
Apple Device
Management

A Unified Theory of Managing Macs,
iPads, iPhones, and AppleTVs
—
Charles Edge
Rich Trouton

Apple Device
Management

A Unified Theory of Managing
Macs, iPads, iPhones,

and AppleTVs

Charles Edge
Rich Trouton

Apple Device Management: A Unified Theory of Managing Macs, iPads,

iPhones, and AppleTVs

ISBN-13 (pbk): 978-1-4842-5387-8		 ISBN-13 (electronic): 978-1-4842-5388-5
https://doi.org/10.1007/978-1-4842-5388-5

Copyright © 2020 by Charles Edge and Rich Trouton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5387-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Charles Edge
Minneapolis, MN, USA

Rich Trouton
Middletown, MD, USA

https://doi.org/10.1007/978-1-4842-5388-5

iii

Chapter 1: The Evolution of Apple Device Management������������������������1

The Classic Mac Operating System���2

Network Protocols��3

Early Device Management���6

NeXT���9

Mac + Unix = Mac OS X���11

Server��15

Apple Remote Desktop���22

Ecosystem Coexistence���24

iOS Device Management��26

Mobile Device Management��28

Apple Device Management Programs��30

Enterprise Mobility���31

iOS + Mac OS X = macOS��35

Imaging Is Dead?��36

macOS – Unix = appleOS���39

Moving Away from Active Directory���42

The Apple Admin Community���43

Table of Contents

About the Authors��xv

About the Technical Reviewer���xvii

Preface���xix

iv

Conferences���44

Online Communities���48

User Groups���50

Summary���52

Chapter 2: Agent-Based Management���55

Daemons and Agents���56

Use Lingon to See and Change Daemons and Agents Easily��������������������������60

Controlling LaunchDaemons with launchctl���64

Deeper Inspection: What Does the App Have Access To?�������������������������������������66

Third-Party Management Agents���67

Addigy���68

FileWave���71

Fleetsmith���73

Jamf���76

Munki��80

osquery���97

Chef��105

Edit a Recipe���109

Puppet��111

Use git to Manage All the Things��112

The Impact of UAMDM���117

Rootless���118

Frameworks���119

Miscellaneous Automation Tools��121

Summary���122

Table of ContentsTable of Contents

v

Chapter 3: Profiles���125

Manually Configure Settings on Devices���126

Use Apple Configurator to Create a Profile���136

View the Raw Contents of a Profile��146

Install a Profile on macOS��149

Install a Profile on iOS��152

Install a Profile on tvOS��157

View a Profile from macOS���162

View a Profile from iOS���164

View a Profile from tvOS���167

Remove a Profile on macOS���169

Remove a Profile on iOS���170

Remove a Profile on tvOS���175

Effects of Profile Removal��177

Use the Profiles Command on macOS���178

Using the Profiles Command��179

MCX Profile Extensions���181

Summary���183

Chapter 4: MDM Internals��185

What MDM Can Access��186

Apple Business Manager and Apple School Manager��187

Apple Push Notifications��192

Checkins: Device Enrollment��193

MDM: Device Management��200

MDM Commands��201

Automated Enrollment, or DEP���209

The Reseller DEP API��210

The Cloud Service DEP API���211

Table of ContentsTable of Contents

vi

mdmclient��214

Device Supervision��216

UAMDM��217

Enrollment Commands���220

The Impact of UAMDM��222

Enable APNs Debug Logging��235

App Deployment���239

Gift and VPP Codes���240

Volume Purchase Program���241

Managed Open-In��245

Host a .ipa on a Web Server���246

Sign and Resign macOS Applications��249

App Notarization���249

Summary���253

Chapter 5: iOS Provisioning���255

iOS Provisioning���256

Prepare an iOS Device Using Apple Configurator���257

Create Blueprints��257

Manage Content���259

Add Certificates for 802.1x with Profiles to Blueprints���������������������������������259

Install Apps with Apple Configurator��265

Automate Enrollment with Apple Configurator���268

Change Device Names Using Apple Configurator���273

Change Device Wallpaper with Apple Configurator��������������������������������������275

Prepare a Device��277

Apple Configurator Debug Logging���283

Using an ipsw As Part of Device Restores��284

Table of ContentsTable of Contents

vii

Device Supervision Using Manual Configurations��286

Automating iOS Actions��290

AEiOS��302

Caching Services���305

What’s Cached?��306

Caching Service Configuration���307

Summary���312

Chapter 6: Mac Provisioning���313

macOS Startup Modifier Keys��314

macOS Provisioning with DEP��316

SplashBuddy���318

DEPNotify��318

macOS Provisioning Without DEP��318

Installation��319

Create a Workflow��319

Imagr��330

Bootstrappr���330

Installr��330

Boot Camp��330

Winclone���330

Upgrades and Installations��331

Reprovisioning a Mac���334

Virtual Machines���339

VMware Fusion���340

Parallels��340

VirtualBox���341

Summary���341

Table of ContentsTable of Contents

viii

Chapter 7: Endpoint Encryption���343

iOS Encryption Overview��343

Enabling Encryption on iOS��346

macOS Encryption Overview��350

Secure Token��352

Enabling Encryption on macOS��353

FileVault Recovery Keys���357

FileVault 1 and the FileVaultMaster.keychain File��359

Creating an Institutional Recovery Key���360

Enabling Filevault 2 Encryption for One or Multiple Users���������������������������369

Enabling Filevault 2 Encryption Using One or Multiple Recovery Keys��������378

Disabling FileVault 2 Encryption���382

Listing Current FileVault 2 Users��385

Managing Individual and Institutional Recovery Keys����������������������������������387

Removing Individual and Institutional Recovery Keys����������������������������������391

Recovery Key Reporting���394

Reporting on Filevault 2 Encryption or Decryption Status����������������������������397

Summary���402

Chapter 8: Securing Your Fleet��403

Securing the Platform��403

Mac Security��405

System Integrity Protection��406

SIP-Protected Applications���408

SIP-Protected Directories���409

View SIP Protections Interactively��412

Runtime Protections���414

Kernel Extension Protections��415

Table of ContentsTable of Contents

ix

Managing System Integrity Protection���416

NetBoot and System Integrity Protection���419

Running csrutil Outside of the Recovery environment���������������������������������420

Custom System Integrity Protection Configuration Options�������������������������422

System Integrity Protection and Resetting NVRAM��������������������������������������425

User-Level Protections���426

Detect Common Vulnerabilities��428

Manage the macOS Firewall��431

Combat Malware on macOS���433

Xprotect and Gatekeeper��434

lsquarantine���437

Using lsregister to Manipulate the Launch Services Database��������������������439

Quarantine��441

Changing File Handlers��442

MRT��443

Signing Applications���445

ClamAV���445

Threat Management on iOS���448

macOS Binary Whitelisting���450

Compliance���453

Centralized Log Capture and Analysis��454

Writing Logs���454

Reading Logs��455

Organization and Classification��457

Comparisons and Searches��458

OpenBSM��460

Reverse Engineering��465

Summary���469

Table of ContentsTable of Contents

x

Chapter 9: A Culture of Automation and Continual Testing���������������471

Scripting and the Command Line���473

Command Line Basics��475

Basic Shell Commands���476

Shell Scripting��482

Declaring Variables���483

Expanding on ZShell���487

Variable Mangling���490

Standard Streams and Pipelines��494

If and Case Statements��496

For, While, and Until Statements���503

Arrays���506

Exit Codes���507

Shell Script Logic���508

Manual Testing���517

Automated Testing��520

Posting Issues to Ticketing Systems��526

Simulating iOS Environments with the Xcode Simulator������������������������������528

Corellium��532

API Orchestration��533

Release Management���539

Summary���543

Chapter 10: Directory Services��545

Manually Bind to Active Directory��547

Bind the Easy Way��547

Bind with the Directory Utility���549

Test Your Connection with the id Command��554

Use dscl to Browse the Directory���556

Table of ContentsTable of Contents

xi

Programmatically Binding to Active Directory���561

Bind to Active Directory Using a Profile���563

Beyond Active Directory���570

All the Benefits of Binding Without the Bind���571

NoMAD Stand-Alone Application��571

Configuration Profile��574

NoMAD Login AD���577

Apple Enterprise Connect��580

Summary���580

Chapter 11: Customize the User Experience��������������������������������������581

Getting iOS and iPadOS Devices in the Hands of Users�������������������������������������582

macOS��583

Planning the macOS User Experience��583

Transparency Consent and Control Protections on User Home Folders�������������584

Using Profiles to Manage User Settings���586

Using Scripts to Manage User Settings��589

Modifying the macOS Default User Template���593

Customize the Desktop���594

Customize the User Preferences��594

Configure the iOS Home Screen���595

Custom App Stores���597

Test, Test, Test��599

Summary���600

Chapter 12: Identity and Device Trust���601

Use IdPs for User Identities��602

REST and Web Authentication��603

Table of ContentsTable of Contents

xii

JSON���604

Use JWTs As Service Accounts���605

Bearer Tokens���607

OAuth���608

Webauthn���612

OpenID Connect���613

SAML��613

Cookies��616

ASWebAuthSession��617

Set Up a Test Okta Account��619

View SAML Responses���627

Jamf Connect for Mac��628

Configure Jamf Connect Login���629

Jamf Connect for iOS���635

Conditional Access���638

Configure the Jamf Integration with Intune��639

Beyond Authentication���646

Multi-factor Authentication��647

Microsoft Authenticator��648

MobileIron Access��649

Conditional Access for G-Suite���650

Enable the APIs You Need���652

Create a Service Account���655

Create Your Google Cloud Function��656

Duo Trusted Endpoints���660

Managed Apple IDs��661

Managed Apple IDs in Schools���661

Managed Apple IDs for Business��662

Table of ContentsTable of Contents

xiii

Using Managed Apple IDs with Microsoft Azure Active Directory�����������������663

Webhooks��663

Working with the Keychain��667

Summary���671

Chapter 13: The Future of Apple Device Management�����������������������673

Balanced Apple Scorecard���674

The Tools���677

The Near Future��679

The Apple Product Lines���681

Apps���683

Getting Apps to Devices��693

Manage Only What You Have To��696

The Future of Agents��697

Other Impacts to Sandboxing���699

iOS, macOS, tvOS, and watchOS Will Remain Separate
Operating Systems���700

Will iOS Become Truly Multiuser���701

Changes in Chipsets���702

You’re Just Not an “Enterprise” Company��704

Apple Is a Privacy Company���705

Summary���706

Appendix A: The Apple Ecosystem��707

Antivirus���707

Automation Tools��708

Backup���709

Collaboration Suites and File Sharing��710

CRM���711

Table of ContentsTable of Contents

xiv

DEP Splash Screens and Help Menus��712

Development Tools, IDEs, and Text Manipulators���712

Digital Signage and Kiosks��715

Directory Services and Authentication Tools��715

Identity Management���716

Imaging and Configuration Tools��717

Log Collection and Analysis���718

Management Suites���718

Misc���720

Point of Sale���721

Print Servers��722

Remote Management���722

Security Tools���723

Service Desk Tools���724

Software Packaging and Package Management���725

Storage���726

Troubleshooting, Repair, and Service Tools��726

Virtualization and Emulation��729

Honorable Mention���730

Appendix B: Common Apple Ports���731

Appendix C: Managing NVRAM��747

Appendix D: Conferences, Helpful MacAdmins, and
User Groups���753

Index��763

Table of ContentsTable of Contents

xv

About the Authors

Charles Edge is the director of the Marketplace at Jamf. He holds 30 years

of experience as a developer, administrator, network architect, product

manager, and CTO. He is the author of 20 books and more than 6,000 blog

posts on technology and has served as an editor and author for many

publications. Charles also serves on the board of multiple companies and

conferences and frequently speaks at industry conferences around the

world, including DefCon, BlackHat, LinuxWorld, the Apple Worldwide

Developers Conference, and a number of Apple-focused conferences.

Charles is also the author of krypted.com and a cohost of the MacAdmins

Podcast. 

Rich Trouton has been doing Macintosh system and server administration

for 20 years and has supported Macs in a number of different

environments, including university, government, medical research,

advertising, and enterprise software development. His current position

is at SAP, where he works with the rest of the Apple CoE team to support

SAP's Apple community.

xvii

About the Technical Reviewer

Ahmed Bakir is an iOS author, teacher, and entrepreneur. He has worked

on over 30 mobile projects, ranging from advising start-ups to architecting

apps for Fortune 500 companies. In 2014, he published his first book,

Beginning iOS Media App Development, followed by the first edition of

Program the Internet of Things with Swift for iOS in 2016 and the second

edition in 2018. In 2015, he was invited to develop courses and teach iOS

development at UCSD Extension. He is currently building cool stuff in

Tokyo! You can find him online at devatelier.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__devatelier.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=qj2kV3YeVvYFJRhQbVEX2Qe9LDiqDawy3eVVBZGmsIU&s=hJOVN_9-ydAhQljXFrGtxdCoBdT1nAReRGsXgcs4pa0&e=

xix

Preface

Apple distributed 25 releases of the Mac operating system across 35 years.

And then came iPhone, iPad, and Apple TV. The success of the iPhone

and the unique challenges to manage mobile devices mean that new

paradigms in device management had to be established. This meant

the world of managing Apple devices had to change. That evolution was

inevitable, from the second the iPhone sales doubled those of the Mac and

has only gotten more and more clear.

That evolution in device management is now undeniable and

irreversible. The end result of that evolution is a fate not yet determined.

But change is afoot. This book is meant to codify those changes and

identify best practices.

�Who This Book Is For
Simply put, this book is for administrators of organizations that want to

integrate with the new Apple. Many an organization has started building

what’s next. And many complain about aspects of how they have to build

out infrastructure and services. But the world’s most valuable has shown

no desire to allow exceptions.

This book outlines what organizations need to achieve work effectively

with the Apple platform and includes not only infrastructure but a mode

of thinking that you have to adopt to find success, a mode of thinking that

forces you to leave 30 years of IT dogma at the door. And you can feel free

to complain, but the faster you embrace, the faster you find success with

the platform.

xx

This book is here to help you embrace the new style of management.

Because it’s not going anywhere.

�Chapters at a Glance
The chapters in this book provide guidance. This guidance is split up into

a number of chapters that provide insights for each larger theme of Apple

device management. Most will go through the philosophy and design of

the Apple device management story. Unless specified in the title, we work

to unify that management story across the operating systems, covering iOS,

macOS, and tvOS, noting the differences within each chapter.

�Chapter 1: The Evolution of Apple Device
Management
How did we get here? It helps to understand the history of how Apple

management has evolved in the past 20+ years. Understanding where we

have come from should make you more accepting of Apple’s choices and

help you better understand where Apple, third-party software vendors,

and the IT community are taking us. Chapter 1 provides the background to

get us started.

�Chapter 2: Agent-Based Management
There is no such thing as an agentless management solution. In this

chapter, we’ll look at management agents that do not include MDM, as

well as when you will need to use an agent as opposed to when to use

other options.

PrefacePreface

xxi

�Chapter 3: Profiles
A profile is a file that can be used to configure settings on a Mac or iOS

device. Once you can install a management solution, you can deploy those

profiles on a device or you can deploy profiles on Macs using scripts. We’ll

cover how to craft profiles and install them so you can get most necessary

settings on devices.

�Chapter 4: MDM Internals
What is Mobile Device Management and how does it work under the

hood? By understanding how MDM works, you will understand what

needs to happen on your networks in order to allow for MDM, as well as

the best way to give the least amount of access to the servers or services

that’s necessary.

�Chapter 5: iOS Provisioning
Covering how to prepare iOS, tvOS, and iPadOS devices for deployment,

including working with profiles, MDM, Apple Configurator, the App Store,

and other tools to set up these devices.

�Chapter 6: Mac Provisioning
Setting up Macs has been a bit of a moving target, starting with the end

of traditional imaging and the rise of zero-touch deployments using

DEP. This chapter covers how to provision Macs for deployment using a

variety of methods, including tools from both Apple and third parties.

PrefacePreface

xxii

�Chapter 7: Endpoint Encryption
Now that the Mac or iOS device has been set up, folks will start adding data

to them which needs to be protected. Encryption provides that protection

and this chapter covers how it works, how to enable it, and how to manage

it for all of your Apple devices.

�Chapter 8: Securing Your Fleet
An administrator can lock down devices so they’re completely secure.

By turning them off and smashing them with a hammer. Security is

table stakes in order to grow your device population. Every organization

has their own security posture, and so once you get settings and apps

on devices, we will take you through applying your security posture to

customize the settings on Apple devices.

�Chapter 9: A Culture of Automation and
Continual Testing
Deploying settings on devices without first testing those settings can cause

your coworkers to have no idea where things are on their devices, get

kicked off of networks, or many other things that will cause you to get coal

during your office Secret Santa. As you deploy more and more iterations

of systems, settings configurations, and software loads, you won’t be able

to manually test everything. In this chapter, we’ll work on getting standard

QA environments built out, so you can test without having to manually test

everything.

PrefacePreface

xxiii

�Chapter 10: Directory Services
Active Directory was once the bane of many a Mac Admin’s existence. But

in recent years, the problem of binding and existing in an Active Directory

environment has been mostly a nonissue. In fact, these days, the biggest

concern isn’t how but why, given that there is now a bevy of options for

dealing with Directory Services. In this chapter, we go through how to get

Macs to work with Active Directory and function as a first-class citizen on

predominantly Windows networks.

�Chapter 11: Customize the User Experience
You can’t cover device management without discussing one of the main

reasons why people actually want to manage devices: to make the lives of

their coworkers better. The book has thus far been about deployment and

the finer technical details. We’ll look at techniques and tools to leverage

some of the things you’ve learned how to do in order to into world class

support and enablement workflows.

�Chapter 12: Identity and Device Trust
Federated identities are important as they keep us from putting our

passwords over networks. This allows us to more easily access resources

on networks and be more secure at the same time. What can be better? In

this chapter, we cover common federated identity solutions and how to

leverage them in new ways.

PrefacePreface

xxiv

�Chapter 13: The Future of Apple Device
Management
By this point, you’ve likely stopped caring and just want the authors to

wrap it up already. We get that. But in case you’re still reading, you’ll

find a little prognostication for things to consider future-proofing your

deployments.

�Think Different
How cliché can we be? Obviously very. But there’s an important concept

that needs to be addressed, and that’s attitude. Apple is forging their own

path in IT. They trade spots with Amazon, Google, and Microsoft as the

wealthiest company to ever exist. And they will not be constrained by 30 or

more years of dogma in the IT industry. Or at least that’s the way they often

portray their perspective on the industry.

As you’ll see in Chapter 1, Apple is actually going about mass device

management in much the same way it has since the 1980s. The screens

look similar, the options look similar, sometimes with the same words.

But due to the private data on systems and the ease of identity theft,

there’s much more a focus on end-user privacy. Still, Apple devices aren’t

Windows devices. But they are increasingly sharing a code base, and this

has led to more similar management techniques than ever before.

The most important thing to consider is you want to try to shoehorn

Apple devices into outdated modes of device management or whether you

are ready to embrace Apple’s stance on management. If you aren’t ready

to embrace the Apple way, then you might not be ready to manage Apple

devices.

PrefacePreface

1© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_1

CHAPTER 1

The Evolution
of Apple Device
Management
Once upon a time, in a land far, far away, the Mac existed in a vacuum.

Unmanaged and left behind in the grand scheme of the corporate

enterprise, it was at best overlooked by Windows-centric IT departments

and, at worst, marked for retirement and removal. In those times, it was

common to see a Mac network running as a silo, often with a dedicated

cable modem for Internet access and sometimes even with a dedicated

mail server to support the creatives. And yes, it was pretty much

exclusively creatives.

The platform seemed to be dying, as Apple’s sales slumped and

Microsoft’s offerings dominated the consumer and enterprise markets.

Gradually, deployments of Apple equipment shrank to small workgroups

with one exception: education.

Schools around the world continued to embrace the Apple platform

throughout the tough times at Apple. During those times, anyone with

large-scale Apple management experience was almost certainly working

in a school or for a school district. But everything started changing with

the advent of the iPhone. Suddenly enterprises were looking to education

for guidance on how to deploy large numbers of Apple devices, CIOs were

2

asking their IT departments why IT wasn’t supporting the CEO’s new

MacBook Air, staff at some schools started moving into large companies,

and some of the requirements we faced started to change.

The more things change, the more they stay the same, but not
exactly. When Apple asked me to take over updating the
Directory Services course and book, we used Mac OS X Server
to keep management, identity, and authorization settings in
the same place: Open Directory. But most wanted to leverage
identity and authorization stored in another directory (LDAP
or Active Directory). Then it seemed like no one cared about
Directory Services any more and the focus was on moving
from directory-based management (Workgroup Manager) to
MDM. Now we’re learning more about integrating MDM solu-
tions with various 3rd party Identity Providers (IdPs). The fun
part of this job is trying to figure out... What’s next?

—Arek Dreyer, Dreyer Network Consultants and the author
of several books on macOS and macOS Server

There are about as many reasons for this change as there are Apple

fans. But the change is not deniable. The rise of Apple in the enterprise

and the growth has led to a number of innovations from Apple. The

management story completely changed with the advent of Mac OS X, now

called macOS. But it started long before that.

In this chapter, we’ll look at this management story – beginning in the

dark ages, through the Renaissance that was the emergence of Mac OS X

rising like a phoenix from the ashes of NeXT and into the modern era of

macOS and iOS management, starting with the Apple II.

�The Classic Mac Operating System
The Apple II was released in June of 1977 and changed the world. It

was really the first mass-produced and therefore actually accessible

computer. Back then, if environments had more than one computer,

Chapter 1 The Evolution of Apple Device Management

3

device management involved walking around with floppy disks that were

used to boot the computer. Large-scale device management didn’t become

a thing until much, much later.

The Macintosh was released in 1984, marking the first rung of the

upward climb to where we are today. We didn’t want to cover Apple

device management at every step from the Apple II and on. Mostly

because we can’t find too many people who can recall actual facts from

that time frame and there was really nothing worth talking about in the

mid-2000s. Between Apple’s System 6 to Mac OS 9 operating systems,

Mac management over the network often used the AppleTalk network

protocol (which was released in 1985 but only went away in 10.6 in 2009)

instead of TCP/IP. In addition to being unsupported by any other platform,

AppleTalk’s methods of network communication were viewed by many

as being unnecessarily “chatty.” This, other Apple-specific characteristic,

and the difficulty of managing Apple devices using Microsoft management

tools led to the opinion that many old timer IT execs still have today:

“Apple devices don’t play nice on corporate networks.”

�Network Protocols
We still get questions about whether or not Apple devices will cause

problems on modern networks. If an Apple device can hurt a network,

then the network sucks. So, we can dispel that rumor now. But it is true

that once upon a time, Apple devices could spew AppleTalk traffic on the

network that caused packet storms or other problems. But then, so could

IPX or NetBIOS, which were initially released in 1983.

Networking was initially built into the Lisa in 1983 in the form of

AppleNet. AppleNet was replaced by AppleTalk in 1985 and Apple finally

dropped support for AppleTalk in 2009, although it had not been used

much since the introduction of Mac OS X. Apple was able to join TCP/IP

networks in 1988 with the release of MacTCP, giving access to most types of

devices that a Mac would connect with.

Chapter 1 The Evolution of Apple Device Management

4

Before Mac OS X, the Chooser was a tool used to connect to network

file servers and printers. Shown in Figure 1-1, the Chooser would scan the

network for AppleTalk devices and display them, allowing you to choose a

device to mount. Because networks were growing and discovery protocols

didn’t always find devices on the network, you could also define an IP

address to connect to if the host didn’t show up in the list – also useful

when connecting to other LANs or over a WAN.

With the advent of Mac OS X in 2001, the Chooser was replaced with

the Connect to Server option (Figure 1-2), which had everything required

to connect to file servers, WebDAV, and FTP servers available in most

standard TCP/IP environments. Apple added Rendezvous to Mac OS X

beginning in 2002, enabling Macs to find devices and services over TCP/

IP. Renamed to Bonjour in 2005, this zero-configuration technology

Figure 1-1.  The 1990s era Chooser

Chapter 1 The Evolution of Apple Device Management

5

uses mDNS (multicast Domain Name System) to allow you to locate

and connect to devices or services on networks with the same level of

convenience that AppleTalk offered.

The concerns about Apple on corporate networks were valid at

times. During the massive rollouts of Windows 95 and then Windows

98, many environments used Novell networks or left IPX/SPX enabled

on computers. NetBIOS, and later NetBEUI, were often enabled as well,

causing a lot of traffic going over older hubs. When you added AppleTalk

into that mix, there could legitimately be just too much traffic for the

network equipment of that era. Luckily, AppleTalk is long behind us.

Additionally, many switching environments started to ship with Spanning

Tree Protocol (STP) enabled during the 2000s. Macs could have issues with

Spanning Tree Protocol, especially if AppleTalk had not been disabled.

However, Mac OS X’s declining need for AppleTalk meant that disabling

AppleTalk on networks was already a best practice by the mid-2000s unless

backward compatibility with old hardware was necessary.

Given that we had networking on the platform, larger environments

naturally looked toward being able to manage devices over that network.

Figure 1-2.  The Connect to Server Dialog

Chapter 1 The Evolution of Apple Device Management

6

�Early Device Management
Devices weren’t managed as intricately back then, though. Not only

were the network protocols different, but the technology stack was wildly

different; there weren’t nearly as many devices being managed from a

central location, and we didn’t have 30–40 years of IT wisdom on how

to make the lives better for our coworkers, students, or even ourselves.

Maybe you managed extensions (as Desk Accessories) using Font/DA

Mover or launchers. This allowed you to install fonts and things like

screensavers – but Apple-provided tools for centralized management of

Macintosh settings by and large weren’t available up until the 1990s.

Then came Apple’s At Ease. At Ease was an alternative desktop

environment released for System 7 in 1991, which provided a simplified

desktop environment for multiple users to use and share files;

functionality not otherwise supported in the Mac at that time. But as At

Ease evolved, Apple also released At Ease for Workgroups. This new tool

provided client configuration options and a restricted Finder mode, as

well as a home folder that could be stored on an AppleShare IP Server and

with eMate the ability to Hand In homework for classes (Figure 1-3). That

restricted Finder mode would later evolve into a multi-user operating

system environment in Mac OS 9 and the Simple Finder, which is still

around today in modern macOS.

Chapter 1 The Evolution of Apple Device Management

7

The following are few important things to keep in mind as we progress

through the years:

•	 At one point, At Ease was a unified tool to manage

file shares, printers, settings on devices, and mobile

devices (the Newton).

•	 At Ease brought some semblance of multiple users, but

the actual operating system of the Mac didn’t interpret

those the way it does today.

•	 Many of the philosophies you can see in At Ease are still

the same even though the way those are implemented

on devices is now quite different, due to a shift from

Figure 1-3.  Handing In homework in a managed environment

Chapter 1 The Evolution of Apple Device Management

8

AppleTalk to Ethernet then wireless and then making

an assumption that devices are no longer on a Local

Area Network.

•	 eMate (Figure 1-4) was used to exchange data with

devices, including the Newton (when using Apple

Newton Works), making it the ancestor of Apple

Classroom (albeit less feature rich ancestor).

At Ease didn’t solve every problem for every use case. Another

important event from this era was the first wave of third-party device

management solutions. In August of 1991 (the same year the Internet was

born), netOctopus was launched at Macworld in Boston. This kicked off

an era of third-party tools that allowed organizations to manage Apple

devices. By 1993, when Filewave was released, Apple allowed and even

gave active thought to how to put things in places on Macs that gave us the

infancy of a centralized command and control. The same was happening in

Windows, where you could edit .ini files from a central location, and we saw

Figure 1-4.  Settings for eMate management are similar to
Classroom settings

Chapter 1 The Evolution of Apple Device Management

9

the evolution of .zap files and similar formats (now .mst files) that could be

distributed from a central location in the upcoming Windows 95 era.

The next major third party to enter the picture was Thursby Software’s

DAVE, a file and printer sharing tool for the Mac, bridging the gap to

SMB/CIFS shares from Windows servers. Microsoft had an AFP server

called File Sharing Services for Mac, but it was never on par with what

was needed by most organizations. DAVE’s introduction in 1996 allowed

Macs in Microsoft-centric environments to connect to SMB file servers

and access files, which in turn meant that Macs didn’t need their own

platform-specific file servers in order to get useful work accomplished.

Thursby also helped address the gap to connect users to Active Directory

with ADmitMac, which allowed Macs to connect to and work like Windows

workstations with an Active Directory domain.

The computers of this era left a lot to be desired. The Macintosh II,

Macintosh LC, Macintosh Portable, PowerBook, Quadra, Performa, and

Centris are mostly overshadowed in organizations that actually need

centralized management by the onslaught that was one of the most

substantial technological revolutions in history, the PC era. But all that was

getting ready to change. Something was brewing.

�NeXT
Steve Jobs left Apple in 1985 and started his next company, aptly named

NeXT. The first NeXT computers shipped in 1988, with the NeXTSTEP

operating system becoming the core of what would later become Mac OS X

when Steve Jobs returned to Apple. Therefore, the management ecosystem

in NeXT set the tone for managing Macs for the next 18 years.

The most important thing that happened on a NeXT computer was

that the first web page was served on a NeXT computer by Tim Berners-

Lee in August 6, 1991, at the European Organization for Nuclear Research,

CERN. Oh, and Doom was developed on NeXT – which brought us into

Chapter 1 The Evolution of Apple Device Management

10

a whole new era of gaming. When Steve Jobs returned to Apple in 1997,

NeXT’s workstation technologies had matured enough that Apple could

begin replacing Mac OS 9 with Mac OS X (which would later evolve into

macOS). The NeXT had many obvious similarities to the Mac, as seen in

Figure 1-5.

As it pertains to the concept of device management, several important

things came from NeXT that would later influence the Mac and then

iOS. The most important is the object-oriented nature of NeXTSTEP and

the second is the development environment. Ironically, the Unix-derived

nature of OPENSTEP is what brought the Mac so far, so fast. And the

“open” components of the operating system actively being removed as

Figure 1-5.  NeXT (aka The Inbetween)

Chapter 1 The Evolution of Apple Device Management

11

large portions of open source code within the Mac are being removed as

well. Still, Darwin, Xcode, and parts of iOS are still hosted and regularly

updated on opensource.apple.com, and Webkit and Swift are successful

open source projects from Apple. However, Apple owns the licenses for

these and seems to be removing components that might result in future

legal implications.

Specific pieces of technology also emerged from NeXT, such as the

property list file type, which lays the foundation for all modern settings

management on the Mac. Objective-C, the Mach kernel, and the Dock

likewise surfaced as part of the NeXT acquisition. We also got the Electronic

AppWrapper (the predecessor to the App Store), Mail, Chess.app, TextEdit,

and most importantly, Workspace Manager, which seemed a bit like the

Mac OS 9 Finder and would later become the Finder for Mac OS X.

Another important and critical part of the evolution of the Mac

also began in the NeXT era. In 1991, NeXT started moving to the 80486

processor. At this point, there was no partnership between Apple and

Intel. But the NeXT move to the x86 architecture (Marklar) would usher

in an era of an Intel partnership, once Apple acquired NeXT and began

planning the introduction of the new operating system that lasts to this

day (although there was a crappy PowerPC chipset port in there during the

Rhapsody era). But moving an x86-based architecture did more than make

it easier for Apple to buy ready-built chips from Intel; it brought better

virtualization of Windows to the Mac and made those Directors of IT stop

and think Apple was playing nice and mayyyybe could be trusted to show

up on their networks.

�Mac + Unix = Mac OS X
Apple started integrating NeXT technologies with a new operating

system using the code name Rhapsody, with many of the tools we still

use today originating from this collaboration. The advent of Mac OS X

brought with it a more Unix-oriented management framework, replacing

Chapter 1 The Evolution of Apple Device Management

http://opensource.apple.com

12

the single-user model used by Mac OS 9 and earlier. Mac OS X brought a

true multiuser experience and the beginning of what would evolve into

management policies.

New policy-based management came in the form of Managed

Preferences, or MCX (Managed Computing for X). These are available

in /System/Library/CoreServices/ManagedClient.app. MCX allowed

administrators to pre-populate preferences domains or control the settings

applied in those keys, similar to how many administrators in a Windows

world were accustomed to doing using the registry in Windows and similar

to blocking access to Control Panels in At Ease. For many years, Managed

Preferences was the main way that you controlled settings on a Mac,

and this provided a framework that later tools could leverage to provide

centralized management of a Mac’s settings.

With policy controls available on a multiuser computer, the Mac

continued to iterate toward a first-class corporate citizen, adding smaller

flags to the dsconfigad command used to bind to Active Director and

adding DFS integration along the way. Additionally, standard LDAP

implementations, and the ability to natively connect to file shares was

bolstered with the ability to manage these from a centralized location.

The course of my professional life changed when we realized
that while Apple had provided a great tool in At Ease, but that
we could go further. Apple has always given customers a prod-
uct that can get the job done in isolated circumstances, but
often wants third party developers to step in and handle use
cases that aren't exactly what they have in mind. We saved
customers time and provided a better experience with netOc-
topus. Much the same way that modern deployments tend to
leverage one of the many third party products instead of
Apple's Profile Manager today.

— Martin Bestman, Founder of netOctopus

The Bondi Blue iMac was released in 1998, shortly after Steve Jobs

returned to Apple. This led to an explosion in the number of devices being

Chapter 1 The Evolution of Apple Device Management

13

managed in larger environments. Mac Admins soon began to leverage the

second major wave of third-party Apple device management solutions.

These built on the frameworks that came to the Mac from NeXT which still

managed the way things appeared on a Mac but went further and allowed

for software packages (.pkgs) and centrally managed preference files.

After a few years using these techniques, 2002 saw the first major open

source project for managing Macs – Radmind came out of the University

of Michigan. And the introduction of the Casper Suite 1.0, which would

evolve into what’s now known as Jamf Pro.

At this point, device management was mostly about putting packages

or similar data constructs onto devices, as you can see in Figure 1-6, which

shows Casper 1.0’s package screen.

Figure 1-6.  The Casper Admin Console from the Casper 1.0 User’s
Guide

Chapter 1 The Evolution of Apple Device Management

14

These worked by putting an agent (or daemon usually) on devices.

That agent then talked back to a central server to pull commands or

configurations down to devices. Filewave and Radmind took a more

file-based approach, where they were dropping a set of files in place on a

filesystem in order to bring about a change on a system. NetOctopus and

Jamf used native Apple technologies, including software packages (pkgs),

to make changes on devices instead.

Later, Apple started to look at agentless technology, which we’ll look

at further later in this chapter when we start talking about MDM. But

packages could (and still can) be used to configure settings, install

software, and another of other tasks. PackageMaker itself was removed

from the operating system in 2015, although it could still be installed

through Xcode if needed.

When we launched the first version of FileWave in 1992, end-
point management was in its infancy, and was still very frag-
mented. Most of the tools on the market were specialized,
point solutions (like the old Timbuktu Remote Control.)
FileWave may be the only tool left standing from those days,
and I think the reason is that we’ve continued to evolve. We’ve
grown along with Apple to support modern apps, MDM, and
every new OS version, but we’ve also added management of
Windows and Google operating systems, recognizing that very
few organizations have the luxury of limiting endpoints to a
single OS.

—Nurdan Eris, CEO of Filewave

By 2008, the understanding of the community had matured to the

point that agent-based management was maturing to be on-par with what

was available for Windows systems using tools like Altiris. In fact, Altiris

and other Windows management solutions had agents available for the

Mac. Tools with a stronger focus on Apple, such as FileWave, Jamf, and

LANrev, could manage Macs as first-class citizens on corporate networks.

Chapter 1 The Evolution of Apple Device Management

15

In 2008, Greg Neagle began to work on an open source agent for Mac

management called Munki. The first public code commits came in early

2009, opening the way for an open source alternative to Mac management.

The use of Munki has grown over the years, making management

accessible to a number of environments that previously couldn’t afford it

or who needed more customizable workflows than those available with the

third-party solutions. With the advent of MDM, which we’ll discover later

in this chapter, Munki also played a pivotal role in providing agent-based

options for environments that are also using MDM. But most importantly,

Munki brought an almost DevOps style focus to Apple administration,

allowing many administrators to manage Macs in much the same way they

manage code.

These days, we tend to think of management as policy-driven

management to achieve a certain amount of idempotency on Apple

devices or the known state that we think a device is in. But the first

management tasks were controlling the way a system looked and the

experience a user had to access the applications and data they needed.

We kind of lost our way for a while looking for ways to make our jobs

easier, but since the advent of iOS have started to rediscover that goal

of improving the user experience, not controlling it. The less we can

change on the operating system, the more we know the state a device is

in. Therefore, while there’s still a gap in understanding the exact state of a

device, we now have a good ecosystem that allows us to enforce policies

that don’t destroy the experience Apple crafts for devices.

�Server
Apple has had a server product from 1987 to today. At Ease had some file

and print sharing options. But the old AppleShare (later called AppleShare

IP, shown in Figure 1-7) server was primarily used to provide network

resources to the Mac from 1986 to 2000, with file sharing being the main

Chapter 1 The Evolution of Apple Device Management

16

service offered. Apple also took a stab at early server hardware in the

form of the Apple Network Server, which was a PowerPC server sold from

1996 to 1997 that ran the AIX operating system. AppleShare IP worked up

until 9.2.2. In an era before, as an example, you needed to require SMTP

authentication, AppleShare IP was easily used for everything from file

sharing services to mail services. An older Quadra made for a great mail

server so your company could stop paying an ISP for some weird email

address and get your own domain in 1999!

Meanwhile, serving services was a central need for NeXTSTEP and

OPENSTEP systems. The UNIX underpinnings made it possible to compile

a number of open source software packages, and as mentioned earlier in

Figure 1-7.  Early Apple Servers were pretty easy to manage

Chapter 1 The Evolution of Apple Device Management

17

this chapter, the first web server was hosted on a NeXTcube. During the

transition over to Apple, AppleShare IP and services from NeXT were made

to look and feel similar and turned into Mac OS X Server.

The first few releases of Mac OS X Server represented a learning

curve for many classic Apple admins and in fact caused a generational

shift in who administered the systems. John Welch wrote books in 2000

and 2002 that helped administrators get up to speed. The Xserve was

released in 2002 and the Xserve RAID was released in 2003. It took time,

but a community began to form around these products. The late Michael

Bartosh compiled a seminal work in Essential Mac OS X Panther Server

Administration for O’Reilly Media in 2005. Charles Edge (coauthor of this

book) released The Mac Tiger Server Little Black Book in 2006.

Up until this point, Apple never publicly acknowledged that businesses

or enterprises used their device, so the rise of the Xserve advertising was

the first time we saw that acknowledgement. Apple continued to improve

the product with new services up until 2009 with Mac OS X Server 10.6. At

this point, Apple included most services necessary for running a standard

IT department in the product, including the Web (in the form of Apache),

mail, groupware, DHCP, DNS, directory services, file sharing, and even

web and wiki services. There were also edge case services such as Podcast

Producer for automating video and content workflows; Xsan, a clustered

file system; and in 2009 even purchased a company called Artbox, whose

product was rebranded as Final Cut Server.

But that was a turning point. As you can see in Table 1-1, around

that same time, Apple had been working toward the iPad, released in

2010 (although arguably the Knowledge Navigator was the first iteration,

conceptualized in 1987). The skyrocketing sales of the iPhone led to some

tough decisions. Apple no longer needed to control the whole ecosystem

with their server product and instead began transitioning as many teams

as possible to work on higher profit margin areas, reducing focus on areas

that took attention away from valuable software developers who were

trying to solve problems many other vendors had already solved better.

Chapter 1 The Evolution of Apple Device Management

18

Ta
bl

e
1-

1.
 m

ac
O

S
Se

rv
er

 is
 n

ow
 u

se
d

to
 h

os
t f

ar
 fe

w
er

 s
er

vi
ce

s
th

an
 it

 o
n

ce
 d

id

10
.3

10
.4

10
.5

10
.6

10
.7

10
.8

10
.9

10
.1

10
.1

1
10

.1
2

10
.1

3

20
03

20
05

20
07

20
09

20
11

20
12

20
13

20
14

20
15

20
16

20
17

15
19

24
24

22
18

21
21

21
21

14

AFP

AFP

AFP

AFP

AFP

AFP

AFP

AFP

AFP

AFP

NF
S

NF
S

NF
S

NF
S

NF
S

NF
S

NF
S

NF
S

NF
S

NF
S

W
eb

W
eb

W
eb

W
eb

W
eb

W
eb

si
te

s
W

eb
si

te
s

W
eb

si
te

s
W

eb
si

te
s

W
eb

si
te

s
W

eb
si

te
s

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Op
en

Di
re

ct
or

y

Ne
tB

oo
t

Ne
tB

oo
t

Ne
tB

oo
t

Ne
tB

oo
t

Ne
tB

oo
t

Ne
tIn

st
al

l
Ne

tIn
st

al
l

Ne
tIn

st
al

l
Ne

tIn
st

al
l

Ne
tIn

st
al

l
Ne

tIn
st

al
l

FTP

FTP

FTP

FTP

FTP

FTP

FTP

FTP

FTP

FTP

W
in

do
w

s
W

in
do

w
s

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DN
S

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

DH
CP

VPN

VPN

VPN

VPN

VPN

VPN

VPN

VPN

VPN

VPN

VPN

(c
on

ti
n

u
ed

)

Chapter 1 The Evolution of Apple Device Management

19

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te
s

So
ftw

ar
e

Up
da

te

iC
ha

t
iC

ha
t

iC
ha

t
iC

ha
t

M
es

sa
ge

s
M

es
sa

ge
s

M
es

sa
ge

s
M

es
sa

ge
s

M
es

sa
ge

s
M

es
sa

ge
s

iC
al

iC
al

iC
al

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i

Ad
dr

es
s

Bo
ok

Ad
dr

es
s

Bo
ok

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Ti
m

e

M
ac

hi
ne

Ti
m

e

M
ac

hi
ne

Ti
m

e

M
ac

hi
ne

Ti
m

e

M
ac

hi
ne

Ti
m

e

M
ac

hi
ne

Ti
m

e

M
ac

hi
ne

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Pr
of

ile

M
an

ag
er

Xs
an

Xs
an

Xs
an

Xs
an

Xs
an

Xs
an

Ca
ch

in
g

Ca
ch

in
g

Ca
ch

in
g

Ca
ch

in
g

Xc
od

e
Xc

od
e

Xc
od

e
Xc

od
e

W
eb

Ob
je

ct
s

W
eb

Ob
je

ct
s

(c
on

ti
n

u
ed

)

Chapter 1 The Evolution of Apple Device Management

20

Ta
bl

e
1-

1.
 (

co
n

ti
n

u
ed

)

Ap
pl

ic
at

io
n

Se
rv

er

Ap
pl

ic
at

io
n

Se
rv

er

To
m

ca
t

To
m

ca
t

Pr
in

t
Pr

in
t

Pr
in

t
Pr

in
t

QT
SS

QT
SS

QT
SS

QT
SS

NAT

NAT

NAT

NAT

NAT

Xg
rid

Xg
rid

Xg
rid

Xg
rid

RA
DIU

S
RA

DIU
S

RA
DIU

S

Po
dc

as
t

Po
dc

as
t

Po
dc

as
t

M
ob

ile

Ac
ce

ss

M
yS

QL

Chapter 1 The Evolution of Apple Device Management

21

In 2009, the Xserve RAID was discontinued and the Xserve went away the

following year. The next few years saw services slowly peeled off the server.

Today, the Mac OS X Server product has been migrated to just an app on

the App Store, as you can see in Figure 1-8. Today, macOS Server is meant to

run Profile Manager and be run as a metadata controller for Xsan, Apple’s

clustered file system. Products that used to compete with the platform are now

embraced by most in the community. For the most part, this is because Apple

let Microsoft or Linux-based systems own the market for providing features

that are often unique to each enterprise and not about delighting end users.

Today, building server products that try to do everything for everyone

seems like a distant memory for many at Apple. But there is still a keen eye

toward making the lives of Apple devices better. This can be seen by the

Caching service built into macOS (moved there from macOS Server) and

how some products, such as Apple Remote Desktop, are still very much

alive and kicking.

Figure 1-8.  The simplified macOS Server app

Chapter 1 The Evolution of Apple Device Management

22

�Apple Remote Desktop
By 1997, the Apple Network Administrator Toolkit, which was used to install

At Ease, also came with the Apple Network Assistant. Shown in Figure 1-9,

the Apple Network Assistant will look very similar to modern Mac Admins.

You could remotely control the screen of a Mac, lock screens, share your

screen, copy files, remotely open apps, send messages to the desktop, and

perform other basic network administrative tasks over an AppleTalk network.

After the advent of Mac OS X, Apple released a new tool called Remote

Desktop in 2002. Remote Desktop, which is still available on the Mac

App Store today, allows administrators to take over the desktop of client

systems, send shell scripts to Mac clients, and perform a number of other

tasks that are useful for point-in-time management. Remote Desktop

Figure 1-9.  Network Assistant, the ancestor of Apple Remote Desktop

Chapter 1 The Evolution of Apple Device Management

23

also works well when used in conjunction with these other tools as those

are mostly used for imaging, software configuration management, and

deployment. Most of the functionality from Apple Network Assistant was

brought into Apple Remote Desktop, and a new ARD protocol was built to

facilitate finding and controlling clients over UDP.

Apple’s Remote Desktop allowed administrators to control
Macs and send scripts to devices. This was great for a lot of
environments and well priced! As organizations grew and their
needs matured, ARD made it easy to transition into more tradi-
tional management solutions because the packages and scripts
were great foundational technologies we could build on.

—Chip Pearson, Co-Founder, Jamf Software
By 2004, it was clear that there were some better options than a UDP-

based protocol to perform screen control. Apple Remote Desktop 2 was

built on top of VNC but does much more. It also comes with a task server,

so it can queue up commands to be sent out. While Remote Desktop was

best for making a specific immediate change or action on a computer, it

also provides a great entry point into using management tools and testing

unattended installations.

Now on Version 3.9 (Figure 1-10), Apple Remote Desktop has gone

through a number of different places in the Apple ecosystem. Management

commands have transitioned to APNs-based workflows for other products

and Apple Remote Desktop only allows connectivity over a LAN unless you

open ports to control devices from incoming WAN connections. Other tools

such as Bomgar, TeamViewer, GoToMy PC, Splashtop, ISL, and a host of

other solutions can do this; it’s no surprise that Apple hasn’t made such a

large investment into a refactor for a product that now costs $79.99 on the

Mac App Store and has only 1.7 star out of 5 star ratings. Furthermore, Apple

Remote Desktop gets away from a slightly more modern way of thinking at

Apple: users should explicitly approve any invasion into their privacy.

Chapter 1 The Evolution of Apple Device Management

24

�Ecosystem Coexistence
With the release of a more modern and flexible operating system, Apple

brought us multiple users. And multiple users brought us the ability to

have one of those users be sourced from a directory services account.

These accounts then gave users the ability to log into their local computer

with the same password used on servers to access their mail and other

services provided by an organization.

You could also get policy data via directory services in the form of an

extended Active Directory schema that contained MCX data, which is

much easier to manage en masse than the local MCX referenced earlier.

Not all organizations could extend their schemas (have you ever met an

Figure 1-10.  Apple Remote Desktop still has much of the
functionality from Network Assistant

Chapter 1 The Evolution of Apple Device Management

25

Active Directory administrator that wants to extend their schema?!?!), and

so techniques were also developed to bind client computers to both Active

Directory and Apple’s Open Directory and allow users and groups to be

nested inside Open Directory in order to deploy Managed Preferences to

clients without extending the Active Directory schema. This was known as

the Magic Triangle.

We mentioned ADmitMac earlier, but another option, Centrify, a

more centrally managed solution to help deliver policies to the Mac, was

introduced in 2005. Centrify has since focused much of their efforts to

be an Identity Provider (IdP). Quest Authentication Services was also

introduced to solve making deployment of policies easier; but the easier

Apple made the technology, the less each of those solutions was needed,

and by 2011 they had all but fizzled out. The policies were always a tough

sell to IT departments (even though many had extended their schema

dozens of times). Environments that weren’t willing to extend schemas

typically also weren’t willing to add Apple servers for a supplemental

directory service. In the past few releases of macOS, MCX has slowly been

deprecated in favor of profile-based management, which evolved from

rethinking policy-based management for iOS.

Apple's MCX was a powerful and flexible way for admins to
manage the settings of Apple and third party software. Apple's
preferred replacement, configuration profiles, lacks some of
the flexibility present in MCX. Many of us hoped that over
time, Apple would add the missing features back into configu-
ration profiles, but that seems unlikely now. Back to badly
written shell scripts!

—Greg Neagle, Creator of Munki and co-author of Enterprise
Mac Managed Preferences, from Apress

Where many an Apple admin’s job was once managing servers,

today those have moved to managing the states of devices, first with

directory services and MCX and then toward more modern management

Chapter 1 The Evolution of Apple Device Management

26

techniques, such as the ones introduced to aid admins in managing

iPhones and iPads. This is where profiles enter into the picture, which

cover a lot of needs of an administrator, but not all.

�iOS Device Management
The Mac was growing its presence in the enterprise, but another big

change was coming. This time, rather than try to work within the confines

of corporate dogma surrounding how the business of IT was done, Apple

would start to go their own way. This was made possible by the increasing

dominance of the iPhone accessing Exchange servers and the fact that

suddenly employees were showing up with these things and using them

at work. Suddenly, companies needed to manage the OS that ships on

iPhone, iOS.

The original iPhone was released in 2007, and iOS management

initially occurred manually through iTunes. You could drag an app onto

a device and the app would be sent to the phone over the USB cable, and

some settings were exposed to iTunes. Back then, you had to register an

iOS device with Apple by plugging it into iTunes in order to use it. You

could also backup and restore a device using iTunes, which came with

some specific challenges, such as the account you used to buy an app

would follow the “image” to the new device. Additionally, if the backup

was encrypted or not determined, what was stored in the backup and

some information might have to be reentered.

This led to profiles. Profiles were created using a tool called the iPhone

Configuration Utility, released in 2008. A Profile is a small xml file that

applies a given configuration onto an iOS device. This was necessary because

developers wanted to control what could be done on iOS devices. One of

those configurations was the ability to install an app over-the-air that was

hosted on an organization’s own web server, provided the .ipa mime type on

the web server was defined. This basically mirrored what the App Store was

Chapter 1 The Evolution of Apple Device Management

27

doing and paved the way for internal app stores and profiles that were hosted

on servers, both of which could be installed using in-house app stores.

Profiles were a huge paradigm shift. Instead of growing a
library of scripts that customers needed to learn, modify, and
deploy, profiles allowed us to start moving in a unified direc-
tion for configuring settings across the OS and applications,
on both iOS and macOS. I think it's representative of why
adoption of Apple has been so strong: they are able to re-
architect major aspects of the platform relatively quickly,
which allows them to remove barriers to adoption rapidly.

—Zach Halmstad, Co-Founder, Jamf

iPhone OS 3.1, released in 2009, came with the mail client in iOS

reading and respecting any Exchange ActiveSync (EAS) policies. These

were policies configured on an Exchange server that were read by clients

that then gave the institution control on the ability to limit various

features of the device, such as restricting the use of the camera or forcing

a password to be used to wake a device up. EAS policies had been

introduced by Microsoft in 2005, as part of the Exchange 2003 SP2 release,

but had mostly been used to manage Windows Mobile devices.

At this point, Apple was getting some larger deployments, and it

quickly became clear that plugging devices into iTunes and waiting for

long restores in a monolithic imaging kind of way was just not going

to work. The first iteration of iOS device management techniques that

survives to this day brought profiles. But the success of the iPhone 4 in

2010 and the iPhone 4s in 2011 meant we needed better tooling than

using iTunes to restore devices and iPhone Configuration Utility to apply

profiles. In 2012, the ability to create profiles and apply them to devices

was moved into a new tool called Apple Configurator, which is still used

today for building custom profiles.

Apple Configurator could do a lot more than install profiles, though.

Apple Configurator also brought the ability to back up, restore, and

install apps using Volume Purchase codes from the App Store. You

Chapter 1 The Evolution of Apple Device Management

28

could also build complex workflows to do all of these by plugging an

iOS device in just once. And these days, the most important thing Apple

Configurator can do is automatically enroll an iOS device into a Mobile

Device Management solution.

�Mobile Device Management
Apple Push Notifications were introduced in 2009, and MDM was built on

top of that the following year. MDM, short for Mobile Device Management,

was introduced in 2010, along with iOS 4. Initially MDM was used to

manage profiles on iOS, thus why Apple called their MDM service in

macOS Server Profile Manager. In addition to managing profiles, three

actions were supported in that original release: locate, lock, and wipe.

Since the initial release, MDM capabilities have grown over the years,

as shown in Table 1-2. Each update brings more into MDM and means

device administrators have to script and perform custom workflows to

manage various features.

Table 1-2.  MDM capabilities by OS, per year

iOS
Version

macOS
Version

Year New Capabilities

4 N/A 2010 Volume Purchase Program (VPP), Mobile Device

Management (MDM), MDM for the Mac

5 10.7 2011 Over-the-air OS Updates, Siri management,

disable iCloud backup

6 10.8 2012 APIs for third-party developers, Managed Open In,

Device Supervision

7 10.9 2013 TouchID management, Activation Lock bypass,

Managed App Config

(continued)

Chapter 1 The Evolution of Apple Device Management

29

Apple continues to evolve the device management toolset made

available through MDM, sometimes causing traditional agent-based

management to deprecate features that tapped into then unsupported

areas of the filesystem. At the same time, the original programs had too

many acronyms and were too disconnected and therefore much more

difficult to access for new administrators of the ecosystem, who continue

to flood in more rapidly than ever.

Table 1-2.  (continued)

iOS
Version

macOS
Version

Year New Capabilities

8 10.10 2014 Device Enrollment Program, Apple Configuration

enrollments

9 10.11 2015 Device-based VPP, B2B App Store, supervision

reminders, enable and disable apps, home screen

control, kiosk mode/app lock

10 10.12 2016 Restart device, shut down device, Lost Mode, APFS

11 10.13 2017 Classroom 2.0 management, Managed FaceID

management, AirPrint. Add devices to DEP, QR

code-based enrollment with some MDMs, User-

Approved Kernel Extension Loading for Mac, user

approval of MDM enrollment for Mac

12 10.14 2018 Apple Business Manager, OAuth for managed

Exchange accounts, managed tvOS app

installation, password auto-fill restrictions

13 2019 Content Caching configuration, Bluetooth

management, autonomous single app mode,

OS update deferral, automatic renewal of Active

Directory certificates

Chapter 1 The Evolution of Apple Device Management

30

�Apple Device Management Programs
The App Store is arguably the reason that iOS is so popular. Need we say

more than “there’s an app for that”? The App Store deputed in 2008, the

day before the iPhone 3G was released. It was an immediate success, and

while it launched with 500 apps, that number has grown to well over 2

million now.

The App Store has created a cultural shift in how people use

computers. Need an app to manage HR operations? There’s an app for

that. Need an app to look up CIDR tables? There’s an app for that. Need

an app that lets you make fart sounds? Obviously that was one of the first

apps. Businesses and schools started using these devices at scale. But

there was a gap: in order to get apps to users, you had to install them as

an App Store user that kept users from using their own accounts, or you

had to distribute gift cards which came with tons of legal and accounting

problems, as these apps were basically gifted to personal accounts.

As with all things, large customers wanted a way to buy apps en masse,

and so the Volume Purchase Program (VPP) came to the App Store in 2010,

allowing customers to purchase apps in bulk. The VPP initially involved

basically creating large tables of gift codes that were doled out to users,

which could be done through Apple Configurator with a fancy spreadsheet.

The VPP evolved over the years, first adding the ability to revoke

codes and then the ability to assign apps over-the-air through, which still

required a user to associate their personal Apple ID to an organization

(although apps were revocable so it could be reclaimed when employees

left an organization). The VPP also started being managed over-the-air

using a Mobile Device Management solution. The more recent

enhancements have included a B2B app store, which has apps that aren’t

publicly available and device-based VPP, which ties apps to devices

enrolled into an MDM through the DEP to a given organization.

The Device Enrollment Program (DEP) was launched in 2014.

Organizations need to either be a school or have a DUNS number from

Chapter 1 The Evolution of Apple Device Management

31

Dun & Bradstreet (in order to prove they are a legitimate company).

Enrollment via DEP proves that an organization owns a device, and so

Apple provides special management features that allow greater control by

a centralized device management solution, such as the ability to force a

device background or the ability to skip the confirmation screen before an

app is being deployed on a device. In 2018, recognizing that some devices

weren’t a part of DEP for various reasons, Apple also added the ability to

enroll iOS devices into DEP through Apple Configurator.

All of these acronyms can provide unnecessary friction to learning to

work with Apple. Therefore, Apple School Manager (ASM) was released

in 2016, which also added the Classroom app into the mix. ASM provides

a single portal for managing these Apple services as well as a means of

managing classroom rosters. This is really a means to make it easier to find

the things you need when setting up MDM services.

Apple Business Manager was released in 2018, bringing all of the

ASM options applicable to businesses into a new program. As with ASM,

organizations now have a single location to obtain VPP tokens and assign

servers for DEP-based devices associated with a given account.

�Enterprise Mobility
The first real mobile management solution to gain traction was SOTI,

which launched in 2001 with an eye toward leveraging automation using

mobile devices and got into device management when those options

started to emerge. More and more IT departments wanted “over-the-air”

management, or OTA management. So AirWatch, founded by John

Marshall in 2003 as Wandering Wi-Fi, was the first truly multi-platform

device management solution that included iOS device management.

During that same time frame, Jamf, Afaria (by SAP), and MobileIron,

founded by Ajay Mishra and Suresh Batchu, in 2007, were also building

similar OTA profile delivery techniques leveraging the original MDM spec.

Chapter 1 The Evolution of Apple Device Management

32

At this point, most OTA management tasks (such as issuing a remote

wipe or disabling basic features of devices) were done using Exchange

ActiveSync (EAS). As you can see in Figure 1-11, you could control basic

password policies as well as some rudimentary devices settings such as

disabling the camera. With this in mind, Apple began to write the initial

MDM specifications, paving the way for an entire IT industry segment to

be born.

Figure 1-11.  Exchange ActiveSync Policies

Chapter 1 The Evolution of Apple Device Management

33

This was the landscape when the first edition of the Enterprise iPhone

and iPad Administrator’s Guide was released by Apress in 2010. Additional

MDM solutions were soon to follow. TARMAC released MDM for iOS

devices using a server running on a Mac in late 2011. AppBlade and Excitor

was also released in 2011.

Over the course of the next 10+ years, MDM became one part of a

number of other lovely acronyms:

•	 Mobile Content Management, or MCM, is a system of

distributing content to mobile devices.

•	 Mobile Identity Management, or MIM, refers to a

centralized identity provider hosting SAML or OAuth

services.

•	 Enterprise Mobility Management, or EMM, gets more

into managing apps and content that gets put on devices.

•	 Unified Endpoint Management, or UEM, brings

traditional laptops and then desktops into the

management feature, merging EMM with traditional

device management.

A pivotal moment for Apple device management came in 2011, when

Blackberry announced that you would be able to manage Apple devices

with their Blackberry Enterprise Server (BES), which had been created

in 1999 to manage Blackberry devices. This represented a legitimization

of sorts for Apple mobile devices in enterprise environments and also

an opportunistic play for licensing due to the fact that the devices were

becoming such a mainstay in the enterprise and a shift toward UEM

that would continue until 2018, when BlackBerry Enterprise Server was

renamed to BlackBerry Unified Endpoint Manager.

An explosion of MDM providers has occurred since Blackberry

added Apple to their platform, to keep up with the demand of the

market. Filewave and LANrev added MDM to their products in 2011

with new iOS vendors NotifyMDM and SOTI entering into the Apple

Chapter 1 The Evolution of Apple Device Management

34

Device Management family. Then Amtel MDM, AppTrack, Codeproof,

Kony, ManageEngine (a part of Zoho corporation), OurPact, Parallels,

PUSHMANAGER, ProMDM, SimpleMDM, Sophos Mobile Control, and

Tangoe MDM were released in 2012. MaaS360 was acquired by IBM in

2013, the same year auralis, CREA MDM, FancyFon Mobility Center

(FAMOC), Hexnode, Lightspeed, and Relution were released and when

Endpoint Protector added MDM to their security products. Citrix also

acquired Zenprise in 2013 to introduce XenMobile. Jamf Now (originally

called Bushel), Miradore, Mosyle, and ZuluDesk (acquired by Jamf in 2018

and being rebranded to Jamf School) were released in 2014, which also saw

VMware acquire AirWatch for $1.54 billion dollars and Good Technology

acquire BoxTone, beefing up their Apple device management capabilities.

The year 2014 also saw Microsoft extend Intune to manage iOS devices.

Working every day to boost our users' experiences with the most
powerful, intuitive and elegant devices is amazing. As an Apple-
only MDM provider, we have the joy of working every day with
the most innovative company in the world and with the most
advanced customers in the market. It's all about working 24x7
with the best people in the computer world and we love it!

—Alcyr Araujo, Founder and CEO of Mosyle

Things quieted down a bit, but in 2016 after Apple started publishing

the MDM specifications guide freely, an open source MDM called

MicroMDM was initially committed to github, making it easier for

organizations to build their own fork or implement that should they

choose. Others crept on the scene as well during those years, such as

Absolute Manage MDM, AppTech 360, Avalanche Mobility Center,

Baramundi, Circle by Disney, Cisco Meraki (by way of the Cisco

acquisition of Meraki), Kaseya EMM, SureMDM, Trend Micro Mobile

Security, and many others. Each one of these tools has a great place in the

space. Some focus on specific horizontal or vertical markets, while others

focus on integrating with other products in a company’s portfolio.

Chapter 1 The Evolution of Apple Device Management

35

With such a wide field of MDM solutions, Apple has been able to focus

efforts on building a great API and not spend a ton of time on building out

many of the specific features needed for every possible market.

A number of family or residential MDM providers have also sprung

up, including Circle by Disney. The one market Apple has not made MDM

available to has been the home. Apple has a number of tools they believe

help families manage devices. It’s been touted as a violation of user privacy

to deploy MDM for home environments and in fact is a violation of the

APNs terms of service. Whether we believe this to be valid or not, OurPact,

initially launched in 2012, was shut down in 2019 along with a number of

other screen time apps for leveraging MDM to control various functions of

iOS devices. Some of those have been restored to the app stores, but Apple

is getting more specific about requirements for future acceptance.

MDM isn’t the only feature that began on iOS and ended up on the Mac.

�iOS + Mac OS X = macOS
Apple once dedicated an entire keynote to “Back to the Mac.” macOS

shows a slow unification of features from iOS. This isn’t to say that the

operating systems will eventually merge, but concepts inarguably are

coming to the Mac from iOS.

This began with the App Store, which was released for iOS and then

came to the Mac in 2011 in Mac OS X 10.6.6. Software updates were later

moved to the App Store, unifying how updates are centralized. Software

updates for iOS have always been free. But up until 2013, they were not free

for the Mac. Mavericks was free as was every operating system thereafter.

Updates for iOS have always been free (except a couple of releases for the

iPod Touch, which were legal and accounting issues more than technical

or marketing issues). This is one of the bigger ways that iOS has changed

not only the Mac, but the entire IT industry (although while Microsoft

hasn’t made Windows free, it is very easy to legitimately get it for free now).

Chapter 1 The Evolution of Apple Device Management

36

tvOS

The Apple TV initially ran a modified version of Mac OS X 10.4 in 2007.

It was a great idea but a little too early to market. It had a spinning disk.

So in 2010, the tvOS was introduced as a modified iOS 4 for the second-

generation Apple TV. The operating system has evolved since then to be

very similar in terms of management to iOS, albeit a bit more restrictive in

terms of low-level functionality exposed to users.

Initial management for tvOS came in Apple Configurator, which you

would need to plug a device into in order to load an 802.1x certificate. You

can plug devices into Apple Configurator and deploy profiles (including

802.1x configuration and MDM enrollment profiles). Later we were

able to load devices into DEP so we could manage them over standard

MDM. Management commands can be a bit different, so not all MDM

providers support tvOS, but as management of the platform matures, more

and more do.

�Imaging Is Dead?
NetBoot shipped in 1999 at MacWorld. NetBoot allowed an administrator to

boot a computer to an image stored on a centralized server. NetBoot was cool

but was only adopted in niche environments; given the rapid acceleration of

the desktop and the less rapid acceleration of the servers, networks and disk

drives used to host and facilitate access to NetBoot servers.

Apple Software Restore then shipped in 2002. It had existed since the

Mac Classic days as an internal restore tool, but after the public release, the

combination of these formed the foundation of the imaging story for the

Mac for the next 15 years. You would boot a Mac to a NetBoot volume and

then since the hard drive wasn’t being used, you could reformat the drive

and restore an image to it.

An “image” refers to a digital replica. Imaging a device is taking a

snapshot of the boot volume (and maybe other volumes if you so choose)

of a device and then replicating that snapshot onto other devices. The Mac

Chapter 1 The Evolution of Apple Device Management

37

community has often referred to this practice as “monolithic imaging” and

usually involved setting up a Mac just how you wanted it and then capturing

that image with a tool like the asr command, which is built into the Mac.

Monolithic imaging first became a common practice around 2004

and evolved so you could stream that image over a network and lay those

bits down on a hard drive. Other evolutions involved running scripts to

normalize the volume the image would be applied to and post-flight scripts

to perform additional tasks on the image which hadn’t been booted, as well

as installing standard Apple packages during the imaging process.

Imaging then became modular and tools such as AutoDMG (https://

github.com/MagerValp/AutoDMG) were released to build images, and

DeployStudio (shown in Figure 1-12) was released to deploy images –

both addressing issues administrators found with the built-in NetBoot,

NetInstall, and NetRestore tools from Apple. These allowed you to build a

master out of packages and dmg files that were then synthesized into an

image. As you can see in Figure 1-13, these workflows started out a little

tough to use but quickly became GUI-driven and much more accessible to

new administrators.

Figure 1-12.  DeployStudio

Chapter 1 The Evolution of Apple Device Management

https://github.com/MagerValp/AutoDMG
https://github.com/MagerValp/AutoDMG

38

But the times are changing and the device security landscape is

changing in a way that Apple doesn’t seem so friendly to laying bits on

devices. File systems don’t change often. Apple introduced HFS in 1985

to replace the Mac File System. It went through a few revisions over the

decades, most notably becoming HFS+ in 1998. But it makes sense that

Apple would move toward leveraging a filesystem across all operating

systems. This led to APFS (Apple File System) file system being introduced

on March 27, 2017, for iOS and then rolled out to tvOS and watchOS. By

September of that year, it came to the Mac in macOS 10.13.

With the move away from imaging I thought for sure that apfs
would be the death knell for AutoDMG. Apple has a long tra-
dition of not discussing upcoming changes in public, so listen-
ing closely to what they announce at WWDC is critical — and
always, _always_, test the betas. In the end apfs turned out to
be quite uneventful for AutoDMG itself and the surrounding
ecosystem had to bear the brunt of the changes.

—Per Olofsson, creator of AutoDMG

Figure 1-13.  AutoDMG

Chapter 1 The Evolution of Apple Device Management

39

The introduction of APFS to iOS and then macOS gives Apple software

engineers a lot of options around how to slice disks, how to leverage

volumes to provide device management options, and potentially how

to freeze portions of the Mac file system from being edited. But most

importantly, it means Apple administrators need to embrace a whole new

way of doing things.

You can use Apple Configurator to explode an ipsw file onto an iOS

device. This ipsw is signed by Apple, cannot be altered, and is similar to

the old monolithic restore process with the exception that you can’t install

anything into the image before applying it to devices. The Mac process

of imaging involves setting devices up similarly to how it’s done in iOS

(shocking). You boot to a network volume hosted on the App Store, the

operating system is downloaded and installed onto a Mac, or use the

createinstallmedia command to build an operating system installer that

can then be used to install Macs without booting them to the recovery

partition/App Store.

�macOS – Unix = appleOS
As with Ragnarok, someday we will return to our roots with the Mac

losing part of what makes it work so well in a corporate environment.

From 10.2 on, the Mac community gained momentum, with multiuser

operating systems; fast user switching; Active Directory integration; good

information security policies; mass deployment techniques on par with

Windows, if not better; and a number of other features that made the Mac

a first-class citizen.

But Apple has been playing catchup and has realized that the goalpost

continues to move in being a first-class citizen on corporate networks. The

success of iOS has taught Apple that they can redefine corporate dogma

rather than just play catchup. And that mentality has started leaking into

the Mac. Part of that redefinition is SIP.

Chapter 1 The Evolution of Apple Device Management

40

System Integrity Protection, or SIP, is a mode for macOS where

full sandbox controls are implemented in such a way that parts of the

operating system can’t be written to, even if you elevate your privileges to a

super user. There are other aspects of SIP such as handling memory more

securely as well, but the most noticeable aspects for many administrators

will involve not being able to write into /System folders and not being able

to remotely set NetBoot. This philosophy comes from the fact that iOS is

arguably one of the most secure operating systems ever conceived.

There are a number of features in iOS that provide such a high level

of security on the platform, although arguably the most important is how

apps are sandboxed. Every iOS app comes with its own sandbox, which

means that apps can communicate with one another, but only if they have

what are called entitlements, to do so, which typically involve a user either

allowing a temporary connection between apps using a share sheet, or

allowing an entitlement in order to use the app, like how many apps ask

to access your camera. Over the past few years, this design philosophy has

then come to the Mac.

For 10.14.4 and below, to distribute apps through the Mac App Store,

developers need to turn on an App Sandbox and have entitlements defined

for apps in more and more cases. Higher versions of the operating system

actually require certain entitlements be explicit in order for the app to get

notarized by Apple. Apps that aren’t notarized then can’t be opened. As of

10.14.5 and macOS Catalina, an app does not yet have to be sandboxed to

be notarized. The only requirement is the “hardened runtime.” https://

help.apple.com/xcode/mac/current/#/dev033e997ca.

Apple has sandboxed part of the operating system. We will discuss

sandboxing and other security measures throughout the book, but there

are other ramifications of these moves. In a POSIX-compliant Unix

environment, administrators with an appropriate level of privileges

(e.g., root access) can do whatever they want on a device. They’re often

called super users for just this reason. But with sandbox, Apple can

actually restrict you from writing to certain directories on the file system.

Chapter 1 The Evolution of Apple Device Management

https://help.apple.com/xcode/mac/current/#/dev033e997ca
https://help.apple.com/xcode/mac/current/#/dev033e997ca

41

While macOS has been certified as compatible with the Single UNIX

Specification version 3, or SUSv3 for short, this is more tied to the core of

macOS, Darwin, than the layer that an end-user interacts with.

Each variant of an operating system seems to have their own way

of dealing with device drivers and that’s probably more true for UNIX

compatible operating systems than any others. The concept of an

extension dates back to the Mac OS Classic era. An extension was a file

that basically provided kernel access, allowing devices to be plugged into

computers. Mac OS 9 had a tool called the Extension Manager, which

allowed a user to turn these drivers on and off easily. If an extension

caused a computer to become unbootable, you could easily boot the

computer into safe mode, drag all the extensions out of their folder and

into a folder called Disabled Extensions on the desktop, and reboot and

viola – the system was good.

In Mac OS X and later macOS, a kernel extension (often referred to as

a kext) is code loaded directly into the kernel of the Mac. This allows much

lower level access that’s typically necessary for software that needs to

interrupt processes (such as security software) or software that interfaces

with physical devices where Apple doesn’t provide an API for doing so.

Most operating systems have something of this sort, for example, on

Windows you have Kernel-Mode Extensions.

Given how low-level kexts can run, there’s always been a concern

about the security of a kext. Kexts had to be signed as of Mavericks. Apple

went further in restricting kexts in High Sierra, when Secure Kernel

Extension Loading forced a user to accept a kext (and Apple disabled

synthetic clicking, so administrators couldn’t programmatically accept

their own kext). The exceptions are that an MDM can preemptively enable

a kernel extension and the `spctl kext-consent add` command can do so if

you have administrative access on a client computer.

In general, forcing acceptance of kernel extensions and acceptance of

MDM enrollment is another step toward a more iOS-centric Mac. This isn’t

to say that we’ll lose the ability to access a command line or write code,

Chapter 1 The Evolution of Apple Device Management

42

but as the distribution of Macs increases, we need management options

simpler so they’re more accessible, while also being more secure, to keep

our users safe. While the kernel extension is a uniquely Apple solution,

sandbox is actually derived from the sandbox facility in BSD, a core part

of trusted BSD. According to how future options are implemented, we

can still have fully manageable and nerdy tools without sacrificing these

elements that Apple has always held so dear.

�Moving Away from Active Directory
One of the main reasons the Mac was accepted as a standard in many

companies was the ability to work within standard Active Directory

environments. From Mac OS X 10.2.x until today’s macOS versions, many

Mac Admins spent countless hours refining and perfecting their Active

Directory scripts. Out of that wealth of knowledge about how every part

of Active Directory worked, we also began to realize we might be wrong in

how we were using Active Directory with the Mac. While joining our Macs

directly to an Active Directory domain provided some advantages, like

being able to get Kerberos tickets and having password management, it

also introduced issues like keeping login keychain passwords and FileVault

account passwords in sync with the password used for the user’s Active

Directory account. These password problems were solved by using local

accounts on the Mac, but local accounts were unable to communicate at

all with the AD domain.

The open source NoMAD project was introduced in 2017 by Joel

Rennich and represented a seismic shift in how people charged with

managing Apple devices thought about Active Directory and how their

Macs should connect to it. NoMAD, short for No More AD, was a project

that allowed admins to obtain Kerberos tickets from Active Directory and

do many of the common tasks required in an Active Directory environment,

without actually joining the machine to the domain. This new approach

Chapter 1 The Evolution of Apple Device Management

43

of using middleware to connect to Active Directory allowed the use of

local accounts on the Mac, addressing the password problems, while still

enabling NoMAD-equipped Macs to obtain Kerberos tickets and password

management from the AD domain.

As the father of the Magic Triangle(tm) I get that it’s a bit weird
to be telling you not to bind anymore… but those days are
done. The modern Mac is primarily a single user system that
barely, if ever, touches the corporate network anymore, so we
should stop acting like a persistent LDAP bind is doing any-
body any favors.

—Joel Rennich, Founder of NoMAD and Director of Jamf
Connect, Jamf

NoMAD was sold to Jamf in 2018 and portions are now part of a

proprietary product called Jamf Connect. Since the early days of NoMAD,

the paid version of NoMAD Login Window (now called Jamf Connect) has

since expanded to allow for Smart Card authentication, and now works

with federated identity providers such as Azure AD, Okta, Ping, and Google.

Joel brought us NoMAD. In terms of his place in the Apple Device

Management history books, though, almost as importantly, Joel also

founded a web site called afp548.com. In doing so, he and his cohort Josh

Wiesenbaker were laying foundation blocks for what has evolved into the

latter-day Apple admin community.

�The Apple Admin Community
There is a strong community of Apple administrators, which we often

self-identify as MacAdmins. The community idea is pretty Apple-centric –

dating back to when Guy Kawasaki started the concept of evangelizing

the platform as Apple’s Chief Evangelist from 1983 to 1987. Ways to get

involved in the community include going to conferences, attending user

groups, and interacting with the community online.

Chapter 1 The Evolution of Apple Device Management

http://afp548.com

44

�Conferences
This community initially grew out of Macworld and the Apple Worldwide

Developers Conference (WWDC), which both started in 1987. The

community slowly matured, usually meeting in sessions, expo booths,

and then bars (like Dave’s) around the conferences up until 2009 when

Apple announced it would be the final year they would be involved in the

conference. Many Apple products had been announced at Macworld, but

that would shift to WWDC in the future.

But with the explosion of iPhones, WWDC became less focused on

administration topics and much more focused on software development

(after all, it is a “developers” conference). WWDC also became so popular

that you now have to participate in a lottery and less and less admins

could actually go. And so 2009 brought the modern era of conferences.

MacSysAdmin in Gothenburg, Sweden, came in 2009. And once again,

the Apple team at Penn State stepped up and created the PennState Mac

Admins conference in 2010.

From the earliest days of Macintosh, there’s always been some-
thing special about those that were creating or supporting
Apple technologies. That community, the Apple technical
community, has always been at the core of MacTech. It’s the
reason that we created the live, in-person MacTech events
more than a decade ago. Some 150+ days of events later, the
community continues to come together for an amazing expe-
rience, seeing incredible speakers and content, and engaging
in the ever popular “hallway track”. Those awesome face-to-
face interactions both bond and power an exceptional com-
munity. As we move into the second decade of MacTech’s live
events, we’ll continue to enable the community to come
together in this unique way.

—Neil Ticktin, CEO, MacTech

Chapter 1 The Evolution of Apple Device Management

45

At this point, a number of vendors have also built up conferences

and parts of the community have fragmented off into the conferences

that most fit their needs. This is the nature as people need to find more

focused content for their specific jobs, especially since many tasks have

become vendor or open source product-centric. A quick overview of the

conferences available are as follows:

•	 ACES Conference: ACES is a conference for Apple

Consultants. Held June 4 to 6 in Kansas City, MO, ACES

is a really good introduction for many on running a

Mac consultancy, represented by many of the larger

and more well-established Apple consultancies in the

United States and Canada.

•	 Command-IT: 2018 was the first year of the Command-

IT conference in France! Based on the people putting it

on, I’m sure it’ll be fantastic. More at www.command-it.fr

•	 Filewave Conference: The Filewave Alliance

Conference focuses on the latest and greatest with

FileWave and provides systems administrators of

FileWave environments with access to developers,

deployment information, etc.

•	 JAMF Software’s JNUC (JAMF Nation User Conference)

is a conference primarily geared at the Apple

Administrator who use the Casper Suite for their

administrative efforts. There are some sessions on

general administrative topics, such as what a plist is and

general shell scripting. If you spend a lot of your day in

Jamf Pro, then this is a great conference to check out,

held in Minneapolis in the fall, November 12 to 14, 2019.

Chapter 1 The Evolution of Apple Device Management

https://acesconf.com
http://www.command-it.fr
https://www.filewave.com/the-news/filewave-alliance-conference-save-the-date
https://www.filewave.com/the-news/filewave-alliance-conference-save-the-date
https://www.jamf.com/events/jamf-nation-user-conference/2018/

46

•	 Mac Admin and Developer Conference UK: MacADUK

is a conference for Apple administrators and developers,

with a lot of sessions and good content, held in London

from March 26 to 27. I’ll have to miss this one as I’ll be

surfing in South America again, no offense.

•	 MacDevOps YVR: MacDevOps is a conference from

June 12 to the 14 in Vancouver, with sessions ranging

across the DevOps build-train. This one is definitely for

the scripty among the Mac community who are heavy

into systems automation and, well, DevOps as the

name would imply.

•	 MacSysAdmin: All things Apple, in Sweden. Definitely

one of my favorite conferences ever. This will be my

tenth year speaking there. Lots of really good content,

with a very global perspective. Really great people

to network with as well, in a relaxed atmosphere.

MacSysAdmin 2019 will take place in Göteborg,

Sweden, from October 1 to 4.

•	 MacTech: This conference is a good look at how

environments grow (if you’re growing) or to get

some really good tips and tricks for your grown-up

environment. MacTech Conference is held in LA, so

bring your wetsuits and I’ll have to show you some of

the better surfing spots in South Bay. This year, it’ll be

October 15.

•	 Mobile World Congress: I usually find the people at

a show like this to be less technical, more business

analysts, and more interested in the why and results than

the how. It’s a good group but different from those who

spend all of their time integrating systems. Held in early

Chapter 1 The Evolution of Apple Device Management

http://macad.uk
http://www.macdevops.ca
http://www.mobileworldlive.com

47

May, with global shows globally, later in the year. For a

sampling of sessions, check out their YouTube channel

at www.youtube.com/user/GSMAOnline/playlists.

•	 MobileIron Live: MobileIron has a new(ish) conference

in New York this year. If you use MobileIron to manage

your Apple devices, definitely worth giving this one a

look!

•	 Objective By The Sea: Security has been a topic that has

come up from time to time at MacAdmin conferences.

But Patrick Wardle did a fantastic job putting together

a lineup of speakers for the first real security-focused

conference for MacAdmins. I didn’t make it to the

inaugural conference but heard great things (like really

awesome thing). It was in November, so might not

come back around for a bit, but when it does, make

sure to check it out!

•	 Penn State MacAdmins Conference: 2019’s event

will be held July 9–12 at the Penn Stater Hotel and

Conference Center in State College, PA. Penn State Mac

Admins emerged during a time of uncertainty with

WWDC and systems administration topics. If you’re

part of the infamous MacEnterprise list that Penn State

runs, and you find the conversations there relevant to

your job, then this is likely a conference you’ll want to

attend. It’s priced well, vendor agnostic, and run by one

of the most talented MacAdmin teams around, too!

•	 VMworld (formerly AirWatch Connect) is a great

conference for people managing heterogenous

mobile deployments that rely on Workspace One and

AirWatch. The conference will be held this year in San

Francisco, from August 25 to 29, 2019.

Chapter 1 The Evolution of Apple Device Management

http://www.youtube.com/user/GSMAOnline/playlists
https://www.mobileiron.com/mobileiron-live-2019
https://objectivebythesea.com

48

•	 WWDC: Everyone knows about Apple’s Worldwide

Developer Conference. But it’s getting more and more

difficult to get tickets to the conference, and if you use

a third-party tool to manage your systems and aren’t

writing code, you can watch the sessions online and

save your continuing development/training funds to

check out one of the other conferences.

•	 X World: Originally part of the AUC in Australia, X

World has topics ranging from Munki to Casper. Initially

a very education-centric conference, there were Apple

administrators from around Australia gathered to share

their knowledge and green information from others

on managing large numbers of Apple systems. And the

organizers and delegates are pretty awesome people to

hang out with. Great networking.

�Online Communities
The Apple administrative community began to emerge in 2001 and

congealed around a few specific places. One was the Mac Enterprise list-

serve, from Penn State University. Another was the Mac OS X Server list

from Apple. These were active communities that were really sometimes

very long email threads, but we all got to know each other. Another was

afp548. The port for the Apple File Protocol is 548. The afp548.com web

site was launched in 2002 by Joel Rennich with a little more focus around

the server product and later around directory services and imaging, or

large-scale deployment practices. Both Mac Enterprise and afp548.com are

important as they represented the creation of a community built around

Apple Administration.

Chapter 1 The Evolution of Apple Device Management

https://developer.apple.com/wwdc/
https://auc.edu.au/xworld/about/

49

Over time, email lists can grow unwieldy. Many conversations moved

to specialized lists, chat rooms, Twitter, or bulletin boards. For example,

in 2011, Jamf created a message list but eventually moved that over to

a web portal that now boasts over 40,000 active users and over 30,000

discussions. Other vendors created message boards and communities as

well, and the community appeared to be fragmenting. But then came the

MacAdmins Slack channel.

The Mac Admins Slack is a unique online community for a
few reasons. There is a general sense of thoughtfulness among
members. Time and time again I see someone go to lengths to
help another member that they have no prior connection with,
just for the good of the community. Likewise, there's a strong
sense of authenticity. Vendors, like us, can become involved,
but we're really there to support the community and not to
treat it like a promotional channel. It's also not just a slack. It's
a podcast, it's local meetups, and more. Connections may ini-
tially be made online, but they can grow outside of it. The
community extends far beyond a particular slack channel.
The Slack is just a touch point.

—Taylor Boyko, Founder and CEO at SimpleMDM

The MacAdmins Slack instance was introduced in 2015. Since then,

“Slack” as it seems to lovingly be called has grown to over 25,000 users

who have sent over 250,000 messages. As can be seen in Figure 1-14,

these Apple admins discuss everything from upcoming betas to DEP

deployments, imaging, and even local groups for each major city and/

or country in the world. More focused than checking for #macadmins on

Twitter, more history than IRC, and a great place to ask a polite question

and potentially save yourself weeks of hunting for the answer to a problem.

Chapter 1 The Evolution of Apple Device Management

50

The MacAdmins Slack channel is one of the most important things to

happen to the MacAdmins community. With over 650 channels to follow,

Slack could further fragment admins, but the fact that so many people

are in a lot of different channels actually brings more people together in

better contexts. The fact that you don’t end up reading a digest at the end

of the day and arguing about the way you responded to emails makes

conversations more inclusive.

�User Groups
Apple has a long and rich tradition of sponsoring, facilitating, helping

out with, and sometimes just tolerating user groups. There have been

Macintosh user groups since as long as we can remember. Over time, those

charged with larger-scale care and feeding of devices have split off into

their own, professional user groups. Simply searching for your city name

Figure 1-14.  The MacAdmins Slack

Chapter 1 The Evolution of Apple Device Management

51

followed by MacAdmins and maybe user groups or meetups should find a

local chapter to get involved in.

Some available at the time of this book being written include the

following:

•	 Apple Admins of LA and OC: www.meetup.com/Los-

Angeles-Mac-Meetup/

•	 Austin Apple Admins: www.austinappleadmins.org

•	 Boston Mac Admins: www.meetup.com/

bostonmacadmins/

•	 Calgary MacDeployment Meetup: http://

macdeployment.ca

•	 Chicago Mac Admins: www.chicagoappleadmins.org

•	 Colorado iOS Admins: http://coiosadmin.tumblr.com

•	 Denver Mac Admins: www.meetup.com/Denver-Mac-

Admins/

•	 London Apple Admins: www.londonappleadmins.org.uk

•	 MacAdmin Monthly: www.macadminmonthly.org

•	 [MacSysAdmin] Bier: http://macsysadmin.ch

•	 MacBrained: http://macbrained.org

•	 MacDMV (The DC Metro area Mac Admins group):

http://www.macdmv.com

•	 NW Apple Administrators (Portland): www.meetup.com/

NW-Apple-Administrators-Eng-Architects-Support-

JAMF-Casper/

•	 Perth Apple Admins: www.meetup.com/Perth-Apple-

Admins/

Chapter 1 The Evolution of Apple Device Management

http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.austinappleadmins.org
http://www.meetup.com/bostonmacadmins/
http://www.meetup.com/bostonmacadmins/
http://macdeployment.ca/
http://macdeployment.ca/
http://www.chicagoappleadmins.org
http://coiosadmin.tumblr.com
http://www.meetup.com/Denver-Mac-Admins/
http://www.meetup.com/Denver-Mac-Admins/
http://www.londonappleadmins.org.uk
http://www.macadminmonthly.org
http://macsysadmin.ch
http://macbrained.org
http://www.macdmv.com
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/Perth-Apple-Admins/
http://www.meetup.com/Perth-Apple-Admins/

52

•	 Philly Mac Admins: www.meetup.com/Greater-

Philadelphia-Area-Mac-Admins/

•	 Providence Apple Admins: www.meetup.com/

providenceappleadmins/

•	 Apple Admins of Seattle and the Great Northwest: www.

meetup.com/Seattle-Apple-Admins/

•	 Sydney Mac Admins Meetup: www.meetup.com/

Sydney-Mac-Admins/

•	 Twin Cities Mac Admins Group: Twin Cities Mac

Admins

More come online all the time. Many now start out of MacAdmins

Slack channels or organize around those. And the topics are always

changing but man of those discussed build up to form a set of best

practices that can be summarized in a line in a balanced scorecard, one

way to easily visualize how an organization tracks performance of any

initiative over time. To see one of those, skip ahead to Chapter 12.

�Summary
The pace of innovation in the early days of Apple was astounding. But

that seemed to trail off for a while. After Mac OS X came along, the first

ten years seemed to be trying to find an identity for administration. If you

listen, you’ll hear people at Apple say “words matter” quite a bit. In 2008,

Steve Jobs said, “Why would I do anything for that orifice called the CIO?”

This sums up that period of time.

But the Apple administrative community pushed, and Apple learned

what larger organizations actually needed the devices to do and figure

out how to do those tasks (such as integrate with Active Directory) in a

way that preserved Apple values while still providing the tools needed to

manage devices en masse.

Chapter 1 The Evolution of Apple Device Management

http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0CFMQFjAMahUKEwjl8duH9d3GAhUMkg0KHcZdDvk&url=http://www.mspmacadmins.org/&ei=WbqmVaXhGYykNsa7ucgP&usg=AFQjCNFKlRkPdoADHQFX0V9G_gCoT-DVzg&sig2=hdI6tPANxFMayKU4jFpPbg&bvm=bv.97653015,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0CFMQFjAMahUKEwjl8duH9d3GAhUMkg0KHcZdDvk&url=http://www.mspmacadmins.org/&ei=WbqmVaXhGYykNsa7ucgP&usg=AFQjCNFKlRkPdoADHQFX0V9G_gCoT-DVzg&sig2=hdI6tPANxFMayKU4jFpPbg&bvm=bv.97653015,d.eXY

53

The pace for administrators over the past 10 years has been

substantial. But always-on Internet, the explosion in the number of devices

we all have, and the ways we use those devices (like to stream music over

a HomePod) were barely even conceivable when the Mac was released.

Always-on Internet for every device you could have has caused that type

of change in almost every industry. The evolution to allow for more device

management has been a learning experience, both for Apple and for the

community of users and administrators they serve.

Perhaps what I respect about Apple most is that they know
who they are. Their focus on the individual has been relent-
less. In the face of many telling them to do something different,
Apple stays true to their DNA.

—Dean Hager, CEO Jamf

The tipping point in that evolution would be when Apple forged a

partnership with IBM in 2014, with Ginni Rometty and Apple CEO Tim

Cook (who spent 12 years at IBM) doing interviews (e.g., for CNBC) and

filmed walking around campus looking all kinds of pensive. Since then, the

focus on business has tightened and so enterprise adoption has exploded.

But as you can see throughout this chapter, the more things change,

the more they stay the same. The names of the tools have changed: At

Ease led to Macintosh Manager, which led to Workgroup Manager, and

eventually became what we now see as Profile Manager. The back-end

technology for management has changed with each of those names,

where we now have MDM as the predominant way to manage device with

some tools still having agents. But while the look and feel of the tools has

changed, the mission of each hasn’t changed all that much, much as the

buttons still say many of the same words from Apple Network Assistant all

the way through to Apple Remote Desktop 3.9.

In this chapter, we laid out the timeline of when various features and

components were released. We can’t cover all of the items in this book

at the level they deserve, especially given the number of vendors and

Chapter 1 The Evolution of Apple Device Management

54

talented engineers that now work in the Apple space. When the first book

on managing Macs in the Enterprise was released, there were about half-a-

dozen management MDM vendors, and today there are well over 10 times

that. That doesn’t include security tools, backup software, groupware, and

other entire software categories we just skipped right over. But we can look

at general themes and provide guidance around each. And this guidance

begins in Chapter 2, when we look at what agent-based management

solution you will use to manage your Macs.

Chapter 1 The Evolution of Apple Device Management

55© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_2

CHAPTER 2

Agent-Based
Management
This chapter is about agents that can run on a Mac. Agents are services,

or programs, that run on devices. These agents are specifically designed

to give a systems administrator command and control over a Mac and are

usually agents that start a listener on the Mac or tell the Mac to log into

a server and pull down management tasks from that server. These give

administrators the ability to control various aspects of computers from a

centralized server. Commands are sent to the device from the server or

pulled from the server and run on devices.

Over the past few years, Apple developers have started to reduce the

importance of agents on the Mac. Agents are still an important aspect of

macOS management and so it’s important to understand what an agent is,

what it does, and when to use one. Device management tools use agents,

security software uses agents, and a number of tools use agents to track

the licensing of their software on devices. Agents can do less and less with

every passing year, but they are still necessary.

One place where “less and less” has been problematic is device

management. Just keep in mind that any time you can do a task using

an agent or using MDM, make sure to use the MDM unless you have

a really good reason to use an agent. We’re not back in the era of Desk

56

Accessories from System 7, but we are in an era where user consent is

becoming more and more important, even for various tasks that would be

performed on devices we can prove the organization owns.

Neither iOS or tvOS allows for custom agents, but agent-based

management is (at least for now) a critical aspect of managing MacOS

devices, so in this chapter, we’ll review common agents designed for

the Mac and what they do. We’ll cover MDM, which is an agent-based

management environment provided by Apple in the next chapter, and

provide much more information around how MDM works. MDM has been

referred to as “agentless” at times, but that really means it’s just an agent

provided by Apple.

�Daemons and Agents
As mentioned, an agent is a process that runs on a device. These run

persistently and so they’re always running, and when configuring a

daemon or agent, you can flag them to restart in case they stop. If you open

System Preferences and go to the Sharing System Preference pane, you can

see a few agents. As you can see in Figure 2-1, those are often for sharing

resources over a network.

Chapter 2 Agent-Based Management

57

Each of these agents is a LaunchDaemon or LaunchAgent that loads on

the computer – for this example, we’ll start File Sharing with Windows File

Sharing enabled. The first process that starts on a Mac is launchd, which

is then responsible for starting, stopping, and controlling all subsequent

processes based on the .plist file that defines them. This includes all

services required to make the operating system function. The easiest way

to see this is to open Activity Monitor from /Applications/Utilities and

select “All Processes, Hierarchically” from the View menu. Here, search for

com.apple.smbd (Figure 2-2) and note that it’s been started, has a PID of

194, and runs as root. The PID is the process ID.

Figure 2-1.  The Sharing System preference pane

Chapter 2 Agent-Based Management

58

Here you’ll also see that the kernel_task controls launchd and that

all other processes fall under launchd and some are still nested under

others. To see how smbd gets started, let’s then look at /System/Library/

LaunchDaemons/com.apple.smbd.plist. Each process has a property list

similar to this that defines how a LaunchDaemon and LaunchAgent will

start. This looks like:

Figure 2-2.  Use Activity Monitor to see what processes are running
(and what processes started them)

Chapter 2 Agent-Based Management

59

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>EnableTransactions</key>

 <true/>

 <key>Disabled</key>

 <true/>

 <key>Label</key>

 <string>com.apple.smbd</string>

 <key>MachServices</key>

 <dict>

 <key>com.apple.smbd</key>

 <dict>

 <key>HideUntilCheckIn</key>

 <true/>

 </dict>

 </dict>

 <key>ProgramArguments</key>

 <array>

 <string>/usr/sbin/smbd</string>

 </array>

 <key>Sockets</key>

 <dict>

 <key>direct</key>

 <dict>

 <key>SockServiceName</key>

 <string>microsoft-ds</string>

 <key>Bonjour</key>

 <array>

Chapter 2 Agent-Based Management

60

 <string>smb</string>

 </array>

 </dict>

 </dict>

</dict>

</plist>

In the preceding example, note that the /usr/sbin/smbd binary

is being loaded and the LaunchDaemon controls the binary.

LaunchDaemons can run without a user being logged in. LaunchDaemons

cannot display information using the graphical interface of a Mac; but

they can be used to provide data to apps that have graphical interfaces.

The plist files are stored in the /System/Library/LaunchDaemons folder

(for those provided by Apple et al.) and /Library/LaunchDaemons (for

the rest). There are also LaunchAgents, which run on behalf of a user and

therefore need the user to be logged in to run. LaunchAgents can display

information through the window server if they are entitled to do so. As

with LaunchDaemons, LaunchAgents are controlled by property list. The

configuration plist files are stored in the /System/Library/LaunchAgents

and /Library/LaunchAgents, and user launch agents are installed in the ~/

Library/LaunchAgents folder.

Next, let’s look at a common graphical interface for managing

LaunchDaemons and LaunchAgents, Lingon.

�Use Lingon to See and Change Daemons
and Agents Easily
Lingon is a tool available on the Mac App Store at https://itunes.

apple.com/us/app/lingon-3/id450201424. If you install Lingon,

you’ll be able to quickly and easily manage LaunchDaemons and

LaunchAgents. You can also download it through Peter Borg’s site at

Chapter 2 Agent-Based Management

https://itunes.apple.com/us/app/lingon-3/id450201424
https://itunes.apple.com/us/app/lingon-3/id450201424

61

www.peterborgapps.com/lingon. The version there has more features

and control over system level daemons and agents.

When you first open Lingon, you’ll see a list of non-Apple services

installed on the system. In Figure 2-3, notice that you see two for Druva,

one for Tunnelblick, and one for an older version of macOS Server. Let’s

create a new one by clicking New Job.

At the New Job screen shown in Figure 2-4, you’ll see the following fields:

•	 Name: The name of the script. This can be something

simple like Pretendco Agent but is usually saved as

com.Pretendco.agent.

•	 What: app, or even just an arbitrary command like “say

hello” if the command is short and simple.

Figure 2-3.  Use Lingon to manage daemons and agents

Chapter 2 Agent-Based Management

http://www.peterborgapps.com/lingon

62

•	 When: When the script or binary that was selected in

the What field will be invoked or should run.

•	 At login and at load.

•	 Keep running (runs all the time and restarts after

a crash): Runs all the time. launchctl will watch

for the process to terminate and restart it. This is

usually something that persistently manages a

socket or is always waiting for something to happen

on a system.

•	 Whenever a volume is mounted: This is similar to

watching for a file to change given that it’s watching

/Volumes but when a volume mounts the process

will run.

•	 Every: Runs the script or process at a regularly

scheduled interval, like every 90 seconds or once

an hour.

•	 At a specific time: Runs the specified process at a

given time on a schedule (this is similar in nature to

how cron jobs worked).

•	 This file is changed: Define a path to a file so that

if the LaunchDaemon notices a file has changed,

the desired script will run. This is pretty common

for scripting automations, such as “if a file gets

placed in this directory, run it through an image

converter).

•	 Save & Load: Saves the LaunchAgent or

LaunchDaemon, provides the correct permissions, and

attempts to load.

Chapter 2 Agent-Based Management

63

Next, click Save & Load and you’ll be prompted that the service will run

even after you close Lingon (Figure 2-5). The reason for this is that when

you save your entry, the Lingon app creates a LaunchDaemon and starts it.

Figure 2-4.  Provide a name and location for a script or app to
daemonize it

Chapter 2 Agent-Based Management

64

If you select a job and then select “Copy Job to Clipboard” from the Job

menu, then you can open a new document and paste the contents of what

would be in a property list in. By default, the new LaunchAgent is saved in

~/Library/LaunchAgents/ so you can also easily just view it with cat once

saved.

Now that we can create and delete LaunchAgents and

LaunchDaemons, you know how to create an agent if you need to or stop

one from processing if it’s running on a host. Now that we’ve described

what goes into building a daemon or agent, let’s look at controlling them so

we can then show how you interface with those used to send management

commands to macOS devices.

�Controlling LaunchDaemons with launchctl
Earlier, when showed Activity Monitor, we could have stopped the process

we were looking at. Doing so means that if the process is set to do so, it can

start up again. You can add, edit, delete, and load these using the launchctl

command. Using launchctl is pretty straightforward. In the following

example, we'll look at disabling the disk arbitration daemon to show how

Figure 2-5.  Save your new agent or daemon

Chapter 2 Agent-Based Management

65

to control a LaunchDaemon with launchctl. To disable disk arbitration,

first run the following command to obtain a list of currently running

launchd-initiated processes:

launchctl list

That’s going to output a few too many so let’s constrain our search to

those that include the string diskarbitrationd:

launchctl list | grep diskarbitrationd

You’ll now see a PID and the name of the process, similar to when

looking at these in Activity Monitor. Notice it has an alphanumeric string in

front of it, appearing similar to 0x10abe0.diskarbitrationd. Next, go ahead

and stop it, again using launchctl, but this time with the stop option:

launchctl stop 0x10abe0.diskarbitrationd

Once stopped, let’s verify that diskarbitration is no longer running:

ps aux

Once you have completed your tasks and want to reenable disk

arbitration, you can restart it using the start option in launchctl:

launchctl start 0x10abe0.diskarbitrationd

Finally, this process is not persistent across reboots. If you will be

rebooting the system you are mounting the disk onto, you might want to

unload diskarbitrationd and then move the plist from /System/Library/

LaunchDaemons/com.apple.diskarbitrationd.plist. For example, to move

it to the desktop, use the following command:

mv /System/Library/LaunchDaemons/com.apple.diskarbitrationd.

plist ~/Desktop/com.apple.diskarbitrationd.plist

Chapter 2 Agent-Based Management

66

If the launchd job you’re trying to manage doesn’t start, check out the

system.log for a more specific error why:

tail -F /var/log/system.log

For more on LaunchDaemons, see the Apple developer documentation

at https://developer.apple.com/library/archive/documentation/

MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.

html or check launchd.info, a site where you can see additional information.

Now that we’ve looked at LaunchDaemons and LaunchAgents, let’s

review what each has access to before we move on to looking at some of

the commercial and open source distributions of management agents.

�Deeper Inspection: What Does the App Have
Access To?
Apps must be signed. Not all persistent binaries need to be signed but

all should be, and all should also have a corresponding sandbox profile

(although even Apple hasn’t gotten around to signing everything that

comes bundled with the operating system). To see a detailed description of

how an app was signed

codesign -dvvvv /Applications/Firefox.app

This also gives you the bundleID for further inspection of an app. But

there are a number of tools you can use to check out signing and go further

into entitlements and sandboxing. You can check the

asctl sandbox check --bundle com.microsoft.outlook

The response would be similar to

/Applications/Microsoft Outlook.app:

Signed with App Sandbox entitlements

Chapter 2 Agent-Based Management

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

67

In the preceding data, we see that Outlook has entitlements to do some

stuffs. But where do you see an indication of what it can do? There are a

number of sandbox profiles located in /usr/share/sandbox and the more

modern /System/Library/Sandbox/Profiles/ and Versions/A/Resources

inside each framework should have a .sb file – but those are the Apple

sandbox profiles. Additionally, you can see what each app has access to

using the container_check.rb script:

/usr/libexec/AppSandbox/container_check.rb -c com.microsoft.

outlook --for-user charles.edge –-stdout

Simply strip the -c followed by the container and you’ll get a list of all

apps. When you’re building and testing sandbox profiles for apps you plan

to compile, you may want to test them. To do so, use sandbox-exec:

sandbox-exec -f /usr/share/sandbox/lockdown.sb/Applications/

TextEdit.app/Contents/MacOS/TextEdit

As of 10.14, any app looking to access Location Services, Contacts,

Calendars, Reminders, Photos, Camera, Microphone, Accessibility, the hard

drive, Automation services, Analytics, or Advertising kit will prompt the

user to accept that connection. This is TCC, or Privacy Preferences. You can

programmatically remove items but not otherwise augment or view the data,

via the tccutil command along with the only verb currently supported, reset:

tccutil reset SERVICE com.smileonmymac.textexpander

�Third-Party Management Agents
There are a number of tools that other people or organizations have

built that enable you to tap into the power of the macOS command line.

Organizations like Addigy, FileWave, Jamf, MobileIron, and VMware all

have agents. And Munki has become a popular open source management

agent for a number of reasons. We’ll start our look at agents with one of the

more recently added, given how it’s built: Addigy.

Chapter 2 Agent-Based Management

68

�Addigy
Addigy is a management solution for iOS and macOS. As Addigy was

developed somewhat recently, the developers make use of a number of

open source components to form a management solution that can track

what’s on a device (or monitor inventory), deploy new software to a device,

remove software from a device, run scripts remotely, and other tasks.

The ability to do this en masse is derived by having an agent running on

client systems and having that agent be able to talk back to a centralized

management server. The Addigy agent is available by navigating to the

Downloads button in the sidebar (Figure 2-6).

Figure 2-6.  Download the Addigy Agent

Chapter 2 Agent-Based Management

69

As with many software packages today, the Addigy agent is comprised

of a few different components. The package will install a number of

LaunchDaemons and LaunchAgents according to the services you use in

your environment. These are as follows:

•	 /Library/LaunchDaemons/com.addigy.agent.plist: The

Addigy agent, responsible for controlling other services

running on the system. This calls /Library/Addigy/go-

agent with the agent option.

•	 /Library/LaunchDaemons/com.addigy.collector.plist:

The Collector, which maintains inventory and reports

information back to the server. This calls /Library/

Addigy/collector.

•	 /Library/LaunchDaemons/com.addigy.lan-cache.plist:

The process responsible for copying files to the local

computer to be processed (e.g., to install a package).

This loads /Library/Addigy/lan-cache, based on

https://github.com/bntjah/lancache.

•	 /Library/LaunchDaemons/com.addigy.policier.plist:

The policy engine, calling Ansible to do orchestration

and provisioning. After a network check, this runs /

Library/Addigy/go-agent with the policier option.

•	 /Library/LaunchDaemons/com.addigy.updater.plist:

This is responsible for keeping the agent updated and

calls /Library/Addigy/go-agent with the updater option

specified.

•	 /Library/LaunchDaemons/com.plx.connector.plist:

Addigy’s remote control tool so you can manage

devices remotely using Pilixo, if that option is enabled

for the device being managed.

Chapter 2 Agent-Based Management

https://github.com/bntjah/lancache

70

•	 /Library/LaunchDaemons/screenconnect-

92fde59311b74250.plist: Addigy’s

•	 /Library/LaunchAgents/screenconnect-

92fde59311b74250-launch-prelogin.plist

•	 /Library/LaunchAgents/screenconnect-

92fde59311b74250-launch-onlogin.plist

To load or unload any of these, we’ll use the launchctl command as we

did earlier in the chapter. For example, to unload the Go agent:

sudo launchctl unload /Library/LaunchDaemons/com.addigy.lan-

cache.plist

sudo launchctl load /Library/LaunchDaemons/com.addigy.lan-

cache.plist

In addition, there are a number of supporting files located in /Library/

Addigy, including /Library/Addigy/ansible/status.json which is the main

ansible inventory file and /Library/Addigy/user-job which runs shell

scripts on behalf of the user.

