less and less with
every passing year, but they are still necessary.

One place where “less and less” has been problematic is device
management. Just keep in mind that any time you can do a task using
an agent or using MDM, make sure to use the MDM unless you have
areally good reason to use an agent. We're not back in the era of Desk

© Charles Edge and Rich Trouton 2020 55
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_2

CHAPTER 2 AGENT-BASED MANAGEMENT

Accessories from System 7, but we are in an era where user consent is
becoming more and more important, even for various tasks that would be
performed on devices we can prove the organization owns.

Neither iOS or tvOS allows for custom agents, but agent-based
management is (at least for now) a critical aspect of managing MacOS
devices, so in this chapter, we’ll review common agents designed for
the Mac and what they do. We'll cover MDM, which is an agent-based
management environment provided by Apple in the next chapter, and
provide much more information around how MDM works. MDM has been
referred to as “agentless” at times, but that really means it’s just an agent
provided by Apple.

Daemons and Agents

As mentioned, an agent is a process that runs on a device. These run
persistently and so they’re always running, and when configuring a
daemon or agent, you can flag them to restart in case they stop. If you open
System Preferences and go to the Sharing System Preference pane, you can
see a few agents. As you can see in Figure 2-1, those are often for sharing
resources over a network.

56

CHAPTER 2 AGENT-BASED MANAGEMENT

@ < g Sharing Q

Computer Name: CE’s MacBook Pro

Computers on your local network can access your computer at:

CEs-MacBook-Pro.local Edit...
On Service Screen Sharing: Off
Screen Sharing Screen Sharing allows users of other computers to remotely view and control
. ; this computer.
File Sharing
Printer Sharing Computer Settings...

Remote Login
Remote Management
Remote Apple Events

Allow access for: All users

© Only these users:
Internet Sharing

Bluetooth Sharing
Content Caching

Figure 2-1. The Sharing System preference pane

Each of these agents is a LaunchDaemon or LaunchAgent that loads on
the computer - for this example, we'll start File Sharing with Windows File
Sharing enabled. The first process that starts on a Mac is launchd, which
is then responsible for starting, stopping, and controlling all subsequent
processes based on the .plist file that defines them. This includes all
services required to make the operating system function. The easiest way
to see this is to open Activity Monitor from /Applications/Utilities and
select “All Processes, Hierarchically” from the View menu. Here, search for
com.apple.smbd (Figure 2-2) and note that it’s been started, has a PID of
194, and runs as root. The PID is the process ID.

57

CHAPTER 2 AGENT-BASED MANAGEMENT

ece Activity Monitor (All Processes, Hierarchically)
Q 0 #H- Memory Energy Disk MNetwork
Process Name v %CPU CPUTIime Threads Idle Wake Ups PID User
spindump_agent 0.0 0.2 2 0 18527 ceo
spindump 0.0 237 2 0 598 root
@ softwareUpdateNotific... 0.0 4.64 3 0 79159 ce
softwareupdated 0.0 21:10.37 3 0 945 _softwareupda
softwareupdate_notify_... 0.0 2.36 2 0 24215 ce
softwareupdate_downl... a0 2.42 2 0 24214 _softwareupda
SocialPushAgent 0.0 3.38 2 0 867 ce
v soagent 0.0 23.94 2 0 11211 ce
IMRemoteURLCoNN... 0.0 7.94 3 0 11213 ce
smd 0.0 0.23 2 o 194 root
siriknowledged 0.0 29 2 0 27082 ce
v o Siri 01 8:44.83 3 0 11208 ce
SirNCService 0.0 10:86.22 3 0 11217 ce
Simulator a0 6.12 3 0 72120 ce
silhougtte 0.0 2.01 2 0 28197 ce
SidecarRelay 0.0 3.04 2 [1] 656 ce
sharingd 01 21:17.86 7 1 645 ce
sharedfilelistd 0.0 m 2 i} 357 root
setoken 0.0 1.50 2 0 59350 ce
servermgr-notify 0.0 2.79 2 0 284 root
servermetricsd 0.0 2:47.18 2 0 210 root
ServerEventAgent 0.0 8.8 2 0 207 root
securityd_service 0.0 0.03 2 0 459 root
v securityd 0.0 6:14.62 & [94 root
com.apple ctkpesed 0.0 0.02 2 0 151 root
secinitd 0.0 10.78 2 9 11209 ce
secd 0.0 8:20.76 2 Q9 549 ce
& Screen Shot 010 -] 0 99178 ce
ScopedBookmarkAgent 0.0 5.33 2 0 13591 ce
sandboxd 0.0 3:51.67 -] 0 78810 root
v SafariQuickLookPrevie... 0.0 31.37 5 0 14794 ce
SatariQuickLookPre... 0.0 17.52 5 0 29114 ce
SafariQuickLookPre... 0.0 31.20 5 0 61693 ce
Systenm: 40.28% CPULDAD Threads: 2072
User: 50.72% | o ~ | Processes: 536
Idle: 0.00%

I

Figure 2-2. Use Activity Monitor to see what processes are running
(and what processes started them)

Here you'll also see that the kernel_task controls launchd and that
all other processes fall under launchd and some are still nested under
others. To see how smbd gets started, let’s then look at /System/Library/
LaunchDaemons/com.apple.smbd.plist. Each process has a property list
similar to this that defines how a LaunchDaemon and LaunchAgent will
start. This looks like:

58

CHAPTER 2 AGENT-BASED MANAGEMENT

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>EnableTransactions</key>
<true/>
<key>Disabled</key>
<true/>
<key>Label</key>
<string>com.apple.smbd</string>
<key>MachServices</key>
<dict>
<key>com.apple.smbd</key>
<dict>
<key>HideUntilCheckIn</key>
<true/>
</dict>
</dict>
<key>ProgramArguments</key>
<array>
<string>/usr/sbin/smbd</string>
</array>
<key>Sockets</key>
<dict>
<key>direct</key>
<dict>
<key>SockServiceName</key>
<string>microsoft-ds</string>
<key>Bonjour</key>
<array>

59

CHAPTER 2 AGENT-BASED MANAGEMENT

<string>smb</string>
</array>
</dict>
</dict>
</dict>
</plist>

In the preceding example, note that the /usr/sbin/smbd binary
is being loaded and the LaunchDaemon controls the binary.
LaunchDaemons can run without a user being logged in. LaunchDaemons
cannot display information using the graphical interface of a Mac; but
they can be used to provide data to apps that have graphical interfaces.
The plist files are stored in the /System/Library/LaunchDaemons folder
(for those provided by Apple et al.) and /Library/LaunchDaemons (for
the rest). There are also LaunchAgents, which run on behalf of a user and
therefore need the user to be logged in to run. LaunchAgents can display
information through the window server if they are entitled to do so. As
with LaunchDaemons, LaunchAgents are controlled by property list. The
configuration plist files are stored in the /System/Library/LaunchAgents
and /Library/LaunchAgents, and user launch agents are installed in the ~/
Library/LaunchAgents folder.

Next, let’s look at a common graphical interface for managing
LaunchDaemons and LaunchAgents, Lingon.

Use Lingon to See and Change Daemons
and Agents Easily

Lingon is a tool available on the Mac App Store at https://itunes.
apple.com/us/app/lingon-3/1d450201424. If you install Lingon,

you'll be able to quickly and easily manage LaunchDaemons and
LaunchAgents. You can also download it through Peter Borg’s site at

60

https://itunes.apple.com/us/app/lingon-3/id450201424
https://itunes.apple.com/us/app/lingon-3/id450201424

CHAPTER 2 AGENT-BASED MANAGEMENT

www. peterborgapps.com/lingon. The version there has more features
and control over system level daemons and agents.

When you first open Lingon, you'll see a list of non-Apple services
installed on the system. In Figure 2-3, notice that you see two for Druva,
one for Tunnelblick, and one for an older version of macOS Server. Let’s
create a new one by clicking New Job.

[BN Lingon
+
New Job

Lingon
com.druva.inSyncUpdateAgent com.druva.inSyncUpdate

/bin/bash "/Users/ce/Library/Application Support/ "{Applications/Druva inSync/inSync.app/Contents/
inSync/inSyncUpdateAgent.sh" MacOS/inSync"

net.tunnelblick.tunnelblick.LaunchAtLogin com.apple.serveralertproxy
/Applications/Tunnelblick.app/Contents/ /Applications/Server.app/Contents/Library/
Resources/launchAtLogin.sh LaunchServices/com.apple.serveralertproxy

Figure 2-3. Use Lingon to manage daemons and agents

At the New Job screen shown in Figure 2-4, you'll see the following fields:

e Name: The name of the script. This can be something
simple like Pretendco Agent but is usually saved as
com.Pretendco.agent.

o What: app, or even just an arbitrary command like “say
hello” if the command is short and simple.

61

http://www.peterborgapps.com/lingon

CHAPTER 2 AGENT-BASED MANAGEMENT

62

When: When the script or binary that was selected in
the What field will be invoked or should run.

Atlogin and at load.

Keep running (runs all the time and restarts after

a crash): Runs all the time. launchctl will watch

for the process to terminate and restart it. This is
usually something that persistently manages a
socket or is always waiting for something to happen
on a system.

Whenever a volume is mounted: This is similar to
watching for a file to change given that it's watching
/Volumes but when a volume mounts the process
will run.

Every: Runs the script or process at a regularly
scheduled interval, like every 90 seconds or once
an hour.

At a specific time: Runs the specified process at a
given time on a schedule (this is similar in nature to
how cron jobs worked).

This file is changed: Define a path to a file so that
if the LaunchDaemon notices a file has changed,
the desired script will run. This is pretty common
for scripting automations, such as “if a file gets
placed in this directory, run it through an image
converter).

Save & Load: Saves the LaunchAgent or

LaunchDaemon, provides the correct permissions, and

attempts to load.

CHAPTER 2 AGENT-BASED MANAGEMENT

ece Lingon

Name: test

what: | | I com.coded2.menubar

Choose an app, 8 script or write a command e

When: At login and at load
Keep running (runs all the time and restarts after a crash)
Whenever a volume is mounted
Every
At a specific time E:00 BM

This file is changed Path...

Cancel Save & Load

Figure 2-4. Provide a name and location for a script or app to
daemonize it

Next, click Save & Load and you'll be prompted that the service will run
even after you close Lingon (Figure 2-5). The reason for this is that when
you save your entry, the Lingon app creates a LaunchDaemon and starts it.

63

CHAPTER 2 AGENT-BASED MANAGEMENT

This will save the job to a file, load it and it
will continue to run after you have quit the
app. Do you want to continue?

If you later want to unload the job and remove the
saved file you can choose Delete Job in the File menu.

Do not show this message again

Cancel " Continue

Figure 2-5. Save your new agent or daemon

If you select a job and then select “Copy Job to Clipboard” from the Job
menu, then you can open a new document and paste the contents of what
would be in a property list in. By default, the new LaunchAgent is saved in
~/Library/LaunchAgents/ so you can also easily just view it with cat once
saved.

Now that we can create and delete LaunchAgents and
LaunchDaemons, you know how to create an agent if you need to or stop
one from processing if it’s running on a host. Now that we’ve described
what goes into building a daemon or agent, let’s look at controlling them so
we can then show how you interface with those used to send management

commands to macOS devices.

Controlling LaunchDaemons with launchctl

Earlier, when showed Activity Monitor, we could have stopped the process
we were looking at. Doing so means that if the process is set to do so, it can
start up again. You can add, edit, delete, and load these using the launchctl
command. Using launchctl is pretty straightforward. In the following
example, we'll look at disabling the disk arbitration daemon to show how

64

CHAPTER 2 AGENT-BASED MANAGEMENT

to control a LaunchDaemon with launchctl. To disable disk arbitration,
first run the following command to obtain a list of currently running
launchd-initiated processes:

launchctl list

That’s going to output a few too many so let’s constrain our search to
those that include the string diskarbitrationd:

launchctl 1list | grep diskarbitrationd

You'll now see a PID and the name of the process, similar to when
looking at these in Activity Monitor. Notice it has an alphanumeric string in
front of it, appearing similar to 0x10abe0.diskarbitrationd. Next, go ahead
and stop it, again using launchctl, but this time with the stop option:

launchctl stop 0x10abe0.diskarbitrationd
Once stopped, let’s verify that diskarbitration is no longer running:
ps aux

Once you have completed your tasks and want to reenable disk
arbitration, you can restart it using the start option in launchctl:

launchctl start ox10abe0.diskarbitrationd

Finally, this process is not persistent across reboots. If you will be
rebooting the system you are mounting the disk onto, you might want to
unload diskarbitrationd and then move the plist from /System/Library/
LaunchDaemons/com.apple.diskarbitrationd.plist. For example, to move
it to the desktop, use the following command:

mv /System/Library/LaunchDaemons/com.apple.diskarbitrationd.
plist ~/Desktop/com.apple.diskarbitrationd.plist

65

CHAPTER 2 AGENT-BASED MANAGEMENT

If the launchd job you're trying to manage doesn't start, check out the
system.log for a more specific error why:

tail -F /var/log/system.log

For more on LaunchDaemons, see the Apple developer documentation
athttps://developer.apple.com/library/archive/documentation/
Mac0SX/Conceptual/BPSystemStartup/Chapters/CreatinglaunchdJobs.
html or check launchd.info, a site where you can see additional information.

Now that we've looked at LaunchDaemons and LaunchAgents, let’s
review what each has access to before we move on to looking at some of
the commercial and open source distributions of management agents.

Deeper Inspection: What Does the App Have
Access To?

Apps must be signed. Not all persistent binaries need to be signed but

all should be, and all should also have a corresponding sandbox profile
(although even Apple hasn’t gotten around to signing everything that
comes bundled with the operating system). To see a detailed description of
how an app was signed

codesign -dvvvv /Applications/Firefox.app

This also gives you the bundleID for further inspection of an app. But
there are a number of tools you can use to check out signing and go further
into entitlements and sandboxing. You can check the

asctl sandbox check --bundle com.microsoft.outlook

The response would be similar to
/Applications/Microsoft Outlook.app:

Signed with App Sandbox entitlements

66

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

CHAPTER 2 AGENT-BASED MANAGEMENT

In the preceding data, we see that Outlook has entitlements to do some
stuffs. But where do you see an indication of what it can do? There are a
number of sandbox profiles located in /usr/share/sandbox and the more
modern /System/Library/Sandbox/Profiles/ and Versions/A/Resources
inside each framework should have a .sb file - but those are the Apple
sandbox profiles. Additionally, you can see what each app has access to
using the container_check.rb script:

/usr/libexec/AppSandbox/container check.rb -c com.microsoft.
outlook --for-user charles.edge --stdout

Simply strip the -c followed by the container and you'll get a list of all
apps. When you're building and testing sandbox profiles for apps you plan
to compile, you may want to test them. To do so, use sandbox-exec:

sandbox-exec -f /usr/share/sandbox/lockdown.sb/Applications/
TextEdit.app/Contents/Mac0S/TextEdit

As of 10.14, any app looking to access Location Services, Contacts,
Calendars, Reminders, Photos, Camera, Microphone, Accessibility, the hard
drive, Automation services, Analytics, or Advertising kit will prompt the
user to accept that connection. This is TCC, or Privacy Preferences. You can
programmatically remove items but not otherwise augment or view the data,
via the tccutil command along with the only verb currently supported, reset:

tccutil reset SERVICE com.smileonmymac.textexpander

Third-Party Management Agents

There are a number of tools that other people or organizations have

built that enable you to tap into the power of the macOS command line.
Organizations like Addigy, FileWave, Jamf, Mobilelron, and VMware all
have agents. And Munki has become a popular open source management
agent for a number of reasons. We'll start our look at agents with one of the
more recently added, given how it’s built: Addigy.

67

CHAPTER 2 AGENT-BASED MANAGEMENT

Addigy

Addigy is a management solution for iOS and macOS. As Addigy was
developed somewhat recently, the developers make use of a number of
open source components to form a management solution that can track
what'’s on a device (or monitor inventory), deploy new software to a device,
remove software from a device, run scripts remotely, and other tasks.

The ability to do this en masse is derived by having an agent running on
client systems and having that agent be able to talk back to a centralized
management server. The Addigy agent is available by navigating to the
Downloads button in the sidebar (Figure 2-6).

ADDIGY

Downloads

Agents installed from this method will be added to your account without a
policy.

Distribution Url:

Downloads https://9e252bc8-208d-4816-8a2d-9f2b25c03b6d.addigy.com/agent/ n

Community

MDM Profile:

https://mdm-prod.addigy.com/mdm/enroll/9e252bc8-208d-486-8a2d-9f H

Single command install:

sudo curl -0 /tmp/macinstall https:/fagents.addigy.com/installer-darwin-amdé4

Email Addresses:

Send Download Link

Figure 2-6. Download the Addigy Agent

68

CHAPTER 2 AGENT-BASED MANAGEMENT

As with many software packages today, the Addigy agent is comprised

of a few different components. The package will install a number of

LaunchDaemons and LaunchAgents according to the services you use in

your environment. These are as follows:

/Library/LaunchDaemons/com.addigy.agent.plist: The
Addigy agent, responsible for controlling other services
running on the system. This calls /Library/Addigy/go-
agent with the agent option.

/Library/LaunchDaemons/com.addigy.collector.plist:
The Collector, which maintains inventory and reports
information back to the server. This calls /Library/
Addigy/collector.

/Library/LaunchDaemons/com.addigy.lan-cache.plist:
The process responsible for copying files to the local
computer to be processed (e.g., to install a package).
This loads /Library/Addigy/lan-cache, based on
https://github.com/bntjah/lancache.

/Library/LaunchDaemons/com.addigy.policier.plist:
The policy engine, calling Ansible to do orchestration
and provisioning. After a network check, this runs /
Library/Addigy/go-agent with the policier option.

/Library/LaunchDaemons/com.addigy.updater.plist:
This is responsible for keeping the agent updated and
calls /Library/Addigy/go-agent with the updater option
specified.

/Library/LaunchDaemons/com.plx.connector.plist:
Addigy’s remote control tool so you can manage
devices remotely using Pilixo, if that option is enabled
for the device being managed.

69

https://github.com/bntjah/lancache

CHAPTER 2 AGENT-BASED MANAGEMENT

o /Library/LaunchDaemons/screenconnect-
92fde59311b74250.plist: Addigy’s

e /Library/LaunchAgents/screenconnect-
92fde59311b74250-launch-prelogin.plist

e /Library/LaunchAgents/screenconnect-
92fde59311b74250-launch-onlogin.plist

To load or unload any of these, we’ll use the launchctl command as we
did earlier in the chapter. For example, to unload the Go agent:

sudo launchctl unload /Library/LaunchDaemons/com.addigy.lan-
cache.plist

sudo launchctl load /Library/LaunchDaemons/com.addigy.lan-
cache.plist

In addition, there are a number of supporting files located in /Library/
Addigy, including /Library/Addigy/ansible/status.json which is the main
ansible inventory file and /Library/Addigy/user-job which runs shell
scripts on behalf of the user.

Larger files, such as packages, are then cached to the client systems
using LANCache. To see what resources the LANCache daemon is using,
use ps to view processes and then grep the output for lan-cache as follows:

sudo ps aux | grep -v grep | grep lan-cache

A similar incantation of the command can be used to view the
resources being used by any of the agents we’ll cover in this chapter. In
general, if you notice a trend here, we use launchctl to check what binaries
are called by the agents and then use the command structures for each
agent to get more details, troubleshoot, and learn how to most efficiently
deploy management to devices. For example, know where that LANCache
binary is; we can see what peers are visible to a device using lan-cache
along with the peers verb, as you can see here:

/Library/Addigy/lan-cache peers

70

CHAPTER 2 AGENT-BASED MANAGEMENT

One great aspect of LANCache is that it’s used to speed up downloads
for many clients. By caching updates on peers, the download is faster and
organizations reduce the bandwidth required to download assets, making
the Internet seem faster during a large deployment push. To set a device as
a proxy for peers, use the -peer-proxy options with that binary along with
the -set-proxy-setting as follows:

/Library/Addigy/lan-cache -peer-proxy -set-peer-proxy-setting

One of the reasons we placed the Addigy agent first is that it’s a
simple, efficient, and transparent architecture. The other is of course that
it alphabetically comes first, and when we list vendors, we try to do so
alphabetically. But the main components of the agent and with others will
be that there’s a process for connecting to the server and orchestrating
events, another process for downloading updates, and a final process for
executing and reporting. More daemons just means more logic behind the
scenes and more options. But more daemons or agents also means more
CPU usually.

The use of LANCache is a really great feature, provided there’s
a checksum validation at installation of packages as it improves the
experience but also keeps the bandwidth required to host assets for
customers low. Caching updates on client devices is not a new concept.
Filewave has supported “Boosters” for well over a decade. In the next
section, we'll look at the FileWave agent in more depth.

FileWave

FileWave is a management solution for iOS, macOS, and Windows.
FileWave deploys software to client Macs using what’s known as a fileset,
or a set of files. These filesets are referenced using a manifest on a FileWave
Server, and the FileWave client, or agent, looks to the server manifest for
alist of any actions it needs to perform. If a fileset needs to be installed,

the FileWave client is provided with a path to access the fileset using

71

CHAPTER 2 AGENT-BASED MANAGEMENT

the manifest file and retrieves the files necessary for installation using a
FileWave booster, or distributed repository that hosts those files.

The FileWave client agent is primarily made up of an app, located at /
usr/local/sbin/FileWave.app; a preference file, located at /usr/local/etc/
fwcld.plist; and a control script, found at /sbin/fwcontrol. These tools log
to /var/log/ using log files that begin with the name fwcld. The scripts are
started up using /Library/LaunchAgents/com.filewave.fwGUI.plist and /
Library/LaunchDaemons/com.filewave.fwcld.plist.

Let’s start with a pretty basic task; let’s get the status of the agent:

sudo /usr/local/sbin/FileWave.app/Contents/Mac0S/fwcld -s

The output will be similar to the following:

>3k Kook ok ok ok ok >k ok ok ok sk ok >k >k ok ok ok sk sk ok k ok skk k

*kFileWave Client Statusxx

ook sk ok sk s ok sk ok sk sk ok sk ok sk sk ok skok sk sk ok sk sk sk sk ok

User ID: 2243

Current Model Number: 134

Filesets in Inventory:

1. Enroll Macs into MDM, ID 25396 (version 2) - Active

2. 0SX App - Lingon, ID 846 (version 3) - Installing via Mac
App Store (can take some time)

3. Firefox.app, ID 1133 (version 7) - Active

4. FileWave macOS Client 12.7.0 317xyz, ID 24000 (version 1) -
Active

5. FileWave_macOS_Client 12.8.0 076xyz, ID 21000 (version 1) -
Active

The preceding data shows the user and the filesets the device has,
the versions of those filesets, and the status of each. Another task you can

72

CHAPTER 2 AGENT-BASED MANAGEMENT

do with the fwcld would be to set some custom information into a field
and then save that up to a server. Supported fields to do so are custom_
string_01, custom_integer_01, custom_bool_01, and custom_datetime_01,
where there are 20 slots for each and they contain a string (or a standard
varchar), number, a Boolean (so 0 or 1), and a date. In the following
example, we’'ll take some information telling us if a login hook is installed
and send that into the 9th available string value:

/usr/local/sbin/FileWave.app/Contents/Mac0S/fwcld -custom_
write -key custom string 09 -value “defaults read com.apple.
LoginWindow"

Asyou can see in the earlier example, we've sent information about a
device back to a server. We can then build automations at the server that
send further instructions to the client. For example, if there’s no login
hook, install one. The FileWave manual will be a better guide to getting
started using the command line and scripts to help manage FileWave. That
can be found at www.filewave.com.

Fleetsmith

As with many of the agent-based management solutions, Fleetsmith can
run as an MDM for the Mac alongside an agent, which Fleetsmith refers
to as Fully Managed. Fully Managed devices can be remotely locked,

have kernel extensions whitelisted, and be remotely erased via MDM.
Fleetsmith can also run with just an agent and no MDM. To run the
Fleetsmith agent, first download it by clicking on your name in the bottom
left corner of the screen and then copy the download URL as seen in
Figure 2-7.

73

http://www.filewave.com

CHAPTER 2 AGENT-BASED MANAGEMENT

Preferences

e Fleetsmith Agent

Agent installer URL L v L ML Copy R
Fiostemitn portsl UL . Copy URL

Configurator URL wh Copy URL

0 Installers & URLs

Download Agent Uninstalier

Before running an uninstalier on & device, be sure 1o archive it in the Fleetsmith web app

Inwatidate installer URLS
A0 eisting instaler URLS wil no longer be able 10 download a valid Fiegtsmith agent

Revoke agent installers
stng FIRatsmah aent insialiers will no onger be ki Lo chack i

Inwaticlate Configuratos URL
A Contiguratar BRsepriote will requin 2 new MDM servar configuration

Figure 2-7. Download the Fleetsmith Installer

Once the package is downloaded, run it and a number of assets will
be loaded on your computer. As with many of the “agents,” Fleetsmith has
three LaunchDaemons:

o com.fleetsmith.agent.plist: Invokes the /opt/
fleetsmith/bin/run-fsagent shell script, which logs to /
var/log/fleetsmith and invokes the agent daemon.

o com.fleetsmith.query.plist: Starts /opt/fleetsmith/bin/
fsquery, the osquery daemon.

o com.fleetsmith.updater.plist: Starts /opt/fleetsmith/bin/
fsupdater, a Go daemon that keeps software up-to-date.

The fsagent process is responsible for orchestrating events on behalf
of the Fleetsmith tenant. The directory /opt/fleetsmith/bin contains a
number of tools invoked by the daemon and used to manage devices:

o force-notifier.app: Takes over the screen to run updates
when needed.

74

CHAPTER 2 AGENT-BASED MANAGEMENT

o fsagent: The LaunchDaemon that runs in the
background.

o fsquery: The Fleetsmith fork of osquery.
o fsupdater: Responsible for keeping Fleetsmith up-to-date.

e osqueryi: osquery, which we'll cover later in this
chapter, is distributed in order to provide inventory
information for Fleetsmith.

o run-fsagent: Starts the agent.

The /opt/fleetsmith/data directory stores the agent.log, downloads
directory, and a store.db sqlite3 database. All of this is used as small
components to accomplish the tasks you instruct the server to perform on
the client. As an example, when you go to manage Google Chrome in Apps
(Figure 2-8), you will enable the app to be managed and then configure the
settings that will be pushed to the app.

° +
Enforced bookmark list weagee [0
¢
Disnritue Bockmarks 10 users Bockmaris il appear sulomarcaly and are weoddisbie Trese
rscna ook
Google Chrome Mamsges boskmarcs fader
oogle Chvome is a free web browser that alsc syncs A R A AR SR
5 tomat
[S— Managed bookmarks tems
Cancel
Hame
Ramove fram Profile
Profile
URL
Publisher Enter
Lates! version
System requiremant

Figure 2-8. Manage Google Chrome with Fleetsmith

75

CHAPTER 2 AGENT-BASED MANAGEMENT

The Fleetsmith agent then installs the Chrome app, and if you open the
Fleetsmith app from /Applications, once installed, you'll see that “All your
apps are up to date” (Figure 2-9).

FLEETSMITH f e

All your apps are up to date ¥

Figure 2-9. The Fleetsmith app in the menu bar

Addigy and Fleetsmith are both Go-based agents that include
components from the open source community. Fleetsmith bolts on a lot
of keys and certificates to further secure the communication channel and
adds a lot of logic on top of osquery. Next, we'll look at the jamf “binary” -
which is one of the older agents but also one of the most widely distributed.

Jamf

Since the early days when it was called The Casper Suite, Jamf Pro has
always had a binary running on a computer. That binary is /usr/local/
jamf/bin/jamf and it executes most of the tasks that Jamf Pro sends to

the agent. The “agent” is an oversimplification. There is the agent for
processing user work and report on user data at /usr/local/jamf/bin/
jamfagent and then there is /Library/Application Support/JAMF/JAMFE.
app/Contents/MacOS/JamfDaemon.app which is a bundle containing
the Jamf Pro daemon, for more global instructions (the Jamf.app is an app

76

CHAPTER 2 AGENT-BASED MANAGEMENT

bundle that just keeps all this together). There’s also /Library/Application
Support/JAMF/JAMEapp/Contents/MacOS/JamfAAD.app, which is for the
Azure Active Directory integration and /Library/LaunchDaemons/com.
jamfsoftware.task.1.plist which manages checking into Jamf Pro.

Additionally, /Library/LaunchDaemons/com.jamfsoftware.
startupItem.plist launches the check-in script, and /Library/
LaunchDaemons/com.jamfsoftware.jamf.daemon.plist collects
application usage, FileVault data, network state changes, and restricted
software as well as performs actions from Self Service. All of this is logged
to /var/log/jamf.log. So the binary is handling non-MDM communications
back to the server but also enables you to script various tasks quickly.

Manage User Accounts with Jamf

You can then add a new user, using the createAccount verb. To do so,

run the jamf binary using the createAccount verb. This verb provides for

a number of options, including a short name (-username), a full name
(-realname), a password (-password), a home directory (-home), and a
default shell (-shell). If you want the user to be an admin of the system you
can also add an -admin option. In the following, we'll string it all together:

/usr/sbin/jamf createAccount -username charlesedge -realname
"Charles Edge" -password mysupersecretpassword -home /Users/
charlesedge -shell bash -admin

Or if you need to, you can easily delete an account using the
deleteAccount verb. Here, use the -username operator to define a given
user that you'd like to remove. That username is defined as the short name
(or what dscl shows) of a given user. For example, to remove the user, we
just created (charlesedge), run the following command:

/usr/sbin/jamf deleteAccount -username charlesedge

77

CHAPTER 2 AGENT-BASED MANAGEMENT

You can then provide a popup on the screen that you completed that
action using the displayMessage verb along with the -message option to
indicate what was done:

/usr/sbin/jamf displayMessage -message "charlesedge has been
deleted"”

Once an action is complete, it’s always a good idea to perform a quick
recon again to make sure everything is registered back to the server:

/usxr/sbin/jamf recon

More Automation Through The Jamf Framework

The Jamf Framework is also capable of performing a number of tasks that
the developers have provided, to make it easier to configure devices on your
network. To get started, let’s see all of the options. As with many binaries, if
you have any questions, you can use the help verb to see what all it can do:

/ust/sbin/jamf help

If you need more information on a given verb, run the help verb
followed by the one you need more information on:

/usr/sbin/jamf help policy

You can also automate standard tasks. The following command will
unmount a mounted server called mainserver:

jamf unmountServer -mountPoint /Volumes/mainserver
Or change a user’s home page in all of their web browsers:
jamf setHomePage -homepage www.krypted.com
The following command can be used to fire up the SSH daemon:

jamf startSSH

78

CHAPTER 2 AGENT-BASED MANAGEMENT

The following command can be used to fix the By Host files on the
local machine:

jamf fixByHostFiles -target 127.0.0.1

The following command can be used to run a Fix Permissions on the
local machine:

jamf fixPermissions /

The following can be used to flush all of the caches on your local system:
jamf flushCaches -flushSystem

The following can be used to run a software update on the local system:
jamf runSoftwareUpdate

The following can be used to bind to an AD environment (rather than
dsconfigad) but would need all the parameters for your environment put
in as flags in order to complete the binding:

jamf bindAD

The jamf binary can also poll for a list of printers using the listprinters
verb:

sudo jamf listprinters
The output looks like this:
MSP Lobby HP MSP_LobbylLobby lpd://192.168.12.201/ HP 6490 C5250 PS

In general, most of the agents will provide a few options. The Jamf
binary goes a bit deeper than most but still wraps a lot of shell commands
that you can send through any management tool, if you want to build those
yourself. Another common tool used to manage Macs is Munki, which
we’'ll cover in the next section.

79

CHAPTER 2 AGENT-BASED MANAGEMENT

Munki

Munki is an open source device management framework originally
developed by Greg Neagle and available via Github at https://github.
com/munki/munki. Munki was initially architected to be similar to the
Apple Software Update Server but for third-party products. The design is
elegant in that simplicity. The client downloads one or more manifests,
one or more catalogs, and a client computer takes its updates from the
manifest(s) and catalog(s). As the project has gained traction and a
greater level of maturity, a number of enhancements have been made;

but you have to love that core concept that a client picks up a dictionary of
information about the state the client should be in and then takes action
based on that, including installing profiles, updating defaults domains, and
of course installing software updates.

Munki runs an agent on client computers. As with many “agents” these
days, it’s split up between a number of LaunchDaemons and LaunchAgents,
each built for a specific task. There are four LaunchDaemons and three
LaunchAgents, as well as a number of scripts that do specific tasks. As with
a few of the tools we cover, Munki comes with an app that can be used to
allow users to perform a number of tasks themselves.

Munki LaunchDaemons

As is a good practice, each task that Munki requires is a separate
program, with the four tasks that require root privileges being run as
LaunchDaemons and three LaunchAgents for the things visible in the
Managed Software Center GUI. In this section, we’ll look at what each of
the LaunchDaemons does:

e /Library/LaunchDaemons/com.googlecode.munki.
managedsoftwareupdate-check.plist: Controls
background task scheduling using the supervisor
to make sure it wasn’t removed and add a delay to

80

https://github.com/munki/munki
https://github.com/munki/munki

CHAPTER 2 AGENT-BASED MANAGEMENT

triggered managed softwareupdate events. This allows
the local agent to process catalog changes and run
unattended installations of software.

/Library/LaunchDaemons/com.googlecode.munki.
managedsoftwareupdate-install.plist: Runs cached
updates when user notification is required. The
managedsoftwareupdate-install launchdaemon

runs cached updates for Managed Software Center.
This involves a sanity check that /private/tmp/.
com.googlecode.munki.managedinstall.launchd is
present. If so, managedsoftwareupdate runs using the
-installwithnologout option when invoked.

/Library/LaunchDaemons/com.googlecode.munki.
managedsoftwareupdate-manualcheck.plist: Gives
Managed Software Center the ability to scan servers
for updates to the Munki Manifest file. Requires the
/private/tmp/.com.googlecode.munki.updatecheck.
launchd trigger file is present.

/Library/LaunchDaemons/com.googlecode.munki.
logouthelper.plist: Notify users when the force_install_
after_date approaches. This is done by invoking
Managed Software Center which can terminate a

user session, which uses the /usr/local/munki/
logouthelperutility script.

Munki also comes with a number of LaunchAgents, which include the

following:

/Library/LaunchAgents/com.googlecode.munki.
ManagedSoftwareCenter.plist: Used to open Managed
Software Center in the user context when user
notification is required.

81

CHAPTER 2 AGENT-BASED MANAGEMENT

e /Library/LaunchAgents/com.googlecode.munki.
MunkiStatus.plist: Calls MunkiStatus in the Contents/
Resources directory of the Managed Software Center
app bundle and is used for notifications on top of the
Login Window.

o /Library/LaunchAgents/com.googlecode.munki.
managedsoftwareupdate-loginwindow.plist.
Processes user tasks at the login window. Can be
triggered by /Users/Shared/.com.googlecode.
munki.checkandinstallatstartup, /private/tmp/com.
googlecode.munki.installatlogout, or /Users/Shared/.
com.googlecode.munki.installatstartup,

The architecture of what processes are used to run what services
are pretty telling, not only about how the product works but also how to
troubleshoot that product. The fact that each task that will be performed
has been pulled off into a separate daemon or agent speaks to preserving
the security of managing endpoints using the least amount of privileges
available and avoids requiring a kext always be loaded in order to orchestrate
all of these tasks. Most, though, are in support of processing the manifest,
catalog, and pkginfo plist files, which we’ll cover in the next section.

Customizing a Munki Manifest

The manifest is where the Munki agents are taking their instruction sets.
Now that we've looked at the components of Munki, let’s look at that
format, the manifest, catalog and pkginfo plist files, and the keys in those
files that go to each client. Keep in mind that Munki was initially built to
replicate what Apple did for Software Update Services where there is a
manifest file distributing packages to install on clients. Therefore, Munki
has catalogs of all software to be installed.

82

CHAPTER 2 AGENT-BASED MANAGEMENT

Over time, the scope of the project grew to include groupings of
different client computers that received different manifest files and an app
that allowed end users to install their own software, which we’ll cover in
more detail in Chapter 11.

Manifests are standard property lists. We'll cover manipulating
property lists further in Chapter 3, but for now, think of them as simple
XML files that have a collection of key pairs are a simple list of the items to
install or verify their installation or to remove or verify their removal. The
manifest contains a list of one or more catalogs, defined using a catalogs
array, along with an array of packages to install or just update if they are
found on disk, which are a number of arrays for how you want the Munki
agent to handle items listed. These include the following arrays:

o managed_installs: Munki will install these items and
keep them up-to-date.

o managed_uninstalls: Munki will remove these items.

o managed_updates: Munki will update these items, if
present, whether or not they were installed by Munki.

o optional_installs: Munki will allow users to install
these items optionally and keep them up to date once
installed (e.g., using Managed Software Center).

o featured_items: Items listed at the top of Managed
Software Center.

Munki Managed Installs

The managed_installs key is the first and so arguably one of the most
important things Munki does. As mentioned, managed installs are software
that is required to be deployed to a device. Once deployed, the software
must be kept up-to-date in alignment with the catalog. You can see this in

83

CHAPTER 2 AGENT-BASED MANAGEMENT

practice using the following manifest, which instructs the client computer
to install Quickbooks, Slack, and Office from the Accounting catalog:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>catalogs</key>
<array>
<string>production</string>
</array>
<key>managed_installs</key>
<array>
<string>Quickbooks-2019</string>
<string>Slack-3.3.8</string>
<string>0ffice-16.23</string>
</array>
</dict>
</plist>

Many environments use a production catalog and a testing catalog,
where the testing catalog is populated by an automated packaging tool
such as AutoPKG. Once software has been tested and validated as safe for
distribution, it’s then added to the production catalog. Testing machines
can then use the testing catalog to install software, instead of the safer
production catalog. You can have multiple catalogs listed by adding items
to the catalogs array. The following example shows adding a testing catalog
above the production catalog. Doing so causes the Munki agent to search
the testing catalog for the packages defined in the managed_installs array
before trying to install those software titles or scripts from the production
catalog, making for a seamless transition when the software you are testing
is promoted to production.

84

CHAPTER 2 AGENT-BASED MANAGEMENT

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>catalogs</key>
<array>
<string>testing</string>
<string>production</string>
</array>
<key>managed_installs</key>
<array>
<string>Firefox-67.02</string>
<string>Chrome-75.0.3</string>
</array>
</dict>
</plist>

It’s usually a good practice to deploy software without version numbers
or if there are version numbers, to only use major release numbers. In the
above example, we've actually piped the point release version number
for testing. This allows you to keep track of software during testing that’s
destined for your production catalog. This catalog isn’t always exclusive for
software you installed.

Updating Software Munki Didn’t Install

There are a number of reasons to patch software that Munki didn’t
install. Chief among them are security patches. But also, the general
performance of a system can be greatly improved by treating a piece of
software Munki didn’t install as you would treat other managed software.
This is referred to as a managed update in Munki and defined using a
managed_updates option.

85

CHAPTER 2 AGENT-BASED MANAGEMENT

The managed_updates array is handled similarly to managed_installs
but looks for a software title on the host and runs an updater only if that
title is found. For example, if you don’t deploy Firefox, Chrome, or the
Microsoft Edge browser, you might still want to keep those patched if you find
your users install them. Running an inventory through a tool like osquery
(described later in this chapter) will supply you with a list of software on the
computers in your deployment and can then be used to find any software you
would like to either move into your managed catalog or at least keep updated.

The below example is similar to the previous example but using
managed_updates for these pieces of software installed by users outside of
the Munki deployment.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/Propertylist-1.0.dtd">
<plist version="1.0">
<dict>
<key>catalogs</key>
<array>
<string>production</string>
</array>
<key>included manifests</key>
<array>
<string>accounting </string>
<string>allusers</string>
</array>
<key>managed_updates</key>
<array>
<string>Chrome</string>
<string>Firefox</string>
</array>
</dict>
</plist>

86

CHAPTER 2 AGENT-BASED MANAGEMENT

The exception to updating a package would be if it's been slated to be
removed on a computer. If a piece of software is scheduled for removal it will
not be updated. As deployments grow, you need more complicated logic on
client systems in order to handle the added burden that additional groups
and iterations put on an environment. This has led to nesting manifests.

Nested Manifests

You can nest manifests. Much as you can do an include in an Apache
configuration, you can logically group manifests of files. If you have a

user in the accounting group, then you can create a manifest just for
accounting, along with a manifest that all of the users receive. In the below
example, we'll remove the testing catalog and add an array of manifests to
include, adding the accounting and allusers manifests and install Chrome
as well, which wouldn’t be included for other devices:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>catalogs</key>
<array>
<string>production</string>
</array>
<key>included manifests</key>
<array>
<string>accounting </string>
<string>allusers</string>
</array>
<key>managed_installs</key>
<array>
<string>Chrome</string>

87

CHAPTER 2 AGENT-BASED MANAGEMENT

</array>
</dict>
</plist>

The above manifest includes two other manifests. Consider this akin to
having nested groups. Those manifests specifically meant to be included
in other manifests should not typically include a catalog, given that the
catalog is defined in the parent manifest. In the below example, see an
example of a manifest built to be included:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>managed_installs</key>
<array>
<string>Quickbooks-2019</string>
<string>Slack</string>
<string>Office-16</string>
</array>
</dict>
</plist>

The above manifest is similar to the earlier example, defining
Quickbooks, Slack, and Office but without listing the catalogs. This simple
approach allows administrators to push out small changes, managing
universal software and then either aligning a computer with a job function
or as the deployment grows, allowing for more complicated hierarchies.
This is similar to Apple allowing for nested Software Update Servers, where
you can limit software to be deployed on child servers. While the Apple
technique is no longer supported, Munki has filled much of the gap for
third parties and continues this tradition.

88

CHAPTER 2 AGENT-BASED MANAGEMENT

Removing Software with Munki

Managed installs get software and packages on devices and keeps software
updated. Managed uninstalls remove software. This is defined in the same
property lists but with a managed_uninstalls array followed by a list of
titles in the form of strings. Obviously, software must be installed in order
to be uninstalled. Provided that a software title is installed that should

be removed, the following example builds on the previous, keeping any
software defined in the accounting and allusers manifest installed, keeping
Chrome installed but also defining that the Symantec software will be
removed any time it’s encountered:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>catalogs</key>
<array>
<string>production</string>
</array>
<key>included manifests</key>
<array>
<string>accounting </string>
<string>allusers</string>
</array>
<key>managed_installs</key>
<array>
<string>Chrome</string>
</array>
<key>managed_uninstalls</key>
<array>

89

CHAPTER 2 AGENT-BASED MANAGEMENT

<string>Symantec</string>
</array>
</dict>
</plist>

The above is mostly used to retire software, plan for major updates,
and pull back any software accidentally released.

Optional Software Installation

Optional software are software titles that users can optionally install
through Managed Software Center. If a user installs an optional software
title, a package is installed as an administrator. Optional software is
defined in manifests using an optional_installs array and then a number of
packages, by name.