Larger files, such as packages, are then cached to the client systems

using LANCache. To see what resources the LANCache daemon is using,

use ps to view processes and then grep the output for lan-cache as follows:

sudo ps aux | grep -v grep | grep lan-cache

A similar incantation of the command can be used to view the

resources being used by any of the agents we’ll cover in this chapter. In

general, if you notice a trend here, we use launchctl to check what binaries

are called by the agents and then use the command structures for each

agent to get more details, troubleshoot, and learn how to most efficiently

deploy management to devices. For example, know where that LANCache

binary is; we can see what peers are visible to a device using lan-cache

along with the peers verb, as you can see here:

/Library/Addigy/lan-cache peers

Chapter 2 Agent-Based Management

71

One great aspect of LANCache is that it’s used to speed up downloads

for many clients. By caching updates on peers, the download is faster and

organizations reduce the bandwidth required to download assets, making

the Internet seem faster during a large deployment push. To set a device as

a proxy for peers, use the -peer-proxy options with that binary along with

the -set-proxy-setting as follows:

/Library/Addigy/lan-cache -peer-proxy -set-peer-proxy-setting

One of the reasons we placed the Addigy agent first is that it’s a

simple, efficient, and transparent architecture. The other is of course that

it alphabetically comes first, and when we list vendors, we try to do so

alphabetically. But the main components of the agent and with others will

be that there’s a process for connecting to the server and orchestrating

events, another process for downloading updates, and a final process for

executing and reporting. More daemons just means more logic behind the

scenes and more options. But more daemons or agents also means more

CPU usually.

The use of LANCache is a really great feature, provided there’s

a checksum validation at installation of packages as it improves the

experience but also keeps the bandwidth required to host assets for

customers low. Caching updates on client devices is not a new concept.

Filewave has supported “Boosters” for well over a decade. In the next

section, we’ll look at the FileWave agent in more depth.

�FileWave
FileWave is a management solution for iOS, macOS, and Windows.

FileWave deploys software to client Macs using what’s known as a fileset,

or a set of files. These filesets are referenced using a manifest on a FileWave

Server, and the FileWave client, or agent, looks to the server manifest for

a list of any actions it needs to perform. If a fileset needs to be installed,

the FileWave client is provided with a path to access the fileset using

Chapter 2 Agent-Based Management

72

the manifest file and retrieves the files necessary for installation using a

FileWave booster, or distributed repository that hosts those files.

The FileWave client agent is primarily made up of an app, located at /

usr/local/sbin/FileWave.app; a preference file, located at /usr/local/etc/

fwcld.plist; and a control script, found at /sbin/fwcontrol. These tools log

to /var/log/ using log files that begin with the name fwcld. The scripts are

started up using /Library/LaunchAgents/com.filewave.fwGUI.plist and /

Library/LaunchDaemons/com.filewave.fwcld.plist.

Let’s start with a pretty basic task; let’s get the status of the agent:

sudo /usr/local/sbin/FileWave.app/Contents/MacOS/fwcld -s

The output will be similar to the following:

FileWave Client Status

User ID: 2243

Current Model Number: 134

Filesets in Inventory:

1. Enroll Macs into MDM, ID 25396 (version 2) - Active

2. �OSX App - Lingon, ID 846 (version 3) - Installing via Mac

App Store (can take some time)

3. Firefox.app, ID 1133 (version 7) - Active

4. �FileWave_macOS_Client_12.7.0_317xyz, ID 24000 (version 1) -

Active

5. �FileWave_macOS_Client_12.8.0_076xyz, ID 21000 (version 1) -

Active

The preceding data shows the user and the filesets the device has,

the versions of those filesets, and the status of each. Another task you can

Chapter 2 Agent-Based Management

73

do with the fwcld would be to set some custom information into a field

and then save that up to a server. Supported fields to do so are custom_

string_01, custom_integer_01, custom_bool_01, and custom_datetime_01,

where there are 20 slots for each and they contain a string (or a standard

varchar), number, a Boolean (so 0 or 1), and a date. In the following

example, we’ll take some information telling us if a login hook is installed

and send that into the 9th available string value:

/usr/local/sbin/FileWave.app/Contents/MacOS/fwcld -custom_

write -key custom_string_09 -value `defaults read com.apple.

LoginWindow`

As you can see in the earlier example, we’ve sent information about a

device back to a server. We can then build automations at the server that

send further instructions to the client. For example, if there’s no login

hook, install one. The FileWave manual will be a better guide to getting

started using the command line and scripts to help manage FileWave. That

can be found at www.filewave.com.

�Fleetsmith
As with many of the agent-based management solutions, Fleetsmith can

run as an MDM for the Mac alongside an agent, which Fleetsmith refers

to as Fully Managed. Fully Managed devices can be remotely locked,

have kernel extensions whitelisted, and be remotely erased via MDM.

Fleetsmith can also run with just an agent and no MDM. To run the

Fleetsmith agent, first download it by clicking on your name in the bottom

left corner of the screen and then copy the download URL as seen in

Figure 2-7.

Chapter 2 Agent-Based Management

http://www.filewave.com

74

Once the package is downloaded, run it and a number of assets will

be loaded on your computer. As with many of the “agents,” Fleetsmith has

three LaunchDaemons:

•	 com.fleetsmith.agent.plist: Invokes the /opt/

fleetsmith/bin/run-fsagent shell script, which logs to /

var/log/fleetsmith and invokes the agent daemon.

•	 com.fleetsmith.query.plist: Starts /opt/fleetsmith/bin/

fsquery, the osquery daemon.

•	 com.fleetsmith.updater.plist: Starts /opt/fleetsmith/bin/

fsupdater, a Go daemon that keeps software up-to-date.

The fsagent process is responsible for orchestrating events on behalf

of the Fleetsmith tenant. The directory /opt/fleetsmith/bin contains a

number of tools invoked by the daemon and used to manage devices:

•	 force-notifier.app: Takes over the screen to run updates

when needed.

Figure 2-7.  Download the Fleetsmith Installer

Chapter 2 Agent-Based Management

75

•	 fsagent: The LaunchDaemon that runs in the

background.

•	 fsquery : The Fleetsmith fork of osquery.

•	 fsupdater: Responsible for keeping Fleetsmith up-to-date.

•	 osqueryi: osquery, which we’ll cover later in this

chapter, is distributed in order to provide inventory

information for Fleetsmith.

•	 run-fsagent: Starts the agent.

The /opt/fleetsmith/data directory stores the agent.log, downloads

directory, and a store.db sqlite3 database. All of this is used as small

components to accomplish the tasks you instruct the server to perform on

the client. As an example, when you go to manage Google Chrome in Apps

(Figure 2-8), you will enable the app to be managed and then configure the

settings that will be pushed to the app.

Figure 2-8.  Manage Google Chrome with Fleetsmith

Chapter 2 Agent-Based Management

76

The Fleetsmith agent then installs the Chrome app, and if you open the

Fleetsmith app from /Applications, once installed, you’ll see that “All your

apps are up to date” (Figure 2-9).

Addigy and Fleetsmith are both Go-based agents that include

components from the open source community. Fleetsmith bolts on a lot

of keys and certificates to further secure the communication channel and

adds a lot of logic on top of osquery. Next, we’ll look at the jamf “binary” –

which is one of the older agents but also one of the most widely distributed.

�Jamf
Since the early days when it was called The Casper Suite, Jamf Pro has

always had a binary running on a computer. That binary is /usr/local/

jamf/bin/jamf and it executes most of the tasks that Jamf Pro sends to

the agent. The “agent” is an oversimplification. There is the agent for

processing user work and report on user data at /usr/local/jamf/bin/

jamfagent and then there is /Library/Application Support/JAMF/JAMF.

app/Contents/MacOS/JamfDaemon.app which is a bundle containing

the Jamf Pro daemon, for more global instructions (the Jamf.app is an app

Figure 2-9.  The Fleetsmith app in the menu bar

Chapter 2 Agent-Based Management

77

bundle that just keeps all this together). There’s also /Library/Application

Support/JAMF/JAMF.app/Contents/MacOS/JamfAAD.app, which is for the

Azure Active Directory integration and /Library/LaunchDaemons/com.

jamfsoftware.task.1.plist which manages checking into Jamf Pro.

Additionally, /Library/LaunchDaemons/com.jamfsoftware.

startupItem.plist launches the check-in script, and /Library/

LaunchDaemons/com.jamfsoftware.jamf.daemon.plist collects

application usage, FileVault data, network state changes, and restricted

software as well as performs actions from Self Service. All of this is logged

to /var/log/jamf.log. So the binary is handling non-MDM communications

back to the server but also enables you to script various tasks quickly.

�Manage User Accounts with Jamf

You can then add a new user, using the createAccount verb. To do so,

run the jamf binary using the createAccount verb. This verb provides for

a number of options, including a short name (-username), a full name

(-realname), a password (-password), a home directory (-home), and a

default shell (-shell). If you want the user to be an admin of the system you

can also add an -admin option. In the following, we’ll string it all together:

/usr/sbin/jamf createAccount -username charlesedge -realname

"Charles Edge" -password mysupersecretpassword -home /Users/

charlesedge -shell bash -admin

Or if you need to, you can easily delete an account using the

deleteAccount verb. Here, use the -username operator to define a given

user that you’d like to remove. That username is defined as the short name

(or what dscl shows) of a given user. For example, to remove the user, we

just created (charlesedge), run the following command:

/usr/sbin/jamf deleteAccount -username charlesedge

Chapter 2 Agent-Based Management

78

You can then provide a popup on the screen that you completed that

action using the displayMessage verb along with the -message option to

indicate what was done:

/usr/sbin/jamf displayMessage -message "charlesedge has been

deleted"

Once an action is complete, it’s always a good idea to perform a quick

recon again to make sure everything is registered back to the server:

/usr/sbin/jamf recon

�More Automation Through The Jamf Framework

The Jamf Framework is also capable of performing a number of tasks that

the developers have provided, to make it easier to configure devices on your

network. To get started, let’s see all of the options. As with many binaries, if

you have any questions, you can use the help verb to see what all it can do:

/usr/sbin/jamf help

If you need more information on a given verb, run the help verb

followed by the one you need more information on:

/usr/sbin/jamf help policy

You can also automate standard tasks. The following command will

unmount a mounted server called mainserver:

jamf unmountServer -mountPoint /Volumes/mainserver

Or change a user’s home page in all of their web browsers:

jamf setHomePage -homepage www.krypted.com

The following command can be used to fire up the SSH daemon:

jamf startSSH

Chapter 2 Agent-Based Management

79

The following command can be used to fix the By Host files on the

local machine:

jamf fixByHostFiles -target 127.0.0.1

The following command can be used to run a Fix Permissions on the

local machine:

jamf fixPermissions /

The following can be used to flush all of the caches on your local system:

jamf flushCaches -flushSystem

The following can be used to run a software update on the local system:

jamf runSoftwareUpdate

The following can be used to bind to an AD environment (rather than

dsconfigad) but would need all the parameters for your environment put

in as flags in order to complete the binding:

jamf bindAD

The jamf binary can also poll for a list of printers using the listprinters

verb:

sudo jamf listprinters

The output looks like this:

MSP Lobby HP MSP_LobbyLobby lpd://192.168.12.201/ HP 6490 C5250 PS

In general, most of the agents will provide a few options. The Jamf

binary goes a bit deeper than most but still wraps a lot of shell commands

that you can send through any management tool, if you want to build those

yourself. Another common tool used to manage Macs is Munki, which

we’ll cover in the next section.

Chapter 2 Agent-Based Management

80

�Munki
Munki is an open source device management framework originally

developed by Greg Neagle and available via Github at https://github.

com/munki/munki. Munki was initially architected to be similar to the

Apple Software Update Server but for third-party products. The design is

elegant in that simplicity. The client downloads one or more manifests,

one or more catalogs, and a client computer takes its updates from the

manifest(s) and catalog(s). As the project has gained traction and a

greater level of maturity, a number of enhancements have been made;

but you have to love that core concept that a client picks up a dictionary of

information about the state the client should be in and then takes action

based on that, including installing profiles, updating defaults domains, and

of course installing software updates.

Munki runs an agent on client computers. As with many “agents” these

days, it’s split up between a number of LaunchDaemons and LaunchAgents,

each built for a specific task. There are four LaunchDaemons and three

LaunchAgents, as well as a number of scripts that do specific tasks. As with

a few of the tools we cover, Munki comes with an app that can be used to

allow users to perform a number of tasks themselves.

�Munki LaunchDaemons

As is a good practice, each task that Munki requires is a separate

program, with the four tasks that require root privileges being run as

LaunchDaemons and three LaunchAgents for the things visible in the

Managed Software Center GUI. In this section, we’ll look at what each of

the LaunchDaemons does:

•	 /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-check.plist: Controls

background task scheduling using the supervisor

to make sure it wasn’t removed and add a delay to

Chapter 2 Agent-Based Management

https://github.com/munki/munki
https://github.com/munki/munki

81

triggered managed softwareupdate events. This allows

the local agent to process catalog changes and run

unattended installations of software.

•	 /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-install.plist: Runs cached

updates when user notification is required. The

managedsoftwareupdate-install launchdaemon

runs cached updates for Managed Software Center.

This involves a sanity check that /private/tmp/.

com.googlecode.munki.managedinstall.launchd is

present. If so, managedsoftwareupdate runs using the

–installwithnologout option when invoked.

•	 /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-manualcheck.plist: Gives

Managed Software Center the ability to scan servers

for updates to the Munki Manifest file. Requires the

/private/tmp/.com.googlecode.munki.updatecheck.

launchd trigger file is present.

•	 /Library/LaunchDaemons/com.googlecode.munki.

logouthelper.plist: Notify users when the force_install_

after_date approaches. This is done by invoking

Managed Software Center which can terminate a

user session, which uses the /usr/local/munki/

logouthelperutility script.

Munki also comes with a number of LaunchAgents, which include the

following:

•	 /Library/LaunchAgents/com.googlecode.munki.

ManagedSoftwareCenter.plist: Used to open Managed

Software Center in the user context when user

notification is required.

Chapter 2 Agent-Based Management

82

•	 /Library/LaunchAgents/com.googlecode.munki.

MunkiStatus.plist: Calls MunkiStatus in the Contents/

Resources directory of the Managed Software Center

app bundle and is used for notifications on top of the

Login Window.

•	 /Library/LaunchAgents/com.googlecode.munki.

managedsoftwareupdate-loginwindow.plist.

Processes user tasks at the login window. Can be

triggered by /Users/Shared/.com.googlecode.

munki.checkandinstallatstartup, /private/tmp/com.

googlecode.munki.installatlogout, or /Users/Shared/.

com.googlecode.munki.installatstartup,

The architecture of what processes are used to run what services

are pretty telling, not only about how the product works but also how to

troubleshoot that product. The fact that each task that will be performed

has been pulled off into a separate daemon or agent speaks to preserving

the security of managing endpoints using the least amount of privileges

available and avoids requiring a kext always be loaded in order to orchestrate

all of these tasks. Most, though, are in support of processing the manifest,

catalog, and pkginfo plist files, which we’ll cover in the next section.

�Customizing a Munki Manifest

The manifest is where the Munki agents are taking their instruction sets.

Now that we’ve looked at the components of Munki, let’s look at that

format, the manifest, catalog and pkginfo plist files, and the keys in those

files that go to each client. Keep in mind that Munki was initially built to

replicate what Apple did for Software Update Services where there is a

manifest file distributing packages to install on clients. Therefore, Munki

has catalogs of all software to be installed.

Chapter 2 Agent-Based Management

83

Over time, the scope of the project grew to include groupings of

different client computers that received different manifest files and an app

that allowed end users to install their own software, which we’ll cover in

more detail in Chapter 11.

Manifests are standard property lists. We’ll cover manipulating

property lists further in Chapter 3, but for now, think of them as simple

XML files that have a collection of key pairs are a simple list of the items to

install or verify their installation or to remove or verify their removal. The

manifest contains a list of one or more catalogs, defined using a catalogs

array, along with an array of packages to install or just update if they are

found on disk, which are a number of arrays for how you want the Munki

agent to handle items listed. These include the following arrays:

•	 managed_installs: Munki will install these items and

keep them up-to-date.

•	 managed_uninstalls: Munki will remove these items.

•	 managed_updates: Munki will update these items, if

present, whether or not they were installed by Munki.

•	 optional_installs: Munki will allow users to install

these items optionally and keep them up to date once

installed (e.g., using Managed Software Center).

•	 featured_items: Items listed at the top of Managed

Software Center.

Munki Managed Installs

The managed_installs key is the first and so arguably one of the most

important things Munki does. As mentioned, managed installs are software

that is required to be deployed to a device. Once deployed, the software

must be kept up-to-date in alignment with the catalog. You can see this in

Chapter 2 Agent-Based Management

84

practice using the following manifest, which instructs the client computer

to install Quickbooks, Slack, and Office from the Accounting catalog:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack-3.3.8</string>

 <string>Office-16.23</string>

 </array>

</dict>

</plist>

Many environments use a production catalog and a testing catalog,

where the testing catalog is populated by an automated packaging tool

such as AutoPKG. Once software has been tested and validated as safe for

distribution, it’s then added to the production catalog. Testing machines

can then use the testing catalog to install software, instead of the safer

production catalog. You can have multiple catalogs listed by adding items

to the catalogs array. The following example shows adding a testing catalog

above the production catalog. Doing so causes the Munki agent to search

the testing catalog for the packages defined in the managed_installs array

before trying to install those software titles or scripts from the production

catalog, making for a seamless transition when the software you are testing

is promoted to production.

Chapter 2 Agent-Based Management

85

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>testing</string>

 <string>production</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Firefox-67.02</string>

 <string>Chrome-75.0.3</string>

 </array>

 </dict>

</plist>

It’s usually a good practice to deploy software without version numbers

or if there are version numbers, to only use major release numbers. In the

above example, we’ve actually piped the point release version number

for testing. This allows you to keep track of software during testing that’s

destined for your production catalog. This catalog isn’t always exclusive for

software you installed.

�Updating Software Munki Didn’t Install

There are a number of reasons to patch software that Munki didn’t

install. Chief among them are security patches. But also, the general

performance of a system can be greatly improved by treating a piece of

software Munki didn’t install as you would treat other managed software.

This is referred to as a managed update in Munki and defined using a

managed_updates option.

Chapter 2 Agent-Based Management

86

The managed_updates array is handled similarly to managed_installs

but looks for a software title on the host and runs an updater only if that

title is found. For example, if you don’t deploy Firefox, Chrome, or the

Microsoft Edge browser, you might still want to keep those patched if you find

your users install them. Running an inventory through a tool like osquery

(described later in this chapter) will supply you with a list of software on the

computers in your deployment and can then be used to find any software you

would like to either move into your managed catalog or at least keep updated.

The below example is similar to the previous example but using

managed_updates for these pieces of software installed by users outside of

the Munki deployment.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_updates</key>

 <array>

 <string>Chrome</string>

 <string>Firefox</string>

 </array>

 </dict>

</plist>

Chapter 2 Agent-Based Management

87

The exception to updating a package would be if it’s been slated to be

removed on a computer. If a piece of software is scheduled for removal it will

not be updated. As deployments grow, you need more complicated logic on

client systems in order to handle the added burden that additional groups

and iterations put on an environment. This has led to nesting manifests.

�Nested Manifests

You can nest manifests. Much as you can do an include in an Apache

configuration, you can logically group manifests of files. If you have a

user in the accounting group, then you can create a manifest just for

accounting, along with a manifest that all of the users receive. In the below

example, we’ll remove the testing catalog and add an array of manifests to

include, adding the accounting and allusers manifests and install Chrome

as well, which wouldn’t be included for other devices:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Chrome</string>

Chapter 2 Agent-Based Management

88

 </array>

 </dict>

</plist>

The above manifest includes two other manifests. Consider this akin to

having nested groups. Those manifests specifically meant to be included

in other manifests should not typically include a catalog, given that the

catalog is defined in the parent manifest. In the below example, see an

example of a manifest built to be included:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack</string>

 <string>Office-16</string>

 </array>

</dict>

</plist>

The above manifest is similar to the earlier example, defining

Quickbooks, Slack, and Office but without listing the catalogs. This simple

approach allows administrators to push out small changes, managing

universal software and then either aligning a computer with a job function

or as the deployment grows, allowing for more complicated hierarchies.

This is similar to Apple allowing for nested Software Update Servers, where

you can limit software to be deployed on child servers. While the Apple

technique is no longer supported, Munki has filled much of the gap for

third parties and continues this tradition.

Chapter 2 Agent-Based Management

89

�Removing Software with Munki

Managed installs get software and packages on devices and keeps software

updated. Managed uninstalls remove software. This is defined in the same

property lists but with a managed_uninstalls array followed by a list of

titles in the form of strings. Obviously, software must be installed in order

to be uninstalled. Provided that a software title is installed that should

be removed, the following example builds on the previous, keeping any

software defined in the accounting and allusers manifest installed, keeping

Chrome installed but also defining that the Symantec software will be

removed any time it’s encountered:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Chrome</string>

 </array>

<key>managed_uninstalls</key>

 <array>

Chapter 2 Agent-Based Management

90

 <string>Symantec</string>

 </array>

 </dict>

</plist>

The above is mostly used to retire software, plan for major updates,

and pull back any software accidentally released.

�Optional Software Installation

Optional software are software titles that users can optionally install

through Managed Software Center. If a user installs an optional software

title, a package is installed as an administrator. Optional software is

defined in manifests using an optional_installs array and then a number of

packages, by name.

The following example builds off of our accounting include from

earlier, listing VPN, Okta, Druva, and Zoom as optional installations:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack</string>

 <string>Office-16</string>

 </array>

 <key>optional_installs</key>

 <array>

 <string>VPN</string>

 <string>Okta</string>

Chapter 2 Agent-Based Management

91

 <string>Druva</string>

 <string>Zoom</string>

 </array>

</dict>

</plist>

Any software installed using an optional install is stored in a locally

stored manifest file that is also reviewed by Munki, located at /Library/

Managed Installs/manifests/SelfServeManifest. As you might guess, if a

title is listed in optional installs and managed installs, the package will be a

required install. Managed Software Center then has the logic not to list that

package as an optional install. The beauty of these types of installs is that

users don’t need administrative privileges. We’ll get into packaging further

in Chapter 6, but because anything can be put in a package, you can also

deploy automations using Managed Software Center this way. Therefore,

basic support tasks that might otherwise require administrative privileges

such as clearing print queues, installing certain printers, and clearing

caches can then be deployed without a user being made an administrator

or without a remote control session to the computer.

If an item is installed through an optional install, then it is treated as

a managed install. Because the software is optional, it can be removed

through Managed Software Center. If the optional install is then removed, it

is treated as a managed uninstall. A type of optional item is a featured item.

�Featured Items

The featured_items array indicates software that is listed at the top of

Managed Software Center in the Featured section. Featured items are a

subset of optional installs so should be listed in both places. Manifests may

also have a featured_items key:

Chapter 2 Agent-Based Management

92

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack</string>

 <string>Office-16</string>

 </array>

 <key>optional_installs</key>

 <array>

 <string>VPN</string>

 <string>Okta</string>

 <string>Druva</string>

 <string>Zoom</string>

 </array>

<key>featured_items</key>

 <array>

 <string>Okta</string>

 <string>Druva</string>

 <string>Zoom</string>

 </array>

</dict>

</plist>

One of our favorite aspects of Munki admins is that most know more

than anyone else has ever known about anything; therefore, there will be

a lot of disagreement on this explanation of manifest files. That is fine.

Now that we’ve created manifests, let’s move on to getting the first catalog

created and getting some software imported into it for distribution.

Chapter 2 Agent-Based Management

93

�Building a Repository and a Catalog of Software

Munki is a tool designed for installing software. The catalog is a list of

software titles available for installation. The catalog is stored locally at

/Library/Managed Installs/catalogs but can be downloaded from the

server when it’s changed and used to provide catalogs using a web service

and items are imported into the catalog using munkiimport, by default

installed at /usr/local/munki/munkiimport. The munkiimport script is

a python script that acts as an assistant for importing disk images (.dmg

files), packages (.pkg files), manual configuration profiles (which is

supposedly being deprecated in macOS in 10.15), and application bundles

(.app files) into your repo.

A repository’s location is configured, along with other global

configuration options for munkiimport, using a –configure option for

munkiimport. Simply run that option and follow the interactive shell:

/usr/local/munki/munkiimport --configure

When prompted, provide a URL for your repo, which we’re using as /usr/

local/var/www/munki_repo in this demonstration. The repo is set such that

when the user runs munkiimport, imports will go to that location by default.

The preferences set by the --configure option are stored in ~/Library/

Preferences/com.googlecode.munki.munkiimport.plist. The repo should be

provided as file://usr/local/var/www/munki_repo for our example location,

although you could use an afp:// or smb:// mount instead, or use one of the

file-handler options to store your repo in an AWS or GCS file store.

Next, we’re going to create a PkgInfo property list based on a standard

installer package that lists the catalogs an installer is a member of and

other metadata about the installer. In this example, we’ll create the Zoom

installer we used in the manifests earlier in this chapter: the PkgInfo plist.

PkgInfo files are stored in the pkgsinfo directory inside the munki_repo.

The PkgInfo file is generated when using munkiimport to import an

installer. To import software, we’ll use munkiimport along with options

Chapter 2 Agent-Based Management

94

that allow the script to run without providing the information in these

options interactively. This involves answering some basic questions

about the software, including the name, name that should be displayed

when installing, the category of software, the version of the package being

imported, the organization that made the software, whether the software

can be installed/uninstalled in an unattended fashion, and a -c option

which defines what catalogs the software should be placed into:

munkiimport ~/Desktop/zoom.pkg --name=Zoom

--displayname=Zoom --description="Our conferencing

software" --category=Productivity --developer=Zoom

--pkgvers=4.4.53590.0607 -c allusers --unattended_install

--unattended_uninstall

Because we didn’t specify an -n option, we will still have some

interactive steps to provide information about our installer. We’ll show these

steps so you can better understand what’s happening behind the scenes:

Import this item? [y/n] y

Upload item to subdirectory path []: apps/zoom

Path pkgsinfo/apps/Zoom doesnt exist. Create it? [y/n] y

No existing product icon found.

Attempt to create a product icon? [y/n] y

Attempting to extract and upload icon...

Imported icons/Zoom.png.

Copying zoom.pkg to repo...

Copied zoom.pkg to pkgs/apps/zoom/zoom.

Edit pkginfo before upload? [y/n]: n

Saved pkginfo to pkgsinfo/apps/Zoom/Zoom-4.4.53590..plist.

Rebuild catalogs? [y/n] y

Rebuilding catalogs at file://usr/local/var/www/munki_repo

Created icons/_icon_hashes.plist...

Chapter 2 Agent-Based Management

95

All of the above options can be added as additional parameters to

your installer. This shows the amount of work being done each time you

run a munkiimport, even creating an icon. The one important option is to

rebuild catalogs. Answering yes to that option will result in a new catalog

files being built based on pkginfo files.

The software itself is also then imported into the repo, and if successful,

the pkginfo file will open in the editor you defined in the --configure step

for your user. Now that we have a repo, a catalog, and manifests, let’s

distribute the manifest to client devices that need to install software.

�Distributing the Manifest File

We’ve described manifests and catalogs, but how is a device provided

with a manifest? Upon installation, the Munki agent will look to a

SoftwareRepoURL key for the main repository of manifests. If Munki’s

SoftwareRepoURL preference is not defined, the Munki client will attempt

to detect a Munki repo based on some common defaults. That web host

should have a valid TLS certificate and host the URL via https in order to

protect against any man in the middle attacks. Munki is architected such

that the administrator points the Munki client to the server and that the host

running Munki implicitly trusts that server. Therefore, it’s not recommended

to deploy Munki without https in order to ensure the authenticity of catalogs

being deployed. Failure to do so could cause résumé-generating events.

If no SoftwareRepoURL is defined, Munki will go through a search

order looking for a repository of manifests. This follows the following

search order, where $domain is a search domain for a client:

•	 https://munki.$domain/repo

•	 https://munki.$domain/munki_repo

•	 http://munki.$domain/repo

•	 http://munki.$domain/munki_repo

•	 http://munki/repo

Chapter 2 Agent-Based Management

96

Once Munki finds a repo, there is usually a manifest for all devices at

that URL. This is the site_default manifest and if a manifest is not found

that uses a better option. The url for that site_default for a domain name

of pretendco.com might then be https://munki.pretendco.com/repo/

manifests/site_default. Those better options in order of priority would be

a unique identifier for Munki known as the ClientIdentifier, a fully qualified

hostname (e.g., the output of scutil --get HostName), a local hostname (e.g.,

the output of scutil --get LocalHostName), or the serial number. The file

for a computer’s hostname using that pretendco.com domain name from

earlier but with a hostname of client1234 might then be https://munki.

pretendco.com/repo/manifests/client1234.pretendco.com.

The manifest can be created manually or using a device management

tool. For example, some organizations use puppet, chef, VMware AirWatch,

or Jamf Pro to distribute the Munki manifest files and settings that point to

manifest files. While it might seem like these other tools can manage the

software on devices natively, it’s worth noting that these other tools are

more about state and policy management, where Munki is about managed

software. The power of Munki is the fact that it has such a narrow set of

duties. For smaller environments, managing software and leveraging some

payload-free packages is often all they need. For larger environments with

a state management tool, Munki perfectly complements their other tools,

and engineers tasked with the management of large fleets of devices are

accustomed to scripting middleware for their organization’s specific needs.

Many software packages are updated every couple of weeks. According

to how many software titles a given organization is managing, it can be a

challenge to maintain an extensive software catalog. Therefore, AutoPkg is

often used alongside Munki to automatically build packages and put them

in your testing catalog. We will cover AutoPkg more in Chapter 7, when

we review preparing apps for distribution. Now that we’ve covered Munki,

and how Munki keeps devices up-to-date, let’s move to a tool often used

to compliment Munki but built more for tracking the state of a device than

systems orchestration: osquery.

Chapter 2 Agent-Based Management

https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com

97

�osquery
Facebook open sourced osquery, a tool they initially used to monitor

servers, at https://osquery.readthedocs.io/en/stable/. Since then,

a number of developers (including those responsible for each platform

internally at Facebook) have built additional capabilities for managing

a specific platform. This makes osquery capable of being used as part of

the management stack of a variety of platforms, without having to learn

the internals for each of those platforms. The point of osquery is to obtain

information about a system.

The osquery framework is multi-platform and tracks all the

information about a system in a simple SQL database, so that devices

can run lookups efficiently on behalf of a process that calls a lookup. This

makes otherwise costly (in terms of processing power) processes run

quickly, meaning an organization can obtain more data about devices in a

central location at a higher frequency, without impacting the performance

of the device being monitored. This would include common settings used

on a Mac, the daemons running, how a device is configured, and the

version of software. But you can get much lower level, analyzing processes

running, network sockets, compare file hashes, and any other fact you

might want to know about a device at a given time.

When you install osquery, the following files are deployed to the device:

•	 /private/var/osquery/com.facebook.osqueryd.plist:

The configuration preferences for the osquery daemon.

•	 /private/var/osquery/osquery.example.conf: The

customized settings for each morganization running

osquery.

•	 /private/var/log/osquery/: Log files are stored in this

directory and written as to the speficied parameters in

the configuration file.

Chapter 2 Agent-Based Management

https://osquery.readthedocs.io/en/stable/

98

•	 /private/var/osquery/lenses: A record of a rest call

stored in Augeas' tree.

•	 /private/var/osquery/packs: A set of queries.

•	 /usr/local/lib/osquery/: The directory for the

command tools for osquery.

•	 /usr/local/bin/osqueryctl: A control utility to wrap

basic tasks, like starting the LaunchDaemon.

•	 /usr/local/bin/osqueryd: The main osquery daemon,

which starts the process.

•	 /usr/local/bin/osqueryi: Provides a SQL interface to

test queries. By default, comes with a number of built-

in tables populated with more information than most

can consume (more data is always a good thing).

Now that we’ve looked at the osquery components, let’s get it installed

and check sql to see what data we now have at our fingertips.

�Install osquery

The osquery software package for Mac is available at osquery.io/

downloads. The default package creates the files mentioned in the previous

section. Then you’ll want to create a configuration file from the example:

sudo cp /var/osquery/osquery.example.conf /var/osquery/osquery.

conf

When you edit this file, it’s a standard json file. Look for lines that begin

with a // as those that are commented out. For this example, we’re going to

uncomment the following lines by simply deleting the // that the lines begin

with and then change the /usr/share/ to /var given that packs have moved:

Chapter 2 Agent-Based Management

https://osquery.io/downloads/
https://osquery.io/downloads/

99

// �"osquery-monitoring": "/usr/share/osquery/packs/osquery-

monitoring.conf",

// �"incident-response": "/usr/share/osquery/packs/incident-

response.conf",

// "it-compliance": "/usr/share/osquery/packs/it-compliance.conf",

// "osx-attacks": "/usr/share/osquery/packs/osx-attacks.conf",

So those four lines should then read:

"osquery-monitoring": "/var/osquery/packs/osquery-monitoring.

conf",

"incident-response": "/var/osquery/packs/incident-response.

conf",

"it-compliance": "/var/osquery/packs/it-compliance.conf",

"osx-attacks": "/var/osquery/packs/osx-attacks.conf",

We’ll also uncomment this line in the same way, by removing the //:

//"database_path": "/var/osquery/osquery.db",

The osqueryd daemon provides you with queries run on a schedule.

The daemon then aggregates the results of those queries and outputs logs.

The following is an example query from the configuration file. Here, we’re

looking for hostname, cpu, and memory from the system_info table. And

the schedule for how frequently osqueryd updates the database per query

using an interval option in seconds.

"system_info": {

// The exact query to run.

"query": "SELECT hostname, cpu_brand, physical_memory FROM

system_info;",

// �The interval in seconds to run this query, not an exact

interval.

 "interval": 3600

 }

Chapter 2 Agent-Based Management

100

We’re not going to make any changes to any of the example queries

just yet. Now that we’ve customized the configuration file, we’ll copy the

LaunchDaemon to /Library/LaunchDaemons and start it:

sudo cp /var/osquery/com.facebook.osqueryd.plist /Library/

LaunchDaemons/

Once you’ve copied the file, we’ll start the LaunchDaemon:

sudo launchctl load /Library/LaunchDaemons/com.facebook.

osqueryd.plist

The footprint for osquery is slight. As an example of this, you

remove osquery you would simply remove stop and remove /Library/

LaunchDaemons/com.facebook.osqueryd.plist. Then you would remove

all files from /private/var/log/osquery, /private/var/osquery, and /usr/

local/bin/osquery and then use pkgutil to forget the osquery package was

used using pkgutil:

pkgutil --forget com.facebook.osquery

If you were to deploy osquery en masse, you would then edit your own

templates, script any additional installation steps as a postflight script, and

repackage them for distribution. Now that we have osquery running on a

system, let’s look at running osquery.

�Running osquery

The best way to understand the real value of osquery is to use osqueryi as a

standalone tool to query facts about a device. Architecturally, anything you

report on locally is then available on the server as well, or easily piped to a

Security Event Information Manager (SEIM). In fact, if you’re threat hunting,

doing research for a book, or just obsessive compulsive about tracking your

own personal device performance, you can run osquery locally.

Chapter 2 Agent-Based Management

101

First, we’ll start the osquery daemon, which now that everything is

installed should be started, but just in case, we’ll use

/usr/local/bin/osqueryctl start

Events and facts about devices are stored in a sql database at /var/

osquery/osquery.db (by default) and the schema for the tables in that

database are documented at https://osquery.io/schema/3.3.2. The

osqueryi binary can then be used to perform sql queries. This is an

interactive SQL shell and can be invoked by simply calling the file:

/usr/local/bin/osqueryi

Once in the interactive shell, just run a .SCHEMA command to see the

lay of the land:

osquery>.SCHEMA

There are way too many attributes that are tracked than we have pages

to go through them in this book. But use the link to the official schema to

easily find information about what’s being tracked. It’s a much prettier

map. Next, we’ll provide a few samples just to show the power of osquery.

The first is from sample documentation, but it’s one of the most common.

This query shows the USB devices that are plugged into a computer:

osquery>SELECT vendor, model FROM usb_devices;

The output would be as follows:

+------------+----------------------------------+

| vendor | model |

+------------+----------------------------------+

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | iBridge |

+------------+----------------------------------+

Chapter 2 Agent-Based Management

https://osquery.io/schema/3.3.2

102

The above is a standard SQL result-set. It shows all USB devices on

the bus. You can also use the WHERE clause to extract only those records

that fulfill a specified criterion. The WHERE Syntax uses a SELECT

followed by the column and then a FROM for the table but now adds

a WHERE at the end so you can specify table_name WHERE a column

name is – and this is where it becomes powerful because it’s where it is

either something in the data set or a comparative between columns. To

show what this expands to fully

osquery> SELECT vendor, model FROM usb_devices WHERE vendor

!='Apple Inc.';

As you can see, we used single quotes around text. We could have

also used double quotes. You do not need to quote numbers, but do

need to quote strings. The following operators are available when using

a WHERE clause:

•	 = Equal

•	 <> or != Not equal to

•	 > Greater than

•	 IN Indicates multiple potential values for a column

•	 < Less than

•	 >= Greater than or equal

•	 <= Less than or equal

•	 BETWEEN Between an inclusive range

•	 LIKE Looks for a provided pattern

What would this look like in your configuration file:

{

 "usb_devices": {

 "query": "SELECT vendor, model FROM usb_devices;",

Chapter 2 Agent-Based Management

103

 "interval": 60

 }

}

In the above query, notice that we are running a standard SELECT

statement. Most tasks you will execute against a database are done with

SQL statements. Think of statements as a query, an insert, a change, or a

delete operating. For example, to see all of your data, you would select all

of the records from a database using the SELECT statement.

Notice that this is just the name of a query (any old name will work)

followed by a query, which is a standard SQL query, followed by an

interval. This would run once a minute. Another option would be to list the

amount of free space on Time Machine destinations once an hour:

{

 "time_machine": {

 "query": �"SELECT bytes_available from time_machine_

destinations;;",

 "interval": 60

 }

}

The ORDER BY keyword in a SQL SELECT statement is used to sort a

given result-set based on the contents of one or more columns of data. By

default, results are in ascending order, but you can use either ASC or DESC

to indicate that you’d like results sorted in ascending or descending order,

respectively.

SELECT * FROM shared_folders ORDER BY name DESC

Now that we’ve looked at queries, let’s move to how the logging and

reporting functions work so we understand how drift is tracked.

Chapter 2 Agent-Based Management

104

�Logging and Reporting

The SQL result-set we looked at earlier ends up getting tracked in the

osquery database as a field in json. Each time the query runs a new row

is created in the table. The rows are empty until a change occurs the

next time the query is told to run. The contents of the first run would

appear as follows:

[

 �{"model":�"XHCI Root Hub SS Simulation","vendor":"Apple

Inc."},

 �{"model":�"XHCI Root Hub USB 2.0 Simulation","vendor":"Apple

Inc."},

 �{"model":�"XHCI Root Hub SS Simulation","vendor":"Apple

Inc."},

 �{"model":�"Bluetooth USB Host Controller","vendor":"Apple

Inc."}

]

Until a new device is added, no results are logged. But once I insert a

USB drive I would then see an entry that looks like the following:

[

 {"model":"WD Easystore USB 3.0","vendor":"Western Digital"}

]

There’s plenty of extensibility. Each deployment then has the option to

add decorations, lenses, or add additional packs. Now that we understand

some basics about running these queries and automating them, let’s just

do a quick check on shared folders:

osqueryi --json "SELECT * FROM shared_folders"

Chapter 2 Agent-Based Management

105

The output is then as follows:

[

 {"name":"CE’s Public Folder","path":"/Users/ce/Public"},

 {"name":"molly’s Public Folder","path":"/Users/molly/Public"}

]

This information can quickly and easily be picked up as inventory from

other tools with agents, such as munki, Jamf Pro, Addigy, or Fleetsmith.

Figure 2-10 shows Fleetsmith, as it also comes with the ability to direct

osquery information into a server.

Now that we’ve covered osquery, let’s look at another agent, Chef.

�Chef
The purpose of osquery is to obtain information about devices.

But an orchestration tool is required as well for large-scale systems

administration. Chef is a tool originally built by Jesse Robbins to do server

Figure 2-10.  Manage osquery with Fleetsmith

Chapter 2 Agent-Based Management

106

builds and is now maintained at https://chef.io. Chef uses a recipe to

perform a configuration task. These recipes are organized into Cookbooks.

Managing clients is harder than managing servers. Your server
isn't likely to get up and walk away, doesn’t have a rouge root
user, and will never connect to Starbucks wi-fi.

—Mike Dodge, Client Platform Engineer, Facebook

The most complete list of cookbooks available for the Mac can be

obtained through the Facebook Client Platform Engineering team’s Github

account at https://github.com/facebook/IT-CPE. Reading through these

should provide a good understanding of the types of things that Facebook

and other IT teams are doing to automate systems and get up-to-speed on

how to orchestrate various events on the Mac.

�Install Chef

We’re not going to go into detail in this book in how to setup a Chef

instance and get client systems connecting to it. That’s an entire book of its

own. But we will review the Chef client in this section. To install the client,

download the installer from https://downloads.chef.io/chef-client/.

When you install the package, chef-apply, chef-client, chef-shell, and chef-

solo will be installed in /usr/local/bin.

You can quickly clone the repo we mentioned earlier from Facebook

using the following command (which would copy it to /Users/Shared/

ChefAssets):

git clone https://github.com/facebook/IT-CPE /Users/Shared/

ChefAssets

Once installed, there will be a company_init.rb script at /Users/

Shared/ChefAssets/chef/cookbooks/cpe_init/recipes. There’s also a

/Users/Shared/ChefAssets/chef/tools/chef_bootstrap.py bootstrap script.

Next you customize the chef server URL, the organization name (which

Chapter 2 Agent-Based Management

https://chef.io
https://github.com/facebook/IT-CPE
https://downloads.chef.io/chef-client/

107

should match that of your chef server), and provide any certificates

necessary. The main settings are in the header of the script:

CLIENT_RB = """

log_level :info

log_location STDOUT

validation_client_name 'YOUR_ORG_NAME-validator'

validation_key �File.expand_path('/etc/chef/validation.

pem')

chef_server_url "YOUR_CHEF_SERVER_URL_GOES_HERE"

json_attribs '/etc/chef/run-list.json'

ssl_ca_file '/etc/chef/YOUR_CERT.crt'

ssl_verify_mode :verify_peer

local_key_generation true

rest_timeout 30

http_retry_count 3

no_lazy_load false

Additionally, look for any place that indicates MYCOMPANY and

replace that with the name of your organization to personalize the

installation. And make sure that if you’re using chef to bootstrap a Munki

installation that you’re using the correct URL as the SoftwareRepoURL:

Be sure to replace all instances of MYCOMPANY with your

actual company name

node.default['organization'] = 'MYCOMPANY'

prefix = "com.#{node['organization']}.chef"

node.default['cpe_launchd']['prefix'] = prefix

node.default['cpe_profiles']['prefix'] = prefix

Install munki

node.default['cpe_munki']['install'] = false

Configure munki

node.default['cpe_munki']['configure'] = false

Chapter 2 Agent-Based Management

108

Override default munki settings

node.default['cpe_munki']['preferences']['SoftwareRepoURL'] =

 'https://munki.MYCOMPANY.com/repo'

The logs are written to /Library/Chef/Logs/first_chef_run.log when the

script runs. The supporting files for chef will also be at /etc/chef, including

certificates that secure communications, a client.rb file that contains the

information you supplied the bootstrap.py. Provided it completes, you’ll

then have a working quickstart.json file at /Users/Shared/ChefAssets/chef

and a working run-list.json file that includes any recipes you want to run.

You’ll also have a /var/chef/cache for caches.

The quickstart script can then be as simple as the following:

{

 "minimal_ohai" : true,

 "run_list": [

 "recipe[cpe_init]"

]

}

Cookbooks should be ordered in your run-list from least specific

to most specific. That company_init.rb recipe defined the defaults for

an organization using all of the CPE cookbooks provided. The cpe_init

entry in the quickstart.json loads those recipes called in that init,

which by default includes a platform run list, a user run list, and a node

customization run list. If you want to know what anything is doing when

it’s being called, simply look at the depends lines and then read the

resource ruby script for each, such as /Users/Shared/ChefAssets/chef/

cookbooks/cpe_hosts/resources/cpe_hosts.rb. Once you have everything

in place, it’s time to grill out with chef. Let’s simply run the chef-client

along with the -j to specify your json file:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/

quickstart.json

Chapter 2 Agent-Based Management

109

�Edit a Recipe
Chef then makes verifies each resource in each included cookbook has

been configured as defined and resolves any drift found in the current

system. One of the most important things about a tool like chef is how

configurable it is. Simply cat the /Users/Shared/ChefAssets/chef/

cookbooks/cpe_munki/resources/cpe_munki_local.rb file to see how

munki is installed and note that

Now that we have chef running, let’s edit a recipe. To do so, we’ll edit

that /Users/Shared/IT-CPE/chef/cookbooks/cpe_init/recipes/company_

init.rb recipe in your favorite text editor to .

Add the following lines to the bottom of the file:

node.default['cpe_autopkg']['repos'] = [

 'recipes',

 'https://github.com/facebook/Recipes-for-AutoPkg.git'

]

This adds the recipes from the Facebook team to an autopkg instance

running on the host. Other parts of the recipe will allow you to install

autopkg and customize it, so you don’t have to do all the steps we’ll follow

in a manual installation later in this book. Programmatic deployment of

tools and configuration provides for a consistent experience. Once you’ve

configured the change to the client init, rerun the chef-client:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/

quickstart.json

These also write profiles, which you can then see in System

Preferences. Facebook was one of the first to publish cookbooks for Chef

and an early proponent of Chef for large-scale Mac orchestration. But a

few others have also open sourced their cookbooks, giving you a number

of options to choose from. And you can pull cookbooks from multiple

vendors when deploying your own. A few include the following:

Chapter 2 Agent-Based Management

110

•	 https://github.com/facebook/IT-CPE/tree/master/

chef/cookbooks

•	 https://github.com/microsoft/macos-cookbook

•	 https://github.com/pinterest/it-cpe-cookbooks

•	 https://supermarket.chef.io/cookbooks/macos

•	 https://github.com/uber/cpe-chef-cookbooks

The social community of Chef administrators and how they share

cookbooks makes for a good reason to look into these types of workflows.

Chef is open source and there are a lot of different methodologies around

its use and deployment. The examples in this chapter have mostly been

developed around a model that Apple began back in Software Update

Server when they provided us with a manifest URL. Mac admins have

been using a similar manifest, init script, etc., to deploy settings, apps,

and operating systems ever since. Organizations like Fleetsmith have

developed integrations with Chef that go beyond this and leverage a chef

server, as seen in Figure 2-11.

Figure 2-11.  Manage Chef with Fleetsmith

Chapter 2 Agent-Based Management

https://github.com/facebook/IT-CPE/tree/master/chef/cookbooks
https://github.com/facebook/IT-CPE/tree/master/chef/cookbooks
https://github.com/microsoft/macos-cookbook
https://github.com/pinterest/it-cpe-cookbooks
https://supermarket.chef.io/cookbooks/macos
https://github.com/uber/cpe-chef-cookbooks

111

In the above example, we’re providing those certificates and the chef-

client to endpoints from a central location, configuring what is required for

a client to be able to communicate back to a server. The steps we followed

in the previous examples can be strung together into an installer package.

But being able to automatically deploy one and keep clients up-to-date

automatically makes for a much simpler experience.

�Puppet
The tools covered in the previous sections are just a few in a red ocean

that includes a large number of client management tools available for

the Mac. We’ve seen Puppet, Vagrant, and other open source projects

used to orchestrate events on the Mac in much the same way they would

orchestrate events on a large farm of Linux servers.

The Puppet installer for Mac is available at https://downloads.

puppetlabs.com/mac/ and when installed using a standard software

package, the puppet-agent is used to orchestrate events on Macs.

A number of other binaries for puppet can be found in /opt/puppetlabs/

bin/. The service can be managed using launchctl or the puppet binary.

For example, if puppet is stopped it can be started using

sudo /opt/puppetlabs/bin/puppet resource service puppet

ensure=running enable=true

You would then configure changes to some of the ways the agent runs,

using settings found at https://puppet.com/docs/puppet/5.3/config_

important_settings.html. The most important is to sign a certificate

that’s then used to establish communications with the server. This is done

using the puppet command line utility followed by the cert option and

then the sign verb for that option, followed by the name of a certificate

that’s generated, as follows:

sudo /opt/puppetlabs/bin/puppet cert sign com.puppet.pretendco8734

Chapter 2 Agent-Based Management

https://downloads.puppetlabs.com/mac/
https://downloads.puppetlabs.com/mac/
https://puppet.com/docs/puppet/5.3/config_important_settings.html
https://puppet.com/docs/puppet/5.3/config_important_settings.html

112

These need to match with the server entry in the puppet.conf

directory. We don’t want to oversimplify a full-blown puppet deployment.

Getting a client to connect to a server is pretty straightforward. The real

value in any of these tools comes in the form of how much time they save

you once deployed. Puppet has nine configuration files, such as auth.conf

and puppetdb.conf for a reason. We won’t go into each of them (especially

since our publisher has an entire book on the subject available at www.

apress.com/gp/book/9781430230571).

Logs are then saved to /var/log/puppetlabs/puppetserver/

puppetserver.log. This walkthrough follows the same general standard as

Chef and Munki. But each is really built for something specific. Puppet is

for immediate orchestration. Munki is for software distribution. Chef is

for keeping a device in a known state. Osquery is for keeping inventory of

settings and events. There’s overlap between some of the options, but if

you squint enough, the basic methodology and management principles

across them are, in a very oversimplified way, similar. One such similarity

is that most administrators of these tools prefer to check changes in and

out using a tool called git.

�Use git to Manage All the Things
Git is a version control tool that can be used to manage files including

code that is then version controlled so you can see changes over time. The

main page indicates it’s actually the stupid content tracker. Git is good at

tracking changes between files and allowing administrators to check code,

or files out, and then check them back in when finished working. This is

well suited to a workflow where you want someone else to review your

changes before they get applied to a large fleet of devices. This makes git a

common compliment to chef, osquery, and munki deployments.

Chapter 2 Agent-Based Management

http://www.apress.com/gp/book/9781430230571
http://www.apress.com/gp/book/9781430230571

113

Ultimately though, git is a command with some verbs. Let’s start

with the init verb, which creates an empty git repository in the working

directory (or supply a path after the verb):

git init

Now let’s touch a file in that directory.

touch newfilename

Once a new file is there, which that new repo as your working

directory, run git with the status verb:

git status

You now see that you’re “On branch master” – we’ll talk branching

later. You see “No commits yet” and hey, what’s that, an untracked file! Run

git with the add verb, and this time you need to specify a file or path (I’ll

use . assuming you’re working directory is still the directory of your path).

git add .

Now let’s run the status command; again, the output should indicate

that you now have a staged file (or files). Now let’s run our first commit. This

takes the tracked and staged file that we just created and commits it. Until

we do this, we can always revert back to the previous state of that file (which

in this simple little walkthrough would be for the file to no longer exist).

git commit -m "test"

Now let’s edit our file:

echo "This is an example." > newFile'

This time let’s run git with the diff verb:

git diff

Chapter 2 Agent-Based Management

114

You can now see what changed between your file(s). Easy, right? Check

out the logs to see what you’ve been doing to poor git:

git log

There’s a commit listed there, along with an author, a date and time

stamp, as well as a name of the file(s) in the commit. Now, let’s run a reset

to revert to our last commit. This will overwrite the changes we just made

prior to doing the diff (you can use a specific commit by using it as the next

position after —hard or you can just leave it for the latest actual commit):

git reset —hard

This resets all files back to the way it was before you started mucking

around with those poor files. OK, so we’ve been working off in our own little

world. Next, we’ll look at branches. You know how we reset all of our files in

the previous command? What if we had 30 files and we just wanted to reset

one? You shouldn’t work in your master branch for a number of reasons. So

let’s look at existing branches by running git with the branch verb:

git branch

You see that you have one branch, the “∗ master” branch. To create a

new branch, simply type git followed by the name of the branch you wish

to create (in this case, it will be called myspiffychanges1):

git branch myspiffychanges1

Run git with the branch verb again and you’ll see that below master,

your new branch appears. The asterisk is always used so you know which

branch you’re working in. To switch between branches, use the checkout

verb along with the name of the branch:

git checkout myspiffychanges1

Chapter 2 Agent-Based Management

115

I could have done both of the previous steps in one command, by

using the -b flag with the checkout verb:

git checkout -b myspiffychanges1

OK now, the asterisk should be on your new branch and you should

be able to make changes. Let’s edit that file from earlier. Then let’s run

another git status and note that your modifications can be seen. Let’s

add them to the list of tracked changes using the git add for the working

directory again:

git add .

Now let’s commit those changes:

git commit -m "some changes"

And now we have two branches, a little different from one another.

Let’s merge the changes into the master branch next. First, let’s switch back

to the master branch:

git checkout master

And then let’s merge those changes:

git merge myspiffychanges1

OK – so now you know how to init a project, branch, and merge. Before

we go on the interwebs, let’s first set up your name. Notice in the logs that

the Author field displays a name and an email address. Let’s see where that

comes from:

git config –list

This is initially populated by ~/.gitconfig so you can edit that. Or let’s

remove what is in that list:

git config --unset-all user.name

Chapter 2 Agent-Based Management

116

And then we can add a new set of information to the key we’d like to edit:

git config user.name "Charles Edge" --global

You might as well set an email address too, so people can yell at you for

your crappy code some day:

git config user.email "chuckufarley@me.com" --global

Next, let’s clone an existing repository onto our computer. The clone

verb allows you to clone a repository into your home directory:

git clone https://github.com/autopkg/autopkg

The remote verb allows you to make a local copy of a branch. But it takes

a couple of steps. First, init a project with the appropriate name and then cd

into it. Then grab the url from GitHub and add it using the remote verb:

git remote add AutoPkg https://github.com/autopkg/autopkg.git

Now let’s fetch a branch of that project, in this case, called test:

git fetch test myspiffychanges1

Now we’ll want to download the contents of that branch:

git pull myspiffychanges1

And once we’ve made some changes, let’s push our changes:

git push test myspiffychanges1

Now that you’ve deployed agents, MDM is a great complement to what

agents can do so we’ll cover the concept of User Approved MDM in order

to have less button mashing happening by our end users.

Chapter 2 Agent-Based Management

117

�The Impact of UAMDM
Until macOS High Sierra, some MDM functions which would not run as

well on personally owned Macs as on iOS devices owned by a company.

This is because the iOS counterparts had Supervision and Macs do not.

As of High Sierra and beyond, Macs owned by a company, school or

institution can now be managed in a similar fashion as supervised iOS

devices are managed because of the introduction of UAMDM. User-

Approved MDM (UAMDM) in macOS 10.13.4 changed that by putting

certain management privileges in a special category. The use of these

special management privileges required both the use of an MDM solution

and for that MDM solution to support user-approved MDM. As of macOS

Mojave 10.14.x, these special management privileges are the following:

•	 Approval of third-party kernel extension loading

•	 Approval of application requests to access privacy

protected data and functionality

•	 Autonomous Single App Mode

For Mac environments which had traditionally not used MDM

management solutions, this meant for the first time that a MDM solution

was absolutely necessary for certain management functions to happen.

Moreover, there are two ways to mark a Mac as being user-approved:

•	 Enrolling the Mac in Apple’s device enrollment

program (DEP) – Enrollment of a Mac into DEP

means that Apple or an authorized reseller has

designated that Mac as being owned by a company,

school, or institution. Since this Mac is now explicitly

not a personally owned device, it gets UAMDM

automatically.

Chapter 2 Agent-Based Management

118

•	 Having a human being click an approval button on the

MDM profile issued by an MDM server which supports

UAMDM.

The automatic granting of UAMDM to DEP-enrolled Macs means

that DEP is now also more attractive to organizations which may not

have previously considered it. The combination of UAMDM’s reserving of

management privileges and the necessity of using MDM to employ those

privileges means that using an MDM solution to manage Macs has moved

from the “useful, but not essential” category to the “essential” category.

The rise of MDM management may signal the diminishment of using

agents to manage Macs. As more MDM management options become

available, the more an MDM solution can use Apple’s built-in MDM

management functionality to manage Macs in place of using a third-party

agent to manage the Mac. While agents likely won’t disappear overnight, the

areas where they will be providing management value will shrink over time.

�Rootless
The challenge with what some of these agents are doing is that they are

operating in a way that is becoming challenging to keep up with the rapid

pace of change at Apple engineering. Given the prevalence of some of

these tools Apple provides a group of apps that are whitelisted from many

of the sandboxing requirements, which they call rootless. Some files need

to be modifiable, even if they’re in a protected space. To see a listing of

Apple tools that receive this exception, see /System/Library/Sandbox/

rootless.conf:

cat /System/Library/Sandbox/rootless.conf

In addition to the list of SIP exceptions listed in rootless.conf, there

is a second list of SIP exceptions that includes a number of directories,

Chapter 2 Agent-Based Management

119

agents, and applications from third-party products located at /System/

Library/Sandbox/Compatibility.bundle/Contents/Resources/paths

which can be read using:

cat /System/Library/Sandbox/Compatibility.bundle/Contents/

Resources/paths

The only agents listed in this chapter that are in that file at /usr/sbin/

jamf and /usr/sbin/jamfAgent (even though their paths have changed). It’s

worth speculating that Apple engineers would like the paths file to go away

at some point so expect those agents to move in support of that.

Finally, Starcraft gets a pass on TCC compatibility in /System/

Library/Sandbox/TCC_Compatibility.bundle/Contents/Resources/

AllowApplicationsList.plist. This is one of the great unknown secrets of the

universe. We assume a High Templar demanded it. All of these restrictions

on what agents and apps can do extend to restricting access to various

frameworks as well.

�Frameworks
A framework is a type of bundle that packages dynamic shared libraries

with the resources that the library requires, including files (nibs and

images), localized strings, header files, and maybe documentation. The

.framework is an Apple structure that contains all of the files that make up

a framework.

Frameworks are stored in the following location (where the ∗ is the

name of an app or framework):

•	 /Applications/∗contents/Frameworks

•	 /Library/∗/

•	 /Library/Application Support/∗/∗.app/Contents/

•	 /Library/Developer/CommandLineTools/

Chapter 2 Agent-Based Management

120

•	 /Library/Developer/

•	 /Library/Frameworks

•	 /Library/Printers/

•	 /System/iOSSupport/System/Library/

PrivateFrameworks

•	 /System/iOSSupport/System/Library/Frameworks

•	 /System/Library/CoreServices

•	 /System/Library/Frameworks

•	 /System/Library/PrivateFrameworks

•	 /usr/local/Frameworks

If you just browse through these directories, you’ll see so many

things you can use in apps. You can easily add an import followed by the

name in your view controllers in Swift. For example, in /System/Library/

Frameworks, you’ll find the Foundation.framework. Foundation is pretty

common as it contains a number of APIs such as NSObject (NSDate,

NSString, and NSDateFormatter).

You can import this into a script using the following line:

import Foundation

As with importing frameworks/modules/whatever (according to the

language) – you can then consume the methods/variables/etc in your code

(e.g., let url = NSURL(fileURLWithPath: “names.plist”).

The importance of frameworks here is that you should be able to run a

command called otool to see what frameworks a given binary is dependent

on in order to better understand what’s happening:

otool -L /usr/bin/lldb

Chapter 2 Agent-Based Management

121

Additionally, you can use an open source project called looto to see

what is dependent on in order to better understand how tools interact with

other tools or with their own various frameworks. This is one of a number

of open source tools that many administrators will need to understand

at some point in order to have a well-rounded perspective on device

management.

�Miscellaneous Automation Tools
There are also a number of automation tools that are easily called by

agents and make planning and implementing a deployment easier by

providing more flexible options to administrators for specific tasks. There

are plenty of other tools described throughout the book, but these are

specifically designed to help extend what agents can do.

The first tool we’ll cover is outset from Joseph Chilcote and available at

https://github.com/chilcote/outset/. Outset processes packages and

scripts at first boot and user logins. Outset is comprised of two launchd

items that call loose packages or scripts in individual folders either at

startup or user login. To add more tasks to the startup and login processes,

add new items to the appropriate folders. Outset handles the execution.

If your Macs need to routinely run a series of startup scripts to

reset user environments or computer variables, then making launchd

plists may be burdensome and difficult to manage. And plists execute

asynchronously, which means startup and login processes may not run in

the same order every time.

The next tool is dockutil, available at https://github.com/kcrawford/

dockutil. Dockutil makes it easier to manage the Dock on a Mac. Users

need the right tools to do their jobs and a thoughtfully crafted dock helps

them find those tools. They need access to applications, their home

folders, servers, and working directories. Dockutil adds, removes, and

reorders dock items for users. The script allows an administrator to adjust

Chapter 2 Agent-Based Management

https://github.com/chilcote/outset/
https://github.com/kcrawford/dockutil
https://github.com/kcrawford/dockutil

122

dock settings to adjust the view of folders (grid, fan, list, or automatic),

adjust the display of folders to show their contents or folder icons, and set

folder sort order (name, date, or kind).

The last tool we’ll cover is duti, available at http://duti.org/

index.html. Duti makes it easier to set default the applications

for document types and URL handlers/schemes. Enterprises often

incorporate Macs into complex workflows that require consistent

behaviors. If a workflow requires using the Firefox browser instead of

Safari or using Microsoft Outlook instead of Apple’s Mail application,

Andrew Mortensen’s duti can ensure the correct applications respond

when opening a URL or new email message.

Note A much more comprehensive list of these tools can be found
in Appendix 1: The Apple Ecosystem.

Duti’s name means “default for UTI” or what Apple calls Uniform

Type Identifiers. Every file type such as an HTML page or Microsoft Word

document has a UTI and developers constantly create their own new UTIs.

Duti reads and applies UTI settings to pair applications with UTIs.

�Summary
There are a number of agent-based solutions on the market for managing

Macs. Some of these are proprietary and others are open source. Most

management agents should be paired with a Mobile Device Management

(MDM) solution, which we cover further in Chapter 4. The focus here is on

the Mac, simply because we cannot install “agents” on iOS, iPadOS, and

tvOS devices.

These agents are typically used for device inventory, deploying

software, keeping software up-to-date, managing settings, user

Chapter 2 Agent-Based Management

http://duti.org/index.html
http://duti.org/index.html

123

notification, and a number of other tasks. The term “agent” is often an

oversimplification. Each “agent” usually comes with anywhere between 1

and 5 launchagents and launchdaemons. This is because each task should

be run independently. These tasks usually invoke other tasks, preferably

with native Objective-C or Swift frameworks but often by simply “shelling

out” a command line tool built into macOS. As an example, you can install

profiles manually using the profiles command, which any agent-only

management tool will use for profile management, given that some tasks

require a profile. We’ll cover profiles in detail in Chapter 3.

More and more of these settings are now prompting users. Thus, we

need to use an MDM solution to limit the number of prompts on behalf of

the user and to get our management agents on devices without too much

work from line tech support.

Now that we’ve covered agents, we’ll dig into MDM further in Chapter 4.

But first, we’ll explore profiles even further in Chapter 3, so you can get more

done with both agents and MDM.

Chapter 2 Agent-Based Management

125© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_3

CHAPTER 3

Profiles
A profile is an xml file. This file, when installed on a device, configures

the device to act in a certain way. Profiles began back in the iPhone

Configuration Utility (the precursor to Apple Configurator) and have since

moved to being the way you manage various settings on Apple operating

systems like iOS, macOS, and tvOS.

When configuring iOS devices to use the settings you want, there’s

generally three ways to go, manually configuring settings and profiles. For

the Mac you have another option, scripting changes with defaults.

Manual configuration can be done by anyone and doesn’t require

any management infrastructure at all, but it’s generally time-consuming,

requires having the device in front of the person doing the configuration

and frankly, people make errors.

In contrast, profile configuration usually requires some sort of mobile

device management solution infrastructure but can also be done with

nothing more than Apple’s Configurator app. Settings configuration

via a profile is quick, the settings can be applied to multiple devices

simultaneously, and (assuming the profile was configured correctly) a

profile will apply the desired settings consistently and without errors.

Scripted configuration changes can be done in a number of ways.

You can install a profile from the command line. But you can also edit

a defaults domain, which is based on a property list file that can also be

edited manually. We’ll cover manipulating settings using the defaults

126

command further in Chapter 10. In this chapter, we will perform some

manual configurations and then look at how to perform some of those

same tasks using profiles, to better understand how profiles work and look

at doing scripted management of profiles. Along the way we’ll look at the

contents of a profile.

�Manually Configure Settings on Devices
The manual configuration of settings on devices is done using System

Preferences on the Mac or using the Settings app on iOS. We’ll start by

looking at using the Settings app to configure a newer feature called

Downtime. Downtime restricts anything but phone calls from working

on an iOS device, and settings to Downtime are synchronized to iCloud

applying them to all devices that have been configured using a given

iCloud account.

To get started, first open the Settings app on an iOS device (iPad or

iOS). This is where all settings are configured, such as Wi-Fi and privacy

settings. From there, tap on the Screen Time setting. In Screen Time, you’ll

find Downtime (Figure 3-1); tap on that.

Chapter 3 Profiles

127

Now that you’re in the Downtime settings, tap on the Start field and set

a time. Then tap on the End time to configure when you’ll get alerts again.

Use the Set Downtime button to then apply the settings (Figure 3-2);.

Figure 3-1.  Tap Downtime to configure Downtime settings

Chapter 3 Profiles

128

Tap back on Screen Time in the upper left-hand corner of the screen.

Now, let’s set up an app limit for social apps (because really, most of us are

on those way too much) (Figure 3-3):

•	 Open Settings

•	 Tap on Screen Time

•	 Tap App Limits

•	 Tap an app category (e.g., Social Networking)

Figure 3-2.  Configuring Downtime settings to schedule time away

Chapter 3 Profiles

129

•	 Set the number of hours you can use that type of app

(note, if you set 23 hours and 59 minutes, you are totally

cheating)

•	 Tap Add

Should you want to remove those limits you created, just tap Delete

Limit. Or better, just configure apps that are allowed to bypass the limits

you’ve made by tapping Always Allowed and adding apps that are always

allowed to work. This allows you to limit all your apps except, as an

example, Maps and Camera.

Figure 3-3.  Configuring App Limit settings to restrict time spent on
social media

Chapter 3 Profiles

130

Another option in Screen Time is Content and Privacy Restrictions

(Figure 3-4). To configure these

•	 Open Settings

•	 Tap on Screen Time

•	 Tap on Content & Privacy Restrictions

•	 Turn Content & Privacy Restrictions on by tapping the

slider

•	 Tap on iTunes & App Store Purchases

Figure 3-4.  Restricting iTunes and App Store purchases to desired
categories

Chapter 3 Profiles

131

Here, you can limit installing apps, deleting apps, or making in-app

purchases on the device (Figure 3-5). You can also just force a password

in order to make any purchase from iTunes, Book Store purchases, or App

Store purchases:

•	 Tap the back button

•	 Tap Allowed Apps

•	 Use the indicator light to disable any app you don’t

want to be able to access on this profile

•	 Once all apps are configured, tap the back button

•	 Tap Content Restrictions

Figure 3-5.  Restricting apps which can be used on this iOS device

Chapter 3 Profiles

132

There are a lot of content restrictions available (Figure 3-6 and

Figure 3-7). Most are mirrored with a profile and so can be controlled by an

MDM as well:

•	 Country: Start with the country your ratings are set for.

•	 Music, Podcasts, and News: Then, choose what

whether or not explicit content is allowed (and by

content we really mean music, podcasts, and news).

•	 Music Profiles and Posts: Then choose whether the

device is allowed to publish music options and posts

about music.

•	 Movies: Then set a maximum AFTRA rating (e.g., PG-13

or R) for content.

•	 TV Shows: Select the TV ratings allowed (e.g., TV-G or

TV-MA for mature audiences)

•	 Books: Luckily, Tipper Gore never got her way so

there’s no true rating systems for books. Just select

Clean or Explicit.

•	 Apps: Choose an age that ratings for apps are most

appropriate

•	 Web Content: Limit access only to specific web sites,

limit access to adult web sites, or provide unrestricted

access to web content

•	 Web Search Content: Allow Siri to access the Web to

search

•	 Explicit Language: Allow or restrict Siri from using dirty

words

Chapter 3 Profiles

133

•	 Multiplayer Games: Allow or deny access to multiplayer

games

•	 Adding Friends: Allow or deny access to add friends

within the Game Center app

•	 Screen Recording: Allow or deny access to screen

recordings

Figure 3-6.  Restricting iTunes, App Store, and web content settings to
desired categories

Chapter 3 Profiles

134

Next, go back and in the privacy section, configure what apps are able

to access Location Services, Contacts, Calendars, Reminders, Photos,

Share My Location, Bluetooth Sharing, Microphone, Speech Recognition,

Advertising, and Media & Apple Music (Figure 3-9).

Figure 3-7.  Restricting Siri and Game Center content settings to
desired categories

Chapter 3 Profiles

135

Under allow changes, configure whether you’ll be able to make

changes to Passcode Changes, Account Changes, Cellular Data Changes,

Volume Limits, Do Not Disturb While Driving, TV Providers, and

Background App Activities (Figure 3-9).

Figure 3-8.  Restricting app access to desired settings

Chapter 3 Profiles

136

That’s a ton of work, and if you have more than one device to apply

these changes to, it gets tedious and tiresome around device number 2.

There’s a better way though, which is to use a management profile to

configure a device. Let’s look at that next.

�Use Apple Configurator to Create a Profile
Apple Configurator is a free tool, available on the Mac App Store from

Apple. You can use Apple Configurator to create profiles and manage the

deployment of profiles onto iOS devices over USB. For the purposes of this

Figure 3-9.  Restricting changes which can be made to specified
settings

Chapter 3 Profiles

137

chapter, we will be creating some profiles using Apple Configurator and

then install one of the profiles onto Apple Devices.

First off, let’s try creating a profile using Apple Configurator which sets

the same kind of app and content management settings that we had earlier

set with Screentime.

In Apple Configurator, select File: New Profile to get started (Figure 3-10).

A new profile creation window should open, with Configurator

defaulting to showing the General section (Figure 3-11).

Figure 3-10.  Creating a new management profile in Apple Configurator

Figure 3-11.  Viewing the new management profile template in Apple
Configurator

Chapter 3 Profiles

138

The General section is where the identifying information for the new

profile should be entered (Figure 3-12). In this example, the following

information is being used:

•	 Name: Screentime Controls

•	 Organization: Company Name

•	 Description: This profile sets app and content
restrictions on managed iOS devices

If needed, additional information and settings can be entered. For

example, by default the Security settings allow the profile to be removed at

any time. These settings can be altered to the following:

•	 With Authorization – This setting requires that a

password be entered before the profile can be removed.

•	 Never – This setting means that the profile can never be

removed. Only wiping and resetting up the device will

erase it from the device.

Figure 3-12.  Adding identification information to the new profile

Chapter 3 Profiles

139

The settings which match those found in Screen Time are found under

the Restrictions payload section of the profile. To access these settings,

click Restrictions and then select the Configure button (Figure 3-13).

Once the Restrictions payload is enabled, you can set the desired app

and content restrictions for your devices (Figures 3-14–3-16).

Figure 3-13.  Enabling the Restrictions payload of the new profile

Figure 3-14.  Setting Functionality restrictions

Chapter 3 Profiles

140

Once all the desired settings have been configured in the Restrictions

payload, save the profile by selecting Save under the File menu (Figure 3-17).

Figure 3-15.  Setting app restrictions

Figure 3-16.  Setting media content restrictions

Chapter 3 Profiles

141

You’ll then be prompted to save the profile with a desired name to a

desired location, such as the Desktop so it’s easy to find (Figures 3-18

and 3-19).

Figure 3-17.  Saving a management profile in Apple Configurator

Figure 3-18.  Saving a management profile to chosen location with
desired name

Chapter 3 Profiles

142

Once the name and location have been chosen, the profile will be

saved as an XML-formatted document with a .mobileconfig file extension

(Figure 3-20).

Figure 3-19.  Saved management profile in chosen location

Chapter 3 Profiles

143

Figure 3-20.  Saved management profile opened in text editor

Chapter 3 Profiles

144

Now that the desired settings have been applied to the saved

management profile, this profile can now be applied to multiple iOS

devices via Apple Configurator or via a mobile device management

(MDM) server. On each device, the profile will set the configured settings

in a consistent and repeatable fashion; eliminating the tedium and errors

involved in setting these settings manually via Screen Time.

Let’s take another look at the process of creating a profile which will be

usable on both macOS and iOS. Apple Configurator can again be used to

build the profile (Figures 3-21 and 3-22).

Figure 3-21.  Adding identification information to the new profile

Chapter 3 Profiles

145

Once you’ve filled in the appropriate information for the VPN profile,

click File and then Save from within Apple Configurator. Next, provide a

name and location for the profile and then click Save (Figure 3-23).

Figure 3-22.  Setting the VPN payload settings

Figure 3-23.  Saving the VPN profile in Apple Configurator

Chapter 3 Profiles

146

Now that you have the VPN profile saved, we can move on to see what

all is in the profile in the next section.

�View the Raw Contents of a Profile
A raw profile will contain a header, which contains a signature, and a bunch

of XML. The easiest way to view the contents is to use the cat command to

view the contents. Here, we’ll do a simple cat command of the file:

cat ~/Desktop/iVPN.mobileconfig

The contents will look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>ConsentText</key>

 <dict>

 <key>default</key>

 �<string>Hi, Welcome to the iVPN service from

Pretendco. We're gonna' go ahead and install

a profile for you to access our VPN. Fun,

right?!?!</string>

 </dict>

 <key>PayloadContent</key>

 <array>

 <dict>

 <key>IPSec</key>

 <dict>

 <key>AuthenticationMethod</key>

 <string>SharedSecret</string>

Chapter 3 Profiles

147

 <key>LocalIdentifierType</key>

 <string>KeyID</string>

 <key>SharedSecret</key>

 <data>

 dGVzdHRlc3Q=

 </data>

 </dict>

 <key>IPv4</key>

 <dict>

 <key>OverridePrimary</key>

 <integer>1</integer>

 </dict>

 <key>PPP</key>

 <dict>

 <key>AuthName</key>

 <string>iVPN</string>

 <key>AuthPassword</key>

 <string>testtest</string>

 <key>CommRemoteAddress</key>

 �<string>vpn.pretendco.com</

string>

 </dict>

 <key>PayloadDescription</key>

 �<string>Configures VPN settings</

string>

 <key>PayloadDisplayName</key>

 <string>VPN</string>

 <key>PayloadIdentifier</key>

 �<string>com.apple.vpn.managed.744B7836-

769A-478D-B2BD-1E2521198D16</string>

 <key>PayloadType</key>

Chapter 3 Profiles

148

 <string>com.apple.vpn.managed</string>

 <key>PayloadUUID</key>

 �<string>744B7836-769A-478D-B2BD-

1E2521198D16</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 <key>Proxies</key>

 <dict>

 <key>HTTPEnable</key>

 <integer>0</integer>

 <key>HTTPSEnable</key>

 <integer>0</integer>

 �<key>ProxyAutoConfigEnable</key>

 <true/>

 �<key>ProxyAutoDiscoveryEnable</

key>

 <integer>1</integer>

 </dict>

 <key>UserDefinedName</key>

 <string>Pretendco</string>

 <key>VPNType</key>

 <string>L2TP</string>

 </dict>

 </array>

 <key>PayloadDescription</key>

 <string>Installs the Pretendco iVPN profile.</string>

 <key>PayloadDisplayName</key>

 <string>iVPN</string>

 <key>PayloadIdentifier</key>

 �<string>MacBook-Pro-67.3ABB152C-05DC-4F82-98D5-

A8B07A24535C</string>

Chapter 3 Profiles

149

 <key>PayloadOrganization</key>

 <string>Pretendco</string>

 <key>PayloadRemovalDisallowed</key>

 <false/>

 <key>PayloadType</key>

 <string>Configuration</string>

 <key>PayloadUUID</key>

 <string>4EAD3CDF-6C82-4E4F-8A20-CA636795018C</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

</dict>

</plist>

Profile keys must follow a standard, where Apple defines the keys and

administrators and software developers place the keys with payloads in the

keys in profiles. The official profile reference guide is available at https://

developer.apple.com/documentation/devicemanagement/profile-

specific_payload_keys. No guide to these keys can be complete without

mentioning the companion reference, built by @Mosen and available

at https://mosen.github.io/profiledocs/ which describes some yes

or available settings that Apple doesn’t include in the official reference.

Always assume that anything Apple doesn’t document is intended that way

(as with private APIs) and can be changed at the drop of a hat.

Once you have created a profile, it’s time to install the profile, which

we’ll cover in the next section.

�Install a Profile on macOS
There are a number of ways to install a profile on macOS. The first and

easiest is to just open the profile. When opened, you will be prompted to

install a profile. To install a profile, just walk through the steps to install. To

do so on macOS, start by clicking Continue, as seen in Figure 3-24.

Chapter 3 Profiles

https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://mosen.github.io/profiledocs/

150

Because we didn’t sign the profile with a trusted certificate, we’re

prompted to install an unsigned profile, as seen in Figure 3-25. It’s best not

to install unsigned profiles unless you have to. Click Show Details to see a

description of what the signing status means.

The additional details (Figure 3-26) are really just there to allow a user

to understand why a yellow icon is in front of them. We haven’t noticed

that many users actually avoid clicking on things with yellow icons

though. It’s still best to distribute signatures or use legitimately obtained

public certificates though, if only to future-proof your deployment. Click

Install to proceed.

Figure 3-24.  Installing a profile on macOS

Figure 3-25.  Warning about installing an unsigned profile on macOS

Chapter 3 Profiles

151

Then you’ll see the installation message that we provided while

creating the profile: “Welcome to the VPN service!” as seen in Figure 3-26.

Here, click Install to complete the process.

Voilà, as you can see in Figure 3-28, you’ve now installed the profile.

Later in this chapter, we’ll cover how to install the profile automatically via

the profiles command. Now that we’ve installed the profiles on the Mac,

we’ll get the profile setup on an iOS device.

Figure 3-26.  Additional details about installing an unsigned profile
on macOS

Figure 3-27.  Consent message to install VPN profile

Chapter 3 Profiles

152

Tip T he power of profiles makes them a potentially dangerous
way to receive compromised settings. When you install an MDM
profile, you can disable the ability to deploy settings using a manual
profile (and probably should do so). Or if you are using an agent-only
management environment, make sure to know what profiles are on
your Apple devices by checking them routinely.

�Install a Profile on iOS
As with macOS, you can install a profile on iOS simply by opening the

profile. In fact, the first management tools (before MDM) for iOS were apps

that just had links to profiles and getting mail settings on a device meant

tapping on a profile to install a .mobileconfig file that then gave you your

mail settings. Today, profiles can be stored on a web server and opened,

emailed to users, or deployed automatically using an MDM solution, with

installation via MDM being the only “silent” way to deploy a profile. In this

case, the profile being installed is the unsigned VPN profile used in the

previous macOS example.

Once the profile is downloaded onto the iOS device and selected for

installation, click the Install button in the upper right corner of the screen,

as seen in Figure 3-29.

Figure 3-28.  The installed VPN profile

Chapter 3 Profiles

153

Installing a profile requires a passcode be entered, if you’re using one

on devices (at this point everyone should be). Next, enter the passcode as

shown in Figure 3-30.

Figure 3-29.  Installing a profile on iOS

Chapter 3 Profiles

154

Since we added the additional consent step as part of the profile we

created earlier, consent must be granted as part of installing the profile,

which can be seen in Figure 3-31. This is in addition to the other usual

steps and optional when creating profiles.

Figure 3-30.  Entering the passcode for the iOS device to authenticate
installing a profile

Chapter 3 Profiles

155

As with macOS, there will be a warning about installing an unsigned

profile (Figure 3-32). If you use a valid signature that the device recognizes,

then this won’t appear. But it’s important to drive home the fact that you

need to sign profiles and show why. It’s possible that some day in the

future Apple developers will remove the ability to install unsigned profiles.

Tap Install in order to proceed to the next step.

Figure 3-31.  Granting consent to installing the profile

Chapter 3 Profiles

156

Additional warning will be given about the capabilities that the profile

is enabling on the iOS device. After the warning, iOS will prompt you to

install the profile. The profile is now installed and its new settings take

effect, as you can see in Figure 3-33.

Figure 3-32.  Warnings about installing the profile on iOS

Chapter 3 Profiles

157

�Install a Profile on tvOS
To install a profile on tvOS, profiles can be installed from a web server

or Apple Configurator or by using an MDM. If using Apple Configurator,

it may need to first pair Apple Configurator with the Apple V. Apple has

Figure 3-33.  iOS profile installation completed

Chapter 3 Profiles

158

a knowledge base article explaining the process, available at https://

support.apple.com/HT208124. Once paired, the Apple TV should show up

as an available device in Apple Configurator, as shown in Figure 3-34.

Double-click the Apple TV in Apple Configurator and it will display

information about the Apple TV. As you can see in Figure 3-35, Apple

Configurator can be used to install Profiles and you can see the logs of

what is being deployed using the Console, useful for troubleshooting

problems if they arise.

Figure 3-34.  Apple Configurator showing a paired Apple TV

Chapter 3 Profiles

https://support.apple.com/HT208124
https://support.apple.com/HT208124

159

Select the Profiles option to install profiles onto the Apple TV, and

then click Add Profiles (Figure 3-36).

Figure 3-35.  Apple Configurator showing Apple TV information

Figure 3-36.  Apple Configurator showing Apple TV profile
installation window

Chapter 3 Profiles

160

For some profiles, it may be necessary to install them using the Apple

TV user interface. In Figure 3-37, we show an unsigned profile to control

AirPlay settings is being installed onto the Apple TV. Another good reason

to make sure profiles are signed with valid third-party certificate providers.

Since the profile is unsigned, there will be warnings and additional

install confirmations in order to install it (Figure 3-38).

Figure 3-37.  Requesting to install an unsigned profile on an Apple TV

Figure 3-38.  Notification that the Apple TV profile is not signed

Chapter 3 Profiles

161

To install a profile manually, one dialog that can’t be skipped is the

standard Install Profile screen (Figure 3-39). Click Install to proceed.

As with installing profiles on the other operating systems, you then see

a screen showing the profile and a brief summary of what is contained in

the profile (Figure 3-40). Using the Apple TV remote, select More Details

for a more granular look at what’s in the profile, or tap Done to be finished

with the profile installation.

Figure 3-39.  Confirming installation of unsigned profile

Figure 3-40.  Completion of the installation process

Chapter 3 Profiles

162

Once the profile installation process is installed, the profile’s settings

should now take effect on the Apple TV; if you’ve configured certificates,

those will be available to join a network, or if you’ve configured security

settings, you’ll then be prompted to enter passcodes or notice that certain

restrictions have been enforced.

�View a Profile from macOS
Transparency is important to the profile development team. Any setting

implemented on systems should be available to view on devices where

profiles are installed. This shows up again and again, whether around

user acceptance of certain screens or just seeing why a user doesn’t

have the ability to see a given system preference. It’s also an important

troubleshooting step for those in the field trying to figure out why a given

feature doesn’t work on a device.

To view the profiles installed on a Mac, open System Preferences. From

there, if at least one profile has been installed, you will see an entry for

Profiles, as seen in Figure 3-41.

Figure 3-41.  Profiles preference pane appearing in System
Preferences

Chapter 3 Profiles

163

If no profiles have been installed, the Profiles preference pane will not

be visible, as seen in Figure 3-42.

Once the Profiles System Preference pane is open, click a profile to

see the contents. In the example shown in Figure 3-43, we can see that the

description made for the profile can be seen, as well as when the profile

was installed, and the settings that were put into the profile.

Figure 3-42.  System Preferences with no Profiles preference pane
showing

Figure 3-43.  Viewing profile details via System Preferences

Chapter 3 Profiles

164

�View a Profile from iOS
As with the Mac, the restrictions or settings pushed to a device should be able

to be viewed at any time. Therefore, once a profile on an iOS device is installed,

you can view the contents of the profile using the Settings app. To do so, open

Settings and then tap on General and scroll to the bottom of the screen to see

the “Profiles & Device Management” option, as shown in Figure 3-44.

Figure 3-44.  Viewing profile location via Settings.app’s General settings

Chapter 3 Profiles

165

When you tap on Profiles & Device Management (exact naming may

vary slightly), the profiles that are installed on the iOS device are displayed,

as seen in Figure 3-45.

Tap on a profile to see the signing authority for the profile, the

organization that deployed the profile, the description we created when

creating the profile, and the type of payload (in the Contains) field, as seen

Figure 3-45.  Viewing installed profiles on an iOS device

Chapter 3 Profiles

166

in Figure 3-46. You can also tap on the More Details to see information

about the specific settings deployed or the Remove Profile if the profile has

been set to removable.

Again, being transparent about what policies are enforced on a device

is key. And this philosophy transcends all platforms that are manageable

through profiles, including the newcomer to the profile world: tvOS.

Figure 3-46.  Viewing profile details on an iOS device

Chapter 3 Profiles

167

�View a Profile from tvOS
As with macOS and iOS, once you’ve loaded a profile on a tvOS device, you

can view the contents of the profile. Doing so is done using the Settings

app. This process is similar to the process for iOS devices. To get started,

open the Settings app. Once Settings is open, use the AppleTV remote to

select General and then scroll to the bottom of the screen, where you’ll see

the Profiles listed (shown in Figure 3-47).

To view the profiles, select the profile. In Figure 3-48, we creatively

named our profile Profile (your name is likely to be different than that).

Figure 3-47.  Viewing profile location via Settings.app’s General

Chapter 3 Profiles

168

Use the remote for the AppleTV to select that profile and you’ll be able

to see the signer, description, contents, and select More Details to see each

setting broken down separately or Remove Profile to remove the profile

(Figure 3-49). These are the same options you see in macOS and iOS,

indicating the developers want a similar experience and full transparency

across platforms.

Figure 3-48.  Viewing installed profiles on an tvOS device

Figure 3-49.  Viewing profile details on an tvOS device

Chapter 3 Profiles

169

Now that we’ve gone through looking at what settings and policies

have been enforced on devices, let’s move to removing those, provided the

option to do so is available.

�Remove a Profile on macOS
While we’ve focused on managing profiles manually in this chapter,

in the next chapter, we will turn our attention toward leveraging those

profiles over-the-air using a Mobile Device Management (MDM) solution.

One reason to look at an MDM is that profiles can more dynamically be

managed. Once we’ve enrolled devices into an MDM, it’s a good idea

to only push settings out using the MDM. Therefore, in the following

example, we’re going to remove the VPN profile installed previously.

To do so, open the Profiles System Preference pane and click the profile

again. Then click the minus sign in the lower left corner of the screen.

You’ll then be prompted to confirm that you wish to remove the profile, as

seen in Figure 3-50.

Figure 3-50.  Removing a macOS configuration profile

Chapter 3 Profiles

170

To remove the profile, click Remove and you’ll be prompted to confirm

using Touch ID (see Figure 3-51) or via standard authentication.

For most restrictions and settings, you’ll then immediately see the

device change. Another benefit of profiles is that most change immediately

when enforced or removed, rather than needing to wait for a restart or a

new login event.

�Remove a Profile on iOS
The process is similar in iOS. To remove a profile on iOS, use the Settings

app. Once Settings is open, tap on General and scroll to the bottom of the

screen and tap on “Profiles & Device Management”, shown in Figure 3-52.

Figure 3-51.  Using Touch ID to authenticate profile removal

Chapter 3 Profiles

171

Once you find the profile to remove, tap on the red Remove Profile

button shown in Figure 3-53 to start the remove process.

Figure 3-52.  Viewing profile location via Settings.app’s General
settings

Chapter 3 Profiles

172

To authenticate removal of the profile, the device passcode and/or the

profile passcode (if that option enabled on the profile) will be need to be

entered (Figure 3-54).

Figure 3-53.  Removing profile from iOS device

Chapter 3 Profiles

173

As the last step, the profile removal needs to be confirmed. Here, tap

the red Remove button (Figure 3-55).

Figure 3-54.  Entering the passcode for the iOS device to authenticate
installing a profile

Chapter 3 Profiles

174

As with Mac, the profile is removed and any restrictions should

immediately change. The profile is no longer listed in the list. All of this is

of course, dependent on the profile having been marked as removeable

when created. If the profile wasn’t, then you would have to erase the iOS

device in order to remove it.

Figure 3-55.  Confirmation of profile removal

Chapter 3 Profiles

175

Note  You can programmatically remove profiles on the Mac, but
that’s not possible on an iOS device given that there’s no root account
and no command line utilities.

�Remove a Profile on tvOS
The process of removing a profile on tvOS is similar to that of iOS. To

remove a profile on tvOS. Open the Settings app with your AppleTV remote

and select General. From the General menu, scroll to the bottom of the

screen and select the profile, as shown in Figure 3-56.

Once the profile is located, click the Remove Profile button (shown in

Figure 3-57) to start the removal process.

Figure 3-56.  Viewing profile location via Settings.app’s General
settings

Chapter 3 Profiles

176

Figure 3-58 shows the confirmation dialog. Here, simply highlight

Remove with the AppleTV remote and hit the button.

As with iOS, the effects of the profile are immediately removed, so

any apps that might have been disable will appear, and any settings or

Figure 3-57.  Removing profile from iOS device

Figure 3-58.  Confirmation of profile removal

Chapter 3 Profiles

177

assets provided by the profile, such as a certificate to join the network

will immediately be removed from the device. We’ll cover other effects of

profile removal in the next section.

�Effects of Profile Removal
Once the profile is deleted, it will no longer be displayed on the device. If

you cannot authorize the computer to authenticate the action being taken,

then the removal of the profile will fail. This can happen for a few reasons.

The first is that the user doesn’t have permissions to disable a given profile.

The second is that the profile has been identified as a profile that can’t

be removed because it was marked as such (e.g., except by the system

that deployed the profile). This would have been done back in Apple

Configurator, in the General screen of the profile, as seen in Figure 3-59.

You can restrict profile removal, but you can also restrict profile

installation. This is a common means of trying to get in front of malware

that deploys a profile to direct traffic through a proxy or locks down a

device as a means of trying to extort money from a user (otherwise referred

to as ransomware). Profiles are the best tool we have to automate the

setup of iOS devices. But as with most valuable tools, profiles can be quite

dangerous. We’ve seen bad actors post profiles to their sites, masquerading

Figure 3-59.  Using Apple Configurator to mark a profile as
nonremovable

Chapter 3 Profiles

178

as apps, that when applied, routed all traffic from the device through the

attacker’s proxy. This restriction is done via an MDM solution.

Now that we’ve looked at dealing with profiles using the common

graphical tools available, let’s get a better understanding of what those

buttons are doing when you click, tap, and select them by diving into the

command that is used to manage them in macOS environments in the next

section of this chapter.

�Use the Profiles Command on macOS
Once created, manage profiles on macOS using the aptly named command

line tool, profiles. This tool is unique to macOS in that it provides a

mechanism to automate many tasks, such as managing features through

profiles without an MDM, where possible – or even installing an enrollment

profile using a script, in order to automate the process of joining MDMs.

iOS and tvOS do not have equivalent native tools and must use an MDM or

external tools like Apple Configurator to manage profiles without manually

tapping or selecting so many dialog boxes in the user interface.

The profiles command comes with a number of verbs, or actions that

can be performed and then options. The options define how those verbs

are interpreted. The verbs include the following:

•	 status – indicates if profiles are installed

•	 list – list profile information

•	 show – show expanded profile information

•	 install – install profile

•	 remove – remove profile

•	 sync – synchronize installed configuration profiles with

known users

Chapter 3 Profiles

179

•	 renew – renew configuration profile installed certificate

•	 version – display tool version number

Some of the options are available for all verbs, others not so much. The

options include the following:

•	 -type= – type of profile; either “configuration,”

“provisioning”, “enrollment,” or “startup”

•	 -user= – short username

•	 -identifier= – profile identifier

•	 -path= – file path

•	 -uuid= – profile UUID

•	 -enrolledUser= – enrolled username

•	 -verbose – enable verbose mode

•	 -forced – when removing profiles, automatically

confirms requests

•	 -all – select all profiles

•	 -quiet – enable quiet mode

Now that we’ve covered the verbs and options, let’s put some together.

In the next section, we’ll step you through some basic tasks using the

profiles command.

�Using the Profiles Command
Mac administrators want the ability to manage everything through the

command line. The ability to script tasks gives us the ability to make the

lives of our users better. One shell script that saves 5 clicks amplified across

10,000 computers can save 50,000 clicks and valuable time our coworkers

could be using to perform their jobs. But while this ease of use in

Chapter 3 Profiles

180

automation is valuable, it’s not at the risk of violating the privacy of those

10,000 humans who use those computers. So not everything is available

using the profiles command – but a lot is!

Before managing profiles, you’ll want to know what profiles are on a

device. Configuration profiles are assigned to users or Macs. To the user

profiles on a system, use the list option:

/usr/bin/profiles list

A common step when troubleshooting is to remove all profiles from

a computer, thus zeroing out policies to see if a symptom is related to

a profile. This can be done using the remove -all option (and once the

symptom is cured, you can put the profiles back programmatically as we’ll

cover in a bit):

/usr/bin/profiles remove -all

The better way to troubleshoot an issue is to remove profiles in order

to get to the source of which is causing a problem. The remove option

removes individual profiles. Use -path to indicate its source is a file. To

remove a profile called apress.mobileconfig that was at /tmp/apress.

mobileconfig::

/usr/bin/profiles remove -path /tmp/apress.mobileconfig

Installing a profile through an agent is a quick way to get settings on

a device. The install option installs profiles. For example, the following

command installs apress.mobileconfig that has been placed in the /tmp

directory:

/usr/bin/profiles install -path /tmp/apress.mobileconfig

Profiles can also be installed at the next reboot. This is because you

might want to give a user a dialog, indicating you’re changing some settings

at the next boot rather than freaking them out by having things on their

Chapter 3 Profiles

181

device change. Use the -type option to define a startup profile. The profile

attempts to install at each reboot until installed. Use the profiles command

with the -type option and the -path option for the profile. For example, the

following will set up a profile named /startupprofile.mobileconfig to be

installed at the next boot:

profiles install -type startup -path /startupprofile.

mobileconfig -forced

Other options include -verbose which displays additional information

about a profile, -password to define a removal password, and -output to

export a file path so that we can then remove that profile.

Note  You cannot remove individual configuration profiles that are
deployed by a MDM solution.

It’s possible to see what some of these profiles are doing through MCX,

which we’ll cover in the next section of this chapter.

�MCX Profile Extensions
As we’ve mentioned, many of the underlying interpretations of profile

options are handled through what’s otherwise referred to as the “legacy”

MCX framework. The dscl command has extensions for dealing with

profiles to see what’s been interpreted as well. These include the available

MCX Profile Extensions:

-profileimport -profiledelete -profilelist [optArgs]

-profileexport -profilehelp

To list all profiles from an Open Directory object, use -profilelist. To

run, follow the dscl command with -u to specify a user, -P to specify the

password for the user, then the IP address of the OD server (or name of the

Chapter 3 Profiles

182

AD object), then the profilelist verb, and finally the relative path. Assuming

a username of diradmin for the directory, a password of scarlett and then

charlesedge as a user:

dscl -u diradmin -P scarlett 192.168.100.2 profilelist

/LDAPv3/127.0.0.1/Users/charlesedge

To delete that information for the given user, swap the profilelist

extension with profiledelete:

dscl -u diradmin -P scarlett 192.168.100.2 profiled

/LDAPv3/127.0.0.1/Users/charlesedge

To export all information to a directory called ProfileExports on the

root of the drive:

dscl -u diradmin -P scarlett 192.168.100.2 profileexport . all

-o /ProfileExports

Note P rovisioning profiles can also be managed, frequently using
the lowercase variant of installation and removal (e.g., -i to install,
-r to remove, -c to list, and -d to delete all provisioning profiles).
Provisioning profiles can also come with a -u option to show the uuid.
Finally, the -V option verifies a provisioning.

Profiles can also perform actions. As an example, running the following

command with root privileges will rerun the DEP enrollment process on

a Mac, allowing you to quickly and efficiently move Mac devices between

MDM servers in a manner not available for iOS or tvOS:

profiles renew -type enrollment

There are also a number of other tools including libimobiledevice,

the command line utilities bundled with Apple Configurator, AEiOS, and

Chapter 3 Profiles

183

Ground Control. These provide additional automations, occasionally using

private APIs to get deeper into a device. For more on those, see Chapter 6.

�Summary
Apple has made it clear that profiles are the future of managing Apple

devices, with iOS and tvOS leading the way and macOS catching up

rapidly. Profiles provide a unified, easy, streamlined methodology to

implement settings and restrictions on devices – and they do so in a

manner that preserves the privacy of a user in a transparent manner. While

it is not currently possible to manage all settings on macOS using profiles,

it is increasingly possible to be able to write one profile and use it on

multiple Apple platforms to manage settings, which is more efficient and

less work for Apple admins.

Profiles can’t be used to manage everything. But Apple has been

quickly closing the gap of what can and what can’t be managed using a

profile (or an MDM action). As more and more options for Supervised

iOS devices show up, we should expect supervised options for the Mac at

some point – some of which we won’t have other programmatic means of

implementing.

Now that we have some profiles, let’s spend some time doing a deep

dive into how those profiles can be implemented in a more dynamic and

automated way in Chapter 4.

Chapter 3 Profiles

185© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_4

CHAPTER 4

MDM Internals
Mobile Device Management, or MDM, is a device management software

that comes built into tvOS, macOS, iPadOS, and iOS. MDM allows an

administrator to control and secure devices by establishing policies and

monitoring the adherence of a device to those policies. MDM is often

referred to as “agentless” technology. There is no such thing as “agentless”

management and so in this chapter we go through what the agents are,

how they work, and why some of those weird requirements for MDM to

communicate are…requirements.

MDM is the culmination of a number of different technologies

developed by Apple and other vendors over the past 15 years. The great

part about MDM is that it provides a common management technique

for macOS, iOS, and tvOS. At its most basic responsibility, an MDM server

implements the MDM and Checkin protocols, defined by Apple to send

MDM commands to devices, which are interpreted by the devices using

that built-in agent to perform commands, such as lock a device, wipe a

device, push an app to a device, or install a profile (for more on profiles,

see Chapter 3).

Setting up MDM once required accounts in 3 to 5 separate Apple

portals but over the past couple of years Apple has been unifying all of

those accounts under one hood, according to what kind of organization

you are. Before setting up an MDM service, you will therefore need an

Apple Business Manager account or Apple School Manager account.

186

�What MDM Can Access
Apple can’t see the information sent to devices through MDM. But

always concerned about privacy, Apple engineers want administrators to

have access to being able to manage devices and not access to potentially

private data that might be stored on devices. So by default, an MDM

server has access to the name and serial number of a device, as well as

the phone number, model, how much space is available on the device,

the version number of the operating system installed, and the apps

installed on the device.

For Bring Your Own Device, or BYOD, Apple also provides a new

enrollment-type in iOS 13 and macOS 10.16, that further limits what data

is accessible by the MDM. The thought here is again that private devices

should be even more private. So a user will have a separate volume to store

data and things like the serial number of a device won’t be transmitted

through the MDM protocol for those types of enrollments.

Additionally, and we’ll cover this later in the chapter, User Accepted

MDM (UAMDM) is a feature introduced in iOS 12 and macOS Sierra

that prompts users to accept enrollment. If they do, the MDM server can

have increased controls on a device, such as the ability to accept Kernel

Extensions based on a bundle identifier.

The MDM doesn’t have access to the location of a device, although

a third-party app that had been granted access to Location Services

would have access to the GPS coordinates of a device. The MDM protocol

doesn’t allow for app usage information, although on a Mac you can

load an agent that can access that information. Things like Safari history,

FaceTime history, call history, SMS/iMessages messages, mail, calendars,

contacts, data inside apps, the score of your games in GameCenter, what

content you have on the device, all of that is private and not accessible via

MDM, although some vendors have used private frameworks to get that

information through an app that’s loaded on a device.

Chapter 4 MDM Internals

187

�Apple Business Manager and Apple
School Manager
The foundational technologies that we’ll cover in this chapter are those

that enable MDM to function properly and to be the most beneficial for

most organizations. These include APNs, DEP, iCloud, and VPP. We’ll

cover these later in the chapter, but for now, know that you set up aspects

of each using a central portal called Apple Business Manager, if you have a

DUNS number and are a company, or Apple School Manager, if you’re an

educational institution.

The two look similar, although there are a few specifics in Apple

School Manager to enable the use of the Schoolwork and Apple Classroom

apps, which we won’t be spending any time on in this book. The primary

focus for this chapter is to get the components to make MDM function

configured in order to cover how MDM works. For that, you’ll need to

obtain an APNs Token for your MDM server (to support pushing messages

to devices), a DEP token (to support automated enrollment), and a VPP

token (to support app distribution).

To get started, we’ll log into Apple Business Manager or Apple School

Manager, located at business.apple.com or school.apple.com. This is

where you exchange a .csr for an APNs token, configure Automated

Enrollment (also known as DEP) and potentially purchase Apps and other

content for centralized distribution.

In Figure 4-1, we simply log in and click on Device Management

Settings from the main page. Here, we have a test MDM server – click Add

MDM Server to set up an APNs token for a new MDM server.

Chapter 4 MDM Internals

188

When you see the entry for the new MDM server, provide a name

for the server (this is just for you tracking it) and click save (Figure 4-2).

You can then do the APNs key exchange that we describe later in this

chapter.

Figure 4-1.  Apple Device Management Portals

Chapter 4 MDM Internals

189

Automated Device Enrollment (the artist formerly known as DEP) uses

those serial numbers to do the automatic setup. Without them, users will

enroll manually and you will have less management available for those

devices once enrolled. To configure them, click Device Assignments from

the main Apple Business Manager or Apple School Manager screen.

At the Choose Devices prompt, you can then either enter an order

number (which Apple would have provided you when you purchased

some devices through your institution), a Serial Number, or use a csv

(Figure 4-3). When you purchase devices in bulk from Apple, you receive

a csv of the device information. You can also build your own csv of serial

numbers as well. Click Done to save these.

Figure 4-2.  Add an MDM Server

Chapter 4 MDM Internals

190

You can then download a DEP token, once the server is added.

According to the type of MDM you use, you’ll have a different screen to

configure all of these. As an example, once you’ve exported your DEP

Server Token, you would click Add in this screen in XenMobile to complete

the setup (Figure 4-4).

Figure 4-3.  Add devices to your portal

Figure 4-4.  XenMobile DEP Interface

Chapter 4 MDM Internals

191

The third token we’ll need is the token used for volume purchasing.

This is downloaded in the previous business.apple.com or school.apple.

com interfaces, or if an organization hasn’t migrated, using one of the

below Volume Purchasing programs:

•	 Business: https://vpp.itunes.apple.com/

WebObjects/MZFinance.woa/wa/login?cc=us

•	 Education: https://volume.itunes.apple.com/us/store

When you log in, you will see an interface for buying apps, as seen in

Figure 4-5. You’ll also see an option to upgrade accounts.

Click the disclosure triangle in the upper right corner of the screen

and select Account Summary. You’ll then be taken to a screen where

you can click “Download Token” as shown in Figure 4-6, to download an

sToken file.

Figure 4-5.  Buy Apps in Apple’s VPP Portal

Chapter 4 MDM Internals

https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/login?cc=us
https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/login?cc=us
https://volume.itunes.apple.com/us/store

192

Now that we’ve got all of these keys, let’s move to looking at how APNs

fits into the MDM picture.

�Apple Push Notifications
The device is told to check into the server by APNs. Apple Push

Notifications (or APNs for short) is a platform developed in 2009 to enable

3rd party vendors or Apple to send notifications to mobile devices. That

notification data is what causes a different badge to appear for an app,

including a number (the number of notifications the app has), a red dot

(to indicate there are notifications), sounds, and even custom text alerts.

Apple has no visibility into what is in the email or the text you receive.

The same technology that instantly informs users they have a

message waiting is the same technology that drives MDM. With APNs,

the device is told to go get some information from a server but not what

that information is. For anyone that spent time working with information

security teams to get Blackberry devices approved, the fact that Blackberry

actually stored user data was always a bit of a stumbling block. This has

never been an issue with MDM, although there are other issues that

information security teams have here and there.

Figure 4-6.  Download a VPP Token from Apple

Chapter 4 MDM Internals

193

Any app developer can obtain an Apple Push Notification certificate

and then push alerts to devices. The MDM options though, require a

special MDM CSR service via the Apple Developer Enterprise Portal. Most

MDM vendors will have this certificate and then provide customers with

the ability to generate a CSR via Apple and issue a new certificate based

on that, in order to push the fact that there are management commands

waiting for devices. While most vendors will have an account with the

Developer Enterprise portal and provide the necessary links, anyone can

sign up for an account for $299 per year.

In Chapter 2, when we looked at agents, each client registered with an

agent, often performing a certificate exchange and/or caching a hashed

value of some kind in order to verify its identity to the server and in order

to check in with the server automatically. MDM is no different, a client

device will “enroll” in the server, which establishes such a key exchange

and passes shared secrets between devices and servers so the device can

securely authenticate back into the server to retrieve instructions. Much of

that key exchange is handled by Simple Certificate Enrollment Protocol, or

SCEP for short.

�Checkins: Device Enrollment
Notice that the term enroll is derived from SCEP. This is because the client

device performs a Certificate Signing Request (CSR) and submits it to

the server. The server then issues a certificate to the device that only that

device can install due to a PKCS#7 certificate with a challenge password

from the original CSR. This certificate is anchored by a certificate issued

by Apple. That transaction is handled in Apple Business Manager, Apple

School Manager or using the developer portal. Each MDM vendor allows

you to generate a CSR that you then upload to Apple as can be seen in

Figure 4-7 for Jamf Now.

Chapter 4 MDM Internals

194

Notice that this process will look similar with most vendors, with this

option shown below for Addigy (Figure 4-8).

Figure 4-7.  Download a CSR in Jamf Now

Chapter 4 MDM Internals

195

Once you have a CSR, it will be uploaded to the Apple portal you prefer.

We show developer.apple.com in Figure 4-9, but most organizations will be

moving into either Apple School Manager or Apple Business Manager in

the next few years if they haven’t already.

Figure 4-8.  Create a push certificate in Addigy

Chapter 4 MDM Internals

196

When you upload the CSR in a plist format, you then receive back a

certificate and can use the portal you created the certificate to renew or

perform subsequent downloads, as seen in Figure 4-10. That certificate

is pinned to the hostname, and so once you start enrolling devices, you

cannot change the certificate or the name of the server without breaking

the ability for a device to communicate back to the server.

Figure 4-9.  Provide the Signing Request in the Push Portal

Figure 4-10.  Download your Apple Push Certificate

Chapter 4 MDM Internals

197

That certificate is then uploaded to the MDM and anchors new

certificates the MDM creates to establish trust with devices and

establishing trust for push notifications, through an APNs token and a

key that is unique to each device, called a push magic certificate. That

key is generated by a device and later used to prove authenticity of the

device during TokenUpdate commands. Installation of the profile that

starts this process can happen by opening an enrollment certificate, using

Automated Enrollment (which will be covered further later in this chapter)

or through Apple Configurator (covered more in Chapter 5).

Make sure not to let that certificate expire. As Jamf Now is alerting

the administrator in Figure 4-11, when the push certificate expires, the

devices must all be reenrolled. This is because a device can no longer

communicate to the server to obtain a new certificate. Enrolling a fleet of

1,000 or 100,000 is no fun task, given that with iOS devices, this process

would be manual and so require a lot of tapping on device screens.

Figure 4-11.  Jamf Now Push Certificate Renewal

Chapter 4 MDM Internals

198

When the MDM enrollment certificate is installed, the mdmclient

agent will be called. The device’s mdmclient then accesses a REST API

with an MDM vendor using a /checkin endpoint. Commands are pulled

from devices over HTTPS in plist-encoded dictionaries along with a

UUID of each command with the MDM server pinned, thus establishing a

secure connection from the client to the MDM vendor and a normalized

communication language between the two. Upon receiving an APN to

contact the server, which contains the topic of the server to check into, the

device communicates with the MDM Checkin Protocol to verify the device

can enroll, initialize a connection, and then update device tokens when

needed. The Checkin has a few supported commands, or MessageTypes,

each submitted in a plist from the device.

•	 Authenticate, a property list with a MessageType of

Authenticate, a topic (e.g., com.orgname.mdm), and

the UDID of the device.

•	 TokenUpdate is used to update the token of the device.

These are for establishing authentication from the

device back to the MDM server and for the server

to match the device up to queued commands and

authorize that the device should in fact run those

commands.

•	 CheckOut is used to indicate back to the MDM that a

device has unenrolled.

•	 Activation Lock is a later addition and runs differently.

A POST is sent to https://mdmenrollment.apple.

com/device/activationlock along with a device serial

number, an escrow key, and a message to provide a

user if the device is lost. This needs to be done prior to

the device going through the setup assistant and so is

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/device/activationlock
https://mdmenrollment.apple.com/device/activationlock

199

done as a part of the Checkin Protocol rather than the

MDM Protocol, although some of the Activation Lock

tasks are handled by the MDM Protocol.

The MDM Protocol runs all the device commands post-enrollment.

The MDM endpoint is hard coded into the enrollment profile at the time

of enrollment and so as with the checkin url, cannot be changed post-

enrollment without breaking the ability to communicate back to the

server. All POSTs look to that endpoint to see what commands are waiting

for the device. The URL for the checkin is immutable because the device

is authorized to talk to that endpoint using the certificates exchanged

at enrollment time, the csr for which was submitted through scep at

enrollment. When the device checks in, it picks up any commands, in

dictionary form, waiting for the device. The Checkin URL is not displayed

in the MDM Profile in the System Preferences pane, but the MDM URL is,

as seen in Figure 4-12.

Figure 4-12.  Profiles in System Preferences

Chapter 4 MDM Internals

200

�MDM: Device Management
The MDM Server, shown in the Mobile Device Management profile, shows

the URL to the endpoint that the device sends a POST to (typically just

called /mdm). That POST contains a standard dictionary with the device

UDID in a plist and the response to that POST includes a status message

that there’s no action to be performed, or there will be an MDM command,

in the form of dictionary.

The command dictionary includes a request type called RequestType

and a RequestRequiresNetworkTether – which when set to true only

allows the command to run when connected to a network (this is

rarely used). The RequestType is going to include most of the MDM

commands, such as ActivationLockBypassCode which surprisingly gets

an Activation Lock Bypass Code. These Request Types each have their

own values that must be in the dictionary as well as optional ones and

some have custom error codes.

Each MDM server sends a notification through APNs with the

PushMagic string as the mdm key. The MDM server then queues any

commands waiting for the device. When a mobile device gets a connection

to the Apple Push Notification servers the device is directed via the push

topic to query the server listed in the Server field for the Mobile Device

Management section of the profile. The request is sent and the server

responds with the XML of the command then receives a response code.

The MDM server interprets the response code and typically commits that

response into a database in order to display settings for the device in a

GUI. The rules for how those requests are sent and received are defined in

the MDM Protocol Reference Guide at https://developer.apple.com/

documentation/devicemanagement/commands_and_queries.

Each MDM vendor handles the logic of the command queue

differently. Most vendors store each action and then interprets that into a

log-on screen for administrators to view. Most vendors also deduplicate

commands so devices aren’t told to install the same app 5 or 6 times

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement/commands_and_queries
https://developer.apple.com/documentation/devicemanagement/commands_and_queries

201

because an administrator duplicated some groups. Most vendors also

prioritize commands, so a wipe is sent as the highest priority command

for a device. But these are all per-vendor. Most vendors have built more

and more logic as humans end up doing weird things to their software

(humans are the worst).

Now that we’ve looked at how devices get enrolled into an MDM

and how commands are queued up so the /mdm endpoint can respond

appropriately to devices, let’s look at what commands are available.

�MDM Commands
Each MDM command maps to a RequestType and there are optional

keys at the same level in a dictionary for some commands. Additionally,

given that it’s a dictionary, there are other attributes that can be sent along

with a command. In some cases, there is only one and in other cases

there are over a dozen keys that alter the behavior of a command. As you

look at the list of commands, just imagine how these are displayed in the

graphical interface of your favorite MDM. The MDM commands (a.k.a

RequestTypes) that are placed into those dictionaries include the following

31 commands (as of 2019):

	 1.	 ActivationLockBypassCode: Responds with a code

used to unlock a device that’s had Activation Lock

enabled (used if an AppleID is not available).

	 2.	 ProfileList: Lists profiles on a device.

	 3.	 InstallProfile: Installs a profile on a device (see

Chapter 3 for more information on profiles).

	 4.	 RemoveProfile: Deletes a profile from a device.

Chapter 4 MDM Internals

202

	 5.	 ProvisioningProfileList: Provisioning profiles link

deploy signing certificates, App IDs, and a URI

to an App ID to install an app on a device, so this

command lists those profiles deployed (and so the

apps if they successfully installed).

	 6.	 InstallProvisioningProfile: Installs a provisioning

profile to cause an app to be installed on a device.

	 7.	 RemoveProvisioningProfile: Removes a provisioning

profile which causes an app installed based on the

URL of the provisioning profile to be removed.

	 8.	 CertificateList: Lists identity certificates installed on

a device.

	 9.	 InstalledApplicationList: Lists applications installed

on a device.

	 10.	 DeviceInformation: Responds with metadata

about a device, including UDID, the device ID, and

the last iCloud backup date, if the device is in an

AwaitingConfiguration state (to see if it has run the

Setup Assistant).

	 11.	 SecurityInfo: Responds with security-centric

metadata about a device, including if the device has

a T2 chip, has FileVault enabled, etc.

	 12.	 DeviceLock: Locks a device and optionally sets a

PIN to unlock the device and a message for the user,

presumably about why the device was locked or how

to return it.

	 13.	 RestartDevice: Reboots a device.

	 14.	 ShutDownDevice: Shuts down a device.

Chapter 4 MDM Internals

203

	 15.	 ClearPasscode: Clears a passcode on a device.

	 16.	 EraseDevice: remotely erases a device so it can be

set up from scratch.

	 17.	 RequestMirroring: Begins an AirPlay mirroring

session on the device, along with a destination to

mirror the device to.

	 a.	 StopMirroring: Stops any active mirroring session on a device.

	 18.	 Restrictions: Obtains a list of restrictions that have

been configured on a device.

	 a.	 ClearRestrictionsPassword: Clears a restrictions password in

case that password has been forgotten.

	 19.	 UserList for Shared iPad: Responds with a list of

users that have accounts on a device, along with

some metadata about those users, such as name,

full name, and UID.

	 a.	 UnlockUserAccount: Unlocks an account that has been

locked because a user provided an incorrect password too

many times.

	 b.	 LogOutUser: Logs out the active user.

	 c.	 DeleteUser: Deletes a user indicated in the UserName key.

	 20.	 EnableLostMode: Sets a managed device into Lost

Mode.

	 a.	 PlayLostModeSound: Causes a device in Lost Mode to make

an audible alert so you can find the device if it’s lost in the

office or classroom.

	 b.	 DisableLostMode: Disables Lost Mode on devices that have

that setting enabled.

Chapter 4 MDM Internals

204

	 c.	 DeviceLocation: Returns with the GPS coordinates of a device

that has been set in Lost Mode.

	 21.	 InstallApplication: Installs applications on devices

from the app store or a URL and optionally sets the

applications to managed.

	 a.	 InstallEnterpriseApplication: Installs software packages

which can be pinned for additional security.

	 b.	 ApplyRedemptionCode: Redeems an app from the App

Store based on a redemption code (this software installation

method isn’t used that much any more as redemption codes

are not reusable).

	 c.	 ManagedApplicationList: Returns with a list of all managed

applications or applications installed by the MDM.

	 d.	 RemoveApplication: Removes an application based on the

identifier (easily obtained via ManagedApplicationList).

	 e.	 InviteToProgram: Invites an Apple ID to join the VPP for per-

user app assignments to the hash of an ID provided using a

query to iTunesStoreAccountIsActive.

	 f.	 ValidateApplications: Validates that apps installed with a

provisioning profile are on a device.

	 22.	 InstallMedia: Installs a PDF, epub (in gzip), or

iBooks Author media file (in gzip) into the Books

app on a device.

	 a.	 ManagedMediaList: Lists all documents installed using the

InstallMedia command, along with the state of each (e.g.,

downloading).

	 b.	 RemoveMedia: Removes any items returned by the

ManagedMediaList command response.

Chapter 4 MDM Internals

205

	 23.	 Settings: Allows for enabling or disabling various

supervised managed settings on a device, such as

the device wallpaper, data roaming, and Bluetooth.

	 a.	 ManagedApplicationConfiguration: Reports back a dictionary

for each app that has been built for Managed App Config.

	 b.	 ApplicationConfiguration: Sets Managed App Config

dictionaries, sending NSUserDefaults into the app.

	 c.	 ManagedApplicationAttributes: Queries attributes set via

Managed App Config (from NSUserDefaults).

	 d.	 ManagedApplicationFeedback

	 24.	 AccountConfiguration: Creates a local

administrative account on a Mac.

	 25.	 SetFirmwarePassword: Enables the firmware

password on a device, provided one was not set

before the device was enrolled into an MDM.

	 a.	 VerifyFirmwarePassword: Sends a password to a device and

verifies that the firmware password on the device matches the

one sent as a part of the MDM command.

	 26.	 SetAutoAdminPassword: Sends a salted PBKDF2

SHA512 password hash to a GUID for a given local

admin account.

	 27.	 DeviceConfigured: Bypasses DEP for devices

currently set into an await configuration state.

	 28.	 ScheduleOSUpdate: Causes an iOS, iPadOS, and

tvOS device to install product keys provided to the

device.

	 a.	 ScheduleOSUpdateScan: Boolean that causes a device to

check for updates using Software Update.

Chapter 4 MDM Internals

206

	 b.	 AvailableOSUpdates: Installs updates supplied in the

dictionary or if none are present installs all pending operating

system updates.

	 c.	 OSUpdateStatus: Causes a device to check for the status of

any updates pending for that device.

	 29.	 ActiveNSExtensions: Lists active NSExtensions for a

user.

	 30.	 NSExtensionMappings: Manage NSExtension

mappings.

	 31.	 RotateFileVaultKey: Rotates FileVault keys (e.g., if

they’re used by IT they should be rotated).

Note  For a more detailed description of commands, including the
arguments available for each command, the minimum OS to run each
command, and a description of each, see https://developer.
apple.com/documentation/devicemanagement#topics.

New commands will show up in very version of operating systems,

so don’t be surprised if new ones come around before this book goes to

print. Keep in mind that the MDM server isn’t sending these commands

directly to the devices. They can’t as they don’t know the address of those

devices. The MDM server is putting the property list into a queue and

when the device gets the notification it will automatically check with the

MDM server and perform the action the command is telling the device to

perform. The commands then have response codes that are returned to

the MDM server. Those are too numerous to put in this chapter, but they

provide the MDM solution with the ability to interpret what information

Apple MDM developers determined would be important for the MDM

solution to have.

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement#topics
https://developer.apple.com/documentation/devicemanagement#topics

207

The simplest way to show how to send a custom command would

be to do so. We’ll use Vmware Workspace ONE for this example. If you

have a Workspace ONE account, to get to the custom command screen,

to create and deploy a custom command, browse to a device in List View.

Then check the box for the device and under the More Actions drop-down

choose Custom Commands to see the dialog box to provide your dictionary.

As you can see in Figure 4-13, you can then provide the necessary XML

code to run a command. This can be a bit dangerous, so make sure you

know what you’re doing.

In this example, we’ll simply restart a device using the RestartDevice as

the string for the RequestType key. Notice we don’t need to send any other

keys for this type of action.

<dict>

 <key>RequestType</key>

 <string>RestartDevice</string>

</dict>

Figure 4-13.  Running arbitrary MDM commands using VMware
Workspace ONE

Chapter 4 MDM Internals

208

Or to receive a list of certificates installed on a device, we might use

this command.

<dict>

 <key>RequestType</key>

 <string>CertificateList</string>

</dict>

In both of the above, when we click the save button, we will put an item

in the queue and send a push notification to the device to send a POST

to the /mdm endpoint. The MDM will then respond with command we

provided. This is especially useful when testing beta versions of software or

to obtain functionality for a new update before your MDM vendor updates

to account for new features.

Most MDM solutions don’t allow you to send an arbitrary command

to a device. This could be because developers don’t want certain actions

being performed without committing a record to the database they use

to track the state of a device, or it could be because developers haven’t

prioritized such a feature. Another MDM that allows such an action

would be MicroMDM. MicroMDM is, as the name implies, a slimmed

down MDM solution. MicroMDM allows an administrator to submit an

MDM command using a standard POST to a command’s endpoint. That

endpoint will parse the command from a standardized json format where

each key is an --arg that is followed by the value in the key.

In the below example, we’ll send a more complicated command,

InstallApplication. Here, we provide a UDID and a manfiest_url as the first

and second positional parameters sent into the script.

#!/bin/bash

 source $MICROMDM_ENV_PATH

 endpoint="v1/commands"

 jq -n \

 --arg request_type "InstallApplication" \

 --arg udid "$1" \

Chapter 4 MDM Internals

209

 --arg manifest_url "$2" \

 '.udid = $udid

 |.request_type = $request_type

 |.manifest_url = $manifest_url

 '|\

 curl $CURL_OPTS \

 -H "Content-Type: application/json" \

 �-u "micromdm:$API_TOKEN" "$SERVER_URL/$endpoint" -d@-

Upon receiving the action to the endpoint, MicroMDM routes a

push to the device; and when the device receives the push, it looks to

the server for the dictionary that’s waiting in the MicroMDM queue and

then interprets the dictionary to perform the app installation. Luckily

the developers do much of the work so you don’t have to build your own

server for the device to talk back to. But it is helpful to understand what is

happening so you can deal with issues when they come up and in general

be better informed about how you’re managing devices.

Now that we’ve gone through what happens with standard MDM

commands, we’ll move into automating device enrollment.

�Automated Enrollment, or DEP
One component of MDM is Automated Enrollment, which was formerly

referred to as the Device Enrollment Program, or DEP for short. Automated

Enrollment automatically enrolls a device into an MDM, or at least

configures a device to log into an MDM server and enrolls the device

if the server doesn’t require a user to authenticate. This is useful for

provisioning. An organization can ship a box to a user and the user can

open the box and configure their own device by simply joining a network

and optionally providing credentials to complete the setup.

Chapter 4 MDM Internals

210

The DEP API provided by Apple is more modern and messages

are exchanged in standard JSON format rather than in plist-driven

dictionaries. There are three primary APIs. The first is for resellers. When

DEP was initially released, only devices sold directly by Apple could use

DEP. Because a device is tied to uniquely identifying information such

as a UDID and a serial number, Apple was able to direct devices to an

MDM. But in order to support allowing DEP to work with devices sold

by resellers, an API was created for resellers to submit data about which

customer purchases each device.

�The Reseller DEP API
The most important thing to keep in mind about how resellers interact

with the Apple DEP program is that the reseller submits an order that

contains an orderNumber, orderDate, orderType, customerId, poNumber,

and then an array of deviceIds and assetTags. The deviceIds are the

serial number of the devices and the link between the deviceId and

the customerId is created at this time and causes the devices for each

organization to properly appear in their Apple Business Manager or Apple

School Manager accounts. That json (stripped down for readability) would

look something like the following:

"orders": [

 {

 "orderNumber": "ORDER1234",

 "orderDate": "2019-07-22T08:07:13X",

 "orderType": "OR",

 "customerId": “Charles",

 "poNumber": "12345", {

 "deviceId": "SERIALNUMBER1",

 "assetTag": "MYASSETTAG1"

 },}

Chapter 4 MDM Internals

211

For more on the DEP APIs, see https://applecareconnect.apple.

com/api-docs/depuat/html/WSReference.html. The second is an identity

API used to authorize devices, which we won’t be covering as there is no

real public information available.

�The Cloud Service DEP API
The important API for the context of this chapter is the cloud service

API. This is available at https://mdmenrollment.apple.com/account.

Here, MDM vendors pull records of what devices are meant to access

servers they host. In exchange, those MDM vendors send back DEP

profiles to Apple. Those profiles are then placed on the device so it is

trusted by the server and so it trusts the server back. These profiles contain

the screens that a device should skip during the Setup Assistant, a server

URL, and any certificates necessary for establishing a chain of trust to the

URL being accessed. The MDM authenticates back to the cloud service API

over OAuth 1.0 tokens.

The MDM will provide parameters for devices assigned to it in json to

the Apple DEP servers. An example POST would look as follows (e.g., in

Postman):

User-Agent:ProfileManager-1.0

X-Server-Protocol-Version:2

Content-Type: application/json;charset=UTF8

Content-Length: 350

X-ADM-Auth-Session: $SESSIONID

 {

 "profile_name": "krypted.com",

 "url":"https://mdm.krypted.com/getconfig",

 "is_supervised":false,

 "allow_pairing":true,

 "is_mandatory":false,

Chapter 4 MDM Internals

https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://mdmenrollment.apple.com/account

212

 "await_device_configured":false,

 "is_mdm_removable":false,

 "department": "Marketing",

 "org_magic": "$PUSHMAGIC",

 "support_phone_number": $PHONENUMBER,

 "support_email_address": $EMAILADDRESS,

 "anchor_certs,

 "supervising_host_certs:,

 "skip_setup_items":[

 "Location",

 "Restore",

 "Android",

 "AppleID",

 "TOS",

 "Siri",

 "Diagnostics",

 "Biometric",

 "Payment",

 "Zoom",

 "FileVault"

],

 "devices":["$SERIALNUMBER1", "$SERIALNUMBER2"]

}

Upon request, the MDM server then receives a list of devices from

https://mdmenrollment.apple.com/server/devices – some of that data

would likely appear in the interface of your MDM solution (the exact way

these appear is a bit different in each vendor):

"serial_number" : "ABCD123AB1AB",

"model" : "IPAD",

"description" : "IPAD WI-FI 32GB",

"color" : "grey",

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/server/devices

213

"profile_status" : "assigned",

"profile_uuid" : "12ab1a123abc1234a12a1a1234abc123",

"profile_assign_time" : "2019-06-01T00:00:00Z",

"device_assigned_date" : "2019-07-01T00:00:00Z",

"device_assigned_by" : "krypted@me.com"

Enrollment profiles from an MDM are not removable. When the

device powers up, mobileactivationd sends a dictionary with a DeviceID,

SerialNumber, UniqueDeviceID, as well as information about the Bridge

OS (an embedded variant of watchOS that provides the interface to the

T2 chip). If any of that information is altered then Apple will reject the

activation. More importantly for the purposes of this chapter, if the serial

number is matched with one that’s been linked in the above manner

between the Apple Business Manager or Apple School Manager accounts,

the device receives the settings from the first set of information provided to

Apple from the MDM server to mdmenrollment.apple.com.

The device then uses the /getconfig URL (in Jamf this is /cloudenroll

and in microMDM it is just /enroll) to obtain an enrollment profile and

responds based on the interpretation of that profile. If devices get wiped,

they will continue to reach out to the MDM /getconfig endpoint to pull

down a new enrollment profile. That /getconfig endpoint is different per

provider – and some have handlers for objects in the URLs, but that setting

is required in order for devices to know how they’ll enroll.

Finally, much as there’s an endpoint to unenroll devices and there’s

an endpoint to disown devices at https://mdmenrollment.apple.com/

devices/disown. This endpoint is used to remove devices from the portal

so you can, for example, allow employees to purchase them when you

remove them from production. Now that we’ve looked at the how devices

enroll and receive profiles and actions from the MDM server in response to

their APNs instructions to look for those payloads in their queue, let’s look

at how the mdmclient that sits on devices interprets those.

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/devices/disown
https://mdmenrollment.apple.com/devices/disown

214

�mdmclient
The agent for MDM actions is mdmclient, which is the “app” that push

notifications are sent to. Once enrollment profiles are installed on a Mac,

mdmclient, a binary located in /usr/libexec will process changes such

as wiping a system that has been FileVaulted (note you need to FileVault

if you want to wipe an OS X Lion client computer). This is started by an

mdmclient daemon and agent at /System/Library/LaunchDaemons and

/System/Library/LaunchAgents which are used for computer and user

commands, respectively. This along with all of the operators remains static

from 10.10 and on, with small new functionality added with each new

version.

The Volume Purchase Program, now a part of Apple School Manager

and Apple Business Manager, also responds to requests through

mdmclient. CommerceKit is a framework that mdmclient uses by calling

CKMDMProcessManifestAtURL with a dictionary that contains any

pinning certificates and optionally checks that the certificates haven’t

been revoked. This causes storeassetd to download the manifest and

then place any specified assets to be downloaded in the queue using

NSURLConnection. Then storedownloadd takes over and completes the

download, installing packages when complete.

The mdmclient hands any profile transactions (the most common task

most administrators use MDM to perform). To script profile deployment,

administrators can add and remove configuration profiles using the new /

usr/bin/profiles command. For more on scripting the profiles command,

which is helpful in testing and to automate tasks when there’s no MDM

present, see Chapter 3.

The UUID for a given enrolled user profile can be found at the

following path, where * can be replaced by a given username:

defaults read /Library/Managed\ Preferences/*/com.apple.

systempolicy.managed.plist

Chapter 4 MDM Internals

215

The UUD would then be output as a PayloadUUID, as follows:

PayloadUUID = "CF4BCAA5-BCC6-4113-86D4-31A08C683770";

As usual, the Mac is a little different. You can see the directories to

better understand what’s happening under the hood using a jailbroken iOS

device or using the simulator.

If you look at an iOS device in the simulator you’ll find com.apple.

managedconfiguration.mdmd.plist and com.apple.managedconfiguration.

profiled.plist in /Applications/Xcode.app/Contents/Developer/Platforms/

iPhoneOS.platform/Developer/Library/CoreSimulator/Profiles/

Runtimes/iOS.simruntime/Contents/Resources/RuntimeRoot/System/

Library/LaunchDaemons (and so /Library would be relative to / on a

jailbroken device). These are the two agents that are the underlying MDM

services. If you swap iPhoneOS.platform with AppleTVOS.platform or

WatchOS.platform, then you will see the same for tvOS and watchOS,

respectively.

When running commands, you can see that these are the agents that

control settings for iOS, based on processes that get started and run:

•	 /Library/Managed Preferences/ce/com.apple.

systempolicy.managed.plist

•	 /Library/Managed Preferences/com.apple.AssetCache.

managed.plist

•	 /Library/Managed Preferences/com.apple.

systempolicy.managed.plist

•	 /private/var/db/ConfigurationProfiles/Settings/com.

apple.managed.PlugInKit.plist

Much of the management in the future is likely to be handled using

the newer ManagedConfiguration.framework, with teslad invoked as

a LaunchDaemon by /System/Library/LaunchDaemons/com.apple.

managedconfiguration.teslad.plist. Teslad has entries for a number of

Chapter 4 MDM Internals

216

enrollment options and while at the time this book is printed, it isn’t used

much on the Mac, this framework has started managing a number of other

management tasks. The fact that there’s a new Framework for the Mac

indicates that more options otherwise reserved for supervised devices are

likely to be made available to the Mac in subsequent releases.

�Device Supervision
Employees at Apple and engineers in the broader community that

supports Apple devices have always been proud of the beautiful, curated

user experience on devices. No one ever wants to limit functionality when

possible. But in some cases, doing so is necessary.

There was a split in how engineers at Apple felt about managing

iOS devices. Everyone wanted to give administrators more and more

control. But many wanted to only do so if a device was owned by an

organization. The concept of Bring Your Own Device (or BYOD for

short) has always been the tip of the spear for Apple to get into the

enterprise. But enterprises began buying lots and lots and lots of iPads

and iPhones for staff.

The compromise was the ability to supervise a device. Devices enrolled

through Automated Enrollment (DEP) are usually set as supervised. The

MDM can choose to not set a device to supervised based on settings

(whether exposed to administrators or not). You can also retroactively

supervise iOS devices using Apple Configurator, as shown in Chapter 5.

Since the maturity of device supervision, most new iOS management

commands have required device supervision in order to work. The T2

chipset being rolled out slowly throughout Apple’s product line is now

making true device supervision for the Mac a possibility and likely

indicates that commands reserved for supervised devices will start finding

their way to the Mac, including Managed Open-In functionality. One

Chapter 4 MDM Internals

217

aspect of Automated Enrollment and the ability to more granularly control

settings is the amount of clicking and tapping we want to allow our users to

avoid during the initial provisioning of devices. One aspect of where users

can get click-fatigue with all the new privacy options is UAMDM.

�UAMDM
For iOS, Apple has had device supervision to act as the bright dividing

line between “this is a personal iOS device” and “this is a work-owned

iOS device.” On Macs running macOS Sierra and earlier, the line was

less clear as there weren't MDM functions that would not run equally

well on personally owned Macs and Macs owned by a company, school,

or institutions. To address this, Apple introduced User Approved

Mobile Device Management (UAMDM) as part of macOS High Sierra

10.13.2. UAMDM grants mobile device management (MDM) additional

management privileges, beyond what is allowed for macOS MDM

enrollments which have not been “user approved.”

There are two ways to mark a Mac as being user approved. The first is

to have the Mac enrolled in Apple’s device enrollment program. This is a

process where Apple explicitly sets the Mac as belonging to a company,

school, or institution and enrolls it with a specific MDM service. Since the

Mac is not a personally owned device, it gets UAMDM automatically. The

second is to have a human being click a button on the MDM profile issued

by an MDM server which supports UAMDM. To click the button, you

would use the following process:

	 1.	 Open System Preferences and go to the Profiles

preference pane.

	 2.	 Click on the MDM profile (Figure 4-14).

Chapter 4 MDM Internals

218

	 3.	 Click the Approve button as shown in Figure 4-15.

Figure 4-15.  The MDM Profile need to be approved

Figure 4-14.  The MDM Profile

Chapter 4 MDM Internals

219

	 4.	 Click the Approve button in the confirmation

window which appears (Figure 4-16).

Once that is done, the Mac is now enabled for UAMDM and the

managing MDM can now use the additional management options which

are only available for UAMDM-enabled Macs. The rights the MDM server

has are outlined in the profile, as seen in Figure 4-17.

Figure 4-16.  Approving the UAMDM Profile

Chapter 4 MDM Internals

220

Something to be aware of is that Apple has taken some pains to block

automated ways to enable UAMDM, so clicking this button cannot be

performed via remote screen sharing or through the use of tools which

would normally help automate the clicking of a button. These protections

against machine-based enabling are to help make ensure that a human

being has approved enabling UAMDM.

�Enrollment Commands
Enrolling a device is simply registering the device with the server that the

agent (mdmclient) will talk to. You can see the status of the enrollment

using the profiles command with the show verb and setting the -type

option to enrollment, as follows, which can verify that a particular Mac is

UAMDM enabled:

sudo /usr/bin/profiles show -type enrollment

Figure 4-17.  The MDM Profile, once approved

Chapter 4 MDM Internals

221

Note  In macOS 10.16, Apple is likely to remove the ability to
perform a number of tasks using the profiles command; therefore,
we won’t go into manual enrollment via profiles. But it’s good to
understand how it works, and at this point, Apple developers have not
removed any functionality from the profiles command.

Depending on your MDM enrollment status, you may see one of a few

different status messages. The first is if there is no MDM enrollment:

Enrolled via DEP: No

MDM enrollment: No

The second would be that the device was enrolled in MDM but doesn’t

have UAMDM enabled:

Enrolled via DEP: No

MDM enrollment: Yes

The third output is that the device was enrolled manually and the

user chose to accept the MDM enrollment options, which indicates (User

Approved):

Enrolled via DEP: No

MDM enrollment: Yes (User Approved)

The fourth output is that the device was enrolled via Automated

Enrollment (DEP) and the user chose to accept the MDM enrollment

options, which indicates (User Approved):

Enrolled via DEP: Yes

MDM enrollment: Yes (User Approved)

Chapter 4 MDM Internals

222

User Accepted MDM enrollment is likely to become more and

more important as the focus from Apple engineering teams seems to

be around protecting privacy at the cost of management options. This

focus on privacy in one of the reasons many choose an Apple device and

increasingly core to the Apple ethos. Now that we’ve reviewed how to see

the enrollment type, let’s move to what happens when UAMDM has been

accepted.

�The Impact of UAMDM
There are certain management privileges associated with UAMDM,

which otherwise can’t be centrally managed. As of macOS 10.14 those

management privileges include

•	 Centralized approval of third-party kernel extension

loading

•	 Centralized approval of application requests to access

privacy-protected data

Having UAMDM enabled allows a UAMDM-compatible MDM service

to deploy management profiles which can approve the following:

•	 Automatic loading of specified third-party kernel

extensions

•	 Automatic approval for specific actions by applications,

where those actions are accessing data protected by

macOS’s privacy controls.

�Third-Party Kernel Extension Management

Starting with macOS 10.13.4, Apple introduced its first management

privilege exclusively associated with UAMDM. This was the ability

to deploy a profile which provides a whitelist for third-party kernel

Chapter 4 MDM Internals

223

extensions. This profile allows a company, school, or institution to avoid

the need to have individual users approve the running of approved

software.

Without the profile, third-party will need to be approved through the

User-Approved Kernel Extension Loading (UAKEL) process. Here's how

that process looks:

	 1.	 When a request is made to the OS to load a third-

party kernel extension which the user has not yet

approved, the load request is denied and macOS

presents an alert to the user, as shown in Figure 4-18.

	 2.	 The alert tells the user how to approve the loading

of the kernel extension signed by a particular

developer or vendor, by following this procedure:

	 A.	 Open System Preferences.

	 B.	 Go to the Security & Privacy preference pane.

	 C.	 Click the Allow button (Figure 4-19).

Figure 4-18.  The System Extension Blocked dialog

Chapter 4 MDM Internals

224

Note T his approval is only available for 30 minutes. After that, it
disappears until either the Mac restarts or another attempt is made to
load the kernel extension.

While waiting for the kernel extension to be approved, a copy of the

kernel extension is made by the operating system and stored in /Library/
StagedExtensions. Once approved, another copy of the kernel extension is

made and allowed to load.

Figure 4-19.  Click Allow to allow the VMware Kernel Extension

Chapter 4 MDM Internals

225

This process is relatively easy for an individual to manage on their own

computer, but it would be very difficult to manage when dealing with more

than a handful of Macs. To help manage company, school or institutions,

Apple provided the option of using a management profile to centrally approve

specified third-party kernel extensions. To help whitelist all extensions from a

particular vendor or whitelist only specific ones, Apple has made two sets of

identifying criteria available: Team Identifier and Bundle Identifier.

�Team Identifier

A team identifier is an alphanumeric string which appears similar to the

following:

7AGZNQ2S2T

This identifier is associated with a particular Developer ID for Signing

Kexts certificate identifier. This certificate would be used by a developer or

vendor to sign all or most of their kernel extensions.

Whitelisting using the Team Identifier has the advantage of being

able to whitelist multiple third-party kernel extensions from a specific

developer or vendor. This capability allows a company, school, or

institution to identify a particular developer or vendor as being trusted

in their environment and have all of the relevant kernel extensions be

allowed to load by the whitelist.

�Bundle Identifier

The bundle identifier is specific to a particular kernel extension. It is

contained in the Info.plist file and is stored inside each kernel extension.

Whitelisting using the Bundle Identifier allows a company, school,

or institution to get very granular about which kernel extensions from a

specific developer or vendor are approved and which are not. If using the

Bundle Identifier as part of the whitelist, both the Team Identifier and the

Bundle Identifier need to be specified in the profile.

Chapter 4 MDM Internals

226

�Using Team Identifier by Itself in a Third-Party Kernel
Extension Whitelist Profile

If you want to use only the Team Identifier when whitelisting kernel

extensions, the profile can be viewed from Terminal. Here, you’ll see the

keys that show the UUID, the name, and much more that isn’t displayed in

System Preferences, as shown in Figure 4-20.

On the Macs which receive the profile, it will show as Approved Kernel

Extensions with the green Verified option as shown in Figure 4-21.

Figure 4-20.  the Contents of the Approved Kernel Extension Profile

Chapter 4 MDM Internals

227

�Using Team Identifier and Bundle Identifier in a
Third-Party Kernel Extension Whitelist Profile

If you want to use both Team Identifier and Bundle Identifier when

whitelisting specific kernel extensions, the profile should be written as

shown in Figure 4-22.

Figure 4-21.  Verified Approved Kernel Extensions

Chapter 4 MDM Internals

228

On the Macs which receive the profile, it should show up looking

similar to Figures 4-23 and 4-25, where the Approved Bundle Identifiers

can be seen.

Figure 4-22.  The contents of a kernel extension policy

Chapter 4 MDM Internals

229

Figure 4-23.  Approved Kernel Extension Profile description

Figure 4-24.  Software approved by MDM in the Kernel Extension
Policy

Chapter 4 MDM Internals

230

Under the hood, these are sent to /var/db/SystemPolicyConfiguration/

KextPolicy, which is a sqlite database. You can log in and see

both manually created kext policies and those pushed into

SystemPolicyConfiguration via mdm. To see manual entries (from within

sqlite) and then to see MDM-derived entries:

SELECT * FROM kext_policy;

SELECT * FROM kext_policy_mdm;

Based on the output, note that kext_policy shows a bundleID whereas

kext_policy_mdm only shows generated IDs.

�Privacy Control Management

Starting with macOS 10.14.0, Apple introduced its second management

privilege exclusively associated with UAMDM. This was the ability

to deploy a profile which provides a whitelist for signed applications

to execute certain actions or access areas which would be otherwise

protected by the user data protections introduced in macOS Mojave

10.14.0. These protections are managed by Apple’s expanded security

framework, Transparency Consent and Control (TCC).

To manage access using a profile, Apple has defined a set of keys

which correspond to the settings found in the Privacy tab of the Security

preference pane in System Preferences (Tables 4-1 and 4-2). Apple refers to

the profiles used for managing protected user data as Privacy Preferences

Policy Control Payload profiles.

Chapter 4 MDM Internals

231

(continued)

Table 4-1.  Privacy Service Dictionary Keys

Key Type Value

AddressBook Array of Identity

Dictionaries

Contact information managed by Apple’s

Contacts.app.

Calendar Array of Identity

Dictionaries

Calendar information managed by Apple’s

Calendar.app.

Reminders Array of Identity

Dictionaries

Reminders information managed by Apple’s

Reminders.app.

Photos Array of Identity

Dictionaries

Pictures managed by Apple’s Photos.app,

where the picture data is stored in the

following location:

~/Pictures/.photoslibrary

Camera Array of Identity

Dictionaries

A system camera.

Access to the camera can only be denied.

There is no way to automatically grant

access.

Microphone Array of Identity

Dictionaries

A system microphone.

Access to the microphone can only be

denied. There is no way to automatically

grant access.

Accessibility Array of Identity

Dictionaries

Control the application via the

Accessibility subsystem.

PostEvent Array of Identity

Dictionaries

Allows the application to use CoreGraphics

APIs to send CGEvents to the system event

stream.

SystemPolicy

AllFiles

Array of Identity

Dictionaries

Allows the application access to all

protected files.

Chapter 4 MDM Internals

232

Table 4-1.  (continued)

Key Type Value

SystemPolicy

SysAdminFiles

Array of Identity

Dictionaries

Allows the application access to some files

used in system administration.

AppleEvents Array of Identity

Dictionaries

Allows the application to send a restricted

AppleEvent to another process.

Table 4-2.  Identity Dictionary Keys

Key Type Value

Identifier String The bundle ID or installation path of the binary.

IdentifierType String The type of Identifier value. Must be either

bundle ID or path.

Application bundles should be identified by

bundle ID.

Nonbundled binaries must by identified by

installation path.

Helper tools embedded within an application

bundle will automatically inherit the

permissions of their enclosing app bundle.

CodeRequirement String Digital signature of the binary.

The digital signature is acquired via running

the following command:

codesign --display -r- /path/to/binary/here.

StaticCode Boolean If set to true, statically validate the code

requirement.

Used only if the process invalidates its dynamic

code signature. Defaults to false. Optional.

(continued)

Chapter 4 MDM Internals

233

Table 4-2.  (continued)

Key Type Value

Allowed Boolean If set to true, access is granted. Any other

value denies access.

AEReceiverIdentifier String The identifier of the process receiving an

AppleEvent sent by the Identifier process.

Required for AppleEvents service; not valid for

other services. Optional.

AEReceiverIdentifier

Type

String The type of AEReceiverIdentifier value. Must

be either bundle ID or path.

Required for AppleEvents service; not valid for

other services. Optional.

AEReceiverCode

Requirement

String Code requirement for the receiving binary.

Required for AppleEvents service; not valid for

other services. Optional.

Comment String Used to provide information in the profile

about what is being managed. Optional.

In the case of an application which needs access to all data in a user’s

home folder, a profile would need to be created which does the following:

•	 Identifies the application by its bundle ID and code

signature.

•	 Allows it access to all protected areas using the

SystemPolicyAllFiles payload key.

The profile should look similar to the following:

Chapter 4 MDM Internals

234

On the Macs which receive the profile, it should appear similar to the

one shown in Figure 4-26.

Figure 4-26.  Privacy Preferences Control profile

Figure 4-25.  The Contents of the PPPC Profile

Chapter 4 MDM Internals

235

With all of these moving pieces, a lot can go wrong, especially for

newer administrators. Learning to troubleshoot and debug can make it

easier to get your devices into the hands of users without going crazy.

�Enable APNs Debug Logging
Nearly every issue can be solved by looking at logs. Troubleshooting

MDM communications can be a bit of a tricky. Push notification

communications between macOS Server or another MDM and Apple’s

Push Notification is basically the same as troubleshooting the apsd client

on macOS. To facilitate troubleshooting, put the APNs daemon, apsd, into

debug mode.

To enable APNS debug logging, first set the log level:

defaults write /Library/Preferences/com.apple.apsd APSLogLevel

-int 7

Then set an APSWriteLogs key to true to actually start writing these

entries out:

defaults write /Library/Preferences/com.apple.apsd APSWriteLogs

-bool TRUE

Then simply restart the daemon:

killall apsd

Now that you’re capturing logs, use tail with the -f option to watch the

apsd.log file at /Library/Logs/apsd.log. Be wary, as this can fill up your

system:

Tail -f /Library/Logs/apsd.log

Chapter 4 MDM Internals

236

So to disable, use these commands, which undo everything we just did:

defaults write /Library/Preferences/com.apple.apsd APSWriteLogs

-bool FALSE

defaults delete /Library/Preferences/com.apple.apsd APSLogLevel

killall apsd

Another aspect of troubleshooting APNs and mdm commands would

be to check that all of the necessary ports are open. A useful tool for this

would be Push Diagnostics available on the Mac app store at https://

apps.apple.com/us/app/push-diagnostics/id689859502. Once installed,

simply open the app and click Start. As you can see in Figure 4-27, if all

communications flow properly you’ll see a green light for each category.

Hover over any that do not work properly to see the status of that one

specifically.

Figure 4-27.  Running Push Diagnostics

Chapter 4 MDM Internals

https://apps.apple.com/us/app/push-diagnostics/id689859502
https://apps.apple.com/us/app/push-diagnostics/id689859502

237

You can also see a more detailed log of what worked and what

didn’t. As you can see in Figure 4-28, all communications are working as

intended.

If those communications were not working as they should, you

would see a failure in the logs. In that event, there are some techniques

for verifying a failure and then possibly isolating where in the

communications that the failure occurs. Luckily, macOS comes with a

built-in port scanner. So you can use this command, nested inside the

Network Utility app, to interrogate a given port manually:

/System/Library/CoreServices/Applications/Network\ Utility.app/

Contents/Resources/stroke gateway.sandbox.push.apple.com 2195

2196

Figure 4-28.  Push Diagnostic Logs

Chapter 4 MDM Internals

238

The scan then indicates that port 2195 is open and 2196 is not

accessible (although in some environments, these are deprecated in favor

of 443 and 5223) as shown in the following output:

Port Scanning host: 17.188.166.23

 Open TCP Port: 2195

If the name can’t be translated to an IP address, an error would

indicate that’s the case. If a port is inaccessible then a traceroute command

can be used to show the servers that were gone through to get to a given IP

address or URL, including by port:

traceroute -p 2196 gateway.sandbox.push.apple.com

Provided the service is online, then looking at each route internally

(e.g., before going across the gateway) can show you were those

communications break down and which device might need some kind of

port opened. A number of environments block outgoing traffic to weird

ports and so providing a network team with a list of ports that should be

opened to Apple is sometimes necessary.

Sometimes in testing you find that the Apple services that are

foundational for device management are offline. This is why Apple, and

any responsible vendor, provides a few locations to find information about

the status of hosted services. The two primary locations to look would be

•	 System Status: www.apple.com/support/

systemstatus/ for information on Apple Business

Manager, Apple School Manager, App Store, Device

Enrollment Program, iCloud, Screen Time, Software

Update, and Volume Purchase Program endpoints

•	 Developer System Status: Apple Push Notification

services, TestFlight, App Verification, App Store Connect

(used by many vendors to look up metadata about

apps): https://developer.apple.com/system-status/

Chapter 4 MDM Internals

http://www.apple.com/support/systemstatus/
http://www.apple.com/support/systemstatus/
https://developer.apple.com/system-status/

239

According to how the developer of any third-party products that

you might use for MDM and other related services has integrated those

services into their software, if any of these services is down, it might

cause other services not to work. Many vendors try not to create service

dependencies where possible, but they do happen and can cause services

to be unavailable to devices or cause weird artifacts to appear in the

software you use to manage devices.

To get more detailed information, many of these services can be

contacted directly. For example,

curl -v -X POST https://tbsc.apple.com/ucrt/vend2

Other troubleshooting options include using the sysdiagnose

command and reviewing the log output of that. Now that we’ve looked at

troubleshooting some of the push communications required for devices to

receive commands, let’s move into one of the more valuable commands:

App Deployment.

�App Deployment
The App Store changed the world of software distribution. First the App

Store came to the iPhone and then the iPad and the Mac. While many a

developer avoids those stores, it’s much simpler to deploy apps through

the stores than using the various other mechanisms Apple provides,

making management simpler and more secure. Additionally, the cost of

each app plummeted since the introduction the App Store. A number of

services have also now moved to a subscription model.

This began before the App Store, with a number of vendors moving to

subscriptions for hardware firmware, etc. Apple just did a better job than

anyone else at it, turning the services division of the company into a cash

cow. But organizations needed to deploy apps to a lot of devices – and so

the Volume Purchase Program (VPP) was born. To best understand VPP,

Chapter 4 MDM Internals

240

it helps to look at how it evolved. In the beginning, teachers were given gift

cards. This violated so many basic concepts around financial responsibility

in schools and companies and so Apple engineers started looking at ways

to deploy applications to devices that didn’t include a gift card.

�Gift and VPP Codes
The first stab at large-scale app deployment was using a gift code, which

leveraged existing functionality that already existed for the App Store.

Basically, you can buy an app or other media on the app store for someone

else. You do this by using the Gift This button in the App Stores or iTunes

(Figure 4-29).

When you do, the iTunes Store services sends a gift code to the person

you purchased it for. When the link is clicked, iTunes is opened and you

are directed to associate that code to your iTunes account. Rather than

associating a code, you can instead harvest those gift codes and deploy a

link to buy an app with the gift codes embedded into a buy.itunes.apple.

com URL, where 12345678 is replaced with a code:

https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.

apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=

itunes&code=12345678

Figure 4-29.  Gifting an iTunes asset creates a code

Chapter 4 MDM Internals

https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678
https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678
https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app=itunes&code=12345678

241

When you use the link, the gift code is marked as consumed and is no

longer able to be used to buy another app. Early versions of VPP were a

web service that would track these gift codes and assign them to a device

by deploying the link to the device. The user needed a unique AppleID on

the device and new codes were added to VPP using a csv that was basically

the same thing as the codes as shown in the link above.

�Volume Purchase Program
The csv with gift codes could also be loaded into Apple Configurator or

an MDM that still supports that deployment type to deploy the apps. This

method consumed codes upon device setup and so was short-lived. But

the concept was similar. The fact that most users used personal AppleIDs

and once an app was assigned, the ownership was assigned permanently,

even when the user left the organization, caused Apple to move to a

user assignment service. This is a collection of API services, available

at https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/

wa/<serviceName> (where <servicename> is one of the following):

•	 registerVPPUserSrv: Creates a user in VPP and sends

the user an invitation or if it’s a managed AppleID, links

the AppleID to the instance. Accounts then use a GUID

(clientUserIdStr) for tracking information about the

accounts.

•	 getVPPUserSrv: Checks the clientUserIdStr to get the

associated itsIdHash, or the hash of the AppleID. This

is important philosophically because the MDM server

should not know the AppleID for non-Managed

AppleIDs.

•	 getVPPUsersSrv: Responds with a list of users,

including those retired, so the MDM can track its own

information about those users internally.

Chapter 4 MDM Internals

https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/
https://www.vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/

242

•	 GetVPPLicensesSrv: Responds with a list of

licenses (adamIds) and the users (in the form of

clientUserIdStr) to link which user is consuming which

licenses and the remaining license counts.

•	 GetVPPAssetsSrv: Returns adamIds, whether an app is

revocable, how it is licensed, and consumption of the

available assignments of the licenses owned.

•	 retireVPPUserSrv: Unlinks a user (clientUserIdStr) from

the VPP account.

•	 manageVPPLicensesByAdamIdSrv: Associates licenses

for apps and other content to the users who will need

them and then removes the assignments of that content

when needed.

•	 editVPPUserSrv: Used to edit Managed AppleID

information.

•	 VPPClientConfigSrv: Allows organizational information

to be pulled from the server.

•	 VPPServiceConfigSrv

•	 contentMetadataLookupUrl a response for

obtaining metadata about an app, which includes

most things you see on the iTunes or App Store

pages for content and apps

Most administrators won’t have to interact with these commands

directly, although it helps to know what is happening as you’re using tools

to analyze network traffic when troubleshooting, or looking at a device

while working on app distribution issues. Most of the above commands

need to have an sToken. An MDM solution is integrated with that service

using a VPP token. The token creates a connection between an MDM

Chapter 4 MDM Internals

243

solution (e.g., Bushel, Apple’s Profile Manager, Casper, etc) and apps you

purchase through the VPP portal. But what’s in a token? The VPP token is

a base64 encoded file. You can cat the file and it will show you a bunch of

garbly-gook (technical term):

base64 --decode /Users/charlesedge/Desktop/kryptedcom.vpptoken

But there’s more to it than all that. We can run the base64 command to

see: base64 --decode /Users/charlesedge/Desktop/kryptedcom.vpptoken

In some cases, this file can display improperly, if it fails use the following

command: echo `cat /Users/charlesedge/Desktop/kryptedcom.vpptoken`

| base64 --decode The contents of the file are then displayed, as follows:

{"token":"AbCDe1f2gh3DImSB1DhbLTWviabcgz3y7wkDLbnVA2AIrj9gc1h11

vViMDJ11qoF6Jhqzncw5hW3cV8z1/Yk7A==","expDate":"2020-07-03T08:

30:47-0700","orgName":"Krypted.com"}

This is a comma separated set of keys, including token, expDate, and

orgName. Once you have downloaded the sToken and installed it into your

MDM. The token establishes the trust until the expiration date (which

should give you plenty of time to renew by). The orgName is what you

entered in the VPP portal when you set up the account and is also escaped

and then used as the file name, as we covered earlier. Once the sToken

is installed, administrators then purchase apps using the VPP store, or

if they’ve moved their sTokens to Apple Business Manager, through the

Apple Business Manager front-end to the VPP store.

The content purchase experience is pretty straightforward. As you can

see in Figure 4-30, you search for an app and then click one you’d like to

purchase.

Chapter 4 MDM Internals

244

You can then buy copies in bulk by simply entering the number and

then making the purchase. If an app is free, you still end up purchasing the

quantity that you need, as seen in Figure 4-31.

Figure 4-30.  Looking for Software in the VPP Store

Figure 4-31.  Buying Software

Chapter 4 MDM Internals

245

Once you hit purchase, the MDM uses the preview services to keep

your purchase history in sync with the vpp endpoints at https://vpp.

itunes.apple.com/WebObjects/MZFinance.woa/wa. VPP is one of the

more challenging services to develop around on the MDM side. Keeping

all of that metadata in sync with Apple and dealing with failed API calls

when servers aren’t responsive can be a challenge. Additionally, for non-

Managed AppleIDs, the MDM server is constantly polling the VPP service

to see if they have registered with VPP or unregistered.

There are also a lot of flows to how you build VPP into a product,

which means there are different interpretations that make it challenging

to plan around as an administrator who is a customer of an MDM vendor.

One of the more important of these is whether you have supervised or

unsupervised devices. You can deploy apps to a supervised device through

device-based VPP without the consent of a user. You can deploy apps to a

user via an invitation and they may or may not ever accept your invitation.

You can deploy apps to a Managed AppleIDs that then appear in the

purchase history.

The interactions between VPP and end users are at times challenging

to manage. When a user is prompted with various account types can

change between iOS and macOS versions, as Apple improves the

experience with managing how apps get managed on devices. And

different vendors implement some of the workflows differently. Therefore,

work with your MDM vendor to try to plan the best workflow for your

specific environment.

�Managed Open-In
Managed Open-in is a feature that allows organizations to protect the

information on devices they provide to employees. When an app is

deployed, you can select whether the content that is obtained via the app is

managed. If you manage this content, then any data that is provided via the

Chapter 4 MDM Internals

https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa
https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa

246

MDM is then no longer accessible outside of other tools provided by that

MDM. For example, if an MDM solution is used to deliver email settings

and Apps the users on those devices will only be able to open attachments

in the Apps that the MDM delivered and cannot use a share sheet to

transfer data to an app they loaded themselves. This keeps organizational

data out of your user's personal Dropbox account and hopefully makes it

easier to remove the organizational data from a device without impacting

the rest of the data on the device, such as photos people took of their kids.

The Managed Open-in feature requires Apple's Volume Purchase Plan

(VPP) for App distribution. For more on this technology, see www.apple.

com/business/resources/docs/Managing_Devices_and_Corporate_

Data_on_iOS.pdf.

�Host a .ipa on a Web Server
You can also manually install an app on iOS devices without the use of the

app store. This provides a little insight into what’s happening behind the

scenes of the VPP services. To do so, you’ll need to sign the app in Xcode,

which is outside the scope of this book. The resulting assets you’ll get are a

.ipa file (the application bundle) signed by your organization’s distribution

certificate. The .ipa file can then be loaded into Apple Configurator for

distribution or distributed through a web server.

By default, most web servers do have a handler that tells them what to

do in the event that a call attempts to access one of these files. Therefore,

in order to support downloading those files properly, you need to teach the

server how to handle them.

We’ll start by obtaining the MIME type from the Mac file command in

Terminal. To do so, run file with the, big surprise, –mime-type option and

then the path to the file:

file --mime-type /Users/ce/Downloads/enrollmentProfile.

mobileconfig

Chapter 4 MDM Internals

http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf

247

The output would be as follows, indicating that a file with the

.mobileconfig extension has the application/octet-stream extension:

/Users/ce/Downloads/enrollmentProfile.mobileconfig:

application/octet-stream

Since more and more apps are deep linking a plist into the app, we’ll

also add a plist. The output on a Mac for the various file types is

•	 .mobileconfig: text/xml or application/octet-stream if

signed

•	 .mobileprovisioning: text/xml or application/octet-

stream if signed

•	 .ipa: application/x-ios-app

•	 .plist: text/xml or application/octet-stream if a binary

plist

In the preceding outputs, note that a signed mobileconfig, a signed

mobile provisioning, and a binary plist are basically interpreted as

binary files. This means that when possible, use signed mobileconfig and

mobileprovisioning files so you have a consistent handler.

We’ll start defining those with Apache. Handlers are managed in

Apache’s global configuration file, often located at /etc/httpd.d/httpd.conf

and you would paste the following toward the bottom of the file where you

see the media types (note that each AddType is teaching the web server

what type of file each file extension indicates):

AddType application/octet-stream .ipa

AddType text/plain .plist

AddType application/octet-stream .mobileconfig

In the above example, we set a plist to plain in order to show that

sometimes it is, given that many an app developer does things differently.

Alternatively (or additively if you need to host both binary and flat plist

Chapter 4 MDM Internals

248

files), you could create an .htaccess file in the directory with the files

(e.g., if you don’t have root access to change the httpd.conf), by adding

something similar (the # is indicating a commented line):

Apps

AddType application/octet-stream .ipa

AddType application/octet-stream .plist

AddType application/octet-stream .mobileconfig

For IIS, you would instead go into IIS Manager and right-click on the

name of the server, select Properties and click New… in order to create new

MIME types. Then add each using the above types.

To add a MIME type on nginx, edit the mime.types file in the conf

directory for nginx. This is often found in /etc/nginx or /opt/nginx but

ymmv. Once found, in mime.types look for a types section wrapped in

curly-braces {}:

types { application/octet-stream mobileprovision; application/octet-

stream mobileconfig; application/octet-stream plist; application/octet-

stream ipa; }

Note  In some cases, you might find that “application/x-apple-
aspen-config” and in others text/plain or text/xml works better for
.mobileconfig MIME types.

If you have failures, you can use a proxy to check it. Here, you’d

probably want to use a unique port number to make calls easier to use.

If you use Charles Proxy, you’d configure the proxy in the Wi-Fi settings

of an iOS device and then open the link in a browser and watch for any

failures. You can create app provisioning profiles in Xcode at the time the

app is built.

Chapter 4 MDM Internals

249

�Sign and Resign macOS Applications
The codesign command line tool is used to sign applications and

packages. If you have a .app, then you’ll need to first load a certificate that

can be used to sign an app onto the Mac being used and then point it at

the app to be signed. Any time you alter a .app you’ll want to do this, and

before doing so you’ll want to make sure that the certificate you’re using

to sign the app is either from a public CA or has been distributed to client

computers.

As an example, in let’s use the codesign command, to sign the

Microsoft Word application using a certificate called pretendcocert that’s

been loaded in your keychain. Here, we’d use the codesign command

followed by the -s option to sign and then the name of the cert followed by

an escaped (or quoted)path to the app bundle, as follows:

codesign –s mycert /Applications/Microsoft\ Office\ 2016/

Microsoft\ Word.app

The codesign command is capable of much more, but isn’t the only

tool that administrators need to learn to distribute applications. You could

then perform similar operations on iOS using techniques similar to those

described https://docs.microsoft.com/en-us/intune/app-wrapper-

prepare-ios.

�App Notarization
As of 10.14.5, Apple requires that all software be notarized (and signed)

by Apple. This is referred to as App Notarization. In order for Apple to sign

software, they check the software to make sure it’s safe and for new app

developers will require that all software be notarized, including apps and

kernel extensions. While it’s only required for some developers right now,

it will be required by all (probably before this book goes to print).

Chapter 4 MDM Internals

https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios
https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios

250

Submitting an app for notarization is easy. We’ll cover using the xcrun

command line tool with the altool verb to do so. But first, there are some

requirements you should know about:

•	 The notarization service uses an automated scan that

usually takes about 20 minutes and requires at least the

10.9 macOS SDK.

•	 Before submitting, make sure code-signing has been

enabled for all executables and that you enabled the

Hardened Runtime option.

•	 Find a workaround if you’re setting com.apple.security.

get-task-allow to true for any reason.

•	 Make sure to use an Apple Developer ID instead of a

local cert from Xcode for apps and kexts. And make

sure all code-signing certs have a timestamp when

running your distribution workflows in Xcode or if

using codesign make sure to add –timestamp.

Now we’ll need to use xcrun with the altool. Here, we’ll use the

–notarize-app option and then define the bundle (using the reverse

naming convention you’ve always used for the –primary-bundle-id

option and then the username and password from your Apple ID linked

to your Developer ID and finally the –file which is the zipped output

from Xcode.

#!/bin/bash

/usr/bin/xcrun/xcrun altool --notarize-app --primary-bundle-id

"com.myorg.myproduct" --username "krypted@myorg.com" --password

"icky_passwords" --file "/Users/krypted/Documents/myproduct.zip"

Chapter 4 MDM Internals

251

You can use any tools to build this into your development pipeline.

In this example, we’ll use the open source Bamboo solution as the

postflight from our xcrun workflow. We’ll start by naming our script /usr/

bambooscripts/notarize.sh and then follow these tasks to get the build

automation step in place (Figure 4-32):

•	 Open the Tasks configuration tab for a job (or default

job in a new plan).

•	 Click Add Task.

•	 Add a Task Description, which is just how the task is

described in the Bamboo interface.

•	 Uncheck the box to “Disable this task”

•	 Provide a path to the command executable, which in

this case will be a simple bash script that we’ll call /

usr/bambooscripts/notarize.sh. If you’re stringing

workflows together you might add other scripts as well

(e.g., a per-product script as opposed to a generic script

that takes positional parameters for arguments).

•	 Provide any necessary Arguments. In this case, it’ll just

be a simple job but you can reduce the work by adding

arguments for processing paths of different products.

•	 Provide any necessary Environment Variables. We

won’t use any in this project.

•	 Provide any necessary “Working Sub Directory”

settings, which is an alternative directory rather than

using a relative path. If you don’t provide a working

subdirectory, note that Bamboo looks for build files in

the root directory.

•	 Click the Save button (as you can see in the following).

Chapter 4 MDM Internals

252

As you can see, the actual notarization process with Apple isn’t that

big of a deal. What can be more challenging is to resolve any issues

Apple may find with software before it can pass the notarization checks.

This type of code change is based on the app you might be developing

(or resigning) and therefore beyond the scope of this book. We do pick

up more on app distribution in Chapter 7 and more on automation in

Chapter 9.

Figure 4-32.  Automate Bamboo Tasks

Chapter 4 MDM Internals

253

�Summary
MDM is the built-in management agent for Apple devices. MDM is

the future of Apple management. Functionality built into MDM for

management increases every year. This is true for iOS, iPadOS, tvOS, and

macOS. For macOS, the ability to manage devices using scripts seems to

conversely decrease every year, making MDM-based management more

and more important with each passing release.

The addition of supervision allows Apple to limit the management

options available on devices a given organization doesn’t own. Supervised

devices can be managed more granularly. UAMDM also increases or

decreases the amount of management. This is part of a deliberate plan

from Apple to allow more and more centralized control, the most an

organization can prove they own a device and not an employee, and the

more the employee chooses to opt into various management options.

iOS device management is simple. And Apple has been able to scale

offerings (especially using third-party management tools) while preserving

that privacy of the humans that use their devices. iOS has led the way, but

the Mac is quickly catching up. As an example, it’s easy to imagine a time

when apps on a Mac will only be self-contained .app bundles and when

the only deployment method for those apps in large organizations will

be via the App Store or MDM. The installation package has been around

for a long time and gives software developers the ability to distribute kext

files, fonts, and automate scripts to run when an app is installed. But Apple

has been locking down all of those technologies for long time. And there’s

no reason to think MDM won’t be the only real way to manage an Apple

device in a few years.

Volume distribution of applications is another place where Apple is

taking great care to put a line in the sand between institutional data and

personal data. The device management tools don’t know the AppleID of

a user unless it’s a managed AppleID. The device management tools can’t

Chapter 4 MDM Internals

254

install an app on a device without a user’s approval unless it is a supervised

device. In macOS 10.15, Apple also adds a whole new enrollment type,

putting all data from a Managed AppleID onto a separate partition on a

computer. This attention to detail is one of the reasons that people want

Apple devices, but the lack of programmatic management here and there

certainly seems to chafe some administrators.

Now that we’ve pulled back the covers a bit to expose what’s going on

behind the scenes with Apple device management, let’s look to get devices

into the hands of our coworkers, starting with iOS Provisioning, in Chapter 5.

Chapter 4 MDM Internals

255© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_5

CHAPTER 5

iOS Provisioning
Imaging. We used to say that we imaged computers. But then came iOS,

and then iPadOS. You didn’t image iOS or iPadOS device as much as you

“prepare” them, or at least that’s what the buttons in the software said

at the time. These days, preparing a device to go into the hands of an

end user is more about Provisioning the device to a user than it is about

imaging the device.

Imaging never entered into the vernacular for iOS. You could restore a

signed operating system to a device in the form of exploding the files from

a compressed file of the iOS operating system, which is distributed as an

ipsw file provided by Apple that can’t be altered. This would be expanded

onto the disk of an iPhone or iPad. And you could deploy a profile to enroll

the device into a Mobile Device Management, or MDM solution, using a

tool like Apple’s Profile Manager, until the Device Enrollment Program,

or DEP, made that unnecessary. This is another example of how the

technology from iOS is benefiting the Mac.

When we say “imaging” a Mac, we typically think of erasing a device

and putting new bits on the device in form of a fully functional operating

system on the file system of the device. This gives the device everything a

user needs to get their work done – and doing so by restoring a monolithic

“image” to the device is the simplest step when deploying a device for

the first time. First we moved from monolithic imaging to package-based

imaging. Then we moved from package-based imaging to restoring a “thin”

image, or one with just the operating system and an agent. Then Apple

gave us the Device Enrollment Program (or DEP for short) and we went

256

to skipping that step and taking devices out of the box with the default

operating system and allowing our coworkers to do the imaging that many

large organizations used to pay $20–$40 per device to have done. DEP

automatically enrolls the device into MDM, puts apps on the device, and

puts the agent on the device through MDM. There are less options, but the

process has never been so streamlined with such a small amount of work.

Shipping devices directly to a user makes them feel like they’re getting

the new device they were always getting, but Once administrators had

everything necessary to provision a device out of the box, Apple released

the APFS filesystem (or Apple Filesystem) and the native restrictions

for restoring became common on the Mac. It was a learning curve but

ultimately one that makes our lives better.

Operating system updates for iOS were always free (except that one

time, but we don’t need to go into that). Mac updates became free and

simplified the distribution process while allowing users to always run the

latest operating system. By making the operating system free, Apple was

then able to simplify the options for reinstalling macOS.

There are certainly differences still, though. So this chapter is split into

an iOS and a macOS section. Because the Mac has been trending toward

iOS when it comes to deployment, we’ll cover iOS Provisioning first.

�iOS Provisioning
As we mentioned, in a perfect world, you send a device to a user, they open

the device, and all of the magic happens to put that device into a state

where it just works with your environment. Behind the scenes, a lot goes

into making that happen. We’ve discussed many of those building blocks.

In Chapter 3, we covered Profiles. In Chapter 4, we covered MDM. There

are still some gaps; and they’re more logistical than they are technical.

For starters, you have to get on a Wi-Fi network in order to be able to

enroll an iOS device into MDM, even with DEP. This means a user has

Chapter 5 iOS Provisioning

257

to join the network, and so if you use 802.1x or need an agent to be able

to enroll, there’s a chicken and egg situation. Some organizations use

ethernet adapters for iPads, to get those certificates going and to kickstart

those communications. Others need a completely over-the-air workflow

assuming users are never in the office. Most environments are somewhere

in the middle, so we’ll cover the options available for provisioning iOS

devices in this section, starting with doing so using Apple Configurator.

�Prepare an iOS Device Using Apple Configurator
In Chapter 3, we used Apple Configurator to create profiles, but it can be

used for much, much more. In this chapter, we’ll build out a workflow to

get certificates on devices (also using profiles), but as importantly we’ll take

some actions on those devices to provide a consistent user experience.

One theme of this book is that in the Apple world, we don’t like to

be heavy-handed with management, but we do like to ensure devices

meet our requirements in order to join networks and we like to make

the experience of getting a new device as frictionless as possible, so the

people who use them don’t avoid making eye contact in the hallways!

Apple Configurator gives us a lot of the tools to do just that. Because not

all devices are handled the same, we typically begin by grouping our

workflows into what are known as Blueprints.

�Create Blueprints
Blueprints allow you to configure a template of settings, options, apps,

and operating systems. You then apply those Blueprints on iOS devices,

which represent a predefined workflow. For example, if you have 1,000

iOS devices, you can create a Blueprint with a restore item, an enrollment

profile, or a default wallpaper. You can also skip all of the activation steps,

install 4 apps, and then enable encrypted backups. The Blueprint provides

all of these features to any device that the Blueprint is applied to.

Chapter 5 iOS Provisioning

258

Note I n the following sections, we’ll look at a lot of different
options. They’re all optional, according to what it is your organization
needs to accomplish.

Keep in mind that they’re called Blueprints because you’re not

dynamically making changes to devices over-the-air or grouping devices.

Instead you’re making changes to devices when you apply that Blueprint,

or workflow to the device. To get started, open Apple Configurator and

click on the Blueprints button and then click on Edit Blueprints. Notice

that when you’re working on Blueprints, you’ll always have a blue bar

toward the bottom of the screen. Figure 5-1 shows a blank slate so you can

start building workflows. Once created, Blueprints are tiled on the screen,

although as you get more and more of them, you can view them in a list.

Figure 5-1.  Create A Blueprint

Chapter 5 iOS Provisioning

259

Click on the New button to create your first Blueprint. Here, you’ll have

a number of options which we’ll describe later in this chapter including

•	 Install or remove apps and documents.

•	 Change the name of devices en masse, using variables.

•	 For supervised devices, you can change the wallpaper

of devices and modify the layout of apps.

•	 Update software.

•	 Install or remove profiles.

•	 Backing up and restoring saved backups onto devices.

•	 Performing some actions, such as caching an unlock

token so you can reset passcodes, putting devices into

kiosk mode, and wiping devices.

You can also configure automated enrollment. But for an increasing

number of environments, before we can enroll, we need to get a certificate

to join a wireless network.

�Manage Content
We can manage files on disks. Configuration files are stored in what are

known as profiles, or xml files (as covered in Chapter 3). These can be used

to distribute apps, to install certificates, and to deploy content to devices.

�Add Certificates for 802.1x with Profiles
to Blueprints
One of the tasks you’ll need to perform in Apple Configurator is to assign

Profiles to iOS devices in order to set them up with features or restrict the

device from using certain features. Adding a certificate to a device and

Chapter 5 iOS Provisioning

260

configuring the device to join a wireless network is pretty common and

a fairly simple workflow. To get started, open a Blueprint or create a new

Blueprint. Then follow along with these steps:

	 1.	 From the screen for that Blueprint, click Profiles in

the sidebar (Figure 5-2).

	 2.	 If you’re working with a new Blueprint and creating

a new profile, click the File menu and click New

Profile.

	 3.	 Next, provide a Name for the profile in the Name

field. In this example, we just called the profile

802.1x.

	 4.	 Leave the identifier in the Identifier field.

	 5.	 Click in the Organization field and provide the name

of your organization.

	 6.	 Click in Description and provide a brief explanation

of what the profile is meant to do (this is nice for

the next person who needs to manage what you’re

working on).

	 7.	 Consent is rarely required with Apple Configurator-

based workflows, but you can provide a message

that an end user has to tap at the time of the

deployment. Apple Configurator is often used to

reduce taps, not increase them, so this is not likely to

be necessary.

	 8.	 Optionally, if you want users to be able to remove the

profile, leave the Security option set to Always. You can

also set it to Never so the profile can only be removed

through Apple Configurator or With Authorization,

which requires a passcode to remove the profile.

Chapter 5 iOS Provisioning

261

	 9.	 Use Automatically Remove Profile if you want the

profile removed at a certain date or amount of time.

	 10.	 Next, click the Certificates profile in the sidebar and

click Configure.

	 11.	 When prompted, select a .p12 file and click OK.

	 12.	 At the Certificates screen, provide the password

required to open the p12 (Figure 5-3).

Figure 5-2.  Naming your profile

Chapter 5 iOS Provisioning

262

	 13.	 Click Wi-Fi and click Configure.

	 14.	 Provide the name of the wireless network in the

“Service Set Identifier (SSD)” field.

	 15.	 If the network name is suppressed, check the box for

Hidden Network.

	 16.	 If you want the device to automatically join the

network, check the box for Auto Join. You likely

Figure 5-3.  Select your certificate to use with the profile

Chapter 5 iOS Provisioning

263

want that box checked any time you’re using Apple

Configurator as again, you’re trying to minimize the

number of taps on devices.

	 17.	 If a proxy server is required, configure those settings

using the Proxy Setup options.

	 18.	 Set the Security Type (in Figure 5-4, we’re using TLS,

so we’ll select “WPA/WPA2 Enterprise” and then

check the box for TLS), but a lot of environments

use a lot of different settings, so work with a network

administrator if needed.

Figure 5-4.  Change the Security Type to see more options

Chapter 5 iOS Provisioning

264

Once you’ve configured the profile, click the close button (the red jelly

marked with an x in the upper left corner of the screen). When prompted,

provide a name and location for the profile, as you can see in Figure 5-5.

To add the profile to another Blueprint, click the Add button from

within a Blueprint when viewing profiles in Apple Configurator and select

the file location. You can also add a profile that you export from your MDM

solution by simply copying it to a secure location on the computer and

doing that last step. This will help keep you from doing duplicate work in

two different tools. Now that we can add profiles to prepare a device for

distribution, let’s look at getting apps on the device – but keep in mind that

when you have the option to push an app from Configurator or an MDM,

use the MDM so that it can be managed dynamically once deployed.

Figure 5-5.  Name your profile

Chapter 5 iOS Provisioning

265

�Install Apps with Apple Configurator
One reason you might use Configurator to push an app to a device is if you

are transferring 10 gigs of apps (which could be 10 or 100 apps) as that data

transfer might go faster over a USB cable than it will over-the-air from the

App Store, especially if you’re preparing a lot of devices at once. In this

section, we’ll look at a basic app deployment using Apple Configurator.

To get started, first download the app and get it in your Documents

folder or Desktop (which can be done via iTunes or by pulling it from a

device). This can be accomplished by copying the .ipa file for an app if you

have one or Apple Configurator can pull down the app onto a device from

an Apple ID that has the app in its purchase history. You will routinely

get prompted to reconnect when the key expires, usually after 4 hours of

inactivity, so if you plan to have others using Apple Configurator, make

sure to use a service account for this. To add an app using a Mac:

	 1.	 Open a Blueprint.

	 2.	 Click Apps.

	 3.	 Click Add Apps… (Figure 5-6).

Chapter 5 iOS Provisioning

266

	 4.	 Click Sign In… (Figure 5-7).

Figure 5-6.  Add Apps to a Blueprint

Chapter 5 iOS Provisioning

267

	 5.	 When prompted, provide credentials for the App

Store account.

	 6.	 Enter the name of the app in the search dialog.

	 7.	 Click on the app and then click Add (Figure 5-8).

Figure 5-7.  Log into the App Store

Chapter 5 iOS Provisioning

268

Once the app has been added, any device the Blueprint is applied to

then receives the app. You can also assign an app to a device manually.

To do so, control-click (or right-click) on a device and then use Add to

choose the Apps… option. Next, we’ll configure automatic enrollment, so

the device gets added to the MDM server used in your environment when

being prepared.

�Automate Enrollment with Apple Configurator
When doing larger deployments, the initial enrollment process can be

automated so that devices are automatically enrolled into an MDM

when set up using an enrollment profile. We won’t focus on getting the

Figure 5-8.  Select the App

Chapter 5 iOS Provisioning

269

enrollment profile in this section as much as how to add it to Apple

Configurator, given that each MDM vendor provides a different way of

downloading the necessary enrollment profile, and some do not support

automated enrollment via Apple Configurator (such as Jamf Now) as the

enrollment profiles used are set to expire in a period of time too short to

complete an enrollment en masse.

�Download MDM Profiles

To get started, first download an enrollment profile. As an example, in

Addigy this is done by navigating to Downloads in the sidebar and then

clicking on the download button for MDM Profile (Figure 5-9).

If you are using Jamf, Jamf Pro has an option to download the

Enrollment Profile in the sidebar of the Devices screen as well (Figure 5-10).

Figure 5-9.  Download the Addigy MDM Profile

Chapter 5 iOS Provisioning

270

Additionally, a certificate from the CA of an MDM server can be

needed if the certificate is not included in the profile and the device

doesn’t trust the server, an option available as a checkbox in the setup.

This is a good reason to use certificates from a valid CA rather than

using self-signed certificates. Once you have the enrollment profile (a

.mobileconfig file), then it’s time to configure automated enrollment as a

part of your Blueprint. To do so simply add the enrollment profile as we did

in the previous section of this chapter.

�Configure Automated Enrollment in Apple Configurator

Automated enrollment requires less work on the administrative side, but

according to how your MDM solution has integrated the option, you can

associate a number of metadata attributes in the MDM server that can be

useful for further automation.

Automated enrollment is another option, which dynamically pulls the

enrollment profile down from the MDM server. This begins the enrollment

process, much as manually opening an enrollment profile would do.

Figure 5-10.  Download the Jamf MDM Profile

Chapter 5 iOS Provisioning

271

As an example, the server we’ll use in this walkthrough is https://

kryptedjamf.jamfcloud.com:8443/configuratorenroll which can

dynamically generate the .mobileconfig file. To set up Automated Apple

Configurator Enrollment

	 1.	 Open Apple Configurator and choose Preferences

from the Apple Configurator 2 menu.

	 2.	 Click Servers.

	 3.	 Click the + sign (Figure 5-11).

	 4.	 At the Define an MDM Server screen, click Next.

Figure 5-11.  Add a server for automated enrollment

Chapter 5 iOS Provisioning

https://kryptedjamf.jamfcloud.com:8443/configuratorenroll
https://kryptedjamf.jamfcloud.com:8443/configuratorenroll

272

	 5.	 At the next screen, in the Name field provide a

name, such as “My MDM Server”.

	 6.	 In the “Host Name or URL” field as seen in Figure 5-12.

	 7.	 Apple Configurator will then download any required

trust certificates and the “Define an MDM Server”

wizard will complete. Once you see your MDM

server listed.

We won’t cover preparing devices just yet, but Automated Enrollment

will then be an option when you go to prepare (Figure 5-13).

Figure 5-12.  Provide the URL to your MDM Server to use for
automated enrollment

Chapter 5 iOS Provisioning

273

If you then wish to unenroll a device once it’s been enrolled by Apple

Configurator, simply remove the profiles by tapping on profiles and then

tapping on the Remove button. Per the MDM API, a user can elect to

remove their device from management at any point unless the device is

supervised, so expect this will happen occasionally, even if only by accident.

Now that we’ve looked at automating MDM enrollment, let’s move

to customizing each device, starting with naming them so it’s easier to

manage devices once they’re in the hands of a user (or 1000 users).

�Change Device Names Using Apple Configurator
Apple Configurator can also rename iOS devices. This is done in an

automated fashion when devices are prepared (or when the workflow

provided in a Blueprint is implemented on the device). This is important

because a device name can be used to implement further automations

Figure 5-13.  Device Preparation Options

Chapter 5 iOS Provisioning

274

once enrolled in an MDM solution or it can be used to quickly identify

devices when troubleshooting.

To use Apple Configurator to rename a device, plug it into a Mac

running Apple Configurator and then right-click on the device and choose

Device Name… from the Modify menu. More importantly, to associate a

rename action in the preparation of a device, follow these steps:

	 1.	 Open a Blueprint.

	 2.	 Select Device Name under the Modify submenu of

Actions.

	 3.	 At the Rename device menu, shown in Figure 5-14,

provide the name you want a device to have, followed

by a variable, available using the + menu.

Figure 5-14.  Select Serial Number for a naming convention

Chapter 5 iOS Provisioning

275

	 4.	 In Figure 5-15, we used Sales since we’re mass

configuring Sales devices, followed by Serial, so if a

device has a serial number of 123abc then the name

of the device would be “Sales-abc123”.

Once you enter new information, click the Rename button and

the action will then be taken any time you prepare devices using this

Blueprint. Another action that is common is to change the background, or

wallpaper of a device. We’ll cover that in the next section.

�Change Device Wallpaper with Apple
Configurator
An iOS device has two wallpapers that can be configured during setup of

devices: home screen and lock screen. The home screen is the image that

you see with apps on top of it. This should be simple so as not to distract

from finding the app a user is looking for. In this example, we’ll apply a

Sales background to the lock screen so we can easily identify the sales

devices when handing them out to salespeople.

Figure 5-15.  Add text for the naming convention

Chapter 5 iOS Provisioning

276

Before you begin, save the image or images to a local directory on the

computer running Apple Configurator. Then follow this process to set

wallpapers:

	 1.	 Right-click the device and choose the Modify menu

and then Wallpapers… from the Modify submenu.

	 2.	 When prompted, use the Choose image… button

to set the Lock Screen (the screen that is displayed

when the device is locked).

	 3.	 Repeat that process to set the Home Screen (the

background behind all your icons on each screen of

the iPhone or iPad).

	 4.	 Once you have chosen the appropriate images, click

the Apply button.

Figure 5-16.  Select your wallpaper image

Chapter 5 iOS Provisioning

277

The device will then install the new wallpaper(s) when you run a

prepare using the new Blueprint we’ve created. Now that we have all the

pieces in place to get a device onto the network and customize it in a

manner that follows some completely random guidelines we just made up,

let’s finally look at actually run the prepare.

�Prepare a Device
Device preparation is the act of running a workflow on a device. This isn’t a

preset as you’re meant to configure the steps to run each time you run a new

session of Apple Configurator. This is to say you run a wizard to configure

the setups in preparing devices each time. This is why we put as much logic

into the Blueprint as possible. Preparing also requires the computer running

Apple Configurator to be run while online (e.g., in order to access the App

Store and any certificate stores or MDMs to enroll as possible).

Figure 5-17.  Select the Lock Screen image

Chapter 5 iOS Provisioning

278

Note  Keep in mind that if you are erasing devices as part of your
preparing them for deployment, any device plugged into the Apple
Configurator can be wiped and so don’t accidentally plug your own
phone or iPad into it.

To prepare devices using our Blueprint:

•	 Open Apple Configurator.

•	 Click Blueprints.

•	 Control-click your Blueprint and select Prepare.

•	 At the Prepare Devices wizard, select whether you will

be running a Manual Configuration (Figure 5-19) or

Automated Enrollment.

Figure 5-18.  Run Prepare to start your Blueprint

Chapter 5 iOS Provisioning

279

The devices we’ll be working with in this workflow are DEP-enabled, so

we’ll select Automated Enrollment (Figure 5-20) and then click Next.

Figure 5-19.  Configure the steps in your Prepare workflow

Chapter 5 iOS Provisioning

280

•	 At the Choose Network Profile screen of the wizard,

we select the profile created previously, so the device

can join the network and enroll into the DEP instance

(Figure 5-21).

Figure 5-20.  Configure the device to use Automated Enrollment

Chapter 5 iOS Provisioning

281

•	 Given that the MDM instance requires authentication,

at the Automated Enrollment Credentials screen, we’ll

provide credentials that can be used to authenticate

to the MDM provider (Figure 5-22). DEP is somewhat

insecure without authentication and so you should

always do authentication when possible. See the Black

Hat talk from Jesse Endahl for more information on

why: www.blackhat.com/us-18/speakers/Jesse-

Endahl.html.

Figure 5-21.  Select the 802.1x Profile we created earlier

Chapter 5 iOS Provisioning

http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html
http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html

282

Click the Prepare button and any devices that are plugged in will be

setup to run the workflows laid out in the Blueprint! If you were not doing

DEP/automated enrollment, then you’d also see the Configure iOS Setup

Assistant screen (Figure 5-23). This screen is used to suppress the startup

screens in iOS, allowing you to get all the closer to the magical zero-touch

setup. If you’re using DEP, then the Apple Configurator workflows assume

that you are using MDM to suppress those screens.

Figure 5-22.  Provide authentication credentials to your MDM
solution

Chapter 5 iOS Provisioning

283

Now that we’ve used Apple Configurator to setup devices, it’s time to

move to using Configurator as a debugging tool.

�Apple Configurator Debug Logging
Apple Configurator is a great tool. But you need to debug things from time

to time. This might mean that a profile is misconfigured and not installing

or that a device can’t perform a task you are sending it to be performed.

This is about the time that you need to enable some debug logs.

Figure 5-23.  Configure the screens to skip during setup

Chapter 5 iOS Provisioning

284

To do so, quit Apple Configurator and then use Terminal to write a

string of ALL into the ACULogLevel key in ~/Library/Containers/com.

apple.configurator.ui/Data/Library/Preferences/com.apple.configurator.

ui.plist by using the following command:

defaults write ~/Library/Containers/com.apple.configurator.

ui/Data/Library/Preferences/com.apple.configurator.ui.plist

ACULogLevel -string ALL

To disable, quit Apple Configurator and then delete that ACULogLevel

key using the following command in Terminal:

defaults delete ~/Library/Containers/com.apple.configurator.

ui/Data/Library/Preferences/com.apple.configurator.ui.plist

ACULogLevel

In addition to debugging, you can also manage the version of the

operating system being run on devices, which we’ll cover in the next section.

�Using an ipsw As Part of Device Restores
Apple Configurator allows you to run a specific version of iOS on a device.

This might mean that you run an older version for testing, or it might mean

that you deploy an operating system that hasn’t been released into the wild

yet as part of testing for future versions using the betas you have access to

from the Developer or Seed programs.

An iOS operating system is a bundle of files, as with many other things

in the Apple-verse. This particular bundle is an ipsw file. The .ipsw must

be signed and unadultered in order to be restored to an iOS device. They

can be downloaded from the Downloads section of developer.apple.com,

where each operating system will have a separate installer file (Figure 5-24).

Chapter 5 iOS Provisioning

285

If you have a bunch of Apple Configurator workstations, and you are

running a training session or attempting to run beta software for standard

software testing, this can get infinitely more annoying. In these types of lab

environments, you’re in luck. If you have an ipsw (the iOS OS update file),

you can copy the file from ~/Library/Group\ Containers/K26BKF7T3D.

group.com.apple.configurator/Library/Caches/Firmware/ onto another

machine. To copy them onto a USB drive called bananarama, for example,

use the following Terminal command:

cp -R ~/Library/Library/Group\ Containers/K26BKF7T3D.group.

com.apple.configurator/Library/Caches/Firmware/ /Volumes/

bananarama/ipsws/

Once you’ve moved that drive, then copy them back using the

following command in the Terminal application:

cp -R /Volumes/bananarama/ipsws/ ~/Library/Group\ Containers/

K26BKF7T3D.group.com.apple.configurator/Library/Caches/Firmware/

Figure 5-24.  The Downloads page on developer.apple.com

Chapter 5 iOS Provisioning

286

Now that we’ve looked at copying an ipsw as a means of restoring an

iOS, iPadOS, and tvOS device, let’s look into how to provide supervision for

devices so the settings and apps we apply once configured persist to the

Mobile Device Management solution, and so we can supervise otherwise

unsupervised devices.

�Device Supervision Using Manual Configurations
When using Apple Configurator, you can supervise devices that purchased

outside of an organizational PO or Apple Management program. This

allows you to assign an existing supervision identity to be used with

devices you place into supervision, or to supervise random devices. These

need to be wiped in order to apply the appropriate level of permissions to

prove they are owned by an organization.

To do so, first open Apple Configurator and click on Organizations

(Figure 5-25).

Figure 5-25.  Create an Organization

Chapter 5 iOS Provisioning

287

From Organizations, click on the plus sign (“+”) and then click Next

at the first Create an Organization screen. When prompted to provide

information about your organization, provide the name, phone, email,

and/or address of the organization.

If you are importing an identity, select “Choose an existing supervision

identity” and click Next (Figure 5-27).

Figure 5-26.  Name the organization

Chapter 5 iOS Provisioning

288

When prompted, click Choose to select the identity to use (e.g.,

exported from another instance of Apple Configurator or from Profile

Manager) as seen in Figure 5-28. These are pulled from the list of

certificates found in Keychain. As an example, if you promote a server to

a Profile Manage server, when Open Directory is installed, a certificate

will also be installed. This certificate can then be used here. Or you can

download one from a CA on a third-party MDM solution.

Figure 5-27.  Create a supervision identity

Chapter 5 iOS Provisioning

289

Click Choose when you’ve highlighted the appropriate certificate and

then click Done. You now have the appropriate identities (certificates)

to supervise previously unsupervisable devices, thus obtaining more

options for tasks you can deploy on those devices. When configured, the

Supervision Private Key is a signing identity using an exportable DER that

can be migrated to another Apple Configurator host and authenticates

a Mac to be able to supervise a device. This is required when running

various actions that Apple developers deem should be able to be run on

a device even without a passcode because the organization has proven

that they own a device and not the person using the device. This includes

commands like resetting a passcode without wiping a device.

Now that we’ve done a number of tasks manually using Apple

Configurator, let’s turn toward automating tasks using various scripting tools.

Figure 5-28.  Select a Certificate

Chapter 5 iOS Provisioning

290

�Automating iOS Actions
There are a few tools for automating tasks on iOS, iPadOS, and tvOS

devices that we’ll cover in the next few sections. These allow you to string

together complex workflows. For example, when a device is plugged in you

could automatically backup the device, erase it, supervise it, restore the

backup, and then run a shell script that provides details about the series of

tasks into a standard support tool like ServiceNow, or triggering an action

in a device management solution using the APIs of one of those.

Luckily, you have a few options around automating such a workflow.

These include the following tools:

•	 Mobile Device Automation from Apple Professional

Services

•	 AEiOS

•	 Ground Control

•	 Libimobiledevice

•	 Automator

The easiest of these to review is the Mobile Device Automation service

from the Professional Services team at Apple. This is a service where Apple

employees customize a suite of tools developed for a variety of customers

that Apple has worked with. Not much is public about this service other

than it can be purchased through your account team at Apple. For more

information, see http://business-static.apple.com/us/apple-

professional-services/Apple_Professional_Services_Mobile_

Device_Automation.pdf.

Automator is an app built into macOS that allows administrators to

perform a variety of automation tasks using an easy graphical interface

and drag-and-drop actions. There are a number of sample workflows,

Chapter 5 iOS Provisioning

http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf
http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf
http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_Mobile_Device_Automation.pdf

291

videos and other assets that will help generate workflows at http://

macosxautomation.com/automator/. Some manual assembly and

creativity might be required but you’ll be better for it. If you find that you

need more, we’ll look at a few options to automate iOS provisioning and

management in the following few sections, starting with GroundControl.

�GroundControl

GroundControl is a solution available at www.groundctl.com .

GroundControl allows you to do some of what Apple Configurator does,

but much more. GroundControl can setup devices, manage MDM and

Wi-Fi settings, take configuration information from a SaaS login

environment, and assign roles to devices using GroundControl, which

automatically sets various configuration options including some that

aren’t available through any of the other tools that we reference in this

chapter, because it uses private frameworks to edit devices.

GroundControl has a number of features that appeal to various use cases:

•	 Integration with USB hubs to enable and disable LED

lights when a device is in a given state.

•	 Self-Heal reimages devices on the fly so they can be

put back in the hands of users when the devices aren’t

working properly.

•	 APIs and Webhooks (for more on these, see Chapter 11)

provide additional automation and rather than running

these from a Mac running Apple Configurator, the

automations are run from a cloud solution so they are

always available.

Chapter 5 iOS Provisioning

http://macosxautomation.com/automator/
http://macosxautomation.com/automator/
http://www.groundctl.com

292

•	 Run on Microsoft Windows either running on a full

computer or using an Intel Compute Stick with a USB

hub attached to the device.

•	 Tap & Go (sold as an add-on) comes with a Locker app

that integrates with your MDM and tracks who uses

each iOS or iPadOS device. GroundControl integrates

with VMware Workspace ONE as a federated identity

provider (via SAML 2.0) and automatically logs devices

out of apps when events trigger GroundControl to do so.

If you have the ability to license a tool, it’s worth doing so just for the

support. But since not everyone can, the remainder of the tools we’ll look

at in this section are free and/or open source automation tools.

�The Apple Configurator Command Line Tools

Apple Configurator has an optional command that can be installed to

automate a number of the tasks we’ve done throughout this chapter. Don’t

let the fact that it’s a command line tool fool you – in some cases a well-

structured command line tool is easier to use than a tool with hidden or

nested options in a graphical interface. The Apple Configurator command

line is such a tool and you should be a master within about half an hour

tinkering with it.

Before using the command line options to automate tasks, you need to

install it. To do so, open Apple Configurator 2 and then click on the Apple

Configurator 2 menu. Select Install Automation Tools from the menu

and you’ll be prompted with the Install Automation Tools dialog (as you

can see in Figure 5-29). Click Install her and provide local administrative

credentials if you are prompted to do so.

Chapter 5 iOS Provisioning

293

Once installed, you’ll find a binary called cfgutil at /Applications/

Apple Configurator 2.app/Contents/MacOS/cfgutil. The cfgutil command

has a number of verbs you can see by running the command followed by

the help verb, as follows:

/Applications/Apple\ Configurator\ 2.app/Contents/MacOS/cfgutil

help

The following is a list of officially supported verbs:

•	 activate: Activate iOS and iPadOS devices.

•	 add-tags: Add a tag for iOS and iPadOS devices.

•	 backup: Create a backup of an iOS or iPadOS device the

Configurator computer has prepared.

•	 clear-passcode: Clear the passcode a supervised iOS or

iPad OS device.

•	 erase: Erase any content and settings configured on any

supervised iOS and iPadOS devices.

•	 exec: Run scripts when iOS and iPadOS devices

connect or detach from the computer running Apple

Configurator.

Figure 5-29.  Install the Apple Configurator Command-Line Tools

Chapter 5 iOS Provisioning

294

•	 get: Show various properties, settings, and apps that are

on a device.

•	 get-app-icon: Copy an app icon (based on the bundle

identifier of the app) to the computer running Apple

Configurator.

•	 get-icon-layout: Responds with the layout of the home

screen on attached devices.

•	 get-unlock-token: Responds with the unlock token

of a device provided Apple Configurator has the

appropriate supervision identity.

•	 help: Displays how to use commands or a list of

commands.

•	 install-app: Push an app (e.g., via an ipa file) to

attached iOS and iPadOS devices.

•	 install-doc: Push a document to an attached iOS or

iPadOS device.

•	 install-profile: Installs profiles saved to a file path on

the Apple Configurator workstation onto attached

devices.

•	 list: Shows a list of all devices attached to the computer.

•	 list-backups: Provides a list of the backups stored

locally on the Apple Configurator computer where the

command is being run.

•	 pair: Sends the device pairing command to a device,

which requires someone unlock a device and click

Trust on the device so further automations can run.

Chapter 5 iOS Provisioning

295

•	 prepare: Run a prepare workflow, similar to what

we did previously in this chapter in the preparation

section.

•	 remove-app: Deletes an app from a device, based on

the bundle identifier.

•	 remove-profile: Deletes a profile from a device, based

on the profile identifier.

•	 remove-tags: Deletes any tags that were applied to a

device.

•	 rename: Configures the name on attached devices.

•	 restart: Restarts any attached and supervised devices.

•	 restore: Wipes the device and installs the latest

available operating system (will cache the ipsw file if it’s

not already cached).

•	 restore-backup: Restore a backup to an iOS device.

•	 revive: If a device is in recovery mode, attempts to

remove that setting from the device so it works again as

normal (if this fails, the device may need to be wiped to

do so).

•	 set-backup-password: Configures backup password

settings on attached devices.

•	 set-icon-layout: Configures the home screen – for more

on how to send data to the command look at the output

of get-icon-layout.

•	 set-wallpaper: Configures background images on

supervised iOS and iPadOS devices that are attached.

Chapter 5 iOS Provisioning

296

•	 shut-down: Turns off any supervised devices that are

attached.

•	 syslog: Displays the syslog of the device in Terminal.

•	 unpair: Disables the pairing for attached devices,

making it impossible to run the rest of the commands

in this list.

•	 version: Outputs with the version of the cfgutil

command (e.g., 2.9).

These are mostly features available in the graphical interface of Apple

Configurator, many we’ve shown throughout this chapter. Let’s start by

listing devices currently attached to the Configurator workstation. First

we’ll open the Terminal app and then we’ll run the cfgutil command from

within the Apple Configurator app bundle. Showing verbs is done using

the list verb, as follows:

/Applications/Apple\ Configurator\ 2.app/Contents/MacOS/cfgutil

list

One of the most important aspects of automating Apple Configurator

is to be able to run a script when a device is plugged into the Apple

Configurator workstation. This is done using the exec verb along with

either a -a or a -b option, which will run the script you provide either when

a device is connected (-a) or when the device is disconnected (-b). In the

following example, we will run a simple cfgutil command followed by the

exec verb and then a -a so that the connected.sh script will be run when

devices are connected to the computer running as the Apple Configurator

workstation:

/Applications/Apple\ Configurator\ 2.app/Contents/MacOS/cfgutil

exec -a connected.sh

Chapter 5 iOS Provisioning

297

The results from the above command would simply be the output

of the connected.sh script, which is a custom script that shows all

devices connected to the instance. We won’t spend the rest of the book

going through all of the verbs available here as there are other tools to

be covered, but suffice it to say that you can script most anything you

can do in Apple Configurator 2. Next, let’s move on to alternatives that

provide even more techniques, using open source tools for scripting iOS

management.

�libimobiledevice

Xcode, Apple Configurator, and other tools can be used to view logs on

iOS devices and automate actions as we’ve shown throughout this chapter.

One of those other tools is libimobiledevice. It’s usually a good idea to

install libimobiledevice using homebrew, a popular package management

tool. Homebrew makes installers of potentially otherwise difficult open

source tools simpler by scripting the installation of the tool and any

required dependencies that can be a little annoying when compiling

and working with the tool manually. To install homebrew if you haven’t

already, run the following command from the Terminal application:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/master/install)"

Once run, follow the prompts to complete the installation. Once

homebrew is installed, run the following brew command to download the

required components and then libimobiledevice:

brew install -v --devel --fresh automake autoconf libtool wget

libimobiledevice

Then run ideviceinstaller:

brew install -v --HEAD --fresh --build-from-source

ideviceinstaller

Chapter 5 iOS Provisioning

298

Basic libimobiledevice Options

Once these are installed, you can plug in a paired device, unlock it, and

use the following command to view the logs on the screen: idevicesyslog.

This is akin to running a tail against the device. Again, the device must

be paired. You can use the command line (e.g., if you’re running this

on Linux) to view the logs, but if you’re not paired, you’ll need to use

idevicepair to pair your device, followed by the pair verb (which is very

different from the pear verb):

idevicepair pair

The screen will then show that the device is paired. You can also unpair

using the unpair verb:

idevicepair unpair

When pairing and unpairing, you should see the appropriate entries in

/var/db/lockdown. The final option I’m going to cover in this article is the

date (very useful when scripting unit tests using this suite. To obtain this,

use the idevicedate command, no operators or verbs required:

idevicedate

You can also use a number of other commands that come bundled

with the tool.

Additional Commands

The first command we’ll use is idevicedate, which simply returns with the

date and time stamp currently on the device: /usr/local/bin/idevicedate.

The response would simply include the date. Next, let’s check the apps

installed on a device. We can do this with the ideviceinstaller command

(also part of the ilibmobiledevice suite of tools). Here, we’ll use the -l

option to just list what’s installed:

/usr/local/bin/ideviceinstaller -l

Chapter 5 iOS Provisioning

299

The output would show the app, along with the version of the app at

rest on the device:

com.apple.Pages - Pages 1716

To uninstall one of the listed apps, use the –uninstall

option:ideviceinstaller --uninstall com.protogeo.Moves. You can also

install apps provided you’ve cached the ipa file (e.g., via iTunes).

ideviceinstaller --install /Users/charlesedge/Music/iTunes/

iTunes\ Media/Mobile\ Applications/Box.ipa

When run against a device, you can then open apps provided the

AppleID owns the app. There’s also a command for ideviceprovision,

which can be used to view provisioning profiles, when run with the list

verb, which would appear as follows:

/usr/local/bin/ideviceprovision list

The ideviceprovision command can also form the basis of a tool like

wirelurker by allowing you to install a provisioning profile:

/usr/local/bin/ideviceprovision install angrybirds.

mobileprovision

You can also remove this, by feeding in the UUID of the provisioning

profile (obtained using the list verb but replacing MYUUID from below

codeblock):

/usr/local/bin/ideviceprovision remove MYUUID

Or you could so something more substantial, like put a device into

recovery mode, so it would need to be plugged into a computer running

iTunes and get a new ipsw installed, which is as simple as feeding the udid

into ideviceenterrecovery:

/usr/local/bin/ideviceenterrecovery

af36e5d7065d4ad666bf047b6e4de26dd144578c

Chapter 5 iOS Provisioning

300

Which brings up an interesting question, how would you get the udid?

You can use ideviceinfo to view the output, which shows more information

that I knew you could actually get about a device previously. You can also

grep for the UniqueDeviceID and then parse the output to return just the

value you’re looking for, making it easy to build much more complicated

workflows or output the command into other tools using APIs:

ideviceinfo | grep UniqueDeviceID | awk '{ print $2}'

This would just return with the UDID. Since that’s blank when there’s

no device connected, you can run a loop that waits a few seconds when

empty and then uses that UDID as a $1 in some script. Of course, it’s much

easier to use a command they built for this called idevice_id:

idevice_id -l

A number of commands make troubleshooting devices on networks or

code simpler, which we’ll look at in the next section.

Troubleshooting Commands

Next, you can use idevicediagnostics, which has debugging information

in the output, to obtain some information about the current state of the

device:

idevicediagnostics diagnostics All -u

af36e5d7065d4ad666bf047b6e4de26dd1445789

Or query the IOreg of the device to see what’s connected:

idevicediagnostics ioreg IODeviceTree -u

af36e5d7065d4ad666bf047b6e4de26dd1445789

Perform Device Actions

Chapter 5 iOS Provisioning

301

The output is way too long to paste in here, but interesting (kinda’).

The idevicediagnostics command can also do some basic tasks such as

restart, sleep and shutdown (each sent as a verb without a required UDID):

idevicediagnostics restart

The crash reports on a device (which include reports for uninstalled

apps, forensically providing a glimpse into what apps were removed from

a device and when) can all be extracted from a paired device as well, using

idevicecrashreport:

idevicecrashreport -e /test

You can then view the logs or grep through them for specific pieces of

information:cat /Test/Baseband/log-bb-2019-06-06-stats.plist. The last

command we’re going to cover in this article is idevicebackup2, used to

backup devices. Here, we’re going to feed it the udid which we’re lazily

using the idevice_id command from earlier in backticks to grab the udid

and backing up into that /test directory.idevicebackup2 -u `idevice_id -l`

backup /test. Here, we’ve backed up whatever device is plugged in, to the

/test directory. Subsequent backups will be incrementals.

As you can see in the above examples, ilibmobiledevice is capable

of managing a number of features on iOS devices. Many of these are

unavailable in other tools. It’s an important component of many large iOS

and iPadOS deployments with implications to how provisioning, device

replacement, device maintenance tasks, and of course troubleshooting

are handled throughout the entire lifecycle of a deployment. Next, we’ll

look at one of the more recent entrants into the iOS and iPadOS device

management world, another open source tool called AEiOS.

Chapter 5 iOS Provisioning

302

�AEiOS
AEiOS is a python library that uses the cfgutil command line tool installed

as a part of the Apple Configurator 2 Command Line Tools. This makes

installing Apple Configurator 2 and the Command Line Tools that we

covered earlier in this chapter a requirement before getting started with

AEiOS. What AEiOS adds to that mix is the ability to string together a

workflow that can be saved in a configuration and then called on a Mac

to check devices out or provision them, without having to teach a support

representative (or librarian, nurse, etc.) how to maintain and start an

instance of Apple Configurator.

This also cuts down on human error that can easily cause support

tickets to a service desk. The beauty of managing devices programmatically

is that you have a certain level of… well, certainty into the outcome of the

processes you put into place.

To get started with AEiOS, first let’s install the Apple Configurator

Command Line tools, covered earlier in this chapter. Then, download

AEiOS from https://github.com/univ-of-utah-marriott-library-

apple/aeios/releases (it downloads as a .dmg file). Once downloaded,

extract the .dmg file and run the installer. The aeiosutil python script is

the primary way you interface with the tool. This is installed in /usr/local/

bin/ and the python scripts that aeiosutil call are installed in the /Library/

Python/2.7/site-packages/aeios directory.

The aeiosutil command is fairly straightforward to use, providing

a simple wrapper to the standard Apple Configurator command line

options. To see the help screen for instructions on using aeiosutil, run the

command followed by the --help option, as follows:

/usr/local/bin/aeiosutil --help

We covered setting up a supervision identity in Apple Configurator

earlier. Many of the workflows for aeios will also require you to use

a supervision identity. To import unencrypted supervision identity

Chapter 5 iOS Provisioning

https://github.com/univ-of-utah-marriott-library-apple/aeios/releases
https://github.com/univ-of-utah-marriott-library-apple/aeios/releases

303

certificates, use the add verb, followed by the identity option and then the

identity. Also provide the required certificates using --certs followed by

the path to your certificates directory. In the following command, we’ll do

that, using the /Users/cedge/Documents/aeioscerts directory as where to

import those certificates from

/usr/local/bin/aeiosutil add identity --certs /Users/cedge/

Documents/aeioscerts

A common task for multiuser devices is to add a background image. To

do so with aeiosutil, run the add verb again, followed by image and then

--background, as the type of background to add. We’ll store that in our

home directory as well, as follows:

/usr/local/bin/aeiosutil add image --background /Users/cedge/

Documents/aeiosimages/background.png

Other image options include the alert image, the lock image, which are

--alert and –lock, respectively. The devices we’re setting up will also need

to access a standard Wi-Fi network. To add a Wi-Fi profile, first create the

.mobileconfig file (e.g., using Apple Configurator). Then use the add verb,

followed by the Wi-Fi option and then the path to the mobileconfig file, as

you can see below:

/usr/local/bin/aeiosutil add wifi /Users/cedge/Documents/

aeiosprofiles/mathdept.mobileconfig

Apps that Apple Configurator can access can be installed as a part of

the running workflow, based on name. Simply use the add verb, followed

by app and then the name of the app (as it appears in Apple Configurator).

For example, let’s tell the device to install the most important app ever

published to the app store: Sodoku:

/usr/local/bin/aeiosutil add app "Sodoku"

Chapter 5 iOS Provisioning

304

There are also settings for how aeiosutil behaves. Let’s say you want

the workflow to run until it’s been inactive for an hour. Use the configure

verb, followed by the idle option and then a number of seconds before the

process terminates:

/usr/local/bin/aeiosutil configure idle 3600

To then take all of these configurations that were created, and start

aeiosutil waiting for devices, simply call the command followed by the

start verb:

/usr/local/bin/aeiosutil start

You can also remove the settings that we added in the above examples

using the remove verb. You can also remove that profile, using

/usr/local/bin/aeiosutil remove identity

/usr/local/bin/aeiosutil remove wifi

/usr/local/bin/aeiosutil remove app "Soduku"

/usr/local/bin/aeiosutil remove image

Slack is a popular messaging tool used in IT departments. One really

cool feature of aeios that you might want to take use of is the ability to post

to Slack, with certain changes. This is done by sending a webhook to a

Slack listener. To set up a webhook for your slack instance, see https://

api.slack.com/incoming-webhooks. As you can see, you can post to that

webhook manually by sending a post to the endpoint you set up using the

steps in the Slack API. Let’s say that endpoint was https://hooks.slack.

com/services/ABC123/123456789. Then the POST would look like this:

POST

https://hooks.slack.com/services/ABC123/123456789

Content-type: application/json

{

 "text": "There’s a new app in aeios"

}

Chapter 5 iOS Provisioning

https://api.slack.com/incoming-webhooks
https://api.slack.com/incoming-webhooks
https://hooks.slack.com/services/ABC123/123456789
https://hooks.slack.com/services/ABC123/123456789

305

The above post is sent by aeios. The aeios tools wrap alerts into this

type of framework and can configure the sender automatically using the

configure verb followed by slack as the service to configure and then the

url to the endpoint, followed by a channel name (which in this case is

simply #helpdesk). It can be configured via:

aeiosutil configure slack "https:// https://hooks.slack.com/

services/ABC123/123456789" "#helpdesk"

Once run, you’ll see an update in the indicated Slack channel when

the workflow is run. As we’ve shown throughout the previous few sections,

there are a number of automation frameworks that can help you to

manage iOS and iPadOS devices en masse. A companion service that most

organizations with more than a dozen or so devices will likely take a lot of

value in is caching, which allows devices on a network to download assets

from other devices rather than relying on a connection to Apple, which

we’ll cover in the next section.