The following example builds off of our accounting include from
earlier, listing VPN, Okta, Druva, and Zoom as optional installations:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>managed_installs</key>
<array>
<string>Quickbooks-2019</string>
<string>Slack</string>
<string>Office-16</string>
</array>
<key>optional installs</key>
<array>
<string>VPN</string>
<string>Okta</string>

90

CHAPTER 2 AGENT-BASED MANAGEMENT

<string>Druva</string>
<string>Zoom</string>
</array>
</dict>
</plist>

Any software installed using an optional install is stored in a locally
stored manifest file that is also reviewed by Munki, located at /Library/
Managed Installs/manifests/SelfServeManifest. As you might guess, if a
title is listed in optional installs and managed installs, the package will be a
required install. Managed Software Center then has the logic not to list that
package as an optional install. The beauty of these types of installs is that
users don’t need administrative privileges. We'll get into packaging further
in Chapter 6, but because anything can be put in a package, you can also
deploy automations using Managed Software Center this way. Therefore,
basic support tasks that might otherwise require administrative privileges
such as clearing print queues, installing certain printers, and clearing
caches can then be deployed without a user being made an administrator
or without a remote control session to the computer.

If an item is installed through an optional install, then it is treated as
a managed install. Because the software is optional, it can be removed
through Managed Software Center. If the optional install is then removed, it
is treated as a managed uninstall. A type of optional item is a featured item.

Featured Items

The featured_items array indicates software that is listed at the top of
Managed Software Center in the Featured section. Featured items are a
subset of optional installs so should be listed in both places. Manifests may
also have a featured_items key:

91

CHAPTER 2 AGENT-BASED MANAGEMENT

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>managed_installs</key>
<array>
<string>Quickbooks-2019</string>
<string>Slack</string>
<string>Office-16</string>
</array>
<key>optional installs</key>
<array>
<string>VPN</string>
<string>Okta</string>
<string>Druva</string>
<string>Zoom</string>
</array>
<key>featured_items</key>
<array>
<string>Okta</string>
<string>Druva</string>
<string>Zoom</string>
</array>

</dict>
</plist>

One of our favorite aspects of Munki admins is that most know more
than anyone else has ever known about anything; therefore, there will be
a lot of disagreement on this explanation of manifest files. That is fine.
Now that we've created manifests, let’'s move on to getting the first catalog
created and getting some software imported into it for distribution.

92

CHAPTER 2 AGENT-BASED MANAGEMENT

Building a Repository and a Catalog of Software

Mundki is a tool designed for installing software. The catalog is a list of
software titles available for installation. The catalog is stored locally at
/Library/Managed Installs/catalogs but can be downloaded from the
server when it’s changed and used to provide catalogs using a web service
and items are imported into the catalog using munkiimport, by default
installed at /usr/local/munki/munkiimport. The munkiimport script is
a python script that acts as an assistant for importing disk images (.dmg
files), packages (.pkg files), manual configuration profiles (which is
supposedly being deprecated in macOS in 10.15), and application bundles
(.app files) into your repo.

A repository’s location is configured, along with other global
configuration options for munkiimport, using a -configure option for
munkiimport. Simply run that option and follow the interactive shell:

/usr/local/munki/munkiimport --configure

When prompted, provide a URL for your repo, which we're using as /usr/
local/var/www/munki_repo in this demonstration. The repo is set such that
when the user runs munkiimport, imports will go to that location by default.
The preferences set by the --configure option are stored in ~/Library/
Preferences/com.googlecode.munki.munkiimport.plist. The repo should be

provided as file://usr/local/var/www/munki repo for our example location,
although you could use an afp:// or smb:// mount instead, or use one of the
file-handler options to store your repo in an AWS or GCS file store.

Next, we're going to create a PkgInfo property list based on a standard
installer package that lists the catalogs an installer is a member of and
other metadata about the installer. In this example, we'll create the Zoom
installer we used in the manifests earlier in this chapter: the PkglInfo plist.
PkglInfo files are stored in the pkgsinfo directory inside the munki_repo.

The Pkglnfo file is generated when using munkiimport to import an
installer. To import software, we'll use munkiimport along with options

93

CHAPTER 2 AGENT-BASED MANAGEMENT

that allow the script to run without providing the information in these
options interactively. This involves answering some basic questions
about the software, including the name, name that should be displayed
when installing, the category of software, the version of the package being
imported, the organization that made the software, whether the software
can be installed/uninstalled in an unattended fashion, and a -c option
which defines what catalogs the software should be placed into:

munkiimport ~/Desktop/zoom.pkg --name=Zoom
--displayname=Zoom --description="Our conferencing
software" --category=Productivity --developer=Zoom
--pkgvers=4.4.53590.0607 -c allusers --unattended install
--unattended uninstall

Because we didn’t specify an -n option, we will still have some
interactive steps to provide information about our installer. We’ll show these
steps so you can better understand what'’s happening behind the scenes:

Import this item? [y/n] y

Upload item to subdirectory path []: apps/zoom

Path pkgsinfo/apps/Zoom doesnt exist. Create it? [y/n] y
No existing product icon found.

Attempt to create a product icon? [y/n] y

Attempting to extract and upload icon...

Imported icons/Zoom.png.

Copying zoom.pkg to repo...

Copied zoom.pkg to pkgs/apps/zoom/zoom.

Edit pkginfo before upload? [y/n]: n

Saved pkginfo to pkgsinfo/apps/Zoom/Zoom-4.4.53590..plist.
Rebuild catalogs? [y/n] y

Rebuilding catalogs at file://usr/local/var/www/munki_repo
Created icons/_icon_hashes.plist...

94

CHAPTER 2 AGENT-BASED MANAGEMENT

All of the above options can be added as additional parameters to
your installer. This shows the amount of work being done each time you
run a munkiimport, even creating an icon. The one important option is to
rebuild catalogs. Answering yes to that option will result in a new catalog
files being built based on pkginfo files.

The software itself is also then imported into the repo, and if successful,
the pkginfo file will open in the editor you defined in the --configure step
for your user. Now that we have a repo, a catalog, and manifests, let’s
distribute the manifest to client devices that need to install software.

Distributing the Manifest File

We've described manifests and catalogs, but how is a device provided
with a manifest? Upon installation, the Munki agent will look to a
SoftwareRepoURL key for the main repository of manifests. If Munki’s
SoftwareRepoURL preference is not defined, the Munki client will attempt
to detect a Munki repo based on some common defaults. That web host
should have a valid TLS certificate and host the URL via https in order to
protect against any man in the middle attacks. Munki is architected such
that the administrator points the Munki client to the server and that the host
running Munki implicitly trusts that server. Therefore, it’s not recommended
to deploy Munki without https in order to ensure the authenticity of catalogs
being deployed. Failure to do so could cause résumé-generating events.

If no SoftwareRepoURL is defined, Munki will go through a search
order looking for a repository of manifests. This follows the following
search order, where $domain is a search domain for a client:

e https://munki.%$domain/repo

o https://munki.$domain/munki_repo
e http://munki.$domain/repo

o http://munki.$domain/munki_repo

e http://munki/repo

95

CHAPTER 2 AGENT-BASED MANAGEMENT

Once Munki finds a repo, there is usually a manifest for all devices at
that URL. This is the site_default manifest and if a manifest is not found
that uses a better option. The url for that site_default for a domain name
of pretendco.com might then be https://munki.pretendco.com/repo/
manifests/site_default. Those better options in order of priority would be
a unique identifier for Munki known as the ClientIdentifier, a fully qualified
hostname (e.g., the output of scutil --get HostName), a local hostname (e.g.,
the output of scutil --get LocalHostName), or the serial number. The file
for a computer’s hostname using that pretendco.com domain name from
earlier but with a hostname of client1234 might then be https://munki.
pretendco.com/repo/manifests/client1234.pretendco.com.

The manifest can be created manually or using a device management
tool. For example, some organizations use puppet, chef, VMware AirWatch,
or Jamf Pro to distribute the Munki manifest files and settings that point to
manifest files. While it might seem like these other tools can manage the
software on devices natively, it's worth noting that these other tools are
more about state and policy management, where Munki is about managed
software. The power of Munki is the fact that it has such a narrow set of
duties. For smaller environments, managing software and leveraging some
payload-free packages is often all they need. For larger environments with
a state management tool, Munki perfectly complements their other tools,
and engineers tasked with the management of large fleets of devices are
accustomed to scripting middleware for their organization’s specific needs.

Many software packages are updated every couple of weeks. According
to how many software titles a given organization is managing, it can be a
challenge to maintain an extensive software catalog. Therefore, AutoPkg is
often used alongside Munki to automatically build packages and put them
in your testing catalog. We will cover AutoPkg more in Chapter 7, when
we review preparing apps for distribution. Now that we've covered Munki,
and how Munki keeps devices up-to-date, let’s move to a tool often used
to compliment Munki but built more for tracking the state of a device than
systems orchestration: osquery.

96

https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com

CHAPTER 2 AGENT-BASED MANAGEMENT

osquery

Facebook open sourced osquery, a tool they initially used to monitor
servers, at https://osquery.readthedocs.io/en/stable/. Since then,
a number of developers (including those responsible for each platform
internally at Facebook) have built additional capabilities for managing
a specific platform. This makes osquery capable of being used as part of
the management stack of a variety of platforms, without having to learn
the internals for each of those platforms. The point of osquery is to obtain
information about a system.

The osquery framework is multi-platform and tracks all the
information about a system in a simple SQL database, so that devices
can run lookups efficiently on behalf of a process that calls a lookup. This
makes otherwise costly (in terms of processing power) processes run
quickly, meaning an organization can obtain more data about devices in a
central location at a higher frequency, without impacting the performance
of the device being monitored. This would include common settings used
on a Mac, the daemons running, how a device is configured, and the
version of software. But you can get much lower level, analyzing processes
running, network sockets, compare file hashes, and any other fact you
might want to know about a device at a given time.

When you install osquery, the following files are deployed to the device:

o /private/var/osquery/com.facebook.osqueryd.plist:
The configuration preferences for the osquery daemon.

o /private/var/osquery/osquery.example.conf: The
customized settings for each morganization running
osquery.

o /private/var/log/osquery/: Log files are stored in this
directory and written as to the speficied parameters in
the configuration file.

97

https://osquery.readthedocs.io/en/stable/

CHAPTER 2 AGENT-BASED MANAGEMENT

o /private/var/osquery/lenses: A record of a rest call
stored in Augeas' tree.

o /private/var/osquery/packs: A set of queries.

e /usr/local/lib/osquery/: The directory for the
command tools for osquery.

o /usr/local/bin/osqueryctl: A control utility to wrap
basic tasks, like starting the LaunchDaemon.

e /usr/local/bin/osqueryd: The main osquery daemon,
which starts the process.

o /usr/local/bin/osqueryi: Provides a SQL interface to
test queries. By default, comes with a number of built-
in tables populated with more information than most
can consume (more data is always a good thing).

Now that we've looked at the osquery components, let’s get it installed
and check sql to see what data we now have at our fingertips.

Install osquery

The osquery software package for Mac is available at osquery.io/
downloads. The default package creates the files mentioned in the previous
section. Then you'll want to create a configuration file from the example:

sudo cp /var/osquery/osquery.example.conf /var/osquery/osquery.
conf

When you edit this file, it’s a standard json file. Look for lines that begin
with a // as those that are commented out. For this example, we’re going to
uncomment the following lines by simply deleting the // that the lines begin
with and then change the /usr/share/ to /var given that packs have moved:

98

https://osquery.io/downloads/
https://osquery.io/downloads/

CHAPTER 2 AGENT-BASED MANAGEMENT

// "osquery-monitoring": "/usr/share/osquery/packs/osquery-
monitoring.conf",

// "incident-response": "/usr/share/osquery/packs/incident-
response.conf",

// "it-compliance": "/usr/share/osquery/packs/it-compliance.conf",

// "osx-attacks": "/usr/share/osquery/packs/osx-attacks.conf",

So those four lines should then read:

"osquery-monitoring": "/var/osquery/packs/osquery-monitoring.
conf",

"incident-response": "/var/osquery/packs/incident-response.
conf",

"it-compliance": "/var/osquery/packs/it-compliance.conf",
"osx-attacks": "/var/osquery/packs/osx-attacks.conf",

We’ll also uncomment this line in the same way, by removing the //:
//"database_path": "/var/osquery/osquery.db",

The osqueryd daemon provides you with queries run on a schedule.
The daemon then aggregates the results of those queries and outputs logs.
The following is an example query from the configuration file. Here, we're
looking for hostname, cpu, and memory from the system_info table. And
the schedule for how frequently osqueryd updates the database per query
using an interval option in seconds.

"system info": {
// The exact query to run.
"query": "SELECT hostname, cpu brand, physical memory FROM
system_info;",
// The interval in seconds to run this query, not an exact
interval.
“interval”: 3600

99

CHAPTER 2 AGENT-BASED MANAGEMENT

We're not going to make any changes to any of the example queries
just yet. Now that we’ve customized the configuration file, we’ll copy the
LaunchDaemon to /Library/LaunchDaemons and start it:

sudo cp /var/osquery/com.facebook.osqueryd.plist /Library/
LaunchDaemons/

Once you've copied the file, we'll start the LaunchDaemon:

sudo launchctl load /Library/LaunchDaemons/com.facebook.
osqueryd.plist

The footprint for osquery is slight. As an example of this, you
remove osquery you would simply remove stop and remove /Library/
LaunchDaemons/com.facebook.osqueryd.plist. Then you would remove
all files from /private/var/log/osquery, /private/var/osquery, and /usr/
local/bin/osquery and then use pkgutil to forget the osquery package was
used using pkgutil:

pkgutil --forget com.facebook.osquery

If you were to deploy osquery en masse, you would then edit your own
templates, script any additional installation steps as a postflight script, and
repackage them for distribution. Now that we have osquery running on a
system, let’s look at running osquery.

Running osquery

The best way to understand the real value of osquery is to use osqueryi as a
standalone tool to query facts about a device. Architecturally, anything you
report on locally is then available on the server as well, or easily piped to a
Security Event Information Manager (SEIM). In fact, if you're threat hunting,
doing research for a book, or just obsessive compulsive about tracking your
own personal device performance, you can run osquery locally.

100

CHAPTER 2 AGENT-BASED MANAGEMENT

First, we'll start the osquery daemon, which now that everything is
installed should be started, but just in case, we’ll use

/usr/local/bin/osqueryctl start

Events and facts about devices are stored in a sql database at /var/
osquery/osquery.db (by default) and the schema for the tables in that
database are documented at https://osquery.io/schema/3.3.2. The
osqueryi binary can then be used to perform sql queries. This is an
interactive SQL shell and can be invoked by simply calling the file:

/usr/local/bin/osqueryi

Once in the interactive shell, just run a .SCHEMA command to see the
lay of the land:

osquery>.SCHEMA

There are way too many attributes that are tracked than we have pages
to go through them in this book. But use the link to the official schema to
easily find information about what'’s being tracked. It’s a much prettier
map. Next, we'll provide a few samples just to show the power of osquery.
The first is from sample documentation, but it’s one of the most common.
This query shows the USB devices that are plugged into a computer:

osquery>SELECT vendor, model FROM usb_devices;
The output would be as follows:

 EEREEEEE o +
| vendor | model

O EGREEEEE R L +
Apple Inc.	AppleUSBXHCI Root Hub Simulation
Apple Inc.	AppleUSBXHCI Root Hub Simulation
Apple Inc.	AppleUSBXHCI Root Hub Simulation
Apple Inc.	iBridge

T EEEEEEE R R E e T +

101

https://osquery.io/schema/3.3.2

CHAPTER 2 AGENT-BASED MANAGEMENT

The above is a standard SQL result-set. It shows all USB devices on
the bus. You can also use the WHERE clause to extract only those records
that fulfill a specified criterion. The WHERE Syntax uses a SELECT
followed by the column and then a FROM for the table but now adds
a WHERE at the end so you can specify table_name WHERE a column
name is - and this is where it becomes powerful because it’s where it is
either something in the data set or a comparative between columns. To
show what this expands to fully

osquery> SELECT vendor, model FROM usb_devices WHERE vendor
I="Apple Inc.';

As you can see, we used single quotes around text. We could have
also used double quotes. You do not need to quote numbers, but do
need to quote strings. The following operators are available when using
a WHERE clause:

e =Equal

e <>or!=Notequal to

e > Greater than

o INIndicates multiple potential values for a column
e <Lessthan

e >=Greater than or equal

e <=Lessthan or equal

o BETWEEN Between an inclusive range

e LIKE Looks for a provided pattern

What would this look like in your configuration file:

"usb devices": {
"query": "SELECT vendor, model FROM usb_devices;",

102

CHAPTER 2 AGENT-BASED MANAGEMENT

"interval": 60

In the above query, notice that we are running a standard SELECT
statement. Most tasks you will execute against a database are done with
SQL statements. Think of statements as a query, an insert, a change, or a
delete operating. For example, to see all of your data, you would select all
of the records from a database using the SELECT statement.

Notice that this is just the name of a query (any old name will work)
followed by a query, which is a standard SQL query, followed by an
interval. This would run once a minute. Another option would be to list the
amount of free space on Time Machine destinations once an hour:

{
"time machine": {
"query": "SELECT bytes available from time machine
destinations;;",
"interval": 60

The ORDER BY keyword in a SQL SELECT statement is used to sort a
given result-set based on the contents of one or more columns of data. By
default, results are in ascending order, but you can use either ASC or DESC
to indicate that you'd like results sorted in ascending or descending order,
respectively.

SELECT * FROM shared folders ORDER BY name DESC

Now that we’ve looked at queries, let’s move to how the logging and
reporting functions work so we understand how drift is tracked.

103

CHAPTER 2 AGENT-BASED MANAGEMENT

Logging and Reporting

The SQL result-set we looked at earlier ends up getting tracked in the
osquery database as a field in json. Each time the query runs a new row
is created in the table. The rows are empty until a change occurs the
next time the query is told to run. The contents of the first run would
appear as follows:

[
{"model":"XHCI Root Hub SS Simulation","vendor":"Apple

Inc."},

{"model":"XHCI Root Hub USB 2.0 Simulation","vendor":"Apple
Inc."},

{"model":"XHCI Root Hub SS Simulation","vendor":"Apple
Inc."},

{"model":"Bluetooth USB Host Controller","vendor":"Apple
Inc."}

Until a new device is added, no results are logged. But once I insert a
USB drive I would then see an entry that looks like the following:

[
{"model":"WD Easystore USB 3.0","vendor":"Western Digital"}

]

There’s plenty of extensibility. Each deployment then has the option to
add decorations, lenses, or add additional packs. Now that we understand
some basics about running these queries and automating them, let’s just
do a quick check on shared folders:

osqueryi --json "SELECT * FROM shared folders"

104

CHAPTER 2 AGENT-BASED MANAGEMENT

The output is then as follows:

"name":"CE’s Public Folder","path":"/Users/ce/Public"},
"name":"molly’s Public Folder","path":"/Users/molly/Public"}

This information can quickly and easily be picked up as inventory from
other tools with agents, such as munki, Jamf Pro, Addigy, or Fleetsmith.
Figure 2-10 shows Fleetsmith, as it also comes with the ability to direct
osquery information into a server.

Logging configuration usaped [0
=~ ~ Condigure osquery logging se!
AR Baecta TLE Sarver
Codigure whathes squary shoud log resuts locally ta
arfioalscuary, 1o an cequery TLS sorver, of 1o AWS

osquery

Enecll secret

TLS certificate chain

Figure 2-10. Manage osquery with Fleetsmith

Now that we’ve covered osquery, let’s look at another agent, Chef.

Chef

The purpose of osquery is to obtain information about devices.
But an orchestration tool is required as well for large-scale systems
administration. Chef is a tool originally built by Jesse Robbins to do server

105

CHAPTER 2 AGENT-BASED MANAGEMENT

builds and is now maintained at https://chef.io. Chefuses a recipe to
perform a configuration task. These recipes are organized into Cookbooks.

Managing clients is harder than managing servers. Your server
isn't likely to get up and walk away, doesn’t have a rouge root
user, and will never connect to Starbucks wi-fi.

—Mike Dodge, Client Platform Engineer, Facebook

The most complete list of cookbooks available for the Mac can be
obtained through the Facebook Client Platform Engineering team’s Github
account at https://github.com/facebook/IT-CPE. Reading through these
should provide a good understanding of the types of things that Facebook
and other IT teams are doing to automate systems and get up-to-speed on
how to orchestrate various events on the Mac.

Install Chef

We're not going to go into detail in this book in how to setup a Chef
instance and get client systems connecting to it. That’s an entire book of its
own. But we will review the Chef client in this section. To install the client,
download the installer from https://downloads.chef.io/chef-client/.
When you install the package, chef-apply, chef-client, chef-shell, and chef-
solo will be installed in /usr/local/bin.

You can quickly clone the repo we mentioned earlier from Facebook
using the following command (which would copy it to /Users/Shared/
ChefAssets):

git clone https://github.com/facebook/IT-CPE /Users/Shared/
ChefAssets

Once installed, there will be a company_init.rb script at /Users/
Shared/ChefAssets/chef/cookbooks/cpe_init/recipes. There’s also a
/Users/Shared/ChefAssets/chef/tools/chef_bootstrap.py bootstrap script.
Next you customize the chef server URL, the organization name (which

106

https://chef.io
https://github.com/facebook/IT-CPE
https://downloads.chef.io/chef-client/

CHAPTER 2 AGENT-BASED MANAGEMENT

should match that of your chef server), and provide any certificates
necessary. The main settings are in the header of the script:

CLIENT RB = """

log level :info

log_location STDOUT

validation _client name 'YOUR_ORG_NAME-validator'

validation_key File.expand path('/etc/chef/validation.
pem’)

chef_server url "YOUR_CHEF_SERVER URL_GOES HERE"

json_attribs '/etc/chef/run-1ist.json’

ssl ca_file "/etc/chef/YOUR_CERT.crt'

ssl_verify mode :verify peer

local key generation true

rest timeout 30

http_retry count 3

no_lazy load false

Additionally, look for any place that indicates MYCOMPANY and
replace that with the name of your organization to personalize the
installation. And make sure that if you're using chef to bootstrap a Munki
installation that you're using the correct URL as the SoftwareRepoURL:

Be sure to replace all instances of MYCOMPANY with your
actual company name

node.default['organization'] = 'MYCOMPANY'

prefix = "com.#{node['organization']}.chef"
node.default['cpe launchd']['prefix'] = prefix
node.default['cpe profiles']['prefix'] = prefix

Install munki

node.default['cpe munki']['install'] = false
Configure munki

node.default['cpe munki']['configure'] = false

107

CHAPTER 2 AGENT-BASED MANAGEMENT

Override default munki settings
node.default['cpe munki']['preferences']['SoftwareRepoURL'] =
"https://munki.MYCOMPANY.com/repo’

The logs are written to /Library/Chef/Logs/first_chef_run.log when the
script runs. The supporting files for chef will also be at /etc/chef, including
certificates that secure communications, a client.rb file that contains the
information you supplied the bootstrap.py. Provided it completes, you'll
then have a working quickstart.json file at /Users/Shared/ChefAssets/chef
and a working run-list.json file that includes any recipes you want to run.
You'll also have a /var/chef/cache for caches.

The quickstart script can then be as simple as the following:

{
"minimal ohai" : true,
"run_list": [
"recipe[cpe_init]"
]
}

Cookbooks should be ordered in your run-list from least specific
to most specific. That company_init.rb recipe defined the defaults for
an organization using all of the CPE cookbooks provided. The cpe_init
entry in the quickstart.json loads those recipes called in that init,
which by default includes a platform run list, a user run list, and a node
customization run list. If you want to know what anything is doing when
it'’s being called, simply look at the depends lines and then read the
resource ruby script for each, such as /Users/Shared/ChefAssets/chef/
cookbooks/cpe_hosts/resources/cpe_hosts.rb. Once you have everything
in place, it’s time to grill out with chef. Let’s simply run the chef-client
along with the -j to specify your json file:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/
quickstart.json

108

CHAPTER 2 AGENT-BASED MANAGEMENT

Edit a Recipe

Chef then makes verifies each resource in each included cookbook has
been configured as defined and resolves any drift found in the current
system. One of the most important things about a tool like chef is how
configurable it is. Simply cat the /Users/Shared/ChefAssets/chef/
cookbooks/cpe_munki/resources/cpe_munki_local.rb file to see how
munki is installed and note that

Now that we have chef running, let’s edit a recipe. To do so, we'll edit
that /Users/Shared/IT-CPE/chef/cookbooks/cpe_init/recipes/company_
init.rb recipe in your favorite text editor to .

Add the following lines to the bottom of the file:

node.default['cpe autopkg']['repos'] = [
'recipes’,
"https://github.com/facebook/Recipes-for-AutoPkg.git"
]

This adds the recipes from the Facebook team to an autopkg instance
running on the host. Other parts of the recipe will allow you to install
autopkg and customize it, so you don’t have to do all the steps we’ll follow
in a manual installation later in this book. Programmatic deployment of
tools and configuration provides for a consistent experience. Once you've
configured the change to the client init, rerun the chef-client:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/
quickstart.json

These also write profiles, which you can then see in System
Preferences. Facebook was one of the first to publish cookbooks for Chef
and an early proponent of Chef for large-scale Mac orchestration. But a
few others have also open sourced their cookbooks, giving you a number
of options to choose from. And you can pull cookbooks from multiple
vendors when deploying your own. A few include the following:

109

CHAPTER 2 AGENT-BASED MANAGEMENT

o https://github.com/facebook/IT-CPE/tree/master/
chef/cookbooks

o https://github.com/microsoft/macos-cookbook

o https://github.com/pinterest/it-cpe-cookbooks
o https://supermarket.chef.io/cookbooks/macos

o https://github.com/uber/cpe-chef-cookbooks

The social community of Chef administrators and how they share
cookbooks makes for a good reason to look into these types of workflows.
Chefis open source and there are a lot of different methodologies around
its use and deployment. The examples in this chapter have mostly been
developed around a model that Apple began back in Software Update
Server when they provided us with a manifest URL. Mac admins have
been using a similar manifest, init script, etc., to deploy settings, apps,
and operating systems ever since. Organizations like Fleetsmith have
developed integrations with Chef that go beyond this and leverage a chef
server, as seen in Figure 2-11.

Chef Client Settings n
Configure Settings for Chel O
@ HTTES Server URL
Full HTTPS sarver AL, nchusing path. Must Degin wit OpRLehet krypind comagl
Chal atomates drastiuchule management by
bringing nodes to defined desined states. CA certificate
CA certificate, in FEM foi
Cancel
Remave from Frofie
com kryoted
Profie
Publisher

Latest version

System requirement

Mutual TLS 2 on

Figure 2-11. Manage Chef with Fleetsmith

110

https://github.com/facebook/IT-CPE/tree/master/chef/cookbooks
https://github.com/facebook/IT-CPE/tree/master/chef/cookbooks
https://github.com/microsoft/macos-cookbook
https://github.com/pinterest/it-cpe-cookbooks
https://supermarket.chef.io/cookbooks/macos
https://github.com/uber/cpe-chef-cookbooks

CHAPTER 2 AGENT-BASED MANAGEMENT

In the above example, we're providing those certificates and the chef-
client to endpoints from a central location, configuring what is required for
a client to be able to communicate back to a server. The steps we followed
in the previous examples can be strung together into an installer package.
But being able to automatically deploy one and keep clients up-to-date
automatically makes for a much simpler experience.

Puppet

The tools covered in the previous sections are just a few in a red ocean
that includes a large number of client management tools available for
the Mac. We've seen Puppet, Vagrant, and other open source projects
used to orchestrate events on the Mac in much the same way they would
orchestrate events on a large farm of Linux servers.

The Puppet installer for Mac is available at https://downloads.
puppetlabs.com/mac/ and when installed using a standard software
package, the puppet-agent is used to orchestrate events on Macs.

A number of other binaries for puppet can be found in /opt/puppetlabs/
bin/. The service can be managed using launchctl or the puppet binary.
For example, if puppet is stopped it can be started using

sudo /opt/puppetlabs/bin/puppet resource service puppet
ensure=running enable=true

You would then configure changes to some of the ways the agent runs,
using settings found at https://puppet.com/docs/puppet/5.3/config_
important_settings.html. The mostimportant is to sign a certificate
that’s then used to establish communications with the server. This is done
using the puppet command line utility followed by the cert option and
then the sign verb for that option, followed by the name of a certificate
that’s generated, as follows:

sudo /opt/puppetlabs/bin/puppet cert sign com.puppet.pretendco8734

111

https://downloads.puppetlabs.com/mac/
https://downloads.puppetlabs.com/mac/
https://puppet.com/docs/puppet/5.3/config_important_settings.html
https://puppet.com/docs/puppet/5.3/config_important_settings.html

CHAPTER 2 AGENT-BASED MANAGEMENT

These need to match with the server entry in the puppet.conf
directory. We don’t want to oversimplify a full-blown puppet deployment.
Getting a client to connect to a server is pretty straightforward. The real
value in any of these tools comes in the form of how much time they save
you once deployed. Puppet has nine configuration files, such as auth.conf
and puppetdb.conf for a reason. We won'’t go into each of them (especially
since our publisher has an entire book on the subject available at www.
apress.com/gp/book/9781430230571).

Logs are then saved to /var/log/puppetlabs/puppetserver/
puppetserver.log. This walkthrough follows the same general standard as
Chef and Munki. But each is really built for something specific. Puppet is
for immediate orchestration. Munki is for software distribution. Chefis
for keeping a device in a known state. Osquery is for keeping inventory of
settings and events. There’s overlap between some of the options, but if
you squint enough, the basic methodology and management principles
across them are, in a very oversimplified way, similar. One such similarity
is that most administrators of these tools prefer to check changes in and
out using a tool called git.

Use git to Manage All the Things

Git is a version control tool that can be used to manage files including
code that is then version controlled so you can see changes over time. The
main page indicates it’s actually the stupid content tracker. Git is good at
tracking changes between files and allowing administrators to check code,
or files out, and then check them back in when finished working. This is
well suited to a workflow where you want someone else to review your
changes before they get applied to a large fleet of devices. This makes git a
common compliment to chef, osquery, and munki deployments.

112

http://www.apress.com/gp/book/9781430230571
http://www.apress.com/gp/book/9781430230571

CHAPTER 2 AGENT-BASED MANAGEMENT

Ultimately though, git is a command with some verbs. Let’s start
with the init verb, which creates an empty git repository in the working
directory (or supply a path after the verb):

git init
Now let’s touch a file in that directory.
touch newfilename

Once a new file is there, which that new repo as your working
directory, run git with the status verb:

git status

You now see that you're “On branch master” - we’ll talk branching
later. You see “No commits yet” and hey, what's that, an untracked file! Run
git with the add verb, and this time you need to specify a file or path (I'll
use . assuming you're working directory is still the directory of your path).

git add .

Now let’s run the status command; again, the output should indicate
that you now have a staged file (or files). Now let’s run our first commit. This
takes the tracked and staged file that we just created and commits it. Until
we do this, we can always revert back to the previous state of that file (which
in this simple little walkthrough would be for the file to no longer exist).

git commit -m "test"
Now let’s edit our file:

echo "This is an example." > newFile'
This time let’s run git with the diff verb:

git diff

113

CHAPTER 2 AGENT-BASED MANAGEMENT

You can now see what changed between your file(s). Easy, right? Check
out the logs to see what you've been doing to poor git:

git log

There’s a commit listed there, along with an author, a date and time
stamp, as well as a name of the file(s) in the commit. Now, let’s run a reset
to revert to our last commit. This will overwrite the changes we just made
prior to doing the diff (you can use a specific commit by using it as the next
position after —hard or you can just leave it for the latest actual commit):

git reset —hard

This resets all files back to the way it was before you started mucking
around with those poor files. OK, so we've been working off in our own little
world. Next, we'll look at branches. You know how we reset all of our files in
the previous command? What if we had 30 files and we just wanted to reset
one? You shouldn’t work in your master branch for a number of reasons. So
let’s look at existing branches by running git with the branch verb:

git branch

You see that you have one branch, the “x master” branch. To create a
new branch, simply type git followed by the name of the branch you wish
to create (in this case, it will be called myspiffychangesl1):

git branch myspiffychanges1

Run git with the branch verb again and you'll see that below master,
your new branch appears. The asterisk is always used so you know which
branch you're working in. To switch between branches, use the checkout
verb along with the name of the branch:

git checkout myspiffychanges1

114

CHAPTER 2 AGENT-BASED MANAGEMENT

I could have done both of the previous steps in one command, by
using the -b flag with the checkout verb:

git checkout -b myspiffychanges1

OK now, the asterisk should be on your new branch and you should
be able to make changes. Let’s edit that file from earlier. Then let’s run
another git status and note that your modifications can be seen. Let’s
add them to the list of tracked changes using the git add for the working
directory again:

git add .
Now let’s commit those changes:
git commit -m "some changes"

And now we have two branches, a little different from one another.
Let’s merge the changes into the master branch next. First, let’s switch back
to the master branch:

git checkout master
And then let’s merge those changes:
git merge myspiffychanges1

OK - so now you know how to init a project, branch, and merge. Before
we go on the interwebs, let’s first set up your name. Notice in the logs that
the Author field displays a name and an email address. Let’s see where that
comes from:

git config -list

This is initially populated by ~/.gitconfig so you can edit that. Or let’s
remove what is in that list:

git config --unset-all user.name

115

CHAPTER 2 AGENT-BASED MANAGEMENT
And then we can add a new set of information to the key we’'d like to edit:
git config user.name "Charles Edge" --global

You might as well set an email address too, so people can yell at you for
your crappy code some day:

git config user.email "chuckufarley@me.com" --global

Next, let’s clone an existing repository onto our computer. The clone
verb allows you to clone a repository into your home directory:

git clone https://github.com/autopkg/autopkg

The remote verb allows you to make a local copy of a branch. But it takes
a couple of steps. First, init a project with the appropriate name and then cd
into it. Then grab the url from GitHub and add it using the remote verb:

git remote add AutoPkg https://github.com/autopkg/autopkg.git
Now let’s fetch a branch of that project, in this case, called test:

git fetch test myspiffychanges1
Now we’ll want to download the contents of that branch:

git pull myspiffychanges1
And once we've made some changes, let’s push our changes:

git push test myspiffychanges1

Now that you've deployed agents, MDM is a great complement to what
agents can do so we'll cover the concept of User Approved MDM in order
to have less button mashing happening by our end users.

116

CHAPTER 2 AGENT-BASED MANAGEMENT

The Impact of UAMDM

Until macOS High Sierra, some MDM functions which would not run as
well on personally owned Macs as on iOS devices owned by a company.
This is because the iOS counterparts had Supervision and Macs do not.
As of High Sierra and beyond, Macs owned by a company, school or
institution can now be managed in a similar fashion as supervised iOS
devices are managed because of the introduction of UAMDM. User-
Approved MDM (UAMDM) in macOS 10.13.4 changed that by putting
certain management privileges in a special category. The use of these
special management privileges required both the use of an MDM solution
and for that MDM solution to support user-approved MDM. As of macOS
Mojave 10.14.x, these special management privileges are the following:

e Approval of third-party kernel extension loading

o Approval of application requests to access privacy
protected data and functionality

e Autonomous Single App Mode

For Mac environments which had traditionally not used MDM
management solutions, this meant for the first time that a MDM solution
was absolutely necessary for certain management functions to happen.
Moreover, there are two ways to mark a Mac as being user-approved:

« Enrolling the Mac in Apple’s device enrollment
program (DEP) - Enrollment of a Mac into DEP
means that Apple or an authorized reseller has
designated that Mac as being owned by a company,
school, or institution. Since this Mac is now explicitly
not a personally owned device, it gets UAMDM
automatically.

117

CHAPTER 2 AGENT-BASED MANAGEMENT

o Having a human being click an approval button on the
MDM profile issued by an MDM server which supports
UAMDM.

The automatic granting of UAMDM to DEP-enrolled Macs means
that DEP is now also more attractive to organizations which may not
have previously considered it. The combination of UAMDM'’s reserving of
management privileges and the necessity of using MDM to employ those
privileges means that using an MDM solution to manage Macs has moved
from the “useful, but not essential” category to the “essential” category.
The rise of MDM management may signal the diminishment of using
agents to manage Macs. As more MDM management options become
available, the more an MDM solution can use Apple’s built-in MDM
management functionality to manage Macs in place of using a third-party
agent to manage the Mac. While agents likely won’t disappear overnight, the
areas where they will be providing management value will shrink over time.

Rootless

The challenge with what some of these agents are doing is that they are
operating in a way that is becoming challenging to keep up with the rapid
pace of change at Apple engineering. Given the prevalence of some of
these tools Apple provides a group of apps that are whitelisted from many
of the sandboxing requirements, which they call rootless. Some files need
to be modifiable, even if they're in a protected space. To see a listing of
Apple tools that receive this exception, see /System/Library/Sandbox/
rootless.conf:

cat /System/Library/Sandbox/rootless.conf

In addition to the list of SIP exceptions listed in rootless.conf, there
is a second list of SIP exceptions that includes a number of directories,

118

CHAPTER 2 AGENT-BASED MANAGEMENT

agents, and applications from third-party products located at /System/
Library/Sandbox/Compatibility.bundle/Contents/Resources/paths
which can be read using:

cat /System/Library/Sandbox/Compatibility.bundle/Contents/
Resources/paths

The only agents listed in this chapter that are in that file at /usr/sbin/
jamf and /usr/sbin/jamfAgent (even though their paths have changed). It’s
worth speculating that Apple engineers would like the paths file to go away
at some point so expect those agents to move in support of that.

Finally, Starcraft gets a pass on TCC compatibility in /System/
Library/Sandbox/TCC_Compatibility.bundle/Contents/Resources/
AllowApplicationsList.plist. This is one of the great unknown secrets of the
universe. We assume a High Templar demanded it. All of these restrictions
on what agents and apps can do extend to restricting access to various
frameworks as well.

Frameworks

A framework is a type of bundle that packages dynamic shared libraries
with the resources that the library requires, including files (nibs and
images), localized strings, header files, and maybe documentation. The
.framework is an Apple structure that contains all of the files that make up
a framework.

Frameworks are stored in the following location (where the = is the
name of an app or framework):

e /Applications/xcontents/Frameworks
o /Library/=/
e /Library/Application Support/:/*.app/Contents/

o /Library/Developer/CommandLineTools/

119

CHAPTER 2 AGENT-BASED MANAGEMENT

o /Library/Developer/
o /Library/Frameworks
e /Library/Printers/

e /System/iOSSupport/System/Library/
PrivateFrameworks

o /System/iOSSupport/System/Library/Frameworks
e /System/Library/CoreServices

e /System/Library/Frameworks

e /System/Library/PrivateFrameworks

e /usr/local/Frameworks

If you just browse through these directories, you'll see so many
things you can use in apps. You can easily add an import followed by the
name in your view controllers in Swift. For example, in /System/Library/
Frameworks, you'll find the Foundation.framework. Foundation is pretty
common as it contains a number of APIs such as NSObject (NSDate,
NSString, and NSDateFormatter).

You can import this into a script using the following line:

import Foundation

As with importing frameworks/modules/whatever (according to the
language) - you can then consume the methods/variables/etc in your code
(e.g., let url = NSURL(fileURLWithPath: “names.plist”).

The importance of frameworks here is that you should be able to run a
command called otool to see what frameworks a given binary is dependent
on in order to better understand what’s happening:

otool -L /usr/bin/1ldb

120

CHAPTER 2 AGENT-BASED MANAGEMENT

Additionally, you can use an open source project called looto to see
what is dependent on in order to better understand how tools interact with
other tools or with their own various frameworks. This is one of a number
of open source tools that many administrators will need to understand
at some point in order to have a well-rounded perspective on device
management.

Miscellaneous Automation Tools

There are also a number of automation tools that are easily called by
agents and make planning and implementing a deployment easier by
providing more flexible options to administrators for specific tasks. There
are plenty of other tools described throughout the book, but these are
specifically designed to help extend what agents can do.

The first tool we'll cover is outset from Joseph Chilcote and available at
https://github.com/chilcote/outset/. Outset processes packages and
scripts at first boot and user logins. Outset is comprised of two launchd
items that call loose packages or scripts in individual folders either at
startup or user login. To add more tasks to the startup and login processes,
add new items to the appropriate folders. Outset handles the execution.

If your Macs need to routinely run a series of startup scripts to
reset user environments or computer variables, then making launchd
plists may be burdensome and difficult to manage. And plists execute
asynchronously, which means startup and login processes may not run in
the same order every time.

The next tool is dockutil, available at https://github.com/kcrawford/
dockutil. Dockutil makes it easier to manage the Dock on a Mac. Users
need the right tools to do their jobs and a thoughtfully crafted dock helps
them find those tools. They need access to applications, their home
folders, servers, and working directories. Dockutil adds, removes, and
reorders dock items for users. The script allows an administrator to adjust

121

https://github.com/chilcote/outset/
https://github.com/kcrawford/dockutil
https://github.com/kcrawford/dockutil

CHAPTER 2 AGENT-BASED MANAGEMENT

dock settings to adjust the view of folders (grid, fan, list, or automatic),
adjust the display of folders to show their contents or folder icons, and set
folder sort order (name, date, or kind).

The last tool we’ll cover is duti, available at http://duti.org/
index.html. Duti makes it easier to set default the applications
for document types and URL handlers/schemes. Enterprises often
incorporate Macs into complex workflows that require consistent
behaviors. If a workflow requires using the Firefox browser instead of
Safari or using Microsoft Outlook instead of Apple’s Mail application,
Andrew Mortensen’s duti can ensure the correct applications respond

when opening a URL or new email message.

Note A much more comprehensive list of these tools can be found
in Appendix 1: The Apple Ecosystem.

Duti’s name means “default for UTI” or what Apple calls Uniform
Type Identifiers. Every file type such as an HTML page or Microsoft Word
document has a UTT and developers constantly create their own new UTIs.
Duti reads and applies UTI settings to pair applications with UTIs.

Summary

There are a number of agent-based solutions on the market for managing
Macs. Some of these are proprietary and others are open source. Most
management agents should be paired with a Mobile Device Management
(MDM) solution, which we cover further in Chapter 4. The focus here is on
the Mac, simply because we cannot install “agents” on i0S, iPadOS, and
tvOS devices.

These agents are typically used for device inventory, deploying
software, keeping software up-to-date, managing settings, user

122

http://duti.org/index.html
http://duti.org/index.html

CHAPTER 2 AGENT-BASED MANAGEMENT

notification, and a number of other tasks. The term “agent” is often an
oversimplification. Each “agent” usually comes with anywhere between 1
and 5 launchagents and launchdaemons. This is because each task should
be run independently. These tasks usually invoke other tasks, preferably
with native Objective-C or Swift frameworks but often by simply “shelling
out” a command line tool built into macOS. As an example, you can install
profiles manually using the profiles command, which any agent-only
management tool will use for profile management, given that some tasks
require a profile. We'll cover profiles in detail in Chapter 3.

More and more of these settings are now prompting users. Thus, we
need to use an MDM solution to limit the number of prompts on behalf of
the user and to get our management agents on devices without too much
work from line tech support.