�Caching Services
The Caching Service can be run on a Mac and caches content from Apple.

The Caching service provides (through a local cache) updates to iOS,

iPadOS, Mac, tvOS, and the “content” destined for those devices and

therefore cuts down your Internet data usage and accelerates downloads

on the operating system and other Apple-provided tools dramatically. In

this section, we’ll look at how to configure this critical system. First, let’s

look at what type of data is cached so we can make sure a Caching server

(or a few of them) makes sense for your organization.

Chapter 5 iOS Provisioning

306

�What’s Cached?
The Caching service was moved out of macOS Server and into the

client macOS in High Sierra where it remains as of 10.15. This means

administrators no longer need to run the Server app on caching servers.

Given the fact that the Caching service only stores volatile data easily

recreated by caching updates again, there’s no need to back the service up,

and it doesn’t interact with users or groups.

The type of content cached includes, but is not limited to the following:

•	 App Store apps for iOS, iPadOS, macOS, and tvOS,

including on-demand resources for those apps and

app updates

•	 Apple Books content for iOS, iPadOS, and macOS

•	 Apple Configurator content (e.g., ipsw updates)

•	 Downloads in the GarageBand app

•	 iCloud photos and documents on iOS and macOS

•	 iTunes content for all supported platforms

•	 iTunes U course materials and instructor materials,

including any audio, video, and books provided as a

part of the course

•	 Language dictionaries

•	 Legacy macOS printer drivers

•	 Over-the-air iOS, iPadOS, macOS, and tvOS software

updates

•	 Siri voices

Chapter 5 iOS Provisioning

307

�Caching Service Configuration
And the setup of the Caching service has never been easier. The Caching

Service requires you to install no third-party or additional components. To

do enable caching, first open System Preferences and click on the Sharing

System Preferences pane and then click on the checkbox for Content

Caching to start the service, as you can see in Figure 5-30.

At the Content Caching panel, the service will say “Content Caching:

On” once it’s running. Here, you can disable the “Cache iCloud content”

option, which will disable the caching of user data supplied for iCloud

(everything in here is encrypted, by the way). You can also choose to share

Figure 5-30.  The Sharing System Preference Pane

Chapter 5 iOS Provisioning

308

the Internet connection, which will create a wireless network that iOS

devices can join to pull content.

Click Options. Here, you can see how much storage is being used and

limit the amount used (Figure 5-31). This can be changed here or through

/Library/Preferences/com.apple.AssetCache.plist. Digging into other

options, it’s worth noting that nothing was removed from the time that the

Caching Service was migrated from macOS Server to macOS. This means

that all those settings that you used to see in the GUI are still there, you

just access them via the command line, by sending defaults commands.

For example, we can write a limit on the amount of data that a server can

Figure 5-31.  Configure Cache Size

Chapter 5 iOS Provisioning

309

cache using a standard defaults command, but writing an integer into

CacheLimit of com.apple.AssetCache.plist, as follows:

defaults write /Library/Preferences/com.apple.AssetCache.plist

CacheLimit -int 20000000000

The Caching Server has a status verb, so you can see a number of

details about how it’s functioning:

AssetCacheManagerUtil status

Which returns something similar to the following:

2019-09-11 11:49:37.427 AssetCacheManagerUtil[23957:564981]

Built-in caching server status: {

Activated = 1;

Active = 1;

CacheDetails = {

iCloud = 4958643;

"iOS Software" = 936182434;};

CacheFree = 472585174016;

CacheLimit = 0;

CacheStatus = OK;

CacheUsed = 941141077;

Parents = ();

Peers = ();

PersonalCacheFree = 472585174016;

PersonalCacheLimit = 0;

PersonalCacheUsed = 4958643;

Port = 56452;

PrivateAddresses = ("192.168.104.196");

PublicAddress = "38.126.164.226";

RegistrationStatus = 1;

RestrictedMedia = 0;

Chapter 5 iOS Provisioning

310

ServerGUID = "EB531594-B51E-4F6A-80B9-35081B924629";

StartupStatus = OK;

TotalBytesDropped = 0;

TotalBytesImported = 4958643;

TotalBytesReturnedToChildren = 0;

TotalBytesReturnedToClients = 166627405;

TotalBytesReturnedToPeers = 0;

TotalBytesStoredFromOrigin = 166627405;

TotalBytesStoredFromParents = 0;

TotalBytesStoredFromPeers = 0;

You can also use AssetCacheManagerUtil to manage tasks previously

built into the Server app. To see the available options, simply run the

command:

/usr/bin/AssetCacheManagerUtil

One of the first tasks most administrators would need to do would be

to enable the server:

/usr/bin/AssetCacheManagerUtil activate

To disable the server, use the deactivate verb, which disassociates the

service from the main Apple update services:

/usr/bin/AssetCacheManagerUtil deactivate

To check if the server can be activated, use the canActivate verb, which

performs an activation dry run:

/usr/bin/AssetCacheManagerUtil canActivate

To flush the cache of assets on the server, thus manually cleaning out

any old updates and freeing up some valuable disk space on the server:

/usr/bin/AssetCacheManagerUtil flushCache

Chapter 5 iOS Provisioning

311

To reload settings, which would be necessary if making any changes to

the property lists manually:

/usr/bin/AssetCacheManagerUtil reloadSettings

To move the database manually, which then relinks all assets (e.g., if

you’re moving the database off of an internal drive and onto some kind

of Direct Attached Storage, or DAS for short), use the moveCacheTo verb

followed by the target path (which is quoted in the following example

command):

/usr/bin/AssetCacheManagerUtil moveCacheTo "/Volumes/SONY/

Library/Application Support/Apple/AssetCache/Data"

Finally, if you’d like to see the caching server your client system is

using, run the AssetCacheLocatorUtil – the information following that is

simply to parse out all the extraneous information you likely don’t need:

/usr/bin/AssetCacheLocatorUtil 2>&1 | grep guid | awk

'{print$4}' | sed 's/^\(.∗\):.∗$/\1/' | uniq

Nearly every organization can benefit from a caching server. As is

hopefully obvious in the previously mentioned commands, it’s fairly

straightforward to script a caching server to provide assets to your Apple

devices, and it’s much more efficient on a number of levels from running

a standard caching proxy. Now that we’ve covered a lot of different

automation and provisioning options for iOS and iPadOS devices, let’s step

through a less mature but in many ways more complicated setup process:

that of the Mac.

Chapter 5 iOS Provisioning

312

�Summary
Imaging is dead. Then it isn’t. Other words, like restoring devices,

provisioning, and reinstalling operating systems are all very much alive.

They’re just different than they were for the past 20 years, especially for iOS.

As we’ve shown in this chapter, you can plug an iOS device into

Apple Configurator (or one of the other tools designed for more specific

use cases) and provision wireless networking, enrollment, and for the

most part get a device configured and ready to put into the hands of a

coworker without ever touching it. Or even better, ship the device directly

to them, so they can get that new Apple device smell (and sticker) and feel

empowered, not conquered by their IT department. The way it should be.

From a high level, Mac and iOS devices appear to provision similarly.

But under the hood, they are quite a bit different. For all the additional

automation features available for the Mac, the devices are only easier to

configure once the startup screens have been cleared. Given all these

differences, we’ll cover the Mac further next, in Chapter 6.

Chapter 5 iOS Provisioning

313© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_6

CHAPTER 6

Mac Provisioning
Imaging. We used to say that we imaged computers. But then came Apple

File System (APFS) and the need for Macs to have specific firmware

installed to support APFS’s capabilities. These days, preparing a device

to go into the hands of an end user is more about provisioning the Mac

for use by installing an OS and then configuring it for a person’s use than

it is about creating a disk image and applying it to a Mac to prepare it for

someone to use.

When we say “imaging” a Mac, we typically think of erasing a

device and putting new bits on the device so the device has everything

a user needs to get their work done. At first, this was done by creating a

“monolithic” image, where the disk image was taken from a Mac which

had been set up with everything needed. That monolithic image was then

applied to other Macs to makes them exact clones of that first Mac. But that

lacked flexibility, so we moved from monolithic imaging to package-based

imaging, where we installed an image just containing the OS and then

applied a series of installer packages to set up the Mac. Then we moved

from package-based imaging to restoring a “thin” image, or one with just

the operating system and an agent, where the agent would set up the Mac

using settings and software pulled down from a management server. Then

Apple gave us the Device Enrollment Program (or DEP for short) and

we skipped doing any predelivery setup work altogether and started just

providing a fresh-out-of-the-box Mac to our non-IT colleagues. Once they

started the Mac for the first time, Apple’s Setup Assistant and the follow-up

314

configuration workflows enabled our colleagues to set up their own Macs

without anyone else’s assistance. This saves many large organizations the

$20–$40 per device cost that they used to pay to have Macs set up prior

to delivering them. DEP automatically enrolls the device into MDM, puts

apps on the device, and puts the agent on the device through MDM. There

are less options, but the process has never been so streamlined with such a

small amount of work.

Shipping devices directly to a user makes them feel like they’re getting

the new device they were always getting, but once administrators had

everything necessary to provision a device out of the box. However, with

the release and general adoption of Apple’s Apple File System (APFS)

filesystem, traditional imaging became much more difficult. In its place,

Apple has recommended installing the operating system and using MDM

profile, scripts, and installer packages to configure the operating system for

use. These changes introduced a learning curve for many Mac admins, but

ultimately this change is one for the better.

�macOS Startup Modifier Keys
To aid with provisioning and other functions, Apple has always allowed

you to boot a computer while holding down a given keystroke in order to

invoke a specific startup sequence. Those keystrokes, or Startup Modifiers,

include the following in macOS:

Alt or Option key Boots into the Startup Manager, which allows you to

select a wireless network and then choose which volume

you want to boot to.

C key Boots into volumes on a CD, DVD, or USB drive.

Command-Option-

P-R keys

Resets the parameter RAM (or PRAM for short).

(continued)

Chapter 6 Mac Provisioning

315

Command-R keys Boots into the macOS Recovery Mode, useful when doing

an Internet restore or using Disk Utility to repair a volume.

Command-Option-R keys Boots into Apple’s cloud-hosted. Recovery mode.

Command-S keys Boots into single-user mode.

Command-V keys Boots into verbose mode, so you see a log of everything

during the startup process.

D key Boots into diagnostics, used for checking the hardware

of your system. Depending on Mac model, this will load

either Apple Hardware Test (for Mac models introduced

before June 2013) or Apple Diagnostics (for Mac models

introduced in June 2013 or later).

Option-D keys Boots into Apple’s cloud-hosted. Diagnostics.

Eject key, F12 key, or

mouse/trackpad button

Ejects any removable media inserted into the Mac.

N key On NetBoot-capable Macs, boots to a NetBoot volume. (Macs

equipped with T2 chips are not capable of NetBooting.)

Option-N keys On NetBoot-capable Macs, boots to the default NetBoot

volume on a particular network.

Shift key Boots into Safe Boot mode. Safe Boot verifies the startup

disk and repairs directory issues, disables user fonts,

and clears the cache for them, only loads required kernel

extensions and clears the cache for them, clears system

caches, and disables startup and login items.

T key Boots into Target Disk Mode (TDM). TDM sets the system

as a disk which can be mounted on another system as an

external drive.

X key Boot to a macOS startup disk when otherwise booting to

a Windows partition or startup manager.

Chapter 6 Mac Provisioning

316

�macOS Provisioning with DEP
For Macs enrolled in Apple’s Device Enrollment program, Mac admins

can take advantage of automatic enrollment into an MDM to automate the

setup of Macs. The basic workflow looks like this:

	 1.	 Assign a Mac’s serial number to a particular MDM

server.

	 2.	 Install a fresh copy of macOS onto the Mac.

	 3.	 On boot, the Mac will be automatically enrolled

in the MDM server and Apple’s Setup Assistant

can be managed to set up the Mac with a desired

configuration.

	 4.	 If desired, the MDM can also install software and

profiles to further configure the Mac.

For the additional software and profile installation options, there

are several open source tools available to help automate the post-Setup

Assistant installation actions. Two well-known solutions are SplashBuddy

(Figure 6-1) and DEPNotify (Figure 6-2). Both of these tools provide a user-

facing interface that allows the new Mac’s user to see the following:

•	 The Mac is being set up.

•	 Provide status information about where the Mac is in

the setup process.

•	 Provide any additional information that the system

administrator may choose to provide as part of the

setup process.

Chapter 6 Mac Provisioning

317

The other important function provided by this tool is

that they prevent the user from making any changes

to the Mac before the setup workflow has completed

its task of setting up the Mac with its required set of

software and settings.

Figure 6-1.  SplashBuddy running an automated setup workflow

Chapter 6 Mac Provisioning

318

�SplashBuddy
Site: https://github.com/Shufflepuck/SplashBuddy

�DEPNotify
Site: https://gitlab.com/Mactroll/DEPNotify

�macOS Provisioning Without DEP
One of the limitations of DEP is that it is not currently available in

all nations. On iOS, one of the workarounds for this is using Apple

Configurator to manually add iOS devices to DEP, but no comparable

Figure 6-2.  DEPNotify running an automated setup workflow

Chapter 6 Mac Provisioning

https://github.com/Shufflepuck/SplashBuddy
https://gitlab.com/Mactroll/DEPNotify

319

solution exists for macOS as of the time this book is being written. While

it is eventually expected that macOS will be able to use Configurator

or a similar tool to manually add Macs to DEP, non-DEP provisioning

workflows are still needed for macOS.

One solution to this problem is a new tool called Mac Deploy Stick

(MDS). MDS makes it easy to wipe and reinstall a Mac quickly the same

way you can with Apple Configurator for iOS and iPadOS. The reason you

need a tool like Mac Deploy Stick is that Apple gives users the ability to

reinstall the operating system from the recovery partition, but that installer

has to get downloaded during a very manual process. MDS creates those

resources locally (e.g., on an USB stick or other external media) instead

and organizes them into workflows, which can be deployed more quickly –

and come with a simple setup so Macs can be set up faster. An optional

Arduino can become a Mac Deploy Stick Automation, which inserts

keystrokes during boot time so administrators don’t have to hold down

Command-R during the boot process (see more on Startup Modifier Keys

in the next section of this chapter).

�Installation
To get started, download MDS from http://twocanoes.com/products/

mac/mac-deploy-stick/. Then run the installer package. Once installed,

open the MDS app from your Applications directory, and provided it

opens, it’s time to create your first workflow.

�Create a Workflow
MDS calls a workflow a list of automations the computer will perform

during a setup. This includes an operating system installation, packages

to deploy to create a workflow, simply provide a description, optionally

provide a description of the workflow as well, and click OK.

Chapter 6 Mac Provisioning

http://twocanoes.com/products/mac/mac-deploy-stick/
http://twocanoes.com/products/mac/mac-deploy-stick/

320

At the macOS screen, click “Install macOS” and then choose the

installation media to generate the installer from (this will use installESD

inside that bundle). Optionally choose whether to erase the volume and

then if you want the volume renamed. Click OK to proceed.

Figure 6-3.  Entering name for MDS workflow

Chapter 6 Mac Provisioning

321

At the Resources screen, add the directory that contains scripts,

packages, and other resources to be deployed to the client. This is an

interesting approach and doesn’t provide for manually selecting what

order packages, apps, scripts, and policies get laid down on devices. I’ve

had hit-or-miss luck with doing so by numbering assets in those folders.

I recommend creating a directory for each type of asset in an MDS

directory for that workflow prior to doing this step. Once you’ve bundled

all of them up and selected the appropriate directory, click OK.

Figure 6-4.  Choosing macOS installer for MDS workflow

Chapter 6 Mac Provisioning

322

At the User Account screen, choose if you want to create a new admin

account when the system is deployed and any metadata around that

experience.

Figure 6-5.  Choosing resources for MDS workflow

Chapter 6 Mac Provisioning

323

At the Options screen, choose whether to automatically join a Wi-Fi

network, if the computer should be renamed based on serial number, if

SSH should be enabled, and if the setup assistant should be skipped. Once

all options have been configured as desired, click OK.

Figure 6-6.  Creating local admin user for MDS workflow

Chapter 6 Mac Provisioning

324

MDS has multiple hooks that make Munki easier to deploy on devices.

Click OK.

Figure 6-7.  Defining additional options for MDS workflow

Chapter 6 Mac Provisioning

325

At the Variables screen, provide variables you can then call in shell

scripts. These are similar to how we used to fill ARD fields (which is still an

option). Sending a $1 from a shell script into these provides a little more

flexibility around renaming scripts, binding operators, etc. Click OK.

Figure 6-8.  Configuring Munki options for MDS workflow

Chapter 6 Mac Provisioning

326

Figure 6-9.  Defining shell script variable options for MDS workflow

Chapter 6 Mac Provisioning

327

Once done, it’s time to run the workflow. To do so, boot a Mac into

recovery mode and then from Terminal, run the following command:

/Volumes/mdsresources/run

Figure 6-10.  MDS main configuration window

Chapter 6 Mac Provisioning

328

The configuration you created in the previous step will then be run.

Figure 6-11.  Launching the MDS workflow from the Recovery
environment

Chapter 6 Mac Provisioning

329

This will set up the Mac with the applications, tools, and settings

needed to operate properly at the company, school, or institution in

question.

There are a lot more workflows than just this one, so to learn more

about MDS, go to http://twocanoes.com/knowledge-base/mac-deploy-

stick-admin-guide/.

One of the important components of MacDeployStick is an open

source project known as Imagr, developed by Graham Gilbert. Imagr is

a community project that runs not only on macOS but on Linux as well.

While Imagr was originally developed for use with NetInstall and a web

server, MDS built on the existing Imagr project to provide MDS’s ability to

provision Macs.

Other open source provisioning tools are bootstrapper and installer.

Figure 6-12.  The MDS workflow automatically configuring the Mac

Chapter 6 Mac Provisioning

http://twocanoes.com/knowledge-base/mac-deploy-stick-admin-guide/
http://twocanoes.com/knowledge-base/mac-deploy-stick-admin-guide/

330

�Imagr
Site: https://github.com/grahamgilbert/imagr/

Purpose: Imaging and deployment for Mac systems

�Bootstrappr
Site: https://github.com/munki/bootstrappr

Purpose: A tool designed for use in Recovery to install a set of one or

more packages onto a target volume

�Installr
Site: https://github.com/munki/installr

Purpose: A tool designed for use in Recovery to do a “fresh” install of

macOS and additional packages

Other provisioning options include options for installing Microsoft

Windows on Macs.

�Boot Camp
Microsoft Windows can be deployed on a Mac using Boot Camp. Boot Camp

will require the system be rebooted between each operating system switch

and comes with a host of additional deployment considerations. Among the

deployment considerations are that the Mac doesn’t natively support PXE

booting and other traditional Windows mass deployment options.

�Winclone
A third-party deployment tool from Twocanoes Software, Winclone allows

creation of Windows images for deployment and also provides the ability to

deploy a Boot Camp Windows install using a standard Mac installer package.

Chapter 6 Mac Provisioning

https://github.com/grahamgilbert/imagr/
https://github.com/munki/bootstrappr
https://github.com/munki/installr

331

�Upgrades and Installations
You install or upgrade the macOS operating system using an installer

provided by Apple. This used to be an installer which required an Apple ID

to access, but beginning with macOS Sierra, Apple made operating system

installer free for all Mac users and even began pushing the installer for

new OS versions shortly after the new OS’s release date. The installer itself

appears as an application normally stored in the Applications directory.

Running the OS installer on an individual Mac requires administrator

rights, but otherwise is an easy experience where you double-click to

launch the installer application and follow the prompts.

Automating OS installations is going to eventually be about as easy on

macOS as it is in iOS, but we’re not there yet. At present, the automation

tool provided by Apple these days is the startosinstall command.

This tool first shipped with OS X El Capitan and so should work with that

Figure 6-13.  The macOS Catalina installer application in the
Applications directory

Chapter 6 Mac Provisioning

332

operating system or any that have been distributed since then. To use

the startosinstall command, you will need to open Terminal and run

commands similar to the one shown below:

sudo "/Applications/Install macOS Catalina.app/Contents/

Resources/startosinstall" --applicationpath "/Applications/

Install macOS Catalina.app" --agreetolicense --nointeraction

--volume "/Volumes/Macintosh HD"

In the above command, we’ve already loaded the “Install macOS

Catalina.app” on a machine. While you’d guess that it would find the

application path based on its own surname, we went ahead and supplied

it as that seems to basically be a thing. Basically, --agreetolicense keeps

us from having to run some expect scripts to accept a license agreement,

--nointeraction suppresses as many of the screens as possible, and

--volume allows us to install to any volume we’d like. This isn’t fully

automated, but I have been able to layer in some more logic to quit apps

before the script fires and then expect out other items from the script to

automate a restart, watching for osinstallersetupd as a key.

The options available for startosinstall have varied depending on

the OS version, but here’s the list of options available in recent OS versions:

--license: prints the user license agreement only.

--agreetolicense: agree to the license you printed

with --license.

--rebootdelay: how long to delay the reboot at the

end of preparing. This delay is in seconds and has a

maximum of 300 (5 minutes).

--pidtosignal: Specify a PID to which to send

SIGUSR1 upon completion of the prepare phase.

To bypass “rebootdelay” send SIGUSR1 back to

startosinstall.

Chapter 6 Mac Provisioning

333

--installpackage: the path of a package (built with

productbuild(1)) to install after the OS installation

is complete; this option can be specified multiple

times.

--eraseinstall: (Requires APFS) Erase all volumes

and install to a new one. Optionally specify the

name of the new volume with --newvolumename.

--newvolumename: the name of the volume to be

created with --eraseinstall.

--preservecontainer: preserves other volumes in

your APFS container when using --eraseinstall.

--usage: provides the list of startosinstall options.

--nointeraction: suppresses a number of screens

where a human would be asked to make choices.

--volume: allows startosinstall to run the installation

process on a drive other than the boot drive.

One particularly useful function is the --installpackage function,

which allows one or more packages stored on the Mac in question to be

installed following the upgrade. Something to be aware of is that if you

want to add any additional packages, they must all be signed or unsigned

distribution-style flat packages. This is a requirement that Apple first

introduced for the OS X Yosemite installer, and it still applies to the latest

versions of macOS.

You can convert a nondistribution package to be a distribution-style

flat package by running the command below:

productbuild –package /path/to/original.pkg /path/to/

distribution.pkg

Chapter 6 Mac Provisioning

334

To run an automated upgrade to macOS Catalina, where two

distribution-style flat packages stored in /Users/Shared are installed

following the upgrade, please run the command shown below with root

privileges:

"/Applications/Install macOS Catalina.app/Contents/Resources/

startosinstall" --applicationpath "/Applications/Install macOS

Catalina.app" --agreetolicense --installpackage /Users/Shared/

installer_one.pkg --installpackage /Users/Shared/installer_two.

pkg --nointeraction

This is all a bit bulkier than just using something like

createOSXinstallPkg, a tool available for building OS installers which was

compatible with Mac OS X Lion through macOS Sierra, but it’s important

to mention that there are a number of system components that are allowed

for in SIP that use osinstallersetupd and so this blessed mechanism

is likely the future until you can trigger an OS upgrade (and update I

suppose) using an MDM command.

�Reprovisioning a Mac
Most organizations will take an iOS device out of service, erase the device,

and hand it to the next user. Administrators of Macs have long wanted a

similar feature. Enter Erase Install

https://scriptingosx.com/2018/10/eraseinstall-application/

https://books.apple.com/us/book/macos-installation/id1392252312

The Erase Install application does the following:

	 1.	 Locates an existing macOS installer application on

the Mac being reprovisioned

Chapter 6 Mac Provisioning

https://scriptingosx.com/2018/10/eraseinstall-application/
https://books.apple.com/us/book/macos-installation/id1392252312

335

Figure 6-14.  Running the Erase & Install app

	 2.	 Verifies that the conditions are right for a successful

macOS installation:

	 a.	 macOS Installer app is available.

	 b.	 Active Internet connection is available.

	 c.	 Find My Mac is disabled.

Chapter 6 Mac Provisioning

336

	 3.	 Uses startosinstall’s --eraseinstall function to

wipe the drive and install a fresh copy of the OS.

Figure 6-15.  Verifying correct conditions for OS install

Chapter 6 Mac Provisioning

337

Figure 6-16.  Preparing the OS install

Chapter 6 Mac Provisioning

338

Figure 6-17.  Wiping the drive and installing a fresh copy of the OS

Chapter 6 Mac Provisioning

339

Once the Mac is back to having only an unconfigured copy of macOS

installed, it can now be set up for use with whatever provisioning tool

works best for the Mac admin in question.

�Virtual Machines
Virtual machines running macOS as their OS can be provisioned for

deployment using the same tools used for physical Mac hardware. The

main limitations stem from virtual machines being software constructs

and not actual hardware. Here are some of the major ones:

•	 Anything involving having an Apple-registered

hardware serial number/sending hardware serial

number back to Apple – This includes iCloud services

Figure 6-18.  Mac with unconfigured copy of macOS

Chapter 6 Mac Provisioning

340

like Find My Mac and Messages. It also applies to

getting hardware-specific OS installers via Recovery HD.

•	 Depending on the virtual machine software being

used, it may be possible to get around some of the

limitations by assigning an actual Mac’s model and

serial number to the virtual machine.

•	 Most things involving EFI – Functions like Apple

Internet Recovery or holding down the Option key to

get a list of bootable volumes will not work. However,

some things involving EFI work specifically because

VMware made them work. For example, both NetBoot

and FileVault 2 work fine in a VMware VM.

•	 Wireless connections – Virtual machines don’t have

a Wi-Fi card, though it may talk to a network via your

Mac’s Wi-Fi connection. You can test in a VM to make

sure that your Wi-Fi settings apply; you can’t test to

verify that they work.

There are a number of virtualization solutions available. The most

well-known ones are listed below:

�VMware Fusion
Site: www.vmware.com/products/fusion.html

�Parallels
Site: www.parallels.com/products/desktop/

Chapter 6 Mac Provisioning

http://www.vmware.com/products/fusion.html
http://www.parallels.com/products/desktop/

341

�VirtualBox
Site: www.virtualbox.org

�Summary
Imaging’s death has been widely reported, but workflows for restoring

devices, provisioning, and reinstalling operating systems are all very

much alive. With DEP, it’s now possible to provide a user-centric setup

experience for both macOS and iOS where it’s possible that IT’s only

involvement is making sure that the device was delivered to the right

person. On macOS in particular, tools like SplashBuddy and DEPNotify

allow IT to enable a great user experience by providing a guided setup

process for a Mac.

Meanwhile, for those companies, schools, or institutions that as

of yet can’t take advantage of DEP, tools like Mac Deploy Stick enable

automated provisioning workflows which demand the bare minimum of

IT intervention required.

In the end, Mac admins need to choose the setup and provisioning

workflows which work best for them, but wise use of these tools will help

conserve the most precious resource a Mac admin has: time.

Chapter 6 Mac Provisioning

http://www.virtualbox.org

343© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_7

CHAPTER 7

Endpoint Encryption
The data stored on your computer or mobile device is important to at least

one person, and that is the person using the device. Along with it being

important, there is always at least some data that you would prefer other

people not see. This data could include passwords, financial data, browser

history, or that text conversation between you and your significant other

which is really just for your eyes only. Encryption helps protect that data

from being accessed by others and Apple has invested considerable effort

to make sure that the encryption available to both iOS and macOS is not

only strong enough to fend off both casual interlopers and investigators

with the resources of nation states behind them.

�iOS Encryption Overview
Modern iOS devices which can use Touch ID or Face ID use a combination

of hardware encryption and filesystem encryption to protect data stored

on the device. The hardware encryption includes the Secure Enclave

coprocessor and a dedicated AES-256 cryptography engine which sits

between system memory and the flash storage used to store data.

The Secure Enclave is its own self-contained processor within an iOS

device. It runs its own OS, which is not directly accessible by either iOS or

any of the apps running on your iOS device. The Secure Enclave’s purpose

is to store 256-bit elliptic curve cryptographic private keys, which are used

by iOS and apps to encrypt and decrypt data stored on the iOS device. It’s

344

noteworthy that neither iOS nor the apps ever get to see these private keys.

Instead, the Secure Enclave is asked to encrypt and decrypt data for the

operating system and apps. The private keys stored in the Secure Enclave

are also unique to the device and never leave the Secure Enclave. This

makes data stored on a particular iOS device incredibly difficult to decrypt

on any other device because the private keys used to encrypt and decrypt

data essentially work unseen and are forever locked to that one iOS device.

The Secure Enclave is also responsible for processing the fingerprint and

face data which comes in from the Touch ID and Face ID sensors and

determining if there’s a match.

This alone would help secure an iOS device, but Apple also leverages

filesystem encryption technology known as Data Protection to further secure

data. Data Protection constructs and manages a hierarchy of cryptographic

keys and controls data by assigning each file on the iOS device’s flash storage

to a particular class. Access to that data is then determined by whether that

class’s keys have been unlocked. With Apple’s introduction of Apple File

System (APFS), cryptographic keys can be assigned on a per-extent basis.

Since files can have multiple extents, this means that portions of a file can

now be assigned different cryptographic keys.

How it all works is that every time a new file is created, Data Protection

creates a new cryptographic key for the file. This key is given to the AES-

256 cryptography engine, which uses that key to encrypt the file as its

being written to the flash storage used to store data. The per-file key is then

wrapped with a class key, depending on the circumstances under which the

file should be accessible, and the wrapped per-file encryption key is stored

in the file’s metadata. This metadata is itself encrypted using a different file

system key, which is used to protect the metadata of each file. This file system

key is also used in part to help generate the class keys and per-file keys.

The combination of keys means there are a minimum of three different

filesystem-level cryptographic keys which are protecting a particular file:

•	 File system key – Protects the file metadata

Chapter 7 Endpoint Encryption

345

•	 Class key – Governs file accessibility

•	 Per-file key – Protects the file

Combine that with the fact that all the keys are being generated by

the Secure Enclave, which manages all of these keys but which isn’t even

directly accessible by either the hardware doing the encrypting or the files

being encrypted, and it becomes clear that Apple has done its legwork on

protecting user data.

So how do you enable this protection? Enable a passcode. Data

Protection is automatically enabled when a passcode is set up for an iOS

device. As of iOS 13, iOS supports the following kinds of passcodes:

•	 Four digit

•	 Six digit

•	 Alphanumeric passcodes of arbitrary length

In addition to unlocking the device, the passcode provides entropy for

certain cryptographic keys, including the file system key. Entrophy is another

way of saying “randomness,” which means that the file system key is always

different every time it is generated. The reason why this is important is that

the hardware encryption fundamentals can’t change, they’re hardwired

into the iOS device. By ensuring that the file system key can and will change

every time the device is wiped and restored, Apple helps ensure that the

encryption keys used on the device are also completely unique to the device.

The file system key is created when an iOS device is wiped and set

up as new. Once the file system key is generated, it is stored in what’s

known as Effaceable Storage. Effaceable Storage is a dedicated area of

flash memory used to store cryptographic keys and it is different from the

regular flash storage in two respects:

•	 It does not use wear leveling.

•	 It can be erased completely and leave no trace of

original data.

Chapter 7 Endpoint Encryption

346

Flash storage has a finite number of times it can be written to. Wear

leveling is used to prolong the life of flash storage by spreading out writes

evenly across the flash storage. While this helps prolong the life of the flash

storage in question, it also makes it harder to securely erase data because

traces of old data may be found on random blocks long after the original

data was erased.

In contrast, Effaceable Storage’s flash storage can be completely erased

and no data can be recovered from it. Apple leverages this capability with

the Erase All Content and Settings option in iOS’s Settings to destroy all of

the cryptographic keys stored in Effaceable Storage. This key destruction

instantly makes all of the user data files stored on the iOS device

inaccessible by making it impossible to unlock the encryption on the files.

The files themselves are still there, but there’s now no way to access their

contents. As an added benefit, wiping out the keys in Effaceable Storage

instead of erasing the files themselves saves wear on the user data’s flash

storage and helps it to last longer.

What if a passcode isn’t enabled? All of the encryption is still there.

However, when the iOS device starts up, the needed encryption keys to

unlock the encryption are automatically provided by the Secure Enclave.

This is why turning on Data Protection is instant when the passcode option

is enabled: The only change is for the Secure Enclave to stop automatically

providing the unlock keys.

�Enabling Encryption on iOS
To enforce encryption on multiple iOS devices, the simplest method is to

use configuration profiles deployed through your MDM server solution.

You can use a management server such as Apple’s Profile Manager to

create the configuration profile. The management server itself does not

necessarily need to be actively managing devices.

Chapter 7 Endpoint Encryption

347

	 1.	 Open Profile Manager in a web browser. Log in

using administrator credentials for the server.

	 2.	 Click Device Groups under Library and click the +

button (plus) to create a new group called “Enable

Passcode” (Figure 7-1).

	 3.	 Click the Settings tab in the right pane. Click the

Edit button.

	 4.	 Complete the information in the General payload

of the new configuration profile. Set the Security

drop-down menu to Never to prevent removal of

the profile.

Figure 7-1.  Creating an Enable Passcode Device Group in Profile
Manager

Chapter 7 Endpoint Encryption

348

	 5.	 Scroll through the list of payloads to the left and

choose Passcode in the macOS and IOS section of

payloads.

	 6.	 Configure passcode settings as desired.

Figure 7-2.  Creating the Enable Passcode profile’s General payload

Chapter 7 Endpoint Encryption

349

	 7.	 Click the OK button when done configuring the

profile. Click the Save button to save the new Enable

Passcode configuration profile.

	 8.	 To test the new configuration profile, click the

Download button to download a .mobileconfig file.

	 9.	 Email or download this .mobileconfig file to a test

iOS device and double-tap it to install.

	 10.	 Verify that you are now being asked to set a

passcode with the desired settings.

After successful testing, scope the profile to individual computers or

computer groups in your MDM and use its push capabilities to deploy the

profile to the client machines.

Figure 7-3.  Creating the Enable Passcode profile’s Passcode payload

Chapter 7 Endpoint Encryption

350

�macOS Encryption Overview
For macOS, Apple went in a different direction with encryption. In

part, this is because Macs only recently starting shipping with Secure

Enclave processors and could leverage the same hardware support for

encryption that iOS has had for a while. Instead, Apple needed to handle

all encryption using software. Another difference between macOS and iOS

encryption is that macOS’s encryption needs to be able to handle multiple

cryptographic users to log in while iOS only needs to accommodate for one

cryptographic user using one passcode to unlock.

On modern Macs with Apple File System (APFS), the system relies on

a series of cryptographic keys granting access to two other layers of keys.

These keys are the following:

•	 Derived encryption key

•	 key encryption key

•	 volume encryption key

To examine them from the filesystem level upward, let’s first look at

the Volume Encryption Key (VEK). This is the key that is interacting with

the APFS volume that the FileVault 2 encryption process has created. All

cryptographic operations on an encrypted APFS volume are unique to that

volume because a different volume encryption key is randomly generated

for each volume. This is the key that is actually unlocking the encrypted

volume and it’s also the key that’s deleted when a wipe command is sent to

a FileVault 2 encrypted Mac.

On the next level up, there’s the key encryption key (KEK) which is

otherwise known as a Secure Token. This key is generated when FileVault

2 encryption is initialized on a particular volume. It is used to unlock

the volume encryption key one layer down and acts as the middleman

between the volume encryption key and the derived keys. This middle

layer allows the derived keys to change without affecting the derived keys

Chapter 7 Endpoint Encryption

351

ability to unlock the encrypted volume. One thing that’s important to know

on APFS volumes is that Apple has set up the KEK / Secure Token so that

user accounts need to be enabled for Secure Token access and that it’s

possible to have user accounts which are not Secure Token enabled. If an

account is not Secure Token enabled, it’s not possible for that account to

unlock FileVault’s encryption. Secure Token has caused a lot of confusion

for Mac admins, so there will be further discussion of it later in this chapter.

On the top layer, there’s the derived encryption keys. These keys begin

the chain reaction of unlocking the other keys below it, resulting in the

unlocking or decryption of the encrypted volume. Any derived key can be

independently changed without affecting its ability to unlock the other two

layers of keys.

Any given APFS volume must be able to support multiple cryptographic

users, each with their own derived key which is able to unlock the

encryption. This is important because it means that there can be multiple

ways to access the encrypted volume. In the case of FileVault 2’s encryption,

it means that multiple-user accounts can be enabled to unlock an

encrypted Mac at the pre-boot login screen. Derived keys are also used for

the FileVault 2 recovery keys, which we’ll be covering in more detail later.

For those Macs which have the Secure Enclave processor, how does the

Secure Enclave fit into this model? Just like it does on iOS. The overall macOS

encryption model remains the same, but the Secure Enclave-equipped Macs

are always encrypted. Period. Even if FileVault is not enabled.

How this works is that the solid-state drives which ship with these

Macs have built-in hardware encryption support and the Secure Enclave

processor stores the keys needed to unlock the encrypted storage. If FileVault

isn’t turned on, the Secure Enclave automatically provides the unlock keys

when the Mac boots. Once FileVault is turned on, the Secure Enclave stops

providing the unlock keys on boot and now requires authentication by a

Secure Token-enabled account in order to unlock the encryption. This

allows FileVault to be instantly turned on and off, just as you can instantly

turn on and off encryption on iOS using the passcode settings.

Chapter 7 Endpoint Encryption

352

On Macs that don’t have a Secure Enclave processor, the lack of

hardware support means that the APFS volume must be encrypted using

the filesystem’s native encryption capabilities. This is usually a slower

process than “instant,” with time to encrypt varying depending on the

speed of the storage in use, size of the storage volume, and speed of the

processor.

�Secure Token
As mentioned previously, Secure Token is the KEK which acts as the

middleman between the derived encryption keys and the encrypted

volume’s VEK. The KEK has been around as long as FileVault 2 has, but

access to it on an APFS volume requires that an account be enabled for it.

Moreover, an account can only be enabled for Secure Token by another

account with Secure Token.

There is one exception to this rule: To help make sure that at least one

account has been enabled for Secure Token, the first account to log into

the OS login window on a particular Mac is automatically enabled for

Secure Token.

Once an account has been enabled for Secure Token, it can then create

other accounts which will in turn automatically be enabled for Secure

Token. For those who use Apple’s Setup Assistant to set up their Macs, this

usually takes the following form:

	 1.	 Secure Token is automatically enabled for the user

account created by Apple’s Setup Assistant.

	 2.	 The Setup Assistant-created user account with

Secure Token enabled then creates other users

via the Users & Groups preference pane in System

Preferences. Those accounts get enabled for Secure

Token automatically.

Chapter 7 Endpoint Encryption

353

The reason this works is that the original user account is able to use

their account’s derived key, which is authorized to add additional keys to

the list of keys able to access the KEK, to enable the additional accounts’

own derived keys to the KEK’s access list.

However, user accounts created using command line tools may not

be automatically enabled for Secure Token because they were created by

the root account, which is not a Secure Token-enabled account. If these

accounts are not later enabled for Secure Token by an account which

does have Secure Token enabled for it, it won’t be possible to enable these

accounts to work with FileVault 2 because they won’t have access to the

KEK and thus have no access to the encrypted volume’s VEK.

�Enabling Encryption on macOS
There are several ways to enable FileVault 2, but let’s first look at the

simplest method using System Preferences.

To enable FileVault 2 on a Mac using System Preferences

	 1.	 Open the Security & Privacy pane in System

Preferences. Click the FileVault tab.

	 2.	 Click the Lock button and authenticate to make

changes.

Chapter 7 Endpoint Encryption

354

	 3.	 Click the Turn On FileVault button.

	 4.	 Choose “Create a recovery key and do not use my

iCloud account” and click the Continue button.

Figure 7-4.  Accessing the FileVault preference pane in System
Preferences

Chapter 7 Endpoint Encryption

355

Carefully document the recovery key. Preferably, use

macOS’s screen capture tools to take a screenshot

of the window and copy the file to a secure location.

If any user forgets his or her password or that user

leaves the organization, an administrator will only

have this recovery key as an option for unlocking the

protected boot volume and recovering data. Click the

Continue button to begin the encryption process.

Figure 7-5.  Creating a recovery key

Chapter 7 Endpoint Encryption

356

	 5.	 The encryption process can be monitored by

opening the Security & Privacy pane in System

Preferences and clicking the FileVault tab.

Figure 7-6.  Displaying a recovery key

Chapter 7 Endpoint Encryption

357

�FileVault Recovery Keys
We briefly discussed FileVault 2’s recovery keys above, but not why they’re

important. These recovery keys are derived keys and act as a backup

method to unlock FileVault 2’s encryption in the event that the usual

method of logging using a user’s account password is not available.

There are two main types of recovery keys available:

	 1.	 Personal recovery keys – These are recovery

keys that are automatically generated at the time

of encryption. These keys are generated as an

alphanumeric string and are unique to the machine

being encrypted. In the event that an encrypted Mac

Figure 7-7.  Monitoring encryption progress

Chapter 7 Endpoint Encryption

358

is decrypted and then re-encrypted, the existing

personal recovery key would be invalidated and a

new personal recovery key would be created as part

of the encryption process.

	 2.	 Institutional recovery keys – These are premade

recovery keys that can be installed on a system prior to

encryption and most often used by a company, school,

or institution to have one common recovery key that

can unlock their managed encrypted systems.

Figure 7-8.  Personal Recovery Key displayed in the FileVault
preference pane

Chapter 7 Endpoint Encryption

359

Institutional keys are not automatically created and will need to be

properly generated before they can be used. To help understand why,

here’s some historical background on institutional recovery keys and how

they came to be used in FileVault 2.

�FileVault 1 and the FileVaultMaster.keychain File
The sole part of Apple’s FileVault 1 (also known as legacy FileVault)

that was carried over into FileVault 2 was the ability to use the

FileVaultMaster.keychain file (stored in /Library/Keychains) as an

institutional recovery key.

In FileVault 1 deployments, you were asked to set a Master Password

when turning on FileVault 1’s encryption. When you set the Master

Password, the FileVault 1 encryption process set the password that was

entered as the password on the /Library/Keychains/FileVaultMaster.
keychain file. In turn, the FileVaultMaster.keychain file contained two

keys used for PKI certificate-based authentication (one public key and

one private key). When the public and private keys are both stored in one

keychain, the keychain can be used to unlock your FileVault 1-encrypted

home folder in the event that the password to open it was lost or forgotten.

The Master Password only unlocked the keychain and allowed the system

to access those two PKI keys. This is the reason why you needed to set the

Master Password before encrypting and why it was also important to use

the same FileVaultMaster.keychain file across the machines where you

wanted to make sure that the same recovery key was being used.

If you were deploying the same recovery key for your FileVault-

encrypted Macs, Apple consistently recommended that you go into the

FileVaultMaster.keychain file, remove the PKI private key, put the private

key somewhere secure, and deploy the FileVaultMaster.keychain file

with only the public key inside. The reason was that, in the event that

the password to the FileVaultMaster.keychain file was compromised,

Chapter 7 Endpoint Encryption

360

all the compromiser got was one half of the keypair (the public key half.)

The private key would not be on the machine and thus not available to

compromise the FileVault 1-encrypted homes on the machine. However,

FileVault 1 would work with both the public and private keys in /Library/
Keychains/FileVaultMaster.keychain.

In FileVault 2, Apple changed removing the private key from being

a suggested best practice to being a technical requirement. If you want

to use an institutional recovery key, your FileVaultMaster.keychain

file needs to have just the public key in it. If both public and private

keys are stored in the /Library/Keychains/FileVaultMaster.keychain

file on a Mac, FileVault 2 will ignore the keychain and not use it as an

institutional recovery key. In this case, enabling FileVault 2 encryption will

automatically generate a personal recovery key.

�Creating an Institutional Recovery Key
If you want to use an institutional recovery key on FileVault 2 encrypted

Macs, you will need to create and configure a FileVaultMaster keychain.

Apple has provided a way to create this keychain by using the security

command’s create-filevaultmaster-keychain function. To create a

FileVaultMaster.keychain file, run the following command:

security create-filevaultmaster-keychain /path/to/

FileVaultMaster.keychain

You’ll be prompted for a password for the keychain. When provided,

the keychain will be created and will contain both the private and public

keys needed for recovering a FileVault 2-encrypted drive that uses this

institutional recovery key. Make copies of the keychain and store them in

a safe place. Also make sure to securely store copies of the password you

used to create the keychain.

Chapter 7 Endpoint Encryption

361

Figure 7-9.  Using security create-filevaultmaster-keychain to
create an institutional recovery key

If you want to create the FileVaultMaster keychain in its proper

place, run the security command with root privileges and use /Library/
Keychains for the destination path.

Once you’ve made your copies, make another copy and remove

the private key from that copy of the keychain. Once the private key

is removed, the FileVaultMaster.keychain file is ready to be used for

encrypting Macs with FileVault 2 with the institutional recovery key.

It doesn’t appear that the security main page includes information

about the create-filevaultmaster-keychain function, but you can see what

it does by running the security help command in Terminal and checking

at the bottom of the list that appears.

Figure 7-10.  Running security create-filevaultmaster-keychain
with root privileges to create an institutional recovery key in /
Library/Keychains

Figure 7-11.  Using security help to display information about the
security tool’s create-filevaultmaster-keychain function

Chapter 7 Endpoint Encryption

362

A way to modify /Library/Keychains/FileVaultMaster.keychain so

that it only has the public key inside would be to do the following:

	 1.	 Create the FileVaultMaster.keychain file using the

security command.

	 2.	 Next, make several copies of the FileVaultMaster.
keychain file that you just created and store the

copies separately in secure locations. A locked safe

would be a good place, or in an encrypted disk

image that is on an access-restricted file share.

	 3.	 Next, unlock the newly created FileVaultMaster.
keychain file by running the following command

and entering the keychain’s password when

prompted for the password:

security unlock-keychain /Library/Keychains/

FileVaultMaster.keychain

Note T he FileVaultMaster keychain will need to be unlocked from
the command-line as the keychain will not unlock in Keychain Access
by clicking on the lock.

Figure 7-12.  Using the security tool’s unlock-keychain function to
unlock the FileVaultMaster keychain for editing

Chapter 7 Endpoint Encryption

363

	 4.	 If it succeeds, you’ll get the next system prompt.

If not, get another copy of the FileVaultMaster.
keychain file and try again. A FileVaultMaster.
keychain file with an unknown password should

not be used because there is no way to use it

for recovery purposes without first knowing the

keychain’s current password.

	 5.	 Once you’ve unlocked the FileVaultMaster.
keychain file, open the Keychain Access

application from /Applications/Utilities/.

	 6.	 In Keychain Access, go to File: Add Keychain…

and add /Library/Keychains/FileVaultMaster.
keychain.

Figure 7-13.  Looking at Keychain Access prior to adding
FileVaultMaster.keychain

Chapter 7 Endpoint Encryption

364

	 7.	 Assuming you previously unlocked the

FileVaultMaster.keychain file using the security

command, it should show up as unlocked in

Keychain Access.

Figure 7-14.  Selecting the FileVaultMaster.keychain file in
Keychain Access

Figure 7-15.  What the FileVaultMaster keychain’s private key looks
like in Keychain Access

Chapter 7 Endpoint Encryption

365

	 8.	 Go into the FileVaultMaster keychain and remove

the private key. (It should be called FileVault
Master Password Key and its kind should be listed

as private key.)

	 9.	 Relock the FileVaultMaster keychain

Figure 7-16.  Removing the private key from the FileVaultMaster
keychain in Keychain Access

Figure 7-17.  How the FileVaultMaster keychain should look with
only the public key inside

Chapter 7 Endpoint Encryption

366

	 10.	 Copy the modified FileVaultMaster.keychain

file (now with only the public key inside) to the

/Library/Keychains directory of the Macs you want

to encrypt with FileVault 2. For ease of deployment,

you can package the FileVaultMaster.keychain file

into an installer package. That installer package can

then be deployed ahead of encryption to multiple

machines using the system management tools used

in your environment.

When deployed to /Library/Keychains on the Macs you want to

encrypt with FileVault 2, the FileVaultMaster.keychain file should have

the following permissions set:

Owner: root

Permissions: read and write

Group: wheel

Permissions: read only

Everyone

Permissions: read-only

Once the institutional recovery key is deployed to an unencrypted

machine, enabling FileVault 2 via System Preferences should produce a

message stating that “A recovery key has been set by your company,
school or institution” instead of displaying the personal recovery key.

Chapter 7 Endpoint Encryption

367

Figure 7-18.  Message indicating that a properly configured
FileVaultMaster.keychain is being used as an institutional recovery key

Figure 7-19.  FileVault 2 encrypting the boot drive using an
institutional recovery key

Chapter 7 Endpoint Encryption

368

For mass FileVault 2 management, use Apple’s command line

tool fdesetup for enabling and managing encryption and escrowing

recovery keys.

fdesetup gives Mac administrators the following command-line abilities:

•	 Enable or disable FileVault 2 encryption on a

particular Mac.

•	 Use a personal recovery key, an institutional recovery

key, or both kinds of recovery key.

•	 Enable one or multiple user accounts at the time of

encryption.

•	 Get a list of FileVault 2-enabled users on a particular

machine.

•	 Add additional users after FileVault has been enabled.

•	 Remove users from the list of FileVault enabled accounts.

•	 Add, change, or remove individual and institutional

recovery keys.

•	 Report which recovery keys are in use.

•	 Perform a one-time reboot that bypasses the FileVault

pre-boot login.

•	 Report on the status of FileVault 2 encryption or

decryption.

Chapter 7 Endpoint Encryption

369

�Enabling Filevault 2 Encryption for One or
Multiple Users
fdesetup is amazingly flexible when it comes to enabling FileVault 2

encryption from the command-line. To start with the simplest method,

run the following command with root privileges to enable FileVault 2

encryption:

fdesetup enable

You’ll be prompted for the username and password of the primary

user, which is the account you will work with at the FileVault 2 pre-boot

login screen once the encryption is turned on.

If everything’s working properly, FileVault will enable and you’ll be

given an alphanumeric personal recovery.

Very Important T he fdesetup-generated personal recovery key
is not saved anywhere outside the machine. Make a record of it or
you will not have a recovery key available to help unlock your Mac’s
encryption in case of a problem.

You can also enable additional user accounts at the time of encryption,

as long as the accounts are either local or mobile accounts on the Mac

being encrypted. Run the following command with root privileges to

enable FileVault 2 and specify the accounts you want:

Figure 7-20.  Running fdesetup enable to enable FileVault 2
encryption

Chapter 7 Endpoint Encryption

370

fdesetup enable -user username -usertoadd other_username

-usertoadd yet_another_username

You’ll be prompted for the passwords of the accounts specified. After

that, you’ll be given an alphanumeric personal recovery key and FileVault

will turn on. All of the accounts specified should appear at the FileVault 2

pre-boot login screen.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow this format:

Figure 7-21.  Running fdesetup enable to enable FileVault 2 for
multiple accounts

Figure 7-22.  Plist format for fdesetup enable

Chapter 7 Endpoint Encryption

371

Additional users can be included as needed by adding additional user

information under the AdditionalUsers plist key.

Note A ll account passwords need to be supplied in cleartext.

Once the plist has been set up and properly formatted, run the

following command with root privileges to enable FileVault 2 encryption

and reference the account information in the plist file:

fdesetup enable -inputplist < /path/to/filename.plist

Since the accounts and passwords are in the plist file, fdesetup does not

need to prompt for passwords. Instead, the alphanumeric personal recovery

key is displayed and FileVault turns on. All of the accounts specified in the

plist file should appear at the FileVault 2 pre-boot login screen.

To avoid the need to enter a password, fdesetup also has a -defer flag

that can be used with the “enable” command option to delay enabling

FileVault 2 until after the current (or next) user logs out. With the -defer

flag, the user will be prompted for their password at their next logout

or restart. The recovery key information is not generated until the user

password is obtained, so the -defer option requires a file location where

this information will be written to as a plist file.

The property list file will be created as a root-only readable file and

contain information similar to what’s shown in the following.

Figure 7-23.  Using fdesetup enable with plist to enable FileVault 2
for multiple accounts

Chapter 7 Endpoint Encryption

372

Note  For security reasons, the plist file with the recovery key
information should not stay on the encrypted system. Please copy
it to a safe location and then securely delete this plist file from the
encrypted system.

Run the following command with root privileges to defer enabling

FileVault 2 and specify the account you want:

fdesetup enable -user username -defer /path/to/filename.plist

If there is no user account specified with the -user option, then the

current logged-in user will be enabled for FileVault 2. If there is no user

specified and no users are logged in when the command is run, then the

next user that logs in will be chosen and enabled.

Figure 7-24.  fdesetup enable -defer recovery information plist format

Figure 7-25.  Using fdesetup enable –defer with specified user to
enable FileVault 2

Chapter 7 Endpoint Encryption

373

If you don’t want to specify the account, run the following command

with root privileges:

fdesetup enable -defer /path/to/filename.plist

On logout, the user will be prompted to enter their account password.

Figure 7-26.  Using fdesetup enable –defer without specified user to
enable FileVault 2

Figure 7-27.  User being prompted to enter password at logout for
deferred enabling of FileVault 2

Chapter 7 Endpoint Encryption

374

Once entered, FileVault 2 will be enabled and the recovery information

plist file will be created. Once the enabling process is complete, the Mac

will restart.

In addition to enabling FileVault 2 as part of the logout process, Apple

provided the ability to set a deferred enablement at login. This means that

Mac admins can set a deferred enablement with the following options:

	 1.	 Enforce FileVault 2 enablement at logout.

	 2.	 Enforce FileVault 2 enablement at login.

	 3.	 Enforce FileVault 2 enablement at both login and

logout.

Figure 7-28.  FileVault 2 deferred enabling process

Chapter 7 Endpoint Encryption

375

To set a deferred enablement at login, the following options may be

added to fdesetup ‘s -defer flag:

•	 -forceatlogin max_cancel_attempts

•	 -dontaskatlogout

These additional options allow a deferred FileVault 2 enablement to be

enforced at the login window, rather than waiting for a logout or restart of

the Mac in question.

The -forceatlogin option must be set with an accompanying numerical

value. This numerical value governs how many times the account being

enabled can choose to defer having the FileVault 2 encryption process begin.

Figure 7-29.  User being prompted to enter password at login for
deferred enabling of FileVault 2

Chapter 7 Endpoint Encryption

376

For example, running the following command with root privileges will set a

maximum number of ten deferral opportunities:

fdesetup enable -defer /path/to/filename.plist -forceatlogin 10

If the user chooses to defer, they will need to select the Don’t
Enable button in the dialog window when it will appear. They will also

be informed of how many more times they can log in before FileVault 2

encryption must be enabled.

Figure 7-30.  Using fdesetup enable –defer –forceatlogin to permit
deferred enablement of FileVault 2

Figure 7-31.  User being given the option to defer FileVault 2 encryption

Chapter 7 Endpoint Encryption

377

If immediate enforcement is desired, setting a value of zero will enforce

FileVault 2 encryption at the next login. To do this, run the following

command with root privileges:

fdesetup enable -defer /path/to/filename.plist -forceatlogin 0

The fdesetup commands shown above will enforce FileVault 2

enablement at both login and logout. If only enforcement at login is

desired, the -dontaskatlogout option can be used. This will prevent a

deferred FileVault 2 enablement to be enforced at logout. For example,

running the following command with root privileges will enforce FileVault

2 encryption at the next login but not prompt the user on logout:

fdesetup enable -defer /path/to/filename.plist -forceatlogin 0

–dontaskatlogout

An important thing to keep in mind about the –defer option is that

it enables one single user account at the time of turning on FileVault 2

encryption. The –defer option does not enable multiple user accounts and

cannot be used to enable accounts once FileVault 2 encryption has been

turned on.

Figure 7-32.  Using fdesetup enable –defer –forceatlogin to enforce
enablement of FileVault 2

Figure 7-33.  Using fdesetup enable –defer –forceatlogin to enforce
enablement of FileVault 2 at login

Chapter 7 Endpoint Encryption

378

�Enabling Filevault 2 Encryption Using One or
Multiple Recovery Keys
Another capability of FileVault 2 is the ability to use the alphanumeric

personal recovery key, an institutional recovery key using /Library/
Keychains/FileVaultMaster.keychain, or both kinds of recovery key at the

same time.

As seen in the earlier examples, fdesetup will provide the alphanumeric

personal recovery key by default. To use the institutional recovery key, the

-keychain flag needs to be used when enabling encryption:

fdesetup enable –keychain

The alphanumeric personal recovery key is displayed, but the

encryption will also use the /Library/Keychains/FileVaultMaster.
keychain institutional recovery key. In case recovery is needed, either

recovery key will work to unlock or decrypt the encrypted drive.

If you want to specify that only the FileVaultMaster.keychain

institutional recovery key be used, both the -keychain and

-norecoverykey flags need to be used when enabling encryption:

fdesetup enable -keychain –norecoverykey

Figure 7-34.  Using fdesetup enable -keychain to enable encryption
with both recovery key types

Chapter 7 Endpoint Encryption

379

fdesetup is also capable of creating an institutional recovery key, using

the -certificate flag to import an existing FileVault 2 public key. Once

imported, fdesetup will automatically create a FileVaultMaster.keychain

file to store the public key and save the keychain to /Library/Keychains.
The public key will need to be available as a DER encoded .cer

certificate file. Once the certificate is available, the following command can

be run with root privileges to enable FileVault 2, automatically create the

institutional recovery key with the supplied public key and store it as

/Library/Keychains/FileVaultMaster.keychain:

fdesetup enable -certificate /path/to/filename.cer

To specify that only the FileVaultMaster.keychain institutional

recovery key be used, add the -norecoverykey flag to the command:

fdesetup enable -certificate /path/to/filename.cer -norecoverykey

Figure 7-35.  Using fdesetup enable –keychain –norecoverykey to
enable encryption with only the institutional recovery key

Figure 7-36.  Using fdesetup enable -certificate to enable encryption
with an imported certificate

Chapter 7 Endpoint Encryption

380

It is also possible to include the public key data in a plist file, which

allows the use of a plist to set up the institutional recovery key. The plist

needs to follow the format below:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Username</key>

<string>username</string>

<key>Password</key>

<string>password</string>

<key>AdditionalUsers</key>

<array>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

 <dict>

Figure 7-37.  Using fdesetup enable -certificate -norecoverykey to
enable encryption with only the imported certificate

Chapter 7 Endpoint Encryption

381

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

</array>

<key>Certificate</key>

<data>

(Certificate data goes here...)

</data>

</dict>

</plist>

Using the public key’s DER-encoded certificate file, the public key data

for the plist can be obtained using the base64 tool by using the following

command:

base64 /path/to/filename.cer > /path/to/filename.txt

At this point, you would copy the data string contained in the text file

and place it into the Certificate <data></data> value area of the plist file.

You would store either the password of an existing FileVault 2-enabled user

or (if available) an existing personal recovery key in the Password key in

the plist.

Chapter 7 Endpoint Encryption

382

�Disabling FileVault 2 Encryption
In contrast to all of the various options available for enabling FileVault

2 using fdesetup, the command to turn off FileVault 2 encryption is the

following:

fdesetup disable

Figure 7-38.  Plist format with institutional public key data

Chapter 7 Endpoint Encryption

383

ADDING ADDITIONAL USERS AFTER FILEVAULT 2 HAS BEEN ENABLED

Once FileVault 2 has been enabled, you can add additional users using

fdesetup. To do so, you will need to a) wait until the FileVault 2 encryption

has completed and b) provide both the username and password of a previously

enabled account as well as the password of the account you want to add. The

following command run with root privileges will enable a user account named

otheruser:

fdesetup add -usertoadd otheruser

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin). The

plist needs to follow this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

Figure 7-39.  Using fdesetup disable to turn off FileVault 2’s
encryption

Figure 7-40.  Using fdesetup add -usertoadd to enable additional
accounts

Chapter 7 Endpoint Encryption

384

<dict>

<key>Username</key>

<string>username</string>

<key>Password</key>

<string>password</string>

<key>AdditionalUsers</key>

<array>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

</array>

</dict>

</plist>

When adding additional users using a plist file, the top-level Username key

is ignored, and the Password key value should either be an existing FileVault

user's password or the recovery key. Additional users can be added as needed

by adding additional user information under the AdditionalUsers plist key.

Note A ll account passwords need to be supplied in cleartext.

Chapter 7 Endpoint Encryption

385

Once the plist has been set up and properly formatted, run the

following command with root privileges to add additional users by

referencing the account information in the plist file:

fdesetup add -inputplist < /path/to/filename.plist

�Listing Current FileVault 2 Users
To list all accounts enabled for FileVault 2, run the following command

with root privileges:

fdesetup list

Figure 7-41.  Plist format for fdesetup add

Figure 7-42.  Using fdesetup add –inputplist to enable accounts

Chapter 7 Endpoint Encryption

386

All accounts will be listed with both the accounts’ username and UUID

REMOVING USERS FROM THE LIST OF FILEVAULT 2 ENABLED ACCOUNTS

You can remove users from the list of FileVault enabled accounts by using

either their username or the account's UUID. To remove the account using the

username, run the following command with root privileges:

fdesetup remove -user username_goes_here

To remove the account using the account's UUID, run the following command

with root privileges:

fdesetup remove -uuid UUID_here

Figure 7-43.  Using fdesetup list to show enabled accounts

Figure 7-44.  Using fdesetup remove with username

Figure 7-45.  Using fdesetup remove with UUID

Chapter 7 Endpoint Encryption

387

In both cases, successful removal of the account will not produce any

additional output. If the account being removed is not currently enabled for use

with FileVault 2, an error message will be displayed.

�Managing Individual and Institutional Recovery
Keys
fdesetup includes the ability to change, add, and remove both personal

and institutional recovery keys. This gives Mac admins much greater

ability to manage recovery keys, including the capability to quickly update

or remove compromised personal and/or institutional recovery keys in the

event of a data breach or other problem.

You can add or change recovery keys using fdesetup changerecovery.

To change to a new personal key, run the following command with root

privileges:

fdesetup changerecovery -personal

You’ll be prompted for the password of an existing FileVault 2-enabled

user or the existing personal recovery key. Once entered, a new personal

recovery key will be generated and displayed. The former personal

recovery key will no longer work.

Figure 7-46.  –fdesetup remove error when specified account is not
FileVault 2 enabled

Chapter 7 Endpoint Encryption

388

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow the format below:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

</dict>

</plist>

You would store either the password of an existing FileVault 2-enabled

user or the existing personal recovery key in the Password key in the plist.

Figure 7-47.  Using fdesetup changerecovery to change to a new
personal recovery key

Figure 7-48.  Plist format for fdesetup changerecovery -personal

Chapter 7 Endpoint Encryption

389

Once the plist has been set up and properly formatted, run the

following command with root privileges to change to a new personal

recovery key and reference the password or recovery key in the plist file:

fdesetup changerecovery -personal -inputplist < /path/to/

filename.plist

In the event that the Mac in question does not have a personal

recovery key, running the commands above will add a personal recovery

key instead of changing an existing one.

To change to a new institutional recovery key, you will need to have

the new public key available. If you have a new institutional public key

available as a DER-encoded certificate file, you can run the following

command with root privileges to replace the current institutional key:

fdesetup changerecovery -institutional -keychain -certificate

/path/to/filename.cer

If an institutional keychain is being used on this Mac, you will see a

message that an existing FileVault Master keychain was found and moved.

The reason for this is that, as part of this process, the current institutional

Figure 7-49.  Using fdesetup changerecovery –personal with
-inputplist

Figure 7-50.  Using fdesetup changerecovery to change to a new
institutional key

Chapter 7 Endpoint Encryption

390

key’s /Library/Keychains/FileVaultMaster.keychain file is replaced with

a new /Library/Keychains/FileVaultMaster.keychain file that includes

the new institutional recovery key’s public key.

While the former institutional key’s /Library/Keychains/
FileVaultMaster.keychain was moved and not deleted, the former

institutional recovery key will no longer work.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

<key>Certificate</key>

<data>

(Certificate data goes here...)

</data>

</dict>

</plist>

Figure 7-51.  fdesetup changerecovery warning that an existing
keychain has been found and moved

Chapter 7 Endpoint Encryption

391

fdesetup changerecovery -institutional -keychain -inputplist <

/path/to/filename.plist

In the event that the Mac in question does not have an institutional

recovery key, running the commands above will add an institutional

recovery key instead of changing an existing one.

�Removing Individual and Institutional Recovery
Keys
You can remove recovery keys using fdesetup. To remove the current

personal recovery key, run the following command with root privileges:

fdesetup removerecovery -personal

You’ll be prompted for the password of an existing FileVault 2-enabled

user or the existing personal recovery key. Once entered, the personal

Figure 7-52.  Plist format for fdesetup changerecovery -institutional

Chapter 7 Endpoint Encryption

392

recovery key will be removed from the system. The former personal

recovery key will no longer work.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

</dict>

</plist>

You would store either the password of an existing FileVault 2-enabled

user or the existing personal recovery key in the Password key in the plist.

Figure 7-53.  Using fdesetup removerecovery to remove a personal
recovery key

Figure 7-54.  Plist format for fdesetup removerecovery

Chapter 7 Endpoint Encryption

393

Once the plist has been set up and properly formatted, run the

following command with root privileges to remove the current personal

recovery key and reference the password or recovery key in the plist file:

fdesetup removerecovery -personal -inputplist < /path/to/

filename.plist

To remove institutional recovery keys, run the following command

with root privileges:

fdesetup removerecovery -institutional

You’ll be prompted for the password of an existing FileVault 2-enabled

user or a personal recovery key if one is available. Once entered, the

institutional recovery key will be removed from the system and will no

longer work.

The removal of the institutional key can also be automated using a

properly formatted plist via a standard input stream (stdin). The plist is the

same as the one used for removing the personal key.

Figure 7-55.  Using fdesetup removerecovery –personal with
-inputplist

Figure 7-56.  Using fdesetup removerecovery to remove an
institutional recovery key

Chapter 7 Endpoint Encryption

394

Once the plist has been set up and properly formatted, run the

following command with root privileges to remove the institutional

recovery key and reference the password or recovery key in the plist file:

fdesetup removerecovery -institutional -inputplist < /path/to/

filename.plist

It is possible to use fdesetup to remove one or both recovery keys on

a particular Mac. Once the recovery keys are removed, the only way to

unlock the FileVault 2 encryption is by using the password of an enabled

account. That said, you could use fdesetup's changerecovery function to

add one or both types of recovery keys back to the encrypted Mac.

�Recovery Key Reporting
To go along with the ability to manage recovery keys, fdesetup enables

Mac admins to detect which types of recovery keys are in use on a

particular Mac. To check if a personal recovery key is in use, run the

following command with root privileges:

fdesetup haspersonalrecoverykey

If FileVault 2 is using a personal recovery key, this command will return

true. Otherwise, it will return false.

Figure 7-57.  Using fdesetup removerecovery –institutional with
-inputplist

Chapter 7 Endpoint Encryption

395

To check if an institutional recovery key is in use, run the following

command with root privileges:

fdesetup hasinstitutionalrecoverykey

If FileVault 2 is using an institutional recovery key, this command will

return true. Otherwise, it will return false.

ONE-TIME FILEVAULT 2 ENCRYPTION BYPASS

fdesetup has the authrestart verb, which allows a FileVault 2-encrypted

Mac to restart, bypass the FileVault 2 pre-boot login screen, and go straight

to the OS login window. To restart and bypass the FileVault 2 pre-boot login

screen, run the following command with root privileges:

fdesetup authrestart

When you run the fdesetup authrestart command, it asks for the password of

an existing FileVault 2-enabled user or a personal recovery key.

Figure 7-58.  Using fdesetup haspersonalrecoverykey

Figure 7-59.  Using fdesetup hasinstitutionalrecoverykey

Chapter 7 Endpoint Encryption

396

Once authenticated, the authrestart process puts an unlock key in system

memory and reboots. On reboot, the reboot process automatically clears the

unlock key from memory.

It’s also possible to automate this process by importing the authentication via

a properly formatted plist. The plist needs to follow the format below:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

</dict>

</plist>

You would store either the password of an existing FileVault 2-enabled user or

a personal recovery key in the Password key in the plist.

Figure 7-60.  Using fdesetup authrestart

Figure 7-61.  Plist format for fdesetup authrestart

Chapter 7 Endpoint Encryption

397

Once the plist has been set up and properly formatted, use the following

command with root privileges to run the authrestart process and reference

the password or recovery key in the plist file for authentication:

fdesetup authrestart -inputplist < /path/to/filename.plist

fdesetup's authrestart functionality is not supported by all Macs. To verify

if a specific Mac supports authrestart, run the following command with root

privileges:

fdesetup supportsauthrestart

If the Mac supports using authrestart, this command will return true.

Otherwise, it will return false.

�Reporting on Filevault 2 Encryption or
Decryption Status
fdesetup can report on FileVault 2 encryption or decryption status.

Running the following command with root privileges will display the

current state:

fdesetup status

Figure 7-62.  Using fdesetup authrestart with -inputplist

Figure 7-63.  Using fdesetup supportsauthrestart

Chapter 7 Endpoint Encryption

398

You can also enable FileVault 2 using configuration profiles deployed

through your MDM server solution. Use a management server such

as Apple’s Profile Manager to create the configuration profile. The

management server itself does not necessarily need to be actively

managing devices.

Figure 7-64.  fdesetup status reporting decryption status

Figure 7-65.  fdesetup status reporting encryption status

Figure 7-66.  fdesetup status reporting encryption is enabled

Figure 7-67.  fdesetup status reporting encryption is disabled

Chapter 7 Endpoint Encryption

399

	 1.	 Open Profile Manager in a web browser. Log in

using administrator credentials for the server.

	 2.	 Click Device Groups under Library and click the +

button (plus) to create a new group called “Enable

FileVault 2”.

	 3.	 Click the Settings tab in the right pane. Click the Edit

button.

	 4.	 Complete the information in the General payload

of the new configuration profile. Set the Security

drop-down menu to Never to prevent removal of the

profile.

Figure 7-68.  Creating an Enable FileVault 2 Device Group in Profile
Manager

Chapter 7 Endpoint Encryption

400

	 5.	 Scroll through the list of payloads to the left and

choose Security & Privacy in the macOS and IOS

section of payloads. Click the Configure button and

click the FileVault tab.

	 6.	 Enable Require FileVault.

	 7.	 Choose Create a personal FileVault recovery key.

Figure 7-69.  Creating the Enable FileVault 2 profile’s General
payload

Chapter 7 Endpoint Encryption

401

	 8.	 Click the OK button when done configuring the

profile. Click the Save button to save the new Enable

FileVault 2 configuration profile.

	 9.	 To test the new configuration profile, click the

Download button to download a .mobileconfig file.

	 10.	 Copy this file to a test client system and double-

click it to install. macOS will prompt for local

administrator credentials and then add the profile to

the Profiles pane of System Preferences.

	 11.	 Log out and verify the FileVault 2 encryption process

begins.

Figure 7-70.  Creating the Enable FileVault 2 profile’s Security &
Privacy payload

Chapter 7 Endpoint Encryption

402

After successful testing, scope the profile to individual computers or

computer groups in your MDM and use its push capabilities to deploy the

profile to the client machines.

�Summary
Apple has put a lot of effort into making sure that both iOS and macOS are

secure platforms and encryption plays a key role here. Multiple levels of

encryption and multiple keys used to unlock them help ensure that your

data is as safe as Apple can currently make it. One of the truly remarkable

things about this protection is how little the average person needs to think

about it. Apple has built an easy-to-use security model where enabling a

passcode on iOS or enabling FileVault 2 on macOS is simple enough for

anyone to do, but where those acts enable unrivaled protection for that

person’s data.

That said, the weak link in Apple’s protection is that ultimately human

beings are the ones choosing whether to enable the encryption and

picking the unlock codes. Your Mac or iOS device is only going to be as

secure as you make it. Enabling encryption and choosing strong passwords

or passcodes will go a long way toward making sure that your data remains

for your eyes only.

Chapter 7 Endpoint Encryption

403© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_8

CHAPTER 8

Securing Your Fleet
What’s really a threat on an Apple device? That’s often according to

who you ask. But in order for Apple devices to be allowed on corporate

networks, there’s a few criteria that must be met and rarely have I seen an

auditor who is willing to budge on these requirements. If you disagree that

something is necessary then you should absolutely speak up; however,

a second or third effort is really just likely to make them dig into their

position. And sometimes, they’re right.

2018 was one of the roughest years for Mac security. You can find a

run-down of the vulnerabilities and malware introduced at https://

digitasecurity.com/blog/2019/01/01/malware2018/ which indicates

OSX.MAMI, OSX.CrossRAT, and OSX.CreativeUpdate, among others.

Suffice it to say that given that security researchers are only beginning

to scratch the surface of attacking the platform, there’s going to be more

ahead of us than behind us. Given the closed nature of iOS, there’s just less

to attack and so expect fewer vulnerabilities there and maybe expect the

Mac to trend in that direction as well. So more of this chapter is dedicated

to the Mac than iOS, starting with securing the Mac.

�Securing the Platform
Compliance is a thing. In this book, we have covered (and continue to

cover) how to get devices into a compliant state. But compliance means

different things for different teams and different platforms. While the

https://digitasecurity.com/blog/2019/01/01/malware2018/
https://digitasecurity.com/blog/2019/01/01/malware2018/

404

Apple platforms are similar, what you can do on iOS is much more limited

and so the security threats are as well. As an example, this means you

don’t use antivirus on iOS but can on macOS. In general, mobile devices

are treated differently in organizations: you don’t assume they’re always

on your network, you don’t expect access to the file system on the device

so you plan workflows that are app-driven, and on Apple platforms, you

leverage MDM to do much of the heavy lifting to secure devices.

The Mac is very different. You can do practically anything you want

on the device. In many ways, the Mac is becoming more iOS-like, but you

can still disable SIP, which has been covered throughout this book, and

do anything you want on a device. Apple produces a great guide to macOS

Security at www.apple.com/business/resources/docs/macOS_Security_

Overview.pdf and this chapter is meant as a technical journey through

the basic security measures required by most organizations. This starts

with the operating system but quickly becomes as much about apps and

content as hardened systems.

With both Mac and iOS, you assume any software that goes through

the App Store is safe. This is because Apple scans software to indicate

that it is indeed safe. Now with App Notarization, Apple is scanning scan

apps for security flaws. This service is currently optional (except for kernel

extensions, or kexts) and if an app has been certified by Apple and signing

matches Apple’s database, then Gatekeeper (described further later in this

chapter) provides a special icon that the software is clean.

Security is a trade-off. In general, the more secure you are, the less

features you have available on your device and the slower the device will

run. For example, removing the ability to use iCloud is interpreted as

some environments as improving security; however, without iCloud, many

services work suboptimally. Most classic Apple users and administrators

think “Apple has me covered” when it comes to security. Most classic IT

departments think “we must lock down everything that makes anything

cool.” And according to the type of data being stored on a computer, they

Chapter 8 Securing Your Fleet

http://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf
http://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf

405

may be correct. The answer for how much security is required to protect

a device is somewhere in the middle and is entirely based on the security

posture of any given organization.

Many organizations have anywhere between 3 and 8 LaunchAgents

and/or LaunchDaemons that run on a Mac. Given the types and number

of vulnerabilities on the Mac as well as what frameworks are allowed to

touch on the Mac, it is unimaginable that a customer would actually need

to deploy all of those agents given that each can have an expensive load

on system resources, with some taking up 10–30 percent of the CPU or

memory on a computer. One is usually too few, four is too many. None

should touch the kernel (and therefore should not be kernel extensions)

because doing so can lead to unbootable devices, and most existing

products do not provide for zero-day support.

�Mac Security
The Mac includes a number of built-in security features, on both the

system level and the user level. On the system level, Apple has System

Integrity Protection (SIP). This is a security layer designed to limit the

power of the root account on macOS.

The root account is the superuser for a Unix system and the Unix

permissions model is designed around the assumption that the root

account has access to everything. To limit what the superuser can do and

add another layer to the macOS security model, Apple developed System

Integrity Protection (SIP) and first deployed it as part of OS X El Capitan.

SIP is designed to limit the power of root and to protect the system, even

from a root user. And since that initial release, it’s been enhanced to

provide additional security features.

Chapter 8 Securing Your Fleet

406

�System Integrity Protection
SIP is an overall security policy with the goal of preventing system files and

processes from being modified by third parties. To achieve this, it has the

following concepts:

•	 File system protection

•	 Runtime protection

•	 Kernel extension protection

SIP prevents parties other than Apple from adding, deleting, or

modifying directories and files stored in certain directories, including the

following:

/bin

/sbin

/usr

/System

The above directories are required for the computer to boot properly

and not allowing users to alter them keeps the operating system safe.

Because software you install needs to go somewhere on system, Apple

has indicated that the following directories are available for developers to

access:

/usr/local

/Applications

/Library

~/Library

All directories in /usr except for /usr/local are protected by SIP

and third-party developers should not write to protected locations. It is

possible to add, remove, or change SIP-protected files and directories via

Chapter 8 Securing Your Fleet

407

an installer package which is signed by Apple’s own certificate authority.

This allows Apple to make changes to SIP-protected parts of the OS

without needing to change the existing SIP protections (Figure 8-1).

The certificate authority in question is reserved by Apple for their own

use; Developer ID-signed installer packages are not able to alter SIP-

protected files or directories. To define which directories are protected,

Apple has currently defined two configuration files on the filesystem. The

primary file is found at /System/Library/Sandbox/rootless.conf which

lists all the applications and top-level directories which SIP is protecting.

The com.apple.xpc.launchd.rootless.plist in the same directory then

contains a list of protected services that can be loaded and unloaded

such as Xsan, snmp, and even the Finder. OK, so you probably shouldn’t

remove some of them. Finally, the Compatibility.bundle contains a file

called paths in Contents then Resources, which lists the exceptions to SIP,

such as the jamf binary, NetVault, and a few others. These are allowed for

compatibility with large numbers of systems.

Figure 8-1.  iTunes installer displaying Apple’s signing certificate

Chapter 8 Securing Your Fleet

408

�SIP-Protected Applications
In addition to protecting various folders around the system, given that

the Apple-provided apps are signed with a certificate that gives them root

access, those are protected by SIP as well. SIP is protecting the core apps

which macOS installs by default into /Applications and /Applications/
Utilities (Figure 8-2).

Figure 8-2.  SIP-protected paths in /Applications

Chapter 8 Securing Your Fleet

409

This means it will no longer be possible to delete the applications

which macOS installs, even from the command line when using root

privileges.

�SIP-Protected Directories
SIP is also protecting a number of directories and symlinks outside of

/Applications. Many of those directories contain frameworks, binaries

brought in from other projects, and binaries that have always been a part of

the Mac, since the inception of Mac OS X. The top level of those directories

is also listed in the rootless.conf file, as can be seen below.

TCC /Library/Application Support/com.apple.TCC

CoreAnalytics /Library/CoreAnalytics

NetFSPlugins �/Library/Filesystems/NetFSPlugins/

Staged

NetFSPlugins �/Library/Filesystems/NetFSPlugins/

Valid

 /Library/Frameworks/iTunesLibrary.framework

KernelExtensionManagement /Library/GPUBundles

MessageTracer /Library/MessageTracer

 �/Library/Preferences/SystemConfiguration/

com.apple.Boot.plist

KernelExtensionManagement /Library/StagedExtensions

SoftwareUpdate /Library/Updates

 /System

MobileAsset /System/Library/Assets

MobileAsset /System/Library/AssetsV2

* /System/Library/Caches

KernelExtensionManagement �/System/Library/Caches/com.apple.

kext.caches

* /System/Library/Extensions

Chapter 8 Securing Your Fleet

410

 /System/Library/Extensions/*
UpdateSettings �/System/Library/LaunchDaemons/com.

apple.UpdateSettings.plist

MobileAsset /System/Library/PreinstalledAssets

MobileAsset /System/Library/PreinstalledAssetsV2

* /System/Library/Speech

* /System/Library/User Template

 /bin

ConfigurationProfilesPrivate �/private/var/db/

ConfigurationProfiles/Settings

cvms /private/var/db/CVMS

SystemPolicyConfiguration �/private/var/db/

SystemPolicyConfiguration

RoleAccountStaging �/private/var/db/com.apple.xpc.

roleaccountd.staging

datadetectors /private/var/db/datadetectors

dyld /private/var/db/dyld

timezone /private/var/db/timezone

* /private/var/folders

 /private/var/install

 /sbin

 /usr

* /usr/libexec/cups

* /usr/local

* /usr/share/man

* /usr/share/snmp

symlinks

 /etc

 /tmp

 /var

Chapter 8 Securing Your Fleet

411

Some of those directories contain files that administrators need to

access. So Apple has also defined some exceptions to SIP’s protection in

the rootless.conf file (Figure 8-3), with those exceptions marked with

asterisks. These exemptions from SIP’s protection mean that it is possible

to add, remove, or change files and directories within those locations.

Among those exceptions are the following, which many administrators

or third-party software developers need access to:

•	 /System/Library/User Template – where macOS

stores the files and directories it uses when creating

home folders for new accounts.

•	 /usr/libexec/cups – where macOS stores printer

configuration information.

Figure 8-3.  Exceptions to SIP’s protection listed in rootless.conf

Chapter 8 Securing Your Fleet

412

•	 /private/var/db/datadetectors – many third-party

software developers add additional data detectors (the

technology that locates and then highlights an address

automatically in order to provide you with menus of

tasks to do with an address, like create a new contact).

•	 /usr/share/man – a number of third-party software

developers and open source projects will write a man

file so you can have a manual of what the software does.

�View SIP Protections Interactively
To see which files and directories have been protected by SIP, use the ls

command with the capital O flag in Terminal:

ls -O

As you can see in Figure 8-4, the output will list SIP-protected files and

directories as restricted. This is a common troubleshooting step you’ll get

used to if you have a lot of scripts that touch these folders and you need

to resolve issues that come up with them due to not being able to write to

objects in those directories or remove them.

Chapter 8 Securing Your Fleet

413

An important thing to note is that even if a symlink (a symbolic link

acts as a shortcut of sorts) is protected by SIP, that does not necessarily

mean that the directory it’s linking to is being protected by SIP. For

example, the root level of an macOS boot drive contains several SIP-

protected symlinks pointing to directories inside the root-level directory

named private. Usually this means that if one of those symlinks were

removed that it would cause problems with the device.

However, when the contents of the private directory are examined

(Figure 8-5), the directories to which those SIP-protected symlinks point

are not themselves protected by SIP, meaning those directories and their

included files can indeed be moved, edited, or changed by processes using

root privileges.

Figure 8-4.  Using the ls command to display SIP-protected root-level
directories

Chapter 8 Securing Your Fleet

414

In addition to the list of SIP exceptions which Apple has set in rootless.
conf, there is a second list of SIP exceptions stored at /System/Library/
Sandbox/Compatibility.bundle/Contents/Resources/paths. This list

includes a number of directories and application names for third-party

products. Similar to rootless.conf, this exclusion list is Apple’s and any

changes to it will be overwritten by Apple.

�Runtime Protections
As mentioned, SIP’s protections are not limited to protecting the system

from filesystem changes. There are also system calls which are now

restricted in their functionality, including the following, which are more for

developers and debugging:

•	 task_for_pid() / processor_set_tasks() fail with

EPERM.

•	 Mach special ports are reset on exec(2).

•	 dyld environment variables are ignored.

•	 DTrace probes are unavailable.

Of the above, DTrace is probably the most problematic for a Mac

administrator. If you need DTrace to troubleshoot, then you will need to

disable SIP while troubleshooting. If you are a developer rather than an

Figure 8-5.  Using the ls command to display directories inside the
private directory

Chapter 8 Securing Your Fleet

415

administrator, SIP does not block inspection by the developer of their own

applications while they’re being developed, so instrumentation tools are

still available. Xcode’s tools will continue to allow apps to be inspected and

debugged during the development process.

�Kernel Extension Protections
The third type of protection that SIP proxies is for kernel extensions. SIP

blocks the installation of unsigned kernel extensions as well as those that

haven’t been notarized using Apple’s Notarization service. In order to install

a kernel extension on macOS with SIP enabled, a kernel extension must:

•	 Install into /Library/Extensions.

•	 Be signed with a Developer ID for Signing Kexts

certificate.

•	 Be Notarized using the Apple Notarization service,

which is described in more depth in Chapter 5.

For the purposes of this chapter, be aware of what kexts are running. A

good tool for this is KextViewr available at https://objective-see.com/

products/kextviewr.html.

If installing an unsigned kernel extension, SIP will need to be disabled

first. However, SIP should only be disabled temporarily. Any time you start

managing the settings for SIP by rebooting a machine into recovery mode,

think long and hard about whether you should touch anything before you

do so. You have plenty of time to do so, because the process is a bit slower

than we might want.

Chapter 8 Securing Your Fleet

https://objective-see.com/products/kextviewr.html
https://objective-see.com/products/kextviewr.html

416

�Managing System Integrity Protection
To ensure that third parties will not be able to disable these protections,

SIP’s configuration is stored in NVRAM rather than in the file system itself

and is only configurable if the Mac is booted into one of two environments:

•	 The macOS Installer environment

•	 The macOS Recovery environment

Note T he macOS Installer and macOS Recovery environments are
in fact the same environment from OS X’s perspective. The main
difference between the two is that the macOS Installer environment
contains a copy of the installation files for macOS and the Recovery
environment does not.

Because SIP’s configuration is stored in NVRAM, these settings will

apply to the entire machine and will persist even if the OS is reinstalled.

SIP can be managed to the extent of turning it on, turning it off, adding and

removing IP addresses into a NetBoot whitelist, and reporting on whether

SIP is enabled or disabled. All changes to SIP’s configuration settings

also require a reboot before they take effect and performing the changes

without physically touching the computers will not be possible (and so you

won’t be doing this en masse).

The tool used to manage SIP is /usr/bin/csrutil. csrutil is able to work

with SIP because it has a unique application entitlement assigned to it by

Apple. This entitlement is viewable using the codesign command shown in

the following:

codesign -d --entitlements - /usr/bin/csrutil

The response to the command includes the com.apple.private.iokit.

nvram-csr key as shown in Figure 8-6.

Chapter 8 Securing Your Fleet

417

When you run csrutil without any associated commands, Terminal

will respond with the help page. Here you’ll see any options get guidance

on how to use the available commands, as you can see in Figure 8-7.

When booted from the Recovery environment, the command used to

enable SIP is simply csrutil with the enable verb:

csrutil enable

When run you’ll receive a message that SIP was enabled, as seen in

Figure 8-8.

Figure 8-6.  Displaying csrutil’s application entitlement

Figure 8-7.  Displaying csrutil’s help page

Chapter 8 Securing Your Fleet

418

When booted from the Recovery environment, simply replace the

enable with a disable in order to turn SIP off so you can perform some of

the actions that would otherwise be unavailable to an administrator:

csrutil disable

The message is almost identical, but states disabled instead of enabled

(Figure 8-9).

You can also reset the configuration for SIP by running the clear

command. This simply returns the state to the factory-installed state:

csrutil clear

The resultant message doesn’t indicate that SIP is disabled or enabled,

only that the state was cleared, as you can see in Figure 8-10.

Figure 8-8.  Running csrutil enable from the Recovery environment

Figure 8-9.  Running csrutil disable from the Recovery environment

Figure 8-10.  Running csrutil clear from the Recovery environment

Chapter 8 Securing Your Fleet

419

When csrutil clear is run, SIP goes back to its factory-default settings.

That means SIP is enabled if it was disabled previously and any custom

configuration is cleared out.

�NetBoot and System Integrity Protection
By default, SIP doesn’t allow for NetBoot. In Chapter 1, we described

the part NetBoot has always played in the imaging of a Mac. So without

NetBoot, imaging is effectively dead. But given a little preparatory work,

you can still get a NetBoot environment going. To do so, use one of the

custom configuration options available in SIP: the ability to set a whitelist

for approved NetBoot servers. This whitelist is needed because the bless

command is restricted by SIP from writing to NVRAM. This affects the

bless command’s ability to set Macs to boot from NetBoot sets because it

needs to write that information to NVRAM.

This whitelist defines by IP address which NetBoot servers are trusted

in your environment. Once those IP addresses are part of the whitelist, the

bless command can set a Mac to NetBoot from a trusted NetBoot server.

The csrutil utility includes functionality to add NetBoot servers to the

whitelist. When booted from the Recovery environment, run the command

below followed by the IP address to set the IP address as being that of a

NetBoot server approved for use by the bless command:

csrutil netboot add ip.address.here

You receive no message if the command runs without fail, as seen in

Figure 8-11.

Figure 8-11.  Running csrutil netboot add from the Recovery
environment

Chapter 8 Securing Your Fleet

420

When booted from the Recovery environment, you can also remove

NetBoot servers from the whitelist. To do this, run the command below

followed by the IP address that you want to remove.

csrutil netboot remove ip.address.here

The response is identical to that of the add command; no output.

Since the add and remove options don’t provide any feedback, you’ll need

to show what NetBoot servers the device is able to access. To see which

NetBoot servers have been added to the whitelist, run the command below.

csrutil netboot list

The response will simply be a list of IP addresses, as you can see in

Figure 8-12.

The csrutil command should not be used outside of the recovery

environment, except to see the status for SIP.

�Running csrutil Outside of the Recovery
environment
If you run the csrutil enable and csrutil disable commands when you

aren’t booted into the Recovery OS environment, you will receive a

message that these commands need to be run from the Recovery OS. The

current SIP configuration will remain unchanged, as you can see in

Figure 8-13.

Figure 8-12.  Running csrutil netboot list from the Recovery
environment

Chapter 8 Securing Your Fleet

421

Likewise, if you try to run the csrutil netboot add and csrutil netboot
remove commands while booted from a regular boot drive, you will

receive the message that csrutil was unable to save the configuration and

the status of the NetBoot whitelist will remain unchanged (Figure 8-14).

What can be run while outside the Recovery environment are csrutil’s

reporting functions. For example, to learn if SIP is enabled or disabled, run

the command below.

csrutil status

This command can be run without root privileges and will display if

SIP is enabled or disabled, as you’ll note in Figure 8-15.

Figure 8-13.  Running csrutil enable outside the Recovery
environment

Figure 8-14.  Running csrutil netboot add outside the Recovery
environment

Chapter 8 Securing Your Fleet

422

Similarly, csrutil netboot list can be run to report on which IPs have

been set as allowed NetBoot sources when using the bless command, as

you can see in Figure 8-16.

So you can programmatically derive information about SIP, but you

can’t augment SIP when booted to the standard operating system. Now

that we’ve covered getting SIP turned on and off, it’s worth noting that the

enable options have more granular settings, usually invoked with a -- in

the command.

�Custom System Integrity Protection
Configuration Options
It is possible to enable SIP protections and selectively disable aspects

of it, by adding one or more flags to the csrutil enable command. All

the examples below require being booted from Recovery in order to

successfully configure.

Figure 8-15.  csrutil status displaying SIP is enabled

Figure 8-16.  Running csrutil netboot list outside the Recovery
environment

Chapter 8 Securing Your Fleet

423

To enable SIP and allow installation of unsigned kernel extensions, run

the csrutil command with the enable verb but then use the --without

option and use the kext selection for what to disable:

csrutil enable --without kext

When this option is enabled, running csrutil status outside the

Recovery environment should produce output similar to this, indicating

that Kext Signing is disabled, as you can see in Figure 8-17. This isn’t to say

that signed kexts can’t be run but instead that forcing signed kexts in order

to run a kext has been disabled.

If you need to write to those protected directories we reviewed earlier

in the chapter (whether you need to is very arguable), then you’ll need

to disable Filesystem Protection. To enable SIP and disable filesystem

protections, run the enable option for csrutil, with the --without option

again, and then indicate fs instead of kext:

csrutil enable --without fs

When this option is enabled, running csrutil status should produce

output similar to Figure 8-19 but with the Filesystem Protections set to

disabled. You can also disable the debugging restrictions. To keep SIP

enabled but disable debugging restrictions, run the same command as

before but use debug as your option:

csrutil enable --without debug

Figure 8-17.  csrutil status displaying SIP is enabled with kext
protections disabled

Chapter 8 Securing Your Fleet

424

When this option is enabled, running csrutil status will show

Debugging Restrictions set to disabled. A common task is to disable

DTrace restrictions so you can run dtrace commands and scripts. To leave

SIP enabled but disable the DTrace enforcement, run the same command

but use dtrace as the option to start SIP without, as follows:

csrutil enable --without dtrace

When this option is enabled, running csrutil status should produce

output similar but with the DTrace Restrictions listed as disabled. Many

administrators will want to customize NVRAM options (e.g., to bless

NetBoot servers). To enable SIP and disable restrictions on writing to

NVRAM, run the same command but use the nvram option:

csrutil enable --without nvram

When this option is enabled, running csrutil status should produce

output similar to the previous few iterations of the command, but with

NVRAM Protections showing as Disabled. To enable SIP and disable

basesystem verification, which will allow the use of a modified disk image

to install macOS, run the command again but use basesystem as the

exclusion:

csrutil enable --without basesystem

When this option is enabled, running csrutil status should produce

output similar but showing BaseSystem Verification set to disabled.

These commands allow you to access specific options while still leaving

SIP enabled. If you have to access those, try to do so granularly so the

deployment still takes use of the added security features from running

with SIP enabled on the fleet, and do so only for machines you have to. For

example, try to only disable the nvram protections if you have a lab that

you’d like to run with the option to boot into a NetBoot environment.

Chapter 8 Securing Your Fleet

425

�System Integrity Protection and Resetting
NVRAM
As mentioned previously, SIP stores its active security configuration in

NVRAM. This allows SIP’s configuration to persist across OS installs,

but this design choice also means that resetting NVRAM will cause SIP’s

configuration to reset as well. In my testing, a NVRAM reset will result in

the following SIP configuration:

•	 SIP will be enabled with all protections in place.

•	 No entries will be set in the NetBoot whitelist.

Resetting the NVRAM, otherwise known as a PRAM reset or PRAM zap,

has been a standard part of the Mac troubleshooting toolkit for a long time

and is performed by pressing and holding down the Option, Command (⌘),

P, and R keyboard keys at startup (Figure 8-18). You can verify this worked

because the startup tone will change.

Figure 8-18.  Apple keyboard with PRAM reset keys indicated

Chapter 8 Securing Your Fleet

426

For environments that do not plan to change SIP’s default

configuration or set a NetBoot whitelist, NVRAM resets should not affect

normal operations. However, for those environments where a NetBoot

whitelist or custom SIP configurations need to be maintained, be advised

how this change affects SIP configuration in your environment.

�User-Level Protections
The final type of protection we’ll cover is user level protections. Introduced

as a part of the entitlements framework, these protections in macOS

Mojave 10.14.0 are managed by Apple’s expanded security framework,

Transparency Consent and Control (TCC). These new protections are

primarily focused on protecting data within a user’s home folder, but also

affect access to the Mac’s built-in camera and microphone.

To summarize the protection, applications will now be required to

request user approval before they’ll be able to access specific application

data. If access is not granted, the application will not be able to access

that data and whatever function the application was trying to run may fail.

Apple has not documented which files and directories inside an account’s

home folder are affected by the user data protections, but in our research

and testing, these are the affected areas we know of today:

~/Library/Application Support/CallHistoryTransactions

~/Library/Application Support/com.apple.TCC

~/Library/Application Support/AddressBook

~/Library/Application Support/CallHistoryDB

~/Library/IdentityServices

~/Library/Calendars

~/Library/Preferences/com.apple.AddressBook.plist

Chapter 8 Securing Your Fleet

427

~/Library/Messages

~/Library/Mail

~/Library/Safari

~/Library/Suggestions

~/Library/Containers/com.apple.Safari

~/Library/PersonalizationPortrait

~/Library/Metadata/CoreSpotlight

~/Library/Cookies

~/Library/Caches/CloudKit/com.apple.Safari

/private/var/db/dslocal/nodes/

In order for applications to be able to access those protected areas,

they must be approved either manually or by using a management profile.

For more information on using a profile to manage privacy protections,

please see Chapter 4. To show an example of an application which would

legitimately need access to protected areas would be a backup solution.

To manually approve a backup application to access all data stored in an

account’s home folder, including protected data, the following procedure

is used on macOS Mojave:

	 1.	 Open System Preferences

	 2.	 Select the Security preferences

	 3.	 Click on the Privacy tab

	 4.	 Add the application to the Full Disk Access section

as you can see in Figure 8-19.

Chapter 8 Securing Your Fleet

428

The Location Services, Contacts, Calendars, Photos, Camera,

Microsoft, and other items that are covered by the privacy controls are

configured in the same manner and represent the most likely places where

a third-party developer will want to access information that an end user

should be prompted to allow.

Privacy is an increasingly visible aspect of security, but there are a

number of things that the industry has been doing for a long time. Many an

administrator will be accustomed to scanning software on a computer for

vulnerabilities. We’ll move on to doing so in the next section of this chapter.

�Detect Common Vulnerabilities
The Mac comes with a number of tools for querying version numbers

of things like apps and operating systems. First, let’s look at operating

Figure 8-19.  Allowing your backup to have Full Disk Access

Chapter 8 Securing Your Fleet

429

systems. The quickest way to derive the version of an operating system

would be using the sw_vers command with the -productVersion option

sw_vers -productVersion

The output is a simple point release version number. For example:

10.15.0

It then becomes trivial to pipe that output into other languages,

provided you can reach them from within a script. For example, if you

import os into a python script, you can use the sw_vers command:

import os

os.system('sw_vers -productVersion')

Or to grab the version of the OS, you could import a function just for that:

version = platform.mac_ver()

So in the following example, this is in a python script that lists any

available Common Vulnerabilities and Exposures, or CVEs, for a given

macOS operating system, using cve.circl.lu, a public repository of CVEs

copied from https://cve.mitre.org and with a. rest api put in front of

the database:

maccvecheck.py

#!/usr/bin/python import sys, urllib, json, platform

if len(sys.argv) > 1: url = 'https://cve.circl.lu/api/search/

apple/mac_os_x:{}'.format(sys.argv[1])

print([j['id'] for j in json.loads(urllib.urlopen(url).read().

decode('utf-8'))])

else:

version = platform.mac_ver() url = 'https://cve.circl.lu/api/

search/apple/mac_os_x:{}'.format(version[0])

Chapter 8 Securing Your Fleet

https://cve.mitre.org

430

print([j['id'] for j in json.loads(urllib.urlopen(url).read().

decode('utf-8'))])

Rather than typing all of that should you need this, copy it from

https://github.com/krypted/maccvecheck.

The operating system isn’t all we might want to keep updated. Each

piece of You can also read the index of an app using mdls, a command to

query the Spotlight index on a Mac. To use the command, we’ll use the

-name option and the kMDItemVersion attribute, as follows for iTunes:

mdls -name kMDItemVersion /Applications/iTunes.app

And then you can look that up in the CVE database as well using a

simple call to the same database:

curl https://cve.circl.lu/api/search/apple/itunes:12.5

Adding a bit more logic, you could then build a similar script, but one

that checks CVEs for iTunes rather than macOS:

iTunesCheck.py

#!/usr/bin/python

import sys, urllib, json, os, platform, subprocess

if len(sys.argv) > 1:

 �url = 'https://cve.circl.lu/api/search/apple/

itunes:{}'.format(sys.argv[1])

 �print([j['id'] for j in json.loads(urllib.urlopen(url).

read().decode('utf-8'))])

else:

 �version = subprocess.check_output("mdls -name

kMDItemVersion /Applications/iTunes.app | cut -d '\"'

-f2", shell=True)

 version = repr(version)

 version = version.strip('\").strip('n')

 version = version[:-1]

Chapter 8 Securing Your Fleet

https://github.com/krypted/maccvecheck

431

 print version

 �url = 'https://cve.circl.lu/api/search/apple/

itunes:{}'.format(version)

 �print([j['id'] for j in json.loads(urllib.urlopen(url).

read().decode('utf-8'))])

Ultimately, Apple has a number of products that are tracked in the cve

database and a library of each could easily be built and parsed to produce

all cve hits encountered on a Mac. The number of products you would

need to scan seems to go down every year. Obviously, you might not want

to trust some random site from Luxembourg and you can do this directly

against the zip from Mitre or create your own microservice that responds

similarly to this site. For the purposes of this book, we used the public-

facing API, so we didn’t need to parse the json files distributed by Mitre.

Now that we’ve looked into vulnerability scanning, another common

practice (and therefore a checkbox in your security assessment forms) is

managing the firewall.

�Manage the macOS Firewall
macOS comes with two built-in firewalls. The first is pf, a traditional port-

based firewall. The second is the Application Layer Firewall (we’ll call

it ALF for short), which is what you configure from the Security System

Preference pane. You can enable the firewall simply enough by using the

defaults command to augment the /Library/Preferences/com.apple.alf.

plist file, setting the globalstate key to an integer of 1:

defaults write /Library/Preferences/com.apple.alf globalstate

-int 1

Chapter 8 Securing Your Fleet

432

You can also configure the firewall from the command line. Stopping

and starting ALF is easy enough, whether the global state has been set to 0

or 1, done using launchd. To stop:

launchctl unload /System/Library/LaunchAgents/com.apple.alf.

useragent.plist launchctl unload /System/Library/LaunchDaemons/

com.apple.alf.agent.plist

To start:

launchctl load /System/Library/LaunchDaemons/com.apple.alf.

agent.plist launchctl load /System/Library/LaunchAgents/com.

apple.alf.useragent.plist

These will start and stop the firewall daemon (aptly named firewall)

located in the /usr/libexec/ApplicationFirewall directory. As you can

imagine, the settings for ALF can be configured from the command line as

well. The socketfilterfw command, in this same directory, is the command

that actually allows you to manage ALF. ALF works not by the simple

Boolean means of allowing or not allowing access to a port but instead by

limiting access by specific applications, more along the lines of Mandatory

Access Controls . When an application is allowed to open or accept a

network socket, it’s known as a trusted application – and ALF keeps a list

of all of the trusted applications. You can view trusted applications using

socketfilterfw with the -l option; although the output can be difficult to

read and so you can constrain it using grep for TRUSTEDAPPS as follows:

./socketfilterfw -l | grep TRUSTEDAPPS

You can also use the command line to add a trusted application

using the -t option followed by the path to and then the actual

application to be trusted. For example, to add FileMaker to the list of

trusted apps, you use something similar to the following, pointing to the

binary, not the app bundle:

Chapter 8 Securing Your Fleet

433

./socketfilterfw -t "/Applications/FileMaker Pro 9/FileMaker

Pro.app/Contents/MacOS/FileMaker Pro"

You can also use the socketfilterfw command to sign applications,

verify signatures, and enable debugging, using the -s, -v, and -d options

respectively. Finally, there are a number of global preferences for the

firewall that can be configured using the /usr/libexec/ApplicationFirewall/

com.apple.alf.plist preferences file. You might be looking at the path to

this file and thinking that it looks odd and it should really be in /Library/

Preferences. And you might be right. But the com.apple.alf.plist file there

appears to be a bit of silly misdirection. Changes there simply don’t seem

to have the desired response. Therefore, stick with the one in the /usr/

libexec/ApplicationFirewall directory. Some keys in this file that might be

of interest include globalstate (0 disables the firewall, 1 configs for specific

services, and 2 is for essential services – as in the GUI), stealthenabled, and

loggingenabled. All are integers and fairly self-explanatory vs. GUI settings

from the System Preference pane.

Firewalls are one layer of security; the next we’ll cover is malware.

�Combat Malware on macOS
One of the security requirements handed down by many an information

security team that has seemed controversial since before macOS even,

is Anti-Virus. In previous books, I tried to explore what the difference is

between a virus, trojan, logic bomb, worm, backdoor, zombie, retrovirus,

macrovirus, rootkits, etc. But here, we’ll just call it all malware. It’s

something bad on the computer and we need to scan for it routinely and

correct it when found. The truth is that these days, most malware that

gets on an Apple device can’t actually hurt the device, instead the device

ends up sending the infected file to other computers that the malware can

actually affect.

Chapter 8 Securing Your Fleet

434

But it can happen. And when it does, you’ll need a way to limit the

impact and remediate. Apple has provided a number of built-in tools

and for some, those will suffice to satisfy a CISO. We’ll start by covering

Xprotect.

�Xprotect and Gatekeeper
Gatekeeper is often used as a term to cover a number of different

technologies. The first we’ll cover is Xprotect, a tool built into macOS

that is meant to protect the operating system by detecting various viral

signatures and reacting to them by blacklisting that signature. Apple

doesn’t add items to this list often, as there aren’t a lot of things that need

to be added. If your organization requires the use of an antivirus tool, the

first question you should answer is “will XProtect be sufficient?”

The signatures that are installed by default can be found in the

/System/Library/CoreServices/CoreTypes.bundle/Contents/Resources/

Xprotect.plist property list, which includes a wonderful list of malware

items that Apple has automatically decided you should not run on your

computer. This allows other developers to extend signatures by adding

more items into the XProtect.plist in Security Updates, or Apple may

choose to deploy more items in subsequent software updates.

The great thing about Xprotect is that it’s already running on the

Mac and covers a number of different threats to the system by scanning

files as they’re opened and then identifying those deemed dangerous.

This means you’re not creating additional load on a computer during

traditional antivirus scans, and you’re not going to hold up the deployment

of new operating systems while testing if something works. Xprotect is

configured using Gatekeeper, a System Preference used to configure a few

basic security options. To view and configure Gatekeeper settings, use

the Security & Privacy System Preference pane and choose whether your

device will only allow App Store apps or whether to allow those from the

“App Store and identified developers” as seen in Figure 8-20.

Chapter 8 Securing Your Fleet

435

Gatekeeper is enabled by default and configuring Gatekeeper is as easy

as selecting one of these options. There’s much more that can be done

under the hood. The state of Gatekeeper is kept in /var/db/SystemPolicy-

prefs.plist. There’s only one option there, though: enabled. You can run

defaults to manage the status of Gatekeeper in case that gets disabled:

defaults write /var/db/SystemPolicy-prefs enabled yes

However, doing so is not really going to provide all the options

available in the GUI. To configure the options, Apple has provided spctl,

a command-line tool used to manage Gatekeeper. In its simplest form,

Figure 8-20.  Prompt for quarantined apps

Chapter 8 Securing Your Fleet

436

Gatekeeper can be enabled using the--master-enable and --master-disable

options, which are pretty straightforward. To use –master-enable to enable

Gatekeeper

sudo spctl --master-enable

Or to use --master-disable to disable Gatekeeper:

spctl --master-disable

Whether Gatekeeper (assessments) is enabled or disabled can be

returned using the --status option

spctl --status

The -a option is used to assess an application to see if it will open or not:

spctl -a /Applications/GitHub.app

If an application passes and has a rule available then you’ll get no

response. If there’s no rule for the application, you’ll get a response that:

/Applications/GarageBuy.app: unknown error 99999=1869f

You don’t want users to just start clicking to accept screens so when

possible, add the rules on behalf of users. To add rules about apps, use the

--add option. Each app gets a label, defined with the –label option. For

example, to add GitHub:

spctl --add --label "GitHub" /Applications/GitHub.app

To then enable access to GitHub:

spctl --enable --label "GitHub"

Or to disable an app:

spctl --disable --label "GitHub"

Chapter 8 Securing Your Fleet

437

As with most things, there’s actually a rub: spctl doesn’t always work.

We’ve had more than a few issues with getting the labels to apply properly.

Sometimes the -a will report back that an app is rejected and yet the

app will still open so build some sanity checking into any scripts when

managing app labels. When you encounter problems with spctl, file a radar

with Apple. Gatekeeper is more fully documented at https://support.

apple.com/en-us/HT201940. To understand some of the underpinnings

though, we’ll look at lsquarantine in the next section of this chapter.

�lsquarantine
Gatekeeper works by scanning files that have been downloaded from

the Internet, as we mentioned in the previous section. Deciding what’s

allowed to open and what isn’t, as well as prompting users is handled

using lsquarantine, Spotlight works very quickly because it maintains an

index of metadata attributes. The lsquarantine works similarly. There is a

set of attributes attached to any files downloaded from the Internet and on

opening a special screen appears, which can be seen in Figure 8-21.

Any file downloaded from external sources (such as email

attachments) attaches quarantine attributes, including Safari, Messages,

HipChat, etc. These attributes include date, time, and a record of where

Figure 8-21.  Prompt for quarantined apps

Chapter 8 Securing Your Fleet

https://support.apple.com/en-us/HT201940
https://support.apple.com/en-us/HT201940

438

the file was downloaded from. When you open a file received through a

quarantine-aware application, macOS warns you where the file came from.

You receive an alert asking, “Are you sure you want to open it?”

For more on how lsquarantine works under the hood, see

https://developer.apple.com/documentation/foundation/

urlresourcevalues/1792021-quarantineproperties. But let’s look at

those attributes, given how important they are.

Xattr has a lot of different uses; you can programmatically manage

Finder tags with it (Finder tags aren’t just used for security, so for more on

Finder tags, see http://krypted.com/mac-os-x/command-line-finder-

tags/). To see the full xattr dump on a given file, use the -l option as follows:

xattr -l com.apple.quarantine MyAppImage.dmg

The output is as follows:

xattr: No such file: com.apple.quarantine MyAppImage.dmg:

com.apple.metadata:kMDItemDownloadedDate: 00000000 62 70 6C

69 73 74 30 30 A1 01 33 41 BE 31 0B A5 |bplist00..3A.1..|

00000010 70 D4 56 08 0A 00 00 00 00 00 00 01 01 00 00 00

|p.V.............| 00000020 00 00 00 00 02 00 00 00 00 00 00 00

00 00 00 00 |................| 00000030 00 00 00 00 13 |.....|

00000035 MyAppImage.dmg: com.apple.metadata:kMDItemWhereFroms:

00000000 62 70 6C 69 73 74 30 30 A1 01 5F 10 22 63 69 64

|bplist00.._."cid| 00000010 3A 69 6D 61 67 65 30 30 31 2E 70 6E

67 40 30 31 |:myappimage.dmg@01| 00000020 44 32 36 46 46 44 2E

35 37 31 30 37 30 46 30 08 |D26FFD.571070F0.| 00000030 0A 00

00 00 00 00 00 01 01 00 00 00 00 00 00 00 |................|

00000040 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

|................| 00000050 2F |/| 00000051

This could be helpful when troubleshooting and/or scripting. If you’re

an application developer, check out new API for App Translocation in the

10.12 SDK for <Security/SecTranslocate.h> I guess one way to think of

Chapter 8 Securing Your Fleet

https://developer.apple.com/documentation/foundation/urlresourcevalues/1792021-quarantineproperties
https://developer.apple.com/documentation/foundation/urlresourcevalues/1792021-quarantineproperties
http://krypted.com/mac-os-x/command-line-finder-tags/
http://krypted.com/mac-os-x/command-line-finder-tags/

439

this is… Apple doesn’t want you running software this way anymore. And

traditionally they lock things down further, not less, so probably best to

find alternatives to running apps out of images, from a strategy standpoint.

To remove the com.apple.quarantine bit, use xattr along with the -r option

(given that Mac apps are bundles of files we need to do so recursively) and

then the -d option for delete, followed by the bit being deleted and then

the path to the app, as follows:

xattr -r -d com.apple.quarantine /Volumes/MyApp/MyAppImage.app

If you have multiple user accounts on your Mac, the user account

that downloaded the file is the only user account that can remove

the quarantine attribute on a file. All other user accounts can open a

quarantined file, but they are still presented with an alert asking, “Are you

sure you want to open it?” every time they open the file.

While a lot of focus is put on malware and privacy, the most

substantial risk to most computers is a binary running persistently. Most

malware will want to run in such a way. A lot of services run on a Mac and

most are built by Apple, so can be identified as com.apple.something. We

cover kexts, LaunchAgents, and LaunchDaemons in this book. But in the

next section, we’ll look at manipulating the Launch Services database to

find and isolate a foreign persistent service based on it being registered to

open a given file type.

�Using lsregister to Manipulate the Launch
Services Database
The lsregister command is used to query and manage the Launch

Services database, or the database that is used to determine the default

application used to open files of various types. lsregister is part of Core

Services and stored in /System/Library/Frameworks/CoreServices.

Chapter 8 Securing Your Fleet

440

framework/Versions/A/Frameworks/LaunchServices.framework/

Versions/A/Support. To see the options available to lsregister, run the

command with no operators:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister

You can dump the database to the screen using the -dump option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -dump

You can then grep the database or redirect the output into a text file for

parsing:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -dump > dump.txt

The dump of the database is really just meant to parse in other tools

if you have security requirements to do so. Sometimes applications don’t

open with a given file type. When this happens, you can quickly and easily

check if the problem has to do with the launchservices database. To do so,

run the open command and define the application (using the -a option)

followed by the app and then the file. For example, to open an XML

file called bob.xml in TextWrangler (assuming your working directory

contains bob.xml):

open -a TextWrangler.app bob.xml

Chapter 8 Securing Your Fleet

441

You can force an application to reregister file types for that application

using the -f option followed by the application path. For example, to

reregister Xcode:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -f /Developer/Applications/Xcode.app

You can also unregister a specific application using the -u option. To

unregister Xcode you would use the -u option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -u /Developer/Applications/Xcode.app

The lsregister command is actually just a front-end management tool

for the ~/Library/Preferences/com.apple.LaunchServices.plist file. The

file’s contents can be read (in an unparsed form) using defaults:

defaults read ~/Library/Preferences/com.apple.LaunchServices

One of the most important aspects of lsregister is to look for changes

that indicate an app has registered to handle a given file type. An example

of a security threat would be an app that registers to open a file type and

then each time that file type is run opens and then opens the legitimate app

for the file type. This would allow malware to run without being detected.

�Quarantine
The launchservices database is also responsible for determining

whether a file type is quarantined by default (and those files that are

quarantined throw a message to users when opened for the first time).

To disable such a feature:

defaults write com.apple.LaunchServices LSQuarantine -bool NO

Chapter 8 Securing Your Fleet

442

The database can become pretty large and unwieldy. There are

applications registered in the local domain, system domain, and each user’s

domain. You can always clear these out using the following command,

which also recursively rebuilds based on the output of a -lint option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -kill -r -domain local -domain system -domain user

To check the progress:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -v

Should you locate an app using the wrong file type, you can then

change which app is registered.

�Changing File Handlers
To set a specific application to open a file type, use the application’s

domain out of the -dump output in an LSHandlerRoleAll and the file

extension in an LSHandlerContentType in the LSHandlers array of com.

apple.LaunchServices, as follows (to change txt for Text Edit – a.k.a. com.

apple.textedit):

defaults write com.apple.LaunchServices LSHandlers -array '{

LSHandlerContentType = "txt"; LSHandlerRoleAll = "com.apple.

textedit"; }';

You can also set the default application for a network protocol (e.g.,

smb://, rdp://, vnc://, http:// and https://). Because the options for

lsregister leave one wanting in some ways (the commands to set file types

to a specific application are a bit overly complicated one could argue),

there is an awesome front end app from Andrew Mortensen, aptly called

Chapter 8 Securing Your Fleet

443

duti, available at http://duti.sourceforge.net/index.php. With duti

installed, the command to set the default browser for http would be:

/usr/local/bin/duti -s com.apple.safari http

When working with lsregister, one should first clear the state for that

application. This is done on a per-application basis by writing into the

NSQuitAlwaysKeepsWindows key in an applications defaults domain:

defaults write com.microsoft.word NSQuitAlwaysKeepsWindows

-bool false

To re-enable it, just send a true value into the same key:

defaults write com.microsoft.word NSQuitAlwaysKeepsWindows

-bool true

Finally, there’s a lot that Launch Services does and is involved

in. For more information on LaunchServices, check out the Apple

developer library entry for Launch Services at https://developer.

apple.com/library/archive/documentation/Carbon/Conceptual/

LaunchServicesConcepts/LSCIntro/LSCIntro.html.

�MRT
macOS now comes with a vulnerability scanner called mrt. The mrt binary

is installed inside the MRT.app bundle in /System/Library/CoreServices/

MRT.app/Contents/MacOS/ and while it doesn’t currently have a lot that

it can do – it does protect against the various bad stuff that is actually

available for the Mac. The mrt binary is based on Yara, an open source

tool that searches for complex patterns, perfect for finding files that meet a

known signature or other condition, such as malware.

Chapter 8 Securing Your Fleet

http://duti.sourceforge.net/index.php
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html

444

To use mrt, simply run the binary with a -a flag for agent and then a -r

flag along with the path to run it against. For example, let’s say you run a

launchctl command to list LaunchDaemons and LaunchAgents running:

launchctl list

The list is a long listing of every LaunchAgent and LaunchDaemon

running. And you see something that starts with com.abc. Let me assure

you that nothing should ever start with that. So you can scan it using the

following command:

sudo /System/Library/CoreServices/MRT.app/Contents/

MacOS/mrt -a -r ~/Library/LaunchAgents/com.abc.123.

c1e71c3d22039f57527c52d467e06612af4fdc9A.plist

What happens next is that the bad thing you’re scanning for will be

checked to see if it matches a known hash from MRT or from /System/

Library/CoreServices/XProtect.bundle/Contents/Resources/XProtect.yara

and the file will be removed if so. A clean output will look like the following:

2018.09-24 21:19:32.036 mrt[48924:4256323] Running as agent

2018.09-24 21:19:32.136 mrt[48924:4256323] Agent finished.

2018.09-24 21:19:32.136 mrt[48924:4256323] Finished MRT run

Yara rules are documented at https://yara.readthedocs.io/en/

v3.8.0/. For a brief explanation of the json you see in those yara rules, see

https://yara.readthedocs.io/en/v3.5.0/writingrules.html.

A user would have had a username and password for most malware

to run properly. XProtect with mrt protects against 247 file hashes that

include about 90 variants of threats. Those are threats that Apple has

effectively publicly acknowledged for the Mac. Most malware is a numbers

game. The attacker needs to get enough people to click on a phishing email

(e.g., one that looks very legitimate about their iTunes account) and the

attacker can start sending things from their computers to further the cause

provided they can make the message seem credible enough to accept.

Chapter 8 Securing Your Fleet

https://yara.readthedocs.io/en/v3.7.0/
https://yara.readthedocs.io/en/v3.7.0/
https://yara.readthedocs.io/en/v3.5.0/writingrules.html

445

Finally, mrt is running somewhat resource intensive at the moment

and a common troubleshooting step is simply moving the binary out of the

MRT.app directory, a heavy-handed way to disable mrt. All of this leads to

Gatekeeper, XProtect, and mrt not covering the possible threats a third-

party tool might cover.

�Signing Applications
It’s not terribly difficult to sign an app, given that all you need is a signing

certificate. All apps should be signed by Apple in the future, per Apple’s

changing guidelines to keep end users secure. Simply use the codesign

command line tool:

And to view the signature used on an app, use codesign:

codesign -dv MyAwesome.app

The same would be true for a package, which is equally as dangerous

when provided with an administrative account:

productbuild --distribution mycoolpackage.dist --sign

MYSUPERSECRETIDENTITY mycoolpackage.pkg

And some files are distributed in disk images (.dmg files). To sign a dmg:

codesign -s MYSUPERSECRETIDENTITY mycooldmg.dmg

So codesign is used to manage signatures and sign, but spctl only

checks things with valid developer IDs and spctl checks items downloaded

from the App Store. None of these allow for validating a file that has been

brought into the computer otherwise (e.g., through a file share).

�ClamAV
ClamAV is an antivirus application that is among the easiest to use. It is

available at www.clamxav.com in a variety of languages. Although ClamAV

lacks many of the features available in some of the commercial packages

Chapter 8 Securing Your Fleet

http://www.clamxav.com

446

that are centrally manageable, it is a great and accessible tool that can

be used as a first-line-of-defense warning system against malware. The

underlying code is actually developed and distributed by the open source

community as part of the ClamAV project. The GUI tools that ClamXav

brings to the table can then be distributed to large numbers of users to

help administrators discover virus outbreaks and perform quarantine

measures on infected files.

ClamXAV is a front-end for clamav, which provides a nice graphical

interface to ClamAV for a nominal cost. Other third-party antivirus

solutions include as Carbon Black, Cisco AMP, MalwareBytes, Panda

Security, Sophos, Symantec, Trend Micro, Webroot, and now even

Microsoft. For more, see Appendix 1: The Apple Ecosystem.

There are a number of ways to install clam. For this example, just to get

it done quickly, we’ll use homebrew which is simply brew with the install

verb and clamav as the recipe to be brewed:

brew installclamav

This is going to place your configuration files in /usr/local/etc/clamav

and these cannot be used as those supplied by default are simply sample

configurations. Because the .sample files have a line that indicates they are

an “Example”, they cannot be used. So we’ll copy the sample configuration

files for freshclam.conf and clamd.conf (the demonized version) and then

remove the Example line using the following two lines:

cp/usr/local/etc/clamav/freshclam.conf.sample /usr/local/etc/

clamav/freshclam.conf; sed-ie 's/^Example/#Example/g'/usr/

local/etc/clamav/freshclam.conf

cp/usr/local/etc/clamav/clamd.conf.sample /usr/local/etc/

clamav/clamd.conf; sed-ie 's/^Example/#Example/g'/usr/local/

etc/clamav/clamd.conf

Next, we’ll need to update the virus definitions for clamav. This can be

run without the fully qualified file path but we are going to go ahead and

Chapter 8 Securing Your Fleet

447

include it as some computers might have another version installed (e.g.,

via macOS Server):

freshclam -v

The initial scan should cover the full hard drive and can be run as

clamscan

sudo/usr/local/bin/clamscan-r — bell -i /

Your routinely run jobs should be set up to a quarantine location.

Because all users should be able to see their data that was quarantined,

we would write this to /Users/Shared/Quarantine. We can then use a

standard clamscan to scan the system and then “move” quarantined items

to that location and log those transactions to /Users/Shared/Quarantine/

Quarantine.txt.

sudo mkdir /Users/Shared/Quarantine

sudo clamscan -r — scan-pdf=yes-l /Users/Shared/Quarantine/

Quarantine.txt — move=/Users/Shared/Quarantine//

You can then use an Extension Attribute to read the Quarantine.txt file

(the following is an example of using a Jamf Extension Attribute to do so):

#!/bin/bash

#Read Quarantine

result = `cat /Users/Shared/Quarantine/Quarantine.txt`

#Echo Quarantine into EA

echo"<result>$result</result>"

The clamdscan binary is multithreaded and hence runs a lot faster

than a clamscan call. You can easily daemonize ClamAV by using this

repo, which has a plist that automatically runs on-demand clamdscan on a

schedule: https://github.com/essandess/macOS-clamAV.

Every environment is different. When combined with standard mrt

scans using the built-in malware removal tool for macOS, clamAV can

Chapter 8 Securing Your Fleet

https://github.com/essandess/macOS-clamAV

448

provide a routine added protection to isolate and help you remediate

infections. You can easily run this nightly and parse the quarantine.txt

file prior to picking it up with the Extension Attribute routinely in order to

provide an additional layer of defense against potential threats to the Mac.

Putting all of this into a software package would be rudimentary and could

benefit many organizations without putting our coworkers through the

performance hit that many a commercial antivirus solution brings with it.

�Threat Management on iOS
As with securing a Mac, start with the Apple security guide at www.apple.

com/business/resources/docs/iOS_Security_Overview.pdf and

determine what gaps your organization might have. For the most part,

keeping devices running the latest operating system, make sure to have a

passcode on devices (or TouchID or FaceID) and make sure your servers

encrypt communication to and from devices. Some organizations will also

look to containerization technologies and restricting features of devices.

Make sure to go through each restriction available with an information

security team and check which back up your organization’s security

posture. This will keep you from starting to think that iOS is immune from

external threats.

YiSpecter was the first iOS malware to infect jailbroken and non-

jailbroken phones by abusing private APIs in the iOS system. The malware

spread via hijacked traffic from nationwide ISPs within China and Taiwan,

an SNS worm on Windows, and an offline app installation and community

promotion. YiSpecter contains four components signed with enterprise

certificates. Abusing the APIs allows these components to download from

a server and install on a targeted iOS device. Three of these components

hide their icons, preventing the user from finding and deleting them. After

infection occurs, iOS apps can be downloaded, installed, and launched;

existing apps can be replaced with other apps; apps can be hijacked to

Chapter 8 Securing Your Fleet

http://www.apple.com/business/resources/docs/iOS_Security_Overview.pdf
http://www.apple.com/business/resources/docs/iOS_Security_Overview.pdf

449

display advertisements; Safari’s default search engine can be changed; and

device information can be sent to the C2 server. YiSpecter is capable of

maintaining persistence on the device and can defeat attempts to delete it.

Abusing private APIs allows even iOS users who only download apps from

the official App Store to be infected with YiSpecter.

The landscape is very different on iOS. Most security solutions

available to mobile devices such as an iOS device try to protect against the

following types of attacks:

•	 Rogue AP: A wireless access point that is made to look

like a legitimate network in order to perform man-in-

the-middle attacks.

•	 Man-in-the-middle: Intercept insecure communication

between a server and a client by pretending to be the

intended server.

•	 SSL strip: Replaces encrypted HTTPS version of a web

page with an HTTP version so the unencrypted traffic

can be captured.

•	 Femtocell: A fake antenna is used to intercept traffic on

a cellular network.

All of these are basically about intercepting communication and not

attacking an actual device. There have been small attacks that involved

brute forcing the device when plugged into a computer, but nothing

very successful. Many organizations will not need a tool for their iOS

deployments. If you do, start the hunt for a vendor that does real things

at Zimperium and Cylance and do a thorough review of what protections

each provider offers as compared to those your organizational security

posture requires. Things to look for might be a demo of them blocking a

real-world example of an exploit.

Chapter 8 Securing Your Fleet

450

�macOS Binary Whitelisting
By default, only binaries loaded through the App Store or installed via an

ipsw can be opened on an iOS device and AppleTV. The Mac is much more

open, even though it has been closing down more and more in the past

few years. Of the binaries that can be opened on a Mac, you can limit them

using what is known as binary whitelisting or binary blacklisting.

There are a few techniques for managing which binaries can be

opened on Apple devices. The original technique to managing binaries,

which still mostly works, but is actively being deprecated, was using

MCX, or Managed Client Extensions. The easiest way to describe how this

worked was using Workgroup Manager, seen in Figure 8-22 below. More

modern techniques include:

•	 Gatekeeper, which was covered earlier in this chapter,

which can be managed through the command line,

through a Security & Privacy configuration profile

manually, or via MDM

•	 Editing the permissions to remove access to an app

either manually through the Finder or using a script.

•	 Using a Restrictions profile through MDM or installed

manually (only covers certain Apple apps)

•	 Using a third-party LaunchDaemon or agent that can

terminate apps which have been blacklisted

•	 Blocking the installation of a given application, as is

done with Munki (https://github.com/munki/munki/

wiki/Blocking-Applications)

Chapter 8 Securing Your Fleet

https://github.com/munki/munki/wiki/Blocking-Applications
https://github.com/munki/munki/wiki/Blocking-Applications

451

As you can see in the preceding screen, you could whitelist only

the Applications you wanted a given user to be able to launch. If this is

something you need to do and you want to do so sanely, then consider

Google Santa. Available at https://github.com/google/santa, Santa

is a project that uses a kernel extension to monitor for the execution of a

blocked binary and then terminates it.

Figure 8-22.  MCX in Workgroup Manager

Chapter 8 Securing Your Fleet

https://github.com/google/santa

452

This is one of those rare places where a kernel extension is necessary,

if you want to shut down a binary before it could potentially do harm

to a system or the network environment a system is in. As can be seen

in Figure 8-23, Santa reacts so quickly that a notice can be displayed

indicating that access to an application has been blocked.

The reason we said “sanely” is because a large user base is likely to

run a lot of software you don’t know about. So prior to deploying a tool

like Santa, you’ll likely define all of the software allowed to be run on

your fleet only to end up having to pull back your spiffy new whitelisting

solution because users are angry about it. Upvote is another Google tool

available at https://github.com/google/upvote that allows users to

submit apps to be whitelisted and then when an app has had enough

votes, the app is whitelisted. This allows users to self-manage what

software is allowed en masse.

Figure 8-23.  Google Santa

Chapter 8 Securing Your Fleet

https://github.com/google/upvote

453

�Compliance
Sometimes it seems like every organization has a different interpretation

of what compliance is. Not only are there dozens of compliances (from

SOC2 to CIS to FedRamp), but there is an interpretation to each of their

components that is left to the attorneys at a given organization. And then

as engineers, we often tighten various areas where we feel confident and

smile and nod in areas we don’t.

There is remedial compliance checking in a number of device

management solutions. Workspace ONE and Jamf both have the ability

to check devices for compliance. These are configuration management

solutions. Additionally, there are a number of third-party solutions

dedicated to scanning a device for compliance against known frameworks,

such as Qualis or Lynis, which can be found at https://cisofy.com/lynis/.

One of the most common guidelines for compliance today is the CIS

Benchmarks, put out by the Center for Internet Security and available

freely at www.cisecurity.org/cis-benchmarks/. An example of scanning

to check if a computer meets those guidelines would be using the

extension attributes and remediation scripts available at https://github.

com/jamf/CIS-for-macOS-High-Sierra-CP, which is written to work with

Jamf Pro but can be conformed to other tools if need be. Beyond checking

to see if a device is in compliance, a number of organizations also need to

review logs to check for unapproved or anomalous security events. In the

next section, we’ll review the logging API in macOS.

Note L ogs are not available in the graphical interface of an iOS
device but can be viewed using the Console app on a Mac.

Chapter 8 Securing Your Fleet

https://cisofy.com/lynis/
http://www.cisecurity.org/cis-benchmarks/
https://github.com/jamf/CIS-for-macOS-High-Sierra-CP
https://github.com/jamf/CIS-for-macOS-High-Sierra-CP

454

�Centralized Log Capture and Analysis
Apple has a number of different logging APIs. For the past few releases,

Apple has tried to capture everything possible in logs, creating what many

administrators and developers might consider to be a lot of chatter. As

such, an entirely new interface needed to be developed to categorize and

filter messages sent into system logs.

�Writing Logs
The logger command is still used to create entries in system logs. However,

if you are then using tail to view /var/log/system.log, then you will notice

that you no longer see your entry being written. This is because as the logs

being created in macOS have gotten more complex, the tools to read and

write those logs has gotten more complicated as well. Let’s take a simple

log entry. Below, we’ll write the string “Hello Logs” into the system log.

To do so, use the –i option to put the process id of the logger process

and –s to write to the system log, as well as to stderr. To make the entry

easier, we’ll tag it with –t followed by the string of the tag. And finally, we’ll

quote the entry we want written into the log. This is basically the simplest

form of an entry: logger -is -t krypted "Hello Logs". Once written,

use the log command to read your spiffy new entries. This isn’t terribly

different than how things worked previously.

If you are developing scripting tools, you will need to note that all of the

legacy APIs you might be using, which include asl_log_message, NSLog,

and syslog, have been redirected to the new Unified Logging system,

provided you build software for 10.12 (you can still build as before for 10.11,

iOS 9, tvOS 10, and watchOS 3 and below). These are replaced with the

os_log, os_log_info, os_log_debug, os_log_error, os_log_fault, and os_log_

create APIs (which correspond to various levels of logs that are written).

Chapter 8 Securing Your Fleet

455

�Reading Logs
Logs are now stored in the tracev3 formatted files in /var/db/diagnostics,

which is a compressed binary format. As with all binary files, you’ll

need new tools to read the files. Console has been updated with a new

hierarchical capability and the ability to watch activities, subsystems, etc.

The log command provides another means of reading those spiffy

new logs. To get started, first check out the man page: man log That

“Hello Logs” string we used earlier is part of a message that you can

easily view using the “log show” command. In the following example,

we’ll just run a scan of the last 3 minutes, using the –last option, and then

provide a –predicate. We’ll explain those a bit later, but think of it as query

parameters – here, we’ll specify to look for “Hello Logs” in eventMessage:

log show --predicate 'eventMessage contains "Hello Logs"'

--last 3m

Filtering the log data using "eventMessage CONTAINS "Hello Logs""

shows us that our entry appears as follows:

Timestamp Thread Type

Activity PID 2018.03-23 23:51:05.236542-0500

0x4b83bb Default 0x0 88294 logger:

Hello Logs ——————————————————————————————————————– Log –

Default: 1, Info: 0, Debug:

0, Error: 0, Fault: 0 Activity – Create:

0, Transition: 0, Actions: 0

How do you find out what to use where? Here’s an example where I’m

going to try to find all invalid login attempts. First, I’m just going to watch

the logs. Many will prefer the “log stream” command. I’m actually going

to just use show again, because I like the way it looks more. I’m also going

to use log with the syslog –style so it’s easier to read (for me at least), and

Chapter 8 Securing Your Fleet

456

then here I’m just looking at everything by specifying a space instead of an

actual search term:

log show --style syslog --predicate 'eventMessage contains " "'

--info --last 24h

Looking at the output, you can see an entry similar to the following:

2018.03-23 14:01:43.953929-0500 localhost

authorizationhost[82865]: Failed to authenticate user <admin>

(error: 9).

Just search for “Failed to authenticate user” and I’ll be able to count

invalid login attempts. To then take this and place it into a command that,

for example, I could build an extension attribute using, I can then just find

each entry in eventMessage that contains the string, as follows:

log show --style syslog --predicate 'eventMessage contains

"Failed to authenticate user"' --info --last 1d

As with many tools, once you have a couple of basic incantations, they

become infinitely simpler to understand. These few commands basically

get you back to where you were with tailing logs. If you want to get that –f

functionality from tail, to watch the logs live, just swap show with stream.

The most basic incantation of this would just be "log stream" without

bothering to constrain the output:log stream. Running this is going to

spew so much data into your terminal session. So to narrow down what

you’re looking for, let’s look at events for Twitter: log stream --predicate

‘eventMessage contains “Twitter”’. You can also view other logs and

archives by calling a file name:

log show system_logs.logarchive

Now that you can browse logs, in the next section, we’ll cover how

they’re organized and classified starting with Subsystems.

Chapter 8 Securing Your Fleet

457

�Organization and Classification
The new logging format also comes with Subsystems. If you’re a developer

you’ll be able to file your messages into, for example, a com.yourname.

whatevers domain space, so you can easily find your log messages. You

can also build categories and of course, as we noted previously, tag. So

there are about as many ways to find log entries as you can possibly ask for.

Apple has a number of subsystems built into macOS. I put together a list

of Apple subsystems into a class that you should be able to throw into your

python projects at https://gist.github.com/krypted/495e48a995b2c08

d25dc4f67358d1983.

You also have different logging levels. These include the basic levels

of Default, Info, and Debug. You also have two special levels available:

Fault and Error. All of this is to add hierarchical logs (which makes tracing

events a much more lovely experience) and protecting privacy of end users

(think sandbox for logs). I’d recommend watching the WWDC session

where Unified Logging was introduced at https://developer.apple.com/

videos/play/wwdc2016/721 if you’re interested in learning more about

these types of things, especially if you’ll be building software that makes

use of these new logging features.

The one thing that’s worth mentioning for the Mac Techs out there

is how you would go about switching between logging levels for each

subsystem. This is done with the “log config” command. Here, I’ll use the

–mode option to set the level to debug and then define the subsystem to

do so with using the –subsystem option: log config --mode “level:debug”

--subsystem com.krypted. If you have a particularly dastardly app, the

above might just help you troubleshoot a bit. As mentioned earlier, we also

have these predicates, which you can think of as metadata in the searching

context. These include the following:

•	 category: category of a log entry.

•	 eventMessage: searches the activity or message.

Chapter 8 Securing Your Fleet

https://gist.github.com/krypted/495e48a995b2c08d25dc4f67358d1983
https://gist.github.com/krypted/495e48a995b2c08d25dc4f67358d1983
https://developer.apple.com/videos/play/wwdc2016/721
https://developer.apple.com/videos/play/wwdc2016/721

458

•	 eventType: type of events that created the entry

(e.g., logEvent, traceEvent).

•	 messageType: type or level of a log entry.

•	 processImagePath: name of the process that logged

the event.

•	 senderImagePath: not all entries are created

by processes, so this also includes libraries and

executables.

•	 subsystem: The name of the subsystem that logged

an event.

�Comparisons and Searches
Let’s make things just a tad bit more complicated. We’ll do this by stringing

together search parameters. Here, we have a number of operators available

to us, similar to what you see in SQL. These include:

•	 && or AND to indicate two matches.

•	 || or OR indicates one of the patterns matches.

•	 ! or NOT searches for items that the patterns don’t

match for, which is useful for filtering out false

positives in scripts.

•	 = to indicate that one search matches a pattern or is

equal to.

•	 != to indicate that the search is not equal to.

•	 > is greater than.

•	 < is less than.

•	 => means greater than or equal to.

Chapter 8 Securing Your Fleet

459

•	 =< means less than or equal to.

•	 CONTAINS indicates a string matches a given pattern

with case sensitivity.

•	 CONTAINS[c] indicates a string matches a given

pattern without case sensitivity.

•	 BEGINSWITH indicates a string begins with a given

pattern.

•	 ENDSWITH indicates that a string ends with a given

pattern.

•	 LIKE indicates a pattern is similar to what you’re

searching for.

•	 MATCHES indicates that two text strings match.

•	 ANY, SOME, NONE, IN are used for pattern matching

in arrays.

•	 NULL indicates a NULL response (e.g., you see “with

error (NULL)” in logs a lot).

To put these into context, let’s use one in an example. Thus far my

most common use case has been a compound search, so in this example

we’ll be matching both patterns. Here, we’ll look at the WirelessProximity

subsystem for Bluetooth and we’ll look at how often it’s scanning for new

devices, keeping both patterns to match inside their own parenthesis, with

all patterns stored inside single quotes, as follows: log show --style syslog

--predicate ‘(subsystem == “com.apple.bluetooth.WirelessProximity”) &&

(eventMessage CONTAINS[c] “scanning”)’ --info --last 1h. Developers

and systems administrators will find that the Apple guide on predicate

programming, available at https://developer.apple.com/library/

prerelease/content/documentation/Cocoa/Conceptual/Predicates/

AdditionalChapters/Introduction.html, to be pretty useful if you’re

doing lots of this kind of work.

Chapter 8 Securing Your Fleet

https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html

460

Simply run the log command with the show verb. I’m including –last

to only look at the last couple of minutes and then using –predicate to

define that the processImagePath contains the word Slack, the app I’m

searching for:

log show --last 120s --predicate 'processImagePath CONTAINS[c]

"Slack"'

Note  sysdiagnose, a tool long used for capture diagnostics
information to include in bug reports, is still functional and now
includes Unified Logging information, so Apple developers can get a
complete picture of what’s going on in systems.

Ultimately, the new Unified Logging is a bit more complicated than the

previous options for both creating and reading logs. But once you get used

to it, you’ll log it – I mean, love it.

The built-in logging facilities in macOS provide logging for a number

of tasks; mostly those app developers choose to log events for. But you can

get deeper with Apple’s implementation of Sun’s Basic Security Module, or

OpenBSM.

�OpenBSM
OpenBSM is a subsystem that has been installed on the Mac for some

time. OpenBSM provides that ability to create and read audit logs based

on the Common Criteria standards. By default, OpenBSM is not enabled,

so we’ll go through checking what is being audited, enabling, and

reviewing those logs.

Chapter 8 Securing Your Fleet

461

�Audit Logs

OpenBSM stores information about security events in audit logs. The quick

and easy way to see what OpenBSM is auditing is to cat the /etc/security/

audit_control file, as follows:

cat /etc/security/audit_control

The output displays the directory of audit logs, as well as what is

currently being audited. By default, the configuration is as follows:

#

$P4: //depot/projects/trustedbsd/openbsm/etc/audit_control#8 $

#

dir:/var/audit

flags:lo,aa

minfree:5

naflags:lo,aa

policy:cnt,argv

filesz:2M

expire-after:10M

superuser-set-sflags-mask:has_authenticated,has_console_access

superuser-clear-sflags-mask:has_authenticated,has_console_access

member-set-sflags-mask:

member-clear-sflags-mask:has_authenticated

You can then see all of the files in your audit log, using a standard ls of

those

ls /var/audit

As you can see, the files are then stored with a date/time stamp naming

convention:

20180119012009.crash_recovery 20180407065646.20180407065716

20180407073931.20180407074018

Chapter 8 Securing Your Fleet

462

20180119022233.crash_recovery 20180407065716.20180407065747

20180407074018.20180407074050

20180119043338.crash_recovery 20180407065748.20180407065822

20180407074050.20180511030725

20180119134354.crash_recovery 20180407065822.20180407065853

20180511030725.crash_recovery

20180208172535.crash_recovery 20180407065853.20180407065928

20180616025641.crash_recovery

20180330191420.20180407064622 20180407072259.20180407073747

20180907031058.crash_recovery

20180407064622.20180407065616 20180407073748.20180407073836

20180911021141.not_terminated

20180407065616.20180407065646 20180407073836.20180407073931

current

The files are binary and so cannot be read properly without the use of a

tool to interpret the output. In the next section, we will review how to read

the logs.

�Using praudit

Binary files aren’t easy to read. Using the praudit binary, you can dump

audit logs into XML using the -x flag followed by the path of the log. For

example, the following command would read a given log in the above /var/

audit example directory:

praudit -x 20180407065748.20180407065822

One record of the output would look as follows

record version="11" event="session start" modifier="0"

time="Sat Apr 7 01:58:22 2018" msec=" + 28 msec" >

<argument arg-num="1" value="0x0" desc="sflags" />

<argument arg-num="2" value="0x0" desc="am_success" />

Chapter 8 Securing Your Fleet

463

<argument arg-num="3" value="0x0" desc="am_failure" />

<subject audit-uid="-1" uid="root" gid="wheel" ruid="root"

rgid="wheel" pid="0" sid="100645" tid="0 0.0.0.0" />

<return errval="success" retval="0" />

</record>

In the above output, you’ll find the time that an event was logged, as

well as the type of event. This could be parsed for specific events and, as an

example, just dump the time and event in a simple json or xml for tracking

in another tool. For example, if you’re doing statistical analysis for how

many times privileges were escalated as a means of detecting a bad actor

on a system.

You can also use the auditreduce command to filter records. Once

filtered, results are still in binary and must be converted using praudit.

Figure 8-24.  cmdReporter

Chapter 8 Securing Your Fleet

464

You can also stream OpenBSM output over cmdReporter, available at

https://cmdsec.com/cmdreporter/. A tool like cmdReporter (Figure 8-24) is

helpful to get logging data to what’s known commonly as a SEIM, or Security

Event Information Management system, such as Splunk. Of course, the

ability to have an event that violates an organization’s policies assumes users

actually have permissions to perform some of those tasks (although logging

failures is common as well). We’re not going to go in depth on editing the

Authorization Database on a Mac and is started by /System/Library/Security/

authorization.plist. The database is a SQLite database stored at /var/db/auth.

db which can easily be viewed using the

security authorizationdb read admin

Or dumped using sqlite3:

sudo sqlite3 /var/db/auth.db .dump

The default values can be seen at http://krypted.com/utilities/

authorizationdb-defaults-macos-10-14/ or historically at www.dssw.

co.uk/reference/authorization-rights/. For more on scripting

changes to the database to provide more granular access, see https://

scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-

authorization-database/.

Given that many organizations will not have the time, skills, or

inclination for such granular permissions management, tools like Avecto

Defendpoint alter the database on behalf of administrators using a least

privilege model. This is important as in high-security environments, Mac

users can work without needing admin rights yet remain on task and not

calling the service desk every time they need to reset a printer queue.

How do you know what privileges they need or what to look for in

logs, or what a system is actually doing? This is one of the hardest parts

of information security and once you get started, the most fun: reverse

engineering.

Chapter 8 Securing Your Fleet

https://cmdsec.com/cmdreporter/
http://krypted.com/utilities/authorizationdb-defaults-macos-10-14/
http://krypted.com/utilities/authorizationdb-defaults-macos-10-14/
http://www.dssw.co.uk/reference/authorization-rights/
http://www.dssw.co.uk/reference/authorization-rights/
https://scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-authorization-database/
https://scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-authorization-database/
https://scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-authorization-database/

465

�Reverse Engineering
The documentation provided by any vendor about their software only goes

so far. Apple has some pretty solid documentation, but when it comes to

security research, the ability to decompile, disassemble, and trace signals

sent by software is important. There are entire books on these topics –

and most of the techniques are similar enough between Windows, Linux,

and macOS. And therefore, some of the tools are easily used, or ported,

between the platforms, especially the open source tools.

As an example of these low-level similarities, most computers use a 64-

bit version of x86 architecture and most mobile devices use a variation of

ARMv8. Different implementations of ARM and x86 have their own modes

and formats, but in general reverse engineering is done using similar tools

(if not the same tools). macOS seems more and more built for software

developers with every passing year.

There are a number of these tools that are well documented, including

the following

•	 Class-dump is a tool used to view Objective-C runtime

information stored in Mach-O files. Seeing class

declarations and headers provides you with a lot of

information about what a file is doing. Class-dump

can be found at http://stevenygard.com/projects/

class-dump/ and represents one of the better tools to

locate private APIs in macOS.

•	 codesign: Command-line tool built into macOS

that outputs extremely granular information about

signatures used to sign code and installation packages.

•	 dtrace: Short for dynamic tracing, dtrace (built into

macOS) can show anything you can build a program

to access using the D programming language. For

example, you can get as finely grained as a script that

Chapter 8 Securing Your Fleet

http://stevenygard.com/projects/class-dump/
http://stevenygard.com/projects/class-dump/

466

outputs the arguments used calling a function. You

can only do this with SIP disabled, but then, you can

only do reverse engineering on an iOS device if you’ve

jailbroken the device.

•	 Hopper Disassembler (Figure 8-25) is a solid tool for

translating machine language into assembly. Hopper

isn’t going to show you the raw code for compiled files,

but can help you find files and information that points

you in the right direction during research.

•	 IDA is short for Interactive DisAssembler and should

be reserved for highly complex research tasks. IDA is

available at www.hex-rays.com/products/ida/.

•	 lldb: Built-in macOS lldb debugger library interface

(if you call one of these tools a debugger or a reverse

engineering tool is really determined based on your

profession).

•	 Lulu (https://objective-see.com/products/lulu.

html) and Little Snitch (https://www.obdev.at/

products/littlesnitch) both prompt and provide

information about egress and ingress network

connections.

•	 MachOView provides a view into Mach-O files using a

GUI but hasn’t been updated for some time so suffers

from stability issues. To download the latest version,

see https://github.com/gdbinit/MachOView.

•	 nm: Built in tool for viewing names and symbols in

Mach-O executables.

•	 otool: Command line tool built into macOS that shows

dependencies (based on what frameworks were

Chapter 8 Securing Your Fleet

http://www.hex-rays.com/products/ida/
https://objective-see.com/products/lulu.html
https://objective-see.com/products/lulu.html
https://www.obdev.at/products/littlesnitch
https://www.obdev.at/products/littlesnitch
https://github.com/gdbinit/MachOView

467

included in a piece of software which can be seen using

the -L option) and allows you to view raw Mach-O

executables. To find all apps dependent on a given

binary, see https://github.com/krypted/looto.

•	 Task Explorer: Free tool to receive really detailed

information about processes running on a

Mac: https://objective-see.com/products/

taskexplorer.html

Perhaps we’ll write a book about reverse engineering some day

because we used so many more tools and products to write this book, but

the best way to get started would be to download some of these tools and

start playing around, or try to answer a specific question, like installing

some malware (you can find plenty of samples to play with at https://

objective-see.com/malware.html) on a virtual machine and start trying

to figure out what it’s trying to do, by reading source code, taking it apart,

and watching signals.

Figure 8-25.  Hopper Disassembler

Chapter 8 Securing Your Fleet

https://github.com/krypted/looto
https://objective-see.com/products/taskexplorer.html
https://objective-see.com/products/taskexplorer.html
https://objective-see.com/malware.html
https://objective-see.com/malware.html

468

Beyond reverse engineering, there’s an emerging discipline for

iOS known as threat hunting. This is the act of looking for malware, or

other threats on the Mac. MonitorKit, from Digita Security (https://

digitasecurity.com) is an event driven macOS monitoring framework,

written in Swift (compatible with Objective-C) that gives developers easy

to use access to a wide array of native macOS monitoring capabilities.

MonitorKit minimizes the complexity of using the native macOS APIs

while maximizing event details with its comprehensive data model.

Underlying the MonitorKit framework is OpenBSM, FSEvents,

Spotlight Notifications, Event Taps, IOKit, and CoreMedia. It builds upon

code samples and proven techniques for accessing system event streams

from experts such as Jonathan Levin (http://technologeeks.com/

course.jl?course=OSXRE) and Patrick Wardle (https://Objective-See.

com). As you can see in Figure 8-26, MonitorKit has a number of options for

events it can track out-of-the-box.

Digita Security’s GamePlan is Endpoint Detection and Response

(EDR) tailor-made for macOS, built on top of MonitorKit. Through on-

device analysis of macOS system events, GamePlan creates unprecedented

telemetry and provides enterprise security teams with the insights they

require for behavioral detections and threat hunting. With its streaming

insights and KEXT-less design, GamePlan extends Apple’s security and

privacy model to an enterprise while upholding the Apple user experience

and never delaying an OS upgrade.

Figure 8-26.  MonitorKit

Chapter 8 Securing Your Fleet

https://digitasecurity.com
https://digitasecurity.com
http://technologeeks.com/course.jl?course=OSXRE
http://technologeeks.com/course.jl?course=OSXRE
https://objective-see.com
https://objective-see.com

469

There are a number of other tools, many of which are provided by

large technology companies that are happy to sell software that works on

the Mac, but often don’t work as well as we’d like. This isn’t to say there

isn’t merit in them, and there are tools out there evolving at a rapid pace.

And, of course, there are environments that see no need for any security

solutions whatsoever, relying entirely on their own automations using

built-in frameworks in macOS.

�Summary
The Mac is still very much treated as a computer by most corporate IT

departments. Therefore, they will expect the same full complement of

tools to be used on the Mac so it is an equal citizen to Windows. You may

disagree that you need a tool to perform various tasks, but that doesn’t

Figure 8-27.  Configure GamePlan Rules

Chapter 8 Securing Your Fleet

470

mean that you always have the option to choose whether to run these

tools or not. iOS is very different. You can’t run an agent on iOS. But you

can check that the device meets certain criteria and look for threats on

the device.

You have to implement these tools, settings, or procedures so the

device is compliant with the policies required to be able to get on the

network of most organizations. Doing so may require two to three agents.

But the alternative is likely that you can’t let devices access the network.

Ultimately, the Mac team at most organizations will start off by

integrating solutions the larger Windows population of devices already

leverage. For example, if you’re using Symantec products for other

platforms, you probably already have licensing and so will just use those

same tools to secure the Mac. However, as your deployment matures and

grows, you will end up with the political capital to go to your CISO and

argue for the tools that work best for the platform (see Appendix 1) or to

explain why those tools are irrelevant for the platform your team manages.

Some of the more talented administrators might read this chapter and

be surprised that something wasn’t covered. We included the links to

Apple’s security documents and didn’t want to duplicate any of the

content covered there. Additionally, the chapter is the longest in the book

and some aspects of securing devices simply couldn’t be covered. Now

that you’re starting to get a number of different tools running on devices

throughout your enterprise, let’s shift our attention toward testing, so you

can make sure everything works when Apple accelerates the rate of change

in their systems even faster in the years to come.

Chapter 8 Securing Your Fleet

471© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_9

CHAPTER 9

A Culture of
Automation and
Continual Testing
Apple is on an annual release cycle for operating systems. Apple has a new

point release in beta pretty much at all times. And there’s a new version

of Firefox released every 18 minutes (or what seems like 18 minutes). This

means that the next thing is always around the corner. And to compound

problems, rather than pushing updates to computers and iOS devices,

updates are now automatic. With a major OS release and three or more

point releases per year, it’s time to get a solid plan for how to always be

testing together, if you haven’t already.

This chapter can be a career path as much as it can be a guide. Once

you get comfortable with the command line parts of this chapter, there’s

the automation. Once you’ve gotten comfortable with the automation,

there’s the more specific DevOps types of automations. Once you’re

comfortable with that, you can work at most any startup on those same

solutions. Malcolm Gladwell claimed it takes 10,000 hours with a topic to

master it, in his book Outliers.

Once you get there, you have the opportunity to make a deliberate

decision about the future of your career, given that your skillset will be

472

equally if not more valuable to software development companies who

always need more help in that confluence between development and IT

operations (or if you mash it up, DevOps).

The scripting options available on the Mac allow access to be able to

do almost anything you want on a device. Those have been reduced here

and there in recent years with the advent of the sandbox, or technology

that blocks automations and other apps from doing things those processes

aren’t entitled to do. But scripting and automating events on the Mac,

and on the management tools you use to orchestrate events on Mac and

iOS is still a critical skillset, and one that has the potential to save your

organization massive amounts of labor as your integration grows, as would

be the case with any platform.

There’s a maturity scale that usually works in testing. The first phase is

manual testing. You build a list of what you want to test and then you add

things that failed as you go. This allows organizations to run through those

tests with each update and to try and catch errors before they appear on

you client computers and hold updates back where possible in order to

prevent frustrations with the people that use systems.

The second phase is often to start automating those tests. Here, you

pull a tool or set of tools into the workflow and either look for a setting

(e.g., a defaults domain) or a state that a system should be in. We typically

refer to this as automated testing, and while there are a lot of tools out

there to help with automated testing, not all work on the Mac, or those that

do aren’t as mature as similar tools for other platforms.

The third phase usually coincides with bringing on teams to build apps

that help organizations close gaps in workflows. Here, we move from the

automated testing of the state of a device to the automated testing of how

an app performs. This is a very mature industry with lots of competing

products and processes.

This chapter takes us through those phases and then provides a little

information on how to streamline the build operations using common tools

so people across your organization can have visibility into what stage each

Chapter 9 A Culture of Automation and Continual Testing

473

update is in. Not that people look at that information usually, but it’s good

to provide transparency where possible. As a side effect you get automation

into task or service management systems for free when doing so!

�Scripting and the Command Line
One of the greatest strengths of macOS is the abundance of scripting

languages supported out of the box. Many of these languages are

interpreted by a host program rather than run directly as lower-level

machine code, and thus they are text files with human-readable syntax.

Because such languages are translated into machine code at run time,

interpreted programs are sometimes much slower than their compiled

equivalents. However, because you can edit these programs and then run

them immediately, they are common tools used by system administrators

to automate tasks.

Some interpreters are specifically made to run code such as Python,

Perl, or Ruby, while others are more interactive and are meant for day-

to-day use, facilitating most of the command-line administration tasks

covered in this book. Typically, this interactive interpreter component

is referred to as a shell. The primary purpose of a shell is to translate

commands typed at a terminal into some kind of system action, or to send

a command. In other words, the shell is a program through which other

programs are invoked.

There are several different UNIX shells, including the C shell (csh),

the Bourne shell (sh), and their more modern equivalents, tcsh and Bash.

In the most recent versions of OS X, new users are assigned the Bash shell

as the default shell. In early versions of Mac OS X, the default user shell

was tcsh, perhaps due to the presence of Wilfredo Sanchez on Apple’s

team. The former lead engineer for macOS was also a developer of the

tcsh shell. However, Bash has proliferated through the various Linux

distributions and has become one of the most prominent shell programs

Chapter 9 A Culture of Automation and Continual Testing

474

in use today. Perhaps recognizing this, Apple switched the default shell

to Bash in Mac OS X 10.3 Panther, and it remains as such today in OS X

10.14 Mojave. Given new security options, the default shell will move to

zsh in macOS 10.15.

While the choice of a shell and its resultant scripting language can

sometimes be difficult, we recommend you learn at least the basics of

the Bash shell before moving onto any other shell and language that may

be better suited to your higher-level tasks. This is because, unlike with

languages such as Python or Perl that are more strictly used for scripting,

you will typically use the Bash shell every time you open up a terminal

to run any command. The more comfortable you become with Bash

scripting, the more you may find yourself writing one-line scripts that

allow you to automate even basic operations.

In this chapter, we present some basic building blocks you need to

build your own complex automations. In the process, we attempt to show

you some real-world syntax examples of scripting in action. Hopefully by

the end of this chapter, you’ll be armed with enough knowledge to tackle

the problems you face in your environment. We’d like to make a strong

point at the outset: while you do not have to use the command line to be

a good system administrator, most good system administrators do. This

is because a simple operation, such as creating a series of folders, can

be done using basic scripts, and in using these scripts you will find your

administration becomes not only more efficient but also (and importantly

in large environments) more consistent.

This chapter is not intended to provide in-depth coverage of all shells;

that could be a book unto itself. This chapter will introduce you to scripting

with zsh and bash and then supply some information on Perl for those

who begin to outgrow the standard command line environment. We will

walk through the basic constructs and control statements, providing a

decent foundation for you to build on. Due to its default support in the

latter iterations of macOS, we will focus primarily on the Bash shell syntax.

Chapter 9 A Culture of Automation and Continual Testing

475

�Command Line Basics
Every shell has some built-in functions that it performs directly, but

most commands you enter cause the shell to execute programs that

are external to the shell. This sets the shell apart from other command

interpreters, as its primary mechanism for invoking functionality is largely

dependent upon other programs. That’s not to say that shells don’t have

built-in capabilities. They do; they can read, create, and append files and

manipulate data through globbing and variable mangling, and they can

utilize looping constructs. However, the ability to parse and extend that

data will more often than not require external calls. This chapter seeks to

arm you with the ability to fully utilize the Bash shell’s internal functions,

as well as introduce pertinent external functions that will help you to fully

employ the power of the command line.

The first step toward learning the shell is actually firing it up and

getting your feet wet, preferably on a nonproduction box. In OS X, this

is done simply by opening up the Terminal application on your system.

When the application opens, provided your user account has the default

shell assigned, you will be presented with a Zsh prompt, something like

krypted:~ cedge$

The default prompt consists of the following template:

computername:current directory username$

In this example, the current directory is ~. The tilde represents a user’s

home directory. Thus, for any respective user, ~ expands to /Users/

username. The tilde can be used when specifying paths for commands. You

can always reference your own home directory via ~, and you can even

reference other users’ home directories as well:

krypted:~ cedge$ cd ~emerald

krypted:emerald cedge$ pwd

/Users/emerald

Chapter 9 A Culture of Automation and Continual Testing

476

In this text, we are issuing the cd command to change directories and

passing ~emerald as an argument. We can see at the shell prompt that

our new directory is emerald. We then issue the pwd command, which

outputs our current path. In this case, it’s Emerald’s home directory at

/Users/emerald.

Note P athnames can be passed to commands in two different
forms. An absolute path contains every folder and element relative to
the root (/) of the drive. A relative path contains items relative to the
current directory. For instance, if we run the command cd /Users,
we have provided cd with an absolute path to the Users directory.
Next we run the command ls emerald, providing a path emerald,
relative to our current directory, /Users. Alternatively, we can run the
command using an absolute path ls /Users/emerald and net the
same results regardless of the current directory.

�Basic Shell Commands
You’ll want to become familiar with the basic commands that are normally

used for administration. Here’s a very small list of some of the most

common ones used for basic Mac administration:

•	 cd: Change directory. This command takes a single

argument—a path to a directory. You can use cd .. to

change to the parent directory.

•	 pwd: List the current directory. Pwd accepts no

arguments.

•	 ls: List the contents of the current directory. Ls has

numerous options. A common set of arguments –hal will

show all items in list form (by default, any file beginning

Chapter 9 A Culture of Automation and Continual Testing

477

with a period is invisible) with human readable file sizes.

Optionally, a directory or file can be provided, and ls will

output either the file’s information or a directory list. For

instance, ls –hal /Users will output a detailed list of

files and folders present in the directory /Users.

•	 cat: Displays the contents of a file or concatenate files.

•	 more: Displays the contents of a file page by page and

allow you to scroll down to see the rest. Useful with

large files, when cat shows too much information to see

on the screen.

•	 less: Similar to the more command but displays the

contents of a file page by page and allow you to scroll

up to see the rest.

•	 tail: View the end of a file. Very useful when used with

the –f option, as you can watch the end of a log file and

view on the screen new lines as they’re written to the file.

•	 rm: Delete a file or directory. Rm offers several options.

It can be passed a file or directory for deletion. If

a directory is passed, the –r flag must be used to

recursively delete all contents. For instance, the

command rm –r /Users would delete the entire /

Users folder (probably best to avoid that one).

•	 pico: A very basic text editor for editing files from the

command line. Pico (nano) uses emacs-style keyboard

shortcuts, supports arrow keys for navigation, and is

pretty basic. It accepts a path to a file as an argument.

When you’re finished editing, type Ctrl+o to save and

Ctrl+x to exit the document. (Another common text

editor is vi, but that utility, though rewarding, is much

more difficult to learn.)

Chapter 9 A Culture of Automation and Continual Testing

478

•	 sudo: Execute a command with root privileges.

By default, this command can only be run by

administrators. It has numerous options, but in

its most basic form, it can simply be prefixed to

any command to execute that command with root

privileges. For instance, to edit a system configuration

file, such as Software Update server settings, run the

following, which invokes the defaults process with

root privileges:

	 sudo defaults write /Library/Preferences/

com.apple.SoftwareUpdate CatalogURL http://

swupdate.krypted.com

•	 history: Shows the last commands completed from

a command line. The history command requires no

other parameters or options.

•	 whatis: Searches the whatis database, handy for

determining the appropriate command to run. For

instance, by using the command whatis "change

owner", you can determine that the chown command

may be what you’re looking for. You can then use

the man command, discussed next, to determine the

capabilities of the chown command.

•	 Which: Shows the location of a command.

•	 man: Used to access manual pages for the hundreds

of command-line programs that come with your

computer, so it may well be the most important

command to know. For instance, you can type man

hier to see information on OS X’s directory structure,

while man chown brings up the manual page for

the chown command, giving you the syntax and

Chapter 9 A Culture of Automation and Continual Testing

479

functionality of that command. Man even has its own

manual. Explore how to use it: man man.

•	 find: Let’s you search for a file or directory by name.

Find is a fairly complex command and has a lot of

utility. In its most basic form, it can be used for a

simple directory search. For example, if you were

trying to hunt down .DS_Store files on a network

share mounted at /Volumes/MyCoolNetworkFolder,

you could run the command find /Volumes/

MyCoolNetworkFolder –name ".DS_Store". Pretty

nifty. Even better, find lets you take the output and

act on it. Say you want to delete all .DS_Store files.

To do this, run the command: find /Volumes/

MyCoolNetworkFolder –name ".DS_Store" –delete.

•	 echo: Used to output text to the stdout data stream

(discussed later in the section “Standard Streams and

Pipes”). When writing scripts, the echo command is

a great way to ensure that your script gives proper

feedback to the user.

•	 grep: Used in combination with piping to filter a

command’s output (piping is discussed later in the

section Standard Streams and Pipelines). For instance,

the command ls /Users | grep –i admin would

filter the output of ls /Users, outputting only user

home folders that match the admin criteria, using a

substring match so that user home “admin” would

match, as would “mycoadmin”. The -i flag means that

grep will ignore capitalization. In another form, grep

can be used to search files for strings. The command

sudo grep –r http://www2.krypted.com /etc/

apache2 would search the directory /etc/apache2 and

Chapter 9 A Culture of Automation and Continual Testing

http://www2.myco.com/

480

output the filenames containing the string http://

www2.krypted.com. The –r flag tells grep to recursively

search through a directory. You can omit the –r flag and

search across a single file if necessary. You can prefix

the sudo command to ensure that the grep search has

access to all necessary files.

•	 ps: List running processes. This command has

numerous arguments. One common iteration is

ps auxww. The flags auxww result in the output of all

running processes across all users on the system. You

can use piping to filter this list: the command ps auxww

| grep httpd will determine if the Apache daemon

(httpd) is running. If httpd is found, the command will

display the processes running id (the PID column), as

well as CPU and memory utilization.

•	 chmod, chown: Can be used respectively to change

permissions and ownership on a file or group of files.

Both commands utilize the –R flag to recurse across

all children of a directory. In the following example,

chown changes the owner of the folder /Users/cedge

to cedge and changes the group to admin. We then

utilize chmod to ensure that the owner (o) has both

read and write (rw) access:

	 chown –R cedge:admin /Users/cedge

	 chmod –R o+rw /Users/cedge

•	 kill: Terminate a running process. This command has

a few optional arguments, but in its most basic form, it

is simply given the process ID of a running process to

terminate. A process’s ID can be determined through

the ps output, as discussed above. The kill command

Chapter 9 A Culture of Automation and Continual Testing

http://www2.krypted.com
http://www2.krypted.com

481

must be run with root privileges via sudo in order to

terminate a process running as root. Other common

flags include -HUP, which can be used to restart a

process. Alternatively, the infamous -9 argument,

equivalent to –KILL, can be used to forcibly terminate

a process without prejudice regardless of state or any

pending activity.

•	 curl: Communicates with a web server to download

assets. This command can be used to download

files from a web server but also has flags for placing

information into a header; usually necessary for

interacting with a REST interface to an API.

These are merely a selection of the available commands. If you know

a few commands that, when executed, will complete a larger overall task,

you can then combine them to make a program, which we’ll call a script.

This is how most people start to learn shell scripting.

Note T he command-line interpreter (e.g., the bash shell or zsh
shell) has the ability to search back through your history file. Press
Ctrl+r to do a “reverse” search through the history file by typing
some or all of the original command or its arguments. Continue to
press Ctrl+r to cycle through previous incarnations.

To switch between shells, you need only type the name of the shell

you desire to use. As you alternate between shells, you’ll notice that the

appearance of the screen and the area where you input text appears

slightly different.

Chapter 9 A Culture of Automation and Continual Testing

482

�Shell Scripting
The makings of a typical script includes a shebang line #!/bin/zsh,

variable declarations "declare FOO=BAR" , and optionally command

variable declarations. This is all we need to create a static script. We

will cover these terms more in-depth in the following section, as well as

explore the logical constructs that make a script such a powerful wrapper

for the command-line tools OS X provides. To put these into a single script,

we would simply create a file with those lines and then a third to echo the

results:

#!/bin/zsh

"declare FOO=BAR"

echo $FOO

The Bash shell is based on the Bourne shell (sh) and is syntactically

backward-compatible. In fact, the b and a in BASH stand for Bourne

Again, a tribute to sh and its author Stephen Bourne. The Bash shell is very

capable and has support for numerous control statements. This includes

support for standard control statements: if/elif/else constructs, case

statements, as well as for, while, and until loop statements.

A control statement in a programming or scripting environment

provides ways for a coder to control the execution of code. These

statements provide the means to perform basic tests on data, which will

then define the flow of execution, all based upon the criteria we design.

Through the use of if/else and case control statements, we can control

whether or not code gets executed at all. These functions are referred to

as branching statements, as they control specific paths of code execution.

Looping statements, such as for, while, and until, are control statements

that allow for reuse of code through iteration. Shell scripts provide looping

statements in the form of “for”, “until”, and “while” loops. Each of these

looping statements provides capabilities to help you manage highly

Chapter 9 A Culture of Automation and Continual Testing

483

repetitive tasks. Control statements serve as the fundamental tools for

logical execution of your code, which we’ll show later in this chapter.

Shells also include some internal data manipulation routines, provided

via globbing and variable mangling, though for any advanced parsing,

such as regular expressions, you’ll be much better off with an external

program that is suited for the purpose. That being said, we’ll walk you

through some of the commonly used constructs, which will bestow upon

you the building blocks toward implementing your own automations.

Note O n many systems, /bin/sh is linked to the Bash or zsh
installation. However, be aware that with Bash built upon the basic
sh constructs, language like “declare” will not work when called from
an sh script. We will show you how to set the shebang to specify
that your script runs in Bash; you can add the code at the top of your
script [-z "$BASH"] && exit 1 to check for this as well.

�Declaring Variables
Variables are the single most important concept of scripting in relation

to automating administrative tasks. While other languages have relative

benefits, most admins typically end up using Bash for basic day-to-day

administration, where many tasks can be accomplished by very simple

scripts, or even a single line of chained commands (“one-liners”). A one-

line script could look something like this:

systemsetup –setnetworktimeserver my.pretendco.com

In the preceding script, we have called the systemsetup command

along with an option to set a network time server and then the name

of the time server. But perhaps you are in a Windows Active Directory

environment and the server you use for time is also your authentication

Chapter 9 A Culture of Automation and Continual Testing

484

server. Your script may have “my.server.com” listed 10–20 times by the

time you are finished if you didn’t use a variable. This is because you often

need sanity checks or loops as a script matures and you find reasons it may

have failed when run. Now imagine you need to change that code later

on. You could cut and paste all 20 lines, but if you use variables you can

declare the server once and then retrieve this value over and over again in

your script. You can even then use it to echo output as well.

Each variable has a name that uniquely identifies it within scope.

Variable names need to begin with an alphabetic character and cannot

contain a period. In other words, if you work for a company called 318,

you’d often need to declare variables called, for example, “THREE18”

to avoid starting with a number. Variables can’t be longer than 255

characters. Even for your one-liner scripts, using variables will allow them

to grow over time and cut down on the number of typos, as you have just

one line rather than 20 to check when you have a problem.

#!/bin/zsh

declare TIME_SERVER="my.pretendco.com"

systemsetup –setnetworktimeserver "$TIME_SERVER"

echo "Time Server: $TIME_SERVER has been set"

When a variable is used in a script, the script “expands” the variable to

its respective value (in this case $TIME_SERVER becomes “my.pretendco.

com”). However, a variable may not always contain string data, which

is why you can have a dynamic error message using the simple echo

command. Because of this, it is important to always double quote

variables. Expansion works within double quotation marks, not single

quotes. Double quotes also help when working with file-system paths that

have spaces, often the cause of issues with novice users. When in doubt,

quote. If you want to see variable expansion as it occurs (often helpful for

debugging a script), add -x to the shebang, like this: “#!/bin/zsh –x”.

In traditional programming languages you must declare a variable

and the kind of information that will go into it before using the variable

Chapter 9 A Culture of Automation and Continual Testing

485

(in other words, you tell the script what’s going into a variable before you

actually “put” something in it). In modern scripting languages, this is

usually considered good practice (and great for readability), but it’s not

required. In the Bash shell, the command to declare a variable is declare.

When you declare a variable, you can then call it multiple times, adding

and removing data from it, augmenting it, or just reading it for reference.

For example, in Bash, the two following statements are equal to one

another, or produce the same output:

#!/bin/zsh

declare –i CUSTOM_PORT=8088

echo "My software update server is running on port $CUSTOM_PORT."

Example script 2

CUSTOM_PORT="8088"

echo "My software update server is running on port $CUSTOM_PORT."

In the first example, we are explicitly defining the variable CUSTOM_

PORT as an integer and setting it to 8088. In the second, typecasting in

Bash automatically determines the type of data that a variable contains.

Typecasting occurs when a variable is set to a certain type (such as an

integer) and then used to store a different data type (say the string “Hello

World”). In this case, there is a type conversion from integer to string. While

both of the preceding examples work, relying on automatic typecasting can

present problems in certain circumstances; if your script logic is expecting

a numeric (integer) value and is passed a string instead, your script will die

with a fatal error. The following script shows how this works:

#!/bin/bash

A simple script that checks if a console user is active

We will cover the "who | grep 'console' -c" portion later

for now just know that this test will return "1" if a user

is logged in and nothing if no one is logged in

declare -i CONSOLE_USERS="`who | grep 'console' -c`"

Chapter 9 A Culture of Automation and Continual Testing

486

The command above returns nothing if no users are logged in.

However, when declared as an integer, if this variable is

set to a null / nothing string, it will convert that to the

number zero; that way the result of the command doesn't matter.

We can always rely of the result being a numerical value,

which we can then numerically test against, using the greater

than or equal to syntax -ge. This type of test expects

CONSOLE_USERS to expand to a numerical value

If we did not use –i, then any numeric tests on $CONSOLE_USERS

would fail if there were no users logged in. The script would

expand CONSOLE_USERS to nothing instead of 0

You can test this by changing the declare line above to

declare CONSOLE_USERS=

which will simulate the command returning nothing

and without the use of the –i, it will stay just that: nothing

which will cause the test below to fail with the error:

"line 17: [: -ge: unary operator expected"

if [$CONSOLE_USERS -ge 1] ; then

 echo "Console user logged in, exiting…"

 exit 1

else

 echo "No console users, we can go to town..."

 # Your code goes here

Fi

This script uses comments to explain the flow of the script; these are

covered later in this chapter. For now, be aware that any line that starts

with a # (except for line 1) is a comment and the script will not “run” that

text. This is a best practice and you should always comment all of your

code, adding notes to explain your script’s logic and activity. The more

complicated a script gets, the more important that commenting becomes.

Chapter 9 A Culture of Automation and Continual Testing

487

If you do not comment the script effectively, you will not be able to trace

your own steps at some point, much less have anyone else be able to take

over your work when you, say, get a promotion to Senior Deity of Computer

Operations for integrating 10,000 Macs into your enterprise in a week.

�Expanding on ZShell
The default shell changes to zsh from bash in macOS 10.15. Most scripts

that existed prior to macOS 10.15 are likely to work fine, but there are some

differences between these shells, which we’ll cover in this section.

To quickly see which you’re using (e.g., when testing a new release),

use $0:

echo $0

Z Shell or zsh for short was written by Princeton University student

Paul Falstad in 1990. Most shells are just extensions of the Bourne shell

(including bash) and work similarly but there are minor differences

here and there. Yes, Z Shell comes with a control-R reverse incremental

search, but that’s not a good reason to make this kind of change. Z Shell

is more modern (e.g., more customizable autocompletion, use Alt + . to

put parameters from the previous command into your next command,

slicker tabbed auto-complete), considered by some to be more secure (not

considered as such by others). One of the most visible of these features for

Apple administrators will be file globbing. This is where you use an asterisk

(∗) to list file contents. To step through this example, we’ll declare the

Contents variable in bash and echo the contents:

Apps=*

Then let’s read the contents of that $Contents variable:

echo $Apps

Chapter 9 A Culture of Automation and Continual Testing

https://www.falstad.com/

488

The output would be as follows, a basic list of files (assuming the

directory you ran it in is /Applications):

About This Mac.app Archive Utility.app DVD

Player.app Directory Utility.app Feedback Assistant.

app Folder Actions Setup.app Network Utility.

app RAID Utility.app Screen Sharing.app Storage

Management.app System Image Utility.app Wireless

Diagnostics.app

Now let’s do the same operation in zsh. The output shows that the ∗

was accepted literally:

*

So to get the same result, wrap the globs in a () as follows (which

includes two to trap for hidden directories):

Apps=(*(N))

The security benefit here is that you don’t accidentally include

something you’re not supposed to while getting more options for dealing

with expansion. If this doesn’t work because you have a lot of scripts

deployed and are in the midst of an upgrade, you can do this the same old

way by enabling globsubst with the default shell or simply include bash in

the shebang of any scripts you’re running.

Another difference would be the way directory aliases are handled.
The alias command in zsh allows for expanded aliases anywhere in a line.

To put this in context, let’s grep output to something with an alias:

alias -g GS="| grep something"

Then cat that output:

cat somefile GS

Chapter 9 A Culture of Automation and Continual Testing

489

Another change includes environment scripts. These are:

•	 zlogin: Sets environment variables and commands that

won’t change often, as you have to re-invoke the login

for the changes to take effect.

•	 zlogout: Clears out terminals and resources set by

zlogin, in order to release any resources being taken up

unnecessarily.

•	 zprofile: Similar to .zlogin except that it’s sourced

before .zshrc instead of after .zlogin. The two shouldn’t

be used concurrently.

•	 zshenv: Sets the search path and environment variables

unless a -f is provided to start a session those.

•	 zshrc: Set up aliases, functions, key bindings, shell

options, and hosts for autocompletion. This is used for

interactive shells.

Other areas where zsh is different (some of these will be lesser used,

but should benefit more advanced administrators):

•	 Don’t set BASH_ENV (obviously), ENV, or SHELL

the same.

•	 exec changes (see http://zsh.sourceforge.net/Doc/

Release/Shell-Builtin-Commands.html for more on

how zsh does this).

•	 Native hashed data structure support in zsh

using typeset.

•	 The zsh interpreter doesn’t have an -x option like

in bash.

•	 Remove any PROMPT_COMMAND entries.

Chapter 9 A Culture of Automation and Continual Testing

http://zsh.sourceforge.net/Doc/Release/Shell-Builtin-Commands.html
http://zsh.sourceforge.net/Doc/Release/Shell-Builtin-Commands.html

490

•	 Replace any calls to getopts with zparseopts.

•	 SHELLOPTS isn’t run at startup, although zshrc, zlogin,

and zprofile can be run at different times during the

startup of the shell.

•	 Use zcalc for all the maths including floating point

support not present in bash natively: autoload -Uz zcalc.

•	 -norc doesn’t skip anything.

•	 -rcfile calls.

•	 Spelling corrections.

•	 There is no restricted mode (--restricted) in zsh.

•	 There is no posix mode (-o posix) in zsh.

•	 You can autoload extensions like zmv in zsh.

Another reason Apple engineering picked zsh is that it’s modular.

This means you can load modules that help provide things like additional

file manipulation commands (zsh/files), use posix regex (zsh/regex), or

deal with sockets (zsh/net/socket). To check out a list of plugins that are

available, see https://github.com/unixorn/awesome-zsh-plugins. In

general, zsh is a more secure and modern shell environment, and despite

the transition period for administrators, it’s easy to understand why Apple

engineers felt it a better option that leaving bash as the default shell.

�Variable Mangling
The various shells have several facilities for internally altering data

in variables. This is referred to as “variable mangling,” and there are

numerous string operators to be applied to a variable that will filter its

value. Mangling uses curly brackets {} that enclose the variable name

prepended to a number of possible special operator characters.

Chapter 9 A Culture of Automation and Continual Testing

https://github.com/unixorn/awesome-zsh-plugins

491

One common use of variable mangling is to perform pattern matching

on a variable, both left to right (specified by the hash (#) character) and

right to left (specified by the percent (%) character):

MY_VAR="the value of a variable"

echo ${MY_VAR#the}

 returns: "value of a variable"

echo ${MY_VAR%a *}

 returns: "the value of"

This can be handy for grabbing filenames, or extensions explicitly:

MY_FILE=songname.mp3

echo "Filename: ${MY_FILE%.*} extension: ${MY_FILE##*.}"

The return is then as follows:

Filename: songname extension: mp3

Notice the use of the greedy string operator (##); this ensures that even

if the file has additional periods in its name, the only one we consider

the extension (and thereby exclude from our filter) is everything past the

last dot. The ability to remove file extensions this way is very handy. For

instance, the Apple defaults command use to require you pass in the

filename without the .plist extension (no longer the case today). In the

following script, we utilized this method to isolate the file extension when

needed, allowing us to perform our operations. The commands here are

not as important as the concept—that now we can use the same variable

for both operations and have the extension automatically removed for

commands that require it.

#!/bin/zsh

declare -i TIME_OUT=5

This sets the timeout of the AD plug-in in 10.5+

Chapter 9 A Culture of Automation and Continual Testing

492

declare PLIST_FILE=\

"/Library/Preferences/DirectoryService/ActiveDirectory.plist"

�The path of the plist \ is used to continue the command on

the next line

�Note that the path has a .plist extension, which normally

would cause

�The defaults command to fail. However, with variable mangling

we can

�remove the .plist extension of the PLIST_FILE value when we

use it

�with defaults and then call it normally when we use a command

that

�requires a more standard path with file extensions like plutil.

if [-w "$PLIST_FILE"] ; then

 �defaults write "${PLIST_FILE%.plist}" 'LDAP Connection

Timeout' $TIME_OUT

 plutil -convert xml1 "$PLIST_FILE"

else

 echo "File is not writable try sudo $0"

fi

Note  We use a variable that is automatically set by the shell,
$0 here. This is the full path to the script and it’s good for making
dynamic usage error messages match your script path and name
automatically.

Another form of variable mangling provided by Bash is substitution,

which uses four operators, :-, :=, :+, and :?. Suppose I use the command

Chapter 9 A Culture of Automation and Continual Testing

493

echo ${MY_VAR:-hello}. If the variable MY_VAR exists and isn’t null, the

command will output its value. If MY_VAR doesn’t exist or has a null value,

the string “hello” will not print out. The := operator is very similar. The main

distinction is that when := is used, it will set the variable $MY_VAR to the value

specified, in this case “hello.” The :+ operator is essentially the inverse of the

:- operator. In the command echo ${MY_VAR:+hello}, if $MY_VAR exists and

is not null, then we return “hello.” If it doesn’t exist or is null, it will return a

blank value. Lastly, the :? operator can be used to perform sanity checks.

For instance, when used with the syntax echo ${MY_VAR:?my error}, if the

variable $MY_VAR is not set, the script will immediately terminate, printing

the error message “my error.” If no error is specified, a generic “parameter

null or not set” error is output, along with the variable name. Use of the :?

operator is a great way to ensure that critical variables are set.

Note S cripts can be very damaging if certain operations are called
with malformed data, so be extra diligent in using these string
operators to verify that appropriate values are set.

All shells also provides further capabilities for data substitution via

the / and // operators. For instance, if MY_VAR has a value of Hello World,

the command echo ${MY_VAR//Hello/Hi} would output the text Hi

World. The use of // vs. / simply denotes how greedy the matching is:

echo #{MY_VAR/o/a} would output Hella World, while the command echo

#{MY_VAR//o/a} outputs Hella Warld. A real-world example of this follows.

Excuse the rather hacky use of AppleScript via osascript to get this MAC

address value, but it’s a simple way to get only your MAC address returned.

#!/bin/zsh

declare MAC_ADDRESS=`osascript -e 'primary Ethernet address of

(system info)'`

echo "Address with colons: $MAC_ADDRESS"

echo "Address without colons: ${MAC_ADDRESS//:/}"

Chapter 9 A Culture of Automation and Continual Testing

494

The above are fairly simple scripts and wouldn’t require much to

make them much more interesting in terms of their capabilities. We’ll

keep providing a little more complexity to what we’re doing and move into

streams and pipes in the next section.

�Standard Streams and Pipelines
In any ∗nix terminal environment, numerous information channels exist

that control the flow of information between a process and its console

session. The three primary data channels from a scripting perspective

are standard input (stdin), standard output (stdout), and standard error

(stderr). These data streams can be captured, evaluated, and redirected

through scripting.

•	 Standard input, or stdin, represents data resulting

from a read operation. This can be text input via

keyboard or text that has been programmatically

redirected.

•	 Standard output, or stdout, represents any data output

by a program. The output will typically go to the current

console session but can also be redirected to other

programs or files.

•	 Standard error, or stderr, is a data channel that

represents textual error information. For instance, if a

program detects an error in one of its subroutines, it

will typically spit the details of this error out to stderr.

Understanding the use of these channels by any

program you intend to script will help you to more

efficiently write your code.

Chapter 9 A Culture of Automation and Continual Testing

495

As mentioned, we can use pipelines or redirects to control the flow of

data between separate programs. The most common use of pipelines is the

practice of piping stdout from one script to stdin of another. For example,

we call the command

ps auxww | grep –v "grep" | grep –c "Finder"

If you were to look up the man page for grep (man grep), you would

find that the program takes optional flags and two arguments, a string

pattern and a path to a file. However, in this context, we are simply calling

grep with only one argument. How does that work? Well, the answer is

due to our implementation of command pipes |. As mentioned, the pipe

is used explicitly for passing data between programs. In this case, we

are passing data from the ps command out to grep. The grep command

recognizes that it is being passed data over stdin and utilizes this data as its

second argument. After filtering this data and removing any occurrences

of the term grep, it outputs the modified data to stdout, which is piped to

yet another instance of grep. This program is responsible for outputting a

numeric count for the number of times the term Finder appeared in data

passed to it through stdout. In a command pipeline, the resulting text

output will be that parsed by the final command in the chain.

In many cases, you may want to redirect the flow of data to a file.

To do this, you use data stream redirectors. In Bash, the most common

implementation of redirectors is through the >> and > operators:

ps auxww > ~/process_list.txt

In this example, we are redirecting stdout of the ps program to the file

located at ~/process_list.txt. The use of the > operator means it will

overwrite any data that previously existed with the file. Thus, every time

the above command is run, the file will contain only data from the most

recent operation. The >> operator in contrast is an append operation; any

data previously will simply have our latest data added to it. This is a less

destructive redirect and is desirable in many scenarios.

Chapter 9 A Culture of Automation and Continual Testing

496

It is also possible to redirect the data streams themselves. For instance,

perhaps we want to set a variable to the output of the ls command:

lsTxt=$(ls /Applications)

This syntax will capture the output of the ls program’s stdout as a

single string. However, if ls is passed a nonexistent path, it will output its

text to stderr, which will never be passed to our lsTxt variable. To address

this issue, we can use data stream redirects once again. To pull this off, we

want to redirect the stderr channel (in ∗nix systems channel 2) to stdout

channel, channel 1:

lsTxt=$(ls /Applications 2>&1)

This way, lsTxt will contain either the file listing or any subsequent

errors. With Bash, it is also possible to perform two redirects:

ls /Applications >> /lsLog.txt 2>&1

In this context, we are redirecting stdout to append our file found

at /lsLog.txt. However, we are also redirecting stderr to stdout. This

command will output the results of both data streams into the file. This

becomes a handy way to log all activity reported by a process, rather than

just merely relying on stdout.

�If and Case Statements
If/else and case statements serve primarily as traffic routers. Both of these

facilities are specifically referred to as branching statements; their purpose

is to directly affect the flow of code. For instance, perhaps there is a VIP

user on the network who needs VIP treatment. If this particular user logs

into a computer, we need to ensure he has a “Deep Thoughts” folder on

his desktop, and then perhaps we need to prune this folder for old files,

sweeping them away into a “Stale Thoughts” folder. In the end, the specific

task doesn’t really matter, it is only important that we recognize that all of

Chapter 9 A Culture of Automation and Continual Testing

497

this activity represents a “branch” of code; a full path of activity initiated

by the evaluation of an initial if statement. That if statement represents

a test—is this user my VIP? If he is, the next step is a flurry of activity.

Otherwise (else) skip the code and proceed as usual.

Note  When coding or scripting in any language, the general rule of
thumb when implementing branching statements is to organize your
code so that the most commonly executed branch is in the first block.

For basic string comparison, both if/else and case statements are

pretty similar, though lengthy case statements tend to be easier to read

than lengthy if/else statements. Here is the syntax to implement each in

Bash (Note: the USER variable is set automatically by the Bash shell and

expands to the username of the user running the script):

Check to see if our user is "jdoe"

if ["$USER" = "jdoe"]; then

 echo "My name is John"

 exit 0

elif ["$USER" = "janedoe"]; then

 echo "My name is Jane"

 exit 1

elif ["$USER" = "jsmith"] ; then

 echo "My name is jsmith"

 exit 1

else

 echo "Failed over to catch all…"

 exit 192

fi

While the above works, it's rather ugly, so a case statement

normally is much more readable

Chapter 9 A Culture of Automation and Continual Testing

498

case statement

case $USER in

r"jdoe")

 echo "My name is John";

 exit 0;;

 "jsmith")

 echo "My name is jsmith" ;

 exit 1;;

 "janedoe")

 echo "My name is Jane";

 exit 1;;

 *)

 echo "Failed over to catch all...";

 exit 192 ;;

esac

Note  When you are using case, you will specify each entry with
a ;; following the line, and then when all possible matches have
been specified, you will use esac (end of case) to close out the case
statement.

We have introduced a few new concepts here. First, the test brackets

[]. The use of brackets represents a conditional expression, which will

ultimately evaluate to true or false. In Bash, test brackets are used with

conditional operators to form tests. One example of this is in the previous

example’s if statement:

if [$CONSOLE_USERS -eq 1] ; then

\

Chapter 9 A Culture of Automation and Continual Testing

499

This logic in English would translate as: if the string variable $USER

is equal to the string “jdoe”, execute the following code. In this case, “is

equal to” is syntactically denoted by a string comparison operator, =,

which compares two arguments (referred to as a binary operator) and

returns true if they have equal string values. It’s antithesis != will return

true if the two given arguments are not the same. In our case statement,

the variable $USER is tested in a similar fashion (=) against each of our

possible matches, each denoted by the values specified prior to the closing

parenthesis. When a match occurs, the respective code block is executed

until it reaches the break specifier ;;. In the case statement, the last line

*) represents a wild card, and is the equivalent to an else block in an if

statement; its execution is dependent on all prior matches failing.

Caution N ot all languages, such as PHP and Python, regard the
symbol = as a comparison operator, and will actually interpret it as
a value assignment. In many cases, it is best to use the == operator
to do string comparison to prevent alteration of your variable’s value.
The == comparison operator is fully supported by Bash.

In addition to these two binary operators (= and !=), Bash provides

several arithmetic-based binary operators:

-eq: arg1 equals arg2

-ne: arg1 does not equal arg2

-lt: arg1 is less than arg2

-le: arg1 is less than or equal to arg2

-gt: arg1 is greater than arg2

-ge: arg1 is greater than or equal to arg2

Chapter 9 A Culture of Automation and Continual Testing

500

Besides binary operators, the test facility provides us with many

valuable unary operators (to test against a single argument). Unary

operators more often than not are used to perform tests against filesystem

objects. Two of the most common unary operators are –f and –d, which

respectively test for the presence of a file or directory.

if [-d /System/Library/CoreServices/Finder.app]; then

 echo 'Finder was Found!'

fi

This code will print the text “Finder was found!” if a directory exists at

the path /System/Library/CoreServices/Finder.app (which is true in any

OS X system because the Application bundle “Finder” is in fact a directory

like almost all modern apps). There are numerous unary operators, most

easily found by consulting the man page for test, using man test. Here are

some that are notable:

-f string: true if string is the path to a regular file

-d string: true if string is the path to a directory

-r/-w/-x string: true if string is a file that is

readable, writeable, or executable (respectively)

-L string: true if string is a path to a symbolic link

-z/-n string: true if string is zero or non-zero

length (respectively)

Note  You can also run these checks directly using the test
command (although you might have to wrap the test condition into
quotes or double parenthesis depending on exactly what you’re
attempting to test), like so

test –d /Users/ && echo "directory exists"

Chapter 9 A Culture of Automation and Continual Testing

501

#!/bin/bash

if (["$USER" == "janedoe"] || ["$USER" ="jsmith"]); then

echo "User is jane or john"

else

 echo "User is not jane or john"

fi

In the if/elif example, we also demonstrate the use of the logical OR

operator ||:

if (["$USER" ="janedoe"] || ["$USER" ="jsmith"]); then

The logical OR operator and its partner the logical AND operator (&&),

often referred to as Boolean operators, are used to test against multiple

expressions. In the implementation earlier, we are using the logical OR

operator to test against two possible usernames, janedoe and jsmith.

We want to know if a user is either of these usernames, so we need to

be able to run both tests. In this example, if we used && instead of ||,

the end result would always evaluate to false, as the $USER variable will

never be equal to both values. When using logical operators && and || to

combine expressions, execution of the control statement will terminate

immediately after it evaluates to false or true, respectively. Thus, in the

preceding example, if the username is janedoe, the test will never be

executed against “jsmith”. In similar spirit, if we used && in that statement,

the test against “jsmith” will only ever get tested if the first expression

is true (the username is “janedoe”). Understanding this becomes very

important to writing clean, effective code. Recognizing this, we can take

previous example:

if [-d /System/Library/CoreServices/Finder.app]; then

 echo 'Finder Found!'

fi

Chapter 9 A Culture of Automation and Continual Testing

502

and then slim it down to a single “one-liner”:

[-d /System/Library/CoreServices/Finder.app] && echo 'Finder

found!'

As we learned earlier, if our expression returns false (in this case

because the Finder.app directory could not be found), then the test will

abort and the printf statement will never fire. In this iteration, we are also

omitting our if control statement, as our branching code (printf "Finder

found!\n") can easily fit onto a single line.

In our previous example, the case statement as you may have deduced,

also uses a logical OR operator, implemented by supplying multiple

matches in a single test block:

case "$USER" in

"janedoe")

 echo "My name is Jane Doe";;

"jsmith")

 echo "My name is John Smith";;

*)

 echo "Remember Sammy Jenkins…";;

esac

In this example, by placing both “janedoe” and “jsmith” together, we

are implying a logical OR between the two values. A case statement will

then perform a string comparison of $USER to the string “janedoe” and

if no match is found, will test against “jsmith” and so on. Once a match

is found, it will execute any preceding lines of code until it runs against

our break specifier (;;). In the case of janedoe or jsmith, a match would

result solely in the execution of the code: echo “My name is Jane Doe”.

Case statements, unlike if/else statements, do not have access to the more

advanced unary or binary operators provided by Bash. They are pretty

much limited to string comparisons and thus provide only limited (but

important) functionality.

Chapter 9 A Culture of Automation and Continual Testing

503

�For, While, and Until Statements
So, at this point, we have learned how to define the flow of our program

through the use of branching statements, expressions, and conditional

operators. Automation, however, is rarely about performing an operation

once; the benefits of automation lie in the ability to scale production as

needed with minimal investment. Automation is particularly well-suited

for boring, repetitive tasks that will result in hundreds, thousands, or even

millions of iterations. To harness the ability of repetition and iteration,

Bash provides three looping statements: for, while, and until. The for

loop is utilized for iterating over items.

declare plistbuddy="/usr/libexec/PlistBuddy"

declare python="/usr/bin/python"

REQUIRED_COMMANDS="$plistbuddy $python"

for COMMAND in $REQUIRED_COMMANDS; do

 if [-x $COMMAND] ; then

 echo "Command: $COMMAND is installed"

 else

 echo "Command: $COMMAND is missing"

 fi

done

Every element of this script is native to Bash, and would output the text:

Command: /usr/libexec/PlistBuddy is installed

Command: /usr/bin/python is installed

Chapter 9 A Culture of Automation and Continual Testing

504

Note T o determine if a command will result in the execution of an
external program, use type followed by the name of the function. If
the process is external to the shell, it will specify the absolute path
to the binary (as found in $PATH). For example: type echo returns
echo is a shell builtin, meaning that Bash will use its
internal echo ability rather than the external command /bin/echo
when the echo command is called in a script.

The while and until statements are used for building more

customized looping structures. The -ge operator allows us to loop while

certain criteria are met:

while [$(ps aux | grep –v "grep" | grep –c "Finder") –ge 1];

do

 echo "Finder is still running"

 sleep 15

done

In this example, there are a few new concepts. First and foremost,

whenever we use expressions, they are primarily expecting string

arguments. If we want to call an external program inside of an expression,

we must designate that the text not be treated as a string, but rather as an

external process. To do this, we wrap the entire command pipeline inside

of $(). This wrapper tells the shell to evaluate the contents of the entire

pipeline in a subshell. This same behavior applies if we want to assign the

output of a command to a variable. The following syntax is used to set the

value of variable $psTxt to the output of our ps command chain (this time,

we will use grep with pipes to accomplish the same count):

psTxt=$(ps aux | grep –v "grep" | grep –c "Finder")

Chapter 9 A Culture of Automation and Continual Testing

505

Examining this command chain, we see that we are utilizing the

external programs ps and grep. The ps command lists running processes,

and grep is a basic filtering tool. Because grep is a program, it will

sometimes be found in the ps process list, so we must first filter out

our own grep line, using the –v flag. Then we do a search for the string

“Finder.” The –c flag specifies that we will output the number of matches. If

we find one or more processes, we will proceed through our loop. Next we

output a simple text line stating that the program is running, then we sleep

for 15 seconds. At this point, the end of our loop has been reached and we

will once again test for our criteria. If the criteria match, we will proceed

through our loop again, indefinitely, until our criteria fail to match.

The until loop represents a different utility. In Bash, it does not

represent true trailing logic (as it does in C), but rather serves as an inverse

of the while loop. Because of this, it is of rather limited use. For example,

we can pretty easily replicate the logic of the above while loop, simply

inversing our conditional logic:

until [$(ps aux | grep –v "grep" | grep –c "Finder") –lt 1];

do

 printf "Finder is Running\n"

 sleep 15

done

Note  Bash, like most languages, provides control statements
for managing individual loop iterations. For instance, the control
statement continue will instruct a loop to terminate the execution
for that particular instance, at which point it will return to its
evaluation statement (or the next iterated item in the case of a for
loop), and continue through the loop. The break statement will
instruct a loop to terminate completely.

Chapter 9 A Culture of Automation and Continual Testing

506

�Arrays
An array, sometimes known as a vector, is one of the simplest data

structures. Arrays hold a collection of values, generally of the same data

type. Each element uses a consecutive range of numbers (integers) to

retrieve and store the values. Bash has basic support for one-dimensional

arrays. Creating a basic array in Bash is pretty simple:

set the variable MY_APPS to an array populated with a

directory listing of /Applications

declare -a MY_APPS=(/Applications/*.app)

You can then iterate through these items with a for loop:

for APP in "${MY_APPS[@]}"; do

 echo "Application: $APP"

done

There are a few things to note in this code. In our for statement, we

quote the array string ${MY_APPS[@]} to ensure that individual items with

spaces or tabs in the data are escaped. When accessing a specific index

in an array, the curly braces are always needed and the index number

specified inside them. For instance, here’s how to access the first item list

in our applications:

${MY_APPS[1]}.

You can also assign arrays using numeric methodology as well:

declare –a USER_NAME[501]=charles

declare –i USER_UID=501

echo ${USER_NAME[501]}

 returns: "charles"

echo ${USER_NAME[$USER_UID]}

 returns "charles"

Chapter 9 A Culture of Automation and Continual Testing

507

Arrays are very handy for collating and organizing data. However, their

support in Bash is a bit limited compared to more robust programming

environments. Also be aware that one of the major limitations of an array

is that their scope is downward only, meaning you can’t export an array

between scripts or functions of a script. Basically, arrays are going to only

work in your main body of code and not in sub-processes you launch. In

practice, this is a major limitation to consider before trying to use Bash

arrays in a complicated fashion.

�Exit Codes
Command-line applications, when implemented properly, will provide

what is called an Exit Code, or Return Code after execution. This exit

code is internally defined in the program and is used to signal proper

execution, or perhaps a specific error code. When a UNIX command-

line utility executes successfully, it should return an integer value of 0,

which indicates successful operation. Any nonzero value will represent

an error condition in the code, and this is a handy way to determine

whether a program properly executed. Exit codes vary from application to

application and are often referenced in the commands’ documentation

(192 is also a common error status).To check the exit code of a process, you

can test against the special variable $? Immediately after the command

has executed

rsync –avu /Folder1/ /Folder2/

if [$? = 0]; then

 echo "The Rsync finished without an error!"

else

 echo "The rsync had problems!!"

fi

Chapter 9 A Culture of Automation and Continual Testing

508

Alternatively, you can do the same thing on one line:

rsync –avu /Folder1/ /Folder2/ && (echo "Rsync Finished" ||

echo "Rsync had problems")

When writing your own scripts, it is important that you follow good

practice and properly report the script’s status. You do this by utilizing

the exit statement in your code, followed by an integer value defining

the proper state, remembering to exit 0 on proper execution, and use

an arbitrary value of 1 or greater on error. If your script is primarily a

wrapper for a different program, it may not be a bad idea to mirror its exit

code by referencing the $? variable immediately following the execution

of your command. Because $? will change with each process that is

run, you will want to save the $? value into a separate variable for later

reference in the script, allowing your script to exit with the same value of

the original command that you are wrapping your logic around (such as

an if or for statement):

rsync –avu /Folder1/ /Folder2/

declare –i RSYNC_CODE=$?

if [$RSYNC_CODE =0]; then

 echo "The Rsync finished without an error!"

else

 echo "The rsync had problems!!"

fi

exit $RSYNC_CODE

�Shell Script Logic
In order to be properly processed by a shell, a UNIX executable script

must specify which interpreter the shell should use to parse and execute

its contained shell code. This information is provided via a shebang or

hash-bang (#!) specifier, which should always be at line 1 of the script and

Chapter 9 A Culture of Automation and Continual Testing

509

should precede the absolute path to the file’s interpreter. For instance,

in this chapter, we are primarily utilizing Bash scripts. To specify the zsh

interpreter, we use the following shebang specifier at the start of the script:

#!/bin/zsh

Note  You can add an -x to the interpreter line of Bash scripts to
assist with debugging. This will echo the expanded variables and
actual runtime code in addition to the more common output vectors
like the echo command. For example, #!/bin/zsh –x.

Using this syntax, you can also specify atypical shell interpreters, such

as Perl (#!/usr/bin/perl), Python (#!/usr/bin/python), or Ruby (#!/

usr/bin/ruby), the list goes on. For the most part, OS X and most ∗nix

variants all utilize the same directory to store interactive user shells in

the /bin/ folder. This folder is defined by BSD as housing: “user utilities

fundamental to both single-user and multi-user environments.” This

folder is very common among the ∗nix variants and can usually be trusted

to contain at least the Bourne shell (sh) and on most modern systems,

the Bash shell. However, non-shell interpreters, such as Python, Perl, or

Ruby, are going to vary greatly from OS to OS. Because of this, if we want

our shell to be portable (which these languages provide), then providing

a static path is not going to provide much utility on nonconforming

systems. If portability is your goal (and certainly it’s never a bad one), you

may want to forgo specifying an absolute path and instead let the parent

shell dynamically determine its location. To do this, utilize the following

shebang specifier:

#!/usr/bin/env python

Chapter 9 A Culture of Automation and Continual Testing

510

The key thing to know here, is that /usr/bin/env is a very commonly

supported binary and will cause the shell to search through its $PATH to

locate the Python executable. If that’s found in our path, this executable

will be used as the interpreter for the script. The $PATH variable is an

environmental variable used by nearly all shells and specifies a number

of directories that should be consulted when searching for a binary. This

variable contains a colon-delimited string of directories and will search

through them in order of preference from left to right. For instance, if I run

the command echo $PATH, I will see all of the directories in my path:

echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin

Thus, if I were to run the command ifconfig, my shell would first look

for the binary ifconfig in the /usr/bin folder, then in /bin, /usr/sbin,

and so on until it ultimately finds the command (in this case, in the /sbin

directory). If the command is not found after searching the entire path, the

shell will terminate execution of the script with an error. On top of this, the

PATH variable becomes a good way for a user to inject his own versions of

a binary in place of a system binary. For instance, Mr. Joebob Poweruser

always likes to have the latest, greatest version of Perl on his system,

dutifully installed at /usr/local/bin/perl. However, with a default PATH

variable, when Joebob runs the command perl, he will be treated to our

localization’s binary stored at /usr/bin/perl. To change this, Joebob will

want to modify his ~/.profile file, adding the line:

export PATH="/usr/local/bin:$PATH"

After doing this, when the user starts a shell, the path /usr/local/bin

will be the first folder searched in his path. Knowing all of this, it is easy

to see how utilizing the /usr/bin/env in your shebang line can provide

benefits if your script will have a wide audience.

Chapter 9 A Culture of Automation and Continual Testing

511

Note  With all the variants of Linux and UNIX systems out there,
it certainly can be a mental exercise to remember each one’s
folder hierarchy. For this purpose, many such systems provide
documentation as to their particular folder eccentricities. On such
systems, you can access this documentation via the hier man page
by running the command man hier at your Terminal prompt.

With the shebang out of the way, we can now start writing our

script. Typically, at this point in the script, we will do what is referred

to as initialization. That is, we will define the variables to be utilized by

the script. Initializing all of your variables at the beginning of the script

provides many benefits. Primarily, it serves as a blueprint for your script.

Assuming you adopt good naming conventions for your variables, the

general utility and configurability of a script can often be deduced by

scanning the variables, at least to an extent. To assign a variable in Bash,

you simply specify the variable name, followed by an equal sign, and then

the value. For instance, in the following line:

USER_NAME="charles"

With this line, we are assigning the global variable USER_NAME the value

of charles. Variables in Bash can be uppercase and can contain underscores

such as PLIST_FILE and can even be camel case— plistFileNumberThree.

The choice is up to you—just be consistent. Notice that during assignment,

we do not prepend the variable name with a $ specifier, unlike Perl. However,

utilizing the global scope in Bash will ultimately make your code less

extensible. For instance, if you were to refactor the code into a function, you

could have issues with scope conflict. To address this, you can utilize the

declare statement, which will initialize the variable only in the local context:

declare USER_NAME="charles"

Charles is available only to the local context

Chapter 9 A Culture of Automation and Continual Testing

512

declare –x USER_NAME="bill"

Bill is only available to the local and sub shells

export USER_NAME="emerald"

Emerald is available to the local sub shells and parent shells

(but no type assignment such as array "-a" or "-i" integer)

Any local declares will not export to subprocesses or script functions,

but stay within the current scope of code running. If you use declare in a

function, once the function is complete, the variable will no longer be active.

This may be advantageous if, for instance, you have a function that contains a

password as a variable. If you want to keep a function’s variable around after

the function is complete, you can use export, as shown in this example:

#!/bin/zsh

This is a basic function

littleFunction(){

 declare LITTLE_VAR="local"

 export BIG_VAR="global"

 echo "$FUNCNAME: LITTLE_VAR: $LITTLE_VAR"

 echo "$FUNCNAME: BIG_VAR: $BIG_VAR"

}

littleFunction # This is how we run a function

echo "$0: BIG_VAR: $BIG_VAR"

echo "$0: LITTLE_VAR: ${LITTLE_VAR:?}" # This should error out

$./bigscript

littleFunction: LITTLE_VAR: local

littleFunction: BIG_VAR: global

./bigscript: BIG_VAR: global

./ bigscript: line 16: LITTLE_VAR: parameter null or not set

Chapter 9 A Culture of Automation and Continual Testing

513

While not always necessary, it is a good idea to get in the habit of

using declare statements with Bash. It will definitely save you time and

headaches down the road as you find yourself needing to repurpose code.

One mistake rookie coders make is that they rely heavily on utilizing

PATH resolution in shell scripts. That is, instead of typing the command

/usr/sbin/networksetup –getdnsservers "Airport"

they actually type the command as

networksetup –getdnsservers "Airport"

This won’t necessarily prove to be an issue, as networksetup resides in

the default path at /usr/sbin. The main problem with this methodology

is that PATH variables can be manipulated rather easily. If this script were

ever to get called with the sudo command, which escalates privileges

to uid 0, then we could potentially compromise a machine simply by

injecting our own path variable into the user environment. This way,

instead of the system calling networksetup, someone could call our own

program identically named networksetup, which might install goodies all

over the machine. Modifying a user’s PATH is rather trivial to do once a user

account has been compromised and can then be used for local privilege

escalation and to ultimately control the box. Several OS X escalation

vulnerabilities have been found due to failure to sanitize PATH exploits.

To combat this issue, we have a few options. The first option is to

manually specify the PATH variable in our script. This way, we can utilize

the dynamic lookup capabilities of scripts and still provide our own

known-good paths. To do this, we simply declare PATH in the global scope

of the script:

#!/bin/zsh

PATH="/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

By specifying the PATH variable, we are in essence designating trusted

paths. Because we are doing this, it is important that we ensure proper

Chapter 9 A Culture of Automation and Continual Testing

514

restrictions are applied to these paths. We want to make sure that all

specified paths are locked down from modification, restricted only to

admin users. For instance, the Bash /usr/local/bin does not exist

by default, so it could theoretically be possible for a user to create this

directory, inject his own executables, and then interject those executables

into our script. To prevent this, we utilize file system permissions. In the

case of /usr/local/bin, a user would first have to create both the local/

bin branch. Thus, that user would need to be able to modify the directory

at /usr. Luckily, file system privileges are locked down such that a user

would need root access to alter any of the specified directories. If they have

the ability to alter these system paths, we have bigger issues to worry about.

Specifying a PATH for our shell script doesn’t solve all issues. For

instance, what if the user installs a copy of a command, which is

syntactically incompatible with the options specified in our script? Perhaps

only part of what we utilize the utility for in our script actually works with

the user’s app. In such case, our script would certainly execute abnormally,

at best merely failing to execute, but in a worst-case scenario, the side

effects could certainly prove to be damaging. For this reason, you may want

to allow only a specific binary to be utilized for the context of your script.

The standard methodology to implement this is to declare full commands

as variables and then call that variable instead of the command. Also, you

can use the -x test to see if the command is executable:

#!/bin/bash

declare networksetup =" /usr/sbin/networksetup "

if [-x $networksetup] ; then

 $networksetup -setv6off "Airport"

else

 echo "$networksetup is missing, is this Tiger(10.4)?"

fi

Chapter 9 A Culture of Automation and Continual Testing

515

This practice certainly has its benefits. First, we ensure that all binary

paths are hard coded to the system defaults. Of course, ensuring that the

system’s default software has not been altered is outside of our control.

We could certainly calculate md5 sums or check binary version output,

but the risk/effort rewards really aren’t there; it is perfectly sensible for

our script to assume a stock software package, particularly in the context

of this chapter.

The second benefit to declaring our commands is that we now have a

nice list of all external commands utilized by the script, which is great way

to show our users what we are using to make our script work.

�Passing Arguments to Shell Scripts

When a script is called, it can have options, much like the options present

in commands you run in OS X. These commands are programmatically

stored in a predefined variable called a positional parameter. The

positional parameters are easily identified because they are $1, $2, $3, and

so on, with each position the area between a space and the next input.

For example, to send a command called foo a variable called bar, you

would use the command foo bar, which would result in being able to

use the variable $1 in the script. In the script below, we declare a number

of variables and even put the target of the script and the information to

change within the script as follows; this is an example postflight script in

a package installer. Apple’s installer will pass these parameters to a script

automatically, but you can simulate them with the following command:

sudo /path/to/this_script 1 2 /Volumes/Macintosh\ HD /Volumes/

Macintosh\ HD

sudo /path/to/this_script 1 2 /Volumes/ /

Chapter 9 A Culture of Automation and Continual Testing

516

Note  We are putting the placeholders 1 and 2 here to stand in for
what would really be passed during an install. In this case because
we don’t use $1 or $2, any value here would do, just to make sure
the count was right. This is a common way of testing scripts that are
destined for Apple package installers.

#!/bin/bash

This script removes the time machine prompt from newly

created users

$1 and $2 are not used in this script

declare -x DSTROOT="$3" �# �Installation Volume of

mount point.

declare -x SYSROOT="$4" �# �The root directory for

the system.

declare -x USER_TEMPLATE="/System/Library/User Template/

English.lproj"

declare -x PLIST=\

"${DSTROOT:?}/${USER_TEMPLATE:?}/Library/Preferences/com.apple.