Now that we've covered agents, we'll dig into MDM further in Chapter 4.
But first, we'll explore profiles even further in Chapter 3, so you can get more
done with both agents and MDM.

123

CHAPTER 3

Profiles

A profile is an xml file. This file, when installed on a device, configures
the device to act in a certain way. Profiles began back in the iPhone
Configuration Utility (the precursor to Apple Configurator) and have since
moved to being the way you manage various settings on Apple operating
systems like i0S, macOS§, and tvOS.

When configuring iOS devices to use the settings you want, there’s
generally three ways to go, manually configuring settings and profiles. For
the Mac you have another option, scripting changes with defaults.

Manual configuration can be done by anyone and doesn’t require
any management infrastructure at all, but it’s generally time-consuming,
requires having the device in front of the person doing the configuration
and frankly, people make errors.

In contrast, profile configuration usually requires some sort of mobile
device management solution infrastructure but can also be done with
nothing more than Apple’s Configurator app. Settings configuration
via a profile is quick, the settings can be applied to multiple devices
simultaneously, and (assuming the profile was configured correctly) a
profile will apply the desired settings consistently and without errors.

Scripted configuration changes can be done in a number of ways.
You can install a profile from the command line. But you can also edit
a defaults domain, which is based on a property list file that can also be
edited manually. We'll cover manipulating settings using the defaults

© Charles Edge and Rich Trouton 2020 125
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_3

CHAPTER 3 PROFILES

command further in Chapter 10. In this chapter, we will perform some
manual configurations and then look at how to perform some of those
same tasks using profiles, to better understand how profiles work and look
at doing scripted management of profiles. Along the way we’ll look at the
contents of a profile.

Manually Configure Settings on Devices

The manual configuration of settings on devices is done using System
Preferences on the Mac or using the Settings app on iOS. We'll start by
looking at using the Settings app to configure a newer feature called
Downtime. Downtime restricts anything but phone calls from working
on an iOS device, and settings to Downtime are synchronized to iCloud
applying them to all devices that have been configured using a given
iCloud account.

To get started, first open the Settings app on an iOS device (iPad or
i0S). This is where all settings are configured, such as Wi-Fi and privacy
settings. From there, tap on the Screen Time setting. In Screen Time, you'll
find Downtime (Figure 3-1); tap on that.

126

CHAPTER 3 PROFILES

will ATAT LTE 5:08 PM -

£ Settings Screen Time

SCREEN TIME Today at 5:08 PM

iPhone

2s

Settings
2s

Downtime

Schedule time away from the screen

B App Limits
Set time limits for apps

0 Always Allowed

Choose apps you want at all times

@ Content & Privacy Restrictions

Block inappropriate content

Use Screen Time Passcode

Figure 3-1. Tap Downtime to configure Downtime settings

Now that you're in the Downtime settings, tap on the Start field and set

a time. Then tap on the End time to configure when you'll get alerts again.

Use the Set Downtime button to then apply the settings (Figure 3-2);.

127

CHAPTER 3 PROFILES

wil ATET LTE 4:18 PM -

(Back

Downtime

Set a schedule for time away from the
screen. Your permission will be required to
allow more screen time. Calls, messages,
and other apps you want to allow can still

be used.

Start 10:00 PM

End 7:00 AM

Set Downtime

Mot Now

Figure 3-2. Configuring Downtime settings to schedule time away

Tap back on Screen Time in the upper left-hand corner of the screen.
Now, let’s set up an app limit for social apps (because really, most of us are
on those way too much) (Figure 3-3):

e Open Settings
o Tap on Screen Time
e Tap App Limits

e Tap an app category (e.g., Social Networking)

128

CHAPTER 3 PROFILES

Set the number of hours you can use that type of app
(note, if you set 23 hours and 59 minutes, you are totally

cheating)
Tap Add
wil ATAT LTE 4:20 PM -
¢ Back Social Networking Add
Time 11hr 59min, Every Day

11 hours 59 min

Customize Days

App limits will app

appear five mir

APPS & CATEGORIES
o Social Networking
Messages, FaceTime

Figure 3-3. Configuring App Limit settings to restrict time spent on
social media

Should you want to remove those limits you created, just tap Delete

Limit. Or better, just configure apps that are allowed to bypass the limits

you’ve made by tapping Always Allowed and adding apps that are always

allowed to work. This allows you to limit all your apps except, as an

example, Maps and Camera.

129

CHAPTER 3 PROFILES

Another option in Screen Time is Content and Privacy Restrictions

(Figure 3-4). To configure these

Open Settings
Tap on Screen Time
Tap on Content & Privacy Restrictions

Turn Content & Privacy Restrictions on by tapping the

slider

Tap on iTunes & App Store Purchases

will ATAT LTE 4:21PM -

4 iTunes & App Store Purchases

STORE PURCHASES & REDOWNLOADS
Installing Apps
Deleting Apps

In-app Purchases

REQUIRE PASSWORD
Always Require

Don't Require 4

Require a password for additional purchases after

making a purchase from the iTunes, Book, or App Store

Figure 3-4. Restricting iTunes and App Store purchases to desired
categories

130

CHAPTER 3 PROFILES

Here, you can limit installing apps, deleting apps, or making in-app

purchases on the device (Figure 3-5). You can also just force a password

in order to make any purchase from iTunes, Book Store purchases, or App

Store purchases:

Tap the back button

Tap Allowed Apps

Use the indicator light to disable any app you don’t

want to be able to access on this profile

Once all apps are configured, tap the back button

Tap Content Restrictions

will ATAT LTE

(Back

200 9800000

7

Mail

Safari
FaceTime
Camera

Siri & Dictation
Wallet

AirDrop

CarPlay

iTunes Store
Books
Podcasts

News

Allowed Apps

88008886

8 8

ole

Figure 3-5. Restricting apps which can be used on this iOS device

131

CHAPTER 3 PROFILES

There are a lot of content restrictions available (Figure 3-6 and
Figure 3-7). Most are mirrored with a profile and so can be controlled by an
MDM as well:

o Country: Start with the country your ratings are set for.

¢ Music, Podcasts, and News: Then, choose what
whether or not explicit content is allowed (and by

content we really mean music, podcasts, and news).

¢ Music Profiles and Posts: Then choose whether the
device is allowed to publish music options and posts
about music.

e Movies: Then set a maximum AFTRA rating (e.g., PG-13
or R) for content.

e TV Shows: Select the TV ratings allowed (e.g., TV-G or
TV-MA for mature audiences)

o Books: Luckily, Tipper Gore never got her way so
there’s no true rating systems for books. Just select
Clean or Explicit.

e Apps: Choose an age that ratings for apps are most
appropriate

e Web Content: Limit access only to specific web sites,
limit access to adult web sites, or provide unrestricted
access to web content

e Web Search Content: Allow Siri to access the Web to
search

o Explicit Language: Allow or restrict Siri from using dirty

words

132

e Multiplayer Games: Allow or deny access to multiplayer

games

¢ Adding Friends: Allow or deny access to add friends

within the Game Center app

e Screen Recording: Allow or deny access to screen

recordings
will ATAT LTE 4:22 PM
¢ Back Content Restrictions
ALLOWED STORE CONTENT
Ratings For

Music, Podcasts & News
Music Profiles & Posts
Movies

TV Shows

Books

Apps

WEB CONTENT

Web Content

SIRI
Web Search Content

Explicit Language

CHAPTER 3 PROFILES

Figure 3-6. Restricting iTunes, App Store, and web content settings to

desired categories

133

CHAPTER 3 PROFILES
wil AT&T LTE 4:22PM -
¢ Back Content Restrictions
TV Shows
Books Clea

Apps

WEB CONTENT

Web Content

SIRI

Web Search Content Don't A

Explicit Language Don't A

GAME CENTER
Multiplayer Games Don't Allow
Adding Friends Don't A

Screen Recording

Figure 3-7. Restricting Siri and Game Center content settings to
desired categories

Next, go back and in the privacy section, configure what apps are able
to access Location Services, Contacts, Calendars, Reminders, Photos,
Share My Location, Bluetooth Sharing, Microphone, Speech Recognition,
Adpvertising, and Media & Apple Music (Figure 3-9).

134

CHAPTER 3

wil ATAT LTE 5:31PM -

4 Content & Privacy Restrictions
PRIVACY

Location Services

Contacts

Calendars

Reminders

Photos

Share My Location Don't Allow
Bluetooth Sharing

Microphone

Speech Recognition

Advertising Don't Allow

Media & Apple Music

ALLOW CHANGES

Figure 3-8. Restricting app access to desired settings

Under allow changes, configure whether you'll be able to make

PROFILES

changes to Passcode Changes, Account Changes, Cellular Data Changes,

Volume Limits, Do Not Disturb While Driving, TV Providers, and
Background App Activities (Figure 3-9).

135

CHAPTER 3 PROFILES

wil ATET LTE 4:23 PM —

4 Content & Privacy Restrictions
Bluetootn sharing A

Microphone
Speech Recognition
Advertising

Media & Apple Music

ALLOW CHANGES

Passcode Changes

Account Changes

Cellular Data Changes

Volume Limit

Do Not Disturb While Driving Don't A
TV Provider Don't A

Background App Activities

Figure 3-9. Restricting changes which can be made to specified
settings

That’s a ton of work, and if you have more than one device to apply
these changes to, it gets tedious and tiresome around device number 2.
There’s a better way though, which is to use a management profile to
configure a device. Let’s look at that next.

Use Apple Configurator to Create a Profile

Apple Configurator is a free tool, available on the Mac App Store from
Apple. You can use Apple Configurator to create profiles and manage the
deployment of profiles onto iOS devices over USB. For the purposes of this

136

CHAPTER 3 PROFILES

chapter, we will be creating some profiles using Apple Configurator and
then install one of the profiles onto Apple Devices.

First off, let’s try creating a profile using Apple Configurator which sets
the same kind of app and content management settings that we had earlier
set with Screentime.

In Apple Configurator, select File: New Profile to get started (Figure 3-10).

& Apple Configurator 2 I Eat Actions View Account Window Help

New Blueprint B
New Window UXN

Open x0
Open Recent 3
Close W
Share >

Figure 3-10. Creating a new management profile in Apple Configurator

A new profile creation window should open, with Configurator
defaulting to showing the General section (Figure 3-11).

LK] Usttied — Edded

m AwPlay
B e PO

n AirPrint barer B

Figure 3-11. Viewing the new management profile template in Apple
Configurator

137

CHAPTER 3 PROFILES

The General section is where the identifying information for the new
profile should be entered (Figure 3-12). In this example, the following
information is being used:

¢ Name: Screentime Controls
e Organization: Company Name

e Description: This profile sets app and content

restrictions on managed iOS devices

LIS ——

Figure 3-12. Adding identification information to the new profile

If needed, additional information and settings can be entered. For
example, by default the Security settings allow the profile to be removed at
any time. These settings can be altered to the following:

o With Authorization - This setting requires that a
password be entered before the profile can be removed.

o Never - This setting means that the profile can never be
removed. Only wiping and resetting up the device will
erase it from the device.

138

CHAPTER 3 PROFILES

The settings which match those found in Screen Time are found under
the Restrictions payload section of the profile. To access these settings,
click Restrictions and then select the Configure button (Figure 3-13).

ene Ustitied

Ganaral

Mardariry
a Dommns
q‘!\ Bleal HTTF Prasy
e ONE Pracy
e Comtant Fittar

. Restrictiens
Corticaten LIS TR BTN 15 R WA B8, Svrd
anctionalty, and media content are sradabie 13 B ke

L4 Cortlicats Transparency
Fasssens
= Wen

ven
o
n MirPlay
a hiaPlay Securay
B AirPrint

Figure 3-13. Enabling the Restrictions payload of the new profile

Once the Restrictions payload is enabled, you can set the desired app
and content restrictions for your devices (Figures 3-14-3-16).

. L] Uetitled
frrer® Restrictions
e D 0 Alew use of camars

O Adom FacaTions

*;\ Global HTTF Praxy 0 Afew soreeraiaty sad vereen rec]
5 Ao irblay, Viewm Sarwen oy Clasasmen, and Sorwen Shasivn
0 o
B ASow Ak Drop [sapervined srdy)
@ crmoemi e T T T———
B Mon Appla Music [igarvined saly|
Cornsinanen D A Wi (suparvined arty)
e 0 Al wiive dhaking while duvice in backed
G Cwbiiate Transanmey B st it
u O Atow B whle devece i bocked
Panacods [P e ——
a
g [y r—
o T U P——p————
e 5 Al Auwie Bosis Isuparvived oty
R) Aom imutaing spmn
sioviny G Ao inuiafing soms uri Apw Srace [nvperrined syl
10 st s s (smpovied it
O Alem remerng spe (suptrnised oriyl
G e Tl B9

B Ao in-app purchase.
E APt e Tunes 0w passmed foe o puschases
[T——

Figure 3-14. Setting Functionality restrictions

139

CHAPTER 3 PROFILES

Restrictions

[m— o R

@ 3 Ak wae 04 Tunes Stors
PR ——
%\ Glabad HTTP Praxy Al ok 8 Podcants (buperaned snly|
Ak e 88 G Cantar (uparvined seiy]
0 o
Comtant Filtes 10 Al s of Butart
< traste et
18 Forse trows waming
Cortteones) Trnabie dsvatcrgs

" oo

0 Bach pap-um
Becapt easkion

Fomwmenesivies [

[Pscods Baatrict App Uesge (supsrsinad oay)
N e O
= W

e
RS
[
Emwmmn
EMM

Figure 3-15. Setting app restrictions

. L] Unititied
by W Restrictions
m o e
e Bemans Ratiogs
B i e]
% Wllgwred ponten satings.
[Rontaind Movivs: | FG-13 B
e Comtent Filter TV Shows; TV PG B
P B
e Al paphack of snphcit munic, pdcasts & (unes 1 media
Al uples 4 sbaual samtent in Agpie Besks

Aeblay
a haPlay Security
E AaPrit

Figure 3-16. Setting media content restrictions

Once all the desired settings have been configured in the Restrictions
payload, save the profile by selecting Save under the File menu (Figure 3-17).

140

& Apple Configurator 2 [T £ Actions View Account Window Help

New Profile XN

New Window UXN

Open. x0
Open Recent -

Clase W
Duplicate XS
Renama.

Move To.

Revert To »

Share »

Sign Prafile.

CHAPTER 3

PROFILES

Figure 3-17. Saving a management profile in Apple Configurator

You'll then be prompted to save the profile with a desired name to a
desired location, such as the Desktop so it’s easy to find (Figures 3-18

and 3-19).

Avﬂn-
ammmn
a

Restric

5 e ADrep (napervined sedy)
0 3w Message vaparsed sniy)
B Mon Appla Music [igarvined saly|
D i s {rispervined sedy)
Albaw voics diaking whihs devece in boched
B Ao irt
O Atow B whle devece i bocked
Wnaible bl pratanay fite (sopervived saty)
a

B Alew Siri Suggeitions
T U P——p————
5 A Appie Bt (suparvined andy

9 anam imstaming spme

0 Ao masmatic app dowsioads (vepervied seiy)
B Ml remeving apes Lupervised anlr]
) e ramaving syisem mpps {ruparvined maiy)
6 Aem in-ape purchare
Beguirs Tunas $100w pasvmse tas b puschasss
0 M iChad bachun

Figure 3-18. Saving a management profile to chosen location with

desired name

141

142

CHAPTER 3 PROFILES

LN) Desktop
< =] &
[Desitop
1 Dotumant
D Downioads T
ilion: \‘ re
% iCloud Orive - - 4
) Macintosh
CONFIG

Screntime Controls mobilecon®iy

1 itam, 28.7 08 avakabis

Figure 3-19. Saved management profile in chosen location

Once the name and location have been chosen, the profile will be

saved as an XML-formatted document with a .mobileconfig file extension
(Figure 3-20).

CHAPTER 3 PROFILES

<?xml version="1,0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.8//EN" “http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1,8">
<dict>
<key»PayloadContent=/key>
<array>
<dict>
<key=PayloadDescription</key>
<string>Configures restrictions</string>
<key=PayloadDisplayName</key>
<string>Restrictions</string>
<key=Payloadldentifier</key>
<string>com.apple.applicationaccess.6E@0443A-BFDA-45FB-ABBD-7213BFBABEAA</string>
<key>PayloadType</key>
<string>com.apple.applicationaccess</string>
<key>PayloadUUID</key>
<string>6E@@443A-BFDA-45FB-ABAD-T213BFBABEAA</string>
<key>PayloadVersion</key>
<integer>l</integers
<key=allowActivityContinuation</key>
<true/>
<key=allowAddingGameCenterFriends</key>
<true/>
<key=allowApplellularDataModification</key>
=<true/>
<key>allowAppInstallation=/key>
=<true/>
<key=allowAppRemovale/key>
<true/>
<key=allowAssistante/key>
<true/>
<true/>
<key=allowiTunes</key>
<true/>
<key=enforcedSoftwareUpdateDelay</key>
<integer>3@</integer>
<key=forceClassroomAutomaticallyleinClasses</key>
<false/>
<key>forceITunesStorePasswordEntry</key>
<false/>
<key>forceWatchWristDetectione/key>
<false/>
<key>forceWiFiWhitelisting</key>
<false/>
<key>ratingApps</key>
<integer>6@@8</integer>
<key=ratingMovies</key>
=<integer>3@@</integer>
<key=ratingRegion</key>
=string=us</string>
<key>ratingTVShows</key>
<integer>4@@8</integer>
<key=safariAcceptCookies</key>
<real>1.5</real>
<key=safariAllowAutoFill</key>
<true/=
<key=safariAllowlavaScript</key>
<true/>
<key=safariAllowPopups</key>
<false/>
<key=safariForceFraudWarning</key>
<true/>
</dict>
</array>
<key>PayloadDescription</key>
<string>This profile sets app and content restrictions on managed i0S devices</string>
<key>PayloadDisplayName</key>
<string>Screentime Controls</string>
<key>PayloadIdentifier</key>
<string>C@2VREPHHXBT7.2C471025-009A-48C3-B69C-93CABE5SEESLL1</string>
<key=PayleadOrganization</key>
=<string>=Company Name</string>
<key=PayloadRemovalDisallowed=/key>
<false/>
<key=PayloadType</key=
=string=Configuration</string=
<key=PayloadUUID</key>
<string=25FAFD2D-FBC9-41AE-AFFB-QRBRES39FDAB</string>
<key>PayloadVersion</key=
<integer>l</integer>
</dict>
</plist>

Figure 3-20. Saved management profile opened in text editor

143

CHAPTER 3 PROFILES

Now that the desired settings have been applied to the saved
management profile, this profile can now be applied to multiple iOS
devices via Apple Configurator or via a mobile device management
(MDM) server. On each device, the profile will set the configured settings
in a consistent and repeatable fashion; eliminating the tedium and errors
involved in setting these settings manually via Screen Time.

Let’s take another look at the process of creating a profile which will be
usable on both macOS and iOS. Apple Configurator can again be used to
build the profile (Figures 3-21 and 3-22).

[N] Untitied — Edited =

a Idantitian
% Clabal HTTP Prewy -
0 e

e Cantant Filltar

Cortificates
el

7 BABA1S 2C-080C 4FR2- S405- ARBITAI4S 150

Jiy Cortificats Transparsncy

L

Figure 3-21. Adding identification information to the new profile

144

CHAPTER 3 PROFILES

LN] Untitied —
Ganaral

2 saandanery VPN

L Bwstrictions Connection Name

ia Draclir o -
Pretendco

e_ Camnestion Type
e ol sene rat

%\ lobal HTTP Prawy LaTe B
Server

g WS Proay AT S
e et

a Cantent Fdter

= W-h
— e

NN 1 Payload Configured

B>

AurPlay Security

E Airbrint

E Calendar

El Subscribed Calendars

T
-
m Exchange ActiveSyme

G Tsagie Aecount
Figure 3-22. Setting the VPN payload settings

Once you've filled in the appropriate information for the VPN profile,
click File and then Save from within Apple Configurator. Next, provide a
name and location for the profile and then click Save (Figure 3-23).

Save As: | iVPN

Tags:

Where: [#) Desktop v
Cancel

Figure 3-23. Saving the VPN profile in Apple Configurator

145

CHAPTER 3 PROFILES

Now that you have the VPN profile saved, we can move on to see what
all is in the profile in the next section.

View the Raw Contents of a Profile

A raw profile will contain a header, which contains a signature, and a bunch
of XML. The easiest way to view the contents is to use the cat command to
view the contents. Here, we'll do a simple cat command of the file:

cat ~/Desktop/iVPN.mobileconfig
The contents will look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/Propertylist-1.0.dtd">

<plist version="1.0">

<dict>
<key>ConsentText</key>
<dict>
<key>default</key>
<string>Hi, Welcome to the iVPN service from
Pretendco. We're gonna' go ahead and install
a profile for you to access our VPN. Fun,
right?!?1</string>
</dict>
<key>PayloadContent</key>
<array>
<dict>
<key>IPSec</key>
<dict>

<key>AuthenticationMethod</key>
<string>SharedSecret</string>

146

CHAPTER 3 PROFILES

<key>LocalIdentifierType</key>
<string>KeyID</string>
<key>SharedSecret</key>
<data>
dGVzdHR1c30=
</data>
</dict>
<key>IPv4</key>
<dict>
<key>OverridePrimary</key>
<integer>1</integer>
</dict>
<key>PPP</key>
<dict>
<key>AuthName</key>
<string>iVPN</string>
<key>AuthPassword</key>
<string>testtest</string>
<key>CommRemoteAddress</key>
<string>vpn.pretendco.com</
string>
</dict>
<key>PayloadDescription</key>
<string>Configures VPN settings</
string>
<key>PayloadDisplayName</key>
<string>VPN</string>
<key>PayloadIdentifier</key>
<string>com.apple.vpn.managed.744B7836-
769A-478D-B2BD-1E2521198D16</string>
<key>PayloadType</key>

147

CHAPTER 3

148

PROFILES

</dict>
</array>

<string>com.apple.vpn.managed</string>
<key>PayloadUUID</key>
<string>744B7836-769A-478D-B2BD-
1E2521198D16</string>
<key>PayloadVersion</key>
<integer>i</integer>
<key>Proxies</key>
<dict>
<key>HTTPEnable</key>
<integer>0</integer>
<key>HTTPSEnable</key>
<integer>0</integer>
<key>ProxyAutoConfigEnable</key>
<true/>
<key>ProxyAutoDiscoveryEnable</
key>
<integer>1</integer>
</dict>
<key>UserDefinedName</key>
<string>Pretendco</string>
<key>VPNType</key>
<string>L2TP</string>

<key>PayloadDescription</key>
<string>Installs the Pretendco iVPN profile.</string>

<key>PayloadDisplayName</key>
<string>iVPN</string>
<key>PayloadIdentifier</key>
<string>MacBook-Pro-67.3ABB152C-05DC-4F82-98D5-
A8B07A24535C</string>

CHAPTER 3 PROFILES

<key>PayloadOrganization</key>
<string>Pretendco</string>
<key>PayloadRemovalDisallowed</key>
<false/>
<key>PayloadType</key>
<string>Configuration</string>
<key>PayloadUUID</key>
<string>4EAD3CDF-6C82-4E4F-8A20-CA636795018C</string>
<key>PayloadVersion</key>
<integer>1</integer>

</dict>

</plist>

Profile keys must follow a standard, where Apple defines the keys and
administrators and software developers place the keys with payloads in the
keys in profiles. The official profile reference guide is available at https://
developer.apple.com/documentation/devicemanagement/profile-
specific_payload keys. No guide to these keys can be complete without
mentioning the companion reference, built by @Mosen and available
athttps://mosen.github.io/profiledocs/ which describes some yes
or available settings that Apple doesn’t include in the official reference.
Always assume that anything Apple doesn’t document is intended that way
(as with private APIs) and can be changed at the drop of a hat.

Once you have created a profile, it’s time to install the profile, which
we'll cover in the next section.

Install a Profile on mac0S

There are a number of ways to install a profile on macOS. The first and
easiest is to just open the profile. When opened, you will be prompted to
install a profile. To install a profile, just walk through the steps to install. To
do so on macOS, start by clicking Continue, as seen in Figure 3-24.

149

https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://mosen.github.io/profiledocs/

CHAPTER 3 PROFILES

Are you sure you want 18 inatall TVPN"T

w hin pretia il conigurn o MBE wA P Iehsweng VPN Sacvee

Snvn Protie Cancel Cantinue

Figure 3-24. Installing a profile on macOS

Because we didn’t sign the profile with a trusted certificate, we're
prompted to install an unsigned profile, as seen in Figure 3-25. It’s best not
to install unsigned profiles unless you have to. Click Show Details to see a
description of what the signing status means.

Are you sure you waat 15 inatall profile “IVPN®T
Eha sutte of [hes ol in unkngmn Waks wurd 7o Inaal 1he ender Before malstng

Smow Detals Cance Inatal

Figure 3-25. Warning about installing an unsigned profile on macOS

The additional details (Figure 3-26) are really just there to allow a user
to understand why a yellow icon is in front of them. We haven’t noticed
that many users actually avoid clicking on things with yellow icons
though. It’s still best to distribute signatures or use legitimately obtained
public certificates though, if only to future-proof your deployment. Click
Install to proceed.

150

CHAPTER 3 PROFILES

Are you surs you waat s inatall profils “IVPN*T

Tha At e prsfin s ardnwn Laka brd o sl The arudar Bafsie malbirg

Umnigned Profile
Tris profie i unaigrned 55 The sthar [annot Da KAgwn Makie Bury s 1o T The Vender
o vt rutie batory mataling

icke Dotadds Cancal | Inwtad

Figure 3-26. Additional details about installing an unsigned profile
on macOS

Then you'll see the installation message that we provided while
creating the profile: “Welcome to the VPN service!” as seen in Figure 3-26.
Here, click Install to complete the process.

Are you sure you waat 16 inatall profile “IVPN®1

Wriccema 18 the (VPH sarvice from Pretendcn, We're gerna’ ga shesd and and inviall 3
Prafile far yos 12 acoeus cor VP Fun, rgh T

Corcel | Inatad

Figure 3-27. Consent message to install VPN profile

Voila, as you can see in Figure 3-28, you've now installed the profile.
Later in this chapter, we'll cover how to install the profile automatically via
the profiles command. Now that we’ve installed the profiles on the Mac,
we'll get the profile setup on an iOS device.

151

CHAPTER 3 PROFILES

@

VN Servies

¥pn pretenden com

Figure 3-28. The installed VPN profile

Tip The power of profiles makes them a potentially dangerous
way to receive compromised settings. When you install an MDM
profile, you can disable the ability to deploy settings using a manual
profile (and probably should do so). Or if you are using an agent-only
management environment, make sure to know what profiles are on
your Apple devices by checking them routinely.

Install a Profile on i0S

As with macOS, you can install a profile on iOS simply by opening the
profile. In fact, the first management tools (before MDM) for iOS were apps
that just had links to profiles and getting mail settings on a device meant
tapping on a profile to install a .mobilecontfig file that then gave you your
mail settings. Today, profiles can be stored on a web server and opened,
emailed to users, or deployed automatically using an MDM solution, with
installation via MDM being the only “silent” way to deploy a profile. In this
case, the profile being installed is the unsigned VPN profile used in the
previous macOS example.

Once the profile is downloaded onto the iOS device and selected for
installation, click the Install button in the upper right corner of the screen,
as seen in Figure 3-29.

152

CHAPTER 3 PROFILES

2:389 all T .
Cancel Install Profile Install
iVPN
Pretendco
Signed by Not Signed
Description Installs the Pretendco iVPN profile.
Contains VPN Settings
More Details

Remove Downloaded Profile

Figure 3-29. Installing a profile on iOS

Installing a profile requires a passcode be entered, if you're using one
on devices (at this point everyone should be). Next, enter the passcode as
shown in Figure 3-30.

153

CHAPTER 3 PROFILES

2:399 o T .
Cancel Enter Passcode Done
Enter your passcode

(IZTIT 11T}
1 2 3
ABC DEF
4 5 6
GHI JEL MNO
7 8 9
FPOQRS TUuv wWXYz
0 &)

Figure 3-30. Entering the passcode for the iOS device to authenticate
installing a profile

Since we added the additional consent step as part of the profile we
created earlier, consent must be granted as part of installing the profile,
which can be seen in Figure 3-31. This is in addition to the other usual
steps and optional when creating profiles.

154

CHAPTER 3 PROFILES

2:399 all T .

Cancel Consent Next

MESSAGE FROM “PRETENDCO"

Hi, Welcome to the iVPN service from
Pretendco. We're gonna’ go ahead and and
install a profile for you to access our VEN.
Fun, right?!?!

Figure 3-31. Granting consent to installing the profile

As with macOS, there will be a warning about installing an unsigned
profile (Figure 3-32). If you use a valid signature that the device recognizes,
then this won’t appear. But it’s important to drive home the fact that you
need to sign profiles and show why. It’s possible that some day in the
future Apple developers will remove the ability to install unsigned profiles.
Tap Install in order to proceed to the next step.

155

CHAPTER 3 PROFILES

2:399 all T .

Cancel Warning Install

VPN

The network traffic of your iPhone may be
secured, filtered, or monitored by a VPN
server.

UNSIGNED PROFILE

The profile is not signed.

Figure 3-32. Warnings about installing the profile on iOS

Additional warning will be given about the capabilities that the profile
is enabling on the iOS device. After the warning, i0S will prompt you to
install the profile. The profile is now installed and its new settings take
effect, as you can see in Figure 3-33.

156

CHAPTER 3 PROFILES

2:399 o T .
Profile Installed Done
iVPN
Pretendco
d by Not Signed
Description Installs the Pretendco iVPN profile.
Contains VPN Settings
More Details

Figure 3-33. iOS profile installation completed

Install a Profile on tv0S

To install a profile on tvOS, profiles can be installed from a web server
or Apple Configurator or by using an MDM. If using Apple Configurator,
it may need to first pair Apple Configurator with the Apple V. Apple has

157

CHAPTER 3 PROFILES

a knowledge base article explaining the process, available at https://
support.apple.com/HT208124. Once paired, the Apple TV should show up
as an available device in Apple Configurator, as shown in Figure 3-34.

Figure 3-34. Apple Configurator showing a paired Apple TV

Double-click the Apple TV in Apple Configurator and it will display
information about the Apple TV. As you can see in Figure 3-35, Apple
Configurator can be used to install Profiles and you can see the logs of
what is being deployed using the Console, useful for troubleshooting
problems if they arise.

158

https://support.apple.com/HT208124
https://support.apple.com/HT208124

CHAPTER 3 PROFILES

< [d a]
. Pepw Uptasts BackiUp

(G]
Apple TV

Conssie
About

-
ek a] ..

12.3 EMI53)

Figure 3-35. Apple Configurator showing Apple TV information

Select the Profiles option to install profiles onto the Apple TV, and
then click Add Profiles (Figure 3-36).

Agle TV

I - - @
grmy Ppws Updsta Backup

Figure 3-36. Apple Configurator showing Apple TV profile
installation window

159

CHAPTER 3 PROFILES

For some profiles, it may be necessary to install them using the Apple
TV user interface. In Figure 3-37, we show an unsigned profile to control
AirPlay settings is being installed onto the Apple TV. Another good reason
to make sure profiles are signed with valid third-party certificate providers.

Install Profile

AirPlay Security

Pretendco

Signed by Mot Signed

Description Requine passcode for first-time
connections

Contains. AirPlay Security Configuration

More Details .

Install k

Figure 3-37. Requesting to install an unsigned profile on an Apple TV

Since the profile is unsigned, there will be warnings and additional
install confirmations in order to install it (Figure 3-38).

Warning

Unsigned Profile
The profile signed

Install

Cancel

Figure 3-38. Notification that the Apple TV profile is not signed

160

CHAPTER 3 PROFILES

To install a profile manually, one dialog that can’t be skipped is the
standard Install Profile screen (Figure 3-39). Click Install to proceed.

Install Profile

Install

Cancel

Figure 3-39. Confirming installation of unsigned profile

As with installing profiles on the other operating systems, you then see
a screen showing the profile and a brief summary of what is contained in
the profile (Figure 3-40). Using the Apple TV remote, select More Details
for a more granular look at what's in the profile, or tap Done to be finished
with the profile installation.

Install Profile

AirPlay Security

Pretendco

Signed by Mot Signed

Description Requine passcode for first-tme
connections

Contains. AirPlay Security Configuration

More Details %

ﬁ

Figure 3-40. Completion of the installation process

161

CHAPTER 3 PROFILES

Once the profile installation process is installed, the profile’s settings
should now take effect on the Apple TV; if you've configured certificates,
those will be available to join a network, or if you've configured security
settings, you'll then be prompted to enter passcodes or notice that certain
restrictions have been enforced.

View a Profile from mac0S

Transparency is important to the profile development team. Any setting
implemented on systems should be available to view on devices where
profiles are installed. This shows up again and again, whether around
user acceptance of certain screens or just seeing why a user doesn'’t
have the ability to see a given system preference. It’s also an important
troubleshooting step for those in the field trying to figure out why a given
feature doesn’t work on a device.

To view the profiles installed on a Mac, open System Preferences. From
there, if at least one profile has been installed, you will see an entry for
Profiles, as seen in Figure 3-41.

e B EOa @
FPom 884

4

=00
®

Figure 3-41. Profiles preference pane appearing in System
Preferences

162

CHAPTER 3 PROFILES

If no profiles have been installed, the Profiles preference pane will not
be visible, as seen in Figure 3-42.

*+ @ 6 %ﬂ o =
® o

n

Figure 3-42. System Preferences with no Profiles preference pane
showing

Once the Profiles System Preference pane is open, click a profile to
see the contents. In the example shown in Figure 3-43, we can see that the
description made for the profile can be seen, as well as when the profile
was installed, and the settings that were put into the profile.

VN
Tuameg Instuds the Pretendco (VPN piotie

Figure 3-43. Viewing profile details via System Preferences

163

CHAPTER 3 PROFILES

View a Profile from i0S

Aswith the Mac, the restrictions or settings pushed to a device should be able
to be viewed at any time. Therefore, once a profile on an iOS device is installed,
you can view the contents of the profile using the Settings app. To do so, open
Settings and then tap on General and scroll to the bottom of the screen to see
the “Profiles & Device Management” option, as shown in Figure 3-44.

8:06 v all T .

£ Settings General
iPhone Storage

Background App Refresh

Date & Time
Keyboard
Language & Region

Dictionary

iTunes Wi-Fi Sync
VPN Not Connected

Profiles & Device Management 2
Regulatory

Reset

Shut Down

Figure 3-44. Viewing profile location via Settings.app’s General settings

164

CHAPTER 3 PROFILES

When you tap on Profiles & Device Management (exact naming may
vary slightly), the profiles that are installed on the iOS device are displayed,
as seen in Figure 3-45.

8:06 v all)

£ Profiles & Device Management
MOBILE DEVICE MANAGEMENT
@ MDM Profile

CONFIGURATION PROFILE

@ iVPN

Figure 3-45. Viewing installed profiles on an iOS device

Tap on a profile to see the signing authority for the profile, the
organization that deployed the profile, the description we created when
creating the profile, and the type of payload (in the Contains) field, as seen

165

CHAPTER 3 PROFILES

in Figure 3-46. You can also tap on the More Details to see information
about the specific settings deployed or the Remove Profile if the profile has
been set to removable.

8:07 v ol T -
¢ Back Profile
iVPN
Pretendco
ed by Not Signed

i Installs the Pretendco iVPN profile.

Contains VPN Settings

More Details

Remoaove Profile

Figure 3-46. Viewing profile details on an iOS device

Again, being transparent about what policies are enforced on a device
is key. And this philosophy transcends all platforms that are manageable
through profiles, including the newcomer to the profile world: tvOS.

166

CHAPTER 3 PROFILES

View a Profile from tv0S

As with macOS and iOS, once you've loaded a profile on a tvOS device, you
can view the contents of the profile. Doing so is done using the Settings
app. This process is similar to the process for iOS devices. To get started,
open the Settings app. Once Settings is open, use the AppleTV remote to
select General and then scroll to the bottom of the screen, where you'll see
the Profiles listed (shown in Figure 3-47).

General

Apple TV Language English >
Region United States »
LSASE

Manage Storage >
Background App Refresh >
DATE AND TRAE

Set Automatically On
4 5
PROFILES

Profile >

Figure 3-47. Viewing profile location via Settings.app’s General

To view the profiles, select the profile. In Figure 3-48, we creatively
named our profile Profile (your name is likely to be different than that).

167

CHAPTER 3 PROFILES

Figure 3-48. Viewing installed profiles on an tvOS device

Use the remote for the AppleTV to select that profile and you'll be able
to see the signer, description, contents, and select More Details to see each
setting broken down separately or Remove Profile to remove the profile
(Figure 3-49). These are the same options you see in macOS and iOS,
indicating the developers want a similar experience and full transparency
across platforms.

Figure 3-49. Viewing profile details on an tvOS device

168

CHAPTER 3 PROFILES

Now that we’ve gone through looking at what settings and policies
have been enforced on devices, let’s move to removing those, provided the
option to do so is available.

Remove a Profile on mac0S

While we've focused on managing profiles manually in this chapter,

in the next chapter, we will turn our attention toward leveraging those
profiles over-the-air using a Mobile Device Management (MDM) solution.
One reason to look at an MDM is that profiles can more dynamically be
managed. Once we've enrolled devices into an MDV,, it’s a good idea

to only push settings out using the MDM. Therefore, in the following
example, we're going to remove the VPN profile installed previously.

To do so, open the Profiles System Preference pane and click the profile
again. Then click the minus sign in the lower left corner of the screen.
You'll then be prompted to confirm that you wish to remove the profile, as
seen in Figure 3-50.

Sy Ae you sure you want 15 remeve the profile
RN

= el Remarirg i sekipenf vt ol s
= o v st

Cance | (TR e

¥pn pretenden com

Figure 3-50. Removing a macOS configuration profile

169

CHAPTER 3 PROFILES

To remove the profile, click Remove and you'll be prompted to confirm
using Touch ID (see Figure 3-51) or via standard authentication.

Profiles/MDM wants to make changes.

Touch 1D 6 Bntar your Dasswond W abow .

Use Password Cancel

Figure 3-51. Using Touch ID to authenticate profile removal

For most restrictions and settings, you'll then immediately see the
device change. Another benefit of profiles is that most change immediately
when enforced or removed, rather than needing to wait for a restart or a

new login event.

Remove a Profile on i0S

The process is similar in iOS. To remove a profile on iOS, use the Settings
app. Once Settings is open, tap on General and scroll to the bottom of the
screen and tap on “Profiles & Device Management’, shown in Figure 3-52.

170

8:06 v all T .

£ Settings General
iPhone Storage

Background App Refresh

Date & Time
Keyboard
Language & Region

Dictionary

iTunes Wi-Fi Sync
VPN Not Connected

Profiles & Device Management 2

Regulatory

Reset

Shut Down

CHAPTER 3 PROFILES

Figure 3-52. Viewing profile location via Settings.app’s General

settings

Once you find the profile to remove, tap on the red Remove Profile

button shown in Figure 3-53 to start the remove process.

171

CHAPTER 3 PROFILES

2:409 all T .

¢ Back Profile

iVPN
Pretendco

Signed by Not Signed
Description Installs the Pretendco iVPN profile.

Contains VPN Settings

More Details

Remove Profile

Figure 3-53. Removing profile from iOS device

To authenticate removal of the profile, the device passcode and/or the
profile passcode (if that option enabled on the profile) will be need to be
entered (Figure 3-54).

172

CHAPTER 3 PROFILES

2:40 9 Wl T -
Cancel Enter Passcode Done
Enter your passcode

(IZTIT 11T}
1 2 3
ABC DEF
4 5 6
GHI JEL MNO
7 8 9
FPOQRS TUuv wWXYz
0 &

Figure 3-54. Entering the passcode for the iOS device to authenticate
installing a profile

As the last step, the profile removal needs to be confirmed. Here, tap
the red Remove button (Figure 3-55).

173

CHAPTER 3 PROFILES

Remove

Cancel

Figure 3-55. Confirmation of profile removal

As with Mac, the profile is removed and any restrictions should
immediately change. The profile is no longer listed in the list. All of this is
of course, dependent on the profile having been marked as removeable
when created. If the profile wasn’t, then you would have to erase the iOS
device in order to remove it.

174

CHAPTER 3 PROFILES

Note You can programmatically remove profiles on the Mac, but
that’s not possible on an i0S device given that there’s no root account
and no command line utilities.

Remove a Profile on tv0S

The process of removing a profile on tvOS is similar to that of iOS. To
remove a profile on tvOS. Open the Settings app with your AppleTV remote
and select General. From the General menu, scroll to the bottom of the
screen and select the profile, as shown in Figure 3-56.

General

Apple TV Language English >
Region United States »
USASE

Manage Storage >
Background App Refresh >
DATE AND TRAE

Set Automatically On
: ; 5
PROFILES

Profile >

Figure 3-56. Viewing profile location via Settings.app’s General
settings

Once the profile is located, click the Remove Profile button (shown in
Figure 3-57) to start the removal process.

175

CHAPTER 3 PROFILES

Profile

AirPlay Security

Pretendco

Signed by Not Signed

Description Ruequine passcode for first-time
connections

Contains AirPlay Security Configuration

More Details .

. Remove Profile

Figure 3-57. Removing profile from iOS device

Figure 3-58 shows the confirmation dialog. Here, simply highlight
Remove with the AppleTV remote and hit the button.

Remove Profile

Remaving this profile will change settings on your Apphe TV.

Remove

Cancel

Figure 3-58. Confirmation of profile removal

As with i0S, the effects of the profile are immediately removed, so
any apps that might have been disable will appear, and any settings or

176

CHAPTER 3 PROFILES

assets provided by the profile, such as a certificate to join the network
will immediately be removed from the device. We’ll cover other effects of
profile removal in the next section.

Effects of Profile Removal

Once the profile is deleted, it will no longer be displayed on the device. If
you cannot authorize the computer to authenticate the action being taken,
then the removal of the profile will fail. This can happen for a few reasons.
The first is that the user doesn’t have permissions to disable a given profile.
The second is that the profile has been identified as a profile that can’t
be removed because it was marked as such (e.g., except by the system
that deployed the profile). This would have been done back in Apple
Configurator, in the General screen of the profile, as seen in Figure 3-59.

Security
Controls when the profile can be removed
v Always !

With Authorization

_nes

T TGO TUT au LU IIE T pldﬁle removal

Never

Figure 3-59. Using Apple Configurator to mark a profile as
nonremovable

You can restrict profile removal, but you can also restrict profile
installation. This is a common means of trying to get in front of malware
that deploys a profile to direct traffic through a proxy or locks down a
device as a means of trying to extort money from a user (otherwise referred
to as ransomware). Profiles are the best tool we have to automate the
setup of iOS devices. But as with most valuable tools, profiles can be quite
dangerous. We've seen bad actors post profiles to their sites, masquerading

177

CHAPTER 3 PROFILES

as apps, that when applied, routed all traffic from the device through the
attacker’s proxy. This restriction is done via an MDM solution.

Now that we've looked at dealing with profiles using the common
graphical tools available, let’s get a better understanding of what those
buttons are doing when you click, tap, and select them by diving into the
command that is used to manage them in macOS environments in the next
section of this chapter.