TimeMachine.plist"

declare defaults="/usr/bin/defaults"

"$defaults" write "$PLIST" 'DoNotOfferNewDisksForBackup' -bool

'YES' &&

echo "$PLIST updated successfully"

exit 0

The shell environment and some of the other included scripting

languages such as per, python, and ruby provide a great environment for

automating tasks in macOS. These tasks are useful for setting up systems

as well as testing that various configurations that were setup work once

the setup has been complete. Earlier in the book, we looked at automating

tasks through agents, Mobile Device Management (MDM), automated

Chapter 9 A Culture of Automation and Continual Testing

517

software deployment, configuration management, and automated

provisioning. A little bit of testing that these configurations are as intended

will go a long way in making sure that the devices work as intended. This

keeps the total cost of ownership of systems low by thwarting troublesome

service desk tickets and also keeps your users happy and knowing that

their administrators have their backs.

Now that we’ve looked at some basic shell scripting, we’ll turn our

attention to testing. While we will get into more automated testing, we’ll

start with manual testing and documenting what you will test.

�Manual Testing
Organizations typically start testing programs when they grow to a few

dozen devices. At this point, there’s usually one person with access to a

spare machine who tests new stuff when it’s released. As the organization

(or Apple team within the organization) grows and as people in that

organization get bit by bad upgrades, you will invariably need more

maturity prior to releasing major releases and then point releases and app

updates than randomly clicking around and seeing if you broke something.

�Build a Test Matrix

The first step and easiest step is to start with a spreadsheet. The

spreadsheet starts simple but usually gets much more complex. To save

time, The spreadsheet is a cost-effective means of documenting what tests

you will run and providing some metadata around those tests. These are

some columns to consider putting in your spreadsheet:

•	 Test: A name for you to easily identify the test being

run, often something like “Verify device can print to the

nearest printer”.

Chapter 9 A Culture of Automation and Continual Testing

518

•	 Category: A group for test. Examples might include

Wi-Fi, Accessibility, application titles, preferences,

Dock, etc.

•	 Date: Identify when the test was run for that version

being tested.

•	 Impact: The impact is how many people are impacted

should a release go out with a defect. A 1 to 5 value

is usually sufficient. If you have 10,000 users and all

would be impacted in the case that the given test has a

defect then the impact score should be a 5. If 2 people

might be impacted, then the impact score might be a 1

(unless it’s your boss).

•	 Risk: Risk is usually a numeric value. It’s a good idea

to keep the number with smaller increments like

1 through 5 and the risk is based on the likelihood

something will go wrong.

•	 Priority: This would usually be another 1 to 5 score, but

the priority should set the order you resolve issues.

•	 Steps: This is important as it will feed your automated

testing some day when you can do that. The steps are a

detailed list of steps to recreate the desired result. This

could be a numbered list and it’s a good idea to make

them so simple an intern can do them. Mostly because

you’ll probably want to hire an intern to do them when

you can move on to automated testing.

•	 Model columns: Here, you list each model supported.

Not every environment can have dedicated testing

equipment for each model, but it’s important to note that.

Chapter 9 A Culture of Automation and Continual Testing

519

•	 Status: Based on all the rows, does the test pass or fail.

This can be a Boolean or the words pass and fail.

•	 Tester: Some organizations with larger testing teams

also have each person doing the test add their name or

initials to each test they run.

•	 Notes: If a test failed, notes will help you go back and

investigate later (especially in teams where one person

is testing and another is doing the work to resolve

issues that are encountered).

Not all of these columns are required for everyone. You might start

with just a name, steps, status, and notes. Keep it simple at first and don’t

spend too much time doing unnecessary data entry where you don’t have

to. The primary objective is to be methodical.

The most important part is to outline the tests as simple walkthroughs.

An example of how to structure one would be:

•	 Open Microsoft Word.

•	 Click on the Font selection in the toolbar.

•	 Select the “Copperplate” font.

•	 Make sure text appears in the Copperplate when typing.

Another example would be to check that the device can get on the

Internet without configuring any network settings, that the correct default

browser is configured, and that the correct default homepage loads:

•	 Open Safari.

•	 Verify that the wireless SSID is set to ACME.

•	 Verify that www.krypted.com loads.

•	 Verify you aren’t prompted to set the default browser.

•	 Check that the browser history is empty.

Chapter 9 A Culture of Automation and Continual Testing

http://www.krypted.com

520

Yes, we added to check the browser history. The above test is actually

testing a number of things. By validating the SSID and connectivity on that

SSID, we also make sure that 802.1x is correctly configured, that certificates

are obtained properly, that the automation to set the default homepage is

functioning, that installing a second and third browser hasn’t changed the

default broser, and that there’s no cruft in the browser history. The fewer

paths you have to check, the more efficient the testing you are doing.

The manual testing spreadsheet then grows over time. Every time

there’s a failure, a row is likely to be added to the spreadsheet. No

environment will have a 100% coverage for manual testing, but expect

support incidents to drop as you build out more and more tests. And the

very act of building a matrix is likely to force you to plan time in each

update to do testing and keep the well-being of the people who have to use

the systems you build front and center.

If you’re doing it right, at some point, the tests will take too long. That’s

when you know it was time to start building out an automated testing

environment a while ago.

�Automated Testing
When you’re creating a large number of images, MDM configurations,

app integration options, and other custom configurations, testing each

one can be critical to verifying a successful deployment. Each of these is a

regression of a build that you will deploy to users. If you prompt your users

with one dialog box in one of those builds, you might get two hundred

phone calls (true story). If you notice the dialog box and don’t prompt

users, that’s a lot of calls you won’t need to take, and a lot of unhappy users

you won’t have to deal with.

Chapter 9 A Culture of Automation and Continual Testing

521

�Graphical Testing

Automated testing comes in a few forms. The most straightforward form

of image testing is going through the process manually and seeing what

happens when you try to do a number of predefined tasks. Doing so

requires having a testing system that you can re-image as needed. But

manually testing images may give only a fraction of what can be done in

the same amount of time if the process is automated. If you have a well-

regimented image and software deployment environment, the results of

testing against specific known configurations typically provide an early

warning sign of problems in the image or a specific build of a package.

There are a few different solutions for macOS that can be used

for regression testing. Two that we recommend are Eggplant and

Sikuli. Eggplant is primarily used to test software applications during

development but can also be used for this purpose. Regression testing

is mostly useful in larger environments, with a large number of builds.

Not only can it be used to qualify images, but regression testing can also

be leveraged to qualify updates. By automating various testing tasks, you

can often quickly reduce the change and release management times for

new software and operating systems. Eggplant is a tool available at www.

Eggplant.com.

Eggplant uses VNC to run checks on the remote systems and then

recognizes events based on known, predefined patterns. If the pattern is a

match, then the test is a pass; if not, it is a fail. Because Eggplant uses VNC,

it comes with the VINE server, although you can use ARD as well if you’ve

enabled VNC in your ARD configuration. Eggplant is pretty straightforward

once you get started, allowing you to define visual patterns in the form of

screenshots and letting Eggplant click those for an expected result.

You can also use a tool like Sikuli, which is a free alternative to Eggplant.

Sikuli is available at http://sikuli.org. Sikuli can do the same but doesn’t

require VNC. Sikuli uses jython (a mix of Java and Python) to provide a

pretty rich framework for scripting regression testing. For example, you

Chapter 9 A Culture of Automation and Continual Testing

http://www.testplant.com/
http://www.testplant.com/
http://sikuli.org/

522

can have Sikuli or Eggplant open Word and check to see whether those

specific fonts from our earlier examples are in the list of available fonts. In

addition to verifying that fonts load, you can test pretty much anything else

you might want. And you can run these tests without touching a system,

allowing you to define test cases and then perform quality assurance (QA)

on your image prior to deploying that image to client computers en masse.

There are a number of tools that can be used for automated testing,

some of which can even be used with a fairly high amount of regression

testing. Before you get overly committed to any single tool, test each and

think through the cost vs the amount of time you feel each could save you:

•	 Squish: www.froglogic.com/squish/

•	 Eggplant: https://Eggplant.io

•	 Sikuli - http://sikulix.com

•	 Selenium Browser automation: www.seleniumhq.org

It’s worth mentioning that the Observer Effect is real in automated QA

testing. In order to run tests through Eggplant, you need to install a VNC

server. In order to run Sikuli tests, you need to install a runtime. These are

changes on systems and we’ve seen them alter the outcome of tests. It’s

better than nothing, but it’s a real thing to consider when planning your

automated testing environment. And it sure beats not noticing a screen

when manual testing and feeling like crap when a bunch of people can’t

log into their computer.

Now that we’ve covered some basics around automated testing, let’s

build an actual test using one of these tools, starting with Sikuli.

�Sikuli

Sikuli is a lightweight automated testing tool that uses a language called

Jython (yes, that’s a java and python mashup and sometimes yes it’s as gross

as it sounds). Sikuli uses actions taken via screenshots to run automated

Chapter 9 A Culture of Automation and Continual Testing

http://www.froglogic.com/squish/
https://eggplant.io
http://sikulix.com
http://www.seleniumhq.org

523

tests. To use Sikuli, first download it from https://raiman.github.io/

SikuliX1/downloads.html and then open the .jar file. Also download the

Jython.jar and the Jruby.jar. These all need to be put into the same directory

before you open the sikulix.jar. Opening Sikuli can then be done by simply

double-clicking on the file or using the command line as follows:

java -jar path-to/sikulix.jar

Once Sikuli opens, you’ll see a typical IDE, but without a ton of features

as with a tool like IntelliJ. What you do have that you don’t see in a lot of

other IDEs is the ability to “Take screenshots” as seen in Figure 9-1.

The create our first test, click on Take Screenshot and make a

screenshot of the area to click (Figure 9-2).

Figure 9-1.  Start Your Sikuli Script

Chapter 9 A Culture of Automation and Continual Testing

https://raiman.github.io/SikuliX1/downloads.html
https://raiman.github.io/SikuliX1/downloads.html

524

Next, type click and then wrap the screen in parenthesis (Figure 9-3).

Once you have that, add each step in the workflow to get to where you

know if the test worked or not and then do an if to set a conditional and

a find to indicate what to look for. In the example below, we did a print

“Success” if it finds it; otherwise (using an elif) print “Fail.”

The script can then be called directly and each test can be set up as

a basic script. One nice way of tracking these is to have a column in your

manual testing matrix with the file location or name of each script that

then runs that test.

Figure 9-2.  Import an Image

Figure 9-3.  Building the Script

Chapter 9 A Culture of Automation and Continual Testing

525

�Expect Scripting

While we’ve focused on using graphical tools to test, we can also use a tool

called expect. Expect is a scripting program that waits for something to

happen (the expect part) and then takes an action (send). This can be used

for a variety of tasks.

In this example, we’ll set up the macOS Server app interactively using

an undocumented verb to the server command: setup. Here, we have to

agree to a licensing agreement in an interactive prompt. In the following

example, we’ll wait 300 seconds for the Server app to configure itself and

then run the following expect:

 #!/usr/bin/expect set timeout 300 spawn server setup expect

"Press Return to view the software license agreement." { send

\r } expect "Do you agree to the terms of the software license

agreement? (y/N)" { send "y\r" } expect "User name:" { send

"MYADMINUSERNAME\r" } expect "Password:" { send "MYPASSWORD\r" }

interact

Obviously, you would replace MYADMINUSERNAME with your admin

username and MYPASSWORD with your password. This would be called in

a script that downloads the Server app and then opens it for the first time.

The result would be a configured Server app, which could then easily be

checked using the serveradmin command:

sudo serveradmin fullstatus devicemgr

Provided you haven’t enabled Profile Manager, the response should be:

devicemgr:state = "STOPPED"

If it isn’t, then the setup failed. This isn’t to say that you don’t want

other automations that check for other conditions. When scripting

automation for any platform, one should test all scripts – especially

if you aren’t specifically invoking them through /bin/bash. Many of

Chapter 9 A Culture of Automation and Continual Testing

526

these changes won’t be very impactful. Maybe you’ll have to get used to

something working just a tiny bit differently when you’re interactively

navigating through the shell; no big deal. But for scripting, definitely

consider the globbing whatnot as something to look out for and know that

if it breaks a script; rather than just calling bash to run, think about moving

it over to the new default shell. Because it’s this way for a reason. And

that reason probably isn’t just that some developer didn’t like the story or

acting in the Bourne Legacy (although it might have been that bad).

�Posting Issues to Ticketing Systems
If any tests fail, you can automatically create tickets to resolve any issues

found. To do so, use the command line to create Jira tickets. In the below

one-liner, we’re going to bring in some standard json and create a ticket.

We’ll use curl and use -u to define a username and password, then -X to

define a POST, and –data to define the contents of the post, wrapped in the

single quotes below. Then -H defines the content type as json and a URL to

your Jira rest endpoint, “Issues” in the following code:

curl -D- -u krypted:MySuperSecretPassword -X POST --data

'{"fields":{"project":{"key": "TESTING"},"summary": "Make my

feature better.","description": "Going to make everything

better ever ever ever by doing things and by things I mean allll

the things","customfield_001":"Testing testing","issuetype":

{"name": "Story"}{"time tracking":{originalEstimate": "2d

4h"}}}' -H "Content-Type: application/json" https://krypted.

atlassian.net/rest/api/2/issue/

We’ll cover other curl examples later in this chapter. You can swap out

the json here with input to a script, or a file. That json can look prettier

than it looks in the above single line:

Chapter 9 A Culture of Automation and Continual Testing

527

{

 "fields":{

 "project":

 {

 "key": "TESTING"

 },

 "summary": "Make my feature better.",

 �"description": "Going to make everything better ever ever

ever by doing things and by things I mean allll the things",

 "customfield_001":"Testing testing",

 "issuetype": {

 "name": "Story"

 }

 {

 "time tracking":{

 originalEstimate": "2d 4h"

 }

 }

}

As you can see, we’re creating an issue in the TESTING project (which

could also say ISSUE_RESOLUTION or whatever was generated when

you created the project you’re putting this issue into). We’re then adding

a “summary” and “description” as I don’t think you can really create one

without that information. Then we’re adding information for a custom

field our organization created and finally an estimate for how long the task

should take, with those being very much optional.

So any other fields you have available can also be created as well, just

add them to the correct part of the json with the correct label and inputs to

accept. By automating as much of the build train as possible, you can then

repeat your tests numerous times and deploy builds with maximum test

coverage and a minimum of human interaction.

Chapter 9 A Culture of Automation and Continual Testing

528

You can also link your device management platform up to Jira.

AirWatch comes with a built-in connector (per https://docs.vmware.

com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-

AW93-MF_CG_Add_Connectors.html) and one can be manually configured

to work with Jamf Pro (see http://krypted.com/jamf/node-plugin-

embed-device-details-jamf-pro-jira-service-desk/). In fact, now

that computers are so easy to fix and even many large-scale deployment

concerns are known quantities, the ability to string workflows together

across vendors is likely one of the most exciting parts of the IT industry.

Because we want to test against as many regressions as possible, we’ll look

at simulating environments with tools built into Xcode in the next section.

Testing for iOSTesting Software as you’re building it is part of building

software. Continually testing is also a discipline and has become an entire

career path for some in the Apple space (pour a little Jaëger on the ground

to mourn their passing from our circles though).

�Simulating iOS Environments with the Xcode
Simulator
The iOS Simulator is a great way to test watchOS, tvOS, and iOS apps

while you’re writing them. The easiest way to work with the simulator is

through Xcode. But you can also use simctl for interacting with it, helpful

in automating QA operations when possible. The simctl binary is located

at /Applications/Xcode.app/Contents/Developer/usr/bin/simctl and

typically accessed as a verb from the /usr/bin/xcrun command.

First let’s list all the simulators, done using the list command, called by

simply running xcrun followed by simctl for the type of operation to be run

and then the list command:

/usr/bin/xcrun simctl list

Chapter 9 A Culture of Automation and Continual Testing

https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
http://krypted.com/jamf/node-plugin-embed-device-details-jamf-pro-jira-service-desk/
http://krypted.com/jamf/node-plugin-embed-device-details-jamf-pro-jira-service-desk/

529

The output shows a lot of device types, runtimes, and devices. The help

subcommand shows all of the verbs available:

/usr/bin/xcrun simctl help

Notice there are a lot of verbs for simctl. These include the following:

create Create a new device.

clone Clone an existing device.

upgrade Upgrade a device to a newer runtime.

delete Delete a device or all unavailable devices.

pair Create a new watch and phone pair.

unpair Unpair a watch and phone pair.

pair_activate Set a given pair as active.

erase Erase a device's contents and settings.

boot Boot a device.

shutdown Shutdown a device.

rename Rename a device.

getenv �Print an environment variable from a

running device.

openurl Open a URL in a device.

addmedia �Add photos, live photos, videos, or

contacts to the library of a device.

install Install an app on a device.

uninstall Uninstall an app from a device.

get_app_container �Print the path of the installed app's

container

launch �Launch an application by identifier on a

device.

terminate �Terminate an application by identifier on a

device.

spawn �Spawn a process by executing a given

executable on a device.

Chapter 9 A Culture of Automation and Continual Testing

530

list �List available devices, device types,

runtimes, or device pairs.

icloud_sync Trigger iCloud sync on a device.

pbsync �Sync the pasteboard content from one

pasteboard to another.

pbcopy �Copy standard input onto the device

pasteboard.

pbpaste �Print the contents of the device's

pasteboard to standard output.

help Prints the usage for a given subcommand.

io Set up a device IO operation.

diagnose Collect diagnostic information and logs.

logverbose �enable or disable verbose logging for a

device

�Managing Simulated Devices

Before you can start simulating operations, a simulated device is required.

Let’s create a fresh new spiffy simulator called testing_iPhone7, using the

output from the list subcommand. To do so, we’ll use create and then

select the iPhone7 option:

/usr/bin/xcrun simctl create testing_iPhone7 com.apple.

CoreSimulator.SimDeviceType.iPhone-7 com.apple.CoreSimulator.

SimRuntime.iOS-12-2

The output includes a UUID such as the following. That can then be

used to track further interactions with the simulation:

E6D4C2B8-0601-4557-99DA-B6B8251D534D

Chapter 9 A Culture of Automation and Continual Testing

531

The most common tasks would be booting, shutting down, erasing,

and opening simulations. First let’s boot it up:

/usr/bin/xcrun simctl boot E6D4C2B8-0601-4557-99DA-B6B8251D534D

To shut that same simulator down use the shutdown verb:

/usr/bin/xcrun simctl shutdown E6D4C2B8-0601-4557-99DA-

B6B8251D534D

Neither of these commands provide any output on success, but do

error on failure. Once you’ve run tests, I like to erase my simulator and

start fresh. To do so, simply use the erase command:

/usr/bin/xcrun simctl erase E6D4C2B8-0601-4557-99DA-B6B8251D534D

To open the simulator you loaded, you can use the open Simulator.app :

open /Applications/Xcode.app/Contents/Developer/Applications/

Simulator.app/

�Copy Content into the Simulator

macOS comes with a handy tool to interact with the clipboard (aka

pasteboard) on a Mac called pbcopy. You can redirect information from a

file into your clipboard using the pbcopy command.

Here, we’ll simply call pbcopy and then a file path

pbcopy ~/Desktop/transfer.txt

You can then redirect your text into simctl by doing a pbpaste into

xcrun simctl pbpaste booted

Once you’ve copied your data, clean up the transfer file:

rm ~/Desktop/transfer.txt

Chapter 9 A Culture of Automation and Continual Testing

532

You can also pull text out. If you write data into the clipboard (e.g.,

during instrumentation), then you can extract it from that pasteboard

using the simctl subcommand pbcopy as follows:

xcrun simctl pbcopy booted

We could also install apps, run instrumentation tests, view information

coming from the device, view detailed logs, sync a device with iCloud,

and more. iOS can be difficult to run various tests. But given the number

of automations we’ve gone through in this section, if you need to test

deployments, you should have plenty of tools at your disposal. Many an

automation build train needs to test functionality at scale, or across more

regressions than what you might be able to test with what a simulator can

do when run in Xcode. In the next section, we’ll look at ways to accomplish

more scalable testing using fairly accessible tools.

�Corellium
Once you’ve built software, you need some devices to test that software

on. Corellium is a new tool that provides virtual iOS devices in a SaaS

environment. This means you can host a virtual iPhone with someone else

and run tests on it. This makes generating test instances quick and more

scalable than can be from using Xcode running on 3 or 4 old iPhones you

have sitting around your house. If you need to pound on a web service, just

use the Corellium API and spin up dozens of iPhones.

At its most basic, use Corellium will spin up a device in the cloud

and then allow you to use that device to test apps and automations (see

Figure 9-4). You can VPN into the device and review logs, see settings, and

deploy a .mobileprovision to load up software.

Chapter 9 A Culture of Automation and Continual Testing

533

Corellium also comes with a full API that allows you to

programmatically spin up new instances and then automate connecting to

those and running tests. While this type of setup won’t work for everyone,

it’s yet another tool to keep in your back pocket for when needed. Any

vendor that builds a SaaS-based testing tool will likely have a robust API,

as will the management tool you use to manage devices, your service

desk solution you use, etc. Enumerating and developing against APIs is

becoming one of the most critical aspect of DevOps, and certainly for

device management when taking a DevOps mindset to the practice. In the

next section, we’ll cover using curl to work with APIs and then one of the

most important tools emerging for learning to work with APIs, Postman.

�API Orchestration
Orchestrating events with APIs starts with API documentation. In this

example, we’ll be working with the ZuluDesk API and we’ll start by reading

http://api.zuludesk.com/docs/ to better understand how to work

with the API. Each tool you use will have API documentation, hopefully

Figure 9-4.  Corellium

Chapter 9 A Culture of Automation and Continual Testing

https://api.zuludesk.com/docs/

534

automatically generated as each build of their software is generated –

making it straightforward to watch their URLs to know when changes

might break automations you build.

�Use cURL to Work with APIs

Using information from the API documentation, we’ll go ahead and

use a basic tool like curl to learn some basic uses of that API. The curl

command can be used to authenticate to an API using a variety of

authentication types such as Bearer, OAuth, Token, and of course Basic.

To authenticate to the ZuluDesk API, first create an API token. This is

done by logging into ZuluDesk, clicking Organization, then Settings, then

API, and then clicking on the Add API Key button. Once you have your

API key, your header will look as follows:

GET /users HTTP/1.1 User-Agent: curl/7.24.0 X-Server-Protocol-

Version: 2 Authorization: Basic YOURTOKENHERExxx000111222==

Content-Length: 0

The curl command can do this would be as follows, simply converting

these into separate values in the -H or header. The URL provided will do a

GET against devices, displaying a list of devices in json:

curl -S -i -k -H "Content-Length: 0" "User-Agent: curl/7.24.0"

X-Server-Protocol-Version: 2" "Authorization: Basic

YOURAPITOKENxx000111222==" https://apiv6.zuludesk.com/devices/

Once you have the “serialNumber” you can programmatically

perform a number of other tasks using a POST. Another example would be

obtaining a list of apps, done using the /apps/ endpoint.

curl -S -i -k -H "Content-Length: 0" "User-Agent: curl/7.24.0"

X-Server-Protocol-Version: 2" "Authorization: Basic

YOURAPITOKENxx000111222" https://apiv6.zuludesk.com/apps/

Chapter 9 A Culture of Automation and Continual Testing

535

You can also run a POST in the same fashion. In the following we’ll do

that, sending a simple delete command to the group 505:

curl -X DELETE -S -i -k -H "Content-Length: 0" "User-Agent:

curl/7.24.0" X-Server-Protocol-Version: 2" "Authorization:

Basic YOURAPITOKENxx000111222" https://apiv6.zuludesk.com/

users/groups/:505

�Use Postman to Work With APIs

Postman is a tool that is a must-have for people who work with APIs

these days. And given that more and more development work is basically

working with REST APIs, Postman has gotten popular enough to warrant a

$50,000,000 investment shortly before the release of this book. Despite the

investment money, the tasks we’ll use Postman for in this section are free

and organizations likely don’t need to cut a check to the company unless

they’re doing much more than an individual would do.

To get started with Postman, download the app at www.getpostman.com/

downloads/. Once downloaded, extract the zip file, drag the app to

/Applications, and open it. You’ll then see a screen that shows a number

of options. As you can see in Figure 9-5, the left sidebar provides a history

of API commands you’ve run, Collections of APIs you’ve created (or

downloaded from a vendor who published their collection), and APIs (a beta

feature that allows you to sync your collections into the Postman cloud).

Think of the right side as a single API command, where you are

defining which CRUD operation you are performing (GET, POST, PUT,

DELETE, or other HTTP verbs supported by your API). Select a type of

operation to perform and then provide a URL. If you are just retrieving

information from an API you don’t need to authenticate to, then you can

just hit Send and see the response, usually in JSON.

Chapter 9 A Culture of Automation and Continual Testing

http://www.getpostman.com/downloads/
http://www.getpostman.com/downloads/

536

Below that you have tabs for Parameters, Authentication, Headers,

Body, etc. Each of these is defining the various parts of that operation

you are performing. First, let’s click on Authentication. As you can

see in Figure 9-6, if the API you are connecting to supports basic

authentication, this can be as simple as providing a username and

password. However, many support more modern authentication types

such as JWT, bearer tokens, and OAuth. For this specific API, we’ll just

use that username and password.

Figure 9-5.  Postman

Chapter 9 A Culture of Automation and Continual Testing

537

Click on the Params tab to configure parameters you’ll send to the

device. Next, we’re going to clear the passcode of a device. Because we’re

taking an action rather than just getting information (e.g., using a GET), the

type of CRUD operation we’re running against the URL of this command

has changed to a POST. The URL includes the URL to that specific device

and then a restart endpoint. Anything after the ? in that url is a parameter

and we’ll define a udid and clearPasscode. The reason for the udid is to

specify the define and per API documentation we know that any time you

issue a wipe command on an iOS device, you also have to specify if you

also want to clear the passcode of that device (Figure 9-7).

Figure 9-6.  Authenticating to a REST endpoint

Chapter 9 A Culture of Automation and Continual Testing

538

One of the best parts of Postman is being able to trade collections

with people at work or find them on the Internet. Postman has a network

of API collections that are produced by the vendors you might want to

automate tasks with. These are available at www.getpostman.com/api-

network/. Additionally, you can find postman collections for a number of

other vendors fairly easily. Some common integrations you might want to

build off of:

•	 Ping Identity: https://apidocs.pingidentity.com/

pingone/customer/v1/api/guide/p1_sampleApps

•	 Jamf Pro: https://github.com/jamf/Classic-

API-Postman-Collection HYPERLINK “https://

developer.okta.com/docs/reference/postman-

collections/”

•	 Okta: https://developer.okta.com/docs/reference/

postman-collections/

•	 MobileIron: http://downloads.skypeshield.com/

downloads/Utils/Postman/MobileIron.zip

•	 Blackberry: http://downloads.skypeshield.com/

downloads/Utils/Postman/Blackberry.zip

Figure 9-7.  Parameters in a POST

Chapter 9 A Culture of Automation and Continual Testing

http://www.getpostman.com/api-network/
http://www.getpostman.com/api-network/
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/p1_sampleApps
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/p1_sampleApps
https://github.com/jamf/Classic-API-Postman-Collection
https://github.com/jamf/Classic-API-Postman-Collection
https://developer.okta.com/docs/reference/postman-collections/
https://developer.okta.com/docs/reference/postman-collections/
https://developer.okta.com/docs/reference/postman-collections/
https://developer.okta.com/docs/reference/postman-collections/
https://developer.okta.com/docs/reference/postman-collections/
http://downloads.skypeshield.com/downloads/Utils/Postman/MobileIron.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/MobileIron.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/Blackberry.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/Blackberry.zip

539

•	 VMware: https://blogs.vmware.com/

management/2017/05/vrealize-automation-api-

samples-for-postman.html

•	 Box: https://developer.box.com/docs/box-postman-

collection

•	 IBM MobileFirst: https://mobilefirstplatform.

ibmcloud.com/tutorials/en/foundation/8.0/

adapters/testing-and-debugging-adapters/

•	 Jira Service Cloud: https://developer.atlassian.

com/cloud/jira/service-desk/rest/

•	 Confluence: https://developer.atlassian.com/

cloud/confluence/rest/

If you use a tool that has a standard RESTful API, and they don’t have

a Postman collection for it, then I’m sure they’d be happy to work with you

to build one. This book isn’t meant to go through hooking automations

up between all of the APIs for every vendor you might use. Now that you

see how developers communicate between one another when building

integrations, hopefully you realize that every single task you have to

perform routinely can be automated and consistent.

�Release Management
The reason we’re doing all of this testing and automated testing is so that

when we’re done with our scripts and automations, we want to be able

to make changes on hundreds or thousands or hundreds of thousands

of devices at the same time. Release management is referred to as the

processes to schedule, plan, manage, and control the release of software

through different stages and environments. The first of those environments

is when that software is being developed. Most of the rest of this book is

about what to do with that software in an organization that consumes the

Chapter 9 A Culture of Automation and Continual Testing

https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://developer.box.com/docs/box-postman-collection
https://developer.box.com/docs/box-postman-collection
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://developer.atlassian.com/cloud/jira/service-desk/rest/
https://developer.atlassian.com/cloud/jira/service-desk/rest/
https://developer.atlassian.com/cloud/confluence/rest/
https://developer.atlassian.com/cloud/confluence/rest/

540

technology once it goes to market. But understanding earlier parts of that

build train is useful, especially if you want to future-proof parts of your

deployment as various scripty-bits get removed from macOS.

These days we think of the word “release” a little less. Instead, we’re

moving into a world of continuous integration and continuous delivery

(yet another industry acronym as CICD). Tools like Jira allow you to

integrate with other tools that complete the automation of your testing

matrix. Yes, it’s a whole domino of workflows that’s just one REST call after

another. There are tons of great books on CICD and release management.

Most are specific to a given technology stack, with some including:

•	 Travis: https://travis-ci.org/

•	 Jenkins: www.jenkins.io

•	 Atlassian’s Bamboo: www.atlassian.com/software/

bamboo

•	 Harness: http://harness.io/

•	 Shippable: www.shippable.com/

•	 Spinnaker: www.spinnaker.io/

•	 AWS CodePipeline: https://aws.amazon.com/

codepipeline

•	 Fastlane: https://fastlane.tools

•	 GitLab CI/CD: https://about.gitlab.com/

direction/cicd/

A number of vendors also offer interfaces to their tools with git. This

makes it simple to hook workflows together that result in journaled,

approval-driven business processes that make managing devices look a

little more like managing code. Tools like Munki are built from the ground

up using these kinds of techniques, as you can see at https://github.

com/munki/munki/wiki/Munki-With-Git. Other tools require a bit more

Chapter 9 A Culture of Automation and Continual Testing

https://travis-ci.org/
http://www.jenkins.io
http://www.atlassian.com/software/bamboo
http://www.atlassian.com/software/bamboo
http://harness.io/
http://www.shippable.com/
http://www.spinnaker.io/
https://aws.amazon.com/codepipeline
https://aws.amazon.com/codepipeline
https://fastlane.tools
https://about.gitlab.com/direction/cicd/
https://about.gitlab.com/direction/cicd/
https://github.com/munki/munki/wiki/Munki-With-Git
https://github.com/munki/munki/wiki/Munki-With-Git

541

finessing and you won’t likely have full coverage of everything the product

can do. The git2jss (https://github.com/badstreff/git2jss) would be

an example of that kind of situation, given not everything the creators want

to do are supported by the APIs they work with.

Another aspect of automation is making sure that everything your

build requires is where it needs to be. There are a number of tools that aide

in this endeavor, including one of the more popular repository managers,

Artifactory. Gathering all of those dependencies, especially given how

frequently many tools update, can be a bear. In the next section, we’ll look

at build dependencies and specifically at using them with Xcode.

�Build Dependencies

As you get more into development DevOps, you start to look at tools like

Artifactory or something more specialty built for Xcode like Carthage is

a tool that automates build dependencies for Cocoa apps and provides

binary frameworks without modifying out-of-band project files. If you’re

using homebrew, installing carthage is a one-liner:

brew install carthage

Once installed, build a Cartfile in the home directory of xcode projects.

The cartfile will list required projects, by version. Once Carthage is

installed, you’ll need a cartfile for each project to map the dependencies.

This gives you the chance to resolve those when you’re building new

software. Each time you add something new, simply put the dependency in

there, taking into account when you want to use a given version or branch.

Use the latest version github "AFNetworking/AFNetworking" # Use

a local project git "file:///Users/krypted/project1" "branch1"

The above is an example that requires Alamofire (a http networking

library commonly used) for the build process to complete as well as a local

Chapter 9 A Culture of Automation and Continual Testing

https://github.com/badstreff/git2jss

542

project file at /Users/krypted/project1 – and while this uses branch1 you

can just delete that to not require a specific branch.

Next, we’ll do a quick update, which creates a Carthage directory in

your .xcodeproj directory, as well as a cartfile.resolved file.

carthage update

That Carthage directory has a Build folder, which includes the artifacts

required to build your project. Put all those in the appropriate platform

folder. Next, we need to tell Carthage to copy the frameworks at build time.

To do that, we’ll run a script in the build phase, so click on the Build Phases

settings tab and then click to add and select New Run Script Phase from

the options. Simply put the following text in there:

/usr/local/bin/carthage copy-frameworks

Click on Input Files and then provide the path to the framework bundle,

using “$(SRCROOT)” as the faux root of your .xcodeproj directory, as follows:

$(SRCROOT)/Carthage/Build/iOS/AFNetworking.framework

Click on Output Files and then provide the path to the framework

bundle, using “$(SRCROOT)” as the faux root of your .xcodeproj directory,

as follows:

$(BUILT_PRODUCTS_DIR)/$(FRAMEWORKS_FOLDER_PATH)/AFNetworking.

framework

Then do a quick copy-frameworks to make them available and do the

routine checking:

/usr/local/bin/carthage copy-frameworks

To then see warnings when artifacts are out-of-date, run Carthage with

the outdated verb and a –xcode-warnings flag as follows:

/usr/local/bin/carthage outdated --xcode-warnings

Chapter 9 A Culture of Automation and Continual Testing

543

To add this to your build process and have Xcode feed the warnings to

you automatically, add this as another Build Phase. As you mature in your

Apple administration career, if tools like Carthage seem more interesting

than keeping up with the Apple deployment issues that arise, then you

might have more of a future in yet another specialty, DevOps.

�Summary
Ultimately, the most important takeaway from this chapter would be to

get comfortable using the command line to troubleshoot issues on your

devices and then to introduce a testing program at your organization.

Testing programs should start simple to garner quick wins. Until a team

grows to the point that not having an appropriate level of processes and

procedures starts to become a problem, do not get bogged down with

unnecessary dogma and technology. If a spreadsheet works for you and an

intern is cheaper than the combination of the cost to buying software and

the cost of spending the time to build a QA infrastructure, use an intern.

More important than the techniques and tools we looked at in this

chapter is the concept and the understanding that you will be continuously

testing. Apple has gotten very, very efficient at developing and pushing out

changes using the existing build-train. The chances of that changing in the

near future are below zero. If you start by building a list of tests then you’ll

get a pretty good idea of how much automation work you might need in

order to move to automated testing while taking immediate value from the

ability to be organized about your test cases.

The matrix of required tests will grow over time and occasionally

require a little pruning. Pruning can be done when features are retired.

Once you have that matrix, building tests to prove that a device is in a

state you want the device in is according to what you’re testing. If you’re

an app developer, then you even have customized tools just for your

specific needs. And given the maturity of large application development

Chapter 9 A Culture of Automation and Continual Testing

544

organizations, you can even anchor your build-train, whether that uses

github or a device management solution, to a vast ecosystem of REST

endpoints that tickle one another across the globe.

Focusing on the full process, you want to get to a place where an app

or package is built automatically using a tool like AutoPkg, then automated

tests are completed, and then manual tests are completed. Once those are

done, you can automate your release cycle, making it possible for more

and more users to have their own regressions without sending you to

retirement early. Or at least, until Apple blocks all synthetic clicking and

scripts. But that’s pretty far out in the future, right?

Now that we’ve covered testing, let’s look into getting a user

authenticated into computers in Chapter 11, when we look into directory

services next.

Chapter 9 A Culture of Automation and Continual Testing

545© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_10

CHAPTER 10

Directory Services
A Directory Service is a centralized service used to locate and access

resources on a network. For the purposes of this chapter, a directory

service is used to authenticate to various resources on the network and

authorize a user or device to access those resources. The most widely used

directory service is Microsoft’s Active Directory, so most of this chapter is

dedicated to Active Directory.

The Mac can tie into standard Active Directory and LDAP

environments easily. In previous books about integrating the Mac into

directory services environments easily occupied three to four chapters.

But a few things have happened in the past few years:

•	 The platform has evolved. Apple has sorted out most of

the issues connecting to Active Directory environments.

Now the technology used to talk to Active Directory

mostly just works out of the box, including via a profile,

as mentioned later in this chapter.

•	 The Apple community has devoted considerable time

and resources documenting how to identify and resolve

known challenges to integrating Macs with various

directory services.

•	 Open source and commercial middleware have

been developed to resolve and automate common

integration scenarios.

546

•	 Open Directory, Apple’s LDAP directory service

included with macOS Server, is no longer put into large

scale production nor recommended by most Apple

employees except in edge cases.

•	 Active Directory remains important in many enterprise

environments, but the methods used to allow a Mac

to communicate with it have changed. As we’ll cover

in the NoMAD section of this chapter, the Apple

community has helped us to outgrow the traditional

method of joining an Active Directory domain via

binding.

•	 Cloud-based Directory Services have become easy to

implement for companies with or without legacy on-

premises Directory Services infrastructure.

•	 iOS devices don’t bind to Active Directory, which

strengthens the argument that you should focus on

integrating services and apps instead of integrating the

entire device.

•	 People gave up the dream of having a network home

folder that’s accessible from any device.

Even with the changes of the past few years though, it may still be

necessary to bind Macs to an Active Directory domain for a variety of

reasons. These reasons may include:

•	 Compliance with corporate policies

•	 Ensuring access to needed data

•	 Allowing multiple users to use one Mac

Let’s take a look at several ways to accomplish this goal.

Chapter 10 Directory Services

547

�Manually Bind to Active Directory
The Active Directory plug-in is the easiest way to initiate a bind. When

you bind, you establish a trusted relationship between your Mac and the

Active Directory domain. An Active Directory account with the appropriate

privileges is used to create a computer record in Active Directory and

establish trust between the servers and the client. The local administrative

account on the Mac creates an account on the local system and pulls down

any attributes from the server as needed.

Each Mac contains a unique pre-shared key used to authenticate

that machine to the directory. This individualistic nature is an important

aspect to consider when looking at automating the process. If you are not

automating this step, you will need to supply the person doing the bind

with both local and directory administrator credentials.

You can provide local desktop admins with accounts that only have

access to bind computers into the domain. You can also provide non-

administrators with access to edit local configurations by modifying

the authorization right “system.services.directory.configure” in /etc/

authorization. Through the modification of this right, you can grant access

to change directory settings to your non-admin users. The content of this

file is considerable and goes through the specific rights of each subsystem.

�Bind the Easy Way
Provided you have the appropriate credentials to bind, open the Users &

Groups System Preference pane from within System Preferences. Click the

Users & Groups System Preference pane, as shown in Figure 10-1.

Chapter 10 Directory Services

548

Click the lock at the bottom of the screen. Then click the Join… button

beside Network Account Server, as seen in Figure 10-1.

This will bring up a pop-up screen that simply has a field for Server,

which you can use to enter an Active Directory domain name into, as seen

in Figure 10-2.

Figure 10-1.  Login options, click the Join… button to initiate a bind

Figure 10-2.  Enter the Active Directory domain name into the Server:
field as part of the bind process

Chapter 10 Directory Services

549

Provided the domain name can be reached, the screen will expand.

Enter the ID that the computer you are binding will have once it joins

Active Directory (a.k.a. the name that will appear in the list of Computers).

Also provide a username from Active Directory that can create a record

in Active Directory in the AD Admin User field and the password for that

account in the AD Admin Password field and hit OK (Figure 10-3).

�Bind with the Directory Utility
You can only bind with this simple experience if the client computer can

enumerate the domain and if you don’t need to leverage any of the more

granular settings provided during the initial bind process. If you need

either of those two, click the Open Directory Utility… button, unlock the

tool, and click on Services in the toolbar, as seen in Figure 10-4.

Figure 10-3.  Providing domain admin credentials as part of the
bind process

Chapter 10 Directory Services

550

Use the lock in the lower-left corner of the screen to authenticate so

you can make changes and double-click on the entry for Active Directory.

You will then be prompted with three fields by default, which are also

shown in Figure 10-5.

•	 Active Directory Forest is a setting configured

automatically based on the domain name. If multi-

forest support is required, we will cover that in the

command line options available through dsconfigad.

•	 Active Directory Domain is the domain the active

directory plug-in will use to look up the appropriate

service records (SRV) to find the closest servers and

complete the bind process. This relies on the client’s

Figure 10-4.  Services listing in Directory Utility

Chapter 10 Directory Services

551

DNS servers (usually provided by DHCP) to be

correctly pointing at servers that host these records

(e.g., AD-integrated DNS servers). Windows clients can

be a bit more forgiving in these specific operations, so

properly configured DNS is paramount for the bind

process to succeed.

•	 Computer ID is the name of the computer record

created in the Active Directory domain. This name also

typically becomes a DNS name on the network if that

is configured in Active Directory. If you are configuring

a client named mymachine for the krypted.com

Active Directory domain, the Active Directory plug-in

will request a DNS record be created for mymachine.
krypted.com. Because this is DNS, the ID should

conform to A record standards, defined in RFC 1035

(see www.ietf.org/rfc/rfc1035.txt for more).

Note  For best results, keep computer names under 15 total
characters in length. The reason for the 15-character limitation is
that, on the Windows platform, NetBIOS names cannot be longer than
15 characters and Apple’s AD plug-in uses that same limitation to
maximize compatibility.

Chapter 10 Directory Services

http://www.ietf.org/rfc/rfc1035.txt

552

Note  Since the computer name populates the Client ID, try to follow
the LDH rule: use only ASCII alphabetic and numeric characters and
a hyphen (-), but no other punctuation or characters. And don’t use
names with all numbers or that start with numbers when possible.

Next, click the Bind button and you will be asked to authenticate into

the Active Directory domain using the following fields, as you can see in

Figure 10-6.

Figure 10-5.  Bind using Directory Utility

Chapter 10 Directory Services

553

•	 Username contains any valid user account capable

of joining computers to the domain. This user must

have rights to create new objects in the container or

organizational unit you are creating the record in. That

access can only be delegated by a valid Active Directory

administrator.

•	 Password is the password for the username provided in

the previous field.

•	 Computer OU is the search base for the Organizational

Unit that clients will be added to (should be

populated by default but you might choose to

direct clients at a unique OU). As an example, if

you create an Organizational Unit called Macs in a

domain called pretendco.com, then you would use

CN=Macs,DC=krypted,DC=com in this field.

•	 Use for authentication is a setting that allows for

authenticating into the Mac at the login window using a

valid Active Directory username and password.

•	 Use for contacts: Allows for searching for contacts using

Address Book.

Figure 10-6.  Binding to Active Directory using Directory Utility

Chapter 10 Directory Services

554

The most common binding problem with Active Directory

environments is with the Active Directory domain’s DNS having an

incomplete set of service records. If we had a nickel for every time a

Windows admin swore up and down that there were no problems on their

servers, only to have all problems resolved by a quick and dirty fix. For

example, an ipconfig /rebuilddns command run from a domain controller

hosting the Active Directory integrated DNS to rebuild service records.

If you have not pre-populated the computer record, your computer

account will be placed in the default OU, Computers. To continue with the

previous krypted.com example, Organizational Units are these containers,

which are accessed using a convention, whereas the container is a CN

followed by a DC for each part of a fully qualified domain name. Therefore,

if you were to enter the Computers container of mydomain.com instead

of pretendco.com from our previous example, you would use cn=Comput
ers,dc=krypted,dc=com.

�Test Your Connection with the id Command
Once you have bound to Active Directory, it’s time to test the connection.

To get started, verify the light is green beside the Active Directory service

listed in Directory Utility. You can also simply log into the Mac as a user

from Active Directory.

When automating, you will also need to verify binding from the

command line (and should test it either way). As previously referenced, an

integral part of logging in on macOS is a user account’s UniqueID attribute.

You can verify that user resolution is happening and view the UniqueID

using the id command. To do so from a command-line environment, enter

the id command followed by the username of a directory account:

id charles.edge

Chapter 10 Directory Services

555

The response should appear as follows:

uid=1767690311(charles.edge) gid=703907591(KRYPTED\

domain users) groups=338867591 (KRYPTED\domain

users),5499333624(KRYPTED\administrators)

The id command may fail with the following:

id: bob: no such user

If the command fails, verify it exists in the directory service and

check the Search Path list in Directory Utility, which should show Active
Directory as part of the list when everything is configured properly

(Figure 10-7).

Figure 10-7.  Check Your Search Path listing in Directory Utility

Chapter 10 Directory Services

556

The Search Policy should automatically be configured during the

bind process. However, if you are manually configuring or attempting

to troubleshoot an automated binding, you can verify this configuration

in Directory Utility. It’s also possible to set the search path manually,

by setting the Search Path to custom. This allows the search order to be

changed and other alterations to be made as needed to the configuration.

While id is probably the easiest tool used to check connectivity, dscl is a

more robust tool for testing directory services.

�Use dscl to Browse the Directory
The dscl command can be run interactively or from a script; we’ll cover the

interactive mode first. Simply run dscl to get started:

dscl

The output is a simple interactive shell:

Entering interactive mode... (type "help" for commands)

 >

The syntax for moving through the configured directory services is

much like navigating around on the filesystem of a Mac from the command

line. Once you have initiated your session, it will show an interactive

prompt (>). Use the ls command to list the configured DirectoryService

Plug-ins and then use cd to change your working directory into one.

If you do not see Active Directory listed, you are not yet bound. When

you change directories with the cd command, you will need to quote in

order to avoid any spaces, as follows

cd 'Active Directory'

Chapter 10 Directory Services

557

After you change directories into the Active Directory plug-in, you will

see any domains and forests previously configured. You can only join one

forest at a time.

The Apple Active Directory plug-in only allows you to configure

one Active Directory forest at a time, the default behavior is to allow

authentication from all domains within a forest on the local machine. This

is an important note, as it means that depending on your organization’s

directory topology you may not be able to see the users if you are in

a separate forest. If you would like to restrict access to this computer

(or server) to only one domain, you will need to uncheck the Allow

authentication from any domain in the forest button in the Directory

Utility or run the command dsconfigad –all domains disable, depending

on your configuration. You will see either All Domains or your domain

name, wallcity.org when listing this value in dscl.

/Active Directory > ls

All Domains

To test that your binding worked correctly, you can change directory

into the respective value and do an ls. If you receive an error when

changing directory, your Active Directory binding has most likely either

failed or the current DirectoryService daemon has lost contact with your

site’s Domain Controller.

/Active Directory > cd 'All Domains'

/Active Directory/All Domains > ls

CertificateAuthorities

Computers

FileMakerServers

Groups

Mounts

People

Printers

Users

Chapter 10 Directory Services

558

A common procedure used to verify connectivity is to use the dscl

command along with the read verb to view the attributes associated with

a given account. This will allow you to verify that user lookup is working

within the Active Directory plug-in itself and look for any potential issues,

such as a missing attribute. While you could ls Users, depending on the

size of your organization, you may not receive all of the information

that you are looking for. By default, the LDAP server in Active Directory

will return a maximum of 1,000 results. Although many more can be

enumerated, this is just a limitation for how many are shown at once.

Therefore, we will simply cd into the appropriate directory and then use

read to view the attributes for a known good user account:

/Active Directory/All Domains > cd Users

/Active Directory/All Domains/Users > read CEDGE

dsAttrTypeNative:accountExpires: 456878888655687

dsAttrTypeNative:ADDomain: krypted.com

dsAttrTypeNative:badPasswordTime: 0

dsAttrTypeNative:badPwdCount: 0

dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0

dsAttrTypeNative:countryCode: 0

dsAttrTypeNative:displayName:

Charles Edge

dsAttrTypeNative:distinguishedName:

CN=Charles Edge,CN=Users,DC=krypted,DC=com

continued...

Chapter 10 Directory Services

559

Caution T he LDAP server in Active Directory by default will return
a maximum of 1,000 results. This limitation affects user, group,
computer, and computer group listings in both dscl and Workgroup
Manager and therefore may negatively affect any scripting
automations derived from this information. This is a hard limit in
Windows 2000 but can be adjusted in later versions, as instructed in
the Microsoft Knowledge base article found at: http://support.
microsoft.com/kb/315071.

One thing to keep in mind is that while viewing data from the Active

Directory plug-in directly (by changing directories into it), you can verify

that you have a connection to your organization’s directory services.

However, simply being able to view the raw directory service data does not

in fact mean that you can authenticate against it. As with dsconfigldap in

Chapter 2, the final step is to use the information gathered about your test

user and verify that you user matches in the /Search path as well.

/Active Directory/All Domains/Users > read /Search/Users/cedge

dsAttrTypeNative:accountExpires: 456878097655687

dsAttrTypeNative:ADDomain: krypted.com

dsAttrTypeNative:badPasswordTime: 0

dsAttrTypeNative:badPwdCount: 0

dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0

dsAttrTypeNative:countryCode: 0

dsAttrTypeNative:displayName:

Zack Smith

dsAttrTypeNative:distinguishedName:

CN=Charles Edge,CN=Users,DC=krypted,DC=com

continued...

Chapter 10 Directory Services

http://support.microsoft.com/kb/315071
http://support.microsoft.com/kb/315071

560

If the two read commands return different results, you have namespace

collision, which could possibly be resolved by altering your Search path.

In some cases, it may be necessary to simply delete the conflicting user

account. You can view the current search path with dscl along with a read

verb, the path, and the attribute to display (in this case, /Search SearchPath).

/Active Directory > read /Search SearchPath

SearchPath:

/Local/Default

/BSD/local

/Active Directory/All Domains

/Active Directory >

Once you have verified that user result is functional from the

DirectoryService daemon, you can verify that Authentication is correctly

happening (so far, we have only verified that user resolution is possible).

Type exit to end your interactive dscl session for the localhost.

/Active Directory/All Domains/Users > exit

Goodbye

Once you bound to Active Directory, simply log in as an Active Directory

user in order to test authentication. If the screen shakes and prompts you to

log in again, then one of the following conditions may apply:

•	 The account credentials are incorrect.

•	 The account does not have permissions to log on to

the Mac.

•	 The Active Directory binding is not correct.

Chapter 10 Directory Services

561

�Programmatically Binding to Active
Directory
Most anything on a Mac can be managed using a command line tool of

some sort. And binding to Active Directory is certainly no different. A

quick Google search is likely to net you about as many binding scripts as

there are Mac Admins out there. But there are a few components that are

important to understand. The first is simply checking the binding state

of a Mac.

To see the Active Directory configuration on a Mac, use the dsconfigad

command with the -show option:

dsconfigad -show

Here you’ll see a list of the options configured for any directories

you’ve been bound to. To actually bind, use a command like the following

(e.g., in a setup script):

dsconfigad -add $computername -u $username -ou "CN=Computers,

DC=network,DC=krypted,DC=com" -domain KRYPTED -mobile enable

-mobileconfirm enable -localhome enable -useuncpath enable

-groups "Domain Admins,Enterprise Admins" -alldomains enable

Let’s unpack the options used in the preceding command:

•	 -add adds the computer to the domain and uses the

variable supplied to the script for $computername as

the name for the computer that will appear in Active

Directory.

•	 -u is the username of an Active Directory user with

privileges to add a device into the Organizational Unit

described.

Chapter 10 Directory Services

562

•	 -ou defines the organizational unit the device will be

placed in. If this setting is not included, then the device

can still be enrolled but will be left in the default OU for

your Active Directory environment.

•	 -domain defines the domain to join. In this case, that

would be KRYPTED.

•	 -mobile makes the account mobile, or able to sign

on when Active Directory can’t be reached. This is

important for laptops that will be out of the office

frequently.

•	 -mobileconfirm skips the confirmation screen for Active

Directory users when creating the mobile account.

•	 -localhome creates a local home directory for the user.

•	 -useuncpath sets a home directory to a path defined

in Active Directory. This isn’t used as much as it used

to be given that devices don’t sync mobile accounts to

Active Directory using portable home directories like

they once did.

•	 -groups defines the groups in Active Directory

that are able to log into the local computer with

administrative privileges.

•	 -alldomains allows logins from any domain in the

forest, if the forest has multiple domains.

Finally, you may find that you need to unbind at times. This can often

be done with a simple dsconfigad command as well, with the following

being the simplest incantation to achieve that goal would be the following,

where $username and $password are variables that are a valid local

administrative username and password:

sudo dsconfigad -force -remove -u $username -p $password

Chapter 10 Directory Services

563

You can also install a profile using a script and the most common

way that you bind Macs to Active Directory these days is using a profile.

Provided your Active Directory deployment is healthy and not overly

complicated, the next section will step you through how to configure a

profile to bind to Active Directory.

�Bind to Active Directory Using a Profile
As we’ve referenced throughout this book, always perform as much of the

configuration on devices as possible using a profile.

Jamf Pro provides a setup similar to that used in most any management

solution. The settings that you used in earlier sections, to bind to Active

Directory, are now standardized and simplified in the following sections.

If you can bind using the settings available via MDM, then you should but

also maybe you shouldn’t do it the new way unless you know how to do it

the hard way. Just in case.

To show how to bind using a profile, we’ll show how to do so using

Jamf Pro. This creates a standard profile that should be interpreted the

same no matter which management solution you use. To get started, first

open your Jamf environment and then browse to Computers and then

Configuration Profiles.

Here, click Directory. At the Directory screen, you’ll see a number of

different settings, as seen in Figure 10-8. These include

•	 Directory Type: This section is about Active Directory

so we’ll select that, but you can also bind using other

directory services, such as OpenLDAP.

•	 Server Hostname: The name of an Active Directory

server in your domain. If you have problems

connecting to a regular server, try one that has a global

catalog role in the domain.

Chapter 10 Directory Services

564

•	 Username: The name of an account in your Active

Directory that has privileges to bind devices into an

Active Directory domain.

•	 Password: The password to the account with privileges

to bind devices.

•	 Verify Password: The password provided previously.

•	 Client ID: How the device will appear when viewing it

in Active Directory.

•	 Organizational Unit: The Active Directory

Organizational Unit the device will be added to

when bound.

Figure 10-8.  Configuring a directory service configuration profile for
macOS in Jamf Pro

Chapter 10 Directory Services

565

Those are the basic settings and will work for a pretty substantial

percentage of environments where you’re binding Macs to Active

Directory. But there are some specific needs that many environments

have. Next, scroll down so you can configure the more advanced options.

Under the User Experience tab, you’ll see the following options (10.9):

•	 Create mobile account at login: Creates an account

where the login credentials are cached locally on the

Mac, which enables the account to be able to log into

the Mac when Active Directory can’t be reached. This

is important for laptops that will be out of the office

frequently.

•	 Force local home directory on startup disk: skips the

confirmation screen for Active Directory users when

creating the mobile account.

•	 Use UNC path from Active Directory to derive network

home location: If your account profile on the AD

domain has a network share specified as a home

directory for your AD account, enabling this setting

will cause the network share to mount on login. This

isn’t used as much as it used to be given that devices

don’t sync mobile accounts to Active Directory using

portable home directories like they once did.

•	 Mount Style: This specifies the network protocol used

to mount the home directory referenced above. Apple

has been slowly deprecating support for AFP, and

NFS is not allowed on many networks, so it’s best to

plan on using SMB for your mount points, if you’ll be

using those.

•	 Default User Shell: It’s usually best to leave this as-is;

the default shell is /bin/bash.

Chapter 10 Directory Services

566

The mappings are for more advanced scenarios and not frequently

used any more. Essentially the unique identifiers for user accounts (or

UIDs) and the generated identifiers for user and group accounts (GIDs)

can be mapped to other attributes within a directory service, and these

settings allow you to configure those, as you can see in Figure 10-10. These

include the following:

•	 Map UID to attribute

•	 Map user GID to attribute

•	 Map group GID to attribute

Figure 10-9.  Specifying the user experience settings for Active
Directory in Jamf Pro for a directory service configuration profile
for macOS

Chapter 10 Directory Services

567

Mappings aren’t as common as they once were, but a number of

administrative settings can be useful in a well-thought-out deployment.

These include the following (Figure 10-11):

•	 Administrative

•	 Group: An Active Directory Security Group whose

members receive administrative access to devices.

•	 Allow authentication from any domain in the

forest: Allows.

•	 Namespace: When set to forest, you have to include

the domain name when authenticating.

Figure 10-10.  Specifying the mapping settings for Active Directory in
Jamf Pro for a directory service configuration profile for macOS

Chapter 10 Directory Services

568

•	 Packet signing: Enables the packet signing option,

blocking potential man in the middle attacks.

•	 Packet Encryption: When set to require, forces

encryption, thus not allowing any weak settings in

an Active Directory configuration to weaken the

security of the Mac.

•	 Restrict DDNS: Restricts dynamic DNS

registration into Active Directory-integrated DNS

servers for certain interfaces (you don’t typically

want certain types of interfaces to register

themselves into DNS, creating duplicate entries

for a given computer name).

•	 Password Trust Interval: Computers can force a

new computer password more frequently than

might be configured in Active Directory. This

setting allows you to specify a number of days to

renew those passwords.

Chapter 10 Directory Services

569

Once configured, click Save and then attempt to deploy the profile to

client systems by scoping the profile using the Scope tab. You can scope

different bind profiles to static groups, smart groups, or based on a number

of other attributes, providing the ability to distribute different profiles to

different sets of devices.

These options are pretty straightforward once you learn to bind

client Macs from System Preferences and definitely once you can use the

command line options available using dsconfigad. But now that we’ve

mastered Active Directory, in the next sections, we’ll dig into how to get

away from using Active Directory in the first place, so you can move out of

the 1990s and into the 2010s, just in time for 2020!

Figure 10-11.  Specifying the administrative settings for Active
Directory in Jamf Pro for a directory service configuration profile
for macOS

Chapter 10 Directory Services

570

Note  For a full listing of the options available to administrators in
configuration profiles, see the Apple article at https://support.
apple.com/en-us/HT202834.

�Beyond Active Directory
Active Directory has a number of requirements with regard to the

Mac. Clocks need to be in sync, an Active Directory server needs to be

accessible routinely in increasingly mobile platforms. It’s challenging to

keep passwords in sync. macOS supports Active Directory, but due to the

requirements, don’t bind to Active Directory if you don’t have to. There’s a

growing movement to go beyond directory services. Yes, we figured out how

to do it as a community. But just when the process was perfected, we got

smart. We learned that yes, Apple devices can exist on enterprise networks

as first-class citizens. But no, we don’t have to. Just like Picasso had to

master traditional art in his time, before he could think outside the box.

The use cases have also changed. Gone are the days when we were

mostly managing stationary machines. We now manage primarily portable

devices, and we’ve learned from our iOS fleets how to make them coexist

in networks without binding. Still, some will need to. And for those who

choose to try to go beyond binding to Active Directory and instead just

use Active Directory accounts, there are a couple of tools that can help

you stop binding and start managing. These include NoMAD and Apple

Enterprise Connect.

And there are organizations choosing to go even further. For those who

want to ditch the entire directory service concept, there’s a growing desire

to actually leverage a third-party identity provider such as Okta, Microsoft

Azure, and Ping Identity to access content online using a federated

identity, which we’ll cover further in Chapter 11.

Chapter 10 Directory Services

https://support.apple.com/en-us/HT202834
https://support.apple.com/en-us/HT202834

571

�All the Benefits of Binding Without the Bind
The early days of Mac management in enterprise settings involved a lot

of scripting to get a Mac to bind to Active Directory reliably. This became

such a large part of most new Apple customers that Apple built entire

toolsets around binding, sanity checking, and automating joining an Active

Directory environment.

Binding to Active Directory gave you authentication, authorization to

log in to a device, single sign on, and policies through what are known as

Managed Client Extensions, or MCX. When profiles came along that could

be deployed via MDM or command line (for more on this, see Chapter 2),

Apple stopped supporting MCX and with the scope of Active Directory

reduced, the Apple platform management community was able to rethink

how we deal with Active Directory.

So what really matters? We need an account to authenticate to, and we

need to configure Kerberos for single-sign on. It was out of this rethinking

that NoMAD and Apple’s Enterprise Connect were born. NoMAD is an

Open Source tool that is available at https://nomad.menu/support/ with

a paid version of NoMAD called Jamf Connect. NoMAD allows Mac users

to log in locally with Active Directory credentials and to join a Kerberos

realm, thus getting one login to access a number of local resources. Jamf

Connect extends this experience to include SAML.

�NoMAD Stand-Alone Application
NoMAD can be deployed as a stand-alone application. The NoMAD

application can then be branded so it’s consistent with the user experience

your users have grown to expect. NoMAD then provides Kerberos ticket

granting tickets and keeps Active Directory passwords in sync with a

local account on a Mac. NoMAD Login, which can be used as a separate

application, then allows you to login at the Mac loginwindow as your

Active Directory user.

Chapter 10 Directory Services

https://nomad.menu/support/

572

NoMAD is pretty easy to deploy. To provide the best user

experience possible for the people that interact with NoMAD, locate

the DefaultPreferences.plist within in NoMAD application bundle and

configure that plist (as we’ve done throughout this book) to set all the

various settings. Once you have the settings we’ll resign the application

bundle to prepare the app for distribution to client computers.

Once resigned, the NoMAD application can be used as a stand-alone

application without the user being an admin or to be on the network;

they need only provide the Active Directory domain, unless the machine

is already bound to Active Directory. NoMAD can then be added as a

LaunchAgent or via a Login Item so it starts when the user first accesses

the computer.

If this seems like a lot of work, it’s not. Let’s step through the process.

First download NoMAD from https://nomad.menu. Then, control-click

NoMAD and click Show Package Contents, as seen in Figure 10-12.

Now find that DefaultPreferences.plist file by opening Contents and

then Resources. From there, open it (in Figure 10-13, we show doing so

with Xcode)

Figure 10-12.  Showing the package contents of the NoMAD
application

Chapter 10 Directory Services

https://nomad.menu

573

Once finished, open the app and you’ll have a spiffy new menu bar

item that can be used to login to Active Directory without having to do

so at the login window. And as a bonus, there will be a link to your Self-

Service (or Managed Software Center if you’re using Munki) and to access

your help desk’s zero-tier support assets.

Figure 10-13.  Using Xcode to edit NoMAD’s
DefaultPreferences.plist file

Chapter 10 Directory Services

574

Note I nstalling NoMAD in the /Applications directory will require
administrative privileges, even though those won’t be required once
installed.

Once you have the app working, you can then distribute it to client

systems. When you build NoMAD, by default, it will pull preferences from

either /Library/Preferences/com.trusourcelabs.NoMAD.plist or from the

user’s Preferences folder. If you want to deploy a custom preference file for

each user, then you can do so with a standard package post-install script

using the defaults command. This allows you to pull variables such as the

currently logged in user at deployment time. The package is also the best

place to build that LaunchAgent we mentioned earlier. Another way to

configure settings would be using a configuration profile, covered in the

next section.

�Configuration Profile
NoMAD uses preference keys that have been deployed using a standard

configuration profiles. That profile can be configured with the profiles

command, or better, using a Mobile Device Management (or MDM)

solution. Let’s look at what’s in the profile:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>ADDomain</key>

<string>krypted.com</string>

<key>KerberosRealm</key>

Chapter 10 Directory Services

575

<string>KRYPTED.COM</string>

<key>RenewTickets</key>

<string>1</string>

<key>SecondsToRenew</key>

<string>7200</string>

<key>ShowHome</key>

<string>0</string>

<key>Template</key>

<string>User Auth</string>

<key>UseKeychain</key>

<string>0</string>

<key>Verbose</key>

<string>0</string>

<key>X509CA</key>

<string>ad.krypted.com</string>

</dict>

</plist>

The most important aspects of the above profile correspond to how

you configured the settings in the previous section. In the following

example, SimpleMDM will be used to send a custom payload to deploy a

property list shown above. The interface should look similar in most any

management solution.

To get started, open the SimpleMDM management interface and click

on Configs in the left-hand sidebar. This will show you a Profiles box (yours

may have more listed). Click Add Profile, as seen in Figure 10-14, to open

the profile drop-down list.

Chapter 10 Directory Services

576

Select Custom Configuration Profile from the drop-down list (it’s way

down at the bottom as it should be) to open the Custom Configuration

Profile screen (shown in Figure 10-15). Next, paste the text from the

previous section, or click Choose to import the profile file (.mobileconfig)

if you’ve been testing it using the profiles command on a client computer.

Figure 10-14.  SimpleMDM’s web interface for profile
configuration

Chapter 10 Directory Services

577

Click Save and then you can test deploying the profile to some client

computers. As has been consistent with this stuff, we show how to deploy

with a property list first, but remember, most any time you are deploying

a defaults command to place settings into a property list or a profile to set

some settings as managed preferences, then you really want to double-

check that you should use a profile.

�NoMAD Login AD
NoMAD Login AD is login plugin that allows you to alter the behavior of

the macOS login window with a better experience than the default Active

Directory plugin behavior. Users login at the login window as username@

domain name. So if the username is charles on the domain krypted.

Figure 10-15.  Creating a new configuration profile in SimpleMDM’s
web interface

Chapter 10 Directory Services

578

com, then the login would simply be charles@krypted.com. This usually

matches the email address in Exchange for many domains.

Provided the domain is available on the network, NoMAD Login

AD then locates domain details using Active Directory resource records

automatically and authenticates the account. Once the account

authenticates, the user gets a local account on the computer. If deployed

with NoMAD (which again isn’t necessary), then you can then use the

menu bar icon to synchronize accounts.

Note T he login experience is highly customizable with things
like logos at each screen, background images, etc. To see a great
repository of all these options, check out https://gitlab.com/
orchardandgrove-oss/NoMADLogin-AD/wikis/home.

To get started, first download NoMAD Login AD from https://files.

nomad.menu/NoMAD-Login-AD.zip and extract the zip file. Then run the

installer package, as seen in Figure 10-16.

Figure 10-16.  Accessing and using the NoMAD Login AD installer
package

Chapter 10 Directory Services

https://gitlab.com/orchardandgrove-oss/NoMADLogin-AD/wikis/home
https://gitlab.com/orchardandgrove-oss/NoMADLogin-AD/wikis/home
https://files.nomad.menu/NoMAD-Login-AD.zip
https://files.nomad.menu/NoMAD-Login-AD.zip

579

Once the installer has been run, copy the NoMADLoginAD.bundle to

the /Library/Security/SecurityAgentPlugins directory and then run the

loadAD.bash script using the following (if the file were on your desktop).

sudo ~/Desktop/loadAD.bash

Once done, you can log off and when you log in, you’ll be using

NoMAD Login, as seen in Figure 10-17.

By default, you see the Carrie the Caribou icon, but you can take your

NoMAD Login deployment a step further and replace that icon with your

own. Additionally, you can take all of the steps in this section and build a

custom installer package.

Figure 10-17.  The NoMAD Login login window

Chapter 10 Directory Services

580

�Apple Enterprise Connect
Apple also provides a similar toolset, along with support and professional

services in the form of Apple Enterprise Connect. Given that Apple

Enterprise Connect isn’t available without services, this book is unable to

go into detail around the offering, but if your organization is not interested

in an Open Source tool and you’re interested in a vendor-supplied solution

to alleviate the need to bind your fleet of Macs, then Apple Enterprise

Connect is a great option.

�Summary
In this chapter, we got devices configured to work with Active Directory,

both with the built-in options as well as new options provided by open

source alternatives. Active Directory should bring Single Sign On to your

devices when they’re on the network that hosts the Kerberos Realm in

Active Directory. But modern devices support SAML and other ways to

do single sign that are far more flexible for use with SaaS (or web service

providers) and when devices aren’t on your network. Therefore, it’s

common for organizations to have a Federated Identity Provider, or IdP –

and most work with SAML and OAuth these days.

Apple has limited support for SAML. Given that SAML started as

predominately web technology, Safari has long supported the protocol. An

IdP then gives the ability to authenticate to a web site and not subsequently

get prompted for your credentials as you browse to other pages that

are federated with the same provider. In the next chapter, we’ll start

customizing an identity with a SAML provider and move on to setting up

the actual end-user experience, so you know, our users love us. We’ll begin

the next chapter by covering the move from a login to an actual identity.

Chapter 10 Directory Services

581© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_11

CHAPTER 11

Customize the User
Experience
Once you have secured and configured devices to work with your

environment, it’s time to turn your attention toward delighting your

coworkers! This is where you go from just being another rude IT hack

who’s locking down devices to actually becoming a world-class awesome

human (or at least someone with a tad bit of empathy) that people are

genuinely excited to be in an elevator with. To begin this journey, try to

always think of Step 1 as thinking of your users as your coworkers, as our

friend Emily from the MacAdmins Podcast says.

Therefore, when we like to think of customizing the user experience,

we like to think of that experience as putting access to the resources our

coworkers need to do their jobs front and center without putting any

unnecessary obstacles in the way. We want to do so in an efficient way,

where we automate as much as we can in order to delight our coworkers.

We want to give freedom, but without putting people at risk. As we covered

in the last chapter, each organization has a different posture when it comes

to securing devices, but rarely will you hear people complain that you

actually paid attention to what they thought.

If we do our job, the first thing most of our coworkers will do is take an

Apple device out of a box, join a wireless network, and then get a bunch of

stuff on their device. What happens next is still based on the platform, and

in some cases, whether you’re in a school or company.

582

�Getting iOS and iPadOS Devices
in the Hands of Users
iOS and iPadOS devices have a great setup experience that we’re still trying

to replicate on the Mac. Mobile devices can be automatically enrolled into

an MDM using DEP, or the user can do a self-enrollment into the MDM

service. From there, profiles, apps, and media can be pushed to the iOS

and iPadOS device to configure the device in whatever manner is desired.

The main difference in what’s possible is going to be if the device is

configured to be supervised or not.

•	 Supervised: The MDM is in total control of the

management of the device and the device cannot be

unenrolled from the MDM. Push deployment of apps

and media do not require the device’s user to consent.

•	 Unsupervised:The MDM is managing the device,

but the user is ultimately in charge because they can

remove the MDM profile from the device and unenroll.

While enrolled, push deployment of apps and media

require user consent.

For most companies, schools and institutions, supervison of devices

is the preferred method because it allows the mobile device to be

completely managed without user consent. DEP makes this easy for those

organizations by enabling devices to be automatically supervised once

enrolled with the devices’ associated MDM server. This can allow for a

very streamlined process of getting the mobile device out of the shipping

box and into the users’ hands because the device can be set up with the

desired configuration almost as soon as it powers on and communicates to

a network for the first time.

For those organizations which can’t use DEP for whatever reason,

supervision is still possible by using tools like Apple Configurator to put

Chapter 11 Customize the User Experience

583

iOS and iPadOS devices into supervised mode and enrolling them with

the organization’s MDM server. It’s more work for that organization,

but ultimately the same outcome: a mobile device which is completely

managed by that organization’s MDM.

�macOS
For macOS, the process is a little more complicated. Supervison as its own

management concept on macOS has only become possible starting with

macOS Catalina, where now all DEP-enrolled Macs are set as supervised

by default. Meanwhile, it’s possible to use means other than MDM to

configure Macs, which is by itself unheard of in most mobile device

environments. Instead, scripts, installer packages, and other means to

deploy settings and files are available options on macOS. Let’s take a look

at how Mac admins can use MDM, configuration profiles, scripts, installer

packages, and other means to build on Apple’s work and provide an

intuitive and customized user experience for their own environments.

�Planning the macOS User Experience
Before you write a single script or build a solitary profile, think about what

you want your users to experience. Many times, this experience will be

set in part or wholly by the IT or legal policies of a company, school, or

institution. A few items which may be included are

•	 Acceptable use policies that the user needs to agree to

before using company equipment

•	 Branded desktop background image

•	 Branded word processing, presentation media, or

spreadsheet templates

Chapter 11 Customize the User Experience

584

•	 Whether or not the user will have administrator

privileges

•	 Organization-specific mail server settings for

email clients

•	 Organization-specific bookmarks for web browsers

Other parts of the experience may be guided by feedback from the

users themselves, based on what they want to have as part of their Mac’s

default experience. In general though, a wise Mac admin will try to change

as little as possible from Apple’s defaults. This is for two reasons:

	 1.	 Apple can make changes between OS versions which

can make applying certain settings more difficult.

	 2.	 The more the user experience is governed by Apple’s

defaults, the less time that the Mac admin will need

to spend on managing it.

In general, we recommend managing what’s required and leaving

everything else alone. Both your users and you will be better off for it.

�Transparency Consent and Control
Protections on User Home Folders
Something to keep in mind for macOS Mojave and later is that Apple has

implemented protections on certain directories within the user folders.

As of macOS Catalina, here’s the list of directories within the user folder

which appear to be covered by Apple’s user-focused privacy protections:

~/Desktop

~/Documents

~/Downloads

Chapter 11 Customize the User Experience

585

~/Library/Application Support/CallHistoryTransactions

~/Library/Application Support/com.apple.TCC

~/Library/Application Support/AddressBook

~/Library/Application Support/CallHistoryDB

~/Library/IdentityServices

~/Library/Calendars

~/Library/Preferences/com.apple.AddressBook.plist

~/Library/Messages

~/Library/Mail

~/Library/Safari

~/Library/Suggestions

~/Library/Containers/com.apple.Safari

~/Library/PersonalizationPortrait

~/Library/Metadata/CoreSpotlight

~/Library/Cookies

~/Library/Caches/CloudKit/com.apple.Safari

~/.Trash

With these protections in place, it is not possible to write to these

locations except with the following conditions:

	 A.	 You’re logged-in as the user in question.

	 B.	 The process or tool writing to the location has

been whitelisted using a Privacy Preferences Policy

Control profile. (More information on these profiles

can be found in Chapter 4.)

This does not mean Mac admins won’t be able to make changes to the

user home directories, but it does mean that admins won’t be able to just

drop a file into place. Instead, alternate methods may need exploring.

Chapter 11 Customize the User Experience

586

�Using Profiles to Manage User Settings
Using macOS configuration profiles is one method for configuring user

settings which can be straightforward to set up and centrally manage from

an MDM server. As an example, part of the mandated user experience at a

particular organization may be that Safari’s homepage setting must always

be set as the company’s web site. A profile like the one shown below can be

applied to enable this.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>PayloadContent</key>

 <array>

 <dict>

 <key>HomePage</key>

 <string>http://www.pretendco.com</string>

 <key>PayloadDescription</key>

 �<string>Configures Safari configuration

preferences</string>

 <key>PayloadDisplayName</key>

 <string>Safari</string>

 <key>PayloadIdentifier</key>

 �<string>com.pretendco.com.apple.Safari.

39648B3BD130</string>

 <key>PayloadOrganization</key>

 <string></string>

 <key>PayloadType</key>

 <string>com.apple.Safari</string>

 <key>PayloadUUID</key>

Chapter 11 Customize the User Experience

587

 �<string>BA9D2B27-12F4-4AF9-B7B5-

69E0FB3B6CB3</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 </dict>

 </array>

 <key>PayloadDescription</key>

 �<string>Set Safari's homepage to the company website

</string>

 <key>PayloadDisplayName</key>

 <string>Set Safari Homepage</string>

 <key>PayloadIdentifier</key>

 �<string>com.pretendco.D626B082-BDB1-476E-B34D-63DF10C08C39

</string>

 <key>PayloadOrganization</key>

 <string>Pretendco</string>

 <key>PayloadScope</key>

 <string>System</string>

 <key>PayloadType</key>

 <string>Configuration</string>

 <key>PayloadUUID</key>

 <string>D626B082-BDB1-476E-B34D-63DF10C08C39</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

</dict>

</plist>

Chapter 11 Customize the User Experience

588

The user experience of applying this profile is that the homepage

setting in Safari is filled in with the requested web site. It is also grayed out

to indicate that the setting cannot be changed.

Figure 11-1.  Profile managing the Safari homepage settings

Chapter 11 Customize the User Experience

589

The fact that the end user can’t change the Safari setting highlights

one of the characteristics of profiles, which is that by default their settings

are designed to be enforced and not allow the user to change them later.

Depending on the requirements of your organization, this characteristic of

profiles may be advantageous or be a drawback.

An advantageous characteristic of using profiles to manage settings is

that they can be used to apply settings which would otherwise be blocked

by the user-focused privacy protections. This is because profiles are using

Apple’s frameworks to apply these settings, rather than trying to write

directly to a file stored in the user’s home folder.

�Using Scripts to Manage User Settings
It is sometimes desireable to be able to set a setting one time and not

manage it afterward. This is where it can be advantageous to use scripts

and other tools to manage user settings. For example, it may be desirable

Figure 11-2.  The managed homepage setting in Safari’s preferences

Chapter 11 Customize the User Experience

590

to set the Energy Saver settings as part of the provisioning process but

allow the end user to change them to meet their own needs later. This can

be accomplished using a script like the following:

#!/bin/bash

�Set separate power management settings for desktops and laptops

#

�If it's a laptop, the power management settings for "Battery"

are set to have the

�computer sleep in 15 minutes, disk will spin down in 10 minutes,

the display will

�sleep in 5 minutes and the display itself will dim to half-

brightness before

sleeping.

�While plugged into the AC adapter, the power management settings

for "Charger" are

�set to have the computer never sleep, the disk doesn't spin down,

�the display sleeps after 30 minutes and the display dims before

sleeping.

#

�If it's not a laptop (i.e. a desktop), the power management

settings are set to have

�the computer never sleep, the disk doesn't spin down, the

display sleeps after 30

minutes and the display dims before sleeping.

Detects if this Mac is a laptop or not by checking the model ID

for the word "Book" in the name.

IS_LAPTOP=$(/usr/sbin/system_profiler SPHardwareDataType | grep

"Model Identifier" | grep "Book")

Chapter 11 Customize the User Experience

591

if ["$IS_LAPTOP" != ""]; then

 pmset -b sleep 15 disksleep 10 displaysleep 5 halfdim 1

 pmset -c sleep 0 disksleep 0 displaysleep 30 halfdim 1

else

 pmset sleep 0 disksleep 0 displaysleep 30 halfdim 1

fi

Running this script as part of your provisioning process will ensure that

the Mac will have the desired Energy Saver settings applied by the pmset

command line tool. However, unless the script is rerun later, the user won’t

be restricted from modifying the Energy Saver settings themselves.

Another area where scripting may be necessary is to apply settings

which aren’t manageable by profiles. One example of this is updating rules

in macOS’s authorization database. This database governs settings and

user rights for many different actions, such as adding a printer, setting up

Time Machine or setting DVD region codes. One of the settings managed

by this database is whether or not an administrator must authenticate

every time in order to access system-wide settings in System Preferences.

By default, this setting is disabled and not manageable by a profile, but you

can use a script like the one below to enable this setting.

#!/bin/bash

This script enables the "Require an administrator password

to access system-wide preferences" checkbox found in

System Preferences's Security preferences

�Read the authorization database for the current system.

preferences rules

�and exports them as a property list to /tmp/system.preferences.

plist.

/usr/bin/security authorizationdb read system.preferences >

/tmp/system.preferences.plist

Chapter 11 Customize the User Experience

592

Use the defaults command to change the existing "shared" key in

/tmp/system.preferences.plist to a boolean value of false.

/usr/bin/defaults write /tmp/system.preferences.plist shared -bool

false

�Reads the contents of the property list file into the

authorization database

�and then updates the system.preferences rules to use the new

value.

/usr/bin/security authorizationdb write system.preferences <

/tmp/system.preferences.plist

Figure 11-3.  Enabling the “Require an administrator password to
access system-wide preferences” checkbox in the Security preferences

Chapter 11 Customize the User Experience

593

�Modifying the macOS Default User Template
Macs can have multiple accounts. Each new account gets a unique home

directory and so each user can have a different experience with a system.

These home directories are created from a template directory provided

by Apple and it is possible to customize the template for new user home

directories in order to provide a similar user experience to each new

user account. The user templates are available at /System/Library/User

Template on macOS Mojave and earlier, and at /Library/User Template for

later versions of macOS.

Note I f you are considering altering the default user template, think
long and hard about alternative ways to accomplish your goal.

For those not experienced with how permissions and settings work
on macOS, modifying the user template directory can be a quick and
effective way to give both you and your users weird and difficult to
diagnose problems.

One circumstance where you may want to customize the user template

is if you want to provide customized Word, Excel, or PowerPoint templates

for the relevant Microsoft Office applications. As of Microsoft Office 2019,

the Office applications look for templates in the following location inside

the home directory:

~/Library/Application Support/Microsoft/Office365/User Content.

localized/Templates.localized

Everything past ~/Library/Application Support does not exist by

default in the User Template directory, but creating the missing directories

inside the template and moving the Office template files into them would

allow your users instant access to those templates.

Chapter 11 Customize the User Experience

594

�Customize the Desktop
Another example of modifying the user experience would be to put

a “Welcome to the Company” PDF on the desktop. Chances are your

organization will have a bunch of forms and documents that new

employees need to sign, agreeing not to abuse the Internet in your office

or steal intellectual property. I like putting fun company facts up front and

then at the end of that PDF maybe links to set up any accounts or eSign any

forms at the bottom. This small way of crafting the onboarding experience

can go a long way, and it’s as simple as putting a pdf in the Desktop

directory of the appropriate user template prior to creating user accounts.

�Customize the User Preferences
User preferences are usually stored in a properly list, or .plist file. While

you can customize the preferences stored in the user template directory,

first try to customize the setting using a custom profile in the MDM of your

choice. Once you’ve determined you can’t customize settings in the way

you want using MDM or via a script, an alterative approach is to configure

the setting on your Mac and then find what preference file changed.

Assuming it’s a user setting stored in ~/Library/Preferences, you can then

load the file into the Preferences directory of the appropriate user template

to push it out to new user accounts.

This is a place where customizing the experience on an iOS devices is

substantially different from doing so on a Mac. We’ll look at managing the

Home Screen to provide an awesome user experience for iOS in the next

section of this chapter.

Chapter 11 Customize the User Experience

595

�Configure the iOS Home Screen
The home screen is how we interact with a iOS device. Pushing a specific

home screen configuration allows you to customize that experience and

make it easier for people to get at what they need.

Most MDM solutions will support customizing your home screen

to make it easier to access your device data. To show how to customize

the home screen, we’ll use Apple Configurator. To start, open Apple

Configurator and then click on a device or a Blueprint. Then select the Home

Screen Layout… option from the Actions menu, shown in Figure 11-4.

At the Modify screen, simply drag the icons to where you want them

to be in order to best customize the layout for your environment, as seen

in Figure 11-5. It’s usually best to place apps on the screen based on

frequency of use. The most common will go in the dock. This is often a

mail app, a web browser, the phone app (for iPhones), and a corporate

messaging app (like Slack or Hipchat).

Figure 11-4.  Modifying the iOS Home Screen Layout using Apple
Configurator

Chapter 11 Customize the User Experience

596

The right layout will be different for everyone. But usually you’ll see

an expense app, Maps, the camera, a line of business app like Salesforce,

the Calendar app, an app to access your contacts, and any apps to access

your organization’s documents (e.g., Dropbox, Box). Keep in mind that you

want your coworkers to still like you and to have a great experience with

their devices, so leaving some nonbusiness apps up front and center will

help with that.

Once you’ve crafted the best experience for the humans who will be using

your devices, click Apply to make the change and see your app badges move.

Figure 11-5.  Adding apps to the iOS Home Screen Layout using
Apple Configurator

Chapter 11 Customize the User Experience

597

We reviewed how to do this with Apple Configurator, but most MDMs

support similar functionality. The look and feel will be a little different,

according to the device management tool you’re using, but the experience

usually looks similar to the one shown in this section.

�Custom App Stores
Along with setting up a good user experience as part of the setup process

for new Macs, attention should also be paid to helping the user to help

themselves where possible. A number of Mac management tools come

with custom app stores, where users can install their own software on their

own schedule. Three examples of management tools with this functionality

are the following:

•	 Jamf Pro

•	 Munki

•	 Workspace One

Most of these applications look and work in similar ways, where

the user can launch the self-service application and make their own

choices from what’s available to either install an application or run a

particular task.

Chapter 11 Customize the User Experience

598

Figure 11-7.  Workspace One’s self-service app portal

Figure 11-6.  Jamf Pro’s Self-Service

Chapter 11 Customize the User Experience

599

In many cases, these self-service tools can also be branded with your

company, school, or institution’s official logo. This helps build trust in your

user community for using the tool in question, since it is visually affiliated

with your organization.

�Test, Test, Test
In Chapter 3, we looked at building profiles, which can be used to

customize settings on devices. In Chapter 4, we looked at pushing those

profiles out through MDM. In Chapter 8, we talked about testing. But

it’s worth reiterating that you should be testing different regressions of

tests. The information from Chapter 8 will help guide you to making sure

that the desired state of devices after a test matches up with the state you

actually end up with.

Figure 11-8.  Munki’s Managed Software Center

Chapter 11 Customize the User Experience

600

�Summary
One of the best parts of administering Apple devices is the elegant user

experience that they come with out of the box. As administrators, it can

be tempting to lock down systems and customize this experience until the

native experience is barely recognizable. Don’t do that.

Instead, take a page out of Apple’s notebook and try to delight your

coworkers. Yes, we said coworkers and not users. When you think of how

you can give them what they need without restricting them in ways that

destroy that elegantly crafted user experience, you will make friends,

grow the population of devices on this platform you (hopefully) love

and likely get more budget to do even cooler stuff. Now that the devices

are in a secure and predictable state, we’ll spend Chapter 12 reviewing

how to customize the online experience and gate access to various SaaS

services based on whether the device meets the security posture of your

environment.

Chapter 11 Customize the User Experience

601© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_12

CHAPTER 12

Identity and Device
Trust
Chapter 7 was about securing devices. Part of security is securing the

connections between devices. Chapter 9 was about directory services.

Most of the protocols for single sign on for directory services were

developed in a time when most of an organization’s devices were on a

single network and most resources were located behind a firewall. Today,

devices are spread all around the world and devices access multiple sites

built by multiple Software as a Service vendors, who organizations want

to use the same credentials to access their account as they use when those

users are in the office.

The evolution of single sign on has been toward thinking about

those user accounts in a different way. We now use the term Identity

and the engines that provide those identities as Identity Providers, or

IdPs. Windows, Linux, and Apple are all developing technology in their

operating systems to keep up with the rapidly changing pace of IdPs

with new standards being developed on the fly to meet the needs of an

increasingly global workforce.

We also looked at personalizing the user environment in Chapter 10.

Part of that user environment now includes accounting for those identities

and crafting a workflow as seamless as possible between the apps we run

on devices and the sites we access as a routine part of doing our jobs. In

this chapter, we’ll look at what an IdP is, how Apple devices work with

602

IdPs, and what technologies can be put in place to make the lives of our

coworkers better, starting with the fundamental technologies required to

understand an IdP properly.

�Use IdPs for User Identities
An IdP is a federated identity provider, or a repository of records

(identities) along with the metadata for those records such as the name

and any keys necessary to unlock those records. The main vendors that an

organization will use as an IdP include the following:

•	 Okta

•	 Ping Identity

•	 Microsoft Azure

•	 Google

•	 OneLogin

•	 VMware

•	 Salesforce Communities

•	 Duo Security

The real promise of an IdP is that by providing single sign-on services,

an IdP removes the need for passwords. As usual, the IT industry can’t

just have one way of doing things, so most IdPs support two main

protocols: OpenID Connect (built on top of OAuth 2.0) and SAML. As

an example of working with both, https://developer.okta.com/docs/

api/resources/oidc is the OpenID Connect documentation for Okta

and www.okta.com/integrate/documentation/saml/ is the SAML

documentation. Developers who decided to implement single sign-on

into their web apps using either can then allow Okta to connect to them

Chapter 12 Identity and Device Trust

https://developer.okta.com/docs/api/resources/oidc
https://developer.okta.com/docs/api/resources/oidc
http://www.okta.com/integrate/documentation/saml/

603

and federate customers who decide to use both services. Since much of

the technology used in an IdP came out of the REST frameworks, we’ll go

in deeper with REST.

�REST and Web Authentication
When you open a web page, a web browser once accessed a flat HTML

file from a web server and then rendered what was on that web server

in your web browser. As “the Web” matured, different pieces of data in

those pages told browsers to do different things. At this point, most pages

you view access a page that appears to be a flat HTML file, when it is in

fact a dynamic representation of information created by dozens (if not

thousands) of scripts. Those scripts are often lightweight pieces of code

processed using Application Programming Interfaces, or APIs.

Some APIs are publicly accessible. Others require authentication

and authorization. The authentication usually sent in the header of a

request for information from the API endpoint. The technology behind

modern web authentication has been adopted to work with standard

REST endpoints. REST, or representational state transfer, is a standard for

communicating between web sites. One of the easiest ways to send data to

a REST endpoint is using the curl command through the macOS Terminal

application.

In the following example, we’ll simply use the cURL command to make

a request to list the content of a file through a standard site:

curl https://raw.githubusercontent.com/krypted/jwttools/master/

README.md

The response is a bunch of text displayed in a fairly unstructured

manner. This is great for showing flat information but can be more

challenging if more structured data is required, such as username and

password, or more appropriately for web authentication, a token – or

Chapter 12 Identity and Device Trust

604

even a key that is persistent only for a given session. You can run a curl

command for any web site to see that information converted into clear

text. A RESTful endpoint will be a bit more structured – in the following

example, we’ll run a standard POST operation (we won’t get into the

differences between POST, GET, and DELETE):

curl -s -X POST -H 'Accept: application/json' -H 'Content-Type:

application/json' --data '{"userid":"{userid}","password":"{pas

sword}"}' https://www.krypted.com/flask/googlesyncscript

The output would provide the data available at that endpoint that

you’re sending the POST command to. There are multiple types of web

authentication that have become standard over the past few years. Once

a session has been authenticated, most standard web applications now

communicate by sending small pieces of data in a normalized JSON

format, which we’ll describe in the next section of this chapter.

�JSON
Because we need more structure, we have various formats, such as

SOAP (short for Simple Object Access Protocol) or the more modern

JSON. JavaScript Object Notation (or json for short) is a lightweight format

for exchanging data that has become a standard for the Web. Similar in

origin to the XML used in a property list or SOAP, json removes the need

for all the <> symbols and definitions, making it easier on the human eyes

while still easy to parse and generate programmatically.

Because the web continues to mature, you can also see authentication

information as some of the fields, or metadata, transferred via JSON. In

fact, we now have a standard that is built just for authenticating using

information transmitted via json in a JWT. A JWT, or JSON Web Token, is

an open standard for representing a claim between two entities. Defined

in RFC 7519 at https://tools.ietf.org/html/rfc7519, JWT is one of

Chapter 12 Identity and Device Trust

https://tools.ietf.org/html/rfc7519

605

a number of competing standards for authenticating over the web. For

example, the following JSON indicates that the token will be a JWT hashed

using the HS256 algorithm.

{

 "alg": "HS256",

 "typ": "JWT"

}

Those claims submitted in a JWT are encoded in a json object, signed

using a JWS or json Web Signature and encrypted using JWE (or JSON Web

Encryption).

�Use JWTs As Service Accounts
Everything that is old becomes new again. Much as RADIUS, an earlier

authentication type for wireless networks and VPNs, used a preshared

key to validate a party prior to decryption and much as Kerberos had

clients submit a ticket granting ticket rather than a password, JWT is a

modern evolution to that same type of transaction, complete with its own

acronyms but without the trappings of 20–30 years of technical debt. In

short, a JWT is a credential used to grant access to a resource.

Most of the time when you’re making a transaction between two

computers, that transaction is broken into three parts: a header, a payload,

and a signature. The header defines rules about what’s about to come,

the payload it what you’ll receive, and the signature. To see this put into

motion, let’s look at the header of a typical transaction:

{

 "alg": "HS256",

 "typ": "JWT"

}

Chapter 12 Identity and Device Trust

606

In the above, we’re simply stating that the token will be

cryptographically signed using HMAC-SHA256 (or HS256 for short) and

that the grant type will be a JWT. If you wanted to, you could encode this

using the following command:

echo -n '{"alg": "HS256","typ":"JWT"}' | openssl base64

You could also add more metadata, most notably the payload – or what

command or API call you’re sending between servers. For example, some

personally identifiable information we maybe shouldn’t send over the web,

but since every else does it, let’s just go ahead:

{

"Email": "krypted@me.com",

"FirstName": "Charles",

"LastName": "Edge"

"iat": 1516239022

"exp": 2414245921

}

In the above example, we snuck something else in there: iat indicates

the time the token was issued and exp indicates the expiration time the

token expires. The signature is where it gets a bit more cryptographically

challenging. To get the signature, you base64url encode the header (which

we did by piping it into openssl, but next time adding the payload). You

then concatenate the two using a period to indicate a field separator and

then encrypt the whole thing with a secret key. The standard encryption

algorithm in our experience seems to be HMAC-SHA256, but you can go as

high as PS384 if you have the horsepower to do all that work on the fly for

all the transactions that might come through.

Now it’s starting to seem like we’re getting really complicated (after

all this isn’t a book on cryptography), so let’s look at JWT.io, a web site

where you can decode, verify, and generate a quick JWT. The important

Chapter 12 Identity and Device Trust

607

thing to note here is that you enter one of those pieces of information in

an encoded form and get to see how it’s decoded against the signature,

shown in Figure 12-1.

Another great project is jwtbuilder, which does much of the same but

without hitting the web site, at http://jwtbuilder.jamiekurtz.com.

There are different schemas for JWTs, so you might see “Authorization:

Bearer” in the header of a user agent (e.g., via Postman). We’ll take a look

at obtaining bearer tokens next.

�Bearer Tokens
Often times the web server hosting an endpoint will allow you to submit

some information and will then pass you a bearer token back, once

it’s done all that crypto-fun. In the following, we set a variable called

BearerToken (which should look similar to the JWT shown from JWT.io)

Figure 12-1.  JWT.io

Chapter 12 Identity and Device Trust

http://jwtbuilder.jamiekurtz.com

608

using a simple curl to the contents of a bearer token. Below, we run a curl

with data in the header for “userid” although sometimes we see this as

just “user” or “username” and then a password (each rest endpoint can be

different – such is the joy of working with “modern” technology). This hits

an endpoint called authenticationendpoint (sometimes called “auth” or

“authenticate”) and then we parse the output for a token field once we’ve

parsed out the json symbols:

BearerToken=$(curl -s -X POST -H 'Accept: application/json'

-H 'Content-Type: application/json' --data '{"userid":"{user

id}","password":"{password}"}' https://www.krypted.com/api/

authenticationendpoint | sed -E 's/\},\s*\{/\},\n\{/g' File |

grep '"id" : "token"')

Once we have that token, we can then pass it into another API via the

Authorization header when connecting. In this example, we’ll just pass

the BearerToken we captured in the previous command to an endpoint

called EndpointName on that same site (thus www.krypted.com/api/

EndpointName):

curl -H 'Accept: application/json' -H "Authorization: Bearer

${BearerToken}" https://www.krypted.com/api/EndpointName

But if these tokens are used to connect between sites, who cares about

how we create a Bearer Token, how might a rest end point to give us one,

and what that token is used for? Those tokens become the foundation

of OAuth, which is suddenly where words like Facebook, Okta, Azure,

Amazon, and Ping Identity start to come into play.

�OAuth
OAuth is short for Open Authorization and per RFC 6749 (https://

tools.ietf.org/html/rfc6749) is an open standard for using tokens to

authenticate and authorize services, including use over public networks

Chapter 12 Identity and Device Trust

http://www.krypted.com/api/EndpointName
http://www.krypted.com/api/EndpointName
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

609

such as the Internet. It was invented by then lead developer at Twitter,

Blaine Cook, in 2006 so other organizations could connect to another

service using their Twitter account. OAuth continued to evolve over the next

few years until 2012 when Oauth 2.0 was released, which added flows for

web applications, mobile devices, IoT devices, and desktop apps, making it

one of the most widely used authentication platforms in use today.

OAuth 2 allows those applications to obtain access in a way that is

limited to only what an account needs to user accounts typically using

standard REST endpoints. OAuth 2 delegates the actual user authentication

to the service that hosts the user account, which can then change what an

application is granted to access or have an account quickly disabled. OAuth

2.0 allows for account information to be traded between services via OAuth

providers, which include organizations like Amazon, Box, Dropbox, Etsy,

Facebook, GitHub, Google, Instagram, LinkedIn, Microsoft, PayPal, Reddit,

Salesforce.com, Stack Exchange, Trello, Twitter, and Yahoo.

There are four roles in OAuth:

•	 Resource Owner: The Resource Owner is the user

who allows (or authorizes) an application to access

their account information. The Resource Owner can

then identify what scope that service, or application

has. For example, when you authorize another site

like OpenTable to use your Facebook account so you

don’t have to create yet another account. When you

do that, you should see a list of the permissions that

other site has. You are the Resource Owner and those

permissions are scopes.

•	 Client: The application that wants to access the

information owned by the Resource Owner. In the

above example, this would be OpenTable.

Chapter 12 Identity and Device Trust

610

•	 Resource Server and Authorization Server: While

defined separately, these are usually hosted in the same

place and are the protected user accounts that should

only have access delegated to by the Resource Owner.

In the above example, this would be Facebook. At work,

this might be Okta, Ping, OneLogin, or Azure AD.

What happens when you connect? You tap a button and the device

goes to talk to an authorize API endpoint on an OAuth provider (the

Resource Server):

https://www.randomoauthprovider.com/v1/oauth/

authorize?response_type=code&client_id=CLIENTID&redirect_

uri=CALLBACKURL&scope=read

In the above example, the & symbol separates fields to the request, so

we’re sending a response type, a client ID, a redirect uri, and a scope:

•	 Client ID: The unique identifier for that client.

•	 Redirect URI: The URL the authorization server calls

once it’s finished processing the login. This provides an

extra layer of security because the response is sent from

the server to a specific URL.

•	 Response Type: Indicates that the authorization server

provides an authorization code to clients which will

then be used to get access tokens.

•	 Scope: What level of access or what accesses this

specifies at a granular level, the “scope” of the access

to the resource, i.e., are we requesting authorization to

read the resources, modify the resources, etc.

The application requests authorization to access a resource (e.g., your

name, email address, and authentication information) from the user. This

Chapter 12 Identity and Device Trust

611

is where an embedded Facebook screen in an app like OpenTable asks if

you want to give access to the app that embedded it. Then the if you want

to grant access, you tap a button to allow that access, thus authorizing the

application to receive an authorization grant. This would be a call to an

API that looks something like this

https://www.randomappredirect.com/callback?code=AUTHORIZATIONCODE

The application then authenticates and authorizes that the grant

is valid from the Resource Server (e.g., by performing a standard API

call against a REST endpoint hosted via the Facebook Graph API). The

application that requests the resource – that metadata about you, and

receives a token.

https://www.randomoauthprovider.com/v1/oauth/token?client_

id=CLIENT_ID&client_secret=CLIENT_SECRET&grant_type=authorization_

code&code=AUTHORIZATION_CODE&redirect_uri=CALLBACK_URL

In the JWT example from earlier, that token would usually have a time

when it expires, a Client ID, a Client Secret, and an Authorization Grant as

well as any information that was provided such as the following:

{"access_token":" eyJhbGciOiAiSFMyNTYiLCJ0eXAiOiJKV1QifQ.

eyJOYW1lIjogIkNoYXJsZXMiLCJ0eXAiOiJKV1QifQ. iJKV1QifQ",token_

type":"bearer","expires_in":2414245921,"refresh_

token":"REFRESH_TOKEN","scope":"read","uid":667,"FirstName":"Ch

arles","LastName":"Edge","Email":"krypted@me.com"}

This is just standard json and that bearer token should look similar, just

with additional metadata. A real-world example is the following. Here, you

can see authenticating into Medium using Facebook for OAuth, including

the redirect, client_id, scope, etc:

https://www.facebook.com/v2.9/dialog/oauth?client_

id=542599123456789&redirect_uri=https%3A%2F%2Fmedium.com%2Fm%

Chapter 12 Identity and Device Trust

612

2Fcallback%2Ffacebook&scope=public_profile%2Cemail&state=%7Ch

ttps%3A%2F%2Fmedium.com%3Fsource%3D--------------------------

post_free-%7Cregister%7C1ae249dc69bbb075abcdef123fcb369e&respon

se_type=token

At this point, you’ve used OAuth to communicate with the web service

and you can then access additional resources without reauthenticating. If

we were still using the OpenTable analogy, we’d say it’s time to go to dinner

and talk about the services built on top of OAuth 2.0 and these standard

token formats, which brings us to using an IdP to provide a user identity.

�Webauthn
The Web Authentication API (commonly referred to as WebAuthn) is an

API specification for servers to register and authenticate a user using a

public key instead of a password. Webauthn allows servers to take use

of the authentication built into a mobile device, like Apple TouchID or

FaceID, and then use a keypair from the device instead of a password

when accessing a given server, such as those that host a web site like Jamf

Pro. The keypair is a common pair of keys with a public key as simply

an identifier (kinda’ like a username) and the private key as a random

or cryptographically generated representation of a password. Because

we trust the local security of the device, we can then trust the key and a

credential ID that is issued just for each server, with that pair representing

an “identity.” The web server only ever receives the public key and so if

compromised, the public key isn’t useful.

WebAuthn was developed by the W3C and FIDO organizations, who

added WebAuthn to FIDO2. WebAuthn is added to the Safari browsers

from Apple, meaning support is now provided from Chrome, Firefox,

and Microsoft Edge. Google, Mozilla, and Microsoft helped develop the

standard and so released support for Chrome, Firefox, and Microsoft Edge

Chapter 12 Identity and Device Trust

613

early on. Apple first added WebAuthn support to Safari in a Technology

Preview in 2018. Apple announced all Safari browsers would also support

WebAuthn at WWDC in 2019.

�OpenID Connect
OpenID Connect is a simple identity layer that sits on top of OAuth

2.0. OpenID Connect allows client devices and apps that run on those

devices to verify the identity of users. This is done by authenticating to an

authorization server and then receiving various pieces of metadata about

the user in JSON. Those JWTs from earlier in this chapter are great for

service accounts but not typically used by themselves for dynamic user

authentication.

OpenID Connect is similar to the OAuth 2.0 flow we described earlier

in this chapter. In addition, the authorization server (or endpoint) also

provides an ID token (as well as a token endpoint) as a JWT in addition to

the access token in a standard OAuth 2.0 flow. Additionally, because it’s a

hosted service specifically meant to provide identity information there are

is a userinfo endpoint, a logout endpoint, a keys endpoint to view public

keys, and a revoke endpoint so the user can disconnect their account. The

authorize endpoint is also used to refresh tokens.

The id-token is the added piece in OpenID Connect and the userinfo

endpoint can provide additional information prior to authorization when

needed. Now that we’ve covered OpenID Connect, let’s look at SAML.

�SAML
SAML, or Security Assertion Markup Language, uses similar signed and

encrypted secure tokens for authentication and authorization data. SAML

is a little older and so communicates over a standardized XML format.

Chapter 12 Identity and Device Trust

614

While similar in nature to a JWT, SAML tokens are much longer when

decoded. See Figure 12-2 to see the attributes in the XML schema for

a SAML token at http://samltool.io. There will be a x.509 certificate

signatures, canonical naming to access resources, and a number of other

items that are standardized and much more attuned to a more mature

enterprise-class protocol. This doesn’t make it better, just chattier.

All that extra information you see in addition to what’s in OpenID

Connect though includes a lot of standardization. Those standards

mean there are shared repositories of code that developers can use to

quickly build features (such as a framework for iOS development or

Spring Security for Java). This also means that in some cases it’s easier for

different vendors to work well with one another.

Figure 12-2.  samltool.io

Chapter 12 Identity and Device Trust

http://samltool.io

615

SAML also provides support for what’s known as Just-in-Time (JIT)

provisioning. Using JIT, users are generated on the fly the first time they

access a service using a SAML assertion. For example, Just-in-Time

provisioning then works by having the SAML identity provider pass user

information to a Mobile Device Management solution the first time a user

logs in during a DEP enrollment, as seen in Figure 12-3 when configuring

Identity Provider Information in SimpleMDM.

In the above screen, you can also see the Logout URL, certificate,

authentication endpoint, and a name. We’ll cover these more in the next

few sections. The most important thing to know about OpenID Connect

and SAML is that if you configure everything properly, most of the work

will happen behind the scenes and you only need to know the above terms

Figure 12-3.  Configuring SAML in SimpleMDM

Chapter 12 Identity and Device Trust

616

so you can fill in the paths and select the correct fields when configuring

an IdP to work with your web apps. Now that we’ve covered enough of

what’s happening behind the scenes, we should have enough information

to setup an IdP properly.

�Cookies
A cookie is a small amount of data that a web site creates and stores

on your computer using a special handler built into your web browser.

Cookies can do a number of things, but the most common is to store login

data, such as a username, or some kind of session tracking information.

Cookies can also store preferences, a key to remember your identity, or a

callback URL.

There are session and persistent cookies. Session cookies are deleted

whenever you close a browser and often store information like shopping

carts, or callbacks. These are deleted when the browser closes. Persistent

cookies still have an expiration date but are typically used to remember

an identity, which is usually a key used to derive personal information on

the server.

Cookies can get a bad rap because not all developers play with the

information safely or because cookies can be shared between certain

developers. As you can see in the Privacy pane of the Safari Preferences,

Safari will show sites that are storing cookies in the browser (Figure 12-4).

Chapter 12 Identity and Device Trust

617

In Safari, session cookies are stored in /Users/ce/Library/Caches/

com.apple.Safari and persistent cookies are stored in /Users/ce/Library/

Cookies. These directories are protected and so you cannot browse inside

them. Since cookies are stored in a different location for each web browser,

if you switch browsers, new cookies will need to be created. Apple has put

cookies under privacy and made it difficult to access them. While disabling

cookies does provide additional privacy, it can cause various web sites to

stop working as intended, especially those of identity providers.

�ASWebAuthSession
ASAuthenticationSession is an API that launches a Safari View Controller

for a sign-in url, making it easier to authenticate users in a low-code

scenario. That provides the user with an authentication dialog that allows

a user to authenticate through a service, such as an OAuth provider. Upon

a successful authentication, the OAuth service responds with an auth

token and fires up a completion handler. To use ASAuthenticationSession,

Figure 12-4.  Cookies in Safari

Chapter 12 Identity and Device Trust

618

first read https://developer.apple.com/documentation/

authenticationservices/aswebauthenticationsession and then import

AuthenticationServices into a project.

A web authentication session is then created using something like the

following, which we’ll perform by populating the loginURL in the block below:

init(url: URL, callbackURLScheme: String?, completionHandler:

ASWebAuthenticationSession.CompletionHandler)

Import AuthenticationServices

var webAuthSession: ASWebAuthenticationSession?

@available(iOS 12.0, *)

//Define the OAuth 2 endpoints required for authentication

func getOAuth2Token() {

let loginURL = URL(string: "https://account.krypted.com/idp/

login/oauth/authorize?client_id=<client_id>")

let callbackURLscheme = "https://account.krypted.com/idp/auth"

self.webAuthSession = ASWebAuthenticationSession.init(url:

loginURL!, callbackURLscheme: callbackURL, completionHandler:

{ (callBack:URL?, error:Error?) in

// Handler to receive the callback

guard error == nil, let WoohooURL = callBack else {

return

}

//Grab the token from the callback

let OAuth2Token = NSURLComponents(string: (WoohooURL.

absoluteString))?.queryItems?.filter({$0.name == "code"}).first

// Display the token or an error

print("You logged in and here is your token:" OAuth2Token ??

"No OAuth Token was received")

})

self.webAuthSession?.start()

}

Chapter 12 Identity and Device Trust

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession

619

This goes in the code wherever you want the login window to appear.

All cookies that are accessed using ASWebAuthentication session other

than session cookies can then be shared with the web browser. As we

covered earlier in the chapter, according to the developer, those cookies

can then be used to store different types of metadata.

There are much better and more thorough handlers out there such as

https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/

OAuthSwiftURLHandlerType.swift. The above code was really mostly

meant to show the well-known endpoints for OAuth in use, how the token

is passed, and the callback. The code to get much of this working is fairly

straightforward for developers. It gets challenging though for developers

to read between the lines of a rapidly changing ecosystem. Now that we

better understand what the IdP is and how it works, let’s actually show

you. To show a standard identity provider in action, we’ll set up a trial

account with Okta.

�Set Up a Test Okta Account
We’re using Okta in this chapter because their trial accounts are simple to

set up and it’s easy to get started. Most identity providers are similar. Okta

is a solid IdP, but the concepts in this chapter should be easily portable to

other providers as well. The Okta screens are succinct but the terms used

can vary from provider to provider.

To set up an account go to Okta.com and click on Try Okta. You’ll

then be prompted for a domain to set your account up on. Fill in the fields

requested and click on the Create Account button. You’ll then get an email

Once you have an Okta account, log in and at the Getting Started with

Okta screen, and click on the Add App button to link your first app to Okta

(Figure 12-5).

Chapter 12 Identity and Device Trust

https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/OAuthSwiftURLHandlerType.swift
https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/OAuthSwiftURLHandlerType.swift

620

At the Add Application screen, search for the name of the tool you’d

like to add. In Figure 12-6, we’ll use Jamf Pro.

Figure 12-5.  Set up an Okta Trial Account

Chapter 12 Identity and Device Trust

621

When the app appears, click Add, as shown in Figure 12-7. Note that if

an app is using SAML, it will say as much!

Figure 12-6.  Add a web application in Okta

Figure 12-7.  Selecting the Application to add

Chapter 12 Identity and Device Trust

622

The app is then added to your app list and can be configured. To

configure, click the new entry. You’ll then be prompted to configure SAML

2.0 (Figure 12-8). Click View Setup Instructions.

Scroll down to the SAML section. Here, configure the standard, or

“well-known” endpoints that are required, including the Single Sign

On URL for the app you’re federating. Each app is going to be different

and you may have to locate a support page for an app to find the correct

settings (such as URLs, encryption algorithms, etc.). In this case, you

should be able to simply click Next, as you can see in Figure 12-9.

Figure 12-8.  Configure the Sign on and Credentials

Chapter 12 Identity and Device Trust

623

Click Assignments. Here, you configure each user that has access to

federate their account. Many will work with Just In Time (JIT) provisioning

or SCIM (System for Cross-domain Identity Management), so accounts

can be provisioned on the fly as they appear in a directory service and

deprovisioned, respectively.

JIT and SCIM are separate standards that make this kind of

management easier. JIT provisioning creates users in a service provider the

Figure 12-9.  SAML Settings for Federation

Chapter 12 Identity and Device Trust

624

first time they log on, based on information in a SAML assertion. SCIM is

a standard that automates the flow of identity metadata between domains.

Accounts can be provisioned in one system and show up in another,

with additional attributes such as fields and group memberships being

automatically assigned in the process, or gated based on a grant type for

the specific service provider accessing the identity. While we’re selecting

a user manually in Figure 12-10, it’s worth noting that provisioning can

be automated provided both the service provider and identity provider

support the ability to do so.

Next, open your Okta domain on a computer you haven’t tested before.

You’ll then be prompted to install the Okta browser plug-in (Figure 12-11).

Figure 12-10.  Configuring the application for a user

Chapter 12 Identity and Device Trust

625

Most identity providers offer an app that helps them to get around

certain service provider or client computer limitations on a platform

basis. For example, Okta provides a plugin to allow password injection

for services that cannot be federated over any delegated authentication

protocol. This is a free download from the Safari Extension store. To

download the Safari extension for the Mac, open Safari and search for Okta

(or use the link provided earlier). Simply click the Install button, or if the

extension has already been installed, click Update (Figure 12-12).

Figure 12-11.  Logging into Okta

Chapter 12 Identity and Device Trust

626

You also have options to install Okta for iOS. Okta Mobile is an app

for iOS. Most iOS apps from identity providers are used for 2FA with

push notification or OTP. The launcher apps that attempt to federate

authentication is an option most provide, but not really useful given that

none of the iOS solutions have matured to the point where users will love

it. We hope new options in how oauth is handled on the platform help to

improve this user experience after iOS 15 is released.

This process was for federating an administrative screen, but the

process is similar for other self-service and app store solutions – and

most apps should follow a similar pattern for federating. Once federated,

let’s look at some SAML responses in order to continue getting a better

understanding of how modern Single Sign On works.

Figure 12-12.  Installing the Okta Safari Extension

Chapter 12 Identity and Device Trust

627

�View SAML Responses
SAML support was initially added to Safari a few years ago to help keep

Sharepoint users from having to provide credentials repeatedly. Since

then, additional options for single sign on solutions have been added as

well. The Safari Web Inspector now has a feature to see the SAML response

in action, an important tool when troubleshooting issues between

federated sites. To do so

•	 Open Safari.

•	 From the Safari menu, click Preferences.

•	 Click the Advanced tab.

•	 Check the box for “Show Develop menu in the

menu bar”.

•	 Select Show Web Inspector from the newly displayed

Develop menu.

•	 Select the Resources tab.

•	 Log into a site.

•	 View the Requests by filtering for SAMLResponse.

•	 Decode the response from base64.

Chances are you won’t be able to decipher much of the SAML

response. This is by design and as you get more accustomed to

troubleshooting SAML responses, you’ll pick up a few tricks here and

there. One of our favorite would be SAML Tracer.

SAML Tracer is a plugin for Firefox available at https://addons.

mozilla.org/en-US/firefox/addon/saml-tracer/. Once installed,

you’ll be able to see a list of SAML requests as well as how the request

was formatted and any SAML responses, decoded, as you can see in

Figure 12-13.

Chapter 12 Identity and Device Trust

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/
https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

628

The same plugin is available for Chrome browsers as well. Now that

we’ve gotten used to SAML, let’s look at OAuth, starting with using Jamf

Connect for the Mac.

�Jamf Connect for Mac
Jamf Connect is a bundle of three apps that provide access to a number of

OpenID providers, including Google, Microsoft, and Yahoo! At the login

window for macOS

•	 Jamf Connect Login: Login window that helps

administrators create accounts on machines and

authenticates an end user to an identity provider.

Figure 12-13.  SAML Tracer

Chapter 12 Identity and Device Trust

629

•	 Jamf Connect Verify: Used for keeping the local account

and web identity provider in sync. Then handles the

authentication and any following authorization for

handling Kerberos tickets, linking legacy identity to

more modern forms of identities.

•	 Jamf Connect Sync: Does the same as the above, but

specifically for Okta.

The developers of Jamf Connect have indicated to the authors of this

book that they plan to merge these into one app in the next year; however,

understanding them as standalone apps helps keep the tasks being

performed separate. We’ll start with setting up Jamf Connect Login.

�Configure Jamf Connect Login
The macOS login window is pluggable, meaning that developers can write

tools that extend the functionality of the login window. Jamf Connect

Login is an authorization plugin for the login window, similar to a PAM

module, or pluggable authentication module. There aren’t a ton of PAM

modules out there and the technology has never been standardized, but

Jamf Connect Login also comes with a PAM module in order to facilitate

managing the login at a sudo prompt when using Terminal. But they

have been around for a long time in variants of Unix and Linux and are

commonly used to integrate authentication schemes between languages

and through APIs. The API being used here is the loginwindow.

To get started, first download the Jamf Connect DMG, which contains

the Jamf Connect Login app. Also download your license file from Jamf

Nation, which we’ll use in a bit. Before we get started, let’s look at how

Jamf Connect Login will work. The installation package will install the

PAM module into /usr/local/lib/pam/pam_saml.so.2 which configures

sudo for use with Jamf Connect Login. Jamf Login will also be installed

into /Library/Security/SecurityAgentPlugins and the authchange script is

Chapter 12 Identity and Device Trust

630

installed to, /Library/Security/SecurityAgentPlugins/JamfConnectLogin.

bundle/Contents/MacOS/authchanger, which updates the authorization

database located at /private/var/db/auth.db. This process allows the

authorization plugin to be used. the following command is run at the end

of the installation package in order to activate the authorization plugin:

authchanger -reset -OIDC

You don’t need to do this manually, unless you’re customizing the

package that installs Jamf Connect Login for the client computer. Once

run, to see your authorization database, simply run that authchanger

command with the -print option:

authchanger -print

The authchanger command also supports a number of other flags

such as -prelogin to provide a mechanism to use before the user interface

shows up or -preAuth to give a mechanism to be used between the login

interface and actual authentication (e.g., if you need to alter data prior to

authentication. We won’t get into more advanced pre-flight and post-flight

scripting to customize how things work, but know that these are options as

your environment matures.

Now that we’ve covered how this works once installed, we’ll

customize the package for the specific identity provider and well known

URLs in use by your identity provider. To get started, customize the

package for installation. We’ll use Okta to continue on with the previous

walkthroughs. Start by opening the Jamf Connect DMG available from

Jamf. Then open the example plist in a text editor and provide the

AuthServerpreference key.

Chapter 12 Identity and Device Trust

631

Once you are satisfied with your changes to the Jamf Connect Login

property list, upload it to an MDM solution for deployment (Figure 12-14)

along with the license file unaltered, using the custom payload option.

Upload the provided license key configuration profile to your MDM

solution.

There are lots of other keys that give you the ability to get more

granular with the setup experience as well, but we will leave you with some

surprises for when you read the product manual. Once you get the package

installed and the preferences in place, it’s time to test your first login!

Figure 12-14.  Configure a Jamf Connect profile

Chapter 12 Identity and Device Trust

632

To do so, we like to reboot the computer to make sure the experience

matches what a user will see the first time they use their machine. At this

point, you’ll see the new Jamf Connect login screen (with branding yours

may appear different than that in Figure 12-15).

Figure 12-15.  The Jamf Connect Login Window

Chapter 12 Identity and Device Trust

633

The federated identity service will then prompt for a login the first time

you authenticate with that service, as seen in Figure 12-16 for Azure Active

Directory. Provide the username and password using the screens, which

also appear differently per vendor.

Figure 12-16.  Multi-factor authentication with Jamf Connect

Chapter 12 Identity and Device Trust

634

Once logged in, you can also manually authenticate using the menu

bar item at the top of the screen (Figure 12-17).

To see logs, open /private/tmp/jamf_login.log to see what was logged.

You can also view debug logs by searching the log for com.jamf.connect.

login as the predicate:

log stream --predicate 'subsystem == "com.jamf.connect.login"'

--debug

This gives you enough information to troubleshoot should you need to.

If you so choose (and you should since you’re paying for it), you can also

get the passwords synchronized for Okta, using Jamf Connect Sync. Jamf

Connect Sync is similar: a package and a profile that sends the AuthServer

preference key to the com.jamf.connect.sync defaults domain. This is

a string to your Okta instance. Once installed, the login window can be

branded for your organization, have login policies, etc.

Figure 12-17.  Signing in with Jamf Connect

Chapter 12 Identity and Device Trust

635

Jamf Connect for Mac can be useful in any Mac environment with an

investment in an identity provider where Macs are used. Jamf Connect is

an entirely different tool and so we’ll cover that in the following section.

�Jamf Connect for iOS
Another tool for getting additional federated identity functionality

for Apple products is Jamf Connect iOS. Jamf Connect is an app that

provides access to a device through a number of OpenID providers that

support Webauthn (for more on webauthn, see https://webauthn.io

or vendor documents at https://docs.microsoft.com/en-us/azure/

active-directory-b2c/active-directory-b2c-devquickstarts-ios

or https://developers.google.com/web/updates/2018/05/webauthn),

including Okta and Microsoft Azure. The device accesses the IdP through

a function hosted with a service like Google Cloud Functions or Amazon

Lambda. The path to the cloud function is then sent to the device via App

Config for processing when the app is run.

Passwords are protected using a standard Resource Owner Password

Grant flow, as described at auth0.com: https://auth0.com/docs/api-

auth/tutorials/password-grant. The end user then runs the Jamf

Connect app, which authenticates to the identity provider (e.g., using

an embedded Microsoft Authenticator) that is specified in AppConfig. A

cookie is then instantiated via ASWebAuthentication. The callback then

goes back to the app, sending a standard OpenID Connect identity token

in the JWT format. All of these technologies from ASWebAuthentication to

OpenID to JWT are described earlier in the chapter.

That identity token is then stored in the keychain on the iOS device

labeled as com.jamf.connect.token and can be consumed by any app with

an entitlement to do so. Once the user authentications, the user is prompted

for the roles available in the grant type of their token (Figure 12-18), you

Chapter 12 Identity and Device Trust

https://webauthn.io
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-devquickstarts-ios
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-devquickstarts-ios
https://developers.google.com/web/updates/2018/05/webauthn
https://auth0.com/docs/api-auth/tutorials/password-grant
https://auth0.com/docs/api-auth/tutorials/password-grant

636

pick the role, that is then sent as a parameter to the function. The function

then talks back to an MDM server, if one is used, meaning that while Jamf

Connect is made by the same organization that makes Jamf Pro, the tool can

be used with any MDM that supports AppConfig.

Provided that everything authenticates properly, the user is assigned

to a role, which is mapped to a static group based on the selected role. The

apps and settings applied to that group are then applied to the device.

Because we have the JWT in the keychain, we can then allow the user

to sign out in Jamf Connect ,which then takes the JWT out of the keychain

and are sent to the function doing a remove parameter. The JWT is still

valid that it’s signed and used to remove the role from the device, which is

an API call back to Jamf Pro (or another MDM) to remove the device from

the static group the device had been a member of. Disassociation from

the role is done by calling the /logout URI (a well-known oauth endpoint).

Once configured, you’ll get a Success screen (Figure 12-19).

Figure 12-18.  Jamf Connect for iOS

Chapter 12 Identity and Device Trust

637

When you sign in, you can get the Microsoft Broker application

distributed through Apple’s Volume Purchasing Program, or VPP, for

free – using the token that Microsoft can share to their App Keychain. All

Microsoft Apps are entitled to access that keychain and therefore you have

federated access to the Microsoft stack of applications.

Figure 12-19.  Finish a device configuration based on Jamf
Connect

Chapter 12 Identity and Device Trust

638

To log off, simply use the app and select the Sign out option, as in

Figure 12-20. The technology for identity management is changing rapidly.

Expect more and more capabilities to come out over the next few years and

for our users to go from entering a password less to maybe not entering a

password at all. Now that we’ve looked at leveraging the identity provider,

we’ll move to providing access to resources gated by the identity along with

the state of the device, starting with Microsoft Conditional Access.

�Conditional Access
Conditional access is a feature of Azure Active Directory that controls

access to cloud-based, or SaaS apps based on where a device meets a

number of conditions, such as whether the device has a security posture

that meets the requirements of an organization. We won’t cover Google’s

Beyond Trust service in this book as at the time of publishing that is not

Figure 12-20.  Log off using Jamf Connect

Chapter 12 Identity and Device Trust

639

shipping to customers, but it works very similarly and so many of the

concepts in this section will likely work with other tools as well.

Conditional access allows an administrator to then build policies that

are enforced at any point during the authentication and authorization

process to access a resource. Gating access to content based on the

security posture of a device is a growing requirement for any type of

environment and is therefore a growing requirement for administrators

of any device, including Apple devices. A number of MDM or identity

products have then introduced features to allow for this, many leveraging

the Microsoft APIs for Intune or Office 365 to gate access.

Each of those MDM developers has their own strategy and outcomes.

Some have built their own app ecosystem, others have chosen to do

proxies, and some do a pure-API level integration with an identity provider

or SaaS solution. Deciphering what is happening and exactly what

outcomes to expect during the planning phase can then be a challenge.

We’ll start our review of Conditional Access integrations by looking

at the Jamf and Intune integration. This integration allows organizations

to make sure only trusted users on Macs that meet a given security

posture are given access to applications or other resources owned by

an organization. This is done by flowing information from Jamf Pro

into the Microsoft Intune database, which Jamf Pro pushes there using

the Microsoft Graph API. Based on smart group membership access,

applications are set up in Azure Active Directory and then if a device

meets requirements they are given access to those apps. Additionally,

the Jamf Self Service app can put a machine into compliance if it falls

out of compliance.

�Configure the Jamf Integration with Intune
There are a few requirements to be aware of before you get started. The

Jamf Intune Integration obviously requires that you have an account to

access a Jamf Pro server. This account should also have Conditional Access

Chapter 12 Identity and Device Trust

640

privileges. Additionally, you’ll need an account with Intune. And finally,

you’ll need devices running a minimum of macOS 10.11 in order for

machines to be configured.

Once you’ve made sure that you meet the minimum requirements,

open Jamf Pro and then click the Settings icon. Then click Conditional

Access in the Global Management section of the page (Figure 12-21).

At the Conditional Access screen, click the Edit button. Here, you

will have the following settings available. To begin the process of linking

accounts, check the box for Enable Intune Integration for macOS. This

enables the integration. When this setting is selected, Jamf Pro will send

inventory updates to Microsoft Intune. Clear the selection if you want to

disable the connection but save your configuration once we’re done.

Figure 12-21.  Jamf Pro Settings

Chapter 12 Identity and Device Trust

641

Next, select the region of your Microsoft Azure Active Directory

instance in the SOVEREIGN CLOUD field, which should by default be set to

GLOBAL. Then click the “Open Administrator Consent URL” button to open

the window to integrate with the Azure Active Directory instance. Once

clicked, provide a username and password for the Azure Active Directory

tenant where you have access to Conditional Access (Figure 12-22) and

click the Sign In button.

Figure 12-22.  Federation to Microsoft from Jamf Pro

Chapter 12 Identity and Device Trust

642

Then click the Accept button to provide the grant for accessing the

connector (Figure 12-23).

Figure 12-23.  Configuring the Grant Type

Chapter 12 Identity and Device Trust

643

Provided the connection is established, you’ll then be prompted that

the “App has been added” as seen in Figure 12-24. You can then go back to

your Jamf Pro instance and complete the setup there.

Figure 12-24.  Complete the Intune Integration

Chapter 12 Identity and Device Trust

644

Back at the Jamf Instance, the Jamf Native macOS Connector app is

running and you can then configure the rest of the settings. In the AZURE

AD TENANT NAME section, provide the name of the Active Directory

Azure tenant, and in the APPLICATION ID, provide the ID of the Jamf

Client app from Microsoft Azure. Those settings are matched with the

Name and Application ID from the Properties of the Connector in Azure,

shown in Figure 12-25.

Figure 12-25.  Configure the Jamf Pro Connector in Azure

Chapter 12 Identity and Device Trust

645

Finally, in the LANDING PAGE FOR COMPUTERS NOT RECOGNIZED

BY MICROSOFT AZURE: The default here is the default Jamf Pro Device

Registration page, or the standard page to add devices. Additionally, you

can automatically deny access or provide a custom URL so you can script

your own workflow to remediate devices (Figure 12-26).

Figure 12-26.  Finalize the Intune Integration Settings In Jamf Pro

Once you’ve configured settings as needed, the integration will

automatically synchronize devices on a schedule and apply any necessary

compliance policies to computers. A valuable testing step is to manually

trigger Jamf Pro to send an inventory update to Microsoft Intune. This

allows Jamf Pro to send computer inventory information to Microsoft

Intune outside of the regular synchronization process. To manually send

an update, just click the Send Update button once configure.

Chapter 12 Identity and Device Trust

646

Azure Active Directory ID information for users and computers

appears in the Local User Account category for a computer’s inventory

information in Jamf Pro, shown in Figure 12-27. For more on setting up this

integration, see https://docs.jamf.com/technical-papers/jamf-pro/

microsoft-intune/10.9.0/Overview.html.

�Beyond Authentication
Now that we’ve gone through how common tools provision identity

information through OAuth Connect and SAML, let’s take a much more

user-centric approach. Because an IdP is so integral to the future of device

management, a number of device management vendors have chosen to

release their own identity provider, hoping to reduce the friction required

and build a better user experience for customers. MobileIron Access and

VMware Identity Manager two such products.

Figure 12-27.  View Azure Information from Jamf Pro

Chapter 12 Identity and Device Trust

https://docs.jamf.com/technical-papers/jamf-pro/microsoft-intune/10.9.0/Overview.html
https://docs.jamf.com/technical-papers/jamf-pro/microsoft-intune/10.9.0/Overview.html

647

VMware Identity Manager works in conjunction with the VMware

approach that in order to simplify the user experience, you want to

provide users with one pane of glass to access web, mobile, SaaS, and

legacy apps. Having a user provide credentials at provisioning time and

then simply accessing those resources through Identity Manager allows

VMware to save end users time and build a great user experience by using

the Self-Service App Store as a means to see all of that. Bolt multi-factor

authentication and the in-depth knowledge of what’s on a device and how

the device is configured that the device management piece brings in and

you have a pretty complete solution. This is the goal of Workspace ONE,

using the Workspace ONE Intelligent Hub. For more on Workspace ONE,

see https://docs.vmware.com/en/VMware-Workspace-ONE/index.html.

�Multi-factor Authentication
Multi-factor authentication combines two or more independent

credentials to authenticate. Think of these as something the user knows,

like a password, something the user is, like a fingerprint or faceID

verification, and something a user has, like a security token. This provides

a layered defense. A password can be written on a sticky note. But the

chances of the sticky note making it into the hands of someone who

can unlock a phone through touchID and accept a prompt increase the

security of that transaction.

There are a variety of factors that go into the need for multi-factor

authentication. Maybe a local password database gets compromised.

Those passwords are often reused across a number of different sites.

Messaging a phone when the password is used then reduces the risk that

the password alone can give an attacker access to a given resource.

An early example might be swiping an ATM card (something you

have) and then entering a PIN (something you know). A modern

representation would be entering a username and password in a web

Chapter 12 Identity and Device Trust

https://docs.vmware.com/en/VMware-Workspace-ONE/index.html

648

site and then entering a code sent to your phone via text message. Or to

make this process even simpler now, entering your Apple ID and then just

tapping Allow on your phone. While Apple began to adopt multi-factor

authentication with iCloud, that’s for accessing Apple services.

Many vendors are looking to give organizations access to similar levels

of security. If you’re reading this book, chances are you were exposed to an

RSA SecurID in your career. This was the standard in token-based multi-

factor authentication for a long time. But why use physical tokens when we

can replace the function that those provide with an app?

�Microsoft Authenticator
The Microsoft Authenticator app (available for iOS and Android) is used

to sign in, back up, and recover account credentials and adds a two-step

verification to the signing process for integrated products. Authenticator

also has the option to require biometric (Touch ID or Face ID) or a PIN

code to get that second step for verification. The administrator can choose

to require that or allow a user to configure it.

The Microsoft Authenticator app also supports one-time passcodes.

Here, a time-based, one-time passcode secures an online account that’s

been configured to work with the TOTP standard, providing added

security. An example of using this option would be an integration with

Github. To configure GitHub for two-factor authentication, go to the

Settings page, then Security and select “Personal settings” in the sidebar.

Click Enable two-factor authentication and then select the option to “Set

up using an app.”

Make sure to keep the security codes when you’re prompted with

them. Your account is lost if you lose them. Like really, really lost. When

you see the QR code, open the Microsoft Authenticator app, select “Add

account,” and then enter the text at the top of the site.

This process is similar to how you set up a SmartThings bridge to

manage the lights in your home, various HomeKit enabled devices, and

Chapter 12 Identity and Device Trust

649

other IoT-based authentication flows. The fact that you have a short

amount of time to enter codes keeps the transactions secure and the

simplicity of the QR-code workflow in exchange for a token keeps our

coworkers from doing wonky things.

�MobileIron Access
MobileIron Authenticator is another such an app. MobileIron Access starts

with using MobileIron Authenticator as a soft token app that replaces hard

tokens with an automated setup experience that provides a one-touch

activation process. Once configured, users verify login attempts with the

app in much the same way that Apple prompts you on iCloud-enabled

devices when you access various services for the first time on a device.

Apple devices will push that notification through APNs and then aggregate

information from security products, apps, the state of the device, and the

user location.

This provides a framework for remediation workflows. So if a user

violates a given policy, MobileIron Access will then silo the user into a

group and gate access to various resources until the device no longer

violates that policy. Users can run their own remediation flows and will

be prompted on the device to perform given tasks that get the device back

into a state where it can be trusted again.

All of this does require that each part of the ecosystem is aware of the

type of transaction being performed when replacing a password with a push

notification response. For example, if you’re using OAuth to provide single

sign-on to a site, and that site will send a push notification to MobileIron

Authenticator, then the site needs to have code in the authentication page

that does that instead of prompting the user for the password. This would

then put the task of brokering the OAuth token on MobileIron instead of on

a handler that runs when the login button is clicked.

Putting the job of authenticating users into a new flow is more secure

and provides the benefit that the single sign-on transaction can be based

Chapter 12 Identity and Device Trust

650

on the context of the user, device, and ecosystem requesting access;

however, this can limit the vendors you work with.

For more on MobileIron Access see https://community.mobileiron.

com/docs/DOC-4417.

�Conditional Access for G-Suite
G-Suite has an option for Conditional Access. As of the printing of this

book, G-Suite doesn’t allow for creating a device in Google Directory. This

means that you would need to routinely manually upload a list of device

serial numbers in order to get devices into G-Suite. Once devices are in

G-Suite, you can build a Google Cloud Function that takes output from a

webhook and changes the state of that device.

�Obtain Your CustomerID from G-Suite

There are a few ways to grab your CustomerID from G Suite. This is

important when configuring SSO or when interfacing with G Suite

programmatically (through their lovely API).

The first and easiest way is to look at the web interface. This isn’t the

most intuitive. To find the key, open Google Admin and then browse to

Security in the menu in the upper left-hand corner, clicking on Dashboard.

Click on Single Sign On and then scroll down until you see

EntityID. The EntityID is going to be everything after the = such as

C034minsz9330 as seen in Figure 12-28.

Figure 12-28.  Obtain your Google URLs

Chapter 12 Identity and Device Trust

https://community.mobileiron.com/docs/DOC-4417
https://community.mobileiron.com/docs/DOC-4417

651

You can also find it by visiting the GooglePlay at https://play.

google.com/work/adminsettings?pli=1 where it’s listed as Organization

ID, as seen partially in Figure 12-29. Can’t show you the whole thing as it’s

a bit secret.

This key should not be changed. Once you have the key, you can

communicate with the Google API Gateway. For example:

curl 'https://www.googleapis.com/admin/directory/v1/

customers/$CUSTOMERKEY' \

--header 'Authorization: Bearer [$ACCESSTOKEN]' \

--header 'Accept: application/json' \

--compressed

Figure 12-29.  Browse to Apps

Chapter 12 Identity and Device Trust

https://play.google.com/work/adminsettings?pli=1
https://play.google.com/work/adminsettings?pli=1

652

�Create a Google Cloud Function

Google Cloud Functions provide a streamlined method for running a

simple microservice leveraging custom functions as well as SDKs for any

Google service that can be imported into your script. Currently, node.js

is the only non-beta language you can build scripts in. Before you set up

Google Cloud Functions in your G Suite domain, first provide the account

of a developer with the appropriate permissions, identified in the attached

screen.

G Suite has a number of features exposed to their API by importing

SDKs into projects. As an example, the Admin SDK provides us with

endpoints and classes that make developing microservices to perform

actions in the G Suite admin portal easier. In this section, we’ll import that

SDK, although the tasks for importing other SDKs is similar.

�Enable the APIs You Need
To get started, open the Google Cloud Platform using the button in the

upper left-hand corner and click APIs and Services (the names of these

buttons change over time, but the screen should appear similar to that in

Figure 12-30).

Chapter 12 Identity and Device Trust

653

Next, click the Enable APIs and Services button in the dashboard, as in

Figure 12-31.

Under Credentials, provide the appropriate credentials for the app

you’re importing the SDK into (Figure 12-32).

Figure 12-30.  Configure OAuth

Figure 12-31.  Browse to Google Cloud Platform

Chapter 12 Identity and Device Trust

654

Search for Admin SDK in the search dialog and then click Admin SDK,

made by Google, and then click Enable (Figure 12-33). Once enabled, you’ll

need to create a service account for your function to communicate with.

Figure 12-33.  Add the Admin SDK

Figure 12-32.  Configure Access Rights

Chapter 12 Identity and Device Trust

655

�Create a Service Account
Service accounts give you a JWT, useful to authenticate from a Google

Cloud Function back to an instance of the GSuite Admin portal endpoints.

To set up a Service account, go to “IAM & admin” using the button in the

upper left-hand corner (Figure 12-34).

Click Services Accounts (Figure 12-35).

Figure 12-34.  View Service Accounts

Figure 12-35.  Create a new Google Project for your Cloud Function

Chapter 12 Identity and Device Trust

656

Provide a project name and a location (if your organization uses

locations); otherwise, leave that set to No Organization and click

CREATE. Now that you’ve set up a project, let’s create the actual function.

�Create Your Google Cloud Function
The Google Cloud Function is then a microservice that you can then call,

similar to the process that the Jamf Connect for iOS app is performing. This

might be sending some json from an app to perform a task from an app

or sending a webhook to the function to perform an action. To get started

with functions, click Cloud Function at the bottom of the Google Cloud

Platform dashboard and then click Enable Billing. Given the word Billing

is present, this will require a credit card, although less than a penny was

spent writing this section of the book. If necessary, click UPGRADE.

The function api will also need to be enabled for billing; if it hasn’t

already been for your account, click Enable API. Once all of this is done,

you should have a button that says Create function. Click that and then

you’ll be able to provide settings for the function.

Settings include the following (Figure 12-36):

•	 Name: How the function is called in the admin panel.

•	 Memory allocated: How much memory the function

can consume.

•	 Trigger: Most will use HTTP for our purposes.

•	 URL: The URL you use to call the function.

•	 Source: The code (typically node.js) that is run.

Note T he package.json allows for us to leverage this function in a
multi-tenant fashion.

Chapter 12 Identity and Device Trust

657

Once enabled, you can hit the endpoint. If there’s no header

parameters you need to send, that could be as simple as

curl https://us-central1-alpine-canto-231018.cloudfunctions.

net/test-function

Now that we have a sample up, let’s actually build a script we can paste

into the function in the next section.

�Write Your Script

In the following example, we’ll use the Google Directory integration with

GSuite, which allows you to manage which devices have access to GSuite.

This allows you to control access based on a variety of factors.

Figure 12-36.  Create a Google Cloud Function

Chapter 12 Identity and Device Trust

658

In the following, you’ll find a Google Cloud Function that is meant

to respond to a webhook. This function takes an action to set a device

into “approve” or “deny” as a state within Google Directory. Before using

the function, you’ll want to set CustomerID, ResourceID, and EMAIL_

ACCOUNT for your GSuite account:

Google Cloud Function meant to respond to a webhook

Takes an action to set a device into approve or deny state

�Set CustomerID, ResourceID, and EMAIL_ACCOUNT for your GSuite

account before using

from google.oauth2 import service_account

import googleapiclient.discovery

SCOPES = ['https://www.googleapis.com/auth/admin.directory.

device.mobile']

SERVICE_ACCOUNT_FILE = 'auth.json'

EMAIL_ACCOUNT = '<INSERTTHEEMAILADDRESSHERE>'

def get_credential():

 �credentials = service_account.Credentials.from_service_

account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)

 �delegated_credentials = credentials.with_subject(EMAIL_

ACCOUNT)

 �# admin = googleapiclient.discovery.build('admin',

'directory_v1', credentials=credentials)

 �admin = googleapiclient.discovery.build('admin', 'directory_

v1', credentials=delegated_credentials)

 return admin

def get_mobiledevice_list(admin, customerId):

 �results = admin.mobiledevices().list(customerId=customerId).

execute()

 mobiledevices = results.get('mobiledevices', [])

Chapter 12 Identity and Device Trust

659

 print('mobile devices name and resourceId')

 for mobiledevice in mobiledevices:

 �print(u'{0} ({1})'.format(mobiledevice['name'],

mobiledevice['resourceId']))

 return results

def action_mobiledevice(admin, customerId, resourceId,

actionName): # actionName: "approve", "block",etc

 body = dict(action=actionName)

 �results = admin.mobiledevices().action(customerId=customerId,

resourceId=resourceId, body=body).execute()

 return results

def main():

 admin = get_credential()

 customerId = '<INSERTTHECUSTOMERIDHERE>'

 resourceId = '<INSERTTHEJWTHERE>'

 action = "approve"

 #action = "block"

 mobiledevice_list = get_mobiledevice_list(admin, customerId)

 print(mobiledevice_list)

 action_mobiledevice(admin, customerId, resourceId, action)

 print ("Approved successfully")

if __name__ == '__main__':

 main()

The wehbook will then output when a device is approved or blocked.

This could be triggered by a number of services that are integrated with an

MDM, a configuration management solution, etc.

Chapter 12 Identity and Device Trust

660

�Duo Trusted Endpoints
Another approach is what Duo Security does with their Trusted Endpoints

product. Trusted Endpoints allows an administrator to configure a trusted

endpoints policy. The trusted endpoints policy gates access from devices

to applications. This is done based on whether a certificate is on the

device. As an example, the integration shown at https://duo.com/docs/

jamf-jss for Jamf checks that a Jamf enrollment certificate is on a device

and some apps are only accessible if so.

If the certificate is present, Duo checks the device information against

the required policy settings, and if appropriate, the requestor receives

access to protected applications (Figure 12-37).

The authentications are then tracked and administrators can see traffic

in the Duo dashboard (Figure 12-38).

Figure 12-38.  Authentications in Duo

Figure 12-37.  The Duo Applications list

Chapter 12 Identity and Device Trust

https://duo.com/docs/jamf-jss
https://duo.com/docs/jamf-jss

661

Duo also has integrations with Sophos, MobileIron, LANDESK, Google

G Suite, AirWatch/Workspace ONE, and a generic option for providing

integration with management solutions they don’t have an actual

integration with (so some customization may be necessary).

�Managed Apple IDs
You use an Apple ID to access iCloud, install apps, and consume media

in the Apple ecosystem. A Managed Apple ID is a type of Apple ID used

to deploy apps and books as well as to configure devices. We’ll cover how

Managed Apple IDs are used in schools and business separately.

�Managed Apple IDs in Schools
Managed Apple IDs also allow an administrator to accept Apple’s terms

and conditions on behalf of people who are usually not old enough to do

so, like in schools. Managed Apple IDs that are provisioned through Apple

School Manager (ASM) also come with 200GB of space in iCloud). These

IDs should be unique and many organizations create a sub-domain just

for them (e.g., appleid.company.com). But one of the most helpful is that

Managed Apple IDs can be generated in bulk.

Managed Apple IDs require device supervisions and DEP enrollment.

Once set up, administrators can assign VPP licenses to Managed Apple IDs

for books and apps. However, students can’t buy apps or books on their

own. But administrators can automatically enroll students into courses in

iTunes U. Administrators can also disable features like Find My Friends,

iCloud mail, and Find My iPhone. There are some teacher-centric options

for Managed Apple IDs. Teachers can reset Managed Apple ID passwords

through the Classroom app and collaborate with students in Keynote,

Numbers, and Pages.

Chapter 12 Identity and Device Trust

662

As mentioned, each Managed Apple ID should be unique. This

involves a unique username within a sub-domain and not using an

existing Apple ID. You can use modifiers (e.g., instead of using john.doe@

school.org, you can use john.doe+1@school.org). This allows some

options around moving an address for an existing Apple ID out of the way

and then bringing it back. Or you could walk away from the old domain

and move to john.doe@appleid.school.org.

�Managed Apple IDs for Business
Apple announced Managed Apple IDs for Apple Business Manager at

Managed Apple IDs are created for employees who sign in and manage

functions of Apple Business Manager. Managed Apple IDs for Apple

Business Manager are different. Managed Apple IDs in Apple Business

Manager are to be used for managing tasks in Apple Business Manager

only. There is no Apple Schoolwork or Apple Classroom app that users

would require a managed Apple ID for. There is no PowerSchool to source

the accounts from.

There is also no extra 200 GB of iCloud storage. This means, the only

things administrators do with those IDs is acquire content, supervise

devices with device enrollment, and manage a handful of IT users that

handle those roles. That doesn’t mean that Apple will not change these

capabilities in a future release but for now there is likely little reason to

add Azure federation if only IT teams are using a Managed Apple ID. For

more on Apple Business Manager and Managed Apple IDs: https://help.

apple.com/businessmanager/en.lproj/static.html#tes55db2af4a.

Chapter 12 Identity and Device Trust

https://help.apple.com/businessmanager/en.lproj/static.html#tes55db2af4a
https://help.apple.com/businessmanager/en.lproj/static.html#tes55db2af4a

663

�Using Managed Apple IDs with Microsoft
Azure Active Directory
Managed Apple IDs can also be created automatically for environments

using Microsoft Azure Active Directory. Here, IDs are generated at first

login (as with Just In Time or SCIM with SAML). If you are NOT using

Federated Authentication with Azure AD, it is again highly recommended

to create a “Managed Apple ID” domain that is different from your regular

domain (i.e., appleid.company.com). There should be no duplication of

email addresses unless done with a modifier.

Now, if using Federated Authentication with a Microsoft Azure ID,

Managed Apple IDs will be the same as an Azure ID which is an existing

email address. Any used as Personal IDs will be displayed during set up

and users will be emailed that their accounts will be migrated – and as

Apple errs on the side of protecting the user, the end user will have 60 days

to change it the assignment.

�Webhooks
A webhook is a small web trigger that, when fired, can easily send amount

of small json to a web listener. Most modern software solutions support

webhooks. They provide an easy way to trigger events from a piece of

software to happen in another piece of software.

An example of this is when a smart group change happens in Jamf

Pro, do something elsewhere. To start, you register a webhook in Jamf

Pro by opening an instance of Jamf Pro, clicking Settings, clicking Global

Management, and then clicking Webhooks (Figure 12-39).

Chapter 12 Identity and Device Trust

664

From the Webhooks screen, click New (Figure 12-40).

Figure 12-39.  Registering Webhooks

Figure 12-40.  New Webhook Screen

Chapter 12 Identity and Device Trust

665

At the New Webhook screen, you will see a number of fields. Here

•	 Display Name: The name used to identify the webhook

in Jamf Pro.

•	 Enabled: Check to enable the webhook; uncheck the

box to disable the webhook.

•	 Webhook URL: The URL that the json or xml will be

sent to (note that you’ll need something at this URL to

accept your webhook).

•	 Authentication Type: None is used for an anonymous

webhook and basic can be used to send a username

and password to the webhook listener.

•	 Connection Timeout: How long the webhook will

attempt to open a connection before sending data.

•	 Read Timeout: How long the webhook will attempt to

send data for before it turns off.

•	 Content Type: Choose to send information via xml or json.

•	 Webhook Event: The type of event that Jamf Pro can

send a hook based on.

The options for webhook events include

•	 ComputerAdded

•	 ComputerCheckin

•	 ComputerInventoryCompleted

•	 ComputerPatchPolicyCompleted

•	 ComputerPolicyFinished

•	 CoputerPushCapabilityChanged

•	 DeviceRateLimited

Chapter 12 Identity and Device Trust

666

•	 JSSShutdown

•	 JSSStartup

•	 MobileDeviceCheckin

•	 MobileDeviceCommandCompleted

•	 MobileDeviceEnrolled

•	 PatchSoftwareTitleUpdated

•	 PushSent

•	 RestAPIOperation

•	 SCEPChallenge

•	 SmartGroupComputerMembershipChange

•	 SmartGroupMobileDeviceMembershipChange

An example of a full workflow would be what we did to trigger a Zapier

action, documented at http://krypted.com/mac-os-x/add-jamf-pro-

smart-group-google-doc-using-zapier/. Here, we look at sending smart

group membership changes to a google sheet so we can analyze it with

other tools, a pretty standard use case.

Most Management tools will support webhooks at this point. For

example, SimpleMDM just improved support for webhooks as you can see

in Figure 12-41.

Figure 12-41.  SimpleMDM webhooks

Chapter 12 Identity and Device Trust

http://krypted.com/mac-os-x/add-jamf-pro-smart-group-google-doc-using-zapier/
http://krypted.com/mac-os-x/add-jamf-pro-smart-group-google-doc-using-zapier/

667

While webhooks make for a great enhancement to how you manage

devices, they also represent a fundamental building block of technology:

the callback URL (or URI), which we reviewed earlier in the chapter while

describing the fundamental building blocks of tools like OpenID Connect

and SAML which are the basis for all modern Federated Identity Providers.

�Working with the Keychain
The keychain is a small database in macOS that allows you to store secure

pieces of information. It first appeared as a password manager in Mac OS

8.6 and has been evolving ever since. A Keychain can contain a number

of data types, including passwords, keys, certificates, and notes. You can

interact with the keychain programmatically in macOS. This means that

you have a number of options for pushing accounts and settings to devices

from a centralized portal, app, or service.

The default user keychain is stored at ~/Library/Keychains/

login.keychain and the default system keychain is stored at /Library/

Keychains/System.keychain. You can most easily access the keychains

using the Keychain Access application. Simply open the application

from /Applications/Utilities and search for a site that you have stored

information for and you’ll be able to see the entry in the keychain

database (Figure 12-42).

Chapter 12 Identity and Device Trust

668

Double-click the keychain entry to see what’s stored in that item,

shown in Figure 12-43. Any passwords are encrypted, and you’ll need to

click Show Password to see the actual password.

Figure 12-42.  Keychains

Chapter 12 Identity and Device Trust

669

The reason keychains are an important part of the identity story is

twofold: keychains are password management databases. By nature, they

store passwords and certificates and you can flow identity information

to them and retrieve information back from them. The second part of

keychains that are important to identities involves how that information

can be accessed programmatically and biometrically from both Mac and

iOS. Much of the technology works similarly on Mac and iOS, although we

have more visibility into what’s happening under the hood with tools when

using a Mac, as we can see logs and we can view keys and passwords using

Keychain Utility.

Accessing information programmatically is done using the security

command. The security command is used to read from and manipulate

the keychain database(s). Since there are multiple keychains, let’s first look

Figure 12-43.  Viewing a Keychain

Chapter 12 Identity and Device Trust

670

at a list of keychains using the security command in verbose mode (thus

the -v flag) and using the list-keychains verb:

security -v list-keychains

The output will be a list of the keychains on the Mac. You can also view

the preferences file that shows the current users keychains by reading the

~/Library/Preferences/com.apple.security.plist file:

cat ~/Library/Preferences/com.apple.security.plist

The /Library/Preferences/com.apple.security.plist file is used to store

information about the system default keychain and the order with which

searches are done if there are multiples. You will need to unlock a keychain

if you want to edit it, which is similar to decrypting the file that stores the

database. To do so, use the unlock-keychain option followed by the path of

the keychain.

security unlock-keychain ~/Library/Keychains/login.keychain

When prompted, provide the password (or do so via an expect script).

You can put certificates and passwords directly in the keychain as well,

using find-certificate to find a certificate, find-identity to find a certificate

and a private key, find-generic-password to find a password for an app,

and find-internet-password to locate a password to a web site.

security add-internet-password -a krypted -s site.com -w

The command to do so is security and the verb to add a password

is add-internet-password. In the following example, we’ll use a more

mature incantation, using the -a to send the username again, but using

the -D option to define the kind of password (the category label in

Chapter 12 Identity and Device Trust

671

Keychain), the -s which is a variable for the server address, followed by

the path to the keychain:

sudo security add-internet-password \

 -a $username \

 -D "network password" \

 -r "smb " \

 -s $server \

 "/Library/Keychains/System.keychain" \

 -w

Directly manipulating keychains should be considered a legacy

workflow; however, in the absence of better APIs and options, sometimes

it’s the only option to get a task done.

�Summary
IdPs are quickly replacing or augmenting the directory services solutions

that became widely used in enterprises with the advent of Active Directory

in the early 2000s. Tools like Azure Active Directory, Google Identity Access

Management, Okta, OneLogin, and Ping Federate have now replaced

some of the Single Sign-On functionality given the increasingly distributed

nature of organizations and the increasing reliance on web apps.

As we should throughout this chapter, federated identities are able

to provide an added layer of security for the Apple platform. Those

federated identities can have a layer of multi-factor authentication, which

is increasingly moving away from physical tokens and into a world where

a “soft token” or app is used. This reduces the cost of MFA and lets our

coworkers do more with that phone they increasingly have on them at all

times. The beauty of those devices is also that they already have another

layer of security: your face or fingerprint.

Chapter 12 Identity and Device Trust

672

We see this industry in its infancy today. Some vendors may seem like

they’re getting big or getting acquired for large sums of money, but the

technology is changing quickly. This pace of innovation is being caused

by the rapid uptake in usage by key vendors but also by enterprises who

see the quick shift to mobile endpoints as one of the largest potential

security threats in their fleets. As you plan out how identity fits into your

organization, think about the end result. That result should be that data

allowed on devices is gated by the security of your organization. When

done right, you can get granular control over this data while still providing

a great experience for your coworkers.

Given that everything on the Apple platform is changing so fast, now

that we’ve gone through how to deploy and manage Apple devices through

the first 12 chapters of this book, we’ll turn our attention to the future in

Chapter 13.

Chapter 12 Identity and Device Trust

673© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5_13

CHAPTER 13

The Future of Apple
Device Management
This book has primarily focused on Apple device management techniques

that can be used on the macOS, tvOS, and iOS devices, with the exception

of the areas where certain functionality is only available on a given platform

today. That’s because Apple has slowly been bringing the management

story together for their platforms. This makes sense, considering the fact

that each framework that has to be maintained differently for each platform

becomes a lot of development sprawl to maintain.

This isn’t to say that the platforms will merge and that we’ll see a

unified operating system. But Apple does seem to be trending toward a

lot of similarities, starting with the advent of the Mac App Store and thus

far, seeing a much more sandboxed Mac. It is impossible to know what the

future holds. But we can make a number of pretty informed assumptions

about the future, based on what has happened in the past.

In Chapter 1, we covered how we got to where we are today.

Throughout the main body of this book, we then looked at how to

implement various options necessary for a successful Apple deployment.

How does this impact you and why are we talking about the future, though?

This impacts each deployment because you don’t want to spend

valuable resources building something that will be outdated in a year

when you can help it. That’s why we’ll go into the future of the platforms,

674

to do our best to help you keep from repeating the same mistakes we’ve

repeated and keep you from constantly living in technical debt.

When you think of the future, it’s easiest in some ways to think of the

long-term state of a deployment of any platform. But some of the most

valuable insights we can give would be what to do in the next quarter or

year. The immediate future of your deployment could likely be found by

reviewing any gaps you have with a standard balanced scorecard.

�Balanced Apple Scorecard
Apple devices can act as a first-class citizen on any network. What has

emerged through the history we lay out in this book is a collection of best

practices, a tool chain that’s commonly used, and a general philosophy (or

one for each vendor or open source project in some cases).

One way to maximize your impact is to take a step back and look at this

ecosystem from the perspective of “what do I need for my environment?”

To guide you in that type of observation, this section a scorecard you can

use to really think a bit more holistically about your deployment. Your

scorecard is likely to be different than ours and the development of a way

to quantify how your organization is tracking is likely best when it stems

from a negotiation between all the stakeholders involved.

This scorecard provides a snapshot into the technology stack required

by most organizations as well as the attributes of each in a simple

dashboard that executives can understand. Many of the technologies in

our scorecard might not be required by an organization at the time the

scorecard is created but are likely to be required at some point in the future

if not already, as the deployment (and organization) grows and becomes

more visible – and even if they’re never required it’s good to talk about

them and just make sure that’s the case.

Balanced scorecards can use four boxes in a document, Excel, mind

maps, and any other tool you can think of. But really, they’re usually

a list of attributes that your organization cares about. Below, see a list

Chapter 13 The Future of Apple Device Management

675

of categories and some attributes to consider asking about in your

organization. Most organizations won’t adopt all of the technologies on

this list, but most should at least have a discussion about each:

Access to the organization’s network

•	 Network Access Controls

•	 802.1x access

•	 Captive portal management

•	 Proxy access and PAC file distribution

•	 Centralized certificate, CA, and SCEP management

•	 Printer distribution and management

•	 Centralized font management

•	 VPN management and access

Access to organizational resources

•	 License tracking and reporting

•	 All applications are available to Apple devices

•	 Centralized collaboration suite access based on

device state

•	 All file servers and content management

•	 Virtualization for any applications not available for the

Mac, per job function

Cradle to Grave device management

•	 A seamless unboxing and deployment experience

(including imaging for legacy devices)

•	 Devices can be centrally managed

•	 Automated application deployment

Chapter 13 The Future of Apple Device Management

676

•	 Standardized application packaging

•	 Automated QA and User Acceptability Testing for

patches and application updates

•	 Dashboard that shows standard KPIs for the fleet

Directory Services

•	 Leveraging directory services for single sign on (whether

there’s a trusted bind in the transaction or not)

•	 Integrated Identity Management with SSO and/or

SAML providers

•	 Migrate directory services into a cloud solution and

provide login window access to those directory services

Endpoint Protection

•	 Antivirus

•	 Endpoint backup

•	 Centralized Encryption Management

•	 Centrally managed and audit-able policies following

NIST guidelines (e.g., password aging and complexity)

•	 Log Analysis

•	 Application access controls (whitelisting)

•	 Threat management and mitigation

•	 Forensic snapshotting and anti-theft

•	 Legal hold

World-class support

•	 Zero-touch assets that cover the most common tasks

necessary to get your job done

Chapter 13 The Future of Apple Device Management

677

•	 Support staff trained on managing devices

•	 Centralized audit-able remote access

•	 Service desk software that is integrated with

management platform

•	 User-controlled software deployment with automated

approvals from management where needed

•	 Device state management

•	 Help menu providing easy access to tickets and

standard support tools

•	 Automated proactive maintenance

Now you have something to cover at your next annual review! The

point isn’t to integrate everything, but to make sure you’re cognizant

of what you’re integrating, why, the priority of each, how you go about

quantifying the deployment, and ultimately how it makes the user

experience better while protecting your organization. Projecting too far

in the future is never smart in technology, given the fact that the industry

moves so rapidly today. But we should be looking into the near-field future

so we don’t have to rebuild infrastructure we just put into place last year.

�The Tools
One of the most important aspects of managing devices today is choosing

the right tools. If you’re a large multinational enterprise, then you need

tools that can scale with your footprint; if you are a small business, then

you may get crushed under the weight of tools that are purpose-built,

designed, and maintained for larger organizations.

Choosing the right tooling isn’t a permanent decision, though. The

antivirus, backup, collaboration, and file server access software are easily

interchangeable. For a Mac, you can also migrate between management

Chapter 13 The Future of Apple Device Management

678

solutions. However, migration between management solutions is more

difficult for iOS devices. In order to move an iOS device from one Mobile

Device Management solution to another, you will likely need to reenroll

and sometimes even wipe supervised devices. This is the kind of migration

not often undertaken and so some vendor lock-in can occur.

Another aspect of moving between tools to consider is how tools

you use interoperate. Many will build complex workflows that automate

workflows. As an example, if antivirus definitions for a device don’t get

updated, you can revoke access to various resources and create a ticket

in your service desk software. This allows an administrator to automate a

number of their tasks as well as tasks for other teams, reducing the need

for more service desk and desktop support teams.

Some vendors provide connections to solutions from other vendors

while others provide support for a number of these solutions under the

same hood, allowing administrators to have a consistent administrative

experience. The level of customization to each integration often requires

more training to learn how to build tools but comes with more options and

can therefore give administrators more flexibility in how they automate

tasks. This tradeoff is a consistent theme in your management stack. If you

bite off too much, you likely won’t get much done whereas if you don’t

pick tooling that can cover all the tasks you require, you will likely have to

rebuild much of your infrastructure.

The reason there are so many options now is that the population of

Apple devices out there warrants it. This allows niche vendors to spring

up and offer more value to customers by being tailored to their needs. As

the number of tools available for managing various aspects Apple devices

has exploded, it’s gotten harder to determine one that fits with each

environment. Apple innovates at such a rapid pace that those in the space

can’t be everything to everyone. Picking the right vendor therefore requires

research and a bit of diligence.

Chapter 13 The Future of Apple Device Management

679

The Future of Apple Consulting lies within the powers of the tools we
use. There are so many options out there on the market to manage a
fleet of Macs with. Choosing one and going all in helps, but you need
to know when to pivot. Ask yourself if a tool is doing everything in its
power to help are you constantly maintaining it?

Justin Esgar, Founder and Organizer of ACES Conference

One aspect of choosing the right tools is to find solutions that keep

current with Apple advances, and maybe even think ahead to what Apple

might be planning next.

�The Near Future
User Accepted MDM, User Accepted Kernel Extension Loading, Privacy

Preferences Policy Control. If you’ve been paying attention throughout

this book, you’ll note these really mean one thing: transparency. If you’re

overly transparent with users, they’ll just click accept every time they get

prompted, so Apple is walking a fine line between informing people about

what is happening on their devices in order to best protect privacy and not

overloading us with too much information.

Device supervision means proof that a device is owned by an

organization. It doesn’t mean that the developers who wrote supervision

actually want organizations to spy on end users without their knowledge.

This is nothing new; Apple Remote Desktop had a different icon in the

Menu Bar when it was in use. But in those earlier days, it was much less

likely an administrator could gain access to a credit card number, social

security number, or personally identifiable information as easily as they

can today. Further, if that data was remotely accessed, there wasn’t nearly

as much of a market for the data as there is today.

Chapter 13 The Future of Apple Device Management

680

�Privacy Controls

The biggest change over the next couple of years will be continuing

that trend, where users must consent to management that impacts

their privacy, but not consent to changes that impact the management

of features on a device. This might seem simple, but protecting

administrators from themselves without causing organizations to stop

purchasing devices because the total cost of ownership shoots up due

to a lack of central administrative capabilities actually requires a lot of

deliberation, and even a little backtracking here and there.

Keep in mind, Apple is changing the way devices are managed

universally. Improving security and privacy means tearing apart 30–40

years of craptastic dogma IT organizations shoved down the throat of

enterprise users. And this new theory of device management seems

popular enough that Microsoft, Google, and others are slowly adopting

most of the same options as well. Transparent management and privacy

protections are what most of us want and so we should assume our

coworkers want the same, no matter how many support cases they file in a

given month.

Being an Apple admin requires a little patience. Apple doesn’t publish

a roadmap that spans a decade like some vendors do. Apple doesn’t

guarantee that a given model of device will be available for 5 years.

Apple also doesn’t comment publicly on most of these features outside

of the Worldwide Developers Conference (WWDC). This doesn’t mean

that individuals at Apple won’t comment on what they’re up to. What

“Apple” tells you, like any organization, is often just one person telling

you something with no information beyond their own circle within the

company. “Apple” is a company of individuals, not a single organism.

Anyone who is in a position that provides them access to privileged

information about future plans likely isn’t willing to risk that position.

“Apple” would love to tell you more. There are a number of questions

that software developers and product managers at Apple haven’t answered

Chapter 13 The Future of Apple Device Management

681

for themselves, much less written a single line of code for. And as they

chart a new course for our industry we have to expect that Apple will

constantly be moving our cheese. Job security is a wonderful thing!

�The Apple Product Lines
If you’re new to the Apple world, you’ll probably be surprised that Apple

once distributed wireless access points, routers, 1U rack-mount servers,

rack-mount RAID enclosures, and even a full server-based operating

system called Mac OS X Server. In fact, Apple has built and sold server

services since the introduction of the Mac.

Right around the time that Oracle bought Sun, Apple doubled down on

their iOS investment and released the iPad. At the time, Apple reportedly

had 64 billion dollars in cash on hand so could have purchased Sun with a

relatively small investment in cash compared to what they had in reserves.

But the iPad was a much smarter investment of those resources.

Apple started to spin down their own lines of servers and rip

functionality out of the operating system at about that same time. Instead

of trying to be something they weren’t and sell enterprise servers, Apple

parlayed their success off further investments into iPhone and the

emergent iPad into becoming the wealthiest company in the world. Apple

doesn’t want to be a server company, and it’s doubtful that more than a

few people within Apple ever did.

Over the course of the next few years, Apple killed all dedicated

server hardware and slowly slimmed back on the number of services in

their Server operating system. First, removing specialty services such as

Podcast Producer and Xgrid and most recently finally removing many of

the groupware functionality such as Mail, Contacts, and Calendar services.

These services were never going to rival Office 365 or Google Apps. So by

repurposing engineers to other teams, Apple’s able to move faster with

more commitment.

Chapter 13 The Future of Apple Device Management

682

Removing the Apple AirPort Base Station from the product line was

another iconic moment in the slow spin-down of various teams at Apple

trying to take over the entire network stack. Apple had made the AirPort

since the early days of Wi-Fi, mostly out of a need to get good wireless

options available for their own lines of computers. The AirPort devices

were over four times the cost of base stations with similar specifications

from competitors, but they were solid devices and relatively easy to set

up and configure. At one point, that product line included a base station

with integrated storage. They were stable, rarely had issues, rarely needed

updates, and had great range. But when similar devices started to plummet

in cost, Apple shuffled resources to more profitable adventures, as they

should have.

As with server hardware, Apple has been removing devices that don’t

sell well in order to maximize their investment into the devices that sell like

hotcakes. I would expect this trend to continue for one of the wealthiest

companies in the world (if not, according to the day, the wealthiest

company in the world).

Consider how the Apple portfolio has changed since the early days.

Apple divested the LaserWriter when there were other good options for

printers users could buy. Apple made switches and network appliances as

well. But no longer need to. Apple stopped making all of these and servers

when the Return on Investment (ROI) calculations made it smart to do so

and they were no longer needed in the ecosystem.

If at first you don’t succeed, try and try again. Apple tried to make

mobile devices twice before they succeeded with the iPhone. There were

more times, but they didn’t leave Apple labs. The iPod to iPhone and

iPad release will go down in business history books as one of the most

important business decisions of all time. The MacBook sells well for a

computer, although pales in comparison to the sales of iPhones and iPads.

But pay attention to those annual reports and notice the lack of discussion

about desktop computers and some Apple apps on the App Store (some of

which have never been mentioned).

Chapter 13 The Future of Apple Device Management

683

�Apps
“There’s an app for that” is now part of everyday vernacular, especially

among those of us who work in the IT industry. Since the inception of

the App Store, millions of apps have made their way onto the Apple App

Stores and have changed the way many organizations purchase and use

software. Where we once needed to purchase large software packages that

did everything we wanted, the App Store has allowed us to buy smaller

apps that do various tasks and string those workflows together either with

built-in integrations or by linking various tools together with third-party

automation solutions.

�Evolutions in Software Design and Architecture

Linking tools together has been facilitated a few trends in how software is

architected. The first is that since the first iPhone was released, software

has increasingly moved from client-side apps to web-based apps. This

move has been to cut down on development costs, make software easier

to deploy at companies, and allow software to be run on more and more

platforms. Additionally, the more companies that have transitioned into

web apps, the more engineers that are trained in developing for them and

so the easier it has become to train engineers.

Next is microservices or a trend toward code being smaller and so

more easily run as functions using tools like Amazon Lambda as opposed

to large monolithic structures of code. This allows a lot of different

developers to work on various services and not step on each other’s toes

when trying to do so collaboratively. And the move away from huge servers

saves the organizations that embrace a microservice-based architecture

millions of dollars in hosting fees.

Because so many companies need their software to interoperate, the

authentication mechanisms have also evolved. Today, federated web

identities allow two pieces of software to trade data on behalf of a user

Chapter 13 The Future of Apple Device Management

684

(using technologies like OAuth Connect) or admins (using tokens such

as a JWT). The ability to have a federated identity means administrators

can easily install plug-ins in software and automate tasks in their name.

Where authentication was once handled by Kerberos or storing local

salted hashes, developers could now just import a library to do OAuth (or

implement a microservice that handles that code) and easily be able to

work with other vendors.

One final aspect of how software has evolved would be URL handlers.

Web sites have long looked at the http:// or https:// prefix to know that a

URL represents a web page. It turns out that putting your company name

in front, you can then register a URL handler, much the way that you once

registered a file extension. This allows software hosted on the web to open

an app, receive data from the app, and send data to the app. Most modern

software solutions not only interpret URLs this way but then interact with

microservices by authenticating through a federated identity, thus getting

away from monolithic structures that have too much logic built into them

that cost an arm and a leg to rebuild every decade when programming

languages change.

�The Evolution of Apple Software

Programming languages that Apple either distributes or designs have been

changing over the years. Apple has quickly iterated the tools and code used

to create apps, making code more interchangeable between platforms. The

fact that code has become smaller and more modular also means that bits

of code can be shared more easily on social coding sites, such as Github.

This means developers can build more, faster.

The languages have changed, but Apple has always distributed

software used to develop other software (as do most operating system

vendors). The tool most often used to build software for Apple devices

today is Xcode. Xcode can be used to edit code for most any language,

Chapter 13 The Future of Apple Device Management

685

although a number of other tools are tailor-built for different languages.

Over the years, we’ve had programming languages that include:

•	 Smalltalk was a language developed in 1972 with the

last stable release in 1980.

•	 AppleScript is a language introduced in 1993 that can

still be run on a Mac. AppleScript can be used with

services, Automator, or invoked through shell scripts

today and is meant to be used for simple automations.

•	 Objective-C took parts of Smalltalk messaging and

added them to C and was the main programming

language for NeXT and by virtue for subsequent Apple

products until Swift was introduced.

•	 Swift is licensed under the Apache 2.0 license and has

been available since 2014. Swift is now the language most

often used to write tools for Apple devices, with many

components reusable between tvOS, macOS, and iOS.

•	 Python, Bash, and even Perl are common scripting

languages used on the Mac. These are compiled

and distributed with the operating system, although

sometimes it pays (as with Python 3) to update to

newer versions.

Cocoa and Cocoa Touch aren’t languages, but APIs commonly

imported into projects when writing apps for Apple products. Cocoa

apps are usually developed using Objective-C or Swift. Being that Cocoa

is an API, it can also be called from Python, Perl, Ruby, AppleScript, and

a host of other languages using a bridge. Cocoa provides access to many

of the built-in frameworks, and there are a number of projects that can

be found to get other frameworks in projects, with package managers

such as CocoaPods to help keep them up-to-date and provide some build

automation where needed.

Chapter 13 The Future of Apple Device Management

686

Carbon was an API that helped bridge the gap from OS 9 to OS

X. Carbon was never updated to 64-bit, so Carbon was deprecated in Mac

OS X 10.8. Cocoa has been around for a long time, but don’t expect it to

disappear any time soon. Instead expect more to be added to Cocoa in the

coming years. Apple will also further restrict what lower level functions can

be accessed using Cocoa on the Mac in the future and continue to evolve

Mac, iOS, and tvOS options for Swift. Stay on the lookout for an eventual

shift in what chips Apple uses on the Mac.

In addition to the tools Apple provides, organizations looking to

develop cross-platform apps that don’t require much of the native

functionality found in Swift can use a number of different mobile

development platforms such as Appcelerator, AppInstitute, AppMachine,

AppMakr, Appery.io, Appy Pie, BiznessApps, Buildfire, Como, Crowdbotics,

Good Barber, iBuildApp, Kony, PhoneGap, ShoutEm (Javascript),

TheAppBuilder, Verivo, Viziapps, Xamarin, and Xojo. There are a lot of

these and they each appeal to a specific use case – after all each developer

wrote each of them because they identified a gap in the market.

Low-code apps are a great gateway drug, to test a thesis that your

organization might have: if you provide an app then you can either

reduce the need to buy a third-party app/service, remove a barrier for

adoption for the platform, or increase productivity. As the app gets more

complicated, then it’s likely to become too mature for a low-code type

of solution such as those mentioned above. Additionally, the options

each of these organizations are able to provide are limited to the options

Apple makes available on the platform. However, being able to satisfy the

needs of multiple platforms at once and being able to get an app out the

door in days is often pretty much worth it, which explains why their use is

trending right now.

Now that we’ve looked at developing your own apps, let’s look at Apple

apps and the future of each.

Chapter 13 The Future of Apple Device Management

687

�Apple Apps

We’ve discussed the Server apps (and in case this isn’t obvious, the future

is very uncertain for the Server app), but what about the other apps. Let’s

spend a little time going through the Apple apps to look at the value they

provide and review what to expect from each.

Management Apps

Apple Configurator was written by one of Apple’s first employees in order

to address problems he saw in the classroom. The tool has gone through

several iterations over the years and has since become an integral part of

the Apple management offerings, as you can see in its use throughout this

book. Other tools can do much of what Apple Configurator does, which

we’ve covered in this book, but none have reached a level of maturity or

official support where the loss of Apple Configurator would not negatively

impact the ability to deploy iOS devices en masse. Therefore, there’s little

risk to developing workflows based on Apple Configurator.

Apple Remote Desktop (ARD): ARD began life as Apple Network

Assistant and has evolved over the years. As networks have become more

complex, ARD is less useful than it once was. Today there are a number of

competitive products ready-made for remotely controlling devices, which

include Bomgar, GoToMyPC, Teamviewer, Splashtop, and dozens of others

on the app store. Additionally, for those on a LAN, there are dozens of

options for VNC-based clients that can access the VNC server built into the

Mac. When thinking of the usefulness of ARD though, consider iOS and

tvOS. Either ARD will get an update so it can connect over APNs or it will

not likely be a product in the future. In the meantime, ARD should be used

if the alternatives are cost-prohibitive or lacks features needed, such as

connecting to devices remotely.

Apps that should be safe are those that empower the platform. Think of

Xcode for software development and Apple Configurator for setting up and

Chapter 13 The Future of Apple Device Management

688

managing large iOS device deployments. There’s not a strict ROI calculation

to be done on these, and they’re necessary for the third-party applications

available for platform to mature. Do expect them to evolve, though.

Productivity Apps

There are other apps as well, built into the operating system. These can

come and go, based on technology changes. For example, when all Macs

shipped with writable DVD drives, iDVD was necessary. But for the most

part, these apps have remained somewhat consistent over time and for

business uses at least, you can probably plan for them to be there, or an

alternative should be easy to use.

iWork was introduced in 2005 and is a collection of desktop apps that

Apple distributes to rival Microsoft Office and Google Apps. iWork includes

Pages, Numbers, and Keynote. Initially sold for $79 per copy, iWork was

then distributed for free with Apple devices manufactured after 2013 and

later just made free for iCloud account holders, once online collaboration

was added to the suite. It’s important to note that Apple has had a suite of

apps going back to 1984 with AppleWorks Classic, which would then be

spun off into Claris and come back as AppleWorks, which reached End of

Life in 2007 in favor of iWork. Microsoft Office is certainly the dominant

player in word processors, spreadsheets, and presentation software, but

Apple has maintained their own option since before the inception of the

Mac and is likely to continue to do so in the future.

�Apple Services

Apple has also long had a file distribution and sharing option. The Newton

could ship documents out of Works and into an eMate add-on for At

Ease. The Server app had file sharing, which has now been moved to a

simple service provided by client computers. But the cloud is a far more

interesting topic for many enterprises. In 2000, Apple introduced iTools

Chapter 13 The Future of Apple Device Management

689

and in 2002 changed that to .Mac until 2008 and MobileMe until 2013.

iCloud has been the successor to that evolution and bolts on a bunch of

additional functionality, including

•	 Activation Lock: Locks devices from activating if

they’re wiped, without the iCloud account that was last

registered on a device. The ability to bypass Activation

Lock is a key feature of most MDM solutions.

•	 Backup and restore: Used to backup and restore iOS

devices.

•	 Back to my Mac: Share screens and files with other

computers that are using the same iCloud account. This

service doesn’t allow access to devices for accounts on

different iCloud accounts and so is not a replacement

for Remote Desktop.

•	 Calendar: CalDAV service provided by Apple to keep

calendars in sync between devices and share calendars

between devices.

•	 Email: Email service provided by Apple, with accounts

in the domains me.com and/or icloud.com

•	 Find My Friends : A geo-location service so friends

and family members can share their location with one

another and locate devices physically. Find My Friends

is simply called Find Friends in the iCloud interface.

•	 Find My Phone: Allows you to geo-locate your devices

from other devices or from the icloud.com portal,

where the option is called Find iPhone.

Chapter 13 The Future of Apple Device Management

http://me.com
http://icloud.com
http://icloud.com

690

•	 Handoff: Allows you continue tasks such as writing

an email or viewing a web site from one device to

another. Currently works with Mail, Maps, Safari,

Reminders, Calendar, Contacts, Pages, Numbers,

Keynote, and any third-party apps that are developed

to work with Handoff.

•	 iCloud Drive: File storage that is accessible between

(and often synchronized to) any devices registered with

the iCloud account and accessible from the iCloud.com

web interface.

•	 iCloud Keychain: Synchronizes passwords between

devices.

•	 iCloud Music Library: Adds any content you purchase

from one device to automatically be downloaded to

other devices.

•	 iCloud Photos: Synchronizes all photos and videos to

iCloud (and so to each device that uses the service).

Photos can then be placed into albums and shared to

other Apple devices.

•	 iWork: Shared Pages, Numbers, and Keynote

documents.

•	 Messages: Instant messaging service from Apple.

•	 News Publisher: If you’ve signed up, allows you to write

articles for the Apple News app.

•	 Notes: Keeps content synchronized between the Notes

app on computers, mobile devices, and the iCloud web

interface.

Chapter 13 The Future of Apple Device Management

http://icloud.com

691

•	 Photo Stream: Stores photos in My Photo Stream for 30

days (duplicative when using iCloud Photos).

•	 Storage: Each iCloud account gets 5GB of free storage

and then provides upgrade plans up to 2TB of storage

for syncing all files between Apple devices.

The most notable way of accessing many of these is by logging into

icloud at icloud.com, as can be seen in Figure 13-1. But many are hidden

as they are accessed on devices, such as the Backup and Restore feature,

which you access by looking in that option on an iOS device.

These services are becoming more and more integrated into the

operating system. As an example, if the “Allow Handoff between this Mac

and your iCloud devices” option in the General System Preference pane

is enabled, Handoff is used to enable the Universal Clipboard to copy and

paste text, photos, and other content between devices. You can also send

and receive iMessages from a Mac, answer calls on your iPhone from a

Mac, and have web sites available in Safari that you were browsing on an

iOS device. The frameworks available for developers also mean that we’re

seeing Handoff appear in more and more apps. In the future, expect more

Figure 13-1.  iCloud.com Home Screen

Chapter 13 The Future of Apple Device Management

http://icloud.com

692

and more services provided by Apple and third-party apps to make use of

Handoff, given how much simpler it makes people .

The use of Bluetooth to provide an easy way to quickly transfer

information between two devices isn’t limited to Handoff. Apple Classroom

makes use of Bluetooth to allow teachers to locate nearby devices assigned

to their classes and provides teachers with the ability to open apps, browse

to a specific web site, lock devices, view screens, AirPlay the screen to

another device, and set passwords on devices. These options are similar

to (although a subset of) options in Apple Remote Desktop and expect to

see more innovative uses emerge over the coming years (something we

thought would happen with iBeacons but never really materialized).

�Apple Device Management Programs

Apple School Manager, introduced in 2016, isn’t required to use Apple

Classroom, but it does give the option for Shared iPads, which is the first

time we see multiuser iPads. It’s also the first time we see Managed Apple

IDs, which are used in Rosters in Apple School Manager. iCloud content

is then sync’d to multiple users in much the same way it’s done between

Macs using iCloud Storage. Apple Classroom is also made better with an

MDM solution that supports using the Education profile payload.

Apple School Manager does more as well. Apple School Manager

provides a portal for schools to manage Accounts (users), Classes (groups),

Roles, MDM Servers that are used (or at least the token generation for

servers), Device Assignments (the Device Enrollment Program), Device

Assignments (mapping devices to users), Locations, Apps and Books

(otherwise referred to as the Volume Purchase Program), and iTunes U, a

service for accessing educational content through iTunes or the iTunes U

app. Office365 now has built-in integrations with Apple School Manager

and expect more from Shared iPad and Managed Apple IDs in the future.

Managed Apple IDs initially came to Apple School Manager and can

now be found in Apple Business Manager. Apple Business Manager is a

Chapter 13 The Future of Apple Device Management

693

portal similar to Apple School Manager but designed with less learning

management in mind. While you can’t yet use Managed Apple IDs to

manage iCloud or the App Store for a given ID, expect this functionality to

mature in the future.

If you started out using the standard Volume Purchasing Program and

have a number of VPP tokens, then you might hold off migrating those to

Apple Business Manager, but expect to migrate them into Apple Business

Manager as the platform matures. The ability to purchase credits on a

PO rather than using a credit card is a reason a number of companies

will migrate to the platform, but make sure to understand exactly what

happens with those VPP tokens before you do so in order not to orphan

previous app purchases.

But DEP management should be migrated when possible in order to

take use of the default DEP server option, which allows you to assign a

different DEP server to each type of Apple devices, especially useful when

using multiple vendors to manage different types of devices. Before you

start consolidating your Apple Management accounts, just make sure to

work with each MDM vendor to best understand what impact to expect,

given that each vendor might integrate the various services differently.

�Getting Apps to Devices
One barrier to shipping a new app is actually getting the app out of Xcode

and onto devices to test and then getting that app on to the App Store. The

first step to doing so is testing. Testing in iOS can be done using Xcode

using the iPhone Simulator, manually sending an .ipa file to a device (which

is a bundle of compiled files that comprise an app), or through TestFlight.

TestFlight was founded in 2010 and acquired by Apple in 2014.

Testflight is provided to developers in the iOS Developer Program.

TestFlight allows for installing and testing apps before distributing them to

iOS devices through the App Store, as well as see logs and review feedback

from people testing apps. If your organization is interested in building apps,

Chapter 13 The Future of Apple Device Management

694

then you’re likely going to need at least a working knowledge of TestFlight

in order to support developers, who can use TestFlight to test up to 100

apps at a time. Don’t expect TestFlight to go anywhere, so any time invested

in figuring out how it works is time well spent, and hey, you might learn

more about distributing software through the App Store along the way!

Once you’ve tested an app, it’s time to distribute the app to devices.

One way to do so is to use web servers to distribute .ipa files for iOS and

.app files for macOS. Any attempts at building internal or third-party app

stores are typically linked to such a distribution model, and provided an

app has been Notarized, this isn’t likely to go anywhere. The App Store

options for distribution continue to evolve. We started with gift codes,

moved to VPP, and then got the option for Business to Business (B2B)

apps, but those aren’t yet available for schools through Apple School

Manager, so while you shouldn’t make any plans around B2B apps coming

to the App Store, do pressure Apple where you can to get the option if

you’re in schools.

Distributing software for the Mac is a bit different. Software can be

distributed as a .app bundle, through a package file (a .pkg file), or through

the App Store. A .app bundle is easy to copy, simply compile from Xcode,

and open the application. We’ve covered installing an App through the App

Store thoroughly in this book and that process is pretty well ironed out at

this time. The process will change here and there as options mature, such as

being able to install an iOS app on a Mac. Packages are a bit more complex.

A package file can be sent using a number of mechanisms, including

the installer command in scripts, simply opening the package and running

the installer (seen in Figure 13-2), headless by pushing a package through

ARD or an agent-based management solution, or now through an MDM

command provided the package is properly signed. Packages can be one

of the most time-intensive parts of managing large fleets of Apple devices.

New versions of software come out all the time and with many containing

security updates, staying on top of the version of each piece of software

deployed in your environment can become daunting.

Chapter 13 The Future of Apple Device Management

695

Autopkg is an open source third-party solution that will automatically

build packages for you. If you haven’t yet begun to automate that build

train, now is the time to do so. Additionally, some third-party management

solutions provide packages for various software titles or you could

integrate Autopkg into the management tool you use (e.g., using the

JSSImporter project to get packages into Jamf Pro). Many a large enterprise

starts out managing devices thinking they have a couple hundred apps

deployed only to realize they actually have a couple of thousand. Building

Autopkg recipes and testing so much software can be daunting. All of this

is why so many environments really just want to get all of their software

from the App Store.

More and more software are distributed through the App Store. Apple

makes $99 per year and 30% of all income generated through the App

Store. As of 2018, Apple had sold over $130 Billion dollars’ worth of apps,

Figure 13-2.  Installing Software Manually on the Mac

Chapter 13 The Future of Apple Device Management

696

making it a considerable revenue generator for Apple. Which caused many

to start wondering if all software would eventually have to be installed

through the app store. Microsoft Office is used by nearly every company

in the world and so runs on a lot of Macs. Office came to the App Store in

2018. While Office is only 1 of 2 million apps, it was a holdout for the Mac

and along with other notable titles moving to the App Store showed Apple

chipping away at apps not currently distributed through the App Store.

Just when it seemed as though all software was destined to the App

Store, the Supreme Court decided that a case could proceed, making the

future of third-party app stores uncertain. The two main vendors to look at

if you’re interested in what third-party app stores have to offer are GetJar,

with 850,000 apps, and Appland with 135,000 apps.

�Manage Only What You Have To
Most school districts in the early 2000s were obsessed with the dock

experience on client computers. It was as though teachers and IT

administrators in education environments just couldn’t help but obsess

over the fact that a user changing one of these was akin to the student

spray painting “O’Doyle Rules” on the wall of the school. We would go to

work with schools and they would talk for hours about the various ways

students found to break out of a managed environment to move the Dock

or remove icons from the Dock.

In some cases, such as managing first grade iPads, you care about

making a simple user experience so as not to overwhelm the kids. But in an

increasingly 1 to 1 world, don’t obsess about the details. Children are really

good with computers. Show them how to use spotlight to find the app they

need instead of relying on the Dock – they’ll thank you later.

So why manage the Dock at all? To make it easier to get started

using a device. This is true for a lot of the other settings as well. It’s not

usually necessary to manage the background of iOS or Mac devices.

You might want to in Point of Sale types of environments but rarely in

Chapter 13 The Future of Apple Device Management

697

a distribution of devices where every user has their own. The less petty

settings you manage, the more time you can spend managing the things

that really matter.

You need to manage certificates that allow devices to join your

networks. You need to manage directory services settings. You need to

manage the state of a device when you provide it to a user so they can

get to the things they need to get to most easily. This means putting Apps

on devices, setting the icons in an order that will provide for a good user

experience for your coworkers, and providing any settings you can to help

you configure apps to access necessary resources. In other words, you

need to delight your coworkers, not micromanage their experience.

But what does this have to do with the future of device management?

It’s important to consider the Apple philosophy when trying to future-

proof your deployment. That philosophy is to protect privacy and enable

users. If you’re doing something that is too far from what they’re testing in

labs, then you’re at risk to losing functionality you rely on. This isn’t meant

to be heavy-handed, just practical.

Sometimes we have to pay attention to the trends involved and

listen to what your Apple contacts are telling you, even if what they are

saying doesn’t match with what you want to hear. For example, various

representatives from Apple discouraged the use of MCX for a couple of

years. Later, that functionality was deprecated in subsequent releases

of the operating system. All workflows that leveraged MCX had to be

rearchitected to use other, more modern techniques. This meant that some

of the work ended up being done twice. What can we expect next? Let’s

start with Agents.

�The Future of Agents
The word “agent” can mean a few things, according to the audience.

Will the future of Apple Device Management allow for LaunchAgents?

LaunchAgents and LaunchDaemons will be around until probably at

Chapter 13 The Future of Apple Device Management

698

least 10.17. They will likely become more and more restrictive, though.

So expect some kind of signing infrastructure and potentially a vetting on

behalf of a user in order to invoke them.

We’ve seen some people refer to kernel extensions as “agents.” It’s

more appropriate to call them “drivers” but we’ve seen enough that

∗∗∗should∗∗∗ be LaunchDaemons that we might as well just address

them here. At the time of this writing, Apple still allows you to use kernel

extensions. But it’s doubtful they will for long. Therefore, it’s a great time to

review what kernel extensions are running in your environment. You can

receive a list of kernel extensions using a number of different commands,

although the easiest is using the kextstat command as follows:

kextstat | grep -v com.apple

The output would show you all of the kernel extensions running

on a machine that don’t start with com.apple, so the third-party kexts.

Developers like to know a system is in a given state so they know their code

will work as intended. The ability to run code with the privileges a kext

receives though is not popular within Apple. We have users needing to

approve kernel extensions and now they need to be signed and notarized.

But all signs lead to even more changes in how Apple deals with kexts in

the future.

The mdmclient that invokes MDM is an agent. So the very idea that

you can ever have an agentless management solution is ludicrous. But it’s

easy to think of a scenario where administrators cannot manage anything

Apple hasn’t previously given us access to manage via API endpoints,

MDM commands, or profiles. But if the other things are being trimmed

back, consider how important mdmclient has become. At this point,

anything that can be managed with the built-in MDM framework in

macOS should be managed there; and anything you manage in other ways

should be reconsidered.

Don’t be overly concerned about losing any custom or third-party

agents you run. Instead, if you can perform a task either with MDM or

Chapter 13 The Future of Apple Device Management

699

using an agent/script/command, do so using MDM, unless the benefits to

doing so in a more custom way outweighs the loss of your own productivity

created by the potential for moving to MDM in the future.

�Other Impacts to Sandboxing
The sandbox implementation on iOS and tvOS has always provided a

locked down environment that only allows users to interact with systems

in ways Apple explicitly allows for. As administrators, we’re accustomed

to working around this, making many deployments more logistically

complicated than they are technically complicated. That is likely to remain

consistent in the coming years.

The base sandbox implementation in macOS restricts operations in a

number of ways. Expect that restrictive nature to increase in the coming

years. This doesn’t mean that users won’t be able to browse the filesystem

using the Finder. But it does mean that we will have to change the way

we think about why, when, and how we automate settings changes and

software deployment. Rather than think about changing files manually,

consider automation by deep-linking into an app using parameters passed

to the URI, assuming the app has a url handler registered. For example,

a remote-control solution called ISL can be opened and have various

settings put into the app using the following parameters (e.g., when sent

via an open command using Terminal on a Mac):

isllight://www.islonline.net/?cmdline=--on-load%20%22disable_

dashboard%3Dtrue%26disable_computers%3Dtrue%22%20--web-login%20

WEBTOKEN%20--connect%20TARGETCOID%20--computer-password-MD5%20

MD5PASSWORD

Rather than have preference stored in a centralized repository, each app

might eventually have to have its own preference file in the app bundle. And

Managed App Config is how this is dealt with on iOS. Passing parameters to

an app on a Mac is similar. Look for apps that can be configured in such a

Chapter 13 The Future of Apple Device Management

700

manner rather than having to edit defaults domains and learn how to do so

in order to be in front of any changes that may come in the future.

In order to run, all apps should be signed. In order to install, all

packages should be signed. In order to load, all kexts must be signed and

notarized. The Notary service is a way of having Apple perform some

checks that apps and kexts actually do what they say they do. The added

security of having Apple check that something does what it says isn’t just

a perception, it also means you get a hardened runtime which lets an app

run with additional security protections. This means you need to follow

a few specific rules though, most notably informing the user of every

entitlement you’ll be using.

These entitlements are similar to the technology that has us creating

sandbox (.sb) files. And Apple has been obviously enforcing more sandbox

technology on the operating system. Sandboxing does restrict what we’re

able to automate. For example, we can’t write to /System and so we can’t

automate adding and removing items in that directory. But as the platform

becomes more widely used, it also becomes a more attractive target and

needs those additional security measures to be enforced.

These are all examples of iOS technologies moving into the Mac.

Which brings up the question: Will iOS and macOS merge?

�iOS, macOS, tvOS, and watchOS Will Remain
Separate Operating Systems
Apple has been clear that there are no plans to merge the operating

systems. Instead, the message has been clear that each operating system is

ready-built for a given purpose, and each is used on the appropriate type

of device. This doesn’t mean they won’t merge someday, but it certainly

means that we should plan deployments for the next few years assuming

they will remain separate, but watching for the barriers to fall in order to

unify parts of the operating systems.

Chapter 13 The Future of Apple Device Management

701

As mentioned earlier in the chapter, this isn’t to say that many of

the necessary frameworks necessary to enable each won’t end up being

unified over time. There are far more apps for the iPhone than for any

other app in Apple’s portfolio of devices. And it stands to reason that if you

had those apps on a Mac that the Mac would become a more attractive

device to purchase.

Apple is planning for developers to be able to build a single app that

works on the iPhone, iPad, and Mac by 2021. Marzipan, initially introduced

at WWDC in 2018, means one binary could run on any platform, but each

still needs a different look and feel that is appropriate for the screen of

the other platforms, thus enhancements to UIKit. Apple then brought

several of their iOS apps to 10.14, including Home, News, Stocks, and Voice

Memos. This introduces a number of questions to look for answers to in

the coming releases including how will these work with VPP, how will they

react to containerization technologies like Managed Open-In, AirWatch

Container, and the MobileIron AppConnect. The third-party tools are

all SDKs and so the onus will be on developers to resolve any issues

that Marzipan may create. Another area to look for guidance for will be

around Managed App Config or how we send settings into VPP apps when

installing through an MDM.

The Mac seems to evolve more toward iOS, but there are ways iOS is

evolving toward the Mac as well.

�Will iOS Become Truly Multiuser
The Mac didn’t have multiple users for decades but has had multiple

users for a long time at this point. But iOS has always been a single-user

operating system. The integration between Apple School Manager and

Apple Classroom gave the first glimpse of what multiple users might look

like on iOS devices. Apple School Manager, using Managed Apple IDs,

allows running different users on a single iOS device and provides a brief

glimpse into what you might eventually see in a multiuser iOS.

Chapter 13 The Future of Apple Device Management

702

Each user can have an app shown or hidden. So apps can be on the

device unbeknownst to a user, and when the device switches users, it

just shows a different set of apps. This gets around having to push apps

to devices every time a user logs in. While Shared iPad is only offered

in Apple School Manager today, Managed Apple IDs are now available

in Apple Business Manager, and the future may hold a shared iPad for

enterprises.

The impact, though, might not be that we have iPads in the hands of

multiple people. The devices are just different. iPads cost less, are much

more personal devices, and other than niche use cases, have never needed

the ability to have multiple users log in. The impact instead might be that

we have users authenticate to access a device and then are able to better

federate access between services using modern protocols such as SAML

and web tokens.

�Changes in Chipsets
The advent of the Intel in Apple devices saw Apple finally welcomed

into many an enterprise in ways Apple hadn’t been welcomed in the

previous decade. This allowed Apple to exploit the desires of many to

have a choice rather than just having to always use Microsoft, all the time.

Ironically, once the platform finally caught on enough to be the darling of

“innovative” leaders in enterprises, we’re left wondering if Apple will start

planning to move away from Intel.

There are a number of reasons to wonder this. Apple purchased Prime

Sense for $350 million dollars in 2013 in order to make the chips now used

for FaceID. Apple purchased parts of chip maker Dialog for $650 million

dollars in 2018 (which brought in 300 engineers). Intel chips have had a

number of pretty substantial security vulnerabilities over the past couple of

years. It’s also increasingly important for Apple to preemptively check that

no changes have occurred to the firmware on chips. Then there are rumors

Chapter 13 The Future of Apple Device Management

703

of Project Kalamata, a plan to begin designing chips that Apple might be

able to manufacture, or at least design, themselves.

Apple has switched things up before. Apple has been making the A

series of chips for iOS devices since 2007. The Intel transition in 2005

signaled a move from PowerPC, which resulted in a collaboration that had

begun between Apple, IBM, and Motorola in 1991. But the shift led to a lot

of developers refactoring and a lot of upheaval over the coming years. In

general, if Apple chose to move to a new chipset, then it would likely result

in a better platform; however, there’s no reason to try to make plans for this

other than if it’s announced, to remember that most Mac computers easily

have a 3–5-year shelf-life. That’s cut down greatly when moving from one

chipset to another (so an extra year on an older machine is worth 2 less

years on a new machine from a business perspective).

Another chip you hear a lot about is the T2, a security chip introduced

in 2017 (the T1 was released the year before and brought TouchID with it).

The T2 runs its own operating system called bridgeOS, a derivative of

watchOS. This is the basis for the secure enclave. The secure enclave

is where encrypted keys are stored and locks down the boot process.

The camera and microphone go through the T2 physically as does the

encryption mechanisms for the SSD drives on a Mac, and so the T2

becomes important for Filevault. The T2 is likely to be embedded into all

Macs at some point.

Universal adoption of the T2 (and subsequent releases) means that

Apple suddenly has a lot of new options around Apple Pay, FaceID for the

Mac, and a number of innovations we can’t possibly have put together

because we’re not sitting in their design labs. What does this mean

for planning an enterprise deployment of Macs? It means if you have

an option to buy a device with a T2 or without that it would be wise to

spend a little more to get the T2-enabled device. Chips keep Apple from

innovating as quickly as they’d like, so Apple is likely to continue to do

more themselves. But the impacts to an enterprise are minimal, other than

planning purchasing options to align with the desired life cycle of devices.

Chapter 13 The Future of Apple Device Management

704

�You’re Just Not an “Enterprise” Company
Apple is not an “Enterprise” company. We’ve heard this our entire

careers. Other companies we’ve heard that said about include IBM, Cisco,

Microsoft, Vmware, and the list goes on. It turns out that being “Enterprise”

means doing the specific thing that a 200–200,000-person company wants

you to be doing at that moment. Many companies are good at saying they

will do things, but not every business unit can do everything a company

wants them to do all the time.

This isn’t to say Apple hasn’t become more and more “Enterprise”-

friendly over the years. Engineers have gone from saying “you’ll never

be able to lock the home screen on an iPad” to touting that as a great

new feature and later treating it as table stakes. We’ve gone from having

agent-based management barely tolerated on devices to having a Mobile

Device Management framework built just for centralized and streamlined

management of devices. That framework is not ready to completely replace

agents as has been made clear throughout this book, but it’s getting closer

every year, as teams at Apple identify each feature that organizations want

to manage. And that framework works when devices aren’t in your offices.

Apple has a tool called Enterprise Connect. Apple has an enterprise

sales team. Apple has an Enterprise professional services team. Apple has

a number of executive briefing centers. The Apple CEO goes for long strolls

with the CEO of IBM and meetings with presidents of various countries.

Apple built Exchange Active Sync policies into iPhone OS and due to

overwhelming needs from large customers, invented a whole new kind

of management. Apple continues to integrate with the latest enterprise

software, whether that’s emerging SAML providers (including Microsoft),

802.1x network requirements, etc.

Sure, Apple is not an Enterprise company. But think about this: Apple

is just getting started in the enterprise space, and as more enterprises

adopt the platform, they’re likely to become more and more enterprise

focused.

Chapter 13 The Future of Apple Device Management

705

�Apple Is a Privacy Company
In this book, we’ve covered dozens of security features on iOS devices.

These include Managed Open In, SIP, certificate deployment, policies,

application blacklisting, signatures, and so much more. But Apple has

had a number of slips with security over the years, such as showing a root

password in clear text.

For the most part, these are just programming slips and mean Apple

just needs to get better with Quality Assurance. Especially in a time when

competitors such as Microsoft are doing so well in that regard, especially in

the eyes of the security community. Growing so rapidly is hard, given that

the more people who use software, the more weird things they do to that

software – and the more bugs they find.

But security and privacy are different. Apple devices have great

security, but they’ll always be able to get better. But in the face of so

many privacy blunders by their competitors, one place where Apple

shines is privacy. This privacy is seen and felt in all of the recent updates

that frustrate Apple administrators. These block an administrator from

performing various tasks.

The options for managing iOS devices over the years have opened up

a lot of possibilities. iOS devices that are supervised can be managed in

ways that we never thought would be possible. All with privacy in mind.

As an example, when Volume Purchase Program (VPP) apps are deployed,

management solutions can push an app to an AppleID. And if a user

associates, the MDM can see the hash of the user that was used. But the

MDM doesn’t receive the actual AppleID, thus protecting the privacy of the

end users. Expect questions like “what are the impacts to privacy” to come

up with every new management feature provided.

This brings us to one of the most important concepts that emerged in

the minds of the authors of this book. While not much may have changed

in the ethos around device management at Apple, the need to keep users

safe has grown exponentially. The hacker mentality that brought many

Chapter 13 The Future of Apple Device Management

706

a Mac administrator into the fold with the advent of Mac OS X creates

danger for many standard users. And so many a Mac Admin has left the

platform to go manage Linux and other platforms. We all want different

things out of our careers.

�Summary
The only thing that is for certain is change. The Apple platforms

themselves are changing and so the way we manage them must change

as well. The most important thing to ask yourself about every new feature

or change to how you manage a feature is “do I have to manage this?” The

answer is “no” much more often than you might think.

Less is more. This doesn’t mean that you don’t manage anything on

devices. But it does mean that if you’re not provided with a framework to

manage features and settings in the operating system that you should think

long and hard about whether you should be managing something. If you

decide to manage something and have to write custom scripts to do so,

then just make sure you’re accepting that you’ll own that until it doesn’t

need to manage any longer.

As we’ve shown in this book, Apple has had a consistent set of tools

for managing devices since the inception of the Mac. Apple changes the

tools to address IT industry trends, but the tools have always been there

and in some cases still look similar to how they did in 1994. The name of

the tools can change, the way they connect can change, and the way the

tools manage settings can change over the years, but the most important

change has been to address the invasion of privacy felt by many an Apple

customer given how ubiquitous technology has become. And that’s not

likely to end any time soon.

Chapter 13 The Future of Apple Device Management

707© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5

APPENDIX A

�The Apple Ecosystem
There are a lot of applications used to manage Apple devices in one way

or another. Additionally, here’s a list of tools, sorted alphabetically per

category in order to remain vendor agnostic.

�Antivirus
Solutions for scanning Macs for viruses and other malware.

•	 AVG: Basic antivirus and spyware detection and

remediation.

•	 Avast: Centralized antivirus with a cloud console for

tracking incidents and device status.

•	 Avira: Antivirus and a browser extension. Avira

Connect allows you to view device status online.

•	 BitDefender: Antivirus and malware managed from a

central console.

•	 CarbonBlack: Antivirus and Application Control.

•	 Cylance: Ransomware, advanced threats, fileless

malware, and malicious documents in addition to

standard antivirus.

•	 Kaspersky: Antivirus with a centralized cloud

dashboard to track device status.

https://doi.org/10.1007/978-1-4842-5388-5
https://www.avg.com/
https://www.avast.com/lp-managed-workplace-rmm?gclid=EAIaIQobChMIgqS41MS-1wIV04KzCh2TLwdeEAAYAyAAEgKDMPD_BwE
https://www.avira.com
https://www.bitdefender.com
https://www.carbonblack.com
https://www.cylance.com/en_us/home.html
https://usa.kaspersky.com

708

•	 Malware Bytes: Antivirus and malware managed from

a central console.

•	 McAfee Endpoint Security: Antivirus and advanced

threat management with a centralized server to track

devices.

•	 Sophos: Antivirus and malware managed from a

central console.

•	 Symantec Mobile Device Management: Antivirus and

malware managed from a central console.

•	 Trend Micro Endpoint Security: Application

whitelisting, antivirus, and ransomware protection in a

centralized console.

•	 Wandera: Malicious hot-spot monitoring, jailbreak

detection, web gateway for mobile threat detection that

integrates with common MDM solutions.

�Automation Tools
Scripty tools used to automate management on the Mac

•	 AutoCasperNBI: Automates the creation of NetBoot

Images (read: NBI’s) for use with Casper Imaging.

•	 AutoDMG: Takes a macOS installer (10.10 or newer)

and builds a system image suitable for deployment

with Imagr, DeployStudio, LANrev, Jamf Pro, and other

asr or Apple Systems Restore-based imaging tools.

•	 AutoNBI: Automates the build and customization of

Apple NetInstall Images.

•	 Dockutil: Command-line tool for managing dock items.

APPENDIX A The Apple Ecosystem

https://www.malwarebytes.com
https://www.mcafee.com/sg/products/endpoint-protection/index.aspx
https://home.sophos.com
https://www.symantec.com/mobile-device-management/
https://www.trendmicro.com/en_us/business/products/user-protection/sps/endpoint.html
https://wandera.com
https://macmule.com/projects/autocaspernbi/
https://github.com/MagerValp/AutoDMG
https://github.com/bruienne/autonbi
https://github.com/kcrawford/dockutil

709

•	 Homebrew: Package manager for macOS.

•	 Cakebrew: Provides a pretty GUI for Homebrew.

•	 Jamjar: Synergises jamf, autopkg, and munki into an

aggregated convergence that cherry-picks functionality

from each product’s core competency to create an

innovative, scalable, and modular update framework.

•	 MacPorts: An open source community initiative to

design an easy-to-use system for compiling, installing,

and upgrading either command-line, X11, or Aqua

based open source software on Macs.

•	 Precache: Programmatically caches Mac and iOS

updates rather than waiting for a device to initiate

caching on a local caching server.

•	 Outset: Automatically processes packages, profiles,

and scripts during the boot sequence, user logins, or on

demand.

�Backup
We highly recommend bundling or reselling some form of backup service

to your customers, whether home, small business, or large enterprises.

The flexibility to restore a device from a backup when needed is one of the

most important things to keep costs at a manageable level and put devices

back into the hands of customers in an appropriate time frame.

•	 Acronis: Centrally managed backups with image-based

restores.

•	 Archiware: Centrally managed backups to disk and

tape with a variety of agents for backing up common

Apple requirements, such as Xsan.

APPENDIX A The Apple Ecosystem

https://brew.sh
https://www.cakebrew.com
https://github.com/dataJAR/jamJAR
https://www.macports.org
https://github.com/krypted/precache
https://github.com/chilcote/outset
https://www.acronis.com
http://www.archiware.com

710

•	 Arq: One-time fee cloud-based backups and

unlimited storage.

•	 Backblaze: Unlimited continuous backup with a

30-day rollback feature.

•	 Carbon Copy Cloner: File or disk-based cloning of files

for macOS.

•	 Carbonite: SaaS or local-server-based backups of

Mac clients.

•	 Crashplan: Backup to cloud and local storage with a

great deduplication engine.

•	 Datto: Local and cloud backup and restore, as well as

cloud failover for various services.

•	 Druva: Backup for local computers as well as some

backup for cloud services.

•	 Quest Backup (formerly Netvault): Can backup

Mac clients and Xsan volumes to a centralized tape or

disk-based backup server.

•	 SuperDuper!: Duplicates the contents of volumes to

other disks.

•	 Time Machine: Built-in backup tool for macOS.

�Collaboration Suites and File Sharing
Once upon a time, a Mac server was great for shared calendars, contacts,

and email. But most businesses aren’t going to want anything to do with

the repercussions of potential downtime that can happen on a mail server.

Nothing will get your hard-earned customers to fire you faster than an

email outage. So while the Mac server is listed, consider cloud options, for

optimal customer retention.

APPENDIX A The Apple Ecosystem

https://www.arqbackup.com
https://www.backblaze.com
https://bombich.com
https://www.carbonite.com
https://www.crashplan.com/en-us/
https://www.datto.com
https://www.druva.com
http://www.quest.com
http://www.shirt-pocket.com/SuperDuper/SuperDuperDescription.html

711

•	 Atlassian: Development-oriented suite including

wiki (Confluence), issue tracking (Jira), messaging

(HipChat), and other tools.

•	 Box: File sharing in the cloud.

•	 Dropbox: File sharing in the cloud.

•	 Egnyte: Caches assets from popular cloud-based

services so they’re accessible faster on networks where

they’re frequently accessed.

•	 G Suite: Shared Mail, Contacts, Calendars. Groupware,

accessible from the built-in Apple tools, Microsoft

Outlook, and through the web.

•	 Kerio Connect: Shared Mail, Contacts, Calendars.

Groupware, accessible from the built-in Apple tools,

Microsoft Outlook, and through the web.

•	 Office 365: Shared Mail, Contacts, Calendars.

Groupware, accessible from the built-in Apple tools,

Microsoft Outlook, and through the web.

�CRM
Mac-friendly tools used to track contacts and communications with those

contacts.

•	 Daylite: Mac tool for managing contacts and

communications with those contacts.

•	 Hike: Mac tool for managing contacts and

communications with those contacts.

•	 GroCRM: iOS tool for managing contacts and

communications with those contacts.

APPENDIX A The Apple Ecosystem

https://www.atlassian.com
https://www.box.com
https://www.dropbox.com
https://www.egnyte.com
https://gsuite.google.com
http://www.kerio.com/products/kerio-connect/server
https://products.office.com/en-US/?ms.url=office365com
https://www.marketcircle.com
https://hikeup.com/mac-pos-system/
https://www.grocrm.com

712

�DEP Splash Screens and Help Menus
Tools that make the DEP and service desk process more user-friendly by

providing more information to users.

•	 ADEPT: Adds a splash screen for DEP enrollments so

users can see what is happening on their devices.

•	 DEPNotify: Adds a splash screen for DEP enrollments

so users can see what is happening on their devices.

•	 HelloIT: Customizable help menu so users can get

information about their systems or IT support.

•	 MacDNA: Customizable help menu so users can get

information about their systems or IT support.

•	 SplashBuddy: Adds a splash screen for DEP

enrollments so users can see what is happening on

their devices.

�Development Tools, IDEs, and Text
Manipulators
Tools used when building scripts, writing and debugging software, and

manipulating text.

•	 aText: Replaces abbreviations with frequently used

phrases you define.

•	 Atom: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages.

APPENDIX A The Apple Ecosystem

https://git.tramscloud.co.uk/projects/XCOD/repos/adept/browse
https://gitlab.com/Mactroll/DEPNotify
https://github.com/ygini/Hello-IT
https://github.com/jhbush/Arek/tree/master/Development/MacDNA Menulet
https://github.com/ftiff/SplashBuddy
http://www.trankynam.com/atext/
https://atom.io

713

•	 BBEdit: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages.

•	 Charles Proxy: A proxy tool that can be used to inspect

traffic so you can programmatically reproduce the

traffic or reverse engineer what is happening when

trying to solve issues or build tools.

•	 CocoaDialog: Create better dialog boxes than with

traditional tools like AppleScript.

•	 Coda: An IDE and a modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages.

•	 Dash: Offline access to 150+ API documentation sets.

•	 Docker: Containerization tool.

•	 FileMaker: Rapid application development software

from Apple.

•	 git: Code versioning, merging, and tracking – and with

github, a repository to put code into and share code.

•	 Hopper Disassembler: Disassemble binaries as part of

reverse engineering and security testing.

•	 Microsoft Visual Studio: An IDE for a variety of

languages.

•	 MySQL Workbench: Create and edit MySQL databases

and use to build complex queries.

•	 Navicat Essentials: Create and edit MySQL databases

and use to build complex queries.

APPENDIX A The Apple Ecosystem

https://www.barebones.com/products/bbedit/
https://www.charlesproxy.com
https://cocoadialog.com/
https://panic.com/coda/
https://kapeli.com/dash
https://www.docker.com
http://www.filemaker.com
https://github.com
https://www.hopperapp.com
https://code.visualstudio.com
http://dev.mysql.com/downloads/workbench/
https://navicat.com

714

•	 Pashua: Creating native Aqua dialogs from

programming languages that have none or only limited

support for graphic user interfaces on Mac OS X, such as

AppleScript, Bash scripts, Perl, PHP, Python, and Ruby.

•	 Platypus: Creates native Mac OS X applications from

interpreted scripts such as shell scripts or Perl, Ruby,

and Python programs.

•	 Script Debugger: Tools like a dictionary explorer and

more IDE-esque features for building AppleScript

applications.

•	 SequelPro: Create and edit MySQL databases and use

to build complex queries.

•	 Snippets Manager: Collect and organize code snippets

•	 SourceTree: GUI tool for Git and Github.

•	 SublimeText: A modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages.