Use the Profiles Command on mac0S

Once created, manage profiles on macOS using the aptly named command
line tool, profiles. This tool is unique to macOS in that it provides a
mechanism to automate many tasks, such as managing features through
profiles without an MDM, where possible - or even installing an enrollment
profile using a script, in order to automate the process of joining MDMs.
iOS and tvOS do not have equivalent native tools and must use an MDM or
external tools like Apple Configurator to manage profiles without manually
tapping or selecting so many dialog boxes in the user interface.

The profiles command comes with a number of verbs, or actions that
can be performed and then options. The options define how those verbs
are interpreted. The verbs include the following:

e status - indicates if profiles are installed

o list - list profile information

e show - show expanded profile information
o install - install profile

e remove - remove profile

e sync - synchronize installed configuration profiles with
known users

178

CHAPTER 3 PROFILES

o renew - renew configuration profile installed certificate
o version - display tool version number

Some of the options are available for all verbs, others not so much. The
options include the following:

e -type= - type of profile; either “configuration,”’

” «u

“provisioning’, “enrollment,” or “startup”
e -user= - short username
o -identifier= - profile identifier
o -path=-file path
e -uuid= - profile UUID
e -enrolledUser= - enrolled username
o -verbose - enable verbose mode

o -forced - when removing profiles, automatically
confirms requests

o -all - select all profiles
e -quiet - enable quiet mode

Now that we’ve covered the verbs and options, let’s put some together.
In the next section, we’ll step you through some basic tasks using the
profiles command.

Using the Profiles Command

Mac administrators want the ability to manage everything through the
command line. The ability to script tasks gives us the ability to make the
lives of our users better. One shell script that saves 5 clicks amplified across
10,000 computers can save 50,000 clicks and valuable time our coworkers
could be using to perform their jobs. But while this ease of use in

179

CHAPTER 3 PROFILES

automation is valuable, it’s not at the risk of violating the privacy of those
10,000 humans who use those computers. So not everything is available
using the profiles command - but a lot is!

Before managing profiles, you’ll want to know what profiles are on a
device. Configuration profiles are assigned to users or Macs. To the user
profiles on a system, use the list option:

/usr/bin/profiles list

A common step when troubleshooting is to remove all profiles from
a computer, thus zeroing out policies to see if a symptom is related to
a profile. This can be done using the remove -all option (and once the
symptom is cured, you can put the profiles back programmatically as we’ll
cover in a bit):

/usr/bin/profiles remove -all

The better way to troubleshoot an issue is to remove profiles in order
to get to the source of which is causing a problem. The remove option
removes individual profiles. Use -path to indicate its source is a file. To
remove a profile called apress.mobileconfig that was at /tmp/apress.
mobileconfig::

/usr/bin/profiles remove -path /tmp/apress.mobileconfig

Installing a profile through an agent is a quick way to get settings on
a device. The install option installs profiles. For example, the following
command installs apress.mobileconfig that has been placed in the /tmp
directory:

/usr/bin/profiles install -path /tmp/apress.mobileconfig

Profiles can also be installed at the next reboot. This is because you
might want to give a user a dialog, indicating you're changing some settings
at the next boot rather than freaking them out by having things on their

180

CHAPTER 3 PROFILES

device change. Use the -type option to define a startup profile. The profile
attempts to install at each reboot until installed. Use the profiles command
with the -type option and the -path option for the profile. For example, the
following will set up a profile named /startupprofile.mobileconfig to be
installed at the next boot:

profiles install -type startup -path /startupprofile.
mobileconfig -forced

Other options include -verbose which displays additional information
about a profile, -password to define a removal password, and -output to
export a file path so that we can then remove that profile.

Note You cannot remove individual configuration profiles that are
deployed by a MDM solution.

It's possible to see what some of these profiles are doing through MCX,
which we’ll cover in the next section of this chapter.

MCX Profile Extensions

As we've mentioned, many of the underlying interpretations of profile
options are handled through what'’s otherwise referred to as the “legacy”
MCX framework. The dscl command has extensions for dealing with
profiles to see what’s been interpreted as well. These include the available
MCX Profile Extensions:

-profileimport -profiledelete -profilelist [optArgs]
-profileexport -profilehelp

To list all profiles from an Open Directory object, use -profilelist. To
run, follow the dscl command with -u to specify a user, -P to specify the
password for the user, then the IP address of the OD server (or name of the

181

CHAPTER 3 PROFILES

AD object), then the profilelist verb, and finally the relative path. Assuming
a username of diradmin for the directory, a password of scarlett and then
charlesedge as a user:

dscl -u diradmin -P scarlett 192.168.100.2 profilelist
/LDAPv3/127.0.0.1/Users/charlesedge

To delete that information for the given user, swap the profilelist
extension with profiledelete:

dscl -u diradmin -P scarlett 192.168.100.2 profiled
/LDAPv3/127.0.0.1/Users/charlesedge

To export all information to a directory called ProfileExports on the
root of the drive:

dscl -u diradmin -P scarlett 192.168.100.2 profileexport . all
-0 /ProfileExports

Note Provisioning profiles can also be managed, frequently using
the lowercase variant of installation and removal (e.qg., -i to install,

-r to remove, -c to list, and -d to delete all provisioning profiles).
Provisioning profiles can also come with a -u option to show the uuid.
Finally, the -V option verifies a provisioning.

Profiles can also perform actions. As an example, running the following
command with root privileges will rerun the DEP enrollment process on
a Mac, allowing you to quickly and efficiently move Mac devices between
MDM servers in a manner not available for iOS or tvOS:

profiles renew -type enrollment

There are also a number of other tools including libimobiledevice,
the command line utilities bundled with Apple Configurator, AEiOS, and

182

CHAPTER 3 PROFILES

Ground Control. These provide additional automations, occasionally using
private APIs to get deeper into a device. For more on those, see Chapter 6.

Summary

Apple has made it clear that profiles are the future of managing Apple
devices, with iOS and tvOS leading the way and macOS catching up
rapidly. Profiles provide a unified, easy, streamlined methodology to
implement settings and restrictions on devices - and they do so in a
manner that preserves the privacy of a user in a transparent manner. While
itis not currently possible to manage all settings on macOS using profiles,
it is increasingly possible to be able to write one profile and use it on
multiple Apple platforms to manage settings, which is more efficient and
less work for Apple admins.

Profiles can’t be used to manage everything. But Apple has been
quickly closing the gap of what can and what can’t be managed using a
profile (or an MDM action). As more and more options for Supervised
iOS devices show up, we should expect supervised options for the Mac at
some point - some of which we won'’t have other programmatic means of
implementing.

Now that we have some profiles, let’s spend some time doing a deep
dive into how those profiles can be implemented in a more dynamic and
automated way in Chapter 4.

183

CHAPTER 4

MDM Internals

Mobile Device Management, or MDV,, is a device management software
that comes built into tvOS, macQOS, iPadOS, and i0OS. MDM allows an
administrator to control and secure devices by establishing policies and
monitoring the adherence of a device to those policies. MDM is often
referred to as “agentless” technology. There is no such thing as “agentless”
management and so in this chapter we go through what the agents are,
how they work, and why some of those weird requirements for MDM to
communicate are...requirements.

MDM is the culmination of a number of different technologies
developed by Apple and other vendors over the past 15 years. The great
part about MDM is that it provides a common management technique
for macOS§, iOS, and tvOS. At its most basic responsibility, an MDM server
implements the MDM and Checkin protocols, defined by Apple to send
MDM commands to devices, which are interpreted by the devices using
that built-in agent to perform commands, such as lock a device, wipe a
device, push an app to a device, or install a profile (for more on profiles,
see Chapter 3).

Setting up MDM once required accounts in 3 to 5 separate Apple
portals but over the past couple of years Apple has been unifying all of
those accounts under one hood, according to what kind of organization
you are. Before setting up an MDM service, you will therefore need an
Apple Business Manager account or Apple School Manager account.

© Charles Edge and Rich Trouton 2020 185
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_4

CHAPTER 4 MDM INTERNALS

What MDM Can Access

Apple can’t see the information sent to devices through MDM. But
always concerned about privacy, Apple engineers want administrators to
have access to being able to manage devices and not access to potentially
private data that might be stored on devices. So by default, an MDM
server has access to the name and serial number of a device, as well as
the phone number, model, how much space is available on the device,
the version number of the operating system installed, and the apps
installed on the device.

For Bring Your Own Device, or BYOD, Apple also provides a new
enrollment-type in i0OS 13 and macOS 10.16, that further limits what data
is accessible by the MDM. The thought here is again that private devices
should be even more private. So a user will have a separate volume to store
data and things like the serial number of a device won'’t be transmitted
through the MDM protocol for those types of enrollments.

Additionally, and we'll cover this later in the chapter, User Accepted
MDM (UAMDM) is a feature introduced in iOS 12 and macOS Sierra
that prompts users to accept enrollment. If they do, the MDM server can
have increased controls on a device, such as the ability to accept Kernel
Extensions based on a bundle identifier.

The MDM doesn’t have access to the location of a device, although
a third-party app that had been granted access to Location Services
would have access to the GPS coordinates of a device. The MDM protocol
doesn’t allow for app usage information, although on a Mac you can
load an agent that can access that information. Things like Safari history,
FaceTime history, call history, SMS/iMessages messages, mail, calendars,
contacts, data inside apps, the score of your games in GameCenter, what
content you have on the device, all of that is private and not accessible via
MDM, although some vendors have used private frameworks to get that
information through an app that’s loaded on a device.

186

CHAPTER4 MDM INTERNALS

Apple Business Manager and Apple
School Manager

The foundational technologies that we’ll cover in this chapter are those
that enable MDM to function properly and to be the most beneficial for
most organizations. These include APNs, DEP, iCloud, and VPP. We'll
cover these later in the chapter, but for now, know that you set up aspects
of each using a central portal called Apple Business Manager, if you have a
DUNS number and are a company, or Apple School Manager, if you're an
educational institution.

The two look similar, although there are a few specifics in Apple
School Manager to enable the use of the Schoolwork and Apple Classroom
apps, which we won’t be spending any time on in this book. The primary
focus for this chapter is to get the components to make MDM function
configured in order to cover how MDM works. For that, you'll need to
obtain an APNs Token for your MDM server (to support pushing messages
to devices), a DEP token (to support automated enrollment), and a VPP
token (to support app distribution).

To get started, we’ll log into Apple Business Manager or Apple School
Manager, located at business.apple.com or school.apple.com. This is
where you exchange a .csr for an APNs token, configure Automated
Enrollment (also known as DEP) and potentially purchase Apps and other
content for centralized distribution.

In Figure 4-1, we simply log in and click on Device Management
Settings from the main page. Here, we have a test MDM server - click Add
MDM Server to set up an APNs token for a new MDM server.

187

CHAPTER 4 MDM INTERNALS

& Business @
LI My Profile @

Locations

P) — Device Man_a_l_glgment Settings

9 Device Management Settings

Customer Numbers

* 9 Active

Default Device Assignment Cea)

Manage the automatic assignment of devices.

Figure 4-1. Apple Device Management Portals
When you see the entry for the new MDM server, provide a name
for the server (this is just for you tracking it) and click save (Figure 4-2).

You can then do the APNs key exchange that we describe later in this
chapter.

188

CHAPTER4 MDM INTERNALS

Untitled MDM Server

0 Devices

MDM Server Info

MDM Server Name

Untitled MDM Server

B Allow this MDM Server to release devices. Learn More

MDM Server Settings
Upload Public Key @

Generate New Server Token

You can download the server token after saving. After generating and

(o)

Figure 4-2. Add an MDM Server

Automated Device Enrollment (the artist formerly known as DEP) uses
those serial numbers to do the automatic setup. Without them, users will
enroll manually and you will have less management available for those
devices once enrolled. To configure them, click Device Assignments from
the main Apple Business Manager or Apple School Manager screen.

At the Choose Devices prompt, you can then either enter an order
number (which Apple would have provided you when you purchased
some devices through your institution), a Serial Number, or use a csv
(Figure 4-3). When you purchase devices in bulk from Apple, you receive
a csv of the device information. You can also build your own csv of serial
numbers as well. Click Done to save these.

189

CHAPTER 4 MDM INTERNALS
1. Choose Devices

© Serial Number Order Number Upload CSV File

Serial Numbers

1234

2.Choose Action

Perform Action

Assign to Server
Unassign Devices
Release Devices

Figure 4-3. Add devices to your portal

You can then download a DEP token, once the server is added.
According to the type of MDM you use, you'll have a different screen to
configure all of these. As an example, once you've exported your DEP
Server Token, you would click Add in this screen in XenMobile to complete
the setup (Figure 4-4).

| XenMobie Analyze Manage Configure o

Apple Device Enroliment Program (DEP)

rolkrent P

Download Public Key Create a Server Token file Add DEP Account
A Public ey wil be sutomatically gensrsted for you sed . g

t Programs Pornsl Foliom the wizard to add the accout
nigned by Crix o B

Figure 4-4. XenMobile DEP Interface

190

CHAPTER4 MDM INTERNALS

The third token we’ll need is the token used for volume purchasing.
This is downloaded in the previous business.apple.com or school.apple.
com interfaces, or if an organization hasn’t migrated, using one of the
below Volume Purchasing programs:

e Business: https://vpp.itunes.apple.com/
WebObjects/MZFinance.woa/wa/login?cc=us

o Education: https://volume.itunes.apple.com/us/store

When you log in, you will see an interface for buying apps, as seen in
Figure 4-5. You'll also see an option to upgrade accounts.

Volume Purchase Program —

To get started, search for an app or book.

Custom B2E Apps For JAMF Safiware

a Upgrade 1o Apple Business Manager

Figure 4-5. Buy Apps in Apple’s VPP Portal

Click the disclosure triangle in the upper right corner of the screen
and select Account Summary. You'll then be taken to a screen where
you can click “Download Token” as shown in Figure 4-6, to download an
sToken file.

191

https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/login?cc=us
https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/login?cc=us
https://volume.itunes.apple.com/us/store

CHAPTER 4 MDM INTERNALS

VPP Home * Account Summary

Account Summary

Managed Distribution Easily assign apps or books to users on i08 7 or later or on ©5 X 10.9 or later using a Download Token

Latest Purchase May 20, 2015 Hamlet! HD Quantity: 10 View Purchase History »

Figure 4-6. Download a VPP Token from Apple

Now that we’ve got all of these keys, let’s move to looking at how APNs
fits into the MDM picture.

Apple Push Notifications

The device is told to check into the server by APNs. Apple Push
Notifications (or APNs for short) is a platform developed in 2009 to enable
3" party vendors or Apple to send notifications to mobile devices. That
notification data is what causes a different badge to appear for an app,
including a number (the number of notifications the app has), a red dot
(to indicate there are notifications), sounds, and even custom text alerts.
Apple has no visibility into what is in the email or the text you receive.

The same technology that instantly informs users they have a
message waiting is the same technology that drives MDM. With APNs,
the device is told to go get some information from a server but not what
that information is. For anyone that spent time working with information
security teams to get Blackberry devices approved, the fact that Blackberry
actually stored user data was always a bit of a stumbling block. This has
never been an issue with MDM, although there are other issues that
information security teams have here and there.

192

CHAPTER4 MDM INTERNALS

Any app developer can obtain an Apple Push Notification certificate
and then push alerts to devices. The MDM options though, require a
special MDM CSR service via the Apple Developer Enterprise Portal. Most
MDM vendors will have this certificate and then provide customers with
the ability to generate a CSR via Apple and issue a new certificate based
on that, in order to push the fact that there are management commands
waiting for devices. While most vendors will have an account with the
Developer Enterprise portal and provide the necessary links, anyone can
sign up for an account for $299 per year.

In Chapter 2, when we looked at agents, each client registered with an
agent, often performing a certificate exchange and/or caching a hashed
value of some kind in order to verify its identity to the server and in order
to check in with the server automatically. MDM is no different, a client
device will “enroll” in the server, which establishes such a key exchange
and passes shared secrets between devices and servers so the device can
securely authenticate back into the server to retrieve instructions. Much of
that key exchange is handled by Simple Certificate Enrollment Protocol, or
SCEP for short.

Checkins: Device Enroliment

Notice that the term enroll is derived from SCEP. This is because the client
device performs a Certificate Signing Request (CSR) and submits it to

the server. The server then issues a certificate to the device that only that
device can install due to a PKCS#7 certificate with a challenge password
from the original CSR. This certificate is anchored by a certificate issued
by Apple. That transaction is handled in Apple Business Manager, Apple
School Manager or using the developer portal. Each MDM vendor allows
you to generate a CSR that you then upload to Apple as can be seen in
Figure 4-7 for Jamf Now.

193

CHAPTER 4 MDM INTERNALS

Download the Certificate Signing Request

Figure 4-7. Download a CSR in Jamf Now

Notice that this process will look similar with most vendors, with this
option shown below for Addigy (Figure 4-8).

194

CHAPTER 4 MDM INTERNALS

New Push Certificate

Apple requires signed Push Certificates for all devices managed
through MDM. Certificates are created on Apple's certificate
site using the CSR file below.

i)

Start with a CSR to create a Certificate

Download AddigyCSR.plist

Upload this file to Apple's Push Notification site to create
a .pem file.

Upload a completed .pem

Select MDM_ Addigy, Inc_Certificate.pem

Name this certificate

For your own reference

Optional: the Apple ID that was used to create the
certificate, as a reminder when it's time to renew.

Figure 4-8. Create a push certificate in Addigy

Once you have a CSR, it will be uploaded to the Apple portal you prefer.

We show developer.apple.com in Figure 4-9, but most organizations will be
moving into either Apple School Manager or Apple Business Manager in
the next few years if they haven’t already.

195

CHAPTER 4 MDM INTERNALS

Apple Push Certificates Portal ossecnt o (IR

Create a New Push Certificate

Upload your Certificate Signing Request signed by your third- party server
wendor to create a new push certificate,

Notes

Vendor-Signed Certificate Signing Request

Choose File AddigyCSA.plst

Figure 4-9. Provide the Signing Request in the Push Portal

When you upload the CSR in a plist format, you then receive back a
certificate and can use the portal you created the certificate to renew or
perform subsequent downloads, as seen in Figure 4-10. That certificate
is pinned to the hostname, and so once you start enrolling devices, you
cannot change the certificate or the name of the server without breaking
the ability for a device to communicate back to the server.

Apple Push Certificates Portal oteacianitcor: (TR

Confirmation

You have successfully created a new push certificate with the following information:
Service Mobile Device Management

Vendor Addigy, Inc
Expiration Date May 25, 2020

Figure 4-10. Download your Apple Push Certificate

196

CHAPTER4 MDM INTERNALS

That certificate is then uploaded to the MDM and anchors new
certificates the MDM creates to establish trust with devices and
establishing trust for push notifications, through an APNs token and a
key that is unique to each device, called a push magic certificate. That
key is generated by a device and later used to prove authenticity of the
device during TokenUpdate commands. Installation of the profile that
starts this process can happen by opening an enrollment certificate, using
Automated Enrollment (which will be covered further later in this chapter)
or through Apple Configurator (covered more in Chapter 5).

Make sure not to let that certificate expire. As Jamf Now is alerting
the administrator in Figure 4-11, when the push certificate expires, the
devices must all be reenrolled. This is because a device can no longer
communicate to the server to obtain a new certificate. Enrolling a fleet of
1,000 or 100,000 is no fun task, given that with iOS devices, this process
would be manual and so require a lot of tapping on device screens.

& now jamicloud.com ¢ N Eul NN

@ Enrall This Device

Q Y n =

iPad

5 charles
£ Blueprint1

Auto-Enroliment

Volume Purchasing &3

Figure 4-11. Jamf Now Push Certificate Renewal

197

CHAPTER 4 MDM INTERNALS

When the MDM enrollment certificate is installed, the mdmclient
agent will be called. The device’s mdmclient then accesses a REST API
with an MDM vendor using a /checkin endpoint. Commands are pulled
from devices over HTTPS in plist-encoded dictionaries along with a
UUID of each command with the MDM server pinned, thus establishing a
secure connection from the client to the MDM vendor and a normalized
communication language between the two. Upon receiving an APN to
contact the server, which contains the topic of the server to check into, the
device communicates with the MDM Checkin Protocol to verify the device
can enroll, initialize a connection, and then update device tokens when
needed. The Checkin has a few supported commands, or MessageTypes,
each submitted in a plist from the device.

o Authenticate, a property list with a MessageType of
Authenticate, a topic (e.g., com.orgname.mdm), and
the UDID of the device.

o TokenUpdate is used to update the token of the device.
These are for establishing authentication from the
device back to the MDM server and for the server
to match the device up to queued commands and
authorize that the device should in fact run those
commands.

e CheckOut is used to indicate back to the MDM that a
device has unenrolled.

o Activation Lock is a later addition and runs differently.
APOST is sent to https://mdmenrollment.apple.
com/device/activationlock along with a device serial
number, an escrow key, and a message to provide a
user if the device is lost. This needs to be done prior to
the device going through the setup assistant and so is

198

https://mdmenrollment.apple.com/device/activationlock
https://mdmenrollment.apple.com/device/activationlock

CHAPTER4 MDM INTERNALS

done as a part of the Checkin Protocol rather than the
MDM Protocol, although some of the Activation Lock
tasks are handled by the MDM Protocol.

The MDM Protocol runs all the device commands post-enrollment.
The MDM endpoint is hard coded into the enrollment profile at the time
of enrollment and so as with the checkin url, cannot be changed post-
enrollment without breaking the ability to communicate back to the
server. All POSTs look to that endpoint to see what commands are waiting
for the device. The URL for the checkin is immutable because the device
is authorized to talk to that endpoint using the certificates exchanged
at enrollment time, the csr for which was submitted through scep at
enrollment. When the device checks in, it picks up any commands, in
dictionary form, waiting for the device. The Checkin URL is not displayed
in the MDM Profile in the System Preferences pane, but the MDM URL is,
as seen in Figure 4-12.

@ il S Profiles Q
— v ssuer JAMF Software JSS Built-in
Jamf Wireless Certificate Authority
[) 1 setting

Mobile Device Manag t
MDM Profile
3 settings Descript JAMF Manual Enrollment Payload: MDM
r https:f/jamf.jamfcloud.com//
I:Joi\:ﬁg Preferences computer/mdm
_— pic com.apple.mgmt.External.f79de7cb-037
Privacy Preferences Poli e-4d99-ad58-8522800f1eel
1 setting
R SCEP Enroliment
@ Security & FileVault for
26 settings Descr JAMF Enrollment Payload: SCEP
T —— server https:ffjamfjamfcloud.com//CA/SCEP
(@] sating Certificate 16C4964F-1E5D-4D70-9E97-03274DEE
S _ B10A
Pk e n o et Apr 25, 2024 at 12:57 PM
s ier JAMF Software JSS Built-in
@ jss.jamfsw.comfjss CA Certificate Authority
fr— 1 setting
+ - ?

Figure 4-12. Profiles in System Preferences

199

CHAPTER 4 MDM INTERNALS

MDM: Device Management

The MDM Server, shown in the Mobile Device Management profile, shows
the URL to the endpoint that the device sends a POST to (typically just
called /mdm). That POST contains a standard dictionary with the device
UDID in a plist and the response to that POST includes a status message
that there’s no action to be performed, or there will be an MDM command,
in the form of dictionary.

The command dictionary includes a request type called RequestType
and a RequestRequiresNetworkTether - which when set to true only
allows the command to run when connected to a network (this is
rarely used). The RequestType is going to include most of the MDM
commands, such as ActivationLockBypassCode which surprisingly gets
an Activation Lock Bypass Code. These Request Types each have their
own values that must be in the dictionary as well as optional ones and
some have custom error codes.

Each MDM server sends a notification through APNs with the
PushMagic string as the mdm key. The MDM server then queues any
commands waiting for the device. When a mobile device gets a connection
to the Apple Push Notification servers the device is directed via the push
topic to query the server listed in the Server field for the Mobile Device
Management section of the profile. The request is sent and the server
responds with the XML of the command then receives a response code.
The MDM server interprets the response code and typically commits that
response into a database in order to display settings for the device in a
GUL. The rules for how those requests are sent and received are defined in
the MDM Protocol Reference Guide at https://developer.apple.com/
documentation/devicemanagement/commands_and_queries.

Each MDM vendor handles the logic of the command queue
differently. Most vendors store each action and then interprets that into a
log-on screen for administrators to view. Most vendors also deduplicate
commands so devices aren’t told to install the same app 5 or 6 times

200

https://developer.apple.com/documentation/devicemanagement/commands_and_queries
https://developer.apple.com/documentation/devicemanagement/commands_and_queries

CHAPTER4 MDM INTERNALS

because an administrator duplicated some groups. Most vendors also
prioritize commands, so a wipe is sent as the highest priority command
for a device. But these are all per-vendor. Most vendors have built more
and more logic as humans end up doing weird things to their software
(humans are the worst).

Now that we’ve looked at how devices get enrolled into an MDM
and how commands are queued up so the /mdm endpoint can respond
appropriately to devices, let’s look at what commands are available.

MDM Commands

Each MDM command maps to a RequestType and there are optional

keys at the same level in a dictionary for some commands. Additionally,
given that it’s a dictionary, there are other attributes that can be sent along
with a command. In some cases, there is only one and in other cases

there are over a dozen keys that alter the behavior of a command. As you
look at the list of commands, just imagine how these are displayed in the
graphical interface of your favorite MDM. The MDM commands (a.k.a
RequestTypes) that are placed into those dictionaries include the following
31 commands (as of 2019):

1. ActivationLockBypassCode: Responds with a code
used to unlock a device that’s had Activation Lock
enabled (used if an ApplelD is not available).

2. ProfileList: Lists profiles on a device.

3. [InstallProfile: Installs a profile on a device (see
Chapter 3 for more information on profiles).

4. RemoveProfile: Deletes a profile from a device.

201

CHAPTER 4 MDM INTERNALS

202

5.

10.

11.

12.

13.

14.

ProvisioningProfileList: Provisioning profiles link
deploy signing certificates, App IDs, and a URI

to an App ID to install an app on a device, so this
command lists those profiles deployed (and so the
apps if they successfully installed).

InstallProvisioningProfile: Installs a provisioning
profile to cause an app to be installed on a device.

RemoveProvisioningProfile: Removes a provisioning
profile which causes an app installed based on the
URL of the provisioning profile to be removed.

CertificateList: Lists identity certificates installed on
a device.

InstalledApplicationList: Lists applications installed
on a device.

Devicelnformation: Responds with metadata
about a device, including UDID, the device ID, and
the last iCloud backup date, if the device is in an
AwaitingConfiguration state (to see if it has run the
Setup Assistant).

SecurityInfo: Responds with security-centric
metadata about a device, including if the device has
a T2 chip, has FileVault enabled, etc.

DeviceLock: Locks a device and optionally sets a
PIN to unlock the device and a message for the user,
presumably about why the device was locked or how

to return it.
RestartDevice: Reboots a device.

ShutDownDevice: Shuts down a device.

15.

16.

17.

18.

19.

20.

CHAPTER4 MDM INTERNALS

ClearPasscode: Clears a passcode on a device.

EraseDevice: remotely erases a device so it can be
set up from scratch.

RequestMirroring: Begins an AirPlay mirroring
session on the device, along with a destination to
mirror the device to.

a. StopMirroring: Stops any active mirroring session on a device.

Restrictions: Obtains a list of restrictions that have
been configured on a device.

a. ClearRestrictionsPassword: Clears a restrictions password in
case that password has been forgotten.

UserList for Shared iPad: Responds with a list of
users that have accounts on a device, along with
some metadata about those users, such as name,
full name, and UID.

a. UnlockUserAccount: Unlocks an account that has been
locked because a user provided an incorrect password too
many times.

b. LogOutUser: Logs out the active user.
c. DeleteUser: Deletes a user indicated in the UserName key.

EnableLostMode: Sets a managed device into Lost
Mode.

a. PlayLostModeSound: Causes a device in Lost Mode to make
an audible alert so you can find the device if it’s lost in the
office or classroom.

b. DisableLostMode: Disables Lost Mode on devices that have
that setting enabled.

203

CHAPTER 4 MDM INTERNALS

c. DeviceLocation: Returns with the GPS coordinates of a device
that has been set in Lost Mode.

21. InstallApplication: Installs applications on devices
from the app store or a URL and optionally sets the
applications to managed.

a. InstallEnterpriseApplication: Installs software packages
which can be pinned for additional security.

b. ApplyRedemptionCode: Redeems an app from the App
Store based on a redemption code (this software installation
method isn’t used that much any more as redemption codes
are not reusable).

c. ManagedApplicationList: Returns with a list of all managed
applications or applications installed by the MDM.

d. RemoveApplication: Removes an application based on the
identifier (easily obtained via ManagedApplicationList).

e. InviteToProgram: Invites an Apple ID to join the VPP for per-
user app assignments to the hash of an ID provided using a
query to iTunesStoreAccountlsActive.

f. ValidateApplications: Validates that apps installed with a

provisioning profile are on a device.

22. InstallMedia: Installs a PDF, epub (in gzip), or
iBooks Author media file (in gzip) into the Books
app on a device.

a. ManagedMediaList: Lists all documents installed using the
InstallMedia command, along with the state of each (e.g.,
downloading).

b. RemoveMedia: Removes any items returned by the
ManagedMediaList command response.

204

23.

24.

25.

26.

27.

28.

CHAPTER4 MDM INTERNALS

Settings: Allows for enabling or disabling various
supervised managed settings on a device, such as
the device wallpaper, data roaming, and Bluetooth.

a. ManagedApplicationConfiguration: Reports back a dictionary
for each app that has been built for Managed App Config.

b. ApplicationConfiguration: Sets Managed App Config
dictionaries, sending NSUserDefaults into the app.

c. ManagedApplicationAttributes: Queries attributes set via
Managed App Config (from NSUserDefaults).

d. ManagedApplicationFeedback

AccountConfiguration: Creates a local
administrative account on a Mac.

SetFirmwarePassword: Enables the firmware
password on a device, provided one was not set
before the device was enrolled into an MDM.

a. VerifyFirmwarePassword: Sends a password to a device and
verifies that the firmware password on the device matches the
one sent as a part of the MDM command.

SetAutoAdminPassword: Sends a salted PBKDF2
SHA512 password hash to a GUID for a given local
admin account.

DeviceConfigured: Bypasses DEP for devices

currently set into an await configuration state.

ScheduleOSUpdate: Causes an iOS, iPadOS, and
tvOS device to install product keys provided to the

device.

a. ScheduleOSUpdateScan: Boolean that causes a device to
check for updates using Software Update.

205

CHAPTER 4 MDM INTERNALS

b. AvailableOSUpdates: Installs updates supplied in the
dictionary or if none are present installs all pending operating
system updates.

c. OSUpdateStatus: Causes a device to check for the status of
any updates pending for that device.

29. ActiveNSExtensions: Lists active NSExtensions for a

user.

30. NSExtensionMappings: Manage NSExtension
mappings.

31. RotateFileVaultKey: Rotates FileVault keys (e.g., if
they’re used by IT they should be rotated).

Note For a more detailed description of commands, including the
arguments available for each command, the minimum OS to run each
command, and a description of each, see https://developer.
apple.com/documentation/devicemanagement#topics.

New commands will show up in very version of operating systems,
so don’t be surprised if new ones come around before this book goes to
print. Keep in mind that the MDM server isn’t sending these commands
directly to the devices. They can’t as they don’t know the address of those
devices. The MDM server is putting the property list into a queue and
when the device gets the notification it will automatically check with the
MDM server and perform the action the command is telling the device to
perform. The commands then have response codes that are returned to
the MDM server. Those are too numerous to put in this chapter, but they
provide the MDM solution with the ability to interpret what information
Apple MDM developers determined would be important for the MDM
solution to have.

206

https://developer.apple.com/documentation/devicemanagement#topics
https://developer.apple.com/documentation/devicemanagement#topics

CHAPTER4 MDM INTERNALS

The simplest way to show how to send a custom command would
be to do so. We'll use Vmware Workspace ONE for this example. If you
have a Workspace ONE account, to get to the custom command screen,
to create and deploy a custom command, browse to a device in List View.
Then check the box for the device and under the More Actions drop-down
choose Custom Commands to see the dialog box to provide your dictionary.
As you can see in Figure 4-13, you can then provide the necessary XML
code to run a command. This can be a bit dangerous, so make sure you
know what you're doing.

Figure 4-13. Running arbitrary MDM commands using VMware
Workspace ONE

In this example, we’ll simply restart a device using the RestartDevice as
the string for the RequestType key. Notice we don’t need to send any other
keys for this type of action.

<dict>
<key>RequestType</key>
<string>RestartDevice</string>
</dict>

207

CHAPTER 4 MDM INTERNALS

Or to receive a list of certificates installed on a device, we might use
this command.

<dict>
<key>RequestType</key>
<string>Certificatelist</string>
</dict>

In both of the above, when we click the save button, we will put an item
in the queue and send a push notification to the device to send a POST
to the /mdm endpoint. The MDM will then respond with command we
provided. This is especially useful when testing beta versions of software or
to obtain functionality for a new update before your MDM vendor updates
to account for new features.

Most MDM solutions don’t allow you to send an arbitrary command
to a device. This could be because developers don’t want certain actions
being performed without committing a record to the database they use
to track the state of a device, or it could be because developers haven’t
prioritized such a feature. Another MDM that allows such an action
would be MicroMDM. MicroMDM is, as the name implies, a slimmed
down MDM solution. MicroMDM allows an administrator to submit an
MDM command using a standard POST to a command’s endpoint. That
endpoint will parse the command from a standardized json format where
each key is an --arg that is followed by the value in the key.

In the below example, we’ll send a more complicated command,
InstallApplication. Here, we provide a UDID and a manfiest_url as the first
and second positional parameters sent into the script.

#!/bin/bash
source $MICROMDM_ENV_PATH
endpoint="v1/commands"
jq -n\
--arg request_type "InstallApplication” \
--arg udid "$1" \

208

CHAPTER4 MDM INTERNALS

--arg manifest url "$2" \
".udid = $udid
| .request_type = $request type
| .manifest_url = $manifest url
3
curl $CURL_OPTS \
-H "Content-Type: application/json" \
-u "micromdm:$API_TOKEN" "$SERVER_URL/$endpoint" -d@-

Upon receiving the action to the endpoint, MicroMDM routes a
push to the device; and when the device receives the push, it looks to
the server for the dictionary that’s waiting in the MicroMDM queue and
then interprets the dictionary to perform the app installation. Luckily
the developers do much of the work so you don’t have to build your own
server for the device to talk back to. But it is helpful to understand what is
happening so you can deal with issues when they come up and in general
be better informed about how you're managing devices.

Now that we've gone through what happens with standard MDM
commands, we'll move into automating device enrollment.

Automated Enroliment, or DEP

One component of MDM is Automated Enrollment, which was formerly
referred to as the Device Enrollment Program, or DEP for short. Automated
Enrollment automatically enrolls a device into an MDM, or at least
configures a device to log into an MDM server and enrolls the device

if the server doesn’t require a user to authenticate. This is useful for
provisioning. An organization can ship a box to a user and the user can
open the box and configure their own device by simply joining a network
and optionally providing credentials to complete the setup.

209

CHAPTER 4 MDM INTERNALS

The DEP API provided by Apple is more modern and messages
are exchanged in standard JSON format rather than in plist-driven
dictionaries. There are three primary APIs. The first is for resellers. When
DEP was initially released, only devices sold directly by Apple could use
DEP. Because a device is tied to uniquely identifying information such
as a UDID and a serial number, Apple was able to direct devices to an
MDM. But in order to support allowing DEP to work with devices sold
by resellers, an API was created for resellers to submit data about which
customer purchases each device.

The Reseller DEP API

The most important thing to keep in mind about how resellers interact
with the Apple DEP program is that the reseller submits an order that
contains an orderNumber, orderDate, orderType, customerld, poNumber,
and then an array of devicelds and assetTags. The devicelds are the

serial number of the devices and the link between the deviceld and

the customerld is created at this time and causes the devices for each
organization to properly appear in their Apple Business Manager or Apple
School Manager accounts. That json (stripped down for readability) would
look something like the following:

"orders": [

{
"orderNumber": "ORDER1234",
"orderDate": "2019-07-22T08:07:13X",
"orderType": "OR",
"customerId": “Charles",
"poNumber": "12345", {

"deviceId": "SERIALNUMBER1",

"assetTag": "MYASSETTAG1"

1}

210

CHAPTER4 MDM INTERNALS

For more on the DEP APIs, see https://applecareconnect.apple.
com/api-docs/depuat/html/WSReference.html. The second is an identity
API used to authorize devices, which we won'’t be covering as there is no
real public information available.

The Cloud Service DEP API

The important API for the context of this chapter is the cloud service
API. This is available at https://mdmenrollment.apple.com/account.
Here, MDM vendors pull records of what devices are meant to access
servers they host. In exchange, those MDM vendors send back DEP
profiles to Apple. Those profiles are then placed on the device so it is
trusted by the server and so it trusts the server back. These profiles contain
the screens that a device should skip during the Setup Assistant, a server
URL, and any certificates necessary for establishing a chain of trust to the
URL being accessed. The MDM authenticates back to the cloud service API
over OAuth 1.0 tokens.

The MDM will provide parameters for devices assigned to it in json to
the Apple DEP servers. An example POST would look as follows (e.g., in
Postman):

User-Agent:ProfileManager-1.0

X-Server-Protocol-Version:2

Content-Type: application/json;charset=UTF8

Content-Length: 350

X-ADM-Auth-Session: $SESSIONID

{

"profile name": "krypted.com",
"url”:"https://mdm.krypted.com/getconfig",
"is supervised":false,
"allow_pairing":true,
"is mandatory":false,

211

https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://mdmenrollment.apple.com/account

CHAPTER 4 MDM INTERNALS

"await_device configured":false,
"is mdm_removable":false,
"department”: "Marketing",
"org magic": "$PUSHMAGIC",
"support_phone number": $PHONENUMBER,
"support_email address": $EMAILADDRESS,
"anchor_certs,
"supervising host certs:,
"skip setup items":[

"Location",

"Restore",

"Android",

"AppleID",

"TOS",

"Siri",

"Diagnostics”,

"Biometric",

"Payment”,

"Zoom",

"FileVault"

1,
"devices":["$SERIALNUMBER1", "$SERIALNUMBER2"]

Upon request, the MDM server then receives a list of devices from
https://mdmenrollment.apple.com/server/devices - some of that data
would likely appear in the interface of your MDM solution (the exact way
these appear is a bit different in each vendor):

"serial number" : "ABCD123AB1AB",
"model" : "IPAD",
"description” : "IPAD WI-FI 32GB",
"color" : "grey",

212

https://mdmenrollment.apple.com/server/devices

CHAPTER4 MDM INTERNALS

"profile status" : "assigned",

"profile uuid" : "12abla123abc1234a12alal234abc123",
"profile assign time" : "2019-06-01T00:00:00Z",
"device assigned date" : "2019-07-01T00:00:00Z",
"device _assigned by" : "krypted@me.com"

Enrollment profiles from an MDM are not removable. When the
device powers up, mobileactivationd sends a dictionary with a DevicelD,
SerialNumber, UniqueDevicelD, as well as information about the Bridge
OS (an embedded variant of watchOS that provides the interface to the
T2 chip). If any of that information is altered then Apple will reject the
activation. More importantly for the purposes of this chapter, if the serial
number is matched with one that’s been linked in the above manner
between the Apple Business Manager or Apple School Manager accounts,
the device receives the settings from the first set of information provided to
Apple from the MDM server to mdmenrollment.apple.com.

The device then uses the /getconfig URL (in Jamf this is /cloudenroll
and in microMDM it is just /enroll) to obtain an enrollment profile and
responds based on the interpretation of that profile. If devices get wiped,
they will continue to reach out to the MDM /getconfig endpoint to pull
down a new enrollment profile. That /getconfig endpoint is different per
provider - and some have handlers for objects in the URLs, but that setting
is required in order for devices to know how they’ll enroll.

Finally, much as there’s an endpoint to unenroll devices and there’s
an endpoint to disown devices at https://mdmenrollment.apple.com/
devices/disown. This endpoint is used to remove devices from the portal
so you can, for example, allow employees to purchase them when you
remove them from production. Now that we’ve looked at the how devices
enroll and receive profiles and actions from the MDM server in response to
their APNs instructions to look for those payloads in their queue, let’s look
at how the mdmclient that sits on devices interprets those.

213

https://mdmenrollment.apple.com/devices/disown
https://mdmenrollment.apple.com/devices/disown

CHAPTER 4 MDM INTERNALS

mdmclient

The agent for MDM actions is mdmclient, which is the “app” that push
notifications are sent to. Once enrollment profiles are installed on a Mac,
mdmclient, a binary located in /usr/libexec will process changes such

as wiping a system that has been FileVaulted (note you need to FileVault

if you want to wipe an OS X Lion client computer). This is started by an
mdmclient daemon and agent at /System/Library/LaunchDaemons and
/System/Library/LaunchAgents which are used for computer and user
commands, respectively. This along with all of the operators remains static
from 10.10 and on, with small new functionality added with each new
version.

The Volume Purchase Program, now a part of Apple School Manager
and Apple Business Manager, also responds to requests through
mdmclient. CommerceKit is a framework that mdmclient uses by calling
CKMDMProcessManifestAtURL with a dictionary that contains any
pinning certificates and optionally checks that the certificates haven’t
been revoked. This causes storeassetd to download the manifest and
then place any specified assets to be downloaded in the queue using
NSURLConnection. Then storedownloadd takes over and completes the
download, installing packages when complete.

The mdmclient hands any profile transactions (the most common task
most administrators use MDM to perform). To script profile deployment,
administrators can add and remove configuration profiles using the new /
usr/bin/profiles command. For more on scripting the profiles command,
which is helpful in testing and to automate tasks when there’s no MDM
present, see Chapter 3.

The UUID for a given enrolled user profile can be found at the
following path, where * can be replaced by a given username:

defaults read /Library/Managed\ Preferences/*/com.apple.
systempolicy.managed.plist

214

CHAPTER 4 MDM INTERNALS
The UUD would then be output as a PayloadUUID, as follows:
PayloadUUID = "CF4BCAA5-BCC6-4113-86D4-31A08C683770";

As usual, the Mac is a little different. You can see the directories to
better understand what'’s happening under the hood using a jailbroken iOS
device or using the simulator.

If you look at an iOS device in the simulator you'll find com.apple.
managedconfiguration.mdmd.plist and com.apple.managedconfiguration.
profiled.plist in /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/Developer/Library/CoreSimulator/Profiles/
Runtimes/iOS.simruntime/Contents/Resources/RuntimeRoot/System/
Library/LaunchDaemons (and so /Library would be relative to / on a
jailbroken device). These are the two agents that are the underlying MDM
services. If you swap iPhoneOS.platform with AppleTVOS.platform or
WatchOS.platform, then you will see the same for tvOS and watchOS,
respectively.