•	 TextExpander: Replaces abbreviations with frequently

used phrases you define.

•	 TextWrangler: A modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages.

•	 Tower: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages.

•	 VisualJSON: Simple JSON pretty-viewer for the Mac.

•	 Xcode: Apple tool for writing apps and scripts in

common languages.

APPENDIX A The Apple Ecosystem

https://www.bluem.net/en/projects/pashua/
http://sveinbjorn.org/platypus
http://latenightsw.com
http://www.sequelpro.com
https://www.renfei.org/snippets-lab/
https://www.sourcetreeapp.com
https://www.sublimetext.com
https://smilesoftware.com/textexpander
https://www.barebones.com/products/textwrangler/
https://www.git-tower.com
https://github.com/youknowone/VisualJSON
https://developer.apple.com/xcode/downloads/

715

�Digital Signage and Kiosks
A lot of organizations that have made a great little additional revenue

stream by reselling or deploying these tools on behalf of their customers.

Overall, it’s a possible new revenue stream and as an added bonus, you’ll

likely have an NFR (or not-for-resale copy of the software) so you can have

pretty cool signage in your office (if you’re into that kind of thing).

•	 Carousel Digital Signage: Run Digital Signage from an

AppleTV.

•	 Kiosk Pro: Turn any iPad into a single-user kiosk

tool, manageable via an API (e.g., with a Jamf Pro

integration).

•	 Risevision: Run Digital Signage from a Mac.

�Directory Services and Authentication Tools
Tools that provide primarily on-premises access to a shared directory of

services and allow for single-sign on to those services.

•	 Apple Enterprise Connect: Tool sold through Apple

that connects to Active Directory environments without

binding to Active Directory.

•	 AdmitMac: Adds support for fringe Active Directory

requirements.

•	 JumpCloud: Run your directory service in the cloud.

•	 LDAP: Open source directory service.

•	 macOS Server Open Directory: Directory service

installed in macOS Server that is based on OpenLDAP.

APPENDIX A The Apple Ecosystem

https://www.trms.com/carousel
http://www.kioskproapp.com
https://www.risevision.com
http://business-static.apple.com/us/apple-professional-services/Apple_Professional_Services_AD_Integration_Services.pdf
http://www.thursby.com/products/admitmac
https://jumpcloud.com
https://www.openldap.org
https://itunes.apple.com/us/app/macos-server/id883878097?mt=12

716

•	 Microsoft Active Directory: Centralized directory

service from Microsoft.

•	 Nomad: Connects clients to Active Directory

environments without binding to Active Directory. And

has some other nifty features.

�Identity Management
Providers of predominantly SAML or OAuth based Single-Sign On

solutions that federate security for Apple devices to access web-based

services.

•	 Centrify: Provide federated login across common web

services and other SAML-capable solutions, as well as

resolve common issues with Active Directory. Also has

an integrated profile management tool for compliance.

•	 Duo Mobile: Additional options in the realm of secure

identity, with lots of great research going on in the

Apple space.

•	 LastPass Enterprise: Provide federated login across

common web services and other SAML-capable

solutions.

•	 Jamf Connect: Jamf solution for improving the local

experience when working with various Identity

Providers.

•	 Microsoft Azure Active Directory: Active Directory

with Azure in the cloud.

•	 Okta: Provide federated login across common web

services and other SAML-capable solutions

APPENDIX A The Apple Ecosystem

https://enterprise.microsoft.com
http://nomad.menu
http://centrify.com
https://duo.com
https://www.lastpass.com/enterprise
https://www.jamf.com/products/jamf-connect/
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-whatis
https://www.okta.com

717

•	 OneLogin: Provide federated login across common

web services and other SAML-capable solutions

•	 Ping Identity: Provide federated login across common

web services and other SAML-capable solutions

�Imaging and Configuration Tools
Tools used to place devices into a given state or create that state. This

includes traditional Macs, including tools, as well as those built for iOS.

•	 Apple Configurator: Configure iOS and tvOS devices

en-masse, automate MDM enrollment, and distribute

data.

•	 Blast Image Config: Will no longer be developed,

given the state of device imaging, but allows admins

to quickly restore and configure a Macintosh back to a

known state (10.12.2 and below).

•	 createOSXInstallPackage: create an installer package

from an “Install OS X.app” or an InstallESD.dmg.

(10.12.4 and below).

•	 Deep Freeze: Freeze the state of a Mac.

•	 DeployStudio: Free imaging server for Macs.

•	 Google Restor: Image macOS computers from a

single source. It is an application intended to be run

interactively on a machine.

•	 Ground Control: Mass deploy (and enroll) iOS devices.

•	 Imagr: Replaces tools such as DeployStudio for many

organizations without the requirement of needing to be

run on OS X servers.

APPENDIX A The Apple Ecosystem

https://www.onelogin.com
https://www.pingidentity.com
https://itunes.apple.com/us/app/apple-configurator-2/id1037126344?mt=12
http://clc.its.psu.edu/UnivServices/itadmins/mac/blastimageconfig
https://github.com/munki/createOSXinstallPkg
http://www.faronics.com/products/deep-freeze/mac
http://www.deploystudio.com
https://github.com/google/restor
https://www.groundctl.com
https://github.com/grahamgilbert/imagr

718

•	 libimobiledevice: Suite of tools to configure, inspect,

wipe, etc., for iOS devices.

•	 WinClone: Create windows images for deployment

onto Macs.

�Log Collection and Analysis
Centralized logging has been a necessity for large, growing fleets of

devices. Modern tools can store large amounts of logs from client

computers and allow fast and complex searching so you can triangulate

issues quickly and effectively. As an added benefit, you can also centralize

logs for network appliances, allowing you to isolate the source of issues

across an entire ecosystem of devices.

•	 Elastic Search: Open Source, very fast log analysis.

•	 RobotCloud Dashboard: Provides more granular and

intuitive visibility into devices managed by Jamf Pro.

•	 Splunk: Big data log analysis.

•	 Tableau: Big data analysis.

•	 Watchman Monitoring: Mac focused monitoring

agents that inspects common third-party tools.

•	 Zentral: Open source, built on ElasticSearch, but with

hooks into lots of other tools and custom recipes for

Mac logs.

�Management Suites
Tools used to manage settings on Apple Devices. Each is marked as MDM,

Agent-based, or both.

APPENDIX A The Apple Ecosystem

http://www.libimobiledevice.org
https://twocanoes.com/products/mac/winclone/
https://www.elastic.co
https://www.robotcloud.net/dashboard/
http://splunk.com
https://www.tableau.com
https://www.watchmanmonitoring.com
https://github.com/zentralopensource/zentral

719

•	 Addigy: Agent and MDM-based

•	 AirWatch: MDM and agent-based

•	 Altiris: Agent-based

•	 Apple Profile Manager: MDM

•	 BigFix: Agent-based

•	 Chef: Agent-based

•	 ConnectWise: Limited agent-based Mac management

focused on MSPs

•	 FileWave: MDM and agent-based

•	 Fleetsmith: Agent and MDM-based

•	 IBM MaaS360: MDM

•	 Ivanti: MDM and agent-based

•	 Jamf Now: Small business-focused MDM

•	 Jamf Pro (formerly Casper Suite): MDM and

agent-based

•	 KACE: Agent-based

•	 Kaseya: Agent-based Mac management for

Managed Service Providers

•	 Labtech: Agent-based

•	 LanRev: MDM and agent-based (currently

being retired)

•	 Lightspeed Mobile Manager: MDM

•	 Meraki Systems Manager: MDM

•	 microMDM: Open source MDM

APPENDIX A The Apple Ecosystem

https://www.addigy.com
https://www.air-watch.com
https://www.symantec.com/products/endpoint-management
https://itunes.apple.com/us/app/macos-server/id883878097?mt=12
https://www.ibm.com/security/bigfix/
https://www.chef.io/chef/
https://www.connectwise.com
https://www.filewave.com
https://www.fleetsmith.com
https://www.ibm.com/security/mobile/maas360.html
https://www.ivanti.com/products/endpoint-manager
https://www.jamf.com/products/jamf-now/
http://www.jamf.com
https://www.quest.com/kace/
https://www.kaseya.com
https://www.labtech.com
http://www.sds-corp.com/products/unified-endpoint-management/heat-lanrev-client-management/
https://www.lightspeedsystems.com/products/mobile-manager/
https://meraki.cisco.com/products/systems-manager/
https://github.com/micromdm/micromdm

720

•	 Microsoft Intune: (MDM) & SCCM: (Agent-based)

•	 Manage Engine: Agent-based

•	 Mobile Guardian: MDM

•	 MobileIron: MDM

•	 Mosyle: MDM

•	 Munki: Agent-based

•	 Parallels Mac Management for SCCM: Agent-based

SCCM plug-in for Macs

•	 Profile Manager (macOS Server): MDM

•	 Puppet: Agent-based

•	 Sal: Agent-based SaaS version of Munki, Puppet,

Django, and SB Admin 2.

•	 SAP MobileSecure: MDM with integrations to other

SAP products.

•	 SimpleMDM: MDM

•	 Solarwinds MSP: Agent-based with integrated backup

and ticketing for Managed Service Providers

•	 Sophos: MDM

•	 Tabpilot: MDM

•	 Zuludesk: MDM with a parent app

�Misc
•	 Jamf NetSUS: Reposado packaged up for Jamf servers.

•	 InfineaIQ: Peripheral management software.

APPENDIX A The Apple Ecosystem

https://www.microsoft.com/en-us/cloud-platform/microsoft-intune
https://www.microsoft.com/en-us/cloud-platform/system-center-configuration-manager
https://www.manageengine.com
https://www.mobileguardian.com
https://www.mobileiron.com
http://mosyle.com
https://github.com/munki/munki
https://www.parallels.com/products/mac-management/
https://itunes.apple.com/us/app/macos-server/id883878097?mt=12
https://puppet.com
http://salsoftware.com
http://munki.github.io/munki/
http://puppetlabs.com/
https://www.djangoproject.com/
https://github.com/IronSummitMedia/startbootstrap-sb-admin-2
https://www.sap.com/products/secure-mobile-device-management-cloud.html
https://simplemdm.com
https://www.solarwindsmsp.com
https://www.sophos.com/en-us/products/endpoint-antivirus.aspx
https://www.tabpilot.com
https://www.zuludesk.com
https://github.com/jamf/NetSUS
https://ipcmobile.com/infineaiq/

721

•	 ITGlue: Store credentials and information about

common IT tools in a SaaS-based database.

•	 Reposado: An open source interpretation of the Apple

Software Update Server.

•	 Sassafras Keyserver: Centralized software license

management server.

•	 ipaSign: Programmatically resign ipa files with a

new key.

�Point of Sale
Similar to digital signage, but you might also operate a storefront or track

customer data in one of these solutions.

•	 Checkout: Point of sale solution that can run on Apple

devices.

•	 Lightspeed: Point of sale solution that can run on

Apple devices.

•	 Paygo: Point of sale solution that can run on Apple

devices.

•	 Posim: Point of sale solution that can run on Apple

devices.

•	 Shopkeep: Point of sale solution that can run on Apple

devices.

•	 SquareUp: Point of sale solution that can run on Apple

devices.

•	 Vend: Point of sale solution that can run on Apple

devices.

APPENDIX A The Apple Ecosystem

https://www.itglue.com
https://github.com/wdas/reposado
https://www.sassafras.com
https://github.com/krypted/ipasign
http://www.checkoutapp.com
https://www.lightspeedhq.com/pos/retail/
http://paygopos.com
https://posim.com
https://www.shopkeep.com
https://squareup.com
https://www.vendhq.com

722

�Print Servers
Printers jam, they break, the drivers seem to be rife with problems for

every other operating system update, printers are often connected to via ad

hoc networks (like Bonjour), and you often need special software to access

the cool features. All in all, printers suck, but these tools might make them

just a tad bit easier to use, or if not, help to account for who is using them

so your customers can bill their departments back as much as possible.

•	 Papercut: Printer cost accounting for the Mac.

•	 Printopia: Allows for better printing from iOS devices.

�Remote Management
These tools allow you to take control of the screen, keyboard, and

mouse of devices. We can’t tell you which are the best, as that’s different

for every organization. But we can tell you that tools should typically

be cross-platform, cloud-based, prompt users for acceptance of the

remote-control session, and audit connections so we know who is taking

over what devices.

•	 Apple Remote Desktop: Apple tool for remotely

controlling other Macs, sending packages to Macs,

and running scripts on Macs over a LAN or directly to

an IP address.

•	 Bomgar: Appliance that allows for cross-platform

remote control of devices.

•	 CoRD: RDP client.

•	 LogMeIn: Cross-platform remote control utility.

•	 GoToMyPC: Cross-platform remote control utility.

APPENDIX A The Apple Ecosystem

https://www.papercut.com
https://www.decisivetactics.com/products/printopia/
https://itunes.apple.com/us/app/apple-remote-desktop/id409907375?mt=12
https://www.bomgar.com
https://github.com/dorianj/CoRD
http://logmein.com
https://get.gotomypc.com

723

•	 Remote Desktop: The official RDP client for the Mac.

•	 Remotix: RDP and VNC server with lots of bells and

whistles.

•	 TeamViewer: Cross-platform remote control utility.

�Security Tools
Tools used to manage firewalls, filevault, and perform other tasks required

to secure Macs, based on the security posture of a given organization.

•	 Cauliflower Vest: Store FileVault keys on a

centralized server.

•	 Crypt: FileVault 2 Escrow solution.

•	 Digital Guardian: Data loss prevention.

•	 Google Santa: Binary blacklisting and whitelisting for

the Mac.

•	 iOS Location Scraper: Dump the contents of the

location database files on iOS and macOS.

•	 iOS Frequent Location Scraper: Dump the contents of

the StateModel#.archive files located in /private/var/

mobile/Library/Caches/com.apple.routined/.

•	 Little Snitch: Provides information about what

is accessing network resources and where those

resources are.

•	 Objective-See: 's KnockKnock, Task Explorer,

BlockBlock, RansomWhere?, Oversight, and KextViewr,

tools for finding more information about ports and

services running on machines.

APPENDIX A The Apple Ecosystem

http://www.microsoft.com
https://www.nulana.com/remotix-mac/
http://teamviewer.com
https://github.com/google/cauliflowervest
https://grahamgilbert.com/blog/2013/01/18/crypt-a-filevault-2-escrow-solution/
https://digitalguardian.com
https://github.com/google/santa
https://github.com/mac4n6/Mac-Locations-Scraper
https://github.com/mac4n6/iOS-Frequent-Locations-Dumper
https://www.obdev.at/products/littlesnitch/index.html
https://objective-see.com/products.html

724

•	 Osquery: Query for information on Macs in a live,

granular search.

•	 Portecle: Create and manage keystores, keys,

certificates, certificate requests, and certificate

revocation lists.

•	 PowerBroker: Enable standard users on a Mac to

perform administrative tasks without entering elevated

credentials.

•	 Prey: Track Mac and iOS devices if they’re stolen.

�Service Desk Tools
These tools are for ticketing and ticket management. It’s always great if you

can pick one that actually integrates with both your billing solution and the

various other techie bits you choose to use.

•	 Freshdesk: Case/ticket management that allows for

automatic billing via Freshbooks.

•	 Salesforce Cases: Case/ticket management that

automatically integrates with SalesforceCRM.

•	 ServiceNow: Case/ticket management with an

expansive marketplace for integrations.

•	 Webhelpdesk: Case/ticket management.

•	 Zendesk: Case/ticket management with an expansive

marketplace for integrations.

APPENDIX A The Apple Ecosystem

https://osquery.io
http://portecle.sourceforge.net
https://www.beyondtrust.com/products/powerbroker-for-mac/
https://www.preyproject.com
https://freshdesk.com
http://www.salesforce.com
http://www.servicenow.com
https://www.webhelpdesk.com
http://www.zendesk.com

725

�Software Packaging and Package
Management
Tools for normalizing software for mass distribution on Apple platforms.

•	 Autopkg: Automate the creation of Mac software

distribution packages using recipes.

•	 CreateUserPkg: Creates packages that create local user

accounts when installed. (10.12 and below).

•	 JSSImporter: Connects Autopkg to Jamf Pro.

•	 Iceberg: Create Mac software distribution packages.

•	 InstallApplication: Dynamically download packages

for use with MDM’s InstallApplication.

•	 Jamf Composer: Create Mac software distribution

packages.

•	 Luggage: Open Source project to create a wrapper that

makes pkgs for Macs so you can have peer review of a

package by examining the diffs between versions of a

Makefile.

•	 Munkipkg: A simple tool for building packages in a

consistent, repeatable manner from source files and

scripts in a project directory.

•	 Pacifist: A shareware application that opens macOS

.pkg package files, .dmg disk images, and .zip, .tar, .tar.

gz, .tar.bz2, and .xar archives and allows you to extract

individual files and folders out of them.

APPENDIX A The Apple Ecosystem

https://github.com/sheagcraig/JSSImporter
https://github.com/MagerValp/CreateUserPkg
https://github.com/sheagcraig/JSSImporter
http://s.sudre.free.fr/Software/Iceberg.html
https://github.com/erikng/installapplications
https://www.jamf.com/products/jamf-composer/
https://github.com/unixorn/luggage
https://github.com/munki/munki-pkg
https://www.charlessoft.com

726

•	 Payload Free Package Creator: An Automator

application that uses AppleScript, shell scripting, and

pkgbuild behind the scenes to create payload-free

packages.

•	 QuickPkg: Create Mac software distribution packages.

•	 Simple Package Creator: Create Mac software

distribution packages.

•	 Suspicious Package: View the contents of Mac

software distribution packages.

•	 Whitebox Packages: Create Mac software distribution

packages.

�Storage
Apple-focused solutions for sharing files.

•	 Netatalk: Better AFP connectivity to Windows and

other storage platforms from a Mac.

•	 Promise: Apple-vetted direct attached storage (DAS),

storage area networking (SAN), etc.

•	 Synology: Storage appliances tailored to working with

the Mac.

•	 Xsan: The built-in Apple SAN filesystem.

�Troubleshooting, Repair, and Service Tools
Tools used to fix logical problems with hard drives, check hardware for

issues, repair various system problems, or just clean up a Mac.

•	 AppCleaner: Clean up unneeded files on a Mac.

APPENDIX A The Apple Ecosystem

https://github.com/rtrouton/Payload-Free-Package-Creator
https://github.com/scriptingosx/quickpkg
https://github.com/rtrouton/Simple-Package-Creator
http://mothersruin.com/software/SuspiciousPackage/
http://s.sudre.free.fr/Software/Packages/about.html
http://netatalk.sourceforge.net
https://www.promise.com/us/
https://www.synology.com/en-us
https://itunes.apple.com/us/app/macos-server/id883878097?mt=12
https://freemacsoft.net/appcleaner/

727

•	 AppleJack: Repair disks/permissions and cleans

cache/swap files from single-user mode when a Mac

can’t fully boot.

•	 Bartender: Manage items in the menu bar on a Mac.

•	 CleanMyDrive: Drag-and-drop files directly to any

drive, check disk stats, and automatically clean hidden

junk from external drives.

•	 Data Rescue: Data recovery tool for Mac.

•	 Disk Doctor: Repairs logical drives and cleans up

unneeded files.

•	 DiskWarrior: Repair logical volume corruption on

Macs.

•	 Drive Genius: Automates monitoring for hard drive

errors, finds duplicate files, allows for repartition of

volumes, clones volumes, performs secure erase, and

defragmentation.

•	 Disk Inventory X: Visual representation of what’s on a

logical volume in macOS.

•	 EasyFind: Find files, folders, or contents in any file

without indexing through Spotlight.

•	 iStumbler: Wireless discovery tool for Mac that can

locate Wi-Fi networks, Bluetooth devices, Bonjour

services, and perform spectrum analysis.

•	 GeekTool: Put script output and logs directly on the

desktop of a Mac.

•	 Google PlanB: Remediate Macs that fall out of a given

state by performing a secure download of disk images

and then putting the device into a management platform.

APPENDIX A The Apple Ecosystem

http://applejack.sourceforge.net
https://www.macbartender.com
http://macpaw.com/cleanmydrive
https://www.prosofteng.com/data-recovery-software/
https://itunes.apple.com/gb/app/disk-doctor-clean-your-drive/id455970963?mt=12
https://www.alsoft.com/DiskWarrior/
https://www.prosofteng.com/drive-genius-mac-protection-software/
http://www.derlien.com
https://itunes.apple.com/us/app/easyfind/id411673888?mt=12
https://istumbler.net
https://www.tynsoe.org/v2/geektool/
https://github.com/google/macops-planb

728

•	 GrandPerspective: Visual representation of what’s on a

logical volume in macOS.

•	 Hardware Monitor: Read hardware sensor information

on a Mac.

•	 Lingon: Create, manage, and delete LaunchAgents and

LaunchDaemons on macOS.

•	 Memtest OS X: Test each RAM module in a Mac.

•	 nMap: Advanced port scanning, network mapping, and

network troubleshooting.

•	 Peak Hour: Network performance, quality, and usage

monitoring.

•	 Omni DiskSweeper: Find and remove unused files in

macOS to conserve and reclaim disk space.

•	 OnyX: Verify the startup disk and structure of system

files, run maintenance and cleaning tasks, configure

settings(e.g., for the Finder, Dock, Safari), delete caches,

and rebuild various databases and indexes.

•	 Push Diagnostics: Test port and host access for

APNs Traffic.

•	 Stellar Phoenix: Mac data recovery tool.

•	 TechTool Pro: Drive repair, RAM testing, and data

protection.

•	 TinkerTool: Graphical interface for changing

preferences on a Mac that would otherwise need to be

managed with the defaults command.

APPENDIX A The Apple Ecosystem

http://grandperspectiv.sourceforge.net
https://www.bresink.com/osx/HardwareMonitor.html
https://itunes.apple.com/us/app/lingon-3/id450201424?mt=12
http://www.memtestosx.org
https://nmap.org
https://peakhourapp.com
https://www.omnigroup.com/more
https://www.titanium-software.fr/en/onyx.html
http://twocanoes.com/push-diagnostics
https://www.stellarinfo.com
https://www.micromat.com/products/techtool-pro
https://www.bresink.com/osx/TinkerTool.html

729

•	 Xirrus Wi-Fi Inspector: Search for Wi-Fi network, site

surveys, troubleshoot Wi-Fi connectivity issues, locate

Wi-Fi devices, and detect rogue Apps.

�Virtualization and Emulation
Not all software runs on a Mac. Customers will have certain tasks that may

require a Windows machine. You can use Citrix or a Microsoft Terminal

Server to provide for that potential requirement. Or, especially if users

need data from their Windows apps when offline, you can use a local

virtualization tool.

•	 Anka veertu: Run Virtual Machines on a Mac.

•	 Citrix: Publish Windows application sessions

that end users connect to from a Mac using standard

RDP clients.

•	 Parallels: Run Virtual Machines on a Mac.

•	 Microsoft Windows Terminal Server: Publish

Windows sessions that end users connect to from a

Mac using standard RDP clients.

•	 vFuse: Script to create a VMware Fusion VM from a

DMG that hasn’t been booted.

•	 VirtualBox: Run Virtual Machines on a Mac.

•	 VMware Fusion: Run Virtual Machines on a Mac.

APPENDIX A The Apple Ecosystem

http://www.xirrus.com/wifi-inspector
https://veertu.com
https://www.citrix.com
https://www.parallels.com
http://www.microsoft.com
https://github.com/chilcote/vfuse
https://www.virtualbox.org
https://www.vmware.com/products/fusion.html

730

�Honorable Mention
•	 The MacAdmins Slack: Join a community of 15,000

other admins charged with managing large fleets of

Apple devices.

•	 Apple Developer Program: Sign up for a developer

account in order to get access to beta resources and

documentation not otherwise available.

•	 Your Apple SE or local retail store: A great resource for

finding information!

•	 Coffee... lots and lots of coffee

APPENDIX A The Apple Ecosystem

https://macadmins.herokuapp.com
http://developer.apple.com

731© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5

APPENDIX B

�Common Apple Ports
There are a number of ports used by Apple products. The following table

lists examples of commonly used ports, along with basic information

about the Apple services which use them.

Note  Some services will use more than one port.

https://doi.org/10.1007/978-1-4842-5388-5

732

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

7
TC

P/
UD

P
ec

ho
79

2
ec

ho
—

20
TC

P
Fi

le
 T

ra
ns

po
rt

Pr
ot

oc
ol

 (F
TP

)
95

9
ftp

-d
at

a
—

21
TC

P
FT

P
co

nt
ro

l
95

9
ftp

—

22
TC

P
Se

cu
re

 S
he

ll
(S

SH
),

SS
H

Fi
le

 T
ra

ns
fe

r

Pr
ot

oc
ol

 (S
FT

P)
, a

nd
 S

ec
ur

e
co

py

(s
cp

)

42
53

ss
h

Xc
od

e
Se

rv
er

 (h
os

te
d

an
d

re
m

ot
e

Gi
t+

SS
H;

 re
m

ot
e

SV
N+

SS
H)

23
TC

P
Te

ln
et

85
4

te
ln

et
—

25
TC

P
Si

m
pl

e
M

ai
l T

ra
ns

fe
r P

ro
to

co
l (

SM
TP

)
53

21
sm

tp
M

ai
l (

se
nd

in
g

em
ai

l);
 iC

lo
ud

 M
ai

l

(s
en

di
ng

 e
m

ai
l)

53
TC

P/
UD

P
Do

m
ai

n
Na

m
e

Sy
st

em
 (D

NS
)

10
34

do
m

ai
n

—

67
UD

P
Bo

ot
st

ra
p

Pr
ot

oc
ol

 S
er

ve
r (

Bo
ot

P,

bo
ot

ps
)

95
1

bo
ot

ps
Ne

tB
oo

t v
ia

 D
HC

P

68
UD

P
Bo

ot
st

ra
p

Pr
ot

oc
ol

 C
lie

nt
 (b

oo
tp

c)
95

1
bo

ot
pc

Ne
tB

oo
t v

ia
 D

HC
P

69
UD

P
Tr

iv
ia

l F
ile

 T
ra

ns
fe

r P
ro

to
co

l (
TF

TP
)

13
50

tft
p

—

79
TC

P
Fi

ng
er

12
88

fin
ge

r
—

APPENDIX B Common Apple Ports

733

80
TC

P
Hy

pe
rte

xt
 T

ra
ns

fe
r P

ro
to

co
l (

HT
TP

)
26

16
ht

tp
W

or
ld

 W
id

e
W

eb
, F

ac
eT

im
e,

 iM
es

sa
ge

,

iC
lo

ud
, Q

ui
ck

Ti
m

e
In

st
al

le
r,

M
ap

s,

iT
un

es
 U

, A
pp

le
 M

us
ic

, i
Tu

ne
s

St
or

e,

Po
dc

as
ts

, I
nt

er
ne

t R
ad

io
, S

of
tw

ar
e

Up
da

te
 (O

S
X

Li
on

 o
r e

ar
lie

r),
 M

ac
 A

pp

St
or

e,
 R

AI
D

Ad
m

in
, B

ac
ku

p,
 C

al
en

da
r,

W
eb

DA
V,

 F
in

al
 C

ut
 S

er
ve

r,
Ai

rP
la

y,

m
ac

OS
 In

te
rn

et
 R

ec
ov

er
y,

Pr
of

ile

M
an

ag
er

, X
co

de
 S

er
ve

r (
Xc

od
e

ap
p,

ho
st

ed
 a

nd
 re

m
ot

e
Gi

t H
TT

P,
re

m
ot

e

SV
N

HT
TP

)

88
TC

P
Ke

rb
er

os
41

20
ke

rb
er

os
Ke

rb
er

os
, i

nc
lu

di
ng

 S
cr

ee
n

Sh
ar

in
g

au
th

en
tic

at
io

n

10
6

TC
P

Pa
ss

w
or

d
Se

rv
er

—
3c

om
-t

sm
ux

m
ac

OS
 S

er
ve

r P
as

sw
or

d
Se

rv
er

(u
nr

eg
is

te
re

d
us

e)

11
0

TC
P

Po
st

 O
ffi

ce
 P

ro
to

co
l (

PO
P3

),
19

39
po

p3
M

ai
l (

re
ce

iv
in

g
em

ai
l)

Au
th

en
tic

at
ed

 P
os

t O
ffi

ce
 P

ro
to

co
l

(A
PO

P)

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

734

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

11
1

TC
P/

UD
P

Re
m

ot
e

Pr
oc

ed
ur

e
Ca

ll
(R

PC
)

10
57

,

18
31

su
nr

pc
Po

rtm
ap

 (s
un

rp
c)

11
3

TC
P

Id
en

tif
ic

at
io

n
Pr

ot
oc

ol
14

13
id

en
t

—

11
9

TC
P

Ne
tw

or
k

Ne
w

s
Tr

an
sf

er
 P

ro
to

co
l

(N
NT

P)

39
77

nn
tp

Ap
ps

 th
at

 re
ad

 n
ew

sg
ro

up
s.

12
3

UD
P

Ne
tw

or
k

Ti
m

e
Pr

ot
oc

ol
 (N

TP
)

13
05

nt
p

Da
te

 a
nd

 T
im

e
pr

ef
er

en
ce

s,
 n

et
w

or
k

tim
e

se
rv

er
 s

yn
ch

ro
ni

za
tio

n,
 A

pp
le

 T
V

ne
tw

or
k

tim
e

se
rv

er
 s

yn
c

13
7

UD
P

W
in

do
w

s
In

te
rn

et
 N

am
in

g
Se

rv
ic

e

(W
IN

S)

—
ne

tb
io

s-
ns

—

13
8

UD
P

NE
TB

IO
S

Da
ta

gr
am

 S
er

vi
ce

—
ne

tb
io

s-
dg

m
W

in
do

w
s

Da
ta

gr
am

 S
er

vi
ce

, W
in

do
w

s

Ne
tw

or
k

Ne
ig

hb
or

ho
od

13
9

TC
P

Se
rv

er
 M

es
sa

ge
 B

lo
ck

 (S
M

B)
—

ne
tb

io
s-

ss
n

M
ic

ro
so

ft
W

in
do

w
s

fil
e

an
d

pr
in

t

se
rv

ic
es

, s
uc

h
as

 W
in

do
w

s
Sh

ar
in

g
in

m
ac

OS

APPENDIX B Common Apple Ports

735

14
3

TC
P

In
te

rn
et

 M
es

sa
ge

 A
cc

es
s

Pr
ot

oc
ol

(IM
AP

)

35
01

im
ap

M
ai

l (
re

ce
iv

in
g

em
ai

l)

16
1

UD
P

Si
m

pl
e

Ne
tw

or
k

M
an

ag
em

en
t

Pr
ot

oc
ol

 (S
NM

P)

11
57

sn
m

p
—

19
2

UD
P

OS
U

Ne
tw

or
k

M
on

ito
rin

g
Sy

st
em

—
os

u-
nm

s
Ai

rP
or

t B
as

e
St

at
io

n
PP

P
st

at
us

 o
r

di
sc

ov
er

y
(c

er
ta

in
 c

on
fig

ur
at

io
ns

),

Ai
rP

or
t A

dm
in

 U
til

ity
, A

irP
or

t E
xp

re
ss

As
si

st
an

t

31
1

TC
P

Se
cu

re
 s

er
ve

r a
dm

in
is

tra
tio

n
—

as
ip

-

w
eb

ad
m

in

Se
rv

er
 a

pp
, S

er
ve

r A
dm

in
, W

or
kg

ro
up

M
an

ag
er

, S
er

ve
r M

on
ito

r,
Xs

an
 A

dm
in

31
2

TC
P

Xs
an

 a
dm

in
is

tra
tio

n
—

vs
lm

p
Xs

an
 A

dm
in

 (O
S

X
M

ou
nt

ai
n

Li
on

 v
10

.8

an
d

la
te

r)

38
9

TC
P

Li
gh

tw
ei

gh
t D

ire
ct

or
y

Ac
ce

ss

Pr
ot

oc
ol

 (L
DA

P)

45
11

ld
ap

Ap
ps

 th
at

 lo
ok

 u
p

ad
dr

es
se

s,
 s

uc
h

as

M
ai

l a
nd

 A
dd

re
ss

 B
oo

k

42
7

TC
P/

UD
P

Se
rv

ic
e

Lo
ca

tio
n

Pr
ot

oc
ol

 (S
LP

)
26

08
sv

rlo
c

Ne
tw

or
k

Br
ow

se
r

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

736

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

44
3

TC
P

Se
cu

re
 S

oc
ke

ts
 L

ay
er

 (S
SL

 o
r

HT
TP

S)

28
18

ht
tp

s
TL

S
w

eb
 s

ite
s,

 iT
un

es
 S

to
re

, S
of

tw
ar

e

Up
da

te
 (O

S
X

M
ou

nt
ai

n
Li

on
 a

nd
 la

te
r),

Sp
ot

lig
ht

 S
ug

ge
st

io
ns

, M
ac

 A
pp

 S
to

re
,

M
ap

s,
 F

ac
eT

im
e,

 G
am

e
Ce

nt
er

, i
Cl

ou
d

au
th

en
tic

at
io

n
an

d
DA

V
Se

rv
ic

es

(C
on

ta
ct

s,
 C

al
en

da
rs

, B
oo

km
ar

ks
),

iC
lo

ud
 b

ac
ku

p
an

d
ap

ps
 (C

al
en

da
rs

,

Co
nt

ac
ts

, F
in

d
M

y
iP

ho
ne

, F
in

d
M

y

Fr
ie

nd
s,

 M
ai

l,
iM

es
sa

ge
, D

oc
um

en
ts

an
d

Ph
ot

o
St

re
am

),
iC

lo
ud

 K
ey

 V
al

ue

St
or

e
(K

VS
),

iP
ho

to
 J

ou
rn

al
s,

 A
irP

la
y,

m
ac

OS
 In

te
rn

et
 R

ec
ov

er
y,

Pr
of

ile

M
an

ag
er

, B
ac

k
to

 M
y

M
ac

, D
ic

ta
tio

n,

Si
ri,

 X
co

de
 S

er
ve

r (
ho

st
ed

 a
nd

 re
m

ot
e

Gi
t H

TT
PS

, r
em

ot
e

SV
N

HT
TP

S,

Ap
pl

e
De

ve
lo

pe
r r

eg
is

tra
tio

n)
, P

us
h

no
tif

ic
at

io
ns

 (i
f n

ec
es

sa
ry

)

44
5

TC
P

M
ic

ro
so

ft
SM

B
Do

m
ai

n
Se

rv
er

—
m

ic
ro

so
ft-

ds
—

APPENDIX B Common Apple Ports

737

46
4

TC
P/

UD
P

kp
as

sw
d

32
44

kp
as

sw
d

—

46
5

TC
P

M
es

sa
ge

 S
ub

m
is

si
on

 fo
r M

ai
l

(A
ut

he
nt

ic
at

ed
 S

M
TP

)

sm
tp

 (l
eg

ac
y)

M
ai

l (
se

nd
in

g
m

ai
l)

50
0

UD
P

IS
AK

M
P/

IK
E

24
08

is
ak

m
p

m
ac

OS
 S

er
ve

r V
PN

 s
er

vi
ce

, B
ac

k
to

 M
y

M
ac

50
0

UD
P

W
i-F

i C
al

lin
g

59
96

IK
Ev

2
W

i-F
i C

al
lin

g

51
4

TC
P

sh
el

l
—

sh
el

l
—

51
4

UD
P

Sy
sl

og
—

sy
sl

og
—

51
5

TC
P

Li
ne

 P
rin

te
r (

LP
R)

, L
in

e
Pr

in
te

r

Da
em

on
 (L

PD
)

—
pr

in
te

r
Pr

in
tin

g
to

 a
 n

et
w

or
k

pr
in

te
r,

Pr
in

te
r

Sh
ar

in
g

in
 m

ac
OS

53
2

TC
P

ne
tn

ew
s

—
ne

tn
ew

s
—

54
8

TC
P

Ap
pl

e
Fi

lin
g

Pr
ot

oc
ol

 (A
FP

) o
ve

r T
CP

—
af

po
ve

rtc
p

Ap
pl

eS
ha

re
, P

er
so

na
l F

ile
 S

ha
rin

g,

Ap
pl

e
Fi

le
 S

er
vi

ce

55
4

TC
P/

UD
P

Re
al

-T
im

e
St

re
am

in
g

Pr
ot

oc
ol

 (R
TS

P)
23

26
rts

p
Ai

rP
la

y,
Qu

ic
kT

im
e

St
re

am
in

g
Se

rv
er

(Q
TS

S)
, s

tre
am

in
g

m
ed

ia
 p

la
ye

rs

58
7

TC
P

M
es

sa
ge

 S
ub

m
is

si
on

 fo
r M

ai
l

(A
ut

he
nt

ic
at

ed
 S

M
TP

)

44
09

su
bm

is
si

on
M

ai
l (

se
nd

in
g

m
ai

l),
 iC

lo
ud

 M
ai

l (
SM

TP

au
th

en
tic

at
io

n)

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

738

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

60
0–

10
23

TC
P/

UD
P

M
ac

 O
S

X
RP

C-
ba

se
d

se
rv

ic
es

—
ip

cs
er

ve
r

Ne
tIn

fo

62
3

UD
P

Li
gh

ts
-O

ut
-M

on
ito

rin
g

—
as

f-
rm

cp
Li

gh
ts

 O
ut

 M
on

ito
rin

g
(LO

M
) f

ea
tu

re
 o

f

In
te

l-b
as

ed
 X

se
rv

e
co

m
pu

te
rs

, S
er

ve
r

M
on

ito
r

62
5

TC
P

Op
en

 D
ire

ct
or

y
Pr

ox
y

(O
DP

ro
xy

)

(u
nr

eg
is

te
re

d
us

e)

—
de

c_
dl

m
Op

en
 D

ire
ct

or
y,

Se
rv

er
 a

pp
, W

or
kg

ro
up

M
an

ag
er

; D
ire

ct
or

y
Se

rv
ic

es
 in

 O
S

X

Li
on

 o
r e

ar
lie

r

No
te

: T
hi

s
po

rt
is

 re
gi

st
er

ed
 to

 D
EC

DL
M

62
6

TC
P

Ap
pl

eS
ha

re
 Im

ap
 A

dm
in

 (A
SI

A)
—

as
ia

IM
AP

 a
dm

in
is

tra
tio

n
(M

ac
 O

S
X

Se
rv

er

v1
0.

2.
8

or
 e

ar
lie

r)

62
6

UD
P

se
ria

ln
um

be
rd

 (u
nr

eg
is

te
re

d
us

e)
—

as
ia

Se
rv

er
 s

er
ia

l n
um

be
r r

eg
is

tra
tio

n
(X

sa
n,

M
ac

 O
S

X
Se

rv
er

 v
10

.3
 –

 v
10

.6
)

63
1

TC
P

In
te

rn
et

 P
rin

tin
g

Pr
ot

oc
ol

 (I
PP

)
29

10
ip

p
m

ac
OS

 P
rin

te
r S

ha
rin

g,
 p

rin
tin

g
to

m
an

y
co

m
m

on
 p

rin
te

rs

63
6

TC
P

Se
cu

re
 L

DA
P

—
ld

ap
s

—

APPENDIX B Common Apple Ports

739

66
0

TC
P

Se
rv

er
 a

dm
in

is
tra

tio
n

—
m

ac
-s

rv
r-

ad
m

in

Se
rv

er
 a

dm
in

is
tra

tio
n

to
ol

s
fo

r M
ac

OS
 X

 S
er

ve
r v

10
.4

 o
r e

ar
lie

r,
in

cl
ud

in
g

Ap
pl

eS
ha

re
 IP

68
7

TC
P

Se
rv

er
 a

dm
in

is
tra

tio
n

—
as

ip
re

gi
st

ry
Se

rv
er

 a
dm

in
is

tra
tio

n
to

ol
s

fo
r M

ac

OS
 X

 S
er

ve
r v

10
.6

 o
r e

ar
lie

r,
in

cl
ud

in
g

Ap
pl

eS
ha

re
 IP

74
9

TC
P/

UD
P

Ke
rb

er
os

 5
 a

dm
in

/c
ha

ng
ep

w
—

ke
rb

er
os

-a
dm

—

98
5

TC
P

Ne
tIn

fo
 S

ta
tic

 P
or

t
—

—
—

99
3

TC
P

M
ai

l I
M

AP
 S

SL
—

im
ap

s
iC

lo
ud

 M
ai

l (
SS

L
IM

AP
)

99
5

TC
P/

UD
P

M
ai

l P
OP

 S
SL

—
po

p3
s

—

10
85

TC
P/

UD
P

W
eb

Ob
je

ct
s

—
w

eb
ob

je
ct

s
—

10
99

,

80
43

TC
P

Re
m

ot
e

RM
I a

nd
 II

OP
 A

cc
es

s
to

JB
OS

S

—
rm

ire
gi

st
ry

—

12
20

TC
P

QT
 S

er
ve

r A
dm

in
—

qt
-

se
rv

er
ad

m
in

Ad
m

in
is

tra
tio

n
of

 Q
ui

ck
Ti

m
e

St
re

am
in

g

Se
rv

er

16
40

TC
P

Ce
rti

fic
at

e
En

ro
llm

en
t S

er
ve

r
—

ce
rt-

re
sp

on
de

r
Pr

of
ile

 M
an

ag
er

 in
 m

ac
OS

 S
er

ve
r 5

.2

an
d

ea
rli

er

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

740

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

16
49

TC
P

IP
 F

ai
lo

ve
r

—
ke

rm
it

—

17
01

UD
P

L2
TP

—
l2

f
m

ac
OS

 S
er

ve
r V

PN
 s

er
vi

ce

17
23

TC
P

PP
TP

—
pp

tp
m

ac
OS

 S
er

ve
r V

PN
 s

er
vi

ce

19
00

UD
P

SS
DP

—
ss

dp
Bo

nj
ou

r,
Ba

ck
 to

 M
y

M
ac

20
49

TC
P/

UD
P

Ne
tw

or
k

Fi
le

 S
ys

te
m

 (N
FS

) (
ve

rs
io

n

3
an

d
4)

35
30

nf
sd

—

21
95

TC
P

Ap
pl

e
Pu

sh
 N

ot
ifi

ca
tio

n
Se

rv
ic

e

(A
PN

S)

—
—

Pu
sh

 n
ot

ifi
ca

tio
ns

21
96

TC
P

Ap
pl

e
Pu

sh
 N

ot
ifi

ca
tio

n
Se

rv
ic

e

(A
PN

S)

—
—

Fe
ed

ba
ck

 s
er

vi
ce

23
36

TC
P

M
ob

ile
 a

cc
ou

nt
 s

yn
c

—
ap

pl
eu

gc
on

tro
l

Ho
m

e
di

re
ct

or
y

sy
nc

hr
on

iz
at

io
n

30
04

TC
P

iS
yn

c
—

cs
of

tra
ge

nt
—

30
31

TC
P/

UD
P

Re
m

ot
e

Ap
pl

eE
ve

nt
s

—
ep

pc
Pr

og
ra

m
 L

in
ki

ng
, R

em
ot

e
Ap

pl
e

Ev
en

ts

32
83

TC
P/

UD
P

Ne
t A

ss
is

ta
nt

—
ne

t-
as

si
st

an
t

Ap
pl

e
Re

m
ot

e
De

sk
to

p
2.

0
or

 la
te

r

(R
ep

or
tin

g
fe

at
ur

e)
, C

la
ss

ro
om

 a
pp

(c
om

m
an

d
ch

an
ne

l)

APPENDIX B Common Apple Ports

741

32
84

TC
P/

UD
P

Ne
t A

ss
is

ta
nt

—
ne

t-
as

si
st

an
t

Cl
as

sr
oo

m
 a

pp
 (d

oc
um

en
t s

ha
rin

g)

33
06

TC
P

M
yS

QL
—

m
ys

ql
—

34
78

–

34
97

UD
P

—
—

na
t-

st
un

-p
or

t -

ip
et

he
r2

32
po

rt

Fa
ce

Ti
m

e,
 G

am
e

Ce
nt

er

36
32

TC
P

Di
st

rib
ut

ed
 c

om
pi

le
r

—
di

st
cc

—

36
59

TC
P/

UD
P

Si
m

pl
e

Au
th

en
tic

at
io

n
an

d
Se

cu
rit

y

La
ye

r (
SA

SL
)

—
ap

pl
e-

sa
sl

m
ac

OS
 S

er
ve

r P
as

sw
or

d
Se

rv
er

36
89

TC
P

Di
gi

ta
l A

ud
io

 A
cc

es
s

Pr
ot

oc
ol

 (D
AA

P)
—

da
ap

iT
un

es
 M

us
ic

 S
ha

rin
g,

 A
irP

la
y

36
90

TC
P/

UD
P

Su
bv

er
si

on
—

sv
n

Xc
od

e
Se

rv
er

 (a
no

ny
m

ou
s

re
m

ot
e

SV
N)

41
11

TC
P

XG
rid

—
xg

rid
—

43
98

UD
P

—
—

—
Ga

m
e

Ce
nt

er

44
88

TC
P

Ap
pl

e
W

id
e

Ar
ea

 C
on

ne
ct

iv
ity

 S
er

vi
ce

aw
ac

s-
ic

e
Ba

ck
 T

o
M

y
M

ac

45
00

UD
P

IP
se

c
NA

T
Tr

av
er

sa
l

43
06

ip
se

c-
m

sf
t

m
ac

OS
 S

er
ve

r V
PN

 s
er

vi
ce

, B
ac

k
to

 M
y

M
ac

.

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

742

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

No
te

: C
on

fig
ur

in
g

Ba
ck

 to
 M

y
M

ac

on
 a

n
Ai

rP
or

t B
as

e
St

at
io

n
or

 A
irP

or
t

Ti
m

e
Ca

ps
ul

e
in

 N
AT

 m
od

e
im

pe
de

s

co
nn

ec
tiv

ity
 to

 a
 m

ac
OS

 S
er

ve
r V

PN

se
rv

ic
e

be
hi

nd
 th

at
 N

AT
.

45
00

UD
P

W
i-F

i C
al

lin
g

59
96

IK
Ev

2
W

i-F
i C

al
lin

g

50
03

TC
P

Fi
le

M
ak

er
 -

 n
am

e
bi

nd
in

g
an

d

tra
ns

po
rt

—
fm

pr
o-

in
te

rn
al

—

50
09

TC
P

(u
nr

eg
is

te
re

d
us

e)
—

w
in

fs
Ai

rP
or

t U
til

ity
, A

irP
or

t E
xp

re
ss

 A
ss

is
ta

nt

51
00

TC
P

—
—

so
ca

lia
m

ac
OS

 c
am

er
a

an
d

sc
an

ne
r s

ha
rin

g

52
22

TC
P

XM
PP

 (J
ab

be
r)

39
20

ja
bb

er
-c

lie
nt

Ja
bb

er
 m

es
sa

ge
s

52
23

TC
P

Ap
pl

e
Pu

sh
 N

ot
ifi

ca
tio

n
Se

rv
ic

e

(A
PN

S)

—
—

iC
lo

ud
 D

AV
 S

er
vi

ce
s

(C
on

ta
ct

s,

Ca
le

nd
ar

s,
 B

oo
km

ar
ks

),
Pu

sh

No
tif

ic
at

io
ns

, F
ac

eT
im

e,
 iM

es
sa

ge
,

Ga
m

e
Ce

nt
er

, P
ho

to
 S

tre
am

, B
ac

k
to

M
y

M
ac

52
28

TC
P

—
—

—
Sp

ot
lig

ht
 S

ug
ge

st
io

ns
, S

iri

APPENDIX B Common Apple Ports

743

52
97

TC
P

—
—

—
M

es
sa

ge
s

(lo
ca

l t
ra

ffi
c)

53
50

UD
P

NA
T

Po
rt

M
ap

pi
ng

 P
ro

to
co

l

An
no

un
ce

m
en

ts

—
—

Bo
nj

ou
r,

Ba
ck

 to
 M

y
M

ac

53
51

UD
P

NA
T

Po
rt

M
ap

pi
ng

 P
ro

to
co

l
—

na
t-

pm
p

Bo
nj

ou
r,

Ba
ck

 to
 M

y
M

ac

53
53

UD
P

M
ul

tic
as

t D
NS

 (M
DN

S)
39

27
m

dn
s

Bo
nj

ou
r,

Ai
rP

la
y,

Ho
m

e
Sh

ar
in

g,
 P

rin
te

r

Di
sc

ov
er

y,
Ba

ck
 to

 M
y

M
ac

54
32

TC
P

Po
st

gr
eS

QL
—

po
st

gr
es

ql
Ca

n
be

 e
na

bl
ed

 m
an

ua
lly

 in
 O

S
X

Li
on

Se
rv

er
 (p

re
vi

ou
sl

y
en

ab
le

d
by

 d
ef

au
lt

fo
r A

RD
 2

.0
 D

at
ab

as
e)

58
97

–

58
98

UD
P

(u
nr

eg
is

te
re

d
us

e)
—

—
xr

di
ag

s

59
00

TC
P

Vi
rtu

al
 N

et
w

or
k

Co
m

pu
tin

g
(V

NC
)

—
vn

c-
se

rv
er

Ap
pl

e
Re

m
ot

e
De

sk
to

p
2.

0
or

 la
te

r

(O
bs

er
ve

/C
on

tro
l f

ea
tu

re
)

(u
nr

eg
is

te
re

d
us

e)
Sc

re
en

 S
ha

rin
g

(M
ac

 O
S

X
10

.5
 o

r l
at

er
)

59
88

TC
P

W
BE

M
 H

TT
P

—
w

be
m

-h
ttp

Ap
pl

e
Re

m
ot

e
De

sk
to

p
2.

x

No
te

: F
or

 m
or

e
in

fo
rm

at
io

n,
 p

le
as

e
al

so

se
e
ww
w.
dm
tf
.o
rg
/s
ta
nd
ar
ds
/w
be
m

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

http://www.dmtf.org/standards/wbem

744

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

69
70

–

99
99

UD
P

—
—

—
Qu

ic
kT

im
e

St
re

am
in

g
Se

rv
er

70
70

TC
P

RT
SP

 (u
nr

eg
is

te
re

d
us

e)
, A

ut
om

at
ic

Ro
ut

er
 C

on
fig

ur
at

io
n

Pr
ot

oc
ol

 (A
RC

P)

—
ar

cp
Qu

ic
kT

im
e

St
re

am
in

g
Se

rv
er

 (R
TS

P)

70
70

UD
P

RT
SP

 a
lte

rn
at

e
—

ar
cp

Qu
ic

kT
im

e
St

re
am

in
g

Se
rv

er

80
00

–

89
99

TC
P

—
—

ird
m

i
W

eb
 s

er
vi

ce
, i

Tu
ne

s
Ra

di
o

st
re

am
s

80
05

TC
P

To
m

ca
t r

em
ot

e
sh

ut
do

w
n

—
—

—

80
08

TC
P

iC
al

 s
er

vi
ce

—
ht

tp
-a

lt
M

ac
 O

S
X

Se
rv

er
 v

10
.5

 o
r l

at
er

80
80

TC
P

Al
te

rn
at

e
po

rt
fo

r A
pa

ch
e

w
eb

se
rv

ic
e

—
ht

tp
-a

lt
Al

so
 J

BO
SS

 H
TT

P
in

 M
ac

 O
S

X
Se

rv
er

10
.4

 o
r e

ar
lie

r

80
85

–

80
87

TC
P

W
ik

i s
er

vi
ce

—
—

M
ac

 O
S

X
Se

rv
er

 v
10

.5
 o

r l
at

er

80
88

TC
P

So
ftw

ar
e

Up
da

te
 s

er
vi

ce
—

ra
da

n-
ht

tp
M

ac
 O

S
X

Se
rv

er
 v

10
.4

 o
r l

at
er

80
89

TC
P

W
eb

 e
m

ai
l r

ul
es

—
—

M
ac

 O
S

X
Se

rv
er

 v
10

.6
 o

r l
at

er

80
96

TC
P

W
eb

 P
as

sw
or

d
Re

se
t

—
—

M
ac

 O
S

X
Se

rv
er

 v
10

.6
.3

 o
r l

at
er

APPENDIX B Common Apple Ports

745

81
70

TC
P

HT
TP

S
(w

eb
 s

er
vi

ce
/s

ite
)

—
—

Po
dc

as
t C

ap
tu

re
/p

od
ca

st
 C

LI

81
71

TC
P

HT
TP

 (w
eb

 s
er

vi
ce

/s
ite

)
—

—
Po

dc
as

t C
ap

tu
re

/p
od

ca
st

 C
LI

81
75

TC
P

Pc
as

t T
un

ne
l

—
—

pc
as

ta
ge

nt
d

(s
uc

h
as

 fo
r c

on
tro

l

op
er

at
io

ns
 a

nd
 c

am
er

a)

84
43

TC
P

iC
al

 s
er

vi
ce

 (S
SL

)
—

pc
sy

nc
-h

ttp
s

M
ac

 O
S

X
Se

rv
er

 v
10

.5
 o

r l
at

er
 (J

BO
SS

HT
TP

S
in

 M
ac

 O
S

X
Se

rv
er

 1
0.

4
or

ea
rli

er
)

88
00

TC
P

Ad
dr

es
s

Bo
ok

 s
er

vi
ce

—
su

nw
eb

ad
m

in
M

ac
 O

S
X

Se
rv

er
 v

10
.6

 o
r l

at
er

88
43

TC
P

Ad
dr

es
s

Bo
ok

 s
er

vi
ce

 (S
SL

)
—

—
M

ac
 O

S
X

Se
rv

er
 v

10
.6

 o
r l

at
er

88
21

,

88
26

TC
P

St
or

ed
—

—
Fi

na
l C

ut
 S

er
ve

r

88
91

TC
P

ld
sd

—
—

Fi
na

l C
ut

 S
er

ve
r (

da
ta

 tr
an

sf
er

s)

90
06

TC
P

To
m

ca
t s

ta
nd

al
on

e
—

—
M

ac
 O

S
X

Se
rv

er
 v

10
.6

 o
r e

ar
lie

r

91
00

TC
P

Pr
in

tin
g

—
—

Pr
in

tin
g

to
 c

er
ta

in
 n

et
w

or
k

pr
in

te
rs

94
18

TC
P/

UD
P

gi
t p

ac
k

tra
ns

fe
r

—
gi

t
Xc

od
e

Se
rv

er
 (r

em
ot

e
gi

t)

10
54

8
TC

P
Ap

pl
e

Do
cu

m
en

t S
ha

rin
g

Se
rv

ic
e

—
se

rv
er

do
cs

m
ac

OS
 S

er
ve

r i
OS

 fi
le

 s
ha

rin
g

11
21

1
—

m
em

ca
ch

ed
 (u

nr
eg

is
te

re
d

us
e)

—
—

Ca
le

nd
ar

 S
er

ve
r

(c
on

ti
n

u
ed

)

APPENDIX B Common Apple Ports

746

Po
rt

TC
P

or

UD
P

Pr
ot

oc
ol

RF
C

Se
rv

ic
e

Na
m

e
Pu

rp
os

e

16
08

0
TC

P
—

—
—

W
eb

 s
er

vi
ce

 w
ith

 p
er

fo
rm

an
ce

 c
ac

he

16
38

4–

16
40

3

UD
P

Re
al

-T
im

e
Tr

an
sp

or
t P

ro
to

co
l (

RT
P)

,

Re
al

-T
im

e
Co

nt
ro

l P
ro

to
co

l (
RT

CP
)

—
co

nn
ec

te
d,

 —
M

es
sa

ge
s

(A
ud

io
 R

TP
, R

TC
P;

 V
id

eo
 R

TP
,

RT
CP

)

16
38

4–

16
38

7

UD
P

Re
al

-T
im

e
Tr

an
sp

or
t P

ro
to

co
l (

RT
P)

,

Re
al

-T
im

e
Co

nt
ro

l P
ro

to
co

l (
RT

CP
)

—
co

nn
ec

te
d,

 —
Fa

ce
Ti

m
e,

 G
am

e
Ce

nt
er

16
39

3–

16
40

2

UD
P

Re
al

-T
im

e
Tr

an
sp

or
t P

ro
to

co
l (

RT
P)

,

Re
al

-T
im

e
Co

nt
ro

l P
ro

to
co

l (
RT

CP
)

—
—

Fa
ce

Ti
m

e,
 G

am
e

Ce
nt

er

16
40

3–

16
47

2

UD
P

Re
al

-T
im

e
Tr

an
sp

or
t P

ro
to

co
l (

RT
P)

,

Re
al

-T
im

e
Co

nt
ro

l P
ro

to
co

l (
RT

CP
)

—
—

Ga
m

e
Ce

nt
er

24
00

0–

24
99

9

TC
P

—
—

m
ed

-lt
p

W
eb

 s
er

vi
ce

 w
ith

 p
er

fo
rm

an
ce

 c
ac

he

50
00

3
—

Fi
le

M
ak

er
 S

er
ve

r S
er

vi
ce

—
—

—

50
00

6
—

Fi
le

M
ak

er
 H

el
pe

r S
er

vi
ce

—
—

—

APPENDIX B Common Apple Ports

747© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5

APPENDIX C

�Managing NVRAM
One of those weird Mac things that you don’t have to deal with in iOS or

tvOS is NVRAM. A number of settings on a Mac are stored in Non-Volatile

RAM, or NVRAM. NVRAM has a number of keys that contain values that

define how the hardware is configured on a device that aren’t otherwise

stored in the settings of an operating system.

You can list all of the variables available using the -p option, as follows:

nvram -p

The output contains a lot of stuff that looks like this:

efi-apple-payload0-data %02%01%0c%00%d0A%03%0a%00%00%00%00%01%01

%06%00%00%1c%01%01%06%00%00%00%03%16%10%00%01%00%00%00%04%8e

The above is an example of part of a variable that is available in key

pairs are managed using the nvram command as well. Each setting, which

we’ll provide a list of in the following, can then be edited provided you

have elevated privileges to do so, without any options defined. Most values

are true and false and will need to be supplied as %01 for true and %00

for false. As an example, the following command will turn on Location

Services on a Mac:

nvram LocationServicesEnabled =%01

And the following will turn it back off:

nvram LocationServicesEnabled=%00

https://doi.org/10.1007/978-1-4842-5388-5

748

Some settings won’t apply to certain models if the hardware doesn’t

support that setting, but the following is a list of settings available on most

models:

•	 act-results: The results of the last Apple Diagnostics or

Apple Hardware Test.

•	 ALS_Data and Test_ALS_Data

•	 AutoBoot: Defines how the system boots (e.g., %00-%03)

•	 blacklight-level: Defines the level of the backlight

(e.g., %d9%0a)

•	 bluetoothActiveControllerInfo: Shows information

about the active Bluetooth Controller (e.g., %8f%82%ac

%05%02%00%00%003%14dv%ba%b5%c3A)

•	 bluethoothInternalControllerInfo: Shows information

about the internal Bluetooth Controller (e.g., %00%ac%

05%00%00%00%00%00%00%8c%85%90@%a4k)

•	 bodega-boot-to-black

•	 boot-args: Provides for arguments for use when booting

the kernel (or instructions sent to the kernel such as

don’t bring any chicken, er, I mean don’t allow 32-bit

software to be run or disable rootless (sudo nvram

boot-args=“rootless=0″). Also includes:

•	 debug=0x1d4e

•	 debugshell=2

•	 kdp_match_name=mojo

•	 watchdog=0

•	 smc=0x2

APPENDIX C Managing NVRAM

749

•	 -pbmkp rtc=1

•	 nvme=0x1

•	 medetect_panic=1

•	 dither=0

•	 legacy_hda_tools_support=1

•	 intcoproc_unrestricted=1

•	 -tconpanic

•	 -pbmkp

•	 -v: boots in verbose mode

•	 BootAudio: Indicates whether the startup chime will be

played on models from 2017 or earlier (e.g., %00 or %01)

•	 caterr-reset-disable:

•	 csr-active-config: Shows the policy on third-party

kernel extensions (e.g., %ff)

•	 csr-data: Defines a policy on third-party kernel

extensions

•	 DisableEfiPackageCstates

•	 display-config: Resolution for supported displays

•	 EFIBluetoothDelay: Time system waits for a wireless

keyboard during boot (useful in data centers)

•	 efi-Apple-payload0, eft-apple-payload0-data, efi-apple-

payload1, and efi-apple-payload2: UUID, EFI path, etc.

(e.g., an ioMatch Key with proprerties in an array)

•	 efi-apple-recovery: Path to firmware information

•	 efi-backup-boot-device-data: path to a backup efi file

APPENDIX C Managing NVRAM

750

•	 efi-backup-boot-device-data-data: Same as above but

encoded (I think)

•	 efi-boot-device: Path with efi but with last booted

(BLLastBSDName)

•	 efi-boot-device-data: Just the path to the efi file with

the UUID directory

•	 Eos-fdr-cache-uuid: The UUID, but not the useful one

used elsewhere

•	 eos-restore-failure-uuids

•	 fmm-computer-name: The name given to the computer

at boot time

•	 gpu-policy: Enables the GPU on some models of

computers

•	 HW_BOOT_DATA: Hardware boot data

•	 InstallWindowsUEFI

•	 LocationServicesEnabled: Enables (e.g., %01) or

disables (e.g., %00) location services

•	 multiupdater-0: Encoded multi-updater used in

efi-apple-payload0

•	 previous-system-uuid: Previous uuid used, if available.

•	 prev-lang:kbd: The previously selected keyboard

language (e.g., en-US:0, en:2, GB:2)

•	 security-mode: Used on some models to enable

firmware passwords

•	 security-password: When security-mode is used, used

to set the firmware password

APPENDIX C Managing NVRAM

751

•	 SmcFlasherResult (e.g., %00%00%00%00%00%00%00%

00%00%00%00%00%00%00%00%00)

•	 SystemAudioVolume: How loud the audio volume is

(e.g., 7)

•	 SystemAudioVolumeDB: Audio volume encoded %de

which decodes to 222

•	 ThorUpdateResult: Thunderbolt updater (e.g.,

%00%00%00%00%00%00%00%00)

The above list is not complete as I’ve not managed to change all of

these in a useful manner.

APPENDIX C Managing NVRAM

753© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5

APPENDIX D

�Conferences, Helpful
MacAdmins, and User
Groups
A number of Mac admins are the only ones handling Apple devices in

their particular company, school, or institution. If this is you, you are not

alone. There are a number of conferences and user groups where you can

get together with your colleagues and collectively solve your individual

problems.

Conferences
ACES Conference
When: Summer

Where: United States

Link: https://acesconf.com/

Focus: Business-focused conference for Apple consultants

Why go?: If you are an Apple consultant looking to start or build your

business, this conference provides great opportunities for networking and

learning new ways to grow your company.

Addigy Summit
When: Winter

Where: United States

Link: www.addigy.com/summit

https://doi.org/10.1007/978-1-4842-5388-5
https://acesconf.com/
http://www.addigy.com/summit

754

Focus: Mac admins who use Addigy for endpoint management

Why go?: If you’re a Mac admin who uses Addigy, this vendor

conference provides Addigy users with an opportunity to learn the latest

ways to use this endpoint management tool to manage their Macs.

Command-IT
When: Winter

Where: France

Link: www.command-it.fr

Focus: Francophone Mac admins

Why go?: If you’re a Mac admin whose first language is French, this

conference speaks your language and covers the latest techniques in Mac

administration.

FileWave Alliance Conference
When: Fall

Where: United States

Link: www.filewave.com/conference

Focus: Mac admins who use FileWave for endpoint management

Why go?: If you’re a Mac admin who uses FileWave, this vendor

conference provides FileWave users with an opportunity to learn the latest

ways to use this endpoint management tool to manage their Macs.

Jamf Nation User Conference
When: Fall

Where: Minneapolis, Minnesota United States

Link: www.jamf.com/events/jamf-nation-user-conference/

Focus: Mac admins who use Jamf Software’s Jamf Pro or Jamf Now for

endpoint management

Why go?: If you’re a Mac admin who uses Jamf Pro or Jamf Now, this

vendor conference provides Jamf users with an opportunity to learn the

latest ways to use this endpoint management tool to manage their Macs.

Jamf Nation Roadshows
When: Various times

Where: Various countries

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://www.command-it.fr
http://www.filewave.com/conference
http://www.jamf.com/events/jamf-nation-user-conference/

755

Link: www.jamf.com/events/

Focus: Mac admins who use Jamf Software’s Jamf Pro or Jamf Now for

endpoint management

Why go?: If you’re a Mac admin who wants to go to Jamf Nation

User Conference but can’t go for various reasons, Jamf has a traveling

conference that may be able to come to you.

Mac Admin and Developer Conference UK (MacADUK)
When: Winter

Where: London, England, United Kingdom

Link: http://macad.uk/

Focus: Conference for Mac admins and Apple developers

Why go?: If you’re a Mac admin based in the United Kingdom, this

conference covers the latest techniques in Mac administration and

development techniques.

MacDevOps YVR
When: Summer

Where: Vancouver, British Columbia, Canada

Link: www.macdevops.ca/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin who is interested in systems

automation and DevOps, this conference provides a variety of sessions

focused on those topics and how to apply them in a Mac-centric

environment.

MacDeployment
When: Summer

Where: Calgary, Alberta, Canada

Link: http://macdeployment.ca/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Canada, this community-

focused conference offers sessions on the current best practices

for deploying and maintaining Macs in education and enterprise

environments.

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://www.jamf.com/events/
http://macad.uk/
http://www.macdevops.ca/
http://macdeployment.ca/

756

MacSysAdmin
When: Fall

Where: Göteborg, Sweden

Link: http://macsysadmin.se/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Europe, this conference

covers the latest techniques in Mac administration from a global

perspective.

MacTech Conference
When: Fall

Where: Los Angeles, California, United States

Link: http://conference.mactech.com/

Focus: Conference for Mac admins and Apple consultants

Why go?: If you’re a Mac admin or Apple consultant, this conference

offers a variety of sessions and labs covering both macOS and iOS topics.

Objective by the Sea
When: Fall

Where: Maui, Hawaii, United States

Link: https://objectivebythesea.com

Focus: Conference for Apple security and digital forensics

Why go?: If your focus is security or digital forensics in an Apple-

centric environment, this conference offers a variety of sessions focused on

the challenges of securing macOS and iOS.

Penn State MacAdmins Conference
When: Summer

Where: State College, Pennsylvania, United States

Link: http://macadmins.psu.edu/

Focus: Conference for Apple security and digital forensics

Why go?: If your focus is supporting Macs or iOS in education or

enterprise environments, this conference offers a wide variety of sessions

given by both vendors and community speakers.

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://macsysadmin.se/
http://conference.mactech.com/
https://objectivebythesea.com
http://macadmins.psu.edu/

757

Apple Worldwide Developer Conference
When: Summer

Where: San Jose, California, United States

Link: https://developer.apple.com/wwdc/

Focus: Conference for Apple development

Why go?: If your focus is developing software for Macs or iOS, this

conference is your very best opportunity to learn the latest techniques and

speak directly with Apple engineers and developers.

XWorld
When: Summer

Where: Sydney, New South Wales, Australia

Link: https://auc.edu.au/xworld/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Australia, this community-

focused conference offers sessions on the latest techniques in Mac

administration and development techniques.

Helpful Mac Admins
Allister Banks

Blog: www.aru-b.com

GitHub: https://github.com/arubdesu

Adam Codega

Blog: www.adamcodega.com/

Andrina Kelly

GitHub: https://github.com/andrina

Ben Toms

Blog: https://macmule.com/

GitHub: https://github.com/macmule

Bill Smith

Blog: https://talkingmoose.net/

GitHub: https://github.com/talkingmoose

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

https://developer.apple.com/wwdc/
https://auc.edu.au/xworld/
http://www.aru-b.com
https://github.com/arubdesu
http://www.adamcodega.com/
https://github.com/andrina
https://macmule.com/
https://github.com/macmule
https://talkingmoose.net/
https://github.com/talkingmoose

758

Bryson Tyrrell

Blog: https://bryson3gps.wordpress.com/

GitHub: https://github.com/brysontyrrell

Calum Hunter

Blog: https://themacwrangler.wordpress.com/

GitHub: https://github.com/calum-hunter

Clayton Burlison

Blog: https://clburlison.com/

GitHub: https://github.com/clburlison

Ed Marczak

Blog: www.radiotope.com/

GitHub: https://github.com/marczak

Emily Kausalik-Whittle

Blog: www.modtitan.com/

GitHub: https://github.com/smashism

Eric Holtam

Blog: https://osxbytes.wordpress.com/

GitHub: https://github.com/poundbangbash

Erik Gomez

Blog: https://onemoreadmin.wordpress.com/

GitHub: https://github.com/erikng

Graham Gilbert

Blog: http://grahamgilbert.com/

GitHub: https://github.com/grahamgilbert

Graham Pugh

Blog: https://grpugh.wordpress.com/

GitHub: https://github.com/grahampugh

Greg Neagle

Blog: http://managingosx.wordpress.com/

GitHub: https://github.com/gregneagle

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

https://bryson3gps.wordpress.com/
https://github.com/brysontyrrell
https://themacwrangler.wordpress.com/
https://github.com/calum-hunter
https://clburlison.com/
https://github.com/clburlison
http://www.radiotope.com/
https://github.com/marczak
http://www.modtitan.com/
https://github.com/smashism
https://osxbytes.wordpress.com/
https://github.com/poundbangbash
https://onemoreadmin.wordpress.com/
https://github.com/erikng
http://grahamgilbert.com/
https://github.com/grahamgilbert
https://grpugh.wordpress.com/
https://github.com/grahampugh
http://managingosx.wordpress.com/
https://github.com/gregneagle

759

Hannes Juutilainen

GitHub: https://github.com/hjuutilainen

Jeremy Reichman

Blog: www.jaharmi.com/

GitHub: https://github.com/jaharmi

John Kitzmiller

GitHub: https://github.com/kitzy

Joseph Chilcote

GitHub: https://github.com/chilcote

Jeremy Reichman

Blog: https://wranglingmacs.blogspot.com/

GitHub: https://github.com/larkost

Michael Lynn

GitHub: https://github.com/pudquick

Mike Solin

Blog: http://mikesolin.com/

GitHub: https://github.com/flammable

Miles Leacy

Blog: http://themacadmin.com/

GitHub: https://github.com/themacadmin

Nick McSpadden

Blog: https://osxdominion.wordpress.com/

GitHub: https://github.com/nmcspadden

Patrick Fergus

Blog: https://foigus.wordpress.com/

GitHub: https://github.com/foigus

Pepijn Bruienne

Blog: http://enterprisemac.bruienne.com/

GitHub: https://github.com/bruienne

Per Olofsson

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

https://github.com/hjuutilainen
http://www.jaharmi.com/
https://github.com/jaharmi
https://github.com/kitzy
https://github.com/chilcote
https://wranglingmacs.blogspot.com/
https://github.com/larkost
https://github.com/pudquick
http://mikesolin.com/
https://github.com/flammable
http://themacadmin.com/
https://github.com/themacadmin
https://osxdominion.wordpress.com/
https://github.com/nmcspadden
https://foigus.wordpress.com/
https://github.com/foigus
http://enterprisemac.bruienne.com/
https://github.com/bruienne

760

Blog: http://magervalp.github.io/

GitHub: https://github.com/magervalp

Randy Saeks

Blog: www.rsaeks.com/

GitHub: https://github.com/rsaeks

Rich Trouton

Blog: https://derflounder.wordpress.com/

GitHub: https://github.com/rtrouton

Richard Purves

Blog: www.richard-purves.com/

GitHub: https://github.com/franton

Tim Sutton

Blog: http://macops.ca/

GitHub: https://github.com/timsutton

Samantha Demi

Blog: http://pewpewthespells.com/

GitHub: https://github.com/samdmarshall

Sean Kaiser

Blog: http://seankaiser.com/

GitHub: https://github.com/seankaiser

Shea Craig

Blog: http://sheagcraig.com/

GitHub: https://github.com/sheagcraig

Stéphane Sudre

Blog: http://s.sudre.free.fr/

GitHub: https://github.com/packagesdev

Steve Yuroff

Blog: https://swytechnotes.wordpress.com/

GitHub: https://github.com/swy

Victor Vrantchan

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://magervalp.github.io/
https://github.com/magervalp
http://www.rsaeks.com/
https://github.com/rsaeks
https://derflounder.wordpress.com/
https://github.com/rtrouton
http://www.richard-purves.com/
https://github.com/franton
http://macops.ca/
https://github.com/timsutton
http://pewpewthespells.com/
https://github.com/samdmarshall
http://seankaiser.com/
https://github.com/seankaiser
http://sheagcraig.com/
https://github.com/sheagcraig
http://s.sudre.free.fr/
https://github.com/packagesdev
https://swytechnotes.wordpress.com/
https://github.com/swy

761

Blog: http://groob.io/

GitHub: https://github.com/groob

Yoann Gini

Blog: www.abelionni.com/

GitHub: https://github.com/ygini

User Groups and Meetups
Austin Apple Admins

Where: Austin, Texas, United States

Link: www.austinappleadmins.org

Chicago Mac Admins

Where: Chicago, Illinois, United States

Link: www.chicagoappleadmins.com/

Denver Mac Admin

Where: Denver, Colorado, United States

Link: www.meetup.com/Denver-Mac-Admins/

London Apple Admins

Where: London, England, United Kingdom

Link: www.meetup.com/Denver-Mac-Admins/

MacAdmin Monthly

Where: New York, New York, United States

Link: www.macadminmonthly.org/

MacBrained

Where: San Francisco, California, United States

Link: http://macbrained.org/

MacDMV

Where: Washington, District of Columbia, United States

Link: www.macdmv.com/

Perth Apple Admins

Where: Perth, Western Australia, Australia

Link: www.meetup.com/Perth-Apple-Admins/

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://groob.io/
https://github.com/groob
http://www.abelionni.com/
https://github.com/ygini
http://www.austinappleadmins.org
http://www.chicagoappleadmins.com/
http://www.meetup.com/Denver-Mac-Admins/
http://www.meetup.com/Denver-Mac-Admins/
http://www.macadminmonthly.org/
http://macbrained.org/
http://www.macdmv.com/
http://www.meetup.com/Perth-Apple-Admins/

762

Philly Apple Admins

Where: Philadelphia, Pennsylvania, United States

Link: www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/

Apple Admins of Seattle and the Great Northwest

Where: Seattle, Washington, United States

Link: www.meetup.com/Seattle-Apple-Admins/

Sydney Mac Admins Meetup

Where: Sydney, New South Wales, Australia

Link: www.meetup.com/Sydney-Mac-Admins/

Twin Cities Mac Admins Group

Where: Minneapolis, Minnesota, United States

Link: www.mspmacadmins.org/

APPENDIX D Conferences, Helpful MacAdmins, and User Groups

http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
http://www.mspmacadmins.org/

763© Charles Edge and Rich Trouton 2020
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-5388-5

Index

A
Accounts System Preference

pane, 547
Active Directory (AD), 42, 43

admin credentials, 549
administrative settings, 567
attributes, 566
changes, 545, 546
command, 561, 562
configuration profile, 564, 566,

567, 569
domain controller, 557
fields, 552, 553
forest, 550
ipconfig /rebuilddns

command, 554
integration, 39
login options, 548
manual bind, 547
reasons, 546
schema, 24
server field, 548
settings, 563, 564
test authentication, 560
testing connection, 554, 560
user account, 558
user experience tab, 565

Active Directory domain, 550
ActiveSync policies, 32
Addigy agent

command structures, 70
components, 69, 70
iOS, 68
LANCache, 70
launchctl command, 70
open source components, 68
-peer-proxy options, 71
transparent architecture, 71

ADmitMac, 9, 25
AEiOS, 302–305
Agent-based management, 14

automation tools, 121, 122
Daemon/agent, 57, 60

fields, 61, 62
launchctl, 64–66
Lingon, 60, 61
property list, 64
script/application, 63
string diskarbitrationd, 65

framework, 119–121
git, 112–116
kernel_task controls, 58
.plist file, 57
resources sharing, 56

https://doi.org/10.1007/978-1-4842-5388-5

764

rootless, 118, 119
sharing system, 57
UAMDM, impact, 117, 118

AND operator, 501
APFS, 39
APNs-based workflows, 23
APNs debug logging

commands, 236
log level, 235
primary location, 238
push diagnostics, 236, 237
sysdiagnose command, 239

App deployment, 239
gift/VPP codes, 240, 241
volume purchase

program, 241–245
Apple Business Manager/Apple

School Manager, 187
adding device to portal, 190
downloading VPP

 token, 192
MDM server, 189
portals, 188
VPP portal, 191
XenMobile DEP

interface, 190
Apple Configurator, 27, 31,

39, 582, 595
Apple Configurator command line

tools, 292–297
Apple Device Management

agents, future, 697, 698
apps

Apple software,
evolutions, 684–686

device management
programs, 692

management apps, 687
productivity apps, 688
services, 688–692
software design and

architecture,
evolutions, 683

chipsets, changes, 702, 703
enterprise company, 704
getting apps to devices, 693–695
ios, 701, 702
iOS, macOS, tvOS, and

watchOS, 700, 701
privacy company, 705
programs, 30, 31
sandbox, 699, 700
scoreboard

apple product line, 681, 682
device supervision, 679
directory services, 676
endpoint protection, 676
Grave device

management, 675
organizational resorces, 675
organization’s network, 675
privacy controls, 680
tools, 677, 678
world-class support, 676

Apple Enterprise Connect, 580
Apple file system (APFS), 313, 344
AppleNet, 3

Agent-based management (cont.)

INDEX

765

Apple Network Administrator
Toolkit, 22

Apple Network Assistant, 22
Apple Network Server, 16
appleOS, 39–42
Apple Push Notifications

(APNs), 192, 193
Apple Remote Desktop, 22–24
Apple School Manager

(ASM), 31
AppleShare IP, 6, 16
Apple Software Restore, 36
Apple’s Profile Manager, 255
AppleTalk devices, 4
Apple TV, 36

Apple Configurator, 158
information, 159
notification, 160
profile installation

process, 162
window, 159

unsigned profile, 160
Apple Worldwide Developers

Conference (WWDC), 44
App Notarization

automation step, 251
bamboo tasks, 252
requirements, 250
Xcode, 250

App stores, custom, 30
Jamf Pro, 598
management tools, 597
Munki, 599
self-service portal, 598

Arithmetic-based binary
operators, 499

Arrays, 506, 507
Artbox, 17
ASAuthenticationSession, 617
authchanger command, 630
AutoDMG, 38
Automated testing, 472

expect scripting, 525, 526
graphical testing, 521, 522
Sikuli, 522–524

Automate enrollment, Apple
Configurator

configuration, 270–273
download MDM

profiles, 269, 270
Automating iOS actions, tools

Apple Configurator command
line tools, 292–297

GroundControl, 291, 292
libimobiledevice

additional
commands, 298–300

basic libimobiledevice
options, 298

troubleshooting
commands, 300, 301

Automation tools, 121, 122

B
BaseSystem Verification, 424
BearerToken, 607
Binary blacklisting, 450

INDEX

766

Binary whitelisting, macOS
centralized log, 454
classification, 457, 458
comparisons/searches, 458–460
compliance, 453
Google Santa, 452
logger command, 454
MCX, 451
OpenBSM

audit logs, 461
cmdReporter, 463
praudit binary, 462–464

reading log, 455, 456
techniques, 450

Blackberry Enterprise Server
(BES), 33

Blocks automations, 472
Blueprints, 257, 258
Bondi Blue iMac, 12
Boot Camp, 330
Bourne shell (sh), 473
BoxTone, 34
Bring Your Own Device

(BYOD), 186, 216

C
Caching service

configuration, 307–311
content type, 306
macOS Server, 306
sharing system preference

pane, 307
Casper 1.0 User’s Guide, 13

Casper Admin Console, 13
Certificate Signing

Request (CSR), 193
download Jamf Now, 194
MDM protocol, 198, 199
profiles in system

preferences, 199
push certificate, addigy, 195
push magic certificate, 197
signing request in

push portal, 196
Chef

Fleetsmith, 110
installation, 106–108
programmatic deployment, 109

Classic Mac operating system, 2
Command line

Bash shell, 475
built-in functions, 475
Mac administration,

476–479, 481
pwd command, 476
Zsh prompt, 475

Common vulnerabilities, 428–431
Community of Apple

administrators
conferences, 44–48
online communities, 48, 50

== comparison operator|
98END” 蜉, 499

Content Management, iOS devices
adding certificates profiles to

Blueprints, 260–265
AEiOS, 302–305

INDEX

767

Apple Configurator debug
logging, 283, 284

automate enrollment
configuration, 270–273
download MDM

profiles, 269, 270
Blueprint, creation

certificate, selection, 262
naming your profile, 261
profile name, 264
Security Type, change, 263

device names,
changing, 273–275

device preparation (see
Device preparation)

device supervision, manual
configurations, 286–289

device wallpaper,
changing, 275–277

install Apps with Apple
Configurator, 265–268

ipsw file, 284–286
Corellium, 532, 533
C shell (csh), 473
csrutil enable command, 422

D
DefaultPreferences.plist file, 572
DEP API

cloud service, 211–213
reseller, 210, 211

DeployStudio, 37
DEPNotify, 318

Device enrollment program
(DEP), 30, 117, 209

Device management, 6–9, 55
Device preparation

Blueprint
authentication credentials to

MDM solution, 282
automated enrollment,

configuration, 280
configure iOS Setup

Assistant
screen, 282, 283

802.1x Profile,
selection, 281

prepare workflow, 279
run prepare, 278

Device supervision, 216, 286–289
DirectoryServices APIs, 556
Directory Utility

bind process, 549, 552
listing, 550
Search Path, 555

-dontaskatlogout option, 377
Downtime, 126
dscl command, 556
dsconfigad command, 562
Duo Security, 660, 661

E
echo command, 484
Ecosystem coexistence, 24, 25
Effaceable storage, 345
eMate management, 6, 8

INDEX

768

Encryption
AES-256 cryptography

engine, 343
APFS, 344
cryptographic keys, 344
effaceable storage, 345
entrophy, 345
flash storage, 346
iOS devices, 343, 346

general payload, 348
passcode device, 347
passcode payload, 349

macOS, 350
APFS, 350
derived encryption

keys, 351
FileVault, 351
KEK, 350
VEK, 350

passcodes, 345
secure enclave, 344

Endpoint Detection and
Response (EDR), 468

Enterprise mobility, 31–35
Entrophy, 345
Exchange ActiveSync (EAS), 27, 32
Exit Code/return code, 507, 508
Expect scripting, 525, 526

F
FancyFon Mobility Center

(FAMOC), 34
File systems, 38

FileVault 2 encryption
authrestart verb, 395, 396
disabling, 382–385
fdesetup

supportsauthrestart, 397
one/multiple users

defer flag, 375
–defer option, 377
enable fdesetup, 369
enabling defer, 372
fdesetup commands, 377
multiple accounts, 370
Plist format, 370, 372
process, 374
recovery iinformation, 373

plist format, 396
recovery key, 378

base64 tool, 381
-norecoverykey flag, 379
Plist format, 382

FileVault enabled accounts
remove with username, 386
remove with UUID, 386

FileWave, 8, 14, 71–73
Fleetsmith

chrome management, 75
fsagent process, 74, 75
installer, 74
LaunchDaemons, 74
MDM, 73
menu bar, 76

Font/DA Mover, 6
forceatlogin option, 375
fsagent process, 74

INDEX

769

G
-ge operator, 504
Git log, 114
Google Cloud Function, 652, 656
Graphical testing, 521, 522
grep command, 495
GroundControl, 291, 292

H
Home directory, 116

I
Identity Providers (IdPs), 25

conditional access
defining, 638
Jamf Intune Integration,

configure, 639, 641, 643–646
defining, 602
Jamf Connect,iOS, 635–638
Jamf Connect, Mac

configure login,
629–631, 633, 634

login window, 628, 629
Okta, 602
Okta setup test account

add web application, 621
configure application, 624
configure sign on and

credentials, 622
installing extension, 626
logging, 625
SAML response, 627, 628

SAML settings, 623
trial account, 620

Open Authorization/
OAuth, 608, 610

OpenID Connect
ASAuthenticationSession,

617–619
cookies, 616, 617
defining, 613
SAML, 613–615

REST and web authentication
Bearer Tokens, 607
JSON, 604
JWT, 605, 606

vendors, 602
Web Authentication API, 612

If/else and case
statements, 496

Imaging, 37, 255
Individual/institutional recovery

keys, manage
add/change, 387
DER-encoded certificate, 389
fdesetup changerecovery,

388, 389
Plist format, 388, 391

Individual/institutional recovery
keys, remove

fdesetup removerecovery,
392, 393

password key, 392
Institutional recovery key

command-line abilities, 368
creation, 360

INDEX

770

FileVaultMaster.keychain,
363, 367

keychain access, 364
permissions set, 366
public key, 362, 365
removing private key, 365
security create-filevaultmaster-

keychain, 361
security tool’s unlock-keychain

function, 362
iOS and iPadOS devices, 582, 583
iOS Device Management, 26–28
iOS home screen

add apps, 596
Apple Configurator, 595
MDM solutions, 595

iOS Provisioning
automate (see Automating iOS

actions, tools)
Blueprints, 257–259
device using Apple

Configurator, 257
iOS Simulator, 528
iOSTesting Software, 528
.ipa file, web server, 246–248

J
Jamf

agent, 76
automation, 78, 79
user account management, 77, 78

Jamf Connect, 571, 628

K
Kernel extension, 41
Kernel-Mode Extensions, 41
Kexts, 41
-keychain flag, 378
Key encryption key (KEK), 350

L
LDAP server

in AD, 559
Linux-based systems, 21
Looping statements, 503
lsquarantine

ClamAV application, 445–447
file handlers, 442, 443
lsregister command, 439–441
MRT, 443–445
quarantine, 441, 442
quarantined apps, 437
services database, 439
signing application, 445
troubleshooting, 438

lsregister command, 439

M
MacAdmins Slack, 43, 49, 50
Mac Deploy Stick (MDS), 319
Mac management, 571
macOS, 35, 583

Catalina, 584
firewall, 431–433
Mojave, 584

Institutional recovery key (cont.)

INDEX

771

user experience, 583, 584
user template, modify

customize template, 593
desktop, customize, 594
Office applications, 593
user preferences,

customize, 594
MacOS, provisioning

DEP
DEPNotify, 316, 318
SplashBuddy, 317
user-facing

interface, 316, 317
workflows, 316

upgrades and installation
Catalina installer

application, 331, 333
mac reprovisioning,

334, 335, 337–339
virtual machines, 339, 340

without DEP
boostrappr, 330
Boot Camp, 330
Imagr, 330
installation, 319
installr, 330
MDS, 319
MDS workflow, 321–331
Winclone, 330

macOS Server app, 21
Mac OS X, 12–17
Mac OS X Server product, 21
Mac security

SIP, 405

application, 408
concepts, 406
directories, 409, 411
iTunes installer, 407
Kernel extension, 415
ls command, 413, 414
O flag, 412
private directory, 413
protected files, 406
rootless.conf file, 411
runtime protections, 414, 415
third-party software

developers, 411, 412
MacSysAdmin, 46
MacTech, 46
Magic Triangle, 25
Managed Apple IDs

business, 662
keychain, 667, 669, 670
Microsoft Azure Active

Directory, 663
schools, 661
webhook, 663, 665, 667

Managed Client Extensions
(MCX), 571

Managed Open-in, 245
Management policies, 12
Mangling variable, 490, 491,

493, 494
Manual configuration of settings

app limit for social
apps, 128, 129

content restrictions, 132, 133
Downtime settings, 127

INDEX

772

restricting apps, 131, 135
restricting changes, 136
restricting iTunes, App Store,

and web content
settings, 130, 133

restricting Siri and Game Center
content settings, 134

screen time setting, 126
settings app, 126
system preferences, 126

Mavericks, 35
MCX profile extensions, 181–183
mdmclient, 214–216
MDM commands

MicroMDM, 208, 209
VMware workspace ONE, 207

Microsoft Authenticator app, 648
Microsoft Azure Active

Directory, 663
Microsoft management tools, 3
Mobile Device Management

(MDM), 28, 29, 144, 516, 574
agentless technology, 185
commands, 201–209
device management, 200, 201

MobileIron, 47
MobileIron Authenticator, 649
Monolithic imaging, 37
Multi-factor authentication

G-Suite, conditional access
Duo trusted endpoints,

660, 661

enable APIs and
services, 652–654

Google Cloud Function, 652,
656, 658, 659

grab CustomerID, 650, 651
service account

creation, 655, 656
Microsoft Authenticator

app, 648
MobileIron access, 649

Munki
arrays, 83
featured_items, 91, 92
GCS file store, 93
interactive shell, 93
LaunchAgents, 81, 82
LaunchDaemons, 80, 81
managed_installs key, 83–85
management framework, 80
manifest, 82, 83
manifest file distribution, 95, 96
PkgInfo property, 93, 95
software removing, 89, 90
software update, 85–87
web service, 93

N
Nested manifests, 87, 88
NetBoot, 36, 40
NetOctopus and Jamf, 14
Network Assistant, 22, 23
Network protocols, 3–5
networksetup, 513

Manual configuration
of settings (cont.)

INDEX

773

NeXT computers, 9–11
NeXTcube, 17
NeXTSTEP and OPENSTEP

systems, 16
NoMAD application, 43, 571, 572
NoMAD Login AD, 577

installer package, 578
login window, 579
menu bar icon, 578

NoMAD project, 42
NSObject, 120

O
Optional software

installation, 90, 91
OR operator, 501
Logical OR operator, 502
Orchestrating events

CRUD operation, 535
cURL, 534, 535
OAuth, 536
POST parameters, 538
REST endpoint, 537, 539

Osquery
components, 98
installation, 98–100
logging/reporting, 104, 105
management stack, 97
network sockets, 97
ORDER BY keyword, 103
SEIM, 100
SELECT statement, 103
SQL database, 97

SQL shell, 101, 102
WHERE clause, 102

otool, 120
“over-the-air” management, 31

P
Package-based imaging, 255
PackageMaker, 14
Passing arguments, 515–517
pbcopy, 531
Penn State MacAdmins

Conference, 47
Platform security, 403–405
Plug-ins, DirectoryService, 556, 557
Policy-based management, 12
Policy controls, 12
Positional parameter, 515
POSIX-compliant Unix

environment, 40
Privacy control management

dictionary keys, 231–233
PPPC profile, 234
TCC, 230

Profiles
Apple Configurator

adding identification
information, 138, 144

management profile,
creation, 137

management profile,
saving, 141, 142

management profile
template, viewing, 137

INDEX

774

.mobileconfig file
extension, 142

raw contents, view, 146–149
restrictions payload

section, 139
saved management

profile, 143
setting app restrictions, 140
setting Functionality

restrictions, 139
setting media content

restrictions, 140
VPN payload settings, 145
VPN profile, saving, 145

command on macOS
install option, 180
MCX profile extensions,

181–183
options, 178, 179
-password, 181
-path option, 181
remove option, 180
-type option, 181
-verbose, 181

configuration, 125
effects of removal, 177, 178
installation

iOS, 152–157
macOS, 149–152
tvOS, 157–162

removing
iOS, 170–174
macOS, 169, 170

tvOS, 175–177
scripted configuration

changes, 125
viewing

iOS, 164–166
macOS, 162, 163
tvOS, 167–169

Profiles, user settings
managed setting, 589
MDM server, 586
privacy protections, 589
Safari’s homepage, 586–588

Puppet, 111, 112

Q
Quality assurance (QA), 522
Quarantined apps, 435

R
Radmind, 14
Recovery keys

FileVaultMaster.keychain
file, 359, 360

reporting, 394
fdesetup hasinstitutional

recoverykey, 395
fdesetup haspersonal

recoverykey, 395
types, 357–359

Release management, 539–541
RequestRequires

NetworkTether, 200

Profiles (cont.)

INDEX

775

Reverse engineering
ARMv8, 465
configuration, 469
EDR, 468
hopper disassembler, 466, 467
MonitorKit, 468
otool, 466
task explorer, 467
techniques, 465
threat hunting, 468
tools, 465

Rootless, 118, 119

S
Sandbox profile, 66, 67
Scripts, user settings

authorization database, 591
energy saver settings, 590, 591
security preferences, 592
system preferences, 591

Secure token
Apple’s Setup Assistant, 352
FileVault 2 encryption (see

FileVault 2 encryption)
FileVault 2, macOS, 353

monitoring encryption
progress, 357

recovery keys, 355, 356
system preferences, 354

institutional recovery key (see
Institutional recovery key)

KEK, 352
recovery keys (see Recovery keys)

Security Assertion Markup
Language (SAML), 613

Security Event Information
Manager (SEIM), 100

Server, 15–21
serveradmin command, 525
Service records (SRV), 550
Shell dependencies, 541–543
Shell scripting

hash-bang (#!)
specifier, 508

Bourne shell (sh), 482
command-line tools, 482
control statements, 482, 483
declare statement, 511–513
For/While/Until

statements, 503–505
If/Case statements, 496–502
initialization, 511
looping statements, 482
mangling variable, 490–494
methodology, 514
networksetup, 513
PLIST_FILE, 511
stock software package, 515
streams/pipelines, 494–496
sudo command, 513
variable declaration, 483–487
$PATH variable, 510
ZShell, 487–490

Sign macOS applications, 249
Sikuli, testing tool, 522–524
Simple Certificate Enrollment

Protocol (SCEP), 193

INDEX

776

SimpleMDM management
interface, 575–577

socketfilterfw command, 433
Spanning Tree Protocol (STP), 5
Spiffy simulator, 530
SplashBuddy, 317
sudo command, 513
Symantec software, 89
System Integrity Protection

(SIP), 40, 405–407
configuration options, 422–424
csrutil’s application,

417, 421, 422
NetBoot, 416, 419, 420
recovery environment, 418, 422
resetting NVRAM, 425, 426

systemsetup command, 483

T
Testing, 472
Test matrix

priority, 518
risk, 518
spreadsheet, 520
status, 519
structure, 519

Third-party kernel extension
management, 222

system extension blocked
dialog, 223

VMware, 224
Threat hunting, 468
Threat management, 448, 449

Ticketing systems, 526–528
Transparency and control

protections, 584, 585
Transparency Consent and Control

(TCC), 230, 426
Try and catch errors, 472

U
Unary operators, 500
UNIX command-line utility, 507
User Accepted MDM (UAMDM),

186
User-Approved Kernel Extension

Loading (UAKEL), 223
User Approved Mobile Device

Management
(UAMDM), 117, 217–220

bundle identifier, 225
impact, 222
MDM enrollment, 221
privacy control

management, 230–235
team identifier, 225
third-party kernel

extensions, 222–225
whitelisting kernel extensions

team/bundle
identifier, 227–229

team identifier, 226, 227
User groups, 50, 52
User level protections

disk access, 428
macOS Mojave, 427

INDEX

777

TCC, 426
testing, 426

V
–v flag, 505
VMware Identity Manager, 647
VMworld, 47
Volume Encryption Key (VEK), 350
Volume purchase program

API services, 241, 242
software, 244, 245
token, 243

Volume Purchase Program
(VPP), 30, 239

W
Webhook, 663, 665, 667
WirelessProximity

subsystem, 459

X, Y, Z
Xcode simulator

copy content, 531, 532
managing devices, 530, 531

Xprotect/gatekeeper,
434, 436, 437

Xserve RAID, 17, 21

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Preface
	Chapter 1: The Evolution of Apple Device Management
	The Classic Mac Operating System
	Network Protocols
	Early Device Management
	NeXT
	Mac + Unix = Mac OS X
	Server
	Apple Remote Desktop
	Ecosystem Coexistence
	iOS Device Management
	Mobile Device Management
	Apple Device Management Programs
	Enterprise Mobility
	iOS + Mac OS X = macOS
	Imaging Is Dead?

	macOS – Unix = appleOS
	Moving Away from Active Directory
	The Apple Admin Community
	Conferences
	Online Communities

	User Groups
	Summary

	Chapter 2: Agent-Based Management
	Daemons and Agents
	Use Lingon to See and Change Daemons and Agents Easily
	Controlling LaunchDaemons with launchctl

	Deeper Inspection: What Does the App Have Access To?
	Third-Party Management Agents
	Addigy
	FileWave
	Fleetsmith
	Jamf
	Manage User Accounts with Jamf
	More Automation Through The Jamf Framework

	Munki
	Munki LaunchDaemons
	Customizing a Munki Manifest
	Munki Managed Installs

	Updating Software Munki Didn’t Install
	Nested Manifests
	Removing Software with Munki
	Optional Software Installation
	Featured Items
	Building a Repository and a Catalog of Software
	Distributing the Manifest File

	osquery
	Install osquery
	Running osquery
	Logging and Reporting

	Chef
	Install Chef

	Edit a Recipe
	Puppet

	Use git to Manage All the Things
	The Impact of UAMDM
	Rootless
	Frameworks
	Miscellaneous Automation Tools
	Summary

	Chapter 3: Profiles
	Manually Configure Settings on Devices
	Use Apple Configurator to Create a Profile
	View the Raw Contents of a Profile
	Install a Profile on macOS
	Install a Profile on iOS
	Install a Profile on tvOS
	View a Profile from macOS
	View a Profile from iOS
	View a Profile from tvOS
	Remove a Profile on macOS
	Remove a Profile on iOS
	Remove a Profile on tvOS
	Effects of Profile Removal

	Use the Profiles Command on macOS
	Using the Profiles Command
	MCX Profile Extensions

	Summary

	Chapter 4: MDM Internals
	What MDM Can Access
	Apple Business Manager and Apple School Manager
	Apple Push Notifications
	Checkins: Device Enrollment
	MDM: Device Management
	MDM Commands
	Automated Enrollment, or DEP
	The Reseller DEP API
	The Cloud Service DEP API

	mdmclient
	Device Supervision
	UAMDM
	Enrollment Commands
	The Impact of UAMDM
	Third-Party Kernel Extension Management
	Team Identifier
	Bundle Identifier
	Using Team Identifier by Itself in a Third-Party Kernel Extension Whitelist Profile
	Using Team Identifier and Bundle Identifier in a Third-Party Kernel Extension Whitelist Profile
	Privacy Control Management

	Enable APNs Debug Logging
	App Deployment
	Gift and VPP Codes
	Volume Purchase Program

	Managed Open-In
	Host a .ipa on a Web Server
	Sign and Resign macOS Applications
	App Notarization

	Summary

	Chapter 5: iOS Provisioning
	iOS Provisioning
	Prepare an iOS Device Using Apple Configurator
	Create Blueprints

	Manage Content
	Add Certificates for 802.1x with Profiles to Blueprints
	Install Apps with Apple Configurator
	Automate Enrollment with Apple Configurator
	Download MDM Profiles
	Configure Automated Enrollment in Apple Configurator

	Change Device Names Using Apple Configurator
	Change Device Wallpaper with Apple Configurator
	Prepare a Device
	Apple Configurator Debug Logging
	Using an ipsw As Part of Device Restores
	Device Supervision Using Manual Configurations
	Automating iOS Actions
	GroundControl
	The Apple Configurator Command Line Tools
	libimobiledevice
	Basic libimobiledevice Options
	Additional Commands
	Troubleshooting Commands

	AEiOS

	Caching Services
	What’s Cached?
	Caching Service Configuration

	Summary

	Chapter 6: Mac Provisioning
	macOS Startup Modifier Keys
	macOS Provisioning with DEP
	SplashBuddy
	DEPNotify

	macOS Provisioning Without DEP
	Installation
	Create a Workflow
	Imagr
	Bootstrappr
	Installr
	Boot Camp
	Winclone

	Upgrades and Installations
	Reprovisioning a Mac
	Virtual Machines
	VMware Fusion
	Parallels
	VirtualBox

	Summary

	Chapter 7: Endpoint Encryption
	iOS Encryption Overview
	Enabling Encryption on iOS
	macOS Encryption Overview
	Secure Token
	Enabling Encryption on macOS
	FileVault Recovery Keys
	FileVault 1 and the FileVaultMaster.keychain File
	Creating an Institutional Recovery Key
	Enabling Filevault 2 Encryption for One or Multiple Users
	Enabling Filevault 2 Encryption Using One or Multiple Recovery Keys
	Disabling FileVault 2 Encryption
	Listing Current FileVault 2 Users
	Managing Individual and Institutional Recovery Keys
	Removing Individual and Institutional Recovery Keys
	Recovery Key Reporting
	Reporting on Filevault 2 Encryption or Decryption Status

	Summary

	Chapter 8: Securing Your Fleet
	Securing the Platform
	Mac Security
	System Integrity Protection
	SIP-Protected Applications
	SIP-Protected Directories
	View SIP Protections Interactively
	Runtime Protections
	Kernel Extension Protections

	Managing System Integrity Protection
	NetBoot and System Integrity Protection
	Running csrutil Outside of the Recovery environment
	Custom System Integrity Protection Configuration Options
	System Integrity Protection and Resetting NVRAM

	User-Level Protections
	Detect Common Vulnerabilities
	Manage the macOS Firewall
	Combat Malware on macOS
	Xprotect and Gatekeeper

	lsquarantine
	Using lsregister to Manipulate the Launch Services Database
	Quarantine
	Changing File Handlers
	MRT
	Signing Applications
	ClamAV

	Threat Management on iOS
	macOS Binary Whitelisting
	Compliance
	Centralized Log Capture and Analysis
	Writing Logs
	Reading Logs
	Organization and Classification
	Comparisons and Searches
	OpenBSM
	Audit Logs
	Using praudit

	Reverse Engineering
	Summary

	Chapter 9: A Culture of Automation and Continual Testing
	Scripting and the Command Line
	Command Line Basics
	Basic Shell Commands

	Shell Scripting
	Declaring Variables
	Expanding on ZShell
	Variable Mangling
	Standard Streams and Pipelines
	If and Case Statements
	For, While, and Until Statements
	Arrays
	Exit Codes
	Shell Script Logic
	Passing Arguments to Shell Scripts

	Manual Testing
	Build a Test Matrix

	Automated Testing
	Graphical Testing
	Sikuli
	Expect Scripting

	Posting Issues to Ticketing Systems
	Simulating iOS Environments with the Xcode Simulator
	Managing Simulated Devices
	Copy Content into the Simulator

	Corellium
	API Orchestration
	Use cURL to Work with APIs
	Use Postman to Work With APIs

	Release Management
	Build Dependencies

	Summary

	Chapter 10: Directory Services
	Manually Bind to Active Directory
	Bind the Easy Way
	Bind with the Directory Utility

	Test Your Connection with the id Command
	Use dscl to Browse the Directory
	Programmatically Binding to Active Directory
	Bind to Active Directory Using a Profile
	Beyond Active Directory
	All the Benefits of Binding Without the Bind

	NoMAD Stand-Alone Application
	Configuration Profile
	NoMAD Login AD

	Apple Enterprise Connect
	Summary

	Chapter 11: Customize the User Experience
	Getting iOS and iPadOS Devices in the Hands of Users
	macOS
	Planning the macOS User Experience
	Transparency Consent and Control Protections on User Home Folders
	Using Profiles to Manage User Settings
	Using Scripts to Manage User Settings
	Modifying the macOS Default User Template
	Customize the Desktop
	Customize the User Preferences

	Configure the iOS Home Screen
	Custom App Stores
	Test, Test, Test
	Summary

	Chapter 12: Identity and Device Trust
	Use IdPs for User Identities
	REST and Web Authentication
	JSON
	Use JWTs As Service Accounts
	Bearer Tokens

	OAuth
	Webauthn
	OpenID Connect
	SAML

	Cookies
	ASWebAuthSession
	Set Up a Test Okta Account
	View SAML Responses

	Jamf Connect for Mac
	Configure Jamf Connect Login

	Jamf Connect for iOS
	Conditional Access
	Configure the Jamf Integration with Intune

	Beyond Authentication
	Multi-factor Authentication
	Microsoft Authenticator
	MobileIron Access
	Conditional Access for G-Suite
	Obtain Your CustomerID from G-Suite
	Create a Google Cloud Function

	Enable the APIs You Need
	Create a Service Account
	Create Your Google Cloud Function
	Write Your Script

	Duo Trusted Endpoints
	Managed Apple IDs
	Managed Apple IDs in Schools
	Managed Apple IDs for Business
	Using Managed Apple IDs with Microsoft Azure Active Directory

	Webhooks
	Working with the Keychain
	Summary

	Chapter 13: The Future of Apple Device Management
	Balanced Apple Scorecard
	The Tools
	The Near Future
	Privacy Controls

	The Apple Product Lines
	Apps
	Evolutions in Software Design and Architecture
	The Evolution of Apple Software
	Apple Apps
	Management Apps
	Productivity Apps

	Apple Services
	Apple Device Management Programs

	Getting Apps to Devices
	Manage Only What You Have To
	The Future of Agents
	Other Impacts to Sandboxing
	iOS, macOS, tvOS, and watchOS Will Remain Separate Operating Systems
	Will iOS Become Truly Multiuser
	Changes in Chipsets
	You’re Just Not an “Enterprise” Company
	Apple Is a Privacy Company

	Summary

	Appendix A: The Apple Ecosystem
	Antivirus
	Automation Tools
	Backup
	Collaboration Suites and File Sharing
	CRM
	DEP Splash Screens and Help Menus
	Development Tools, IDEs, and Text Manipulators
	Digital Signage and Kiosks
	Directory Services and Authentication Tools
	Identity Management
	Imaging and Configuration Tools
	Log Collection and Analysis
	Management Suites
	Misc
	Point of Sale
	Print Servers
	Remote Management
	Security Tools
	Service Desk Tools
	Software Packaging and Package Management
	Storage
	Troubleshooting, Repair, and Service Tools
	Virtualization and Emulation
	Honorable Mention

	Appendix B: Common Apple Ports
	Appendix C: Managing NVRAM
	Appendix D: Conferences, Helpful MacAdmins, and User Groups
	Index