When running commands, you can see that these are the agents that
control settings for iOS, based on processes that get started and run:

e /Library/Managed Preferences/ce/com.apple.
systempolicy.managed.plist

o /Library/Managed Preferences/com.apple.AssetCache.
managed.plist

o /Library/Managed Preferences/com.apple.
systempolicy.managed.plist

o /private/var/db/ConfigurationProfiles/Settings/com.

apple.managed.PlugInKit.plist

Much of the management in the future is likely to be handled using
the newer ManagedConfiguration.framework, with teslad invoked as
a LaunchDaemon by /System/Library/LaunchDaemons/com.apple.
managedconfiguration.teslad.plist. Teslad has entries for a number of

215

CHAPTER 4 MDM INTERNALS

enrollment options and while at the time this book is printed, it isn’t used
much on the Mac, this framework has started managing a number of other
management tasks. The fact that there’s a new Framework for the Mac
indicates that more options otherwise reserved for supervised devices are
likely to be made available to the Mac in subsequent releases.

Device Supervision

Employees at Apple and engineers in the broader community that
supports Apple devices have always been proud of the beautiful, curated
user experience on devices. No one ever wants to limit functionality when
possible. But in some cases, doing so is necessary.

There was a split in how engineers at Apple felt about managing
iOS devices. Everyone wanted to give administrators more and more
control. But many wanted to only do so if a device was owned by an
organization. The concept of Bring Your Own Device (or BYOD for
short) has always been the tip of the spear for Apple to get into the
enterprise. But enterprises began buying lots and lots and lots of iPads
and iPhones for staff.

The compromise was the ability to supervise a device. Devices enrolled
through Automated Enrollment (DEP) are usually set as supervised. The
MDM can choose to not set a device to supervised based on settings
(whether exposed to administrators or not). You can also retroactively
supervise i0S devices using Apple Configurator, as shown in Chapter 5.

Since the maturity of device supervision, most new iOS management
commands have required device supervision in order to work. The T2
chipset being rolled out slowly throughout Apple’s product line is now
making true device supervision for the Mac a possibility and likely
indicates that commands reserved for supervised devices will start finding
their way to the Mac, including Managed Open-In functionality. One

216

CHAPTER4 MDM INTERNALS

aspect of Automated Enrollment and the ability to more granularly control
settings is the amount of clicking and tapping we want to allow our users to
avoid during the initial provisioning of devices. One aspect of where users
can get click-fatigue with all the new privacy options is UAMDM.

UAMDM

For iOS, Apple has had device supervision to act as the bright dividing
line between “this is a personal iOS device” and “this is a work-owned
iOS device” On Macs running macOS Sierra and earlier, the line was
less clear as there weren't MDM functions that would not run equally
well on personally owned Macs and Macs owned by a company, school,
or institutions. To address this, Apple introduced User Approved
Mobile Device Management (UAMDM) as part of macOS High Sierra
10.13.2. UAMDM grants mobile device management (MDM) additional
management privileges, beyond what is allowed for macOS MDM
enrollments which have not been “user approved.”

There are two ways to mark a Mac as being user approved. The first is
to have the Mac enrolled in Apple’s device enrollment program. This is a
process where Apple explicitly sets the Mac as belonging to a company,
school, or institution and enrolls it with a specific MDM service. Since the
Mac is not a personally owned device, it gets UAMDM automatically. The
second is to have a human being click a button on the MDM profile issued
by an MDM server which supports UAMDM. To click the button, you
would use the following process:

1. Open System Preferences and go to the Profiles
preference pane.

2. Click on the MDM profile (Figure 4-14).

217

CHAPTER 4 MDM INTERNALS

®C < i Profiles Q

MDM Profile

Company Name Verified

MDM Profile

4 Functionality may be limited until this prefile is approved.

Approve...

MDM Profile for mobile
device management

JSS Built-In Signing Certificate
i Feb1, 2019 at 2:17 PM

Erase all data on this computer

Add or remove configuration profiles
Add or remove provisioning profiles
Lock screen

Change settings

Figure 4-14. The MDM Profile
3. Click the Approve button as shown in Figure 4-15.
®cC < T Profiles Q

MDM Profile

Company Name Verified

A Functionality may be limited until this profile is approved.

Approve...

MDM Profile for mobile

device management

JSS Built-In Signing Certificate
Feb 1, 2019 at 2:17 PM

Erase all data on this computer

Add or remove configuration profiles
Add or remove provisioning profiles
Lock screen

Change settings

Figure 4-15. The MDM Profile need to be approved

218

CHAPTER 4 MDM INTERNALS

4. Click the Approve button in the confirmation
window which appears (Figure 4-16).

Profiles Q

Do you want to approve the “MDM
Profile” profile?

& 1 - .me _@ Until this profile is approved, the management server
(W} 2 settings will have limited control over your device and you may

not have access to all functionality. proved.

Device Profiles

Cancel Approve

MDM Profile for mobile

device management

JSS Built-In Signing Certificate
Feb 1, 2019 at 2:17 PM

Erase all data on this computer

Add or remove configuration profiles
Add or remove provisioning profiles
Lock screen

Change settings

Figure 4-16. Approving the UAMDM Profile

Once that is done, the Mac is now enabled for UAMDM and the
managing MDM can now use the additional management options which
are only available for UAMDM-enabled Macs. The rights the MDM server
has are outlined in the profile, as seen in Figure 4-17.

219

CHAPTER 4 MDM INTERNALS

[< i Profiles Q

MDM Profile . MDM Proﬁle?_ g
it Company Name Verified
I | 2 settings
MDM Profile for maobile
device management

JSS Built-In Signing Certificate
Feb 1, 2019 at 2:17 PM

Erase all data on this computer

Add or remove configuration profiles
Add or remove provisioning profiles
Lock screen

Change settings

Application and media management
Query security information

Query restrictions

Figure 4-17. The MDM Profile, once approved

Something to be aware of is that Apple has taken some pains to block
automated ways to enable UAMDM, so clicking this button cannot be
performed via remote screen sharing or through the use of tools which
would normally help automate the clicking of a button. These protections
against machine-based enabling are to help make ensure that a human
being has approved enabling UAMDM.

Enroliment Commands

Enrolling a device is simply registering the device with the server that the
agent (mdmclient) will talk to. You can see the status of the enrollment
using the profiles command with the show verb and setting the -type
option to enrollment, as follows, which can verify that a particular Mac is
UAMDM enabled:

sudo /usr/bin/profiles show -type enrollment

220

CHAPTER4 MDM INTERNALS

Note In macOS 10.16, Apple is likely to remove the ability to
perform a number of tasks using the profiles command; therefore,
we won’t go into manual enroliment via profiles. But it’s good to
understand how it works, and at this point, Apple developers have not
removed any functionality from the profiles command.

Depending on your MDM enrollment status, you may see one of a few
different status messages. The first is if there is no MDM enrollment:

Enrolled via DEP: No
MDM enrollment: No

The second would be that the device was enrolled in MDM but doesn’t
have UAMDM enabled:

Enrolled via DEP: No
MDM enrollment: Yes

The third output is that the device was enrolled manually and the
user chose to accept the MDM enrollment options, which indicates (User
Approved):

Enrolled via DEP: No
MDM enrollment: Yes (User Approved)

The fourth output is that the device was enrolled via Automated
Enrollment (DEP) and the user chose to accept the MDM enrollment
options, which indicates (User Approved):

Enrolled via DEP: Yes
MDM enrollment: Yes (User Approved)

221

CHAPTER 4 MDM INTERNALS

User Accepted MDM enrollment is likely to become more and
more important as the focus from Apple engineering teams seems to
be around protecting privacy at the cost of management options. This
focus on privacy in one of the reasons many choose an Apple device and
increasingly core to the Apple ethos. Now that we've reviewed how to see
the enrollment type, let’s move to what happens when UAMDM has been
accepted.

The Impact of UAMDM

There are certain management privileges associated with UAMDM,
which otherwise can’t be centrally managed. As of macOS 10.14 those

management privileges include

o Centralized approval of third-party kernel extension
loading

o Centralized approval of application requests to access
privacy-protected data

Having UAMDM enabled allows a UAMDM-compatible MDM service
to deploy management profiles which can approve the following:

e Automatic loading of specified third-party kernel

extensions

e Automatic approval for specific actions by applications,
where those actions are accessing data protected by
macOS’s privacy controls.

Third-Party Kernel Extension Management

Starting with macOS 10.13.4, Apple introduced its first management
privilege exclusively associated with UAMDM. This was the ability
to deploy a profile which provides a whitelist for third-party kernel

222

CHAPTER4 MDM INTERNALS

extensions. This profile allows a company, school, or institution to avoid
the need to have individual users approve the running of approved
software.

Without the profile, third-party will need to be approved through the
User-Approved Kernel Extension Loading (UAKEL) process. Here's how
that process looks:

1. When arequest is made to the OS to load a third-
party kernel extension which the user has not yet
approved, the load request is denied and macOS
presents an alert to the user, as shown in Figure 4-18.

Sy Ex N Blocked

4 A program tried to load new system extension(s)
signed by "VMware, Inc.”. I you want to enable these
extensions, open Security & Privacy System
Preferences.

Open Security Preferences ﬁ

Figure 4-18. The System Extension Blocked dialog

2. The alert tells the user how to approve the loading
of the kernel extension signed by a particular
developer or vendor, by following this procedure:

A. Open System Preferences.
B. Go to the Security & Privacy preference pane.

C. Click the Allow button (Figure 4-19).

223

CHAPTER 4 MDM INTERNALS

® £ i Security & Privacy

| FileVault Firewall Privacy

A login password has been set for this user Change Password...

Require password 5 minutes a after sleep or screen saver begins
Show a message when the screen is locked
v | Disable automatic login

Allow apps downloaded from:

System software from developer “VMware, Inc.” was blocked
from loading.

[] Click the lock to make changes. ?

Figure 4-19. Click Allow to allow the VMware Kernel Extension

Note This approval is only available for 30 minutes. After that, it
disappears until either the Mac restarts or another attempt is made to
load the kernel extension.

While waiting for the kernel extension to be approved, a copy of the
kernel extension is made by the operating system and stored in /Library/
StagedExtensions. Once approved, another copy of the kernel extension is
made and allowed to load.

224

CHAPTER4 MDM INTERNALS

This process is relatively easy for an individual to manage on their own
computer, but it would be very difficult to manage when dealing with more
than a handful of Macs. To help manage company, school or institutions,
Apple provided the option of using a management profile to centrally approve
specified third-party kernel extensions. To help whitelist all extensions from a
particular vendor or whitelist only specific ones, Apple has made two sets of
identifying criteria available: Team Identifier and Bundle Identifier.

Team Identifier

A team identifier is an alphanumeric string which appears similar to the
following:

7AGZN02S2T

This identifier is associated with a particular Developer ID for Signing
Kexts certificate identifier. This certificate would be used by a developer or
vendor to sign all or most of their kernel extensions.

Whitelisting using the Team Identifier has the advantage of being
able to whitelist multiple third-party kernel extensions from a specific
developer or vendor. This capability allows a company, school, or
institution to identify a particular developer or vendor as being trusted
in their environment and have all of the relevant kernel extensions be
allowed to load by the whitelist.

Bundle Identifier

The bundle identifier is specific to a particular kernel extension. It is
contained in the Info.plist file and is stored inside each kernel extension.
Whitelisting using the Bundle Identifier allows a company, school,

or institution to get very granular about which kernel extensions from a
specific developer or vendor are approved and which are not. If using the
Bundle Identifier as part of the whitelist, both the Team Identifier and the
Bundle Identifier need to be specified in the profile.

225

CHAPTER 4 MDM INTERNALS

Using Team Identifier by Itself in a Third-Party Kernel
Extension Whitelist Profile

If you want to use only the Team Identifier when whitelisting kernel
extensions, the profile can be viewed from Terminal. Here, you'll see the
keys that show the UUID, the name, and much more that isn’t displayed in
System Preferences, as shown in Figure 4-20.

<?xml version="1.0" encoding="utf-g"7>
<|DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" “httpi//www.apple.com/DT0s/Propertylist-1.0.dtd™>
<plist versiom="1">
<dict>
<key>PayloadUuIDs /key>
<string>40C19088~-T€DT-4CIC-BCYD-2FTEBIICFFAD</string>
<key>PayloadType</key>
<string>Configuration</string>
<key>*Payloaddrganization</key>
<string>Company Name</string>
<key>Paylosdldentif ier</key>
<gtring>40C19058-76D7-4C1C-BCID-2F TEBIFCFFADS/string>
<key>PayloaddisplayName</key>
<string>Approved Nermel Extensions</string>
<key>Payloadbescription</key>
<atring>This profile configures your Mac to sutomatically enable third-party kernel extemsions from specified vendors.</string>
<key>PaylosdVarsion</key>
<integer>l</integers
<key>PayloadEnabled</key>
<true/>
<key>PaylosdRenovalDisal Lowed</key>
<true/>
<key>FaylosdScopes</key>
<string>Systes</string>
<key>PayloadContent</key>
<array>
<dict>
<key>PayloadUUID< kay>
<string A7B-ADC 1-4 3CH-RBEE. fateings
<key>PayloadType</key>

<string>com.apple.ayspolicy.kernel-extenaion-policy</string>
<key>PayloadOrganization</key>

<atringsCompany Name</string>
<key>Payloaddent i fier< /key>

<string: ATH-ADC 1 -4 3CE-ABRE. ACH< fatring>
<key>PayloadbisplayNane</key>

st g Fornel string>
<key>PayloadDescription</key>

<string/>

<key>PayloadVersions key>

<integer>l</integer>

adErableds koy>

<key>AllowlaserOverridea</key>

<true/>

<key>AllowedTeamTdentif lara</key>

<array>
<string>TAGINQISIT</string>
“Btring>KBVEJBISES</string>
<atring>VBSE2TVIEI</string>

</array>

</diet>
</arcay>
«fdict>
£fplist>

Figure 4-20. the Contents of the Approved Kernel Extension Profile

On the Macs which receive the profile, it will show as Approved Kernel
Extensions with the green Verified option as shown in Figure 4-21.

226

CHAPTER4 MDM INTERNALS

[] < i Profiles

Approved Kernel Extensi
| | 1setting

MDM Profile : z 2
@ 3 settings) n This profile configures your Mac to
g automatically enable third-party kernel

extensions from specified vendors.
JSS Built-In Signing Certificate
«d Apr11, 2018 at 7:43 PM

Approved Kernel Extensions
Compan me Verified

Kernel Extension Policy Control

Kernel Extension Policy Control

Approved Kernel Extensions
Is Yes

Figure 4-21. Verified Approved Kernel Extensions

Using Team Identifier and Bundle Identifier in a
Third-Party Kernel Extension Whitelist Profile

If you want to use both Team Identifier and Bundle Identifier when
whitelisting specific kernel extensions, the profile should be written as
shown in Figure 4-22.

227

CHAPTER 4 MDM INTERNALS

<?xml version="1.0" encoding="utf-g°7>
<|DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" “http://www.apple.com/DTDs/Propertylist-1.0.dtd™>
<plist versiom="1">
<dict>
<hey>PaylosdUuTo key>

g I9B-ATOCDAN2SFACE BEring>
<key>PayloadType</key>
<string>Configuration</string>
<key>PaylosdOrganization</key>
<string>Company Hame</string>
<kmy>PayloadTdent i imr</key>

1 TOCD4329F4C/string>

<koy>PaylosdDisplayNase/koy>

q fateing>
<key>PaylosdDescription</key>
<atring>This profile configures your Msc to sutomatically ensble third-party kernel extensions from specified vendors.</string>
<keyPaylosdVarsion</key>

<integorsl</integers>

<key>PayloadEnabled</key>

<true/>

<true/>
<key>PaylosdScope</key>
<string>Systes</string>
<key>PayloadContent</key>

<key>PayloadUUID< kay>
<string>3B7 3-4 fstrings
<key>PayloadType</koy>
apple.syspolicy. kernel 1 1ieye/aerings

<key>PayloadOrganization</key>
<string>Company Name</string>
<key>PaylondIdentifier</key>
<atring>3R7T510R-65E3-4TD-RTSC-TS6TISICE466< ateing>
<key>PaylondDisplayName</key>
<string F¥ernel
<key>PayloadDescription</key>
<string/>
<key>PayloadVersione kay>
<integer>l</integer>
<key>PayloadEnabled< kay>
<true/>
<key>AllowUserOverrides</key>
<true/>
<key>AllowedKernelExtensiona</key>
<dict>

<kny>TAGENQZAIT</ ey

<array>

string>

<ateingrcom.bitd. string
ing bonblack string
atring> arborblack atring>

</array>
<koy>VRSE2TVIEI</ kay>
<arcay>
<stringrorg.virtualbox. kext.VioxNetadp</string>
<string>orq.virtualbox. kext .VBoxDrve/string>
“string>org.virtualbox.kext.VioxNetFlt</string>
<stringrorg.virtualbox.kext.VBoxUSB</string>
</arra;
<key>KBVSIBISSH</key>
carray>
catring>CitrLxCUSE. kext</gtring>
i trix. kext.quab

</nrray>
</dict>
</diet>
<jarray>
<fdiot>
</plist>

Figure 4-22. The contents of a kernel extension policy

On the Macs which receive the profile, it should show up looking
similar to Figures 4-23 and 4-25, where the Approved Bundle Identifiers
can be seen.

228

CHAPTER 4 MDM INTERNALS

@ 4 i Profiles Q

Approved Kernel Exten App",_?ed Kernel Ex_tgnsmns
1setting Company Name Verified

MDM Profile
@ 3 settings X Deseription This profile configures your Mac to

automatically enable third-party kernel
extensions from specified vendors.

i JSS Built-In Signing Certificate

«d Apr 11, 2018 at 7:37 PM

settings Kernel Extension Policy Control

DETAILS

Kernel Extension Policy Control
De on Approved Kernel Extensions

ils Yes

Figure 4-23. Approved Kernel Extension Profile description

@ 4 i Profiles Q

Devic files DETAILS

Approved Kernel Exten Kernel Extension Policy Control
1 setting =
Description Approved Kernel Extensions

@ MDM Profile

? s Yes
3 settings -

ile CitrixGUSB. kext

% com.citrix.kext.gusb
com.bit9.cbsystemproxy
com.carbonblack.CbOsxSensorProemo
n
com.carbonblack.CbOsxSensorNetmo
n
org.virtualbox.kext VBoxNetAdp
org.virtualbox.kext.VBoxDrv
org.virtualbox. kext.VBoxNetFIt
org.virtualbox.kext VBoxUSB

Figure 4-24. Software approved by MDM in the Kernel Extension
Policy

229

CHAPTER 4 MDM INTERNALS

Under the hood, these are sent to /var/db/SystemPolicyConfiguration/
KextPolicy, which is a sqlite database. You can log in and see
both manually created kext policies and those pushed into
SystemPolicyConfiguration via mdm. To see manual entries (from within

sqlite) and then to see MDM-derived entries:

SELECT * FROM kext_policy;
SELECT * FROM kext policy mdm;

Based on the output, note that kext_policy shows a bundleID whereas
kext_policy_mdm only shows generated IDs.

Privacy Control Management

Starting with macOS 10.14.0, Apple introduced its second management
privilege exclusively associated with UAMDM. This was the ability

to deploy a profile which provides a whitelist for signed applications

to execute certain actions or access areas which would be otherwise
protected by the user data protections introduced in macOS Mojave
10.14.0. These protections are managed by Apple’s expanded security
framework, Transparency Consent and Control (TCC).

To manage access using a profile, Apple has defined a set of keys
which correspond to the settings found in the Privacy tab of the Security
preference pane in System Preferences (Tables 4-1 and 4-2). Apple refers to
the profiles used for managing protected user data as Privacy Preferences
Policy Control Payload profiles.

230

CHAPTER4 MDM INTERNALS

Table 4-1. Privacy Service Dictionary Keys

Key Type Value
AddressBook Array of dentity Contact information managed by Apple’s

Dictionaries Contacts.app.

Calendar Array of Identity Calendar information managed by Apple’s

Dictionaries Calendar.app.

Reminders Array of Identity Reminders information managed by Apple’s

Dictionaries Reminders.app.

Photos Array of Identity Pictures managed by Apple’s Photos.app,

Dictionaries where the picture data is stored in the
following location:
~/Pictures/.photoslibrary

Camera Array of Identity A system camera.

Dictionaries Access to the camera can only be denied.
There is no way to automatically grant
access.

Microphone Array of Identity A system microphone.

Dictionaries Access to the microphone can only be
denied. There is no way to automatically
grant access.

Accessibility Array of Identity Control the application via the

Dictionaries Accessibility subsystem.

PostEvent Array of dentity Allows the application to use CoreGraphics

SystemPolicy
AllFiles

Dictionaries

Array of Identity
Dictionaries

APIs to send CGEvents to the system event
stream.

Allows the application access to all
protected files.

(continued)

231

CHAPTER 4 MDM INTERNALS

Table 4-1. (continued)

Key

Type

Value

SystemPolicy
SysAdminFiles

AppleEvents

Array of Identity
Dictionaries

Array of Identity
Dictionaries

Allows the application access to some files
used in system administration.

Allows the application to send a restricted
AppleEvent to another process.

Table 4-2. Identity Dictionary Keys

Key

Type

Value

[dentifier

IdentifierType

CodeRequirement

StaticCode

String
String

String

Boolean

The bundle ID or installation path of the binary.

The type of Identifier value. Must be either
bundle ID or path.

Application bundles should be identified by
bundle ID.

Nonbundled binaries must by identified by
installation path.

Helper tools embedded within an application
bundle will automatically inherit the
permissions of their enclosing app bundle.

Digital signature of the binary.

The digital signature is acquired via running
the following command:

codesign --display -r- /path/to/binary/here.

If set to true, statically validate the code
requirement.

Used only if the process invalidates its dynamic
code signature. Defaults to false. Optional.

232

(continued)

Table 4-2. (continued)

CHAPTER 4 MDM INTERNALS

Key Type Value

Allowed Boolean If set to true, access is granted. Any other
value denies access.

AEReceiverldentifier ~ String The identifier of the process receiving an
AppleEvent sent by the Identifier process.
Required for AppleEvents service; not valid for
other services. Optional.

AEReceiverldentifier ~ String The type of AEReceiverldentifier value. Must

Type be either bundle ID or path.
Required for AppleEvents service; not valid for
other services. Optional.

AEReceiverCode String Code requirement for the receiving binary.

Requirement Required for AppleEvents service; not valid for
other services. Optional.

Comment String Used to provide information in the profile

about what is being managed. Optional.

In the case of an application which needs access to all data in a user’s

home folder, a profile would need to be created which does the following:

o Identifies the application by its bundle ID and code

signature.

o Allows it access to all protected areas using the

SystemPolicyAllFiles payload key.

The profile should look similar to the following:

233

CHAPTER 4 MDM INTERNALS

aertidhiete 11Fiebd. . 300 KON S5, 11 o elats afestioge

Figure 4-25. The Contents of the PPPC Profile

On the Macs which receive the profile, it should appear similar to the

one shown in Figure 4-26.

®0 £.12> i Profiles Q

Device Profiles
MDM Profile Privacy Settings Whitelist - Backup
. 2 settings Company Name Verified

FTNAcY EHSos it ~ed JSS Built-In Signing Certificate
: | Feb 16, 2019 at 1:23 PM

1= Privacy Preferences Policy Control

DETAILS
Privacy Preferences Policy Control

Privacy Settings Whitelist - Backup
com.haystacksoftware.ArqCloudBackup
- Allowed

Figure 4-26. Privacy Preferences Control profile

234

CHAPTER4 MDM INTERNALS

With all of these moving pieces, a lot can go wrong, especially for
newer administrators. Learning to troubleshoot and debug can make it
easier to get your devices into the hands of users without going crazy.

Enable APNs Debug Logging

Nearly every issue can be solved by looking at logs. Troubleshooting
MDM communications can be a bit of a tricky. Push notification
communications between macOS Server or another MDM and Apple’s
Push Notification is basically the same as troubleshooting the apsd client
on macOS. To facilitate troubleshooting, put the APNs daemon, apsd, into
debug mode.

To enable APNS debug logging, first set the log level:

defaults write /Library/Preferences/com.apple.apsd APSLoglLevel
-int 7

Then set an APSWriteLogs key to true to actually start writing these

entries out:

defaults write /Library/Preferences/com.apple.apsd APSWritelogs
-bool TRUE

Then simply restart the daemon:
killall apsd

Now that you're capturing logs, use tail with the -f option to watch the
apsd.log file at /Library/Logs/apsd.log. Be wary, as this can fill up your
system:

Tail -f /Library/Logs/apsd.log

235

CHAPTER 4 MDM INTERNALS
So to disable, use these commands, which undo everything we just did:

defaults write /Library/Preferences/com.apple.apsd APSWritelogs
-bool FALSE

defaults delete /Library/Preferences/com.apple.apsd APSLoglLevel
killall apsd

Another aspect of troubleshooting APNs and mdm commands would
be to check that all of the necessary ports are open. A useful tool for this
would be Push Diagnostics available on the Mac app store at https://
apps.apple.com/us/app/push-diagnostics/id689859502. Once installed,
simply open the app and click Start. As you can see in Figure 4-27, if all
communications flow properly you'll see a green light for each category.
Hover over any that do not work properly to see the status of that one
specifically.

v

Push Diagnostics

Push Diagnostics runs tests against Apple's Push Notification service. This allows you to
test if the network you are on supports receiving push notifications.

@)
O=0 f &
Courier Gateway Feedback Test Push

APNs tests completed with 4 passed and O failed.
Test Push Received.

Figure 4-27. Running Push Diagnostics

236

https://apps.apple.com/us/app/push-diagnostics/id689859502
https://apps.apple.com/us/app/push-diagnostics/id689859502

CHAPTER4 MDM INTERNALS

You can also see a more detailed log of what worked and what
didn’t. As you can see in Figure 4-28, all communications are working as
intended.

Log
rHegisieraea 1or Arns wimn ioxken
17ABDE543557EFB3B1910B2FCD1B443C99F9C86A06617CDB4BB63A12B4613FDO
Courierhost (5-courier.sandbox.push.apple.com): 17.188.132.72
Altcourierhost (5-courier.sandbox.push.apple.com): 17.188.132.72
Courierhost (5-courier.sandbox.push.apple.com): Checking for proxy
Altcourierhost (5-courier.sandbox.push.apple.com): Checking for proxy
Courierhost (5-courier.sandbox.push.apple.com): No proxy found. Attempting to connect
Altcourierhost (5-courier.sandbox.push.apple.com): No proxy found. Attempting to connect
Pushhost (gateway.sandbox.push.apple.com): 17.188.166.23
Feedbackhost (gateway.sandbox.push.apple.com): 17.188.166.23
Pushhost (gateway.sandbox.push.apple.com): Checking for proxy
Feedbackhost (gateway.sandbox.push.apple.com): Checking for proxy
Pushhost (gateway.sandbox.push.apple.com): No proxy found. Attempting to connect
Feedbackhost (gateway.sandbox.push.apple.com): No proxy found. Attempting to connect
Connected to Courierhost (5-courier.sandbox.push.apple.com) at |P address 17.188.132.72 on port 5223
Connected to Altcourierhost (5-courier.sandbox.push.apple.com) at IP address 17.188.132.72 on port 443
Connectled to Pushhost (gateway.sandbox.push.apple.com) at IP address 17.188.166.23 on port 2195
Connected to Feedbackhost (gateway.sandbox.push.apple.com) at IP address 17.188.166.23 on port 2196
Trying to sending ourselves a push notification
Sent Push. Waiting for a response
Received Push Notification
APNs tests completed with 4 passed and 0 failed. #info #network
Sent Push. Waiting for a response
Received Push Notification
APNs tests completed with 4 passed and 0 failed. #info #network

~

Figure 4-28. Push Diagnostic Logs

If those communications were not working as they should, you
would see a failure in the logs. In that event, there are some techniques
for verifying a failure and then possibly isolating where in the
communications that the failure occurs. Luckily, macOS comes with a
built-in port scanner. So you can use this command, nested inside the
Network Utility app, to interrogate a given port manually:

/System/Library/CoreServices/Applications/Network\ Utility.app/
Contents/Resources/stroke gateway.sandbox.push.apple.com 2195
2196

237

CHAPTER 4 MDM INTERNALS

The scan then indicates that port 2195 is open and 2196 is not
accessible (although in some environments, these are deprecated in favor
of 443 and 5223) as shown in the following output:

Port Scanning host: 17.188.166.23
Open TCP Port: 2195

If the name can’t be translated to an IP address, an error would
indicate that’s the case. If a port is inaccessible then a traceroute command
can be used to show the servers that were gone through to get to a given IP
address or URL, including by port:

traceroute -p 2196 gateway.sandbox.push.apple.com

Provided the service is online, then looking at each route internally
(e.g., before going across the gateway) can show you were those
communications break down and which device might need some kind of
port opened. A number of environments block outgoing traffic to weird
ports and so providing a network team with a list of ports that should be
opened to Apple is sometimes necessary.

Sometimes in testing you find that the Apple services that are
foundational for device management are offline. This is why Apple, and
any responsible vendor, provides a few locations to find information about
the status of hosted services. The two primary locations to look would be

o System Status: www.apple.com/support/
systemstatus/ for information on Apple Business
Manager, Apple School Manager, App Store, Device
Enrollment Program, iCloud, Screen Time, Software
Update, and Volume Purchase Program endpoints

o Developer System Status: Apple Push Notification
services, TestFlight, App Verification, App Store Connect
(used by many vendors to look up metadata about
apps): https://developer.apple.com/system-status/

238

http://www.apple.com/support/systemstatus/
http://www.apple.com/support/systemstatus/
https://developer.apple.com/system-status/

CHAPTER4 MDM INTERNALS

According to how the developer of any third-party products that
you might use for MDM and other related services has integrated those
services into their software, if any of these services is down, it might
cause other services not to work. Many vendors try not to create service
dependencies where possible, but they do happen and can cause services
to be unavailable to devices or cause weird artifacts to appear in the
software you use to manage devices.

To get more detailed information, many of these services can be
contacted directly. For example,

curl -v -X POST https://tbsc.apple.com/ucrt/vend2

Other troubleshooting options include using the sysdiagnose
command and reviewing the log output of that. Now that we've looked at
troubleshooting some of the push communications required for devices to
receive commands, let’s move into one of the more valuable commands:
App Deployment.

App Deployment

The App Store changed the world of software distribution. First the App
Store came to the iPhone and then the iPad and the Mac. While many a
developer avoids those stores, it’'s much simpler to deploy apps through
the stores than using the various other mechanisms Apple provides,
making management simpler and more secure. Additionally, the cost of
each app plummeted since the introduction the App Store. A number of
services have also now moved to a subscription model.

This began before the App Store, with a number of vendors moving to
subscriptions for hardware firmware, etc. Apple just did a better job than
anyone else at it, turning the services division of the company into a cash
cow. But organizations needed to deploy apps to a lot of devices - and so
the Volume Purchase Program (VPP) was born. To best understand VPP,

239

CHAPTER 4 MDM INTERNALS

it helps to look at how it evolved. In the beginning, teachers were given gift
cards. This violated so many basic concepts around financial responsibility
in schools and companies and so Apple engineers started looking at ways
to deploy applications to devices that didn’t include a gift card.

Gift and VPP Codes

The first stab at large-scale app deployment was using a gift code, which
leveraged existing functionality that already existed for the App Store.
Basically, you can buy an app or other media on the app store for someone
else. You do this by using the Gift This button in the App Stores or iTunes
(Figure 4-29).

[o]=]]
=

OL _ Gift ThisSong |
Add to Wish List

$1.2¢ Tell a Friend

Share On Twitter

Share On Facebook

Copy Link

Figure 4-29. Gifting an iTunes asset creates a code

When you do, the iTunes Store services sends a gift code to the person
you purchased it for. When the link is clicked, iTunes is opened and you
are directed to associate that code to your iTunes account. Rather than
associating a code, you can instead harvest those gift codes and deploy a
link to buy an app with the gift codes embedded into a buy.itunes.apple.
com URL, where 12345678 is replaced with a code:

https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.
apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=
itunes&code=12345678

240

https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678
https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678
https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678

CHAPTER4 MDM INTERNALS

When you use the link, the gift code is marked as consumed and is no
longer able to be used to buy another app. Early versions of VPP were a
web service that would track these gift codes and assign them to a device
by deploying the link to the device. The user needed a unique AppleID on
the device and new codes were added to VPP using a csv that was basically
the same thing as the codes as shown in the link above.

Volume Purchase Program

The csv with gift codes could also be loaded into Apple Configurator or
an MDM that still supports that deployment type to deploy the apps. This
method consumed codes upon device setup and so was short-lived. But
the concept was similar. The fact that most users used personal AppleIDs
and once an app was assigned, the ownership was assigned permanently,
even when the user left the organization, caused Apple to move to a

user assignment service. This is a collection of API services, available
athttps://vpp.itunes.apple.com/WebObjects/MZFinance.woa/
wa/<serviceName> (where <servicename> is one of the following):

o registerVPPUserSrv: Creates a user in VPP and sends
the user an invitation or if it's a managed ApplelD, links
the ApplelD to the instance. Accounts then use a GUID
(clientUserIdStr) for tracking information about the

accounts.

o getVPPUserSrv: Checks the clientUserIdStr to get the
associated itsiIdHash, or the hash of the AppleID. This
is important philosophically because the MDM server
should not know the ApplelD for non-Managed
ApplelDs.

o getVPPUsersSrv: Responds with a list of users,
including those retired, so the MDM can track its own
information about those users internally.

241

https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/
https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/

CHAPTER 4 MDM INTERNALS

e GetVPPLicensesSrv: Responds with a list of
licenses (adamlIds) and the users (in the form of
clientUserIdStr) to link which user is consuming which

licenses and the remaining license counts.

o GetVPPAssetsSrv: Returns adamlds, whether an app is
revocable, how it is licensed, and consumption of the
available assignments of the licenses owned.

o retireVPPUserSrv: Unlinks a user (clientUserIdStr) from
the VPP account.

o manageVPPLicensesByAdamIdSrv: Associates licenses
for apps and other content to the users who will need
them and then removes the assignments of that content
when needed.

o editVPPUserSrv: Used to edit Managed AppleID
information.

e VPPClientConfigSrv: Allows organizational information
to be pulled from the server.

e VPPServiceConfigSrv

o contentMetadataL.ookupUrl a response for
obtaining metadata about an app, which includes
most things you see on the iTunes or App Store
pages for content and apps

Most administrators won't have to interact with these commands
directly, although it helps to know what is happening as you're using tools
to analyze network traffic when troubleshooting, or looking at a device
while working on app distribution issues. Most of the above commands
need to have an sToken. An MDM solution is integrated with that service
using a VPP token. The token creates a connection between an MDM

242

CHAPTER4 MDM INTERNALS

solution (e.g., Bushel, Apple’s Profile Manager, Casper, etc) and apps you
purchase through the VPP portal. But what'’s in a token? The VPP token is
a base64 encoded file. You can cat the file and it will show you a bunch of
garbly-gook (technical term):

base64 --decode /Users/charlesedge/Desktop/kryptedcom.vpptoken

But there’s more to it than all that. We can run the base64 command to
see: base64 --decode /Users/charlesedge/Desktop/kryptedcom.vpptoken
In some cases, this file can display improperly, if it fails use the following
command: echo " cat /Users/charlesedge/Desktop/kryptedcom.vpptoken®
| base64 --decode The contents of the file are then displayed, as follows:

{"token":"AbCDe1f2gh3DImSB1DhbLTWviabcgz3y7wkDLbnVA2AIrj9gcih1l
vViMDJ11qoF6Jhqzncw5hiW3cV8z1/Yk7A==", "expDate":"2020-07-03T08:
30:47-0700", "orgName": "Krypted.com"}

This is a comma separated set of keys, including token, expDate, and
orgName. Once you have downloaded the sToken and installed it into your
MDM. The token establishes the trust until the expiration date (which
should give you plenty of time to renew by). The orgName is what you
entered in the VPP portal when you set up the account and is also escaped
and then used as the file name, as we covered earlier. Once the sToken
is installed, administrators then purchase apps using the VPP store, or
if they've moved their sTokens to Apple Business Manager, through the
Apple Business Manager front-end to the VPP store.

The content purchase experience is pretty straightforward. As you can
see in Figure 4-30, you search for an app and then click one you'd like to
purchase.

243

CHAPTER 4 MDM INTERNALS

Search Media Type
(@ self service Al B _ Search
iPad Apps 1-10 See More =
Name Developer Category Released /Updated Price
"J Jamf Self Service o JAMF Software Utilities 11/16/18 Free
g‘.’ Ceridian Self-Service o Ceridian Benefits Mobile Business 03/12/15 Free
MyFrontier _ Frontier Communications Unilities 04/15/19 Free
&3 ADP Mobile Solutions a ADP, Inc Business 04/23/19 Free
%j The HUE, Mobile Self-Service Portal o Netventures Corporation Health & Fitness 06/28/17 Free
ASIFlex Self Service ASIFlex Productivity 01/26/19 Free
ﬂ Volt Self Service o Volt Information Sciences Inc Business 05/13/15 Free
‘. Alliance MyPay o Alliance Payroll Services Inc Business 01/10/19 Free
ﬂ Paycom o Paycom Busingss 06/17/19 Free
. Ceridian Powerpay Self Service o Dayforce Corporation Business 06/06/19 Free

© indicates an app designed for both iPhone and iPad.

Figure 4-30. Looking for Software in the VPP Store

You can then buy copies in bulk by simply entering the number and
then making the purchase. If an app is free, you still end up purchasing the
quantity that you need, as seen in Figure 4-31.

Search Media Type Category
(@ Self Service i0sapes B a1 B Search

Purchase Details
Price Quantity
) Jamf Self Service Free 105 App

& by JAMF Software

Managed Distribution: Free apps are only available in bulk using managed distribution. Assign apps by using a Mobile Device Management (MDM) solution,
such as the latest version of Apple Profile Manager. You retain ownership of apps only, allowing you to revoke and reassign them as needed. Learn More »

Figure 4-31. Buying Software

244

CHAPTER4 MDM INTERNALS

Once you hit purchase, the MDM uses the preview services to keep
your purchase history in sync with the vpp endpoints at https://vpp.
itunes.apple.com/WebObjects/MZFinance.woa/wa. VPP is one of the
more challenging services to develop around on the MDM side. Keeping
all of that metadata in sync with Apple and dealing with failed API calls
when servers aren’t responsive can be a challenge. Additionally, for non-
Managed ApplelDs, the MDM server is constantly polling the VPP service
to see if they have registered with VPP or unregistered.

There are also a lot of flows to how you build VPP into a product,
which means there are different interpretations that make it challenging
to plan around as an administrator who is a customer of an MDM vendor.
One of the more important of these is whether you have supervised or
unsupervised devices. You can deploy apps to a supervised device through
device-based VPP without the consent of a user. You can deploy apps to a
user via an invitation and they may or may not ever accept your invitation.
You can deploy apps to a Managed ApplelIDs that then appear in the
purchase history.

The interactions between VPP and end users are at times challenging
to manage. When a user is prompted with various account types can
change between iOS and macOS versions, as Apple improves the
experience with managing how apps get managed on devices. And
different vendors implement some of the workflows differently. Therefore,
work with your MDM vendor to try to plan the best workflow for your
specific environment.

Managed Open-In

Managed Open-in is a feature that allows organizations to protect the
information on devices they provide to employees. When an app is
deployed, you can select whether the content that is obtained via the app is
managed. If you manage this content, then any data that is provided via the

245

https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa
https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa

CHAPTER 4 MDM INTERNALS

MDM is then no longer accessible outside of other tools provided by that
MDM. For example, if an MDM solution is used to deliver email settings
and Apps the users on those devices will only be able to open attachments
in the Apps that the MDM delivered and cannot use a share sheet to
transfer data to an app they loaded themselves. This keeps organizational
data out of your user's personal Dropbox account and hopefully makes it
easier to remove the organizational data from a device without impacting
the rest of the data on the device, such as photos people took of their kids.

The Managed Open-in feature requires Apple's Volume Purchase Plan
(VPP) for App distribution. For more on this technology, see waw.apple.
com/business/resources/docs/Managing Devices and Corporate
Data on_1i0S.pdf.

Host a .ipa on a Web Server

You can also manually install an app on iOS devices without the use of the
app store. This provides a little insight into what’s happening behind the
scenes of the VPP services. To do so, you'll need to sign the app in Xcode,
which is outside the scope of this book. The resulting assets you'll get are a
.ipa file (the application bundle) signed by your organization’s distribution
certificate. The .ipa file can then be loaded into Apple Configurator for
distribution or distributed through a web server.

By default, most web servers do have a handler that tells them what to
do in the event that a call attempts to access one of these files. Therefore,
in order to support downloading those files properly, you need to teach the
server how to handle them.

We'll start by obtaining the MIME type from the Mac file command in
Terminal. To do so, run file with the, big surprise, -mime-type option and
then the path to the file:

file --mime-type /Users/ce/Downloads/enrollmentProfile.
mobileconfig

246

http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf

CHAPTER4 MDM INTERNALS

The output would be as follows, indicating that a file with the
.mobileconfig extension has the application/octet-stream extension:

/Users/ce/Downloads/enrollmentProfile.mobileconfig:
application/octet-stream

Since more and more apps are deep linking a plist into the app, we’ll
also add a plist. The output on a Mac for the various file types is

e .mobileconfig: text/xml or application/octet-stream if
signed

o .mobileprovisioning: text/xml or application/octet-
stream if signed

e .ipa:application/x-ios-app

o .plist: text/xml or application/octet-stream if a binary
plist

In the preceding outputs, note that a signed mobileconfig, a signed
mobile provisioning, and a binary plist are basically interpreted as
binary files. This means that when possible, use signed mobileconfig and
mobileprovisioning files so you have a consistent handler.

We'll start defining those with Apache. Handlers are managed in
Apache’s global configuration file, often located at /etc/httpd.d/httpd.conf
and you would paste the following toward the bottom of the file where you
see the media types (note that each AddType is teaching the web server
what type of file each file extension indicates):

AddType application/octet-stream .ipa
AddType text/plain .plist
AddType application/octet-stream .mobileconfig

In the above example, we set a plist to plain in order to show that
sometimes it is, given that many an app developer does things differently.
Alternatively (or additively if you need to host both binary and flat plist

247

CHAPTER 4 MDM INTERNALS

files), you could create an .htaccess file in the directory with the files
(e.g., if you don’t have root access to change the httpd.conf), by adding
something similar (the # is indicating a commented line):

Apps

AddType application/octet-stream .ipa

AddType application/octet-stream .plist
AddType application/octet-stream .mobileconfig

For IIS, you would instead go into IIS Manager and right-click on the
name of the server, select Properties and click New... in order to create new
MIME types. Then add each using the above types.

To add a MIME type on nginx, edit the mime.types file in the conf
directory for nginx. This is often found in /etc/nginx or /opt/nginx but
ymmv. Once found, in mime.types look for a types section wrapped in
curly-braces {}:

types { application/octet-stream mobileprovision; application/octet-
stream mobileconfig; application/octet-stream plist; application/octet-
stream ipa; }

Note In some cases, you might find that “application/x-apple-
aspen-config” and in others text/plain or text/xml works better for
.mobileconfig MIME types.

If you have failures, you can use a proxy to check it. Here, you'd
probably want to use a unique port number to make calls easier to use.
If you use Charles Proxy, you'd configure the proxy in the Wi-Fi settings
of an iOS device and then open the link in a browser and watch for any
failures. You can create app provisioning profiles in Xcode at the time the
app is built.

248

CHAPTER4 MDM INTERNALS

Sign and Resign mac0S Applications

The codesign command line tool is used to sign applications and
packages. If you have a .app, then you'll need to first load a certificate that
can be used to sign an app onto the Mac being used and then point it at
the app to be signed. Any time you alter a .app you’ll want to do this, and
before doing so you'll want to make sure that the certificate you're using
to sign the app is either from a public CA or has been distributed to client
computers.

As an example, in let’s use the codesign command, to sign the
Microsoft Word application using a certificate called pretendcocert that’s
been loaded in your keychain. Here, we’'d use the codesign command
followed by the -s option to sign and then the name of the cert followed by
an escaped (or quoted)path to the app bundle, as follows:

codesign -s mycert /Applications/Microsoft\ Office\ 2016/
Microsoft\ Word.app

The codesign command is capable of much more, but isn’t the only
tool that administrators need to learn to distribute applications. You could
then perform similar operations on iOS using techniques similar to those
described https://docs.microsoft.com/en-us/intune/app-wrapper-
prepare-ios.

App Notarization

As 0f 10.14.5, Apple requires that all software be notarized (and signed)
by Apple. This is referred to as App Notarization. In order for Apple to sign
software, they check the software to make sure it’s safe and for new app
developers will require that all software be notarized, including apps and
kernel extensions. While it’s only required for some developers right now,
it will be required by all (probably before this book goes to print).

249

https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios
https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios

CHAPTER 4 MDM INTERNALS

Submitting an app for notarization is easy. We'll cover using the xcrun
command line tool with the altool verb to do so. But first, there are some
requirements you should know about:

« The notarization service uses an automated scan that
usually takes about 20 minutes and requires at least the
10.9 macOS SDK.

e Before submitting, make sure code-signing has been
enabled for all executables and that you enabled the
Hardened Runtime option.

e Find a workaround if you're setting com.apple.security.
get-task-allow to true for any reason.

e Make sure to use an Apple Developer ID instead of a
local cert from Xcode for apps and kexts. And make
sure all code-signing certs have a timestamp when
running your distribution workflows in Xcode or if
using codesign make sure to add -timestamp.

Now we’ll need to use xcrun with the altool. Here, we’ll use the
-notarize-app option and then define the bundle (using the reverse
naming convention you've always used for the -primary-bundle-id
option and then the username and password from your Apple ID linked
to your Developer ID and finally the -file which is the zipped output
from Xcode.

#1/bin/bash

/usr/bin/xcrun/xcrun altool --notarize-app --primary-bundle-id
"com.myorqg.myproduct” --username "krypted@myorg.com" --password
"icky passwords" --file "/Users/krypted/Documents/myproduct.zip"

250

CHAPTER4 MDM INTERNALS

You can use any tools to build this into your development pipeline.

In this example, we’ll use the open source Bamboo solution as the

postflight from our xcrun workflow. We'll start by naming our script /usr/

bambooscripts/notarize.sh and then follow these tasks to get the build

automation step in place (Figure 4-32):

Open the Tasks configuration tab for a job (or default
job in a new plan).

Click Add Task.

Add a Task Description, which is just how the task is
described in the Bamboo interface.

Uncheck the box to “Disable this task”

Provide a path to the command executable, which in
this case will be a simple bash script that we'll call /
usr/bambooscripts/notarize.sh. If you're stringing
workflows together you might add other scripts as well
(e.g., a per-product script as opposed to a generic script
that takes positional parameters for arguments).

Provide any necessary Arguments. In this case, it'll just
be a simple job but you can reduce the work by adding
arguments for processing paths of different products.

Provide any necessary Environment Variables. We
won’t use any in this project.

Provide any necessary “Working Sub Directory”
settings, which is an alternative directory rather than
using a relative path. If you don’t provide a working
subdirectory, note that Bamboo looks for build files in
the root directory.

Click the Save button (as you can see in the following).

251

CHAPTER 4 MDM INTERNALS

Command configuration How to use the CC”‘“‘;”"i
as

Task description

Disable this task
Executable
Bash ¥ Add new executable

Argument

Argument you want o pass lo the command. Arguments with spaces in them must be quoted

Environment variables

Extra environment variables. e.g. JAVA_OPTS="-Xmx256m -Xms128m". You can add multiple parameters

separated by a space

Norking sub directory

an alternative sub-directory as working directory for the task

Figure 4-32. Automate Bamboo Tasks

As you can see, the actual notarization process with Apple isn’t that
big of a deal. What can be more challenging is to resolve any issues
Apple may find with software before it can pass the notarization checks.
This type of code change is based on the app you might be developing
(or resigning) and therefore beyond the scope of this book. We do pick
up more on app distribution in Chapter 7 and more on automation in
Chapter 9.

252

CHAPTER4 MDM INTERNALS

Summary

MDM is the built-in management agent for Apple devices. MDM is

the future of Apple management. Functionality built into MDM for
management increases every year. This is true for i0S, iPadOS, tvOS, and
macOS. For macOS, the ability to manage devices using scripts seems to
conversely decrease every year, making MDM-based management more
and more important with each passing release.

The addition of supervision allows Apple to limit the management
options available on devices a given organization doesn’t own. Supervised
devices can be managed more granularly. UAMDM also increases or
decreases the amount of management. This is part of a deliberate plan
from Apple to allow more and more centralized control, the most an
organization can prove they own a device and not an employee, and the
more the employee chooses to opt into various management options.

iOS device management is simple. And Apple has been able to scale
offerings (especially using third-party management tools) while preserving
that privacy of the humans that use their devices. iOS has led the way, but
the Mac is quickly catching up. As an example, it’s easy to imagine a time
when apps on a Mac will only be self-contained .app bundles and when
the only deployment method for those apps in large organizations will
be via the App Store or MDM. The installation package has been around
for a long time and gives software developers the ability to distribute kext
files, fonts, and automate scripts to run when an app is installed. But Apple
has been locking down all of those technologies for long time. And there’s
no reason to think MDM won't be the only real way to manage an Apple
device in a few years.

Volume distribution of applications is another place where Apple is
taking great care to put a line in the sand between institutional data and
personal data. The device management tools don’t know the ApplelD of
a user unless it's a managed AppleID. The device management tools can’t

253

CHAPTER 4 MDM INTERNALS

install an app on a device without a user’s approval unless it is a supervised
device. In macOS 10.15, Apple also adds a whole new enrollment type,
putting all data from a Managed ApplelD onto a separate partition on a
computer. This attention to detail is one of the reasons that people want
Apple devices, but the lack of programmatic management here and there
certainly seems to chafe some administrators.

Now that we’ve pulled back the covers a bit to expose what'’s going on
behind the scenes with Apple device management, let’s look to get devices
into the hands of our coworkers, starting with iOS Provisioning, in Chapter 5.

254

CHAPTER 5

iIOS Provisioning

Imaging. We used to say that we imaged computers. But then came iOS,
and then iPadOS. You didn’t image iOS or iPadOS device as much as you
“prepare” them, or at least that’s what the buttons in the software said

at the time. These days, preparing a device to go into the hands of an
end user is more about Provisioning the device to a user than it is about
imaging the device.

Imaging never entered into the vernacular for iOS. You could restore a
signed operating system to a device in the form of exploding the files from
a compressed file of the iOS operating system, which is distributed as an
ipsw file provided by Apple that can’t be altered. This would be expanded
onto the disk of an iPhone or iPad. And you could deploy a profile to enroll
the device into a Mobile Device Management, or MDM solution, using a
tool like Apple’s Profile Manager, until the Device Enrollment Program,
or DEP, made that unnecessary. This is another example of how the
technology from iOS is benefiting the Mac.

When we say “imaging” a Mac, we typically think of erasing a device
and putting new bits on the device in form of a fully functional operating
system on the file system of the device. This gives the device everything a
user needs to get their work done - and doing so by restoring a monolithic
“image” to the device is the simplest step when deploying a device for
the first time. First we moved from monolithic imaging to package-based
imaging. Then we moved from package-based imaging to restoring a “thin”
image, or one with just the operating system and an agent. Then Apple
gave us the Device Enrollment Program (or DEP for short) and we went
© Charles Edge and Rich Trouton 2020 255

C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_5

CHAPTER 5 10S PROVISIONING

to skipping that step and taking devices out of the box with the default
operating system and allowing our coworkers to do the imaging that many
large organizations used to pay $20-$40 per device to have done. DEP
automatically enrolls the device into MDM, puts apps on the device, and
puts the agent on the device through MDM. There are less options, but the
process has never been so streamlined with such a small amount of work.

Shipping devices directly to a user makes them feel like they’'re getting
the new device they were always getting, but Once administrators had
everything necessary to provision a device out of the box, Apple released
the APFS filesystem (or Apple Filesystem) and the native restrictions
for restoring became common on the Mac. It was a learning curve but
ultimately one that makes our lives better.

Operating system updates for iOS were always free (except that one
time, but we don’t need to go into that). Mac updates became free and
simplified the distribution process while allowing users to always run the
latest operating system. By making the operating system free, Apple was
then able to simplify the options for reinstalling macOS.

There are certainly differences still, though. So this chapter is split into
an i0S and a macOS section. Because the Mac has been trending toward
iOS when it comes to deployment, we’ll cover iOS Provisioning first.

i0S Provisioning

As we mentioned, in a perfect world, you send a device to a user, they open
the device, and all of the magic happens to put that device into a state
where it just works with your environment. Behind the scenes, a lot goes
into making that happen. We've discussed many of those building blocks.
In Chapter 3, we covered Profiles. In Chapter 4, we covered MDM. There
are still some gaps; and they’re more logistical than they are technical.

For starters, you have to get on a Wi-Fi network in order to be able to
enroll an iOS device into MDM, even with DEP. This means a user has

256

CHAPTER 5 10S PROVISIONING

to join the network, and so if you use 802.1x or need an agent to be able

to enroll, there’s a chicken and egg situation. Some organizations use
ethernet adapters for iPads, to get those certificates going and to kickstart
those communications. Others need a completely over-the-air workflow
assuming users are never in the office. Most environments are somewhere
in the middle, so we'll cover the options available for provisioning iOS
devices in this section, starting with doing so using Apple Configurator.

Prepare an i0S Device Using Apple Configurator

In Chapter 3, we used Apple Configurator to create profiles, but it can be
used for much, much more. In this chapter, we’ll build out a workflow to
get certificates on devices (also using profiles), but as importantly we’ll take
some actions on those devices to provide a consistent user experience.

One theme of this book is that in the Apple world, we don't like to
be heavy-handed with management, but we do like to ensure devices
meet our requirements in order to join networks and we like to make
the experience of getting a new device as frictionless as possible, so the
people who use them don’t avoid making eye contact in the hallways!
Apple Configurator gives us a lot of the tools to do just that. Because not
all devices are handled the same, we typically begin by grouping our
workflows into what are known as Blueprints.

Create Blueprints

Blueprints allow you to configure a template of settings, options, apps,
and operating systems. You then apply those Blueprints on iOS devices,
which represent a predefined workflow. For example, if you have 1,000
iOS devices, you can create a Blueprint with a restore item, an enrollment
profile, or a default wallpaper. You can also skip all of the activation steps,
install 4 apps, and then enable encrypted backups. The Blueprint provides
all of these features to any device that the Blueprint is applied to.

257

CHAPTER 5 10S PROVISIONING

Note In the following sections, we’ll look at a lot of different
options. They’re all optional, according to what it is your organization
needs to accomplish.

Keep in mind that they’re called Blueprints because you're not
dynamically making changes to devices over-the-air or grouping devices.
Instead you're making changes to devices when you apply that Blueprint,
or workflow to the device. To get started, open Apple Configurator and
click on the Blueprints button and then click on Edit Blueprints. Notice
that when you’re working on Blueprints, you'll always have a blue bar
toward the bottom of the screen. Figure 5-1 shows a blank slate so you can
start building workflows. Once created, Blueprints are tiled on the screen,
although as you get more and more of them, you can view them in a list.

ece All Blueprints
ﬁ a0 _v r Q

View Add Blueprints Propare Update BackUp Tag Help

Mew 0 blueprints Done

Figure 5-1. Create A Blueprint

258

CHAPTER 5 10S PROVISIONING

Click on the New button to create your first Blueprint. Here, you’'ll have
a number of options which we’ll describe later in this chapter including

o Install or remove apps and documents.
e Change the name of devices en masse, using variables.

o For supervised devices, you can change the wallpaper
of devices and modify the layout of apps.

e Update software.
o Install or remove profiles.
e Backing up and restoring saved backups onto devices.

e Performing some actions, such as caching an unlock
token so you can reset passcodes, putting devices into
kiosk mode, and wiping devices.

You can also configure automated enrollment. But for an increasing
number of environments, before we can enroll, we need to get a certificate
to join a wireless network.

Manage Content

We can manage files on disks. Configuration files are stored in what are
known as profiles, or xml files (as covered in Chapter 3). These can be used
to distribute apps, to install certificates, and to deploy content to devices.

Add Certificates for 802.1x with Profiles
to Blueprints

One of the tasks you'll need to perform in Apple Configurator is to assign
Profiles to i0S devices in order to set them up with features or restrict the
device from using certain features. Adding a certificate to a device and

259

CHAPTER 5 10S PROVISIONING

configuring the device to join a wireless network is pretty common and
a fairly simple workflow. To get started, open a Blueprint or create a new
Blueprint. Then follow along with these steps:

1. From the screen for that Blueprint, click Profiles in
the sidebar (Figure 5-2).

2. Ifyou’re working with a new Blueprint and creating
a new profile, click the File menu and click New
Profile.

3. Next, provide a Name for the profile in the Name
field. In this example, we just called the profile
802.1x.

4. Leave the identifier in the Identifier field.

5. Clickin the Organization field and provide the name
of your organization.

6. Clickin Description and provide a brief explanation
of what the profile is meant to do (this is nice for
the next person who needs to manage what you're
working on).

7. Consent is rarely required with Apple Configurator-
based workflows, but you can provide a message
that an end user has to tap at the time of the
deployment. Apple Configurator is often used to
reduce taps, not increase them, so this is not likely to
be necessary.

8. Optionally, if you want users to be able to remove the
profile, leave the Security option set to Always. You can
also set it to Never so the profile can only be removed
through Apple Configurator or With Authorization,
which requires a passcode to remove the profile.

260

CHAPTER 5 10S PROVISIONING

9. Use Automatically Remove Profile if you want the

profile removed at a certain date or amount of time.

General
Mandatory

Restrictions

e Domains

@ OGlokal HTTP Proxy
@ DNS Proxy

e’ Content Filter

Certificates

{?} Certificate Transparency
Passcode

//5'\ Wi-Fi

VPN

RS

e

@ AirPlay Security
E RirPrint

Calendar
=

D Subscribed Calendars
™

1 - Contacts
-

EE Exchange ActiveSyne

General

& Untitled — Edited

Hame
Display name of the profile - will ba shown on the device

802.x

Identifier
Unigue profile identifier - installin
replace any installed profile

the profile on devices wil
he sarme ident

BADABCE-BO1A-450C-8D00-130012722A2F
Organization

Name of the organization which created the profile
Apress

Description

Brigf explanation of the contents or purpose of the profile

| A profile to allow devices 10 join the network]

Consent Message
A message that will be displayed during profile instaliation

Security
Controls when the profile can be removed

Always

Automatically Remove Profile
Settings for automatic profile remaval

Never B

Figure 5-2. Naming your profile

10. Next, click the Certificates profile in the sidebar and

click Configure.

11. When prompted, select a .p12 file and click OK.

12. Atthe Certificates screen, provide the password

required to open the p12 (Figure 5-3).

261

CHAPTER 5 10S PROVISIONING

 General

! Mandatory Certificate

Restrictions

E |
e Domains
@ OGlobal HTTP Proxy
@ DNS Proxy
e, Content Filter

Certificates

1 Payload Configured

"y Certificate Transparency

Passcode

—

= Wi-Fi
< 1Payload Configured L

VPN
N
rifed
@ AirPlay Security
E AirPrint
HI Calendar
L}

D Subscribed Calendars
™

1 o Contacts
-

EE Exchange ActiveSyne

& Untitled — Edited

Certificate Name

Name or description of the certificate
Certificates p12
Certificate or Identity Data

PKCS1 (.cer, etc) or PKCS12 (.p12) files for inclusion on device

~| member: B3444267-C147-4849-
ABDA-BEGOEFFB28BB
78712959-9E2B-4BB1-B6EOQ-
DF5762BAEBBS

Root certificate autharity

Expires: Wednesday, April 22, 2020 at
S09:18 AM Central Daylight Time

© "member: 83444257 -C147-4849-ABDA

Password
Password protecting the PKCS12 file, used for installation
without prompting

snasn

Figure 5-3. Select your certificate to use with the profile

13. Click Wi-Fi and click Configure.

14. Provide the name of the wireless network in the
“Service Set Identifier (SSD)” field.

15. Ifthe network name is suppressed, check the box for

Hidden Network.

16. Ifyou want the device to automatically join the
network, check the box for Auto Join. You likely

262

CHAPTER 5 10S PROVISIONING

want that box checked any time you're using Apple

Configurator as again, you're trying to minimize the

number of taps on devices.

17. If a proxy server is required, configure those settings

using the Proxy Setup options.

18. Set the Security Type (in Figure 5-4, we're using TLS,
so we'll select “WPA/WPA2 Enterprise” and then
check the box for TLS), but a lot of environments

use a lot of different settings, so work with a network

administrator if needed.

General
Mandatory

Restrictions

e Domains

@ OGlobal HTTP Proxy
9 DNS Proxy

e_) Content Filter

Certificates
<] 1Payload Configured

..ﬁ-l.l Certificate Transparency
Passcode

= Wi-Fi

"= 1Payload Configured

VPN

E AirPrint
E Calendar

D Subscribed Calendars
B

1 - Contacts

-

HE Exchange ActiveSyne

Wi-Fi

& Untitled — Edited

Service Set Identifier (SSID)
Identification of the wireless network to connect to
Corporate Wifl
Hidden Network
Enable if target network is not open or broadcasting
Auto Join
Automatically join this wineless network
Disable Captive Netwark Detection
Do not show the captive network assistant
Proxy Setup
Configures proxies to be used with this network
Hone
Security Type
Wireless netwark encryplion to use when connecting
WPA | WPAZ Enterprise

Enterprise Settings

Configuration of protocols, authantication, and trust
st
Accepted EAP Types
Authentication protccols supported on target network
@ s LEAP EAP-FAST | EAP-AKA
TS PEAF EAP-5IM
Identity Certificate

Client identity for wireless network. Required for TLS. Enables
2-factor for TTLS, EAP-FAST, and PEAP.

Certificate: Certificates.p12 B
TLS Minimum Version
w B
TLS Maximum Version
10
Network Type
Configures network to appear as legacy or Passpoint hotspat
Standard

Fast Lane QoS Marking
Do nat restrict QoS marking [

Figure 5-4. Change the Security Type to see more options

263

CHAPTER 5 10S PROVISIONING

Once you've configured the profile, click the close button (the red jelly
marked with an x in the upper left corner of the screen). When prompted,
provide a name and location for the profile, as you can see in Figure 5-5.

Do you want to keep this new document

i E “"Untitled"?

You can choose to save your changes, or delete this
document immediately. You can’t undo this action.

Save As: .“802.1*. |

Tags:

Where: Documents — iCloud E v

Delete Cancel

Figure 5-5. Name your profile

To add the profile to another Blueprint, click the Add button from
within a Blueprint when viewing profiles in Apple Configurator and select
the file location. You can also add a profile that you export from your MDM
solution by simply copying it to a secure location on the computer and
doing that last step. This will help keep you from doing duplicate work in
two different tools. Now that we can add profiles to prepare a device for
distribution, let’s look at getting apps on the device - but keep in mind that
when you have the option to push an app from Configurator or an MDM,
use the MDM so that it can be managed dynamically once deployed.

264

CHAPTER 5 10S PROVISIONING

Install Apps with Apple Configurator

One reason you might use Configurator to push an app to a device is if you
are transferring 10 gigs of apps (which could be 10 or 100 apps) as that data
transfer might go faster over a USB cable than it will over-the-air from the
App Store, especially if you're preparing a lot of devices at once. In this
section, we'll look at a basic app deployment using Apple Configurator.

To get started, first download the app and get it in your Documents
folder or Desktop (which can be done via iTunes or by pulling it from a
device). This can be accomplished by copying the .ipa file for an app if you
have one or Apple Configurator can pull down the app onto a device from
an Apple ID that has the app in its purchase history. You will routinely
get prompted to reconnect when the key expires, usually after 4 hours of
inactivity, so if you plan to have others using Apple Configurator, make
sure to use a service account for this. To add an app using a Mac:

1. Open a Blueprint.
2. Click Apps.
3. Click Add Apps... (Figure 5-6).

265

CHAPTER 5 10S PROVISIONING

[BN Sales Department
< X [+ =1 & @ @ 2
Back View Add Blueprints Prepare Update BackUp Tag Help
(1) Info
A Apps
¥ Profiles
Add Apps...
New 0 apps Done

Figure 5-6. Add Apps to a Blueprint

4. Click Sign In... (Figure 5-7).

266

b2

CHAPTER 5 10S PROVISIONING

@ Sales Department
: & »
Back View Add Blueprints Prepare Update Back Up Tag Help
Al = [a)
Sign In...
Choose from my Mac... Cancel
New 0 apps Done

Figure 5-7. Log into the App Store

5. When prompted, provide credentials for the App
Store account.

6. Enter the name of the app in the search dialog.

7. Click on the app and then click Add (Figure 5-8).

267

CHAPTER 5

i Info
A Apps
G Profiles

=] Console

I0S PROVISIONING

iPhaone | iPod touch B

Choose from my Mac...

“ 8

Bite Squad

» 0O

Cartwheel

Figure 5-8. Select the App

Once the app has been added, any device the Blueprint is applied to
then receives the app. You can also assign an app to a device manually.
To do so, control-click (or right-click) on a device and then use Add to
choose the Apps... option. Next, we’ll configure automatic enrollment, so
the device gets added to the MDM server used in your environment when

being prepared.

OK Computer

ack Up

a = O, concur

Blinkist

[

Chamberlain

Boomerang

®

Chase

O

[mazon Alexa

pple Support

=g

-~

Seard Booth

Call Filter

ChatStick

Automate Enroliment with Apple Configurator

When doing larger deployments, the initial enrollment process can be

automated so that devices are automatically enrolled into an MDM

when set up using an enrollment profile. We won'’t focus on getting the

268

CHAPTER 5 10S PROVISIONING

enrollment profile in this section as much as how to add it to Apple
Configurator, given that each MDM vendor provides a different way of
downloading the necessary enrollment profile, and some do not support
automated enrollment via Apple Configurator (such as Jamf Now) as the
enrollment profiles used are set to expire in a period of time too short to
complete an enrollment en masse.

Download MDM Profiles

To get started, first download an enrollment profile. As an example, in
Addigy this is done by navigating to Downloads in the sidebar and then
clicking on the download button for MDM Profile (Figure 5-9).

ADDIGY om0

Downloads

Agnts instalied feom this mathod will B added 10 Your account without Waryphes
a poiicy,

Distritnstion Urt:

it/ /9a282bc 8- 20Bd-4B16-Badd- 2250 MAL. gy, comyagert n

MDM Prefle:

hitpa/ - prod addkgy. COmIM G enrlSe2E o0 . 208d-4B% - Ba2C n

S crerernd mial

suto curl -0 fimp/macinstall Htps:agents.addigy.comyinstalor-darwin-ams

Ereul Anckassen

Figure 5-9. Download the Addigy MDM Profile

If you are using Jamf, Jamf Pro has an option to download the
Enrollment Profile in the sidebar of the Devices screen as well (Figure 5-10).

269

CHAPTER 5 10S PROVISIONING

Figure 5-10. Download the Jamf MDM Profile

Additionally, a certificate from the CA of an MDM server can be
needed if the certificate is not included in the profile and the device
doesn’t trust the server, an option available as a checkbox in the setup.
This is a good reason to use certificates from a valid CA rather than
using self-signed certificates. Once you have the enrollment profile (a
.mobileconfig file), then it’s time to configure automated enrollment as a
part of your Blueprint. To do so simply add the enrollment profile as we did
in the previous section of this chapter.

Configure Automated Enroliment in Apple Configurator

Automated enrollment requires less work on the administrative side, but
according to how your MDM solution has integrated the option, you can
associate a number of metadata attributes in the MDM server that can be
useful for further automation.

Automated enrollment is another option, which dynamically pulls the
enrollment profile down from the MDM server. This begins the enrollment
process, much as manually opening an enrollment profile would do.

270

CHAPTER 5 10S PROVISIONING

As an example, the server we’ll use in this walkthrough is https://
kryptedjamf.jamfcloud.com:8443/configuratorenroll which can
dynamically generate the .mobileconfig file. To set up Automated Apple
Configurator Enrollment

1. Open Apple Configurator and choose Preferences
from the Apple Configurator 2 menu.

2. Click Servers.

3. Click the + sign (Figure 5-11).

@ ® Servers

General Organizations Servers Tags Backups

Figure 5-11. Add a server for automated enrollment

4. Atthe Define an MDM Server screen, click Next.

271

https://kryptedjamf.jamfcloud.com:8443/configuratorenroll
https://kryptedjamf.jamfcloud.com:8443/configuratorenroll

CHAPTER 5 10S PROVISIONING

5. Atthe next screen, in the Name field provide a
name, such as “My MDM Server”.

6. Inthe “Host Name or URL’ field as seen in Figure 5-12.

& Servers

i ©

General Organizations Servers Tags Backups

Define an MDM Server

| Enter a name and the enrollment URL for this server. If
you don't know it, enter the server's host name or IP
address, and Configurator will attempt to discover it.

Name: My MDM Server

Host name or URL: "https:,i’}"krypte'dj.amf;iamfclbud".com:85

Cancel Previous Next

Figure 5-12. Provide the URL to your MDM Server to use for
automated enrollment

7. Apple Configurator will then download any required
trust certificates and the “Define an MDM Server”
wizard will complete. Once you see your MDM
server listed.

We won'’t cover preparing devices just yet, but Automated Enrollment
will then be an option when you go to prepare (Figure 5-13).

272

CHAPTER 5 10S PROVISIONING

L] Untitied

i) Info
A Apps
@ Profiles

Prepare Devices

Preparing devices is the first step in any deployment. You need to prepare
| devices before you distribute them to users,

Prepare with: Automated Enrollment B
| When preparing with Autorated Enrcliment, the devices
| downlcad their configuration from the Device Enroliment

f Program.

Cance -

Figure 5-13. Device Preparation Options

If you then wish to unenroll a device once it’s been enrolled by Apple
Configurator, simply remove the profiles by tapping on profiles and then
tapping on the Remove button. Per the MDM AP], a user can elect to
remove their device from management at any point unless the device is
supervised, so expect this will happen occasionally, even if only by accident.

Now that we've looked at automating MDM enrollment, let’s move
to customizing each device, starting with naming them so it’s easier to
manage devices once they’re in the hands of a user (or 1000 users).

Change Device Names Using Apple Configurator

Apple Configurator can also rename iOS devices. This is done in an
automated fashion when devices are prepared (or when the workflow
provided in a Blueprint is implemented on the device). This is important
because a device name can be used to implement further automations

273

CHAPTER 5 10S PROVISIONING

once enrolled in an MDM solution or it can be used to quickly identify
devices when troubleshooting.

To use Apple Configurator to rename a device, plug it into a Mac
running Apple Configurator and then right-click on the device and choose
Device Name... from the Modify menu. More importantly, to associate a
rename action in the preparation of a device, follow these steps:

1. Open a Blueprint.

2. Select Device Name under the Modify submenu of
Actions.

3. At the Rename device menu, shown in Figure 5-14,
provide the name you want a device to have, followed
by a variable, available using the + menu.

L Untitied
Back iw Add Busprints Prepars Update BackUp Tag
i} Info :
5 Rename device
Apps
i Click the add (+) button to append a token. Each device will be named identically,
e Protiles rumbsred sequentially, and the tokens will be replaced with unigue variables.
+ v Cancel
Number
Serial
Type
Capacity
Port
Station
Add Profiles...
New 0 profiles Daone

Figure 5-14. Select Serial Number for a naming convention

274

CHAPTER 5 10S PROVISIONING

4. In Figure 5-15, we used Sales since we’re mass
configuring Sales devices, followed by Serial, so if a
device has a serial number of 123abc then the name
of the device would be “Sales-abc123”.

Rename device

Click the add (+) button to append a token. Each device will be named identically,
numbered sequentially, and the tokens will be replaced with unique variables.

'Sales Serial |

Figure 5-15. Add text for the naming convention

Once you enter new information, click the Rename button and
the action will then be taken any time you prepare devices using this
Blueprint. Another action that is common is to change the background, or
wallpaper of a device. We'll cover that in the next section.

Change Device Wallpaper with Apple
Configurator

An iOS device has two wallpapers that can be configured during setup of
devices: home screen and lock screen. The home screen is the image that
you see with apps on top of it. This should be simple so as not to distract
from finding the app a user is looking for. In this example, we’ll apply a
Sales background to the lock screen so we can easily identify the sales
devices when handing them out to salespeople.

275

CHAPTER 5 10S PROVISIONING

Before you begin, save the image or images to a local directory on the
computer running Apple Configurator. Then follow this process to set

wallpapers:

1. Right-click the device and choose the Modify menu
and then Wallpapers... from the Modify submenu.

Untithed
Q
fate Backlp Teg fieip
@ Select wallpaper image
Apps

23 < m~ 8 Searching "Desktop” < 0, doeu o
& Profiles

birsig search: ThisMac [EEITIETEN Shared)

E Recents Todey

#k Applications & Chorlos Ed...-2019.pd!

£ Goagle Drive

& Documont2.pdi

© Downioads % salesteam.pal

Clowd Previous 30 Days

¥ Apple Configu...

& iCloud Drive

[Desktop

i Documents

Locations Document2

} 15L Light PNG image - 50 KB
L isLuighto.. = =
Cance
Custom Text... Cancel Apply

Figure 5-16. Select your wallpaper image

2. When prompted, use the Choose image... button
to set the Lock Screen (the screen that is displayed
when the device is locked).

3. Repeat that process to set the Home Screen (the
background behind all your icons on each screen of
the iPhone or iPad).

4. Once you have chosen the appropriate images, click
the Apply button.

276

CHAPTER 5 10S PROVISIONING

(@ nfo
By ADpS
& Profiles

Change the wallpaper on “Untitled"

Lock Screen Home Screen

Choose Image... Choose Image...

Custom Text... Cancel Apply

Figure 5-17. Select the Lock Screen image

The device will then install the new wallpaper(s) when you run a
prepare using the new Blueprint we've created. Now that we have all the
pieces in place to get a device onto the network and customize it in a
manner that follows some completely random guidelines we just made up,
let’s finally look at actually run the prepare.

Prepare a Device

Device preparation is the act of running a workflow on a device. This isn’t a
preset as you're meant to configure the steps to run each time you run a new
session of Apple Configurator. This is to say you run a wizard to configure
the setups in preparing devices each time. This is why we put as much logic
into the Blueprint as possible. Preparing also requires the computer running
Apple Configurator to be run while online (e.g., in order to access the App
Store and any certificate stores or MDMs to enroll as possible).

277

CHAPTER 5 10S PROVISIONING

Note Keep in mind that if you are erasing devices as part of your
preparing them for deployment, any device plugged into the Apple
Configurator can be wiped and so don’t accidentally plug your own
phone or iPad into it.

To prepare devices using our Blueprint:
e Open Apple Configurator.
e Click Blueprints.

e Control-click your Blueprint and select Prepare.

ere All Blueprints
m~ o =~ ® & @ - B &
Bac View Add Bueprints Prepare Update BackUp Tag Hulp

[

Restore from Backup...
Marketing Apply >
Back Up

Advanced >

Duplicate
Get Info
Quick Look
Tags...

Figure 5-18. Run Prepare to start your Blueprint

o Atthe Prepare Devices wizard, select whether you will
be running a Manual Configuration (Figure 5-19) or
Automated Enrollment.

278

CHAPTER 5

L] All Bluegprints
Back iew Add Blusprints Propare Upcats BackUp Tag Helg

Prepare Devices

Preparing devices is the first step in any deployment, You need to prepare
devices before you distribute them to users.

Prepare with: Manual Configuration B

[Azd to Device Enroliment Program
18 Activate and comgplete enroliment
v
I8 Allow devices to pair with other computers
Enable Shared iPad

canc

Marketing Sales Department

1 0f 2 blusprints selected

I0S PROVISIONING

Figure 5-19. Configure the steps in your Prepare workflow

The devices we'll be working with in this workflow are DEP-enabled, so

we'll select Automated Enrollment (Figure 5-20) and then click Next.

279

CHAPTER 5 10S PROVISIONING

All Bluegprints

Back View Add Blueprins Prepare Update Backlp Tag Help

Prepare Devices

Preparing devices is the first step in any deployment, You need 1o prepare
devices before you distribute them to users.

Prepare with: Automated Enrolment B
‘When ing with , the devices
download their configuration from the Davice Enroliment
Program

Canc [Shec)
Marketing Sales Department

Figure 5-20. Configure the device to use Automated Enrollment

e Atthe Choose Network Profile screen of the wizard,
we select the profile created previously, so the device

can join the network and enroll into the DEP instance
(Figure 5-21).

280

CHAPTER 5 10S PROVISIONING

L] All Blueprints
Back view Add Blusprints Propare Upcats BacklUp Tag Help

Choose Network Profile

| The device will communicate with the Device Enroliment Program and the
MDM server to complete enroliment. If needed, choose a configuration
profile containing your Wi-Fi network settings.

Profile: @ 802.Wx.mobileconflia Choose...

?
Cancel Pravious m
Marketing Sales Department

1 0f 2 blusprints selected

Figure 5-21. Select the 802.1x Profile we created earlier

e Given that the MDM instance requires authentication,
at the Automated Enrollment Credentials screen, we’ll
provide credentials that can be used to authenticate
to the MDM provider (Figure 5-22). DEP is somewhat
insecure without authentication and so you should
always do authentication when possible. See the Black
Hat talk from Jesse Endahl for more information on
why: www.blackhat.com/us-18/speakers/Jesse-
Endahl.html.

281

http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html
http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html

CHAPTER 5 10S PROVISIONING

L] Al Blueprints
Back view Add Blueprints Frepare Updats BacklUp Tag Help

Automated Enrcliment Credentials

| Provide the user name and password 1o use when enrolling in the MDM
| server, If needed.

User Name: MOMadmin

Password; | sessssssssss] ;

Cancel Pravious m

Marketing Sales Department

1 of 2 blueprints selected

Figure 5-22. Provide authentication credentials to your MDM
solution

Click the Prepare button and any devices that are plugged in will be
setup to run the workflows laid out in the Blueprint! If you were not doing
DEP/automated enrollment, then you’d also see the Configure iOS Setup
Assistant screen (Figure 5-23). This screen is used to suppress the startup
screens in i0S, allowing you to get all the closer to the magical zero-touch
setup. If you're using DEP, then the Apple Configurator workflows assume
that you are using MDM to suppress those screens.

282

CHAPTER 5 10S PROVISIONING

L] Al Blueprints
Back view Add Blueprints Propare Updsts Backlp Tag Help

Configure I0S Setup Assistant

Choose which steps will be presented to the user in Setup Assistant.

Setup Assistant: Show only some steps B
| Language Siri
Region Screen Time
| Keyboard App Analytics
y Set Up Cellular Keep Your Device Up to Date

Privacy iMessage & FaceTime

Passecde Display Zoom

Home Button

————— Apple Pay True Tone
18 Apps & Data iMassage
Maove from Androld Watch Migration
18 Apple 1D New Feature Highlights

Location Services

Cancel Pravious

1 of 2 blueprints selected

Figure 5-23. Configure the screens to skip during setup

Now that we’ve used Apple Configurator to setup devices, it’s time to
move to using Configurator as a debugging tool.

Apple Configurator Debug Logging

Apple Configurator is a great tool. But you need to debug things from time
to time. This might mean that a profile is misconfigured and not installing
or that a device can’t perform a task you are sending it to be performed.
This is about the time that you need to enable some debug logs.

283

CHAPTER 5 10S PROVISIONING

To do so, quit Apple Configurator and then use Terminal to write a
string of ALL into the ACULogLevel key in ~/Library/Containers/com.
apple.configurator.ui/Data/Library/Preferences/com.apple.configurator.
ui.plist by using the following command:

defaults write ~/Library/Containers/com.apple.configurator.
ui/Data/Library/Preferences/com.apple.configurator.ui.plist
ACULoglLevel -string ALL

To disable, quit Apple Configurator and then delete that ACULogLevel
key using the following command in Terminal:

defaults delete ~/Library/Containers/com.apple.configurator.
ui/Data/Library/Preferences/com.apple.configurator.ui.plist
ACULoglLevel

In addition to debugging, you can also manage the version of the
operating system being run on devices, which we’ll cover in the next section.

Using an ipsw As Part of Device Restores

Apple Configurator allows you to run a specific version of iOS on a device.
This might mean that you run an older version for testing, or it might mean
that you deploy an operating system that hasn’t been released into the wild
yet as part of testing for future versions using the betas you have access to
from the Developer or Seed programs.

An iOS operating system is a bundle of files, as with many other things
in the Apple-verse. This particular bundle is an ipsw file. The .ipsw must
be signed and unadultered in order to be restored to an iOS device. They
can be downloaded from the Downloads section of developer.apple.com,
where each operating system will have a separate installer file (Figure 5-24).

284

CHAPTER 5 10S PROVISIONING

Downloads

i0S 12.4 beta 2

] Instan Configuration Profile directly on any i0S device and receive OTA updates.

* iPad Pro (11 Inch], IPad Pro (12.9-inch)(3rd generation)

»_ifad Bre (108 inchl_iBad o (12 S.inshll 2nd neneration)

Figure 5-24. The Downloads page on developer.apple.com

If you have a bunch of Apple Configurator workstations, and you are
running a training session or attempting to run beta software for standard
software testing, this can get infinitely more annoying. In these types of lab
environments, you're in luck. If you have an ipsw (the iOS OS update file),
you can copy the file from ~/Library/Group\ Containers/K26BKF7T3D.
group.com.apple.configurator/Library/Caches/Firmware/ onto another
machine. To copy them onto a USB drive called bananarama, for example,
use the following Terminal command:

cp -R ~/Library/Library/Group\ Containers/K26BKF7T3D.group.
com.apple.configurator/Library/Caches/Firmware/ /Volumes/
bananarama/ipsws/

Once you've moved that drive, then copy them back using the

following command in the Terminal application:

cp -R /Volumes/bananarama/ipsws/ ~/Library/Group\ Containers/
K26BKF7T3D.group.com.apple.configurator/Library/Caches/Firmware/

285

CHAPTER 5 10S PROVISIONING

Now that we’ve looked at copying an ipsw as a means of restoring an
i0S, iPadOS, and tvOS device, let’s look into how to provide supervision for
devices so the settings and apps we apply once configured persist to the
Mobile Device Management solution, and so we can supervise otherwise

unsupervised devices.

Device Supervision Using Manual Configurations

When using Apple Configurator, you can supervise devices that purchased
outside of an organizational PO or Apple Management program. This
allows you to assign an existing supervision identity to be used with
devices you place into supervision, or to supervise random devices. These
need to be wiped in order to apply the appropriate level of permissions to
prove they are owned by an organization.

To do so, first open Apple Configurator and click on Organizations
(Figure 5-25).

e Organizations

& =0

General Organizations Servers Tags Backups

Figure 5-25. Create an Organization

286

CHAPTER 5 10S PROVISIONING

From Organizations, click on the plus sign (“+”) and then click Next
at the first Create an Organization screen. When prompted to provide
information about your organization, provide the name, phone, email,
and/or address of the organization.

[] Organizations

& a0

General Organizations Servers Tags Backups

Create an Organization

Enter inf ion about the organi

Name: | Krypted
Phone:
Email:

Address:

Cancel Previous Next

Figure 5-26. Name the organization

If you are importing an identity, select “Choose an existing supervision
identity” and click Next (Figure 5-27).

287

CHAPTER 5 10S PROVISIONING

@ Organizations

Bo=0

General Organizations Servers Tags Backups

Create an Organization

Generate or choose a supervision identity.

Generate a new supervision identity
© Choose an existing supervision identity

Cancel previows | (D

Figure 5-27. Create a supervision identity

When prompted, click Choose to select the identity to use (e.g.,
exported from another instance of Apple Configurator or from Profile
Manager) as seen in Figure 5-28. These are pulled from the list of
certificates found in Keychain. As an example, if you promote a server to
a Profile Manage server, when Open Directory is installed, a certificate
will also be installed. This certificate can then be used here. Or you can
download one from a CA on a third-party MDM solution.

288

CHAPTER 5 10S PROVISIONING

Organizations
d v e
General Organizations Servers Tags Backups

= Choose a supervising identity for the organization.

B odrkrypted.com (IntermediateCA_O|
Ed odrkrypted.com (Interme t RYPTE
2] odrkrypted.com Code Signing Certificate (Interme

D.CO
Show Certificate Cancel

’ Choose...
Cancel Previous

Figure 5-28. Select a Certificate

Click Choose when you've highlighted the appropriate certificate and
then click Done. You now have the appropriate identities (certificates)
to supervise previously unsupervisable devices, thus obtaining more
options for tasks you can deploy on those devices. When configured, the
Supervision Private Key is a signing identity using an exportable DER that
can be migrated to another Apple Configurator host and authenticates
a Mac to be able to supervise a device. This is required when running
various actions that Apple developers deem should be able to be run on
a device even without a passcode because the organization has proven
that they own a device and not the person using the device. This includes
commands like resetting a passcode without wiping a device.

Now that we’'ve done a number of tasks manually using Apple
Configurator, let’s turn toward automating tasks using various scripting tools.

289

CHAPTER 5 10S PROVISIONING

Automating i0OS Actions

There are a few tools for automating tasks on iOS, iPadOS, and tvOS
devices that we'll cover in the next few sections. These allow you to string
together complex workflows. For example, when a device is plugged in you
could automatically backup the device, erase it, supervise it, restore the
backup, and then run a shell script that provides details about the series of
tasks into a standard support tool like ServiceNow, or triggering an action
in a device management solution using the APIs of one of those.

Luckily, you have a few options around automating such a workflow.
These include the following tools:

e Mobile Device Automation from Apple Professional

Services
e AEiOS
¢ Ground Control
e Libimobiledevice
e Automator

The easiest of these to review is the Mobile Device Automation service
from the Professional Services team at Apple. This is a service where Apple
employees customize a suite of tools developed for a variety of customers
that Apple has worked with. Not much is public about this service other
than it can be purchased through your account team at Apple. For more
information, see http://business-static.apple.com/us/apple-
professional-services/Apple Professional Services Mobile
Device Automation.pdf.

Automator is an app built into macOS that allows administrators to
perform a variety of automation tasks using an easy graphical interface
and drag-and-drop actions. There are a number of sample workflows,

290

http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf
http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf
http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf

CHAPTER 5 10S PROVISIONING

videos and other assets that will help generate workflows at http://
macosxautomation.com/automator/. Some manual assembly and
creativity might be required but you'll be better for it. If you find that you
need more, we'll look at a few options to automate iOS provisioning and
management in the following few sections, starting with GroundControl.

GroundControl

GroundControl is a solution available at waw. groundctl.com.
GroundControl allows you to do some of what Apple Configurator does,
but much more. GroundControl can setup devices, manage MDM and
Wi-Fi settings, take configuration information from a Saa$ login
environment, and assign roles to devices using GroundControl, which
automatically sets various configuration options including some that
aren’t available through any of the other tools that we reference in this
chapter, because it uses private frameworks to edit devices.

GroundControl has a number of features that appeal to various use cases:

o Integration with USB hubs to enable and disable LED
lights when a device is in a given state.

o Self-Heal reimages devices on the fly so they can be
put back in the hands of users when the devices aren’t
working properly.

e APIs and Webhooks (for more on these, see Chapter 11)
provide additional automation and rather than running
these from a Mac running Apple Configurator, the
automations are run from a cloud solution so they are
always available.

291

http://macosxautomation.com/automator/
http://macosxautomation.com/automator/
http://www.groundctl.com

CHAPTER 5 10S PROVISIONING

e Run on Microsoft Windows either running on a full
computer or using an Intel Compute Stick with a USB
hub attached to the device.

e Tap & Go (sold as an add-on) comes with a Locker app
that integrates with your MDM and tracks who uses
each iOS or iPadOS device. GroundControl integrates
with VMware Workspace ONE as a federated identity
provider (via SAML 2.0) and automatically logs devices
out of apps when events trigger GroundControl to do so.

If you have the ability to license a tool, it’s worth doing so just for the
support. But since not everyone can, the remainder of the tools we’ll look
at in this section are free and/or open source automation tools.

The Apple Configurator Command Line Tools

Apple Configurator has an optional command that can be installed to
automate a number of the tasks we’ve done throughout this chapter. Don’t
let the fact that it’s a command line tool fool you - in some cases a well-
structured command line tool is easier to use than a tool with hidden or
nested options in a graphical interface. The Apple Configurator command
line is such a tool and you should be a master within about half an hour
tinkering with it.

Before using the command line options to automate tasks, you need to
install it. To do so, open Apple Configurator 2 and then click on the Apple
Configurator 2 menu. Select Install Automation Tools from the menu
and you'll be prompted with the Install Automation Tools dialog (as you
can see in Figure 5-29). Click Install her and provide local administrative
credentials if you are prompted to do so.

292

CHAPTER 5 10S PROVISIONING

Install Automation Tools

L E Click Install to add support for the Configurator
E— command-line tool “cfgutil”.

Cancel

Figure 5-29. Install the Apple Configurator Command-Line Tools

Once installed, you'll find a binary called cfgutil at /Applications/

Apple Configurator 2.app/Contents/MacOS/cfgutil. The cfgutil command

has a number of verbs you can see by running the command followed by

the help verb, as follows:

/Applications/Apple\ Configurator\ 2.app/Contents/Mac0S/cfgutil

help

The following is a list of officially supported verbs:

activate: Activate iOS and iPadOS devices.
add-tags: Add a tag for iOS and iPadOS devices.

backup: Create a backup of an iOS or iPadOS device the
Configurator computer has prepared.

clear-passcode: Clear the passcode a supervised iOS or
iPad OS device.

erase: Erase any content and settings configured on any
supervised i0OS and iPadOS devices.

exec: Run scripts when iOS and iPadOS devices
connect or detach from the computer running Apple
Configurator.

293

CHAPTER 5

294

I0S PROVISIONING

get: Show various properties, settings, and apps that are
on a device.

get-app-icon: Copy an app icon (based on the bundle
identifier of the app) to the computer running Apple
Configurator.

get-icon-layout: Responds with the layout of the home
screen on attached devices.

get-unlock-token: Responds with the unlock token
of a device provided Apple Configurator has the
appropriate supervision identity.

help: Displays how to use commands or a list of
commands.

install-app: Push an app (e.g., via an ipa file) to
attached iOS and iPadOS devices.

install-doc: Push a document to an attached iOS or
iPadOS device.

install-profile: Installs profiles saved to a file path on
the Apple Configurator workstation onto attached
devices.

list: Shows a list of all devices attached to the computer.

list-backups: Provides a list of the backups stored
locally on the Apple Configurator computer where the

command is being run.

pair: Sends the device pairing command to a device,
which requires someone unlock a device and click
Trust on the device so further automations can run.

CHAPTER 5 10S PROVISIONING

prepare: Run a prepare workflow, similar to what
we did previously in this chapter in the preparation
section.

remove-app: Deletes an app from a device, based on
the bundle identifier.

remove-profile: Deletes a profile from a device, based
on the profile identifier.

remove-tags: Deletes any tags that were applied to a
device.

rename: Configures the name on attached devices.
restart: Restarts any attached and supervised devices.

restore: Wipes the device and installs the latest
available operating system (will cache the ipsw file if it’s
not already cached).

restore-backup: Restore a backup to an iOS device.

revive: If a device is in recovery mode, attempts to
remove that setting from the device so it works again as
normal (if this fails, the device may need to be wiped to
do so).

set-backup-password: Configures backup password
settings on attached devices.

set-icon-layout: Configures the home screen - for more
on how to send data to the command look at the output
of get-icon-layout.

set-wallpaper: Configures background images on
supervised i0S and iPadOS devices that are attached.

295

CHAPTER 5 10S PROVISIONING

e shut-down: Turns off any supervised devices that are
attached.

o syslog: Displays the syslog of the device in Terminal.

o unpair: Disables the pairing for attached devices,
making it impossible to run the rest of the commands
in this list.

o version: Outputs with the version of the cfgutil
command (e.g., 2.9).

These are mostly features available in the graphical interface of Apple
Configurator, many we've shown throughout this chapter. Let’s start by
listing devices currently attached to the Configurator workstation. First
we'll open the Terminal app and then we’ll run the cfgutil command from
within the Apple Configurator app bundle. Showing verbs is done using
the list verb, as follows:

/Applications/Apple\ Configurator\ 2.app/Contents/Mac0S/cfgutil
list

One of the most important aspects of automating Apple Configurator
is to be able to run a script when a device is plugged into the Apple
Configurator workstation. This is done using the exec verb along with
either a -a or a -b option, which will run the script you provide either when
a device is connected (-a) or when the device is disconnected (-b). In the
following example, we will run a simple cfgutil command followed by the
exec verb and then a -a so that the connected.sh script will be run when
devices are connected to the computer running as the Apple Configurator

workstation:

/Applications/Apple\ Configurator\ 2.app/Contents/Mac0S/cfgutil
exec -a connected.sh

296

CHAPTER 5 10S PROVISIONING

The results from the above command would simply be the output
of the connected.sh script, which is a custom script that shows all
devices connected to the instance. We won’t spend the rest of the book
going through all of the verbs available here as there are other tools to
be covered, but suffice it to say that you can script most anything you
can do in Apple Configurator 2. Next, let’s move on to alternatives that
provide even more techniques, using open source tools for scripting iOS
management.

libimobiledevice

Xcode, Apple Configurator, and other tools can be used to view logs on
iOS devices and automate actions as we've shown throughout this chapter.
One of those other tools is libimobiledevice. It’s usually a good idea to
install libimobiledevice using homebrew, a popular package management
tool. Homebrew makes installers of potentially otherwise difficult open
source tools simpler by scripting the installation of the tool and any
required dependencies that can be a little annoying when compiling

and working with the tool manually. To install homebrew if you haven'’t
already, run the following command from the Terminal application:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Once run, follow the prompts to complete the installation. Once
homebrew is installed, run the following brew command to download the
required components and then libimobiledevice:

brew install -v --devel --fresh automake autoconf libtool wget
libimobiledevice

Then run ideviceinstaller:

brew install -v --HEAD --fresh --build-from-source
ideviceinstaller

297

CHAPTER 5 10S PROVISIONING

Basic libimobiledevice Options

Once these are installed, you can plug in a paired device, unlock it, and
use the following command to view the logs on the screen: idevicesyslog.
This is akin to running a tail against the device. Again, the device must
be paired. You can use the command line (e.g., if you're running this

on Linux) to view the logs, but if you're not paired, you'll need to use
idevicepair to pair your device, followed by the pair verb (which is very
different from the pear verb):

idevicepair pair

The screen will then show that the device is paired. You can also unpair
using the unpair verb:

idevicepair unpair

When pairing and unpairing, you should see the appropriate entries in
/var/db/lockdown. The final option I'm going to cover in this article is the
date (very useful when scripting unit tests using this suite. To obtain this,
use the idevicedate command, no operators or verbs required:

idevicedate

You can also use a number of other commands that come bundled
with the tool.

Additional Commands

The first command we’ll use is idevicedate, which simply returns with the
date and time stamp currently on the device: /usr/local/bin/idevicedate.
The response would simply include the date. Next, let’s check the apps
installed on a device. We can do this with the ideviceinstaller command
(also part of the ilibmobiledevice suite of tools). Here, we’'ll use the -1
option to just list what’s installed:

/usr/local/bin/ideviceinstaller -1

298

CHAPTER 5 10S PROVISIONING

The output would show the app, along with the version of the app at
rest on the device:

com.apple.Pages - Pages 1716

To uninstall one of the listed apps, use the -uninstall
option:ideviceinstaller --uninstall com.protogeo.Moves. You can also
install apps provided you've cached the ipa file (e.g., via iTunes).

ideviceinstaller --install /Users/charlesedge/Music/iTunes/
iTunes\ Media/Mobile\ Applications/Box.ipa

When run against a device, you can then open apps provided the
AppleID owns the app. There’s also a command for ideviceprovision,
which can be used to view provisioning profiles, when run with the list
verb, which would appear as follows:

/usr/local/bin/ideviceprovision list

The ideviceprovision command can also form the basis of a tool like
wirelurker by allowing you to install a provisioning profile:

/usr/local/bin/ideviceprovision install angrybirds.
mobileprovision

You can also remove this, by feeding in the UUID of the provisioning
profile (obtained using the list verb but replacing MYUUID from below
codeblock):

/usr/local/bin/ideviceprovision remove MYUUID

Or you could so something more substantial, like put a device into
recovery mode, so it would need to be plugged into a computer running
iTunes and get a new ipsw installed, which is as simple as feeding the udid

into ideviceenterrecovery:

/usr/local/bin/ideviceenterrecovery
at36e5d7065d4ad666bf047b6e4de26dd144578c

299

CHAPTER 5 10S PROVISIONING

Which brings up an interesting question, how would you get the udid?
You can use ideviceinfo to view the output, which shows more information
that I knew you could actually get about a device previously. You can also
grep for the UniqueDevicelD and then parse the output to return just the
value you're looking for, making it easy to build much more complicated
workflows or output the command into other tools using APIs:

ideviceinfo | grep UniqueDeviceID | awk '{ print $2}"

This would just return with the UDID. Since that’s blank when there’s
no device connected, you can run a loop that waits a few seconds when
empty and then uses that UDID as a $1 in some script. Of course, it's much
easier to use a command they built for this called idevice_id:

idevice id -1

A number of commands make troubleshooting devices on networks or
code simpler, which we’'ll look at in the next section.

Troubleshooting Commands

Next, you can use idevicediagnostics, which has debugging information
in the output, to obtain some information about the current state of the
device:

idevicediagnostics diagnostics All -u
af36e5d7065d4ad666bf047b6edde26dd1445789

Or query the I0reg of the device to see what'’s connected:

idevicediagnostics ioreg IODeviceTree -u
af36e5d7065d4ad666bf047bbedde26dd1445789

Perform Device Actions

300

CHAPTER 5 10S PROVISIONING

The output is way too long to paste in here, but interesting (kinda’).
The idevicediagnostics command can also do some basic tasks such as
restart, sleep and shutdown (each sent as a verb without a required UDID):

idevicediagnostics restart

The crash reports on a device (which include reports for uninstalled
apps, forensically providing a glimpse into what apps were removed from
a device and when) can all be extracted from a paired device as well, using
idevicecrashreport:

idevicecrashreport -e /test

You can then view the logs or grep through them for specific pieces of
information:cat /Test/Baseband/log-bb-2019-06-06-stats.plist. The last
command we're going to cover in this article is idevicebackup2, used to
backup devices. Here, we're going to feed it the udid which we're lazily
using the idevice_id command from earlier in backticks to grab the udid
and backing up into that /test directory.idevicebackup2 -u “idevice_id -I'
backup /test. Here, we've backed up whatever device is plugged in, to the
/test directory. Subsequent backups will be incrementals.

As you can see in the above examples, ilibmobiledevice is capable
of managing a number of features on iOS devices. Many of these are
unavailable in other tools. It's an important component of many large iOS
and iPadOS deployments with implications to how provisioning, device
replacement, device maintenance tasks, and of course troubleshooting
are handled throughout the entire lifecycle of a deployment. Next, we'll
look at one of the more recent entrants into the iOS and iPadOS device
management world, another open source tool called AEiOS.

301

CHAPTER 5 10S PROVISIONING

AEi0S

AEiOS is a python library that uses the cfgutil command line tool installed
as a part of the Apple Configurator 2 Command Line Tools. This makes
installing Apple Configurator 2 and the Command Line Tools that we
covered earlier in this chapter a requirement before getting started with
AFEiOS. What AEiOS adds to that mix is the ability to string together a
workflow that can be saved in a configuration and then called on a Mac

to check devices out or provision them, without having to teach a support
representative (or librarian, nurse, etc.) how to maintain and start an
instance of Apple Configurator.

This also cuts down on human error that can easily cause support
tickets to a service desk. The beauty of managing devices programmatically
is that you have a certain level of... well, certainty into the outcome of the
processes you put into place.

To get started with AEiOS, first let’s install the Apple Configurator
Command Line tools, covered earlier in this chapter. Then, download
AEiOS from https://github.com/univ-of-utah-marriott-library-
apple/aeios/releases (it downloads as a .dmg file). Once downloaded,
extract the .dmg file and run the installer. The aeiosutil python script is
the primary way you interface with the tool. This is installed in /usr/local/
bin/ and the python scripts that aeiosutil call are installed in the /Library/
Python/2.7/site-packages/aeios directory.

The aeiosutil command is fairly straightforward to use, providing
a simple wrapper to the standard Apple Configurator command line
options. To see the help screen for instructions on using aeiosutil, run the
command followed by the --help option, as follows:

/usr/local/bin/aeiosutil --help

We covered setting up a supervision identity in Apple Configurator
earlier. Many of the workflows for aeios will also require you to use
a supervision identity. To import unencrypted supervision identity

302

https://github.com/univ-of-utah-marriott-library-apple/aeios/releases
https://github.com/univ-of-utah-marriott-library-apple/aeios/releases

CHAPTER 5 10S PROVISIONING

certificates, use the add verb, followed by the identity option and then the
identity. Also provide the required certificates using --certs followed by
the path to your certificates directory. In the following command, we’ll do
that, using the /Users/cedge/Documents/aeioscerts directory as where to
import those certificates from

/usr/local/bin/aeiosutil add identity --certs /Users/cedge/
Documents/aeioscerts

A common task for multiuser devices is to add a background image. To
do so with aeiosutil, run the add verb again, followed by image and then
--background, as the type of background to add. We'll store that in our
home directory as well, as follows:

/usr/local/bin/aeiosutil add image --background /Users/cedge/
Documents/aeiosimages/background.png

Other image options include the alert image, the lock image, which are
--alert and -lock, respectively. The devices we're setting up will also need
to access a standard Wi-Fi network. To add a Wi-Fi profile, first create the
.mobileconfig file (e.g., using Apple Configurator). Then use the add verb,
followed by the Wi-Fi option and then the path to the mobileconfig file, as
you can see below:

/usr/local/bin/aeiosutil add wifi /Users/cedge/Documents/
aeiosprofiles/mathdept.mobileconfig

Apps that Apple Configurator can access can be installed as a part of
the running workflow, based on name. Simply use the add verb, followed
by app and then the name of the app (as it appears in Apple Configurator).
For example, let’s tell the device to install the most important app ever
published to the app store: Sodoku:

/usr/local/bin/aeiosutil add app "Sodoku"

303

CHAPTER 5 10S PROVISIONING

There are also settings for how aeiosutil behaves. Let’s say you want
the workflow to run until it’s been inactive for an hour. Use the configure
verb, followed by the idle option and then a number of seconds before the

process terminates:
/usr/local/bin/aeiosutil configure idle 3600

To then take all of these configurations that were created, and start
aeiosutil waiting for devices, simply call the command followed by the
start verb:

/usr/local/bin/aeiosutil start

You can also remove the settings that we added in the above examples
using the remove verb. You can also remove that profile, using

/usr/local/bin/aeiosutil remove identity
/usr/local/bin/aeiosutil remove wifi
/usr/local/bin/aeiosutil remove app "Soduku"
/usr/local/bin/aeiosutil remove image

Slack is a popular messaging tool used in IT departments. One really
cool feature of aeios that you might want to take use of is the ability to post
to Slack, with certain changes. This is done by sending a webhook to a
Slack listener. To set up a webhook for your slack instance, see https://
api.slack.com/incoming-webhooks. Asyou can see, you can post to that
webhook manually by sending a post to the endpoint you set up using the
steps in the Slack API. Let’s say that endpoint was https://hooks.slack.
com/services/ABC123/123456789. Then the POST would look like this:

POST
https://hooks.slack.com/services/ABC123/123456789
Content-type: application/json

{

"text": "There’s a new app in aeios"

304

https://api.slack.com/incoming-webhooks
https://api.slack.com/incoming-webhooks
https://hooks.slack.com/services/ABC123/123456789
https://hooks.slack.com/services/ABC123/123456789

CHAPTER 5 10S PROVISIONING

The above post is sent by aeios. The aeios tools wrap alerts into this
type of framework and can configure the sender automatically using the
configure verb followed by slack as the service to configure and then the
url to the endpoint, followed by a channel name (which in this case is
simply #helpdesk). It can be configured via:

aeiosutil configure slack "https:// https://hooks.slack.com/
services/ABC123/123456789" "#helpdesk"

Once run, you'll see an update in the indicated Slack channel when
the workflow is run. As we’ve shown throughout the previous few sections,
there are a number of automation frameworks that can help you to
manage iOS and iPadOS devices en masse. A companion service that most
organizations with more than a dozen or so devices will likely take a lot of
value in is caching, which allows devices on a network to download assets
from other devices rather than relying on a connection to Apple, which
we'll cover in the next section.

Caching Services

The Caching Service can be run on a Mac and caches content from Apple.
The Caching service provides (through a local cache) updates to iOS,
iPadOS, Mac, tvOS, and the “content” destined for those devices and
therefore cuts down your Internet data usage and accelerates downloads
on the operating system and other Apple-provided tools dramatically. In
this section, we'll look at how to configure this critical system. First, let’s
look at what type of data is cached so we can make sure a Caching server
(or a few of them) makes sense for your organization.

305

CHAPTER 5 10S PROVISIONING

What’s Cached?

The Caching service was moved out of macOS Server and into the
client macOS in High Sierra where it remains as of 10.15. This means
administrators no longer need to run the Server app on caching servers.
Given the fact that the Caching service only stores volatile data easily
recreated by caching updates again, there’s no need to back the service up,
and it doesn’t interact with users or groups.

The type of content cached includes, but is not limited to the following:

e App Store apps for iOS, iPadOS, macOS, and tvOS,
including on-demand resources for those apps and
app updates

e Apple Books content for iOS, iPadOS, and macOS
e Apple Configurator content (e.g., ipsw updates)

e Downloads in the GarageBand app

e iCloud photos and documents on iOS and macOS
e iTunes content for all supported platforms

e iTunes U course materials and instructor materials,
including any audio, video, and books provided as a
part of the course

e Language dictionaries
e Legacy macOS printer drivers

¢ Over-the-air iOS, iPadOS, macOS, and tvOS software
updates

o Siri voices

306

CHAPTER 5 10S PROVISIONING

Caching Service Configuration

And the setup of the Caching service has never been easier. The Caching
Service requires you to install no third-party or additional components. To
do enable caching, first open System Preferences and click on the Sharing
System Preferences pane and then click on the checkbox for Content
Caching to start the service, as you can see in Figure 5-30.

@ < it Sharing Q

Computer Name: macosserver

Computers on your local network can access your computer at: Edit
macosserver.local
On Service ® Content Caching: On
Screen Sharing Content Caching reduces bandwidth usage and speeds up installation on
. . supported devices by storing software updates, apps, and other content on
File Sharing this computer.
Printer Sharing
Remote Login Cache iCloud content
Remote Management Store iCloud data, such as photos and documents, on this computer.
Remote Apple Events Share Internet connection
Internet Sharing Share this computer's Internet connection and cached content with i0S
Bluetooth Sharing devices connected using USB.

+ Content Caching

Options...

Figure 5-30. The Sharing System Preference Pane

At the Content Caching panel, the service will say “Content Caching:
On” once it’s running. Here, you can disable the “Cache iCloud content”
option, which will disable the caching of user data supplied for iCloud
(everything in here is encrypted, by the way). You can also choose to share

307

CHAPTER 5

I0S PROVISIONING

the Internet connection, which will create a wireless network that iOS

devices can join to pull content.

Comg

On

(<] <]

Sharing

Storage Used: None

Cache Size: Unlimited it...

Se

sc .7

Fils

Printer Sharing
Remote Login
Remote Management
Remote Apple Events
Internet Sharing
Bluetooth Sharing
Content Caching

125 GB 250 GB 375 GB Unlimited

Cancel jon on

intent on

Cache iCloud content
Store iCloud data, such as Dhotos and documents, on this cemputef.

Share Internet connection

Share this computer's Internet connection and cached content with i0S
devices connected using USB.

Options...

Figure 5-31. Configure Cache Size

Click Options. Here, you can see how much storage is being used and
limit the amount used (Figure 5-31). This can be changed here or through

/Library/Preferences/com.apple.AssetCache.plist. Digging into other

options, it’s worth noting that nothing was removed from the time that the
Caching Service was migrated from macOS Server to macOS. This means

that all those settings that you used to see in the GUI are still there, you

just access them via the command line, by sending defaults commands.

For example, we can write a limit on the amount of data that a server can

308

CHAPTER 5 10S PROVISIONING

cache using a standard defaults command, but writing an integer into
CacheLimit of com.apple.AssetCache.plist, as follows:

defaults write /Library/Preferences/com.apple.AssetCache.plist
CachelLimit -int 20000000000

The Caching Server has a status verb, so you can see a number of
details about how it’s functioning:

AssetCacheManagerUtil status
Which returns something similar to the following:

2019-09-11 11:49:37.427 AssetCacheManagerUtil[23957:564981]
Built-in caching server status: {
Activated = 1;

Active = 1;

CacheDetails = {

iCloud = 4958643;

"i0S Software" = 936182434;};
CacheFree = 472585174016;
CachelLimit = 0;

CacheStatus = OK;

CacheUsed = 941141077;

Parents = ();

Peers = ();

PersonalCacheFree = 472585174016;
PersonalCachelLimit = 0;
PersonalCacheUsed = 4958643;

Port = 56452;

PrivateAddresses = ("192.168.104.196");
PublicAddress = "38.126.164.226";
RegistrationStatus = 1;
RestrictedMedia = 0;

309

CHAPTER 5 10S PROVISIONING

ServerGUID = "EB531594-B51E-4F6A-80B9-35081B924629";
StartupStatus = OK;

TotalBytesDropped = 0;

TotalBytesImported = 4958643;
TotalBytesReturnedToChildren = 0;
TotalBytesReturnedToClients = 166627405;
TotalBytesReturnedToPeers = 0;
TotalBytesStoredFromOrigin = 166627405;
TotalBytesStoredFromParents = 0;
TotalBytesStoredFromPeers = 0;

You can also use AssetCacheManagerUtil to manage tasks previously
built into the Server app. To see the available options, simply run the
command:

/usr/bin/AssetCacheManagerUtil

One of the first tasks most administrators would need to do would be
to enable the server:

/usr/bin/AssetCacheManagerUtil activate

To disable the server, use the deactivate verb, which disassociates the
service from the main Apple update services:

/usr/bin/AssetCacheManagerUtil deactivate

To check if the server can be activated, use the canActivate verb, which
performs an activation dry run:

/usr/bin/AssetCacheManagerUtil canActivate

To flush the cache of assets on the server, thus manually cleaning out
any old updates and freeing up some valuable disk space on the server:

/usr/bin/AssetCacheManagerUtil flushCache

310

CHAPTER 5 10S PROVISIONING

To reload settings, which would be necessary if making any changes to
the property lists manually:

/usr/bin/AssetCacheManagerUtil reloadSettings

To move the database manually, which then relinks all assets (e.g., if
you're moving the database off of an internal drive and onto some kind
of Direct Attached Storage, or DAS for short), use the moveCacheTo verb
followed by the target path (which is quoted in the following example
command):

/usr/bin/AssetCacheManagerUtil moveCacheTo "/Volumes/SONY/
Library/Application Support/Apple/AssetCache/Data"

Finally, if you’d like to see the caching server your client system is
using, run the AssetCacheLocatorUtil - the information following that is
simply to parse out all the extraneous information you likely don’t need:

/usr/bin/AssetCachelocatorUtil 2>81 | grep guid | awk
"{print$4}' | sed 's/A\(.x\):.x$/\1/" | unig

Nearly every organization can benefit from a caching server. As is
hopefully obvious in the previously mentioned commands, it’s fairly
straightforward to script a caching server to provide assets to your Apple
devices, and it’s much more efficient on a number of levels from running
a standard caching proxy. Now that we’ve covered a lot of different
automation and provisioning options for iOS and iPadOS devices, let’s step
through a less mature but in many ways more complicated setup process:
that of the Mac.

311

CHAPTER 5 10S PROVISIONING

Summary

Imaging is dead. Then it isn’t. Other words, like restoring devices,
provisioning, and reinstalling operating systems are all very much alive.
They're just different than they were for the past 20 years, especially for iOS.
As we’ve shown in this chapter, you can plug an iOS device into
Apple Configurator (or one of the other tools designed for more specific
use cases) and provision wireless networking, enrollment, and for the
most part get a device configured and ready to put into the hands of a
coworker without ever touching it. Or even better, ship the device directly
to them, so they can get that new Apple device smell (and sticker) and feel
empowered, not conquered by their IT department. The way it should be.
From a high level, Mac and iOS devices appear to provision similarly.
But under the hood, they are quite a bit different. For all the additional
automation features available for the Mac, the devices are only easier to
configure once the startup screens have been cleared. Given all these
differences, we’ll cover the Mac further next, in Chapter 6.

312

CHAPTER 6

Mac Provisioning

Imaging. We used to say that we imaged computers. But then came Apple
File System (APFS) and the need for Macs to have specific firmware
installed to support APES’s capabilities. These days, preparing a device
to go into the hands of an end user is more about provisioning the Mac
for use by installing an OS and then configuring it for a person’s use than
itis about creating a disk image and applying it to a Mac to prepare it for
someone to use.

When we say “imaging” a Mac, we typically think of erasing a
device and putting new bits on the device so the device has everything
a user needs to get their work done. At first, this was done by creating a
“monolithic” image, where the disk image was taken from a Mac which
had been set up with everything needed. That monolithic image was then
applied to other Macs to makes them exact clones of that first Mac. But that
lacked flexibility, so we moved from monolithic imaging to package-based
imaging, where we installed an image just containing the OS and then
applied a series of installer packages to set up the Mac. Then we moved
from package-based imaging to restoring a “thin” image, or one with just
the operating system and an agent, where the agent would set up the Mac
using settings and software pulled down from a management server. Then
Apple gave us the Device Enrollment Program (or DEP for short) and
we skipped doing any predelivery setup work altogether and started just
providing a fresh-out-of-the-box Mac to our non-IT colleagues. Once they
started the Mac for the first time, Apple’s Setup Assistant and the follow-up

© Charles Edge and Rich Trouton 2020 313
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_6

CHAPTER6 MAC PROVISIONING

configuration workflows enabled our colleagues to set up their own Macs
without anyone else’s assistance. This saves many large organizations the
$20-%$40 per device cost that they used to pay to have Macs set up prior

to delivering them. DEP automatically enrolls the device into MDM, puts
apps on the device, and puts the agent on the device through MDM. There
are less options, but the process has never been so streamlined with such a
small amount of work.

Shipping devices directly to a user makes them feel like they’re getting
the new device they were always getting, but once administrators had
everything necessary to provision a device out of the box. However, with
the release and general adoption of Apple’s Apple File System (APFS)
filesystem, traditional imaging became much more difficult. In its place,
Apple has recommended installing the operating system and using MDM
profile, scripts, and installer packages to configure the operating system for
use. These changes introduced a learning curve for many Mac admins, but
ultimately this change is one for the better.

macO0S Startup Modifier Keys

To aid with provisioning and other functions, Apple has always allowed
you to boot a computer while holding down a given keystroke in order to
invoke a specific startup sequence. Those keystrokes, or Startup Modifiers,
include the following in macOS:

Alt or Option key Boots into the Startup Manager, which allows you to
select a wireless network and then choose which volume
you want to boot to.

C key Boots into volumes on a CD, DVD, or USB drive.
Command-Option- Resets the parameter RAM (or PRAM for short).
P-R keys

(continued)

314

CHAPTER6 MAC PROVISIONING

Command-R keys

Command-Option-R keys

Command-S keys

Command-V keys

D key

Option-D keys
Eject key, F12 key, or

mouse/trackpad button
N key

Option-N keys

Shift key

T key

X key

Boots into the macOS Recovery Mode, useful when doing
an Internet restore or using Disk Utility to repair a volume.

Boots into Apple’s cloud-hosted. Recovery mode.
Boots into single-user mode.

Boots into verbose mode, so you see a log of everything
during the startup process.

Boots into diagnostics, used for checking the hardware
of your system. Depending on Mac model, this will load
either Apple Hardware Test (for Mac models introduced
before June 2013) or Apple Diagnostics (for Mac models
introduced in June 2013 or later).

Boots into Apple’s cloud-hosted. Diagnostics.

Ejects any removable media inserted into the Mac.

On NetBoot-capable Macs, boots to a NetBoot volume. (Macs
equipped with T2 chips are not capable of NetBooting.)

On NetBoot-capable Macs, boots to the default NetBoot
volume on a particular network.

Boots into Safe Boot mode. Safe Boot verifies the startup
disk and repairs directory issues, disables user fonts,
and clears the cache for them, only loads required kernel
extensions and clears the cache for them, clears system
caches, and disables startup and login items.

Boots into Target Disk Mode (TDM). TDM sets the system
as a disk which can be mounted on another system as an
external drive.

Boot to a macOS startup disk when otherwise booting to
a Windows partition or startup manager.

315

CHAPTER6 MAC PROVISIONING

macO0S Provisioning with DEP

For Macs enrolled in Apple’s Device Enrollment program, Mac admins

can take advantage of automatic enrollment into an MDM to automate the

setup of Macs. The basic workflow looks like this:

1.

Assign a Mac’s serial number to a particular MDM

Server.
Install a fresh copy of macOS onto the Mac.

On boot, the Mac will be automatically enrolled
in the MDM server and Apple’s Setup Assistant
can be managed to set up the Mac with a desired
configuration.

If desired, the MDM can also install software and
profiles to further configure the Mac.

For the additional software and profile installation options, there

are several open source tools available to help automate the post-Setup

Assistant installation actions. Two well-known solutions are SplashBuddy
(Figure 6-1) and DEPNotify (Figure 6-2). Both of these tools provide a user-
facing interface that allows the new Mac’s user to see the following:

316

The Mac is being set up.

Provide status information about where the Mac is in
the setup process.

Provide any additional information that the system
administrator may choose to provide as part of the
setup process.

CHAPTER6 MAC PROVISIONING

The other important function provided by this tool is
that they prevent the user from making any changes
to the Mac before the setup workflow has completed
its task of setting up the Mac with its required set of
software and settings.

Microsoft Excel
Office application

Microsoft OneMote
Office agplecation

Meet your new Mac! Microsaft Outlook

Office applcavon

: . Microsoft PowerPoint
Please be patient while we set it up for your use. Office application

Microsoft Word
Office application

e éRhaa

Google Chrome

Browser

We are preparing your Mac...

Figure 6-1. SplashBuddy running an automated setup workflow

317

CHAPTER6 MAC PROVISIONING

Meet Your New Mac!

We are setting up your Mac with a standard suite of software and security settings,
including every day apps, configuration profiles and security policies.

This process could take up to 20 minutes so please don't restart or shutdown your
Mac until we are done.

We are preparing your Mac...

Figure 6-2. DEPNotify running an automated setup workflow

SplashBuddy

Site: https://github.com/Shufflepuck/SplashBuddy

DEPNotify

Site: https://gitlab.com/Mactroll/DEPNotify

macO0S Provisioning Without DEP

One of the limitations of DEP is that it is not currently available in
all nations. On iOS, one of the workarounds for this is using Apple
Configurator to manually add iOS devices to DEP, but no comparable

318

https://github.com/Shufflepuck/SplashBuddy
https://gitlab.com/Mactroll/DEPNotify

CHAPTER6 MAC PROVISIONING

solution exists for macOS as of the time this book is being written. While
it is eventually expected that macOS will be able to use Configurator

or a similar tool to manually add Macs to DEP, non-DEP provisioning
workflows are still needed for macOS.

One solution to this problem is a new tool called Mac Deploy Stick
(MDS). MDS makes it easy to wipe and reinstall a Mac quickly the same
way you can with Apple Configurator for iOS and iPadOS. The reason you
need a tool like Mac Deploy Stick is that Apple gives users the ability to
reinstall the operating system from the recovery partition, but that installer
has to get downloaded during a very manual process. MDS creates those
resources locally (e.g., on an USB stick or other external media) instead
and organizes them into workflows, which can be deployed more quickly -
and come with a simple setup so Macs can be set up faster. An optional
Arduino can become a Mac Deploy Stick Automation, which inserts
keystrokes during boot time so administrators don’t have to hold down
Command-R during the boot process (see more on Startup Modifier Keys
in the next section of this chapter).

Installation

To get started, download MDS from http://twocanoes.com/products/
mac/mac-deploy-stick/. Then run the installer package. Once installed,
open the MDS app from your Applications directory, and provided it
opens, it’s time to create your first workflow.

Create a Workflow

MDS calls a workflow a list of automations the computer will perform
during a setup. This includes an operating system installation, packages
to deploy to create a workflow, simply provide a description, optionally
provide a description of the workflow as well, and click OK.

319

http://twocanoes.com/products/mac/mac-deploy-stick/
http://twocanoes.com/products/mac/mac-deploy-stick/

CHAPTER6 MAC PROVISIONING

N
& o il 35
Automatons Munki Admin Create Bootable Volume Show Log
= Description Provide a name and optional description for this workflow

Computer Labs

When the workflows are shown prior to installation, this description helps to decide
macos which workflow to select. Provide a brief description of the workflow, including details of
- what is installed and how the target computer will be configured.

Resources

User Account

Options

} 688 ¢e

Miinlei

Save to Disk Image... Save To Volume...

Figure 6-3. Entering name for MDS workflow

At the macOS screen, click “Install macOS” and then choose the
installation media to generate the installer from (this will use installESD
inside that bundle). Optionally choose whether to erase the volume and
then if you want the volume renamed. Click OK to proceed.

320

CHAPTER6 MAC PROVISIONING

@
=] "
> hO byl D
Automatons Munki Admin Create Bootable Volume Show Log
= Description Select macOS Installer

Select an option to install macOS below. If the Install macOS option is selected, specify

the location of the macOS app downloaded from the App Store, If macOS is already

installed on the target volume, macOS will be upgraded. If the Erase and Install option is
macos specified, the target volume will be erased prior to installing macOS.

Install macOS

' " macO$ Installer: | Select Installer | Install macOS Catalina.app
w3 Resources Erase and Install
Rename Volume to: IMacintDsh HD I
[]
& User Account
&) Options
> Nl

Save to Disk Image... Save To Volume...

Figure 6-4. Choosing macOS installer for MDS workflow

At the Resources screen, add the directory that contains scripts,
packages, and other resources to be deployed to the client. This is an
interesting approach and doesn'’t provide for manually selecting what
order packages, apps, scripts, and policies get laid down on devices. I've
had hit-or-miss luck with doing so by numbering assets in those folders.
I recommend creating a directory for each type of asset in an MDS
directory for that workflow prior to doing this step. Once you've bundled
all of them up and selected the appropriate directory, click OK.

321

CHAPTER6 MAC PROVISIONING

o
A * i >
Automatons Munki Admin Create Bootable Volume Show Log
UE Description Packages, Apps, Scripts and Profiles
Select folders below to install Packages, Apps, Scripts and Profiles. The items in the
specified folders will be b d up (as ded) and i after macOS is installed
macOS (or immediately if macOS has not been selected to install).
Wait for network before installing resources
‘. Specify a folder containing macOS packages and apps to install on the target Mac.
.- ReSOLlrceS Package & Apps Folder:
. Specify a folder containing scripts to run on the target Mac.
Scripts:
& User Account
Specify a folder containing configuration profiles te install on the target Mac.
(e -] Opt ions Profiles:
> A inli

Save to Disk Image... Save To Volume...

Figure 6-5. Choosing resources for MDS workflow

At the User Account screen, choose if you want to create a new admin
account when the system is deployed and any metadata around that
experience.

322

CHAPTER6 MAC PROVISIONING

Create User Account |

Desc Select Create User below to create a user account after macOS is installed (if specified).
This account is usually used for local administration. If the option to hide the user
account is selected, other users will not see this account when logging in.

(]
l

@ mac(Full Name: Pretendco Admin
Short Name: pretendcoadmin
(1] R Password: ssssses | [Show Password
esol
("% | uID: 501
S5H Key:
& User
Password Hint:
‘) 0 tiC Allow user to administer the computer
cn p Hide the user account from other users when logging in
Automatically Login
o>

v GEETIED GEECEED

Save to Disk Image... Save To Volume...

Figure 6-6. Creating local admin user for MDS workflow

At the Options screen, choose whether to automatically join a Wi-Fi
network, if the computer should be renamed based on serial number, if
SSH should be enabled, and if the setup assistant should be skipped. Once
all options have been configured as desired, click OK.

323

CHAPTER6 MAC PROVISIONING

&

Automatons

(J= Description

macOS

s

Resources

User Account

Options

} 688 ¢e

AMiinli

o [>

Munki Admin Create Bootable Volume Show Log

Select options to set on the target Mac.

Additional options can be specified below. These options are enabled via a script that is
included in a package installed after macOS is installed (if specified). If an option is
specified that skips settings that are normally set during macOS setup, the skipped
settings should be specified with another method (like a package or MDM).

Join WiFi

SSID: pn deowirel P d
Set Computer Name ? ’{{serial number}}] Prompt
Skip Setup Assistant

Enable Location Services
Skip User Privacy and Location Setup Assistant

Enable S5H
Allow Administrators to screen share

CGECTIED GEECED

~ Save to Disk Image... Save To Volume...

Figure 6-7. Defining additional options for MDS workflow

MDS has multiple hooks that make Munki easier to deploy on devices.

Click OK.

324

CHAPTER6 MAC PROVISIONING

D @
-
& O byl >
Automatons Munki Admin Create Bootable Volume Show Log

%I Inidu\Jo
Select options for Munki

‘,. Munki is a set of tools that, used together with a webserver-based repository of
-. Resources L and pack data, can be used by macOS administrators to manage

software installs (and in many cases removals) on macOS client machines.

&, User Account Configure Client

Munki Repo URL: https:f/munki.p d fmunki
m Trust Munki TLS Certificate on Client in System Keychain
o] Options Select Certificate (PEM)

{ } Variables

Save to Disk Image... Save To Volume...

Figure 6-8. Configuring Munki options for MDS workflow

At the Variables screen, provide variables you can then call in shell
scripts. These are similar to how we used to fill ARD fields (which is still an
option). Sending a $1 from a shell script into these provides a little more
flexibility around renaming scripts, binding operators, etc. Click OK.

325

CHAPTER6 MAC PROVISIONING

oe
& o [~ 5
Automatons Munki Admin Create Bootable Volume Show Log
== T1dU\Jo
=
Variables
‘,- Provide a description and the user will be prompted for information prior to running the
.. Resources workflow. The information entered will be made available to scripts as environment
variables with the name mds_var1 through mds_var9.
Set Variables
|.l User Account mds_varl description: asdfjkl
mds_var2 description:
mds_var3 description:
@ ¢
(e -} Optlons mds_var4 description:
mds_var5 description:
@ Munki mds_var6 description:

mds_var7 description:

mds_var8 description:

{ } Variables

mds_var9 description:

CGECTIED GEECED

 SavetoDisk Image... Save To Volume...

Figure 6-9. Defining shell script variable options for MDS workflow

326

CHAPTER6 MAC PROVISIONING

& A e >

Automatons Munki Admin Create Bootable Volume Show Log

MDS organizes and saves resources to an external drive to fully restore a Mac from the recovery

partition. It can also save resources to a disk image for hosting on a web server.
More Info

Name

Active
Computer Labs

+ | - | Edit Duplicate Import Export
Workflow Options

 Connect to WiFi before showing workflows

SSID: pretendcowireless Password: ssesssssss Show Password

Automatically run workflow: = Computer Labs after 30 seconds

Only select target volume if named: Macintosh HD
Web
Serve images over HTTP from folder:

Serve Munki over HTTP from folder: Select Folder

Figure 6-10. MDS main configuration window

Once done, it’s time to run the workflow. To do so, boot a Mac into

recovery mode and then from Terminal, run the following command:

/Volumes/mdsresources/run

327

CHAPTER6 MAC PROVISIONING

& Terminal Shell Edit View Window Help "

e @ Terminal — -bash — 80x24
-bash-3.2# /Volumes/mdsresources/runfl

Figure 6-11. Launching the MDS workflow from the Recovery
environment

The configuration you created in the previous step will then be run.

328

CHAPTER6 MAC PROVISIONING

& Imagr Utiities Help =

"/Volumes/mdsresources/Deploy/Applications/Imagr.app/Contents/Resources/ptye
xec",

"/Volumes/mdsre: ' 1/Contents/Reso
urces/startosinstall

'——agreetolicen: Preparing macOS install...

"——rebootdelay"

51'

-__pidtOSignaln Werkfow Descratsn

601,

"——volume"”,

" /Volumes/Macin

"—-nointeractiol

"——installpackal

"/Volumes/mdsTe! =.....e e i/@0@-com. twoca
noes.mds.createuser

"—--installpackage™,

" /Volumes/mdsresources/Deploy/Workflows/Computer Labs/Packages/@8l1-com.twoca
noes.mds.pre-scripts.pkg",

"--installpackage",

" {Volumes/mdsresources/Deploy/Workflows/Computer Labs/Packages/zz_com.twocan
oes.mds.scripts.pkg”
)
2019-06-21 21:30:53.689 Imagr([601:36179] Preparing te run macOS Installer...

Preparing o run macOS Installer...

Figure 6-12. The MDS workflow automatically configuring the Mac

This will set up the Mac with the applications, tools, and settings
needed to operate properly at the company, school, or institution in
question.

There are a lot more workflows than just this one, so to learn more
about MDS, go to http://twocanoes.com/knowledge-base/mac-deploy-
stick-admin-guide/.

One of the important components of MacDeployStick is an open
source project known as Imagr, developed by Graham Gilbert. Imagr is
a community project that runs not only on macOS but on Linux as well.
While Imagr was originally developed for use with NetInstall and a web
server, MDS built on the existing Imagr project to provide MDS’s ability to
provision Macs.

Other open source provisioning tools are bootstrapper and installer.

329

http://twocanoes.com/knowledge-base/mac-deploy-stick-admin-guide/
http://twocanoes.com/knowledge-base/mac-deploy-stick-admin-guide/

CHAPTER6 MAC PROVISIONING

Imagr

Site: https://github.com/grahamgilbert/imagr/
Purpose: Imaging and deployment for Mac systems

Bootstrappr

Site: https://github.com/munki/bootstrappr
Purpose: A tool designed for use in Recovery to install a set of one or
more packages onto a target volume

Instalir

Site: https://github.com/munki/installr

Purpose: A tool designed for use in Recovery to do a “fresh” install of
macOS and additional packages

Other provisioning options include options for installing Microsoft
Windows on Macs.

Boot Camp

Microsoft Windows can be deployed on a Mac using Boot Camp. Boot Camp
will require the system be rebooted between each operating system switch
and comes with a host of additional deployment considerations. Among the
deployment considerations are that the Mac doesn’t natively support PXE
booting and other traditional Windows mass deployment options.

Winclone

A third-party deployment tool from Twocanoes Software, Winclone allows
creation of Windows images for deployment and also provides the ability to
deploy a Boot Camp Windows install using a standard Mac installer package.

330

https://github.com/grahamgilbert/imagr/
https://github.com/munki/bootstrappr
https://github.com/munki/installr

CHAPTER6 MAC PROVISIONING

Upgrades and Installations

You install or upgrade the macOS operating system using an installer
provided by Apple. This used to be an installer which required an Apple ID
to access, but beginning with macOS Sierra, Apple made operating system
installer free for all Mac users and even began pushing the installer for
new OS versions shortly after the new OS’s release date. The installer itself
appears as an application normally stored in the Applications directory.

L @ # Applications
{4 m = = | @ 8~ MO a
Favoritas 3 App Store =
o Apple TV
A Applications & Automator
[Desktop) Books
o : T Calculator
bt L2 Calendar
0 Downloads 4 Chess
B Contacts
@ Dictionary
i;, Macintosh HD L% FaceTime
© Find My
& Font Book
L} Home
& Image Capture
Install macOS Catalina
o Launchpad Application - .46 GB
=, Mail
. Maps
© Messages
B Mission Contrel
£ Music
x M

Locations

1 of 38 selected, 19.32 GB available

Figure 6-13. The macOS Catalina installer application in the
Applications directory

Running the OS installer on an individual Mac requires administrator
rights, but otherwise is an easy experience where you double-click to
launch the installer application and follow the prompts.

Automating OS installations is going to eventually be about as easy on
macOS as it is in i0S, but we’re not there yet. At present, the automation
tool provided by Apple these days is the startosinstall command.

This tool first shipped with OS X El Capitan and so should work with that

331

CHAPTER6 MAC PROVISIONING

operating system or any that have been distributed since then. To use
the startosinstall command, you will need to open Terminal and run
commands similar to the one shown below:

sudo "/Applications/Install macOS Catalina.app/Contents/
Resources/startosinstall” --applicationpath "/Applications/
Install macOS Catalina.app" --agreetolicense --nointeraction
--volume "/Volumes/Macintosh HD"

In the above command, we’ve already loaded the “Install macOS
Catalina.app” on a machine. While you'd guess that it would find the
application path based on its own surname, we went ahead and supplied
it as that seems to basically be a thing. Basically, --agreetolicense keeps
us from having to run some expect scripts to accept a license agreement,
--nointeraction suppresses as many of the screens as possible, and
--volume allows us to install to any volume we’d like. This isn’t fully
automated, but I have been able to layer in some more logic to quit apps
before the script fires and then expect out other items from the script to
automate a restart, watching for osinstallersetupd as a key.

The options available for startosinstall have varied depending on
the OS version, but here’s the list of options available in recent OS versions:

--license: prints the user license agreement only.

--agreetolicense: agree to the license you printed

with --license.

--rebootdelay: how long to delay the reboot at the
end of preparing. This delay is in seconds and has a
maximum of 300 (5 minutes).

--pidtosignal: Specify a PID to which to send
SIGUSR1 upon completion of the prepare phase.
To bypass “rebootdelay” send SIGUSR1 back to
startosinstall.

332

CHAPTER6 MAC PROVISIONING

--installpackage: the path of a package (built with
productbuild(1)) to install after the OS installation
is complete; this option can be specified multiple

times.

--eraseinstall: (Requires APFS) Erase all volumes
and install to a new one. Optionally specify the
name of the new volume with --newvolumename.

--newvolumename: the name of the volume to be
created with --eraseinstall.

--preservecontainer: preserves other volumes in
your APFS container when using --eraseinstall.

--usage: provides the list of startosinstall options.

--nointeraction: suppresses a number of screens
where a human would be asked to make choices.

--volume: allows startosinstall to run the installation
process on a drive other than the boot drive.

One particularly useful function is the --installpackage function,

which allows one or more packages stored on the Mac in question to be

installed following the upgrade. Something to be aware of is that if you

want to add any additional packages, they must all be signed or unsigned

distribution-style flat packages. This is a requirement that Apple first

introduced for the OS X Yosemite installer, and it still applies to the latest

versions of macOS.

You can convert a nondistribution package to be a distribution-style

flat package by running the command below:

productbuild -package /path/to/original.pkg /path/to/
distribution.pkg

333

CHAPTER6 MAC PROVISIONING

To run an automated upgrade to macOS Catalina, where two
distribution-style flat packages stored in /Users/Shared are installed
following the upgrade, please run the command shown below with root
privileges:

"/Applications/Install macOS Catalina.app/Contents/Resources/
startosinstall" --applicationpath "/Applications/Install macOS
Catalina.app" --agreetolicense --installpackage /Users/Shared/
installer_one.pkg --installpackage /Users/Shared/installer two.
pkg --nointeraction

This is all a bit bulkier than just using something like
createOSXinstallPkg, a tool available for building OS installers which was
compatible with Mac OS X Lion through macOS Sierra, but it’s important
to mention that there are a number of system components that are allowed
for in SIP that use osinstallersetupd and so this blessed mechanism
is likely the future until you can trigger an OS upgrade (and update I
suppose) using an MDM command.

Reprovisioning a Mac

Most organizations will take an iOS device out of service, erase the device,
and hand it to the next user. Administrators of Macs have long wanted a
similar feature. Enter Erase Install

https://scriptingosx.com/2018/10/eraseinstall-application/
https://books.apple.com/us/book/macos-installation/id1392252312

The Erase Install application does the following:

1. Locates an existing macOS installer application on
the Mac being reprovisioned

334

https://scriptingosx.com/2018/10/eraseinstall-application/
https://books.apple.com/us/book/macos-installation/id1392252312

CHAPTER6 MAC PROVISIONING

Erase & Install

This tool will erase all data on this Mac and re-install mac0S to return the Mac to the factory default.

All your personal data and information will be deleted from this Mac!

® ®

Continue

Figure 6-14. Running the Erase & Install app

2.

Verifies that the conditions are right for a successful
macOS installation:

a. macOS Installer app is available.
b. Active Internet connection is available.

c. Find My Mac is disabled.

335

CHAPTER6 MAC PROVISIONING

Warning!

Are you sure you want 1o etase and install the
selected macOS on this mac?

Warning: All content will be erased!

Cancel Start Erase & Install

o Install macOS Catalina (15.0.15)

o Find My Mac is Disabled

o Active network is found

Figure 6-15. Verifying correct conditions for OS install

3. Usesstartosinstall’s --eraseinstall function to
wipe the drive and install a fresh copy of the OS.

336

CHAPTER6 MAC PROVISIONING

Preparing

Figure 6-16. Preparing the OS install

337

CHAPTER6 MAC PROVISIONING

About § minutes remaining.

Figure 6-17. Wiping the drive and installing a fresh copy of the OS

338

CHAPTER6 MAC PROVISIONING

Welcome

In just a few steps, you can register and set up your Mac.

Aland Islands
Albania

Press the escape key to hear how to set up your Mac with VoiceOver.

Press Command-Option-F5 to view accessibility options.

Figure 6-18. Mac with unconfigured copy of macOS

Once the Mac is back to having only an unconfigured copy of macOS
installed, it can now be set up for use with whatever provisioning tool
works best for the Mac admin in question.

Virtual Machines

Virtual machines running macOS as their OS can be provisioned for
deployment using the same tools used for physical Mac hardware. The
main limitations stem from virtual machines being software constructs
and not actual hardware. Here are some of the major ones:

e Anything involving having an Apple-registered
hardware serial number/sending hardware serial

number back to Apple - This includes iCloud services

339

CHAPTER6 MAC PROVISIONING

like Find My Mac and Messages. It also applies to
getting hardware-specific OS installers via Recovery HD.

e Depending on the virtual machine software being
used, it may be possible to get around some of the
limitations by assigning an actual Mac’s model and
serial number to the virtual machine.

e Most things involving EFI - Functions like Apple
Internet Recovery or holding down the Option key to
get a list of bootable volumes will not work. However,
some things involving EFI work specifically because
VMware made them work. For example, both NetBoot
and FileVault 2 work fine in a VMware VM.

e Wireless connections - Virtual machines don’t have
a Wi-Fi card, though it may talk to a network via your
Mac'’s Wi-Fi connection. You can test in a VM to make
sure that your Wi-Fi settings apply; you can’t test to
verify that they work.

There are a number of virtualization solutions available. The most
well-known ones are listed below:

VMware Fusion

Site: waw.vmware.com/products/fusion.html

Parallels

Site: waw.parallels.com/products/desktop/

340

http://www.vmware.com/products/fusion.html
http://www.parallels.com/products/desktop/

CHAPTER6 MAC PROVISIONING

VirtualBox

Site: www.virtualbox.org

Summary

Imaging’s death has been widely reported, but workflows for restoring
devices, provisioning, and reinstalling operating systems are all very
much alive. With DEP, it's now possible to provide a user-centric setup
experience for both macOS and iOS where it’s possible that IT’s only
involvement is making sure that the device was delivered to the right
person. On macOS in particular, tools like SplashBuddy and DEPNotify
allow IT to enable a great user experience by providing a guided setup
process for a Mac.

Meanwhile, for those companies, schools, or institutions that as
of yet can’t take advantage of DEP, tools like Mac Deploy Stick enable
automated provisioning workflows which demand the bare minimum of
IT intervention required.

In the end, Mac admins need to choose the setup and provisioning
workflows which work best for them, but wise use of these tools will help
conserve the most precious resource a Mac admin has: time.

341

http://www.virtualbox.org

CHAPTER 7

Endpoint Encryption

The data stored on your computer or mobile device is important to at least
one person, and that is the person using the device. Along with it being
important, there is always at least some data that you would prefer other
people not see. This data could include passwords, financial data, browser
history, or that text conversation between you and your significant other
which is really just for your eyes only. Encryption helps protect that data
from being accessed by others and Apple has invested considerable effort
to make sure that the encryption available to both iOS and macOS is not
only strong enough to fend off both casual interlopers and investigators
with the resources of nation states behind them.

10S Encryption Overview

Modern iOS devices which can use Touch ID or Face ID use a combination
of hardware encryption and filesystem encryption to protect data stored
on the device. The hardware encryption includes the Secure Enclave
coprocessor and a dedicated AES-256 cryptography engine which sits
between system memory and the flash storage used to store data.

The Secure Enclave is its own self-contained processor within an iOS
device. It runs its own OS, which is not directly accessible by either iOS or
any of the apps running on your iOS device. The Secure Enclave’s purpose
is to store 256-bit elliptic curve cryptographic private keys, which are used
by iOS and apps to encrypt and decrypt data stored on the iOS device. It’s

© Charles Edge and Rich Trouton 2020 343
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_7

CHAPTER 7 ENDPOINT ENCRYPTION

noteworthy that neither iOS nor the apps ever get to see these private keys.
Instead, the Secure Enclave is asked to encrypt and decrypt data for the
operating system and apps. The private keys stored in the Secure Enclave
are also unique to the device and never leave the Secure Enclave. This
makes data stored on a particular iOS device incredibly difficult to decrypt
on any other device because the private keys used to encrypt and decrypt
data essentially work unseen and are forever locked to that one iOS device.
The Secure Enclave is also responsible for processing the fingerprint and
face data which comes in from the Touch ID and Face ID sensors and
determining if there’s a match.

This alone would help secure an iOS device, but Apple also leverages
filesystem encryption technology known as Data Protection to further secure
data. Data Protection constructs and manages a hierarchy of cryptographic
keys and controls data by assigning each file on the iOS device’s flash storage
to a particular class. Access to that data is then determined by whether that
class’s keys have been unlocked. With Apple’s introduction of Apple File
System (APFS), cryptographic keys can be assigned on a per-extent basis.
Since files can have multiple extents, this means that portions of a file can
now be assigned different cryptographic keys.

How it all works is that every time a new file is created, Data Protection
creates a new cryptographic key for the file. This key is given to the AES-

256 cryptography engine, which uses that key to encrypt the file as its

being written to the flash storage used to store data. The per-file key is then
wrapped with a class key, depending on the circumstances under which the
file should be accessible, and the wrapped per-file encryption key is stored

in the file’s metadata. This metadata is itself encrypted using a different file
system key, which is used to protect the metadata of each file. This file system
key is also used in part to help generate the class keys and per-file keys.

The combination of keys means there are a minimum of three different
filesystem-level cryptographic keys which are protecting a particular file:

o File system key - Protects the file metadata

344

CHAPTER 7 ENDPOINT ENCRYPTION

o Class key - Governs file accessibility
o Per-file key - Protects the file

Combine that with the fact that all the keys are being generated by
the Secure Enclave, which manages all of these keys but which isn’t even
directly accessible by either the hardware doing the encrypting or the files
being encrypted, and it becomes clear that Apple has done its legwork on
protecting user data.

So how do you enable this protection? Enable a passcode. Data
Protection is automatically enabled when a passcode is set up for an iOS
device. As of iOS 13, i0S supports the following kinds of passcodes:

o Four digit
o Six digit
e Alphanumeric passcodes of arbitrary length

In addition to unlocking the device, the passcode provides entropy for
certain cryptographic keys, including the file system key. Entrophy is another
way of saying “randomness,” which means that the file system key is always
different every time it is generated. The reason why this is important is that
the hardware encryption fundamentals can’t change, they're hardwired
into the iOS device. By ensuring that the file system key can and will change
every time the device is wiped and restored, Apple helps ensure that the
encryption keys used on the device are also completely unique to the device.

The file system key is created when an iOS device is wiped and set
up as new. Once the file system key is generated, it is stored in what’s
known as Effaceable Storage. Effaceable Storage is a dedicated area of
flash memory used to store cryptographic keys and it is different from the
regular flash storage in two respects:

o Itdoes not use wear leveling.
e It can be erased completely and leave no trace of

original data.

345

CHAPTER 7 ENDPOINT ENCRYPTION

Flash storage has a finite number of times it can be written to. Wear
leveling is used to prolong the life of flash storage by spreading out writes
evenly across the flash storage. While this helps prolong the life of the flash
storage in question, it also makes it harder to securely erase data because
traces of old data may be found on random blocks long after the original
data was erased.

In contrast, Effaceable Storage’s flash storage can be completely erased
and no data can be recovered from it. Apple leverages this capability with
the Erase All Content and Settings option in iOS’s Settings to destroy all of
the cryptographic keys stored in Effaceable Storage. This key destruction
instantly makes all of the user data files stored on the iOS device
inaccessible by making it impossible to unlock the encryption on the files.
The files themselves are still there, but there’s now no way to access their
contents. As an added benefit, wiping out the keys in Effaceable Storage
instead of erasing the files themselves saves wear on the user data’s flash
storage and helps it to last longer.

What if a passcode isn’t enabled? All of the encryption is still there.
However, when the i0S device starts up, the needed encryption keys to
unlock the encryption are automatically provided by the Secure Enclave.
This is why turning on Data Protection is instant when the passcode option
is enabled: The only change is for the Secure Enclave to stop automatically
providing the unlock keys.

Enabling Encryption on i0S

To enforce encryption on multiple iOS devices, the simplest method is to
use configuration profiles deployed through your MDM server solution.
You can use a management server such as Apple’s Profile Manager to
create the configuration profile. The management server itself does not
necessarily need to be actively managing devices.

346

CHAPTER 7 ENDPOINT ENCRYPTION

1. Open Profile Manager in a web browser. Log in
using administrator credentials for the server.

2. Click Device Groups under Library and click the +
button (plus) to create a new group called “Enable
Passcode” (Figure 7-1).

@) Profile Manager (@ Seach Bevies G

LIBRARY

Enable Passcode

& Aor No Members
LU Books
T About Sattings. Apps Books
5. s —
[& Settings for Enable Passcode
A Users
General
228 Groups
W Classes Em
ACTIVITY
1D Active Tasks & Enroliment Settings
@ Completed Tasks Activation Lock Settings

Supervised devices
Allow Activation Lock

Set Device Name (supervised only)

L) |- |

| & () Revert | [Sawe

Figure 7-1. Creating an Enable Passcode Device Group in Profile
Manager

3. Click the Settings tab in the right pane. Click the
Edit button.

4. Complete the information in the General payload
of the new configuration profile. Set the Security
drop-down menu to Never to prevent removal of
the profile.

347

CHAPTER 7 ENDPOINT ENCRYPTION

—~ Settings for Enable Passcode
& 1 Payload Configured - Created 06/25/16 at 9:13 PM

mac0S, 105 and tvOS

General
a The manner in which the profile is distributed to devices
. Mandatory 1

= @ Automatic Push | Manual Download
@ Network Organization
Name of the organization for the profile
Cartificates Prelendco
L= Description
Brial explanation of the content or purpose of the prafile
Enables passcode

Prafile Distribution Type

@ Cartificate Transparency

o3 Security
Confrals when the profile can be remaved
Never
Automatically Remove Profile
Settings for automatic profile remaoval
Never

Figure 7-2. Creating the Enable Passcode profile’s General payload

5. Scroll through the list of payloads to the left and
choose Passcode in the macOS and I0S section of
payloads.

6. Configure passcode settings as desired.

348

; Settings for Enable Passcode

w 2 Payloads Configured - Created D6/25/19 at 9:13 PM

*.ff} Certificate Transparency

SCEP
L3

macOS and 105

Passcode
1 Payload configured

VPN
Fonts

AlrPlay

105 and tvOS
&\ Global HTTP Proxy

@‘1 App Configuration
5

CHAPTER 7 ENDPOINT ENCRYPTION

Allow simple value

Permi the use of repeating, ascending, and descending
character sequences

Require alphanumeric value

Regquires passcode 1o contain at leas! one letter and one
number

% Minimum passcode length

Smalest number of passcode characters alowed

* Minimum number of complex characters

Smalest number of non-alphanumeric characters aliowed

Maximum passcode age (1-730 days, or none)
Days after which the passcode must be changed

+ Maximum Auto-Lock

Longes! auto-lock time avalabie to the usar

Passcode history (1-50 passcodes, or none)
Number of unigue passcodes before reuse

% Maximum grace period for device lock

Longest device lock grace period available to the user

Cancol

Figure 7-3. Creating the Enable Passcode profile’s Passcode payload

7. Click the OK button when done configuring the

profile. Click the Save button to save the new Enable

Passcode configuration profile.

8. To test the new configuration profile, click the

Download button to download a .mobileconfig file.

9. Email or download this .mobileconfig file to a test

iOS device and double-tap it to install.

10. Verify that you are now being asked to set a

passcode with the desired settings.

After successful testing, scope the profile to individual computers or

computer groups in your MDM and use its push capabilities to deploy the

profile to the client machines.

349

CHAPTER 7 ENDPOINT ENCRYPTION

mac0S Encryption Overview

For macOS, Apple went in a different direction with encryption. In
part, this is because Macs only recently starting shipping with Secure
Enclave processors and could leverage the same hardware support for
encryption that iOS has had for a while. Instead, Apple needed to handle
all encryption using software. Another difference between macOS and iOS
encryption is that macOS’s encryption needs to be able to handle multiple
cryptographic users to log in while iOS only needs to accommodate for one
cryptographic user using one passcode to unlock.

On modern Macs with Apple File System (APFS), the system relies on
a series of cryptographic keys granting access to two other layers of keys.
These keys are the following:

e Derived encryption key
¢ keyencryption key
e volume encryption key

To examine them from the filesystem level upward, let’s first look at
the Volume Encryption Key (VEK). This is the key that is interacting with
the APFES volume that the FileVault 2 encryption process has created. All
cryptographic operations on an encrypted APES volume are unique to that
volume because a different volume encryption key is randomly generated
for each volume. This is the key that is actually unlocking the encrypted
volume and it’s also the key that’s deleted when a wipe command is sent to
a FileVault 2 encrypted Mac.

On the next level up, there’s the key encryption key (KEK) which is
otherwise known as a Secure Token. This key is generated when FileVault
2 encryption is initialized on a particular volume. It is used to unlock
the volume encryption key one layer down and acts as the middleman
between the volume encryption key and the derived keys. This middle
layer allows the derived keys to change without affecting the derived keys

350

CHAPTER 7 ENDPOINT ENCRYPTION

ability to unlock the encrypted volume. One thing that’s important to know
on APFS volumes is that Apple has set up the KEK / Secure Token so that
user accounts need to be enabled for Secure Token access and that it’s
possible to have user accounts which are not Secure Token enabled. If an
account is not Secure Token enabled, it’s not possible for that account to
unlock FileVault’s encryption. Secure Token has caused a lot of confusion
for Mac admins, so there will be further discussion of it later in this chapter.

On the top layer, there’s the derived encryption keys. These keys begin
the chain reaction of unlocking the other keys below it, resulting in the
unlocking or decryption of the encrypted volume. Any derived key can be
independently changed without affecting its ability to unlock the other two
layers of keys.

Any given APFS volume must be able to support multiple cryptographic
users, each with their own derived key which is able to unlock the
encryption. This is important because it means that there can be multiple
ways to access the encrypted volume. In the case of FileVault 2’s encryption,
it means that multiple-user accounts can be enabled to unlock an
encrypted Mac at the pre-boot login screen. Derived keys are also used for
the FileVault 2 recovery keys, which we’ll be covering in more detail later.

For those Macs which have the Secure Enclave processor, how does the
Secure Enclave fit into this model? Just like it does on iOS. The overall macOS
encryption model remains the same, but the Secure Enclave-equipped Macs
are always encrypted. Period. Even if FileVault is not enabled.

How this works is that the solid-state drives which ship with these
Macs have built-in hardware encryption support and the Secure Enclave
processor stores the keys needed to unlock the encrypted storage. If FileVault
isn’t turned on, the Secure Enclave automatically provides the unlock keys
when the Mac boots. Once FileVault is turned on, the Secure Enclave stops
providing the unlock keys on boot and now requires authentication by a
Secure Token-enabled account in order to unlock the encryption. This
allows FileVault to be instantly turned on and off, just as you can instantly
turn on and off encryption on iOS using the passcode settings.

351

CHAPTER 7 ENDPOINT ENCRYPTION

On Macs that don’t have a Secure Enclave processor, the lack of
hardware support means that the APFS volume must be encrypted using
the filesystem’s native encryption capabilities. This is usually a slower
process than “instant,” with time to encrypt varying depending on the
speed of the storage in use, size of the storage volume, and speed of the
processor.

Secure Token

As mentioned previously, Secure Token is the KEK which acts as the
middleman between the derived encryption keys and the encrypted
volume’s VEK. The KEK has been around as long as FileVault 2 has, but
access to it on an APFS volume requires that an account be enabled for it.
Moreover, an account can only be enabled for Secure Token by another
account with Secure Token.

There is one exception to this rule: To help make sure that at least one
account has been enabled for Secure Token, the first account to log into
the OS login window on a particular Mac is automatically enabled for
Secure Token.

Once an account has been enabled for Secure Token, it can then create
other accounts which will in turn automatically be enabled for Secure
Token. For those who use Apple’s Setup Assistant to set up their Macs, this
usually takes the following form:

1. Secure Token is automatically enabled for the user
account created by Apple’s Setup Assistant.

2. The Setup Assistant-created user account with
Secure Token enabled then creates other users
via the Users & Groups preference pane in System
Preferences. Those accounts get enabled for Secure
Token automatically.

352

CHAPTER 7 ENDPOINT ENCRYPTION

The reason this works is that the original user account is able to use
their account’s derived key, which is authorized to add additional keys to
the list of keys able to access the KEK, to enable the additional accounts’
own derived keys to the KEK’s access list.

However, user accounts created using command line tools may not
be automatically enabled for Secure Token because they were created by
the root account, which is not a Secure Token-enabled account. If these
accounts are not later enabled for Secure Token by an account which
does have Secure Token enabled for it, it won’t be possible to enable these
accounts to work with FileVault 2 because they won’t have access to the
KEK and thus have no access to the encrypted volume’s VEK.

Enabling Encryption on mac0S

There are several ways to enable FileVault 2, but let’s first look at the
simplest method using System Preferences.
To enable FileVault 2 on a Mac using System Preferences

1. Open the Security & Privacy pane in System
Preferences. Click the FileVault tab.

2. Click the Lock button and authenticate to make
changes.

353

CHAPTER 7 ENDPOINT ENCRYPTION

(] < ik Security & Privacy Q Search

General

Firewall Privacy

FileVault secures the data on your disk by Turn On FileVault...

. encrypting its contents automatically.
n WARNING: You will need your login password or a recovery key to access your data. A

y key is lly generated as part of this setup. If you forget both your
password and recovery key, the data will be lost.

FileVault is turned off for the disk “Macintosh HD".

”

[l Ciick the lock to prevent further changes. Advanced...

Figure 7-4. Accessing the FileVault preference pane in System
Preferences

3. Click the Turn On FileVault button.

4. Choose “Create a recovery key and do not use my
iCloud account” and click the Continue button.

354

CHAPTER 7 ENDPOINT ENCRYPTION

Your iCloud account can be used to unlock your disk and reset your

" . password if you forget it.
If you do not want to use an iCloud account, you can create a recovery key and

store it in a safe place to reset your password.

@ < e Security & Privacy Q Search

% Set up my iCloud account to reset my password
I © Create a recovery key and do not use my iCloud account
”~
[l Ciick the lock to prevent further changes. Advanced...

Figure 7-5. Creating a recovery key

Carefully document the recovery key. Preferably, use
macOS’s screen capture tools to take a screenshot

of the window and copy the file to a secure location.
If any user forgets his or her password or that user
leaves the organization, an administrator will only
have this recovery key as an option for unlocking the
protected boot volume and recovering data. Click the
Continue button to begin the encryption process.

355

CHAPTER 7 ENDPOINT ENCRYPTION

Security & Privacy

The recovery key is a code which can be used to unlock the disk if you

= forget your password.
a Make a copy of this code and store it in a safe place. If you forget your password and lose

the recovery key, all the data on your disk will be lost.

23HK-NY79-HDPE-FBO3-Y27A-UL2Z

? Cancel Back m

FileVault is turned off for the disk "Macintosh HD".

[&)

ﬂ Click the lock to prevent further changes. Advanced...

Figure 7-6. Displaying a recovery key

5. The encryption process can be monitored by
opening the Security & Privacy pane in System
Preferences and clicking the FileVault tab.

356

CHAPTER 7 ENDPOINT ENCRYPTION

@ 4 HHH Security & Privacy

General m eV Firewall Privacy
FileVault secures the data on your disk by

-~ encrypting its contents automatically.
n WARNING: You will need your login password or a recovery key to access your data. A

recovery key is automatically generated as part of this setup. If you forget both your
password and recovery key, the data will be lost.

FileVault is turned on for the disk “Macintosh HD"

A recovery key has been set.

Encrypting.. e—

—~
[] Ciick the lock to make changes. T

Figure 7-7. Monitoring encryption progress

FileVault Recovery Keys

We briefly discussed FileVault 2’s recovery keys above, but not why they're
important. These recovery keys are derived keys and act as a backup
method to unlock FileVault 2’s encryption in the event that the usual
method of logging using a user’s account password is not available.

There are two main types of recovery keys available:

1. Personal recovery keys - These are recovery
keys that are automatically generated at the time
of encryption. These keys are generated as an
alphanumeric string and are unique to the machine
being encrypted. In the event that an encrypted Mac

357

CHAPTER 7 ENDPOINT ENCRYPTION

is decrypted and then re-encrypted, the existing
personal recovery key would be invalidated and a
new personal recovery key would be created as part
of the encryption process.

The recovery key is a code which can be used to unlock the disk if you

. g~ . forget your password.
n Make a copy of this code and store it in a safe place. If you forget your password and lose

the recovery key, all the data on your disk will be lost.

23HK-NY79-HDPE-FBO3-Y27A-UL2Z

? Cancel Back m

FileVault is turned off for the disk "Macintosh HD"

”

[I Click the lock to prevent further changes. Advanced...

Figure 7-8. Personal Recovery Key displayed in the FileVault
preference pane

2. Institutional recovery keys - These are premade
recovery keys that can be installed on a system prior to
encryption and most often used by a company, school,
or institution to have one common recovery key that
can unlock their managed encrypted systems.

358

CHAPTER 7 ENDPOINT ENCRYPTION

Institutional keys are not automatically created and will need to be
properly generated before they can be used. To help understand why,
here’s some historical background on institutional recovery keys and how
they came to be used in FileVault 2.

FileVault 1 and the FileVaultMaster.keychain File

The sole part of Apple’s FileVault 1 (also known as legacy FileVault)
that was carried over into FileVault 2 was the ability to use the
FileVaultMaster.keychain file (stored in /Library/Keychains) as an
institutional recovery key.

In FileVault 1 deployments, you were asked to set a Master Password
when turning on FileVault 1’s encryption. When you set the Master
Password, the FileVault 1 encryption process set the password that was
entered as the password on the /Library/Keychains/FileVaultMaster.
keychain file. In turn, the FileVaultMaster.keychain file contained two
keys used for PKI certificate-based authentication (one public key and
one private key). When the public and private keys are both stored in one
keychain, the keychain can be used to unlock your FileVault 1-encrypted
home folder in the event that the password to open it was lost or forgotten.
The Master Password only unlocked the keychain and allowed the system
to access those two PKI keys. This is the reason why you needed to set the
Master Password before encrypting and why it was also important to use
the same FileVaultMaster.keychain file across the machines where you
wanted to make sure that the same recovery key was being used.

If you were deploying the same recovery key for your FileVault-
encrypted Macs, Apple consistently recommended that you go into the
FileVaultMaster.keychain file, remove the PKI private key, put the private
key somewhere secure, and deploy the FileVaultMaster.keychain file
with only the public key inside. The reason was that, in the event that
the password to the FileVaultMaster.keychain file was compromised,

359

CHAPTER 7 ENDPOINT ENCRYPTION

all the compromiser got was one half of the keypair (the public key half.)
The private key would not be on the machine and thus not available to
compromise the FileVault 1-encrypted homes on the machine. However,
FileVault 1 would work with both the public and private keys in /Library/
Keychains/FileVaultMaster.keychain.

In FileVault 2, Apple changed removing the private key from being
a suggested best practice to being a technical requirement. If you want
to use an institutional recovery key, your FileVaultMaster.keychain
file needs to have just the public key in it. If both public and private
keys are stored in the /Library/Keychains/FileVaultMaster.keychain
file on a Mac, FileVault 2 will ignore the keychain and not use it as an
institutional recovery key. In this case, enabling FileVault 2 encryption will
automatically generate a personal recovery key.

Creating an Institutional Recovery Key

If you want to use an institutional recovery key on FileVault 2 encrypted
Macs, you will need to create and configure a FileVaultMaster keychain.
Apple has provided a way to create this keychain by using the security
command’s create-filevaultmaster-keychain function. To create a
FileVaultMaster.keychain file, run the following command:

security create-filevaultmaster-keychain /path/to/
FileVaultMaster.keychain

You'll be prompted for a password for the keychain. When provided,
the keychain will be created and will contain both the private and public
keys needed for recovering a FileVault 2-encrypted drive that uses this
institutional recovery key. Make copies of the keychain and store them in
a safe place. Also make sure to securely store copies of the password you
used to create the keychain.

360

CHAPTER 7 ENDPOINT ENCRYPTION

L N Terminl — -z3h — 106=5

username@computername ~ % security create-filevaultmaster-keychain /Users/Shared/FileVaultMaster. keychain ®
password for new keychain:

retype password for new keychain:

Generating a 2848 bit key pair; this may take several minutes

username@computername ~ %

Figure 7-9. Using security create-filevaultmaster-keychain to
create an institutional recovery key

If you want to create the FileVaultMaster keychain in its proper
place, run the security command with root privileges and use /Library/
Keychains for the destination path.

ev e Torminal — -z3h — 1166

username@computername ~ % sudo security create-filevaultmaster-keychain /Library/Keychains/FilevaultMaster.keychain ®
Password:

password for new keychain:

retype password for new keychain:

Generating a 2848 bit key pair; this may take several minutes

username@computername ~ %

Figure 7-10. Running security create-filevaultmaster-keychain
with root privileges to create an institutional recovery key in /
Library/Keychains

Once you've made your copies, make another copy and remove
the private key from that copy of the keychain. Once the private key
is removed, the FileVaultMaster.keychain file is ready to be used for
encrypting Macs with FileVault 2 with the institutional recovery key.

It doesn’t appear that the security main page includes information
about the create-filevaultmaster-keychain function, but you can see what
it does by running the security help command in Terminal and checking
at the bottom of the list that appears.

eoe Tarmnal — -26h — 109413
authorize Perform authorization operations. "
autherizationdb Make changes to the authorization policy database.
execute-with-privileges Execute tool with privileges.
leaks Run fusr/bin/leaks on this process.
error Display a descriptive message for the given error code(s).

te-filevaultmast i Create a keychain containing a key pair for FileVault recovery use.

smartcards Enable, disable or list disabled smartcard tokens.
translocate-create Create a translocation point for the provided path
translocate-policy-check Check whether a path would be translocated
translocate-status-check Check whether a path is translocated.
translocate-original-path Find the original path for a translocated path.
requiresent-evaluate Evaluate a requiresent against a cert chain.

usernameBconputername ~ % I

Figure 7-11. Using security help to display information about the
security tool’s create-filevaultmaster-keychain function

361

CHAPTER 7 ENDPOINT ENCRYPTION

A way to modify /Library/Keychains/FileVaultMaster.keychain so
that it only has the public key inside would be to do the following:

1. Create the FileVaultMaster.keychain file using the

security command.

2. Next, make several copies of the FileVaultMaster.
keychain file that you just created and store the
copies separately in secure locations. A locked safe
would be a good place, or in an encrypted disk
image that is on an access-restricted file share.

3. Next, unlock the newly created FileVaultMaster.
keychain file by running the following command
and entering the keychain’s password when
prompted for the password:

security unlock-keychain /Library/Keychains/
FileVaultMaster.keychain

00 e Tarminal — -zsh — 955

username@computername ~ % security unlock-keychain /Library/Keychains/FileVaultMaster.keychain
password to unlock /Library/Keychains/FileVaultMaster.keychain:

username@computername ~ %

a|

Figure 7-12. Using the security tool’s unlock-keychain function to
unlock the FileVaultMaster keychain for editing

Note The FileVaultMaster keychain will need to be unlocked from
the command-line as the keychain will not unlock in Keychain Access
by clicking on the lock.

362

CHAPTER 7 ENDPOINT ENCRYPTION

4. Ifit succeeds, you'll get the next system prompt.
If not, get another copy of the FileVaultMaster.
keychain file and try again. A FileVaultMaster.
keychain file with an unknown password should
not be used because there is no way to use it
for recovery purposes without first knowing the
keychain’s current password.

5. Once you've unlocked the FileVaultMaster.
keychain file, open the Keychain Access
application from /Applications/Utilities/.

eae + Q
Keychains
@ login
@' Local ltems
W System
] System Roots
Name Kind Date Modified Expires Keychain
':; <hey> public key - - legin
T akey> private key - - login
L. Apple Persistent State Encryption application password Jun 18, 2019 at $:46:28. - login
Category . BeaconStore application password Jun 18, 2019 at 9:46:08... - login
A Allltems {.. com.apple.ids: lo..43621c32-AuthToken application password Jun 18, 2019 at 3'46:36.. -- login
2 Pasviris {.. com.apple.scopedbockmarksagent.xpc application password Jun 18, 2019 at 9:47:47 AM == login
{.. ¥0s: buid-of-unr._d-identity-generation application password Jun 18, 2019 at 3'46:36.. - login
Secure Notes (., ids: container-un_..ssage-protection-key application password Jun 18, 2019 at 9:46:36.. == login
B My Certificates . ids: identity-rsa-key-pair-signature-v1 application password Jun 18, 2019 at 9:46:04,.. -~ login
T Keys £, ids: identity-rsa-private-key application password Jun 18, 2019 at 9:46:04. - login
£ Certificates £, ids: identity-rsa-public-key spplication password Jun 18, 2010 at 9:46:04.. -~ login
% iMessage Encryption Key public key - - login
§ iMessage Encryption Key private key - - login

Figure 7-13. Looking at Keychain Access prior to adding
FileVaultMaster.keychain

6. InKeychain Access, go to File: Add Keychain...
and add /Library/Keychains/FileVaultMaster.
keychain.

363

CHAPTER 7 ENDPOINT ENCRYPTION

L]
d m 1" =
= > 3 Keychains <
@ logi
& Loct 1 Frameworks BT sad i in
* Favorites _keychal
2 Syst B applications = :Uaunm“ , mes .
Qsm 0 S Craptics "+ FlleVaultMasterkeychain
[Desktop (B image Capture . pinningrules. sqite3 !
It ethiods * _ B SupplementalsAssels > ain
@ (s} I Insta . .
st » System. keychain i,
o Dovwnloads B internet Plug-ins . y
i Java -
| Locations 9 Keyboard Layouts *
e Macintosh HD
';a A . 9 LaunchAgents .
G Pass e [LaunchDaemons -
Sect § -
= il It]| k:::aged Preferences :
@ Keys B3 Photos B MessageTracer = FnIeVauIt.Ma.star_keycham
B cert [Movies] rm:! Seripts . keychain - 24 KB

conco_ (D

Figure 7-14. Selecting the FileVaultMaster.keychain file in
Keychain Access

7. Assuming you previously unlocked the
FileVaultMaster.keychain file using the security
command, it should show up as unlocked in

Keychain Access.
ene + @ &
Kaychaina ~ FileVault Master Password Key
@ login W/ Kind: private key, RSA, 2,048-bit
i FileVaultMaster [Usage: Decrypt, Sign, Unwrap

' Local tems
il System

O system Roots Hame ~ Kind Date Modified Expires Keychain

§ FileVault Master Password Key private key

- FileVaultMas
£ Filevault Recovery Key (computername) certificate - Jun 19, 2020 at 3:18:52 PM FileVaultMas...

Category

A Al tems
{.. Passwords

Secure Notes
E My Certificates
®
U Keys
El Certificates

Figure 7-15. What the FileVaultMaster keychain’s private key looks
like in Keychain Access

364

CHAPTER 7 ENDPOINT ENCRYPTION

8. Gointo the FileVaultMaster keychain and remove
the private key. (It should be called FileVault
Master Password Key and its kind should be listed
as private key.)

L]
Keychains
- - D Are you sure you want to delete “FileVault
“_ login b Master Password Key” from the
' FileVaultMaster I FileVaultMaster keychain?
' Local tems

‘Warning! If a private key is deloted, cortificates

il System associated with that key can no longer be used. This
tem R may prevent you from reading encrypted mossages or .
O3 System Roots Name making secure connections. Procesd only if you are Expires Keychain
‘f,” FileVault | certain that you na lenger need the selected key. - FileVaultMas_
E] Filevault Cancel m Jun 19, 2020 at 3:18:52 PM FileVaultMas...
Category
A Al items
{.. Passwords
Secure Notes
& My Certificates
®
U Keys

] Certificates

Figure 7-16. Removing the private key from the FileVaultMaster
keychain in Keychain Access

9. Relock the FileVaultMaster keychain

ece + @

Q
Keychains
, - mu I z = FileVault Recovery Key (computername)
W login | Selfsigned roat certificate
o FileVaultMaster (o Expires: Friday, June 19, 2020 at 3:18:52 PM Eastern Daylight Time
&' Local tems a This certificate has nat been verified by & third part
@' System
[system Roots Hame ~ Kind Date Modified Expires Keychain

B Filevaul

Jun 18, 2020 at 3:18:52 PM FileVaultMas.

Category

A Allltems
{.. Passwords

Secure Notes
E My Certificates
®
U Keys
] Certificates

Figure 7-17. How the FileVaultMaster keychain should look with
only the public key inside

365

CHAPTER 7

10.

ENDPOINT ENCRYPTION

Copy the modified FileVaultMaster.keychain

file (now with only the public key inside) to the
/Library/Keychains directory of the Macs you want
to encrypt with FileVault 2. For ease of deployment,
you can package the FileVaultMaster.keychain file
into an installer package. That installer package can
then be deployed ahead of encryption to multiple
machines using the system management tools used
in your environment.

When deployed to /Library/Keychains on the Macs you want to
encrypt with FileVault 2, the FileVaultMaster.keychain file should have

the following permissions set:

Owner: root

Permissions: read and write
Group: wheel

Permissions: read only
Everyone

Permissions: read-only

Once the institutional recovery key is deployed to an unencrypted

machine, enabling FileVault 2 via System Preferences should produce a

message stating that “A recovery key has been set by your company,

school or institution” instead of displaying the personal recovery key.

366

CHAPTER 7 ENDPOINT ENCRYPTION

Security & Privacy

Recovery Key
n’ A recovery key has been set by your company, sehool, or institution,

7 Cancel m

password and recovery key, the data will be lost.

FileVault is turned off for the disk "Macintosh HD"

P
[Click the lock to prevent further changes. Advanced... T

Figure 7-18. Message indicating that a properly configured
FileVaultMaster.keychain is being used as an institutional recovery key

o & FEES Security & Privacy Q

General [T Firewall Privacy

FileVault secures the data on your disk by

ypting its
n WARNING: You will need your login password or a recovery key to access your data. A
recovery key is automatically generated as part of this setup. If you forget bath your
password and recovery key, the data will be lost.

FileVault is turned on for the disk “Macintosh HD".

Arecovery key has been set by your school, or i

Encrypting.. =

P
[Click the lock to prevent further changes. Advanced... T

Figure 7-19. FileVault 2 encrypting the boot drive using an

institutional